
Data Monitoring Reference Manual
Version 5.3

(RedHawkTM Linux®)

0898493-030
July 2018

Copyright 2010,2018 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for use with Concurrent
Real-Time products by Concurrent Real-Time personnel, customers, and end–users. It may not be reproduced in any form without the written per-
mission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Real-Time makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the
envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without written per-
mission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent Real-Time product names are
trademarks of Concurrent Real-Time while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDATM is a trademark of NVIDIA Corporation.

NightProbe’s graphing capabilities are based in part on the work of the Qwt project (http://qwt.sf.net).

Contents

Chapter 1 Data Monitoring

Requirements . 1-1
Variable Eligibility. 1-3
Expanded Name Notation . 1-4

Chapter 2 MAXAda Interface

Organization . 2-1
Error Processing . 2-4
Package Types and Objects . 2-5

Descriptors . 2-6
Enumerations . 2-7

Target Program Selection and Identification . 2-9
Open_Program – Obtaining Program Descriptors . 2-9
Close_Program – Closing Program Descriptors. 2-11
Get_Current_Program – Referencing the Current Program. 2-12
Set_Current_Program – Changing the Current Program Descriptor 2-12
Info_Program – Obtaining Information from a Program Descriptor 2-13
Set_Interest_Threshold – Setting the Interest Threshold 2-14
Set_Variant_Handling – Setting Ada Record Variant Sensitivity. 2-15
Set_Class_Interpretation – Interpreting Class-Wide Types 2-16

Obtaining Internal Descriptors for Variables . 2-18
Get_Descriptor – Obtaining an Internal Descriptor . 2-19
Invalidate_Descriptor – Invalidating an Internal Descriptor 2-21
Is_Valid_Descriptor – Checking Internal Descriptor Validity 2-21
Is_Active_Component – Active Variant Checking . 2-22

Obtaining or Modifying Target Variables . 2-23
Get_Value – Obtaining the Value of Variables . 2-23
Set_Value – Setting the Value of Variables . 2-26
Validate_Value – Verifying an ASCII Representation . 2-29
IO Package – Generic Read and Write of Variables. 2-30

Obtaining Information about Variables . 2-32
Get_Info and Info_Only – Obtaining Information about Variables 2-32
Get_Array_Info – Obtaining Array Bounds and Component Info. 2-34
Get_Type_Name – Obtaining Variable Type Names . 2-35
Get_Enum_Image – Obtaining Images of Enumeration Constants 2-37
Get_Enum_Val – Obtaining Values of Enumeration Constants 2-39
Get_Constraints – Obtaining Constraints of Scalar Variables 2-41

Scanning Target Programs for Variables . 2-42
Generic Package Lists – Listing Scopes, Variables, and Components. 2-42

Chapter 3 C Interface

Organization . 3-1
Types and Objects . 3-1
iii

Data Monitoring Reference Manual
Descriptors . 3-1
Enumerations . 3-2

Error Processing. 3-4
Routines . 3-6
Target Program Selection and Identification . 3-7

Dm_Open_Program – Obtaining Program Descriptors 3-7
Dm_Open_Program_Aux – Obtaining Program Descriptor by Function 3-9
Dm_Close_Program – Closing Program Descriptors . 3-11
Dm_Set_Interest_Threshold – Setting the Interest Threshold 3-12
Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity 3-13
Dm_Set_Class_Interpretation – Interpreting Class-Wide Types 3-14
Dm_Get_Pid – Obtaining Target Process ID . 3-15
Dm_Set_Pid – Changing Target Process ID . 3-16
Dm_Suppress_Index_Checks – Suppressing Index Value Checks. 3-17

Obtaining Object Descriptors for Variables . 3-17
Dm_Get_Descriptor – Obtaining an Object Descriptor 3-18

Obtaining or Modifying Target Variables . 3-19
Dm_Peek – Peeking at Variables . 3-20
Dm_Poke – Poking at Variables . 3-21
Dm_Get_Value – Obtaining the Value of Variables . 3-22
Dm_Set_Value – Setting the Value of Variables. 3-23

Obtaining Information about Variables . 3-25
Dm_Get_Type_Name – Obtaining Type Names . 3-25
Dm_Get_Type_Name_Long – Obtaining Long Type Names 3-26
Dm_Get_Enum_Image – Obtaining Enumeration Constant Images 3-28
Dm_Get_Enum_Val – Obtaining Enumeration Constant Values 3-29
Dm_Line_Info – Obtaining Program Counter Location. 3-31

Scanning Target Programs for Variables . 3-32
Dm_List – Scanning Target Programs for Variables. 3-33
Dm_Find – Scanning Target Programs for Variables--Enhanced 3-35

Chapter 4 Fortran Interface

Organization. 4-1
Types and Objects . 4-1

Descriptors . 4-1
Enumerations . 4-3

Error Processing. 4-4
Functions . 4-6
Target Program Selection and Identification . 4-8

Dm_Open_Program – Obtaining Program Descriptors 4-8
Dm_Close_Program – Closing Program Descriptors . 4-9
Dm_Set_Interest_Threshold – Setting the Interest Threshold 4-10
Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity 4-11
Dm_Set_Class_Interpretation – Interpreting Class-Wide Types 4-12

Obtaining Object Descriptors for Variables . 4-14
Dm_Get_Descriptor – Obtaining Object Descriptors. 4-14

Obtaining or Modifying Target Variables . 4-16
Dm_Peek – Peeking at Variables . 4-16
Dm_Poke – Poking at Variables . 4-17
Dm_Get_Value – Obtaining the Value of Variables . 4-18
Dm_Set_Value – Setting the Value of Variables. 4-20

Obtaining Information about Variables . 4-21
iv

Contents
Dm_Get_Type_Name – Obtaining Type Names . 4-22
Dm_Get_Type_Name_Long – Obtaining Long Type Names 4-23
Dm_Get_Enum_Image – Obtaining Enumeration Constants Images 4-24
Dm_Get_Enum_Val – Obtaining Enumeration Constant Values 4-26

Appendix A MAXAda Examples

Compilation and Linking Instructions . A-1
Examples . A-2

Example 1 — Peek . A-2
Example 2 — Scanner . A-3

Appendix B C Examples

C Compilation and Linking Instructions . B-1
Examples . B-1

Example 1 — Peek . B-1
Example 2 — Scanner . B-2

Appendix C Fortran Examples

Compilation and Linking Instructions . C-1
Example 1 — Peek . C-1

List of Figures

Figure 2-1. MAXAda Data Monitoring Call Sequence: Method 1 2-2
Figure 2-2. MAXAda Data Monitoring Call Sequence: Method 2 2-3
Figure 3-1. C Data Monitoring Call Sequence . 3-6
Figure 4-1. Fortran Data Monitoring Call Sequence . 4-7
v

Data Monitoring Reference Manual
vi

1
Chapter 1Data Monitoring

1
1
1

This chapter presents the concepts and requirements of Data Monitoring. Data Monitor-
ing allows you to specify executable programs that contain Ada, C, or Fortran variables to
be monitored, obtain and modify the values of selected variables by specifying their
names, and obtain such information about the variables as their virtual addresses, types,
and sizes.

Three interfaces are available:

Ada

The Real_Time_Data_Monitoring package and compilation environment
(/usr/ada/default/rtdm) is bundled and shipped with the MAXAda product.

C,C++

The Data Monitoring library header files (/usr/lib/libdatamon.a, /usr/
include/datamon.h and /usr/include/datamon_aux.h) are provided
via the ccur-datamon RPM.

Fortran

The Data Monitoring library and Fortran header file (/usr/lib/libdatamon.a
and /usr/include/datamon_.h) are provided via the ccur-datamon RPM.

Subsequent chapters in this manual describe each of the above interfaces. The remaining
portion of this chapter deals with Data Monitoring requirements which are common to all
of the interfaces.

Requirements 1

Data Monitoring uses symbolic information generated by compilers; it requires the use of
the -g option (to generate debug information) when compiling source files containing
variables to be monitored.

Data Monitoring supports monitoring variables from programs built with the following
compilers:

RedHawk Linux:

• Concurrent MAXAda

• Concurrent Fortran

• GNU C/C++

• GNU Fortran (limited support)
1-1

Data Monitoring Reference Manual
• Intel C

• Intel Fortran

• Concurrent Fortran

Many of the subprograms within Data Monitoring require that the target program be exe-
cuting. For statically linked programs, however, the target program, in general, does not
need to be executing if the only subprograms invoked are the following:

• open_program, dm_open_program

• info_only

• get_type_name, dm_get_type_name

• get_enum_image, dm_get_enum_image

• get_enum_val, dm_get_enum_val

• get_array_info

• get_constraints

• get_real_time_monitoring_error, dm_get_error_string

• get_real_time_monitoring_error_code, dm_get_er-
ror_code

• close_program, dm_close_program

• instantiations of list.list and list.global_list, dm_list

If Data Monitoring is to be used only to obtain symbolic information about variables
within a target program, that target program does not need to be executing unless it uses
shared libraries. If the target program is not executing, the variables must have addresses
that are calculated without access to the memory image of an executing process—that is,
their addresses, size, and shape must be completely static (i.e. determined at compile or
link time).

Data Monitoring subprograms use the usermap(3) library routine to create address
mappings between the monitoring process and the target process. Once pages from the tar-
get process are mapped into the monitoring process, the monitoring process assumes that
the target pages will not change their physical location. The physical location of the pages
can change in the following circumstances:

• The target process terminates.

• The target process un-maps the target address.

• The target address is in a private, writable page, and the target process calls
fork(2) and then writes to or locks the target address before the child
process does.

• The target process has a private, read-only mapping at the time of the
usermap(3) call, subsequently calls mprotect(2) to make the map-
ping writable, and then writes to the target address.

• The target process explicitly maps the target address to a new physical
page.
1-2

Data Monitoring
In such situations, the monitoring process is unaware of the change in mapping; the results
of subsequent Data Monitoring subprogram calls that access target process addresses are
undefined. For further explanation of what is meant by the terms private, writable, see the
information on MAP_PRIVATE and PROT_WRITE in the mmap(2) system manual page.

NOTE

Data Monitoring requires that the monitoring process have read
access to the executable files associated with the processes being
monitored. Further, if values of variables are to be obtained or
modified, you must have read access or write access to the /
proc files (see proc(4)) associated with the processes being
monitored.

Variable Eligibility 1

Throughout this text, the term target program denotes an application that is being moni-
tored. The term target process denotes the executing program that is being monitored.
The term target program file denotes the disk image of the target program.

The term package denotes an Ada package, which is a grouping of variables, type declara-
tions, subprograms, and tasks. The term variable denotes the symbolic name of any of the
following:

• A non-composite variable (for example, a scalar)

• An element of an array variable

• A component of a record or structure variable

• A member of a common block

• A composite variable (for example, an array or record)

The term target variable refers to a variable in the address space of a process for which
you wish to perform Data Monitoring.

The terms variable and target variable are further constrained by the following:

• The variable must have a static base address.

• The variable must have a static shape or the target program must be execut-
ing.

• The variable must have a static size or the target program must be execut-
ing.

The following variables are eligible for monitoring:

• Variables in library-level Ada packages (including nested packages)

• C variables whose storage class is static or extern
1-3

Data Monitoring Reference Manual
• Fortran variables within subroutines

• Fortran common block members

The following variables are not eligible for monitoring:

• Variables allocated on a program stack

Examples include Ada variables within subprograms, C variables with
storage class auto, and procedure, function, and subroutine
parameters.

• Elements of array variables whose offsets are variable (for example,
array[variable])

Expanded Name Notation 1

You must specify variables in symbolic expanded notation. The expanded notation used
by Data Monitoring is similar to that specified by the Ada programming language. It has
been extended for use with C and Fortran and is as follows:

expanded_name ::= scope
expanded_name ::= scope '.' variable_name
expanded_name ::= variable_name

scope ::= [file_scope '.'] language_scope

file_scope ::= ' “simple_file_name” '
language_scope ::= package_scope | subprogram_scope | common_scope
package_scope ::= identifier { '.' language_scope }
subprogram_scope ::= identifier
common_scope ::= subprogram_scope '/' common_block '/'

common_block ::= identifier | <null>

variable_name ::= identifier | selected_component | indexed_component

selected_component ::= prefix '.' selector
selector ::= identifier | 'all'

indexed_component ::= prefix '(' index {',' index } ')'
indexed_component ::= prefix '[' index {',' index } ']’
index ::= numeric_literal | Ada_enumeration_literal

prefix ::= identifier | selected_component | indexed_component

In the rules just presented:

• <null> signifies absence of notation.

• Single quotation marks surround keywords and syntactic tokens.
1-4

Data Monitoring
Note that you must not supply the single quotation marks when you are
using expanded notation to specify variables.

Although the canonical form of a scope includes the file name enclosed in double quota-
tion marks (as noted above in file_scope), it is often unnecessary to specify the file name.
In many cases, the remaining portion of the scope, if any, unambiguously identifies the
item of interest. A C extern variable, for example, can usually be identified by an
expanded_name that solely includes the identifier denoting the variable. Similarly, a C
extern or Fortran subroutine can usually be identified by an expanded_name that
solely includes the identifier denoting the function or subroutine. And a library-level Ada
package can usually be identified by an expanded_name that solely includes the identi-
fier denoting the package. The file_scope portion of a scope is required only when one of
the following is true:

• The item of interest is not globally visible (for example, C static func-
tions or variables, variables within functions or subroutines)

• Another item exists with the same identifier at the same visibility level

The “.all” notation has been borrowed from the Ada language and represents pointer indi-
rection. It must be used in place of the “*” operator in the C language; however, “.all” is
placed after the pointer, whereas in the C language, the “*” precedes the pointer.

The “.all” notation is not required between pointers and selected components or between
pointers and indexing; for example, the following are equivalent:
1-5

Data Monitoring Reference Manual
ptr_to_structure.all.component
ptr_to_structure.component

The following are also equivalent:

ptr_to_array.all[5]
ptr_to_array[5]

Consider the following Ada, Fortran, and C source program segments contained in source
files ada_source.a, fortran_source.f, and c_source.c, respectively:

package pkg is
type scalar_type is range 0..10 ;
type enum_type is (class, object, auto) ;
type record_type is

record
a : enum_type ;
b : string (1..5) ;

end record ;
type array_type is

array (enum_type, scalar_type) of integer ;
type integer_ptr_type is access integer ;
type record_ptr_type is access record_type ;
Ada_scalar : scalar_type ;
Ada_composite : array_type ;
package nested_pkg is

var : record_ptr_type := new record_type ;
ptr : integer_ptr_type ;

end nested_pkg ;
end pkg ;

package pkg.child is
item : integer ;

end pkg.child ;

...
subroutine fortran_sub
common /named_common/ x, y, z
common dummy, item_in_blank_common, another_dummy
integer*4 subroutine_var(20)
end

subroutine sub
integer*4 int_var
end
...

int c_global_var ;
int sub ;
static int c_static_var ;

void c_func (void)
{

static int ***ptr ;
1-6

Data Monitoring
static int run[10][10] ;
{

static int nested_routine_var ;
}

}

All of the following are eligible variables expressed in proper expanded notation:

• pkg.ada_scalar
• pkg.ada_composite(class,4).b(3)
• pkg.nested_pkg.var.a
• pkg.nested_pkg.ptr.all
• pkg.child.item
• fortran_sub.subroutine_var(5)
• fortran_sub/named_common/y
• fortran_sub//item_in_blank_common
• “fortran_source.f”.sub.int_var
• c_global_var
• “c_source.c”.c_static_var
• c_func.run[3][5]
• c_func.nested_routine_var
• c_func.ptr.all.all.all

Note that Ada child packages must be specified by their expanded_name, not the direct
name which is just the child portion of the name; i.e. “parent.child”, not “child”.

Note the lack of file_scopes in most of the expanded_names shown above.
Although specification of a file_scope is always allowed, in the above examples, it is
required only for the file-level static variable c_static_var in the C source file
c_source.c (because file-level static variables are not globally visible) and the vari-
able int_var within the Fortran subroutine sub (because another identifier sub appears
in the program and is globally visible).

NOTE

The GNU Fortran compiler does not describe common blocks in
its debug information. Attempts to locate variables using the
common block syntax shown above will fail on programs built
with the GNU Fortran compiler. Individual components of com-
mon blocks can be located by omitting the common block name
and enclosing ’/ characters.
1-7

Data Monitoring Reference Manual
NOTE

The GNU Fortran compiler generates mangled names in its debug
descriptions. Most variables and functions are named with one ro
two trailing underscores. Attempts to locate variables using the
simple name supplied in the source code will often fail.
1-8

2
Chapter 2MAXAda Interface

2
2
2

This chapter presents the MAXAda Real_Time_Data_Monitoring package. This
package provides you with a flexible interface to the key features of Data Monitoring. It
contains subprograms that allow you to specify executable programs that contain Ada, C,
or Fortran variables to be monitored, obtain lists of eligible variables that can be moni-
tored, obtain and modify the values of selected variables by specifying their names, and
obtain such information about the variables as their virtual addresses, types, and sizes.

The Real_Time_Data_Monitoring package and compilation environment is bun-
dled and shipped with the MAXAda product. Access to the subprograms in the Real_-
Time_Data_Monitoring package is granted to user’s MAXAda compilation environ-
ments via the command:

/usr/ada/bin/a.path -a rtdm
The specification of the package can be found in "/usr/ada/default/rtdm/
rtm.a".

Organization 2

In the sections that follow, all of the Data Monitoring subprograms contained in the
MAXAda Real_Time_Data_Monitoring package are grouped and presented
according to their functionality. For each subprogram, the following information is pro-
vided:

• A description of the subprogram or subprograms

• The Ada declarations

• Detailed descriptions of each parameter

• Conditions upon which errors can occur

Procedures for compiling and linking user programs are presented in “Compilation and
Linking Instructions” on page A-1.

To perform Data Monitoring, you may use either of two methods for invoking the subpro-
grams from an application. Figure 2-1 illustrates the first method and shows the order in
which you might invoke the subprograms.
2-1

Data Monitoring Reference Manual
Figure 2-1. MAXAda Data Monitoring Call Sequence: Method 1

With the method illustrated by Figure 2-1, you specify the name of a target variable on
each call to get_value and set_value. On each invocation of get_value and
set_value, the following operations occur:

• The target program’s symbol table is searched for the specified variable.

• The type, size, shape, and address of the variable are obtained.

• A mapping is created between the monitoring process’s virtual address
space and the final address of the target variable.

• The value of the variable is obtained or modified.

For time-critical applications, it is recommended that the second method be used, which is
illustrated by Figure 2-2.

open_program

Obtain
Value Of
Variable?

Yes

No

get_value set_value
Modify

Value Of
Variable?

close_program

Start

End

Yes

No
2-2

MAXAda Interface
Figure 2-2. MAXAda Data Monitoring Call Sequence: Method 2

With the method illustrated by Figure 2-2, you first obtain the internal descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
internal descriptor on each call to get_value or set_value. Obtaining the internal
descriptors requires a considerable amount of time. For time-critical applications, it is rec-
ommended that you invoke get_descriptor during application initialization and then
use the resultant descriptor(s) on subsequent get_value and set_value calls during
the time-critical sections of your monitoring application.

An additional consideration with this method is that at the time of the get_descriptor
call, the size, shape, type, and address of the specified variable are frozen; subsequent uses
of the returned descriptor will utilize the frozen information, even if the actual variable

get_descriptor

open_program

Start

set_valueget_value

close_program

End

Yes

No

Yes

No

Obtain
Value Of
Variable?

Modify
Value Of
Variable?
2-3

Data Monitoring Reference Manual
underwent subsequent size, shape, type, or address changes. See “Get_Descriptor –
Obtaining an Internal Descriptor” on page 2-19 for more information.

Error Processing 2

When a call to one of the Real_Time_Data_Monitoring subprograms fails, the fol-
lowing steps are performed:

• The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an errno value, or other information that
is specific to the parameters supplied on the subprogram call.

• The exception real_time_monitoring_error is raised.

Both the error code and the description of the error can be retrieved as shown by the Ada
declarations related to error processing. These declarations, which are provided in the file
/usr/ada/default/rtdm/rtm.a, are as follows:
2-4

MAXAda Interface
real_time_monitoring_error : exception;

type error_codes is (
RTME_NOMEM, -- Insufficient program memory for operation
RTME_EXCEPT, -- Exception raised during operation
RTME_BADENUM, -- Illegal or unexpected enumeration literal/value
RTME_SYNTAX, -- Illegal char. in expanded name or expression
RTME_NODWARF, -- Insufficient debug information (DWARF) available
RTME_NOTVAR, -- Specified name is not a variable or named constant
RTME_DYNAMIC, -- Object has dynamic size, shape, or address
RTME_NOTRECORD, -- Object is not a record, structure, or common block
RTME_NOTARRAY, -- Object is not an array
RTME_NOTFOUND, -- Could not find package, module, var., or component
RTME_RANGE, -- Specified value/subscript is out-of-range for type
RTME_BADDIM, -- Insufficient or extra subscripts for array
RTME_NOELF, -- Unrecognized/Illegal ELF object file format
RTME_BADPID, -- Invalid (or missing) pid for file using shared libs
RTME_USRMAP, -- usermap(3C) failed to map process; bad pid?
RTME_SYMBOLS, -- Insufficient symbol table information for operation
RTME_BADDWARF, -- Unexpected/illegal/missing debug (DWARF)information
RTME_AMBIG, -- Specified identifier is ambiguous
RTME_SERVICE, -- System/library service call failed
RTME_NAME2BIG, -- Expanded name too long
RTME_NOTOPEN, -- open_program call skipped or was unsuccessful
RTME_NOFILE, -- Could not open specified program file
RTME_BADPROG, -- Bad program descriptor specified
RTME_BADDESC, -- Bad object descriptor specified
RTME_UNSUP, -- Unsupported (or unsupported type for) operation
RTME_COMPOSIT, -- Composite type/object not allowed for operation
RTME_BUF2SMALL, -- User-specified buffer too small
RTME_NOBITS, -- Operation requires byte-aligned types
RTME_BADREG -- Illegal regular expression
);

function get_real_time_monitoring_error return string;

function get_real_time_monitoring_error_code return error_codes;

Invoke the get_real_time_monitoring_error_code function to obtain an enu-
meration value that indicates the type of error that has occurred. Invoke the get_re-
al_time_monitoring_error function to obtain a string that more fully describes the
error that has occurred.

A set of examples that demonstrates use of the Real_Time_Data_Monitoring
package is provided in “MAXAda Examples” on page A-1. Included in the examples are:
(1) the Ada source code for a simple target program, (2) the Ada source code for the mon-
itoring program, (3) the instructions for compiling and linking the target program, and (4)
sample output from the example programs.

Package Types and Objects 2

This section describes type and object declarations that are defined and used by the
Real_Time_Data_Monitoring package. Descriptors presents declarations for
descriptors and constants that represent objects that the Real_Time_Data_Monitor-
ing package manipulates. Enumerations presents declarations for types that help interpret
the type and image of variables.
2-5

Data Monitoring Reference Manual
Descriptors 2

The following declarations define descriptors and constants that represent objects that the
Real_Time_Data_Monitoring package manipulates.

type program_descriptor is private;
current_program : constant program_descriptor;

type internal_descriptor is private;

program_descriptor

a private type that is used to represent a distinct target program or process. Informa-
tion within this type is not directly visible to the user. A program_descriptor
is created by open_program, destroyed by close_program, and consulted by
several other subprograms (see pages 2-9 and 2-11 for explanations of open_pro-
gram and close_program, respectively).

current_program

a pseudo constant that always represents the current program. Normally the current
program is the program_descriptor that has most recently been created via
open_program and has not yet been destroyed via close_program. It is sup-
plied as a default parameter to several subprograms; thus, for applications that oper-
ate only on a single target program at once, it is not necessary to specify a pro-
gram_descriptor on calls to most subprograms.

internal_descriptor

a private type that is used to represent a distinct target variable associated with a dis-
tinct target program or process. It contains type, size, and address information about
the target variable. An internal_descriptor is created by get_descriptor and is
used by several subprograms. It holds sufficient information to make subsequent
modification or reference of the associated target variable very efficient.
2-6

MAXAda Interface
Enumerations 2

The following type and object declarations aid in interpreting the type and image of vari-
ables.

type enumeration_image_case is (lower_case, upper_case);
enumeration_case : enumeration_image_case := lower_case;

type enumeration_image_case is (lower_case, upper_case);
enumeration_case : enumeration_image_case := lower_case;

type codes is (
code_enumeration,
code_float,
code_fixed,
code_integer,
code_record,
code_array,
code_char,
code_pointer,
code_complex,
code_common,
code_unknown);

type atomic_types is (
discrete_1byte_signed,
discrete_2byte_signed,
discrete_4byte_signed,
discrete_1byte_unsigned,
discrete_2byte_unsigned,
discrete_4byte_unsigned,
fixed_1byte,
fixed_2byte,
fixed_4byte,
float_4byte,
float_8byte,
aggregate_record,
aggregate_array,
complex_8_byte,
complex_16_byte);

enumeration_image_case

a type that defines the choices available for the ASCII representation of enumerated
types

enumeration_case

a variable that defines the current choice for the ASCII representation of enumerated
types. It controls the case of enumeration images returned by the get_value sub-
program. It does not affect the translation of user-supplied enumeration images; all
such translations are done in a case-insensitive manner (e.g. an enumeration con-
stant supplied by the user as an array index value in an expanded name).
2-7

Data Monitoring Reference Manual
codes

a type that presents the categories of language-defined types for a variable. A vari-
able’s code and atomic type aid in interpreting the bits associated with the variable.
Codes are as follows:

code_enumeration

Ada or C enumerated types

code_float

Floating point types

code_fixed

Ada fixed point types

code_integer

Integer types

code_record

Ada record or C structure types

code_array

Array types.

code_char

Ada character, C char, and Fortran character

code_pointer

Ada access types, C pointer types

code_complex

Fortran complex types

code_common

Fortran common blocks

code_unknown

Reserved for unrecognized types

atomic_types

a type that presents the list of low-level machine types associated with a vari-
able. A variable’s atomic type and code aid in interpreting the bits associated
with the variable—for example, a typical 32-bit signed integer has an atomic
type of discrete_4byte_signed.
2-8

MAXAda Interface
Target Program Selection and Identification 2

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Open_Program – Obtaining Program Descriptors 2

This subprogram is invoked to specify the target program for Data Monitoring. You must
invoke open_program prior to invoking any other subprogram in the Real_Time_-
Data_Monitoring package. Subsequent calls to get_descriptor to obtain an
internal descriptor for a target variable require an open program descriptor. Internal
descriptors that you have obtained following a previous open_program call continue to
be valid; you may use them to obtain or modify the values of the target variables with
which they are associated.

The open_program call requires that portions of the target program file be read from
disk into memory and that an internal symbol table be built. These procedures can use sig-
nificant amounts of memory; the amounts used depend upon the size of the target program
and the number of variables that can be monitored. You are advised not to invoke
open_program from time-critical sections of your application.

Ada Declarations

procedure open_program (
program_name : in string;
pid : in integer := 0;
in_same_address_space : in boolean := false;
interest_threshold : in integer := 0);

function open_program (
program_name : in string;
pid : in integer := 0;
in_same_address_space : in boolean := false;
interest_threshold : in integer := 0)
return program_descriptor;

Parameters

program_name

refers to a string that contains a standard UNIX path name identifying the target pro-
gram file in which the variables are found. A full or relative path name of up to 1024
characters can be specified.

pid

refers to an integer value representing the process identification number of the target
executable program specified by the program_name parameter. If the value of pid is
0, then open_program will attempt to locate a process that is executing on the
2-9

Data Monitoring Reference Manual
system with the specified path name. If successful, the corresponding process identi-
fication number of that process is used, otherwise, it is as if an invalid value for pid
has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Real_Time_Data_Monitoring subprograms is confined to one
or more of the following:

• info_only
• get_type_name
• get_array_info
• get_constraints
• list.list
• list.global_list
• get_real_time_monitoring_error
• get_real_time_monitoring_eror_code
• open_program
• close_program

Use of modes involving interpretation of class-wide variables (see set_-
class_interpretation page 2-16) and active record variants (see set_var-
iant_handling page 2-15) are also prohibited if the target program is not exe-
cuting.

in_same_address_space

refers to a boolean flag that indicates whether or not the Real_Time_Data_Mon-
itoring package is being executed in the same application as that containing the
variables whose values are to be obtained or modified. The default value for this flag
is false. If the monitoring process and the target process are the same (that is, the
monitoring is done within the target process), set the flag to true. In this case, the
overhead of address space mapping is avoided.

interest_threshold

refers to an integer value which specifies the interest threshold for the specified tar-
get program. The default value for this setting is 0. All eligible variables have an
interest value which is set by their compiler. By default, all eligible variables have
an interest value of zero. The Ada compiler allows the user to set the interest value
of selected variables via the implementation-defined pragma INTERESTING. (See
Annex M of the MAXAda Reference Manual (0890516) for more information on
pragma INTERESTING). The interest threshold controls whether an otherwise eli-
gible variable is visible to the subprograms in the Real_Time_Data_Monitor-
ing package. If the interest value of a variable is below the interest threshold it is
as if the variable did not exist. The interest threshold may also be set via the
set_interest_threshold subprogram (see page 2-14).
2-10

MAXAda Interface
Return Value

The function form of the open_program subprogram returns the newly-created program
descriptor. For either form, the current_program becomes the newly-created program
descriptor.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• The file associated with program_name could not be located or opened for
read.

• The specified pid was a value other than -1 and did not identify an execut-
ing process.

• The specified pid was -1 but the target program associated with pro-
gram_name requires shared libraries.

• The specified pid was 0 but no target process associated with pro-
gram_name could be located.

• The file associated with program_name is not a valid ELF executable file.

• The file associated with program_name contains no symbolic information.

Close_Program – Closing Program Descriptors 2

This subprogram is invoked to free internal storage that is being used to hold symbolic
information associated with the specified program descriptor. After making this call, you
may not call any other subprograms with the specified program descriptor. Internal
descriptors for target variables that have already been obtained via calls to get_de-
scriptor, however, are still valid—for example, get_value and set_value opera-
tions can still occur using those descriptors.

Ada Declarations

procedure close_program;
procedure close_program (program : program_descriptor);

Parameters

(null)

The subprogram form without an argument refers to the current_program.

program

refers to a program descriptor that has been returned from a previous call to
open_program and has not yet been closed
2-11

Data Monitoring Reference Manual
Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• No parameter is specified, and there is no valid current_program
• Program is not a valid, open program descriptor

Get_Current_Program – Referencing the Current Program 2

This subprogram is invoked to obtain the program descriptor that is represented by the
current_program. The current_program represents the program descriptor asso-
ciated with the last valid open_program or set_current_program call if the
descriptor has not been closed since the call.

This subprogram is rarely used since all subprograms which require a program descriptor
have a default value associated with that formal parameter which specifies the cur-
rent_program. It is only provided because the constant current_program is really
just a marker which abstractly represents the "current program"; the actual value of that
constant is not a valid program_descriptor.

Ada Declaration

function get_current_program return program_descriptor;

Return Values

The program descriptor associated with the last valid open_program or set_cur-
rent_program call is returned if the descriptor has not been closed since the call.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• There is no valid current_program

Set_Current_Program – Changing the Current Program Descriptor 2

This subprogram is invoked to associate a previously obtained program descriptor with
current_program.

Ada Declaration

procedure set_current_program
 (program : in program_descriptor);
2-12

MAXAda Interface
Parameters

program

refers to a program descriptor that has been returned from a previous call to
open_program and has not yet been closed

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program is not a valid, open program descriptor

Info_Program – Obtaining Information from a Program Descriptor 2

This subprogram returns basic information about a specified program descriptor including
the program name and process identification number.

This subprogram is useful for identifying the target program associated with a specific tar-
get variable when used in conjunction with the action call-back routine in list opera-
tions as described in “Scanning Target Programs for Variables” on page 2-42.

Ada Declarations

procedure info_program (
program : in program_descriptor := current_program
program_name : out string;
program_name_last : out natural;
program_pid : out integer);

function info_program (
program : in program_descriptor := current_program)
return string;

Parameters

program

refers to a program descriptor that has been returned on a previous call to
open_program and has not yet been closed (see page 2-9 for an explanation of
this subprogram)

program_name

upon return, is set to the path name that was specified on the open_program call
corresponding to program

program_name_last

upon return, is set to the last element of program_name modified by this call
2-13

Data Monitoring Reference Manual
program_pid

upon return, is set to the process identification number of the process corresponding
to program

Return Values

The function form returns the path name as previously specified on the call to
open_program corresponding to program.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program is not a valid, open program descriptor

• The size of program_name is insufficient to hold the path name corre-
sponding to program.

Set_Interest_Threshold – Setting the Interest Threshold 2

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0, unless explicitly set via the interest_threshold
parameter to the open_program subprogram. All eligible variables have an interest
value which is set by their compiler. By default, all eligible variables have an interest
value of zero. The Ada compiler allows users to change the interest value of selected vari-
ables via the implementation-defined pragma INTERESTING. (See Annex M of the
MAXAda Reference Manual (0890516) for more information on pragma INTERESTING).
The interest threshold controls whether an otherwise eligible variable is visible to the sub-
programs in the Real_Time_Data_Monitoring package. If the interest value of a
variable is below the interest threshold, it is as if the variable did not exist. Once set, the
interest threshold remains associated with the specified target program until reset by a sub-
sequent set_interest_threshold call.

Note that subsequent changes to the interest threshold have no effect on internal descrip-
tors already obtained by previous get_descriptor calls.

Ada Declaration

procedure set_interest_threshold (
interest_threshold : in integer;
program : in program_descriptor := current_program);

Parameters

interest_threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to program
2-14

MAXAda Interface
program

refers to a program descriptor that has been returned on a previous call to
open_program and has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program is not a valid, open program descriptor

Set_Variant_Handling – Setting Ada Record Variant Sensitivity 2

The set_variant_handling routine defines the mode in which Ada record variants
are handled. By default, the active_variants_only mode is set to false; thus look-up and
list subprograms within the Real_Time_Data_Monitoring package are not sensi-
tive to a record variant’s governing discriminant, inasmuch as all variants are considered
active at all times. Setting the active_variants_only mode to true will cause look-up and
list subprograms within this package to determine the value of an enclosing record vari-
ant’s governing discriminant when considering components within the record (see section
3.8.1(2-21) of the Ada 95 Reference Manual for more information on Ada record vari-
ants). In general, this sensitivity requires that the target program be executing, because the
value of discriminants must be obtained from the target process. If active_variants_only
mode is true and a component of a record is contained in an inactive variant, it is as if
the component did not exist. The active_variants_only mode has no effect on C or Fortran
variables.

If this mode is set to true and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active_variants_only mode is associated with
the specified target program and remains in effect until a subsequent call to set_vari-
ant_handling.

Note that subsequent changes to the active_variants_only mode have no effect on internal
descriptors which have already been obtained via a previous get_descriptor call.

Ada Declaration

procedure set_variant_handling (
active_variants_only : in boolean;
program : in program_descriptor := current_program)

Parameters

active_variants_only

refers to a boolean value which controls the handling of variants for Ada records for
the target program corresponding to program. Setting the value to true will cause
2-15

Data Monitoring Reference Manual
sensitivity to record variant’s governing discriminants as described above. Setting
the value to false causes all variants to be considered active.

program

refers to a program descriptor that has been returned on a previous call to
open_program and has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program is not a valid, open program descriptor

Set_Class_Interpretation – Interpreting Class-Wide Types 2

The set_class_interpretation routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is false. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to true, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to true requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following example:

package p is
type t is

record
x : integer;

end record;
type e is new t with

record
y : integer;

end record;
object_t : t’class := t’(x => 4);
object_e : t’class := e’(x => 1, y => 2);

end p;

In the table below, the first column represents the string passed to look-up subprograms
such as get_descriptor and get_value. The second and third columns represent
2-16

MAXAda Interface
whether such calls would succeed, based on the specified setting of the interpret_classes
mode:

Of course the example in the second row, “p.object_t.y”, isn’t very interesting since
the value of that class-wide variable really is of type “t” and therefore doesn’t have a
component named “y”. However, the example in the fourth row, “p.object_e.y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “e”, a type extended from the specific type of the root of the class-wide
type, it does contain a component called “y”.

Ada Declaration

procedure set_class_interpretation (
interpret_classes : in boolean;
program : in program_descriptor := current_program);

Parameters

interpret_classes

refers to a boolean value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to program. Setting the
value to true will cause the specific type of the value of the variable to be based on
the actual value of the variable. Setting the value to false will cause the specific
type of the value of the variable to be obtained directly from the specific type of the
root of the class-wide type.

program

refers to a program descriptor that has been returned on a previous call to
open_program and has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program is not a valid, open program descriptor

String Descriptor interpret_classes mode

false true

“p.object_t.x” succeed succeed

“p.object_t.y” fail fail

“p.object_e.x” succeed succeed

“p.object_e.y” fail succeed
2-17

Data Monitoring Reference Manual
Obtaining Internal Descriptors for Variables 2

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, get_value and set_value operations can occur (see pages 2-23 and
2-26, respectively, for explanations of these subprograms).

The Real_Time_Data_Monitoring package provides several forms of the
get_value and set_value operations. For ease of use, all of these forms allow you to
specify the target variable in one of the following ways:

• By specifying a string describing the expanded name of the target
variable

or

• By specifying an internal descriptor that has been obtained from a
previous call to get_descriptor on which you have supplied a
string describing the expanded name of the target variable (see page
2-19 for an explanation of this subprogram)

In the first case, the routines first obtain an internal descriptor via a hidden call to get_-
descriptor. After the get_value or set_value operation, that internal descriptor
is discarded (no storage space is lost). In the second case, the operation is completed more
quickly because you have already obtained the internal descriptor.

Another advantage of explicitly obtaining an internal descriptor is that the lifetime of the
descriptor exceeds that of its corresponding program descriptor; that is, the program
descriptor associated with the program containing the target variable may be closed
(thereby freeing significant memory associated with target program symbol tables), but
the internal descriptors remain valid.

Note that when you obtain an internal descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (ptr.all),
the value of the ptr at the time of the call to get_descriptor is used to determine the
final address of the ptr.all. Subsequent calls to get_value or set_value with the
resultant internal descriptor will refer to the address calculated during the get_de-
scriptor call, regardless of the current value of the ptr. If you wish to re-evaluate the
address of the ptr.all considering the current value of ptr, then call get_descrip-
tor again, or call get_value and set_value with an explicit variable name (that is,
“ptr.all”) rather than an internal descriptor. This applies not only to variables involv-
ing pointer indirection, but records whose size and shape can change as the target process
executes, as well as variables of class-wide types.
2-18

MAXAda Interface
Get_Descriptor – Obtaining an Internal Descriptor 2

This subprogram is invoked to obtain an internal descriptor for a specified variable. The
amount of time required to obtain the descriptor may be significant for applications with
stringent performance constraints.

Ada Declarations

function get_descriptor (
string_descriptor : in string;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)
return internal_descriptor;

procedure get_descriptor (
string_descriptor : in string;
descriptor : out internal_descriptor;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)

function get_descriptor (
address_descriptor : in system.address;
code : in codes;
atomic_type : in atomic_types;
bit_size : in natural;
bit_offset : in natural;
no_addr_translate : in boolean := false;
program : program_descriptor:=current_program)
return internal_descriptor;

procedure get_descriptor (
address_descriptor : in system.address;
code : in codes;
atomic_type : in atomic_types;
bit_size : in natural;
bit_offset : in natural;
descriptor : out internal_descriptor;
no_addr_translate : in boolean := false;
program : program_descriptor:=current_program);

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable for which
you wish to obtain the internal descriptor

descriptor

refers to the internal descriptor returned by the subprogram. The function forms of
this subprogram supply descriptor as the return value.
2-19

Data Monitoring Reference Manual
no_addr_translate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is false. When the flag is set to false,
the monitoring process’s virtual address space is to be mapped to the target variable.
Set the flag to true if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process (for example, a variable in
a shared memory segment attached at a common address). This flag is ignored if the
is_same_address_space parameter to the open_program call corresponding to
program was set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied.

address_descriptor

refers to an address in the target process that is to be interpreted as a target variable
with the attributes specified by the code, atomic_type, bit_size, and bit_offset parame-
ters. This parameter allows you to obtain and modify anonymous memory locations
in the target process.

code

identifies the memory location(s) associated with address_descriptor. Examples of
the values that you may specify are code_float, code_integer, and
code_record. For additional information, refer to “Enumerations” (page 2-7).

atomic_type

identifies the atomic type of memory location(s) associated with address_descriptor.
Examples of the values you may specify are discrete_1byte_signed and
discrete_4byte_ unsigned. For additional information, refer to “Enumera-
tions” (page 2-7).

bit_size

identifies the bits composing the anonymous target variable starting at address_de-
scriptor + bit_offset.

bit_offset

identifies the first bit of the anonymous target variable by specifying the bit offset
from the byte specified by address_descriptor. Bit offsets are numbered from zero to
seven, where zero is the most significant bit within a byte.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program does not refer to a valid, open program descriptor.

• String_descriptor does not refer to an eligible variable.
2-20

MAXAda Interface
• Descriptor is not a valid internal descriptor.

• The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process’s
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

Invalidate_Descriptor – Invalidating an Internal Descriptor 2

This subprogram is provided as a convenience. It is invoked to invalidate a specified
internal descriptor. After an internal descriptor has been invalidated, subsequent use of it
will cause an error.

Ada Declaration

procedure invalidate_descriptor
(descriptor : in out internal_descriptor);

Parameters

descriptor

Refers to an internal descriptor that you wish to invalidate

Error Conditions

This subprogram does not have any error conditions.

Is_Valid_Descriptor – Checking Internal Descriptor Validity 2

This subprogram is provided as a convenience. It is invoked to determine whether or not a
specified internal descriptor is valid. An internal descriptor is valid if it has been obtained
via a call to get_descriptor (see page 2-19 for an explanation of this subprogram)
and has not been invalidated via a subsequent call to invalidate_descriptor.

Ada Declaration

function is_valid_descriptor
(descriptor : in internal_descriptor) return boolean;
2-21

Data Monitoring Reference Manual
Parameters

descriptor

refers to an internal descriptor whose validity you wish to check

Return Values

The value true is returned if descriptor corresponds to a valid internal descriptor; other-
wise, the value false is returned.

Error Conditions

This subprogram does not have any error conditions.

Is_Active_Component – Active Variant Checking 2

This function is provided as a convenience; it is invoked to determine if a specific compo-
nent is nominally contained within a specific record variable and, if contained within a
variant, that the variant is active. The preferred method is to initially call the set_vari-
ant_handling subprogram (page 2-15) to set the active_variants_only mode to true
such that look-up and list operations on records will disregard components in inactive
variants outright.

Ada Declaration

function is_active_component (
string_descriptor : string;
program : program_descriptor := current_program)
return boolean;

Parameters

string_descriptor

refers to a string that contains the expanded name of a component of a target vari-
able (for example, package_p.record_item.component)

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied.

Return Value

This function returns true if the specified component exists in the record; which implies
that it is not contained in an inactive variant; otherwise, this function return false. The
current setting of the active_variants_only mode (see page 2-15) has no actual effect on
this function. Regardless of the setting of that mode, the value of the governing discrimi-
nants of any variants within the record will be obtained in order to determine if the speci-
2-22

MAXAda Interface
fied component is active. If the value of any governing discriminant of the enclosing
record is in memory, use of this function requires the target program to be executing.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program does not refer to a valid, open program descriptor.

• Program was omitted, and there is no valid, open current program descrip-
tor.

• String_descriptor contains invalid expanded name syntax.

• Program does not specify an executing process and string_descriptor refers
to a variable with a dynamic size, shape, address or requires a value from
the target process due to interpret_classes mode (see page 2-16).

• Governing discriminants exist for the enclosing record and their values are
in memory and program does not specify an executing process.

Obtaining or Modifying Target Variables 2

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Get_Descriptor – Obtaining an Internal Descriptor” on
page 2-19, most of these subprograms accept the specification of the target variable in one
of the following ways:

• By specifying a string describing the expanded name of the target variable

or

• By specifying an internal descriptor that has been obtained from a previous
call to get_descriptor on which you have supplied a string describing
the expanded name of the target variable (see page 2-19 for an explanation
of this subprogram)

Get_value allows you to obtain the value of a variable. Set_value (page 2-26) allows
you modify the value of a variable. Validate_value (page 2-29) allows you to verify
that a user-supplied ASCII representation of the value of a variable is appropriate for that
variable. The io package (page 2-30) allows you to read and modify the values of com-
plex variables.

Get_Value – Obtaining the Value of Variables 2

This subprogram is invoked to obtain the value of a target variable.

The default ASCII representation used by get_value depends upon the type of the vari-
able:
2-23

Data Monitoring Reference Manual
signed integer

the C printf “%d” conversion format

unsigned integer, pointers

the C printf “16#%-08.8x#” conversion format

floating point

the C printf “%g” conversion format

fixed point (Ada)

the C printf “%g” conversion format

enumeration (Ada)

the enumeration image in lower case unless the enumeration_case_image
variable in the Real_Time_Data_Monitoring package is set to upper_case.

Ada Declaration

function get_value (
string_descriptor : string;
no_addr_translate : boolean := false;
program : program_descriptor := current_program)
return string;

procedure get_value (
string_descriptor : in string;
object_value : out string;
object_last : out natural;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)

procedure get_value (
string_descriptor : in string;
address_to_store : in system.address;
bytes_at_address : in natural;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)

function get_value (
object_descriptor : in internal_descriptor)
return string;

procedure get_value (
object_descriptor : in internal_descriptor;
object_value : out string;
object_last : out natural);

procedure get_value (
object_descriptor : in internal_descriptor;
address_to_store : in system.address;
bytes_at_address : in natural);
2-24

MAXAda Interface
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) for which you wish to obtain the value. You may specify
this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain the value. You can obtain this descriptor by making a call to get_de-
scriptor (see page 2-19 for an explanation of this subprogram). You may specify
this parameter or the string_descriptor parameter.

no_addr_translate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is false. When the flag is set to false,
the monitoring process’s address space is to be mapped to the target variable. Set
the flag to true only if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process. This parameter can be
specified only for subprograms that require a string_descriptor. This flag is ignored
if the is_same_address_space parameter to the open_program call corresponding
to program was set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

address_to_store

refers to an address within the monitoring process’s address space at which the sub-
program is to place the raw value of the target variable. This value will be right jus-
tified in the memory range address_to_store .. address_to_store + bytes_at_address -
1.

bytes_at_address

refers to the number of bytes of space that you have reserved to hold the raw value
of the target variable. The raw value of the target variable will be right justified in
the memory range address_to_store .. address_to_store + bytes_at_address -1.

object_value

upon return, contains the ASCII representation of the value of the specified target
variable

object_last

upon return, identifies the last string element that has been set in the object_value
parameter
2-25

Data Monitoring Reference Manual
Return Values

The function forms of this subprogram return a string that contains the ASCII representa-
tion of the value of the specified target variable.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.

• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• Object_descriptor is not a valid internal descriptor.

• The type of the target variable represented by string_descriptor or object_-
descriptor is a composite type (array, record, or structure). The generic io
package may be used for obtaining the value of such variables.

• The type of the target variable represented by string_descriptor or object_-
descriptor is unknown (for example, code_unknown).

Set_Value – Setting the Value of Variables 2

This subprogram is invoked to modify the value of a target variable.

The default ASCII representation expected by set_value depends upon the type of the
variable:

signed integer

the C sscanf “%d” conversion format
2-26

MAXAda Interface
unsigned integers, pointers

the C sscanf “%d” conversion format

floating point

the C sscanf “%g” conversion format

fixed point (Ada)

the C sscanf “%g” conversion format

enumeration (Ada)

the enumeration image in upper or lower case

Ada Declarations

procedure set_value (
string_descriptor : in string;
value_in_ascii : in string;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)

procedure set_value (
string_descriptor : in string;
address_of_value : in system.address;
bytes_at_address : in positive;
no_addr_translate : in boolean := false;
program : program_descriptor := current_program)

procedure set_value (
object_descriptor : in internal_descriptor;
value_in_ascii : in string);

procedure set_value (
object_descriptor : in internal_descriptor;
address_of_value : in system.address;
bytes_at_address : in positive);

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose value you wish to modify. You may specify this
parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable whose value you
wish to modify. You can obtain this descriptor by making a call to get_descrip-
tor (see page 2-19 for an explanation of this subprogram). You may specify this
parameter or the string_descriptor parameter.
2-27

Data Monitoring Reference Manual
no_addr_translate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is false. When the flag is set to false,
the monitoring process’s address space is to be mapped to the target variable. Set
the flag to true only if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process. This parameter can be
specified only for subprograms that require a string_descriptor. This flag is ignored
if the is_same_address_space parameter to the open_program call corresponding
to program was set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

value_in_ascii

refers to a string that contains the ASCII representation of the new value of the tar-
get variable as specified by string_descriptor or object_descriptor. The value must be
expressed in a form that is consistent with the type of the target variable (for exam-
ple, an integer literal for an integer type, a floating point literal for a floating point
type, and so on). The value must be within the range of the type of the target vari-
able. You may specify this parameter or the address_of_value parameter.

address_of_value

refers to a variable that specifies the address of the first byte of the set of storage
locations that holds the raw value that will be used to modify the target variable. The
address specified must be in the monitoring process's virtual address space. The
value must be right justified in the memory range address_of_value . .
address_of_value + bytes_at_address -1. You may specify this parameter or the val-
ue_in_ascii parameter.

bytes_at_address

refers to a variable that contains an integer value indicating the number of bytes that
compose the raw value starting at the address specified by address_of_value. This
parameter may be specified only by subprograms that require the address_of_value
parameter.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.
2-28

MAXAda Interface
• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• Object_descriptor is not a valid internal descriptor.

• The type of the target variable represented by string_descriptor or object_-
descriptor is a composite type (array, record, or structure). The generic io
package may be used for modifying such variables.

• The type of the target variable represented by string_descriptor or object_-
descriptor is unknown (for example, code_unknown).

• The value as specified by value_in_ascii has an inappropriate form for the
type of the target variable.

• The value as specified by value_in_ascii is out of range for the type of the
target variable.

Validate_Value – Verifying an ASCII Representation 2

This subprogram is invoked to verify that a user-supplied ASCII representation of the
value of a variable is of an appropriate form for the variable's type.

The default ASCII representation used by validate_value depends upon the type of
the variable:

signed integer

the C sscanf “%d” conversion format

unsigned integer, pointers

the C sscanf “16#%d” conversion format

floating point

the C sscanf “%g” conversion format

fixed point (Ada)

the C sscanf “%g” conversion format
2-29

Data Monitoring Reference Manual
enumeration (Ada)

the enumeration image in upper or lower case

Use of this subprogram is optional. You may wish to use it to ensure that a subsequent call
to set_value in a time-critical section does not incur the overhead of exception han-
dling for errors resulting from specifying an inappropriate ASCII representation (see page
2-26 for an explanation of the set_value subprogram).

Ada Declaration

procedure validate_value (
object_descriptor : in internal_descriptor;
value_in_ascii : in string;
is_valid : out boolean);

Parameters

object_descriptor

refers to an internal descriptor that is associated with the target variable whose pro-
posed value (that is, value_in_ascii) you wish to validate

value_in_ascii

refers to a string that contains the ASCII representation of the value that you wish to
validate

is_valid

upon return, contains a boolean value that indicates whether or not value_in_ascii is
of the correct form and range for the variable's type. The value of this parameter is
set to false if the value of the variable is out of range or is of the wrong form; oth-
erwise, it is set to true.

Error Conditions

An invalid value specified by value_in_ascii is not an error condition; however, informa-
tion obtained on a subsequent call to get_real_time_monitoring_error will
indicate why the value is invalid. When an error condition is detected, the exception
real_time_monitoring_error is raised. Possible error conditions include the fol-
lowing:

• Object_descriptor is not a valid internal descriptor.

IO Package – Generic Read and Write of Variables 2

The io package is nested within the Real_Time_Data_Monitoring package. It
contains subprograms that read and write arbitrarily complex target variables based on
internal descriptors.
2-30

MAXAda Interface
This package allows you to read or write composite variables on a single invocation of a
subprogram. Note that the get_value and set_value subprograms cannot operate on
target variables with composite types (see pages 2-23 and page 2-26, respectively, for
explanations of these subprograms).

 Ada Declaration

generic

type variable_type is private;

package io is

procedure read (
address : in internal_descriptor;
value : out variable_type;
byte_offset : in natural := 0);

procedure write (
address : in internal_descriptor;
value : in variable_type;
byte_offset : in natural := 0);

end io;

Parameters

variable_type

refers to a user-defined type that is supplied during an instantiation of the generic
package. It is meant to represent the type of target variables whose values are to be
read or written via subsequent calls to read or write subprograms within the
instantiation being defined.

address

refers to an internal descriptor that specifies the target variable of interest

value

refers to a user-defined variable or expression of type variable_type in the monitor-
ing process’s address space. For read calls, the value of the target variable will be
placed in value upon return. For write calls, the target variable will be updated
with the supplied value.

byte_offset

refers to a non-negative integer value that is added to the virtual base address found
in the internal descriptor before the read or write operation begins. This offset must
not exceed the address range of the variable as defined by the address. The value of
byte_offset defaults to zero.
2-31

Data Monitoring Reference Manual
Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Address is not a valid internal descriptor.

• Byte_offset, when added to the base address of the variable defined by
address, will exceed the bit size of the variable as defined by address.

Obtaining Information about Variables 2

This section presents the subprograms that may be invoked to obtain information about a
specified target variable. The information that can be obtained includes the virtual
address, atomic type, code, bit size, bit offset, array shape and component information,
type name, and constraints.

Get_info and info_only allow you to obtain such information as the following: the
virtual address of the variable in the monitoring process’s address space and in the target
process’s address space; the atomic type of the variable; the bit size and bit offset.
Get_array_info (page 2-34) allows you to obtain information about an array variable.
Get_type_name (page 2-35) allows you to obtain information about the type of a target
variable. Get_constraints (page 2-41) allows you to obtain constraint information
about a target variable.

Get_Info and Info_Only – Obtaining Information about Variables 2

Ada Declarations

procedure get_info (
string_descriptor : in string;
virtual_address : out system.address;
target_address : out system.address;
atomic_type : out atomic_types;
bit_size : out natural;
bit_offset : out natural;
code : out codes;
program : program_descriptor := current_program)

procedure get_info (
object_descriptor : in internal_descriptor;
virtual_address : out system.address;
target_address : out system.address;
atomic_type : out atomic_types;
bit_size : out natural;
bit_offset : out natural;
code : out codes);

procedure info_only (
2-32

MAXAda Interface
string_descriptor : in string;
target_address : out system.address;
atomic_type : out atomic_types;
bit_size : out natural;
bit_offset : out natural;
code : out codes;
program : program_descriptor := current_program)

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) for which you wish to obtain information. You may spec-
ify this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain information. You may specify this parameter or the string_descriptor
parameter.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

virtual_address

upon return, contains the address of the first byte of the contiguous memory loca-
tions that hold the target variable in the monitoring process’s address space. Note
that normally, the address returned is not the location of the variable in the target
process’s address space. This parameter is not available on the info_only subpro-
gram; the info_only subprogram does not create a mapping between the monitor-
ing process and the target process (therefore it is generally not necessary for the tar-
get program to be executing).

 target_address

upon return, contains the address of the first byte of the contiguous memory loca-
tions that hold the target variable in the target process’s address space. Note that nor-
mally, the address returned is not the location of the variable in the monitoring pro-
cess's address space.

atomic_type

upon return, contains the enumeration value that indicates the atomic type of the
specified target variable

bit_size

upon return, contains the size in bits of the specified target variable
2-33

Data Monitoring Reference Manual
bit_offset

upon return, contains the bit offset from the first byte that is returned in the virtu-
al_address parameter

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.

• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• Object_descriptor is not a valid internal descriptor.

Get_Array_Info – Obtaining Array Bounds and Component Info 2

Ada Declarations

type indicies is
record

lower_bound : integer;
upper_bound : integer;

end record;
type indicies_list is array (1..10) of indicies;

procedure get_array_info (
object_descriptor : in internal_descriptor;
component_bit_size : out natural;
component_code : out codes;
component_signed : out boolean;
indicies : out indicies_list;
dimensions : out positive);
2-34

MAXAda Interface
Parameters

object_descriptor

refers to an internal descriptor associated with the target
variable for which you wish to obtain information

component_bit_size

upon return, contains the size in bits of the component type of the array specified by
object_descriptor

component_code

upon return, contains the code associated with the component type of the array
specified by object_descriptor

component_signed

upon return, contains the value true if the component type of the array specified by
object_descriptor has a signed representation; otherwise, it contains the value
false.

indicies

upon return, contains integer values that represent the lower and upper bounds of
each dimension of the array variable specified by object_descriptor. Components of
indicies that correspond to dimensions not present in the array variable specified by
object_descriptor are left undefined. If object_descriptor refers to an array that has
more than 10 dimensions, the lower and upper bounds of only the first 10 dimen-
sions are returned.

dimensions

upon return, contains the number of dimensions of the array specified by object_de-
scriptor

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Object_descriptor is not a valid internal descriptor.

• Object_descriptor does not refer to an array.

Get_Type_Name – Obtaining Variable Type Names 2

Ada Declaration

function get_type_name (
string_descriptor : string;
program : program_descriptor := current_program;
expanded_name : boolean := false;
interpret_classes : boolean := false) return string;
2-35

Data Monitoring Reference Manual
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type name you wish to obtain

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied.

expanded_name

refers to a boolean flag which controls whether the name of the type associated with
the variable identified by string_descriptor is expressed in Ada’s expanded name
notation. The default value for this flag is false. When true, type names are
preceded by the expanded name of their enclosing scope (e.g. “pkg.type_t”);
whereas the direct name of the type is used when the flag is false (e.g. “type_t”).
This parameter has no effect for C or Fortran variables.

interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. The default value for this setting is false. When
false, the type name is obtained using the name of the specific type (suffixed by
’class) of the root of the class-wide type of the variable specified by string_descrip-
tor. When true, the type is chosen using the specific type associated with the value
of the variable specified by string_descriptor. When interpret_classes is set to
true, the target program must be executing. The setting of interpret_classes on this
subprogram call overrides the interpret_classes mode which is set via a call to
set_class_interpretation (see page 2-16). For example, using the code
fragment from the example of set_class_interpretation on page 2-16, a
call such as get_type_name(“pkg.object_e”) would return “t’class”,
whereas a call such as get_type_name(“pkg.object_e”,interpret_-
classes=>true) would return “e”.

Return Value

This subprogram returns a string that describes the type of the target variable specified by
string_descriptor. For Ada variables, this string consists of the direct name of the type of
the target variable; this name may be a user-defined type name or a language-defined type
name. For C and Fortran variables, a name that represents the type of the variable is
returned. Examples are as follows:

int * var_1

get_type_name returns “int *”

void (*var_2)()

get_type_name returns “void (*)()”
2-36

MAXAda Interface
typedef int xxx; xxx var_3

get_type_name returns “xxx”

struct {...} var_4;

get_type_name returns “<struct>”

integer*4 fortran_variable

get_type_name returns “integer*4”

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• Program does not refer to a valid, open program descriptor.

• Program was omitted and there is no valid, open current program descrip-
tor.

• String_descriptor does not refer to an eligible variable.

• The target variable referenced by string_descriptor could not be found in
the target program's symbol tables (perhaps the user forgot to compile with
the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only (see page 2-15) or the inter-
pret_classes parameter.

Get_Enum_Image – Obtaining Images of Enumeration Constants 2

The get_enum_image subprogram is invoked to obtain the image of the enumeration
literal that corresponds to a specified position within the enumerated type associated with
a variable in a target program.

Ada Declaration

function get_enum_image (
string_descriptor : string;
enum_position : natural;
program : program_descriptor := current_program)
return string;
2-37

Data Monitoring Reference Manual
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active_variants_only
or interpret_classes modes; see pages 2-15 and 2-16).

enum_position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by
string_descriptor. A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The get_enum_image service expects a position, not a value.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied.

Return Values

The image of the enumeration literal corresponding to enum_position for the enumerated
type associated with the specified target variable is returned.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.

• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).
2-38

MAXAda Interface
• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• The type of the variable specified by string_descriptor is not an enumerated
type.

• The position specified by enum_position is illegal for the enumerated type;
perhaps a value was supplied instead of a position.

Get_Enum_Val – Obtaining Values of Enumeration Constants 2

The get_enum_val subprogram is invoked to obtain the value, as opposed to the image,
of the enumeration literal that corresponds to a specified position within the enumerated
type associated with a variable in a target program.

Ada Declaration

function get_enum_val (
string_descriptor : string;
enum_position : natural;
program : program_descriptor := current_program)
return integer;

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active_variants_only
or interpret_classes modes; see pages 2-15 and 2-16).

enum_position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by
string_descriptor. A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:
2-39

Data Monitoring Reference Manual
type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The get_enum_val service expects a position, not a value.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied.

Return Values

The value of the enumeration literal corresponding to enum_position for the enumerated
type associated with the specified target variable is returned.

Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.

• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• The type of the variable specified by string_descriptor is not an enumerated
type.

• The position specified by enum_position is illegal for the enumerated type;
perhaps a value was supplied instead of a position.
2-40

MAXAda Interface
Get_Constraints – Obtaining Constraints of Scalar Variables 2

The get_constraints subprogram is invoked to obtain constraint information about a
variable specified by a string_descriptor or object_descriptor.

Ada Declarations

procedure get_constraints (
string_descriptor : in string;
lower_bound : out long_float;
upper_bound : out long_float;
program : program_descriptor := current_program)

procedure get_constraints (
(object_descriptor : in internal_descriptor;
 lower_bound : out long_float;
 upper_bound : out long_float);

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) for which you wish to obtain information. You may spec-
ify this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain information. You may specify this parameter or the string_descriptor
parameter.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

lower

upon return, holds the lower bound of the constraints of the variable specified by
string_descriptor or object_descriptor. The lower bound is expressed as a floating
point number. For variables with enumerated types, the value represents the pos of
the base type (that is, it is always zero). For variables whose type is not scalar, this
value is undefined.

upper

upon return, holds the upper bound of the constraints of the variable specified by
string_descriptor or object_descriptor. The upper bound is expressed as a floating
point number. For variables with enumerated types, the value represents the pos of
the base type. For variables whose type is not scalar, this value is undefined.
2-41

Data Monitoring Reference Manual
Error Conditions

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:

• A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

• A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

• String_descriptor does not refer to an eligible variable.

• A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

• String_descriptor contains invalid expanded name syntax.

• The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active_variants_only or interpret_classes (see pages
2-15 and 2-16).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to get_real_time_monitoring_error.

• Object_descriptor is not a valid internal descriptor.

Scanning Target Programs for Variables 2

The generic lists package provides subprograms that traverse the internal symbol tables
of target program files and call a user-specified procedure for each item in a list. The list is
formed by examining the symbol tables in relation to a set of requirements that has been
defined by parameters specified on each call to a subprogram within an instantiation of the
lists package.

Generic Package Lists – Listing Scopes, Variables, and Components 2

Ada Declarations

type list_position is private;

type list_mode is (list_scopes,
list_variables,
list_components);

function list_packages return list_mode renames list_scopes;
2-42

MAXAda Interface
generic
with procedure action (item : in string;

program : in program_descriptor;
position : in out list_position;
quit : in out boolean);

package lists is
procedure list

(mode : list_mode;
 qualifier : string := "";
 restriction : string := "";
 components : boolean := false;
 program : program_descriptor := current_program);

procedure global_list
(mode : list_mode;
 qualifier : string := "";
 restriction : string := "";
 components : boolean := false);

end lists;

Dynamic Semantics

The procedures list and global_list differ in only one respect: global_list
searches all currently open program descriptors while list searches only the specified
(or current_program) program descriptor.

The list of items is formed by examining the symbol tables of target programs in relation
to the requirements specified by the qualifier, list mode, and optional regular expression
restriction parameters to the list and global_list subprograms.

If the program associated with a list item candidate is not currently executing, then list
item candidates with dynamic addresses, sizes, or shapes may fail to qualify for the list
and may be excluded from it.

For each item in the list, a call is made to the user-defined action procedure.

The list mode defines the class of objects being considered during the search:

list_scopes

defines the class of objects to be scopes. Examples are Ada packages, C subpro-
grams that contain static data, and Fortran subprograms.

list_variables

defines the class of objects to be variables

list_components

defines the class of objects to be components of composite variables
2-43

Data Monitoring Reference Manual
Parameters to List and Global_list

mode

refers to a value of type list_mode

qualifier

refers to a string that is interpreted in accordance with the specified mode. By
default, qualifier is a null string. Qualifier is interpreted as follows:

list_scopes

Qualifier should specify the name of a scope or a null string. If a null string is
specified, all scopes are considered; otherwise, only the scopes that are imme-
diately contained within the scope specified by qualifier are considered. Note
that an Ada child package is considered to be a global scope with an expanded
name such as “parent.child”; it is not considered to be a scope within “parent”.

list_variables

Qualifier should specify the name of a package or other scope. If a null string
is specified, all scopes are considered.

list_components

Qualifier should specify the expanded name of a composite variable.

restriction

refers to a string that forms a valid regular expression as defined by regexec(3).
It is used to restrict the list elements. The regular expression is applied to the
expanded name of the list item as it will be passed to the user-defined action proce-
dure. The restriction is applied as the last step in forming the elements of the list. By
default, restriction is null, which indicates there is no restriction.

components

refers to a boolean flag that indicates whether or not components of a variable are to
be listed in list_variables mode. This flag is ignored for all other list modes. If true,
components of composite variables are included in the list; otherwise, they are not.
Note that the list of components formed is significantly affected by the settings of
the active_variants_only and interpret_classes modes as described on pages 2-15
and 2-16.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program (see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the current_program is supplied. This parameter can
be specified only for the list procedure.

Error Conditions for List and Global_list

When an error is detected, the exception real_time_monitoring_error is raised.
Possible error conditions include the following:
2-44

MAXAda Interface
• The specified program is not a valid, open program descriptor, or it was
omitted and there are no valid, open program descriptors.

• The specified restriction is not null and is an invalid regular expression as
defined by regexpr(3G).

• An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty
list—that is, list and global_list return without calling the user-defined action pro-
cedure.

Parameters to the User-Defined Action Procedure

item

refers to a string describing the expanded name of the item. Item is a scope name
(for example, Ada package, Fortran subprogram), a variable, or a component of a
variable.

program

refers to the program descriptor associated with item

position

refers to a value of a private type that describes the current position in the list. The
action routine may store into this in-out parameter a previous list position value that
resets the specified list position (that is, the next call to action will pass the item
associated with the changed value of position).

quit

refers to a boolean flag that indicates whether or not list processing should continue;
this value is always set to false on entry to the action procedure. If you set this in-
out parameter to true, list processing will stop upon return from the current action
call; otherwise, list processing continues.
2-45

Data Monitoring Reference Manual
2-46

3
Chapter 3C Interface

3
3
3

The Data Monitoring library, /usr/lib/libdatamon.a, contains C interfaces that
allow you to monitor variables in executing processes. These interfaces allow you to
specify executable programs that contain Ada, C, or Fortran variables to be monitored;
obtain lists of eligible variables that can be monitored; obtain and modify the values of
selected variables; and obtain such information about the variables as their virtual
addresses, types, and sizes. Interfaces that allow you to obtain and modify values are of
two types: those that accept and return values expressed in symbolic formats that are
appropriate for the respective variables and those that accept and return values without
symbolic formatting.

Organization 3

This chapter provides all of the information that you need to use the C Data Monitoring
interfaces. “Types and Objects” on page 3-1 describes type and variable declarations that
are used by the C interfaces to Data Monitoring. “Error Processing” on page 3-4 presents
the enumerations and subprograms which describe error conditions. The remaining sec-
tions explain the procedures for using each of the C routines in the Data Monitoring
library. See “C Examples” on page B-1 for examples using the C interface and instruc-
tions.

Types and Objects 3

This section describes type and object declarations that are used by the C interfaces to
Data Monitoring. “Descriptors” on page 3-1 presents the types of descriptors that are used.
“Enumerations” on page 3-2 presents the enumerated types that are used.

Descriptors 3

The header file <datamon.h> declares two types of descriptors that are used by the C
interfaces to Data Monitoring: a program descriptor, which is used to represent a specific
target program or process, and an object descriptor, which is used to represent a specific
target variable associated with a target program or process.

The program descriptor is declared as follows:
3-1

Data Monitoring Reference Manual
typedef int program_descriptor_t;

A descriptor of this type is created by the dm_open_program routines and destroyed by
the dm_close_program routine (see pages 3-7, 3-9 and 3-11, respectively, for explana-
tions of these routines). It is also used by the dm_get_descriptor, dm_list and
dm_find routines (see pages 3-18, 3-33 and 3-35, respectively, for explanations of these
routines).

The object descriptor is declared as follows:

typedef struct object_descriptor {
int od_valid; /* Flag: true if valid */
int od_atomic_type; /* Internal data field */
dm_codes od_code; /* Object code */
void *od_target_address; /* Virt.addr in target program */
void *od_virtual_address; /* Virt.addr in this! process */
int od_bit_size; /* Size in bits of object */
int od_bit_offset; /* Bit offset from virt. addr */
int od_signed; /* 1 if signed representation */
int od_extra_info1; /* delta, image_database, n/a */
int od_extra_info2; /* n/a, val2pos_database, n/a */
double od_lower_bound; /* Lower bound for scalar types */
double od_upper_bound; /* Upper bound for scalar types */
int od_language; /* DWARF DW_LANG_ see dwarf.h */
dm_codes od_component_code; /* Valid iff od_code is array */
int od_component_bit_size; /* Valid iff od_code is array */
int od_component_signed; /* Valid iff od_code is array */
int od_number_dims; /* Num of dimensions for arrays */
int od_lower_dims[MAX_DIMENSIONS]; /* Low bounds */
int od_upper_dims[MAX_DIMENSIONS]; /* Upper bounds */

} object_descriptor_t;

A descriptor of this type is created by the dm_get_descriptor routine (see page 3-18
for an explanation of this routine). It contains type, size, and address information about the
target variable. It holds sufficient information to make subsequent modification or refer-
ence of the associated target variable very efficient. The object descriptor is used by the
dm_peek, dm_poke, dm_get_value, and dm_set_value routines (see pages 3-20,
3-21, 3-22, and 3-23, respectively, for explanations of these routines).

Enumerations 3

The header file <datamon.h> also declares two enumerated types that are used by the C
interfaces to Data Monitoring: dm_codes, which identifies the categories of language-
defined types for a variable, and dm_list_modes, which identifies the class of objects
to be considered when using the dm_list or dm_find routine to scan a target program
for variables (see pages 3-33 and 3-35 respectively, for explanations of these routines).

The dm_codes enumerated type is declared as follows:

typedef enum dm_codes {
code_enumeration,
code_float,
code_fixed,
code_integer,
3-2

C Interface
code_record,
code_array,
code_char,
code_pointer,
code_complex,
code_common,
code_unknown

} dm_codes;

The dm_codes values are explained as follows:

code_enumeration

Ada or C enumerated types

code_float

floating point types

code_fixed

Ada fixed point types

code_integer

integer types

code_record

Ada record or C structure types

code_array

array types

code_char

Ada character, C char, and Fortran character

code_pointer

Ada access types, C pointer types

code_complex

Fortran complex types

code_common

Fortran common blocks

code_unknown

reserved for unrecognized types

A variable’s code aids in interpreting the bits associated with the variable. The
<datamon.h> header file also includes a dm_code_images[] array that maps the
enumeration values to their corresponding enumeration images. Note that in order for this
3-3

Data Monitoring Reference Manual
image array to be visible, the C Data Monitoring program must be compiled with the
-Ddatamon_images option. See “C Compilation and Linking Instructions” on page
B-1 for more information.

The dm_list_modes enumerated type is declared as follows:

typedef enum dm_list_modes {
list_scopes,
list_variables,
list_components

} dm_list_modes;

The dm_list_modes values are explained as follows:

list_scopes

defines the class of objects to be scopes. Examples are Ada packages, C subpro-
grams that contain static data, and Fortran subprograms

list_variables

defines the class of objects to be variables

list_components

defines the class of objects to be components of composite variables

Error Processing 3

In general, functions return zero on success and indicate failure by returning a non-zero
value.

When a call to one of the Data Monitoring subprograms fails, the following steps are typi-
cally performed:

• The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an errno value, or other information that
is specific to the parameters supplied on the subprogram call.

• A value of -1 is returned from the subprogram.

Both the error code and the description of the error can be retrieved as shown below by the
declarations related to error processing. These declarations, which are provided in the file
<datamon.h>, are as follows:
3-4

C Interface
typedef enum dm_error_codes {
DM_NOMEM, /* Insufficient program memory for operation */
DM_EXCEPT, /* Exception raised during operation */
DM_BADENUM, /* Illegal or unexpected enumeration literal/value */
DM_SYNTAX, /* Illegal char. in expanded var_name/expression */
DM_NODWARF, /* Insufficient debug information (DWARF) available */
DM_NOTVAR, /* Specified name is not a variable or constant */
DM_DYNAMIC, /* Object has dynamic size, shape, or address */
DM_NOTRECORD, /* Object is not a record, structure, or common blk */
DM_NOTARRAY, /* Object is not an array */
DM_NOTFOUND, /* Could not find package/module/variable/component */
DM_RANGE, /* Specified value/subscript is out-of-range */
DM_BADDIM, /* Wrong number of subscripts specified for array */
DM_NOELF, /* Unrecognized/Illegal ELF object file format */
DM_BADPID, /* Invalid (or missing) pid for file w/ shared libs */
DM_USRMAP, /* usermap(3C) failed to map process; bad pid? */
DM_SYMBOLS, /* Insufficient sym table information for operation */
DM_BADDWARF, /* illegal/missing debug (DWARF) information */
DM_AMBIG, /* Specified identifier is ambiguous */
DM_SERVICE, /* System/library service call failed */
DM_NAME2BIG, /* Expanded name too long */
DM_NOTOPEN, /* dm_open_program call skipped or was unsuccessful */
DM_NOFILE, /* Could not open specified program file */
DM_BADPROG, /* Bad program descriptor specified */
DM_BADDESC, /* Bad object descriptor specified */
DM_UNSUP, /* Unsupported (or unsupported type for) operation */
DM_COMPOSIT, /* Composite type/object not allowed for operation */
DM_BUF2SMALL, /* User-specified buffer too small */
DM_NOBITS, /* Operation requires byte-aligned types */
DM_BADREG /* Illegal regular expression */

} dm_error_codes;

#ifdef datamon_mappings
static char * dm_error_code_images[] = {
...
#endif

extern
dm_error_codes
dm_get_error_code (void);

extern
char *
dm_get_error_string (void);

Invoke the dm_get_error_code function to obtain an enumeration value that indicates
the type of error that has occurred. Invoke the dm_get_error_string function to
obtain a string that more fully describes the error that has occurred. These functions
report on the last error that occurred.

Note that the array dm_error_code_images maps enumeration values to their corre-
sponding image; it is only provided when the -Ddatamon_images compilation option
to the C compiler is used. See “C Compilation and Linking Instructions” on page B-1 for
more information.
3-5

Data Monitoring Reference Manual
Routines 3

In the sections that follow, all of the C Data Monitoring routines contained in the lib-
datamon library are grouped and presented according to function. The following infor-
mation is provided for each routine:

• The C declaration of the routine

• Detailed descriptions of each parameter

• The return value

Figure 3-1 illustrates the approximate order in which you might call the routines from an
application program.

Figure 3-1. C Data Monitoring Call Sequence

Start

dm_open_program

dm_close_program

End

No

No

Yes

Yes

dm_get_descriptor

dm_get_value dm_set_value

Obtain
Value Of
Variable?

Modify
Value Of
Variable?
3-6

C Interface
With the sequence illustrated by Figure 3-1, you first obtain the object descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
object descriptor on each call to dm_get_value or dm_set_value. Obtaining the
object descriptors involves symbol table searches; it may require a significant amount of
time for time-critical applications. For such applications, it is recommended that you
invoke dm_get_descriptor during application initialization and then use the resultant
descriptor(s) to invoke dm_get_value and dm_set_value during the time-critical
sections of your monitoring application.

Target Program Selection and Identification 3

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Dm_Open_Program – Obtaining Program Descriptors 3

This routine is invoked to specify the target program for Data Monitoring. You must
invoke dm_open_program prior to invoking any other routine in the Data Monitoring
library. Subsequent calls to dm_get_descriptor to obtain an object descriptor for a
target variable require an open program descriptor. Object descriptors that you have
obtained following a previous dm_open_program call continue to be valid; you may
use them to obtain or modify the values of the target variables with which they are associ-
ated.

The dm_open_program call requires that portions of the target program file be read
from disk into memory and that an internal symbol table be built. These procedures can
use significant amounts of memory; the amounts used depend upon the size of the target
program and the number of variables that can be monitored. You are advised not to invoke
dm_open_program from time-critical sections of your application. The memory uti-
lized by dm_open_program can be reclaimed by a subsequent call to dm_-
close_program.

Declaration

#include <datamon.h>
extern
int
dm_open_program (char * pgm_name,

int pid,
program_descriptor_t * pgm_desc);
3-7

Data Monitoring Reference Manual
Parameters

pgm_name

points to a string that contains a standard UNIX path name identifying the program
to be monitored. Note that a full or relative path name of up to 1024 characters can
be specified.

pid

refers to a variable that contains an integer value representing the process identifica-
tion number of the target executable program specified by the pgm_name parameter

If the value of pid is 0, then dm_open_program will attempt to locate a process
that is executing on the system with the specified path name. If successful, the corre-
sponding process identification number of that process is used; otherwise, it is as if
an invalid value for pid has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the fol-
lowing:

• dm_get_type_name, dm_get_type_name_long
• dm_list, dm_find
• dm_get_error_code
• dm_get_error_string
• dm_open_program, dm_open_program_aux
• dm_close_program

pgm_desc

points to a location to which the program descriptor is to be returned

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• The file associated with pgm_name could not be located or opened for read.
• The specified pid was a value other than -1 and did not identify an execut-

ing process.
• The specified pid was -1 but the target program associated with pgm_name

requires shared libraries.
• The specified pid was 0 but no target process associated with pgm_name

could be located.
• The file associated with pgm_name is not a valid ELF executable file.
• The file associated with pgm_name contains no symbolic information.
3-8

C Interface
Dm_Open_Program_Aux – Obtaining Program Descriptor by Function3

This routine operates identically to the dm_open_program function, with the addition
of the access_method parameter which defines a user function to be called whenever a
value needs to be obtained from the target program.

Thus this function can be used when alternative methods are required when obtaining pro-
gram values. For example, when the usermap(3) service is not available on the target
operating system.

Declaration

#include <datamon_aux.h>

typedef int (*dm_access_method (int write, int pid, void *
process_addr, int bytes, void * dest);

typedef bool (*dm_access_method)(int write, int pid, void *
process_addr, int bytes, void * dest);

NOTE: C++ version uses bool as return value for function. C version uses int.

extern
int
dm_open_program_aux (char * prg_name,

int pid,
dm_access_method access_method,
program_descriptor_t * pgm_desc);

Parameters

prg_name

points to a string that contains a standard UNIX path name identifying the program
to be monitored. Note that a full or relative path name of up to 1024 characters can
be specified.

pid

refers to a variable that contains an integer value representing the process identifica-
tion number of the target executable program specified by the prg_name parameter

If the value of pid is 0, then dm_open_program_aux will attempt to locate a pro-
cess that is executing on the system with the specified path name. If successful, the
corresponding process identification number of that process is used; otherwise, it is
as if an invalid value for pid has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the fol-
lowing:
3-9

Data Monitoring Reference Manual
• dm_get_type_name, dm_get_type_name_long
• dm_list, dm_find
• dm_get_error_code
• dm_get_error_string
• dm_open_program, dm_open_program_aux
• dm_close_program

pgm_desc

points to a location to which the program descriptor is to be returned

access_method

A pointer to a user-specified function which will be invoked whenever a value from
the target program is required.

The function is passed the following parameters:

write

A boolean value, true indicating that this is a write operation and the user’s
function should modify the target program as described by the process_addr
and bytes parameters.

The value false indicates this is a read operation and the user’s function should
fetch the memory locations from the target program as described by the pro-
cess_addr and bytes parameters.

pid

The process ID of the target program.

process_addr

The target program address from which to fetch values or write values.

bytes

The number of bytes required to be transferred for this access.

dest

For write operations, the address of the value to store into the target program.
For read operations, the address of the variable where values read from the
target process are to be placed.

The specified function should return true (1) if the operation is successful or false
(0) otherwise.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
3-10

C Interface
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• The file associated with prg_name could not be located or opened for read.

• The specified pid was a value other than -1 and did not identify an execut-
ing process.

• The specified pid was -1 but the target program associated with prg_name
3requires shared libraries.

• The specified pid was 0 but no target process associated with prg_name
could be located.

• The file associated with prg_name is not a valid ELF executable file.

• The file associated with prg_name contains no symbolic information.

Dm_Close_Program – Closing Program Descriptors 3

This routine is used to free internal storage that is being used to hold symbolic information
associated with the specified program descriptor. After invoking this routine, you may not
call any other routines with the specified program descriptor. Object descriptors for target
variables that have already been obtained by calls to dm_get_descriptor (see page
3-18), however, are still valid; for example, dm_get_value, dm_set_value,
dm_peek, and dm_poke operations can still occur.

Declaration

#include <datamon.h>
extern
int
dm_close_program (program_descriptor_t pgm_desc);

Parameters

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm_open_program or dm_open_program_aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• pgm_desc is not a valid, open program descriptor
3-11

Data Monitoring Reference Manual
Dm_Set_Interest_Threshold – Setting the Interest Threshold 3

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0. All eligible variables have an interest value
which is set by their compiler. By default, all eligible variables have an interest value of
zero. The Ada compiler allows users to change the interest value of selected variables via
the implementation-defined pragma INTERESTING. (See Annex M of the MAXAda Ref-
erence Manual (0890516) for more information on pragma INTERESTING). The interest
threshold controls whether an otherwise eligible variable is visible to the subprograms in
the Data Monitoring library. If the interest value of a variable is below the interest thresh-
old, it is as if the variable did not exist. Once set, the interest threshold remains associated
with the specified target program until reset by a subsequent dm_set_interest_-
threshold call.

Note that subsequent changes to the interest threshold have no effect on object descriptors
already obtained by previous dm_get_descriptor calls.

Declaration

#include <datamon.h>
extern
int
dm_set_interest_threshold

(int threshold,
program_descriptor_t pgm_desc);

Parameters

threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to pgm_desc.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm_open_program or dm_open_program_aux (see pages 3-7 and 3-9,
respectively, for an explanation of these routines)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor
3-12

C Interface
Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity 3

The dm_set_variant_handling routine defines the mode in which Ada record vari-
ants are handled. By default, the active_variants_only mode is set to false; thus look-up
and dm_list subprograms within the Data Monitoring library are not sensitive to a
record variant’s governing discriminant, inasmuch as all variants are considered active at
all times. Setting the active_variants_only mode to true will cause look-up and
dm_list subprograms within this package to determine the value of an enclosing record
variant’s governing discriminant when considering components within the record (see sec-
tion 3.8.1(2-21) of the Ada 95 Reference Manual for more information on Ada record vari-
ants). In general, this sensitivity requires that the target program be executing, because the
value of discriminants must be obtained from the target process. If active_variants_only
mode is true and a component of a record is contained in an inactive variant, it is as if
the component did not exist. The active_variants_only mode has no effect on C or Fortran
variables.

If this mode is set to true and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active_variants_only mode is associated with
the specified target program and remains in effect until a subsequent call to dm_set_-
variant_handling.

Note that subsequent changes to the active_variants_only mode have no effect on object
descriptors which have already been obtained via a previous dm_get_descriptor call.

Declaration

#include <datamon.h>
extern
int
dm_set_variant_handling (int handling,

program_descriptor_t pgm_desc);

Parameters

handling

refers to an integer value which controls the handling of variants for Ada records for
the target program corresponding to pgm_desc. Setting the value to 1 will cause
sensitivity to record variant’s governing discriminants as described above. Setting
the value to 0 causes all variants to be considered active.

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_program or dm_open_program_aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these subprograms)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
3-13

Data Monitoring Reference Manual
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor

Dm_Set_Class_Interpretation – Interpreting Class-Wide Types 3

The dm_set_class_interpretation routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is false. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to true, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to true requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following Ada example:

package p is
type t is

record
x : integer;

end record;
type e is new t with

record
y : integer;

end record;
object_t : t’class := t’(x => 4);
object_e : t’class := e’(x => 1, y => 2);

end p;

In the table below, the first column represents the string passed to look-up subprograms
such as dm_get_descriptor and dm_get_value. The second and third columns
represent whether such calls would succeed, based on the specified setting of the inter-
pret_classes mode:

String Descriptor interpret_classes mode

0 1

“p.object_t.x” succeed succeed

“p.object_t.y” fail fail

“p.object_e.x” succeed succeed

“p.object_e.y” fail succeed
3-14

C Interface
Of course the example in the second row, “p.object_t.y”, isn’t very interesting since
the value of that class-wide variable really is of type “t” and therefore doesn’t have a
component named “y”. However, the example in the fourth row, “p.object_e.y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “e”, a type extended from the specific type of the root of the class-wide
type, it does contain a component called “y”.

Declaration

#include <datamon.h>
extern
int
dm_set_class_interpretation

(int interpret,
program_descriptor_t pgm_desc);

Parameters

interpret

refers to a boolean value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to pgm_desc. Setting the
value to 1 will cause the specific type of the value of the variable to be based on the
actual value of the variable. Setting the value to 0 will cause the specific type of the
value of the variable to be obtained directly from the specific type of the root of the
class-wide type.

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_program or dm_open_program_aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor

Dm_Get_Pid – Obtaining Target Process ID 3

This routine allows the user to obtain the process ID associated with a valid program
descriptor.

Declaration

#include <datamon_aux.h>
extern
3-15

Data Monitoring Reference Manual
int
dm_get_pid (program_descriptor_t * pgm_desc);

Parameters

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_program or dm_open_program_aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

The registered pid is always returned. If no pid is associated with the process, a 0 value or
-1 is returned.

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

Dm_Set_Pid – Changing Target Process ID 3

 This routine allows the user to change the target process ID associated with an open pro-
gram descriptor.

Declaration

#include <datamon_aux.h>
extern
void
dm_set_pid (int new_pid,

program_descriptor_t * pgm_desc);

Parameters

new_pid

the process ID to which the target program is to be changed.

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_program or dm_open_program_aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)
3-16

C Interface
Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

Dm_Suppress_Index_Checks – Suppressing Index Value Checks 3

This routine allows the user to override the default behavior of checking index values to
ensure they do not extend past either end of an array.

When suppressed, no error is issued when attempting to index past the end of an array (as
long as program memory is actually available at the indexed location).

Declaration

#include <datamon_aux.h>
extern
void
dm_suppress_index_checks (int suppressed);

Parameters

suppressed

an integer that acts as a boolean

Return Value

None.

Obtaining Object Descriptors for Variables 3

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, dm_get_value and dm_set_value operations can occur (see pages
3-22 and 3-23, respectively, for explanations of these subprograms).

The amount of time required to obtain the descriptor may be significant for applications
with stringent performance constraints.
3-17

Data Monitoring Reference Manual
The lifetime of an object descriptor exceeds the lifetime of its corresponding program
descriptor; that is, the program descriptor associated with the program containing the tar-
get variable may be closed (thereby freeing significant memory associated with target pro-
gram symbol tables), but the object descriptors remain valid.

Note that when you obtain an object descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (ptr.all),
the value of the ptr at the time of the call to dm_get_descriptor is used to determine
the final address of the ptr.all. Subsequent calls to dm_get_value or
dm_set_value with the resultant object descriptor will refer to the address calculated
during the dm_get_descriptor call, regardless of the current value of the ptr. If you
wish to re-evaluate the address of the ptr.all considering the current value of ptr,
then call dm_get_descriptor again. This applies not only to variables involving
pointer indirection, but records whose size and shape can change as the target process exe-
cutes, as well as variables of class-wide types.

Part of the process of obtaining an object descriptor involves creating a memory mapping
between the target variable and the monitoring process’s virtual address space; memory
mapping makes subsequent access to target variables from the monitoring process
extremely efficient. After the object descriptor for a variable has been defined,
dm_get_value, dm_set_value, dm_peek, and dm_poke operations can occur (see
pages 3-22, 3-23, 3-20, and 3-21 respectively, for explanations of these routines).

Dm_Get_Descriptor – Obtaining an Object Descriptor 3

This routine is invoked to obtain an object descriptor for a specified variable.

Declaration

#include <datamon.h>
extern
int
dm_get_descriptor (char * item,

int no_map,
program_descriptor_t pgm_desc,
object_descriptor_t * obj_desc);

Parameters

item

points to a string that contains the expanded name of the target variable for which
you wish to obtain the object descriptor

no_map

refers to a flag that contains an integer value that indicates whether or not address
translation (mapping) is to occur. Specify a value of 0 if the monitoring process’s
virtual address space is to be mapped to the target variable. Specify a nonzero value
under one of the following circumstances:
3-18

C Interface
1. If the target program is executing and the target variable is already
accessible at the same virtual address in the monitoring process as in
the target process (in this case, mapping is not necessary)

2. If the target program is not executing and you simply wish to obtain
information about the target variable (its type, size, virtual address,
and so on)

If the target program is not executing and you set no_map to zero, the call to
dm_get_descriptor will fail.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm_open_program or dm_open_program_aux (see pages 3-7 and 3-9,
respectively, for an explanation of these routines).

obj_desc

points to a location to which the object descriptor for the variable specified by item
is to be returned

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (-g) option).

• Item contains invalid expanded-notation syntax.

• The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 3-13 and
3-14).

• The target variable could not be mapped into the monitoring process’s
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

Obtaining or Modifying Target Variables 3

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Obtaining Object Descriptors for Variables” on page
3-17, these subprograms require the specification of the target variable via an object_-
descriptor.
3-19

Data Monitoring Reference Manual
Dm_peek and dm_poke (pages 3-20 and 3-21) allow you to respectively obtain and mod-
ify the value of variables directly. Dm_get_value and dm_set_value (pages 3-22
and 3-23) allow you to respectively obtain and modify the value of variables using an
ASCII representation of the value.

Dm_Peek – Peeking at Variables 3

This routine is invoked to read the value of a variable in the target process without conver-
sion.

Declaration

#include <datamon.h>
extern
int
dm_peek (object_descriptor_t * from_target,

void * to_addr,
int bytes);

Parameters

from_target

points to an object_descriptor_t structure that contains an object descriptor
that is associated with the target variable whose value you wish to read. This
descriptor is obtained from a previous call to dm_get_descriptor (see page
3-18 for an explanation of this routine).

to_addr

points to a buffer in the monitoring process’s address space to which the raw value
of the target variable specified by from_target is to be copied

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the buffer specified by to_addr.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the object specified by
from_target as the source and the lowest bit-address of the buffer specified by
to_addr as the destination. The number of bits copied from the source to the desti-
nation depends upon the number of bits required by from_target.

For noncomposite types, the value will be right justified in the buffer specified by
to_addr (sign and zero extension for unused bits placed in the first word). No other
bit-pattern conversion takes place.

The transfer of data from the source to the destination is effected via the most appro-
priate machine instruction available (for example, a short value will be stored via a
single instruction that transfers two bytes).
3-20

C Interface
Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• From_target is not a valid object descriptor.

• The address range specified by to_addr .. to_addr+bytes-1 are not valid
addresses in the monitoring processes address space.

Dm_Poke – Poking at Variables 3

This routine is invoked to modify the value of a variable in the target process without con-
version.

Declaration

#include <datamon.h>
extern
int
dm_poke (object_descriptor_t * to_target,

void * from_addr,
int bytes);

Parameters

to_target

points to an object_descriptor_t structure that contains an object descriptor
that is associated with the target variable whose value you wish to modify. This
descriptor is obtained from a previous call to dm_get_descriptor (see page
3-18 for an explanation of this routine).

from_addr

points to a buffer in the monitoring process’s address space that contains the raw
value that is to be copied to the target variable specified by to_target

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the buffer specified by from_addr. Note that bytes must be at
least as large as the number of bytes required by the variable specified by to_target.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the variable specified
by from_target as the source and the lowest bit-address of the buffer specified by
to_target as the destination. The number of bits transferred depends on the number
of bits required by to_target.
3-21

Data Monitoring Reference Manual
The bit pattern of the value in the buffer specified by from_addr is not modified. For
noncomposite types, the required number of bits is assumed to be right justified in
the buffer.

The transfer of data to the variable specified by to_target is effected via the most
appropriate machine instruction available (for example, a short value will be stored
via a single instruction that transfers two bytes).

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• To_target is not a valid object descriptor.

• The address range specified by from_addr .. from_addr+bytes-1 are not
valid addresses in the monitoring processes address space.

Dm_Get_Value – Obtaining the Value of Variables 3

This routine is invoked to obtain the ASCII representation of the value of a variable in the
target program. The default ASCII representation used by dm_get_value depends
upon the type of the variable:

signed integer

the printf “%d” conversion format

unsigned integer, pointers

the printf “%x” conversion format

floating point

the printf “%g” conversion format

fixed point (Ada)

the printf “%g” conversion format

enumeration (Ada)

the enumeration image in lower case

Declaration

#include <datamon.h>
extern
int
dm_get_value (object_descriptor_t * from_target,

char * value,
int bytes);
3-22

C Interface
Parameters

from_target

points to an object_descriptor_t structure that contains an object descriptor
that is associated with the target variable for which you wish to obtain the value. The
descriptor is obtained from a call to dm_get_descriptor (see page 3-18 for an
explanation of this routine). Note that if the variable to which from_target refers is of
a composite type, an error will occur.

value

points to a string to which dm_get_value will return the default ASCII represen-
tation of the value of the target variable specified by from_target

bytes

refers to a variable that contains an integer value indicating the number of bytes in
the string pointed to by value. Note that if the ASCII representation of the value of
the target variable exceeds the space specified by bytes, an error will occur.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• From_target is not a valid object descriptor.

• The type of the target variable represented by from_target is a composite
type (array, record, or structure). The dm_peek subprogram may be used
for obtaining the value of such variables.

• The type of the target variable represented by from_target is unknown (for
example, code_unknown).

• The size of the string referred to by value and bytes is too small to hold the
ASCII representation of the value of the variable denoted by from_target.

Dm_Set_Value – Setting the Value of Variables 3

This routine is invoked to modify the value of a variable in the target process. It allows
you to use ASCII representation to specify the new value to which the variable is to be set.
The default ASCII representation expected by dm_set_value depends upon the type of
the variable:

signed integer

the sscanf “%d” conversion format

unsigned integer, pointers

the sscanf “%x” conversion format
3-23

Data Monitoring Reference Manual
floating point

the sscanf “%g” conversion format

fixed point (Ada)

the sscanf “%g” conversion format

enumeration (Ada)

the enumeration image in upper or lower case

Declaration

#include <datamon.h>
extern
int
dm_set_value (object_descriptor_t * to_target,

char * value);

Parameters

to_target

points to an object_descriptor_t structure that contains an object descriptor
that is associated with the target variable whose value you wish to modify. This
descriptor is obtained from a previous call to dm_get_descriptor (see page
3-18 for an explanation of this routine). Note that if the variable to which to_target
refers is of a composite type, an error will occur.

value

points to a valid ASCII representation of the new value to which the target variable
specified by to_target is to be set. Note that this value must be expressed in a form
that is consistent with the type of the target variable (for example, an integer literal
for an integer type, a floating point literal for a floating point type, and so on). The
value must be within the range of the type of the target variable.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• To_target is not a valid object descriptor.

• The type of the target variable represented by to_target is a composite type
(array, record, or structure). The dm_poke subprogram may be used for
setting the value of such variables.

• The type of the target variable represented by to_target is unknown (for
example, code_unknown).

• The ASCII representation of the new value for the variable specified by
to_target is inappropriate for the type of that variable.
3-24

C Interface
Obtaining Information about Variables 3

This section presents the subprograms that may be invoked to obtain additional informa-
tion about a specified target variable that isn’t readily available in an object descriptor.

Dm_Get_Type_Name – Obtaining Type Names 3

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Declaration

#include <datamon.h>
extern
int
dm_get_type_name (char * item,

program_descriptor_t pgm_desc,
char * type_name,
int bytes);

Parameters

item

points to a string that specifies the expanded name of the target variable for which
you wish to obtain the symbolic type name

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
via a previous call to dm_open_program or dm_open_program_aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines)

type_name

points to a character array to which dm_get_type_name will return the symbolic
type name of the target variable specified by item.

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by type_name. If the symbolic type name associated with item
exceeds the amount of space specified by bytes, an error will occur.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:
3-25

Data Monitoring Reference Manual
• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 3-13 and
3-14).

• The size of the string referred to by type_name and bytes is too small to
hold the name of the type of the variable specified by item.

Dm_Get_Type_Name_Long – Obtaining Long Type Names 3

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Declaration

#include <datamon.h>
extern
int
dm_get_type_name_long

(char * item,
int expanded_notation,
int interpret_classes,
program_descriptor_t pgm_desc,
char * type_name,
int bytes);

Parameters

item

points to a string that specifies the expanded name of the target variable for which
you wish to obtain the symbolic type name

expanded_notation

refers to a integer value which controls whether the name of the type associated with
the variable identified by item is expressed in Ada’s expanded name notation. If the
value specified is 1, type names for Ada variables are preceded by the expanded
name of their enclosing scope (e.g. “pkg.type_t”); whereas the direct name of the
type is used when the flag is 0 (e.g. “type_t”). This parameter has no effect for C or
Fortran variables.
3-26

C Interface
interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. When this value is 0, the type name is obtained using the
name of the specific type (suffixed by ’class) of the root of the class-wide type of the
variable specified by item. When 1, the type is chosen using the specific type asso-
ciated with the value of the variable specified by item. When interpret_classes is set
to true, the target program must be executing. The setting of interpret_classes on
this subprogram call overrides the interpret_classes mode which is set via a call to
dm_set_class_interpretation (see page 3-14). For example, using the
code fragment from the example of dm_set_class_interpretation, a call
such as get_type_name(“pkg.object_e”) would return “t’class”, whereas a
call such as get_type_name_long(“pkg.object_e”, interpret_-
classes=>true) would return “e”.

pgm_desc

refers to a variable that contains a valid program descriptor that has been returned on
a previous call to dm_open_program or dm_open_program_aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)

type_name

points to a character array to which dm_get_type_name_long will return the
symbolic type name of the target variable specified by item.

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by type_name. If the symbolic type name associated with item
exceeds the amount of space specified by bytes, an error will occur.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only (see page 3-13) or the interpret_classes
parameter.

• The size of the string referred to by type_name and bytes is too small to
hold the name of the type of the variable specified by item.
3-27

Data Monitoring Reference Manual
Dm_Get_Enum_Image – Obtaining Enumeration Constant Images 3

This routine is invoked to obtain the image of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-
gram.

Declaration

#include <datamon.h>
extern
int
dm_get_enum_image (char * item,

int position,
program_descriptor_t pgm_desc,
char * image,
int bytes);

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active_variants_only or
interpret_classes modes; see pages 3-13 and 3-14).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm_get_enum_image service expects a position, not a value. You may use
the predefined language attributes ’pos and ’val, respectively, to convert from value
to position and from position to value.

pgm_desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm_open_program or dm_open_program_aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)
3-28

C Interface
image

points to a character array to which dm_get_enum_image will return the image
of the enumeration literal corresponding to position in the enumerated type associ-
ated with item

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by image. If the image of the enumeration literal exceeds the
amount of space specified by bytes, an error will occur.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 3-13 and
3-14).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

• The type of the variable specified by item is not an enumerated type.

• The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

• The size of the string referred to by image and bytes is too small to hold the
image of the enumeration constant specified by item and position.

• The address range specified by image..image+bytes-1 is not a valid address
range in the monitoring process.

Dm_Get_Enum_Val – Obtaining Enumeration Constant Values 3

This routine is invoked to obtain the value of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-
gram.
3-29

Data Monitoring Reference Manual
Declaration

#include <datamon.h>
extern
int
dm_get_enum_val (char * item,

int position,
int * value,
program_descriptor_t pgm_desc);

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active_variants_only or
interpret_classes modes; see pages 3-13 and 3-14).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm_get_enum_val service expects a position, not a value. You may use the
predefined language attributes ’pos and ’val, respectively, to convert from value to
position and from position to value.

value

points to an integer variable to which dm_get_enum_val will return the value of
the enumeration literal corresponding to position in the enumerated type associated
with item.

pgm_desc

refers to a variable that contains a valid program descriptor that has been returned on
a previous call to dm_open_program or dm_open_program_aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)
3-30

C Interface
Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 3-13 and
3-14).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

• The type of the variable specified by item is not an enumerated type.

• The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

• The address specified by value is not a valid address in the monitoring pro-
cess.

Dm_Line_Info – Obtaining Program Counter Location 3

This routine provides information about the location in a program as specified by the pc
parameter. It attempts to locate the function, file, and line number at which the PC resides.

If DWARF information is available, it returns the routine name and file/line-number. If
not, it returns the enclosing function’s raw symbol name and an offset.

Declaration

#include <datamon_aux.h>
extern
int
dm_line_info (void * pc,

program_descriptor_t pgm,
int * line,
char * file,
int file_length,
char * routine,
int routine_length);
3-31

Data Monitoring Reference Manual
Parameters

pc

The program counter to be described.

pgm

A va l id program descr ip tor as re turned by dm_open_program or
dm_open_program_aux (see pages 3-7 and 3-9, respectively, for an explanation
of these routines).

line

A pointer to an integer. If a line number is determined for the PC, the value will be
stored through the pointer. If not, a zero will be stored through the pointer.

file

A pointer to a character array in which the name of the file will be stored. If no file
name can be found, a zero-byte will be stored.

file_length

The number of characters in the character array whose address is passed in the file
parameter. If the file description exceeds the size of the character array as specified
by the file_length parameter, the description will be truncated.

routine

A pointer to a character array in which the routine associated with the PC will be
stored. If no routine name can be found, a zero-byte will be stored.

routine_length

The number of characters in the character array whose address is passed in the rou-
tine parameter. If the routine description exceeds the size of the character array as
specified by the routine_length parameter, the description will be truncated.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error.

Scanning Target Programs for Variables 3

The generic dm_list and dm_find routines traverse the internal symbol tables of target
program files and call a user-specified procedure for each item in a list. The list is formed
by examining the symbol tables in relation to a set of requirements that has been defined
by parameters specified on each call to these routines.
3-32

C Interface
Dm_List – Scanning Target Programs for Variables 3

This routine is invoked to scan target programs for variables. It traverses the internal sym-
bol tables of target program files and calls a user-specified function for each item in a list.
The list is formed by examining the symbol tables in relation to a set of requirements that
has been defined by parameters specified on each call to dm_list.

You can use this routine to search for all named scopes, all eligible variables, or all com-
ponents of an eligible variable of a composite type (array, structure, or record).

Declaration

#include <datamon.h>
extern
int
dm_list (dm_list_modes mode,

char * qualifier,
char * restriction,
int do_components,
program_descriptor_t pgm_desc,
void (* action)());

Parameters

mode

refers to a variable that contains an enumeration constant indicating the list mode
that is to be used to form the list. These constants are defined in <datamon.h> as
follows: list_scopes, list_variables, and list_components.

qualifier

points to a location that contains a string whose interpretation depends upon the
value specified by mode

If the value of mode is set to list_scopes, qualifier should contain a null string or
the name of a scope. If qualifier contains a null string, all scopes are listed; other-
wise, the only scopes that are listed are those contained immediately within the
scope identified by qualifier.

If the value of mode is set to list_variables, qualifier should contain a null
string or the name of a global scope (for example, routine). If qualifier contains a
null string, all global scopes are considered.

If the value of mode is set to list_components, qualifier should contain the
expanded name of a composite variable (array, structure, or record).

restriction

points to a location that contains a null string or a valid regular expression as speci-
fied by regexpr(3G). The regular expression is applied to the fully expanded
name of the list item as it would be passed to the user-specified function pointed to
by action.

If restriction contains a null string, no restriction is applied.
3-33

Data Monitoring Reference Manual
do_components

refers to a variable that contains an integer value indicating whether or not compo-
nents of a composite variable are to be listed in list_variables mode. A non-
zero value indicates that components of a composite variable are to be included in
the list. If the variable listed is not a composite type, this parameter has no effect.

If the value of mode is set to list_scopes or list_components, the do_com-
ponents parameter is ignored.

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm_open_program or dm_open_program_aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines).

action

refers to a variable that contains the address of a user function that is to be called for
each item in the list. The action function will be called as if it had the following dec-
laration:

void action (char *item,
program_descriptor_t pgm_desc,
int *quit);

item

points to a string that contains the expanded name of the item

pgm_desc

refers to the program descriptor that is associated with item

quit

points to an integer whose value indicates whether or not list processing
should continue. The value of this integer is always set to zero on entry to the
action function. If you set the value of this integer to nonzero, list processing
will stop upon return from the current action call; otherwise, list processing
continues.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor, or it was omitted and
there are no valid, open program descriptors.

• Restriction is not null and is an invalid regular expression as defined by
regexpr(3G).
3-34

C Interface
• An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty
list; that is, dm_list returns with a value of zero without calling the user-defined action
procedure.

Dm_Find – Scanning Target Programs for Variables--Enhanced 3

This routine provides list operations much in the manner of dm_list, with additional
flexibility through flags that refine the scan criteria.

Declaration

#include <datamon.h>

#define DM_IMMEDIATELY_NESTED_FLAG 1
#define DM_LIST_COMPONENTS_FLAG 2
#define DM_NO_FILES_IN_SCOPES_FLAG 4
#define DM_CHILD_UNITS_AS_CHILDREN_FLAG 8
#define DM_GLOBAL_VARS_ONLY_FLAG 16

#define DM_package_entity 0
#define DM_function_entity 1
#define DM_file_entity 2
#define DM_variable_entity 3
#define DM_component_entity 4
#define DM_type_entity 5
#define DM_common_block_entity 6

typedef void (*find_action) (char * item,
program_descriptor_t pgm,
int obj_type,
void * context,
int * quit);

extern
int
dm_find (dm_list_modes mode,

char * qualifier,
char * restriction,
int flags,
program_descriptor_t pgm_desc,
find_action action,
void * context);
3-35

Data Monitoring Reference Manual
Parameters

mode

refers to a variable that contains an enumeration constant indicating the list mode
that is to be used to form the list. These constants are defined in <datamon.h> as
follows: list_scopes, list_variables, and list_components.

qualifier

points to a location that contains a string whose interpretation depends upon the
value specified by mode

If the value of mode is set to list_scopes, qualifier should contain a null string or
the name of a scope. If qualifier contains a null string, all scopes are listed; other-
wise, the only scopes that are listed are those contained immediately within the
scope identified by qualifier.

If the value of mode is set to list_variables, qualifier should contain a null
string or the name of a global scope (for example, routine). If qualifier contains a
null string, all global scopes are considered.

If the value of mode is set to list_components, qualifier should contain the
expanded name of a composite variable (array, structure, or record).

restriction

points to a location that contains a null string or a valid regular expression as speci-
fied by regexpr(3G). The regular expression is applied to the fully expanded
name of the list item as it would be passed to the user-specified function pointed to
by action.

If restriction contains a null string, no restriction is applied.

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm_open_program or dm_open_program_aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines).

context

a pointer to a structure containing information to be communicated to the called
function for all matches

flags

an integer value which contains zero or more flags OR’d together:

DM_IMMEDIATELY_NESTED_FLAG

When no qualifier is specified, presence of this flag causes nested scopes to be
skipped when processing a scope.
3-36

C Interface
DM_LIST_COMPONENTS_FLAG

When this flag is set, components of composite objects (records, structures,
classes) are listed (even when not in list_components mode).

DM_NO_FILES_IN_SCOPES_FLAG

When this flag is set, source file entries in the global scope will not be created.

DM_CHILD_UNITS_AS_CHILDREN_FLAG

Applicable to Ada programs, when this flag is supplied, child units (e.g. child
packages) are treated as children of the parent package, as opposed to parent
units themselves.

For example:

package outer is
...
end outer;
package outer.inner is
...
end outer.inner;

If DM_CHILD_UNITS_AS_CHILDREN_FLAG is set, outer.inner is
described as a child of outer. Otherwise, outer.inner is described as a
global unit.

DM_GLOBAL_VARS_ONLY_FLAG

When this flag is set, nested scopes are ignored and only global variables are
considered for matches.

action

The address of a user-specified function which is called for each item that satisfied
the find criteria.

The function is passed the following parameters:

item

points to a string that contains the expanded name of the item

pgm_desc

refers to the program descriptor that is associated with item

obj_type

An integer value which identifies the kind of object described by item. The
values are one of DM_*_entity values defined as shown above.

context

a pointer to a structure containing information to be communicated to the
called function for all matches
3-37

Data Monitoring Reference Manual
quit

points to an integer whose value indicates whether or not list processing
should continue. The value of this integer is always set to zero on entry to the
action function. If you set the value of this integer to nonzero, list processing
will stop upon return from the current action call; otherwise, list processing
continues.

The function should return a zero value if the current item should be not be pro-
cessed further. For example, if the current item was a composite type, and the
dm_find call includes parameters which would normally subsequently list compo-
nents of the object, returning zero would prevent that action.

Similarly, if the current item is a scope, returning false will prevent items within the
scope from being processed.

Otherwise, the function should return a non-zero value.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor, or it was omitted and
there are no valid, open program descriptors.

• Restriction is not null and is an invalid regular expression as defined by
regexpr(3G).

• An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty
list; that is, dm_find returns with a value of zero without calling the user-defined action
procedure.
3-38

4
Chapter 4Fortran Interface

4
4
4

The Data Monitoring library, /usr/lib/libdatamon.a,. contains Fortran interfaces
that allow you to monitor variables in executing processes. These interfaces allow you to
specify executable programs that contain Ada, C, or Fortran variables to be monitored;
obtain and modify the values of selected variables; and obtain such information about the
variables as their virtual addresses, types, and sizes. Interfaces that allow you to obtain
and modify values are of two types: those that accept and return values expressed in sym-
bolic formats that are appropriate for the respective variables and those that accept and
return values without symbolic formatting

Organization 4

This chapter provides all of the information that you need to use the Fortran Data Monitor-
ing interfaces. “Types and Objects” on page 4-1 describes type and object declarations that
are used by the Fortran interfaces to Data Monitoring. “Error Processing” on page 4-4
presents the enumerations and subprograms which describe error conditions. The remain-
ing sections explain the procedures for using each of the Fortran routines in the Data Mon-
itoring library. See “Fortran Examples” on page C-1 for examples using the Fortran inter-
face and instructions.

Types and Objects 4

This section describes type and object declarations that are used by the Fortran interfaces
to Data Monitoring. “Descriptors” on page 4-1 presents the types of descriptors that are
used. “Enumerations” on page 4-3 presents predefined names that will assist you in deter-
mining the attributes of a variable.

Descriptors 4

Two types of descriptors are used by the Fortran interfaces to Data Monitoring: a program
descriptor, which is used to represent a particular target program or process, and an object
descriptor, which is used to represent a particular target variable associated with a target
program or process. The header file /usr/include/datamon_.h contains pre-
defined names that will assist you in declaring these descriptors.

The program descriptor is declared as follows:
4-1

Data Monitoring Reference Manual
INTEGER*4 pgm_desc (on 32-bit platforms)
INTEGER*8 pgm_desc (on 64-bit platforms)

A descriptor of this type is created by the dm_open_program function and destroyed by
the dm_close_program function (see pages 4-8 and 4-9, respectively, for explanations
of these functions). It is used by the dm_get_descriptor function (see page 4-14 for
an explanation of this function).

The object descriptor is declared as follows:

INTEGER*4 obj_desc(DM_descriptor_size)

DM_descriptor_size is declared in the header file.

The elements in the obj_desc array correspond to the components of the C structure of
type object_descriptor_t that is presented in the description of the C interface to
Data Monitoring on page 3-1. The following names, which are of integer type and are
declared in the header file, will assist you in accessing appropriate elements in the array.

parameter (DM_valid = 1)
parameter (DM_private = 2)
parameter (DM_code = 3)
parameter (DM_target_address = 4)
parameter (DM_virtual_address = 5)
parameter (DM_bit_size = 6)
parameter (DM_bit_offset = 7)
parameter (DM_signed = 8)
parameter (DM_extra_info1 = 9)
parameter (DM_extra_info2 = 10)
parameter (DM_lower_bound = 11) ! real*8 aligned
parameter (DM_upper_bound = 13) ! real*8 aligned
parameter (DM_language = 15)
parameter (DM_component_code = 16)
parameter (DM_component_bit_size = 17)
parameter (DM_component_signed = 18)
parameter (DM_num_dimensions = 19)
parameter (DM_lower_dimension = 20) ! array[10]
parameter (DM_upper_dimension = 30) ! array[10]

An object descriptor is created by the dm_get_descriptor function (see page 4-14 for
an explanation of this function). It contains type, size, and address information about the
target variable. It holds sufficient information to make subsequent modification or refer-
ence of the associated target variable very efficient. The object descriptor is used by the
dm_peek, dm_poke, dm_get_value, and dm_set_value functions (see pages 4-16,
4-17, 4-18, and 4-20, respectively, for explanations of these functions).

Note that the parameters DM_lower_bound and DM_upper_bound specify locations
in the obj_desc array which actually contain real*8 values; utilize equivalence state-
ments to obtain the information from these components.

Note that the DM_lower_dimension and DM_upper_dimension parameters specify
locations in the obj_desc array which are arrays themselves (each of length 10). The first
element in each of the arrays corresponds to the bound of the first dimension, the second
element to the second dimension, etc.
4-2

Fortran Interface
Enumerations 4

The header file /usr/include/datamon_.h also contains predefined names that will
assist you in determining the attributes of a variable as described by the components of an
object descriptor.

The following names, which are of integer type and are declared in the header file, are
valid values for the obj_desc(DM_language) element in the obj_desc array
described in the preceding section.

parameter (DM_lang_C89 = 1)
parameter (DM_lang_C = 2)
parameter (DM_lang_Ada83 = 3)
parameter (DM_lang_C_plus_plus = 4)
parameter (DM_lang_Cobol74 = 5)
parameter (DM_lang_Cobol85 = 6)
parameter (DM_lang_Fortran77 = 7)
parameter (DM_lang_Fortran90 = 8)
parameter (DM_lang_Pascal83 = 9)
parameter (DM_lang_Modula2 = 10)
parameter (DM_lang_Ada95 = 11)

The following names, which are of integer type and are declared in the header file, are
valid values for the obj_desc(DM_code) and the obj_desc(DM_compo-
nent_code) elements in the obj_desc array.

parameter (DM_enumeration_code = 0)
parameter (DM_float_code = 1)
parameter (DM_fixed_code = 2)
parameter (DM_integer_code = 3)
parameter (DM_record_code = 4)
parameter (DM_array_code = 5)
parameter (DM_char_code = 7)
parameter (DM_pointer_code = 8)
parameter (DM_complex_code = 9)
parameter (DM_common_code = 10)
parameter (DM_unknown_code = 11)

These names are explained as follows:

DM_enumeration_code

Ada or C enumerated types

DM_float_code

floating point types

DM_fixed_code

Ada fixed point types

DM_integer_code

integer types
4-3

Data Monitoring Reference Manual
DM_record_code

Ada record or C structure types

DM_array_code

array types

DM_char_code

Ada character, C char, and Fortran character

DM_pointer_code

Ada access types, C pointer types

DM_complex_code

Fortran complex types

DM_common_code

Fortran common blocks

DM_unknown_code

reserved for unrecognized types

A variable’s code is required for interpreting the bits associated with the variable. The
/usr/include/datamon_tables_.h header file includes a code_names array
that maps these names to their corresponding enumeration images as well as a lan-
guage_names array that maps the parameters describing languages (as shown above) to
their corresponding enumeration images.

Error Processing 4

When a call to one of the Data Monitoring subprograms fails, the following steps are typi-
cally performed:

• The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an errno value, or other information that
is specific to the parameters supplied on the subprogram call.

• A value of -1 is returned from the subprogram.

Both the error code and the description of the error can be retrieved as shown below by the
declarations related to error processing. These declarations, which are provided in the file
/usr/include/datamon_.h, are as follows:
4-4

Fortran Interface
integer DM_NOMEM ! Insufficient program memory for operation
integer DM_EXCEPT ! Exception raised during operation
integer DM_BADENUM ! Illegal or unexpected enum literal/value
integer DM_SYNTAX ! Illegal char. in expanded var_name/expression
integer DM_NODWARF ! Insufficient debug info (DWARF) available
integer DM_NOTVAR ! Specified name is not a variable or constant
integer DM_DYNAMIC ! Object has dynamic size, shape, or address
integer DM_NOTRECORD ! Object not a record, structure, or common blk
integer DM_NOTARRAY ! Object is not an array
integer DM_NOTFOUND ! Could not find pkg/variable/component
integer DM_RANGE ! Specified value/subscript out-of-range
integer DM_BADDIM ! Insufficient/extra subscripts for array
integer DM_NOELF ! Unrecognized/Illegal ELF object file format
integer DM_BADPID ! Invalid (or missing) pid for; shared libs
integer DM_USRMAP ! usermap(3C) failed to map process; bad pid?
integer DM_SYMBOLS ! Insufficient symbol table info for operation
integer DM_BADDWARF ! Unexpected/illegal/missing debug information
integer DM_AMBIG ! Specified identifier is ambiguous
integer DM_SERVICE ! System/library service call failed
integer DM_NAME2BIG ! Expanded name too long
integer DM_NOTOPEN ! dm_open_program call skipped/unsuccessful
integer DM_NOFILE ! Could not open specified program file
integer DM_BADPROG ! Bad program descriptor specified
integer DM_BADDESC ! Bad object descriptor specified
integer DM_UNSUP ! Unsupported operation or type
integer DM_COMPOSIT ! Composite type/object ! allowed for operation
integer DM_BUF2SMALL ! User-specified buffer too small
integer DM_NOBITS ! Operation requires byte-aligned types
integer DM_BADREG ! Illegal regular expression

parameter (DM_NOMEM = 0)
parameter (DM_EXCEPT = 1)
parameter (DM_BADENUM = 2)
parameter (DM_SYNTAX = 3)
parameter (DM_NODWARF = 4)
parameter (DM_NOTVAR = 5)
parameter (DM_DYNAMIC = 6)
parameter (DM_NOTRECORD = 7)
parameter (DM_NOTARRAY = 8)
parameter (DM_NOTFOUND = 9)
parameter (DM_RANGE = 10)
parameter (DM_BADDIM = 11)
parameter (DM_NOELF = 12)
parameter (DM_BADPID = 13)
parameter (DM_USRMAP = 14)
parameter (DM_SYMBOLS = 15)
parameter (DM_BADDWARF = 16)
parameter (DM_AMBIG = 17)
parameter (DM_SERVICE = 18)
parameter (DM_NAME2BIG = 19)
parameter (DM_NOTOPEN = 20)
parameter (DM_NOFILE = 21)
parameter (DM_BADPROG = 22)
parameter (DM_BADDESC = 23)
parameter (DM_UNSUP = 24)
parameter (DM_COMPOSIT = 25)
parameter (DM_BUF2SMALL = 26)
parameter (DM_NOBITS = 27)
parameter (DM_BADREG = 28)
4-5

Data Monitoring Reference Manual
integer function dm_get_error_code
character *(*) function dm_get_error_string

T h e h ea d e r f i l e /usr/include/datamon_tables_.h i n c l u d e s a n
error_code_names array that maps the parameters describing error codes (as shown
above) to their corresponding enumeration images.

Functions 4

In the sections that follow, all of the Fortran Data Monitoring functions contained in the
Data Monitoring library are grouped and presented according to function. The following
information is provided for each function:

• A description of the function

• Detailed descriptions of each parameter

• The return value

Figure 4-1 illustrates the approximate order in which you might call the functions from an
application program.
4-6

Fortran Interface
Figure 4-1. Fortran Data Monitoring Call Sequence

With the sequence illustrated by Figure 4-1, you first obtain the object descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
object descriptor on each call to dm_get_value or dm_set_value. Obtaining the
object descriptors involves symbol table searches; it may require a significant amount of
time for time-critical applications. For such applications, it is recommended that you
invoke dm_get_descriptor during application initialization and then use the resultant
descriptor(s) on dm_get_value and dm_set_value calls during the time-critical sec-
tions of the monitoring application.

End

Start

dm_open_program

dm_get_descriptor

dm_get_value dm_set_value

dm_close_program

Obtain
Value Of

Variable?

Modify

Value Of
Variable?

Yes

Yes

No

No
4-7

Data Monitoring Reference Manual
Target Program Selection and Identification 4

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Dm_Open_Program – Obtaining Program Descriptors 4

This function is invoked to specify the target program for Data Monitoring. You must
invoke dm_open_program prior to invoking any other function in the Data Monitoring
library. Subsequent calls to dm_get_descriptor to obtain an object descriptor for a
target variable require an open program descriptor. Object descriptors that you have
obtained following a previous dm_open_program call continue to be valid; you may
use them to obtain or modify the values of the target variables with which they are associ-
ated.

The dm_open_program call requires that portions of the target program file be read
from disk into memory and that an internal symbol table be built. These procedures can
use significant amounts of memory; the amounts used depend upon the size of the target
program and the number of variables that can be monitored. You are advised not to invoke
dm_open_program from time-critical sections of your application. The memory asso-
ciated with a program descriptor can be reclaimed with a call to dm_close_program.

Function Definition

integer function dm_open_program (pgm_name,
pid,
pgm_desc)

character*(*) pgm_name
integer*4 pid
integer*4 pgm_desc

Parameters

pgm_name

refers to a character string that contains a standard UNIX path name identifying the
program to be monitored. Note that a full or relative path name of up to 1024 char-
acters can be specified.

pid

refers to a variable that contains an integer value representing the process identifica-
tion number of the target executable program specified by the pgm_name parameter.

If the value of pid is 0, then dm_open_program will attempt to locate a process
that is executing on the system with the specified path name. If successful, the corre-
sponding process identification number of that process is used; otherwise, it is as if
an invalid value for pid has been specified.
4-8

Fortran Interface
Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the follow-
ing:

• dm_get_type_name, dm_get_type_name_long

• dm_get_error_code

• dm_get_error_string

• dm_open_program

• dm_close_program

pgm_desc

refers to a variable to which dm_open_program will return the program descrip-
tor

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• The file associated with pgm_name could not be located or opened for read.

• The specified pid was a value other than -1 and did not identify an execut-
ing process.

• The specified pid was -1 but the target program associated with pgm_name
requires shared libraries.

• The specified pid was 0 but no target process associated with pgm_name
could be located.

• The file associated with pgm_name is not a valid ELF executable file.

Dm_Close_Program – Closing Program Descriptors 4

This function is used to free internal storage that is being used to hold symbolic informa-
tion associated with the specified program descriptor. After invoking this function, you
may not call any other functions with the specified program descriptor. Object descriptors
for target variables that have already been obtained by calls to dm_get_descriptor
(see page 4-14) , however, are s t i l l va l id ; for example dm_get_value ,
dm_set_value, dm_peek, and dm_poke operations can still occur.
4-9

Data Monitoring Reference Manual
Function Definition

integer function dm_close_program (pgm_desc)
integer*4 pgm_desc

Parameters

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm_open_program (see page 4-8 for an explanation of
this function)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor

Dm_Set_Interest_Threshold – Setting the Interest Threshold 4

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0. All eligible variables have an interest value
which is set by their compiler. By default, all eligible variables have an interest value of
zero. The Ada compiler allows users to change the interest value of selected variables via
the implementation-defined pragma INTERESTING. (See Annex M of the MAXAda Ref-
erence Manual (0890516) for more information on pragma INTERESTING). The interest
threshold controls whether an otherwise eligible variable is visible to the subprograms in
the Data Monitoring library. If the interest value of a variable is below the interest thresh-
old, it is as if the variable did not exist. Once set, the interest threshold remains associated
with the specified target program until reset by a subsequent dm_set_interest_-
threshold call.

Note that subsequent changes to the interest threshold have no effect on object descriptors
already obtained by previous dm_get_descriptor calls.

Function Definition

integer function dm_set_interest_threshold (threshold,
pgm_desc)

integer*4 threshold
integer*4 pgm_desc
4-10

Fortran Interface
Parameters

threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to pgm_desc.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm_open_program (see page 4-8 for an explanation of this routine)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor

Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity 4

The dm_set_variant_handling routine defines the mode in which Ada record vari-
ants are handled. By default, the active_variants_only mode is set to false; thus look-up
subprograms within the Data Monitoring library are not sensitive to a record variant’s
governing discriminant, inasmuch as all variants are considered active at all times. Setting
the active_variants_only mode to true will cause look-up subprograms within this pack-
age to determine the value of an enclosing record variant’s governing discriminant when
considering components within the record (see section 3.8.1(2-21) of the Ada 95 Refer-
ence Manual for more information on Ada record variants). In general, this sensitivity
requires that the target program be executing, because the value of discriminants must be
obtained from the target process. If active_variants_only mode is true and a component
of a record is contained in an inactive variant, it is as if the component did not exist. The
active_variants_only mode has no effect on C or Fortran variables.

If this mode is set to true and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active_variants_only mode is associated with
the specified target program and remains in effect until a subsequent call to dm_set_-
variant_handling.

Note that subsequent changes to the active_variants_only mode have no effect on object
descriptors which have already been obtained via a previous dm_get_descriptor call.

Function Definition

integer function dm_set_variant_handling (handling,
pgm_desc)

integer*4 handling
integer*4 pgm_desc
4-11

Data Monitoring Reference Manual
Parameters

handling

refers to an integer value which controls the handling of variants for Ada records for
the target program corresponding to pgm_desc. Setting the value to 1 will cause
sensitivity to record variant’s governing discriminants as described above. Setting
the value to 0 causes all variants to be considered active.

pgm_desc

refers to a program descriptor obtained via a previous call to dm_open_program
and has not yet been closed (see page 4-8 for an explanation of this subprogram)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc is not a valid, open program descriptor

Dm_Set_Class_Interpretation – Interpreting Class-Wide Types 4

The dm_set_class_interpretation routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is false. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to true, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to true requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following Ada example:

package p is
type t is

record
x : integer;

end record;
type e is new t with

record
y : integer;

end record;
object_t : t’class := t’(x => 4);
object_e : t’class := e’(x => 1, y => 2);

end p;
4-12

Fortran Interface
In the table below, the first column represents the string passed to look-up subprograms
such as dm_get_descriptor and dm_get_value. The second and third columns
represent whether such calls would succeed, based on the specified setting of the inter-
pret_classes mode:

Of course the example in the second row, “p.object_t.y”, isn’t very interesting since
the value of that class-wide variable really is of type “t” and therefore doesn’t have a
component named “y”. However, the example in the fourth row, “p.object_e.y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “e”, a type extended from the specific type of the root of the class-wide
type, it does contain a component called “y”.

Function Definition

integer function dm_set_class_interpretation (interpret,
 pgm_desc)

integer*4 interpret
integer*4 pgm_desc

Parameters

interpret

refers to an integer value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to pgm_desc. Setting the
value to 1 will cause the specific type of the value of the variable to be based on the
actual value of the variable. Setting the value to 0 will cause the specific type of the
value of the variable to be obtained directly from the specific type of the root of the
class-wide type.

pgm_desc

refers to a program descriptor obtained via a previous call to dm_open_program
and has not yet been closed (see page 4-8 for an explanation of this subprogram)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

String Descriptor interpret_classes mode

0 1

“p.object_t.x” succeed succeed

“p.object_t.y” fail fail

“p.object_e.x” succeed succeed

“p.object_e.y” fail succeed
4-13

Data Monitoring Reference Manual
• Pgm_desc is not a valid, open program descriptor

Obtaining Object Descriptors for Variables 4

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, dm_get_value and dm_set_value operations can occur (see pages
4-18 and 4-20, respectively, for explanations of these subprograms).

The amount of time required to obtain the descriptor may be significant for applications
with stringent performance constraints.

The lifetime of an object descriptor exceeds the lifetime of its corresponding program
descriptor; that is, the program descriptor associated with the program containing the tar-
get variable may be closed (thereby freeing significant memory associated with target pro-
gram symbol tables), but the object descriptors remain valid.

Note that when you obtain an object descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (ptr.all),
the value of the ptr at the time of the call to dm_get_descriptor is used to determine
the final address of the ptr.all. Subsequent calls to dm_get_value or
dm_set_value with the resultant object descriptor will refer to the address calculated
during the dm_get_descriptor call, regardless of the current value of the ptr. If you
wish to re-evaluate the address of the ptr.all considering the current value of ptr,
then call dm_get_descriptor again. This applies not only to variables involving
pointer indirection, but records whose size and shape can change as the target process exe-
cutes, as well as variables of class-wide types.

Part of the process of obtaining an object descriptor involves creating a memory mapping
between the target variable and the monitoring process’s virtual address space; memory
mapping makes subsequent access to target variables from the monitoring process
extremely efficient. After the object descriptor for a variable has been defined,
dm_get_value, dm_set_value, dm_peek, and dm_poke operations can occur (see
pages 4-18, 4-20, 4-16, and 4-17 respectively, for explanations of these routines).

Dm_Get_Descriptor – Obtaining Object Descriptors 4

This function is invoked to obtain an object descriptor for a specified variable.

Function Definition

integer function dm_get_descriptor (item,
no_map,
pgm_desc,
4-14

Fortran Interface
obj_desc)
character*(*) item
integer*4 no_map
integer*4 pgm_desc
integer*4 obj_desc(DM_descriptor_size)

Parameters

item

refers to a character string that contains the expanded name of the target variable for
which you wish to obtain the object descriptor

no_map

refers to a flag that contains an integer value that indicates whether or not address
translation (mapping) is to occur. Specify a zero value if the monitoring process’s
virtual address space is to be mapped to the target variable. Specify a nonzero value
under one of the following circumstances:

3. If the target program is executing and the target variable is already
accessible at the same virtual address in the monitoring process as in
the target process (in this case, mapping is not necessary)

4. If the target program is not executing and you simply wish to obtain
information about the target variable (its type, size, virtual address,
and so on)

If the target program is not executing and you set no_map to zero, the call to
dm_get_descriptor will fail.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm_open_program (see page 4-8 for an explanation of this function).

obj_desc

refers to an array to which dm_get_descriptor will return the object descriptor
for the variable specified by item. The size of the array is specified by the integer
constant DM_descriptor_size, which is defined in the /usr/include/
datamon_.h header file. Each component of the array corresponds to a different
piece of information about the variable; see “Descriptors” on page 4-1 for more
information.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.
4-15

Data Monitoring Reference Manual
• The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (-g) option).

• Item contains invalid expanded-notation syntax.

• The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 4-11 and
4-12).

• The target variable could not be mapped into the monitoring process’s
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

Obtaining or Modifying Target Variables 4

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Obtaining Object Descriptors for Variables” on page
4-14, these subprograms require the specification of the target variable via an object_-
descriptor.

Dm_peek and dm_poke (pages 4-16 and 4-17) allow you to respectively obtain and mod-
ify the value of variables directly. Dm_get_value and dm_set_value (pages 4-18
and 4-20) allow you to respectively obtain and modify the value of variables using an
ASCII representation of the value.

Dm_Peek – Peeking at Variables 4

This function is invoked to read the value of a variable in the target process without con-
version.

Function Definition

integer function dm_peek (from_target,
to_buffer,
bytes)

integer*4 from_target(DM_descriptor_size)
integer*1 to_buffer(*)
integer*4 bytes

Parameters

from_target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to read. This descriptor is obtained from a previous
call to dm_get_descriptor (see page 4-14 for an explanation of this function).
4-16

Fortran Interface
The size of the array is specified by the integer constant DM_descriptor_size,
which is defined in the /usr/include/datamon_.h header file.

to_buffer

refers to a byte array in the monitoring process’s address space to which the raw
value of the target variable specified by from_target is to be copied

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the array specified by to_buffer. For composite types
(arrays, records and structures), the transfer of data occurs as if a bit-stream copy
were issued using the lowest bit-address of the variable specified by from_target as
the source and the lowest bit-address of the array specified by to_buffer as the desti-
nation. The number of bits copied from the source to the destination depends upon
the number of bits required by from_target.

For noncomposite types, the value will be right justified in the array specified by
to_buffer (sign and zero extension for unused bits placed in the first word). No other
bit-pattern conversion takes place.

The transfer of data from the source to the destination is effected via the most appro-
priate machine instruction available (for example, a short value will be stored via a
single instruction that transfers two bytes).

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• From_target is not a valid object descriptor.

• The address range specified by to_buffer .. to_buffer+bytes-1 are not valid
addresses in the monitoring processes address space.

Dm_Poke – Poking at Variables 4

This function is invoked to modify the value of a variable in the target process without
conversion.

Function Definition

integer function dm_poke (to_target,
from_buffer,
bytes)

integer*4 to_target(DM_descriptor_size)
integer*1 to_buffer(*)
integer*4 bytes
4-17

Data Monitoring Reference Manual
Parameters

to_target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to modify. This descriptor is obtained from a previ-
ous call to dm_get_descriptor (see page 4-14 for an explanation of this func-
tion). The size of the array is specified by the integer constant DM_descriptor_-
size, which is defined in the /usr/include/datamon_.h header file.

from_buffer

refers to a byte array in the monitoring process’s address space that contains the raw
value that is to be copied to the target variable specified by to_target

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the array specified by from_buffer. Note that bytes must be
at least as large as the number of bytes required by the variable specified by to_tar-
get.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the variable specified
by from_target as the source and the lowest bit-address of the array specified by
to_target as the destination. The number of bits transferred depends on the number
of bits required by to_target.

The bit pattern of the value in the array specified by from_buffer is not modified.
For noncomposite types, the required number of bits is assumed to be right justified
in the array.

The transfer of data to the variable specified by to_target is effected via the most
appropriate machine instruction available (for example, a short value will be stored
via a single instruction that transfers two bytes).

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• To_target is not a valid object descriptor.

• The address range specified by from_buffer .. from_buffer+bytes-1 are not
valid addresses in the monitoring processes address space.

Dm_Get_Value – Obtaining the Value of Variables 4

This function is invoked to obtain the ASCII representation of the value of a variable in
the target program.
4-18

Fortran Interface
The default ASCII representation used by dm_get_value depends upon the type of the
variable:

signed integer

the C printf “%d” conversion format

unsigned integer, pointers

the C printf “%x” conversion format

floating point

the C printf “%g” conversion format

fixed point (Ada)

the C printf “%g” conversion format

enumeration (Ada)

the enumeration image in lower case

Function Definition

integer function dm_get_value (value, from_target)
 character*(*) value
 integer*4 from_target(DM_descriptor_size)

Parameters

value

refers to a character variable to which dm_get_value will return the default
ASCII representation of the value of the target variable specified by from_target.

If the ASCII representation of the value being returned is smaller than the length of
the character variable specified by value, the value will be terminated with zero
bytes. If the ASCII representation of the value exceeds the length of the character
variable specified by value, an error will occur.

from_target

refers to an array that contains an object descriptor that is associated with the target
variable for which you wish to obtain the value. The descriptor is obtained from a
call to dm_get_descriptor (see page 4-14 for an explanation of this function).
The size of the array is specified by the integer constant DM_descriptor_size,
which is defined in the /usr/include/datamon_.h header file.

Note that if the variable to which from_target refers is of a composite type, an error
will occur.
4-19

Data Monitoring Reference Manual
Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• From_target is not a valid object descriptor.

• The type of the target variable represented by from_target is a composite
type (array, record, or structure). The dm_peek subprogram may be used
for obtaining the value of such variables.

• The type of the target variable represented by from_target is unknown (for
example, code_unknown).

• The size of value is too small to hold the ASCII representation of the value
of the variable denoted by from_target.

Dm_Set_Value – Setting the Value of Variables 4

This function is invoked to modify the value of a variable in the target process. It allows
you to use ASCII representation to specify the new value to which the variable is to be set.
The default ASCII representation used by dm_set_value depends upon the type of the
variable:

signed integer

the C sscanf “%d” conversion format

unsigned integer,pointers

the C sscanf “%d” conversion format

floating point

the C sscanf “%g” conversion format

fixed point (Ada)

the C sscanf “%g” conversion format

enumeration (Ada)

the enumeration image in upper or lower case

Function Definition

integer function dm_set_value (value, to_target)
character*(*) value
integer*4 from_target(DM_descriptor_size)
4-20

Fortran Interface
Parameters

value

refers to a character string that contains a valid ASCII representation of the new
value to which the target variable specified by to_target is to be set. Note that this
value must be expressed in a form that is consistent with the type of the target vari-
able (for example, an integer literal for an integer type, a floating point literal for a
floating point type, and so on). The value must be within the range of the type of the
target variable.

to_target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to modify. This descriptor is obtained from a previ-
ous call to dm_get_descriptor (see page 4-14 for an explanation of this func-
tion). The size of the array is specified by the integer constant DM_descriptor_-
size, which is defined in the “/usr/include/datamon_.h” file.

Note that if the variable to which to_target refers is of a composite type, an error will
occur.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• To_target is not a valid object descriptor.

• The type of the target variable represented by to_target is a composite type
(array, record, or structure). The dm_poke subprogram may be used for
setting the value of such variables.

• The type of the target variable represented by to_target is unknown (for
example, code_unknown).

• The ASCII representation of the new value for the variable specified by
to_target is inappropriate for the type of that variable.

Obtaining Information about Variables 4

This section presents the subprograms that may be invoked to additional information
about a specified target variable that isn’t readily available in an object descriptor.
4-21

Data Monitoring Reference Manual
Dm_Get_Type_Name – Obtaining Type Names 4

This function is invoked to obtain the ASCII representation of the type of a specified vari-
able in a target program.

Function Definition

integer function dm_get_type_name (type_name,
item,
pgm_desc)

character*(*) type_name
character*(*) item
integer*4 pgm_desc

Parameters

type_name

refers to a character array to which dm_get_type_name will return the symbolic
type name of the target variable specified by item

If the ASCII representation of the type being returned is smaller than the length of
the character variable specified by type_name, the value will be terminated with zero
bytes. If the ASCII representation of the type exceeds the length of the character
variable specified by type_name, an error will occur.

item

refers to a character string that contains the expanded name of the target variable for
which you wish to obtain the type name

pgm_desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm_open_program (see page 4-8 for an explanation of this
function)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.
4-22

Fortran Interface
• The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 4-11 and
4-11).

• The size of the character variable referred to by type_name is too small to
hold the name of the type of the variable specified by item.

Dm_Get_Type_Name_Long – Obtaining Long Type Names 4

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Function Definition

integer function dm_get_type_name (type_name,
item,
expanded_notation,
interpret_classes,
pgm_desc)

character*(*) type_name
character*(*) item
integer*4 expanded_notation
integer*4 interpret_classes
integer*4 pgm_desc

Parameters

type_name

refers to a character array to which dm_get_type_name_long will return the
symbolic type name of the target variable specified by item.

item

refers to a character string that specifies the expanded name of the target variable for
which you wish to obtain the symbolic type name.

expanded_notation

refers to a integer value which controls whether the name of the type associated with
the variable identified by item is expressed in Ada’s expanded name notation. If the
value specified is 1, type names for Ada variables are preceded by the expanded
name of their enclosing scope (e.g. “pkg.type_t”); whereas the direct name of the
type is used when the flag is 0 (e.g. “type_t”). This parameter has no effect for C or
Fortran variables.

interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. When this value is 0, the type name is obtained using the
name of the specific type (suffixed by ’class) of the root of the class-wide type of the
4-23

Data Monitoring Reference Manual
variable specified by item. When 1, the type is chosen using the specific type asso-
ciated with the value of the variable specified by item. When interpret_classes is set
to true, the target program must be executing. The setting of interpret_classes on
this subprogram call overrides the interpret_classes mode which is set via a call to
dm_set_class_interpretation (see page 4-11). For example, using the
code fragment from the example of dm_set_class_interpretation on page
4-11, a call such as get_type_name(“pkg.object_e”) would return
“ t ’ c l a s s ” , w h e r e a s a c a l l s u ch a s get_type_name_long
(“pkg.object_e”,interpret_classes=>true) would return “e”.

pgm_desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm_open_program (see page 4-8 for an explanation of this rou-
tine)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only (see pages 4-11 and 4-12) or the interpret_-
classes parameter.

• The size of the character variable referred to by value is too small to hold
the name of the type of the variable specified by item.

Dm_Get_Enum_Image – Obtaining Enumeration Constants Images 4

This function is invoked to obtain the image of the enumeration literal that corresponds to
a specified position within the enumerated type associated with a variable in a target pro-
gram.

Function Definition

integer function dm_get_enum_image (image,
item,
position,
pgm_desc)
4-24

Fortran Interface
character*(*) image
character*(*) item
integer*4 position
integer*4 pgm_desc

Parameters

image

refers to a character variable to which dm_get_enum_image will return the
image of the enumeration literal corresponding to position in the enumerated type
associated with item

item

refers to a character string that contains the expanded name of the target variable
whose type is the enumerated type of interest. The specified variable is required
only to identify its type; the value of the variable is not used (unless portions of the
variable’s value are required to satisfy active_variants_only or interpret_classes
modes; see pages 4-11 and 4-12).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm_get_enum_image service expects a position, not a value.

pgm_desc

refers to a variable that contains a valid program descriptor obtained via a previous
call to dm_open_program (see page 4-8 for an explanation of this function)

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.
4-25

Data Monitoring Reference Manual
• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 4-11 and
4-11).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

• The type of the variable specified by item is not an enumerated type.

• The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

• The size of the character variable referred to by image is too small to hold
the image of the enumeration constant specified by item and position.

Dm_Get_Enum_Val – Obtaining Enumeration Constant Values 4

This routine is invoked to obtain the value of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-
gram.

Function Definition

integer function get_enum_val (item,
position,
value,
pgm_desc)

character*(*) item
integer*4 position
integer*4 value
integer*4 pgm_desc

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package_p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active_variants_only or
interpret_classes modes; see pages 4-11 and 4-12).
4-26

Fortran Interface
position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (x, y, z);
for more_colors use (x => 5,y => 10, z => 20);

The position and value of the literal white are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm_get_enum_val service expects a position, not a value.

value

refers to an integer variable to which dm_get_enum_val will return the value of
the enumeration literal corresponding to position in the enumerated type associated
with item

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1 indi-
cates that an error has occurred. Invoke dm_get_error_code or dm_get_er-
ror_string for a description of the error. Possible error conditions include the follow-
ing:

• Pgm_desc does not refer to a valid, open program descriptor.

• Item does not refer to an eligible variable.

• The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-
g) option).

• Item contains invalid expanded name syntax.

• The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 4-11 and
4-11).

• The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
usermap(3) call is included in the text of the message associated with a
subsequent call to dm_get_error_string.

• The type of the variable specified by item is not an enumerated type.

• The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.
4-27

Data Monitoring Reference Manual
4-28

A
Appendix AMAXAda Examples

1
1
1

This appendix provides instructions for compilation and linking Ada programs that use the
Real_Time_Data_Monitoring package as well as example programs.

Compilation and Linking Instructions 1

The following commands will create a compilation environment, add visibility to the
Real_Time_Data_Monitoring package, introduce user source files into the environ-
ment, define a program, and build it. See Chapter 2 - "Using MAXAda" in the MAXAda
Reference Manual for more information on MAXAda. All of the following commands
require that /usr/ada/bin is in the user’s PATH environment variable.

a.mkenv -g
The above command creates a compilation environment; a compilation environment
is required for all subsequent MAXAda commands. The environment consists of a
file, .Ada, and a directory, .ada, created in the user’s current working directory.
The -g option to a.mkenv sets the default compilation option for all Ada units to
include debug information. Debug information isn’t specifically required for use of
subprograms within the Real_Time_Data_Monitoring package, however, tar-
get programs must be built with debug information.

a.path -v -a rtdm
The Real_Time_Data_Monitoring package is provided in a pre-compiled
MAXAda environment called rtdm. Access to this environment is provided by
placing rtdm in the environment search path for the user’s environment.

a.intro -v user_source_file.ada
Before compilation and linking can occur, the user’s Ada source files must be intro-
duced into the environment. The files don’t have to be in their final form, but they
must either be empty or contain a reasonable facsimile of an Ada compilation unit
(the syntax of the file must be close enough to valid Ada for a.intro to determine its
basic structure).

a.partition -create active main_subprogram_name
This command defines a program to be build; at a minimum, it requires that the user
specify the name of the main subprogram. If no other parameters are supplied, the
name of the program file produced will be that of the specified main_subpro-
gram_name.

a.build -v main_subprogram_name
This command compiles and links the program.
A-1

Data Monitoring Reference Manual
Examples 1

Two example programs are provided: peek, an extremely simple program utilizing just
three of the subprograms from the Real_Time_Data_Monitoring package, and
scanner, a complete program which scans executable programs and provides informa-
tion on all eligible variables within them.

Example 1 — Peek 1

> a.mkenv -g
> a.path -v -a rtdm
Environment search path:

/usr/ada/.../predefined
/usr/ada/.../rtdm

> cp /usr/share/doc/datamon/peek.ada peek.ada
> cat peek.ada
package global is

data : integer := 45;
end global;

with real_time_data_monitoring;
with ada.text_io;
with ada.command_line;
with global;
pragma elaborate_all(global);
procedure peek is

package rtdm renames real_time_data_monitoring;
package acl renames ada.command_line;
package atio renames ada.text_io;

begin
rtdm.open_program (acl.argument(1));
atio.put_line ("The value of """ &

acl.argument(2) &
""" is """ &
rtdm.get_value(acl.argument(2)) &
"""");

rtdm.close_program;
end peek;

> a.intro -v peek.ada
introducing: peek.ada

> a.partition -create active peek
> a.build -v peek

compiling: package spec global
compiling: subprogram body peek
A-2

MAXAda Examples
linking: peek

> ./peek peek global.data
The value of "global.data" is " 45"

The example program above utilizes just three subprograms from the Real_Time_-
Data_Monitoring package: open_program, get_value, and close_program.
The example program is extremely simple, yet quite powerful.

It requires two arguments: the name of a target executable program and the name of an eli-
gible variable in expanded notation. It prints the current value of the specified variable
from the specified target program (which must be executing).

For simplicity in the example, we specified the example program itself as the target pro-
gram and the variable data in the package global as our variable. In fact, the only rea-
son that the package global was included in the example was so that we could use the
example program as our target program (i.e.; we needed an eligible variable to peek at).

Example 2 — Scanner 1

> a.mkenv -g
> a.path -v -a rtdm
Environment search path:

/usr/ada/.../predefined
/usr/ada/.../rtdm

> cp /usr/share/doc/datamon/scanner.ada scanner.ada
> cat scanner.ada
with ada.command_line;
procedure scanner is

passive : boolean;
procedure scan (program_name : in string;

 fetch : in boolean;
 active_variants_only : in boolean;
 interpret_classes : in boolean;
 indirect_pointers : in boolean;
 type_names_interpret : in boolean;
 type_names_expanded : in boolean;
 max_array_components : in natural;
 interest_threshold : in integer) is separate;

begin
passive := boolean’value(ada.command_line.argument(2)) = false;
scan (program_name => ada.command_line.argument(1),

fetch => not passive,
active_variants_only => not passive,
interpret_classes => not passive,
type_names_interpret => not passive,
type_names_expanded => false,
max_array_components => 1,
interest_threshold => 0,
indirect_pointers => not passive);

end scanner;

with ada.text_io;
A-3

Data Monitoring Reference Manual
with ada.unchecked_conversion;
with real_time_data_monitoring;
with system.addresses;
separate (scanner)
procedure scan (program_name : in string;

fetch : in boolean;
active_variants_only : in boolean;
interpret_classes : in boolean;
indirect_pointers : in boolean;
type_names_interpret : in boolean;
type_names_expanded : in boolean;
max_array_components : in natural;
interest_threshold : in integer) is

--
package rtm renames real_time_data_monitoring;

function to_address_sized_int is new
ada.unchecked_conversion(system.address,system.addresses.address_sized

_int);
package pio is new

ada.text_io.integer_io(system.addresses.address_sized_int);
package iio is new ada.text_io.integer_io(integer);

subtype stack_frames is natural range 0..100;
type stack_frame is

record
count : natural;
max : natural;

end record;

-- Misc variables
dummy_position : rtm.list_position;
dummy_quit : boolean := false;
stack : array (stack_frames) of stack_frame;
stack_top : stack_frames;
indirection_active : boolean := false;

-- Instantiations
procedure variable_action (item : in string;

program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean);

procedure scope_action (item : in string;
program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean);

package list_variables is new rtm.lists (variable_action);
package list_scopes is new rtm.lists (scope_action);

-- Subprograms
procedure variable_action (item : in string;

program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean) is separate;

procedure scope_action (item : in string;
program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean) is separate;

--
begin
--

rtm.open_program (program_name => program_name,
interest_threshold => interest_threshold);

if active_variants_only then
A-4

MAXAda Examples
rtm.set_variant_handling (active_variants_only);
end if;
if interpret_classes then

rtm.set_class_interpretation (interpret_classes);
end if;

stack_top := stack_frames’first;
stack(stack_top).count := 0;
stack(stack_top).max := natural’last;

scan.list_scopes.list (mode => rtm.list_scopes, components => false);

rtm.close_program;
--
exception
when rtm.real_time_monitoring_error =>

ada.text_io.put_line (
rtm.error_codes’image(rtm.get_real_time_monitoring_error_code) & ": "

&
rtm.get_real_time_monitoring_error);

end scan;

separate (scanner.scan)
procedure variable_action (item : in string;

program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean) is

--
use rtm;
use ada.text_io;

virtual : system.address;
target : system.address;
atomic : atomic_types;
size : natural;
offset : natural;
code : codes;
descriptor : internal_descriptor;
signed : boolean;
indicies : indicies_list;
dimensions : integer;
pointer : system.addresses.address_sized_int := 0;

--
begin
--

stack(stack_top).count := stack(stack_top).count + 1;
if stack(stack_top).count > stack(stack_top).max then

quit := true;
return;

end if;

set_col (count((stack_top)*3)+1);
put (item);
put (" (");
put

(get_type_name(item,program,type_names_expanded,type_names_interpret));

get_descriptor (item, descriptor, not fetch, program);
get_info (descriptor, virtual, target, atomic, size, offset, code);

put (", ");
pio.put (to_address_sized_int(target), width => 12, base=>16);
put (", ");
iio.put (size, width => 0);
A-5

Data Monitoring Reference Manual
put (", ");
iio.put (offset, width => 0);
put (", ");

case code is
when code_array =>

get_array_info (descriptor, size, code, signed, indicies, dimensions);
put ("array [");
for d in 1..dimensions loop

if d /= 1 then
put (",");

end if;
iio.put (indicies(d).lower_bound, width=>0);
put ("..");
iio.put (indicies(d).upper_bound, width=>0);

end loop;
put ("] of ");
put (codes’image(code));
put_line (")");
stack_top := stack_top + 1;
stack(stack_top).count := 0;
stack(stack_top).max := max_array_components;
scan.list_variables.list (mode => list_components, qualifier => item);
stack_top := stack_top - 1;
return;

when code_record | code_common =>
if code = code_record then

put_line (" record)");
else

put_line (" common)");
end if;
stack_top := stack_top + 1;
stack(stack_top).count := 0;
stack(stack_top).max := natural’last;
scan.list_variables.list (mode => list_components, qualifier => item);
stack_top := stack_top - 1;
return;

when code_integer =>
put (codes’image(code));
case atomic is
when discrete_1byte_signed |

discrete_2byte_signed |
discrete_4byte_signed =>

put (", signed");
when others =>

put (", unsigned");
end case;

when others =>
put (codes’image(code));

end case;

if code = code_pointer then
if fetch then

put (", ");
get_value (descriptor, pointer’address, pointer’size/8);
pio.put (pointer, width=>12, base=>16);

end if;
put_line (")");
if indirect_pointers and then

indirection_active = false then
if pointer /= 0 then

indirection_active := true;
variable_action (item & ".all", program, position, quit);
indirection_active := false;

end if;
A-6

MAXAda Examples
end if;
else

if fetch then
put (", ");
put (get_value(descriptor));

end if;
put_line (")");

end if;
--
exception
when real_time_monitoring_error =>

set_col (count((stack_top)*3)+1);
put_line (error_codes’image(get_real_time_monitoring_error_code) & ": " &

get_real_time_monitoring_error);
--
end variable_action;

separate (scanner.scan)
procedure scope_action (item : in string;

program : in rtm.program_descriptor;
position : in out rtm.list_position;
quit : in out boolean) is

--
use ada.text_io;

--
begin
--

set_col (count((stack_top)*3)+1);

put_line ("scope: " & item);

stack_top := stack_top + 1;
stack(stack_top).count := 0;
stack(stack_top).max := natural’last;

scan.list_variables.list (mode => rtm.list_variables,
qualifier => item,
components => false,
program => program);

stack_top := stack_top - 1;
--
end scope_action;

> a.intro -v scanner.ada
introducing: scanner.ada

> a.partition -create active scanner

> a.build scanner
> scanner scanner true > out
> fgrep ada.command_line out
scope: ada.command_line
scope: ada.command_line.local_bindings

ada.command_line.local_bindings.u_mainp
(a_environment_frame, 16#300CC230#, 32, 0, CODE_POINTER,

16#300CBB10#)
ada.command_line.local_bindings.u_mainp.all
A-7

Data Monitoring Reference Manual
(environment_frame_t, 16#300CBB10#, 96, 0, record)
ada.command_line.local_bindings.u_mainp.all.argc
(integer, 16#300CBB10#, 32, 0, CODE_INTEGER, signed, 3)
ada.command_line.local_bindings.u_mainp.all.arg_list
(a_address_list, 16#300CBB14#, 32, 0, CODE_POINTER, 16#2FF7D314#)
ada.command_line.local_bindings.u_mainp.all.env_list
(a_address_list, 16#300CBB18#, 32, 0, CODE_POINTER, 16#2FF7D324#)

> scanner peek false > out
> fgrep global out
scope: global

global.data (integer, 16#3009C534#, 32, 0, CODE_INTEGER, signed)

The example above provides source code and build instructions for a scanner program
which scans a user-specified target program for scopes and describes the variables in
those scopes. The description includes:

• The variable’s name in expanded notation

• The variable’s type name

• The variable’s address in the target program

• The variable’s size in bits

• The variable’s bit offset from its address

• The variable’s Real_Time_Data_Monitoring code
• For record variables, a description of all its components

• For array variables, a description of the dimensions and bounds of the array

• For array variables, a description of the first component of the array

Additional information is supplied when the scanner program is run in non-passive
mode; defined by the second parameter to the program (false => passive, true => non-pas-
sive). When run in non-passive mode, the target program must be executing and the
description output by scanner further includes the following:

• The value of the variable

• Class-wide type interpretation is activated

• Sensitivity to Ada record variants is activated

• Pointer variables are indirected (once)

The output of the scanner program is rather lengthy, even for small Ada programs, since it
includes descriptions of variables in support packages contained in most all Ada pro-
grams. The fgrep commands above are used to show some of the output from the scan-
ner invocations (the output underwent minor formatting changes for inclusion in this man-
ual).

The first invocation shown above specifies that the program to scan is the scanner pro-
gram itself; the second argument of true indicates that the scan is to be done in non-pas-
sive mode. The second invocation specifies the program from the peek example
A-8

MAXAda Examples
describes in this appendix; since that program mostly likely isn’t executing, we run the
scan in passive mode as indicated by the second argument of false.
A-9

Data Monitoring Reference Manual
A-10

B
Appendix BC Examples

2
2
2

This appendix provides instructions for compilation and linking C programs that use the
Data Monitoring library as well as example programs.

C Compilation and Linking Instructions 2

> gcc -g main.c -ldatamon -lccur_rt
The command above invokes the C compiler on the source file main.c. The -g option
specifies that debug information should be generated; this isn’t specifically required for
use of subprograms in the data monitoring library, however, the target programs must be
built with debug information. The -ldatamon link option specifies that the Data Moni-
toring library, /usr/lib/libdatamon.a, should be used when linking the program.

Examples 2

Two example programs are provided: peek, an extremely simple program utilizing just
four of the subprograms from the Data Monitoring library, and scanner, a complete pro-
gram which scans executable programs and provides information on all eligible variables
within them.

Example 1 — Peek 2

> cp /usr/share/doc/datamon/peek.c peek.c
> cat peek.c
#include <datamon.h>
#include <stdio.h>

int global_data = 45;

main (int argc, char * argv[])
{

program_descriptor_t pgm_desc;
object_descriptor_t obj_desc;
char image[1024];

dm_open_program (argv[1], 0, &pgm_desc);
dm_get_descriptor (argv[2], 0, pgm_desc, &obj_desc);
dm_get_value (&obj_desc, image, sizeof(image));
B-1

Data Monitoring Reference Manual
printf ("The value of \"%s\" is \"%s\"\n", argv[2], image);
dm_close_program (pgm_desc);

}

> cc -g peek.c -o peek -ldatamon-lccur_rt
> peek peek global_data
The value of "global_data" is " 45"

The example program above utilizes just four subprograms from the Data Monitoring
library: dm_open_program, dm_get_descriptor, dm_get_value, and dm_-
close_program. The example program is extremely simple, yet quite powerful.

It requires two arguments: the name of a target executable program and the name of an eli-
gible variable in expanded notation. It prints the current value of the specified variable
from the specified program.

For simplicity in the example, we specified the example program itself as the executable
program and the variable global_data . In fact, the only reason that the variable
global_data was included in the example was so that we could use the example pro-
gram as our target program (i.e.; we needed an eligible variable to peek at).

Example 2 — Scanner 2

> cp /usr/share/doc/datamon/scanner.c scanner.c
> cat scanner.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define datamon_mappings
#include "datamon.h"

static int stack;
static int count[10000];
static int max[10000];
static int fetch;

static
void
assert (int status, char * service)
{

if (status != 0) {
printf ("\n(ASSERTION FAILURE: %s: (%s) %s)\n",

service,
dm_error_code_images[dm_get_error_code()],
dm_get_error_string());

}
}

static int indent = 0;
static int indirection_active = 0;
int * gratuitous_pointer = &indent;

static
void
B-2

C Examples
item_action (char * item, program_descriptor_t pgm, int * quit)
{

static char * example;
auto object_descriptor_t obj;
auto int status;
auto int d;
auto int i;
auto char type_name[80];
auto char buffer[80];
auto char indirected_item[1024];

if (++count[stack] >= max[stack]) {
*quit = 1;

}

example = item;

indent += 3;
for (i=0; i<indent; ++i) {

printf (" ");
}
printf ("%s", item);

status = dm_get_type_name (item, pgm, type_name, sizeof(type_name));
assert (status, "dm_get_type_name");
if (status == 0) {

printf (" (%s", type_name);
}

status = dm_get_descriptor (item, !fetch, pgm, &obj);
assert (status, "dm_get_descriptor");
if (status==0) {

printf (", 0x%-8.8x, %s, %s, %d, %d",
obj.od_target_address,
dm_code_images[obj.od_code],
(obj.od_signed ? "signed" : "unsigned"),
obj.od_bit_size,
obj.od_bit_offset);

if (obj.od_code == code_integer) {
printf (" [0x%8.8x..0x%-8.8x]", (unsigned)obj.od_lower_bound,

(unsigned)obj.od_upper_bound);
}

if (obj.od_code == code_array) {
printf (", dims=%d", obj.od_number_dims);
for (d=0; d<obj.od_number_dims; ++d) {

printf (" [%d..%d]", obj.od_lower_dims[d],
obj.od_upper_dims[d]);

}
printf (" (%s, %s, %d)",

dm_code_images[obj.od_component_code],
(obj.od_component_signed ? "signed" : "unsigned"),
obj.od_component_bit_size);

}

if (obj.od_code == code_array ||
obj.od_code == code_record ||
obj.od_code == code_common) {
printf (")\n");
count[++stack] = 0;
if (obj.od_code == code_array) {

max[stack] = 1;
} else {

max[stack] = 2000000000;
}

B-3

Data Monitoring Reference Manual
status = dm_list (list_components, item, 0, 1, pgm, &item_action);
--stack;
assert (status, "dm_list");

} else if (fetch) {
status = dm_get_value (&obj, buffer, sizeof(buffer));
assert (status, "dm_get_value");
if (status == 0) {

printf (", %s", buffer);
}
printf (")\n");

} else {
printf (")\n");

}

if (fetch && obj.od_code == code_pointer && !indirection_active) {
++indirection_active;
strcpy (indirected_item, item);
strcat (indirected_item, ".all");
item_action (indirected_item, pgm, quit);
--indirection_active;

}

}

indent -= 3;
}

static
void
scope_action (char * scope, program_descriptor_t pgm, int * quit)
{

static int status;

printf ("scope = %s\n", (*scope ? scope : "<global>"));
status = dm_list (list_variables,

scope,
"",
0,
pgm,
&item_action);

assert (status, "dm_list");
}

int
main (int argc, char * argv[])
{

auto program_descriptor_t pgm;
auto int status;
auto char * program;
auto int dummy;

if (argc < 2) {
printf ("Usage: scanner program_name [fetch [variable_to_scan]]\n");
exit (1);

}
program = argv[1];
fetch = argc > 2 && strcmp(argv[2],"fetch")==0;

stack = 0;
max[0] = 2000000000;
count[0] = 0;

status = dm_open_program (program, 0, &pgm);
assert (status, "dm_open_program");
B-4

C Examples
if (fetch) {
status = dm_set_variant_handling (1, pgm);
assert (status, "dm_set_variant_handling");
status = dm_set_class_interpretation (1, pgm);
assert (status, "dm_set_class_interpretation");

}

if (argc > 3) {
item_action (argv[3], pgm, &dummy);

} else {
status = dm_list (list_scopes,

"",
"",
0,
pgm,
&scope_action);

assert (status, "dm_list");
}

}

> gcc -g scanner.c -o scanner -ldatamon -lccur_rt
> scanner scanner fetch > out
> egrep -e 'fetch|ind|grat' out

"scanner.c".fetch (int, 0x30081078, integer, signed, 32, 0
[0x80000000..0x7fffffff], 1)

"scanner.c".indent (int, 0x3005c484, integer, signed, 32, 0
[0x80000000..0x7fffffff], 3)

"scanner.c".indirection_active (int, 0x3005c488, integer, signed, 32, 0
[0x80000000..0x7fffffff], 0)

"scanner.c".gratuitous_pointer (int *, 0x3005c48c, pointer, unsigned,
32, 0, 3005c484)
"scanner.c".gratuitous_pointer.all (int, 0x3005c484, integer,

signed, 32, 0 [0x80000000..0x7fffffff], 6)

> scanner peek
scope = main
scope = "peek.c"

"peek.c".global_data (int, 0x3005c1b0, integer, signed, 32, 0
[0x80000000..0x7fffffff])

The example above provides source code and build instructions for a scanner program
which scans a user-specified target executable program for scopes and describes the vari-
ables in those scopes. The description includes:

• The variable’s name in expanded notation

• The variable’s type name or type description

• The variable’s address in the target program

• The variable’s data monitoring code
• The variable’s size in bits

• The variable’s bit offset from its address

• The variable’s constraints (if scalar)

• For record variables, a description of all a components of the record
B-5

Data Monitoring Reference Manual
• For array variables, a description of the dimensions and bounds of the array

• For array variables, a description of the first component of the array

Additional information is supplied when the scanner program is run in non-passive
mode; defined by the second parameter to the program (false => passive, true => non-pas-
sive). When run in non-passive mode, the target program must be executing and the
description output by scanner further includes the following:

• The value of the variable

• Class-wide type interpretation is activated

• Sensitivity to Ada record variants is activated

• Pointer variables are indirected (once)

The output of the scanner program can be rather lengthy since it describes all eligible
variables in the target program. The egrep command was used above to show some of
the output from the scanner invocations (the output underwent minor formatting changes
for inclusion in this manual).

The first invocation shown above specifies that the program to scan is the scanner pro-
gram itself; the second argument of fetch indicates that the scan is to be done in non-
passive mode. The second invocation specifies the program from the peek example
describes in this appendix; since that program mostly likely isn’t executing, we run the
scan in passive mode as indicated by the second argument is omitted.

Note that the scanner program utilizes the dm_error_code_images and
dm_code_images arrays from /usr/include/datamon.h; these arrays are only
available if the -Ddatamon_mappings compilation option is used or a #define of
datamon_mappings is specified within the source code before the inclusion of /usr/
include/datamon.h.
B-6

C
Appendix CFortran Examples

3
3
3

This appendix provides instructions for compilation and linking Fortran programs that use
the Data Monitoring library as well as an example program.

Compilation and Linking Instructions 3

> cf77 -g source_file.f -ldatamon -lccur_rt
or

> g77 -g source_file.f -ldatamon -lccur_rt
The command above invokes the Fortran compiler (Concurrent Fortran cf77 or GNU
Fortran g77) on the source file source_file.f. The -g option specifies that debug
information should be generated; this isn’t specifically required for use of subprograms in
the data monitoring library, however, the target programs must be built with debug infor-
mation. The -ldatamon link option specifies that the Data Monitoring library, /usr/
lib/libdatamon.a, should be used when linking the program

Example 1 — Peek 3

> cp /usr/share/doc/datamon/peek.f peek.f
> cat peek.f

program peek

include "/usr/include/datamon_.h"
include "/usr/include/datamon_tables_.h"

integer*4 pgm_desc
integer*4 status
integer*4 obj_desc(DM_descriptor_size)
integer*4 value
integer*4 i
integer*4 low
integer*4 high
integer*4 bn
integer*4 pn
integer*4 vn

common // obj_desc

real*8 lower_bound
C-1

Data Monitoring Reference Manual
real*8 upper_bound

character*80 buffer
character*80 program_name
character*80 variable_name

equivalence (obj_desc(DM_lower_bound),lower_bound)
equivalence (obj_desc(DM_upper_bound),upper_bound)

external zip
external check_status

call zip(program_name)
call zip(variable_name)
call zip(buffer)
call getarg(1,program_name)

pn=indx(program_name,' ')

call getarg(2,variable_name)
vn=indx(variable_name,' ')

status =
1 dm_open_program(program_name(1:pn-1), 0, pgm_desc)
call check_status(status,"dm_open_program")

call getarg(2,variable_name)
write(6,*)variable_name(1:vn-1),":"

status = dm_get_descriptor(variable_name(1:vn-1),
1 .false.,
2 pgm_desc,
3 obj_desc)
call check_status(status,"dm_get_descriptor")

status =
1 dm_get_type_name(buffer,variable_name,pgm_desc)
call check_status(status,"dm_get_type_name")

bn = indx(buffer,'@')

write(6,*)" type_name = ",buffer(1:bn-1)
write(6,*)" size = ",obj_desc(DM_bit_size)
write(6,*)" address = ",obj_desc(DM_target_address)
write(6,*)" code = ",code_names(obj_desc(DM_code))

if (obj_desc(DM_code).eq.DM_array_code) then
do 10 i=1,obj_desc(DM_num_dimensions)

write(6,*) " dimension = ",
1 obj_desc(DM_lower_dimension+i-1),
2 " .. ",
3 obj_desc(DM_upper_dimension+i-1)

10 continue
elseif (obj_desc(DM_code).eq.DM_enumeration_code) then
C-2

Fortran Examples
low = int(lower_bound)
high = int(upper_bound)
write(6,*)" enum_info = "
do 20 i=low,high

call zip(buffer)
status = dm_get_enum_image(buffer,

1 variable_name(1:vn-1),
2 i,
3 pgm_desc)

call check_status(status,"dm_get_enum_image")
bn = indx(buffer,'@')
status = dm_get_enum_val(variable_name(1:vn-1),

1 i,
2 value,
3 pgm_desc)

call check_status(status,"dm_get_enum_val")
write(6,*)" ",buffer(1:bn-1)," => ",value

20 continue
call zip(buffer)
status = dm_get_value(buffer,obj_desc)
call check_status(status,"dm_get_value")
bn = indx(buffer,'@')
write(6,*)" value = ",buffer(1:bn-1)

else
call zip(buffer)
status = dm_get_value(buffer,obj_desc)
call check_status(status,"dm_get_value")
bn = indx(buffer,'@')
write(6,*)" value = ",buffer(1:bn-1)

end if
status = dm_close_program (pgm_desc)
if(status .ne. 0) then

write(6,*) "error from dm_close_program",
1 dm_get_error_code(),dm_get_error_string()

call exit(-1)
end if
end

subroutine zip (buf)
character*(*) buf
integer*4 i
do 10 i=1,len(buf)

buf(i:i) = '@'
10 continue

end

subroutine check_status (status, service)
include "/usr/include/datamon_.h"
include "/usr/include/datamon_tables_.h"
integer*4 status
character*(*) service
integer*4 n
if(status .ne. 0) then

n = indx(error_code_names(dm_get_error_code()),' ')
C-3

Data Monitoring Reference Manual
write(6,*) service, ": ",
1 error_code_names(dm_get_error_code())(1:n-1),
2 ": ",dm_get_error_string()

write(6,*)server," failed with error",
3 dm_get_error_code()

call exit(-1)
end if
end

function indx (string, char)
character*(*) string
character char
do 30 i=1,len(string)

if (string(i:i) .eq. char) then
indx = i
return

end if
30 continue

indx = 0
end

> cf77 -g peek.f -o peek -ldatamon -lccur_rt
or

> g77 -g peek.f -o peek -ldatamon -lccur_rt

NOTE

If using the GNU Fortran compiler (g77), the names of the main
program and variables within it are mangled-- replace "peek.obj_-
desc" with "MAIN__.obj_desc__" in the following examples in
that case.

> peek peek "peek.obj_desc"
peek.obj_desc:
type_name = integer []
size = 1280
address = 805850216
code = array
dimension = 1 .. 40

> peek peek "peek.obj_desc(6)"
peek.obj_desc(6):

type_name = integer
size = 32
address = 805850236
code = integer
value = 32
C-4

Fortran Examples
The example above provides source code and build instructions for a peek program
which peeks into an executing user-specified target program and obtains the value of a
user-specified variable and information about that variable. The description includes:

• The variable’s name in expanded notation

• The variable’s type name or type description

• The variable’s size in bits

• The variable’s address in the target program

• The variable’s data monitoring code
• For array variables, a description of the dimensions and bounds of the array

• A description of the enumeration constants of enumeration variables

• The value of the variable (for non-composite variables)

Note that the peek program makes use of the error_code_names and code_names
arrays which are defined in the include file, /usr/include/datamon_tables_.h.
C-5

Data Monitoring Reference Manual
C-6

Index
A

Ada
See MAXAda
compilation instructions A-1
examples A-2
linking instructions A-1

array information 2-34
atomic_types 2-7
attributes of variables 2-32, 3-25, 4-21

C

C
object descriptors 3-17

C Interface
compiling instructions B-1
dm_close_program 3-11
dm_codes 3-2
dm_error_codes 3-5
dm_get_descriptor 3-18
dm_get_enum_image 3-28
dm_get_enum_val 3-29
dm_get_error_code 3-5
dm_get_error_string 3-5
dm_get_pid 3-15
dm_get_type_name 3-25
dm_get_type_name_long 3-26
dm_get_value 3-22
dm_line_info 3-31
dm_list 3-33
dm_open_program 3-7
dm_open_program_aux 3-9
dm_peek 3-20
dm_poke 3-21
dm_set_class_interpretation 3-14
dm_set_interest 3-12
dm_set_pid 3-16
dm_set_value 3-23
dm_set_variant_handling 3-13
dm_suppress_index_checks 3-17
error processing 3-4

examples B-1
linking instructions B-1
object_descriptor_t 3-2
program_descriptor_t 3-2

checking ASCII representation 2-29
child packages 1-7
class-wide types 2-16, 3-14, 4-12
close_program 2-11
codes 2-7
compiling instructions A-1, B-1, C-1
components

listing 2-42, 3-33
constraints 2-41
current_program 2-6

D

dm_close_program 3-11, 4-9
dm_codes 3-2
dm_error_codes 3-5
dm_get_descriptor 3-18, 4-14
dm_get_enum_image 3-28, 4-24
dm_get_enum_val 3-29, 4-26
dm_get_error_code 3-5, 4-6
dm_get_error_string 3-5, 4-6
dm_get_pid 3-15
dm_get_type_name 3-25, 4-22
dm_get_type_name_long 3-26, 4-23
dm_get_value 3-22, 4-18
dm_line_info 3-31
dm_list 3-33
dm_open_program 3-7, 4-8
dm_open_program_aux 3-9
dm_peek 3-20, 4-16
dm_poke 3-21, 4-17
dm_set_class_interpretation 3-14, 4-12
dm_set_interest 3-12
dm_set_interest_threshold 4-10
dm_set_pid 3-16
dm_set_value 3-23, 4-20
dm_set_variant_handling 3-13, 4-11
dm_suppress_index_checks 3-17
Index-1

Data Monitoring Reference Manual
E

enumeration constant images 2-37, 3-28, 4-24
enumeration constant values 2-39, 3-29, 4-26
error codes 2-5, 3-5, 4-5
error processing 2-4, 3-4, 4-4
Examples

Ada A-2
C B-1
Fortran C-1

execution requirements 2-10, 3-8, 3-9, 4-9
Expanded Names 1-4
Expanded Notation 1-4

child packages 1-7
file scope 1-7

F

file scope 1-7
Fortran

compiling instructions C-1
dm_close_program 4-9
dm_get_descriptor 4-14
dm_get_enum_image 4-24
dm_get_enum_val 4-26
dm_get_error_code 4-6
dm_get_error_string 4-6
dm_get_type_name 4-22
dm_get_type_name_long 4-23
dm_get_value 4-18
dm_open_program 4-8
dm_peek 4-16
dm_poke 4-17
dm_set_class_interpretation 4-12
dm_set_interest_threshold 4-10
dm_set_value 4-20
dm_set_variant_handling 4-11
error codes 4-5
error processing 4-4
examples C-1
linking instructions C-1
obj_desc 4-2
object descriptors 4-14
pgm_desc 4-1

G

get_array_info 2-34
get_constraints 2-41

get_current_program 2-12
get_descriptor 2-19
get_enum_image 2-37
get_enum_val 2-39
get_info 2-32
get_type_name 2-35
get_value 2-23
getting the value of variables 2-23, 2-30, 3-19, 3-20,

3-22, 4-16, 4-18

I

index checks, suppress 3-17
info_only 2-32
info_program 2-13
information about variables 2-32, 3-25, 4-21
interest level 2-10, 2-14, 3-12, 4-10
interest threshold 2-10, 2-14, 3-12, 4-10
internal descriptor 2-6
internal_descriptors 2-18
invalidate_descriptor 2-21
IO package 2-30
is_active_component 2-22
is_valid_descriptor 2-21

L

linking instructions A-1, B-1, C-1
listing components 2-42, 3-33
listing variables 2-42, 3-32, 3-33
lists package 2-42

M

MAXAda
atomic_types 2-7
close_program 2-11
codes 2-7
compiling instructions A-1
current_program 2-6
error codes 2-5
error processing 2-4
examples A-2
execution requirements 2-10
get_array_info 2-34
get_constraints 2-41
get_current_program 2-12
get_descriptor 2-19
Index-2

Index
get_enum_image 2-37
get_enum_val 2-39
get_info 2-32
get_type_name 2-35
get_value 2-23
info_only 2-32
info_program 2-13
interest level 2-10
interest threshold 2-10
internal descriptor 2-6
internal_descriptors 2-18
invalidate_descriptor 2-21
IO Package 2-30
is_active_component 2-22
is_valid_descriptor 2-21
linking instructions A-1
lists package 2-42
open_program 2-9
pragma INTERESTING 2-10
program descriptor 2-6
set_class_interpretation 2-16
set_current_program 2-12
set_interest_threshold 2-14
set_value 2-26
set_variant_handling 2-15
validate_value 2-29

memory usage 2-11, 3-11, 4-9

O

obj_desc 4-2
object descriptor 4-2, 4-14
object descriptors 3-17, 4-14
object_descriptor_t 3-2
open_program 2-9

P

peek 3-20, 4-16
pgm_desc 4-1
poke 3-21, 4-17
pragma INTERESTING 2-10, 2-14, 4-10
program counter 3-31
program descriptor 2-6, 4-1
program_descriptor_t 3-2

R

read 2-30
Real_Time_Data_Monitoring package 2-1
Requirements 1-1

S

scanning programs for variables 2-42, 3-32, 3-33
set_class_interpretation 2-16
set_current_program 2-12
set_interest_threshold 2-14
set_value 2-26
set_variant_handling 2-15
setting the value of variables 2-23, 2-30, 3-19, 3-21,

3-23, 4-16, 4-17, 4-20

T

target program 1-3
target variable 1-3
type names 2-35, 3-25, 3-26, 4-22, 4-23

V

validate_value 2-29
variable 1-3
Variable Eligibility 1-3
variant considerations 2-22
variants of records 2-15, 3-13, 4-11

W

write 2-30
Index-3

Data Monitoring Reference Manual
Index-4

	Data Monitoring Reference Manual
	Contents
	Data Monitoring
	Requirements
	Variable Eligibility
	Expanded Name Notation

	MAXAda Interface
	Organization
	Error Processing
	Package Types and Objects
	Descriptors
	Enumerations

	Target Program Selection and Identification
	Open_Program – Obtaining Program Descriptors
	Close_Program – Closing Program Descriptors
	Get_Current_Program – Referencing the Current Program
	Set_Current_Program – Changing the Current Program Descriptor
	Info_Program – Obtaining Information from a Program Descriptor
	Set_Interest_Threshold – Setting the Interest Threshold
	Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Set_Class_Interpretation – Interpreting Class-Wide Types

	Obtaining Internal Descriptors for Variables
	Get_Descriptor – Obtaining an Internal Descriptor
	Invalidate_Descriptor – Invalidating an Internal Descriptor
	Is_Valid_Descriptor – Checking Internal Descriptor Validity
	Is_Active_Component – Active Variant Checking

	Obtaining or Modifying Target Variables
	Get_Value – Obtaining the Value of Variables
	Set_Value – Setting the Value of Variables
	Validate_Value – Verifying an ASCII Representation
	IO Package – Generic Read and Write of Variables

	Obtaining Information about Variables
	Get_Info and Info_Only – Obtaining Information about Variables
	Get_Array_Info – Obtaining Array Bounds and Component Info
	Get_Type_Name – Obtaining Variable Type Names
	Get_Enum_Image – Obtaining Images of Enumeration Constants
	Get_Enum_Val – Obtaining Values of Enumeration Constants
	Get_Constraints – Obtaining Constraints of Scalar Variables

	Scanning Target Programs for Variables
	Generic Package Lists – Listing Scopes, Variables, and Components

	C Interface
	Organization
	Types and Objects
	Descriptors
	Enumerations

	Error Processing
	Routines
	Target Program Selection and Identification
	Dm_Open_Program – Obtaining Program Descriptors
	Dm_Open_Program_Aux – Obtaining Program Descriptor by Function
	Dm_Close_Program – Closing Program Descriptors
	Dm_Set_Interest_Threshold – Setting the Interest Threshold
	Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Dm_Set_Class_Interpretation – Interpreting Class-Wide Types
	Dm_Get_Pid – Obtaining Target Process ID
	Dm_Set_Pid – Changing Target Process ID
	Dm_Suppress_Index_Checks – Suppressing Index Value Checks

	Obtaining Object Descriptors for Variables
	Dm_Get_Descriptor – Obtaining an Object Descriptor

	Obtaining or Modifying Target Variables
	Dm_Peek – Peeking at Variables
	Dm_Poke – Poking at Variables
	Dm_Get_Value – Obtaining the Value of Variables
	Dm_Set_Value – Setting the Value of Variables

	Obtaining Information about Variables
	Dm_Get_Type_Name – Obtaining Type Names
	Dm_Get_Type_Name_Long – Obtaining Long Type Names
	Dm_Get_Enum_Image – Obtaining Enumeration Constant Images
	Dm_Get_Enum_Val – Obtaining Enumeration Constant Values
	Dm_Line_Info – Obtaining Program Counter Location

	Scanning Target Programs for Variables
	Dm_List – Scanning Target Programs for Variables
	Dm_Find – Scanning Target Programs for Variables--Enhanced

	Fortran Interface
	Organization
	Types and Objects
	Descriptors
	Enumerations

	Error Processing
	Functions
	Target Program Selection and Identification
	Dm_Open_Program – Obtaining Program Descriptors
	Dm_Close_Program – Closing Program Descriptors
	Dm_Set_Interest_Threshold – Setting the Interest Threshold
	Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Dm_Set_Class_Interpretation – Interpreting Class-Wide Types

	Obtaining Object Descriptors for Variables
	Dm_Get_Descriptor – Obtaining Object Descriptors

	Obtaining or Modifying Target Variables
	Dm_Peek – Peeking at Variables
	Dm_Poke – Poking at Variables
	Dm_Get_Value – Obtaining the Value of Variables
	Dm_Set_Value – Setting the Value of Variables

	Obtaining Information about Variables
	Dm_Get_Type_Name – Obtaining Type Names
	Dm_Get_Type_Name_Long – Obtaining Long Type Names
	Dm_Get_Enum_Image – Obtaining Enumeration Constants Images
	Dm_Get_Enum_Val – Obtaining Enumeration Constant Values

	MAXAda Examples
	Compilation and Linking Instructions
	Examples
	Example 1 — Peek
	Example 2 — Scanner

	C Examples
	C Compilation and Linking Instructions
	Examples
	Example 1 — Peek
	Example 2 — Scanner

	Fortran Examples
	Compilation and Linking Instructions
	Example 1 — Peek

	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W

