) NIGHTSTAR"

Data Monitoring Reference Manual

Version 5.3
(RedHawk™ Linux®)

(& cﬂnc“ "'e nt 0898493-030

REAL-TINME July 2018



Copyright 2010,2018 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for use with Concurrent
Real-Time products by Concurrent Real-Time personnel, customers, and end—users. It may not be reproduced in any form without the written per-
mission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Real-Time makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the
envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without written per-
mission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent Real-Time product names are
trademarks of Concurrent Real-Time while all other product names are trademarks or registered trademarks of their respective owners.

® is used pursuant to a sublicense from the Linux Mark Institute.

Linux
NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.
NVIDIA® CUDA™ is a trademark of NVIDIA Corporation.

NightProbe’s graphing capabilities are based in part on the work of the Qwt project (http://qwt.sf.net).



Contents

Chapter 1 Data Monitoring

ReqUIremMents . . . . ..ottt e e 1-1
Variable Eligibility. . .. ... ..o 1-3
Expanded Name Notation . .. ........o ittt 1-4

Chapter 2 MAXAda Interface

Organization . . ... ... ...ttt e e 2-1
Error Processing ... ...ttt 2-4
Package Types and Objects . . .. ... .ottt 2-5
DeSCIIPtOrS . . o et 2-6
Enumerations . .. ...t 2-7
Target Program Selection and Identification. .. ............................ 2-9
Open_Program — Obtaining Program Descriptors . ... ................... 2-9
Close_Program — Closing Program Descriptors. .. ...................... 2-11
Get_Current_Program — Referencing the Current Program. ... ............ 2-12
Set_Current Program — Changing the Current Program Descriptor . ... ... .. 2-12
Info_Program — Obtaining Information from a Program Descriptor......... 2-13
Set_Interest Threshold — Setting the Interest Threshold .. ................ 2-14
Set_Variant Handling — Setting Ada Record Variant Sensitivity. ........... 2-15
Set_Class_Interpretation — Interpreting Class-Wide Types .. .............. 2-16
Obtaining Internal Descriptors for Variables. .. ............................ 2-18
Get_Descriptor — Obtaining an Internal Descriptor. .. ................... 2-19
Invalidate Descriptor — Invalidating an Internal Descriptor ... ............ 2-21
Is_Valid_Descriptor — Checking Internal Descriptor Validity .. ............ 2-21
Is_Active_Component — Active Variant Checking ................... ... 2-22
Obtaining or Modifying Target Variables ... ............. .. ... ... ........ 2-23
Get_Value — Obtaining the Value of Variables. . ........................ 2-23
Set_Value — Setting the Value of Variables ............................ 2-26
Validate Value — Verifying an ASCII Representation .. .................. 2-29
10 Package — Generic Read and Write of Variables. .. ................... 2-30
Obtaining Information about Variables .................................. 2-32
Get_Info and Info_Only — Obtaining Information about Variables ......... 2-32
Get_Array_Info — Obtaining Array Bounds and Component Info........... 2-34
Get_Type Name — Obtaining Variable Type Names . ... ................. 2-35
Get Enum_Image — Obtaining Images of Enumeration Constants . .. ....... 2-37
Get_Enum_Val — Obtaining Values of Enumeration Constants. ............ 2-39
Get_Constraints — Obtaining Constraints of Scalar Variables .. ............ 2-41
Scanning Target Programs for Variables .. ............ ... .. ... ... ... .... 2-42
Generic Package Lists — Listing Scopes, Variables, and Components. . . .. ... 2-42

Chapter 3 C Interface

Organization . . ... ... ..ottt e
Types and ObJeCtS . . ..ot it



Data Monitoring Reference Manual

DeSCIIPtOrS . . . vttt 3-1
Enumerations ... ...t 3-2
Error Processing. . ... ...t 3-4
ROULINGS . . o .ot 3-6
Target Program Selection and Identification . .. ............................ 3-7
Dm_Open_Program — Obtaining Program Descriptors .. ................. 3-7
Dm_Open_Program_Aux — Obtaining Program Descriptor by Function . . . .. 3-9
Dm_Close Program — Closing Program Descriptors. ... ................. 3-11
Dm_Set Interest Threshold — Setting the Interest Threshold .. ............ 3-12
Dm_Set Variant Handling — Setting Ada Record Variant Sensitivity. . ... ... 3-13
Dm_Set Class_Interpretation — Interpreting Class-Wide Types .. .......... 3-14
Dm_Get_Pid — Obtaining Target Process ID ... ........................ 3-15
Dm_Set Pid — Changing Target Process ID. ... ........................ 3-16
Dm_Suppress_Index_ Checks — Suppressing Index Value Checks. .......... 3-17
Obtaining Object Descriptors for Variables. ... ........... ... ... ... ...... 3-17
Dm_Get_Descriptor — Obtaining an Object Descriptor . . ................. 3-18
Obtaining or Modifying Target Variables .............. ... ... ... .. ...... 3-19
Dm_Peek — Peeking at Variables ............... ... ... .. .. ... ... .. 3-20
Dm_Poke — Poking at Variables . .. ............. ... ... .. .. .. ... 3-21
Dm_Get_Value — Obtaining the Value of Variables . . .................... 3-22
Dm_Set Value — Setting the Value of Variables. ........................ 3-23
Obtaining Information about Variables .. ......... ... ... ... ... ... ...... 3-25
Dm_Get_Type Name — Obtaining Type Names ........................ 3-25
Dm_Get_Type Name Long — Obtaining Long Type Names .............. 3-26
Dm_Get_Enum_Image — Obtaining Enumeration Constant Images . ........ 3-28
Dm_Get_Enum_Val — Obtaining Enumeration Constant Values............ 3-29
Dm_Line Info — Obtaining Program Counter Location. . ................. 3-31
Scanning Target Programs for Variables ... ............................... 3-32
Dm_List — Scanning Target Programs for Variables. . .................... 3-33
Dm_Find — Scanning Target Programs for Variables--Enhanced. . .......... 3-35

Chapter 4 Fortran Interface

Organization. . . .. .. ...ttt e 4-1
Types and ObJeCtS . . ...ttt e 4-1
DESCIIPLOTS & . o vttt e e e e 4-1
Enumerations ... ..... ...t 4-3
Error Processing. . ... ..ot e 4-4
Functions . ... ... 4-6
Target Program Selection and Identification ... ......... .. .. .. ... .. ...... 4-8
Dm_Open_Program — Obtaining Program Descriptors .. ................. 4-8
Dm_Close Program — Closing Program Descriptors. ... ................. 4-9
Dm_Set Interest Threshold — Setting the Interest Threshold .. ............ 4-10
Dm_Set Variant Handling — Setting Ada Record Variant Sensitivity. . ... ... 4-11
Dm_Set Class_Interpretation — Interpreting Class-Wide Types .. .......... 4-12
Obtaining Object Descriptors for Variables. .. .............. ... ... .. ...... 4-14
Dm_Get_Descriptor — Obtaining Object Descriptors. . .. ................. 4-14
Obtaining or Modifying Target Variables .............. .. .. .. ... .. ... ..... 4-16
Dm_Peek — Peeking at Variables ......... ... .. ... .. .. ... ... 4-16
Dm_Poke —Poking at Variables . ......... ... .. ... .. i 4-17
Dm_Get_Value — Obtaining the Value of Variables . . .................... 4-18
Dm_Set Value — Setting the Value of Variables. .. ...................... 4-20
Obtaining Information about Variables .. ........... ... .. ... ... .. ... ..... 4-21



Contents

Dm_Get_Type Name — Obtaining Type Names .. ...................... 4-22
Dm_Get_Type Name Long — Obtaining Long Type Names .............. 4-23
Dm_Get Enum Image — Obtaining Enumeration Constants Images .. ... ... 4-24
Dm_Get Enum_Val — Obtaining Enumeration Constant Values. . .......... 4-26

Appendix A MAXAda Examples

Compilation and Linking Instructions. ... .......... ... .. .. . ... ... A-1
Examples . . ... e A-2
Example 1 — Peek. . ... ... . A-2
Example 2 — Scanner . ............. . A-3

Appendix B C Examples

C Compilation and Linking Instructions. . . ............ ... ..., B-1
EXamples . . ..o B-1
Example 1 —Peek. . ... ... .. B-1
Example 2 — Scanner .. ........ ...ttt B-2

Appendix C Fortran Examples

Compilation and Linking Instructions. . ............. ... .. .. ... .. ... ... C-1

Example 1 —Peek . ..... ... C-1
List of Figures

Figure 2-1. MAXAda Data Monitoring Call Sequence: Method 1 ............. 2-2

Figure 2-2. MAXAda Data Monitoring Call Sequence: Method2 ............. 2-3

Figure 3-1. C Data Monitoring Call Sequence. ................ ... ..ooo.. 3-6

Figure 4-1. Fortran Data Monitoring Call Sequence . ....................... 4-7



Data Monitoring Reference Manual

Vi



1
Data Monitoring

This chapter presents the concepts and requirements of Data Monitoring. Data Monitor-
ing allows you to specify executable programs that contain Ada, C, or Fortran variables to
be monitored, obtain and modify the values of selected variables by specifying their
names, and obtain such information about the variables as their virtual addresses, types,
and sizes.

Three interfaces are available:
Ada

The Real _Ti me_Dat a_Moni t or i ng package and compilation environment
(/ usr/ ada/ def aul t/ rt dm is bundled and shipped with the MAXAda product.

C,C++

The Data Monitoring library header files (/ usr/1i b/ 1i bdat anon. a, / usr/
i ncl ude/ dat anon. h and / usr/i ncl ude/ dat anon_aux. h) are provided
via the ccur - dat anon RPM.

Fortran

The Data Monitoring library and Fortran header file (/ usr/1i b/ | i bdat anon. a
and / usr/i ncl ude/ dat anon_. h) are provided via the ccur - dat anon RPM.

Subsequent chapters in this manual describe each of the above interfaces. The remaining
portion of this chapter deals with Data Monitoring requirements which are common to all
of the interfaces.

Requirements

Data Monitoring uses symbolic information generated by compilers; it requires the use of
the - g option (to generate debug information) when compiling source files containing
variables to be monitored.

Data Monitoring supports monitoring variables from programs built with the following
compilers:

RedHawk Linux:

® Concurrent MAXAda

® Concurrent Fortran

GNU C/C++

GNU Fortran (limited support)



Data Monitoring Reference Manual

1-2

* Intel C
* Intel Fortran

® Concurrent Fortran

Many of the subprograms within Data Monitoring require that the target program be exe-
cuting. For statically linked programs, however, the target program, in general, does not
need to be executing if the only subprograms invoked are the following:

* open_program dm open_pr ogram

e info_only

e get_type_name,dm get _type_nane

* get _enum.i nmage,dm get _enum. i nage

* get _enumval ,dm get _enum val

* get _array_info

* get_constraints

®* get _real tine_nmonitoring_error,dmget_error_string

* get real tine_nonitoring_error_code, dm get _er -
ror_code

* cl ose_programdm cl ose_program

® instantiations of | i st. i st andlist.global list,dmlist

If Data Monitoring is to be used only to obtain symbolic information about variables
within a target program, that target program does not need to be executing unless it uses
shared libraries. If the target program is not executing, the variables must have addresses
that are calculated without access to the memory image of an executing process—that is,
their addresses, size, and shape must be completely static (i.e. determined at compile or
link time).

Data Monitoring subprograms use the user nap( 3) library routine to create address
mappings between the monitoring process and the target process. Once pages from the tar-
get process are mapped into the monitoring process, the monitoring process assumes that
the target pages will not change their physical location. The physical location of the pages
can change in the following circumstances:

® The target process terminates.
* The target process un-maps the target address.

¢ The target address is in a private, writable page, and the target process calls
for k(2) and then writes to or locks the target address before the child
process does.

® The target process has a private, read-only mapping at the time of the
user map( 3) call, subsequently calls npr ot ect (2) to make the map-
ping writable, and then writes to the target address.

® The target process explicitly maps the target address to a new physical
page.



Data Monitoring

In such situations, the monitoring process is unaware of the change in mapping; the results
of subsequent Data Monitoring subprogram calls that access target process addresses are
undefined. For further explanation of what is meant by the terms private, writable, see the
information on MAP_PRIVATE and PROT_WRITE in the mmap( 2) system manual page.

NOTE

Data Monitoring requires that the monitoring process have read
access to the executable files associated with the processes being
monitored. Further, if values of variables are to be obtained or
modified, you must have read access or write access to the /
pr oc files (see pr oc( 4) ) associated with the processes being
monitored.

Variable Eligibility

Throughout this text, the term target program denotes an application that is being moni-
tored. The term target process denotes the executing program that is being monitored.
The term target program file denotes the disk image of the target program.

The term package denotes an Ada package, which is a grouping of variables, type declara-
tions, subprograms, and tasks. The term variable denotes the symbolic name of any of the
following:

* A non-composite variable (for example, a scalar)
® An element of an array variable

* A component of a record or structure variable

* A member of a common block

* A composite variable (for example, an array or record)

The term target variable refers to a variable in the address space of a process for which
you wish to perform Data Monitoring.

The terms variable and target variable are further constrained by the following:

® The variable must have a static base address.

¢ The variable must have a static shape or the target program must be execut-
ing.

® The variable must have a static size or the target program must be execut-
ing.

The following variables are eligible for monitoring:

® Variables in library-level Ada packages (including nested packages)

® C variables whose storage class is St ati c orextern

1-3



Data Monitoring Reference Manual

Expanded Name Notation

® Fortran variables within subroutines

® Fortran common block members

The following variables are not eligible for monitoring:

® Variables allocated on a program stack

Examples include Ada variables within subprograms, C variables with
storage class aut 0, and pr ocedur e, functi on, and subr outi ne

parameters.

¢ Elements of array variables whose offsets are variable (for example,

array[variable])

You must specify variables in symbolic expanded notation. The expanded notation used
by Data Monitoring is similar to that specified by the Ada programming language. It has
been extended for use with C and Fortran and is as follows:

expanded_name
expanded_name
expanded_name

scope

file_scope
language_scope
package_scope
subprogram_scope
common_scope
common_block

variable_name

selected_component
selector

indexed_component
indexed_component
index

prefix

In the rules just presented:

1= scope
;== scope "' variable_name
::= variable_name

= [file_scope '] language_scope

»= "“simple_file_name”"'

::= package_scope | subprogram_scope | common_scope
.= identifier {"." language_scope }

.= identifier

::= subprogram_scope '/' common_block /'

::= identifier | <null>

.= identifier | selected_component | indexed_component

;= prefix " selector
::= identifier | 'all

= prefix '("index {, index } ')’
= prefix T index {',' index } T
2= numeric_literal | Ada_enumeration_literal

::= identifier | selected_component | indexed_component

* <null> signifies absence of notation.

* Single quotation marks surround keywords and syntactic tokens.



Data Monitoring

Note that you must not supply the single quotation marks when you are
using expanded notation to specify variables.

Although the canonical form of a scope includes the file name enclosed in double quota-
tion marks (as noted above in file_scope), it is often unnecessary to specify the file name.
In many cases, the remaining portion of the scope, if any, unambiguously identifies the
item of interest. A C ext er n variable, for example, can usually be identified by an
expanded_name that solely includes the identifier denoting the variable. Similarly, a C
ext er n or Fortran subroutine can usually be identified by an expanded_name that
solely includes the identifier denoting the function or subroutine. And a library-level Ada
package can usually be identified by an expanded_name that solely includes the identi-
fier denoting the package. The file_scope portion of a scope is required only when one of
the following ist r ue:

® The item of interest is not globally visible (for example, C st ati ¢ func-
tions or variables, variables within functions or subroutines)

* Another item exists with the same identifier at the same visibility level

The “.all” notation has been borrowed from the Ada language and represents pointer indi-
rection. It must be used in place of the “*” operator in the C language; however, “.all” is
placed after the pointer, whereas in the C language, the “*” precedes the pointer.

The “.all” notation is not required between pointers and selected components or between
pointers and indexing; for example, the following are equivalent:



Data Monitoring Reference Manual

ptr_to_structure.all.conponent
ptr_to_structure. conponent

The following are also equivalent:

ptr_to_array.all[5]
ptr_to_array[5]

Consider the following Ada, Fortran, and C source program segments contained in source
files ada_source. a, fortran_source. f,and c_sour ce. c, respectively:

package pkg is
type scalar _type is range 0..10
type enumtype is (class, object, auto) ;
type record type is
record
a : enumtype
b: string (1..5) ;
end record ;
type array_type is
array (enumtype, scalar_type) of integer
type integer ptr_type is access integer
type record ptr_type is access record_type
Ada_scal ar : scal ar_type
Ada_conposite : array_type ;
package nested pkg is
var : record_ptr_type := new record_type
ptr : integer_ptr_type
end nested_pkg ;
end pkg ;

package pkg.child is
item: integer ;
end pkg.child ;

subroutine fortran_sub

comon /named_comon/ X, y, z

comon dunmy, item.in_blank _comon, another_dunmy
i nteger*4 subroutine_var (20)

end

subrouti ne sub
i nteger*4 int_var
end

int c_global var
int sub ;
static int c_static_var ;

void c_func (void)

{

static int ***ptr ;

1-6



Data Monitoring

static int run[10][10] ;
{

}

static int nested_routine_var ;

}

All of the following are eligible variables expressed in proper expanded notation:

pkg. ada_scal ar

pkg. ada_conposi te(cl ass, 4). b(3)
pkg. nest ed_pkg. var. a

pkg. nest ed_pkg. ptr. al
pkg.child.item

fortran_sub. subroutine_var(5)
fortran_sub/named_common/y
fortran_sub//item.in_bl ank_comon
“fortran_source.f” sub.int_var
c_gl obal _var
“c_source.c”.c_static_var
c_func.run[ 3][ 5]
c_func. nested routine_var

c func.ptr.all.all.al

Note that Ada child packages must be specified by their expanded_nane, not the direct
name which is just the child portion of the name; i.e. “parent.child”, not “child”.

Note the lack of fi | e_scopes in most of the expanded_names shown above.
Although specification of a fi | e_scope is always allowed, in the above examples, it is
required only for the file-level st at i ¢ variable c_st ati c_var in the C source file
c_sour ce. ¢ (because file-level st at i ¢ variables are not globally visible) and the vari-
ablei nt _var within the Fortran subroutine Sub (because another identifier sub appears
in the program and is globally visible).

NOTE

The GNU Fortran compiler does not describe common blocks in
its debug information. Attempts to locate variables using the
common block syntax shown above will fail on programs built
with the GNU Fortran compiler. Individual components of com-
mon blocks can be located by omitting the common block name
and enclosing ’/ characters.



Data Monitoring Reference Manual

NOTE

The GNU Fortran compiler generates mangled names in its debug
descriptions. Most variables and functions are named with one ro
two trailing underscores. Attempts to locate variables using the
simple name supplied in the source code will often fail.



Organization

MAXAda Interface

This chapter presents the MAXAda Real _Ti me_Dat a_Mbni t ori ng package. This
package provides you with a flexible interface to the key features of Data Monitoring. It
contains subprograms that allow you to specify executable programs that contain Ada, C,
or Fortran variables to be monitored, obtain lists of eligible variables that can be moni-
tored, obtain and modify the values of selected variables by specifying their names, and
obtain such information about the variables as their virtual addresses, types, and sizes.

The Real _Ti ne_Dat a_Mbni t ori ng package and compilation environment is bun-
dled and shipped with the MAXAda product. Access to the subprograms in the Real _ -
Ti me_Dat a_Moni t or i ng package is granted to user’s MAXAda compilation environ-
ments via the command:

/usr/ada/bin/a.path -a rtdm

The specification of the package can be found in "/ usr/ ada/ defaul t/rtdm
rtma".

In the sections that follow, all of the Data Monitoring subprograms contained in the
MAXAda Real _Ti me_Dat a_Moni t ori ng package are grouped and presented
according to their functionality. For each subprogram, the following information is pro-
vided:

¢ A description of the subprogram or subprograms
® The Ada declarations
® Detailed descriptions of each parameter

¢ Conditions upon which errors can occur

Procedures for compiling and linking user programs are presented in “Compilation and
Linking Instructions” on page A-1.

To perform Data Monitoring, you may use either of two methods for invoking the subpro-
grams from an application. Figure 2-1 illustrates the first method and shows the order in
which you might invoke the subprograms.



Data Monitoring Reference Manual

N

open_program

Obtain
Value Of
Variable?

Yes

A

Modify
Value Of
Variable?

Yes
get_value

set_value

close_program

AN

Figure 2-1. MAXAda Data Monitoring Call Sequence: Method 1

With the method illustrated by Figure 2-1, you specify the name of a target variable on
each call to get _val ue and set _val ue. On each invocation of get _val ue and
set _val ue, the following operations occur:

® The target program’s symbol table is searched for the specified variable.
® The type, size, shape, and address of the variable are obtained.

* A mapping is created between the monitoring process’s virtual address
space and the final address of the target variable.

® The value of the variable is obtained or modified.

For time-critical applications, it is recommended that the second method be used, which is
illustrated by Figure 2-2.



MAXAda Interface

N

open_program

A J

get_descriptor

Obtain
Value Of
Variable?

y Modify

Value Of
Variable?

Yes

get_value set_value

close_program

|

Figure 2-2. MAXAda Data Monitoring Call Sequence: Method 2

With the method illustrated by Figure 2-2, you first obtain the internal descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
internal descriptor on each call to get _val ue or set _val ue. Obtaining the internal
descriptors requires a considerable amount of time. For time-critical applications, it is rec-
ommended that you invoke get _descri pt or during application initialization and then
use the resultant descriptor(s) on subsequent get _val ue and set _val ue calls during
the time-critical sections of your monitoring application.

An additional consideration with this method is that at the time of the get _descri pt or
call, the size, shape, type, and address of the specified variable are frozen; subsequent uses
of the returned descriptor will utilize the frozen information, even if the actual variable



Data Monitoring Reference Manual

underwent subsequent size, shape, type, or address changes. See “Get Descriptor —
Obtaining an Internal Descriptor” on page 2-19 for more information.

Error Processing

When a call to one of the Real _Ti me_Dat a_Moni t ori ng subprograms fails, the fol-
lowing steps are performed:

¢ The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an er r no value, or other information that
is specific to the parameters supplied on the subprogram call.

® The exceptionreal _time_nonitoring_error israised.

Both the error code and the description of the error can be retrieved as shown by the Ada
declarations related to error processing. These declarations, which are provided in the file
/usr/ada/defaul t/rtdnirtm a, are as follows:



MAXAda Interface

real _time_nonitoring_error exception;

type error_codes is (

RTME_NOVEM -- Insufficient programnenory for operation
RTME_EXCEPT, -- Exception raised during operation

RTME_BADENUM -- |llegal or unexpected enuneration literal/val ue
RTME_SYNTAX, -- Illegal char. in expanded name or expression
RTME_NODWARF, -- Insufficient debug informati on (DWARF) avail abl e
RTME_NOTVAR, -- Specified nane is not a variable or nanmed constant

RTVE_DYNAM C,
RTME_NOTRECORD,
RTVE_NOTARRAY,
RTMVE_NOTFOUND,

oj ect has dynam ¢ size, shape, or address

oject is not a record, structure, or common bl ock
oject is not an array

Coul d not find package, nodule, var., or conponent

RTME_RANGE, Speci fied val ue/ subscript is out-of-range for type
RTME_BADDI M Insufficient or extra subscripts for array
RTME_NCELF, Unrecogni zed/ I | | egal ELF object file fornat
RTME_BADPI D, Invalid (or nissing) pid for file using shared |ibs
RTME_USRVAP, usermap(3C) failed to map process; bad pid?
RTME_SYMBOLS, Insufficient synbol table information for operation
RTME_BADDWARF, Unexpected/il | egal /m ssing debug (DWARF)i nfornation
RTME_AMBI G Specified identifier is anbi guous

RTME_SERVI CE, System | ibrary service call failed

RTME_NAME2BI G, Expanded nane too |ong

RTME_NOTOPEN, open_program cal | ski pped or was unsuccessful
RTME_NOCFI LE, Coul d not open specified programfile

RTME_BADPROG Bad program descriptor specified

RTME_BADDESC, Bad obj ect descriptor specified

RTME_UNSUP, Unsupported (or unsupported type for) operation

RTMVE_COVPCSI T,
RTMVE_BUF2SMALL,
RTME_NOBI TS,

Conposite type/object not allowed for operation
User-specified buffer too snall
Qperation requires byte-aligned types

RTME_BADREG -- Illegal regular expression
)i

function get_real _tinme_nonitoring_error return string;

function get_real _tinme_nonitoring_error_code return error_codes;

Invoke the get _real _time_nonitoring_error_code function to obtain an enu-
meration value that indicates the type of error that has occurred. Invoke the get _re-
al _time_nonitoring_error function to obtain a string that more fully describes the
error that has occurred.

A set of examples that demonstrates use of the Real _Ti ne_Dat a_Moni t ori ng
package is provided in “MAXAda Examples” on page A-1. Included in the examples are:
(1) the Ada source code for a simple target program, (2) the Ada source code for the mon-
itoring program, (3) the instructions for compiling and linking the target program, and (4)
sample output from the example programs.

Package Types and Objects

This section describes type and object declarations that are defined and used by the
Real _Ti ne_Dat a_Moni t ori ng package. Descriptors presents declarations for
descriptors and constants that represent objects that the Real _Ti ne_Dat a_NMbni t or -
i ng package manipulates. Enumerations presents declarations for types that help interpret
the type and image of variables.

2-5



Data Monitoring Reference Manual

Descriptors

2-6

The following declarations define descriptors and constants that represent objects that the
Real _Ti me_Dat a_Moni t or i ng package manipulates.

type programdescriptor is private;
current _program: constant programdescriptor;

type internal descriptor is private;
pr ogram descri pt or

a private type that is used to represent a distinct target program or process. Informa-
tion within this type is not directly visible to the user. A pr ogr am descri pt or
is created by open_pr ogr am destroyed by cl ose_pr ogr am and consulted by
several other subprograms (see pages 2-9 and 2-11 for explanations of open_pr o-
gr amand cl ose_pr ogr am respectively).

current _program

a pseudo constant that always represents the current program. Normally the current
program is the pr ogr am descr i pt or that has most recently been created via
open_pr ogr amand has not yet been destroyed via cl ose_pr ogram It is sup-
plied as a default parameter to several subprograms; thus, for applications that oper-
ate only on a single target program at once, it is not necessary to specify a pr o-
gram descri pt or on calls to most subprograms.

i nternal _descri ptor

a private type that is used to represent a distinct target variable associated with a dis-
tinct target program or process. It contains type, size, and address information about
the target variable. An internal descriptor is created by get _descri pt or and is
used by several subprograms. It holds sufficient information to make subsequent
modification or reference of the associated target variable very efficient.



MAXAda Interface

Enumerations

The following type and object declarations aid in interpreting the type and image of vari-
ables.

type enumeration_i mage_case is (lower_case, upper_case);
enuner ation_case : enuneration_image_case : = | ower_case;

type enumeration_i mage_case is (lower_case, upper_case);
enuner ation_case : enuneration_image_case : = | ower_case;

type codes is (
code_enuneration
code fl oat,
code fi xed,
code_i nt eger,
code_record,
code_array,
code_char,
code_poi nter,
code_conpl ex,
code_conmon,
code_unknown) ;

type atomic_types is (
di screte_lbyte_ signed,
di screte_2byte_signed,
di screte_4byte_signed,
di screte_1byte unsi gned,
di screte_2byt e _unsi gned,
di screte_4byt e _unsi gned,
fi xed_1lbyte,
fi xed_2byte,
fi xed_4byte,
fl oat _4byte,
fl oat _8byte,
aggregat e_record,
aggregate_array,
conpl ex_8_byte,
conpl ex_16_byte);

enurmer ati on_i nage_case

a type that defines the choices available for the ASCII representation of enumerated
types

enuner ati on_case

a variable that defines the current choice for the ASCII representation of enumerated
types. It controls the case of enumeration images returned by the get _val ue sub-
program. It does not affect the translation of user-supplied enumeration images; all
such translations are done in a case-insensitive manner (e.g. an enumeration con-
stant supplied by the user as an array index value in an expanded name).



Data Monitoring Reference Manual

codes

a type that presents the categories of language-defined types for a variable. A vari-
able’s code and atomic type aid in interpreting the bits associated with the variable.
Codes are as follows:

code_enuneration

Ada or C enumerated types
code fl oat

Floating point types
code_fi xed

Ada fixed point types
code_i nt eger

Integer types
code_record

Ada record or C structure types
code_array

Array types.
code_char

Ada character, C char , and Fortran char act er
code_pointer

Ada access types, C pointer types
code_conpl ex

Fortran complex types
code_conmon

Fortran common blocks
code_unknown

Reserved for unrecognized types
atom c_types

a type that presents the list of low-level machine types associated with a vari-
able. A variable’s atomic type and code aid in interpreting the bits associated
with the variable—for example, a typical 32-bit signed integer has an atomic
type of di screte_4byte_si gned.



MAXAda Interface
Target Program Selection and Identification

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Open_Program — Obtaining Program Descriptors

This subprogram is invoked to specify the target program for Data Monitoring. You must
invoke open_pr ogr amprior to invoking any other subprogram in the Real _Ti ne_-
Dat a_Mbni t ori ng package. Subsequent calls to get _descri pt or to obtain an
internal descriptor for a target variable require an open program descriptor. Internal
descriptors that you have obtained following a previous open_pr ogr amcall continue to
be valid; you may use them to obtain or modify the values of the target variables with
which they are associated.

The open_pr ogr amcall requires that portions of the target program file be read from
disk into memory and that an internal symbol table be built. These procedures can use sig-
nificant amounts of memory; the amounts used depend upon the size of the target program
and the number of variables that can be monitored. You are advised not to invoke
open_pr ogr amfrom time-critical sections of your application.

Ada Declarations

procedure open_program (

progr am narme in string;

pi d ininteger := 0;

i n_same_addr ess_space i n bool ean : = fal se;

i nterest_threshold ininteger := 0);
functi on open_program (

pr ogr am narme in string;

pi d ininteger := 0;

i n_same_addr ess_space i n bool ean : = fal se;

i nterest_threshol d ininteger := 0)

return program descriptor;

Parameters
program_name

refers to a string that contains a standard UNIX path name identifying the target pro-
gram file in which the variables are found. A full or relative path name of up to 1024
characters can be specified.

pid

refers to an integer value representing the process identification number of the target
executable program specified by the program _name parameter. If the value of pid is
0, then open_pr ogr amwill attempt to locate a process that is executing on the



Data Monitoring Reference Manual

2-10

system with the specified path name. If successful, the corresponding process identi-
fication number of that process is used, otherwise, it is as if an invalid value for pid
has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Real _Ti ne_Dat a_Moni t ori ng subprograms is confined to one
or more of the following:

e info_only

* get_type_name

e get _array_info

* get _constraints

e |list.list

* |list.global Iist

® get _real tine_nonitoring_error

* get real tine_nonitoring_eror_code
* open_program

* cl ose_program

Use of modes involving interpretation of class-wide variables (see set _ -
cl ass_i nterpretation page 2-16) and active record variants (see set _var -
i ant _handl i ng page 2-15) are also prohibited if the target program is not exe-
cuting.

in_same address space

refers to a boolean flag that indicates whether or not the Real _Ti ne_Dat a_Mon-
i t ori ng package is being executed in the same application as that containing the
variables whose values are to be obtained or modified. The default value for this flag
is f al se. If the monitoring process and the target process are the same (that is, the
monitoring is done within the target process), set the flag to t r ue. In this case, the
overhead of address space mapping is avoided.

interest_threshold

refers to an integer value which specifies the interest threshold for the specified tar-
get program. The default value for this setting is 0. All eligible variables have an
interest value which is set by their compiler. By default, all eligible variables have
an interest value of zero. The Ada compiler allows the user to set the interest value
of selected variables via the implementation-defined pragma INTERESTING. (See
Annex M of the MAXAda Reference Manual (0890516) for more information on
pragma INTERESTING). The interest threshold controls whether an otherwise eli-
gible variable is visible to the subprograms in the Real _Ti me_Dat a_Moni t or -
i ng package. If the interest value of a variable is below the interest threshold it is
as if the variable did not exist. The interest threshold may also be set via the
set _i nterest_threshol d subprogram (see page 2-14).



MAXAda Interface

Return Value

The function form of the open_pr ogr amsubprogram returns the newly-created program
descriptor. For either form, the cur r ent _pr ogr ambecomes the newly-created program
descriptor.

Error Conditions

When an error is detected, the exception real _tinme_nonitoring_error israised.
Possible error conditions include the following:

¢ The file associated with program_name could not be located or opened for
read.

® The specified pid was a value other than -1 and did not identify an execut-
ing process.

* The specified pid was -1 but the target program associated with pro-
gram_namerequires shared libraries.

® The specified pid was 0 but no target process associated with pro-
gram_name could be located.

® The file associated with program_nameis not a valid ELF executable file.

* The file associated with program_name contains no symbolic information.

Close_Program — Closing Program Descriptors

This subprogram is invoked to free internal storage that is being used to hold symbolic
information associated with the specified program descriptor. After making this call, you
may not call any other subprograms with the specified program descriptor. Internal
descriptors for target variables that have already been obtained via calls to get _de-
scri pt or, however, are still valid—for example, get _val ue and set _val ue opera-
tions can still occur using those descriptors.

Ada Declarations

procedure cl ose_program
procedure close_program (program: program descriptor);

Parameters
(null)

The subprogram form without an argument refers to the cur r ent _pr ogr am
program

refers to a program descriptor that has been returned from a previous call to
open_pr ogr amand has not yet been closed



Data Monitoring Reference Manual

Error Conditions

When an error is detected, the exceptionreal _tine_nonitoring_error israised.
Possible error conditions include the following:

* No parameter is specified, and there is no valid cur r ent _pr ogr am

* Programis not a valid, open program descriptor

Get_Current_Program — Referencing the Current Program

This subprogram is invoked to obtain the program descriptor that is represented by the
current _program The current _progr amrepresents the program descriptor asso-
ciated with the last valid open_pr ogramor set _current _progr amcall if the
descriptor has not been closed since the call.

This subprogram is rarely used since all subprograms which require a program descriptor
have a default value associated with that formal parameter which specifies the cur -
rent _program It is only provided because the constant cur r ent _pr ogr amis really
just a marker which abstractly represents the "current program"; the actual value of that
constant is not a valid pr ogr am descri pt or.

Ada Declaration

function get_current_programreturn program descriptor;

Return Values

The program descriptor associated with the last valid open_pr ogr amor set _cur -
rent _pr ogr amcall is returned if the descriptor has not been closed since the call.

Error Conditions

When an error is detected, the exception r eal _ti me_noni tori ng_error is raised.
Possible error conditions include the following:

¢ There is no valid cur r ent _pr ogr am

Set_Current_Program — Changing the Current Program Descriptor

2-12

This subprogram is invoked to associate a previously obtained program descriptor with
current_program

Ada Declaration

procedure set_current_program
(program: in programdescriptor);



MAXAda Interface

Parameters
program

refers to a program descriptor that has been returned from a previous call to
open_pr ogr amand has not yet been closed

Error Conditions

When an error is detected, the exception real _ti nme_noni tori ng_error is raised.
Possible error conditions include the following:

* Programis not a valid, open program descriptor

Info_Program — Obtaining Information from a Program Descriptor
This subprogram returns basic information about a specified program descriptor including
the program name and process identification number.

This subprogram is useful for identifying the target program associated with a specific tar-
get variable when used in conjunction with the act i on call-back routine in | i St opera-
tions as described in “Scanning Target Programs for Variables” on page 2-42.

Ada Declarations

procedure info_program (

program :in programdescriptor := current_program
pr ogr am name : out string;

programnanme_| ast : out natural;

program pid : out integer);

function info_program (
program: in programdescriptor := current_program
return string;

Parameters
program

refers to a program descriptor that has been returned on a previous call to
open_pr ogr amand has not yet been closed (see page 2-9 for an explanation of
this subprogram)

program_name

upon return, is set to the path name that was specified on the open_pr ogr amcall
corresponding to program

program_name last

upon return, is set to the last element of program_name modified by this call

2-13



Data Monitoring Reference Manual

program pid
upon return, is set to the process identification number of the process corresponding
to program
Return Values
The function form returns the path name as previously specified on the call to
open_pr ogr amcorresponding to program.
Error Conditions

When an error is detected, the exception real _ti nme_noni tori ng_error is raised.
Possible error conditions include the following:

* Programis not a valid, open program descriptor

® The size of program name is insufficient to hold the path name corre-
sponding to program.

Set_Interest_Threshold — Setting the Interest Threshold

2-14

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0, unless explicitly set via the interest_threshold
parameter to the open_pr ogr amsubprogram. All eligible variables have an interest
value which is set by their compiler. By default, all eligible variables have an interest
value of zero. The Ada compiler allows users to change the interest value of selected vari-
ables via the implementation-defined pragma INTERESTING. (See Annex M of the
MAXAda Reference Manual (0890516) for more information on pragma INTERESTING).
The interest threshold controls whether an otherwise eligible variable is visible to the sub-
programs in the Real _Ti me_Dat a_Moni t or i ng package. If the interest value of a
variable is below the interest threshold, it is as if the variable did not exist. Once set, the
interest threshold remains associated with the specified target program until reset by a sub-
sequent set _i nterest _threshol d call.

Note that subsequent changes to the interest threshold have no effect on internal descrip-
tors already obtained by previous get _descri pt or calls.

Ada Declaration

procedure set_interest_threshold (

interest_threshold : in integer;
program : in programdescriptor := current_program;
Parameters

interest_threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to program



MAXAda Interface

program

refers to a program descriptor that has been returned on a previous call to
open_pr ogr amand has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception real _ti nme_noni toring_error is raised.
Possible error conditions include the following:

* Programis not a valid, open program descriptor

Set_Variant_Handling — Setting Ada Record Variant Sensitivity

The set _vari ant _handl i ng routine defines the mode in which Ada record variants
are handled. By default, the active variants only mode is set to f al se; thus look-up and
|'i st subprograms within the Real _Ti me_Dat a_Moni t ori ng package are not sensi-
tive to a record variant’s governing discriminant, inasmuch as all variants are considered
active at all times. Setting the active variants only mode to t r ue will cause look-up and
| i st subprograms within this package to determine the value of an enclosing record vari-
ant’s governing discriminant when considering components within the record (see section
3.8.1(2-21) of the Ada 95 Reference Manual for more information on Ada record vari-
ants). In general, this sensitivity requires that the target program be executing, because the
value of discriminants must be obtained from the target process. If active variants_only
mode is t r ue and a component of a record is contained in an inactive variant, it is as if
the component did not exist. The active variants only mode has no effect on C or Fortran
variables.

If this mode is set to t r ue and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active variants only mode is associated with
the specified target program and remains in effect until a subsequent call to set _vari -
ant _handl i ng.

Note that subsequent changes to the active variants only mode have no effect on internal
descriptors which have already been obtained via a previous get _descri pt or call.

Ada Declaration

procedure set_variant_handling (

active_variants_only : in bool ean;
program : in programdescriptor := current_program
Parameters

active variants only

refers to a boolean value which controls the handling of variants for Ada records for
the target program corresponding to program. Setting the value to t r ue will cause

2-15



Data Monitoring Reference Manual

sensitivity to record variant’s governing discriminants as described above. Setting
the value to f al se causes all variants to be considered active.

program

refers to a program descriptor that has been returned on a previous call to
open_pr ogr amand has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception r eal _ti nme_noni tori ng_error is raised.
Possible error conditions include the following:

* Programis not a valid, open program descriptor

Set_Class_Interpretation — Interpreting Class-Wide Types

The set _cl ass_i nt er pret ati on routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is f al se. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to t r ue, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to t r ue requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following example:

package p is
type t is
record
X : integer;
end record;
type e is newt wth
record
y . integer;
end record;
object t : t'class :=
object e : t’'class :
end p;

|
—
—
X

=> 4);
(x => 1,y = 2);

1
D

In the table below, the first column represents the string passed to look-up subprograms
such as get _descri ptor and get _val ue. The second and third columns represent

2-16



MAXAda Interface

whether such calls would succeed, based on the specified setting of the interpret_classes
mode:

String Descriptor interpret_classes mode
false true
“p.object_t.x" succeed succeed
“p.object_t.y” fail fail
“p. obj ect_e.x” succeed succeed
“p.object_e.y” fail succeed

Of course the example in the second row, “ p. obj ect _t . y”, isn’t very interesting since
the value of that class-wide variable really is of type “t” and therefore doesn’t have a
component named “y” . However, the example in the fourth row, “ p. obj ect _e. y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “ €”, a type extended from the specific type of the root of the class-wide
type, it does contain a component called “ y” .

Ada Declaration

procedure set_class_interpretation (

interpret_classes : in bool ean;
program : in programdescriptor := current_progran;
Parameters

interpret_classes

refers to a boolean value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to program. Setting the
value to t r ue will cause the specific type of the value of the variable to be based on
the actual value of the variable. Setting the value to f al se will cause the specific
type of the value of the variable to be obtained directly from the specific type of the
root of the class-wide type.

program

refers to a program descriptor that has been returned on a previous call to
open_pr ogr amand has not yet been closed (see page 2-9 for an explanation of
this subprogram)

Error Conditions

When an error is detected, the exception real _ti nme_nonitoring_error is raised.
Possible error conditions include the following:

* Programis not a valid, open program descriptor

2-17



Data Monitoring Reference Manual

Obtaining Internal Descriptors for Variables

2-18

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, get _val ue and set _val ue operations can occur (see pages 2-23 and
2-26, respectively, for explanations of these subprograms).

The Real _Ti me_Dat a_Moni t ori ng package provides several forms of the
get _val ue and set _val ue operations. For ease of use, all of these forms allow you to
specify the target variable in one of the following ways:

* By specifying a string describing the expanded name of the target
variable

or

* By specifying an internal descriptor that has been obtained from a
previous call to get _descri pt or on which you have supplied a
string describing the expanded name of the target variable (see page
2-19 for an explanation of this subprogram)

In the first case, the routines first obtain an internal descriptor via a hidden call to get _ -
descri pt or. After the get _val ue or set _val ue operation, that internal descriptor
is discarded (no storage space is lost). In the second case, the operation is completed more
quickly because you have already obtained the internal descriptor.

Another advantage of explicitly obtaining an internal descriptor is that the lifetime of the
descriptor exceeds that of its corresponding program descriptor; that is, the program
descriptor associated with the program containing the target variable may be closed
(thereby freeing significant memory associated with target program symbol tables), but
the internal descriptors remain valid.

Note that when you obtain an internal descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (pt r. al | ),
the value of the pt r at the time of the call to get _descri pt or is used to determine the
final address of the pt r. al | . Subsequent calls to get _val ue or set _val ue with the
resultant internal descriptor will refer to the address calculated during the get _de-
scri ptor call, regardless of the current value of the pt r . If you wish to re-evaluate the
address of the pt r. al | considering the current value of pt r, then call get _descri p-
t or again, or call get _val ue and set _val ue with an explicit variable name (that is,
“ptr.all”)rather than an internal descriptor. This applies not only to variables involv-
ing pointer indirection, but records whose size and shape can change as the target process
executes, as well as variables of class-wide types.



MAXAda Interface

Get_Descriptor — Obtaining an Internal Descriptor

This subprogram is invoked to obtain an internal descriptor for a specified variable. The
amount of time required to obtain the descriptor may be significant for applications with
stringent performance constraints.

Ada Declarations

function get _descriptor (

string_descriptor : in string;
no_addr translate : in boolean := fal se;
program : programdescriptor := current_program

return internal _descriptor;

procedure get_descriptor (

string_descriptor : in string;

descri ptor : out internal descriptor;

no_addr translate : in boolean := fal se;

program : programdescriptor := current_program

function get _descriptor (

address_descri ptor in system address;

code i n codes;

atom c_type in atom c_types;

bit_size in natural;

bit of fset in natural;

no_addr _transl ate in boolean := fal se;

program pr ogram descri pt or: =current _programn

return internal _descriptor;

procedure get_descriptor (

address_descriptor : in system address;

code : in codes;

atom c_type : in atom c_types;

bit_size : in natural;

bit_offset : in natural;

descri pt or : out internal _descriptor;

no_addr_translate : in boolean := false;

program . program descriptor:=current_progran;
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable for which
you wish to obtain the internal descriptor

descriptor

refers to the internal descriptor returned by the subprogram. The function forms of
this subprogram supply descriptor as the return value.

2-19



Data Monitoring Reference Manual

2-20

no_addr_trandate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is f al se. When the flag is set to f al se,
the monitoring process’s virtual address space is to be mapped to the target variable.
Set the flag to t r ue if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process (for example, a variable in
a shared memory segment attached at a common address). This flag is ignored if the
is same_address space parameter to the open_pr ogr amcall corresponding to
programwas set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied.

address_descriptor

refers to an address in the target process that is to be interpreted as a target variable
with the attributes specified by the code, atomic_type, bit_size, and bit_offset parame-
ters. This parameter allows you to obtain and modify anonymous memory locations
in the target process.

code

identifies the memory location(s) associated with address descriptor. Examples of
the values that you may specify are code_f | oat, code_i nt eger, and
code_r ecor d. For additional information, refer to “ Enumerations’ (page 2-7).

atomic_type

identifies the atomic type of memory location(s) associated with address_descriptor.
Examples of the values you may specify are di scr et e_1byt e_si gned and
di screte_4byt e_ unsi gned. For additional information, refer to “ Enumera-
tions’ (page 2-7).

bit_size

identifies the bits composing the anonymous target variable starting at address de-
scriptor + bit_offset.

bit_offset

identifies the first bit of the anonymous target variable by specifying the bit offset
from the byte specified by address descriptor. Bit offsets are numbered from zero to
seven, where zero is the most significant bit within a byte.

Error Conditions

When an error is detected, the exception real _tine_nonitoring_error israised.
Possible error conditions include the following:

¢ Programdoes not refer to a valid, open program descriptor.

® Sring_descriptor does not refer to an eligible variable.



MAXAda Interface

® Descriptor is not a valid internal descriptor.

¢ The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (- ) option).

® Sring descriptor contains invalid expanded name syntax.

® The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

® The target variable could not be mapped into the monitoring process’s
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real _time_mnonitoring_error.

Invalidate_Descriptor — Invalidating an Internal Descriptor

This subprogram is provided as a convenience. It is invoked to invalidate a specified
internal descriptor. After an internal descriptor has been invalidated, subsequent use of it
will cause an error.

Ada Declaration

procedure invalidate descriptor
(descriptor : in out internal _descriptor);

Parameters
descriptor

Refers to an internal descriptor that you wish to invalidate

Error Conditions

This subprogram does not have any error conditions.

Is_Valid_Descriptor — Checking Internal Descriptor Validity

This subprogram is provided as a convenience. It is invoked to determine whether or not a
specified internal descriptor is valid. An internal descriptor is valid if it has been obtained
via a call to get _descri pt or (see page 2-19 for an explanation of this subprogram)
and has not been invalidated via a subsequent call to i nval i dat e_descri ptor.

Ada Declaration

function is_valid_descriptor
(descriptor : in internal _descriptor) return bool ean;

2-21



Data Monitoring Reference Manual

Parameters
descriptor

refers to an internal descriptor whose validity you wish to check

Return Values

The value t r ue is returned if descriptor corresponds to a valid internal descriptor; other-
wise, the value f al se is returned.

Error Conditions

This subprogram does not have any error conditions.

Is_Active_Component — Active Variant Checking

2-22

This function is provided as a convenience; it is invoked to determine if a specific compo-
nent is nominally contained within a specific record variable and, if contained within a
variant, that the variant is active. The preferred method is to initially call the set _vari -
ant _handl i ng subprogram (page 2-15) to set the active_variants only mode to t r ue
such that look-up and | i St operations on records will disregard components in inactive
variants outright.

Ada Declaration

function is_active_conponent (
string_descriptor : string;
program . programdescriptor := current_program
return bool ean;

Parameters
string_descriptor

refers to a string that contains the expanded name of a component of a target vari-
able (for example, package p.record item.component)

program

refers to a valid program descriptor that has been returned from a previous call to
open_progr am(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied.

Return Value

This function returns t r ue if the specified component exists in the record; which implies
that it is not contained in an inactive variant; otherwise, this function return f al se. The
current setting of the active variants only mode (see page 2-15) has no actual effect on
this function. Regardless of the setting of that mode, the value of the governing discrimi-
nants of any variants within the record will be obtained in order to determine if the speci-



MAXAda Interface

fied component is active. If the value of any governing discriminant of the enclosing
record is in memory, use of this function requires the target program to be executing.

Error Conditions

When an error is detected, the exceptionreal _tine_nonitoring_error israised.
Possible error conditions include the following:

* Programdoes not refer to a valid, open program descriptor.

* Program was omitted, and there is no valid, open current program descrip-
tor.

® Sring descriptor contains invalid expanded name syntax.

* Program does not specify an executing process and string_descriptor refers
to a variable with a dynamic size, shape, address or requires a value from
the target process due to interpret_classes mode (see page 2-16).

* Governing discriminants exist for the enclosing record and their values are
in memory and program does not specify an executing process.

Obtaining or Modifying Target Variables

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Get_Descriptor — Obtaining an Internal Descriptor” on
page 2-19, most of these subprograms accept the specification of the target variable in one
of the following ways:

* By specifying a string describing the expanded name of the target variable
or

* By specifying an internal descriptor that has been obtained from a previous
call to get _descri pt or on which you have supplied a string describing
the expanded name of the target variable (see page 2-19 for an explanation
of this subprogram)

Get _val ue allows you to obtain the value of a variable. Set _val ue (page 2-26) allows
you modify the value of a variable. Val i dat e_val ue (page 2-29) allows you to verify
that a user-supplied ASCII representation of the value of a variable is appropriate for that
variable. The i 0 package (page 2-30) allows you to read and modify the values of com-
plex variables.

Get_Value — Obtaining the Value of Variables

This subprogram is invoked to obtain the value of a target variable.

The default ASCII representation used by get _val ue depends upon the type of the vari-
able:

2-23



Data Monitoring Reference Manual

signed integer
the Cprintf “%” conversion format
unsigned integer, pointers
the C pri ntf “16#% 08. 8x#" conversion format
floating point
the Cprintf “9%g" conversion format
fixed point (Ada)
the Cprintf “%g” conversion format
enumeration (Ada)
the enumeration image in lower case unless the enuner ati on_case_i mage

variable in the Real Time Data Monitoring package is set to upper _case.

Ada Declaration

function get _val ue (
string_descriptor : string;
no_addr _translate : bool ean : = fal se;
program . program descri ptor
return string;

current _program

procedure get val ue (

string_descriptor : in string;

obj ect _val ue : out string;

obj ect | ast . out natural;

no_addr _translate : in boolean := fal se;

program . programdescriptor := current_programn

procedure get val ue (

string_descriptor : in string;

address_to _store : in system address;

bytes at _address : in natural;

no_addr _translate : in boolean := fal se;

program . programdescriptor := current_programn

function get _val ue (
obj ect _descriptor : in internal _descriptor)
return string;

procedure get val ue (

obj ect _descriptor : in internal _descriptor;
obj ect _val ue : out string;
obj ect | ast : out natural);

procedure get val ue (

obj ect _descriptor : in internal _descriptor;
address_to _store : in system address;
bytes at _address : in natural);

2-24



MAXAda Interface

Parameters
string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) for which you wish to obtain the value. You may specify
this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain the value. You can obtain this descriptor by making a call to get _de-
scri ptor (see page 2-19 for an explanation of this subprogram). You may specify
this parameter or the string_descriptor parameter.

no_addr_trandate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is f al se. When the flag is set to f al se,
the monitoring process’s address space is to be mapped to the target variable. Set
the flag to t r ue only if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process. This parameter can be
specified only for subprograms that require a string_descriptor. This flag is ignored
if the is same_address space parameter to the open_pr ogr amcall corresponding
to programwas set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_pr ogr am(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

address to_store

refers to an address within the monitoring process’s address space at which the sub-
program is to place the raw value of the target variable. This value will be right jus-
tified in the memory range address to store.. address to store+ bytes at address-
1.

bytes at address

refers to the number of bytes of space that you have reserved to hold the raw value
of the target variable. The raw value of the target variable will be right justified in
the memory range address to store.. address to_store+ bytes at_address-1.

object value

upon return, contains the ASCII representation of the value of the specified target
variable

object_last

upon return, identifies the last string element that has been set in the object value
parameter

2-25



Data Monitoring Reference Manual

Return Values

The function forms of this subprogram return a string that contains the ASCII representa-
tion of the value of the specified target variable.

Error Conditions

When an error is detected, the exception real _ti nme_noni toring_error is raised.
Possible error conditions include the following:

® A dgring_descriptor was specified and program does not refer to a valid,
open program descriptor.

* A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

® Sring_descriptor does not refer to an eligible variable.

® A gtring_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (- g) option).

® Sring_descriptor contains invalid expanded name syntax.

* The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real _time_nonitoring_error.

* Object_descriptor is not a valid internal descriptor.

* The type of the target variable represented by string_descriptor or object_-
descriptor is a composite type (array, record, or structure). The generic i 0
package may be used for obtaining the value of such variables.

* The type of the target variable represented by string_descriptor or object_-
descriptor is unknown (for example, code_unknown).

Set_Value - Setting the Value of Variables

2-26

This subprogram is invoked to modify the value of a target variable.

The default ASCII representation expected by set _val ue depends upon the type of the
variable:

signed integer

the C sscanf “ %@” conversion format



MAXAda Interface

unsigned integers, pointers

the C sscanf “9%@” conversion format
floating point

the C sscanf “%g” conversion format
fixed point (Ada)

the C sscanf “ %g” conversion format
enumeration (Ada)

the enumeration image in upper or lower case

Ada Declarations

procedure set_val ue (

string_descriptor : in string;

val ue_in_ascii : in string;

no_addr translate : in boolean := fal se;

program : programdescriptor := current_program

procedure set_val ue (

string_descriptor : in string;

address_of _value : in system address;

bytes_at _address : in positive;

no_addr translate : in boolean := fal se;

program : programdescriptor := current_program

procedure set_val ue (
obj ect _descriptor : in internal _descriptor;
val ue_i n_asci i :in string);

procedure set_val ue (

obj ect _descriptor : in internal _descriptor;
address_of _value : in system address;
bytes _at _address : in positive);

Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) whose value you wish to modify. You may specify this
parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable whose value you
wish to modify. You can obtain this descriptor by making a call to get _descri p-
tor (see page 2-19 for an explanation of this subprogram). You may specify this
parameter or the string_descriptor parameter.

2-27



Data Monitoring Reference Manual

2-28

no_addr_trandate

refers to a boolean flag that indicates whether or not address translation (mapping) is
to occur. The default value for this flag is f al se. When the flag is set to f al se,
the monitoring process’s address space is to be mapped to the target variable. Set
the flag to t r ue only if the target variable is already accessible at the same virtual
address in the monitoring process as in the target process. This parameter can be
specified only for subprograms that require a string_descriptor. This flag is ignored
if the is_same_address_space parameter to the open_pr ogr amcall corresponding
to programwas set true; thus no address translation occurs.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

value in_ascii

refers to a string that contains the ASCII representation of the new value of the tar-
get variable as specified by string_descriptor or object_descriptor. The value must be
expressed in a form that is consistent with the type of the target variable (for exam-
ple, an integer literal for an integer type, a floating point literal for a floating point
type, and so on). The value must be within the range of the type of the target vari-
able. You may specify this parameter or the address of_value parameter.

address of value

refers to a variable that specifies the address of the first byte of the set of storage
locations that holds the raw value that will be used to modify the target variable. The
address specified must be in the monitoring process's virtual address space. The
value must be right justified in the memory range address_of_value ..
address of value + bytes at address-1. You may specify this parameter or the val-
ue_in_ascii parameter.

bytes at address

refers to a variable that contains an integer value indicating the number of bytes that
compose the raw value starting at the address specified by address of value. This
parameter may be specified only by subprograms that require the address of value
parameter.

Error Conditions

When an error is detected, the exceptionreal _tine_nonitoring_error israised.
Possible error conditions include the following:

® A dgring_descriptor was specified and program does not refer to a valid,
open program descriptor.

* A diring_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

® Sring_descriptor does not refer to an eligible variable.



MAXAda Interface

® A gtring_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (- g) option).

® Sring_descriptor contains invalid expanded name syntax.

* The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call to get _real _time_nonitoring_error.

* Object_descriptor is not a valid internal descriptor.

* The type of the target variable represented by string_descriptor or object_-
descriptor is a composite type (array, record, or structure). The generic i 0
package may be used for modifying such variables.

* The type of the target variable represented by string_descriptor or object -
descriptor is unknown (for example, code_unknown).

* The value as specified by value_in_ascii has an inappropriate form for the
type of the target variable.

* The value as specified by value in_ascii is out of range for the type of the
target variable.

Validate_Value — Verifying an ASCIl Representation
This subprogram is invoked to verify that a user-supplied ASCII representation of the
value of a variable is of an appropriate form for the variable's type.

The default ASCII representation used by val i dat e_val ue depends upon the type of
the variable:

signed integer

the C sscanf “%” conversion format
unsigned integer, pointers

the C sscanf “16#%a” conversion format
floating point

the C sscanf “%g” conversion format
fixed point (Ada)

the C sscanf “%g” conversion format

2-29



Data Monitoring Reference Manual

enumeration (Ada)
the enumeration image in upper or lower case

Use of this subprogram is optional. You may wish to use it to ensure that a subsequent call
to set _val ue in a time-critical section does not incur the overhead of exception han-
dling for errors resulting from specifying an inappropriate ASCII representation (see page
2-26 for an explanation of the set _val ue subprogram).

Ada Declaration

procedure validate_ val ue (

obj ect _descriptor : in internal_descriptor;

val ue_in_ascii . in string;

is_valid . out bool ean);
Parameters

object_descriptor

refers to an internal descriptor that is associated with the target variable whose pro-
posed value (that is, value_in_ascii) you wish to validate

value in_ascii

refers to a string that contains the ASCII representation of the value that you wish to
validate

is valid

upon return, contains a boolean value that indicates whether or not value_in_ascii is
of the correct form and range for the variable's type. The value of this parameter is
set to f al se if the value of the variable is out of range or is of the wrong form; oth-
erwise, it is set to t r ue.

Error Conditions

An invalid value specified by value in_ascii is not an error condition; however, informa-
tion obtained on a subsequent call to get _real tinme_nonitoring_error will
indicate why the value is invalid. When an error condition is detected, the exception
real tine_nonitoring_error israised. Possible error conditions include the fol-
lowing:

® Object_descriptor is not a valid internal descriptor.

10 Package — Generic Read and Write of Variables

The i 0 package is nested within the Real _Ti ne_Dat a_Moni t ori ng package. It
contains subprograms that read and write arbitrarily complex target variables based on
internal descriptors.

2-30



MAXAda Interface

This package allows you to read or write composite variables on a single invocation of a
subprogram. Note that the get _val ue and set _val ue subprograms cannot operate on
target variables with composite types (see pages 2-23 and page 2-26, respectively, for
explanations of these subprograms).

Ada Declaration

generic
type variable type is private
package io is

procedure read (

addr ess : ininternal _descriptor;
val ue : out variable_ type;
byte offset : in natural := 0);

procedure wite (

addr ess : ininternal _descriptor;
val ue : in variable type;
byte offset : in natural := 0);

end io;

Parameters

variable type

refers to a user-defined type that is supplied during an instantiation of the generic
package. It is meant to represent the type of target variables whose values are to be
read or written via subsequent calls to r ead or wri t e subprograms within the
instantiation being defined.

address
refers to an internal descriptor that specifies the target variable of interest
value

refers to a user-defined variable or expression of type variable type in the monitor-
ing process’s address space. For r ead calls, the value of the target variable will be
placed in value upon return. For wr i t e calls, the target variable will be updated
with the supplied value.

byte offset

refers to a non-negative integer value that is added to the virtual base address found
in the internal descriptor before the read or write operation begins. This offset must
not exceed the address range of the variable as defined by the address. The value of
byte offset defaults to zero.

2-31



Data Monitoring Reference Manual

Error Conditions

When an error is detected, the exceptionreal _tine_nonitoring_error israised.
Possible error conditions include the following:

® Addressis not a valid internal descriptor.

* Byte offset, when added to the base address of the variable defined by
address, will exceed the bit size of the variable as defined by address.

Obtaining Information about Variables

This section presents the subprograms that may be invoked to obtain information about a
specified target variable. The information that can be obtained includes the virtual
address, atomic type, code, bit size, bit offset, array shape and component information,
type name, and constraints.

CGet _infoandi nfo_only allow you to obtain such information as the following: the
virtual address of the variable in the monitoring process’s address space and in the target
process’s address space; the atomic type of the variable; the bit size and bit offset.
CGet _array_i nf o (page 2-34) allows you to obtain information about an array variable.
Cet _t ype_name (page 2-35) allows you to obtain information about the type of a target
variable. Get _const rai nt s (page 2-41) allows you to obtain constraint information
about a target variable.

Get_Info and Info_Only — Obtaining Information about Variables

2-32

Ada Declarations

procedure get _info (

string_descriptor : in string;

virtual _address . out system address;

target _address . out system address;

atom c_type . out atom c_types;

bit_size . out natural;

bit_of fset . out natural;

code : out codes;

program . program descriptor := current_program

procedure get _info (

obj ect _descriptor : in internal _descriptor;
virtual _address . out system address;
target _address . out system address;
atom c_type . out atom c_types;
bit_size . out natural;

bit_of fset . out natural;

code . out codes);

procedure info_only (



MAXAda Interface

string_descriptor : in string;

target _address . out system address;

atom c_type . out atom c_types;

bit_size . out natural;

bit_of fset . out natural;

code . out codes;

program . program descriptor := current_program
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) for which you wish to obtain information. You may spec-
ify this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain information. You may specify this parameter or the string_descriptor
parameter.

program

refers to a valid program descriptor that has been returned from a previous call to
open_progr am(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

virtual_address

upon return, contains the address of the first byte of the contiguous memory loca-
tions that hold the target variable in the monitoring process’s address space. Note
that normally, the address returned is not the location of the variable in the target
process’s address space. This parameter is not available on the i nf o_onl y subpro-
gram; the i nf 0_onl y subprogram does not create a mapping between the monitor-
ing process and the target process (therefore it is generally not necessary for the tar-
get program to be executing).

target address

upon return, contains the address of the first byte of the contiguous memory loca-
tions that hold the target variable in the target process’s address space. Note that nor-
mally, the address returned is not the location of the variable in the monitoring pro-
cess's address space.

atomic_type

upon return, contains the enumeration value that indicates the atomic type of the
specified target variable

bit_size

upon return, contains the size in bits of the specified target variable

2-33



Data Monitoring Reference Manual

bit_offset

upon return, contains the bit offset from the first byte that is returned in the virtu-
al_address parameter

Error Conditions

When an error is detected, the exception real _ti nme_nonitoring_error is raised.
Possible error conditions include the following:

® A diring_descriptor was specified and program does not refer to a valid,
open program descriptor.

® A dring_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

® Sring_descriptor does not refer to an eligible variable.

® A gtring_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (- g) option).

® Sring_descriptor contains invalid expanded name syntax.

* The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real _time_nonitoring_error.

* Object_descriptor is not a valid internal descriptor.

Get_Array_Info — Obtaining Array Bounds and Component Info

Ada Declarations

type indicies is

record
| ower _bound : integer
upper _bound : integer;
end record;

type indicies list is array (1..10) of indicies;

procedure get _array_info (

obj ect _descriptor : ininternal _descriptor;
conponent _bit_size : out natural;

conponent _code ;. out codes;

conponent _si gned . out bool ean;

i ndi ci es : out indicies |ist;

di nensi ons : out positive);



MAXAda Interface

Parameters
object_descriptor

refers to an internal descriptor associated with the target
variable for which you wish to obtain information

component_bit_size

upon return, contains the size in bits of the component type of the array specified by
object_descriptor

component_code

upon return, contains the code associated with the component type of the array
specified by object_descriptor

component_signed

upon return, contains the value t r ue if the component type of the array specified by
object_descriptor has a signed representation; otherwise, it contains the value
fal se.

indicies

upon return, contains integer values that represent the lower and upper bounds of
each dimension of the array variable specified by object descriptor. Components of
indicies that correspond to dimensions not present in the array variable specified by
object_descriptor are left undefined. If object_descriptor refers to an array that has
more than 10 dimensions, the lower and upper bounds of only the first 10 dimen-
sions are returned.

dimensions

upon return, contains the number of dimensions of the array specified by object_de-
scriptor

Error Conditions

When an error is detected, the exceptionreal _ti ne_nonitoring_error is raised.
Possible error conditions include the following:

® Object_descriptor is not a valid internal descriptor.

® Object_descriptor does not refer to an array.

Get_Type_Name - Obtaining Variable Type Names

Ada Declaration

function get _type_nane (
string_descriptor : string;

program . programdescriptor := current_program
expanded_namne . bool ean : = fal se;
interpret_classes : boolean := false) return string;

2-35



Data Monitoring Reference Manual

2-36

Parameters
string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data _item) whose type name you wish to obtain

program

refers to a valid program descriptor that has been returned from a previous call to
open_progr am(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied.

expanded_name

refers to a boolean flag which controls whether the name of the type associated with
the variable identified by string_descriptor is expressed in Ada’s expanded name
notation. The default value for this flag is f al se. When t r ue, type names are
preceded by the expanded name of their enclosing scope (e.g. “pkg.type_t”);
whereas the direct name of the type is used when the flag is f al se (e.g. “type_t”).
This parameter has no effect for C or Fortran variables.

interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. The default value for this setting is f al se. When
f al se, the type name is obtained using the name of the specific type (suffixed by
’class) of the root of the class-wide type of the variable specified by string_descrip-
tor. Whent r ue, the type is chosen using the specific type associated with the value
of the variable specified by string_descriptor. When interpret_classes is set to
t r ue, the target program must be executing. The setting of interpret_classes on this
subprogram call overrides the interpret_classes mode which is set via a call to
set _cl ass_interpretation (see page 2-16). For example, using the code
fragment from the example of set _cl ass_i nt er pret ati on on page 2-16, a
call such as get _t ype_nane(“ pkg. obj ect _e”) would return “t’class”,
whereas a call such as get _t ype_nane(“ pkg. obj ect _e”,interpret_-
cl asses=>true) would return “e”.

Return Value

This subprogram returns a string that describes the type of the target variable specified by
string_descriptor. For Ada variables, this string consists of the direct name of the type of
the target variable; this name may be a user-defined type name or a language-defined type
name. For C and Fortran variables, a name that represents the type of the variable is
returned. Examples are as follows:

int * var 1
get_type name returns “int *”’
void (*var_2)()

get_type name returns “void (*)()”



MAXAda Interface

typedef int xxx; xxx var_3

get_type name returns “xxx”
struct {...} var_4;

get_type_name returns “<struct>"
integer*4 fortran_variable

get type name returns “integer*4”

Error Conditions

When an error is detected, the exception real _ti nme_noni tori ng_error is raised.
Possible error conditions include the following:

* Program does not refer to a valid, open program descriptor.

* Program was omitted and there is no valid, open current program descrip-
tor.

® Sring_descriptor does not refer to an eligible variable.

® The target variable referenced by string_descriptor could not be found in
the target program's symbol tables (perhaps the user forgot to compile with
the debug (- g) option).

® Sring descriptor contains invalid expanded name syntax.

* The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants_only (see page 2-15) or the inter-
pret_classes parameter.

Get_Enum_Image — Obtaining Images of Enumeration Constants

The get _enum_ i mage subprogram is invoked to obtain the image of the enumeration
literal that corresponds to a specified position within the enumerated type associated with
a variable in a target program.

Ada Declaration

function get_enum.image (
string_descriptor : string;
enum position : natural;
program . programdescriptor := current_progran
return string;

2-37



Data Monitoring Reference Manual

2-38

Parameters
string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active variants_only
or interpret_classesmodes; see pages 2-15 and 2-16).

enum_position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by
string_descriptor. A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type nore_colors is (x, y, 2);
for nore _colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The get _enum i mage service expects a position, not a value.
program

refers to a valid program descriptor that has been returned from a previous call to
open_program(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied.

Return Values

The image of the enumeration literal corresponding to enum_position for the enumerated
type associated with the specified target variable is returned.

Error Conditions

When an error is detected, the exception r eal _ti me_noni tori ng_error is raised.
Possible error conditions include the following:

® A dring_descriptor was specified and program does not refer to a valid,
open program descriptor.

® A dring_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

® Sring_descriptor does not refer to an eligible variable.

* A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (- g) option).



MAXAda Interface

® Sring descriptor contains invalid expanded name syntax.

* The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

¢ The target variable could not be mapped into the monitoring process's
address space; an errno value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real tinme_nonitoring error.

® The type of the variable specified by string_descriptor is not an enumerated
type.

* The position specified by enum_position is illegal for the enumerated type;
perhaps a value was supplied instead of a position.

Get_Enum_Val — Obtaining Values of Enumeration Constants

The get _enum val subprogram is invoked to obtain the value, as opposed to the image,
of the enumeration literal that corresponds to a specified position within the enumerated
type associated with a variable in a target program.

Ada Declaration

function get_enumuval (
string_descriptor : string;
enum position : natural;
program . programdescriptor := current_progran
return integer;

Parameters
string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active variants_only
or interpret_classes modes; see pages 2-15 and 2-16).

enum_position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by
string_descriptor. A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

2-39



Data Monitoring Reference Manual

type colors is (red, white, blue);
type nmore_colors is (x, y, 2);
for nore _colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and

value of the literal y are 1 and 10, respectively.

The get _enum val service expects a position, not a value.

program

refers to a valid program descriptor that has been returned from a previous call to
open_progr am(see page 2-9 for an explanation of this subprogram). If this

parameter is not specified, the cur r ent _pr ogr amis supplied.

Return Values

The value of the enumeration literal corresponding to enum_position for the enumerated

type associated with the specified target variable is returned.

Error Conditions

When an error is detected, the exception real _ti nme_noni tori ng_error is raised.

Possible error conditions include the following:

A gtring_descriptor was specified and program does not refer to a valid,
open program descriptor.

A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

Sring_descriptor does not refer to an eligible variable.

A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (- g) option).

Sring_descriptor contains invalid expanded name syntax.

The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real tinme_nonitoring error.

The type of the variable specified by string_descriptor is not an enumerated
type.

The position specified by enum_position is illegal for the enumerated type;
perhaps a value was supplied instead of a position.



MAXAda Interface

Get_Constraints — Obtaining Constraints of Scalar Variables

The get _const r ai nt s subprogram is invoked to obtain constraint information about a
variable specified by a string_descriptor or object_descriptor.

Ada Declarations

procedure get_constraints (

string_descriptor : in string;

| ower _bound : out long float;

upper _bound : out long float;

program : programdescriptor := current_programn

procedure get_constraints (

(obj ect _descriptor : in internal descriptor;
| ower _bound : out long_float;
upper _bound : out long_float);
Parameters

string_descriptor

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data item) for which you wish to obtain information. You may spec-
ify this parameter or the object_descriptor parameter.

object_descriptor

refers to an internal descriptor associated with the target variable for which you wish
to obtain information. You may specify this parameter or the string_descriptor
parameter.

program

refers to a valid program descriptor that has been returned from a previous call to
open_program(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied. This parameter can
be specified only for subprograms that require a string_descriptor.

|ower

upon return, holds the lower bound of the constraints of the variable specified by
string_descriptor or object_descriptor. The lower bound is expressed as a floating
point number. For variables with enumerated types, the value represents the pos of
the base type (that is, it is always zero). For variables whose type is not scalar, this
value is undefined.

upper

upon return, holds the upper bound of the constraints of the variable specified by
string_descriptor or object_descriptor. The upper bound is expressed as a floating
point number. For variables with enumerated types, the value represents the pos of
the base type. For variables whose type is not scalar, this value is undefined.

2-41



Data Monitoring Reference Manual

Error Conditions

When an error is detected, the exception real _tinme_nonitoring_error israised.

Possible error conditions include the following:

A string_descriptor was specified and program does not refer to a valid,
open program descriptor.

A string_descriptor was specified; program was omitted; and there is no
valid, open current program descriptor.

Sring_descriptor does not refer to an eligible variable.

A string_descriptor was specified and the target variable it references could
not be found in the target program's symbol tables (perhaps the user forgot
to compile with the debug (-g) option).

Sring_descriptor contains invalid expanded name syntax.

The target program is not executing and string_descriptor refers to a vari-
able with a dynamic size, shape, address or requires a value from the target
process due to modes active variants only or interpret_classes (see pages
2-15 and 2-16).

The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call toget _real _time_nonitoring_error.

Object_descriptor is not a valid internal descriptor.

Scanning Target Programs for Variables

Generic Package Lists — Listing Scopes, Variables, and Components

2-42

The generic | i st s package provides subprograms that traverse the internal symbol tables
of target program files and call a user-specified procedure for each item in a list. The list is
formed by examining the symbol tables in relation to a set of requirements that has been
defined by parameters specified on each call to a subprogram within an instantiation of the

| i sts package.

function |ist_packages return |ist_node renamnes

Ada Declarations
type list_position is private;

type list_node is (list_scopes,

list variables,
i st_conmponent s);

i st_scopes;



MAXAda Interface

generic
with procedure action (item . in string;
program : in programdescriptor
position : in out list_position
qui t . in out bool ean);
package lists is
procedure |i st
(rode . list_node;
qualifier . string :="";
restriction : string :="";
conmponents : boolean := fal se
program . programdescriptor := current_program;
procedure gl obal |ist
(rode o list_node;
qualifier . ostring :="";
restriction : string :="";
components : bool ean : = fal se);
end |ists;
Dynamic Semantics
The procedures | i st and gl obal _|i st differ in only one respect: gl obal _|i st

searches all currently open program descriptors while | i St searches only the specified
(or current _progr am program descriptor.

The list of items is formed by examining the symbol tables of target programs in relation
to the requirements specified by the qualifier, list mode, and optional regular expression
restriction parameters to the | i st and gl obal _| i st subprograms.

If the program associated with a list item candidate is not currently executing, then list
item candidates with dynamic addresses, sizes, or shapes may fail to qualify for the list
and may be excluded from it.

For each item in the list, a call is made to the user-defined action procedure.
The list mode defines the class of objects being considered during the search:
i st_scopes

defines the class of objects to be scopes. Examples are Ada packages, C subpro-
grams that contain static data, and Fortran subprograms.

l'ist_variables
defines the class of objects to be variables
i st_conponents

defines the class of objects to be components of composite variables

2-43



Data Monitoring Reference Manual

Parameters to List and Global_list

mode

refers to a value of type | i St _node

qualifier

refers to a string that is interpreted in accordance with the specified mode. By
default, qualifier is a null string. Qualifier is interpreted as follows:

i st_scopes

Qualifier should specify the name of a scope or a null string. If a null string is
specified, all scopes are considered; otherwise, only the scopes that are imme-
diately contained within the scope specified by qualifier are considered. Note
that an Ada child package is considered to be a global scope with an expanded
name such as “parent.child”; it is not considered to be a scope within “parent”.

list _variables

Qualifier should specify the name of a package or other scope. If a null string
is specified, all scopes are considered.

i st_conponents

Qualifier should specify the expanded name of a composite variable.

restriction

refers to a string that forms a valid regular expression as defined by r egexec( 3) .
It is used to restrict the list elements. The regular expression is applied to the
expanded name of the list item as it will be passed to the user-defined action proce-
dure. The restriction is applied as the last step in forming the elements of the list. By
default, restriction is null, which indicates there is no restriction.

components

refers to a boolean flag that indicates whether or not components of a variable are to
be listed in list_variablesmode. This flag is ignored for all other list modes. Ift r ue,
components of composite variables are included in the list; otherwise, they are not.
Note that the list of components formed is significantly affected by the settings of
the active variants _only and interpret_classes modes as described on pages 2-15
and 2-16.

program

refers to a valid program descriptor that has been returned from a previous call to
open_progr am(see page 2-9 for an explanation of this subprogram). If this
parameter is not specified, the cur r ent _pr ogr amis supplied. This parameter can
be specified only for the | i st procedure.

Error Conditions for List and Global_list

When an error is detected, the exceptionreal _tine_nonitoring_error israised.
Possible error conditions include the following:



MAXAda Interface

® The specified program is not a valid, open program descriptor, or it was
omitted and there are no valid, open program descriptors.

* The specified restriction is not null and is an invalid regular expression as
defined by r egexpr (3G) .

* An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty

list—that is, | i st and gl obal _| i st return without calling the user-defined action pro-
cedure.

Parameters to the User-Defined Action Procedure

item
refers to a string describing the expanded name of the item. Itemis a scope name
(for example, Ada package, Fortran subprogram), a variable, or a component of a
variable.

program
refers to the program descriptor associated with item

position
refers to a value of a private type that describes the current position in the list. The
action routine may store into this in-out parameter a previous list position value that
resets the specified list position (that is, the next call to action will pass the item
associated with the changed value of position).

quit

refers to a boolean flag that indicates whether or not list processing should continue;
this value is always set to f al se on entry to the action procedure. If you set this in-
out parameter to t r ue, list processing will stop upon return from the current action
call; otherwise, list processing continues.

2-45



Data Monitoring Reference Manual

2-46



Organization

3
C Interface

The Data Monitoring library, / usr/ | i b/ | i bdat anon. a, contains C interfaces that
allow you to monitor variables in executing processes. These interfaces allow you to
specify executable programs that contain Ada, C, or Fortran variables to be monitored;
obtain lists of eligible variables that can be monitored; obtain and modify the values of
selected variables; and obtain such information about the variables as their virtual
addresses, types, and sizes. Interfaces that allow you to obtain and modify values are of
two types: those that accept and return values expressed in symbolic formats that are
appropriate for the respective variables and those that accept and return values without
symbolic formatting.

This chapter provides all of the information that you need to use the C Data Monitoring
interfaces. “Types and Objects” on page 3-1 describes type and variable declarations that
are used by the C interfaces to Data Monitoring. “Error Processing” on page 3-4 presents
the enumerations and subprograms which describe error conditions. The remaining sec-
tions explain the procedures for using each of the C routines in the Data Monitoring
library. See “C Examples” on page B-1 for examples using the C interface and instruc-
tions.

Types and Objects

Descriptors

This section describes type and object declarations that are used by the C interfaces to
Data Monitoring. “Descriptors” on page 3-1 presents the types of descriptors that are used.
“Enumerations” on page 3-2 presents the enumerated types that are used.

The header file <dat anon. h> declares two types of descriptors that are used by the C
interfaces to Data Monitoring: a program descriptor, which is used to represent a specific
target program or process, and an object descriptor, which is used to represent a specific
target variable associated with a target program or process.

The program descriptor is declared as follows:



Data Monitoring Reference Manual

Enumerations

typedef int programdescriptor _t;

A descriptor of this type is created by the dm_open_pr ogr amroutines and destroyed by
the dm cl ose_pr ogr amroutine (see pages 3-7, 3-9 and 3-11, respectively, for explana-
tions of these routines). It is also used by the dm get descriptor,dm|i st and
dm f i nd routines (see pages 3-18, 3-33 and 3-35, respectively, for explanations of these
routines).

The object descriptor is declared as follows:

t ypedef struct object_descriptor {

int od valid; /* Flag: true if valid */

int od_at om c_t ype; /* Internal data field */

dm codes od_code; /* Object code */

voi d *od_target_address; /* Virt.addr in target program*/
voi d *od_virtual _address; /* Virt.addr in this! process */
int od_bit_size; /* Size in bits of object */

int od bit_offset; /* Bit offset fromvirt. addr */
int od_si gned; /* 1 if signed representation */
int od_extra_infol; /* delta, inage_database, n/a */

i nt od_extra_info2; /* nla, val 2pos_dat abase, n/a */
doubl e od_| ower _bound; /* Lower bound for scalar types */
doubl e od_upper _bound; /* Upper bound for scal ar types */
int od_| anguage; /* DWARF DWLANG see dwarf.h */
dm codes od_conponent _code; /* Valid iff od_code is array */
int od_conponent _bit_size; /* Valid iff od_code is array */
int od_conponent _signed; /* Valid iff od_code is array */

i nt od_nunber _di ms; /* Num of dimensions for arrays */
int od_| ower _di ns[ MAX_DI MENSI ONS]; /* Low bounds */

int od_upper _di ns[ MAX_DI MENSI ONS];  /* Upper bounds */

} object_descriptor_t;

A descriptor of this type is created by the dm get _descri pt or routine (see page 3-18
for an explanation of this routine). It contains type, size, and address information about the
target variable. It holds sufficient information to make subsequent modification or refer-
ence of the associated target variable very efficient. The object descriptor is used by the
dm peek, dm poke, dm get val ue, and dm set _val ue routines (see pages 3-20,
3-21, 3-22, and 3-23, respectively, for explanations of these routines).

The header file <dat anon. h> also declares two enumerated types that are used by the C
interfaces to Data Monitoring: dm _codes, which identifies the categories of language-
defined types for a variable, and dm | i st _nodes, which identifies the class of objects
to be considered when using the dm | i st or dm f i nd routine to scan a target program
for variables (see pages 3-33 and 3-35 respectively, for explanations of these routines).

The dm _codes enumerated type is declared as follows:

t ypedef enum dm codes {
code_enunerati on,
code fl oat,
code_fi xed,
code_i nt eger,



code_record,
code_array,
code_char,
code_pointer,
code_conpl ex,
code_conmon,
code_unknown
} dm codes;

The dm codes values are explained as follows:

code_enuneration

Ada or C enumerated types
code_fl oat

floating point types
code_fi xed

Ada fixed point types
code_i nt eger

integer types
code_record

Ada record or C structure types
code_array

array types

code_char

Ada character, C char , and Fortran char act er

code_pointer

Ada access types, C pointer types
code_conpl ex

Fortran complex types
code_conmon

Fortran common blocks
code_unknown

reserved for unrecognized types

C Interface

A variable’s code aids in interpreting the bits associated with the variable. The
<dat anmon. h> header file also includes a dm code_i nages[] array that maps the
enumeration values to their corresponding enumeration images. Note that in order for this

3-3



Data Monitoring Reference Manual

image array to be visible, the C Data Monitoring program must be compiled with the
-Ddat amon_i nages option. See “C Compilation and Linking Instructions” on page
B-1 for more information.

The dm | i st _nodes enumerated type is declared as follows:
typedef enum dmlist_nodes {
I i st_scopes,
list _variabl es,

|i st_conponents
} dmlist_nodes;

The dm | i st _nodes values are explained as follows:
l'i st_scopes

defines the class of objects to be scopes. Examples are Ada packages, C subpro-
grams that contain static data, and Fortran subprograms

list_variables
defines the class of objects to be variables
i st_conponents

defines the class of objects to be components of composite variables

Error Processing

In general, functions return zero on success and indicate failure by returning a non-zero
value.

When a call to one of the Data Monitoring subprograms fails, the following steps are typi-
cally performed:

® The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an er r no value, or other information that
is specific to the parameters supplied on the subprogram call.

® Avalue of - 1 is returned from the subprogram.

Both the error code and the description of the error can be retrieved as shown below by the
declarations related to error processing. These declarations, which are provided in the file
<dat anon. h>, are as follows:



C Interface

typedef enum dm error_codes {

DM_NOVEM /* Insufficient programnenory for operation */

DM _EXCEPT, /* Exception raised during operation */

DM_BADENUM /* Illegal or unexpected enureration literal/value */
DM_SYNTAX, /* 1llegal char. in expanded var_nane/ expression */
DM _NODWARF, /* Insufficient debug infornation (DWARF) avail able */
DM _NOTVAR, /* Specified name is not a variable or constant */

DM _DYNAM C, /* Object has dynanic size, shape, or address */

DM NOTRECORD, /* (bject is not a record, structure, or common bl k */
DM _NOTARRAY, /* Cbject is not an array */
DM_NOTFQOUND, /* Could not find package/ nodul e/ vari abl e/ conponent */

DM_RANGE, /* Specified val ue/ subscript is out-of-range */

DM BADDI M /* Wong nunber of subscripts specified for array */
DM _NCELF, /* Unrecogni zed/ Il egal ELF object file fornmat */

DM BADPI D, /* Invalid (or mssing) pid for file w shared libs */
DM _USRMAP, /* usermap(3C) failed to nap process; bad pid? */

DM _SYMBQLS, /* Insufficient symtable infornation for operation */
DM _BADDWARF, /* illegal/mssing debug (DWARF) information */

DM _AMBI G /* Specified identifier is anmbiguous */

DM _SERVI CE, /* Systemlibrary service call failed */
DM _NAVE2BI G, /* Expanded nane too |ong */

DM _NOTGOPEN, /* dm open_program cal | skipped or was unsuccessful */
DM _NOFI LE, /* Could not open specified programfile */

DM _BADPROG, /* Bad program descriptor specified */

DM _BADDESC, /* Bad object descriptor specified */

DM_UNSUP, /* Unsupported (or unsupported type for) operation */

DM COVPCSI T, /* Conposite type/object not allowed for operation */
DM BUF2SVALL, /* User-specified buffer too small */
DM _NOBI TS, /* Operation requires byte-aligned types */
DM BADREG /* 1llegal regular expression */
} dm error_codes;

#i f def dat anon_nappi ngs
static char * dmerror_code_i mages[] = {

#endi f
extern

dm error_codes
dm get _error_code (void);

extern
char *
dmget_error_string (void);

Invoke the dm get _er r or _code function to obtain an enumeration value that indicates
the type of error that has occurred. Invoke the dm get _error_stri ng function to
obtain a string that more fully describes the error that has occurred. These functions
report on the last error that occurred.

Note that the array dm err or _code_i nages maps enumeration values to their corre-
sponding image; it is only provided when the - Ddat anon_i mages compilation option
to the C compiler is used. See “C Compilation and Linking Instructions” on page B-1 for
more information.

3-5



Data Monitoring Reference Manual

Routines

In the sections that follow, all of the C Data Monitoring routines contained in the | i b-
dat anon library are grouped and presented according to function. The following infor-
mation is provided for each routine:

¢ The C declaration of the routine

¢ Detailed descriptions of each parameter

® The return value

Figure 3-1 illustrates the approximate order in which you might call the routines from an

application program.

dm_open_program

A J

dm_get_descriptor

Obtain
Value Of
Variable?

v Yes

Modify
Value Of
Variable?

dm_get_value

dm_set value |o

dm_close_program

|

Figure 3-1. C Data Monitoring Call Sequence

3-6



C Interface

With the sequence illustrated by Figure 3-1, you first obtain the object descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
object descriptor on each call to dm _get _val ue or dm set _val ue. Obtaining the
object descriptors involves symbol table searches; it may require a significant amount of
time for time-critical applications. For such applications, it is recommended that you
invoke dm get _descri pt or during application initialization and then use the resultant
descriptor(s) to invoke dm get _val ue and dm set _val ue during the time-critical
sections of your monitoring application.

Target Program Selection and Identification

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Dm_Open_Program — Obtaining Program Descriptors

This routine is invoked to specify the target program for Data Monitoring. You must
invoke dm _open_pr ogr amprior to invoking any other routine in the Data Monitoring
library. Subsequent calls to dm get _descri pt or to obtain an object descriptor for a
target variable require an open program descriptor. Object descriptors that you have
obtained following a previous dm_open_pr ogr amcall continue to be valid; you may
use them to obtain or modify the values of the target variables with which they are associ-
ated.

The dm_open_pr ogr amcall requires that portions of the target program file be read
from disk into memory and that an internal symbol table be built. These procedures can
use significant amounts of memory; the amounts used depend upon the size of the target
program and the number of variables that can be monitored. You are advised not to invoke
dm open_pr ogr amfrom time-critical sections of your application. The memory uti-
lized by dm _open_pr ogr amcan be reclaimed by a subsequent call to dm_-
cl ose_program

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm open_program (char * pgm nane,
i nt pi d,
program descri ptor _t * pgm desc);



Data Monitoring Reference Manual

Parameters

pgm_name

pid

points to a string that contains a standard UNIX path name identifying the program
to be monitored. Note that a full or relative path name of up to 1024 characters can
be specified.

refers to a variable that contains an integer value representing the process identifica-
tion number of the target executable program specified by the pgm_name parameter

If the value of pid is 0, then dm_open_pr ogr amwill attempt to locate a process
that is executing on the system with the specified path name. If successful, the corre-
sponding process identification number of that process is used; otherwise, it is as if
an invalid value for pid has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the fol-
lowing:

e dmget type_nane,dm get type_nane_| ong

e dmlist,dmfind

e dm get _error_code

e dmget _error_string

e dm open_program dm open_pr ogr am aux

e dm cl ose_program

pgm_desc

points to a location to which the program descriptor is to be returned

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -

ror_

ing:
L]

st ri ng for a description of the error. Possible error conditions include the follow-

The file associated with pgm_name could not be located or opened for read.

The specified pid was a value other than -1 and did not identify an execut-
ing process.

The specified pid was -1 but the target program associated with pgm_name
requires shared libraries.

The specified pid was 0 but no target process associated with pgm_name
could be located.

The file associated with pgm_name s not a valid ELF executable file.

The file associated with pgm_name contains no symbolic information.



C Interface

Dm_Open_Program_Aux — Obtaining Program Descriptor by Function

This routine operates identically to the dm open_pr ogr amfunction, with the addition
of the access method parameter which defines a user function to be called whenever a
value needs to be obtained from the target program.

Thus this function can be used when alternative methods are required when obtaining pro-
gram values. For example, when the user map( 3) service is not available on the target
operating system.

Declaration

#i ncl ude <dat anon_aux. h>

typedef int (*dmaccess_nethod (int wite, int pid, void *
process_addr, int bytes, void * dest);

typedef bool (*dm access_nethod)(int wite, int pid, void *
process_addr, int bytes, void * dest);

NOTE: C++ version uses bool as return value for function. C version uses int.

extern
i nt
dm open_program aux (char * prg_nane,
i nt pi d,
dm access_net hod access_net hod,
program descri ptor _t * pgm desc);
Parameters
prg_name

points to a string that contains a standard UNIX path name identifying the program
to be monitored. Note that a full or relative path name of up to 1024 characters can
be specified.

pid

refers to a variable that contains an integer value representing the process identifica-
tion number of the target executable program specified by the prg_name parameter

If the value of pid is 0, then dm open_pr ogr am aux will attempt to locate a pro-
cess that is executing on the system with the specified path name. If successful, the
corresponding process identification number of that process is used; otherwise, it is
as if an invalid value for pid has been specified.

Under specific conditions, the value of pid may be specified as -1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the fol-
lowing:



Data Monitoring Reference Manual

e dm get type nane,dm get type_nane_| ong
e dmlist,dmfind
* dmget _error_code
e dmget _error_string
* dm open_programdm open_progr am aux
* dmcl ose_program
pgm_desc
points to a location to which the program descriptor is to be returned
access method

A pointer to a user-specified function which will be invoked whenever a value from
the target program is required.

The function is passed the following parameters:
write

A boolean value, true indicating that this is a write operation and the user’s
function should modify the target program as described by the process_addr
and bytes parameters.

The value false indicates this is a read operation and the user’s function should
fetch the memory locations from the target program as described by the pro-
cess addr and bytes parameters.

pid
The process ID of the target program.
process_addr
The target program address from which to fetch values or write values.
bytes
The number of bytes required to be transferred for this access.
dest

For write operations, the address of the value to store into the target program.
For read operations, the address of the variable where values read from the
target process are to be placed.

The specified function should return true (1) if the operation is successful or false
(0) otherwise.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -

3-10



C Interface

ror_string for a description of the error. Possible error conditions include the follow-
ing:

* The file associated with prg_name could not be located or opened for read.

® The specified pid was a value other than -1 and did not identify an execut-
ing process.

* The specified pid was -1 but the target program associated with prg_name
3requires shared libraries.

* The specified pid was 0 but no target process associated with prg_name
could be located.

* The file associated with prg_nameis not a valid ELF executable file.

® The file associated with prg_name contains no symbolic information.

Dm_Close_Program — Closing Program Descriptors

This routine is used to free internal storage that is being used to hold symbolic information
associated with the specified program descriptor. After invoking this routine, you may not
call any other routines with the specified program descriptor. Object descriptors for target
variables that have already been obtained by calls to dm get _descri pt or (see page
3-18), however, are still valid; for example, dm get _val ue, dm set _val ue,
dm peek, and dm poke operations can still occur.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm cl ose_program (program descriptor_t pgm desc);

Parameters

pgm desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm _open_pr ogr amor dm open_pr ogr am aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

® pgm descis not a valid, open program descriptor



Data Monitoring Reference Manual

Dm_Set_Interest_Threshold — Setting the Interest Threshold

312

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0. All eligible variables have an interest value
which is set by their compiler. By default, all eligible variables have an interest value of
zero. The Ada compiler allows users to change the interest value of selected variables via
the implementation-defined pragma INTERESTING. (See Annex M of the MAXAda Ref-
erence Manual (0890516) for more information on pragma INTERESTING). The interest
threshold controls whether an otherwise eligible variable is visible to the subprograms in
the Data Monitoring library. If the interest value of a variable is below the interest thresh-
old, it is as if the variable did not exist. Once set, the interest threshold remains associated
with the specified target program until reset by a subsequent dm set _i nterest _-
t hr eshol d call.

Note that subsequent changes to the interest threshold have no effect on object descriptors
already obtained by previous dm get _descri pt or calls.

Declaration

#i ncl ude <dat anon. h>
extern
i nt
dmset _interest_threshold
(int t hreshol d,
program descriptor_t pgm desc);

Parameters

threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to pgm_desc.

pgm_desc
refers to a valid program descriptor that has been returned from a previous call to
dm open_programor dm open_program aux (see pages 3-7 and 3-9,
respectively, for an explanation of these routines)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm descis not a valid, open program descriptor



C Interface

Dm_Set_Variant_Handling — Setting Ada Record Variant Sensitivity

The dm set _vari ant _handl i ng routine defines the mode in which Ada record vari-
ants are handled. By default, the active variants only mode is set to f al se; thus look-up
and dm_| i st subprograms within the Data Monitoring library are not sensitive to a
record variant’s governing discriminant, inasmuch as all variants are considered active at
all times. Setting the active_variants only mode to t r ue will cause look-up and
dm_ | i st subprograms within this package to determine the value of an enclosing record
variant’s governing discriminant when considering components within the record (see sec-
tion 3.8.1(2-21) of the Ada 95 Reference Manual for more information on Ada record vari-
ants). In general, this sensitivity requires that the target program be executing, because the
value of discriminants must be obtained from the target process. If active variants_only
mode is t r ue and a component of a record is contained in an inactive variant, it is as if
the component did not exist. The active variants only mode has no effect on C or Fortran
variables.

If this mode is set to t r ue and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active variants only mode is associated with
the specified target program and remains in effect until a subsequent call to dm set _ -
vari ant _handl i ng.

Note that subsequent changes to the active variants only mode have no effect on object
descriptors which have already been obtained via a previous dm _get _descr i pt or call.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm set _variant_handling (int handl i ng,
program descriptor t pgm desc);

Parameters

handling

refers to an integer value which controls the handling of variants for Ada records for
the target program corresponding to pgm _desc. Setting the value to 1 will cause
sensitivity to record variant’s governing discriminants as described above. Setting
the value to O causes all variants to be considered active.

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_pr ogr amor dm open_pr ogr am aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these subprograms)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get _er -

3-13



Data Monitoring Reference Manual

ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

* Pgm descis not a valid, open program descriptor

Dm_Set_Class_Interpretation — Interpreting Class-Wide Types

3-14

The dm set _cl ass_i nt er pret at i on routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is f al se. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to t r ue, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to t r ue requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following Ada example:

package p is

type t is
record
X : integer;
end record;
type e is newt wth
record
y . integer;
end record;
object_t : t'class :=t’'(x => 4);
object e : t'class :=¢e'(x == 1, y => 2);
end p;

In the table below, the first column represents the string passed to look-up subprograms
such as dm get _descri pt or and dm get val ue. The second and third columns
represent whether such calls would succeed, based on the specified setting of the inter-
pret_classes mode:

String Descriptor interpret_classes mode
0 1
“p.object_t.x" succeed succeed
“p.object_t.y” fail fail
“p. object_e.x” succeed succeed
“p.object_e.y” fail succeed




C Interface

Of course the example in the second row, “ p. obj ect _t. y”,isn’t very interesting since
the value of that class-wide variable really is of type “t " and therefore doesn’t have a
component named “y” . However, the example in the fourth row, “ p. obj ect _e. y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “ €” , a type extended from the specific type of the root of the class-wide
type, it does contain a component called “ y” .

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm set _class_interpretation
(int i nterpret,
program descriptor t pgm desc);

Parameters

interpret

refers to a boolean value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to pgm_desc. Setting the
value to 1 will cause the specific type of the value of the variable to be based on the
actual value of the variable. Setting the value to O will cause the specific type of the
value of the variable to be obtained directly from the specific type of the root of the
class-wide type.

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_pr ogr amor dm open_pr ogr am aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

* Pgm desc is not a valid, open program descriptor

Dm_Get_Pid — Obtaining Target Process ID

This routine allows the user to obtain the process ID associated with a valid program
descriptor.

Declaration

#i ncl ude <dat anon_aux. h>
extern

3-15



Data Monitoring Reference Manual

i nt

dmget _pid (programdescriptor_t * pgmdesc);
Parameters

pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm_open_pr ogr amor dm open_pr ogr am aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)

Return Value

The registered pid is always returned. If no pid is associated with the process, a O value or
- 1 is returned.

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm_desc does not refer to a valid, open program descriptor.

Dm_Set_Pid — Changing Target Process ID

3-16

This routine allows the user to change the target process ID associated with an open pro-
gram descriptor.

Declaration

#i ncl ude <dat anon_aux. h>

extern

voi d

dmset _pid (int new pi d,
program descriptor t * pgmdesc);

Parameters

new_pid

the process ID to which the target program is to be changed.
pgm_desc

refers to a program descriptor that has been obtained via a previous call to
dm open_programor dm open_program aux and has not yet been closed
(see pages 3-7 and 3-9, respectively, for an explanation of these routines)



C Interface

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm_desc does not refer to a valid, open program descriptor.

Dm_Suppress_Index_Checks — Suppressing Index Value Checks

This routine allows the user to override the default behavior of checking index values to
ensure they do not extend past either end of an array.

When suppressed, no error is issued when attempting to index past the end of an array (as
long as program memory is actually available at the indexed location).

Declaration

#i ncl ude <dat anon_aux. h>

extern

void

dm suppress_i ndex_checks (int suppressed);

Parameters

suppressed

an integer that acts as a boolean

Return Value

None.

Obtaining Object Descriptors for Variables

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, dm get val ue and dm set _val ue operations can occur (see pages
3-22 and 3-23, respectively, for explanations of these subprograms).

The amount of time required to obtain the descriptor may be significant for applications
with stringent performance constraints.

3-17



Data Monitoring Reference Manual

The lifetime of an object descriptor exceeds the lifetime of its corresponding program
descriptor; that is, the program descriptor associated with the program containing the tar-
get variable may be closed (thereby freeing significant memory associated with target pro-
gram symbol tables), but the object descriptors remain valid.

Note that when you obtain an object descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (pt r. al | ),
the value of the pt r at the time of the call todm get _descri pt or is used to determine
the final address of the ptr. al |l . Subsequent calls to dm _get val ue or
dm set _val ue with the resultant object descriptor will refer to the address calculated
during the dm get _descri pt or call, regardless of the current value of the pt r . If you
wish to re-evaluate the address of the ptr. al | considering the current value of ptr,
then call dm get _descri pt or again. This applies not only to variables involving
pointer indirection, but records whose size and shape can change as the target process exe-
cutes, as well as variables of class-wide types.

Part of the process of obtaining an object descriptor involves creating a memory mapping
between the target variable and the monitoring process’s virtual address space; memory
mapping makes subsequent access to target variables from the monitoring process
extremely efficient. After the object descriptor for a variable has been defined,
dm get val ue, dm set _val ue, dm peek, and dm poke operations can occur (see
pages 3-22, 3-23, 3-20, and 3-21 respectively, for explanations of these routines).

Dm_Get_Descriptor — Obtaining an Object Descriptor

3-18

This routine is invoked to obtain an object descriptor for a specified variable.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm get descriptor (char * item
i nt no_nap,
program descri ptor _t pgm desc,
obj ect _descriptor _t * obj desc);

Parameters

item

points to a string that contains the expanded name of the target variable for which
you wish to obtain the object descriptor

no_map

refers to a flag that contains an integer value that indicates whether or not address
translation (mapping) is to occur. Specify a value of 0 if the monitoring process’s
virtual address space is to be mapped to the target variable. Specify a nonzero value
under one of the following circumstances:



C Interface

1. If the target program is executing and the target variable is already
accessible at the same virtual address in the monitoring process as in
the target process (in this case, mapping is not necessary)

2. If the target program is not executing and you simply wish to obtain
information about the target variable (its type, size, virtual address,
and so on)

If the target program is not executing and you set N0O_map to zero, the call to
dm get _descri pt or will fail.

pgm _desc

refers to a valid program descriptor that has been returned from a previous call to
dm open_programor dm open_pr ogram aux (see pages 3-7 and 3-9,
respectively, for an explanation of these routines).

obj_desc

points to a location to which the object descriptor for the variable specified by item
is to be returned

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error _code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

® Pgm desc does not refer to a valid, open program descriptor.
¢ [temdoes not refer to an eligible variable.

¢ The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (- g) option).

® [temcontains invalid expanded-notation syntax.

* The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active variants_only or interpret_classes (see pages 3-13 and
3-14).

¢ The target variable could not be mapped into the monitoring process’s
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

Obtaining or Modifying Target Variables

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Obtaining Object Descriptors for Variables” on page
3-17, these subprograms require the specification of the target variable via an obj ect _-
descri ptor.

3-19



Data Monitoring Reference Manual

Dm peek and dm poke (pages 3-20 and 3-21) allow you to respectively obtain and mod-
ify the value of variables directly. Dm get _val ue and dm set _val ue (pages 3-22
and 3-23) allow you to respectively obtain and modify the value of variables using an
ASCII representation of the value.

Dm_Peek — Peeking at Variables

3-20

This routine is invoked to read the value of a variable in the target process without conver-
sion.

Declaration

#i ncl ude <dat anmon. h>

extern
i nt
dm peek (object _descriptor_t * fromtarget,
voi d * to_addr,
i nt byt es);
Parameters
from target

points to an obj ect _descri pt or _t structure that contains an object descriptor
that is associated with the target variable whose value you wish to read. This
descriptor is obtained from a previous call to dm get _descri pt or (see page
3-18 for an explanation of this routine).

to_addr

points to a buffer in the monitoring process’s address space to which the raw value
of the target variable specified by from target is to be copied

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the buffer specified by to_addr.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the object specified by
from_target as the source and the lowest bit-address of the buffer specified by
to_addr as the destination. The number of bits copied from the source to the desti-
nation depends upon the number of bits required by from_target.

For noncomposite types, the value will be right justified in the buffer specified by
to_addr (sign and zero extension for unused bits placed in the first word). No other
bit-pattern conversion takes place.

The transfer of data from the source to the destination is effected via the most appro-
priate machine instruction available (for example, a short value will be stored via a
single instruction that transfers two bytes).



C Interface

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* From target is not a valid object descriptor.

* The address range specified by to_addr .. to_addr+bytes-1 are not valid
addresses in the monitoring processes address space.

Dm_Poke — Poking at Variables

This routine is invoked to modify the value of a variable in the target process without con-
version.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm poke (object_descriptor_t * to_target,
voi d * from addr,
i nt byt es) ;

Parameters

to_target

points to an obj ect _descri pt or _t structure that contains an object descriptor
that is associated with the target variable whose value you wish to modify. This
descriptor is obtained from a previous call to dm get _descri pt or (see page
3-18 for an explanation of this routine).

from_addr

points to a buffer in the monitoring process’s address space that contains the raw
value that is to be copied to the target variable specified by to_target

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the buffer specified by from _addr. Note that bytesmust be at
least as large as the number of bytes required by the variable specified by to_target.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the variable specified
by from target as the source and the lowest bit-address of the buffer specified by
to_target as the destination. The number of bits transferred depends on the number
of bits required by to_target.

3-21



Data Monitoring Reference Manual

The bit pattern of the value in the buffer specified by from_addr is not modified. For
noncomposite types, the required number of bits is assumed to be right justified in
the buffer.

The transfer of data to the variable specified by to_target is effected via the most
appropriate machine instruction available (for example, a short value will be stored
via a single instruction that transfers two bytes).

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

¢ To_target is not a valid object descriptor.

* The address range specified by from addr .. from addr+bytes-1 are not
valid addresses in the monitoring processes address space.

Dm_Get_Value — Obtaining the Value of Variables

3-22

This routine is invoked to obtain the ASCII representation of the value of a variable in the
target program. The default ASCII representation used by dm _get _val ue depends
upon the type of the variable:

signed integer

the printf “%d” conversion format
unsigned integer, pointers

the pri ntf “9%” conversion format
floating point

theprintf “9%g" conversion format
fixed point (Ada)

the printf “9%g” conversion format
enumeration (Ada)

the enumeration image in lower case

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm get val ue (object _descriptor t * fromtarget,
char * val ue,
i nt byt es);



C Interface

Parameters
from target

points to an obj ect _descri pt or _t structure that contains an object descriptor
that is associated with the target variable for which you wish to obtain the value. The
descriptor is obtained from a call to dm get _descri pt or (see page 3-18 for an
explanation of this routine). Note that if the variable to which from_target refers is of
a composite type, an error will occur.

value

points to a string to which dm _get _val ue will return the default ASCII represen-
tation of the value of the target variable specified by from target

bytes

refers to a variable that contains an integer value indicating the number of bytes in
the string pointed to by value. Note that if the ASCII representation of the value of
the target variable exceeds the space specified by bytes, an error will occur.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

* From target is not a valid object descriptor.

* The type of the target variable represented by from target is a composite
type (array, record, or structure). The dm peek subprogram may be used
for obtaining the value of such variables.

® The type of the target variable represented by from target is unknown (for
example, code_unknown).

® The size of the string referred to by value and bytes is too small to hold the
ASCII representation of the value of the variable denoted by from target.

Dm_Set_Value — Setting the Value of Variables

This routine is invoked to modify the value of a variable in the target process. It allows
you to use ASCII representation to specify the new value to which the variable is to be set.
The default ASCII representation expected by dm set _val ue depends upon the type of
the variable:

signed integer
the sscanf “ %" conversion format
unsigned integer, pointers

the sscanf “%” conversion format

3-23



Data Monitoring Reference Manual

3-24

floating point

the sscanf “%g” conversion format
fixed point (Ada)

the sscanf “9%g” conversion format
enumeration (Ada)

the enumeration image in upper or lower case

Declaration

#i ncl ude <dat anmon. h>

extern

i nt

dm set _val ue (object_descriptor_t * to_target,
char * val ue);

Parameters

to_target

points to an obj ect _descri pt or _t structure that contains an object descriptor
that is associated with the target variable whose value you wish to modify. This
descriptor is obtained from a previous call to dm get _descri pt or (see page
3-18 for an explanation of this routine). Note that if the variable to which to_target
refers is of a composite type, an error will occur.

value

points to a valid ASCII representation of the new value to which the target variable
specified by to_target is to be set. Note that this value must be expressed in a form
that is consistent with the type of the target variable (for example, an integer literal
for an integer type, a floating point literal for a floating point type, and so on). The
value must be within the range of the type of the target variable.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

* To_target is not a valid object descriptor.

¢ The type of the target variable represented by to_target is a composite type
(array, record, or structure). The dm poke subprogram may be used for
setting the value of such variables.

* The type of the target variable represented by to_target is unknown (for
example, code_unknown).

® The ASCII representation of the new value for the variable specified by
to_target is inappropriate for the type of that variable.



C Interface
Obtaining Information about Variables

This section presents the subprograms that may be invoked to obtain additional informa-
tion about a specified target variable that isn’t readily available in an object descriptor.

Dm_Get_Type_Name — Obtaining Type Names

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm get _type _nane (char * item
program descri ptor _t pgm desc,
char * type_nane,
i nt byt es) ;

Parameters

item

points to a string that specifies the expanded name of the target variable for which
you wish to obtain the symbolic type name

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
via a previous call to dm_open_pr ogr amor dm open_pr ogr am aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines)

type_name

points to a character array to which dm get _t ype_nane will return the symbolic
type name of the target variable specified by item

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by type_name. If the symbolic type name associated with item
exceeds the amount of space specified by bytes an error will occur.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

3-25



Data Monitoring Reference Manual

® Pgm desc does not refer to a valid, open program descriptor.
® [temdoes not refer to an eligible variable.

® The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).

® [tem contains invalid expanded name syntax.

* The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due

to modes active_variants_only or interpret_classes (see pages 3-13 and
3-14).

* The size of the string referred to by type name and bytes is too small to
hold the name of the type of the variable specified by item.

Dm_Get_Type_Name_Long — Obtaining Long Type Names

3-26

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Declaration

#i ncl ude <dat anon. h>

extern
i nt
dm get _type_nane_| ong
(char * item
i nt expanded_not ati on,
i nt i nterpret _cl asses,
program descriptor _t pgm desc,
char * type_nane,
i nt byt es) ;
Parameters
item

points to a string that specifies the expanded name of the target variable for which
you wish to obtain the symbolic type name

expanded_notation

refers to a integer value which controls whether the name of the type associated with
the variable identified by itemis expressed in Ada’s expanded name notation. If the
value specified is 1, type names for Ada variables are preceded by the expanded
name of their enclosing scope (e.g. “pkg.type_t”); whereas the direct name of the
type is used when the flag is O (e.g. “type_t”). This parameter has no effect for C or
Fortran variables.



C Interface

interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. When this value is O, the type name is obtained using the
name of the specific type (suffixed by ’class) of the root of the class-wide type of the
variable specified by item. When 1, the type is chosen using the specific type asso-
ciated with the value of the variable specified by item. When interpret_classesis set
to t r ue, the target program must be executing. The setting of interpret_classes on
this subprogram call overrides the interpret_classes mode which is set via a call to
dm set _cl ass_interpretation (see page 3-14). For example, using the
code fragment from the example of dm set _cl ass_i nterpretati on, a call
such as get _type_ name(“ pkg. obj ect _e”) would return “t’class”, whereas a
call such as get _type_nanme_| ong(“pkg. obj ect _e”, interpret_-
cl asses=>true) would return “e”.

pgm_desc

refers to a variable that contains a valid program descriptor that has been returned on
a previous call to dm_open_pr ogr amor dm open_pr ogr am aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)

type_name

points to a character array to which dm _get _t ype_nane_| ong will return the
symbolic type name of the target variable specified by item.

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by type _name. If the symbolic type name associated with item
exceeds the amount of space specified by bytes, an error will occur.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

® Pgm desc does not refer to a valid, open program descriptor.
® [temdoes not refer to an eligible variable.

* The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).
® |tem contains invalid expanded name syntax.

* The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active variants only (see page 3-13) or the interpret_classes
parameter.

* The size of the string referred to by type name and bytes is too small to
hold the name of the type of the variable specified by item.

3-27



Data Monitoring Reference Manual

Dm_Get_Enum_Image — Obtaining Enumeration Constant Images

3-28

This routine is invoked to obtain the image of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-

gram.

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm get _enum i mage (char * item
i nt posi tion,
program descri ptor _t pgm desc,
char * i mage,
i nt byt es) ;

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active variants only or
interpret_classesmodes; see pages 3-13 and 3-14).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type nore _colors is (X, y, 2z);
for nore _colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm get _enum_ i mage service expects a position, not a value. You may use
the predefined language attributes *pos and ’val, respectively, to convert from value
to position and from position to value.

pgm_desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm_open_pr ogr amor dm open_pr ogr am aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)



C Interface

image
points to a character array to which dm get _enum i nage will return the image

of the enumeration literal corresponding to position in the enumerated type associ-
ated with item

bytes

refers to a variable that contains an integer value indicating the size in bytes of the
array pointed to by image. If the image of the enumeration literal exceeds the
amount of space specified by bytes, an error will occur.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm_desc does not refer to a valid, open program descriptor.
¢ [temdoes not refer to an eligible variable.

® The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).

* |tem contains invalid expanded name syntax.

* The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due

to modes active variants_only or interpret_classes (see pages 3-13 and
3-14).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

* The type of the variable specified by itemis not an enumerated type.

* The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

® The size of the string referred to by image and bytesis too small to hold the
image of the enumeration constant specified by itemand position.

® The address range specified by image..image+bytes-1 is not a valid address
range in the monitoring process.

Dm_Get_Enum_Val — Obtaining Enumeration Constant Values

This routine is invoked to obtain the value of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-
gram.

3-29



Data Monitoring Reference Manual

3-30

Declaration

#i ncl ude <dat anon. h>

extern

i nt

dm get _enumval (char * item
i nt position,
i nt * val ue,
program descriptor _t pgm desc) ;

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data_item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active variants only or
interpret_classesmodes; see pages 3-13 and 3-14).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type nore colors is (X, y, 2Z);
for nore colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm get _enum val service expects a position, not a value. You may use the
predefined language attributes ’pos and ’val, respectively, to convert from value to
position and from position to value.

value

points to an integer variable to which dm get _enum val will return the value of
the enumeration literal corresponding to position in the enumerated type associated
with item.

pgm_desc

refers to a variable that contains a valid program descriptor that has been returned on
a previous call to dm open_pr ogr amor dm open_pr ogr am aux (see pages
3-7 and 3-9, respectively, for an explanation of these routines)



C Interface

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm_desc does not refer to a valid, open program descriptor.
¢ [temdoes not refer to an eligible variable.

® The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).
* |tem contains invalid expanded name syntax.

* The target program is not executing and item refers to a variable with a
dynamic size, shape, address or requires a value from the target process due
to modes active variants_only or interpret_classes (see pages 3-13 and
3-14).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

* The type of the variable specified by itemis not an enumerated type.

* The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

® The address specified by valueis not a valid address in the monitoring pro-
cess.

Dm_Line_Info — Obtaining Program Counter Location

This routine provides information about the location in a program as specified by the pc
parameter. It attempts to locate the function, file, and line number at which the PC resides.

If DWARF information is available, it returns the routine name and file/line-number. If
not, it returns the enclosing function’s raw symbol name and an offset.

Declaration

#i ncl ude <dat anon_aux. h>

extern
i nt
dmline_info (void * pc,
program descri ptor_t pgm
i nt * |ine,
char * file,
i nt file_length,
char * routine,
i nt routine_| ength);

3-31



Data Monitoring Reference Manual

Parameters
pc
The program counter to be described.

pgm

A valid program descriptor as returned by dm open_programor
dm open_pr ogr am aux (see pages 3-7 and 3-9, respectively, for an explanation
of these routines).

line

A pointer to an integer. If a line number is determined for the PC, the value will be
stored through the pointer. If not, a zero will be stored through the pointer.

file

A pointer to a character array in which the name of the file will be stored. If no file
name can be found, a zero-byte will be stored.

file_length

The number of characters in the character array whose address is passed in the file
parameter. If the file description exceeds the size of the character array as specified
by the file_length parameter, the description will be truncated.

routine

A pointer to a character array in which the routine associated with the PC will be
stored. If no routine name can be found, a zero-byte will be stored.

routine_length

The number of characters in the character array whose address is passed in the rou-
tine parameter. If the routine description exceeds the size of the character array as
specified by the routine_length parameter, the description will be truncated.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_stri ng for a description of the error.

Scanning Target Programs for Variables

3-32

The genericdm | i st and dm f i nd routines traverse the internal symbol tables of target
program files and call a user-specified procedure for each item in a list. The list is formed
by examining the symbol tables in relation to a set of requirements that has been defined
by parameters specified on each call to these routines.



C Interface

Dm_List — Scanning Target Programs for Variables

This routine is invoked to scan target programs for variables. It traverses the internal sym-
bol tables of target program files and calls a user-specified function for each item in a list.
The list is formed by examining the symbol tables in relation to a set of requirements that
has been defined by parameters specified on each calltodm | i st .

You can use this routine to search for all named scopes, all eligible variables, or all com-
ponents of an eligible variable of a composite type (array, structure, or record).

Declaration

#i ncl ude <dat anmon. h>

extern
i nt
dmlist (dmlist_nodes node,
char * qualifier,
char * restriction,
i nt do_conponent s,
program descri ptor _t pgm desc,
voi d (* action)());
Parameters
mode

refers to a variable that contains an enumeration constant indicating the list mode
that is to be used to form the list. These constants are defined in <dat anon. h> as
follows: | i st _scopes,|ist_variabl es,and| i st_conponents.

qualifier

points to a location that contains a string whose interpretation depends upon the
value specified by mode

If the value of modeis setto | i st _scopes, qualifier should contain a null string or
the name of a scope. If qualifier contains a null string, all scopes are listed; other-
wise, the only scopes that are listed are those contained immediately within the
scope identified by qualifier.

If the value of mode is setto | i st _vari abl es, qualifier should contain a null
string or the name of a global scope (for example, routine). If qualifier contains a
null string, all global scopes are considered.

If the value of modeis set to | i st _conponent s, qualifier should contain the
expanded name of a composite variable (array, structure, or record).

restriction

points to a location that contains a null string or a valid regular expression as speci-
fied by r egexpr (3G . The regular expression is applied to the fully expanded
name of the list item as it would be passed to the user-specified function pointed to
by action.

If redtriction contains a null string, no restriction is applied.

3-33



Data Monitoring Reference Manual

3-34

do_components

refers to a variable that contains an integer value indicating whether or not compo-
nents of a composite variable are to be listed in | i st _vari abl es mode. A non-
zero value indicates that components of a composite variable are to be included in
the list. If the variable listed is not a composite type, this parameter has no effect.

If the value of mode is setto | i st _scopes orl i st_conponent s, the do_com-
ponents parameter is ignored.

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm open_pr ogr amor dm open_pr ogr am aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines).

action

refers to a variable that contains the address of a user function that is to be called for
each item in the list. The action function will be called as if it had the following dec-
laration:

void action (char *item
program descriptor _t pgm desc,
int *quit);
item
points to a string that contains the expanded name of the item
pgm_desc
refers to the program descriptor that is associated with item
quit

points to an integer whose value indicates whether or not list processing
should continue. The value of this integer is always set to zero on entry to the
action function. If you set the value of this integer to nonzero, list processing
will stop upon return from the current action call; otherwise, list processing
continues.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-

® Pgm desc is not a valid, open program descriptor, or it was omitted and

there are no valid, open program descriptors.

® Restriction is not null and is an invalid regular expression as defined by

regexpr (3G .



C Interface

* An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty
list; that is, dm | i st returns with a value of zero without calling the user-defined action
procedure.

Dm_Find — Scanning Target Programs for Variables--Enhanced

This routine provides list operations much in the manner of dm | i st , with additional
flexibility through flags that refine the scan criteria.

Declaration

#i ncl ude <dat anon. h>

#define DM | MVEDI ATELY_NESTED FLAG 1
#define DM LI ST _COWPONENTS FLAG 2
#define DM NO_FI LES | N_SCOPES FLAG 4
#define DM CHI LD UNI TS_AS CHI LDREN FLAG 8
#define DM GLOBAL_VARS ONLY_FLAG 16

#def i ne DM package _entity 0
#define DM function_entity 1
#define DM file_entity 2
#define DM variable_entity 3
#def i ne DM conponent _entity 4
#define DMtype_entity 5
#defi ne DM comon_bl ock_entity 6

typedef void (*find_action) (char * item
program descriptor_t pgm

i nt obj _type,
void * context,
int * quit);
extern
i nt
dmfind (dmlist_nodes node,
char * qualifier,
char * restriction,
i nt fl ags,
program descri ptor _t pgm desc,
find_action action,
void * context);

3-35



Data Monitoring Reference Manual

Parameters
mode

refers to a variable that contains an enumeration constant indicating the list mode
that is to be used to form the list. These constants are defined in <dat armon. h> as
follows: | i st _scopes,|ist_variabl es,and| i st_conponents.

qualifier

points to a location that contains a string whose interpretation depends upon the
value specified by mode

If the value of modeis set to | i st _scopes, qualifier should contain a null string or
the name of a scope. If qualifier contains a null string, all scopes are listed; other-
wise, the only scopes that are listed are those contained immediately within the
scope identified by qualifier.

If the value of modeis set to | i st _vari abl es, qualifier should contain a null
string or the name of a global scope (for example, routine). If qualifier contains a
null string, all global scopes are considered.

If the value of modeis setto | i st _conponent s, qualifier should contain the
expanded name of a composite variable (array, structure, or record).

restriction

points to a location that contains a null string or a valid regular expression as speci-
fied by r egexpr ( 3G) . The regular expression is applied to the fully expanded
name of the list item as it would be passed to the user-specified function pointed to
by action.

If restriction contains a null string, no restriction is applied.
pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm open_pr ogr amor dm open_pr ogr am aux (see
pages 3-7 and 3-9, respectively, for an explanation of these routines).

context

a pointer to a structure containing information to be communicated to the called
function for all matches

flags
an integer value which contains zero or more flags OR’d together:
DM_IMMEDIATELY NESTED FLAG

When no qualifier is specified, presence of this flag causes nested scopes to be
skipped when processing a scope.

3-36



C Interface

DM _LIST COMPONENTS FLAG

When this flag is set, components of composite objects (records, structures,
classes) are listed (even when not in list components mode).

DM NO FILES IN SCOPES FLAG
When this flag is set, source file entries in the global scope will not be created.
DM _CHILD UNITS _AS CHILDREN FLAG

Applicable to Ada programs, when this flag is supplied, child units (e.g. child
packages) are treated as children of the parent package, as opposed to parent
units themselves.

For example:

package outer is

end outer;

package outer.inner is
end out er.inner;

If DM_CHILD UNITS AS CHILDREN FLAG is set, out er. i nner is
described as a child of out er. Otherwise, out er . i nner is described as a
global unit.

DM_GLOBAL VARS_ONLY FLAG

When this flag is set, nested scopes are ignored and only global variables are
considered for matches.

action

The address of a user-specified function which is called for each item that satisfied
the find criteria.

The function is passed the following parameters:
item

points to a string that contains the expanded name of the item
pgm _desc

refers to the program descriptor that is associated with item
obj_type

An integer value which identifies the kind of object described by item. The
values are one of DM_* entity values defined as shown above.

context

a pointer to a structure containing information to be communicated to the
called function for all matches

3-37



Data Monitoring Reference Manual

quit

points to an integer whose value indicates whether or not list processing
should continue. The value of this integer is always set to zero on entry to the
action function. If you set the value of this integer to nonzero, list processing
will stop upon return from the current action call; otherwise, list processing
continues.

The function should return a zero value if the current item should be not be pro-
cessed further. For example, if the current item was a composite type, and the
dm fi nd call includes parameters which would normally subsequently list compo-
nents of the object, returning zero would prevent that action.

Similarly, if the current item is a scope, returning false will prevent items within the
scope from being processed.

Otherwise, the function should return a non-zero value.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

® Pgm desc is not a valid, open program descriptor, or it was omitted and
there are no valid, open program descriptors.

® Redtriction is not null and is an invalid regular expression as defined by
regexpr (30G).

* An exception is propagated from the call to the user-defined action proce-
dure.

Note that it is not an error to specify parameters that result in the formation of an empty
list; that is, dm f i nd returns with a value of zero without calling the user-defined action
procedure.

3-38



Organization

4
Fortran Interface

The Data Monitoring library, / usr/ 1 i b/ | i bdat anon. a,. contains Fortran interfaces
that allow you to monitor variables in executing processes. These interfaces allow you to
specify executable programs that contain Ada, C, or Fortran variables to be monitored;
obtain and modify the values of selected variables; and obtain such information about the
variables as their virtual addresses, types, and sizes. Interfaces that allow you to obtain
and modify values are of two types: those that accept and return values expressed in sym-
bolic formats that are appropriate for the respective variables and those that accept and
return values without symbolic formatting

This chapter provides all of the information that you need to use the Fortran Data Monitor-
ing interfaces. “Types and Objects” on page 4-1 describes type and object declarations that
are used by the Fortran interfaces to Data Monitoring. “Error Processing” on page 4-4
presents the enumerations and subprograms which describe error conditions. The remain-
ing sections explain the procedures for using each of the Fortran routines in the Data Mon-
itoring library. See “Fortran Examples” on page C-1 for examples using the Fortran inter-
face and instructions.

Types and Objects

Descriptors

This section describes type and object declarations that are used by the Fortran interfaces
to Data Monitoring. “Descriptors” on page 4-1 presents the types of descriptors that are
used. “Enumerations” on page 4-3 presents predefined names that will assist you in deter-
mining the attributes of a variable.

Two types of descriptors are used by the Fortran interfaces to Data Monitoring: a program
descriptor, which is used to represent a particular target program or process, and an object
descriptor, which is used to represent a particular target variable associated with a target
program or process. The header file / usr/i ncl ude/ dat anon_. h contains pre-
defined names that will assist you in declaring these descriptors.

The program descriptor is declared as follows:



Data Monitoring Reference Manual

4-2

| NTEGER* 4 pgm desc (on 32-bit platforns)
| NTEGER* 8 pgm desc (on 64-bit platforns)

A descriptor of this type is created by the dm _open_pr ogr amfunction and destroyed by
the dm cl ose_pr ogr amfunction (see pages 4-8 and 4-9, respectively, for explanations
of these functions). It is used by the dm _get _descri pt or function (see page 4-14 for
an explanation of this function).

The object descriptor is declared as follows:
| NTEGER* 4 obj desc(DM descri ptor_si ze)
DM descri pt or _si ze is declared in the header file.

The elements in the obj _desc array correspond to the components of the C structure of
type obj ect _descri pt or _t that is presented in the description of the C interface to
Data Monitoring on page 3-1. The following names, which are of integer type and are
declared in the header file, will assist you in accessing appropriate elements in the array.

paraneter ( DMvalid = 1)

paraneter ( DM private = 2)

paraneter ( DM code = 3)

paraneter ( DM target_ address = 4)

paraneter ( DMvirtual _address = 5)

paraneter ( DM bit_size = 6)

paranmeter ( DM bit_offset = 7))

paraneter ( DM signed = 8)

paraneter ( DM extra_infol = 9)

paraneter ( DM extra_info2 = 10)

paraneter ( DM | ower bound =11 ) ! real*8 aligned
paraneter ( DM upper_bound =13 ) ! real*8 aligned
paraneter ( DM | anguage = 15)

paraneter ( DM conponent code =16 )

paraneter ( DM conponent_bit _size = 17 )

paraneter ( DM conponent _si gned = 18 )

paraneter ( DM num di nensi ons =19)

paraneter ( DM | ower _di mensi on =20 ) ! array[10]
paraneter ( DM upper _di mensi on = 30 ) ! array[10]

An object descriptor is created by the dm get _descri pt or function (see page 4-14 for
an explanation of this function). It contains type, size, and address information about the
target variable. It holds sufficient information to make subsequent modification or refer-
ence of the associated target variable very efficient. The object descriptor is used by the
dm peek, dm poke, dm get val ue, and dm set _val ue functions (see pages 4-16,
4-17, 4-18, and 4-20, respectively, for explanations of these functions).

Note that the parameters DM | ower _bound and DM upper _bound specify locations
in the obj _desc array which actually contain r eal * 8 values; utilize equivalence state-
ments to obtain the information from these components.

Note that the DM | ower _di nensi on and DM _upper _di nensi on parameters specify
locations in the obj desc array which are arrays themselves (each of length 10). The first
element in each of the arrays corresponds to the bound of the first dimension, the second
element to the second dimension, etc.



Fortran Interface

Enumerations

The header file / usr/ i ncl ude/ dat anon_. h also contains predefined names that will
assist you in determining the attributes of a variable as described by the components of an
object descriptor.

The following names, which are of integer type and are declared in the header file, are
valid values for the obj _desc(DM_| anguage) element in the obj _desc array
described in the preceding section.

paraneter ( DM | ang_C89 =1)
paraneter ( DMl ang_C =2)
paraneter ( DM | ang_Ada83 =3)
paranmeter ( DMIlang_C plus _plus = 4)
paraneter ( DM | ang_Cobol 74 =5)
paraneter ( DM | ang_Cobol 85 =6 )
paraneter ( DM ang_Fortran77 =7)
paraneter ( DM | ang_Fortran90 =8)
paraneter ( DM | ang_Pascal 83 =9)
paraneter ( DM | ang_Modul a2 = 10)
paraneter ( DM | ang_Ada95 =11)

The following names, which are of integer type and are declared in the header file, are
valid values for the obj desc(DM code) and the obj desc(DM conpo-
nent _code) elements in the obj _desc array.

paraneter ( DM enuneration_code = 0 )
paraneter ( DM fl oat_code =1)
paraneter ( DM fixed_code =2)
paraneter ( DM.integer_code =3)
paraneter ( DM record_code =4)
paraneter ( DM array_code =5)
paraneter ( DM char_code =7)
paraneter ( DM poi nter_code =8)
paraneter ( DM conpl ex_code =9)
paraneter ( DM comon_code =10)
paraneter ( DM unknown_code =11)

These names are explained as follows:
DM enuner ati on_code

Ada or C enumerated types
DM fl oat _code

floating point types
DM fi xed_code

Ada fixed point types
DM i nt eger _code

integer types

4-3



Data Monitoring Reference Manual

DM record_code

Ada record or C structure types
DM array_code

array types
DM char _code

Ada character, C char , and Fortran char act er
DM poi nt er _code

Ada access types, C pointer types
DM conpl ex_code

Fortran complex types
DM common_code

Fortran common blocks
DM unknown_code

reserved for unrecognized types

A variable’s code is required for interpreting the bits associated with the variable. The
/usr/include/ dat anon_t abl es_. h header file includes a code_nanes array
that maps these names to their corresponding enumeration images as well as a | an-
guage_nanes array that maps the parameters describing languages (as shown above) to
their corresponding enumeration images.

Error Processing

When a call to one of the Data Monitoring subprograms fails, the following steps are typi-
cally performed:

® The error code for the last failure associated with the current subprogram
call is recorded.

When available, a description of the error is also recorded. This descrip-
tion may include a system call, an er r no value, or other information that
is specific to the parameters supplied on the subprogram call.

® Avalue of - 1 is returned from the subprogram.

Both the error code and the description of the error can be retrieved as shown below by the
declarations related to error processing. These declarations, which are provided in the file
/usr/incl ude/ dat amon_. h, are as follows:



Fortran Interface

i nt eger DM _NOVEM ! Insufficient programmenory for operation

i nteger DM EXCEPT ! Exception raised during operation

integer DM BADENUM ! Illegal or unexpected enumliteral/val ue

i nt eger DM _SYNTAX I Illegal char. in expanded var_nane/ expression
i nt eger DM _NODWARF I Insufficient debug info (DWARF) avail abl e

i nt eger DM NOTVAR ! Specified name is not a variable or constant
integer DMDYNAM C | (bject has dynam c size, shape, or address
integer DM NOTRECORD ! (bject not a record, structure, or common bl k
integer DM NOTARRAY ! (bject is not an array

integer DM NOTFOUND ! Could not find pkg/variabl e/ conponent

i nt eger DM _RANGE I Specified val ue/ subscri pt out-of-range

i nt eger DM BADDI M I Insufficient/extra subscripts for array

i nteger DM NCELF I Unrecogni zed/ I |  egal ELF object file fornat
i nt eger DM BADPI D ! Invalid (or missing) pid for; shared |ibs

i nt eger DM _USRIVAP ! usermap(3C) failed to map process; bad pid?
integer DM SYMBOLS ! Insufficient synbol table info for operation
i nteger DM BADDWARF ! Unexpected/illegal/m ssing debug information
i nteger DM AMBI G ! Specified identifier is anbi guous

integer DM SERVICE | Systenilibrary service call failed

integer DM NAME2BI G ! Expanded nane too | ong

integer DM NOTOPEN ! dm open_program cal |l ski pped/unsuccessful

i nteger DM NOFI LE ! Coul d not open specified programfile
integer DM BADPROG ! Bad program descriptor specified

integer DM BADDESC ! Bad object descriptor specified

i nt eger DM _UNSUP ! Unsupported operation or type

integer DM COVWGCSI T | Conposite type/object ! allowed for operation
integer DM BUF2SMALL ! User-specified buffer too snall

i nteger DM NOBI TS ! Operation requires byte-aligned types

i nt eger DM BADREG I Illegal regular expression

paraneter ( DM _NOVEM =0)

paraneter ( DM EXCEPT =1)

paraneter ( DM BADENUM =2)

paraneter ( DM SYNTAX =3)

paraneter ( DM _NODWARF =4)

paraneter ( DM NOTVAR =5)

paraneter ( DM DYNAM C =6)

paraneter ( DM NOTRECORD = 7 )

paraneter ( DM NOTARRAY = 8 )

paraneter ( DMNOTFOUND = 9 )

paraneter ( DM RANGE =10)

paraneter ( DM BADDI M =11)

paraneter ( DM NOELF =12)

paraneter ( DM BADPI D =13)

paraneter ( DM USRVAP =14)

paraneter ( DM SYMBOLS =15)

paraneter ( DM BADDWARF = 16 )

paraneter ( DM AMBI G =17 )

paraneter ( DM SERVI CE =18)

paraneter ( DM NAVE2BIG = 19 )

paraneter ( DM NOTOPEN =20)

paraneter ( DM NOFI LE =21)

paraneter ( DM BADPROG =22)

paraneter ( DM BADDESC =23)

paraneter ( DM _UNSUP =24)

paraneter ( DMCOWCSIT = 25)

paraneter ( DM BUF2SMALL = 26 )

paraneter ( DM NOBI TS = 27)

paraneter ( DM BADREG =28)

4-5



Data Monitoring Reference Manual

Functions

integer function dmget_error_code
character *(*) function dmget_error_string

The header file /usr/include/ datamon_t abl es_. h includes an
error_code_nanes array that maps the parameters describing error codes (as shown
above) to their corresponding enumeration images.

In the sections that follow, all of the Fortran Data Monitoring functions contained in the
Data Monitoring library are grouped and presented according to function. The following
information is provided for each function:

¢ A description of the function
¢ Detailed descriptions of each parameter
¢ The return value

Figure 4-1 illustrates the approximate order in which you might call the functions from an
application program.



Fortran Interface

N

dm_open_program

A J

dm_get_descriptor

Obtain
Value Of

Yes

Variable?

Y Modify
Value Of

Variable?

-

dm_get_value dm_set_value

dm_close_program

l

Figure 4-1. Fortran Data Monitoring Call Sequence

With the sequence illustrated by Figure 4-1, you first obtain the object descriptors for the
target variables whose values you wish to obtain or modify; subsequently, you specify an
object descriptor on each call to dm _get _val ue or dm set _val ue. Obtaining the
object descriptors involves symbol table searches; it may require a significant amount of
time for time-critical applications. For such applications, it is recommended that you
invoke dm get _descri pt or during application initialization and then use the resultant
descriptor(s) on dm get _val ue and dm set _val ue calls during the time-critical sec-
tions of the monitoring application.



Data Monitoring Reference Manual

Target Program Selection and Identification

This section presents the subprograms that allow you to (1) specify the target program for
Data Monitoring, (2) obtain and close a program descriptor, (3) obtain and change the cur-
rent program descriptor, and (4) obtain information about a program descriptor.

Dm_Open_Program — Obtaining Program Descriptors

This function is invoked to specify the target program for Data Monitoring. You must
invoke dm_open_pr ogr amprior to invoking any other function in the Data Monitoring
library. Subsequent calls to dm get _descri pt or to obtain an object descriptor for a
target variable require an open program descriptor. Object descriptors that you have
obtained following a previous dm_open_pr ogr amcall continue to be valid; you may
use them to obtain or modify the values of the target variables with which they are associ-
ated.

The dm_open_pr ogr amcall requires that portions of the target program file be read
from disk into memory and that an internal symbol table be built. These procedures can
use significant amounts of memory; the amounts used depend upon the size of the target
program and the number of variables that can be monitored. You are advised not to invoke
dm_open_pr ogr amfrom time-critical sections of your application. The memory asso-
ciated with a program descriptor can be reclaimed with a call to dm cl ose_pr ogram

Function Definition

i nteger function dm open_program (pgm nane,

pi d,
pgm desc)
character*(*) pgm nane
i nteger*4 pi d
i nteger*4 pgm desc
Parameters
pgm_name

refers to a character string that contains a standard UNIX path name identifying the
program to be monitored. Note that a full or relative path name of up to 1024 char-
acters can be specified.

pid
refers to a variable that contains an integer value representing the process identifica-

tion number of the target executable program specified by the pgm_name parameter.

If the value of pid is 0, then dm _open_pr ogr amwill attempt to locate a process
that is executing on the system with the specified path name. If successful, the corre-
sponding process identification number of that process is used; otherwise, it is as if
an invalid value for pid has been specified.



Fortran Interface

Under specific conditions, the value of pid may be specified as - 1. In this case, the
target program does not need to be executing. These conditions are as follows: 1) the
target program is statically linked (that is, it does not contain any shared libraries);
2) the variables of interest have static addresses, sizes, and shapes; and 3) subse-
quent use of Data Monitoring subprograms is confined to one or more of the follow-

mg:
e dm get type_nane,dm get type nane_| ong
e dm get _error_code
e dmoget_error_string
* dm open_program
e dm cl ose_program
pgm _desc

refers to a variable to which dm open_pr ogr amwill return the program descrip-
tor

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get _er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

* The file associated with pgm_name could not be located or opened for read.

® The specified pid was a value other than -1 and did not identify an execut-
ing process.

® The specified pid was -1 but the target program associated with pgm_name
requires shared libraries.

* The specified pid was 0 but no target process associated with pgm_name
could be located.

* The file associated with pgm_name s not a valid ELF executable file.

Dm_Close_Program — Closing Program Descriptors

This function is used to free internal storage that is being used to hold symbolic informa-
tion associated with the specified program descriptor. After invoking this function, you
may not call any other functions with the specified program descriptor. Object descriptors
for target variables that have already been obtained by calls to dm _get _descri pt or

(see page 4-14), however, are still valid; for example dm_get _val ue,

dm set val ue, dm peek, and dm poke operations can still occur.



Data Monitoring Reference Manual

Function Definition

i nteger function dmcl ose_program (pgm desc)
integer*4  pgm desc

Parameters

pgm_desc

refers to a variable that contains a valid program descriptor that has been obtained
from a previous call to dm open_pr ogr am(see page 4-8 for an explanation of
this function)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error _code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm_descis not a valid, open program descriptor

Dm_Set_Interest_Threshold — Setting the Interest Threshold

4-10

An interest threshold refers to an integer value which controls the visibility of target vari-
ables. The default value for this setting is 0. All eligible variables have an interest value
which is set by their compiler. By default, all eligible variables have an interest value of
zero. The Ada compiler allows users to change the interest value of selected variables via
the implementation-defined pragma INTERESTING. (See Annex M of the MAXAda Ref-
erence Manual (0890516) for more information on pragma INTERESTING). The interest
threshold controls whether an otherwise eligible variable is visible to the subprograms in
the Data Monitoring library. If the interest value of a variable is below the interest thresh-
old, it is as if the variable did not exist. Once set, the interest threshold remains associated
with the specified target program until reset by a subsequent dm set _i nterest -
t hreshol d call.

Note that subsequent changes to the interest threshold have no effect on object descriptors
already obtained by previous dm get descri pt or calls.

Function Definition

i nteger function dmset _interest_threshold (threshold,
pgm desc)
integer*4 threshold
integer*4  pgm desc



Fortran Interface

Parameters
threshold

refers to an integer value which will be the new interest threshold for the target pro-
gram corresponding to pgm_desc.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm open_pr ogr am(see page 4-8 for an explanation of this routine)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm descis not a valid, open program descriptor

Dm_Set_Variant_Handling — Setting Ada Record Variant Sensitivity

The dm set _vari ant _handl i ng routine defines the mode in which Ada record vari-
ants are handled. By default, the active variants only mode is set to f al se; thus look-up
subprograms within the Data Monitoring library are not sensitive to a record variant’s
governing discriminant, inasmuch as all variants are considered active at all times. Setting
the active variants only mode to t r ue will cause look-up subprograms within this pack-
age to determine the value of an enclosing record variant’s governing discriminant when
considering components within the record (see section 3.8.1(2-21) of the Ada 95 Refer-
ence Manual for more information on Ada record variants). In general, this sensitivity
requires that the target program be executing, because the value of discriminants must be
obtained from the target process. If active variants only mode is t r ue and a component
of a record is contained in an inactive variant, it is as if the component did not exist. The
active variants_only mode has no effect on C or Fortran variables.

If this mode is set to t r ue and subsequent calls to subprograms within this package
require the value of discriminants from the target program and those values are in memory
and the target program is not executing, those subprogram calls will fail as described sub-
sequently in this chapter. The setting of the active variants only mode is associated with
the specified target program and remains in effect until a subsequent call to dm set _ -
vari ant _handl i ng.

Note that subsequent changes to the active variants only mode have no effect on object
descriptors which have already been obtained via a previous dm _get _descr i pt or call.

Function Definition

i nteger function dmset _variant_handling (handling,
pgm desc)
integer*4  handling
integer*4  pgm desc



Data Monitoring Reference Manual

Parameters
handling

refers to an integer value which controls the handling of variants for Ada records for
the target program corresponding to pgm_desc. Setting the value to 1 will cause
sensitivity to record variant’s governing discriminants as described above. Setting
the value to O causes all variants to be considered active.

pgm_desc

refers to a program descriptor obtained via a previous call to dm open_pr ogr am
and has not yet been closed (see page 4-8 for an explanation of this subprogram)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm descis not a valid, open program descriptor

Dm_Set_Class_Interpretation — Interpreting Class-Wide Types

4-12

The dm set _cl ass_i nt er pret at i on routine sets the interpret_classes mode for the
specified target program. This mode controls the interpretation of values of variables of
Ada class-wide types. By default, the interpret_classes mode is f al se. Thus values of
variables of class-wide types are interpreted using the specific type of the root of the class-
wide type (see section 3.4.1(3-5) of the Ada 95 Reference Manual for more information on
Ada class-wide types). If the mode is set to t r ue, then values of variables of class-wide
types are interpreted using the specific type associated with the actual value of the vari-
able. In general, setting the interpret_classes mode to t r ue requires that the target pro-
gram be executing, because the value of the variable’s tag (see section 3.9 of the Ada 95
Reference Manual for more information on tags and type extensions) is required to find
the specific type covered by the root of the class-wide type.

Consider the following Ada example:

package p is

typet is
record
X . integer;
end record;
type e is newt wth
record
y . integer;
end record;
object_t : t'class :=1t’(x => 4);
object e : t'class := e (x => 1, y => 2);
end p;



Fortran Interface

In the table below, the first column represents the string passed to look-up subprograms
such as dm get _descri pt or and dm get val ue. The second and third columns
represent whether such calls would succeed, based on the specified setting of the inter-
pret_classes mode:

String Descriptor interpret_classes mode
0 1
“p.object_t.x" succeed succeed
“p.object_t.y” fail fail
“p. object_e.x” succeed succeed
“p.object_e.y” fail succeed

Of course the example in the second row, “ p. obj ect _t.y”,isn’t very interesting since
the value of that class-wide variable really is of type “t " and therefore doesn’t have a
component named “y” . However, the example in the fourth row, “ p. obj ect _e. y”
demonstrates the point of the interpret_classes mode; since the value of that class-wide
actually is of type “ €” , a type extended from the specific type of the root of the class-wide
type, it does contain a component called “ y” .

Function Definition

i nteger function dmset _class interpretation (interpret,
pgm desc)
integer*4 interpret
integer*4  pgm desc

Parameters
interpret

refers to an integer value which controls the interpretation of values of variables of
Ada class-wide types for the target program corresponding to pgm_desc. Setting the
value to 1 will cause the specific type of the value of the variable to be based on the
actual value of the variable. Setting the value to O will cause the specific type of the
value of the variable to be obtained directly from the specific type of the root of the
class-wide type.

pgm_desc
refers to a program descriptor obtained via a previous call to dm open_pr ogr am
and has not yet been closed (see page 4-8 for an explanation of this subprogram)
Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get _er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

4-13



Data Monitoring Reference Manual

* Pgm descis not a valid, open program descriptor

Obtaining Object Descriptors for Variables

To obtain the value of a target variable or to modify a target variable, information about
the variable must be located from the target program file. Such information includes the
variable’s type, size, shape, and address. This information is collected and stored in an
internal descriptor. Part of the process of obtaining an internal descriptor involves creating
a memory mapping between the target variable and the monitoring process’s virtual
address space; memory mapping makes subsequent access to target variables from the
monitoring process extremely efficient. After the internal descriptor for a variable has
been defined, dm get _val ue and dm set _val ue operations can occur (see pages
4-18 and 4-20, respectively, for explanations of these subprograms).

The amount of time required to obtain the descriptor may be significant for applications
with stringent performance constraints.

The lifetime of an object descriptor exceeds the lifetime of its corresponding program
descriptor; that is, the program descriptor associated with the program containing the tar-
get variable may be closed (thereby freeing significant memory associated with target pro-
gram symbol tables), but the object descriptors remain valid.

Note that when you obtain an object descriptor for a variable, its size, shape, type, and
address are frozen— for example, if the variable involves pointer indirection (ptr. al | ),
the value of the pt r at the time of the call to dm get _descri pt or is used to determine
the final address of the ptr. al | . Subsequent calls to dm_get _val ue or
dm set _val ue with the resultant object descriptor will refer to the address calculated
during the dm get _descri pt or call, regardless of the current value of the pt r . If you
wish to re-evaluate the address of the ptr. al | considering the current value of ptr,
then call dm get _descri pt or again. This applies not only to variables involving
pointer indirection, but records whose size and shape can change as the target process exe-
cutes, as well as variables of class-wide types.

Part of the process of obtaining an object descriptor involves creating a memory mapping
between the target variable and the monitoring process’s virtual address space; memory
mapping makes subsequent access to target variables from the monitoring process
extremely efficient. After the object descriptor for a variable has been defined,
dm get _val ue, dm set _val ue, dm peek, and dm poke operations can occur (see
pages 4-18, 4-20, 4-16, and 4-17 respectively, for explanations of these routines).

Dm_Get_Descriptor — Obtaining Object Descriptors

4-14

This function is invoked to obtain an object descriptor for a specified variable.

Function Definition

i nteger function dmget_descriptor (item
no_naep,
pgm desc,



Fortran Interface

obj _desc)
character*(*) item
i nteger*4 no_rmap
i nteger*4 pgm desc
i nteger*4 obj desc(DM descri ptor_si ze)
Parameters
item

refers to a character string that contains the expanded name of the target variable for
which you wish to obtain the object descriptor

no_|i

refers to a flag that contains an integer value that indicates whether or not address
translation (mapping) is to occur. Specify a zero value if the monitoring process’s
virtual address space is to be mapped to the target variable. Specify a nonzero value
under one of the following circumstances:

3. If the target program is executing and the target variable is already
accessible at the same virtual address in the monitoring process as in
the target process (in this case, mapping is not necessary)

4. TIf the target program is not executing and you simply wish to obtain
information about the target variable (its type, size, virtual address,
and so on)

If the target program is not executing and you set no_map to zero, the call to
dm get _descri pt or will fail.

pgm_desc

refers to a valid program descriptor that has been returned from a previous call to
dm open_pr ogr am(see page 4-8 for an explanation of this function).

obj_desc

refers to an array to which dm _get _descr i pt or will return the object descriptor
for the variable specified by item. The size of the array is specified by the integer
constant DM descri pt or _si ze, which is defined in the / usr/i ncl ude/
dat amon_. h header file. Each component of the array corresponds to a different
piece of information about the variable; see “Descriptors” on page 4-1 for more
information.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm desc does not refer to a valid, open program descriptor.

¢ [temdoes not refer to an eligible variable.

4-15



Data Monitoring Reference Manual

¢ The specified variable could not be found in the target program’s symbol
tables (perhaps the user forgot to compile with the debug (- g) option).

® [tem contains invalid expanded-notation syntax.

® The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active variants_only or interpret_classes (see pages 4-11 and
4-12).

¢ The target variable could not be mapped into the monitoring process’s
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

Obtaining or Modifying Target Variables

This section describes the subprograms that allow you to obtain or modify the values of
target variables. As explained in “Obtaining Object Descriptors for Variables” on page
4-14, these subprograms require the specification of the target variable via an obj ect _ -
descri ptor.

Dm peek and dm poke (pages 4-16 and 4-17) allow you to respectively obtain and mod-
ify the value of variables directly. Dm get val ue and dm set _val ue (pages 4-18
and 4-20) allow you to respectively obtain and modify the value of variables using an
ASCII representation of the value.

Dm_Peek — Peeking at Variables

4-16

This function is invoked to read the value of a variable in the target process without con-
version.

Function Definition

i nteger function dmpeek (fromtarget,
to_buffer,
byt es)
integer*4 fromtarget (DM descriptor_size)
i nteger*1 to_buffer(*)
i nteger*4 byt es

Parameters

from target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to read. This descriptor is obtained from a previous
call to dm get _descri pt or (see page 4-14 for an explanation of this function).



Fortran Interface

The size of the array is specified by the integer constant DM descr i pt or _si ze,
which is defined in the / usr /i ncl ude/ dat anon__. h header file.

to_buffer

refers to a byte array in the monitoring process’s address space to which the raw
value of the target variable specified by from_target is to be copied

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the array specified by to_buffer. For composite types
(arrays, records and structures), the transfer of data occurs as if a bit-stream copy
were issued using the lowest bit-address of the variable specified by from target as
the source and the lowest bit-address of the array specified by to_buffer as the desti-
nation. The number of bits copied from the source to the destination depends upon
the number of bits required by from target.

For noncomposite types, the value will be right justified in the array specified by
to_buffer (sign and zero extension for unused bits placed in the first word). No other
bit-pattern conversion takes place.

The transfer of data from the source to the destination is effected via the most appro-
priate machine instruction available (for example, a short value will be stored via a
single instruction that transfers two bytes).

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* From target is not a valid object descriptor.

* The address range specified by to_buffer .. to_buffer+bytes-1 are not valid
addresses in the monitoring processes address space.

Dm_Poke — Poking at Variables

This function is invoked to modify the value of a variable in the target process without
conversion.

Function Definition

i nteger function dm poke (to_target,
frombuffer,
byt es)
integer*4 to_target (DM descriptor_size)
integer*l to_buffer(*)
integer*4  bytes

4-17



Data Monitoring Reference Manual

Parameters
to_target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to modify. This descriptor is obtained from a previ-
ous call to dm get _descri pt or (see page 4-14 for an explanation of this func-
tion). The size of the array is specified by the integer constant DM descr i pt or _-
si ze, which is defined in the / usr/ i ncl ude/ dat anon_. h header file.

from_buffer

refers to a byte array in the monitoring process’s address space that contains the raw
value that is to be copied to the target variable specified by to_target

bytes

refers to a variable that contains an integer value indicating the number of consecu-
tive bytes that compose the array specified by from buffer. Note that bytes must be
at least as large as the number of bytes required by the variable specified by to_tar-
get.

For composite types (arrays, records and structures), the transfer of data occurs as if
a bit-stream copy were issued using the lowest bit-address of the variable specified
by from target as the source and the lowest bit-address of the array specified by
to_target as the destination. The number of bits transferred depends on the number
of bits required by to_target.

The bit pattern of the value in the array specified by from_buffer is not modified.
For noncomposite types, the required number of bits is assumed to be right justified
in the array.

The transfer of data to the variable specified by to_target is effected via the most
appropriate machine instruction available (for example, a short value will be stored
via a single instruction that transfers two bytes).

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error _code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* To_target is not a valid object descriptor.

* The address range specified by from buffer .. from buffer+bytes-1 are not
valid addresses in the monitoring processes address space.

Dm_Get_Value — Obtaining the Value of Variables

4-18

This function is invoked to obtain the ASCII representation of the value of a variable in
the target program.



Fortran Interface

The default ASCII representation used by dm get _val ue depends upon the type of the
variable:

signed integer

theCprintf “%l” conversion format
unsigned integer, pointers

the Cprintf “9” conversion format
floating point

the Cprintf “9%g” conversion format
fixed point (Ada)

theCprintf “9%g" conversion format
enumeration (Ada)

the enumeration image in lower case

Function Definition

i nteger function dmget_val ue (value, fromtarget)
character*(*) val ue
i nteger*4 fromtarget (DM descriptor_size)

Parameters
value

refers to a character variable to which dm _get val ue will return the default
ASCII representation of the value of the target variable specified by from target.

If the ASCII representation of the value being returned is smaller than the length of
the character variable specified by value, the value will be terminated with zero
bytes. If the ASCII representation of the value exceeds the length of the character
variable specified by value, an error will occur.

from target

refers to an array that contains an object descriptor that is associated with the target
variable for which you wish to obtain the value. The descriptor is obtained from a
call to dm get _descri pt or (see page 4-14 for an explanation of this function).
The size of the array is specified by the integer constant DM descri pt or _si ze,
which is defined in the / usr/ i ncl ude/ dat anon_. h header file.

Note that if the variable to which from_target refers is of a composite type, an error
will occur.

4-19



Data Monitoring Reference Manual

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error _code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* From target is not a valid object descriptor.

* The type of the target variable represented by from target is a composite
type (array, record, or structure). The dm peek subprogram may be used
for obtaining the value of such variables.

* The type of the target variable represented by from target is unknown (for
example, code_unknown).

® The size of value is too small to hold the ASCII representation of the value
of the variable denoted by from_target.

Dm_Set_Value — Setting the Value of Variables

4-20

This function is invoked to modify the value of a variable in the target process. It allows
you to use ASCII representation to specify the new value to which the variable is to be set.
The default ASCII representation used by dm set _val ue depends upon the type of the
variable:

signed integer

the C sscanf “ %" conversion format
unsigned integer,pointers

the Csscanf “%l” conversion format
floating point

the C sscanf “9%g” conversion format
fixed point (Ada)

the C sscanf “%g” conversion format
enumeration (Ada)

the enumeration image in upper or lower case

Function Definition

i nteger function dmset _value (value, to_target)
character*(*) val ue
i nteger*4 fromtarget (DM descriptor_size)



Fortran Interface

Parameters
value

refers to a character string that contains a valid ASCII representation of the new
value to which the target variable specified by to_target is to be set. Note that this
value must be expressed in a form that is consistent with the type of the target vari-
able (for example, an integer literal for an integer type, a floating point literal for a
floating point type, and so on). The value must be within the range of the type of the
target variable.

to_target

refers to an array that contains an object descriptor that is associated with the target
variable whose value you wish to modify. This descriptor is obtained from a previ-
ous call to dm get descri pt or (see page 4-14 for an explanation of this func-
tion). The size of the array is specified by the integer constant DM descri pt or -
si ze, which is defined in the “/ usr /i ncl ude/ dat anon_. h” file.

Note that if the variable to which to_target refers is of a composite type, an error will
occur.

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get _er -
ror_stri ng for a description of the error. Possible error conditions include the follow-
ing:

¢ To_target is not a valid object descriptor.

® The type of the target variable represented by to_target is a composite type
(array, record, or structure). The dm _poke subprogram may be used for
setting the value of such variables.

* The type of the target variable represented by to_target is unknown (for
example, code_unknown).

* The ASCII representation of the new value for the variable specified by
to_target is inappropriate for the type of that variable.

Obtaining Information about Variables

This section presents the subprograms that may be invoked to additional information
about a specified target variable that isn’t readily available in an object descriptor.

4-21



Data Monitoring Reference Manual

Dm_Get_Type_Name — Obtaining Type Names

4-22

This function is invoked to obtain the ASCII representation of the type of a specified vari-
able in a target program.

Function Definition

i nteger function dmget_type_nane (type_nane,

item
pgm desc)
character*(*) type_nane
character*(*) item
i nteger*4 pgm desc
Parameters
type_name

refers to a character array to which dm get _t ype nane will return the symbolic
type name of the target variable specified by item

If the ASCII representation of the type being returned is smaller than the length of
the character variable specified by type name, the value will be terminated with zero
bytes. If the ASCII representation of the type exceeds the length of the character
variable specified by type_name, an error will occur.

item

refers to a character string that contains the expanded name of the target variable for
which you wish to obtain the type name

pgm_desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm _open_pr ogr am(see page 4-8 for an explanation of this
function)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get error_code or dm get er -
ror_string for a description of the error. Possible error conditions include the follow-
ing:

* Pgm desc does not refer to a valid, open program descriptor.
¢ |temdoes not refer to an eligible variable.

® The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).

* |tem contains invalid expanded name syntax.



Fortran Interface

® The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active_variants_only or interpret_classes (see pages 4-11 and
4-11).

¢ The size of the character variable referred to by type name is too small to
hold the name of the type of the variable specified by item.

Dm_Get_Type_Name_Long — Obtaining Long Type Names

This routine is invoked to obtain the symbolic type name associated with a specified vari-
able in a target program.

Function Definition

i nteger function dmget type_nane (type_nane,
item
expanded_not ati on,
i nterpret _cl asses,

pgm desc)
character*(*) type_nane
character*(*) item
i nteger*4 expanded_notation
i nteger*4 i nterpret _cl asses
i nteger*4 pgm desc
Parameters
type_name

refers to a character array to which dm get _t ype_name_| ong will return the
symbolic type name of the target variable specified by item.

item
refers to a character string that specifies the expanded name of the target variable for
which you wish to obtain the symbolic type name.

expanded_notation

refers to a integer value which controls whether the name of the type associated with
the variable identified by itemis expressed in Ada’s expanded name notation. If the
value specified is 1, type names for Ada variables are preceded by the expanded
name of their enclosing scope (e.g. “pkg.type t”); whereas the direct name of the
type is used when the flag is O (e.g. “type_t”). This parameter has no effect for C or
Fortran variables.

interpret_classes

refers to a value which controls the interpretation of the type of values of variables
of Ada class-wide types. When this value is O, the type name is obtained using the
name of the specific type (suffixed by ’class) of the root of the class-wide type of the

4-23



Data Monitoring Reference Manual

variable specified by item. When 1, the type is chosen using the specific type asso-
ciated with the value of the variable specified by item. When interpret_classesis set
to t r ue, the target program must be executing. The setting of interpret_classes on
this subprogram call overrides the interpret_classes mode which is set via a call to
dm set _cl ass_interpretation (see page 4-11). For example, using the
code fragment from the example of dm set _cl ass_i nt er pr et at i on on page
4-11, a call such as get _type_name(“pkg. obj ect _e”) would return
“t’class”, wherecas a call such as get_type_name_Il ong
(“pkg. object _e”,interpret_cl asses=>true) would return “e”.

pgm _desc

refers to a variable that contains a valid program descriptor that has been retuned on
a previous call to dm_open_pr ogr am(see page 4-8 for an explanation of this rou-
tine)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-

cates

ror_

ing:

that an error has occurred. Invoke dm get _error_code or dm get _er -
st ri ng for a description of the error. Possible error conditions include the follow-

Pgm _desc does not refer to a valid, open program descriptor.
Item does not refer to an eligible variable.

The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).

Item contains invalid expanded name syntax.

The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due

to modes active variants only (see pages 4-11 and 4-12) or the interpret_-
classes parameter.

The size of the character variable referred to by value is too small to hold
the name of the type of the variable specified by item.

Dm_Get_Enum_Image — Obtaining Enumeration Constants Images

4-24

This function is invoked to obtain the image of the enumeration literal that corresponds to
a specified position within the enumerated type associated with a variable in a target pro-

gram.

Function Definition

inte

ger function dmget _enum.inmage (inmage,
item
posi tion,
pgm desc)



Fortran Interface

character*(*) i mage
character*(*) item
i nteger*4 position
i nteger*4 pgm desc
Parameters
image

item

refers to a character variable to which dm_get _enum_ i mage will return the
image of the enumeration literal corresponding to position in the enumerated type
associated with item

refers to a character string that contains the expanded name of the target variable
whose type is the enumerated type of interest. The specified variable is required
only to identify its type; the value of the variable is not used (unless portions of the
variable’s value are required to satisfy active variants only or interpret_classes
modes; see pages 4-11 and 4-12).

position

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type more_colors is (X, y, 2);
for nmore_colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm get _enum i mage service expects a position, not a value.

pgm_desc

refers to a variable that contains a valid program descriptor obtained via a previous
call to dm_open_pr ogr am(see page 4-8 for an explanation of this function)

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-

cate

s that an error has occurred. Invoke dm get error_code or dm get er -

ror_string for a description of the error. Possible error conditions include the follow-

ing:
]

Pgm _desc does not refer to a valid, open program descriptor.

Item does not refer to an eligible variable.

4-25



Data Monitoring Reference Manual

® The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).
* |tem contains invalid expanded name syntax.

® The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active variants_only or interpret_classes (see pages 4-11 and
4-11).

¢ The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

* The type of the variable specified by itemis not an enumerated type.

* The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

® The size of the character variable referred to by image is too small to hold
the image of the enumeration constant specified by item and position.

Dm_Get_Enum_Val — Obtaining Enumeration Constant Values

This routine is invoked to obtain the value of the enumeration literal that corresponds to a
specified position within the enumerated type associated with a variable in a target pro-
gram.

Function Definition

i nteger function get_enumval (item

posi tion,
val ue,
pgm desc)

character*(*) item

i nteger*4 position

i nteger*4 val ue

i nteger*4 pgm desc

Parameters

item

refers to a string that contains the expanded name of the target variable (for exam-
ple, package p.data item) whose type is the enumerated type of interest. The speci-
fied variable is required only to identify its type; the value of the variable is not used
(unless portions of the variable’s value are required to satisfy active variants only or
interpret_classesmodes; see pages 4-11 and 4-12).

4-26



Fortran Interface

position

value

refers to a variable that contains a non-negative integer value that identifies the posi-
tion of interest in the enumerated type associated with the variable specified by item.
A value of zero indicates the first position in the enumerated type.

The position and value of a literal of an enumerated type are typically the same
unless an explicit enumeration representation clause has been specified for the type.
For example:

type colors is (red, white, blue);
type nore_colors is (X, vy, 2);
for nore _colors use (x => 5,y => 10, z => 20);

The position and value of the literal whi t e are both 1, whereas the position and
value of the literal y are 1 and 10, respectively.

The dm get _enum val service expects a position, not a value.

refers to an integer variable to which dm get _enum val will return the value of
the enumeration literal corresponding to position in the enumerated type associated
with item

Return Value

A return value of O indicates that the call has been successful. A return value of - 1 indi-
cates that an error has occurred. Invoke dm get _error_code or dm get _er -

ror_

ing:
L]

st ri ng for a description of the error. Possible error conditions include the follow-

Pgm_desc does not refer to a valid, open program descriptor.
Item does not refer to an eligible variable.

The target variable referenced by item could not be found in the target pro-
gram's symbol tables (perhaps the user forgot to compile with the debug (-

g) option).
Item contains invalid expanded name syntax.

The target program is not executing and item refers to a variable with
dynamic size, shape, address or requires a value from the target process due
to modes active variants_only or interpret_classes (see pages 4-11 and
4-11).

The target variable could not be mapped into the monitoring process's
address space; an err no value associated with the offending
user map( 3) call is included in the text of the message associated with a
subsequent call todm get _error_string.

The type of the variable specified by itemis not an enumerated type.

The position specified by position is illegal for the enumerated type; per-
haps a value was supplied instead of a position.

4-27



Data Monitoring Reference Manual

4-28



A
MAXAda Examples

This appendix provides instructions for compilation and linking Ada programs that use the
Real _Ti me_Dat a_Moni t or i ng package as well as example programs.

Compilation and Linking Instructions

The following commands will create a compilation environment, add visibility to the
Real _Ti me_Dat a_Moni t or i ng package, introduce user source files into the environ-
ment, define a program, and build it. See Chapter 2 - "Using MAXAda" in the MAXAda
Reference Manual for more information on MAXAda. All of the following commands
require that / usr / ada/ bi n is in the user’s PATH environment variable.

a.nkenv -g

QO

The above command creates a compilation environment; a compilation environment
is required for all subsequent MAXAda commands. The environment consists of a
file, . Ada, and a directory, . ada, created in the user’s current working directory.
The - g option to a.mkenv sets the default compilation option for all Ada units to
include debug information. Debug information isn’t specifically required for use of
subprograms within the Real _Ti me_Dat a_Moni t or i ng package, however, tar-
get programs must be built with debug information.

.path -v -a rtdm

The Real _Ti me_Dat a_Mbni t ori ng package is provided in a pre-compiled
MAXAda environment called rt dm Access to this environment is provided by
placing r t dmin the environment search path for the user’s environment.

.intro-v user_source_file.ada

Before compilation and linking can occur, the user’s Ada source files must be intro-
duced into the environment. The files don’t have to be in their final form, but they
must either be empty or contain a reasonable facsimile of an Ada compilation unit
(the syntax of the file must be close enough to valid Ada for a.intro to determine its
basic structure).

.partition -create active mai n_subprogram nane

This command defines a program to be build; at a minimum, it requires that the user
specify the name of the main subprogram. If no other parameters are supplied, the
name of the program file produced will be that of the specified main_subpro-
gram_name.

.build -v mai n_subprogram name

This command compiles and links the program.



Data Monitoring Reference Manual

Examples

Two example programs are provided: peek, an extremely simple program utilizing just
three of the subprograms from the Real _Ti ne_Dat a_Moni t ori ng package, and
scanner, a complete program which scans executable programs and provides informa-
tion on all eligible variables within them.

Example 1 — Peek

A-2

> a.nkenv -g

> a.path -v -a rtdm

Envi ronment search path:
[usr/adal.../predefined
fusr/ada/.../rtdm

> cp /usr/share/ doc/ dat anon/ peek. ada peek. ada
> cat peek. ada

package global is
data : integer := 45;
end gl obal ;

with real tinme_data_nonitoring;

with ada.text _io;

wi th ada. command_| i ne;

with gl obal;

pragna el aborate_all (gl obal);

procedure peek is
package rtdmrenanes real tinme_data nonitoring;
package acl renanes ada.conmand_| i ne;
package ati o renames ada.text _io;

begi n
rtdm open_program (acl . argunent (1));
atio.put_line ("The value of """ &
acl . argunent (2) &
"ttis "Mt &
rtdm get val ue(acl.argunment(2)) &
)
rtdm cl ose_program
end peek;

> a.intro -v peek. ada
i ntroduci ng: peek. ada

> a.partition -create active peek
> a.build -v peek

conpi | i ng: package spec gl obal
conpi I i ng: subprogram body peek



MAXAda Examples

i nking: peek

> ./ peek peek gl obal .data
The val ue of "global.data" is " 45"

The example program above utilizes just three subprograms from the Real _Ti me_ -
Dat a_NMbni t or i ng package: open_pr ogr am get _val ue, and cl ose_pr ogr am
The example program is extremely simple, yet quite powerful.

It requires two arguments: the name of a target executable program and the name of an €li-
gible variable in expanded notation. It prints the current value of the specified variable
from the specified target program (which must be executing).

For simplicity in the example, we specified the example program itself as the target pro-
gram and the variable dat a in the package gl obal as our variable. In fact, the only rea-
son that the package gl obal was included in the example was so that we could use the
example program as our target program (i.e.; we needed an eligible variable to peek at).

Example 2 — Scanner

> a.nkenv -g

> a.path -v -a rtdm

Envi ronment search path:
/usr/ada/.../predefined
/fusr/ada/.../rtdm

> cp /usr/share/ doc/ dat anon/ scanner. ada scanner. ada
> cat scanner. ada

wi t h ada. command_l i ne;
procedure scanner is
passi ve : bool ean;

procedure scan (program nane in string;
fetch : in bool ean;
active_variants_only : in bool ean;
interpret_classes i n bool ean;
indirect_pointers : in bool ean;
type_names_i nterpret i n bool ean;
t ype_nanes_expanded i n bool ean;
max_array_conponents : in natural;
interest_threshold ininteger) is separate;
begi n
passi ve : = bool ean’ val ue(ada. conmand_I i ne. argunent (2)) = fal se;
scan (program nane => ada. command_| i ne. argurent (1),
fetch => not passive,
active_variants_only => not passive,
i nterpret_cl asses => not passive,

type_names_i nterpret => not passive,

type_names_expanded => fal se,

max_array_conponents => 1,

interest_threshold => 0,

i ndi rect _pointers => not passive);
end scanner;

wi th ada.text_io;

A-3



Data Monitoring Reference Manual

wi t h ada. unchecked_conversi on;
with real _tine_data_nonitoring;
wi th system addresses;

separate (scanner)

procedure scan (program name in string;
fetch : in bool ean;
active_variants_only : in bool ean;
interpret_cl asses i n bool ean;
i ndirect_pointers i n bool ean;
type_nanes_i nterpret i n bool ean;
type_nanes_expanded : in bool ean;
max_array_conponents : in natural;
interest_threshold ininteger) is

package rtmrenanes real _tine_data_nonitoring;

function to_address_sized_int is new
ada. unchecked_conver si on(syst em addr ess, syst em addr esses. addr ess_si zed
_int);
package pio is new
ada. text _io.integer_io(system addresses. address_si zed_int);
package iio is new ada.text_io.integer_io(integer);

subtype stack _frames is natural range 0..100;
type stack_frame is

record
count : natural;
max : natural;

end record,

-- Msc variables

dunmmy_position rtmlist_position;

dumy_qui t . boolean : = fal se;

st ack : array (stack_franes) of stack_franeg;
stack_top . stack_franes;

indirection_active . boolean : = fal se;

-- Instantiations

procedure variable_action (item ;in string;
program : in rtm programdescriptor;
position : in out rtmlist_position;
quit : in out bool ean);
procedure scope_action (item in string;
program : in rtm programdescriptor;
position : in out rtmlist_position;
quit : in out bool ean);

package list_variables is newrtmlists (variable_action);
package |i st_scopes is newrtmlists (scope_action);

-- Subprograns

procedure variable_action (item ;. in string;
program : in rtm programdescriptor;
position : in out rtmlist_position;
quit : in out boolean) is separate;
procedure scope_action (item in string;
program in rtmprogramdescriptor;
position : in out rtmlist_position;
quit in out bool ean) is separate;
begi n
rt m open_program ( program name => program nane,

interest_threshold => interest_threshol d);

if active_variants_only then



MAXAda Examples

rtmset_variant_handling (active_variants_only);
end if;

if interpret_classes then
rtmset_class_interpretation (interpret_cl asses);

end if;

stack_top : = stack_frames' first;

0;
natural 'l ast;

st ack(stack_top). count
st ack(stack_t op) . max D=

scan. |l ist_scopes.list (mbde => rtmlist_scopes, conponents => false);

rtmcl ose_program
exception
when rtmreal _tine_nonitoring_error =>
ada. text_io.put_line (
rtmerror_codes’ i mage(rtmget _real tine_nonitoring_error_code) & ": "
&
rtmget _real _time_nonitoring_error);
end scan;

separate (scanner.scan)

procedure variabl e_action (item in string;
program in rtm programdescriptor;
position : in out rtmlist_position;
quit in out boolean) is
use rtm
use ada.text _io;
vi rtual syst em addr ess;
target syst em addr ess;
atom ¢ atom c_types;
si ze natural ;
of f set natural ;
code codes;
descri ptor internal _descriptor;
si gned bool ean;
i ndi ci es indicies_list;
di mensi ons i nteger;
poi nt er syst em addr esses. address_si zed_int := 0;
begi n

stack(stack_top).count := stack(stack_top).count + 1;
if stack(stack_top).count > stack(stack_top).nmax then
quit := true;
return;
end if;

set_col (count((stack_top)*3)+1);
put (item;
put (" (");
put
(get _type_nane(item programtype_nanes_expanded, t ype_nanes_interpret));

get _descriptor (item descriptor, not fetch, progran);

get_info (descriptor, virtual, target, atomc, size, offset, code);
put (", ");

pi 0. put (to_address_sized_int(target), width => 12, base=>16);

put (", ");

iio.put (size, width => 0);



Data Monitoring Reference Manual

put (", ");
iio.put (offset, width => 0);
put (", ");

case code is
when code_array =>

get _array_info (descriptor, size, code, signed,

put ("array [");
for d in 1..dinensions |oop
if d/=1then

put (*.");
end if;
iio.put (indicies(d).!|ower_bound, w dth=>0);
put ("..");
iio.put (indicies(d).upper_bound, w dth=>0);
end | oop;
put ("] of ");

put (codes’i mage(code));
put_line (")");

stack_top : = stack_top + 1;
stack(stack_top).count := O;

st ack(stack_t op). max ;= pax_array_conponents;

i ndi ci es, di nensions);

scan.list_variables.list (nmode => |ist_conponents, qualifier =>iten);

stack_top := stack_top - 1;
return;
when code_record | code_common =>
if code = code_record then
put _line (" record)");

el se
put _line (" common)");
end if;
stack_top := stack_top + 1;
stack(stack_top).count := 0;
st ack(stack_t op). max ;= natural’last;

scan.list_variables.list (nmode => |ist_conponents, qualifier =>iten);

stack_top := stack_top - 1;
return;
when code_i nteger =>
put (codes’i mage(code));
case atomc is
when di screte_1lbyte_signed |
di screte_2byte_signed |
di screte_4byte_signed =>
put (", signed");
when ot hers =>
put (", unsigned");
end case;
when ot hers =>
put (codes’i mage(code));
end case;

if code = code_pointer then
if fetch then

put (", ");

get _val ue (descriptor, pointer’address,
pi 0. put (pointer, wdth=>12, base=>16);

poi nter’ sizel8);

end if;
put_line (")");
if indirect_pointers and t hen
indirection_active = fal se t hen
if pointer /=0 then
indirection_active := true;
variable_action (item& ".all", program position, quit);
indirection_active := fal se;
end if;

A-6



MAXAda Examples

end if;
el se
if fetch then
pUt (" 1 ") ;
put (get_val ue(descriptor));
end if;
put_line (")");
end if;
exception
when real _tine_nonitoring_error =>
set_col (count((stack_top)*3)+1);
put _line (error_codes’'inage(get _real tine_nonitoring error_code) & ": " &
get _real _time_nonitoring_error);

end vari abl e_action;

separate (scanner.scan)

procedure scope_action (item in string;
program in rtm programdescriptor;
position : in out rtmlist_position;
quit in out boolean) is
use ada.text_io;
begi n
set_col (count((stack_top)*3)+1);
put _line ("scope: " &iten;
stack_top := stack_top + 1;
stack(stack_top).count := 0;
st ack(stack_top). max ;= natural 'l ast;
scan.list_variables.list (node => rtmlist_variables,

qualifier =>item
conmponents => fal se,
program => progran);

stack_top := stack_top - 1;

end scope_action;

> a.intro -v scanner. ada
i ntroduci ng: scanner. ada

> a.partition -create active scanner

> a.build scanner
>scanner scanner true > out
>fgrep ada. conmand_| i ne out

scope: ada.command_line
scope: ada.command_| i ne. | ocal _bi ndi ngs
ada. command_| i ne. | ocal _bi ndi ngs. u_mai np
(a_environment _frame, 16#3000C230#, 32, 0, CODE_PO NTER,
16#300CBB10#)
ada. command_| i ne. | ocal _bi ndi ngs. u_mai np. al |



Data Monitoring Reference Manual

A-8

(environnent _frame_t, 16#300CBB10#, 96, 0, record)
ada. command_| i ne. | ocal _bi ndi ngs. u_mai np. al | . argc
(i nteger, 16#300CBB10#, 32, 0, CODE_I NTEGER, signed, 3)
ada. command_l i ne. | ocal _bi ndi ngs. u_nainp.all.arg_|ist
(a_address_|ist, 16#300CBB14#, 32, 0, CODE_PO NTER, 16#2FF7D314#)
ada. command_| i ne. | ocal _bi ndi ngs. u_mai np.all.env_|ist
(a_address_list, 16#300CBB18#, 32, 0, CODE_ PO NTER 16#2FF7D324#)

> scanner peek fal se > out
> fgrep gl obal out

scope: gl obal
gl obal . data (integer, 16#3009C534#, 32, 0, CODE_| NTEGER si gned)

The example above provides source code and build instructions for a scanner program
which scans a user-specified target program for scopes and describes the variables in
those scopes. The description includes:

* The variable’s name in expanded notation

¢ The variable’s type name

¢ The variable’s address in the target program

¢ The variable’s size in bits

¢ The variable’s bit offset from its address

* The variable’s Real _Ti me_Dat a_Moni t ori ng code

¢ For record variables, a description of all its components

¢ For array variables, a description of the dimensions and bounds of the array

* For array variables, a description of the first component of the array

Additional information is supplied when the scanner program is run in non-passive
mode; defined by the second parameter to the program (false => passive, true => non-pas-
sive). When run in non-passive mode, the target program must be executing and the
description output by scanner further includes the following:

® The value of the variable

¢ (lass-wide type interpretation is activated

* Sensitivity to Ada record variants is activated
* Pointer variables are indirected (once)

The output of the scanner program is rather lengthy, even for small Ada programs, since it
includes descriptions of variables in support packages contained in most all Ada pro-
grams. The f gr ep commands above are used to show some of the output from the scan-
ner invocations (the output underwent minor formatting changes for inclusion in this man-
ual).

The first invocation shown above specifies that the program to scan is the scanner pro-
gram itself; the second argument of t r ue indicates that the scan is to be done in non-pas-
sive mode. The second invocation specifies the program from the peek example



MAXAda Examples

describes in this appendix; since that program mostly likely isn’t executing, we run the
scan in passive mode as indicated by the second argument of f al se.



Data Monitoring Reference Manual

A-10



B
C Examples

This appendix provides instructions for compilation and linking C programs that use the
Data Monitoring library as well as example programs.

C Compilation and Linking Instructions

> gcc -g main.c -ldatanon -lccur_rt

The command above invokes the C compiler on the source file main.c. The - g option
specifies that debug information should be generated; this isn’t specifically required for
use of subprograms in the data monitoring library, however, the target programs must be
built with debug information. The - | dat anon link option specifies that the Data Moni-
toring library, / usr /| i b/ | i bdat anon. a, should be used when linking the program.

Examples

Two example programs are provided: peek, an extremely simple program utilizing just
four of the subprograms from the Data Monitoring library, and Scanner , a complete pro-
gram which scans executable programs and provides information on all eligible variables
within them.

Example 1 — Peek

> cp /usr/share/ doc/ dat anon/ peek. ¢ peek.c
> cat peek.c

#i ncl ude <dat anon. h>

#i ncl ude <stdi o. h>

int global _data = 45;

main (int argc, char * argv[])

{
program descriptor_t pgm desc;
obj ect _descriptor_t obj_desc;
char i mage[ 1024] ;

dm open_program (argv[ 1], 0, &gm desc);
dm get _descriptor (argv[2], O, pgmdesc, &obj_desc);
dm get _val ue (&obj_desc, image, sizeof(inage));



Data Monitoring Reference Manual

printf ("The value of \"%\" is \"%\"\n", argv[2], inage);
dm cl ose_program (pgm desc) ;

}

> cc -g peek.c -0 peek -ldatanon-Iccur_rt

> peek peek gl obal data
The value of "global _data" is " 45"

The example program above utilizes just four subprograms from the Data Monitoring
library: dm open_pr ogr am dm get _descri ptor, dm get _val ue, and dm -
cl ose_program The example program is extremely simple, yet quite powerful.

It requires two arguments: the name of a target executable program and the name of an €li-
gible variable in expanded notation. It prints the current value of the specified variable
from the specified program.

For simplicity in the example, we specified the example program itself as the executable
program and the variable gl obal _dat a . In fact, the only reason that the variable
gl obal _dat a was included in the example was so that we could use the example pro-
gram as our target program (i.e.; we needed an eligible variable to peek at).

Example 2 — Scanner

B-2

> cp /usr/share/ doc/ dat amon/ scanner.c scanner.c
> cat scanner.c

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>
#def i ne dat anon_nappi ngs
#i ncl ude "dat anon. h"

static int stack;

static int count[210000];
static int max[10000];
static int fetch;

static

voi d

assert (int status, char * service)

{

if (status !'= 0) {
printf ("\n(ASSERTION FAI LURE: %: (%) %)\n",

servi ce,
dm error_code_i mages[ dm get _error_code()],
dmget_error_string());

}

static int indent = 0;
static int indirection_active = 0;
int * gratuitous_pointer = & ndent;

static
voi d



C Examples

itemaction (char * item programdescriptor_t pgm int * quit)

{

static char * exanpl e;

auto  object_descriptor_t obj ;

aut o int stat us;

auto int d;

auto int i;

auto char type_nane[ 80] ;

auto  char buffer[80];

auto char indirected_itenf1024];

if (++count[stack] >= max[stack]) {
*quit = 1;
}

exanple = item

i ndent += 3;

for (i=0; i<indent; ++i) {
printf (" ");

}

printf ("9%", item;

status = dmget_type _nane (item pgm type_nane, sizeof(type_nane));
assert (status, "dmget_type nanme");
if (status == 0) {
printf (" (%", type_nane);
}

status = dmget_descriptor (item !fetch, pgm &obj);
assert (status, "dmget_descriptor");
if (status==0) {
printf (", 0x%8.8x, %, %, %, %",
obj . od_t arget _address,
dm code_i mages[ obj . od_code],
(obj.od_signed ? "signed" : "unsigned"),
obj.od_bit_size,
obj.od_bit_offset);
if (obj.od _code == code_integer) {
printf (" [ Ox%B.8x..0x%8.8x ]", (unsigned)obj.od_| ower_bound,
(unsi gned) obj . od_upper _bound) ;
}

if (obj.od_code == code_array) {
printf (", dins=%", obj.od_nunber_dins);
for (d=0; d<obj.od_nunber_dins; ++d) {
printf (" [%..%]", obj.od_|ower_dins[d],

obj . od_upper _dins[d]);

}

printf (" (%, %, %)",
dm code_i nages[ obj . od_conponent _code],
(obj . od_conponent _signed ? "signed" : "unsigned"),
obj . od_conponent _bit_si ze);

}

if (obj.od_code == code_array ||
obj . od_code == code_record ||
obj . od_code == code_common) {

printf (")\n");

count [ ++stack] = 0;

if (obj.od_code == code_array) {
max[ stack] = 1;

} else {
max[ st ack] = 2000000000;

}

B-3



Data Monitoring Reference Manual

status = dmlist (list_conponents, item 0, 1, pgm & temaction);
- -stack;
assert (status, "dmlist");
} else if (fetch) {
status = dm get_val ue (&obj, buffer, sizeof(buffer));
assert (status, "dmget_value");
if (status == 0) {
printf (", %", buffer);
}
printf (")\n");
} else {
printf (")\n");
}

if (fetch & obj.od_code == code_pointer & !'indirection_active) {
++i ndirection_active;
strcpy (indirected_item itemn;
strcat (indirected_item ".all");
itemaction (indirected_item pgm quit);
--indirection_active;

}
}
i ndent -= 3;
}
static
voi d
scope_action (char * scope, programdescriptor_t pgm int * quit)
{
static int status;
printf ("scope = %\n", (*scope ? scope : "<global>"));
status = dmlist (list_variables,
scope,
0,
pgm
& tem action);
assert (status, "dmlist");
}
int
main (int argc, char * argv[])
{
auto programdescriptor_t pgm
auto int st at us;
auto char * program
auto int dummy;

if (argc < 2) {
printf ("Usage: scanner programnane [fetch [variable_to_scan]]\n");

exit (1);
}
program = argv[1];
fetch = argc > 2 & & strcnp(argv[2],"fetch")==0;
stack = 0;

max[ 0] = 2000000000;
count[0] = O;

status = dm open_program (program 0, &pgn);
assert (status, "dmopen_progran');

B-4



C Examples

if (fetch) {
status = dmset_variant_handling (1, pgm;
assert (status, "dmset_variant_handling");
status = dmset_class_interpretation (1, pgm;
assert (status, "dmset_class_interpretation");

}

if (argc > 3) {

itemaction (argv[3], pgm &dumy);
} else {

status = dmlist (list_scopes,

0,

pgm
&scope_action);
assert (status, "dmlist");

> gcc -g scanner.c -0 scanner -ldatanon -lccur _rt
> scanner scanner fetch > out

> egrep -e 'fetch|ind|grat' out

"scanner.c".fetch (int, 0x30081078, integer, signed, 32, 0
[ O0x80000000..0x7fffffff ], 1)

"scanner.c".indent (int, 0x3005c484, integer, signed, 32, 0
[ 0x80000000..0x7fffffff ], 3)

"scanner.c".indirection_active (int, 0x3005c488, integer, signed, 32, 0
[ 0x80000000..0x7fffffff ], 0)

"scanner.c".gratuitous_pointer (int *, 0x3005c48c, pointer, unsigned
32, 0, 3005c484)
"scanner.c".gratuitous_pointer.all (int, 0x3005c484, integer,

signed, 32, 0 [ 0x80000000..0x7fffffff ], 6)

>scanner peek
scope = main
scope = "peek.c"
"peek. c".global _data (int, 0x3005c1lb0, integer, signed, 32, 0
[ 0x80000000..0x7fffffff ])

The example above provides source code and build instructions for a Scanner program
which scans a user-specified target executable program for scopes and describes the vari-
ables in those scopes. The description includes:

® The variable’s name in expanded notation

¢ The variable’s type name or type description
® The variable’s address in the target program
® The variable’s data monitoring code

¢ The variable’s size in bits

® The variable’s bit offset from its address

® The variable’s constraints (if scalar)

® For record variables, a description of all a components of the record

B-5



Data Monitoring Reference Manual

B-6

¢ For array variables, a description of the dimensions and bounds of the array

® For array variables, a description of the first component of the array

Additional information is supplied when the Scanner program is run in non-passive
mode; defined by the second parameter to the program (false => passive, true => non-pas-
sive). When run in non-passive mode, the target program must be executing and the
description output by scanner further includes the following:

¢ The value of the variable
¢ (Class-wide type interpretation is activated
* Sensitivity to Ada record variants is activated

® Pointer variables are indirected (once)

The output of the Scanner program can be rather lengthy since it describes all eligible
variables in the target program. The egr ep command was used above to show some of
the output from the scanner invocations (the output underwent minor formatting changes
for inclusion in this manual).

The first invocation shown above specifies that the program to scan is the Scanner pro-
gram itself; the second argument of f et ch indicates that the scan is to be done in non-
passive mode. The second invocation specifies the program from the peek example
describes in this appendix; since that program mostly likely isn’t executing, we run the
scan in passive mode as indicated by the second argument is omitted.

Note that the scanner program utilizes the dm _error_code_i mages and
dm code_i nmages arrays from / usr /i ncl ude/ dat anon. h; these arrays are only
available if the - Ddat anon_nappi ngs compilation option is used or a #def i ne of
datamon_mappings is specified within the source code before the inclusion of / usr/
i ncl ude/ dat anon. h.



C
Fortran Examples

This appendix provides instructions for compilation and linking Fortran programs that use
the Data Monitoring library as well as an example program.

Compilation and Linking Instructions

> cf77 -g source_file.f -ldatanon -lccur_rt
or
> g77 -g source _file.f -ldatamon -1lccur_rt

The command above invokes the Fortran compiler (Concurrent Fortran ¢f 77 or GNU
Fortran g77) on the source file source_fil e.f. The - g option specifies that debug
information should be generated; this isn’t specifically required for use of subprograms in
the data monitoring library, however, the target programs must be built with debug infor-
mation. The - | dat anon link option specifies that the Data Monitoring library, / usr/
['i b/ 1i bdat anon. a, should be used when linking the program

Example 1 — Peek

> cp /usr/share/ doc/ dat amon/ peek. f peek. f
> cat peek.f

progr am peek

nclude "/usr/include/ datanon_. h"
ncl ude "/usr/include/ datanon_tables . h"

nt eger *4 pgm desc

nt eger*4 status

nt eger *4 obj _desc(DM descri ptor_si ze)
nt eger *4 val ue

nt eger*4 i

nt eger*4 | ow

nt eger*4 hi gh

nt eger*4 bn

nt eger*4 pn

nteger*4 vn

comon // obj _desc

real *8 | ower bound

C-1



Data Monitoring Reference Manual

real *8 upper _bound

character*80 buffer
character*80 program nane
character*80 vari abl e_nane

equi val ence (obj desc(DM | ower bound), | ower _bound)
equi val ence (obj _desc(DM upper _bound), upper_bound)

external zip
external check_status

call zip(program nane)

call zip(variabl e_nane)
call zip(buffer)

call getarg(1, program nane)

pn=i ndx( program nane, ' ')

call getarg(2,variabl e_nane)
vn=i ndx(vari abl e_nane,' ')

status =
1 dm open_progran(program nane(1: pn-1), 0, pgm desc)
call check_status(status,”dm open_prograni)

call getarg(2,variabl e_nane)
wite(6,*)variable_name(1:vn-1),":"

status = dm get _descriptor(variabl e_nane(1l:vn-1),

1 .fal se.,
2 pgm desc,
3 obj _desc)

call check_status(status,"dmget descriptor")
status =

1 dm get _type_nane(buffer, variabl e_nane, pgm desc)
call check_status(status,"dmget type_nane")

bn = indx(buffer,' @)

wite(6,*)" type_name = ", buffer(1: bn-1)
wite(6,*)" size = ",obj_desc(DM bit_size)
wite(6,*)" address = ", obj _desc(DM target_ address)
wite(6,*)" code = ", code_nanes(obj desc(DM code))

if (obj_desc(DM code).eq. DM array_code) then
do 10 i=1, obj _desc(DM num di nmensi ons)

wite(6,*) " dimension =",

1 obj _desc(DM. | ower _di nmensi on+i - 1),

2 ",

3 obj _desc(DM upper _di mensi on+i - 1)
10 conti nue

el sei f (obj _desc(DM code). eq. DM enunerati on_code) then

C-2



20

10

N -

N -

1

Fortran Examples

Il ow = int(lower_bound)
hi gh = i nt(upper_bound)
wite(6,*)" enuminfo ="
do 20 i=l ow, high
call zip(buffer)
status = dm get _enum i mage( buf fer,

vari abl e_nane(1:vn-1),

| 1
pgm desc)

call check_status(status,"dmget _enum.i nmage")

bn = indx(buffer,' @)

status = dm get_enum val (vari abl e_nanme(1l:vn-1),

I,
val ue,
pgm desc)
call check_status(status,"dmget_enumval ")
wite(6,*)" ",buffer(1:bn-1)," => ", val ue
conti nue
call zip(buffer)
status = dm get val ue(buffer, obj desc)
call check_status(status,”"dm get_ val ue")
bn = indx(buffer,' @)
wite(6,*)" value = ", buffer(1l: bn-1)
el se
call zip(buffer)
status = dm get val ue(buffer, obj desc)
call check_status(status,”"dmget_ val ue")
bn = indx(buffer,' @)
wite(6,*)" value = ", buffer(1l:bn-1)
end if
status = dm cl ose_program ( pgm desc)
if(status .ne. 0) then
wite(6,*) "error fromdmcl ose_progrant,
dmget _error_code(),dmget _error_string()
call exit( -1)
end if
end

subroutine zip (buf)
character*(*) buf

i nteger*4 i

do 10 i=1, | en(buf)
buf(i:i) ='@

conti nue

end

subroutine check_status (status, service)
i ncl ude "/usr/include/datanon_.h"

i nclude "/usr/include/ datanmon_tables_.h
i nteger*4 status

character*(*) service

integer*4 n

if(status .ne. 0) then

n = indx(error_code_nanes(dmget _error_code()),"

)

C-3



Data Monitoring Reference Manual

wite(6,*) service, ": ",
1 error_code_nanes(dmget _error_code())(1l:n-1),
2 ": ",dmoget _error_string()

wite(6,*)server,"” failed with error”,

dm get _error_code()

call exit( -1)
end if
end

w

function indx (string, char)
character*(*) string
character char
do 30 i=1,len(string)
if (string(i:i) .eq. char) then
indx =i
return
end if
30 conti nue
indx =0
end

> cf77 -g peek.f -0 peek -ldatamon -l ccur_rt
or
> g77 -g peek.f -0 peek -ldatanon -|ccur_rt

NOTE

If using the GNU Fortran compiler (g77), the names of the main
program and variables within it are mangled-- replace "peek.obj_-
desc" with "MAIN__.obj_desc_ " in the following examples in
that case.

> peek peek "peek. obj desc"
peek. obj _desc:

type_name = integer []
si ze = 1280
addr ess = 805850216
code = array
dimension = 1 .. 40

> peek peek "peek.obj desc(6)"
peek. obj _desc(6):

type_name = integer

si ze = 32

addr ess = 805850236
code = integer

val ue = 32

c-4



Fortran Examples

The example above provides source code and build instructions for a peek program
which peeks into an executing user-specified target program and obtains the value of a
user-specified variable and information about that variable. The description includes:

The variable’s name in expanded notation

The variable’s type name or type description

The variable’s size in bits

The variable’s address in the target program

The variable’s data monitoring code

For array variables, a description of the dimensions and bounds of the array
A description of the enumeration constants of enumeration variables

The value of the variable (for non-composite variables)

Note that the peek program makes use of the er r or _code_nanes and code_nanes
arrays which are defined in the include file, / usr/ i ncl ude/ dat anon_t abl es_. h.

C-5



Data Monitoring Reference Manual

C-6



A

Ada
See MAXAda
compilation instructions A-1
examples A-2
linking instructions A-1
array information 2-34
atomic_types 2-7
attributes of variables 2-32, 3-25, 4-21

C
object descriptors 3-17

C Interface
compiling instructions B-1
dm_close program 3-11
dm_codes 3-2
dm_error_codes 3-5
dm_get descriptor 3-18
dm_get enum_image 3-28
dm_get enum_val 3-29
dm_get error _code 3-5
dm_get error_string 3-5
dm_get pid 3-15
dm_get type name 3-25
dm_get type name long 3-26
dm_get value 3-22
dm_line info 3-31
dm_list 3-33
dm_open_program 3-7
dm_open_program aux 3-9
dm_peek 3-20
dm_poke 3-21
dm_set_class_interpretation 3-14
dm_set_interest 3-12
dm_set _pid 3-16
dm_set_value 3-23
dm_set _variant_handling 3-13
dm_suppress_index_checks 3-17
error processing 3-4

Index

examples B-1
linking instructions B-1
object_descriptor_t 3-2
program_descriptor t 3-2
checking ASCII representation 2-29
child packages 1-7
class-wide types 2-16, 3-14, 4-12
close_program 2-11
codes 2-7
compiling instructions A-1, B-1, C-1
components
listing 2-42, 3-33
constraints 2-41
current_program 2-6

D

dm_close program 3-11, 4-9
dm_codes 3-2

dm_error_codes 3-5

dm_get descriptor 3-18, 4-14
dm_get enum_image 3-28, 4-24
dm_get enum_val 3-29, 4-26
dm_get error_code 3-5, 4-6
dm_get error_string 3-5, 4-6
dm_get pid 3-15
dm_get type name 3-25, 4-22
dm_get type name long 3-26, 4-23
dm_get value 3-22,4-18

dm_line info 3-31

dm_list 3-33

dm_open_program 3-7,4-8
dm_open_program aux 3-9
dm_peek 3-20, 4-16

dm_poke 3-21,4-17

dm_set _class_interpretation 3-14, 4-12
dm_set_interest 3-12
dm_set_interest threshold 4-10
dm_set pid 3-16

dm_set _value 3-23,4-20
dm_set_variant _handling 3-13, 4-11
dm_suppress_index_checks 3-17

Index-1



Data Monitoring Reference Manual

E get_current_program 2-12
get_descriptor 2-19
get_enum_image 2-37
get_enum_val 2-39
get_info 2-32
get_type_name 2-35
get_value 2-23

enumeration constant images 2-37, 3-28, 4-24
enumeration constant values 2-39, 3-29, 4-26
error codes 2-5, 3-5, 4-5

error processing 2-4, 3-4, 4-4

Exarilillzs A2 getting the value of variables 2-23, 2-30, 3-19, 3-20,
C B-1 3-22,4-16, 4-18
Fortran C-1

execution requirements 2-10, 3-8, 3-9, 4-9
Expanded Names 1-4 |
Expanded Notation 1-4

child packages 1-7

file scope 1.7 index checks, suppress 3-17

info_only 2-32

info_program 2-13

information about variables 2-32, 3-25, 4-21
F interest level 2-10, 2-14, 3-12, 4-10
interest threshold 2-10, 2-14, 3-12, 4-10
internal descriptor 2-6
internal_descriptors 2-18

invalidate descriptor 2-21

IO package 2-30

is_active_component 2-22
is_valid_descriptor 2-21

file scope 1-7

Fortran
compiling instructions C-1
dm_close program 4-9
dm_get descriptor 4-14
dm_get enum_image 4-24
dm_get enum_val 4-26
dm_get error _code 4-6
dm_get error_string 4-6 L
dm_get type name 4-22
dm_get type name long 4-23
dm_get value 4-18
dm_open_program 4-8
dm_peek 4-16
dm_poke 4-17
dm_set_class_interpretation 4-12
dm_set_interest_threshold 4-10
dm_set value 4-20 M
dm_set_variant_handling 4-11
error codes 4-5
error processing 4-4
examples C-1
linking instructions C-1

linking instructions A-1, B-1, C-1
listing components 2-42, 3-33
listing variables 2-42, 3-32, 3-33
lists package 2-42

MAXAda
atomic_types 2-7
close_program 2-11
codes 2-7

obj_desc 4-2 e .

. . compiling instructions A-1
object descriptors 4-14 current proeram -6
pgm_desc 4-1 —Prog

error codes 2-5

error processing 2-4
examples A-2

G execution requirements 2-10
get_array_info 2-34
get_constraints 2-41
get_current_program 2-12
get_descriptor 2-19

get_array_info 2-34
get_constraints 2-41

Index-2



get_enum_image 2-37
get_enum_val 2-39
get_info 2-32
get_type_name 2-35
get_value 2-23
info_only 2-32
info_program 2-13
interest level 2-10
interest threshold 2-10
internal descriptor 2-6
internal descriptors 2-18
invalidate descriptor 2-21
10 Package 2-30
is_active_component 2-22
is_valid_descriptor 2-21
linking instructions A-1
lists package 2-42
open_program 2-9
pragma INTERESTING 2-10
program descriptor 2-6
set_class_interpretation 2-16
set_current_program 2-12
set_interest threshold 2-14
set_value 2-26
set_variant_handling 2-15
validate value 2-29
memory usage 2-11, 3-11, 4-9

(o)

obj_desc 4-2

object descriptor 4-2,4-14
object descriptors 3-17, 4-14
object_descriptor_t 3-2
open_program 2-9

peek 3-20, 4-16

pgm_desc 4-1

poke 3-21, 4-17

pragma INTERESTING 2-10, 2-14, 4-10
program counter 3-31

program descriptor 2-6, 4-1
program_descriptor t 3-2

Index

R

read 2-30
Real Time Data Monitoring package 2-1
Requirements 1-1

S

scanning programs for variables 2-42, 3-32, 3-33

set_class_interpretation 2-16

set_current_program 2-12

set_interest_threshold 2-14

set value 2-26

set_variant_handling 2-15

setting the value of variables 2-23, 2-30, 3-19, 3-21,
3-23,4-16, 4-17, 4-20

target program 1-3
target variable 1-3
type names 2-35, 3-25, 3-26, 4-22, 4-23

\'

validate value 2-29

variable 1-3

Variable Eligibility 1-3

variant considerations 2-22
variants of records 2-15, 3-13, 4-11

w

write 2-30

Index-3



Data Monitoring Reference Manual

Index-4



	Data Monitoring Reference Manual
	Contents
	Data Monitoring
	Requirements
	Variable Eligibility
	Expanded Name Notation

	MAXAda Interface
	Organization
	Error Processing
	Package Types and Objects
	Descriptors
	Enumerations

	Target Program Selection and Identification
	Open_Program – Obtaining Program Descriptors
	Close_Program – Closing Program Descriptors
	Get_Current_Program – Referencing the Current Program
	Set_Current_Program – Changing the Current Program Descriptor
	Info_Program – Obtaining Information from a Program Descriptor
	Set_Interest_Threshold – Setting the Interest Threshold
	Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Set_Class_Interpretation – Interpreting Class-Wide Types

	Obtaining Internal Descriptors for Variables
	Get_Descriptor – Obtaining an Internal Descriptor
	Invalidate_Descriptor – Invalidating an Internal Descriptor
	Is_Valid_Descriptor – Checking Internal Descriptor Validity
	Is_Active_Component – Active Variant Checking

	Obtaining or Modifying Target Variables
	Get_Value – Obtaining the Value of Variables
	Set_Value – Setting the Value of Variables
	Validate_Value – Verifying an ASCII Representation
	IO Package – Generic Read and Write of Variables

	Obtaining Information about Variables
	Get_Info and Info_Only – Obtaining Information about Variables
	Get_Array_Info – Obtaining Array Bounds and Component Info
	Get_Type_Name – Obtaining Variable Type Names
	Get_Enum_Image – Obtaining Images of Enumeration Constants
	Get_Enum_Val – Obtaining Values of Enumeration Constants
	Get_Constraints – Obtaining Constraints of Scalar Variables

	Scanning Target Programs for Variables
	Generic Package Lists – Listing Scopes, Variables, and Components


	C Interface
	Organization
	Types and Objects
	Descriptors
	Enumerations

	Error Processing
	Routines
	Target Program Selection and Identification
	Dm_Open_Program – Obtaining Program Descriptors
	Dm_Open_Program_Aux – Obtaining Program Descriptor by Function
	Dm_Close_Program – Closing Program Descriptors
	Dm_Set_Interest_Threshold – Setting the Interest Threshold
	Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Dm_Set_Class_Interpretation – Interpreting Class-Wide Types
	Dm_Get_Pid – Obtaining Target Process ID
	Dm_Set_Pid – Changing Target Process ID
	Dm_Suppress_Index_Checks – Suppressing Index Value Checks

	Obtaining Object Descriptors for Variables
	Dm_Get_Descriptor – Obtaining an Object Descriptor

	Obtaining or Modifying Target Variables
	Dm_Peek – Peeking at Variables
	Dm_Poke – Poking at Variables
	Dm_Get_Value – Obtaining the Value of Variables
	Dm_Set_Value – Setting the Value of Variables

	Obtaining Information about Variables
	Dm_Get_Type_Name – Obtaining Type Names
	Dm_Get_Type_Name_Long – Obtaining Long Type Names
	Dm_Get_Enum_Image – Obtaining Enumeration Constant Images
	Dm_Get_Enum_Val – Obtaining Enumeration Constant Values
	Dm_Line_Info – Obtaining Program Counter Location

	Scanning Target Programs for Variables
	Dm_List – Scanning Target Programs for Variables
	Dm_Find – Scanning Target Programs for Variables--Enhanced


	Fortran Interface
	Organization
	Types and Objects
	Descriptors
	Enumerations

	Error Processing
	Functions
	Target Program Selection and Identification
	Dm_Open_Program – Obtaining Program Descriptors
	Dm_Close_Program – Closing Program Descriptors
	Dm_Set_Interest_Threshold – Setting the Interest Threshold
	Dm_Set_Variant_Handling – Setting Ada Record Variant Sensitivity
	Dm_Set_Class_Interpretation – Interpreting Class-Wide Types

	Obtaining Object Descriptors for Variables
	Dm_Get_Descriptor – Obtaining Object Descriptors

	Obtaining or Modifying Target Variables
	Dm_Peek – Peeking at Variables
	Dm_Poke – Poking at Variables
	Dm_Get_Value – Obtaining the Value of Variables
	Dm_Set_Value – Setting the Value of Variables

	Obtaining Information about Variables
	Dm_Get_Type_Name – Obtaining Type Names
	Dm_Get_Type_Name_Long – Obtaining Long Type Names
	Dm_Get_Enum_Image – Obtaining Enumeration Constants Images
	Dm_Get_Enum_Val – Obtaining Enumeration Constant Values


	MAXAda Examples
	Compilation and Linking Instructions
	Examples
	Example 1 — Peek
	Example 2 — Scanner


	C Examples
	C Compilation and Linking Instructions
	Examples
	Example 1 — Peek
	Example 2 — Scanner


	Fortran Examples
	Compilation and Linking Instructions
	Example 1 — Peek

	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W


