
Quick Reference for shmdefine

0898010-060
July 2018

Copyright 2008, 2018 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for use with Concurrent
Real-Time products by Concurrent Real-Time personnel, customers, and end–users. It may not be reproduced in any form without the written per-
mission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Real-Time makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the
envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without written per-
mission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent Real-Time product names are
trademarks of Concurrent Real-Time while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDATM is a trademark of NVIDIA Corporation.

Preface

Scope of Manual

This guide is designed to assist you in getting started with use of the shmdefine utility.

Structure of Manual

This manual consists of one chapter.

• Chapter 1 introduces you to the shmdefine utility, describes the syntax
of the command as well as its options, and guides the user through an
example demonstrating the steps necessary for programs to share data
which targets a Linux system.

Syntax Notation

The following notation is used throughout this manual:

italic

Books, reference cards, and items that the user must specify appear in italic type.
Special terms may also appear in italics.

list bold
User input appears in list bold type and must be entered exactly as shown.
Names of directories, files, commands, options and system manual page references
also appear in list bold type.

list

Operating system and program output such as prompts and messages and listings of
files and programs appear in list type.

[]

Brackets enclose command options and arguments that are optional. You do not type
the brackets if you choose to specify such options or arguments
iii

Quick Reference for shmdefine
Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual

0890497 Concurrent C/C++ Reference Manual

0890516 MAXAda Reference Manual
iv

Contents

Chapter 1 Using shmdefine

Command Syntax . 1-1
Shared Regions . 1-4

Target . 1-4
Fortran Compiler . 1-4
Initialization . 1-5
Attributes . 1-6
Variables . 1-6

Example . 1-9
Binding shared memory to physical memory. 1-9
Creating source programs. 1-10

work.f . 1-10
report.f . 1-10
pool.dp. 1-11

Creating shmdefine input files . 1-12
Compiling the datapool definition file . 1-13
Executing shmdefine . 1-13
Compiling the initialization output file . 1-13
Compiling and linking the source programs . 1-14
Running the programs . 1-14

Tables

Table 1-1. Attributes .1-6
v

Quick Reference for shmdefine
vi

1
Chapter 1Using shmdefine

1
1
1

The shmdefine utility is designed to facilitate the use of shared memory by a set of
cooperating programs. Although you may have a number of programs that will cooperate
in using one or more shared memory segments, it is necessary to invoke the utility only
once. Because shmdefine produces object files that must be linked to the source object
file, you must invoke it prior to linking.

shmdefine works with MAXAda and Concurrent Fortran as well as the GNU C, C++,
and Fortran compilers for programs that will execute on RedHawkTM Linux® target sys-
tems.

The initialization file generated by shmdefine contains an executable function to access
the shared memory services at program start-up time. On target systems, the function
must be explicitly called before any shared memory regions are referenced.

The linker command script generated by shmdefine describes the shared memory
regions to the linker.

Command Syntax 1

The format for executing the shmdefine utility is as follows:

shmdefine [-CGHNZ] [-b base_name] [-t target] [files]

The options are as follows:

-C
--case-sensitive

Pay attention to case when interpreting symbols in the input. shmdefine
interprets symbols in a case-insensitive manner by default.

-G
--gnu-f77

Use GNU Fortran 77 naming conventions for common blocks. By default,
shmdefine uses Concurrent Fortran naming conventions. If you are using
GNU Fortran 77 to compile common block definitions, you should use this
option to ensure that your common block data is shared properly.

-H
--help

Display the help screen and stop.
1-1

Quick Reference for shmdefine
-N
--no-copy

Suppress calls to data initialization subprograms specified in the INIT
USING clause in any shmdefine input file (see “Initialization” on page 1-5).

-Z
--allow-nubbins

Allow regions with a size <= 0.

-b base_name
--base base_name

Use base_name as the prefix of the generated output files. shmdefine will
append .sm.c and .sm.ld to generate the output files. The default prefix is
shm_init.

-t os
--target os

Generate output files suitable for the target operating system os. Valid values
for os linux.

If no files are specified, shmdefine will read standard input. Otherwise, each file is
parsed, in order, until all have been read. When all input has been consumed, shmdefine
will generate a C source file and a matching linker command script describing the defined
shared memory region(s).

The C source file generated for a target contains an executable function that accesses
shared memory services at the time the user calls it. If an INIT USING clause in the
shmdefine input file specifies a callback subprogram, the C source file also makes the
call to the specified subprogram. Calls to subprograms specified in INIT USING clauses
occur when a newly executed program attaches to the corresponding shared memory
segment – if and only if it is the only program currently attached to that segment. Linux
C, C++ and Fortran programs which desire access to shared memory regions defined using
shmdefine must call shm_init() to initialize the shared memory before using it, and
must call shm_rm() when finished to release and/or destroy the shared memory. The Ada
compiler automatically calls shm_init() and shm_rm().

WARNING

Targets do not provide automatic data initialization of the shared
memory segment even if the original source code specified initial
values for the variables associated with the shared memory seg-
ment. See “Initialization” on page 1-5 for information on initial-
izing shared regions.

The default name for the generated C source file is shm_init.sm.c.
1-2

Using shmdefine
The following table describes how to call the shm_init() and shm_rm() subprograms
from C, C++ and Fortran.

The linker command script describes the shared memory segments to the linker. The
default name for this file is shm_init.sm.ld.

NOTE

The -M option is not needed when linking the .ld link script. If
the -M option is used on the compiler/linker command on targets,
a lengthy memory map is produced.

For C, C++, and Fortran programs, you must use the “-ld:1200 shmdef.ld” option
to pass the filename to a.link.

You can also place the string "-ld:1200 shmdef.ld" in a linker_options
pragma, embedded in your source code. The value "1200" passed to the -ld option
places the linker command script at an appropriate position in the ld(1) command line
to ensure that it is evaluated properly.

When linking your programs using MAXAda, you must use the "-ld[:nnnn]" option to
pass the filename to a.link.

For an active partition named myprog, this can be done easily by issuing:

a.partition -oappend '-ld:1900 shm_init.sm.ld' myprog
You can also place the string "-ld:1900 shm_init.sm.ld" in a LINKER_OPTIONS
pragma, embedded in your Ada source code. The value "1900" passed to the -ld option
places the linker command script at an appropriate position in the ld(1) command line
to ensure that it is evaluated properly.

NOTE

The -ld[:nnnn] argument syntax requires MAXAda 3.4-004 or
greater.

Language Initialize / Destroy

C extern void shm_init(void);
extern void shm_rm (void);

shm_init();
shm_rm();

Fortran call shm_init
call shm_rm
1-3

Quick Reference for shmdefine
Shared Regions 1

Input to the shmdefine utility defines the shared memory segment or segments that are
to be used by cooperating programs. You may define the segments using standard input,
or you may specify one or more files that contain the definitions. Although input in either
case may be free-form, the general format for defining a shared memory segment is as fol-
lows:

[TARGET os]
[FORTRAN COMPILER compiler]
SHARED REGION region_name

[INIT USING subprogram_name]
[attribute1, attribute2, ...]
variable_clause1, variable_clause2, ...

END SHARED REGION

Note that blanks, tabs, and newlines are recognized only as separators. The hash character
(#) can be used to indicate that the rest of the line is a comment.

Target 1

The optional TARGET clause specified in the shared memory definition (see “Shared
Regions” on page 1-4) takes LINUX as a parameter.

If a TARGET clause is specified, it is checked for consistency with any command line
‘-t os’ target option. If the specified targets do not match, the command line option will
override the target specified in the TARGET clause and a warning will be issued.

If the TARGET clause is not specified, the native operating system is assumed.

Fortran Compiler 1

The optional FORTRAN COMPILER clause specified in the shared memory definition (see
“Shared Regions” on page 1-4) takes GNU or CONCURRENT as a parameter.

If a FORTRAN COMPILER clause is specified, it is checked for consistency with any
-G/--gnu-f77 command line option (see “Command Syntax” on page 1-1). If the spec-
ified compilers do not match, the command line option will override the compiler speci-
fied in the FORTRAN COMPILER clause and a warning will be issued.

If a FORTRAN COMPILER clause is not specified, the Concurrent Fortran compiler's nam-
ing conventions are assumed for any common blocks specified in the shared region.
1-4

Using shmdefine
Initialization 1

An INIT USING clause, if specified, provides a way to modify the behavior of the
shm_init() function for associated shared regions (see “Shared Regions” on page 1-4).

After attaching the shared memory region, callbacks are made to INIT USING subpro-
grams if and only if the number of processes attached to the shared region is 1. This pro-
vides a means to perform more complicated initializations of data residing in a shared
memory region.

NOTE

The function named in the INIT USING c lause in the
shmdefine config file must be callable using simple “C”
linkage.

If the function is compiled with a C++ compiler, for example, it
must be within an ‘extern “C” {...}’ storage class specifier.

Three parameters are passed to the INIT USING callback subprogram, which is expected
to have the following profile:

void init_callback (char * region_name,
void * start_address,
int length);

The region_name is the same name specified in the SHARED REGION clause in the shm-
define input file. The start_address and length define the space allocated to the shared
region.

The shared region will be uninitialized at the time the INIT USING subprogram is called,
even if initial values were supplied in the source files defining the variables that are asso-
ciated with the shared region.

The -N option may be used to suppress the calling of subprograms specified in an INIT
USING clause (see “Command Syntax” on page 1-1).
1-5

Quick Reference for shmdefine
Attributes 1

Attributes that can be specified in the shared memory definition (see “Shared Regions” on
page 1-4) are presented in Table 1-1.

Variables 1

The following types of variables may be associated with the shared memory segment (see
“Shared Regions” on page 1-4):

- C external variables

External variables must be declared with the type qualifier volatile in the C
source program.

- Ada variables

Ada variables should be declared volatile via pragma volatile and must be
exported via pragma export in the Ada source program.

Table 1-1. Attributes

Attribute Purpose

ADDRESS Enables you to specify a starting virtual address for the
shared memory segment.

IPC Enables you to set the control flags for the segment.

SHM_LOCAL Enables you to set the NUMA policy for the shared memory
segment to the anchored soft-local policy. A soft-local pol-
icy allows pages to be allocated from global memory when
pages are not available for allocation from the local memory
pool. This option has no effect on systems without local
memory.

SHM_HARD Enables you to set the NUMA policy for the shared memory
segment to the anchored hard-local policy. A hard-local pol-
icy causes a process to wait for local memory pages to
become available if the pages cannot be allocated from the
local memory pool when needed. This option has no effect
on systems without local memory.

KEY Enables you to specify a user-chosen identifier for the seg-
ment.

MODE Enables you to set the permissions that are associated with
the segment.

SHM_RDONLY Enables you to prevent a process from writing to the seg-
ment.
1-6

Using shmdefine
- Fortran common blocks

When using Concurrent Fortran, common blocks should be declared VOLATILE in
the Fortran source program.

NOTE

GNU Fortran 77 does not support the VOLATILE keyword.

- Concurrent Fortran pointer blocks

- Concurrent Fortran datapool dictionaries

The volatile declaration informs the compiler that the values of the variables may be mod-
ified in a way that is unknown to the compiler.

Variables are associated with the shared memory segment using the following variable
clauses:

- C EXTERN external_name [SIZE n [* m]]

The C external variable external_name is included in the current region.

- Fortran COMMON common_block_name [SIZE n [* m]]

The Fortran common block common_block_name is included in the current
region.

- Fortran BLANK COMMON [SIZE n [* m]]

The Fortran unnamed ("blank") common block is included in the current
region.

- Fortran DATAPOOL datapool_name, “filename.o”

The variables from datapool_name defined in the object file filename.o are
included in the current region. filename.o must be compiled from the Fortran
datapool dictionary source file (e.g. my_pool.o created from cf77 -c -g
my_pool.dp).

NOTE

Fortran datapools are only supported by Concurrent Fortran com-
pilers; use of this clause with other compilers may not allow the
program to link.
1-7

Quick Reference for shmdefine
- Fortran SIZEOFBLOCK name [* count] [SIZE n [* m]]

NOTE

Fortran pointer blocks are only supported by Concurrent Fortran
compilers; use of this clause with other compilers may not allow
the program to link.

Reserves space the size of the Fortran pointer block name in the current
region. The space is eight-byte aligned, the size is rounded up to an eight-byte
multiple, and the start and end addresses of the space are marked with the
names sblock__name and eblock__name. get_sblock_addr(3F)
and get_eblock_addr(3F) return these addresses.

If count is specified, space is reserved in the current region for count contigu-
ous copies of the Fortran pointer block name. Each copy is eight-byte aligned,
and its size is rounded up to an eight-byte multiple. get_block_-
copy_addr(3F) returns the start address of a specific copy of the pointer
block. get_block_numcopies(3F) returns count.

NOTE

The optional SIZE clause in the above definitions is required.

It is important to note that space in the shared memory segment is allocated to variables in
the same order in which the variables are specified in the input to shmdefine.
1-8

Using shmdefine
Example 1

This example demonstrates how to enable two Fortran programs to cooperate using shared
data.

This example utilizes a feature of Fortran called datapools. Concurrent Fortran supports
datapools, but the GNU Fortran 77 compiler does not.

NOTE

If you do not have the Concurrent Fortran compiler, you can still
follow this example and substitute common blocks for datapools.
At each step, the example text will instruct you as to how to make
the appropriate substitutions.

The example consists of a work program which does a simple numeric calculation and
then exports the calculation by writing to the variable calculation. The second pro-
gram, report, prints the value of calculation.

- Binding shared memory to physical memory (see page 1-9)

- Creating source programs (see page 1-10)

- Creating shmdefine input files (see page 1-12)

- Compiling the datapool definition file (see page 1-13)

- Executing shmdefine (see page 1-13)

- Compiling the initialization output file (see page 1-13)

- Compiling and linking the source programs (see page 1-14)

- Running the programs (see page 1-14)

Binding shared memory to physical memory 1

If you wish to bind the shared memory segment to a particular section of physical memory,
configure the target system such that the specified shared memory segment already exists
and is bound to the appropriate physical address. The command shmconfig can be
used to accomplish this.

Since our example does not require that the shared memory segment be bound to a section
of physical memory, this step is not required.

NOTE

shmconfig is only available on RedHawk 2.1 and later.
1-9

Quick Reference for shmdefine
Creating source programs 1

Create source programs.

For our example, create the following Fortran source files using a text editor of your
choice:

- work.f (see “work.f” on page 1-10)

- report.f (see “report.f” on page 1-10)

- pool.dp (see “pool.dp” on page 1-11)

NOTE

If you do not have the Concurrent Fortran compiler, uncomment
the lines currently commented out in the work.f and report.f
source files (as indicated by “Note 1” below) and comment the
line containing the datapool statement (as indicated by “Note 2”
below). In this case, skip the creation of pool.dp as well.

work.f 1

program work
real*4 calculation
real*4 data

C common /blk/ data, calculation Note 1
datapool /pool/ data, calculation Note 2
call shm_init
data = 1.0

10 continue
calculation = data * 1.3
data = calculation
call sleep(1)
goto 10
end

report.f 1

program report
real*4 calculation

C real*4 data Note 1
C common /blk/ data, calculation Note 1

datapool /pool/ calculation
call shm_init

10 continue
call sleep(1)
write (6,*) calculation
goto 10
end
1-10

Using shmdefine
pool.dp 1

real*4 data
real*4 calculation
datapool /pool/ data, calculation
end
1-11

Quick Reference for shmdefine
Creating shmdefine input files 1

Create the shmdefine input file(s).

To perform this step, create the shmdefine input file using a text editor of your choice
(see “Shared Regions” on page 1-4).

Create the input file, shmdefine.input
shared region share

key = "/tmp/key"
fortran common blk size 8 See NOTE below
fortran datapool pool, "pool.o" See NOTE below

end shared region

The choice of the filename associated with the KEY attribute is arbitrary. It is used to
ensure that a unique identifier for the shared memory segment is obtained and that access
to the segment is limited to the cooperating programs (see “Attributes” on page 1-6). The
file named in the KEY attribute must exist at the time the program is executed.

The name of the shared region is arbitrarily chosen by the user as well.

NOTE

If you do not have the Concurrent Fortran compiler, uncomment
the line:

fortran common blk size 8

and comment out the line:

fortran datapool pool, "pool.o"

in shmdefine.input.

One advantage of using Fortran datapools is that shmdefine can automatically deter-
mine the size of the datapool by reading the object file corresponding to the datapool defi-
nition file.

For Fortran common blocks, it is the user's responsibility to specify the correct size of the
common block in the shmdefine input file. In such cases, if you have an object file
which describes the entire common block, the script shmdefine.size (shipped with
the shmdefine utility) can help you in obtaining the size.

NOTE

shmdefine.size works only on Linux ELF 32-bit LSB relo-
catable object files.
1-12

Using shmdefine
Compiling the datapool definition file 1

NOTE

If you do not have the Concurrent Fortran compiler, skip this step.

Compile the datapool definition file using the following command.

% /usr/ccs/bin/cf77 -c -g pool.dp

Executing shmdefine 1

Execute shmdefine with the desired options.

Execute shmdefine using shmdefine.input as the input file. Note that the -b
option designates shmdef as the base name for the object files produced by the utility
(see “Command Syntax” on page 1-1). Also, the -t option instructs the shmdefine
utility to generate output files.

% /usr/bin/shmdefine -b shmdef -t linux shmdefine.input

NOTE

If you do not have the Concurrent Fortran compiler, execute shm-
define as shown below:

% /usr/bin/shmdefine --gnu-f77 -b shmdef -t linux shmdefine.input

The --gnu-f77 option tells shmdefine to use GNU gf77
naming rules for symbols. The initialization file (shmdef.sm.c)
and the linker command file (shmdef.sm.ld) are created.

Compiling the initialization output file 1

Compile the initialization output file that is produced by shmdefine.

Compile the initialization file by invoking the C compiler. Note that a subsequent listing
of your files will include the object file produced by the compiler.

% /usr/bin/gcc -c shmdef.sm.c
This creates the object file shmdef.sm.o.

When linking programs that use shmdefine, you must specify the linker configuration
file generated by shmdefine as well as the compiled form of the C source file generated
by shmdefine.
1-13

Quick Reference for shmdefine
Compiling and linking the source programs 1

Compile and link the source programs with the shmdefine initialization object file and
the shmdefine link command output file.

Compile and link the work and report programs by invoking Concurrent Fortran compiler
in the following manner:

% /usr/ccs/bin/cf77 -g -o work work.f shmdef.sm.ld \
 shmdef.sm.o pool.o
% /usr/ccs/bin/cf77 -g -o report report.f shmdef.sm.ld \
 shmdef.sm.o pool.o

If you do not have the Concurrent Fortran compiler, use the following invocations of the
GNU Fortran 77 compiler:

% /usr/bin/g77 -g -o work work.f shmdef.sm.ld shmdef.sm.o
% /usr/bin/g77 -g -o report report.f shmdef.sm.ld shmdef.sm.o

Running the programs 1

Invoke the work program in the background. It updates the variable calculation in
the datapool pool once a second.

% ./work &
Invoke the report program. It prints the value of calculation once a second.

% ./report
2.8561
3.7129
4.8268
6.2749
8.1573
...

NOTE

The report program only refers to the variable calculation;
it does not need to have a complete description of the datapool.
This is the major advantage of datapools over COMMON blocks -
the program only needs to reference the variables with which it is
concerned.

Terminate the report program using the Ctrl-c keyboard sequence.

Terminate the work program by typing:

% fg
and then using the Ctrl-c keyboard sequence.
1-14

	Quick Reference for shmdefine
	Preface
	Contents
	Using shmdefine
	Command Syntax
	Shared Regions
	Target
	Fortran Compiler
	Initialization
	Attributes
	Variables

	Example
	Binding shared memory to physical memory
	Creating source programs
	work.f
	report.f
	pool.dp

	Creating shmdefine input files
	Compiling the datapool definition file
	Executing shmdefine
	Compiling the initialization output file
	Compiling and linking the source programs
	Running the programs

