
RedHawk NightStar Tools Tutorial

0898009-030
July 2004

Copyright 2004 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

RedHawk, NightProbe, NightSim, NightTrace, and NightView are trademarks of Concurrent Computer Corporation.

Linux is a registered trademark of Linus Torvalds.

Printed in U. S. A.

Preface

General Information

The RedHawkTM NightStarTM Tools allow users on an iHawkTM system running RedHawk
Linux® to schedule, monitor, debug and analyze the run-time behavior of their time-criti-
cal applications as well as the RedHawk Linux operating system kernel.

The RedHawk NightStar Tools consist of the NightTraceTM event analyzer; the Night-
SimTM frequency-based scheduler; the NightProbeTM data monitoring tool; the Night-
ViewTM symbolic debugger; the NightTuneTM system and application tuner; shmdefine,
a shared memory configuration aid tool; and the Data Monitoring API.

Scope of Manual

This manual is a tutorial for the RedHawk NightStar Tools.

Structure of Manual

This manual consists of one chapter which is the tutorial for the RedHawk NightStar
Tools.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window
type.
3

RedHawk NightStar Tools Tutorial
[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ } Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView User’s Guide
0890398 NightTrace User’s Guide
0890458 NightSim User’s Guide
0890465 NightProbe User’s Guide
4

Contents
Contents

Chapter 1 Using the RedHawk NightStar Tools

Overview . 1-1
Before you begin . 1-1

Getting Started . 1-3
Building the program . 1-3

Using NightSim . 1-5
Invoking NightSim . 1-5
Configuring the Scheduler . 1-5
Scheduling a process . 1-7
Setting up the scheduler . 1-9

Using NightView . 1-10
Setting a monitorpoint . 1-11
Resuming execution . 1-13
Starting the simulation . 1-13
Monitoring the simulation . 1-14

Using NightProbe . 1-16
Invoking NightProbe . 1-16
Configuring NightProbe . 1-17
Connecting to the target program . 1-19
Starting sampling . 1-20
Modifying program data. 1-21

Using NightTrace. 1-23
Invoking NightTrace. 1-23
Configuring a user daemon . 1-24
Creating a customized display page . 1-26
Creating the user application daemon . 1-27
Resuming execution of the user application daemon 1-28
Displaying the user trace data. 1-28
Inserting a patchpoint . 1-29
Viewing streaming trace output . 1-31
Configuring a kernel daemon . 1-32
Creating the kernel daemon . 1-33
Resuming execution of the kernel daemon . 1-34
Displaying the kernel trace data . 1-35
Flushing the trace data . 1-35
Stopping the daemons. 1-36
Positioning the current time line . 1-36
Loading an eventmap file . 1-38
Searching for a user trace event . 1-38
Zooming in . 1-40
Examining the kernel trace data . 1-41

Using NightTune . 1-44
Invoking NightTune . 1-44
Binding an Interrupt to a CPU . 1-45
Shielding a CPU . 1-47
5

RedHawk NightStar Tools Tutorial
Examining the kernel trace data after tuning . 1-48
Exiting the Tools . 1-49

Exiting NightTune . 1-49
Exiting NightTrace . 1-49
Exiting NightProbe . 1-50
Exiting NightSim . 1-50
Exiting NightView . 1-51

Conclusion . 1-51

Appendix A Tutorial Files

sim.c .A-2
rcim_timer.c .A-4
rcim_timer.h .A-6

Illustrations

Figure 1-1. NightSim Scheduler . 1-5
Figure 1-2. NightSim Edit Process . 1-7
Figure 1-3. Process Scheduling Area . 1-9
Figure 1-4. NightView Dialogue . 1-10
Figure 1-5. NightView Principal Debug Window . 1-11
Figure 1-6. Setting a new monitorpoint . 1-12
Figure 1-7. NightView Monitor Window . 1-12
Figure 1-8. Resuming execution . 1-13
Figure 1-9. Starting the simulation . 1-14
Figure 1-10. NightSim Monitor . 1-15
Figure 1-11. NightProbe Main window . 1-17
Figure 1-12. Configured NightProbe Main window . 1-18
Figure 1-13. NightProbe Spreadsheet Viewer window 1-19
Figure 1-14. User Authentication dialog . 1-20
Figure 1-15. Modified values in NightView Monitor Window 1-21
Figure 1-16. Modified values in NightProbe Spreadsheet Viewer 1-22
Figure 1-17. NightTrace Main Window . 1-24
Figure 1-18. Daemon Definition dialog . 1-25
Figure 1-19. Login dialog . 1-25
Figure 1-20. Import Daemon Definition dialog . 1-26
Figure 1-21. Customized NightTrace display page . 1-27
Figure 1-22. User trace data in customized NightTrace display page 1-29
Figure 1-23. Setting a new patchpoint . 1-30
Figure 1-24. User trace data after patchpoint inserted 1-31
Figure 1-25. Daemon Definition dialog . 1-32
Figure 1-26. NightTrace kernel display page . 1-34
Figure 1-27. NightTrace Main window showing halted daemons 1-36
Figure 1-28. NightTrace kernel trace data . 1-37
Figure 1-29. Search NightTrace Events dialog . 1-39
Figure 1-30. User trace data after search . 1-40
Figure 1-31. Zoomed in view of user trace data . 1-41
Figure 1-32. Zoomed in view of kernel display page 1-42
Figure 1-33. NightTune Welcome Window . 1-44
Figure 1-34. NightTune System Activity Window . 1-45
Figure 1-35. NightTune Interrupt Affinity Window . 1-46
Figure 1-36. Kernel Display Page with shielded CPU 1-48
6

Contents
Figure 1-37. Removing the scheduler .1-49
Figure 1-38. Remove Scheduler dialog .1-50
7

RedHawk NightStar Tools Tutorial
8

Using the RedHawk NightStar Tools
1
Chapter 1Using the RedHawk NightStar Tools

1
1
1

The RedHawk NightStar Tools allow users on an iHawk system running RedHawk Linux
to schedule, monitor, debug and analyze the run time behavior of their real-time applica-
tions as well as the RedHawk Linux operating system kernel.

The RedHawk NightStar Tools consist of the NightTrace event analyzer; the NightSim
frequency-based scheduler; the NightProbe data monitoring tool; the NightView symbolic
debugger; the NightTune system and application tuner; shmdefine, a shared memory
configuration aid tool; and the Data Monitoring API.

Overview 1

This is a demonstration of the RedHawk NightStar Tools. In this tutorial, we will use the
following RedHawk NightStar Tools:

- NightSim

- NightProbe

- NightView

- NightTrace

- NightTune

integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin 1

To automatically ensure that all files your user creates on the RedHawk Linux system are
publicly readable and writeable, include the following command in your shell startup
script:

umask 000

NOTE

This is important for the operation of the tutorial to succeed.
1-1

RedHawk NightStar Tools Tutorial
In addition, some of the activities in the RedHawk NightStar Tools Tutorial require either
root access or user registration in the fbscheduser capabilities role. Either execute the
commands shown in the tutorial as the root user, or have your system administrator reg-
ister you as an FBS user according to the following instructions:

1. Add the following line to the /etc/pam.d/rsh and
/etc/pam.d/login files:

session required /lib/security/pam_capability.so

NOTE

For those users that log into their system directly from the Gnome
or KDE graphical desktop environment, it is necessary to add the
above line to /etc/pam.d/gdm or /etc/pam.d/kde,
respectively. In addition, you must restart your X server or reboot
your system before these changes will take effect.

2. Add the following line to the bottom of the
/etc/security/capability.conf file:

user username fbscheduser
where username is the login name of the desired user.

3. Log off and log back onto the RedHawk system for these changes to take
effect.

4. You may verify your capabilities by issuing the following command:

/usr/sbin/getpcaps $$
which lists the current capabilites.

This list should include the following capability:

cap_sys_nice

which is necessary for the proper execution of this tutorial.
1-2

Using the RedHawk NightStar Tools
Getting Started 1

We will start by creating a directory in which we will do all our work. On the RedHawk
Linux system, create a directory and position yourself in it:

To create a working directory

- Use the mkdir(1) command to create a working directory.

We will name our directory tutorial using the following command:

mkdir tutorial
- Position yourself in the newly created directory using the cd(1) com-

mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar/tutorial during the installation of the RedHawk NightStar
Tools. We will copy these tutorial-related files to our tutorial directory.

To copy the tutorial-related files to the working directory

- Copy all tutorial-related files to our local directory.

cp /usr/lib/NightStar/tutorial/* .

Building the program 1

Our example uses a cyclic program which intends to do some work every time an external
event triggers it.

We will use RedHawk Linux’s Frequency Based Scheduler to control the execution of the
program. The Frequency Based Scheduler allows us to field an external interrupt and con-
trol the execution of one or more programs.
1-3

RedHawk NightStar Tools Tutorial
A portion of one of the source files, sim.c, is shown below:

main()
{
 int arg;

 counters.SetWorkload(0);

 trace_setup ("sim-data") ;

 while (fbswait() == 0) {
 timer.start();
 counters.Increment(1);
 trace_event_arg (cycle_start, counters.Get());
 counters.Work();
 timer.stop();
 arg = counters.Get() % 10;
 trace_event_arg (cycle_end, arg);
 counters.cycle_time = (float) timer.elapsed();
 }
}

The program calls fbswait() which will cause it to block until the frequency-based
scheduler determines that it is time for this program to execute.

At that time, the program enters the loop where it increments some counters, logs a trace
point with the NightTrace API trace_event_arg(), calls the procedure
counters.Work(), logs another trace point to signal the end of the calculations done
by counters.Work(), then returns to fbswait() to await the next cycle.

You only need to make a single FBS API call, fbswait(), to have a program which can
be scheduled on the FBS.

Now that we have the source files, we need to build the program. We will use the g++
compiler.

To build the executable

- From the local tutorial directory, enter the following commands:

g++ -c -g *.c
g++ -o sim *.o -lntrace -lccur_fbsched -lccur_rt

NOTE

The RedHawk NightStar Tools require that the user application is
built with DWARF debugging information in order to read sym-
bol table information from user application program files. For
this reason, the -g compile option is specified. However, when
compiling with releases prior to gcc 3.2, it is necessary to use the
-gdwarf-2 option in place of the -g option.
1-4

Using the RedHawk NightStar Tools
Using NightSim 1

Because our sample program uses the frequency-based scheduler, we will use the Night-
Sim Scheduler to schedule the process. NightSim is a tool for scheduling and monitoring
real-time applications which require predictable, repetitive process execution. NightSim
provides a graphical interface to the RedHawk Linux frequency-based scheduler and per-
formance monitor. With NightSim, application builders can control and dynamically
adjust the periodic execution of multiple coordinated processes, their priorities, and their
CPU assignments. NightSim’s performance monitor tracks the CPU utilization of individ-
ual processes and provides a customizable display of period times, minimums, maxi-
mums, and frame overruns. For more information on NightSim, refer to the NightSim
User’s Guide (0890480).

Invoking NightSim 1

To invoke the NightSim Scheduler

- From the local tutorial directory, enter the following command:

nsim &

Configuring the Scheduler 1

The NightSim Scheduler window is opened, ready for us to configure it for our particular
simulation.

Figure 1-1. NightSim Scheduler
1-5

RedHawk NightStar Tools Tutorial
The FBS schedules processes in a cyclic manner based on some (usually cyclic) interrupt
source.

We use the term cycle, or minor cycle, to represent the smallest amount of time between
occurrences of the interrupt.

We use the term frame, or major frame, as simply a convenience to represent a set of one
or more cycles. Often, the most simple schedulers have 1 cycle per frame. More complex
applications may have different sets of activities that need to be accomplished before the
entire application repeats; such applications would define multiple cycles per frame.

To configure a NightSim Scheduler

- Specify a Scheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
1000.

- Specify the Cycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the value 5.

- Specify the Max. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. Enter 5 for our example.

- Specify the Max. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value 5.

- For the Timing host, enter the name of the RedHawk Linux system on
which NightSim is running. For our example, we will enter demo in this
field.

NOTE

When NightSim is operating in On-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User’s Guide (0890480) for more information.

- Select a Timing source from the list provided. This list contains the set
of devices available on the timing host. We will use Real-time clock
2c0.

- Specify Clock period.

For our simulation, we would like the real-time clock to “fire” every .01 seconds (or
10000 microseconds).

For our example, we will specify 10000 for the number of microseconds.
1-6

Using the RedHawk NightStar Tools
Scheduling a process 1

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

Figure 1-2. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press the Edit... button on the NightSim Scheduler window. This will
bring up the Edit Process window.

- Press the Select... button next to the Process Name field. This brings
up the Select a Program dialog.

- Choose the program we wish to schedule from the Files list. For our
example, we will select sim from the list.

- Press Select to select the program.

- Ensure that the Working Directory is the same directory that contains
our program (the directory of the Process Name selected in the previous
step).
1-7

RedHawk NightStar Tools Tutorial
- Click on the FBS tab:

- Select Starting Cycle.

This field allows you to specify the first minor cycle in which the specified
program is to be wakened in each major frame.

We will choose the lowest value, 0, for our example.

- Select Period.

This field allows you to establish the frequency with which the specified pro-
gram is to be awakened in each major frame. Enter the number of minor
cycles representing the frequency with which you wish the program to be
awakened.

For our example, we will specify a period of 3, indicating that the specified
program is to be awakened every third minor cycle.

- Click on the Process tab:

- Click on the All CPUs checkbox to deselect all of the CPUs

- Choose a single CPU for this process to run on.

For our example, we will specify CPU 0 by clicking on the checkbox labeled
0.

- Ensure that the FIFO scheduling policy is selected.

- Specify the Priority for this process.

The range of priority values that you can enter is governed by the scheduling
policy specified. NightSim displays the range of priority values that you can
enter next to the Priority field. Higher numerical values correspond to more
favorable scheduling priorities.

For our example, we will give the process a priority of 50.

- Click on the I/O and Debug tab:

- Check the Schedule program within a NightView dialogue
checkbox. This will bring the program up in the NightView debug-
ger before the program executes.

- Press Add to add the process to the frequency-based scheduler.

We would also like to measure the idle time on the same CPU. We can do this by schedul-
ing the /idle process.
1-8

Using the RedHawk NightStar Tools
To schedule the /idle process

- In the Edit Process window, enter:

/idle
in the Process Name field.

- Press the Add button to add the /idle process.

- Press the Close button to dismiss the Edit Process window.

You will notice that two entries now appear in the Process Scheduling Area of the Night-
Sim Scheduler window as shown below.

Figure 1-3. Process Scheduling Area

Setting up the scheduler 1

To set up the scheduler

- In the NightSim Scheduler window, press the Set up button.

This action:

• creates a scheduler that is configured according to the parameters we
specified

• schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the first fbswait() call,
and

• attaches the timing source to the scheduler.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-7), the NightView Source Level Debug-
ger will be started.
1-9

RedHawk NightStar Tools Tutorial
Using NightView 1

NightView is a graphical source-level debugging and monitoring tool specifically
designed for time-critical applications. NightView can monitor, debug, and patch multiple
processes running on multiple processors with minimal intrusion. In addition to standard
debugging capabilities, NightView supports application-speed eventpoint conditions, hot
patches, synchronized data monitoring, exception handling and loadable modules.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-7), NightView is started when the sched-
uler is set up (see “Setting up the scheduler” on page 1-9). A NightView Dialogue win-
dow is presented as well as a Principal Debug Window with the execution of the program
stopped.

Figure 1-4. NightView Dialogue
1-10

Using the RedHawk NightStar Tools
Figure 1-5. NightView Principal Debug Window

Setting a monitorpoint 1

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor Window.

To set a monitorpoint

- In the NightView Principal Debug Window, click on the line:

while (fbswait() == 0) {
1-11

RedHawk NightStar Tools Tutorial
- Select Set Monitorpoint... from the Eventpoint menu. This will open
the Set a New Monitorpoint dialog.

Figure 1-6. Setting a new monitorpoint

- Enter the following

 print counters.cycle_time

in the Commands text box:.

- Press OK.

A NightView Monitor Window is opened containing an entry for the
counters.cycle_time variable.

Figure 1-7. NightView Monitor Window
1-12

Using the RedHawk NightStar Tools
NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

 monitorpoint at line_number
 print counters.cycle_time
 end monitor
where line_number coincides with the line:

 while (fbswait() == 0) {

See monitorpoint for details on the use of this command.

Resuming execution 1

Now it’s time to let the program run.

To resume execution in NightView

- Press the Resume button in the NightView Principal Debug Window.

Figure 1-8. Resuming execution

Starting the simulation 1

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on the Start button, NightSim carries out the following actions:

• Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

• If a real-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in the Clock period field in the
Scheduler Configuration Area

• Starts the simulation with the values of the minor cycle, major frame, and
overrun counts set to zero
1-13

RedHawk NightStar Tools Tutorial
To start a simulation in NightSim

- Press the Start button on the NightSim Scheduler window.

Figure 1-9. Starting the simulation

When the simulation begins, you should notice the values for Frame and Cycle in the
Run Status Area begin to change.

Monitoring the simulation 1

The performance monitor is a mechanism that enables you to monitor FBS–scheduled
processes’ utilization of a CPU.

The performance monitor provides you with the ability to:

• Obtain performance monitor values by process or processor

• Start and stop performance monitoring by process

• Clear performance monitor values by processor

To create a performance monitor window

- Select Create Monitor Window from the NightSim menu on the
NightSim Scheduler window.
1-14

Using the RedHawk NightStar Tools
Figure 1-10. NightSim Monitor

Notice the value under the Last Time column for the process sim. This value shows the
amount of time (in microseconds) that the process has spent running between the last time
that it was wakened by the scheduler and the next time it called fbswait().
1-15

RedHawk NightStar Tools Tutorial
Using NightProbe 1

NightProbe is a graphical tool for recording, viewing, and modifying data within a variety
of resources:

• executing programs

• shared memory segments

• memory-mapped files and devices

• PCI devices

Data is sampled using non-intrusive techniques to guarantee short response time and min-
imal impact on the target resources and the target system. The source code of target pro-
grams does not need to be modified or recompiled in order to be monitored. Executing
programs can be monitored and recorded without being stopped and restarted.

For more information on NightProbe, refer to the NightProbe User’s Guide (0890465).

Invoking NightProbe 1

To invoke NightProbe Data Monitoring Tool

- From the Tools menu of the NightSim Scheduler window, select Night-
Probe Data Recorder/Monitor.

The NightProbe Main window is opened.
1-16

Using the RedHawk NightStar Tools
Figure 1-11. NightProbe Main window

Configuring NightProbe 1

Our example will use a configuration file shipped with the RedHawk NightStar Tools to
configure NightProbe. This file, named nprobe.config, was copied to our local
tutorial directory earlier in the step “Getting Started” on page 1-3.

To configure the NightProbe Data Monitoring Tool

- Select Open Session... from the NightProbe menu of the NightProbe
Main window.

You will be presented with a File Selection dialog.

- Maneuver to the local tutorial directory, if necessary.

- Select the file nprobe.config from the list of Files.

- Press Select to load the configuration file and dismiss the dialog.
1-17

RedHawk NightStar Tools Tutorial
You should see the following members of the counters class listed in the Probe
Items list of the Session Overview area of the NightProbe Main window:

- counters.cycle_time

- counters.i_counter

- counters.workload

We will be probing and modifying these variables.

Figure 1-12. Configured NightProbe Main window

Since the nprobe.config file specifies that NightProbe is to direct its output to a
spreadsheet window, the Spreadsheet Viewer window is automatically opened as
well.
1-18

Using the RedHawk NightStar Tools
Figure 1-13. NightProbe Spreadsheet Viewer window

Connecting to the target program 1

When you are ready to perform data recording or monitoring, you must first connect to the
target system and target system resources to be probed.

Initialization occurs during the connection phase - opening output devices, verifying target
processes, and mapping target process variable addresses.

The probed applications are not affected by this operation.

To connect to the target program

- Press the Connect button in the Sampler Control area of the NightProbe
Main window.

- If presented with the User Authentication dialog, enter the login name
of the user on the target system in the User field along with the corre-
sponding password in the Password field.

- Press the OK button to continue.

NOTE

The user authentication dialog is not presented if the target system
is the same as the host.
1-19

RedHawk NightStar Tools Tutorial
Figure 1-14. User Authentication dialog

Starting sampling 1

Once connected, we are ready to begin data recording.

Once started, the NightProbe server process will sample data based on the timing selection
and will send the output to all specified output methods.

When we configured NightProbe (see “Configuring NightProbe” on page 1-17), we
defined the timing selection to be the system clock (which fires once every second) and
selected the Spreadsheet Viewer window as our output method.

To start sampling

- Press the Start button in the Sampler Control area of the NightProbe Main
window.

Note that the values in the Spreadsheet Viewer window will begin to change
once a second.

The user application that we are probing independently measures the time it takes
for each cycle and saves that value in counters.cycle_time.

Note that the value of counters.cycle_time (in units of seconds) is approxi-
mately the same as the Last Time statistic (in units of microseconds) in the Night-
Sim Monitor window. (It will be slightly less than the value shown in the NightSim
Monitor window because the application’s calculations do not include all of its
per-cycle activities.)

Furthermore, the value of counters.cycle_time can also be seen in the Night-
View Monitor Window.
1-20

Using the RedHawk NightStar Tools
Modifying program data 1

NightProbe allows you to monitor and modify target locations while the program is run-
ning. We will modify the sim variable counters.workload to increase the amount of
work the program does.

To modify the value of a variable

- In the Spreadsheet Viewer window, click on the value next to the label
workload.

- Enter the value 10000.

- Press the Enter key.

Notice that the value for cycle_time has increased significantly. In our example,
it is now approximately 0.00035 seconds (this value is dependent on your machine
speed). (You can also see this reflected in the Last Time statistic in the NightSim
Monitor window as well as in the counters.cycle_time monitorpoint in the
NightView Monitor Window.)

Figure 1-15. Modified values in NightView Monitor Window

In addition, the color of the cell containing the value of cycle_time has changed
to yellow. NightProbe allows you to define caution and danger values for variables
displayed in spreadsheets. Since the attributes for this cell (which were included in
the configuration file nprobe.config - see “Configuring NightProbe” on page
1-17) specify that when the value exceeds 0.0002, the color of the cell will change to
yellow signifying a state of high caution.

NOTE

On faster systems, you may have to choose a higher value for the
workload in order to have the cycle time exceed 0.0002 sec-
onds.
1-21

RedHawk NightStar Tools Tutorial
Figure 1-16. Modified values in NightProbe Spreadsheet Viewer

- Change the value of workload to 100000. Notice the color of the cell
containing the cycle_time value changes to red, signifying a state of
high danger.

- Change the value of workload back to 1000. Notice the color of the cell
containing the cycle_time value changes back to white.
1-22

Using the RedHawk NightStar Tools
Using NightTrace 1

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. In addition,
NightTrace can also log RedHawk Linux kernel events such as individual system calls,
context switches, machine exceptions, page faults and interrupts. By combining applica-
tion events with RedHawk Linux kernel events, NightTrace presents a synchronized view
of the entire system. Furthermore, NightTrace allows users to zoom, search, filter, sum-
marize, and analyze those events in a wide variety of ways.

Using NightTrace, users can manage multiple user and kernel NightTrace daemons simul-
taneously on multiple target systems from a central location. NightTrace provides the user
with the ability to start, stop, pause, and resume execution of any of the daemons under its
management.

NightTrace users can define and save a “session” consisting of one or more daemon defi-
nitions. These definitions include daemon collection modes and settings, daemon priori-
ties and CPU bindings, and data output formats, as well as the trace event types that are
logged by that particular daemon.

Invoking NightTrace 1

To invoke NightTrace from NightProbe

- From the Tools menu of the NightProbe Main window, select the Night-
Trace Analysis menu item.

The NightTrace Main Window is opened.
1-23

RedHawk NightStar Tools Tutorial
Figure 1-17. NightTrace Main Window

For more information on the NightTrace Main Window, see the chapter titled “Using the
NightTrace Main Window” in the NightTrace User’s Guide (0890398).

Configuring a user daemon 1

NightTrace allows the user to configure a user daemon to collect user trace events.

User trace events are generated by:

- user applications that use the NightTrace API

- NightProbe (see the description of the To NightTrace menu item in the
chapter titled “Using the Data Recording Window” in the NightProbe
User’s Guide (0890480).

We will configure a user daemon to collect the events that our sim program logs.

To configure a user daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition dialog is displayed.
1-24

Using the RedHawk NightStar Tools
Figure 1-18. Daemon Definition dialog

- Press the Import... button at the bottom of the Daemon Definition dialog.

You will be presented with a Login dialog.

Figure 1-19. Login dialog

- Enter the name of the system on which the sim application is run-
ning in the Target System field.

- Enter your login name on that system in the User field.

- Press the OK button.
1-25

RedHawk NightStar Tools Tutorial
The Import Daemon Definition dialog is presented.

Figure 1-20. Import Daemon Definition dialog

The Import Daemon Definition dialog allows the user to define daemon attributes
based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the sim application.

- Press the Import button.

The Import Daemon Definition dialog closes and the Daemon Definition dialog is
populated with the imported attributes.

- Press OK on the Daemon Definition dialog to complete the configuration
of the user application daemon.

Creating a customized display page 1

Now that we have configured our user application daemon, we can create a NightTrace
display page in which we will view our trace data.

For this example, we would like to use a customized display page so we will use the con-
figuration file shipped with the RedHawk NightStar Tools. This file, named
ntrace.config, was copied to our local tutorial directory earlier in the step “Get-
ting Started” on page 1-3.

To create a customized display page

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.config from the list of Files.
1-26

Using the RedHawk NightStar Tools
- Press the OK button to create the display page as specified by the
configuration file.

The customized NightTrace display page is presented.

Figure 1-21. Customized NightTrace display page

Creating the user application daemon 1

Once the user application daemon is configured, it must be created before it can begin col-
lecting events.

To create the user application daemon

- Select the user application daemon in the Daemon Control Area of the
NightTrace Main Window.

- Press Launch.

The user application daemon is now created and ready to capture data. Note that the
daemon is in a Paused state.
1-27

RedHawk NightStar Tools Tutorial
NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Resuming execution of the user application daemon 1

Now that the daemon is configured and created, waiting in a Paused state, we may
resume its execution so that it may begin collecting events.

To resume execution of the user application daemon

- Select the user application daemon in the Daemon Control Area of the
NightTrace Main Window.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

Displaying the user trace data 1

Now that we have our customized display page, we can display the user trace data.

To display the user trace data

- Press the Zoom Out button on the user display page repeatedly until data
fills the grid area. You should see a saw-toothed pattern similar to the one
shown in the figure below.
1-28

Using the RedHawk NightStar Tools
Figure 1-22. User trace data in customized NightTrace display page

NOTE

This display page is configured to only display events from the
user application.

Inserting a patchpoint 1

NightView allows the use of patchpoints while debugging a process. Patchpoints are loca-
tions in the debugged process where a patch, usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop to change the value of the arg vari-
able in order to modify the output of the trace data:

 arg = counters.Get() % 10;
 trace_event_arg (cycle_end, arg);

To insert a patchpoint in a program

- In the NightView Principal Debug Window, click on the line:

trace_event_arg (cycle_end, arg);
1-29

RedHawk NightStar Tools Tutorial
- Select Set Patchpoint... from the Eventpoint menu. This will open
the Set a New Patchpoint dialog.

Figure 1-23. Setting a new patchpoint

- Enter the expression:

arg = 10 - arg

in the Evaluate field.

- Press OK.

NOTE

You may have also entered the following command in the Com-
mand field of the NightView Principal Debug Window:

 patchpoint at line_number eval arg = 10 - arg
where line_number coincides with the line:

 trace_event_arg (cycle_end, arg);

See patchpoint for details on the use of this command.
1-30

Using the RedHawk NightStar Tools
Viewing streaming trace output 1

Now that we’ve modified the behavior of the program using patchpoints in NightView
(see “Inserting a patchpoint” on page 1-29), we can see the effect our change has on the
output of the user trace data.

Since the user trace daemon was configured to stream the output directly to the Night-
Trace display buffer, we may view it immediately even while additional trace data is being
collected.

To view streaming data

- On the Interval Control Bar under the grid on the NightTrace display page,
press the right arrowhead continually until you see the shape of the saw-
tooth pattern change from an ascending pattern to a descending pattern as
shown in the figure below. (See the section titled “The Interval Scroll Bar”
in the chapter “Viewing Trace Event Logs with ntrace” in the NightTrace
User’s Guide (0890398).

Figure 1-24. User trace data after patchpoint inserted
1-31

RedHawk NightStar Tools Tutorial
NOTE

We've just modified the path and behavior of our real-time appli-
cation without stopping it or causing it to miss any deadlines - just
one of the many features of NightView!

Configuring a kernel daemon 1

NightTrace allows the user to configure a kernel daemon to collect data about the execu-
tion time of interrupts, exceptions, system calls, context switches, and I/O to various
devices.

To configure a kernel daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition dialog is displayed.

Figure 1-25. Daemon Definition dialog
1-32

Using the RedHawk NightStar Tools
- Select Kernel from the Trace drop-down menu located in the Target
section on the General page to indicate that we want this daemon to col-
lect kernel events.

- Press OK to complete the configuration of this daemon.

Creating the kernel daemon 1

Once the daemons are configured, they must be created before they can begin collecting
events.

To create the daemons

- Select the kernel daemon in the Daemon Control Area of the NightTrace
Main Window.

- Press Launch.

The kernel daemon is now created and ready to capture data. Note that the daemon
is in a Paused state.

In addition, a NightTrace kernel display page appears.

NOTE

The page may differ in format depending on the number of CPUs
on your system.
1-33

RedHawk NightStar Tools Tutorial
Figure 1-26. NightTrace kernel display page

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Resuming execution of the kernel daemon 1

Now that the kernel daemon is configured and created, waiting in a Paused state, we
may resume its execution so it may begin collecting events.

To resume execution of the kernel daemon

- Select the kernel daemon in the Daemon Control Area of the NightTrace
Main Window.
1-34

Using the RedHawk NightStar Tools
IMPORTANT

The current activity on the system has a drastic effect on how
much data will be collected. Streaming data for a few seconds on
a busy system may collect hundreds of thousands of kernel events
while on a fairly idle system it may take a few minutes to reach
that level.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

NOTE

You may display the kernel data as it is streaming. See “Display-
ing the kernel trace data” in the following section.

- When the value in the Logged column reaches around 50000 events,
press the Pause button.

Displaying the kernel trace data 1

As we are collecting trace data from the RedHawk Linux kernel, we can display that data
in the NightTrace kernel display page.

To display the kernel trace data

- Select only the kernel daemon in the Daemon Control Area of the Night-
Trace Main Window (as indicated by the K in the Type column).

- Press Display.

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by setting the Trace Output Method on the General page
of the Daemon Definition dialog to Stream to NightTrace GUI), pressing this
button causes a flush of the data currently in the trace buffer to the NightTrace dis-
play buffer.

Flushing the trace data 1

To flush the trace data

- Select both daemons from the Daemon Control Area of the NightTrace
Main Window) by clicking on the top daemon and then clicking on the bot-
tom daemon while the Shift key is depressed.
1-35

RedHawk NightStar Tools Tutorial
- Press Flush.

This flushes any remaining trace events from the buffers associated with the dae-
mons currently selected in the Daemon Control Area to the NightTrace display
buffer. (If our trace data was being output to output files, the trace events would be
flushed to those files.)

Stopping the daemons 1

Once we are finished accumulating enough data from the daemons, we can stop them.

To stop the daemons

- Ensure that both daemons are selected in the Daemon Control Area of the
NightTrace Main Window.

- Press Halt.

The state of both daemons changes to Halted.

Figure 1-27. NightTrace Main window showing halted daemons

Positioning the current time line 1

We will position the current time line to a point somewhere after the kernel trace data
started being generated.
1-36

Using the RedHawk NightStar Tools
To position the current time line

- On the Interval Control Bar under the grid on the kernel display page, press
the right arrowhead continually until data appears in the grid area. (See the
section titled “The Interval Scroll Bar” in the chapter “Viewing Trace
Event Logs with ntrace” in the NightTrace User’s Guide (0890398).

- Click in the center of the data displayed in the grid area of the kernel dis-
play page.

Note the information regarding interrupts, exceptions, system calls, and kernel
events on each CPU displayed in the DataBoxes on the left side of the grid area.

Figure 1-28. NightTrace kernel trace data

The DataBoxes are updated based on the current position of the current timeline and indi-
cate the last value of each data item that occurred on or before the timeline on each CPU.

NOTE

By default, user events are not displayed on this page even though
they may exist in the same interval.
1-37

RedHawk NightStar Tools Tutorial
Loading an eventmap file 1

Eventmap files map ASCII trace event names with numeric trace event IDs allowing the
user to reference events based on mnemonic tags or meaningful labels.

A n ev e n t m a p f i l e , ntrace.eventmap , w a s c o p i e d f r o m t h e
/usr/lib/NightStar/tutorial directory to our working directory in the step
“Getting Started” on page 1-3. This file contains a mapping of trace event names to the
trace events IDs logged in our user application.

We will load that eventmap file now so that we can refer to those event names in the next
section, “Searching for a user trace event”.

To load an eventmap file

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.eventmap from the list of Files.

- Press the OK button to load the eventmap file.

Searching for a user trace event 1

To search for a user trace event

- Select the Change Search Criteria... menu item from the Actions
menu on the NightTrace display page containing the user trace data.

The Search NightTrace Events dialog is presented.
1-38

Using the RedHawk NightStar Tools
Figure 1-29. Search NightTrace Events dialog

- Select cycle_start from the list of events in the Value pulldown menu
list.

In sim.c (see “sim.c” on page A-2), we log a trace event immediately when we
start our cycle (exiting fbswait):

trace_event_arg (cycle_start, counters.Get());

NOTE

Because we loaded the ntrace.eventmap file (“Loading an
eventmap file” on page 1-38), we are able to specify the more
meaningful event name, cycle_start, in the Event List field
instead of the numeric trace event ID (110).

- Press the forward search button (represented by the right-hand green
arrow).

- Press the Close button to dismiss the Search dialog.

Both display pages are positioned at the first occurrence in our data which meets our
search criteria.
1-39

RedHawk NightStar Tools Tutorial
Figure 1-30. User trace data after search

Zooming in 1

We can see a finer level of detail by zooming in on the user trace display page.

To zoom in

- Press the Zoom In button repeatedly until two black vertical lines with a
green bar between them appears.
1-40

Using the RedHawk NightStar Tools
Figure 1-31. Zoomed in view of user trace data

Remember that our program logs a trace event immediately when we start our cycle (exit-
ing fbswait), then it performs some calculations using counters.work, and finally it
logs another trace event when it is finished before returning to the fbswait call at the top
of the loop. (See “sim.c” on page A-2.)

The black lines represent the individual events logged in the application by the
trace_event_arg() API calls. The green bar is a state graph; the start of the state is
defined to be the cycle_start event logged when we begin our cycle (event #110) and
the end of the state is defined by cycle_end (event #111) which is logged when we
complete our cycle.

The red line that appears at the end of the state graph is an entry in a datagraph whose
value is that of the argument logged with the cycle_end event in the second
trace_event_arg() call. (This value which ranges from 1 to 9).

Examining the kernel trace data 1

Now let’s take a look at the kernel trace data to see how it coincides with the user trace
data.
1-41

RedHawk NightStar Tools Tutorial
NOTE

NightTrace automatically synchronizes all display pages so that
every display page shows the same time frame. Thus, our kernel
display page reflects the system activity corresponding to the time
period displayed in our user trace display page.

Figure 1-32. Zoomed in view of kernel display page

NOTE

The following analysis of the kernel trace data is based on
Figure 1-32. If you are analyzing live data, your kernel display
page may look different. You may see additional activity, most
likely interrupt activity, between the exit and reentry to the
fbswait API call (which corresponds to the fbsched system
call on CPU 0 in Figure 1-32).

In Figure 1-32, the first red bar displayed on the grid for CPU 1 to the left of the current
time line (represented by the dashed vertical line) indicates the interrupt from the RCIM
device. (Note that if you collected your own kernel data, the CPU where the interrupt
occurred could be on a different CPU in which case it may not be the first red bar to the
left of the current time line, but it will be close.)
1-42

Using the RedHawk NightStar Tools
A context-switch then occurs on CPU 0 as indicated by the first black vertical line to the
left of the current time. The blue bar following that first black line is the fbsched sys-
tem call. In our source code, this is when we exit the fbswait call.

The application then performs its calculations (as indicated by the colored bar on the pid
row) before it comes back to the fbswait call (the second blue bar).

The lack of any activity in the white space in the interrupt and system call rows indicates
that the user application did not make any intervening system calls and was not disturbed
by some other interrupt or exception.

The solid bar in the pid row indicates the time where the process sim was assigned to the
CPU (executing in the kernel during the system calls or interrupt processing and executing
in user space otherwise).

For optimal application performance, we will use NightTune to shield the CPU where sim
executes from interrupts and other processes.

NOTE

If your system has only one CPU, continue to “Exiting the Tools”
on page 1-49 .
1-43

RedHawk NightStar Tools Tutorial
Using NightTune 1

NightTune is a graphical tool for analyzing system and application performance including
CPU usage, context switches, interrupts, virtual memory usage, network activity, process
attributes, and CPU shielding. NightTune allows you to change the priority, scheduling
policy, and CPU affinity of individual or groups of processes using pop-up dialogs or
drag-and-drop actions. It also allows you to set the shielding and hyper-threading
attributes of CPUs and change the CPU assignment of individual interrupts.

NOTE

NightTune may only be used on systems running RedHawk 2.1 or
later. If your system is running an earlier version of RedHawk,
continue to “Exiting the Tools” on page 1-49 .

Invoking NightTune 1

To invoke NightTune from NightProbe

- From the Tools menu of the NightProbe Main window, select the Night-
Tune Performance menu item.

The NightTune Welcome Window is displayed.

Figure 1-33. NightTune Welcome Window

- On the NightTune Welcome Window, select Show Activity Monitor
Page.
1-44

Using the RedHawk NightStar Tools
The System Activity Monitor window is displayed.

- From the Monitor menu, deselect Context Switches and select Inter-
rupt Activity and CPU Status.

- Resize the window and use the moveable pane controls so that you can see
all the CPU boxes in the CPUs area as well as the textual description of
individual IRQ values in the Interrupt Activity area.

Figure 1-34. NightTune System Activity Window

Each row in the Interrupt Activity area contains a red arrow icon, an IRQ value, the
number of interrupts per second for each CPU corresponding to that IRQ, and a textual
description of the devices using that IRQ.

Binding an Interrupt to a CPU 1

Our first step in tuning the system will be to bind the RCIM interrupt to CPU 0.
1-45

RedHawk NightStar Tools Tutorial
To bind an interrupt to a CPU

- In the Interrupt Activity area, locate the IRQ value associated with the
RCIM device. The word rcim should be listed in the right hand column of
one of the IRQ rows.

- Using the middle mouse button, click and hold anywhere in the row associ-
ated with the RCIM device. A new icon will appear. Drag the icon into the
CPUs area and release it when the icon is placed in the section related to
CPU 0.

Figure 1-35. NightTune settings for CPU 0

The IRQ associated with the RCIM device is now bound to CPU 0.

Alternatively, you can change the interrupt bindings for individual IRQs by clicking on the
red arrow icon. This brings up a dialog which allows you to choose a single CPU or a set
of CPUs that are allowed to field that interrupt.

Figure 1-36. NightTune Interrupt Affinity Window
1-46

Using the RedHawk NightStar Tools
Shielding a CPU 1

The next step in tuning our system is to shield CPU 0 from all other interrupts and pro-
cesses.

To shield a CPU

- Press the Max Shield button in the CPU 0 figure in the CPUs area.

When Max Shield is pressed, NightTune automatically changes the CPU configu-
ration in the following ways:

• the Interrupts checkbox under the Shielded From area for CPU
0 is activated

Shielded from interrupts means that CPU 0 will only field interrupts that have
specifically been bound to CPU 0 and CPU 0 only. By default, the CPU affin-
ity of most interrupts includes all CPUs, so this setting effectively isolates
CPU 0 to just the RCIM device (and other devices that use the same IRQ
value).

• the Local Timer checkbox under the Shielded From area for
CPU 0 is activated

Shielded from local timer interrupts means that CPU 0 will not field local
timer interrupts.

• the Processes checkbox under the Shielded From area for CPU
0 is activated

Shielded from processes means that CPU 0 will only execute processes that
have been specifically bound to CPU 0 and CPU 0 only.

NOTE

When we configured our application with NightSim, we bound
our sim program to CPU 0; it will remain there even after these
changes are applied.

• the Active checkbox under the Shielded From area for the
hyper-threaded sibling CPU (CPU 1) is deactivated

Marking the sibling hyper-threaded CPU as inactive prevents activity on that
logical CPU, which shares the physical CPU with CPU 0.

NOTE

Not all systems include hyper-threading support; therefore, this
action may not occur on your system.
1-47

RedHawk NightStar Tools Tutorial
- Press the Apply button to activate these changes.

These configuration changes are not applied to the system until the Apply button is
pressed.

Examining the kernel trace data after tuning 1

We will now capture some fresh kernel trace data to examine the effects of our tuning of
CPU 0.

To examine the kernel trace data after tuning

- In the NightTrace Main window, select the kernel daemon from the Dae-
mon Control area.

- Press Launch.

The kernel daemon is now ready to capture data. Note that the daemon is in a
Paused state.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

- When the value in the Logged column reaches around 50000 events,
press the Pause button.

- On the kernel display page, continually press the Zoom Out button until
you see new kernel data on the right-hand side of the display page.

- Click in the middle of the new data and press Zoom In until more detail
appears.

See that the activity on CPU 0 is limited to the RCIM interrupt, followed by the exe-
cution of our sim application. No other processes or interrupts affect CPU 0.
1-48

Using the RedHawk NightStar Tools
Figure 1-37. Kernel Display Page with shielded CPU

Exiting the Tools 1

In conclusion of our tutorial, we will exit each of the tools.

Exiting NightTune 1

To exit NightTune

- From the NightTune System Activity Window, select Exit from the File
menu.

Exiting NightTrace 1

To exit NightTrace

- From the NightTrace Main Window, select Exit Immediately from the
NightTrace menu.
1-49

RedHawk NightStar Tools Tutorial
Exiting NightProbe 1

To exit NightProbe

- From the NightProbe Main window, press the Stop button to stop sam-
pling data.

- Press the Disconnect button to disconnect from the application.

- From the NightProbe menu, select Exit.

- When NightProbe presents the warning dialog asking if you would like to
save configuration changes, press No.

Exiting NightSim 1

To exit NightSim

- In the NightSim Scheduler window, press the Stop button.

- Press the Remove button.

Figure 1-38. Removing the scheduler

You will be presented with the following dialog:

Figure 1-39. Remove Scheduler dialog

- Press Yes to kill the processes that are currently scheduled on the sched-
uler.
1-50

Using the RedHawk NightStar Tools
- From the NightSim menu, select Exit.

- When NightSim presents the warning dialog asking if you would like to
save the current configuration, press No.

Exiting NightView 1

To exit NightView

- From the NightView Principal Debug Window, select

Exit (Quit NightView)

from the NightView menu.

Conclusion 1

This concludes the RedHawk NightStar Tools Tutorial.

For more in-depth tutorials, refer to the sections in the manuals listed below:

- NightProbe User’s Guide

- Appendix C - “Probing Programs Tutorial”

- Appendix C - “Probing Devices Tutorial”

- NightView User’s Guide

- Chapter 4 - “Tutorial” (command-line interface)

- Chapter 5 - “GUI Tutorial” (graphical user interface)
1-51

RedHawk NightStar Tools Tutorial
1-52

Tutorial Files
A
Appendix ATutorial Files

1
1
1

The following sections show the source listings for the files used in the RedHawk Night-
Star Tools Tutorial.
A-1

RedHawk NightStar Tools Tutorial
sim.c A

#include <unistd.h>
#include <stdio.h>
#include <ntrace.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <fbsched.h>
#include "rcim_timer.h"

#define cycle_start 110
#define cycle_end 111

class Counters ;

class Counters {
public:
 Counters (int i=0, int load=10000);
 void Increment(int i) { i_counter = (i_counter + i) % 10; }
 void SetWorkload (int load);
 int Calculate (void);
 int Get(void);
 void Work (void);
 float cycle_time;
private:
 int i_counter;
 int workload;
};

Counters counters ;
rcim_timer timer;

static void trace_setup (char *);

main()
{
 int arg;

 counters.SetWorkload(0);

 trace_setup ("sim-data") ;

 while (fbswait() == 0) {
 timer.start();
 counters.Increment(1);
 trace_event_arg (cycle_start, counters.Get());
 counters.Work();
 timer.stop();
 arg = counters.Get() % 10;
 trace_event_arg (cycle_end, arg);
 counters.cycle_time = (float) timer.elapsed();
 }
}

Counters::Counters (int i, int load)
{
 i_counter = i;
 workload = load;
}

A-2

Tutorial Files
void
Counters::Work (void)
{
 int i;
 volatile int x = 0;
 for (i=0; i<workload; ++i) {
 x = x * Calculate();
 }
 timer.spin (100);
}

int
Counters::Calculate (void)
{
 return i_counter*2;
}

int
Counters::Get(void)
{
 return i_counter;
}

void
Counters::SetWorkload (int load)
{
 workload = load;
}

static
void
trace_setup (char * key)
{
 struct pgm2_ds ds;
 ntconfig_t config;
 char thread_name[20];
 char dont_care[2048];
 int status;

 config.ntc_buffer_size = 1024*16;
 config.ntc_use_spl = 0;
 config.ntc_use_resched = 0;
 config.ntc_lock_pages = 0;
 config.ntc_clock = 0;
 config.ntc_shmid_perm = 0666;
 config.ntc_daemon_preferred = 1;

 trace_begin (key, &config);
 trace_open_thread ("sim");
}

A-3

RedHawk NightStar Tools Tutorial
rcim_timer.c A

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <ntrace.h>

#include "rcim_timer.h"

rcim_timer::rcim_timer (void)
{
 char * rcim_tick_addr;
 int rcim_tick_fd;

#define PAGE_SIZE 4096
#define PATH "/dev/rcim/sclk"

 clock = NULL ;

 rcim_tick_fd = open(PATH, O_RDONLY, 0);
 if (rcim_tick_fd == -1) {
 //printf ("failed to open RCIM \n") ;
 return ;
 }

 rcim_tick_addr = (caddr_t) mmap(
 NULL, (size_t) PAGE_SIZE, PROT_READ, MAP_SHARED, rcim_tick_fd, 0);
 if (rcim_tick_addr == (caddr_t) -1) {
 //printf ("failed to mmap RCIM \n") ;
 close(rcim_tick_fd);
 return;
 }
 close(rcim_tick_fd);

 clock = (timestamp_t *) rcim_tick_addr;
}

void
rcim_timer::start (timestamp_t * stamp)
{
 if (!stamp) {
 stamp = &start_time;
 }
 for (;;) {
 stamp->high = clock->high ;
 stamp->low = clock->low ;
 if (clock->high == stamp->high) {
 return ;
 }
 }
}

void
rcim_timer::stop (timestamp_t * stamp)
{
 if (!stamp) {
 stamp = &stop_time;
 }
 for (;;) {
A-4

Tutorial Files
 stamp->high = clock->high ;
 stamp->low = clock->low ;
 if (clock->high == stamp->high) {
 return ;
 }
 }
}

#define SECONDS_PER_TICK 0.000000400 // 400 ns

double
rcim_timer::elapsed (timestamp_t * start, timestamp_t * stop)
{
 if (!start && !stop) {
 start = &start_time;
 stop = &stop_time;
 }
 int upper = stop->high - start->high;
 int lower = stop->low - start->low;

 return double(upper) * SECONDS_PER_TICK * 4294967296.0 +
 double(lower) * SECONDS_PER_TICK ;
}

rcim_timer::~rcim_timer (void)
{
 (void) munmap ((caddr_t)clock,PAGE_SIZE);
}

void
rcim_timer::spin (int micro_seconds)
{
 timestamp_t start, stop;

 rcim_timer::start (&start);
 for(;;) {
 rcim_timer::stop(&stop);
 if (elapsed(&start,&stop) >= (double)micro_seconds/1000000.0) {
 return;
 }
 }
}

A-5

RedHawk NightStar Tools Tutorial
rcim_timer.h A

class rcim_timer {
 typedef struct {
 int high ;
 int fill ;
 int low ;
 } timestamp_t ;
public:
 rcim_timer (void);
 ~rcim_timer (void);
 void start (timestamp_t * stamp = NULL);
 void stop (timestamp_t * stamp = NULL);
 double elapsed (timestamp_t * start = NULL,
 timestamp_t * stop = NULL);
 void spin (int micro_seconds);
private:
 volatile timestamp_t * clock ;
 timestamp_t start_time ;
 timestamp_t stop_time ;
} ;
A-6

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Tutorial

0898009

R
edH

aw
k

N
ightStar Tools

	RedHawk NightStar Tools Tutorial
	Preface
	Chapter 1 Using the RedHawk NightStar Tools
	Appendix A Tutorial Files
	Illustrations

	Using the RedHawk NightStar Tools
	Overview
	Before you begin

	Getting Started
	Building the program

	Using NightSim
	Invoking NightSim
	Configuring the Scheduler
	Scheduling a process
	Setting up the scheduler

	Using NightView
	Setting a monitorpoint
	Resuming execution
	Starting the simulation
	Monitoring the simulation

	Using NightProbe
	Invoking NightProbe
	Configuring NightProbe
	Connecting to the target program
	Starting sampling
	Modifying program data

	Using NightTrace
	Invoking NightTrace
	Configuring a user daemon
	Creating a customized display page
	Creating the user application daemon
	Resuming execution of the user application daemon
	Displaying the user trace data
	Inserting a patchpoint
	Viewing streaming trace output
	Configuring a kernel daemon
	Creating the kernel daemon
	Resuming execution of the kernel daemon
	Displaying the kernel trace data
	Flushing the trace data
	Stopping the daemons
	Positioning the current time line
	Loading an eventmap file
	Searching for a user trace event
	Zooming in
	Examining the kernel trace data

	Using NightTune
	Invoking NightTune
	Binding an Interrupt to a CPU
	Shielding a CPU
	Examining the kernel trace data after tuning

	Exiting the Tools
	Exiting NightTune
	Exiting NightTrace
	Exiting NightProbe
	Exiting NightSim
	Exiting NightView

	Conclusion
	Tutorial Files
	sim.c
	rcim_timer.c
	rcim_timer.h

