
NightStarRT Tutorial
Version 3.2

(RedHawk Linux)

0898009-060
July 2006

Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

NightSim, iHawk, RedHawk, NightStar, NightProbe, NightTrace, NightTune, and NightView are trademarks of Concurrent Computer Corpora-
tion.

Intel is a registered trademark of Intel.

AMD is a trademark of Advanced Micro Devices, Inc.

NFS is a trademark of Sun Microsystems, Inc.

OSF/Motif is a registered trademark of The Open Group.

The registered trademark Linux is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of Linus Torvalds, owner of
the mark in the U.S. and other countries.

Red Hat is a registered trademark of Red Hat, Inc.

X Window System and X are trademarks of The Open Group.

HyperHelp is a trademark of Bristol Technology Inc.

Preface

General Information

NightStar RTTM allows users running RedHawk to schedule, monitor, debug and analyze
the run-time behavior of their time-critical applications as well as the operating system
kernel.

NightStar RT consists of the NightTraceTM event analyzer; the NightProbeTM data moni-
toring tool; the NightViewTM symbolic debugger; the NightSimTM scheduler; the Night-
TuneTM system and application tuner; the Data Monitoring API; and the Shmdefine shared
memory utility.

Scope of Manual

This manual is a tutorial for NightStar RT.

Structure of Manual

This manual consists of five chapters which comprise the tutorial for NightStar RT.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window
type.
3

NightStar RT Tutorial
[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ } Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0898465 NightProbe RT User’s Guide
0898398 NightTrace RT User’s Guide
0898515 NightTune RT User’s Guide
0898480 NightSim RT User’s Guide
0898395 NightView RT User’s Guide
4

Contents
Contents

Chapter 1 Overview

Getting Started . 1-2
Setting Up User Privileges . 1-2
Creating a Tutorial Directory . 1-3
Building the Program . 1-4

Chapter 2 Using NightView

Invoking NightView . 2-2
Heap Debugging . 2-6

Activating Heap Debugging . 2-6
Controlling the app Program . 2-8
Scenario 1: Use of a Freed Pointer . 2-10
Scenario 2: Freeing an Invalid Pointer Value . 2-13
Scenario 3: Writing Past the End of an Allocated Block 2-15
Scenario 4: Use of Uninitialized Heap Blocks . 2-16
Scenario 5: Detection of Leaks. 2-18
Scenario 6: Allocation Reports. 2-19
Disabling Heap Debugging . 2-20

Debugging Multiple Threads. 2-21
Using Monitorpoints . 2-24
Using Eventpoint Conditions and Ignore Counts . 2-26
Using Patchpoints . 2-27
Adding and Replacing Functions Dynamically. 2-29
Using Tracepoints . 2-31
Conclusion - NightView . 2-32

Chapter 3 Using NightTrace

Invoking NightTrace . 3-1
Configuring a User Daemon . 3-2
Streaming Live Data to the NightTrace GUI. 3-4
Using the Main Window for Textual Analysis . 3-6
Customizing Event Descriptions . 3-7
Searching the Events List . 3-9
Halting the Daemon. 3-11
Using NightTrace Display Pages. 3-12

Changing a Data Box Configuration . 3-13
Configuring a State. 3-15
Displaying State Duration . 3-19
Using the Summary Dialog . 3-20
Defining a Data Graph . 3-24

Kernel Tracing . 3-26
Obtaining Kernel Trace Data . 3-26
Using Prerecorded Kernel Data . 3-27
5

NightStar RT Tutorial
Analyzing Kernel Data . 3-27
Mixing Kernel and User Data . 3-32

Using the NightTrace Analysis API. 3-35
Conclusion - NightTrace . 3-37

Chapter 4 Using NightProbe

Invoking NightProbe . 4-1
Selecting Processes and Variables . 4-2

Selection of Outputs. 4-5
File Output . 4-5
List Window Output . 4-6
Spreadsheet Output . 4-6

Probing Variables . 4-7
Viewing Recorded Data . 4-8
Viewing Data with NightTrace . 4-9
Using the NightProbe API . 4-11
Conclusion - NightProbe . 4-13

Chapter 5 Using NightTune

Invoking NightTune . 5-1
Monitoring a Process . 5-2
Changing Process Scheduling Parameters . 5-4
Setting Process CPU Affinity. 5-5
Setting Interrupt CPU Affinity. 5-8
Monitoring Processor Usage . 5-11
Shielding CPUs for Maximum Determinism and Performance. 5-13
Conclusion - NightTune. 5-13

Chapter 6 Using NightSim

Creating FBS Applications . 6-1
Invoking NightSim. 6-2
Creating a Scheduler . 6-3
Running the Scheduler . 6-6
Using Datamon to Modify Program Variables. 6-7
Overrun Detection and System Tuning . 6-9
Shutting Down the Scheduler . 6-12

Appendix A Tutorial Files

app.c .A-2
report.c .A-5
function.c .A-5
wave.c .A-5
set_workload.c .A-6
6

Contents
..

Illustrations

Figure 2-1. NightView Dialogue .2-2
Figure 2-2. NightView Principal Debug Window .2-4
Figure 2-3. NightView Debug Heap Window .2-8
Figure 2-4. NightView Data Window .2-12
Figure 2-5. NightView Display Window - Threads .2-22
Figure 2-6. NightView Monitor Window .2-24
Figure 3-1. NightTrace main window .3-2
Figure 3-2. Daemon Definition dialog .3-3
Figure 3-3. Import Daemon Definition dialog .3-4
Figure 3-4. NightTrace Main Window - Events List .3-7
Figure 3-5. Edit String Table dialog .3-8
Figure 3-6. Edit Event Map Entry dialog .3-8
Figure 3-7. Searching using the Profiles dialog .3-10
Figure 3-8. NightTrace Main Window - obtuse profile3-11
Figure 3-9. NightTrace Display Page .3-12
Figure 3-10. NightTrace Data Box dialog .3-14
Figure 3-11. Profiles dialog .3-15
Figure 3-12. NightTrace State Graph dialog .3-17
Figure 3-13. Display Page - sine state graph .3-19
Figure 3-14. Profiles dialog - State Matches dialog .3-20
Figure 3-15. Profiles dialog - Summary results .3-21
Figure 3-16. Display Page - sine state summary .3-22
Figure 3-17. Display Page - sine state summary - adjusted3-23
Figure 3-18. Display Page - sine wave graph .3-25
Figure 3-19. Kernel Display Page .3-28
Figure 3-20. Kernel Display Page .3-30
Figure 3-21. Kernel Display Page .3-33
Figure 3-22. Export Profiles to Analysis API Source dialog 3-35
Figure 4-1. NightProbe Main Window .4-2
Figure 4-2. NightProbe Program Window .4-3
Figure 4-3. NightProbe Item Browser Window .4-4
Figure 4-4. NightProbe Main Window with selected items 4-5
Figure 4-5. NightProbe Spreadsheet Viewer .4-6
Figure 4-6. NightProbe Spreadsheet Variables selection dialog 4-7
Figure 4-7. The NightTrace Output Selection Window .4-9
Figure 4-8. NightTrace User Display Page .4-10
Figure 4-9. The NightProbe Program Output Window4-12
Figure 4-10. Example Output of Graph Program .4-13
Figure 5-1. NightTune initial panels .5-1
Figure 5-2. NightTune Process Monitor panel .5-2
Figure 5-3. NightTune Process Monitor panel with threads 5-3
Figure 5-4. Process Scheduler dialog .5-4
Figure 5-5. NightTune Process Monitor with modified thread5-5
Figure 5-6. NightTune with CPU Status panel .5-6
Figure 5-7. NightTune with bound thread .5-7
Figure 5-8. NightTune with Interrupt Activity panel .5-8
Figure 5-9. NightTune with resized Interrupt Activity panel 5-9
Figure 5-10. Interrupt Affinity dialog .5-10
Figure 5-11. NightTune with no interrupts on CPU 1 .5-11
7

NightStar RT Tutorial
Figure 5-12. NightTune Processor Usage panel . 5-12
Figure 6-1. NightSim initial window . 6-2
Figure 6-2. NightSim Edit Process Window . 6-4
Figure 6-3. NightSim Edit Process Window -- Process Tab 6-5
Figure 6-4. NightSim Window -- Scheduling has begun 6-6
Figure 6-5. NightSim Monitor window . 6-7
Figure 6-6. NightSim Monitor Window -- Reduced Workload 6-8
Figure 6-7. NightTune with Interrupt Activity and CPU Panels 6-10
Figure 6-8. NightTune with Shielding Actions Pending 6-11
8

Overview
1
Chapter 1Overview

1
1
1

NightStar RTTM is an integrated set of debugging tools for developing time-critical Linux®

applications. NightStar RT tools run at application speed with minimal intrusion, thus pre-
serving execution behavior and determinism. Users can quickly and easily debug, moni-
tor, analyze, and tune their applications.

NightStar RT graphics-based tools reduce test time, increase productivity, and lower
development costs. Time-critical applications require debugging tools that can handle the
complexities of multiple processors, multi-task interaction, and multithreading. NightStar
RT advanced features enable system builders to solve difficult problems quickly.

The NightStar RT tools consist of:

• NightViewTM source-level debugger

• NightTraceTM event analyzer

• NightProbeTM data monitor

• NightTuneTM system and application tuner

• NightSimTM scheduler

In this tutorial, we will integrate these tools into one cohesive example incorporating vari-
ous scenarios which demonstrate their extensive functionality.
1-1

NightStar RT Tutorial
Getting Started 1

Certain activities in this tutorial require enhanced user privileges which are not granted to
user accounts by default. You will need to run as the root user, where indicated within this
tutorial, or obtain appropriate privileges as detailed in the “Setting Up User Privileges” on
page 1-2.

Setting Up User Privileges 1

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
tain privileged operations. pam_capability(8), the Pluggable Authentication Mod-
ule, is used to manage sets of capabilities, called roles, required for various activities.

Linux systems should be configured with a nightstar role which provides the capabili-
ties required by NightStar RT. In order to take full advantages of NightStar RT features,
each user must be configured to use (at a minimum) the capabilities specified below.

Edit /etc/security/capability.conf and define the nightstar role (if it is
not already defined) in the “ROLES” section:

role nightstar cap_sys_nice cap_ipc_lock

Additionally, for each NightStar RT user on the target system, add the following line at the
end of the file:

user username nightstar

where username is the login name of the user.

If the user requires capabilities not defined in the nightstar role, add a new role which
contains nightstar and the additional capabilities needed, and substitute the new role
name for nightstar in the text above.

In addition to registering your login name in /etc/security/capability.conf,
files under the /etc/pam.d directory must also be configured to allow capabilities to be
activated.

To activate capabilities, add the following line to the end of selected files in /etc/pam.d
if it is not already present:

session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.
1-2

Overview
If you modify /etc/pam.d/sshd or /etc/ssh/sshd_config, you must restart the
sshd service for the changes to take effect:

service sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.

NOTE

To verify that you have been granted capabilities, issue the fol-
lowing command:

 /usr/sbin/getpcaps $$

The output from that command will list the roles currently
assigned to you.

Creating a Tutorial Directory 1

We will start by creating a directory in which we will do all our work. Create a directory
and position yourself in it:

- Use the mkdir(1) command to create a working directory.

Table 1-1. Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment

remote telnet
rlogin
rsh (when used w/o a command)

Depending on your system, the remote file may
not exist.
Do not create the remote file, but edit it if it is
present.

login local login (e.g. console)
telnet*
rlogin*
rsh* (when used w/o a command)

*On some versions of Linux, the presence of the
remote file limits the scope of the login file to
local logins. In such cases, the other services listed
here with login are then affected solely by the
remote configuration file.

rsh rsh (when used with a command) e.g. rsh system_name a.out

sshd ssh You must also edit /etc/ssh/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no

gdm gnome sessions

kde kde sessions
1-3

NightStar RT Tutorial
We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the cd(1) com-
mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar-RT/tutorial during the installation of NightStar RT. We
will copy these tutorial-related files to our tutorial directory.

- Copy all tutorial-related files to our local directory.

cp /usr/lib/NightStar-RT/tutorial/* .

Building the Program 1

Our example uses a cyclic multi-threaded program which performs various tasks during
each cycle. The cycle will be controlled by the main thread which uses a timeout with a
configurable rate.

A portion of the main source file, app.c, is shown below:

main()
{
 pthread_t thread;
 pthread_attr_t attr;
 struct sembuf trigger = { 2, 0, 0 };

 trace_begin (“/tmp/data”,NULL);
 trace_open_thread (“main”);

 sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

 ptrace_attr_init (&attr);
 Pthread_create (&thread, &attr, sine_thread, &data[0]);

 ptrace_attr_init (&attr);
 Pthread_create (&thread, &attr, cosine_thread, &data[1]);

 ptrace_attr_init (&attr);
 Pthread_create (&thread, &attr, heap_thread, NULL);

 for (;;) {
 struct timespec delay = { 0, rate };
 nanosleep (&delay, NULL);
 semop (sema, trigger, 1);
 }

}

The program creates three threads and then enters a loop which cyclically activates each
of two threads based on a common timeout. The third thread, heap_thread, runs asyn-
chronously.
1-4

Overview
To build the executable

- From the local tutorial directory, enter the following command:

cc -g -o app app.c -lntrace_thr -lpthread -lm

NOTE

The NightStar RT tools require that the user application is built
with DWARF debugging information in order to read symbol
table information from user application program files. For this
reason, the -g compile option is specified. However, the tools
can be used to debug programs without symbols with reduced
functionality.
1-5

NightStar RT Tutorial
1-6

Using NightView
2
Chapter 2Using NightView

2
2
2

NightView is a graphical source-level debugging and monitoring tool specifically
designed for time-critical applications. NightView can monitor, debug, and patch multiple
processes running on multiple processors with minimal intrusion.

NightView supports all the features you find in standard debuggers, including:

• breakpoints

• single stepping through statements

• single stepping over function calls

• full symbolic expression analysis

• conditions and ignore counts for breakpoints

• hardware-assisted address traps (watchpoints)

• assembly and symbolic debugging

In addition to standard debugging capabilities, NightView provides the following features:

• application-speed eventpoint conditions

• the ability to patch code to change program flow or modify memory or reg-
isters during program execution

• hot patch and eventpoint control

• synchronous data monitoring

• loadable modules

• support of multi-threaded programs

• debugging of multiple processes

• dynamic memory debugging
2-1

NightStar RT Tutorial
Invoking NightView 2

- Execute NightView by issuing the following command:

nview &

at the command prompt or by double-clicking on the desktop icon.

When we launch NightView, a NightView Dialogue window is presented.

Figure 2-1. NightView Dialogue

Unlike other debuggers, the dialogue interface provides you a standard shell from which
to execute user applications or other commands. By default, programs that are invoked
from this shell come under the control of the debugger. Filters provide the capability to
prevent specific programs or programs that match certain patterns from coming under the
control of the debugger. By default, programs in /usr/bin and other common locations
are ignored by NightView. This allows you to debug multiple applications that might have
complex shell scripts required to start them.
2-2

Using NightView
In our example, we’ll be debugging a single application.

- Invoke our tutorial application in the NightView Dialogue window by
typing:

./app

at the command prompt in the shell.

NOTE

If you have not yet created the app program, see “Building the
Program” on page 1-4.

Any output generated by the program will appear in the dialogue window, just as it would
in an xterm or similar program with an interior shell.

When the app program begins to execute, NightView stops the program and displays a
Principal Debug Window from which most debugging operations are controlled.
2-3

NightStar RT Tutorial
Figure 2-2. NightView Principal Debug Window

IMPORTANT

Do not resume execution of the program at this time.
2-4

Using NightView
NightView supports debugging multiple processes as well as single and multi-threaded
processes. In this tutorial, you will be debugging a single process.

- To save screen space, hide the Process Group Area in the Principal
Debug Window by clearing the Display Group Area checkbox in the
View menu.
2-5

NightStar RT Tutorial
Heap Debugging 2

Debugging dynamic memory problems can be difficult and extremely time-consuming.
The word heap refers to a collection of allocated and freed memory typically controlled by
the malloc() and free() utilities in the C language.

NightView provides the unique ability to monitor and detect memory allocations, frees,
and sets of user errors without requiring a non-standard allocator to be compiled or linked
into your program.

One advantage of this is that often when you switch to a debugging allocator, the way
blocks are allocated and freed changes -- often hiding the very bugs you’re trying to find.

NightView offers a variety of settings and debugging levels that are useful in catching
common heap-related errors. Some settings will change the behavior of the system alloca-
tor -- affecting the size of allocated blocks and ultimately, the address values returned.

Dynamic memory errors are detected in one of four ways:

- a check of the entire heap at a specified frequency when heap functions
(e.g., malloc, free, calloc, etc.) are called

- a check of the entire heap when a heappoint is crossed

- a check of an individual allocated block when free or realloc is called

- a check of the entire heap when a heapcheck command is issued

The frequency setting of the heapdebug command controls how often NightView should
check for heap errors when a utility routine is called. Setting the frequency to one causes
NightView to check for heap errors on every heap operation.

A heappoint causes NightView to check for errors when the process executes instruc-
tions where the heappoint is inserted. An unlimited number of heappoints can be inserted
into your program.

The check of an individual block when free or realloc is called is automatic.

All four mechanisms are useful. With the first three mechanisms, the heap error detection
is executed at program application speed without context switching to the debugger.

Activating Heap Debugging 2

One limitation of heap debugging is that it requires that you activate the debugging before
any allocations occur in your program. If you attempt to activate the heap debugging fea-
tures after allocations have already occurred, NightView will inform you of its inability to
satisfy your request.
2-6

Using NightView
NOTE

If you have mistakenly resumed execution of the program already,
kill the program and restart it in the Dialogue window. Type
kill in the Command area of the Principal Debug Win-
dow and press Enter. Go back to the Dialog window and type
./app and Enter in the dialog shell.

- Select the Debug Heap... menu option from the Process menu in the
Principle Debug Window.

The Debug Heap window is shown.

- Select the On radio button in the Heap Debugger area.

- Press the 2(Medium) button in the Debugging Level area.

- Change the Check Heap frequency by typing 1 in the text field next to
the Every button.

The Debug Heap window should look similar to the following figure:
2-7

NightStar RT Tutorial
Figure 2-3. NightView Debug Heap Window

- Press the OK button to apply the changes and close the dialog.

These options instruct the debugger to activate heap debugging, retain freed blocks to
detect certain kinds of errors, allocate some additional memory past the end of the
requested size to detect errors, and stop the program when any heap error is detected.

Controlling the app Program 2

The third thread created by the main program executes a routine called heap_thread.
2-8

Using NightView
This routine iteratively executes various dynamic memory operations based on the setting
of the scenario variable which are representative of common user errors relating to
dynamic memory.

- Set a breakpoint on line 115:

sleep(5);

using either the Set Breakpoint option from the Eventpoint menu or the follow-
ing command:

break app.c:115
2-9

NightStar RT Tutorial
Scenario 1: Use of a Freed Pointer 2

A common error is to read or write a block of memory that has already been freed.

A way to detect this is to tell NightView to retain freed blocks and fill the freed blocks
with a specific pattern. If the blocks are subsequently read, your application may more
quickly discover the error since the contents are unexpected. If the blocks are subse-
quently written, NightView can detect this.

- Resume the process and let it reach the breakpoint on line 115:

resume

By default, the heap_thread will not actually execute any of the five scenarios.

- To cause it to execute scenario 1, set the variable scenario to 1:

set scenario=1
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(1024,3);
free_ptr (ptr,2);
memset (ptr, 47, 64);

The last line represents usage of dynamically allocated space that has already been freed.

NightView will detect this or at a heappoint inserted by the user, or at a subsequent heap
operation () (based on the frequency setting of the heapdebug command), in this case
on line 155.

NightView will stop the process once the heap error has been detected and issue a diag-
nostic similar to the following:

Heap error in process local:3771:
 free-fill modified in free block (value=0x804a818)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

The error refers to the fact that locations within the freed block were modified by the pro-
cess after the block was freed.

The Data Window is useful for displaying heap-related information as well as a variety
of other attributes.

- Using the Display menu, select Heap Information... and press OK to
add the item to the default Data Window.

- Likewise, select Local Variables... from the Display menu to add a list
of local variables to the default Data Window.

- Expand the Configuration item under Heap Information in the
Data Window to show the current heapdebug settings.

- Expand the Totals item under Heap Information to show summary
statistics related to heap activity.
2-10

Using NightView
- Right-click on the box to the left of the first Ever allocated item and
select Format and then Resize Label... from the pop-up menu. Type in
a value of 40 in the text field and press OK.

- Increase the width of the Data Display window.

NOTE

In general, all information in the Data Window is updated
whenever the process being debugged stops.

- Collapse the Totals and Configuration items or expand the size of
the Data Window so that the Local Variables item is shown.

The list of items underneath Local Variables changes each time the process stops to
represent the local variables associated with the current frame being displayed. Note that
the description of the variable ptr is displayed in red because it no longer contains a valid
(allocated) heap address.

Expanding the ptr item reveals the (heap info) item. Expanding that item reveals addi-
tional information relating to the block that the pointer once referred to including:

• its state - freed, but retained (invalid)

• its address range

• its size

• errors

• free and allocation information, which, when expanded include walkback
information relating to the routines which allocated and freed the block

The Data Window should appear similar to the following figure:
2-11

NightStar RT Tutorial
Figure 2-4. NightView Data Window
2-12

Using NightView
Scenario 2: Freeing an Invalid Pointer Value 2

Another common error is to free a pointer multiple times or to free a value which doesn’t
actually refer to a heap block.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 2:

set scenario=2
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
free(ptr);

NightView will detect the failure and print a diagnostic similar to the following:

Heap error in process local:3771: free called on freed or
unallocated block (value=0x804ac40)
#0 0x8048a78 in heap_thread(void*unused=0) at app.c line 127

Another way of obtaining information about the heap block in question is to use the info
memory command. It provides textual output of the information available in the Data
Window under the ptr item to the Messages area of the Principal Debug Win-
dow.

NOTE

NightView optionally displays a Global Window which echoes
all commands entered by the user as well as those initiated due to
dialog usage. It also contains all output generated by NightView
commands. To activate this window, select the Open Global
Window menu item from the NightView menu.

- Issue the following command:

info memory ptr
2-13

NightStar RT Tutorial
NightView will provide output similar to the following:

info memory ptr

Memory map enclosing address 0x0804ac40 for process local:3771:

Virtual Address Range No. bytes Comments
--------------------- --------- --------------------------
0x0804a000 0x0806afff 135168 Readable,Writable,Executable

Allocator information for address 0x0804ac40 for process local:3771:

freed, but retained
in block 0x0804ac40 .. 0x0804b03f (1024 bytes)
no errors detected in block
free information:
 4 post-fence bytes with 0xaf (fence range 0x0804b040 .. 0x0804b043)
 4 pre-fence bytes with 0xbf (fence range 0x0804ac3c .. 0x0804ac3f)
 free fill with 0xc3
 malloc fill with 0xc5
 walkback:
 0x08048c55 in free2() at app.c line 188
 0x08048c79 in free1() at app.c line 194
 0x08048cbb in free_ptr() at app.c line 207
 0x08048a6e in heap_thread() at app.c line 126
 0x4003bb4a in xt_new_thread() at xt_pthreads.c line 88
allocation information:
 4 post-fence bytes with 0xaf (fence range 0x0804b040 .. 0x0804b043)
 4 pre-fence bytes with 0xbf (fence range 0x0804ac3c .. 0x0804ac3f)
 free fill with 0xc3
 malloc fill with 0xc5
 walkback:
 0x08048b91 in func3() at app.c line 162
 0x08048bb5 in func2() at app.c line 167
 0x08048bf2 in func1() at app.c line 173
 0x08048ca2 in alloc_ptr() at app.c line 202
 0x08048a5b in heap_thread() at app.c line 125
 0x4003bb4a in xt_new_thread() at xt_pthreads.c line 88

In this case, the walkback information associated with the actual free is useful as you can
quickly locate what code segment actually freed the block.
2-14

Using NightView
Scenario 3: Writing Past the End of an Allocated Block 2

Another common error is to allocate insufficient space or to write past the end of an allo-
cated block.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 3:

set scenario=3
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(strlen(MyString),2);
strcpy (ptr, MyString); // oops -- forgot the zero-byte

NightView will detect the failure and print a diagnostic similar to the following:

Heap error in process local:3771:
 post-fence modified in allocated block (value=0x804b068)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

Note that the description of the variable ptr in the Local Variables list in the Data
Window does not indicate an invalid status. That is because ptr does point to a valid
heap block.

However, expanding the (heap info) information for ptr and the errors list indi-
cates that it is invalid because the post-fence was modified.
2-15

NightStar RT Tutorial
Scenario 4: Use of Uninitialized Heap Blocks 2

Another common error is forgetting to initialize dynamically allocated memory before
using it. Code segments may assume that dynamically allocated memory is initialized to
zero, as is the case with calloc(), but not malloc().

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 4:

handle sigsegv stop print pass
set scenario=4
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

iptr = (int**)alloc_ptr(sizeof(int*),2);
if (*iptr) **iptr = 2778;

NightView will detect the failure and print a diagnostic similar to the following:

Process local:3771 received SIGSEGV
#0 0x8048ad2 in heap_thread(void*unused=0) at app.c line 138

The malloc_fill setting of the heapdebug command causes NightView to fill blocks
being allocated with a specific byte pattern, in this case 0xc5.

- Issue the following command to view the content of the uninitialized mem-
ory block:

x/x iptr

A SIGSEGV signal is a fatal error so we must restart the process to continue the tutorial.

- Issue the following command:

kill

and then re-initiate the program in the Dialogue window by typing:

./app

in the dialogue shell.

Alternatively, you can issue the following command directly from the Principal
Debug Window to initiate the process in the Dialogue shell:

!./app
2-16

Using NightView
NOTE

NightView automatically re-applies all eventpoint and heap con-
trol settings when it sees the subsequent execution of the program.
2-17

NightStar RT Tutorial
Scenario 5: Detection of Leaks 2

Another situation which may be indicative of error or inappropriate use of memory are
leaks. In this instance, we define a leak as a dynamically allocated block of memory that
is no longer referred to by any pointer in the program.

Detection of leaks is a very expensive process with respect to CPU utilization and intru-
sion on the user application. As such, leak detection is only executed when an explicit
request is made from the user.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 5:

set scenario=5
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(37,1);
ptr = 0;

NightView does not detect the leak automatically, as mentioned above. The process will
stop again when the breakpoint on line 115 is reached.

- At that time, specifically request a leak report by selecting Heap
Leaks... from the Display menu and press OK to add the item to the
default Data Window.

This operation causes NightView to analyze the program for leaks and displays a
Leak Sets item in the Data Window. On small programs, this operation may
appear to be insignificant, but for larger programs it can take some significant time.

- Expand the Leak Sets item, if necessary.

An additional item is displayed for every leak set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets provides the
common walkback shown for each allocation as well as expandable descriptions of
each individual leaked block.

- Expand the leak set item with size 37 and then expand the walkback item
associated with it.

Note the walkback indicating that it was allocated by the heap_thread() routine
on line 142 of app.c.

NOTE

Unlike most items in the Data Window, the leak sets item is
not automatically updated when the process stops. The descrip-
tion will remain unchanged even if additional leaks occur. To get
updated information, request another leak report (select Heap
Leaks... from the Display menu)
2-18

Using NightView
Scenario 6: Allocation Reports 2

NightView provides a detailed report of all allocated memory.

Construction of this report is a very expensive process with respect to CPU utilization and
intrusion on the user application execution time. As such, allocation reports are only exe-
cuted when an explicit request is made from the user.

- Set the variable scenario to 6:

set scenario=6
resume

This causes additional allocations to be made.

The process will stop again when the breakpoint on line 115 is reached.

- At that time, specifically request an allocation report by selecting Still
Allocated Blocks... from the Display menu and press OK to add the
item to the default Data Window.

This operation causes NightView to analyze the program and displays a Still Allo-
cated Blocks item in the Data Window. On small programs, this operation may
appear to be insignificant, but for larger programs it can take some significant time.

- Select the Resize Label... menu item from the Format option in the
pop-up menu launched by right-clicking the box to the left of the Still
Allocated Sets item. Type in a value of 30 in the text area, check the
Apply change to children checkbox and press OK.

- Expand the Still Allocated Sets item, if necessary. An additional
item is displayed for every allocation set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets pro-
vides the common walkback shown for each allocation as well as expand-
able descriptions of each individual leaked block.

- Expand the allocated set item with size 1048576 and then expand the
walkback item associated with it.

Note the walkback indicating that it was allocated by the heap_thread() routine
on line 147 of app.c.

NOTE

Unlike most items in the Data Window, the Still Allo-
cated Sets item is not automatically updated when the process
stops. The description will remain unchanged even if additional
items are allocated or freed. To upate the information, request
another allocation report (select Still Allocated Blocks... from
the Display menu).
2-19

NightStar RT Tutorial
Disabling Heap Debugging 2

To disable all overhead associated with heap debugging, issue the following command:

heapdebug off

This concludes the tutorial’s topic on heap debugging. We will now continue on to other
capabilities of NightView.
2-20

Using NightView
Debugging Multiple Threads 2

At this point in the tutorial the user application should be stopped at line 115 in app.c.

NOTE

If the application is not stopped at line 115, set a breakpoint on
line 115 in app.c and resume the process until it stops on that
line number. Refer to the previous sections for instructions on set-
ting breakpoints and resuming the process.

Our application consists of the main thread and three additional ones created by the main
thread.

When the application hits a breakpoint or is otherwise stopped by NightView, all threads
in the application will stop. Similarly, when NightView resumes execution of a thread, all
threads will resume execution.

- Collapse the expanded items in the Data Window.

- Select the Threads... option from the Display menu and press OK to
add the Threads list to the Data Window.

- Right-click on the box to the left of the C Threads item and select the
Expand Tree... option from the pop-up menu. Type a 2 in the text area
and press OK.

This causes the list of threads to be expanded and shows the stack walkback for each
individual thread.

Expanding an individual Frame in the walkback list shows all local variables for that
frame. You can further expand composite and pointer variables in the local variables
items.

The figure below shows such an expansion indicating that the main thread is in the
main() routine; another thread is in the sine_thread() routine; another in the
cosine_thread() routine; and finally, the last thread is in the heap_thread() rou-
tine.
2-21

NightStar RT Tutorial
Figure 2-5. NightView Display Window - Threads

The context shown in the Principal Debug Window is that of the thread which caused
the process to stop. You can tell which thread you are stopped in by looking for the “<=”
indicator on the Data Window to the right of the thread ID. A thread ID is a hexadeci-
mal number representing the thread -- it is assigned by the threads library upon thread cre-
ation.

You can switch to the context of other threads by selecting the Select Frame option
from the pop-up menu launched by right-clicking the box to the left of the thread ID of a
thread of interest.

Alternatively, you can use the select-context command and specify the thread ID as
shown in the C Threads display or from the output of the info threads command:
2-22

Using NightView
info threads /v
select-context thread=0x40fb1bb0

- Switch to the context of the thread executing sine_thread() by select-
ing the Select Frame option from the pop-up menu launched by
right-clicking the box to the left of the thread ID associated with a walk-
back which includes the since_thread() routine.

- The source displayed in the Principal Debug Window changes to line
46 on a call to semop().

NOTE

It is possible that the context of the thread in question could be
executing on any line in the range of 45-49.

The < and > indicators near the line number in the Principal Debug Window represent
the fact that we are positioned at a stack frame which is not the topmost stack frame and
that the current frame is executing a subprogram call.

By default, NightView hides uninteresting frames. If you desire to see all frames for all
routines, even those that have no debug information, you can set your interest threshold to
the keyword min:

interest threshold min

Once that command is issued, the walkback information shows all frames and you can
position to any frame and debug at the assembly level if desired.

- Reset the interest threshold to zero via the following command:

interest threshold 0

- Delete the breakpoint on line 115 using the Summarize/Change... item
from the Eventpoint menu or issue the following command:

clear app.c:115

before proceeding to the next section.

The remaining steps in this tutorial do not require the use of the Data window.

- Select the Close Window option from the NightView menu in the
Data window.
2-23

NightStar RT Tutorial
Using Monitorpoints 2

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor Window.

Unlike asynchronous sampling, monitorpoints allow you to view data which is synchro-
nized with execution of a particular location in your application.

- Select the Set Monitorpoint... option from the Eventpoint menu to
launch the Set a New Monitorpoint dialog.

- Ensure that the Location text field has app.c:46, correcting if it need be.

- Enter the following:

print id=”sine count” data->count
print id=”sine value” data->value

in the Commands text box and press OK.

A Monitor Window is opened containing an entry for the commands entered above.

- Likewise, set a monitorpoint on line 63 with the same commands as in the
previous monitorpoint, substituting cosine for sine in the optional id
parameter.

Figure 2-6. NightView Monitor Window

- Resume execution of the process.

At this point, the data values in the Monitor Window change.

The values are sampled whenever line 46 or 63 are executed. NightView displays
the latest set of values in the Monitor Window at a user-selectable rate.
2-24

Using NightView
NOTE

A significant feature of the NightView is the ability to execute
most debugging operations without having to stop execution of
the process.

All subsequent debugging operations in this tutorial can be done
without stopping the process!
2-25

NightStar RT Tutorial
Using Eventpoint Conditions and Ignore Counts 2

All eventpoints in NightView have optional Condition and Ignore attributes.

A Condition is a user-supplied boolean expression of arbitrary complexity which is
evaluated before the eventpoint is executed. Conditions can involve function calls in the
user application.

Similarly, the Ignore attribute is a count of the number of times to ignore an eventpoint
before actually executing it.

Conditions and ignore counts are evaluated by the application itself via patched-in code
and, as such, run at full application speed. Other debuggers evaluate the conditions and
ignore counts from within the context of the debugger which takes significant time and
can drastically affect the behavior of your program.

- To demonstrate these capabilities, select the Summarize/Change...
option from the Eventpoint menu.

- Select the first eventpoint in the list and press Change... to launch the
Change This Monitorpoint dialog.

- Enter 500 in the Ignore Count text field and press OK.

- Press Close in the Summarize and Change Eventpoints dialog.

The Monitor Window now indicates that the values for that monitorpoint have not been
sampled by displaying an exclamation point enclosed within a triangle. When the ignore
count reaches zero, the values will start updating again.

Finally, monitorpoints can include complex expressions that aren’t just simple variables.

- Enter the following commands in the Principal Debug Window:

monitor app.c:93
 p FunctionCall()
end monitor

A new item is added to the Monitor Window which represents the result of the function
call FunctionCall() as executed by the user application each time line 93 is crossed.
2-26

Using NightView
Using Patchpoints 2

Unlike breakpoints and monitorpoints, patchpoints allow you to modify the behavior of
your program.

Patchpoints allow you to change program flow or modify variables or machine registers.

First, we will use a patchpoint to branch around some statements in our program.

NOTE

If the source file app.c is not displayed, issue the following
command:

 l app.c:48

- Scroll the source file displayed in the Principal Debug Window and
click on line 48:

data->angle += data->delta

- Select the Set Patchpoint... option from the Eventpoint menu to
launch the Set a New Patchpoint dialog.

- In the Location text area, ensure the text indicates app.c:48.

- Click on the Branch to a different location radio button in the lower
portion of the dialog.

- In the Go to: text area, type:

app.c:49

then press the OK button.

This will effectively cause the application to skip execution of line 48, where it updates
the angle used in the subsequent sin() call.

Note that the sine value in the Monitor Window stops changing, yet the associated
sine count value continues to change.

Alternatively, we can use patchpoints to change the value of expressions or variables.

- Type the following command in the Principal Debug Window:

patch app.c:49 eval data->count -= 2

Note that the value of sine count is decrementing, because for each iteration, it contin-
ues to be incremented by 1, but now also is decremented by 2.

We can disable the patchpoints without deleting them.
2-27

NightStar RT Tutorial
- Select the Summarize/Change... option from the Eventpoint menu.
Select both patchpoints (as indicated in the Type column by the letter P)
and press Disable

- Press Close to close the Summarize and Change Eventpoints dia-
log.

The patches are disabled and the values shown in the Monitor Window return to their
original behavior.
2-28

Using NightView
Adding and Replacing Functions Dynamically 2

NightView provides the ability to dynamically add new functions to the application being
debugged, as well as to replace existing functions.

- In a terminal session outside of NightView, compile the report.c source
file which was copied into your current directory in the initial steps of this
tutorial:

cc -g -c report.c

- Load the new module into the program using the following command in
the Principal Debug Window:

load report.o

NOTE

The source displayed in the Principle Debug Window may
change as a result of the load command. This annoyance will be
addressed in the future.

We have added a simple function which prints information to stdout. The function
could have been arbitrarily complex and referenced any variable in the application. The
only limitation is that the function cannot reference symbols that are absent from the mod-
ule being loaded and are not already in the user application.

- Issue the following command to see the source code for the function
report():

l report.c

You will see that the report() function expects a pair of arguments whose types are
char * and double, respectively.

- Go back to the application source file by issuing the following command:

l app.c

We will install a new patchpoint which will call the newly added function.

- Issue the following command:

patch app.c:63 eval report(“cos”,data->value)

See that the program is now generating output to stdout in the NightView Dialogue
window as calls to the report() function are executed.

- Disable the patchpoint that was just added by issuing the following com-
mand:

disable .
2-29

NightStar RT Tutorial
The dot parameter to the disable command is a short-hand notation for the last event-
point created; in this case, the eventpoint created by the patch command above.

Finally, we will replace a function that already exists in the application.

- In a terminal session outside of NightView, list the contents of the source
file function.c which was copied into your current directory in the ini-
tial steps of this tutorial, and compile it with the following commands:

cat function.c
cc -g -c function.c

- Now load the replacement code via the following command:

load function.o

Note how the Monitor Window value for the FunctionCall() value no longer per-
tains to the value computed by the application, but rather is a monotonically increasing
number as per the source file function.c.

- Return the Principal Debug Window source display to the app.c
source file via the following command:

l app.c:40

The remaining steps in this tutorial do not require the use of the Monitor window.

- Select the Close Window option from the NightView menu in the
Monitor window.
2-30

Using NightView
Using Tracepoints 2

The last portion of NightView we will cover in this tutorial is integration with NightTrace.

A tracepoint is a specialized eventpoint which essentially patches a call to log a trace
event with optional arguments.

The current limitation on tracepoints is that the application must already have linked with
the NightTrace API library and has made a single API call to initiate tracing.

Our application satisfies this requirement.

Suppose that we were interested in measuring the performance of our cycles in the
sine_thread() and cosine_thread() routines and that we also were interested in
logging data values during the cycle.

- Select Set Tracepoint... from the Eventpoint menu to launch the Set
a New Tracepoint dialog.

- In the Location: text field type in:

app.c:47

and Event ID: text field type:

1

and the press the OK button.

Similarly, we’ll set additional tracepoints using the tracepoint command.

- Enter the following commands in the Principal Debug Window:

tracepoint 2 at app.c:46 value=data->value
tracepoint 3 at app.c:63 value=data->value

Trace events can now be logged with the NightTrace tool which is described in the next
section of this tutorial.

- Launch NightTrace by selecting the NightTrace Analyzer menu item
from the Tools menu of the Principal Debug Window.

- For clarity, minimize all NightView windows before proceeding to the next
section.

IMPORTANT

Do not exit NightView or stop the application. The next section
uses the tracepoints that were inserted in the previous section (see
“Using Tracepoints” on page 2-31).
2-31

NightStar RT Tutorial
Conclusion - NightView 2

This concludes the NightView portion of the NightTrace RT User’s Guide.
2-32

Using NightTrace
3
Chapter 3Using NightTrace

3
3
3

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. NightTrace can
also log RedHawk kernel events such as individual system calls, context switches,
machine exceptions, page faults and interrupts. By combining application events with
RedHawk kernel events, NightTrace presents a synchronized view of the entire system.
Furthermore, NightTrace allows users to zoom, search, filter, summarize, and analyze
those events in a wide variety of ways.

Using NightTrace, users can manage multiple user and kernel NightTrace daemons simul-
taneously from a central location. NightTrace provides the user with the ability to start,
stop, pause, and resume execution of any of the daemons under its management.

NightTrace users can define and save a “session” consisting of one or more daemon defi-
nitions. These definitions include daemon collection modes and settings, daemon priori-
ties and CPU bindings, and data output formats, as well as the trace event types that are
logged by that particular daemon.

Invoking NightTrace 3

NightTrace was invoked during the last step of the Using NightView section.

If you skipped the Using NightView section, execute the steps in “Using Tracepoints” on
page 2-31 before beginning this section of the tutorial.
3-1

NightStar RT Tutorial
Figure 3-1. NightTrace main window

Configuring a User Daemon 3

NightTrace allows the user to configure a user daemon to collect user trace events.

User trace events are generated by user applications that use the NightTrace API.

We will configure a user daemon to collect the events that our app program logs.

To configure a user daemon

- From the Daemons menu on the NightTrace main window, select the
New... menu item.

The Daemon Definition dialog is displayed:
3-2

Using NightTrace
Figure 3-2. Daemon Definition dialog

- Press the Import... button at the bottom of the Daemon Definition dia-
log.

You will be presented with a Login dialog.

- Enter the name of the system on which the app application is run-
ning in the Target System field.

- Enter your login name on that system in the User field.

- Press the OK button.

The Import Daemon Definition dialog is presented:
3-3

NightStar RT Tutorial
Figure 3-3. Import Daemon Definition dialog

The Import Daemon Defini t ion dialog allows the user to define daemon
attributes based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the app application.

- Press the Import button.

The Import Daemon Definition dialog closes and the Daemon Definition
dialog is populated with the imported attributes.

- Press OK on the Daemon Definition dialog to complete the configura-
tion of the user application daemon.

Streaming Live Data to the NightTrace GUI 3

NightTrace allows you to use a daemon to capture trace events and store them in a file for
subsequent analysis or to stream the events directly into the graphical interface for live
analysis.

Our daemon is configured for live streaming.

- Select the daemon labelled daemon_1 from the bottom of the Daemon
Control Area in the NightTrace main window.

- Press the Launch button.

- Press the Resume button.

The daemon is now collecting events which are being generated by the app program from
the tracepoints we inserted in “Using Tracepoints” on page 2-31.
3-4

Using NightTrace
NOTE

If you plan to leave the tutorial for an extended period of time
before returning, press the Pause button to temporarily prevent
the collection of trace points. When you return, press the
Resume button.

NOTE

An additional window is launched with Launch is pressed. This
window is an automatically customized display page which we
will use later on in the tutorial. The description immediately
below refers to the NightTrace Main window.

Below the menu bar and tool bar, the NightTrace main window is broken into several
areas, not all of which are visible initially. From top to bottom, they are:

The statistics on the Daemon Control Area indicate the number of raw events in the shared
memory buffer used between the daemon and the user application and the number of raw
events written to NightTrace by the daemon (under the Buffer and Logged columns,
respectively).

The Trace Segment Statistic Area indicates the number of processed events that are cur-
rently available for immediate analysis through the Event Area and other display pages.
The statistics on the Daemon Control Area indicate the number of raw events in the shared
memory buffer used between the daemon and the user application and the number of raw
events written to NightTrace by the daemon (under the Buffer and Logged columns,
respectively).

Table 3-1. NightTrace main window areas

Profile Area A list or profiles, including events, states, etc. This
area is not visible currently, but will appear later.

Event Area Textual description of events.

Event Detail Area Verbose textual description of the currently
selected event.

Trace Segment Statistic Area Shows each trace segment (contiguous collection
of trace data). This area is not visible currently, but
will appear later.

Daemon Control Area Shows the daemons configured
3-5

NightStar RT Tutorial
NOTE

The number of events shown in the Trace Segment Statistics Area
will normally differ from the number of events shown in the Dae-
mon Control Area. The former are processed events whereas the
latter are raw events -- a processed event is often constructed from
multiple raw events.

The Trace Segment Display Area indicates the number of processed events that are cur-
rently available for immediate analysis through the Event Display Area and other display
pages.

You can force events to be flushed from the daemon buffer and output stream to be
brought into the segment area for immediate viewing by a variety of methods:

• sliding the scroll bar in the Event Display Area all the way to the bottom

• sliding the scroll bar in display windows all the way to the right

• zooming all the way out in display windows

Bring in data for analysis with the following actions:

- Slide the scrollbar in the Events list all the way down to the bottom and
then release.

Using the Main Window for Textual Analysis 3

The NightTrace main window is used for controlling daemons and data segments and tex-
tual analysis of trace event information. The events shown in the Event Area are synchro-
nized with the events shown in display pages. The event with a salmon-colored back-
ground and the “--->” indicator indicates the current timeline.

- Press the Down Arrow key to advance to the next event.

- Press the Up Arrow key to advance to the previous event.

Whenever an event is selected or the current event line moves, the Event Detail Area
shows additional information about the event, if available.

- Press the PageDown key to advance one page.

- Press the PageUp key to advance to the previous page.
3-6

Using NightTrace
Figure 3-4. NightTrace Main Window - Events List

Customizing Event Descriptions 3

The event values we logged with the tracepoint commands in NightView were event IDs 1
and 2. We will customize the description of these events using the Edit String Table
dialog.

- Press the Edit Events icon in the tool bar

The Edit String Table dialog is displayed:
3-7

NightStar RT Tutorial
Figure 3-5. Edit String Table dialog

- Press the Add... button.

The Edit Event Map Entry dialog is displayed:

Figure 3-6. Edit Event Map Entry dialog
3-8

Using NightTrace
- Enter:

cycle_start

 in the Event Name text field.

- Press OK.

- Press the Add... button again.

- Type in 2 in the Event Code text field.

- Enter:

cycle_end

 in the Event Name text field.

- Select “Output event argument as float” from the Event Argu-
ment 1 option list.

- Press the OK button.

- Press Close to close the Edit String Table dialog.

The description of the events in the Events list now correspond to the textual identifiers
we encoded in the previous dialogs. Additionally, when a cycle_end event is selected,
the textual description includes the value of argument 1 formatted as a floating point
value. This value, the result of the sin() calculation in the sine_thread() routine, is
logged with the event from the tracepoint inserted via NightView (see “Using Trace-
points” on page 2-31).

Searching the Events List 3

We can use the search capabilities of the Profiles dialog to search for a specific occur-
rence of an event, or condition relating to an event or its arguments.

- Select the Search... menu item from the Search menu in the NightTrace
main window or press Ctrl+F.

The Profiles dialog is displayed:
3-9

NightStar RT Tutorial
Figure 3-7. Searching using the Profiles dialog

- Enter:

cycle_end

 in the Events text field.

- Enter:

arg1_dbl > 0.8

 in the Condition text field.

- Enter:

obtuse

 in the Name text field.
3-10

Using NightTrace
- Press the Search / Close button.

These actions have two effects:

1. A profile called obtuse is now defined and appears in a Profiles list in the
NightTrace main window.

2. The current timeline was moved to the first event that matched the search
criteria, that being the end of a cycle when the sine value exceeded 0.8.

Figure 3-8. NightTrace Main Window - obtuse profile

See that the Text Display Area indicates arg1 with a value exceeding 0.8.

NOTE

It is possible that the search will fail if an insufficient number of
events have been brought into live analysis. If this occurs, bring
in more events using the Event list scroll bar and retry the search
by pressing the forward search icon on the tool bar.

Halting the Daemon 3

Since the NightTrace portion of the tutorial is rather lengthy and may likely be a new
experience for many users, we will halt the daemon to reduce memory usage.

Examine the daemon statistics in the Daemon Control Area. If the application has logged
over 100,000 events, halt the daemon by pressing the Halt button to reduce memory usage
as we slowly move through the NightTrace portion of the tutorial.

NOTE

Do not be concerned if the number of events shown in the Trace
Segment Statistic Area is smaller than the number of events
shown in the Daemon Control Area just before you halted the dae-
mon. The latter shows raw event counts whereas the Trace Seg-
ment Statistic Area shows processed event counts -- a processed
event is often constructed from multiple raw events.

If it has not reached this stage yet, you may leave the daemon running and occasionally
glance at the statistics. If NightTrace becomes unresponsive or slows down as the event
counts reach into the millions, halt the daemon. NightTrace has a configurable memory
consumption limit that will automatically halt the daemon when the limit is reached; a dia-
log will be presented informing the user when this occurs.
3-11

NightStar RT Tutorial
Using NightTrace Display Pages 3

When we initially launched the user daemon, NightTrace created a default user display
page.

- Bring this display page to the foreground.

Figure 3-9. NightTrace Display Page

A display page is divided into five main areas:

1. menu bar

2. tool bar

3. text area

4. graphical display area

5. interval control area

The text area displays brief information about events that are results of searches or
event-information requests. It also displays textual summary results as well as diagnos-
tics.
3-12

Using NightTrace
The interval control area describes and defines the range of events shown in the display
area. You can adjust these values as desired.

The display area contains static and dynamic labels and event and state graphs.

By default, NightTrace detects the threads that have registered themselves through Night-
Trace API calls and creates individual labels and graphs for each thread. In addition, there
is a user events graph near the bottom that shows events for threads.

NOTE

You may see a blank label and graph in your display page. This is
likely the label and graph for the main thread. The contents of the
label are not shown until at least one event is logged by the main
thread. In our application, the main thread does not log events so
the row will remain blank.

In “Using Tracepoints” on page 2-31 in the Using NightView section, we inserted trace-
points into the sine thread, which registered itself with the string “sin”.

Each vertical line in the graph represents at least one event. You can zoom in and zoom
out to adjust the level of detail.

The vertical dashed line is the current timeline and is directly connected to the
salmon-highlighted event in the NightTrace main window.

Left-clicking the mouse in the display area moves the current timeline. The three data
boxes above the graphs change to reflect the event closest to the left of the current time-
line.

Changing a Data Box Configuration 3

A data box displays dynamic information related to events, states, etc. as the current time-
line changes. By default, the top right box on the display page is a data box which dis-
plays the first argument for every event. We will change its configuration to tailor its dis-
play for our data set.

- Select the Edit Mode option from the Edit menu or click the Edit/View
icon on the toolbar

This puts the window into edit mode and allows for configuration changes to the dis-
play window.

- Double-click on the top right data box which contains text describing the
value of arg1.

A Data Box configuration dialog appears as shown below.
3-13

NightStar RT Tutorial
Figure 3-10. NightTrace Data Box dialog

- Change the text in the Events field to:

cycle_end

- Change the text in the Displayed Text field to:

format(“sine value = %f”, arg1_dbl)

- Press the Apply button.

- Return to view mode by pressing the Edit/View icon on the toolbar

The data box has been changed to describe only the cycle_end event and to properly
display the sine value.
3-14

Using NightTrace
Configuring a State 3

In addition to displaying individual events, NightTrace can display states.

- Select the New Profile... option from the Edit menu or press the
Profiles icon on the toolbar.

The Profiles dialog is displayed:

Figure 3-11. Profiles dialog

- Select State in the Key / Value option list.

- Enter:

cycle_start

in the Start Events text area
3-15

NightStar RT Tutorial
- Enter:

cycle_end

 in the End Events text field.

- Enter:

sin

in the Threads text field.

- Enter:

sine

in the Name text field.

- Press the Add button.

- Press the Close button.

A state named sine has now been defined and occurrences can be displayed in the graphs
in the display page.

- Enter edit mode by clicking the Edit/View icon on the toolbar.

- Double-click on the graph associated with the row labelled “Thread:
sin”. That graph is a row with vertical lines representing events inside
the larger graph area, aligned with the label “Thread: sin”.

The State Graph configuration dialog is displayed as shown below:
3-16

Using NightTrace
Figure 3-12. NightTrace State Graph dialog

- Select State from the Key / Value option list.

- Press the Choose Profile... button.

- Select the sine state from the list

- Make sure the Import Reference to Profile checkbox is checked

- Press Select.

- Press the black box to the right of the Active State label.

- Use the slide bars in the Choose Color dialog to select a color and press
OK.

- Press the Apply button.

- Return to view mode by pressing the Edit/View icon on the toolbar.

The graph has now been configured to display the sine state as a solid bar in the lower por-
tion of the state graph. Events will still be displayed as vertical black lines that extend
over the entire vertical height of the graph.
3-17

NightStar RT Tutorial
It is likely that the display page has not changed in a significant way.

This is because the cycle_start and cycle_end events occur so close together in
time that you cannot distinguish them at the current zoom setting.

- Click in the middle of the state graph.

- Zoom in using the Zoom In icon on the toolbar (third from the
right) or the Down Arrow key until the two events can be distin-
guished and a state bar is shown.

You may need to readjust the current timeline as you zoom in.

NOTE

If the Down Arrow key has no effect, press the Num Lock key
and try again.

NOTE

The state may vanish at some zoom levels where it is still very
small compared to the zoom level’s scale. If so, just continue to
zoom in and it will reappear.

The figure below displays an instance of the sine state:
3-18

Using NightTrace
Figure 3-13. Display Page - sine state graph

Displaying State Duration 3

The duration of the most recently completed state can be displayed via a data box.

- Enter edit mode by pressing the Edit/View icon on the toolbar.

- Select the Data Box option from the Graph menu.

The cursor will turn into a + character.

- Using the left mouse button, click an area in the display page on the grid
(outside of any currently displayed graph or data box -- i.e. only on an
available area whose background shows the dotted grid) and drag the
mouse to create the outline of the new data box -- release the mouse button.

- Double-click the data box.

- Enter the following into the Displayed Text field:

format (“cycle = %f ms”, state_dur(sine)*1000.0)

- Press the Apply button.
3-19

NightStar RT Tutorial
- Enter view mode by pressing the Edit/View icon on the toolbar.

The data box now displays the length of the most recently completed instance of the sine
state in milliseconds.

Using the Summary Dialog 3

In addition to obtaining detailed information about specific events and states, summary
information is easily generated.

- Select the Summary... menu item from the Summary menu.

- Use the solid black up and down arrows in the toolbar to select the profile
matching the sine state from the list of profiles shown in the Main win-
dow.

It is likely that the sine profile is already selected. Check the profile name shown
in the Name text area near the bottom of the dialog

- Press the Summarize button.

A textual summary is displayed in the text area at the top of the Profiles dialog and
a State Matches dialog is launched.

Figure 3-14. Profiles dialog - State Matches dialog

The State Matches dialog provides four columns of information: the state’s starting and
ending offsets, the state’s duration, and the gap between a state and its most recent previ-
ous occurrence. You can click on the column headers to control how the list is sorted.

Double-clicking on a row in the list positions the current timeline to the beginning of that
instance of the state.

- Press the Close button to close the State Matches dialog.
3-20

Using NightTrace
Figure 3-15. Profiles dialog - Summary results

- In the Profiles dialog, use the scroll bar to see the summary results and
ensure that the line with:

 Minimum state duration

is displayed.

- Double-click the number representing the event offset of the minimum
state duration.

The display page is automatically changed to place the current timeline at the end of the
state associated with that offset.

The minimum and maximum state occurrences are often of interest. However, a graphical
display of state durations can be more enlightening.
3-21

NightStar RT Tutorial
- Select the Options... item from the Summary menu in the Profiles dia-
log.

- Select the Durations item from the State Summary Graph option list.

- Select the Scroll to longest duration item from the State Summary
Action option list.

- Select Do Not Show Matches from the State Matches option list.

- Press the Apply button.

- Press the Summarize button.

- Press the Close button on the Profiles dialog.

A customized display page is created which summarizes the sine state.

The display includes a data graph with vertical lines representing the value of the duration
of each instance of the state.

A short state graph is displayed directly above the data graph.

- Zoom out all the way to display all of the instances of the sine state by
pressing Alt+Up Arrow.

Figure 3-16. Display Page - sine state summary
3-22

Using NightTrace
Depending on the actual variations in state duration, most of the state durations may
appear as tiny vertical lines.

- Enter edit mode by pressing the Edit/View icon on the toolbar.

- Double-click in the middle of the data graph.

- Change the Max Graph Value text field to a value about 10 times the
average duration listed in the text area above the graph.

- Press the Apply button.

- Enter view mode by pressing the Edit/View icon on the toolbar

Values exceeding the maximum value set in the dialog will appear as vertical lines span-
ning the entire height of the data graph, but smaller durations are graphed according to
their actual value.

Figure 3-17. Display Page - sine state summary - adjusted

All display pages are linked together -- they share the same timeline and interval settings.
You can easily identify spikes of interest using the summary graph, click to change the
current timeline to that location, then switch to another display page for more analysis of
the new location.
3-23

NightStar RT Tutorial
- Select the Close menu item from the Page menu in the display page con-
taining the state summary.

NOTE

A warning dialog may appear indicating the changes to the sum-
mary graph display page will be lost. Press OK.

Defining a Data Graph 3

The page displaying user events has a blank area at the top of the main display rectangle
(which is called a column) which contains graphs for each of the threads in the program.

- Enter edit mode by clicking the Edit/View icon on the toolbar.

- Select the Data Graph menu item from the Graph menu.

The cursor changes to a + character.

- Using the left mouse button, click inside the column near the upper
left-hand corner and drag the mouse downward and release just before
reaching the top of the first event graph.

NOTE

Make sure that you click inside the column and not on the lines
defining the border of the column

- Double-click in the middle of the data graph you just inserted.

- Enter:

cycle_end

in the Events text field.

- Enter:

arg1_dbl

in the Graph Value text field.

- Click on the black box to the right of the Fill Color label to select a color
for the data graph. Click OK to close the Choose Color dialog.

- Press the Apply button to close the Data Graph dialog.

- Return to view mode by pressing the Edit/View icon on the toolbar.

- Zoom the display to see the sine wave generated by the program.
3-24

Using NightTrace
Figure 3-18. Display Page - sine wave graph

You may need to scroll the interval display to the far right several times to bring in enough
data to see the wave. Alternatively, you can press the Flush button on the main window
to bring in new data. It may take several minutes to collect enough data to see several
cycles.
3-25

NightStar RT Tutorial
Kernel Tracing 3

Kernel tracing provides amazing insight into the activities of the system and how applica-
tions interact with each other and the kernel.

In order to use kernel tracing you must be running a trace-enabled kernel.

Kernels names ending in -trace and -debug have kernel tracing enabled. You may
check to see which kernel is running by using the following command:

uname -r

If you are not running a trace-enabled kernel, reboot now and select it from the GRUB
menu at boot time. If you are unable to reboot your system at this time, please follow the
tutorial and load the pre-recorded kernel data as instructed.

- Minimize the user display page.

- Ensure the user daemon is stopped by pressing the Halt button on the
NightTrace main window if it is sensitized.

- Select the daemon_1 segment in the Trace Segment Area of the Night-
Trace main window.

CAUTION

If the trace segment was not removed it is likely that you selected
the daemon_1 line from the Daemon Definition Area and not the
Trace Segment Area which is above it.

- Select the Close Trace Segments option from the NightTrace menu.

Obtaining Kernel Trace Data 3

If you are not running a trace-enabled kernel, skip this section and refer to the section
Using Prerecorded Kernel Data.

- Double-click on the daemon_0 entry in the daemon list in the NightTrace
main window.

- Check the Buffer Wrap checkbox near the bottom of the Daemon Defini-
tion dialog.

- Press OK.

The kernel daemon is now configured to run in bufferwrap mode. This means that kernel
events are collected in kernel memory buffers and are not passed to NightTrace except by
explicit flush operations.
3-26

Using NightTrace
Depending on system activity, huge amounts of kernel trace data can be generated in a rel-
atively short period of time. Since operation of NightTrace is likely a new experience for
many users, we will restrict the data flow to a manageable size for new users.

- Ensure that daemon_0 is selected in the Daemon Control Area.

- Press the Launch button.

- Press the Resume button

- Watch the daemon statistics in the Daemon Control Area; once
40,000-50,000 events are present in the Buffer column, press the Flush
button and then the Halt button.

Skip the next section and jump directly to “Analyzing Kernel Data” on page 3-27.

Using Prerecorded Kernel Data 3

This section is provided only for those using the tutorial that have not booted a
trace-enabled kernel.

If you collected live kernel trace data in the preceding section, skip to Analyzing Kernel
Data.

The NightStar RT tutorial directory contains some pre-recorded kernel data which can
be used in the section titled “Analyzing Kernel Data” on page 3-27.

- Select the Open Trace File... menu item from the NightTrace menu in
the NightTrace main window.

- Type the following into the file dialog in the Selection text field:

/usr/lib/NightStar-RT/tutorial/.kernel-data

- Press the OK button.

Proceed to the next section.

Analyzing Kernel Data 3

NightTrace automatically generates a default kernel display page that is customized to the
system from which the kernel data was captured.

- Resize the kernel display page so that information for all CPUs can be seen
or as many as your display resolution will allow.

- Zoom out until the data and state graphs are populated with events.

- Click in an active area and zoom in until detail can be seen.
3-27

NightStar RT Tutorial
Figure 3-19. Kernel Display Page

NOTE

Your display page may look significantly different if you have a
different number of CPUs. Additional system activity can make
the display vary as well. Do not be concerned about such differ-
ences at this step.

For each CPU, the following information is displayed:

• interrupt activity (in red)

• machine exception activity (in green)

• system call activity (in blue)

• per-process CPU utilization (shown in a variety of colors)

• detailed kernel events (in dark red)

The data boxes on the left hand side of the display page are color coded to match the infor-
mation they describe. Their contents change dynamically based on the position of the cur-
rent timeline.

- Press Ctrl+F to open a Profiles/Search dialog.

- Click the Reset button to the right of the Key/Value selection area
3-28

Using NightTrace
- Press the Browse... button to the right of the Processes text field.

- Select the app process from the list of known processes.

- Press the Select button to close the process list.

- Select the System Call Enter Events option from the Key / Value
option list.

- Select nanosleep from the list of system calls shown.

- Press the Select button to close the system call list.

- Change the list of events in the Events text field to include only
SYSCALL_RESUME

- Press the Search / Close button.

The current timeline is changed to the next occurrence of a resumption of a suspended
nanosleep system call in process app.

NOTE

If NightTrace fails to find an occurrence matching the sort criteria
just entered, recheck the search criteria. It is likely that you may
have skipped pressing the Reset button in the steps above.
Ensure that the Threads text area indicates ALL and not sin.

Zoom in until detailed information is visible, similar to what is shown below:
3-29

NightStar RT Tutorial
Figure 3-20. Kernel Display Page

NOTE

Your display page may look significantly different if you have a
different number of CPUs. Additional system activity can make
the display vary as well. Repeat the search a few times to find an
occurrence that looks similar to the row which indicates the app
process. You can repeat the last search by pressing the forward
search icon on the tool bar or by pressing the Period key.

The red bar to the left of the current timeline indicates that an interrupt occurred. In this
case, it was a local_timer interrupt.

The tall vertical black line spanning the system call and exception rows represents a con-
text switch. The current timeline (dashed line spanning the entire rectangular display
area) is likely overlaid with the context switch line at this zoom setting.

- Raise the NightTrace main window.
3-30

Using NightTrace
NOTE

You can raise the NightTrace main window from any display page
by using Alt+P, M keystrokes. Alternatively you can select the
NightTrace Main Window... option from the Page menu of
any display page.

Look at the Events list.

The salmon-shaded event is the event at the current timeline, which should be
SYSCALL_RESUME.

- Select that event

The text area of the Main window describes the event in more detail, in this case, text sim-
ilar to the following:

Offset : 3581
Detail : Resuming system call nanosleep
Args : arg1=0 arg2=162 arg3=0

The Args shown in that description are not the arguments to the nanosleep system call.
They are the argument associated with the tracepoint representing the system call -- they
contain internal NightTrace data.

- While current timeline is at the SYSCALL_RESUME event, press the Up
Arrow key

The current timeline is changed to the preceding event and the text description indicates a
context switch with text similar to the following:

Offset : 3580
Detail : idle switched out (runnable); app (5336) switched in
Args : arg1=0x14d8 arg2=0x0 arg3=0x0

- Raise the kernel display page

The blue bar represents system call activity. The data box to the left will describe the sys-
tem call name for the system call at or to the left of the current time line.

- Press Period key to advance back to the SYSCALL_RESUME event

In the instance shown in the screen shot above, shortly after the sine thread returns from
nanosleep, the main thread is exiting the nanosleep call on line 93 of app.c. It then
enters an ipc system call to execute the semop library call on line 94.

NOTE

On some systems, the system call may be described as semop
instead of ipc.

In the example shown above, one of the other threads shortly wakes up and begins to exe-
cute and then blocks again in an ipc system call.
3-31

NightStar RT Tutorial
Mixing Kernel and User Data 3

If you are not running a trace-enabled kernel, skip this section and proceed to “Using
the NightTrace Analysis API” on page 3-35.

- Raise the NightTrace main window.

- Ensure the kernel daemon is halted by pressing the Halt button if it is sen-
sitized (it should have been halted in a previous step)

- Select both daemon_0 and daemon_1 trace segments in the Trace Seg-
ment Statistics Area on the main window using Click and Shift+Click
mouse and keyboard actions. While both are selected, right-click and
select the Close Trace Segments menu option of the pop-up menu.

- Double-click the daemon_0 line in the Daemon Control Area to edit the
daemon definition.

- Clear the Buffer Wrap checkbox.

- Press the OK button to close the dialog.

- Select both daemons in the Daemon Control Area using Click and
Shift+Click mouse and keyboard actions.

- Press the Launch button.

Read the next four steps before proceeding, then execute them in order.

- Press the Resume button.

- Wait about 2 seconds.

- Press the Flush button.

- Press the Halt button.

Data from both the user application and the kernel have been captured and brought into
NightTrace.

- Select the sine profile from the Profiles list at the top of the NightTrace
main window.

You may need to scroll the list of profiles to locate sine.

- Press the Summarize icon on the toolbar (the fifth icon from the left).

The last action caused a summary of the sine state defined in “Using the Summary Dia-
log” on page 3-20.

The current timeline was automatically positioned to the longest instance of the state.

- Raise the kernel display page.

- Zoom in or out as required until you can clearly see the detail relating to
the sine thread’s cycle.
3-32

Using NightTrace
In the graphic shown below, the sine thread was preempted by a kernel processing of an
timer interrupt.

Figure 3-21. Kernel Display Page

The reason for the extended cycle in your trace data may be due to other circumstances.

• Was the sine_thread() preempted by another process?

• Did an interrupt occur during the cycle?

• Was there significant activity on the hyper-threaded sibling CPU which
stole cycles from the CPU where the sine thread was executing?

• Did the application get a page fault or other machine exception?

• Did activity on a hyper-threaded sibling CPU interfere with the CPU where
app is executing.

Some of these circumstances are discussed in more detail in “Overrun Detection and Sys-
tem Tuning” on page 6-9.

Machine exceptions include information detailing the type of exception, the faulting
address (when applicable), and the PC at which the exception occurred.

- Type Ctrl+F while the kernel display page is selected.

- Select Exception All Events from the Key / Value option list.

- Select Page-Fault from the list of exceptions.
3-33

NightStar RT Tutorial
- Press the Select button.

- Press the Search / Close button.

If a page fault is located, the current timeline is moved to the next occurrence of a page
fault. The text area at the top of the kernel display page includes detailed information
about the exception, including the PC at which the fault occurred and the faulting address.

You can use NightView to see the actual line number of programs (if they have debugging
information) based on the PC information with a command like: list *pc-address.

The remaining portions of the tutorial do not require several of the NightTrace windows
that are still open.

- Close the kernel and user display pages by selecting the Close option
from the Page menu from both windows
3-34

Using NightTrace
Using the NightTrace Analysis API 3

NightTrace provides a powerful API which allows user applications to analyze
pre-recorded trace data or to monitor and analyze live trace data.

Users can write programs that define states and conditions and process events as they
occur.

In this tutorial, we will instruct NightTrace to build an API program automatically.

- Raise the NightTrace main window.

- Select the sine profile from the Profiles list.

- Select the Export... menu item from the Profiles menu.

The following dialog is displayed:

Figure 3-22. Export Profiles to Analysis API Source dialog

- Clear the State start callbacks checkbox.

- Press the Export button.

- Select the Exit Immediately menu item from the NightTrace menu to
exit NightTrace.

NightTrace has created an API program which listens for occurrences of the state defined
by the sine profile and prints out some information for each instance.

- Build the API program using the following command:

cc -g export_analysis_0.c -lntrace_analysis

This program expects to consume live trace data.
3-35

NightStar RT Tutorial
You can configure a user daemon with the NightTrace GUI and have NightTrace launch
the analysis program automatically.

Alternatively, you can use the command line user daemon program ntraceud to achieve
the same effect.

- Type the following command:

ntraceud --stream --join /tmp/data | ./a.out

This command instructs ntraceud to start capturing trace data from a running applica-
tion which is using the file /tmp/data as a handle. The --stream option indicates
that instead of logging the data to the named file, it should be sent to stdout.

The application program may not immediately begin generating output because the data
rate is fairly low and buffering is involved.

- To flush the current buffers for immediate consumption by the application,
issue the following command in a different terminal session:

ntraceud --flush /tmp/data

NOTE

You may need to repeat that command several times over a period
of a few seconds to allow the data to pass through system buffers.

Data similar to the following will appear on stdout in the terminal session where the
analysis program was launched:

sine (end)offset 665 occur 333 code 2 pid 3399 time 16.628649 duration 0.000003
sine (end)offset 667 occur 334 code 2 pid 3399 time 16.678631 duration 0.000003
sine (end)offset 669 occur 335 code 2 pid 3399 time 16.728655 duration 0.000003
sine (end)offset 671 occur 336 code 2 pid 3399 time 16.778676 duration 0.000003
sine (end)offset 673 occur 337 code 2 pid 3399 time 16.828693 duration 0.000003
sine (end)offset 675 occur 338 code 2 pid 3399 time 16.878716 duration 0.000004
sine (end)offset 677 occur 339 code 2 pid 3399 time 16.928745 duration 0.000003
sine (end)offset 679 occur 340 code 2 pid 3399 time 16.978760 duration 0.000003
sine (end)offset 681 occur 341 code 2 pid 3399 time 17.028779 duration 0.000003

- Issue the following command to terminate the daemon:

ntraceud --quit-now /tmp/data

If you are not running a trace-enabled kernel daemon, skip the remaining of this sec-
tion and proceed to “Conclusion - NightTrace” on page 3-37.

Several sample API programs are provided with NightTrace.

- Type the following commands to build the watchdog example program:

cp /usr/lib/NightTrace/examples/watchdog.c .
cc -g -o watchdog watchdog.c -lntrace_analysis

This simple sample program watches for context switches on a specific CPU and prints
the name of the process that is switching in.
3-36

Using NightTrace
This time the ntracekd kernel daemon will be used to capture 5 seconds of kernel data
and stream the output to the watchdog program.

- Issue the following command:

ntracekd --stream --wait=5 /tmp/x | ./watchdog 1

The program will generate output similar to the following:

context switch: 4.979350027 4 ksoftirqd/0
context switch: 4.979358275 2846 X
context switch: 4.983906074 0 idle
context switch: 4.983960385 2846 X
context switch: 4.994892976 3167 firefox-bin
context switch: 4.994989171 4492 ntfilterl
context switch: 4.995070736 4489 watchdog
context switch: 4.995092415 4492 ntfilterl
context switch: 4.995173214 4489 watchdog
context switch: 4.995188096 4492 ntfilterl
context switch: 4.995256175 4489 watchdog
context switch: 4.995270824 4492 ntfilterl
context switch: 4.995332743 4489 watchdog
context switch: 4.995355783 2846 X
context switch: 5.000351519 4 ksoftirqd/0
context switch: 5.000360675 2846 X

Conclusion - NightTrace 3

This concludes the NightTrace portion of the NightTrace RT User’s Guide.
3-37

NightStar RT Tutorial
3-38

Using NightProbe
4
Chapter 4Using NightProbe

4
4
4

NightProbe is a graphical tool for viewing and modifying data from independently execut-
ing programs as well as recording data for subsequent analysis.

This chapter assumes you have already built the app program and it is running under the
control of NightView. If you have not built the program, do so using the instructions in
“Building the Program” on page 1-4 and execute the application via the following com-
mand before proceeding:

./app &

Invoking NightProbe 4

Programs to be probed do not need to be instrumented with any special API calls. How-
ever, in order for NightProbe to refer to symbolic variable names, program should be com-
piled with debug information (typically the -g compilation option).

NightProbe takes advantage of significant performance capabilities of the RedHawk ker-
nel, eliminating intrusion on the process. NightProbe samples and modifies variables in
other programs using direct memory fetches and stores.

Invoke NightProbe using the NightProbe desktop icon or type the following command:

nprobe &

The NightProbe Main window is displayed.
4-1

NightStar RT Tutorial
Figure 4-1. NightProbe Main Window

Selecting Processes and Variables 4

NightProbe has the ability to probe several kinds of resources, including programs, shared
memory segments, and other memory mapped entities.

- Right-click the Resources icon in the Session Overview area and
select the Add Program... menu option.

The Program Window selection dialog is shown
4-2

Using NightProbe
Figure 4-2. NightProbe Program Window

- Press the Select... button to the right of the PID row

The Select Process ID dialog will appear.

- Scroll the display to locate the app program and select it

- Press the Select button

The process ID associated with the app program has been placed in the PID text field and
the Process Name and Symbol File text fields have been updated.

- If the text in the Symbol File text field is a relative pathname, change the
text to the full pathname of the program)

- Press the Add button

The app program has been added to the list of resources to be probed.

- Right-click the app icon in the Resources list and select Add Item
from Program... menu option

The Item Browser dialog is displayed.
4-3

NightStar RT Tutorial
Figure 4-3. NightProbe Item Browser Window

- Expand the list of global variables by pressing the + icon in the square to
the left of the Globals label

The list of global variables in the app program are displayed. The data variable is a
composite object and can be expanded.

- Expand the data variable by pressing the + icon to the left of the data
label

- Expand both structures displayed, data[0] and data[1]

- Double-click the count, angle, and value fields from both data[0]
and data[1] structures

- Double-click the rate variable

- Press the Done button

Double-clicking an item causes the color to turn reddish-orange and adds it to the list of
program items to be probed.

The Main window should now include the selected variables as shown below:
4-4

Using NightProbe
Figure 4-4. NightProbe Main Window with selected items

If the seven items shown above are not in your list, repeat the steps above to add them.

Selection of Outputs 4

NightProbe provides various output methods for the probed data.

File Output 4

The data samples taken by NightProbe may be written to a file for subsequent analysis.

- Right-click the Outputs icon in the Session Overview area and select
the File Output... menu option

A File Output file selection dialog is presented.

- Type in the following in the Output File text area

/tmp/nprobe-data
4-5

NightStar RT Tutorial
- Press the Add button

List Window Output 4

A List Window is a simple listing dialog which shows the values of each data sample
along with the individual data item names.

- Right-click the Outputs icon in the Session Overview area and select
the List Window Output menu option

A List Window is displayed.

Spreadsheet Output 4

Data values may be displayed in a simplified spreadsheet window which provides for cus-
tomized placement and formatting as well as for modification of variable values.

- Right-click the Outputs icon in the Session Overview area and select
the Spreadsheet Output menu option

The Spreadsheet Viewer window is displayed.

Figure 4-5. NightProbe Spreadsheet Viewer

- Select the Place Variables menu option from the Selected menu

The Spreadsheet Variables selection window is displayed.
4-6

Using NightProbe
Figure 4-6. NightProbe Spreadsheet Variables selection dialog

- Select all the variables displayed using a Shift+Click selection operation

- Press the OK button

All seven variables have now been added to the spreadsheet.

Widen the column displays using the following actions:

- Select both of the first two columns

- Select the Column Width menu option from the Layout menu

- Change the width to 20

- Press the Set button

Probing Variables 4

Data probing begins when we connect to the target resources and request data samples.

- Press the Connect button in the Sampler Control area

- Press the Sample button in the Sampler Control area

The default Timer setting is Sample on demand.

Each time you press the Sample button, NightProbe samples all data items and sends
them to the output items you have selected.

The List Viewer and Spreadsheet Viewer windows update to display the values of each
sample.

- Press the Disconnect button
4-7

NightStar RT Tutorial
- Right-click the Timer icon in the Session Overview area and select the
System Clock... menu option

- Change the units of time to msec from the option list

- Change the sampling rate to 100

- Press the Set Timer button

- Press the Connect button in the Sampler Control area

- Press the Start button in the Sampler Control area

NightProbe is now collecting data samples every tenth of a second automatically.

Every sample is written to the output file you selected.

The most recent samples are displayed in the List Viewer and Spreadsheet Viewer
windows, at a user-selectable rate which defaults to once per second.

- Press the Disconnect button

Save the current NightProbe session.

- Select the Save Session... menu option from the NightProbe menu in
the Main window

- Type in a filename that identifies the session

- Press the Select button

- Press Yes to also save the spreadsheet layout in the Warning dialog that
appears

Viewing Recorded Data 4

The List Viewer can be used to view all samples of data recorded via NightProbe.

- Select the Open Data File... menu option from the File menu of the
List Viewer window.

- Enter the name of the output file selected in “File Output” on page 4-5.

/tmp/nprobe-data

- Press the OK button

A textual description of every data sample is shown in the window.

You can save the textual description to a file using the Save As Text... menu option of
the File menu.
4-8

Using NightProbe
Viewing Data with NightTrace 4

Probed data can be sent to NightTrace for live analysis.

- Right-click the Outputs icon in the Session Overview area and select
the NightTrace Output... menu option

The NightTrace Output dialog is displayed.

Figure 4-7. The NightTrace Output Selection Window

By default, all items are selected for graphing with NightTrace.

- Resize the window so that all seven data items can be seen

- Select all entries in the list using a Shift+Click selection operation

- Right-click and select the Do not graph menu option

- Select only the line for the data[0].value variable

- Right click the data[0].value variable

- Select Graph with line from the graph options

- Press the Add button to close the NightTrace Output dialog

NightTrace will be sent all data items in the sample but has been configured to generate a
data graph for the value data[0].value.
4-9

NightStar RT Tutorial
- Press the Connect button in the Sampler Control area

- Press the Start button in the Sampler Control area of the NightProbe
Main window

At this point in the tutorial, it is assumed that you are familiar with the basic operation of
NightTrace. If not, please review the chapter on “Using NightTrace” on page 3-1 before
proceeding.

- Press Launch in the Main NightTrace window

- Press Resume in the Main NightTrace window

- Raise the user display page

The top row of the column graphs the value of data[0].value.

The bottom rows in the column contain an event indication for every variable from every
data sample.

The various data boxes in the user display page indicate the name of the variable associ-
ated with the current NightTrace event and its value.

- Zoom out and scroll to the right to see the sine wave generated by
data[0].value

Figure 4-8. NightTrace User Display Page

You may need to scroll the interval display to the far right several times to bring in enough
data to see the wave. Alternatively, you can press the Flush button on the main window
4-10

Using NightProbe
to bring in new data. It may take several minutes to collect enough data to see several
cycles.

NightProbe allows you to change the value of variables as well as to view their current
value.

- Raise the NightProbe Spreadsheet Viewer window

- Click in the cell which shows the value of data[0].angle

The background changes to blue and the value stops updating

- Backspace over the existing value shown and enter

 0.0

- Hit the <enter> key

Now return to the NightTrace user display page.

- Scroll to the right until the latest data appears

Note the break in the continuous sine wave when we reset the angle to zero.

Terminate execution of NightTrace using the following actions:

- Press Halt in the Main window

- Select Exit Immediately from the NightTrace menu in the Main win-
dow

Using the NightProbe API 4

NightProbe includes a simple API which allows you to unpack data samples from
pre-recorded data files or to analyze streaming data samples in a live environment.

Included in the /usr/lib/NightStar-RT/tutorial directory is a simple program
which reads data samples from stdin using the NightProbe API and outputs a streaming
graphical value of two of the data items in each sample.

- Press the Disconnect button in the NightProbe Main window

- Right-click the Outputs icon in the Session Overview area and select
the Program Output... menu option

The Program Output dialog is displayed.
4-11

NightStar RT Tutorial
Figure 4-9. The NightProbe Program Output Window

- In the Process Name field, enter the full pathname to the graph program
copied into your tutorial directory in “Getting Started” on page 1-2. For
example:

/home/user/tutorial/graph

- Ensure the Working Directory path is correct

- Press the Add button

The graph program will be launched when we next connect to the target resources.

- Press the Connect button in the Sampler Control area of the Main
window

A small window entitled graph is displayed.

If a diagnostic window appears with text similar to one or both of the following, dismiss it.

Server Error: (14) Xlib: extension “GLX” missing on
display “:0.0”.
Server Error: (14) Xlib: extension “XInputExtension”
missing on display “:0.0”.

When data sampling begins, the graph program will begin to display sine and cosine
waves based on the values of data[0].value and data[1].value in the data sam-
ples sent to the program from NightProbe.
4-12

Using NightProbe
- Press the Start button in the Sampler Control area of the NightProbe
Main window

Figure 4-10. Example Output of Graph Program

Change the rate at which the app program runs using the following steps:

- Raise the NightProbe Spreadsheet Viewer window

- Click in the cell displaying the value of the rate variable

The background turns to blue and the value stops updating.

- Backspace over the displayed value and type in

5000000

- Hit the <enter> key

The shape of the sine and cosine waves change as shown in the graph window.

For more information on the NightTrace API, refer to the NightProbe API chapter in the
NightProbe User’s Guide (0890465).

Conclusion - NightProbe 4

To terminate NightProbe operations, execute the following steps:
4-13

NightStar RT Tutorial
- Press the Disconnect button in the Sampler Control area of the Main
window

- Select the Exit menu option from the NightProbe menu

- Select No from the warning dialog

- Close the graph window of the graph program using the window man-
ager

This concludes the NightProbe portion of the NightTrace RT User’s Guide.
4-14

Using NightTune
5
Chapter 5Using NightTune

5
5
5

NightTune is a graphical tool for analyzing and adjusting system activities.

This chapter assumes you have already built the app program and it is running. If you
have not built the program, do so using the instructions in “Building the Program” on
page 1-4 and execute the application via the following command before proceeding:

./app &

Invoking NightTune 5

NightTune can be launched with the following command at a command prompt:

ntune &

Or it may be launched by double-clicking on the NightTune desktop icon.

For some aspects of this tutorial, it will be necessary to execute NightTune as the root
user or to ensure that your user account has appropriate privileges. See the “Setting Up
User Privileges” on page 1-2 for more information.

Figure 5-1. NightTune initial panels
5-1

NightStar RT Tutorial
Monitoring a Process 5

First monitor the running app process.

- In the Process List panel on the left side of the window, click on the user
running that process.

- Click on the app process that appears under that user.

Its checkbox will be checked, and that process will appear in the Process Monitor
panel in the middle of the window.

Figure 5-2. NightTune Process Monitor panel

- Resize the Process Monitor panel by clicking the sash (small box) to the
right of its scrollbar and dragging it until you can see all the columns dis-
played for the app process in the Process Monitor panel.
5-2

Using NightTune
- To monitor each thread in the app process individually, press the down
arrow button to the left of that process in the Process Monitor panel.

Figure 5-3. NightTune Process Monitor panel with threads

The Process Monitor panel shows characteristics of each thread and of the entire pro-
cess. In particular, they include:

• memory usage of the process, broken down by virtual memory size, resi-
dent memory size, and data memory (including only data memory by
default)

• amount of time used by each thread or the whole process, broken down by
system time, user time, and total time.

• CPU on which each thread ran most recently

• CPU affinity for each thread (the set of CPUs on which the thread is
allowed to run)

• scheduling characteristics of each thread

The set of columns displayed can be modified by clicking the Frames menu, then on the
Display Fields menu item, and then choosing individual fields by checking or uncheck-
ing their menu items.
5-3

NightStar RT Tutorial
Changing Process Scheduling Parameters 5

It may be desirable to change the scheduling properties of a thread or process while it is
running to see how that changes the behavior of an application. For instance, perhaps one
thread is being starved of CPU time by other threads. You may wish to change its sched-
uling class to a real-time class and/or its priority to a higher priority.

- Click on the right arrow button to the left of one of the threads in the pro-
cess app.

 The Process Scheduler dialog will appear.

Figure 5-4. Process Scheduler dialog

In this dialog, it is possible to change the Scheduling Class, Nice Value, Real-time
Priority, and/or Time Quantum. On multi-processor systems, it also is possible to
change the CPU Affinity. For each CPU on which the process or thread is allowed to
run, the checkbox with the number of that CPU should be checked. See “Setting Process
CPU Affinity” on page 5-5 for more on this topic.

- Change the Scheduling Class to Round Robin by selecting that from
a drop down list.

- Change the Real-time Priority to 3 by using the up arrow to the right of
the Real-Time Priority text field.

- Press the Apply button.

- Dismiss the Process Scheduler dialog by pressing the Close button.
5-4

Using NightTune
NOTE

To change the Schedul ing Class to Round Robin and
change the Real-time Priority, it is necessary that NightTune
be run by the root user or that your user account has appropriate
privileges as described in “Setting Up User Privileges” on page
1-2.

The Process Monitor panel now reflects these changes to the thread.

Figure 5-5. NightTune Process Monitor with modified thread

For the modified thread, the CL (Scheduling Class) field displays the value RR (Round
Robin), and the RPri (Real-time Priority) field displays the value 3.

Setting Process CPU Affinity 5

This section only is applicable if the system running NightTune is a multi-processor sys-
tem. If not, skip to “Monitoring Processor Usage” on page 5-11.

The Process List panel no longer is necessary, so close it.

- Click on the Monitor menu, and then on the Process List menu item.

 The Process List panel will disappear.
5-5

NightStar RT Tutorial
The CPU Status panel (labeled CPUs) may still be only partially visible. To the right
of the panel at the bottom is a sash.

- Press and hold the sash and then drag it to the right. This will resize the
CPU Status panel. Make the panel wide enough so that all CPUs are vis-
ible. If many CPUs are present, it also may be necessary to resize the win-
dow, making it taller so that all CPUs are visible, or at least as many as the
display resolution will allow.

Figure 5-6. NightTune with CPU Status panel

A process or thread has a CPU affinity, which determines the set of CPUs on which it may
execute. It may even be restricted such that it may run on only a single CPU. Often this is
called binding the process or thread. “Changing Process Scheduling Parameters” on page
5-4 described one way to change the CPU affinity. In addition, the CPU Status panel
can be used to bind a process or thread quickly.
5-6

Using NightTune
- While the cursor is positioned over one of the threads in the app process,
press and hold the middle mouse button, then drag the thread to one of the
CPUs in the CPU Status panel and release the mouse button.

Figure 5-7. NightTune with bound thread

This action binds the selected thread to the particular CPU. That is, its CPU affinity is set
to include only that single CPU. When a process’ or thread’s CPU affinity contains only a
single CPU, that process or thread is listed in the CPU Status panel under the particular
CPU’s Processes tab. In this case, there is one entry under CPU 1. Because only one
thread was bound to CPU 1 in this example, the entry includes the suffix (1/4), indicating
that only 1 of the 4 threads is bound to that CPU.

The thread’s new CPU affinity also is reflected in the Affinity field of the Process
Monitor panel. That field displays a bit mask in hexadecimal, where the low order bit
represents CPU 0, the next bit represents CPU 1, etc. In this case, the value 0x1 has only
the lowest bit turned on, indicating CPU 0.

NightTune also can unbind a process quickly.

- While the cursor is over the thread entry in the CPU Status
panel, press and hold the middle mouse button, then drag the item
to the Unbind icon at the bottom left of the window (resembling
a broken chain link) and release the mouse button.

The Process Monitor panel will reflect that the thread is unbound once again.
5-7

NightStar RT Tutorial
Setting Interrupt CPU Affinity 5

The functionality described in this section only is available if NightTune was executed by
the root user or your user account has appropriate privileges as described in “Setting Up
User Privileges” on page 1-2. If this is not the case, skip to “Monitoring Processor Usage”
on page 5-11.

In addition to being able to set the CPU affinity of a process, NightTune can control the
CPU affinity of an interrupt.

It may be desirable to change the CPU affinity of an interrupt. For instance, an interrupt
may be occurring frequently and, depending on the CPU which handles it, may be inter-
fering with an application running on that same CPU.

- Close the Process Monitor panel by clicking on the Monitor menu and
then the Process Monitor menu item.

- In its place, open the Interrupt Activity panel by clicking on the Moni-
tor menu and then the Interrupt Activity menu item.

Figure 5-8. NightTune with Interrupt Activity panel

The Interrupt Activity panel is comprised of 3 sub-panels which display interrupt activ-
ity in 3 different formats. The top sub-panel shows the number of interrupts per second
for each interrupt as handled on each CPU (if on a multi-processor system). The middle
sub-panel shows the total number of interrupts per second for each CPU using bar graphs.
The bottom sub-panel shows the number of interrupts per second over a recent span of
time for each interrupt as handled on each CPU using line graphs.

For the purpose of this tutorial, hide all but the top sub-panel
5-8

Using NightTune
- Within the Interrupt Activity panel, press and hold the right mouse but-
ton so that a drop-down menu appears, and select Hide bargraph dis-
play.

- Then do the same, but select Hide linegraph display.

- Depending on the number of CPUs, it also may be necessary to widen the
Interrupt Activity panel. To do this, over the sash to the lower right of
the panel, press and hold the left mouse button and drag it to the right until
the whole panel is visible.

- After doing that, it may be necessary to widen the CPU Status panel sim-
ilarly.

- Depending on the number of interrupt sources, it may also be necessary to
resize the window vertically.

NOTE

When resizing the window vertically, if the Interrupt table does
not expand to use all available vertical space, reactivate the bar
graph display and then deactivate it again. This annoyance will be
addressed in a future release.

- Click on the Interrupts tabs in each CPU within the CPU Status panel.

Figure 5-9. NightTune with resized Interrupt Activity panel
5-9

NightStar RT Tutorial
The colored boxes in the Interrupt Activity panel indicate that an interrupt may be han-
dled by that particular CPU. However, if an interrupt may be handled by all CPUs, then
no colored boxes appear for that interrupt. The same information is displayed in the
Interrupts tabs for each CPU in the CPU Status panel.

Some systems may employ IRQ balancing which automatically changes IRQ affinities
over time. For purposes of this tutorial, ensure that IRQ balancing is currently disabled by
executing the following command as the root user:

/sbin/service irqbalance stop

To bind an interrupt to a single CPU, it may be dragged in much the same way as a pro-
cess.

While the cursor is over an interrupt in the Interrupt Activity panel, you may press and
hold the middle mouse button, then drag the interrupt to the particular CPU in the CPU
Status panel. Similarly, while the cursor is over an interrupt in the Interrupts tab of a
CPU in the CPU Status panel, you may press and hold the middle mouse button, then
drag the interrupt to a different CPU in the CPU Status panel.

To change an interrupt’s affinity to allow multiple CPUs, but possibly exclude one or
more, click on the right arrow to the left of a particular interrupt, such as interrupt 185 in
this example, and the Interrupt Affinity dialog will appear:

Figure 5-10. Interrupt Affinity dialog

For each CPU on which the interrupt is allowed to be handled, the checkbox with the num-
ber of that CPU should be checked. The changes take effect when the Apply button is
pressed.

- Using any of these techniques, change the CPU affinity such that no inter-
rupts may be handled on CPU 1.

NOTE

For certain interrupts, such as NMI, it is impossible to control
their CPU affinity.
5-10

Using NightTune
Figure 5-11. NightTune with no interrupts on CPU 1

Finally, it is possible to unbind an interrupt in much the same way as a process.
While the cursor is over the interrupt entry in the CPU Status panel, press and
hold the middle mouse button, then drag the item to the Unbind destination
panel at the bottom left of the window (resembling a broken chain link) and
release the mouse button.

Monitoring Processor Usage 5

This section describes how to monitor the utilization of each CPU on the system. The
concepts herein also apply to monitoring context switches, virtual memory, disk activity,
and network activity.

Panels left open from previous sections no longer are necessary, so close them.

- Click on the Monitor menu, and then on any menu item with a checked
checkbox to its left. The panel with that name will close. Repeat this until
no panels remain.

- In their place, open the Processor Usage panel by clicking on the
Monitor menu and then the Processor Usage menu item.

Depending on the number of CPUs, it may be necessary to widen the Processor Usage
panel.
5-11

NightStar RT Tutorial
- To do this, over the sash to the lower right of the panel, press and hold the
left mouse button and drag it to the right until all the columns of graphs in
the bottom sub-panel are visible.

- It may be necessary to resize the window vertically, and then heighten the 3
sub-panels using the sashes on the horizontal separators to the lower right
of each sub-panel.

Figure 5-12. NightTune Processor Usage panel

The Processor Usage panel is comprised of 3 sub-panels which display processor
usage percentages in 3 different formats. The top sub-panel shows the processor usage
percentage spent doing each of these activities:

• executing user code (including kernel daemons which handle
post-interrupt processing)

• executing system code (i.e. executing in the kernel)

• waiting for an I/O operation

• waiting in the idle loop

These percentages are shown separately for each CPU (if on a multi-processor system).

The middle sub-panel shows the same information using bar graphs. A legend at the bot-
tom of that sub-panel shows how each color represents each of the activities listed above.

The bottom sub-panel shows that the same information over a recent span of time using
line graphs. The legend from the middle sub-panel applies to it as well.
5-12

Using NightTune
Shielding CPUs for Maximum Determinism and Performance 5

NightTune allows you to easily shield specific CPUs from processes, interrupts, and
shared resource interference from other CPUs.

This is demonstrated as part of the NightSim section in this tutorial. See “Overrun Detec-
tion and System Tuning” on page 6-9 for more information.

Conclusion - NightTune 5

To terminate NightTune, select the Exit menu option from the NightTune menu.

The remaining portion of the tutorial is unrelated to the execution of the app program.
Terminate the app program and exit NightView by executing the following steps:

- Select the Exit NightView menu option from the NightView menu of
any NightView window

- Press OK in the Warning dialog which asks whether to Kill all pro
cesses being debugged.

This concludes the NightTune portion of the NightTrace RT User’s Guide.
5-13

NightStar RT Tutorial
5-14

Using NightSim
6
Chapter 6Using NightSim

6
6
6

NightSim is a graphica tool for scheduling multiple processes in a synchronized manner
and monitoring their execution.

NightSim provides a graphical interface to the Frequency Based Scheduler utilities which
are part of the RedHawk operating system.

If you don’t have the Frequency Based Scheduler installed on your system, this portion of
the tutorial isn’t applicable to you. Use the following command to see if the Frequency
Based Scheduler is installed:

rpm -q ccur-fbsched

This chapter of the tutorial also uses a real-time clock interrupt source from the Real-Time
Clock and Interrupt Module (RCIM) which is standard equipment on all iHawk systems.
If your system does not include an RCIM device, this portion of the tutorial isn’t applica-
ble to you. Use the following command to see if an RCIM is installed:

cat /proc/driver/rcim/status

If the file shown above does not exist, an RCIM does not exist on your system or your ker-
nel has had the RCIM support removed.

For some aspects of this section, it will be necessary to execute NightSim and NightTune
as the root user or to ensure that your user account has appropriate privileges. See the
“Setting Up User Privileges” on page 1-2 for more information.

Creating FBS Applications 6

It is trivial to modify cyclic applications so that they may be scheduled via NightSim.

A single API call is required.

The source code for our simplistic wave application follows:

#include <fbsched.h>
int workload = 1000;
main()
{
 int data = 0;
 int i;
 volatile double d = 1.0;
 while (fbswait()==0) {
 data = !data;
 for (i=0; i<workload; ++i) d = d/d;
6-1

NightStar RT Tutorial
 }
}

The call to fbswait() causes the process to block until its next scheduled cycle at
which point it returns. The process then performs its workload and then loops to block in
fbswait() until its next scheduled cycle.

The wave.c source file was copied from /usr/lib/NightStar-RT/tutorial
into the current working directory in an earlier portion of this tutorial.

Compile and link the application using the following command:

cc -g -o wave wave.c -lccur_fbsched -lccur_rt

Invoking NightSim 6

A NightSim configuration file has been prepared for this tutorial and should have been
copied to your current working directory during the activities in the section entitled “Cre-
ating a Tutorial Directory” on page 1-3 .

Launch NightSim specifying the configuration file, as show below:

nsim -f nsim.config -offline &

Figure 6-1. NightSim initial window
6-2

Using NightSim
Creating a Scheduler 6

NightSim allows you to define the scheduling of multiple processes, using the following
parameters:

• The scheduling source (usually an external interrupt)

• The rate at which the interrupts occur (for clock-based interrupts)

• The period at which a process is scheduled

• The CPU affinity, scheduling policy and priority of scheduled processes

Collectively, these parameters define a scheduler.

A cycle is defined as the time between the scheduling sources (interrupts).

A frame is defined by a fixed number of cycles. Frames are useful concepts in many
cyclic applications where a series of discrete steps (cycles) must be executed in order
before the entire algorithm (frame) repeats.

The scheduler configured by the nsim.config file specified on the command line in the
previous section defined a scheduler with the following attributes visible on the main win-
dow:

• Cycles Per Frame -- four cycles per frame

• Timing Source - an interrupt source using RTC2 of the Real-time Clock
and Interrupt Module device (RCIM)

• Clock Period -- a cycle time of 100 microseconds

• Processes -- a single process, wave, schedule to run on every cycle of
the frame

To view the details of the attributes of the scheduled process, select the ./wave process
in the process area at the bottom portion of the NightSim window and then press the
Edit... button on the lower left hand area of the window.
6-3

NightStar RT Tutorial
The Edit Process window is displayed.

Figure 6-2. NightSim Edit Process Window

The Edit Process window shows the starting cycle and period of the wave process.
The Staring Cycle defines the cycle within the frame where the process will begin its
execution. The Period defines the frequency of execution, in cycles. A period value of 1
causes the application to execute every cycle in the frame.
6-4

Using NightSim
Click on the Process tab of the Edit Process window.

Figure 6-3. NightSim Edit Process Window -- Process Tab

NOTE

The CPU Bias description area of the Process Tab may vary
depending on the number of CPUs on your system.

The Process tab allows you to chose the CPU on which execution is allowed, the sched-
uling policy, and the scheduling priority of the process.

Close the Edit Process window by pressing the Close button.

Notice that in addition to the wave process, the /idle process is listed in the scheduling
area of the NightSim window. We have registered the /idle process so that we may sub-
sequently monitor the amount of idle time available for each cycle. The /idle process is
not a process that is scheduled, but rather it is a placeholder used to represent idle cycles.
6-5

NightStar RT Tutorial
Running the Scheduler 6

To start the scheduling of the process, press the Setup button followed by the Start but-
ton in the NightSim window.

Figure 6-4. NightSim Window -- Scheduling has begun

Note the Frame count begins to increase under the Run Status area of the NightSim
window as the Cycle oscillates between 0 and 3.

To monitor the execution of the process, launch a monitor window by selecting the Cre-
ate Monitor Window menu item of the NightSim menu.
6-6

Using NightSim
Figure 6-5. NightSim Monitor window

The NightSim Monitor window provides statistics about each individual process on the
scheduler. It includes the PID, program name, CPU bias, number of cycles executed, the
CPU times related to per cycle execution, counts of overruns, and the average percentage
of the frame used by each process. Additional statistics can be selected for display via the
Display Fields menu item of the View menu.

Watch the Last Time column. The values displayed are the CPU time used by each pro-
cess for their last cycle’s execution in microseconds. The values attributed to the /idle
process indicate the remaining CPU time available within the cycle.

We will adjust the workload of the wave process and see the effects shown in the Night-
Sim Monitor window.

Using Datamon to Modify Program Variables 6

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data Monitoring allows you to specify executable programs that contain Ada, C, or For-
tran variables to be monitored, obtain and modify the values of selected variables by spec-
ifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

Data Monitoring is a powerful capability with a rich API. However, for our purposes, we
will write a very simple program which changes the value of a single variable.

Refer to the Data Monitoring Reference Manual for more information about Data Moni-
toring.

The source code for our set_workload program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
 if((x)) {fprintf(stderr, "%s\n", dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{
 program_descriptor_t pgm;
 object_descriptor_t obj;
 char buffer[100];

 if (argc != 2) {
 fprintf (stderr, "Usage: set_workload integer-value\n");
 exit(1);
 }

 check(dm_open_program("wave",0,&pgm));
6-7

NightStar RT Tutorial
 check(dm_get_descriptor("workload",0,pgm,&obj));
 check(dm_get_value(&obj,buffer,sizeof(buffer)));
 check(dm_set_value(&obj,argv[1]));

 printf ("workload: old_value=%s, new_value=%s\n", buffer, argv[1]);
}

The dm_open_program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get_descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
wave process into the monitoring process.

The dm_get_value and dm_set_value routines return and set the value of the vari-
able using direct memory reads and writes; the wave process is not affected in any other
way than having the value of the workload variable changed.

The set_workload.c source file was copied into the current working directory during
the activities in the section entitled “Creating a Tutorial Directory” on page 1-3 .

Compile the program using the following command:

cc -g -o set_workload set_workload.c -ldatamon -lccur_fbsched -lccur_rt

Change the value of the workload variable in the wave process by issuing the following
command:

./set_workload 0

As shown in the source code above, the program prints the previous value of the work-
load variable and then sets it to the value specified as an argument to set_workload.

The Last Time field for ./wave is affected by the reduced workload as shown in the
NightSim Monitor window.

Figure 6-6. NightSim Monitor Window -- Reduced Workload

Experiment with various values of workload using the set_workload program until
the average Last Cycle time for ./wave is approximately 50 microseconds.
6-8

Using NightSim
Overrun Detection and System Tuning 6

A scheduling overrun occurs when a process’s next cycle begins but it has not yet finished
execution of its previous cycle.

The NightSim Monitor window includes overrun counts for each process.

It is likely that several overruns have occurred for the wave process.

NOTE

If overruns have not yet occurred, place some additional load on
the system. Running the following command in a separate termi-
nal session should have the desired effect:

find / -print

The NightTrace tool, as described in a previous chapter, is well suited for determining the
specific cause of process overruns. NightTrace kernel tracing provides a detailed view of
system activity on all CPUs, including process context switches, interrupts, system calls,
and machine exceptions.

For brevity, we will assume that the cause of the overruns is due to additional activities
unrelated to the scheduler are occurring on the CPU where wave executes.

We will use NightTune to shield the CPU associated with our scheduler from other activi-
ties.

NOTE

If your system only has a single CPU, the remaining portion of
this section is inapplicable. Skip to “Shutting Down the Sched-
uler” on page 6-12 in this case.

Launch NightTune using the supplied configuration file which was copied into the current
directory during the activities in the section entitled “Creating a Tutorial Directory” on
page 1-3
6-9

NightStar RT Tutorial
ntune -config ntune.config &

Figure 6-7. NightTune with Interrupt Activity and CPU Panels

A NightTune window appears which displays interrupt activity and the shielding and
bound status of all CPUs.

Note that wave process is listed in the Processes area of CPU 0.

Take the following actions to bind the RCIM interrupt to CPU 0 and shield CPU 0 from all
other activities:

- While the cursor is positioned over any part of the row associated
with the rcim interrupt, press and hold the middle mouse button,
then drag the interrupt into the CPU 0 box. and release it.

- Click the Maximize Shielding button in the CPU 0 box (the max-
imize shielding button is the upper right-most button with three over-
lapping shield figures).

The CPU 0 box changes its display to indicate that all processes and interrupts other than
wave and rcim will be shielded from CPU 0. Additionally, the sibling hyper-threaded
CPU (in this case CPU 2 as shown to the right of CPU 0) is marked down so that
hyper-threaded execution on CPU 2 does not interfere with CPU 0.
6-10

Using NightSim
NOTE

The hyperthreaded sibling of CPU 0 may be a logical CPU num-
ber other than CPU 2.

NOTE:

Your system may not support hyper-threading or it may not have
hyper-threading enabled in which case the CPUs are displayed in
a single column.

Figure 6-8. NightTune with Shielding Actions Pending

Press the Apply button to activate the shielding changes.

Return to the NightSim Monitor window and watch the Overrun column. It is likely that
overruns have ceased to occur. Clear the overrun count by selecting the Clear Perfor-
mance Values menu item from the Monitor menu and press OK when the CPU dia-
log is presented. This action resets all the statistics to zero.

Watch the Overrun column to see if any overruns still occur.
6-11

NightStar RT Tutorial
Experiment with the ./set_workload program to make the workload of the ./wave
application such that 40 microseconds are left for /idle processing.

If the system is properly configured, the scheduler should continue to execute without any
overruns on the shielded CPU.

Shutting Down the Scheduler 6

Return to the NightSim Main window and press the Remove button to terminate the
scheduler. Press Yes when presented with the dialog which asks whether to kill the pro-
cesses associated with the scheduler.

Exit NightSim by selecting the Exit menu item from the NightSim menu on the Night-
Sim Main window. A dialog asking whether or not to save changes to nsim.config
may appear; if so, press No.

You may also wish to clear the shielding attributes for CPU 0 and return the system to its
previous state using NightTune.

Exit NightTune by selecting the Exit from the NightTune menu.

This concludes the NightSim portion of the NightTrace RT User’s Guide.
6-12

Tutorial Files
A
Appendix ATutorial Files

1
1
1

The following sections show the source listings for the files used in the NightTrace RT
User’s Guide.
A-1

NightStar RT Tutorial
app.c A

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include <ntrace.h>
#include <math.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static void * heap_thread (void * ptr);

typedef struct {
 char * name;
 int count;
 double delta;
 double angle;
 double value;
} control_t;

control_t data[2] = { { "sin", 0, M_PI/360.0, 0.0, 0.0 },
 { "cos", 0, M_PI/360.0, 0.0, 0.0 } };
int rate = 50000000;

int sema;

extern
double
FunctionCall(void)
{
 return data[0].value + data[1].value;
}

static
void *
sine_thread (void * ptr)
{
 control_t * data = (control_t *)ptr;
 struct sembuf wait = {0, -1, 0};

 trace_open_thread (data->name);

 for (;;) {
 semop(sema, &wait, 1);
 data->count++;
 data->angle += data->delta;
 data->value = sin(data->angle);
 }
}

static
void *
cosine_thread (void * ptr)
{
 control_t * data = (control_t *)ptr;
 struct sembuf wait = {0, -1, 0};

 trace_open_thread (data->name);
A-2

Tutorial Files
 for (;;) {
 semop(sema, &wait, 1);
 data->count++;
 data->angle += data->delta;
 data->value = cos(data->angle);
 }
}

int
main (int argc, char * argv[])
{
 pthread_t thread;
 pthread_attr_t attr;
 struct sembuf trigger = {0, 2, 0};

 trace_begin ("/tmp/data",NULL);
 trace_open_thread ("main");

 sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

 pthread_attr_init(&attr);
 Pthread_create (&thread, &attr, sine_thread, &data[0]);

 pthread_attr_init(&attr);
 Pthread_create (&thread, &attr, cosine_thread, &data[1]);

 pthread_attr_init(&attr);
 Pthread_create (&thread, &attr, heap_thread, NULL);

 for (;;) {
 struct timespec delay = { 0, rate } ;
 nanosleep(&delay,NULL);
 semop(sema,&trigger,1);
 }

 trace_end () ;
}

void * ptrs[5];

static
void *
heap_thread (void * unused)
{
 int i;
 int scenario = -1;
 void * ptr;
 int * * iptr;

 extern void * alloc_ptr (int size, int swtch);
 extern void free_ptr (void * ptr, int swtch);

 for (;;) {
 sleep (5);
 switch (scenario) {
 case 1:
 // Use of freed pointer
 ptr = alloc_ptr(1024,3);
 free_ptr(ptr,2);
 memset (ptr, 47, 64);
 break;
 case 2:
 // Double-free
 ptr = alloc_ptr(1024,3);
 free_ptr(ptr,2);
A-3

NightStar RT Tutorial
 free(ptr);
 break;
 case 3:
 // Overwriting past end of an allocated block
#define MyString "mystring"
 ptr = alloc_ptr(strlen(MyString),2);
 strcpy (ptr,MyString); // oops -- forgot the zero-byte
 break;
 case 4:
 // Uninitialized use
 iptr = (int * *) alloc_ptr(sizeof(void*),2);
 if (*iptr) **iptr = 2778;
 break;
 case 5:
 // Leak -- all references to block removed
 ptr = alloc_ptr(37,1);
 ptr = 0;
 break;
 case 6:
 // Some more allocations we’ll check on...
 ptrs[0] = alloc_ptr(1024*1024,3);
 ptrs[1] = alloc_ptr(1024,2);
 ptrs[2] = alloc_ptr(62,1);
 ptrs[3] = alloc_ptr(4564,3);
 ptrs[4] = alloc_ptr(8177,3);
 break;
 }

 (void) malloc(1);
 scenario = 0;
 }
}

void * func3 (int size, int count)
{
 return malloc(size);
}

void * func2 (int size, int count)
{
 if (--count > 0) return func3(size,count);
 return malloc(size);
}

void * func1 (int size, int count)
{
 if (--count > 0) return func2(size,count);
 return malloc(size);
}

void free3 (void * ptr, int count)
{
 free(ptr);
}

void free2 (void * ptr, int count)
{
 if (--count > 0) {
 free3(ptr,count);
 return;
 }
 free(ptr);
}

void free1 (void * ptr, int count)
A-4

Tutorial Files
{
 if (--count > 0) {
 free2(ptr,count);
 return;
 }
 free(ptr);
}

void * alloc_ptr (int size, int count)
{
 return func1(size,count);
}

void free_ptr (void * ptr, int count)
{
 free1(ptr,count);
}

report.c A

#include <stdio.h>

void report (char * caller, double value)
{
 static int count;

 if (++count % 40) printf ("The value from %s is %f\n", caller, value);
}

function.c A

double
FunctionCall(void)
{
 static double counter;
 return counter++;
}

wave.c A

#include <fbsched.h>

int workload = 1000;

main()
{
 int data = 0;
 int i;
 volatile double d = 1.0;
A-5

NightStar RT Tutorial
 while (fbswait()==0) {
 data = !data;
 for (i=0; i<workload; ++i) d = d/d;
 }

}

set_workload.c A

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) if((x)) {fprintf(stderr, "%s\n",
dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{
 program_descriptor_t pgm;
 object_descriptor_t obj;
 char buffer[100];

 if (argc != 2) {
 fprintf (stderr, "Usage: set_workload integer-value\n");
 exit(1);
 }

 check(dm_open_program("wave",0,&pgm));
 check(dm_get_descriptor("workload",0,pgm,&obj));
 check(dm_get_value(&obj,buffer,sizeof(buffer)));
 check(dm_set_value(&obj,argv[1]));

 printf ("workload: old_value=%s, new_value=%s\n", buffer, argv[1]);
}

A-6

	NightStarRT Tutorial
	Preface
	Contents
	Chapter 1 Overview
	Chapter 2 Using NightView
	Chapter 3 Using NightTrace
	Chapter 4 Using NightProbe
	Chapter 5 Using NightTune
	Chapter 6 Using NightSim
	Appendix A Tutorial Files

	Overview
	Getting Started
	Setting Up User Privileges
	Creating a Tutorial Directory
	Building the Program

	Using NightView
	Invoking NightView
	Heap Debugging
	Activating Heap Debugging
	Controlling the app Program
	Scenario 1: Use of a Freed Pointer
	Scenario 2: Freeing an Invalid Pointer Value
	Scenario 3: Writing Past the End of an Allocated Block
	Scenario 4: Use of Uninitialized Heap Blocks
	Scenario 5: Detection of Leaks
	Scenario 6: Allocation Reports
	Disabling Heap Debugging

	Debugging Multiple Threads
	Using Monitorpoints
	Using Eventpoint Conditions and Ignore Counts
	Using Patchpoints
	Adding and Replacing Functions Dynamically
	Using Tracepoints
	Conclusion - NightView

	Using NightTrace
	Invoking NightTrace
	Configuring a User Daemon
	Streaming Live Data to the NightTrace GUI
	Using the Main Window for Textual Analysis
	Customizing Event Descriptions
	Searching the Events List
	Halting the Daemon
	Using NightTrace Display Pages
	Changing a Data Box Configuration
	Configuring a State
	Displaying State Duration
	Using the Summary Dialog
	Defining a Data Graph

	Kernel Tracing
	Obtaining Kernel Trace Data
	Using Prerecorded Kernel Data
	Analyzing Kernel Data
	Mixing Kernel and User Data

	Using the NightTrace Analysis API
	Conclusion - NightTrace

	Using NightProbe
	Invoking NightProbe
	Selecting Processes and Variables

	Selection of Outputs
	File Output
	List Window Output
	Spreadsheet Output

	Probing Variables
	Viewing Recorded Data
	Viewing Data with NightTrace
	Using the NightProbe API
	Conclusion - NightProbe

	Using NightTune
	Invoking NightTune
	Monitoring a Process
	Changing Process Scheduling Parameters
	Setting Process CPU Affinity
	Setting Interrupt CPU Affinity
	Monitoring Processor Usage
	Shielding CPUs for Maximum Determinism and Performance
	Conclusion - NightTune

	Using NightSim
	Creating FBS Applications
	Invoking NightSim
	Creating a Scheduler
	Running the Scheduler
	Using Datamon to Modify Program Variables
	Overrun Detection and System Tuning
	Shutting Down the Scheduler

	Tutorial Files
	app.c
	report.c
	function.c
	wave.c
	set_workload.c

