A

)

(f

"
) { NIGHTSTAR"

NightStar RT Tutorial

\Version 4.2

(RedHawk™ Linuxe)

0898009-073
March 2010

Copyright 2010 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

®

Linux™ is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Qt’s Assistant from Trolltech.

Preface

General Information

NightStar RT™ allows users running RedHawk to schedule, monitor, debug and analyze
the run-time behavior of their time-critical applications as well as the operating system
kernel.

NightStar RT consists of the NightTrace™ event analyzer; the NightProbe™ data moni-
toring tool, the NightView™ symbolic debugger, the NightSim™ scheduler, the Night-
Tune™ system and application tuner, the Data Monitoring API, and the Shmdefine shared
memory utility.

Scope of Manual

This manual is a tutorial for NightStar RT.

Structure of Manual

This manual consists of seven chapters and an appendix which comprise the tutorial for
NightStar RT.

Syntax Notation

The following notation is used throughout this guide:
italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in list bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in list bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in Iist type. Keywords also appear in
list type.

emphasis

Words or phrases that require extra emphasis use emphasis type.

NightStar RT Tutorial

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

L1

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

{1}

Braces enclose mutually exclusive choices separated by the pipe (]) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

An ellipsis follows an item that can be repeated.

This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0898395 NightView™ User’s Guide
0898398 NightTrace™ User’s Guide
0898465 NightProbe™ User’s Guide
0898480 NightSim™ User’s Guide
0898515 NightTune™ User’s Guide

Contents

Chapter 1 Overview

Getting Started.o 1-2
Setting Up User Privilegeso 1-2
Creating a Tutorial Directory 1-3
Building the Programo 1-4
Chapter 2 Panels
MoVving Panels. 2-2
Tabbed Panels 2-6
CoNEXE MBNUS. . . oot 2-8
Tutorial Screen Shots. 2-9

Chapter 3 Using NightView

Invoking NightView 3-2
Heap Debuggingo oo 3-5
Activating Heap Debugging. ... 3-5
Controlling theapp Program 3-7
Scenario 1: Use of aFreed Pointer., 3-9
Scenario 2: Freeing an Invalid Pointer Value. 3-12
Scenario 3: Writing Past the End of an Allocated Block 3-14
Scenario 4: Use of Uninitialized Heap Blocks. 3-15
Scenario 5: Detectionof Leaks. oo i 3-17
Scenario 6: Allocation Reports. 3-19
Disabling Heap Debugging ... 3-21
Debugging Multiple Threads. e 3-22
Using Monitorpointsot e 3-25
Using Eventpoint Conditions and Ignore Counts 3-28
Using Patchpointst 3-29
Adding and Replacing Functions Dynamically......................... 3-32
UsSiNg TraCepoints . ..o vt 3-34
Conclusion - NightView e 3-36

Chapter 4 Using NightTrace

Invoking NightTrace e 4-1
Configuringa User Daemonottt 4-3
Streaming Live Data to the NightTrace GUI. 4-4
Using NightTrace Timelines i 4-7

ZOOMING . ot ettt e e e e e e 4-8

Moving The Interval. 4-8
Using the Events Panel for Textual Analysis 4-10
Customizing Event DesCriptions.coi i 4-10

NightStar RT Tutorial

Searchingthe Events List. i i 4-12
Haltingthe Daemon i e 4-16
USINg StateS . . .o 4-17
Displaying State Duration. i 4-22
Generating Summary Information 4-23
DefiningaDataGraph. i 4-27
Kernel Tracing e e 4-32
Obtaining Kernel Trace Data, 4-32
Using Prerecorded Kernel Datacoou.t. 4-34
AnalyzingKernel Data. i, 4-34
Mixing Kerneland UserData., 4-38
Using the NightTrace Analysis APL. 4-42
Automatically Tracing Your Application. 4-44
nlight Wizard - Selecting Programs 4-45
nlight Wizard - Defining llluminators 4-47
nlight Wizard - Selecting llluminators 4-49
nlight Wizard - Relinking the Program. 4-50
nlight Wizard - Activating llluminators 4-52
nlight Wizard - Running the Program. 4-53
Analyzing Application lllumination Events. 4-55
Summarizing Workload Performance 4-62

Batch Summary of Functions. 4-68

Shutting DOWN 4-69
Conclusion - NightTrace ... e e e 4-69

Chapter 5 Using NightProbe

Invoking NightProbe o e 5-1
SeleCting ProCeSSES .\ vt vttt e 5-2
Viewing Live Data. e 5-4
Modifying Variables 5-5
Selecting Variables for Recording and Alternative Viewing 5-7
Selection Of VIEWSot 5-8
Table VIEW . ..o 5-8
Graph ViBW . . .o 5-12
Sending Probed Data to Other Programs.t 5-16
Using Datamon to Modify Program Variables. 5-20
Conclusion - NightProbe i e 5-22

Chapter 6 Using NightTune

Invoking NightTune. 6-1
MONItOriNg @ PrOCESS . . . o ottt e 6-2
Tracing System Calls 6-4
Process Details 6-5
Process Details - Memory Details. 6-6

Process Details - File Descriptors, 6-7

Process Details - Signals i 6-9
Changing Process Scheduling Parameters. 6-10
Setting Process CPU Affinity. 6-11
Setting Interrupt CPU Affinity.o 6-14
Shielding CPUs for Maximum Determinism and Performance............. 6-17
Conclusion - NightTune. e 6-17

Contents

Chapter 7 Using NightSim

Creating FBS Applications i e e 7-1
Invoking NightSim e 7-2
CreatingaScheduler e e e e 7-3
Running the Scheduler. i 7-6
Using Datamon to Modify Program Variables 7-8
Overrun Detectionand System Tuningcovvi e 7-9
Shutting Down the Scheduler 7-14

Appendix A Tutorial Files

APE G . et A-2
0] 2 o A-5
fUNCHION.C. . .. A-9
=] 010 o 1Y o A-9
set workload.C. ... A-10
=] S - L o A-10
lllustrations
Figure 2-1. Viewing Page with List & Graph Panels 2-2
Figure 2-2. Panel DetachesfromPageccu... 2-3
Figure 2-3. Panel Movement in Progressc..vuiinennnnen... 2-4
Figure 2-4. Graph Panel on Top of ListPanel 2-5
Figure 2-5. Table ViewaddedtoPage 2-6
Figure 2-6. Panelin MotionCreatingTab 2-7
Figure 3-1. NightView MainWindowc.ivn... 3-2
Figure 3-2. appProgram Loaded i 3-4
Figure 3-3. NightView Debug Heap Dialog 3-7
Figure 3-4. Heap Totals and Configuration 3-10
Figure 3-5. info memory Command Qutput 3-13
Figure 3-6. Heap Error Description, 3-14
Figure 3-7. Heap LeaksDisplay i, 3-18
Figure 3-8. Still Allocated Blocks Display 3-20
Figure 3-9. Context Panel With Stack Frames Expanded 3-22
Figure 3-10. MonitorpointDialog i i 3-25
Figure 3-11. NightView MonitorPanel 3-26
Figure 3-12. PatchpointDialog i 3-30
Figure 3-13. Result of Patching in Call to Newly Loaded Function 3-33
Figure 3-14. TracepointDialog i, 3-35
Figure 4-1. NightTrace mainwindowiiirirnn... 4-2
Figure 4-2. Import Daemon Definitions Dialog 4-3
Figure 4-3. LoggingData i 4-4
Figure 4-4. app_dataPage ...t 4-5
Figure 4-5. NightTrace Timeline 4-7
Figure 4-6. Timeline Interval Panel 4-8
Figure 4-7. EventsPanel i 4-10
Figure 4-8. Add Event Descriptiondialog............................. 4-11
Figure 4-9. Searching using the Profilespanel 4-13
Figure 4-10. Browse EventsDialog 4-14

NightStar RT Tutorial

Figure 4-11. Events Panel AfterSearch 4-15
Figure 4-12. Timeline Panelw/ Tool Tip 4-16
Figure 4-13. Profiles Panel With Obtuse Profile Selected 4-18
Figure 4-14. Timeline Editing i i 4-19
Figure 4-15. Edit State Graph Profiledialog 4-20
Figure 4-16. Sine Statein Timeline 4-22
Figure 4-17. Summary ResultsPage 4-24
Figure 4-18. Summary Graph i 4-25
Figure 4-19. Data Graph ProfileDialog 4-26
Figure 4-20. Modified Data Graph 4-27
Figure 4-21. Resizing in Progress ..., 4-28
Figure 4-22. AddingaDataGraph............ 4-29
Figure 4-23. Edit Data Graph ProfileDialog 4-30
Figure 4-24. Display Page with Data Graph 4-31
Figure 4-25. Edit Daemon DefinitionDialog 4-33
Figure 4-26. Kernel DisplayPage 4-35
Figure 4-27. System Call Resume for Nanosleep 4-37
Figure 4-28. Events Panel afterSearch 4-38
Figure 4-29. Longest Instanceof State 4-40
Figure 4-30. Export Profiles to NightTrace API Source File dialog 4-42
Figure 4-31. nlight Wizard - Select Programs Step 4-45
Figure 4-32. nlight Wizard - Define HluminatorsStep 4-47
Figure 4-33. nlight Wizard - Select Hluminators Step 4-49
Figure 4-34. nlight Wizard - Relink Programs Step 4-50
Figure 4-35. nlight Wizard - Activate Illuminators Step 4-52
Figure 4-36. nlight Wizard - Run Scripts Step (with Stream Mode selected) . 4-54
Figure 4-37. NightTrace - ImportFileName 4-55
Figure 4-38. NightTrace - Daemon Ready to Launch 4-56
Figure 4-39. NightTrace - Daemon Collection Events 4-57
Figure 4-40. NightTrace - /tmp/data_import Tab 4-58
Figure 4-41. NightTrace - Customized EventsPanel 4-59
Figure 4-42. NightTrace - Search Eventsfor Text 4-60
Figure 4-43. NightTrace - Events Panel with Selected Events 4-60
Figure 4-44. NightTrace - Descriptive Tool Tip 4-61
Figure 4-45. NightTrace - Launches Editor with Source File at Line Number 4-62
Figure 4-46. NightTrace - Profile Definition Panel - State Mode 4-63
Figure 4-47. NightTrace - Select Events Dialog with Search Active 4-64
Figure 4-48. NightTrace - Profile Definition Panel with State Defined 4-65
Figure 4-49. NightTrace - Tab with Results of Summary 4-66
Figure 4-50. NightTrace - Summary Results Sorted By Duration 4-67
Figure 4-51. NightTrace - Description of Longest Instance of work Function 4-68
Figure 5-1. NightProbe MainWindow 5-2
Figure 5-2. Program SelectionDialog 5-3
Figure 5-3. Process SelectionDialog 5-3
Figure 5-4. NightProbe Browse Panel 5-4
Figure 5-5. Expanded Dataltem 5-5
Figure 5-6. Variable Modification in Progresscoovun.. 5-6
Figure 5-7. Mark and Record Attributes Set 5-7
Figure5-8. Table View i e 5-9
Figure 5-9. Item SelectionDialog i, 5-10
Figure 5-10. Table in Auto RefreshMode 5-11
Figure 5-11. GraphPanel i, 5-12
Figure 5-12. Graph Panel Actively Displaying Values 5-13
Figure 5-13. Edit Curve AttributesDialog 5-14

Contents

Figure 5-14. Graph Panel with Modified Curves 5-15
Figure 5-15. Recording area of ConfigurationPage 5-17
Figure 5-16. Clock SelectionDialog it 5-17
Figure 5-17. Record ToProgramDialogo, 5-18
Figure 5-18. Recording Area of Configuration Page w/ Destination 5-19
Figure 5-19. Example Output of Graph Program 5-20
Figure 6-1. NightTuneinitial panels 6-1
Figure 6-2. Expanded Process List 6-2
Figure 6-3. Process Listwith Threads 6-3
Figure 6-4. Strace Outputof Threadoou... 6-4
Figure 6-5. Process DetailsDialog, 6-5
Figure 6-6. Process Memory DetailsPage 6-6
Figure 6-7. File DescriptorsPage i, 6-8
Figure 6-8. SignalsPage 6-9
Figure 6-9. Process SchedulerDialog 6-10
Figure 6-10. NightTune Process List with modified thread 6-11
Figure 6-11. CPU Shielding and Binding Panel 6-12
Figure 6-12. CPU Shielding and Binding Panel with Bound Thread 6-13
Figure 6-13. NightTune with Interrupt Activity Panel 6-15
Figure 6-14. Interrupt Affinity Dialog 6-16
Figure 7-1. NightSim Initial Window 7-2
Figure 7-2. NightSim Edit Process Dialog 7-4
Figure 7-3. Runtime PropertiesTab.............., 7-5
Figure 7-4. Scheduling Started i 7-6
Figure 7-5. NightSim MonitorPage 7-7
Figure 7-6. NightTune with Interrupt and CPU Shielding & Binding Panels . .7-10
Figure 7-7. Process and Interrupt Boundto CPUO 7-11
Figure 7-8. Change ShieldingDialog 7-12
Figure 7-9. Shielding ChangesPending 7-13

NightStar RT Tutorial

10

1
Overview

NightStar RT™ is an integrated set of debugging tools for developing time-critical Linux®
applications. NightStar RT are designed to be minimally intrusive, preserving the execu-
tion behavior and determinism of your applications. Users can quickly and easily debug,
monitor, analyze, and tune their applications.

The NightStar RT tools consist of:
* NightView™ source-level debugger
* NightTrace™ event analyzer
¢ NightProbe™ data monitor
* NightTune™ system and application tuner
* NightSim™ scheduler

In this tutorial, we will integrate these tools into one cohesive example incorporating vari-
ous scenarios which demonstrate their extensive functionality.

1-1

NightStar RT Tutorial

Getting Started

Certain activities in this tutorial require enhanced user privileges which are not granted to
user accounts by default. You will need to run as the root user, where indicated within this
tutorial, or obtain appropriate privileges as detailed in the “Setting Up User Privileges” on
page 1-2.

Setting Up User Privileges

1-2

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
tain privileged operations. pam_capabi 1 i1ty (8), the Pluggable Authentication Mod-
ule, is used to manage sets of capabilities, called roles, required for various activities.

Linux systems should be configured with a nightstar role which provides the capabili-
ties required by NightStar RT. In order to take full advantages of NightStar RT features,
each user must be configured to use (at a minimum) the capabilities specified below.

Edit /etc/security/capability.conf and define the nightstar role (if it is
not already defined) in the “ROLES” section:

role nightstar cap_sys_nice cap_ipc_lock

Additionally, for each NightStar RT user on the target system, add the following line at the
end of the file:

user username nightstar
where username is the login name of the user.

If the user requires capabilities not defined in the nightstar role, add a new role which
contains nightstar and the additional capabilities needed, and substitute the new role
name for nightstar in the text above.

In addition to registering your login name in Zetc/security/capability.conf,
files under the Zetc/pam.d directory must also be configured to allow capabilities to be
activated.

To activate capabilities, add the following line to the end of selected files in /etc/pam.d
if it is not already present:

session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

Table 1-1. Recommended /etc/pam.d Configuration

Overview

[etc/pam.d File | Affected Services Comment
remote telnet Depending on your system, the remote file may
rlogin not exist.
rsh (when used w/o a command) Do not create the remote file, but edit it if it is
present.
login local login (e.g. console) *0On some versions of Linux, the presence of the
telnet* remote file limits the scope of the login file to
rlogin* local logins. In such cases, the other services listed
rsh* (when used w/o a command) here with login are then affected solely by the
remote configuration file.
rsh rsh (when used with a command) e.g. rsh system name a.out
sshd ssh You must also edit Zetc/ssh/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no
gdm gnome sessions
kde kde sessions

If you modify Zetc/pam.d/sshd or Zetc/ssh/sshd_config, you must restart the
sshd service for the changes to take effect:

service sshd restart

In order for the above changes to take effect, the user must log off and log back onto the

target system.

NOTE

To verify that you have been granted capabilities, issue the fol-

lowing command:

/usr/sbin/getpcaps $$

The output from that command will list the roles currently

assigned to you.

Creating a Tutorial Directory

We will start by creating a directory in which we will do all our work. Create a directory

and position yourself in it:

- Use the mkdir(1) command to create a working directory.

1-3

NightStar RT Tutorial

We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the cd(1) com-
mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar/tutorial during the installation of NightStar RT. We will
copy these tutorial-related files to our tutorial directory.

- Copy all tutorial-related files to our local directory.

cp Zusr/lib/NightStar/tutorial/* .

Building the Program

1-4

Our example uses a cyclic multi-threaded program which performs various tasks during
each cycle. The cycle will be controlled by the main thread which uses a timeout with a
configurable rate.

A portion of the main source file, app - ¢, is shown below:

int
main (int argc, char * argv[l])
{
pthread_t thread;
pthread_attr_t attr;
struct sembuf trigger = {0, 2, 0};
nosighup(Q);

trace_begin ('/tmp/data’™,NULL);
sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, sine_thread, &data[0]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, cosine_thread, &data[l]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, heap_thread, NULL);

for G3) {
struct timespec delay = { 0, rate } ;
nanosleep(&delay,NULL);
work(random() % 1000);
if (state !'= hold) semop(sema,&trigger,1);

}

trace_end O ;

Overview

The program creates three threads and then enters a loop which cyclically activates each
of two threads based on a common timeout. The third thread, heap_thread, runs asyn-
chronously.

To build the executable
From the local tutorial directory, enter the following command:

cc -g -0 app app-c -Intrace_thr -Ipthread -Im

NOTE

The NightStar RT tools require that the user application is built
with DWARF debugging information in order to read symbol
table information from user application program files. For this
reason, the —g compile option is specified. However, the tools
can be used to debug programs without symbols with reduced
functionality.

1-5

NightStar RT Tutorial

1-6

2
Panels

NightStar provides flexibility in configuring the graphical user interface to suit your needs through the
use of resizable and movable panels.

This chapter presents the concepts involved in moving and resizing panels. It is designed merely for
reference, not as a step-by-step instructional guide.

Please read this chapter before proceeding to the first steps in using the tools, which follows in “Using
NightView” on page 3-1.

2-1

NightStar RT Tutorial

Moving Panels

Consider the following NightProbe page which contains a List view and a Graph view each in their
own panel:

L] NightProbe —Ox

File Target Programs View Record Tools Help

PR3 « %l ELEHB O

Configuration | Browss | List

Grath

st
Columns... Mode | View Live Samples - | | Selectltems... Mode: | View Live Samples - | | Select ltems...

|

Name — val+| & sine

< cosine
sine = 9.519297599915266E01 B
cosine = B039828303359371E01
sine = -9.345938277802859E-01 T
cosine = BE710B5537240205E01 05
sine = 0 146962431763993E01
cosing = -9.483907571997369E01 b
sine = -5922915439840908E-01 l

cosine = 0.B63204720734302E01

Values
)
| ——

sine = 5.674411398227979E01 |

cosine = 9.9996374M579061E01

sine = B402131438079572E01 1

cosine = 5.839846322739806E-01 |

B

sine = -5106521858580049E-01

cosine = 95365347 72454514E01 g

sine = -7.789292081393038E01

cosine = 5948402481998683E01 1

sine = -7.450412432096655E-01 a4

cosine = 5139931195848509E01 L U
0 50 100 150 200

4 [«]¥) Most Recent Samples

Sample # 182 Sample # 179

At e e (1005 12 norencreren 8 (12 15 [14] () (&) (=) (2] (@)

4

Figure 2-1. Viewing Page with List & Graph Panels

Panels are moved by left-clicking the title bar, dragging them to a new location, and then releasing the
mouse button. Depending on the location of the panel when the mouse button is released, the panel will
either remain detached or will be inserted into the page again.

2-2

Panels

To detach the panel from the page without inserting it, click the left-most control box in the upper
right-hand corner of the panel.

2] NightProbe —Ox
File Target Programs View Record Teools Help
PAE® « S0 = o
Configuration | Browse
List
I Columns...] Mode [V\ewLive Samples |v] [Seledlh&ms]

sine
cosine

-
-
+ 9.8G63182849213420E01

-8 646004681504512E-01
9999636313903533E-01

-B.897122665409466E-01
98398659 607505 68E-01

-9.123854295707058E-01
9.536574695599381E01

-9.325578117808162E-01
8.948461707238989E01

9.50174122167 1883E-01
8140008264864 7 39E-01

-9.651860757290984E01
FA3N21M4771273E01

-9.775525258147957E01
5.946642445353578E-01

-9.872395769014239E-01
4615737923007912E-01

-9.9422067 75001375E01
31711 78805846042E-01

Graph

Maode: | View Live Samples - Select ltems...

since last sample

< sine

< cosine

o —
w
=]

Sample # 282

Sample # 286

Automatic Refresh [3] E

T
100 150 200
Most Recent Samples

250

|) mscronnx (5518 (4] (3] () (5] () (2

300

Figure 2-2.

Panel Detaches from Page

The Graph panel detaches from the page and becomes free floating.

If moved outside the boundaries of the main window and released, the panel will remain detached from
the main window. However, even in detached mode, if the main window is iconified, the detached panel
will be iconified with it. For this reason, detached panels are not very useful in and of themselves.

Detaching is most often useful as part of moving a panel and re-docking it.

2-3

NightStar RT Tutorial

To insert a panel into the page at a new location, drag the panel using the left mouse button on its title
bar and move it until it approaches a boundary of the page. The window will respond by creating space
indicating where the panel will be inserted.

& NightProbe -Ox

File Target Programs View Record Tools Help

FPADD « S0

HE®B @

Configuration | Browse List
Grash
Mode: | View Live Samples ‘v] lSeIedhﬁms..
o sine
< cosine
g
s
Mode | View Live Samples
e [2] E—C
sine = -5.47022 140967 6048E-]
cosine = -1.64856104627 75 79E4
-5.024611261224546E
-B.532514478755851E- _
[LIS s e s e ey s e e sy e sy e e B e s e
o 50 100 150 200 250 300 350
-4 5652290258227 17E Most Recent Samples
1.480011741403115ED
Sample # 307
sine = 4093333836119926F. Automatic Refresh (%] [1.00s 2] E] E] E] E] @ @ -
cosine += 3.008805888079935E0 =
Sample # 310
i [=]

Figure 2-3. Panel Movement in Progress

The figure above shows space being created above the List panel as the Graph panel is dragged towards
the upper horizontal boundary of the page.

2-4

Pan

At this point, releasing the mouse button will cause the Graph panel to be inserted into the page,
consuming the recently created space.

els

File Target Programs Miew Record Tools Help
PAED « 30 SHES O~
Configuration
Gragh

Maode: | View Live Samples - Select ltems.
< sine

J|||“|||i i m A A D ,1||“|||| [

g
= 1 [1 1 | [
>
1
1[](] 'IEU ZUU 25[] 30[] 350
Most Recent Samples
Sample # 325
=]

e o W EEEE

List
Columns. Mode | View Live Samples - Select ltems...
| Name |=| Value F:]
sine = 4041359647839041E01
cosine = 3.171229138094276E01
sine = 4.514537139001663E01
cosine += 1.64858721B959383E01
sine = 4975340618566884E-01
cosine + B.535167958101247E03
sine = 5.422507058360454E-01 Y
cosing 5= -1479985497871588E-01 =
Sample # 329

i [=]
e
4

Figure 2-4. Graph Panel on Top of List Panel

IMPORTANT

When attempting to move panels inside of a page, if an empty
space does not appear where you desire it, try increasing the size
of the main window, decreasing the size of the undocked panel,
and moving an alternative edge of the undocked panel near where
you want to place it.

2-5

NightStar RT Tutorial

By default, the tools usually add panels to the right-hand side of the page when a new panel is created.

In the following figure, a Table panel has been added to the right-hand side of the Graph and List

panels.

B NightProbe -0Ox

File Target Programs View Record Tools Help
A3 «$E ELHEHSB O
Configuration Browse List
Graph Table
= -
i ‘ - -
& sine Sample Vl sine | cosine |
; 1 9.999959502250392E01 -B.53782 1437386546603
05 o osine
g \ 2 9987 744391722430E01 1.479959254329640E01
3 0 3 9.948153074292241E01 3.008855275923056E01
o
= 4 9.881295685345565E01 4.463663419705859E01
i 5 9.787353857508301E01 5.808561541337323E01
6 9 666585618367655E-01 7.010433841430058E-01
-1
[R L L L B U U 7 9.5193219847 11745601 8.039686285061294E01
0 50 100 150 200 250 300 350 400
Most Recent Samples 8 9 345966595243134E01 B.870975303901165E07
Sample# 360 9 9.146994604232058E01 9 48383 1837923442E01
= 10 8922951379154416E01 9.863165350746592E01
| e (51 (4] o] (&) (3] (2] 2]
e p n B.674451005879934E01 9.999G35408095603E01
List 12 8402174605508337E01 9.839881663905672E01
13 B.106B68467400802E01 9.536606632906549E01
14 7.789342003986476E01 8.948509086297051E01
‘ Name |=| Value FL] 15 745046553 1562550601 81400699 19046008E-01
sine = B8.106868467466902E-01
cosine = 9.536606632906549E01
sine 8.106868467 4662902 E-01
cosine = 8.948509086297051E01
sine = 7.789342003986476E-01
cosine 8.948509086297051E01
sine == 7450465531562550E01 =
cosine += 81400699 19046008E01 =
Sample # 363 Sample # 15
(=] i [=]

P

Figure 2-5. Table View added to Page

Panels can be resized by left-clicking on the separator between the panels and dragging it to the desired

size.

Tabbed Panels

Another feature of the graphical user interface is the use of tabbed panels. Tabbed panels allow you to
maximize your GUI real estate by placing two or more panels in the same location by stacking them on
top of each other. You can then raise a panel to the top by clicking on its tab.

Panels

To create a tabbed panel, move a panel to the lower horizontal edge of another panel until a tab appears

at the bottom of the panel still connected to the page.

B NightProbe = 0X

File Target Programs Miew Record Tools Help

PRAED « $HE BB @
Configuration Browse List
Liat JEibE Table
Columns. Mode | View Live Samples - Select ltems... Maode: | View Live Samples - Select ltems...
| Mame |=| Value tl | Sample Vl sine cosine ':]
sine = 261568058045 6744E01 1 B674451005879934E01 9 999635408095 693
) o
cosine 5 NIRRT] 2 8402174605508337E-01 9.B39831 669905672601
13 810680B467466002E01 9.536006G32906549E .
sine = 2.106857436094004E01
s s et 14 7 789342003986476E01 BO4BS0008G297051E01
Graph Y] 15 7 450465531562550E01 8 1400699 19046008E-01
Mode: 16 7091167685482276E01 7.131195552047 748,
4 17 6712433873955804E.01 5 9467277BI2TE2S
@ sine
18 53153071578829990E-01 4 6158320824305966-01
05 < cosine 19 5.900859510283019E01 3.171279470253189E. .
2 0 5 470243E23298700E01 16486395 642881 65E.01
3 0
o 21 5024634204098081E01 B540474916611725E .
s 2 4565252635062418E01 -1.479933010777271 ..
23 40933580470714619E01 -3 O0BAZ9969812837E
I e e e e e 24 3 F102438EB035007E01 4 463639674157159
9 2l L N et 220 200 =1 e 25 31172342782 70850E-01 -5.80853994104337 1E..
Most Recent Samples
26 2 F1SEB0SBO4SETMEDT -7.010414918260BB4ED 1
Sample # 379
27 210EI5T49E0MO04EDT B039670504967339. .
Automatic Refresh] [1.00s [2] E] E] E] E] @ 28 1.502450397440948E01 -B870963055440059. .
= oz T b2} 1073506485641014E01 0 4BIE2 42260243801
cosine = -9.536614617065463E01 0 5 517909254704709E:02 -9 B63160975956257
31 2B47294728121487E.03 9 999635181467 702
= -1.536214600154930E01
- - 32 4949230731455999E-02 -9 BBOBAS597020350. .
cosine = 804E520930904039E01
33 1.016962546121732E01 9.536614617065463...
] €10 =
34 1.536214600154930E01 -B.948520930904039E .
Sample # 382 hd
Sample # 34

List]

Automatic Refresh [3]

Figure 2-6. Panel in Motion Creating Tab

In the figure above, the Graph panel is being dragged from its original position on top of
the List panel towards the bottom of the List panel. A tab appears on the List panel indi-
cating that if the mouse button is released, the Graph and List panels will be tabbed and

therefore consume the same area of the page.

NightStar RT Tutorial

3] NightProbe -0Ox
File Target Programs View Record Tools Help
PR s3>0 ELHEHSB @
Configuration Browse List
Graph Table
ode: | Wiew Live Samples - Select ltems.. Maode: | View Live Samples - Select ltems...
i o Hi | Sample vl sine | cosine ';]
PR 31 2BA7294728121487E03 9.999635181467 702
32 -4.949230731455999E02 -9.889885597020350. ..
33 -1016962546121732E01 9.5360614617065463. ..
34 -1.536214600154930E01 -8.948520930904039E ..
0s 35 -2051256003861611E01 5 .140085332448029E-01
36 -2.560675066938565E-01 -7.131214155616331...
37 -3063075509501417E01 -5.946749115154704
38 -3.557080289184271E01 4 615855622205012
39 -4.041335375510747E-01 -3.171304636299150. ..
m 40 -4.514513461191126E07 -1.64B665736035143. .
% 4 -4975317600173227E01 8.543128395776766...
= 42 -5 4224847 62475387E01 1.479906767214481E01
43 -5 B54789296057998E01 3.008004663681431E01
M -6271046286244881E-01 446361592857 7028E
45 -6.670114803486564E01 5 8085 1834070852160
46 -7.050901030563593E-01 7.010395995042347E. .
47 -7 412361260 658435E01 8039654724816773E ..
48 -7 7535047580 78489 E-01 8.870950806916488E-01
49 -B073390473789159E01 9.483815007394654E01
50 B371159608313947E01 9.863156601096471E ..
51 564597801497 6806E01 9.999634954769300E
|‘.‘.‘....|.\..|‘...‘.‘.\|\.‘.‘...\|..\.| 52 BEI7098436:99673E01 9 8898954065389 E01
Jed =0 R &5l o &= < 53 -9.123832571623726E-01 9.536622601157224E..
Most Recent Samples
54 9325558957 6A5392E01 8.94853277544831?EOTE
Sample % 398 A
eren 8 WREE @@ E=7
[Graph List Automatic Refre=h (]

4

IMPORTANT

To move a panel above another panel, move the desired panel to
If you move a panel to the
bottom boundary of another panel, it will become a tabbed panel
instead.

the top boundary of the other panel.

Context Menus

2-8

The NightStar tools rely heavily on use of context menus.

Context menus are menus that appear when you use the mouse to right-click when the
mouse cursor is positioned over an area or item of interest. They are called context menus
because their content is often dependent on the context of the area in which you
right-click, or the item which you right-click upon.

When in doubt, try a right-click operation and see if a menu becomes available.

Panels

Tutorial Screen Shots

In order to show full screen shots in this tutorial, the size of each main window has often
been left to its default setting. Displaying larger windows would require compression in
order to fit the image within the available space of a printed page; such compression
obscures detail.

However, as a user of the tutorial, increasing the size of the main window is highly rec-
ommended so you can see more data without having to scroll the contents of individual
panels.

In many cases within this tutorial, portions of expanded areas of the screen have been
extracted from the main window and are included as stand-alone screen shots. These cor-
respond to panels within the main window of each tool.

2-9

NightStar RT Tutorial

2-10

3
Using NightView

NightView is a graphical source-level debugging and monitoring tool specifically
designed for time-critical applications. NightView can monitor, debug, and patch multiple
processes running on multiple processors with minimal intrusion.

NightView supports all the features you find in standard debuggers, including:

* breakpoints

* single stepping through statements

* single stepping over function calls

¢ full symbolic expression analysis

¢ conditions and ignore counts for breakpoints
¢ hardware-assisted address traps (watchpoints)

¢ assembly and symbolic debugging
In addition to standard debugging capabilities, NightView provides the following features:

¢ application-speed eventpoint conditions

* the ability to patch code to change program flow or modify memory or reg-
isters during program execution

¢ hot patch and eventpoint control

¢ synchronous data monitoring

* |oadable modules

¢ support of multi-threaded programs
¢ debugging of multiple processes

¢ dynamic memory debugging

3-1

NightStar RT Tutorial
Invoking NightView

- Execute NightView by issuing the following command:

nview &
at the command prompt or by double-clicking on the desktop icon.
NOTE
If you do not have desktop icons for the NightStar tools, run

/usr/lib/NightStar/bin/install_icons.

When we launch NightView, the NightView main window is presented.

NightView Deblgger (onraptorn)

File View Shell Process Source Eventpoint Data Tools Help
DIE=EMEET IXO0 EZEEE-8 B EF L

Source Eventpoints
|Type| D & | Location | PIDlEnab\edl Ignnrel Hits | Crossings | Cmds | Condition

[« [ENDY
Context
|\tem Processes for shell local el

:

a)

Messages
NightView 7.1.1(nview-7.1.1-1.1), Linked Mon Jan ©§ 17:26:39 EST
2008

In case of confusion, type “help"
Jusr/1lib/NightView-7.1. 1/ReadvToDebug

~jeffh/ . bash_init complete.

raptor> /usr/lib/NightView-7.1.1/ReadyToDebug

Command: || |v]

Mo process

Figure 3-1. NightView Main Window

3-2

Using NightView

NOTE

If this is the first time you’ve invoked NightView since installing
NightStar or upgrading to the latest version, you may see a wel-
come screen. If so, press the NightView button to proceed.

In our example, we’ll be debugging a single application.

NOTE

If you have not yet created the app program, see “Building the
Program” on page 1-4.

- Invoke our tutorial application in the NightView main window by selecting
Run... from the Process menu and entering:

/app
in the text field of the Run on local dialog.
- Press OK to close the dialog and run the program.

Any output generated by the program will appear in the Messages panel.

3-3

NightStar RT Tutorial

When the app program begins to execute, NightView displays the source in the source
panel and stops the program at the first line of code.

FEile View Shell Process Source Ewventpoint Data Tools Help

PIE=Z=)EFEETI X000 E8 @ EF

app - local:8040 - app.c Eventpoints

" = * .
© 56 control _t da‘ta.— (eontrol_t *)ptr; |Type| ID & | Location |PID | Enabled | Ignorel Hits | Crossings | Cmds | Condition
+ 57 struct sembuf wait = {0, -1, 0};

+ 38 work(1);

1%
wl
@

58
+ B0 trace_open_thread (data->name);
61
« B2 for () 4 £
+ B3 semop(sema, &wait, 1); Context
+ B4 data->count++;
+ GBS data->angle += data->delta; Iterm Stack for local:8040 app
+ 66 data->value = cos(data->angle); - Iy #0 0x4000d010 at <_dI_debug_state_internals
67 }
68 }
69
70
71 int
72 main (int arge, char * argv[])
+ 734

74 pthread_t thread;
75 pthread_attr_t attr;

+ 76 struct sembuf trigger = {0, 2, 0}; [T|_| @I]
77
+ 78 trace_begin (" /twp/data” NULL); M
79 Messages
+ B0 sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0G66); [L] suau [z]
81 New process: local:8040 parent pid: 8012
+ B2 pthread_attr_init(&attr); Process local:8040 is executing
+ B3 pthread_create (&thread, &attr, sine_thread, &data[0]1); Jzoey/stuff/jeffh/test /tutorial/app.
84 Reading symbols from /zoev/stuff/jeffh/test/tutorial/app...
+ BS pthread_attr_init(&attr); Executable file set to
+ BB pthread_create (&thread, &attr, cosine_thread, &data[l]); Jzoey/stuff/jeffh/test tutorial /app
87 Program was dynamically linked.
+ BB pthread_attr_init(&attr); Dynamic linking completed. -
+ B9 pthread_create (&thread, &attr, heap_thread, NULL); @ E
Command: I v]
app - local:8040 - Stopped for exec y

Figure 3-2. app Program Loaded

IMPORTANT

Do not resume execution of the program at this time.

NightView supports debugging multiple processes as well as single and multi-threaded
processes. In this tutorial, you will be debugging a single process.

Using NightView
Heap Debugging

Debugging dynamic memory problems can be difficult and extremely time-consuming.
The word heap refers to a collection of allocated and freed memory typically controlled by
the malloc() and Free() utilities in the C language.

NightView provides the unique ability to monitor and detect memory allocations, frees,
and sets of user errors without requiring a non-standard allocator to be compiled or linked
into your program.

One advantage of this is that often when you switch to a debugging allocator, the way
blocks are allocated and freed changes -- often hiding the very bugs you’re trying to find.

NightView offers a variety of settings and debugging levels that are useful in catching
common heap-related errors. Some settings will change the behavior of the system alloca-
tor, affecting the size of allocated blocks and, ultimately, the address values returned.

Dynamic memory errors are detected in one of four ways:

- a check of the entire heap at a specified frequency in terms of the number
of heap functions (e.g., mal loc, free, calloc, etc.) called

- acheck of an individual allocated block when free or real loc is called

- acheck of the entire heap when a heappoint is crossed

a check of the entire heap when a heapcheck command is issued

The frequency setting of the heapdebug command or Debug Heap window controls
how often NightView should check for heap errors when a utility routine is called. Setting
the frequency to 1 causes NightView to check for heap errors on every heap operation.

A heappoint causes NightView to check for errors when the process executes instruc-
tions where the heappoint is inserted. An unlimited number of heappoints can be inserted
into your program.

The check of an individual block when free or real loc is called is automatic.

All four mechanisms are useful. With the first three mechanisms, the heap error detection
is executed at program application speed without context switching to the debugger.

Activating Heap Debugging

One limitation of heap debugging is that it requires that you activate the debugging before
any allocations occur in your program. If you attempt to activate the heap debugging fea-
tures after allocations have already occurred, NightView will inform you of its inability to
satisfy your request.

3-5

NightStar RT Tutorial

3-6

NOTE

If you have mistakenly resumed execution of the program already,
Kill the program and restart it in the NightView main window.
Type the following commands in the Command area:

kill
run ./app

Select the Debug Heap... menu option from the Process menu in the
NightView main window.

The Debug Heap window is shown.

Select the Enable heap debugging checkbox at the top of the dialog.
Press the Medium button in the Debugging Level area.

Change the Specify check heap freq text field to 1.

Using NightView

The Debug Heap window should look similar to the following figure:

gl Debug Heap x

[%| Enable heap debugging
—Debugging Level

[Disable H Low H Medium H High]

— Common Errors Detection

[Bmcmverrun] [Dangling Poimer] [Uninitialized Fieldl

~General Settings ~— Error Contral
[7] Hardware overrun protection Stop Print
) free fill maedified
[®] Specify check heap freq | 1

free not at beginning

@ Specify refained free blocks [100 free unallocated

[] Specify heap size [malloc zero

memalign not power of 2

Slop size [0
out of memory

post-fence modified
pre-fence modified

Walkback entries / block [3

Pre-fence size [4

realloc not at beginning

el (¢ (3] (3¢ [][] [] [[[%]
e (¢ (] (3¢ [][] [][5 [[

Post-fence size [4 realloc unallocated

~Fill Settings
%] Fill malloc space | Malloc fill byte: Oxc5 12| |Pre-ence fill byte: 0xbf 5
%] Fill free space [Free fill byte: Oxc3]%] [Post—fence fill byte: Dxaf]%]

[%] Check free fill

oK ” Reset H Cancel H Help]

Figure 3-3. NightView Debug Heap Dialog

- Press the OK button to apply the changes and close the dialog.

These options instruct the debugger to activate heap debugging, retain freed blocks to
detect certain kinds of errors, allocate some additional memory past the end of the
requested size to detect errors, and stop the program when any heap error is detected.

Controlling the app Program

The third thread created by the main program executes a routine called heap_thread.

This routine iteratively executes various dynamic memory operations based on the setting
of the scenario variable. These operations are representative of common user errors
relating to dynamic memory.

Let’s set a breakpoint on line 115.

3-7

NightStar RT Tutorial

3-8

- Scroll to line 115 in the source window:
sleep(b);

- Right-click anywhere on that line and select Set simple breakpoint
from the pop-up menu.

NOTE
Optionally, you could set a breakpoint on line 115 by using either the Set Break-

point menu item from the Eventpoint menu or enter the following command in
the Command panel of the NightView main window:

break app.c:115

Using NightView

Scenario 1: Use of a Freed Pointer

A common error is to read or write a block of memory that has already been freed.

A way to detect this is to tell NightView to retain freed blocks and fill the freed blocks
with a specific pattern. If the blocks are subsequently read, your application may more
quickly discover the error since the contents are unexpected. If the blocks are subse-
quently written, NightView can detect this.

- Resume the process and let it reach the breakpoint on line 115 by pressing
the Resume icon on the Process toolbar:

4

NOTE

Alternatively, you can resume the process by typing resume into
the Command field:

By default, the heap_thread will not actually execute any of the five scenarios.

- To cause it to execute scenario 1, set the variable scenario to 1 by enter-
ing the following commands in the Command field:

set scenario=1
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(1024,3);
free_ptr (ptr,2);
memset (ptr, 47, 64);

The last line represents usage of dynamically allocated space that has already been freed.

NightView will detect this at a heappoint inserted by the user, or at a subsequent heap
operation (based on the Frequency setting of the heapdebug command), in this case
on line 155.

NightView will stop the process once the heap error has been detected and issue a diag-
nostic similar to the following:

Heap errors in process local:3771:
free-Till modified in free block (value=0x804a818)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

The error refers to the fact that locations within the freed block were modified by the pro-
cess after the block was freed.

The Data panel is useful for displaying heap-related information as well as a variety of
other attributes.

3-9

NightStar RT Tutorial

- Select Heap Information from the Data menu.

The Data panel is added to the NightView main window in the same location as the
Locals and Context panels. A new tab will be created for the Data panel.

- Click on the newly-created Data tab.

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

- Expand the Configuration item under Heap Information in the
Data panel to show the current heapdebug settings.

- Expand the Totals item under Heap Information to show summary
statistics related to heap activity.

Data
Hem |Valu=
=- i iHeap Information ilocal: 19671
E X Totals
- Everallocated (blocks) 22
- Ever allocated (size) 11922 bytes
- Ever allocated (debugger ... 2084 bytes
- Ever freed (blocks) =
- Ever freed (size) 2121 bytes
- Ever freed (debugger over... 80 bytes
- Current allocated (blocks) 17
-~ Current allocated (size) 9801 bytes
- Current allocated (debugg... 204 bytes
-~ Current retained freed (Bl... 5
- Current retained freed (size) 2121 bytes
- Current retained freed (de... 60 bytes

[off Configuration

- heap debugging on
- postfence 4 bytes with Oxaf
- pre-fence 4 bytes with 0xbf
- slop 0 bytes
- free fill with 0xc3
- malloc fill with OxcS
- hardware overrun protection disabled
- frequency every 1 heap operation
- heap size unlimited
- refain 100 free blocks
- walkback 8 frames
- check free fill enabled
4] (4]+]

Figure 3-4. Heap Totals and Configuration

NOTE

In general, all information in the Data panel is updated whenever
the process being debugged stops.

3-10

Using NightView

- Collapse the Totals and Configuration items.

- Click on the tab labeled Locals.

The list of items in the Locals panel changes each time the process stops to represent the
local variables associated with the current frame being displayed. Note that the value of
the variable ptr is displayed in red because it no longer contains a valid (allocated) heap
address.

Expanding the ptr item reveals the (heap info) item. Expanding that item reveals
additional information relating to the block that the pointer once referred to including:

* jts state - freed, but retained
* jts address range

* jtssize

® errors

¢ free and allocation information, which when expanded include walkback
information relating to the routines which allocated and freed the block

Locals
Hem Value
E| ‘i -10863260084
(- [] iptr 0
EN T 0x8102c68
)] (heap infa)
- state freed, but retained
-~ range 0x08102c68 .. 0x08103067
- SizZe 1024 bytes
[#- Brrors 1 (asof last heap check)
E} free information 008048679 in free2() atapp.c line 188
[~ ff configuration
E| % wialkback 0x08043679 in free2() atapp.c line 183
Frame 0 0x08048679 in free2() atapp.c line 183
Frame 1 0:0804869d in free1() atapp.c line 194
Frame 2 0x080486df in free_ptr() at app.c line 207
: Frame 3 0x08043456 in heap_thread() at app.c line 120
Frame 4 Ox080de2e] in xt_new_thread() at xt_pthreads.c line 100
[#}- allocation information 008048505 in func3i) atapp.c line 162
- [m] scenario 1
B[] unused i}
(] (1)

3-11

NightStar RT Tutorial

Scenario 2: Freeing an Invalid Pointer Value

Another common error is to free a pointer multiple times or to free a value which doesn’t
actually refer to a heap block.

- Resume the process and let it reach the breakpoint on line 115:
resume
- Set the variable scenarioto 2:

set scenario=2
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:
ptr = alloc _ptr(1024,3);
free_ptr(ptr,2);
free(ptr);

NightView will detect the failure and print a diagnostic similar to the following:
Heap error in process local:3771: free called on freed or
unallocated block (value=0x804ac40)

#0 0x8048a78 in heap_thread(void*unused=0) at app.c line 127

Another way of obtaining information about the heap block in question is to use the info
memory command. It provides textual output of the information available in the Locals
panel under the ptr item to the Messages panel of the NightView main window.

- Issue the following command in the Command panel:

info memory ptr

NightView will provide output similar to the following in the Messages panel:

3-12

Mes=ages

Heap error in process local:19671: free called on freed or unallocated
block (walue=0xB8103090)

#0 Ox0804849c in heap_thread(void * unused = 0) at app.c line 127
info memory ptr

Memory map enclosing address Ox08103090 for process local :19671:

Virtual Address Range No. bytes Comments

Ox080befld 0xOB120FFF 405504 Readable,Writable, Executable
Allocator information for address Ox08103090 for process local :19671:

freed, but retained
in block 0x08103090 .. 0x0810348f (1024 bytes)
no errors detected in block
free information:
4 post-fence bytes with Oxaf |fence range Ox05103490 .. Gx08103493)
4 pre-fence bytes with Oxbf (fence range OxO0B10308c .. Ox0B10308T)
free fill with Bxc3
malloc fill with Oxch
walkback :
Ox0B048679 in free2() at app.c line 188
Ox0B04869d in freel() at app.c line 194
0x080486dT in free ptr{) at app.c line 207
0x0B048492 in heap_thread() at app.c line 126
0x0B804e2el in xt_new thread() at xt pthreads.c line 100
allocation information:
4 post-fence bytes with Oxaf | fence range 0Ox08103490 .. 0x08103493)
4 pre-fence bytes with Oxbf (fence range Ox0810308c .. 0x0810308T)
free fill with Oxc3
malloc fill with OxcS
walkback :
Ox0B048505 in func3i) at app.c line 162
Ox080485d9 in func2() at app.c line 167
Ox0B048616 in funcli) at app.c line 173
Ox0B0486cE in alloc_ptr() at app.c line 202
0x0804847F in heap_thread() at app.c line 125
0x0B804e2el in xt_new_thread() at xt pthreads.c line 100

[«]

Figure 3-5. info memory Command Output

Using NightView

Note that it reports no error in the block per se. The actual problem here is that a second
attempt was made to free the block when it already had been freed previously.

In this case, the walkback information associated with the actual free is useful as you can

quickly locate what code segment actually freed the block.

3-13

NightStar RT Tutorial

Scenario 3: Writing Past the End of an Allocated Block

Another common error is to allocate insufficient space or to write past the end of an allo-
cated block.

- Resume the process and let it reach the breakpoint on line 115:
resume
- Set the variable scenarioto 3:

set scenario=3
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(strlen(MyString),2);
strcpy (ptr, MyString); // oops -- forgot the zero-byte

NightView will detect the failure and print a diagnostic similar to the following:
Heap errors in process local:3771:
post-fence modified in block (value=0x804b068)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

Note that the description of the variable ptr in the Locals panel does not indicate an
invalid status. That is because ptr does point to a valid heap block.

However, expanding the (heap info) information for ptr and the errors list indi-
cates that the block referenced by the ptr is invalid because the post-fence was modified.

Locals
Hem Value
o [-1086326084
- [¥] iptr]
EN T 0x8102c68
1 #{] (heap info)
L. state allocated
range 0x08102c68 .. 0x08102c6f
- size Bbytes
E| ermars 1 (as of last heap check)
. error 1 post-fence modified in bleck (value=0x8102cb8)
allocation information 0x080485ec in func2() atapp.c line 163
- [m] scenario 3
- [#] unused 0
(] (1)

Figure 3-6. Heap Error Description

3-14

Using NightView

Scenario 4: Use of Uninitialized Heap Blocks

Another common error is forgetting to initialize dynamically allocated memory before
using it. Code segments may assume that dynamically allocated memory is initialized to
zero, as is the case with cal loc() but not malloc().

- Resume the process and let it reach the breakpoint on line 115:
resume

- Tell NightView to stop whenever a SIGSEGV is sent to the process and
also set the variable scenario to 4:

handle sigsegv stop print pass
set scenario=4
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = (int**)alloc_ptr(sizeof(int*),2);
it (*iptr) **iptr = 2778;

NightView will detect the failure and print a diagnostic similar to the following:

Process local:3771 received SIGSEGV
#0 0x8048ad2 in heap_thread(void*unused=0) at app.c line 138

One heap debugging option instructs NightView to fill newly allocated, uninitialized
space with a specific pattern to make it easier to detect use of uninitialized memory. The
Fill malloc space field in the Debug Heap dialog that we used when enabling heap
debugging specified the byte pattern to be Oxc5.

- Issue the following command to view the content of the uninitialized mem-
ory block:

x/x iptr
A SIGSEGV signal is a fatal error so we must restart the process to continue the tutorial.
- Issue the following command:
kill

- Re-initiate the program by pressing the ReRun icon in the Process tool-
bar:

9

NOTE

Alternatively, you can issue the following command directly from
the Command field to initiate the process:

rerun

3-15

NightStar RT Tutorial

NOTE

NightView automatically re-applies all eventpoint and heap con-
trol settings when it sees the subsequent execution of the program.

3-16

Using NightView

Scenario 5: Detection of Leaks

Another situation which may be indicative of error or inappropriate use of memory are
leaks. In this instance, we define a leak as a dynamically allocated block of memory that
is no longer referred to by any pointer in the program.

Detection of leaks is a very expensive process with respect to CPU utilization and intru-
sion on the user application. As such, leak detection is only executed when an explicit
request is made from the user.

Resume the process and let it reach the breakpoint on line 115:
resume
Set the variable scenarioto 5:

set scenario=5
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

alloc_ptr(37,1);
0;

ptr
ptr

NightView does not detect the leak automatically, as mentioned above. The process will
stop again when the breakpoint on line 115 is reached.

At that time, specifically request a leak report by selecting Heap
Leaks... from the Data menu, check the New Leaks radio button, and
press OK in the Data Heap Leaks dialog to add the item to the Data
panel.

This operation causes NightView to analyze the program for leaks and displays a
Leak Sets item in the Data panel. On small programs, this operation may appear
to be insignificant, but for larger programs it can take some significant time.

Click on the Data tab.
Expand the Leak Sets item, if necessary.

An additional item is displayed for every leak set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets provides the
common walkback shown for each allocation as well as expandable descriptions of
each individual leaked block.

Expand the leak set item with size 37 and then expand the wal kback item
associated with it.

3-17

NightStar RT Tutorial

Note the walkback indicating that it was allocated by the heap_thread() routine
on line 142 of app.-c.

Data
Item Value
=+ { Heap Information local:29316
{ [¥ Totals
. [o Configuration
= ¢+ Leak Sets local:29316: new at heap operation 10
. d» leak set, 48 bytes 1 block of 48 bytes, 0xb7f8b218 at <xt get default_xtconfig+28>

leak set, 37 bytes 1 block of 37 bytes, 0x08048dc3 in funcl() at app.c line 174

walkback 0x08048dc3 in funcl() at app.c line 174

Frame 0 0x08048dc3 in funcl() at app.c line 174
Frame 1 0x08048e58 in alloc_ptr() at app.c line 202
Frame 2 0x08048ca3 in heap_thread() at app.c line 142

= ¢+ blocks

- #[] 0x09d5e298
¢» leak set, 16 bytes 1 block of 16 bytes, 0xb7f8fale at <xt_trace register thread+28=>
¢ leak set, 1 bytes 1 block of 1 bytes, 0x08048d38 in heap_thread() at app.c line 155
(] (1)

Figure 3-7. Heap Leaks Display

NOTE

The Leak Sets display will vary depending on your system type.
Concentrate on the leak set of 37 bytes as shown above.

NOTE

Unlike most items in the Data panel, the leak sets item is not
automatically updated when the process stops. The description is
a snapshot of the leaks at a certain moment in the execution of the
program, and therefore it will remain unchanged even if addi-
tional leaks occur. To get updated information, request another
leak report (select Heap Leaks... from the Data menu).

3-18

Using NightView

Scenario 6: Allocation Reports

NightView provides a detailed report of all allocated memory.

Construction of this report is a very expensive process with respect to CPU utilization and
intrusion on the user application execution time. As such, allocation reports are only exe-
cuted when an explicit request is made from the user.

- Set the variable scenario to 6:

set scenario=6
resume

This causes additional allocations to be made.
The process will stop again when the breakpoint on line 115 is reached.

- At that time, specifically request an allocation report by selecting Still
Allocated Blocks... from the Data menu, click the All Blocks radio
button, and press OK in the Data Still Allocated Blocks dialog to add
the item to the Data panel.

This operation causes NightView to analyze the program and displays a Still Allo-
cated Sets item in the Data panel. On small programs, this operation may appear to
be insignificant, but for larger programs it can take some significant time.

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

- Expandthe Still Allocated Sets item, if necessary. An additional
item is displayed for every allocation set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets pro-
vides the common walkback shown for each allocation as well as expand-
able descriptions of each individual leaked block.

- Expand the al located set item with size 1048576 and then expand the
walkback item associated with it.

3-19

NightStar RT Tutorial

Note the walkback indicating that it was allocated by the heap_thread() routine
on line 147 of app.-c.

Data
Iltem Value
G- b Leak Sets local:29316: new at heap operation 10
i Heap Information local:29829
£ P Still Allocated Sets local:29829: all at heap cperation 16
= allocated set, 1048576 bytes 1 block of 1048576 bytes, 0x08048d55 in func3() at app.c line 162
b walkback 0x08048d55 in func3() at app.c line 162
S Frame 0 0x08048d55 in func3() at app.c line 162
Frame 1 0x08048d79 in func2() at app.c line 167
Frame 2 0x08048db3 in funcl() at app.c line 173
Frame 3 0x08048e58 in allec_ptr() at app.c line 202
Frame 4 0x08048cc3 in heap_thread() at app.c line 147
B 24 blocks
allocated set, 8177 bytes 1 block of 8177 bytes, 0x08048d55 in func3() at app.c line 162
allocated set, 4564 bytes 1 block of 4564 bytes, 0x08048d55 in func3() at app.c line 162
allocated set, 1024 bytes 1 block of 1024 bytes, 0x08048d89 in func2() at app.c line 168
allocated set, 136 bytes 1 block of 136 bytes, 0xb807e34b at <_dl_allocate_tls+59>
allocated set, 136 bytes 1 block of 136 bytes, 0xb807e34b at < dl allocate tls+59=
allocated set, 136 bytes 1 block of 136 bytes, 0xb807e34b at < dl_allocate tls+59=>
allocated set, 62 bytes 1 block of 62 bytes, 0x08048dc3 in funcl() at app.c line 174
allocated set, 48 bytes 1 block of 48 bytes, 0xb804c218 at <xt_get default_xtconfig+28=>
allocated set, 37 bytes 1 block of 37 bytes, 0x08048dc3 in funcl() at app.c line 174
allocated set, 16 bytes 1 block of 16 bytes, 0xb8050ale at <xt_trace_register thread+28=>
allocated set, 16 bytes 1 block of 16 bytes, 0xb8050ale at <xt_trace register thread+28=>
allocated set, 16 bytes 1 block of 16 bytes, 0xb8050ale at <xt_trace register thread+28>
allocated set, 16 bytes 1 block of 16 bytes, 0xb8050769 at <xt_thread_setup+29>
allocated set, 2 bytes 2 blocks of 1 bytes, 0x08048d38 in heap_thread() at app.c line 155
L1 D

Figure 3-8. Still Allocated Blocks Display

NOTE

The data from the Still Allocated Sets will vary depending on
your system. Concentrate on the allocated set of 1048576 bytes as
shown above.

NOTE

Unlike most items in the Data panel, the Still Allocated
Sets item is not automatically updated when the process stops.
The description is a snapshot of the leaks at a certain moment in
the execution of the program, and therefore it will remain
unchanged even if additional items are allocated or freed. To
update the information, request another allocation report (select
Still Allocated Blocks... from the Data menu).

3-20

Using NightView

Disabling Heap Debugging

To disable all overhead associated with heap debugging, issue the following command:
heapdebug off

This concludes the tutorial’s topic on heap debugging. We will now continue on to other
capabilities of NightView.

3-21

NightStar RT Tutorial

Debugging Multiple Threads

3-22

At this point in the tutorial the user application should be stopped at line 115 in app-c.

NOTE

If the application is not stopped at line 115, set a breakpoint on
line 115 in app - c and resume the process until it stops on that
line number. Refer to the previous sections for instructions on set-
ting breakpoints and resuming the process.

Our application consists of the main thread and three additional ones created by the main
thread.

When the application hits a breakpoint or is otherwise stopped by NightView, all threads
in the application will stop. Similarly, when NightView resumes execution of a thread, all
threads will resume execution.

- Click on the Context tab to raise the Context panel.
- Expand the thread which is displayed in green.

- Expand the first item in the walkback list that appeared as a result of the

last step
Context
Item Threads for local:5399 app
m o 5393 "C thread 0xb7eD16c0
5397 C thread 0xb79ech90 (sine_thread)
#4 5398 C thread Oxb71ebb90 (cosine_thread)
g £ 5399 C thread 0xb69eab90 (heap thread)
B % #0 0x08048b7d in heap thread{void * unused = 0) at app.c line 115
] 5
& [¥] iptr 0
i [B] ptr 0
[=] scenario 0
‘. [¥] unused]

Figure 3-9. Context Panel With Stack Frames Expanded

Expanding an individual Frame in the walkback list shows all local variables for that
frame. You can further expand composite and pointer variables in the local variables
items.

The source shown in the Source panel is that associated with the program counter of the
thread which caused the process to stop. You can tell which thread you are stopped in by
looking for the name of the thread’s start routine in paranthesis. NightView automatically
assigns names to threads based on the start routine which was passed to

Using NightView

pthread_create(2). Additionally, you can set the name of a thread inside Night-
View using the set-thread-name command.

You can switch to the context of other threads by clicking on the thread of interest.

Alternatively, you can use the select-context command and specify the thread name
as shown in the C Threads display or from the output of the info threads com-
mand:

info threads /v
select-context name="cosine_thread”

When thread names are not unique across threads, you can use the thread ID which is
always unique. A thread ID is a hexadecimal number representing the thread -- it is
assigned by the threads library upon thread creation. The thread ID immediately follows
the words “C thread” on each thread item in the Context panel.

- Switch to the context of the thread executing sine_thread() by click-
ing on it (it is usually the third thread from the top).

The source displayed in the NightView main window changes to line 46 on a call to
semop().

NOTE

It is possible that the context of the thread in question could be
executing on any line in the range of 45-49.

NOTE

Some versions of glibc on some distributions may be missing
proper walkback information for the semop (2) routine, which is
likely where the thread is stopped. In this case, the walkback
and interest instructions below will not react as described
below for this specific example.

The gray triangular arrow before the line number in the source panel represents the fact
that we are positioned at a stack frame which is not the topmost stack frame and that the
current frame is executing a subprogram call.

By default, NightView hides uninteresting frames. If you desire to see all frames for all
routines, even those that have no debug information, you can set your interest threshold to
the keyword min;

interest threshold min

Once that command is issued, the walkback information shows all frames and you can
position to any frame and debug at the assembly level if desired.

- Reset the interest threshold to zero via the following command:

interest threshold O

3-23

NightStar RT Tutorial

- Delete the breakpoint on line 115 by right-clicking on that breakpoint in the
Eventpoints panel and selecting Delete or by issuing the following
command:

clear app.c:115
before proceeding to the next section.

- Resume execution of the process.

NOTE
A significant feature of NightView is the ability to execute most

debugging operations without having to stop execution of the pro-
cess.

All subsequent debugging operations in this tutorial can be done
without stopping the process!

3-24

Using NightView
Using Monitorpoints

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor panel.

Unlike asynchronous sampling, monitorpoints allow you to view data which is synchro-
nized with execution of a particular location in your application.

- Right-click on line 46 and select Set eventpoint from the pop-up menu
and select Set Monitorpoint... from the sub-menu.

NOTE

Alternatively, you could select the Set Monitorpoint... option
from the Eventpoint menu or click the Set Monitorpoint icon
from the toolbar to launch the Set New Monitorpoint dialog.

Set New Monitorpoint

Location: |app.c:4q
Options:
(@ Enable
() Enable, disable after next hit
() Disable
Condition If []
Y —
Mame: []
~— Expression
| Expression Format Label
default
oK H Cancel] [Help

Figure 3-10. Monitorpoint Dialog

- Ensure that the Location text field has app.c:46, correcting if it need
be.

3-25

NightStar RT Tutorial

Enter the following:

data->count

in the text field below the Expression column head, but do not press the Enter
key yet.

You can control the format in which the value is displayed by clicking the
option list under the Format column. Using the mouse, click and select
Hexadecimal from the list.

Enter the following in the Label column:

sine count

While still positioned in the cell under the Label column, press the Tab
key. This positions you to the next row and allows you to continue adding
expressions.

NOTE

If you have already left the cell and only one row is shown, press
the New button.

- In the second row under the Expression column, type the following:
data->value

- Setits label value in the Label column, by typing the following there:
sine value

- Press the OK button in the Set New Monitorpoint dialog.
A Monitor panel is created containing an entry for the commands entered above.

- Likewise, set a monitorpoint on line 63 with the same commands as in the
previous monitorpoint, substituting cosine for sine in the Label fields.

Manitor
Hem Value (1000 ms between samples)
> sine value ? (nia)
cosine count ? (nia)
i.. cosine value ? (nia)

Figure 3-11. NightView Monitor Panel

3-26

Using NightView

At this point, the data values in the Monitor panel change.

The values are sampled whenever line 46 or 63 are executed, respectively. NightView dis-
plays the latest set of values in the Monitor panel at a user-selectable rate.

3-27

NightStar RT Tutorial
Using Eventpoint Conditions and Ignore Counts

All eventpoints in NightView have optional condition and ignore attributes.

A condition is a user-supplied boolean expression of arbitrary complexity which is evalu-
ated before the eventpoint is executed. Conditions can involve function calls in the user
application.

Similarly, the ignore attribute is a count of the number of times to ignore an eventpoint
before actually executing it.

Conditions and ignore counts are evaluated by the application itself via patched-in code
and, as such, run at full application speed. Other debuggers evaluate the conditions and
ignore counts from within the context of the debugger which takes significant time and
can drastically affect the behavior of your program.

- Click the cell in the Ignore Count column of the first row of the Event-
point panel.

- Change the value to 500 and press Enter.

The Monitor panel now indicates that the values for that monitorpoint have not been sam-
pled by displaying a question mark before the value. When the ignore count reaches zero,
the values will start updating again.

Finally, monitorpoints can include complex expressions that aren’t just simple variables.

- Enter the following commands in the Command field of the NightView
main window:

monitor app-c:93
p FunctionCall()
end monitor

A new item is added to the Monitor panel which represents the result of the function call
FunctionCall () as executed by the user application each time line 93 is crossed.

3-28

Using NightView
Using Patchpoints

Unlike breakpoints and monitorpoints, patchpoints allow you to modify the behavior of
your program.

Patchpoints allow you to change program flow or modify variables or machine registers.

First, we will use a patchpoint to branch around some statements in our program.

NOTE

If the source file app-c is not displayed, issue the following
command:

1 app.c:48

- Scroll the source file displayed in the NightView main window and
right-click on line 48:

data->angle += data->delta

and select Set eventpoint from the context menu and select Set Patchpoint...
from the sub-menu.

3-29

NightStar RT Tutorial

NOTE

Alternatively, you could select the Set Patchpoint... option
from the Eventpoint menu or click on the Set Patchpoint
icon in the toolbar to launch the Set New Patchpoint dialog.

% Set New Patchpoint EE)
==+ Location: [app.c:48 l
Options
@ Enable

() Enable, disable after next hit

() Disable
Condition If: [l
Ignore Count: _E
Name: [l
—Action
@ Insert an expression at this location h
() Branch to a different location
() Set thread local tag values
Ewvaluate:
[oK] l Cancel l [Help l

Figure 3-12. Patchpoint Dialog

- Inthe Location text area, ensure the text indicates app.c:48.

- Click on the Branch to a different location radio button in the lower
portion of the dialog.

- Inthe Go To: text area, type:
app.c:49
then press the OK button.

This will effectively cause the application to skip execution of line 48, where it updates
the angle used in the subsequent sin() call.

Note that the sine value in the Monitor panel stops changing, yet the associated sine
count value continues to change.

Alternatively, we can use patchpoints to change the value of expressions or variables.

- Type the following command in the Command panel of the NightView
main window:

3-30

Using NightView

patch app.c:49 eval data->count -= 2

Note that the value of sine count is decrementing, because for each iteration, it contin-
ues to be incremented by 1, but now also is decremented by 2.

We can disable the patchpoints without deleting them.

- Select both patchpoints in the Eventpoints panel (as indicated in the
Type column by the word Patch), right-click and select Disable from
the pop-up menu.

The patches are disabled and the values shown in the Monitor panel return to their origi-
nal behavior.

3-31

NightStar RT Tutorial

Adding and Replacing Functions Dynamically

NightView provides the ability to dynamically add new functions to the application being
debugged, as well as to replace existing functions.

- Inaterminal session outside of NightView, compile the report. c source
file which was copied into your current directory in the initial steps of this
tutorial:

cc -g -c report.c

- Load the new module into the program using the following command in
the Command panel of the NightView main window:

load report.o

NOTE

The source displayed in the NightView main window may change
as a result of the load command. This annoyance will be
addressed in the future.

We have added a simple function which prints information to stdout. The function
could have been arbitrarily complex and referenced any variable in the application. The
only limitation is that the function cannot reference symbols that are absent from the mod-
ule being loaded and are not already in the user application.

- lIssue the following command to see the source code for the function
report():

I report.c

You will see that the report() function expects a pair of arguments whose types are
char * and double, respectively.

- Go back to the application source file by issuing the following command:

I app-.c
We will install a new patchpoint which will call the newly added function.

- Set a patchpoint on line app.c:63 with the following expression:

report(*‘cos”,data->value)

3-32

Using NightView

The program is now generating output to stdout in the Messages panel of the Night-
View main window as calls to the report() function are executed.

Maszages

TRe wvalue from cos 1s O.130526
The value from cos is 0.139173
The value from cos is 0.147509
The value from cos is 0.156434
The value from cos is 0.165043
The value from cos is 0.173648
The value from cos is 0.182236
The value from cos is 0.190809
The value from cos is 0.199368
The value from cos is 0.207912
The value from cos is 0.216440
The value from cos is 0.224951

Figure 3-13. Result of Patching in Call to Newly Loaded Function

- Disable the patchpoint that was just added by clearing its Enabled check-
box in the Eventpoint panel.

Finally, we will replace a function that already exists in the application.

- In a terminal session outside of NightView, list the contents of the source
file function. c which was copied into your current directory in the ini-
tial steps of this tutorial, and compile it with the following commands:

cat function.c
cc -g -c function.c

- Now load the replacement code by entering the following command in the
Command panel of the NightView main window:

load function.o

Note how the Monitor panel value for the FunctionCal 1 () value no longer pertains
to the value computed by the application, but rather is a monotonically increasing number
as per the source file function.c.

- Return the NightView main window source panel to the app - ¢ source file
via the following command:

1 app.c:40

3-33

NightStar RT Tutorial

Using Tracepoints

3-34

The last portion of NightView we will cover in this tutorial is integration with NightTrace.

A tracepoint is a specialized eventpoint which essentially patches a call to log a trace
event with optional arguments.

Even if the application doesn’t already use the NightTrace API, NightView can link in the
required components and activate the tracing module. Our application already uses the
NightTrace API, so this will not be necessary (see the set-trace command in the
NightView User’s Guide for more information on using tracepoints in applications which
don’t already use the NightTrace API).

Suppose that we were interested in measuring the performance of our cycles in the
sine_thread() and cosine_thread() routines and that we also were interested in
logging data values during the cycle.

- Scroll the source file displayed in the NightView main window and
right-click on line 48:

data->angle += data->delta

and select Set eventpoint from the pop-up menu and select Set Tracepoint...
from the sub-menu.

Using NightView

NOTE

Alternatively, you could launch the dialog by selecting Set Tra-
cepoint... from the Eventpoint menu or click on the Set Tra-

cepoint icon on the toolbar to launch the Set New Tracepoint
dialog.

g! Set New Tracepoint x

@ Location: [app.c:48]

Oiptions:

@ Enable
() Enable, disable after next hit

() Disable

Condition I []

- []
R —

Name: []

Event 1D: | ‘

Walue: []

oK H Cancel H Help l

Figure 3-14. Tracepoint Dialog

- Inthe Location: text field ensure that app . c:48 is displayed.
- Inthe Event ID field, type the following:
1

- Press the OK button

Similarly, we’ll set additional tracepoints but we will also specify a value to be logged
with the tracepoint.

- Set a tracepoint on line app-c:46 and specify an Event ID of 2 and
enter the following in the Value text field:

data->value

- Set a tracepoint on line app.c:63 and specify an Event ID of 3 and
enter the following in the Value text field:

data->value

3-35

NightStar RT Tutorial

Trace events can now be logged with the NightTrace tool which is described in the next
section of this tutorial.

- Launch NightTrace by selecting the NightTrace Analyzer menu item
from the Tools menu of the NightView main window.

The remaining sections of the tutorial do not use NightView, however, we want to keep the
tracepoints patched into the executable. We will now detach the program from NightView
but it will continue to execute and will retain all patchpoints and tracepoints.

- Stop the processes by typing the following into the Command field:
stop
- Select the Detach option from the Process menu

- Select the Exit NightView option from the File menu to exit NightView.

NOTE

Normally, processes started from within NightView will be killed
when NightView exits, even if they have been detached. This is
because the shell that is used by NightView to invoke them sends
them a SIGHUP signal. Our application ignores SIGHUP, so it
can continue to execute.

Conclusion - NightView

3-36

This concludes the NightView portion of the NightStar RT Tutorial.

4
Using NightTrace

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. NightTrace can
also log kernel events such as individual system calls, context switches, machine excep-
tions, page faults and interrupts. By combining application events with kernel events,
NightTrace presents a synchronized view of the entire system. Furthermore, NightTrace
allows users to zoom, search, filter, summarize, and analyze those events in a wide variety
of ways.

Using NightTrace, users can manage multiple user and kernel NightTrace daemons simul-
taneously from a central location. NightTrace provides the user with the ability to start,
stop, pause, and resume execution of any of the daemons under its management.

NightTrace users can define and save a “session” consisting of one or more daemon defi-
nitions. These definitions include daemon collection modes and settings, daemon priori-
ties and CPU bindings, and data output formats, as well as the trace event types that are
logged by that particular daemon.

Invoking NightTrace

NightTrace was invoked during the last step of the Using NightView section.

If you skipped the Using NightView section, execute the steps in “Using Tracepoints” on
page 3-34 before beginning this section of the tutorial (and resume execution of the pro-

4-1

NightStar RT Tutorial

cess).

kernel_trace_to_gui

raptor

File View Daemons Search Summary Profiles Timelines Tools Help
PR BP0 Eﬂﬂ%&%a

Daemaons
Type | Daemon Target State Buffer

Lost Attached

Halted

[L'JLaunch H Resume [Pause [Halt] [FElush H Display [Triggers... l Enable Events... l Delete
Trace Segments
| Type ¥ |Trl.ce Segment | Tlrgetl Lnggedl Lnstl Duration (sec)lUnsaved|
Save Trace Data... l [Close Trace Data

4-2

Figure 4-1. NightTrace main window

Below the menu bar and toolbar, the first page of the NightTrace main window contains
the following two panels:

Table 4-1. NightTrace Panels

Daemons Shows the daemons configured.

Trace Segments Shows each trace segment (contiguous collection

of trace data).

The statistics on the Daemons panel indicate the number of raw events in the shared
memory buffer used between the daemon and the user application and the number of raw
events written to NightTrace by the daemon (under the Buffer and Logged columns,
respectively).

The Trace Segments panel indicates the number of processed events that are currently
available for immediate analysis through the Events panels and timelines, which have
not been shown yet.

Using NightTrace

NOTE

The number of events shown in the Trace Segments panel will
normally differ from the number of events shown in the Dae-
mons panel. The former are processed events whereas the latter
are raw events -- a processed event is often constructed from mul-
tiple raw events.

Configuring a User Daemon

NightTrace allows the user to configure a user daemon to collect user trace events.
User trace events are generated by user applications that use the NightTrace API.

We will configure a user daemon to collect the events that our app program logs.

To configure a user daemon based on a running application

- Select the Running Application option from the Import... menu option
from the Daemons menu.

The Import Daemon Definitions dialog is presented:

Import Daemon Definitions x
Target ﬁ Refresh List
| Program ID 4 | Program User Key File
32498 app jeffh ftmpidata
|m part Sele-:lecl] [Cancel l [Help

Figure 4-2. Import Daemon Definitions Dialog

The Import Daemon Definitions dialog allows the user to define daemon
attributes based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the app application.

- Press the Import Selected button.

4-3

NightStar RT Tutorial

The Import Daemon Definitions dialog closes and a new user daemon is cre-
ated and added to the Daemon Control Area in the NightTrace main window.

Streaming Live Data to the NightTrace GUI

NightTrace allows you to use a daemon to capture trace events and store them in a file for
subsequent analysis or to stream the events directly into the graphical interface for live
analysis.

Our daemon is configured for live streaming.

- Select the daemon labeled app_data from the Daemons panel in the
NightTrace main window.

- Press the Launch button.

- Press the Resume button.

The daemon is now collecting events which are being generated by the app program from
the tracepoints we inserted in “Using Tracepoints” on page 3-34.

In the Daemons panel, the count of events shown in the Buffer column will begin to
change.

Diaemons
Type |Dnemor| | hrgei| Lnggedl Lo:il Shiel thhedl Buﬂ'er|
—K— kermnel_trace_to_gui narf Halted
app_data narf 1] 0 Logging 3 231
[Launch l [Resume [II Pause l [m Halt l [Flush l [Display l [Triggers... l [Enable Events. .. l [Delete

4-4

Figure 4-3. Logging Data

NOTE

A tabbed page is created in the NightTrace main window when
Launch is pressed. This page is an automatically customized
page containing a list of the events logged and a timeline for
graphical representation of those events.

Using NightTrace

- Click on the newly-created tab labeled app_data which contains the
Events panel and the timeline associated with those events.

File View Daemons Search Summary Profiles Timelines Tools Help
= . > 4
PEH R =Fmmm @R PP Bl a8 a
Events
Offset Event| CPU Process Thread Time (sec) Tag Description

0.000000000

argl=0x0

1 NT_TIMER 0 0 0 0.008000000 argl=0x0
app_data
User Events:
0.0000001s
0.00010s rl.U(BlUs rl.006105
| | | |
Current Time | 0.000000000] Hover time from current timeline = 0.000000000
Start Time 0.000000000
EndTi 0.000000000
ne ime Current offset=0 cpu=0 id=NT_TIMER proc=0 thr=0 time(sec)=0.000000000 (0.000000000 from current time)
Span 0.000000000
argl=0x0
4 | (1%
Hower time from current timeline = 0.000000000 4

Figure 4-4. app_data Page

Initially, the panels will be mostly blank.

You can force events to be flushed from the daemon buffer and output stream to be
brought into the segment area for immediate viewing by zooming out on a timeline.

- Click anywhere in the display area containing the timelines.
- Press UpArrow to zoom out

- Press Alt-UpArrow to zoom out completely.

The Events list will be populated with the events currently logged and the timeline
will graphically display those events.

45

NightStar RT Tutorial

4-6

NOTE

If you plan to leave the tutorial for an extended period of time
before returning, press the Pause button on the Trace page to
temporarily prevent the collection of trace points. When you

return, press the Resume button.

Using NightTrace

Using NightTrace Timelines

0 Nightirace -INew! Session(Unsaved)l(onrapton) EEE
File View Daemons 5Search Summary Profiles Timelines Tools Help
PEd eR,rmmI @00 = YKy M oMW oa
Events
| Oﬁ'setl Event | CPU | Process | Threadl Time (sec)l Tag | Description Fi’
16739 3 app cos 209.935575514 argl=-0.829038 |:|
16740 1 app sin 209.935582448
16741 2 app sin 209.935585971 argl=-0.573576 N
16742 1 app cos 209.980145884 -]
app_data
User Events:
0.1s llUU.ls lZUJ.ls FUU.ls
[N RN B A R A B AR |||||||||||||||||||
rl.ls llUU.ls IZUJ.ls rUU.ls
I|||||||||||||||||| |||||||||||||||||||
Current Time | 209.950702 Hover time from current timeline = 26.072309483
Start Time 0.000000000
End Ti 419.901405
nd _1me Current offset=16741 id=2 prac=app thr=sin time(sec)=200.035585071 (0015116710 from current time)
Span 419.901405
argl=-0.573576
| | LI
Hover time from current timeline = 26.0723 09483 y

Figure 4-5. NightTrace Timeline

The timeline contains static and dynamic labels and event and state graphs.

By default, NightTrace detects the threads that have registered themselves through Night-
Trace API calls and creates individual labels and graphs for each thread. In addition, there
is a user events graph near the bottom that shows events for threads.

NOTE

You may see a blank label and graph in your timeline. This is
likely the label and graph for the main thread. The contents of the
label are not shown until at least one event is logged by the main
thread. In our application, the main thread does not log events so
the row will remain blank.

4-7

NightStar RT Tutorial

In “Using Tracepoints” on page 3-34 in the Using NightView section, we inserted trace-
points into the sine thread, which registered itself with the string “sin”.

Zooming

Each vertical line in the graph represents at least one event. You can zoom in and zoom
out to adjust the level of detail.

- Left cllick anywhere within the timeline

- Press the DownArrow key repeatedly until you can see individual lines in
the graph

- Press the UpArrow key to zoom back out

- If you have a mouse wheel, move the wheel back and forth to zoom in and
out

The vertical dashed line is the current timeline and is directly connected to the highlighted
event in the Events panel.

Left-clicking the mouse in the display area moves the current timeline. The information in
the Event Detail area below the timeline changes to reflect the event closest to the left of
the current timeline.

Moving The Interval

app_data X

Thread: cos(8830)

Thread: sin(8829)

User Events:

04.1 07.1 10.1 13.1
I N e N e

P.1s ’lﬂﬂ.ls IZUU.ls fﬂﬂ.ls rlt][].ls
I B S I RN A N N B '."l""""|""""

Current Time | 209.935585971| [Hower time from current timeline = 2.795823757
Start Time 2033750098909
End Time 216497017827
Span 13121918918

Current offset=16741 id=2 proc=app thr=sin timel(sec)=209.935585971 (0.000000000 from current time)
argl=-0.573576

Figure 4-6. Timeline Interval Panel

4-8

Using NightTrace

By default, each timeline panel has two ruler rows positioned below the event graphs and
above the descriptive boxes at the bottom of the panel.

The ruler on top indicates the timespan currently shown.

The ruler on the bottom indicates the timespan for all data currently available for viewing.
This ruler is called the control ruler and has a gray area within it. The gray area represents
the amount of the entire timespan that is currently shown in the panel. Thus zooming in
will decrease the width of the gray area and zooming out will have the opposite effect.

NOTE

If you do not see a gray area, zoom out until you do.

There are several methods of moving through the entire timeline.
- Press the RightArrow key

This causes the current timeline to go to the next event. If you are zoomed out too
far, you may not notice the timeline moving. In this case, either zoom out or hold
the Right key down until you can see the timeline move.

Alternatively, pressing the LeftArrow key causes the current timeline to go to the
previous event.

- Press Ctrl+RightArrow

This causes the displayed interval to move 25% of a section to the right by default.
The section is the amount of time currently visible in the interval. Notice how the
gray are in the control ruler moves.

Alternatively, pressing Ctrl+LeftArrow causes a shift one section to the left.

- Click midway between the gray area and the right hand portion of the con-
trol ruler

Clicking anywhere in the control ruler causes the interval to shift to be centered at
the selected time at the current zoom setting.

Thus to move the very beginning of the data set or the end, you can click the begin-
ning or end of the control ruler.

4-9

NightStar RT Tutorial

Using the Events Panel for Textual Analysis

Events
Offset E\mrlthPUl Process Thread Time (sec)l Tag |De5crip1im1 'ﬂ
16733 2 app sin 209.835132237 argl=-0.559153
16734 1 app cos 209.879990717
16735 3 app cos 209.885256169 argl=-0.833886
16736 1 app sin 209.885263100
16737 2 app sin 209.885266825 argl=-0.566406
16738 1 app cos 200.930036313
16739 3 app cos 200935575514 argl=-0.829038
16740 1 app sin 209935582448
16742 1 app cos 200980145884
16743 3 app cos 209.985604692 argl=-0.824126
16744 1 app sin 209985613353
16745 2 app sin 209985616224 argl=-0.580703
16746 1 app cos 210.030265007 @

Customizing Event Descriptions

4-10

Figure 4-7. Events Panel

The events shown in the Events panel are synchronized with the events shown in the
timeline. The highlighted event indicates the current timeline.

- Click on a line in the Events panel

- Press the DownArrow key to advance to the next event.

- Press the UpArrow key to advance to the previous event.

Whenever an event is selected or the current event line moves, the Event Detail area
below the timeline on the right shows additional information about the event, if available.

- Press the PageDown to advance to the next set of events.

- Press the PageUp to shift to the previous set

These actions only move the current timeline by the number of events that can be

shown in the Events panel.

The event values we logged with the tracepoint commands in NightView were event
IDs 1-3. We will customize the description of these events.

- Click on a row in the Event panel that shows event ID 1.

Using NightTrace

- Right-click that row and select Edit Current Event Description...
from the context menu.

[| Add Event Description x
Code [1]
Name J
Description
oK] [Cancel] [Help

Figure 4-8. Add Event Description dialog

- Enter:
cycle_start
in the Name field.
- Press OK.
- Right-click on an entry whose value in the Event column has the value 2.
- Select Edit Current Event Description... from the context menu.
- Enter:
cycle_end
in the Name text field.

- Press the OK button.

4-11

NightStar RT Tutorial

The descriptions of the events in the Events panel now correspond to the textual identifi-

ers we assigned to them.

Events
Offset EventhPUl Process Thread Time (sec)l Tag |De5criplinn IL’
16733 cycle_end app sin 209.835132237 argl=-0.559193
16734 cycle_start app cos 209879990717
16735 3 app cos 209.885256169 argl=-0.833 886
16736 cycle_start app sin 209885263100
16737 cycle_end app sin 209.8B85266825 argl=-0.566406
16738 cycle_start app cos 209.930036313 D
16739 3 app cos 209.935575514 argl=-0.829038
16740 cycle_start app sin 209935582448
16741 cycle_end app sin 209.935585971 argl=-0.573576
16742 cycle_start app cos 209.980145884
16743 3 app cos 209.985604692 argl=-0.824126
16744 cycle_start app sin 209.985613353
16745 cycle_end app sin 209.985616224 argl=-0.580703
16746 cycle_start app cos 210.030265007 E

Searching the Events List

4-12

We can use the search capabilities of NightTrace to search for a specific occurrence of an

event or condition relating to an event or its arguments.

- Select the Change Search Profile...

menu item from the Search

menu in the NightTrace main window or press Ctrl+F.

Using NightTrace

A new page is created containing the Profile Status List panel and the Profile
Definition panel:

NightTrace - New Session{Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
PH RR=rmm @O @O E %4
e
Profile Status List
|Typ¢| Name | Status | Countl Last | 0|fs¢t|
Profile Definition
Key / Value | Condition |*|| Reset | [Choose Profile...|
Events [ALL | | Browse... |
Exclude Events [NONE | | Browse... |
Condition [TRUE]
Processes [ALL | | Browse... |
Threads [ALL | [Browse... |
Output Script [/usr/lib/NightTrace/bin/event-summary.sh | | Browse... |
CPUs {mask=all}
Name | cond J
[Apphrl I?;Search Backward l IQSea[ch Forward l lHaIt Search] ’}_‘. Summarize
4

Figure 4-9. Searching using the Profiles panel

4-13

NightStar RT Tutorial

- Press the Browse... button to the right of the Events field.

i Select Events| (onraptor) =)

NONE =
ALL

ALLADA

ALLAI

ALLKERNEL
ALLUSER

BKL_LOCK

BKL_SPIN
BKL_UNLOCK
BUFFER_END
BUFFER_START
CUSTOM
EVENT_CREATED
EVENT_DESTROYED
EVENT_LOST
EVENT_MASK
FES_OVERRUN
FBS_SYSCALL
FILE_SYSTEM
GLOBAL_CLI
GLOBAL_STI
GRAPHICS_PGALLOC
IPC

IRQ_ENTRY

IRQ_EXIT
KERMNEL_TIMER
MEMORY

NETWORK
NT_ASSOC_PID
NT_ASSOC_TID
NT_BEGIN_BUFFER
NT_BEGIM_SEGMENT
NT_BEGIN_STREAM
NT_CONTINUE
NT_DEL_CONTINUE @
NT_DISCARDED_DATA

Search: :] ¥ Next 4 Previous [| Match case

[Select H Cancel H Help]

Figure 4-10. Browse Events Dialog

- Click in the Search text field and type cycle. The first event name that
includes that word is shown. Ensure that cycle_end is selected in the
event list, or press the Next icon until it is. Then press the Select button.

- Enter the following text in the Condition text field of the Profile panel:
arg _dbl > 0.8

- Enter the following text into the Name text field:
obtuse

- Press the Add button in the Profiles panel.

A profile called obtuse is now defined and appears in the Profile Status List
panel.

4-14

Using NightTrace

- Press the Search Forward button at the bottom of the Profiles panel.

The current timeline is moved to the first event that matched the search criteria, that
being the end of a cycle when the sine value exceeded 0.8.

NOTE

If a pop-up dialog telling you that NightTrace has reached the end
of the available dataset and asks you whether it should resume the
search at the beginning, press OK.

- Click on the tab labeled app_data and verify that the current event listed
in the Events panel indicates argl with a value exceeding 0.8.

Everts
onml Euenil cpul Process | Threudl Time (:u:)| Tag | Description [=]
5146 app os 89.274949717 arg1=0953717
5147 cycle_start app sin 892749880678
5148 cycle_end app sin 89275119031 arg1=0.798636
5148 £l app [89326880883 arg1=0951057
5150 cycle_start app sin 89 3200829355
5151 cycle_end app sin 89327062778 arg1=0.803857
5152 cycle_start app sin 89.379099168
5153 cycle_end app sin 89 3702542689 arg1=0809017
5154 3 app s 89.379630470 arg1=0948324
£ | an

Figure 4-11. Events Panel After Search

Similarly, the timeline shows a description of the current event in the Event Detail area
in the bottom portion of the panel.

4-15

NightStar RT Tutorial

- Move the mouse cursor to the event description box at the bottom of the

panel and leave it there without moving it

app_data

Thread: cos(5398)
Thread: sin{5397)
pser Svents: I

B8.1s 39.1s Cc.1s 1.1s

||||||||f.|||||..||||.||||||||

C.1s 30.1s g0.1s

T T R i T I A N B

Current Time 39.768447474
Start Time 37.9939C0323
End Time 41.54299464¢6
Span 3.549094303

Hower time from current timeline = 0.985859529

argl=0.8G3857

Current offset=2370 id=cycle_asnd proc=app thr=sin
time(sec)=39.768447474 (C.CCCCCCCOC from current time)

argi=0.803857

Current offset=2370 id=cycle end proc=app

thr=sin time(sec)=33.768447474

{0.000000000 from current time}

:

Figure 4-12. Timeline Panel w/ Tool Tip

A tool tip is also displayed which describes the current event.

NOTE

It is possible that the search will fail if an insufficient number of
events have been brought into live analysis. If this occurs, bring
in more events using the Event list scroll bar and retry the search
by pressing the forward search icon on the tool bar.

Halting the Daemon

Since the NightTrace portion of the tutorial is rather lengthy and may likely be a new
experience for many users, we will halt the daemon to reduce memory usage.

Examine the daemon statistics in the Daemon Control Area on the first page. If the appli-
cation has logged over 100,000 events, halt the daemon by pressing the Halt button to
reduce memory usage as we slowly move through the NightTrace portion of the tutorial.

4-16

Using NightTrace

NOTE

Do not be concerned if the number of events shown in the Trace
Segments panel is smaller than the number of events shown in
the Daemon Control Area just before you halted the daemon. The
latter shows raw event counts whereas the Trace Segments
panel shows processed event counts -- a processed event is often
constructed from multiple raw events.

If it has not reached this stage yet, you may leave the daemon running and occasionally
glance at the statistics. If NightTrace becomes unresponsive or slows down as the event
counts reach into the millions, halt the daemon. NightTrace has a configurable memory
consumption limit that will automatically halt the daemon when the limit is reached; a dia-
log will be presented informing the user when this occurs.

Using States

In addition to displaying individual events, NightTrace can display states.

- Click on the Profiles tab created in “Searching the Events List” on page
4-12.

4-17

NightStar RT Tutorial

4-18

The Profiles page is displayed with the previously defined profile selected.

NightTrace - New Session{Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PH EB-FmmPPPP

(O3
oh %] -

Profile Status List
Type | Name Status Count Last | Offset
obtuse True 148 648
Profile Definition
Key [Value | Condition |~|[Reset | [cChoose Profile...|
Events [cycle end | [Browse... |
Exclude Events | NONE | [Browse... |
Condition |arg_dbl > 0.8 |
Processes | ALL | [Browse... |
Threads [ALL | [Browse... |
Output Script [jusrlib/NightTrace/bin/event-summary.sh | [Browse... |

CPUs {mask=all)

Name |obtuse]

lApply] IESearch Backward] [ﬁ Search Forward l lHaIt Searchl lf_‘_ Summarize

Figure 4-13. Profiles Panel With Obtuse Profile Selected

- Press the Reset button.
- Select State in the Key / Value option list.
- Enter:
cycle_start
in the Start Events text area
- Enter:
cycle_end
in the End Events text field.

- Enter:

sin

in the Threads text field.

in the Name text field.

- Press

the Add button.

Using NightTrace

A state named sine has now been defined and occurrences can be displayed in the graphs
in the display page.

- Click on the tab labeled app_data to show the timeline.

- Right-click anywhere in the display area and select Edit Mode from the
context menu or press Ctrl-E to enter edit mode.

app_data

Thread: cos(5398)

Thread: sin{5397)

User Events:

. B8.1s 9.1s 0.1s 1.1s .
I | | I | I | | I | | I | | I | I | | : :
0.1s 0.1s 0.1s
Lo | Ll B

Current Time 39.768447474] - -
Start Time 37.993900323} - -
End Time 41.542994626] - -
Span 3.549094303] -
<

Hover time from current timeline = 1.647555077

+ |Current offset=2370 id=cycle_end proc=app thr=sin time(sec)=39.768447474
- [(0.000000000 from current time)

argl=0.803857

Figure 4-14. Timeline Editing

- Double-click on the graph associated with the row labeled “Thread: sin”.
That graph is a row with vertical lines representing events inside the larger
graph area, aligned with the label “Thread: sin”.

4-19

NightStar RT Tutorial

4-20

The Edit State Graph Profile dialog is displayed as shown below:

£

Edit State Graph Profile =
oy v S5))
Start Events [NONE || Browsa... |
End Events [NONE | [Browss... |
Events [ALLUSER | [Browse... |
Start Conditien [TRUE]
End Condition [TRUE]
Events Condition [TRUE]
Procasscs [ALL | [Browss... |
Threads | sin || Browsa... |
Event Color [black |
Statc Color [bluc | .
CPUs D] {mask=all}
l 0K ‘ [Canczal l l Halp l

Figure 4-15. Edit State Graph Profile dialog
- Select State from the Key / Value option list.
- Press the Choose Profile... button.
The Choose Profile dialog is displayed.

- Select the sine state from the list.

- Make sure the Import by reference checkbox is checked.

- Press Select.

Using NightTrace

- Click on the colored button to the right of the row labelled State Color.
The Select color dialog is presented.

m Select color X
Basic colors 4
EEEEEEEO
EEEEEEEO
EEEEENNO

(1 1 0 1 I

EEENONC)

EEENC®E]
S Hue: (240 [=] Red [=]
mOOO0O000O
(I ... R —
[Define Custom Colors == l Yat s Blue: s
’ oK] [Cancel] [Add to Custom Colors]

- Select a pleasing color in the Select color dialog and press OK.
- Press OK in the Edit State Graph Profile dialog.

- Right-click anywhere in the display area and select Edit Mode from the
pop-up menu or press Ctrl-E to return to view mode.

The graph has now been configured to display the sine state as a solid bar in the lower por-
tion of the state graph. Events will still be displayed as vertical black lines that extend
over the entire vertical height of the graph.

It is likely that the display page has not changed in a significant way. This is because the
cycle_startand cycle_end events occur so closely together in time that you cannot
distinguish them at the current zoom setting.

- Click in the middle of the state graph.

- Zoom in using the mouse wheel or using the Zoom In icon on the
toolbar or the Down Arrow key until the two events can be distin-
guished and a state bar is shown.

&

You may need to readjust the current timeline as you zoom in.

NOTE

If the Down Arrow key has no effect, press the Num Lock key
and try again.

4-21

NightStar RT Tutorial

NOTE

The state may vanish at some zoom levels where it is still very
small compared to the zoom level’s scale. If so, just continue to
zoom in and it will reappear.

The figure below displays an instance of the sine state.

app_data

N

Thread: cos(5398)

Thread: sin(5397)

L

User Events:

RN e A i T v R

0.1 0.1 0.1
E—'||||||3|S||=||F|5|||||

Howver time from current timeline = 0.000673927

Current offset=2370 id=cycle_end proc=app thr=sin

Current Time 39.768447474

Start Time 39.767580996

End Time 39.769313952

Span 0.001732956
(<]

time(sec)=39.768447474 (0.000000000 from current time)
argl=0.803857

Figure 4-16. Sine State in Timeline

NOTE

If no states are visible, recheck the definition of the sine profile in
the Profiles panel as described in “Using States” on page 4-17.

Displaying State Duration

4-22

The duration of the most recently completed state can be displayed via a data box.

- Right-click anywhere in the display area on the page labeled app_data
and select Edit Mode from the pop-up menu or press Ctrl-E to enter edit
mode.

- Right-click anywhere in the grid and select Add Data Box option from
the pop-up menu.

The cursor will turn into a + character.

Using NightTrace

Using the left mouse button, click an empty area in the left-side of the dis-
play page on the grid (outside of any currently displayed graph or data box
-- i.e. only on an available area whose background shows the dotted grid)
and drag the mouse to create the outline of the new data box -- release the
mouse button.

Double-click the data box. The Edit Data Box Profile dialog is pre-
sented.

Enter the following into the Output field:
format (“cycle = %f ms”, state_dur(sine)*1000.0)
Press the OK button.

Right-click anywhere in the display area and select Edit Mode from the
pop-up menu or press Ctrl-E to return to view mode.

The data box now displays the length of the most recently completed instance of the sine
state in milliseconds.

Generating Summary Information

In addition to obtaining detailed information about specific events and states, summary
information is easily generated.

Select the Change Summary Profile... menu item from the Sum-
mary menu.

Select the profile matching the sine state from the list of profiles shown
in the Profile Status List panel.

It is likely that the sine profile is already selected. Check the profile name shown
in the Name text area near the bottom of the dialog.

Press the Summarize button.

4-23

NightStar RT Tutorial

A new page is created displaying the results of the summary.

Eile

PE ®3 =

View Daemons

Search

Summary Profiles Timelines Tools Help

FRF PP OO E o)t E H B a

| Trace | app data | Profiles || sine (01050457) ;

1

sine (0 to 50457)

Maximum state gap:
Minimum state gap:
Average state gap:
Total of state gaps:

Number of states found:

Maximum state duration:
Minimum state duration:
Average state duration:
Total of state durations:

16819

0.000083790 at offset: 48102
0.000001712 at offset: 10977
0.000003453

0.058079649

Number of state gaps found: 16819

0.050539933 at offset: 37119

0.049730076 at offset: 2589
0.050169556

843.801760127

(D]

| Offset ™ | End Oﬁ'setl Duration (sec) Gap (sec) EvemlCPUl Process Thread Time (sec)l sl
2 3 0.000003E815 0.000000000 cycle_start app sin 0.032374959
5] 0.000005352 0.050172504 cycle_start app sin 0.082551278
8 9 0.000003998 0.050299223 cycle_start app sin 0.132855853
11 12 0.000002304 0.050332313 cycle_start app sin 0.183192163
14 15 0.000002314 0.050095281 cycle_start app sin 0.233289748
17 18 0.000001938 0.050209080 cycle_start app sin 0.283501141
20 21 0.000001928 0.050192068 cycle_start app sin 0333695147
23 24 0.000002195 0.050194743 cycle_start app sin 0.383891819

(]

na "1|1??jf

Interval : 3 events (10579 to 10581), 0.000169340 seconds (176.948892139 to 176.949061479) Current Time : 176,948939213

4

4-24

Figure 4-17. Summary Results Page

The summary results page provides a number of columns of information including the
state’s starting and ending offsets, the state’s duration, and the gap between a state and its
most recent previous occurrence. You can click on the column headers to control how the
list is sorted.

Double-clicking on a row in the list positions the current timeline to the beginning of that
instance of the state and creates a tag at that position.

To go to the instance of the longest state duration, do the following:

- Click on the Duration header to select duration as the sort key

Repeated clickin on the header toggles the direction of the sort.

- Click the Duration header until the sort order is largest to smallest.

Using NightTrace

- The instance of the state with the longest duration is shown in the top row

- Double click on that row

The current timeline is moved to that instance of the state, as shown in the Events
and Timeline panels.

The minimum and maximum state occurrences are often of interest. However, a
graphical display of state durations can be more enlightening.

Select the Graph State Durations... option from the Summary menu
in the Profiles dialog.

Change the standard deviation value in the dialog to O.

Press the OK button.

sine Durations IS
" (+]
Current Time 65.934337660 State duration graph for state sine
Start Time 0.000000000
End Time 94.642514749 Statistics for state durations left of current time (65.8842427215):
Span 94.642514749 min = 0.000207185s @ 0; max = 0.006869674s @ 0; avg = 0.000277967s
active = false; last_duration = 0.000220099s

| i |
e

0.1s |l| 0.1s 0.1s 0.1s
| | T R T N T et | I A R |
.1 0.1 0.1 0.1
PR B PR

Hover time from current timeline = 26.672001511; several events around offset=2340 id=cycle_end proc=app
thr=sin time(sec)=39.262336148

Current offset=3925 id=cycle start proc=app thr=sin time(sec}=65.934337660 (0.000000000 from current time)

a 0D

Figure 4-18. Summary Graph

A new page is created with a summary graph and a textual description of the instances of
the state.

The row with blue shown indicates individual instances of the state. If the blue bar
appears to be a single bar, zoom in until individual instances can be seen.

- Zoom all the way out by pressing Alt+UpArrow.

4-25

NightStar RT Tutorial

4-26

A data graph is shown in the wide column beneath the row with blue state indica-
tors.

Each red line indicates the duration of an instance of the state.

Sometimes a single occurrence of the state may be much longer than most occur-
rences. In such cases, the detail is obscured.

- Click anywhere in the data graph and enter Edit mode by pressing Ctrl+E.
- Double-click anywhere in the data graph.

Key [Value [Cnndiu'nn |v] [Reset]
Events | cycle_end | [Browse...]
Exclude Events [NONE] [Browse...]

Condition [offset—=end_offset(sine) |
Processes [ALL] [Browse...]
Threads |5in J [Browse...]

Min Value [0.000000000]
Max Value [0.000083790]

cpus 0123 45 6 7 8 010111213141516171819202122232425262728293031 Al

3¢ (3¢ 3] (3] [3¢] (€] (3] (3¢] (5¢] 5] %) (3¢ (3] 3] [3¢] (€] €] (3¢] 3¢] 5¢] 5] (% (3¢ %] [3¢] [3¢] [3¢] ¢] 5¢] %] ¢] €] %0

Value [state_dur(sine)]

[Drawing and Coloring Optinns...]

Figure 4-19. Data Graph Profile Dialog

- Change the Max Value text field to 0.001 or a value representative of most
of typically long state durations (refer to the sorted list of state durations in
“Generating Summary Information” on page 4-23).

- Press the OK button.

Using NightTrace

- Return from Edit mode by pressing Ctrl+E.

sine Durations s,
v (=]
Current Time 65.934337660 State duration graph for state sine
Start Time 0.000000000
End Time 04.642514749 Statistics for state durations left of current time (65.884242721s):
Span 04.642514749 min = 0.0002071855 @ 0; max = 0.006869674s @ 0; avg = 0.0002779675

active = false; last_duration = 0.000220099s

|
—_—

0.1s 0.1s 0.1s
o P Ee

T B

0.1s 0.1s 0.1s
I e R R T] B D R

Data value 0.000265010

Hover time frem current timeline = 10.277357441

Current offset=3925 id=cycle start proc=app thr=sin time(sec)=65.934337660 (0.000000000 from current time}

[0

Figure 4-20. Modified Data Graph

The graph now shows more detail. The current timeline in the data graph is linked to the
current timeline in all timelines and the Events panel. Clicking anywhere in the graph
will move the current timeline in all such panels.

Defining a Data Graph

The area containing the timelines has a blank area above the graphs for each of the threads
in the program. We will now add a data graph in this area.

Raise the app_data timeline page by clicking on its tab.

Remove the Events panel by clicking the close box at the upper
right-most portion of the panel’s title bar.

Right-click anywhere in the display panel labeled app_data and select
Edit Mode from the pop-up menu or press Ctrl-E to enter edit mode.

Click on the middle of the upper horizontal line of the column containing
the graphs in the panel.

4-27

NightStar RT Tutorial

- Move the mouse cursor so that it hovers over the middle of the upper hori-
zontal line of the column.

- When the cursor changes to two arrows pointing up and down, click and
drag the upper boundary of the column upward to make space for the data
graph.

app_data

. |Thread: cos(5398)

" |Thread: sin{5397)

User Events:

.............................. b 1e Fo'ls 01e

cycle = 0.220099 ms I N N B

r].ls 0.1s 0.15

Ty T I 1
.............................. R
- [current Time 65.934337660] - - [Hover time from current timeline = 0.000768884
- [start Time 0.000000000} -
- [End Ti 94.642514749} - - : —
r Sn (L W TEIICRE e Current offset=3925 id=cycle_start proc=app thr=sin time(sec)=65.934337660
plElL e - * |{0.000000000 from current time)

Figure 4-21. Resizing in Progress

- Release the mouse button when sufficient space has been made (approxi-
mately an inch or more vertically).

- Click on the upper horizontal line of the column.

- Right-click inside the graph container and select Add to Selected
Graph Container from the pop-up menu and select Data Graph from
the sub-menu.

The cursor changes to a block plus sign

4-28

- Click in the space created by the previous steps.

Using NightTrace

h app_data

. |Thread: cos(5398)
* |Thread: sin(5397)
: |User Events:
.............................. b1e ’30_15 01e

cycle - 0.220099 ms S I I L] | | 1]

. r].ls 0.1s 0.19

e Lo [L | I [1 |
- [current Time 65.934337660] - [Hover time from current timeline = 0.000768884
- [start Time 0.000000000} - :
- [End Time 94.642514749} - - . — .
e FICYELTVEET] o Current offset=3925 id=cycle_start proc=app thr=sin time(sec)=65.934337660 :
. [2Pan e - 2 |(0.000000000 from current time) g

Figure 4-22. Adding a Data Graph

- Click inside data graph you just inserted.

- Drag the top border to the top of the graph container and the bottom border
to the bottom of the graph container so that the data graph fills the graph
container you created.

- Click and drag the upper and lower lines of the newly inserted data graph
to fill the available space.

- Double-click in the middle of the data graph.

4-29

NightStar RT Tutorial

The Edit Data Graph Profile dialog is presented.

key { Velue [Condition [+][Reset |
Evants [ALL | [Browss... | [}
Exclude Evants | NONE | [Browss... |

Condition [TRUE]

Processes [ALL | [Browse... |
Threaeds [ALL | [Browse... |
CPUs (mask=zll)
Valuz [NONE J

Min Value [CaLC]

Max Value [calc J

[Brawing and Coloring (ptions... |

[ox [concal |[new |

Figure 4-23. Edit Data Graph Profile Dialog

Enter:
cycle_end
in the Events text field.
- Enter:
argl_dbl
in the Value text field.

- Press OK to close the Edit Data Graph Profile dialog.

- Right-click inside the data graph and select Adjust Colors in Selected
from the pop-up menu and select Data Graph Value Color... from the
sub-menu.

- Select a pleasing color from the Select color dialog for the data graph.
Click OK to close the Select color dialog.

- Right-click anywhere in the display panel labeled app_data and select
Edit Mode from the pop-up menu or press Ctrl-E to return to view mode.

4-30

Using NightTrace

- Zoom the display to see the sine wave generated by the program.

app_data

Thread: cos{5398)

Thread: sin{5397)

User Events:

cycle = 0.220099 ms |

D.1s |l| 0.1s 0.1s
[T i R A N i O I

T A A e B B A o i MO

Current Time

47.321257375 Hover time from current timeline = 46.073615937

Start Time

0.000000000 Data value -0.731353575

End Time

94.642514749

Span

TIYELRERLE. Current offset=2817 id=cycle_end proc=app thr=sin time(sec)=47.278695453

(0.042561922 from current time)
argl=0.788011

Figure 4-24. Display Page with Data Graph

4-31

NightStar RT Tutorial

Kernel Tracing

Kernel tracing provides amazing insight into the activities of the system and how applica-
tions interact with each other and the kernel.

In order to use kernel tracing you must be running a trace-enabled kernel.

Kernels names ending in -trace and -debug have kernel tracing enabled. You may
check to see which kernel is running by using the following command:

uname -r

If you are not running a trace-enabled kernel, reboot now and select it from the GRUB
menu at boot time. If you are unable to reboot your system at this time, please follow the
tutorial and load the pre-recorded kernel data as instructed.

= Click on the first tab of the NightTrace main window.

- Ensure the user daemon is stopped by pressing the Halt button in the Dae-
mon Control Area if it is sensitized.

- Select the app_data segment in the Trace Segments panel.

CAUTION
If the trace segment was not removed it is likely that you selected

the app_data line from the Daemon Definition Area and not the
Trace Segments panel.

- Pressthe Close Trace Data button in the Trace Segments panel.

NightTrace will pop up a dialog warning you that the trace data has not been saved and
will be discarded; the data does not need to be saved for this tutorial.

Obtaining Kernel Trace Data

If you are not running a trace-enabled kernel, skip this section and refer to the section
“Using Prerecorded Kernel Data” on page 4-34.

4-32

Using NightTrace

- Double-click on the kernel_trace_to_gui entry in the Daemons
panel on the first page of the NightTrace main window.

~General Scttings —Enahled Events
Name [kc-mc-l_dec-mon] [] RCIM Clock | State ¥ |Cc|de| Name il
Terget [zocy | user [jojo] Diszbled 410C 4100
Cisabled 4101 41C1
Qutput (O File @ Stroam () Consumer Diszbled 4107 41072

Gisabled 4103 4103
~Stroam Settings

Disahled 4104 4104

Stream Buffor Size (hytes) | 3333608 Cisabled 4105 4105

Disahled 4106 4106

~Trace Buffor Scttings .
Cisabled 4107 41C7

L] Buffer Wrap Diszbled 4103 4103
[] specify Non-Dofault Number Buffors :] Cisabled 4109 4109
[] Specify Non-Dofault Buffor Size (hytes) :] Diszbled 411C 411

. Cisabled 4111 4111
Trace CPU List D (mask=all)

Diszbled 4112 4112

~Trace Dacmon Runtime Scttings Cisubled 4113 4113
policy | First in First Qut n Diszbled 4114 4114

Enabled 4115 EVENT_LOST

Priority (50 [=]
Diszbled 4116 4116
crulist el | (mask=all) Disabled 4117 4117 @

BT | eser || cancel || asp |

Figure 4-25. Edit Daemon Definition Dialog

- Check the Buffer Wrap checkbox in the Trace Buffer Settings sec-
tion of the Edit Daemon Definition dialog.

- Press OK.

The kernel daemon is now configured to run in bufferwrap mode. This means that kernel
events are collected in kernel memory buffers and are not passed to NightTrace except by
explicit flush operations.

Depending on system activity, huge amounts of kernel trace data can be generated in a rel-
atively short period of time. Since operation of NightTrace is likely a new experience for
many users, we will restrict the data flow to a manageable size for new users.

- Ensure that kernel _trace_to_gui is selected in the Daemon Control
Area.

- Press the Launch button.

- Press the Resume button.

4-33

NightStar RT Tutorial

- Watch the daemon statistics in the Daemon Control Area; once
30,000-50,000 events are present in the Buffer column, press the Flush
button and then the Halt button.

Skip the next section and jump directly to “Analyzing Kernel Data” on page 4-34.

Using Prerecorded Kernel Data

This section is provided only for those using the tutorial that have not booted a
trace-enabled kernel.

If you collected live kernel trace data in the preceding section, skip to “Analyzing Ker-
nel Data” on page 4-34.

The NightStar RT tutorial directory contains some pre-recorded kernel data which can
be used in the section titled “Analyzing Kernel Data” on page 4-34.

- Select the Open Trace File... menu item from the NightTrace menu in
the NightTrace main window.

- Type the following into the file dialog in the Selection text field:
/usr/lib/NightStar/tutorial/_kernel-data
- Press the OK button.

Proceed to the next section.

Analyzing Kernel Data

NightTrace automatically generates a default kernel display page that is customized to the
system from which the kernel data was captured.

- Click on the tab created in the NightTrace main window to display the
newly-created kernel display page. The tab will have a name like
<machine_name> Timeline.

- Zoom out until the data and state graphs are populated with events.

4-34

Using NightTrace

- Click in an active area and zoom in until detail can be seen.

*r' NightTrace -New Session(Unsaved)!(on raptor) BEE

File View Daemons Search Summary Profiles Timelines Tools Help

PE BP9 = w';*_u_ﬂ_ H ¥ a

[Trace | app_data | Profiles | sine (0 to 50457) | sine Durations J raptorTimeIinel

Events
| Oﬁ'setl E\fenllCPUl Pmcessl Threadl Time (sec)l Tag |Descriptinn -
26509 IRO_ENTRY 2 ntrace 11524 1524480945653 Interrupt invalidate_tlb (IRQ=1)
26510 IRQ_EXIT 2 ntrace 11524 1524480947355 Interrupt handling for invalidate_tl...
E] 1524.480948026
TRAP_ENTRY 3 ntrace 11745 1524.481219344
raptor Timeline:
raptor CPU 2 | | i | [3
invalidate_tlb I
Page-Fault
gettimeofday
ntrace
IRQ_EXIT
raptor CPU 3
local_timer
Page-Fault
_hewselect
ntrace
TRAP_EXIT
’1524.415 |1524.Sls ’1524.615 ’1524.?15 ’1524.815 ’1524.915
Imerrupt | Exception ||
Syscall |KernelEvent] b.1s 00.1s 000.1s
|||||I||||’S|||||||||’l||||||||||
Current Time | 1524.480948026| |Hover time from current timeline = 0.006857584
Start Time 1524362137077 [Data value 0
End Ti 1525.038727479
ne_ime Current offset=26511 cpu=3 id=TRAP_EXIT proc=ntrace thr=11745 time(sec)=1524 480948026
Span 0.676590402)
(0.000000000 from current time)

4 | 10|

Hover time from current timeline = 0.006857584 Data value 0

B

Figure 4-26. Kernel Display Page

NOTE

Your timelines may look significantly different if you have a dif-
ferent number of CPUs. Additional system activity can make the
display vary as well. Do not be concerned about such differences
at this step.

For each CPU, the following information is displayed:
* interrupt activity (in red)

* machine exception activity (in green)

4-35

NightStar RT Tutorial

¢ system call activity (in blue)
* per-process CPU utilization (shown in a variety of colors)

¢ detailed kernel events (in dark red)

The data boxes on the left hand side of the display page are color coded to match the infor-
mation they describe. Their contents change dynamically based on the position of the cur-
rent timeline.

- Press Ctrl+F to switch to the Profiles panel.

- Click the Reset button to the right of the Key/Value selection area.

- Press the Browse... button to the right of the Processes text field.
The Select Processes dialog is presented.

- Select the app process from the list of known processes.

- Press the Select button to close the Select Processes dialog.

- Select the System Call Enter Events option from the Key / Value
option list.

The Select System Calls dialog is presented.
- Select nanosleep from the list of system calls shown.
- Press the Select button to close the Select System Calls dialog.

- Change the list of events in the Events text field to include only
SYSCALL_RESUME.

- Press the Search Forward button.

A new profile based on the information entered is added to the Profile Status List and
the current timeline is changed to the next occurrence of a resumption of a suspended
nanosleep system call in process app.

NOTE
If NightTrace fails to find an occurrence matching the sort criteria
just entered, recheck the search criteria. It is likely that you may

have skipped pressing the Reset button in the steps above.
Ensure that the Threads text field indicates ALL and not sin.

- Click on the tab corresponding to the kernel display page.

4-36

Using NightTrace

- Zoom in until detailed information is visible, similar to what is shown
below:

raptor Timeline
raptor CPU O
local_timer) -
nanosleep

app

SYSCALL_RESUME

LI |IIW

raptor CPLU 1

local_timer

_newselect

idle

TRG_EXIT

raptor CPU 2

local_timer

_newselect

idle

TRG_EXIT

Figure 4-27. System Call Resume for Nanosleep

NOTE

Your timeline may look significantly different if you have a differ-
ent number of CPUs. Additional system activity can make the
display vary as well. Repeat the search a few times to find an
occurrence that looks similar to the row which indicates the app
process. You can repeat the last search by pressing the forward
search icon on the toolbar or by pressing the Ctrl-G.

The red bar to the left of the current timeline indicates that an interrupt occurred. In this
case, it was a local _timer interrupt.

The tall vertical black line spanning the system call and exception rows represents a con-
text switch. The current timeline (dashed line spanning the entire rectangular display
area) is likely overlaid with the context switch line at this zoom setting.

- Select the highlighted event in the Events panel. This is the event at the
current timeline, which should be SYSCALL_RESUME.

4-37

NightStar RT Tutorial

The Description column in the Events panel for the currently highlighted event
describes the event in more detail with:

Everts [z

Offsel Event| CPU | >rocess | Thmdl Time (:e:)| Thgl Descripfion Fﬂ
44075 KERMEL_TIMER 0 idle 0 1.723053551

44076 IRQ_EXIT 0 idlle 0 1.723056368 Inferrupt handling for timer (IRQ=0) exited

44077 IRQ_ENTRY 0 idle 0 1.723077633 Interrupt local_timer (IRQ=1)

44078 PROCESS 0 idle 0 1.723079367 Wake process app (23540)

44079 IRQ_EXIT 0 idle 0 1.7230817 14 Interrupt handling for local_timer (IRQ=0) exited

4080 SCHEDCHANGE 0 app 23540 1.723084038 idle switched out (runnable); app (23540) switched in I

SYSCALL_RESUME [i] Resuming sysiem call nanoslesp

44082 SYSCALL_EXIT 1] app 23540 1.723087713 Exited system call nanosleep - -
44083 SYSCALL ENTRY 0 app 23540 1.723091497 Entering system call ipc from po=0xdo[F550Mming System cal.
44084 PC 0 app 23540 1.723092484 System V IPC call to semop (arg1=0xf800d)

44085 PROCESS 0 app 23540 1.723097 665 Wake process app (23541)

4086 PROCESS 0 app 23540 1.723100008 Wake process app (23542)

44087 IRQ_ENTRY 3 idle 0 1.723101277 Interrupt reschedule (IRQ=1) @

Figure 4-28. Events Panel after Search

- While the current timeline is at the SYSCALL_RESUME event, press the
Up Arrow key.

The current timeline is changed to the preceding event and the text description indicates a
context switch with text similar to the following:

idle switched out (runnable); app (6336) switched in

The blue bar represents system call activity. The data box to the left will describe the sys-
tem call name for the system call at or to the left of the current time line.

- Press the Ctrl-G key to advance back to the SYSCALL_RESUME event.

In the instance shown in the screen shot above, shortly after the sine thread returns from
nanosleep, the main thread is exiting the nanosleep call on line 93 of app.c. It
then enters an i pc system call to execute the semop library call on line 94.

NOTE

On some systems, the system call may be described as semop
instead of ipc.

Mixing Kernel and User Data
If you are not running a trace-enabled kernel, skip this section and proceed to “Using
the NightTrace Analysis API”” on page 4-42.

= Click on the first tab of the NightTrace main window.

- Ensure the kernel daemon is halted by pressing the Halt button if it is sen-
sitized (it should have been halted in a previous step).

4-38

Using NightTrace

- Select the kernel _trace_to_gui segment in the Trace Segments
panel and select the Close Trace Data menu option of the context
menu.

- Select both daemons in the Daemon Control Area using Click and
Shift+Click mouse and keyboard actions.

- Press the Launch button.

Read the next four steps before proceeding, then execute them in order.

Press the Resume button.

Wait about 2 seconds.

Press the Flush button.

Press the Halt button.

Data from both the user application and the kernel have been captured and brought into
NightTrace.

- Click on the Profiles tab.

- Select the sine profile from the Profile Status List at the top of the
page.

- Press the Summarize icon on the toolbar.

The last action caused a new page to be created containing a summary of the sine state
defined in “Generating Summary Information” on page 4-23.

The current timeline is automatically positioned to the longest instance of the state.

- Click on the tab corresponding to the kernel display page.

- Zoom in or out as required until you can clearly see the detail relating to
the sine thread’s cycle.

4-39

NightStar RT Tutorial

In the graphic shown below, the sine thread was preempted by a kernel processing of a

SOFT_IRQ_EXIT

rcim interrupt.
raptor Timeline
raptor CRPU O
rcim - I
I |
nanosleep
app
SCHEDCHANGE
raptor CPU 1
reschedule N
I [T 1
write char dev |
K softirqd/1
I

raptor CPU 2

local_timer

_newselect

sshd:

MEMORY

raptor CPU 3

local_timer

_newselect

INENI W1 B

idle

[

TRG_EXIT

1. 71741=

A 71781=

(1]

A 717”1 =

g

A71771
oD

4-40

Figure 4-29. Longest Instance of State

The reason for the extended cycle in your trace data may be due to other circumstances.

Some

Was the sine_thread() preempted by another process?
Did an interrupt occur during the cycle?

Was there significant activity on the hyper-threaded sibling CPU which
stole cycles from the CPU where the sine thread was executing?

Did the application get a page fault or other machine exception?

Did activity on a hyper-threaded sibling CPU interfere with the CPU where
app is executing.

of these circumstances are discussed in more detail in “Overrun Detection and Sys-

tem Tuning” on page 7-9.

Mach

ine exceptions include information detailing the type of exception, the faulting

address (when applicable), and the PC at which the exception occurred.

Type Ctrl+F while the kernel display page is selected.
Select Exception All Events from the Key / Value option list.
Select Page-Fault from the list of exceptions.

Press the Select button.

Using NightTrace

- Press the Search/Forward button.

If a page fault is located, the current timeline is moved to the next occurrence of a page
fault. The text area at the top of the kernel display page includes detailed information
about the exception, including the PC at which the fault occurred and the faulting address.

You can use NightView to see the actual line number of programs (if they have debugging
information) based on the PC information with a command like: 1ist *pc-address.

4-41

NightStar RT Tutorial

Using the NightTrace Analysis API

4-42

NightTrace provides a powerful APl which allows user applications to analyze
pre-recorded trace data or to monitor and analyze live trace data.

Users can write programs that define states and conditions and process events as they
occeur.

In this tutorial, we will instruct NightTrace to build an API program automatically.
- Click on the Profiles tab.
- Select the sine profile from the Profile Status List.

- Select the Export to API Source... menu item from the Profiles
menu.

The following dialog is displayed:

u Export Profile(s) to NightTrace APl Source File b 4

[3| Define main{) function [State start callbacks
[%]| Define callback functions [%] State end callbacks

[3]| Default printf()'s in callbacks || State active callbacks
[%]| Reportanalysis APlerrors || State inactive callbacks

[3| Read trace data from stdin

Trace Data File []

Profiles Source [expart_analysis_ﬂ.c]

Zallbacks Source [export_analysis_ﬂ.c]

H Reset H Cancel H Help l

Figure 4-30. Export Profiles to NightTrace API Source File dialog

- Clear the State start callbacks checkbox.
- Press the Export button.

- Select the Exit Immediately menu item from the NightTrace menu to
exit NightTrace.

NightTrace has created an APl program which listens for occurrences of the state defined
by the sine profile and prints out some information for each instance.

- Build the API program using the following command:
cc —-g export_analysis_0.c -Intrace_analysis

This program expects to consume live trace data.

Using NightTrace

You can configure a user daemon with the NightTrace GUI and have NightTrace launch
the analysis program automatically.

Alternatively, you can use the command line user daemon program ntraceud to achieve
the same effect.

- Type the following command:
ntraceud --stream --join /tmp/data | ./a.out

This command instructs ntraceud to start capturing trace data from a running applica-
tion which is using the file /tmp/data as a handle. The --stream option indicates
that instead of logging the data to the named file, it should be sent to stdout.

The application program may not immediately begin generating output because the data
rate is fairly low and buffering is involved.

- To flush the current buffers for immediate consumption by the application,
issue the following command in a different terminal session:

ntraceud --flush /tmp/data

NOTE

You may need to repeat that command several times over a period
of a few seconds to allow the data to pass through system buffers.

Data similar to the following will appear on stdout in the terminal session where the
analysis program was launched:

sine (end)offset 665 occur 333 code 2 pid 3399 time 16.628649 duration 0.000003
sine (end)offset 667 occur 334 code 2 pid 3399 time 16.678631 duration 0.000003
sine (end)offset 669 occur 335 code 2 pid 3399 time 16.728655 duration 0.000003
sine (end)offset 671 occur 336 code 2 pid 3399 time 16.778676 duration 0.000003
sine (end)offset 673 occur 337 code 2 pid 3399 time 16.828693 duration 0.000003
sine (end)offset 675 occur 338 code 2 pid 3399 time 16.878716 duration 0.000004
sine (end)offset 677 occur 339 code 2 pid 3399 time 16.928745 duration 0.000003
sine (end)offset 679 occur 340 code 2 pid 3399 time 16.978760 duration 0.000003
sine (end)offset 681 occur 341 code 2 pid 3399 time 17.028779 duration 0.000003

- Issue the following command to terminate the daemon:

ntraceud --quit-now /tmp/data

If you are not running a trace-enabled kernel daemon, skip the remaining of this sec-
tion and proceed to “Conclusion - NightTrace” on page 4-69.

Several sample API programs are provided with NightTrace.

- Type the following commands to build the watchdog example program:

cp /usr/lib/NightTrace/examples/watchdog.c .
cc -g -o watchdog watchdog.c -Intrace_analysis

This simple sample program watches for context switches on a specific CPU and prints
the name of the process that is switching in.

4-43

NightStar RT Tutorial

This time the ntracekd kernel daemon will be used to capture 5 seconds of kernel data
and stream the output to the watchdog program.

- Issue the following command:

ntracekd --stream --wait=5 /tmp/x | ./watchdog 1

The program will generate output similar to the following:

context switch: 4.979350027 4 ksoftirqd/0
context switch: 4.979358275 2846 X
context switch: 4.983906074 0 idle

.983960385 2846 X
.994892976 3167 firefox-bin
.994989171 4492 ntfilterl
-995070736 4489 watchdog
.995092415 4492 ntfilterl
-995173214 4489 watchdog
.995188096 4492 ntfilterl
.995256175 4489 watchdog
.995270824 4492 ntfilterl
.995332743 4489 watchdog
.995355783 2846 X
.000351519 4 ksoftirqd/0
.000360675 2846 X

context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:

GUOADMDMBIAMDIMDIMDIMLAEDIMDIMDIAILADLD

Automatically Tracing Your Application

4-44

This section will utilize a new invocation of the NightTrace analysis tool.

- If you still have a NightTrace session active, exit NightTrace by selecting
Exit NightTrace Immediately from the File menu.

NightTrace provides a component called Application Illumination, which automatically
instruments your application with trace points that record the entry and exit of subpro-
grams.

The arguments and return values to those subprogram calls, among other things, can be
included as part of the trace data, so that you can see them when you analyze the data.

Not all subprograms can be automatically instrumented. Application Illumination cannot
detect functions which do not have globally visible external symbol names (e.g. static
void func(); in the C programming language). Similarly, it cannot detect functions
which are completely internal to a linked shared library (i.e. functions that have no exter-
nal entry point). Similarly, by default, Application Illumination only operates on func-
tions which have compiler-generated debug information -- although you can change this
behavior.

The utility Zusr/bin/nlight is the primary interface used to instrument your applica-
tion.

nlight provides for selection and exclusion of subprograms as well as customization of
detail levels.

Using NightTrace

In this tutorial, we’ll use nlight’s wizard to quickly and easily instrument the app pro-
gram we’ve been using thus far.

nlight Wizard - Selecting Programs

- While positioned in the tutorial test directory you created in the initial
stages of this tutorial, invoke the nlight tool:

nlight &

The following window is displayed.

NightLlight - New Session

File View Tools Help

Select Programs with Debug Information

One or more programs may be instrumented with trace points at function calls. By building the executable file
with debug informatien, functien retums may also be instrumented, and infermation about function arguments,
return values, and global variables may be recorded as arguments to the events.

@ Select Programs
) Define llluminators

) Select Illuminators

Program: -
) Relink Programs o9 | l
. . Browse...] [Delet l
) Activate llluminators l rowse €
() Run Scripts NightLight will use the Build Command to build any missing programs. The Build and Build All buttons may

be used to build the current program or all programs respectively at any time.

Build Command:]

[Build H auudAu]

As an advanced feature, the Manager may be used to identify object files, archives, shared objects, and
programs, and to create illuminators for them.

(e][e][en]

A

Figure 4-31. nlight Wizard - Select Programs Step

4-45

NightStar RT Tutorial

4-46

The Wizard tab is raised by default and provides step-wise instructions for instrumenting
your application.

The bullet list on the left side of the page indicates what step you’re currently working on
within the wizard, while the Prev and Next buttons at the bottom navigate through the
steps.

The initial step is Select Program, in which we tell nl ight which program to illumi-
nate.

- Press the Browse... button and select the app program file from the file
selection dialog, then press Save to close the file selection dialog.

Note that the Build Command text area below the program selection now contains a
default make command. While not specifically required, it is convenient to provide
nlight a command which can rebuild your original program, in case you should choose
to do so from within nlight. Further, nl ight will automatically invoke this command
if it finds that the specified program file does not exist.

- Press the Next button to proceed to the next step.

Using NightTrace

nlight Wizard - Defining Illuminators

The Define llluminators step is displayed, which allows us to select the portions of
code in the application that we want to illuminate.

File View Tools Help

Weard

NightLight - New Session

() Select Programs

@ Define llluminators
() Select Illuminators
() Relink Programs

() Activate llluminators

() Run Scripts

Define an llluminator for each Program

An illuminater is a directory containing object code to record trace events for functions in the statically linked
portion of each program, descriptions of those events for NightTrace, and various other files. An illuminator may
be created for each program and will be called programName. ai.

Program: |app -

[%] Define an illuminator for this program.

Functiens may be included or excluded from being traced by matching their names against reqular
expressions. The inclusions and exclusions in the list below are applied in order from top to bottom. By
default, all functions are included except those beginning with underscore, those in C++ std namespace,
main, and Ada's internal I/O routines.

Functions Included or Excluded from Being Traced:

Add

Edit...

Delete

p

Down

As advanced features: (1) the Editor may be used to customize the user-defined illuminator, (2} the Manager
may be used to customize additienal illuminaters, including the predefined ones, (3) to assist with deing
advanced customizations, the user-defined illuminator may be populated with all functions and global variables
found in the program, and (4) a detailed report about the user-defined illuminator may be written to the
Console.

BE B

Advanced,” Build] [Prev H Next H Help]

Creating llluminater Done

4

Figure 4-32. nlight Wizard - Define llluminators Step

The term illuminator refers to a directory which contains the nl ight-generated files
required for instrumenting code. Normally, you don’t interact directly with the contents of
that directory; nlight does all the work. The Define an illuminator for this pro-
gram checkbox tells nl ight that we want to instrument the statically-linked portions of
the app program.

4-47

NightStar RT Tutorial

4-48

This page also includes a selection and exclusion area which allows you to specify spe-
cific subprograms you want to include or exclude from instrumentation. You can also
specify patterns via regular expressions to include or exclude multiple functions easily.

We’ll just let nlight illuminate all the statically-linked portions of our app program at
this step.

- Ensure the checkbox labeled Define an illuminator for this program
is checked.

- Press the Next button to proceed to the next step.

Using NightTrace

nlight Wizard - Selecting Illuminators

The Select Illuminators step is now displayed.

File View Tools Help

Weard

NightLight - New Session

() Select Programs

() Define lluminators
@ Select llluminators
) Relink Programs

() Activate llluminators

() Run Scripts

Select Predefined llluminators for each Program
Some predefined illuminators are provided with NightTrace and may be linked into each program.

Program: [app |vl

The main illuminator initiates tracing with a trace begin() call before main () begins running. Programs that
already initiate tracing on their own should not include this illuminator.

%] main

These illuminators trace calls to functions in the corresponding shared system libraries.
[] glibc

[] pthread

[] ceur_rt

As an advanced feature, the Manager may be used to link additional illuminators into the program and to
customize the predefined ones. Glibc's debuginfo packagel(s) must be installed to customize glibe and pthread.

e][v][e |

A

Figure 4-33. nlight Wizard - Select llluminators Step

This step allows us to select additional, predefined illuminators for our program.

The main illuminator is special and is only needed if your application doesn’t already use
the NightTrace APIl. Our app program already does, so we should clear this checkbox.

- Clear the main checkbox.

Additional illuminators are already built and shipped with NightTrace. In the middle sec-
tion of the page, we can include illuminators for system libraries that our program uses.

4-49

NightStar RT Tutorial

- Check the glibc checkbox to include the gl ibc illuminator.
- Check the pthread checkbox to include the pthread illuminator.

- Press the Next button to proceed to the next step.

nlight Wizard - Relinking the Program

The Relink Programs step is now displayed.

File View Tools Help

Wzara

NightLight - New Session

() Select Programs
() Define luminators

) Select llluminators

e

-

@ Relink Programs

) Activate llluminators

e

() Run Scripts

Relink llluminated Programs

llluminators have object files that must be linked with programs along with libntrace. Each program is relinked
with these files and library as a separate executable file. The illuminators are initially not activated. Unactivated
illuminators have zero run-time overhead.

Program: | app |v]

By default, the copy of the program with the illuminators and libntrace linked in is named origina/VameAI.
uminated Program Path: |appal]

The command to relink the program with illuminators may be specified using some substitution variables
{#keyword) for the illuminated program path, the options that must be passed to the compiler, and the
dependency list. Click on the View buttons for further assistance.

Relink Command: [View Typical Makefile Target l [View Substitution Variables l

[make SRELINK ILLUMINATOR_OPTIONS="%GCC" ILLUMINATORS=""%Al"]

[Default Make”Defaulta.linkl [Relink H Relink Al]

There are no additional advanced features available on the Manager, but it may be used to make the same
settings.

e][e][e]

A

4-50

Figure 4-34. nlight Wizard - Relink Programs Step

Using NightTrace

In order to utilize the illuminators, we need to create a new version of our executable pro-
gram which links with exactly the same objects and libraries as the original program, but
also includes the nl ight-generated illuminator files.

The resultant executable will contain the unmodified object files and libraries from the
original program, but it will also include instrumented “wrapper” functions which inject
the actual trace event calls at runtime.

Since we need to essentially recreate the original program and add some new link options,
the wizard needs you to enter a command that will do this. The default “relink” command
is already filled in and assumes you will use the make utility to build the program. It
passes some make parameters which make it very easy for you to form the Makefile
rule to build the new program.

In most cases, you can simply copy the final rule required to create your original applica-
tion and rename it and add the options passed by the wizard on the link line.

Our Makefi le in the tutorial test directory already has a rule defined for the instru-
mented program name, which, by convention, is the original name of the program with the
letters “Al” appended to it. The following is an excerpt from the Makefi le that shows
the rules to build app and appAl.

app:- app-c
cc -g -0 app app-c \
-Intrace_thr -Ipthread -Im

appAl: app.c $(ILLUMINATORS)
cc -g -0 appAl app-c \
$(ILLUMINATOR_OPTIONS) -Intrace_thr -lIpthread -Im

Notice that the rule to build appAl (the instrumented version of the program) is exactly
the same as the rule to build the original app program, except that we also include the
options passed in by the wizard in the “relink” command.

Note that we also included a dependency on the illuminator itself ($ILLUMINTATORS),
so that the make command will definitely relink the appAl executable if we make cus-
tom changes to the illuminator, even if no other changes are made to your application.

- Press the Next button to proceed to the next step.

4-51

NightStar RT Tutorial

nlight Wizard - Activating llluminators

The Activate llluminators step is now displayed.

File View Tools Help

Weard

NightLight - app.nl

() Select Programs
() Define Hluminators
() Select Illuminators
-~

) Relink Programs

») Activate llluminators

w

() Run Scripts

Activate llluminators in each Program

Use the check box to activate or deactivate the illuminators linked into each program. Deactivated illuminators
have zero execution-time overhead. Options may be specified for each illuminator.

Program: |app |vl

Detail Level controls how much detail is recorded as arguments to events.

The glibe illuminator traces function calls to the system C library.

(%] glibc Detail Level: n

The pthread illuminator traces function calls to the POSIX threads library.

(% pthread Detail Level:

This illuminater is the userdefined illuminateor for the current program.

[%] app.ai Detail Level:

As an advanced feature, the Manager may be used te configure multiple activation sets, set additional options,
and select a different default activation set (if no default activation set existed, the wizard created one called
Wizard).

| Prev |[Next || Help |

4

4-52

Figure 4-35. nlight Wizard - Activate Illluminators Step

An important feature of Application Illumination is that once you relink your program and
include the illuminators, the illuminators are inert. You can run your application with zero
overhead while the illuminators are inert.

In this step, we’ll activate them so that when we run the program trace data will be logged.

Using NightTrace

The default activation level is 2, which provides a medium amount of detail with each
event. In this tutorial we want to see more detail, so we’ll increase the detail level of each
illuminator.

Change the Detail Level for the glibc illuminator to 3.

Change the Detail Level for the pthread illuminator to 3.

Change the Detail Level for the appAl illuminator to 3.

Press the Next button to proceed to the next step.

nlight Wizard - Running the Program

The Run Scripts step is now displayed.

The wizard provides this step for convenience, but in reality, you’re just ready to run your
instrumented program right now outside of the wizard.

We’ll go ahead and use the wizard to invoke NightTrace and the instrumented program for
demonstration purposes.

4-53

NightStar RT Tutorial

- Change the Mode to Stream mode by selecting Stream from the option
list.

File View Tools Help

Ward

NightLight - app.nl

Select Programs
Define Hluminators
Select Illuminators
Relink Programs
Activate llluminators

Run Scripts

Run Scripts to Launch Programs and NightTrace
File mede provides a single script to launch the pregrams te collect data in a trace file and then launch
NightTrace to analyze the file.

Stream mode provides two separate scripts: one to launch MightTrace in streaming mode and the other to
launch the programs separately, so they can send their trace data directly to NightTrace for analysis.

Mode: | Stream | h]

Script te Launch NightTrace in Stream Mode:

Invoke NightTrace importing daemons from the programs [Run l
ntrace --import=appAl &

[Default l
Wait a few seconds for messages from ntrace to go to console
sleep 3
Script to Launch Programs:
Launch Programs [Run l
. /appAl

[Default l

Terminal Session:

Console | vl

As an advanced feature, the Manager may be used to create an unlimited number of named scripts. The
wizard's scripts are Wizard, Wizard Stream, and Wizard Launch.

[Prev H Next H Help]

Activating llluminater Done

4

4-54

Figure 4-36. nlight Wizard - Run Scripts Step (with Stream Mode selected)

In Stream mode, nlight presents two scripts with example commands.

The first script launches NightTrace so that you can start a streaming daemon and immedi-
ately collect trace data from your program when you launch it.

The second script simply launches the instrumented program.

- Press the Run button to the right of the first script, entitled Script to
launch NightTrace in Stream Mode.

Using NightTrace

Analyzing Application lllumination Events

The NightTrace analysis interface appears.

i ntrace (=][=](x])

File View Daemons Search Summary Profiles Timelines Tools Help

PE B8 =Fw@® PO 00 = E o »

Please specify trace file name:

’ oK H Cancell

Interval : 1 events (0 to 0}, 0.000400000 seconds (0.000000000 to 0.000400000) Current Tllj

Figure 4-37. NightTrace - Import File Name

Since NightTrace was invoked with the —— import option, it prompts you for the name of
the trace data file, which is the first parameter your program passed to the trace_begin
call.

- Enter /tmp/data in the prompt dialog and press OK.

NOTE

If the main illuminator had been selected in nlight, ntrace
would have already known the name of the trace file. In our
example, we didn’t include the main illuminator, because our
program already initiated tracing independently of nlight.

4-55

NightStar RT Tutorial

The Daemons panel now includes a user daemon which is ready to collect trace points
from our instrumented appAl program.

Nightirace - New Session(Unsawved)

File View Daemons Search Summary Profiles Timelines Tools Help
PE 3= rmEmI PR Elafvr & ra
Dasmons
Type | Daemon Target Logged Lost State Attached Buffer
jftmp/data_import ' narf ' ' Halted .
[(!)Launch H Resume H Pause H Halt l [FElush H Display l [Triggers... l [Enable Events... H Delete]
Trace Seaments
| Type ¥ |Traoe Segment | 'Ihrgetl Loggadl LostlDuration [sec]lll.lnsaved|
Save Trace Data... l l Close Trace Data
Y

Figure 4-38. NightTrace - Daemon Ready to Launch

- Press the Launch button to launch the daemon.

- Press the Resume button to start collecting trace events.

Now we’re ready to run our instrumented application and collect trace data as the applica-
tion executes.

- In the nlight wizard, press the Run button next to the script entitled
Script to Launch Programs.

4-56

Using NightTrace

Returning to the NightTrace window, you can see that the user daemon is collecting events
as the number in the Buffer column in the Daemons panel is steadily increasing.

NightTrace - New Session{Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PH RR=rmm PP Pe Elur s na

Daemons

Type Daemon Target Logged Lost State Attached Buffer
ftmp/data_import . . ' ' Logging .

[(DLaunch H Resume H“ Pause Hlﬂa __________ [Flush H Display l [Triggers... l [Enable Events... H Delete]
Trace Segments
| Type ¥ |Traoe Segment | 'lhrgetl Loggedl Lnstl Duration (sec]lll.lnsaved|
Save Trace Data... l [Close Trace Data

Figure 4-39. NightTrace - Daemon Collection Events

It is likely that the Attached count in the Daemons panel will indicate three attach-
ments, since we left the app program running earlier in this chapter. The daemon itself is
included in the count of attached processes; thus our two applications app, appAl and
the daemon bring us to a total of three processes that are associated with the logging ses-
sion.

- Press the Halt button in the Daemons panel to stop the daemon.

- Click on the /tmp/data_import tab to bring the Events and Timeline
panels to the top of the NightTrace window.

4-57

NightStar RT Tutorial

The NightTrace display now includes a timeline which describes the applications events
graphically as well as an events panel which lists the events in chronological order.

Nightirace - New Session(Unsaved)

File View Daemons Search Summary Profiles Timelines Jools Help

PE R =FeFsP P00 = m';**ﬂ_ H oW o

Trace | /tmp/data_import

Events
| Oﬂ‘setl EventhPl.ll Pronassl Threadl Time (sec}l Tag |Description =
319 app cos 5.350346771 argl=-0.622515
320 1 app sin 5.350358028 argl=0.788011]
sin 5.350392961 argl=0.782608 u
[tmp/data_impart
Howver time from current timeline = 0.355324413 B
e L) O
Evantc:
Current Time |5.35039296]) b.1s 1s 1s 1s
Start Time | 0.000000000 T I T e T I P o T NN AT N O
End Time 10.79361821]
Span 10.79361821 s 0.1s 0.1s 0.1s
S [IR Lol 1 NI B A A L1
[« | («1+]
Hover time from current timeline = 0.355324413 y

Figure 4-40. NightTrace - /tmp/data_import Tab

4-58

Using NightTrace

In the following screen shot, the Timeline panel has been closed and the Events panel has
some columns hidden (use the context menu to select columns to show or hide).

File View

Daemons Search Summary Profiles

Nightirace - fhamejjeffhftestftutorial/session_0

Timelines Tools Help

PO LR -smmPPRR E

ftmpj/data_import

- [H]E] = -

Events
Event Process Thread Time (sec)| Tag |Description -
NT RESUME STREAM ' .

3 app cos 0.042854292 argl=0.250380
1 app sin 0.042867890 argl=0.965926
2 app sin 0.042902765 argl=0.968148
3 app cos 0.092940456 argl=0.241922
1 app sin 0.092953147 argl=0.968148
2 app sin 0.092987573 argl=0.970296
3 app cos 0.143032892 argl=0.233445
1 app sin 0.143045809 argl=0.970296
2 app sin 0.143080064 argl=0.972370
3 app cos 0.193112354 argl=0.224951
1 app sin 0.193124737 argl=0.972370
2 app sin 0.193158589 argl=0.974370
3 app cos 0.243207216 argl=0.216440
1 app sin 0.243219777 argl=0.974370
2 app sin 0.243254511 argl=0.976296
3 app cos 0.293320072 argl=0.207912
1 app sin 0.293334222 argl=0.976296
2 app sin 0.293377943 argl=0.978148
3 app cos 0.343321310 argl=0.199368
1 app sin 0.343334694 argl=0.978148
2 app sin 0.343370519 argl=0.979925
3 app cos 0.393390454 argl=0.190809
1 app sin 0.393403042 argl=0.979925
2 app sin 0.393437486 argl=0.981627
3 app cos 0.443456007 argl=0.182236

1 app sin 0.443468932 argl=0.981627 g

A_AADC AZIAA

1A nn3nEED

Figure 4-41. NightTrace - Customized Events Panel

- Close the Timeline panel by selecting the upper-right control box in the

panel.

- Activate the Textual Search dialog by pressing Ctrl+T while the focus
is in the Events panel.

4-59

NightStar RT Tutorial

The Search Events for Text dialog is shown.

A Search Events for Text EIES
[] Treat search text as regular expression
Search text :b
[ENTER_work [+

Everit attributes to niatch agairist:

CPU % Frocess ¥
Cescription %] Thread [
Everit Nanie (% Tinie (%]

Figure 4-42. NightTrace - Search Events for Text

- Type ENTER_work into the text field and press the Search Forward
button.

- Press the Close button.

The Events panel now has the first occurrence of the ENTER_work event selected.
the figure below, the RETURN_work event was also selected manually.

NightTrace - New Session{Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
PEH 2R-rme PR PR Eloi% kg a
Trace | ftmpjdata_import .
Ewvents b3
Oﬁsetl EventhPl.ll Procossl Thmdl Time (secll Tag |Doscription =
0 NT_RESUME_STREAM 16034 16034 0.000000000
1 NT ASSOC_PID appAl 0 0.000000000 argl=0x41707061 arg2=0x49 -
2 NT ASSOC_TID appal main 0.000000001 argl=0x6e69616d
3 ENTER_semget appAl main 4.276967756 calling semgeti{key=0,nsems=1,semflg...
4 RETURN_semget appAl main 4.276973124 returning from semget{)=294918 er...
5 ENTER_pthread_attr... appAl main 4.276978079 calling pthread_attr_init(attr=0xbfod10...
6 RETURN_pthread_at... appal main 4.276981550 returning from pthread_attr_init(}=0 .
7 ENTER_pthread_cre... appAl main 4.276989146 calling pthread_create(newthread=0xbf...
8 RETURN_pthread_cr... appAl main 4.277034453 returning from pthread_create()=0 .
9 ENTER_pthread_attr... appAl main 4.277035057 calling pthread_attr_init{attr=0xbfod10...
10 RETURM_pthread_at... appAl main 4.277035739 returning from pthread_attr_init(}=0 .
11 ENTER_pthread cre... appAl main 4.277036350 calling pthread_create(newthread=0xbf...
12 NT ASSOC_TID appAl sin 4.277036351 argl=0x33303631 arg2=0x39
13 NT_AS50C_TID 16039 sin 4.277036351 argl=0x33303631 arg2=0x39
ENTER_sine_thread appAl sin 4.277072322 calling sine_thread(ptr=0x8023080)
15 ENTER_work appAl sin 4.277073043 calling work(control=1) caller=
16 RETURN_work appAl sin 4.277103907 returning from work errno=0
17 NT ASSOC _TID appAl sin 4.277103907 argl=0x6e6973
18 NT_AS50C_TID 16039 sin 4.277103908 argl=0x6e6973 -
19 ENTER_semop appAl sin 4.277121455 calling semop(semid=294918,s0ps=0x... E
Y

Figure 4-43. NightTrace - Events Panel with Selected Events

These events correspond to the sin thread executing the work function.

4-60

Using NightTrace

NightTrace provides “tool-tip” displays of additional data when you hover the mouse cur-
sor over various areas of the display. For the Events panel, the tool-tip text is dependent
on which row and column you hover over.

- Place the mouse cursor over the description cell for the ENTER_work
event and leave it there.

A tool-tip appears which contains the entire description of the event.

calling work (control=I1)
caller=0x8048% 1 [sine thread() at app.c:43]
frame=0xb73413ac

Raw Arguments: 0x80489el, 0xb79413ac, Ox1

Figure 4-44. NightTrace - Descriptive Tool Tip

Notice that the description includes the location of the caller using both the hexadecimal
PC location as well as the name of the subprogram and file and line number information:

caller=0x80489¢el [sine_thread() at app.c:43]

NOTE

Depending on compiler versions and actual source line contents,
the line number displayed may actually be associated with the
next code-generating source line after the actual call. This is
because the value of the PC that is included with the trace event is
the “return address”; the instruction that will execute after the
called function returns.

NightTrace will always attempt to map the PC address in the caller portion of the descrip-
tion to the subprogram and file/line descriptions, but it will not be able to provide this
information if the corresponding routine wasn’t built with debug information.

When a file and line number is available in an event’s description, you can ask NightTrace
to show you the source line in a text editor using the context menu.

Text Search... Ctrl+T
¥ Search Forward Ctrl+G
*® Search Backward Ctrl+B
¥ Goto... Ctri+l

Distinguish Process Name by PID
Edit Current Event Description... Ctrl+D
Close All Trace Data Alt+W

Show Source File from Description...

Display Fields 3

4-61

NightStar RT Tutorial

- Right-click the mouse on the description of the
ENTER_pthread_create event and select the Show Source File
From Description... option from the context menu.

NightTrace will load the source file and position your text editor at the appropriate line

number, as shown in the following figure.

& emacs@zoey =)

File Edit Options Buffers Tools © Help

DeEEx 0B s abhE XY

' FunctionCall {void)
{

woid *
sine_thread {(wvoid * ptr)

control t * data = {control t *)ptr;
struct sembuf wait = {0, -1, 0};
worki{l); h
-—:—— app.c 13% L43 {C/1 Bbbrew)-——————————-—-———————- =

return datal[0].wvalue + datal[l].walue;

control t * data = {control t *)ptr;
struct sembuf wait = {0, -1, 0};
worki{l);

Bcrace set thread name {data->name);

for (;;) 1
gsemop{sema, &wait, 1);
data->count++;
data-rangle += data-»delta;
data-»>value = sin{data-=angle;;

}
}

vold *
cosine _thread (woid * ptr)

Fa

Figure 4-45. NightTrace - Launches Editor with Source File at Line Number

NOTE

NightTrace selects your editor via the EDITOR environment vari-
able.

Summarizing Workload Performance

4-62

Remember that we summarized the workload performance of our threads in a previous
section of this tutorial? We used trace points that we inserted via NightView and defined

states for them.

We’ll do the same basic thing here, but this time we’ll just use the trace events that were
automatically created for us by nlight.

Using NightTrace

The workload of the main thread is defined by the subprogram work. We’ll use the entry
and subsequent return of that subprogram to define a state which represents the work the
main thread does each cycle.

- Select Change Summary Profile from the Summary menu.

The Profile Definition panel appears.

File View Daemons Search Summary Profiles Timelines Tools Help
PH RR=rmm @O @O E%nis a
[Application Illumination Trace ‘ Profiles I
Profile Status List
|Type| Name | Status | Countl Last | 0lfset|
Profile Definition
ey value St Bl= =
Start Events [ALL | | Browse... |
End Events [ALL | [Browse... |
Start Condition [TRUE]
End Cendition [TRUE |
Processes | ALL | [Browse... |
Threads [ALL | [Browse... |
Output Script [jusr/lib/NightTrace/bin/state-summary.sh | [Browse... |
CPUs {mask=all)
Name [state]
R} [Applyl [2 Search Backward l l% Search Forward] [Halt Searchl l}_‘, Summarize
Vi

Figure 4-46. NightTrace - Profile Definition Panel - State Mode

- Select State from the Key/Value option box to make the profile panel
look the same as it does in the figure above.

- Press the Browse... button to the right of the Start Events row.

4-63

NightStar RT Tutorial

4-64

The Select Events dialog appears.

|' | Select Events

ENTER wcstof [+
ENTER_wcstof |
ENTER_wcstoimax
ENTER_wcstok
ENTER_wcstol
ENTER_wcstol |
ENTER_wcstold
ENTER_wcstold |
ENTER_wcstoll_|
ENTER_wcstombs
ENTER_wcstoq
ENTER_wcstoul
ENTER_wcstoul_|
ENTER_wcstoull |
ENTER_wcstoumax
ENTER_wcstouq
ENTER_wcswidth D
ENTER_wcsxfrm
ENTER_wcsxfrm_|
ENTER_wctob
ENTER_wctomb
ENTER_wctrans
ENTER_wctrans._|
ENTER_wctype
ENTER_wctype |
ENTER_wcwidth
ENTER_wmemchr
ENTER_wmemcmp
ENTER_wmemcpy
ENTER_wmemmove
ENTER_wmempcpy
ENTER_wmemset
ENTER_wordexp
ENTER_wordfree

Fy

ENTER_wprintf -

Search: |wurk|] ¥ Next 4 Previous [| Match case

’ Select H Cancel H Help]

Figure 4-47. NightTrace - Select Events Dialog with Search Active

For every function that has been illuminated, NightTrace assigns two events;
ENTER_ function_name and RETURN_ function_name.

- Click in the Search text field and type work.

As you type the characters, the dialog automatically searches for an event whose name
includes a sub-string of the characters you’ve typed. In the figure above, the first event
found, ENTER_work, is selected.

Using NightTrace

NOTE

On your system, ENTER_work may not be the first event that
matches the substring work. Press the Next button if required to
advance to the correct event.

NOTE

You can use the Ctrl+F and Ctrl+G key sequences to initiate and
repeat a search instead of using the mouse.

- Once the ENTER_work event is selected, press the Select button to
choose this event and close the dialog.

- Repeat the procedure for the End Events selection using the Browse...
button at the right, but select RETURN_work as the events of interest.

The Profile Definition panel now reflects our selection of the ENTER_work and
RETURN_work events which define the start and end of our state.

File View Daemons Search Summary Profiles Timelines Tools Help

PO 2R -Fsmm@LPP

liil
=C_=
¢
]
=]
%
¥

[Application Illumination Trace ‘ Profiles I

Profile Status List
|Type| Name | Status | Countl Last | 0lfset|
Profile Definition
ey Velue [State [7) (Rt
Start Events | ENTER_work | | Browse... |

End Events | RETURN_work

Start Condition | TRUE]

End Condition [TRUE]

b Processes | ALL | [Browse... |
Threads [ALL | [Browse... |
Output Script [jusr/lib/NightTrace/bin/state-summary.sh | [Browse... |
CPUs {mask=all)
Name | state |
[Applyl [2 Search Backward l l% Search Forward] [Halt Searchl l}_‘, Summarize

Figure 4-48. NightTrace - Profile Definition Panel with State Defined

4-65

NightStar RT Tutorial

- Press the Summarize button to summarize all occurrences of the defined
state.

A new tab appears with the results of the summary.

NightTrace - New Session(Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
PE B2 ®0 ® 0 5 Eo% 4 iR a
L = 9y v o
[Trace | Jimp/data_import | Profiles ‘
state (0 to 8950)
Maximum state duration: 0.000421722 at offset: 8430
Minimum state duration: 0.000001055 at offset: 7376
Average state duration: 0.000193687
Total of state durations: 0.108851827
Number of state gaps found: 562
Maximum state gap: 0.055917770 at offset: 3431
Minimum state gap: 0.050014477 at offset: 6596
Average state gap: 0.049970130
Total of state gaps: 28.083212838
Offset ¥ |End Offset | Duration (sec) Gap (sec) Event|cpu| Process Thread Time (sec}[;
498 499 0.000149538 0.000000000 ENTER_work appAl main 7.}'51195528L
513 514 0.0003441586 0.050023396 ENTER_work appAal main 7.8013685862
528 529 0.000301928 0.050025411 ENTER_work appAl main 7.851738129
543 544 0.000355484 0.050024248 ENTER_work appAal main 7.902064306
558 559 0.000308063 0.050025524 ENTER_work appAl main 7.952445313
573 574 0.000132314 0.050030661 ENTER_work appAl main 8.002784038
588 589 0.000146238 0.050030646 ENTER_work appAl main 8.052946998
603 604 0.000189826 0.050192762 ENTER_work appAl main 8.103285998@
Kl |l
4

Figure 4-49. NightTrace - Tab with Results of Summary

The tab includes summary statistics at the top, including minimum, maximum, and aver-
age duration, as well as a table of individual occurrences of each state at the bottom.

You can change the sort criteria of the table to find the longest state duration by clicking
the column headers.

- Click the column header that says Duration (sec).

4-66

Using NightTrace

This causes the table to sort in descending order by duration; thus the occurrence of the
function work with the longest duration is shown at the top.

Nightirace - New Session(Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PH PR -rsmmPPPP: Eolf s ma

Trace | /tmp/data import | Profiles | state (0 to 8950) |

state (0 to B950)
Maximum state duration: 0.000421722 at offset: 8430
Minimum state duration: 0.000001055 at offset: 7376
MAverage state duration: 0.000193687
Total of state durations: 0.108851827
Number of state gaps found: 562
Maximum state gap: 0.055917770 at offset: 3431
Minimum state gap: 0.050014477 at offset: 6596
Average state gap: 0.049970130
Total of state gaps: 28.083212838
Offset End Offset |Duration (sec) & Gap (sec) Evontlcn.ll Process Throadl TimoIL
8429 8430 0.000421722 0.050021760 ENTER_work appAl main 3423495_
5583 5584 0.000407610 0.050025376 ENTER_work appAl main 24.7416¢
7825 7826 0.000394759 0.050020842 ENTER_work appAl main 32.2232C
6895 6896 0.000383091 0.050015314 ENTER_work appal main 29.1112%
8789 8790 0.000381447 0.050036568 ENTER_work appAl main 35.44062
4814 4815 0.000379642 0.050020176 ENTER_work appal main 22.1781%
2530 2531 0.000379510 0.050034210 ENTER_work appAl main 14.53051
8549 8550 0.000378620 0.050033628 ENTER_work appal main 34.6372[@
1] | 1D

4

Figure 4-50. NightTrace - Summary Results Sorted By Duration

- Double click on the first row in the table.
This causes the corresponding event to become the current event in the Events panel.

- Return to the Events panel by clicking on the /tmp/data_import tab.

4-67

NightStar RT Tutorial

- Hover the mouse cursor over the description of the current event to see the
details of the arguments passed to the instance of the work function which
consumed the most time.

NightTrace - New Session{Unsaved)

Ele View Daemons Search Summary Profiles Timelines Tools Help
PE e rmmPPPO: El %a i a
Trace | /tmp/data_import l Profiles | state (0 to 8950)]
Events
| Eventl Prooessl Thread | Time l’soc}l Tag |Do-scription F:]
RETURN_work appAl main 34.184911673 returning from work() errmo=2
ENTER_semop appAl main 34.184912585 calling semop(semid=688146,50ps=0xbfb4...
RETURN_semop appAl main 34.184921201 returning from semop()=0 errno=2
RETURN_semop appAl sin 34.184921853 returning fram semop()=0 errmo=0
ENTER_nanosleep appAl main 34.184921943 calling nanosleep(req=0xbfb49784,rem=0x...
ENTER_semop appAl sin 34.184922828 calling semop(semid=688146,50ps=0x407...
RETURN_semop appAl cos 34.184929093 returning from semop()=0 errno=0
ENTER_semop appAl cos 34.184929814 calling semop(semid=688146,50ps=0x409...
3 app cos 34.226502679 argl=0.551937
1 app sin 34.226515525 argl=0.829038
2 app sin 34.226550440 argl=0.833886
RETURN_nanosleep appAl main 34.234931167 returning from nanosleep()=0 errmo=2
ENTER_random appAl main 34.234931976 calling randomi() caller=0x8048b12 [m...
RETURN_random appAl main 34.234932916 returning frem random()=1630634994
ENTER_work EFWErCEEEEE] calling work(control=994) caller=0x...

RETURN_work appAl main 34.235355154 re

. calling work (control=2334)
ENTER_semop appAl main 34.235356315 cal

caller=0x8048b48 [main() at app.c:35]

RETURN_semop appAl main 34.235365921 ri Frame=0xbfbd97c8
ENTER_nanosleep appAl main 34.235366657 cal
RETURN_semop appAl sin 34.235384368 ri
ENTER_semop appAl sin 34.235385285
RETURN_semop appAl cos 34.235390606
ENTER_semop appAl cos 34.235391463 callimg semopisem
3 app cos 34.276620354 argl=0.544639 |:|
1 app sin 34.276635275 argl=0.833886
2 app sin 34.276666025 argl=0.838671
RETURN_nanosleep appAl main 34.285375275 returning fram nanosleep()=0 errno=2 @
FRAITE N eme o nne e AL e, TA NOCITEAET e | A [AY o AR AT e
V.

Figure 4-51. NightTrace - Description of Longest Instance of work Function

If you look at the code for the work function, its duration is completely dependent on the
single parameter control.

Of course the actual value of the argument for your trace run may differ from the figure
above, since the value of the argument is generated at random.

Batch Summary of Functions

You can also use ntrace in non-GUI mode to obtain summary information for specific
functions. Assuming you had captured some trace data for your application; perhaps like
this:

-/appAl &

ntraceud --join /tmp/data
sleep 5

ntraceud --quit-now /tmp/data
killall appAl

4-68

You could invoke ntrace with the following parameters:

ntrace --summary=fs:work appAl /tmp/data

and it would generate output similar to the following:

Summary: work Function entry/return states

State Summary Results

Number of states found:

Maximum state duration:
Minimum state duration:
Average state duration:
Total of state durations:

Number of state gaps found:
Maximum state gap:
Minimum state gap:

Average state gap:
Total of state gaps:

Shutting Down

362

0.000134952
0.000001614
0.000058733
0.021261507

362

0.032288239
0.017699007
0.024923208
9.022201284

Using NightTrace

at offset: 2444
at offset: 976

at offset: 58
at offset: 46

- Select Exit Immediately from the File menu of NightTrace to terminate

the NightTrace session.

- Select Exit Immediately from the File menu of nlight to terminate

the nlight session.

- Issue the following command from a terminal shell to kill the appAl pro-

cess which we left running:

killall appAl 2>/dev/null

Conclusion - NightTrace

This concludes the NightTrace portion of the NightStar RT Tutorial.

4-69

NightStar RT Tutorial

4-70

5
Using NightProbe

NightProbe is a graphical tool for viewing and modifying data from independently execut-
ing programs as well as recording data for subsequent analysis.

This chapter assumes you have already built the app program and it is running under the
control of NightView. If you have not built the program, do so using the instructions in
“Building the Program” on page 1-4 and execute the application via the following com-
mand before proceeding:

/app &

Invoking NightProbe

Programs to be probed do not need to be instrumented with any special API calls. How-
ever, in order for NightProbe to refer to symbolic variable names, the program should be
compiled with debug information (typically the —g compilation option).

NightProbe takes advantage of significant performance capabilities of the RedHawk ker-
nel, eliminating intrusion on the process by sampling and modifying variables in other
programs using direct memory fetches and stores.

Invoke NightProbe by selecting NightProbe Monitor from the Tools menu of any of the
NightStar Tools currently running. You may also invoke NightProbe by using the Night-
Probe desktop icon or type the following command:

nprobe &

at a command prompt.

5-1

NightStar RT Tutorial

The NightProbe main window is displayed.

&4 NightProbe =03

File Target Programs View Record Tools Help

HE®B O

Item | Description

+ [Target System raptor
£ Programs

£ @ Recording Idle
@ Timer On Demand
’ﬂ Destinations
[=] Variables

Figure 5-1. NightProbe Main Window

Selecting Processes

NightProbe has the ability to probe several kinds of resources, including programs, shared
memory segments, memory mapped entities, and PCI devices.

- Right-click the Programs icon on the Configuration page and select
the Program... menu option.

5-2

The Program Selection dialog is presented:

Using NightProbe

lad Program Selection r!_

L

Process Name | H Select... I
F’ID[H Select... I

Symbol File | H Select... I
[oK H Reset H Cancel H Help]

Figure 5-2. Program Selection Dialog

- Press the Select... button to the right of the PID field

The Process Selection dialog will appear.

~—Processes

Target: raptor

Filter I.“ I [Filter I [Clear I Apply To
‘ PID | Owner v| Name | Command E
1 root init fshinfinit

1741 root syslogd fshinfsyslogd

1745 root klogd fshinfklogd

1757 root portmap fsbinfportmap

1777 root rpc.statd fshinfrpc.statd

1789 root mdadm fsbinfmdadm @
£ | (a]+]

[0]4 I [Cancel I

Figure 5-3. Process Selection Dialog

- Enter app in the Filter field and press the Enter key.

The list is filtered to only those process whose name includes app and an entry should be
selected in the table.

- Ensure that a single item appears in the table and press Enter again to
close the dialog. If multiple items appear in the table, double-click on the

app process associated with your user name.

5-3

NightStar RT Tutorial

The process ID associated with the app program is placed in the PID text field and the
Process Name and Symbol File text fields are updated accordingly.

- Press Enter to close the dialog.

The app program is added to the list of resources to be probed as is shown under the Pro-
grams item in the Configuration page.

Viewing Live Data

- Click on the Browse tab in the NightProbe main window.

The Live Browser is displayed.

hd NightProbe =1k

File Target Programs View Record Tools Help

A3 D =30

— Live Browser

Filter [+ [Filter H Tl][ApplyToVariables +] [viewal B

| Iem | Value |
E- 45 app pid=31229

HE®B O

Auto Refresh [C@
L 4

Figure 5-4. NightProbe Browse Panel

The Browse page serves two purposes. It allows you to browse your program to select
variables of interest for recording or for viewing with alternative View panels.

It also provides you instant viewing of variables using the tree shown directly within the
Browse page.

- Expand the app entry in the tree.

The items under a program’s icon include all global variables as well as any nested scopes
such as Ada packages, or functions that contain static data items.

5-4

Using NightProbe

Each variable item has an icon which indicates whether the variable is a scalar, a pointer,
or a composite item such as an array or structure.

The data variable is a composite object and can be expanded.

- Expand the data variable.

Value

pid=31229

1048580
50000000

Figure 5-5. Expanded Data Item

The downward pointing arrow head is the array subscript expansion icon. By clicking the
icon, an additional component of the array is shown.

- Click the array expansion icon so that data[1] is shown
- Expand both structures displayed, data[0] and data[1].

In the Browse page, the current value of all variables shown in the tree is displayed
whenever you press the Refresh button at the bottom of the page, whenever an automatic
refresh occurs as controlled by the Automatic refresh checkbox, or when the page
receives or loses focus.

- Click the Automatic Refresh checkbox.

This causes the display to automatically refresh at the rate shown in the spinbox to the
right of the Automatic Refresh checkbox.

Note the values of the count, angle, and value components of each component of the data
array changing.

Modifying Variables

The app main program wakes each thread iteratively to do processing. The state vari-
able controls whether this should occur or not.

Note that the current value of the state variable is the enumeration value run.

5-5

NightStar RT Tutorial

Double-click the value of the state variable.

ltem Value

=- &8 app pid=31450

=N [bz] data
B [1F] data[0]
- [#] name 0x08048edc
- [®] count 23008
- [m] delta 8.726646259971648E-03
~[m] angle 2.015680753127312E+02
- [m] value 4.848096201641618E-01
=l [m8] data[l]
- [#] name 0x08048e50
- [®] count 23008
- [m] delta 8.726646259971648E-03
~[m] angle 2.015680753127312E+02
- [m] value 8.746197071840462E-01

- [m] sema 1081359
- [m] rate 50000000
(- [bE] ptrs

b El state

Figure 5-6. Variable Modification in Progress

The cell containing the value is frozen from updates and the current value is selected.

To change the value of a variable, all we need to do is supply a new value and commit the
change to the program.

- Type the following in the cell:
hold

- Press the Enter key to commit the value to the program.

The value of the state variable is now hold which prevents the program from waking the
threads for computation, as shown in the source code snippet from app.c:

91 for (55) {

92 struct timespec delay = { 0, rate };

93 nanosleep(&delay,NULL);

94 work(random() % 1000);

95 if (state !'= hold) semop(sema.&trigger,l);
96 }

- Change the value of the state variable back to run by double clicking the
cell and then selecting run from the enumeration list and press Enter.

5-6

Using NightProbe

Selecting Variables for Recording and Alternative Viewing

Each variable has a Mark and a Record attribute. The Mark attribute, when set, indi-
cates that the variable is of particular interest and may be viewed in other panels. The
Record attributes specifies that the variable is to be included in recording sessions.

Double-clicking an item causes the color to turn a reddish color and sets its Mark and
Record attributes. Alternatively, you can use an item’s context menu to individually set
its attributes.

- Double-click the count, angle, and value fields from both data[0]
and data[1] structures.

- Double-click the rate variable.

The Browse page tree should look similar to the following:

& nightProbe H=1E

File Target Programs View Record Tools Help

@@ «S>E
| Configuration | Browse

~ Live Browser

HE®B @

Filter [] [Filter] [Clear] | Apply To Variables |~/ | View Al -
Item | Value |
B 4% app pid=31450
= [1Z] data
- [1E] data[0]

- [#] name 0x0B04Bedc

- Il count 26674

- [m] delta B.726646259971648E-03
- [l angle 2327745623383434E+02
- [l value 2.923717045885066E-01
[18] data[1]

- [¥] name 0x0B048e50

- Il count 26593

- [m] delta 8.726646259971648E-03
- [l angle 2327745623383434E+02
- [l value 9.563047560040737E-01

- [=] sema 1081359
- [l rate 50000000
G- [1F] pirs

[=] state run

Auto Refresh [X] E

4

Figure 5-7. Mark and Record Attributes Set

5-7

NightStar RT Tutorial

Selection of Views

NightProbe provides various methods for viewing data:
* The Browse page
* List View
* Table View
* Spreadsheet View
* Graph View

Additionally, you can stream the output of a recording session to NightTrace or a user
application for live analysis, or to a file for subsequent analysis within NightProbe.

Table View

A Table view provides a scrollable table with variables spread across the columns and
rows containing the values of the variables, over time.

5-8

- Select the Table option from the View menu.

Using NightProbe

&4 NightProbe =[x
File Target Programs View Record Tools Help
FPAED « %0 ELEEHS @
Igonﬁguraﬁon | Browse I Table l
Table
Maode: [ViewLivﬁ:Samples |v] Select ltems...
Sample #: 0

4

Figure 5-8. Table View

Initially, the table is empty. The first step is to select the items we wish to display in the

table.

5-9

NightStar RT Tutorial

- Press the Select Items... button.

0 Select Items for View N

~Table View Item Selection

Select items to be shown in Table View.

Select items from the table below, which is populated
with Marked and Recorded variables. Click the
Browse button to add more items to the table.

| Show | Item

[%| datal0l.count

[%| datal0l.angle

[%| datal0l.value -
Show All

[%| datalll.count -

[%| datal[ll.angle

[data[l].value

(% rate

\ OK I [Browse... l [Cancel l [Help l

Figure 5-9. Item Selection Dialog

This dialog allows you to select items that have the Mark or Record attribute set.
By default, the dialog sets up defaults to display such variables.

- Hide all elements of the data[1] component by clicking their rows in the
Hide column.

- Press the OK button.

The table now has five columns, one for the sample number and one for each of the vari-
ables we selected in the previous step.

- Check the Automatic Refresh checkbox

5-10

Using NightProbe

At the rate defined in the spinbox to the right of the Automatic Refresh checkbox, new
samples are taken of the variables in the table.

L d NightProbe -
File Target Programs View Record Tools Help
FPAE3D =S>8 = -
[Configuration | Browse J Table l
Table
Mode: [ViewLivESampIes |vl Selectltems...l
| Sample ¥ | dataf0].count | data[0].angle data[0]value rate E]
4 49614 4329638275417953E+02 -5.446390353823994E-01 50000000
5 49634 4331383604660945E+02 -3.907311288927318E-01 50000000 i
5} 49654 4333128933921936E+02 -2.249510547711851E-01 50000000
7 49674 4334874263173928E+02 -5.233595668116241E-02 50000000
8 496R94 4336619592425020E+02 1.218693429693408E-01 50000000
] 49714 4338364921677912E+02 2.923717043025947E-01 50000000
10 49734 4340110250929903E+02 4.5399049934786016E-01 50000000
11 49754 4341855580181895E+02 6.018150228007619E-01 50000000
12 49774 4343600909433 887E+02 7313537013190109E-01 50000000
13 49794 4345346238085879E+02 8386705677055774E-01 50000000
14 52369 4.570057379879814E+02 -9.953961983217676E-01 50000000 @
Sample # 14

L

4

Figure 5-10. Table in Auto Refresh Mode

Values are shown in blue if they have changed since the previous sample.

You can sort by variable value by clicking on a column header.

- Clear the Automatic Refresh checkbox

= Click on the column header for data[0] - value and then click again so
that the table is sorted from largest to smallest value.

The value shown at the top should be nearly 1.0 if enough samples have been taken (the
value of data[0].value is that of a sine wave).

You can modify variables using the Table view in the same manner as described in
“Modifying Variables” on page 5-5.

5-11

NightStar RT Tutorial

Graph View

The Graph panel presents individual variables as separate lines on a graph.

- Select the Add New Page option from the View menu.

- Select the Graph option from the View menu.

[NightProbe - BX]
File Target Programs Xiew Record Tools Help
FPAERD «F>0 = LHES O
lgonﬁgurarion | Browse | Table I Pageﬂl
Graph
Mode: [ViewLiveSampIes |v] Select ltems...
1000 5
800
w600+
5] 4
3 i
] i
= 400
200 —
0_
I T T T T T T T T T T T T T T T T T T T |
0 200 400 600 800 1000
Most Recent Samples
Sample # 0
p—am= RISl

L 4

Figure 5-11. Graph Panel

Initially, the graph is empty.
- Press the Select items... button.

Unlike the table view, none of the items in the Select Item dialog are selected to be
shown. Typically, only one or very few items are shown on a single graph.

- Mark the data[0] -value and data[1] -value items as Shown by
clicking their respective rows in the Show column.

- Press the OK button.

- Check the Automatic Refresh checkbox.

5-12

Using NightProbe

- Change the refresh rate to 1.0 seconds in the spinbox to the right of the
Automatic Refresh checkbox.

Two lines begin to be plotted as shown below.

' ghtProbe - O%
Eile Target Programs View Record Tools Help
P « S0 EXEHS O
[Qonﬁguraﬁon | Browse | Table I Pageil
Graph
Mode: [ViewLiveSampIes |vl Selectltems...l
1_
E value
1 o yvalue
0.5
" i
7] 4
3 o
o i
= i
0.5
-1 - .
I T T T T | T T T T | T T T T I T T T T I T T T T | T T T T I
0 10 20 30 40 50 a0
Most Recent Samples
Sample # 59

pwnscresen G (4] (] (4] (7] (8] (8]

L

4

Figure 5-12. Graph Panel Actively Displaying Values

- Select the Edit... option from the context menu of one of the value items in
the legend at the right-hand side of the graph panel (right-clicking activates

5-13

NightStar RT Tutorial

the context menu).

L4 Edit Curve Attributes x

~— Curve Attributes

Variable value

[oc_][camet |[_rer_]

L J

Figure 5-13. Edit Curve Attributes Dialog

- Select Sticks from the Style option list.

- Click on the colored block to activate a color selection dialog to change the
color.

- Press the OK button to close the color selection dialog.

5-14

Using NightProbe

- Press the OK button to close the Edit Curve Attributes dialog.

[NightProbe =1
File Target Programs View Record Tools Help
FPEAED « >0 ZLEHEB @~
Ignnﬁguratinn | Browse | Tahle 1 Page&[
Graph
Mode: [VjewLiue Samples ‘v] Select ltems...
1_
i * value
] o value
0.5
i |
u -
2 0
™ i
> i
0.5 -
4
| T T T T I T T T T | T T T T | T T T T I T T T T |
0 50 100 150 200 250
Most Recent Samples
Sample #: 207
' H (] [al =] (2] (2] [cex]
Automatic Refresh [% 5 o Clear

W,

Figure 5-14. Graph Panel with Modified Curves

- Change the refresh rate to 0.5 seconds

The program uses the rate variable to determine the frequency at which the threads are
activated to do their calculations.

- Using the Browse page or the Table panel, change the value of the rate
variable from 50000000 to 25000000.

5-15

NightStar RT Tutorial

This change effectively doubles the frequency at which the threads operate, so the sine and
cosine waves will change shape.

bd NightProbe - [

File Target Programs Miew Record Tools Help

PADD cS$HM SHES @
[Qonﬁgurarion | Browse | Table I Pageil
Graph

Mode: [ViewLive Samples |vl lSeIectItems...l

=

] = value

1 = value
0.5 +
i i
1] 4
S 0
3] i
= i
0.5
1

.y

a
a
2! o b d elllé
a4ilde® B alé

'
—

T T T T T T T T T T T T T T T T T T
1020 1040 1060 1080 1100
Most Recent Samples

Sample # 1110

e 550 13 (4] (3] (2] (=] (8] (8]
L 4

Sending Probed Data to Other Programs

Data values may be recorded to files for subsequent processing, or may be recorded and
streamed to NightTrace for live processing.

Similarly, you can send recorded data to any process of choice.

5-16

Using NightProbe

- Raise the Configuration page by clicking on its tab.

Hem Descriplion
[Target System narf
{{} Programs
{,_-.::, app pid=18128

Playback

Ei- @ Recording Idle
@ Timer on Demand
>H Destinations
= [m] Variables

- [m] data[0].count int

- [m] data[d].angle double

- [w] data0].value double

- [m] data[1].count int

- [w] data[1].angle double

- [m] data[1].value double

- [m] rate int

Figure 5-15. Recording area of Configuration Page

The Recording portion of the configuration tree indicates the Timing source for record-
ing, the recording Destinations, and the list of variables whose Record attributes are
set.

- Right-click on the Timer item in the Recording tree and select the
Clock... option.

Sampling Rate: [1000000000 5 Seconds -

oK H Resat H Caneel H Help l

Figure 5-16. Clock Selection Dialog

This dialog controls the rate at which recording samples will be taken.

- Change the units to Milliseconds from the option list Sampling Rate
option list.

- Change the Sampling Rate value to 100.0.

- Press the OK button.
The Timer item and description in the tree changes to reflect this activity.

The recording destination will be a user application.

5-17

NightStar RT Tutorial

- Right-click the Destinations item and select To Program...

E Record To Program X

General | FBS | Advanced

~ Process

Program Path || |
|

Program Arguments [

Output File [.fdewnull]
Working Directory []
|

X Display [:n.o

~ Activiation

Launch From | MightProbe Server n

When Stopping [Terminate Process |v]

oK H Cancel H Help

Figure 5-17. Record To Program Dialog

- Type api into the Program Path text field.

- Replace the Zdev/null text in the Output File text field with the fol-
lowing.

/tmp/api .out
- Press the OK button.

A simple application which uses the NightProbe API to consume and print the values of
recorded samples was copied into the tutorial directory in “Creating a Tutorial Direc-
tory” on page 1-3.

- Type the following command in your terminal session to build the pro-
gram:

cc -g -0 api api.c -Inprobe

5-18

Using NightProbe

The Recording area of the Configuration page should look similar to the following.

Hem Descriplion

- [Target System narf

El :‘E} znmgrams

L e ape pid=18128
e) Views

Playback

- @ Recording Idle

Timer 100 Milliseconds
El &8 Destinations

i:q} apl Ihome/jeffhiworkAutorialiapi

- [m] data[d].count int
- [w] data[0].angle double
- [m] data[d].value double
- [m] data[1].count int
- [m] data[1].angle double
- [w] data[1].value double

- [m] rate int

Figure 5-18. Recording Area of Configuration Page w/ Destination

Now that we have selected the variables to record, the recording timing source, and the
recording destination, we can proceed to record samples and stream them to the api
application.

- Press the Record icon on the toolbar:

- View the output of the api program as samples are recorded and passed to
it.

- Enter the following command in a terminal session;

tail -F /tmp/api.out

5-19

NightStar RT Tutorial

The program will generate output similar to the following:

gnome-terminal

File Edit WView Terminal Tabs Help

Figure 5-19. Example Output of Graph Program

- Stop the recording process by pressing the Stop icon on the Recording tool-
bar:

For more information on the NightProbe API, refer to the “NightProbe API” chapter in the
NightProbe User’s Guide.

Using Datamon to Modify Program Variables

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data Monitoring allows you to specify executable programs that contain Ada, C, or For-
tran variables to be monitored, obtain and modify the values of selected variables by spec-
ifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

5-20

Using NightProbe

NOTE

Ada programs are only supported if compiled with the Concurrent
MAXAda compiler which generates proper DWARF debug infor-
mation.

Data Monitoring is a powerful capability with a rich API. It also allows you to obtain
detailed symbolic and attribute information for variables in a program file. However, for
our purposes, we will write a very simple program which changes the value of a single
variable.

Refer to the Data Monitoring Reference Manual for more information about Data Moni-
toring.

The source code for our set_rate program follows:

#include <stdlib_h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
iT((X)) {fprintf(stderr, "%s\n", dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{
program_descriptor_t pgm;
object descriptor_t obj;
char buffer[100];

if (argc '= 2) {
fprintf (stderr, "Usage: set_rate integer-value\n);
exit(l);

3

check(dm_open_program(*'app',0,&pgm));
check(dm_get_descriptor(*“'rate”,0,pgm,&obj));
check(dm_get_value(&obj ,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf (“rate: old_value=%s, new_value=%s\n', buffer, argv[1l]);

}

The dm_open_program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get_descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
app process into the monitoring process.

The dm_get value and dm_set_value routines return and set the value of the vari-
able using direct memory reads and writes; the app process is not affected in any other
way than having the value of the rate variable changed.

The set_rate.c source file was copied into the current working directory during the
activities in “Creating a Tutorial Directory” on page 1-3.

- Compile the program using the following command:

5-21

NightStar RT Tutorial

cc -g -0 set _rate set _rate.c -ldatamon -lIccur_rt

While this portion of the tutorial is in no way dependent on NightProbe itself, we will use
NightProbe to see the effect of changing the rate variable using the Datamon API.

- Raise the Graph panel by clicking on the tab labelled Page 4 in Night-
Probe.

- Use the Pan Right button in the graph panel to move the viewport to the
end of the graph set -- click the button repeatedly until the end of the graph
is seen:

>

- Change the value of the rate variable in the app process by issuing the
following command:

./set_rate 123456789

As shown in the source code above, the program prints the previous value of the rate
variable and then sets it to the value specified as an argument to set_rate.

The sine and cosine waves change shape as shown in the Graph panel.

Conclusion - NightProbe

To terminate NightProbe operations, execute the following steps:
- Select the Exit Immediately option from the File menu

This concludes the NightProbe portion of the NightStar RT Tutorial.

5-22

6
Using NightTune

NightTune is a graphical tool for analyzing and adjusting system activities.

This chapter assumes you have already built the app program and it is running. If you
have not built the program, do so using the instructions in “Building the Program” on page
1-4 and execute the application before proceeding: ./app &

Invoking NightTune

NightTune can be launched with the following command at a command prompt:
ntune &
Or it may be launched by double-clicking on the NightTune desktop icon.

For some aspects of this tutorial, it will be necessary to execute NightTune as the root
user or to ensure that your user account has appropriate privileges. See the “Setting Up
User Privileges” on page 1-2 for more information.

B4 nightiune NI-1E
File View Monitor Tools Help
PHR BIl8 @2o33 § B0 curmwmfun 5 X o
raptor Process List. raptor CPU Shielding and Binding:
PID | State | Parent| Size | %CPU | CPU Time | cPU | Affinity | Nice |RPrifcL| command + || raptor: Intel(R) Xeon(TM) CPU 2 40GHz
E-@iUsers 1|3 System

i# apache £ Chip 0

@ bin)y O S CPUD [0% Usage]

- @ jeffh Cm F OS A CPU2 (0% Usage]

@ jojo Bl Chip 3

B @ jread B () ¥ OF D CPUL [1% Usagel

@ np) #F O @A CPUZ B% Usage]

@ root

i@ rpc

@ rpeuser

ﬁ smmsp raptor CPU Usage: @

@ sms CcPUO

@ todd CPU1

G- @ wnn

- @ xfs CPU2 [.|

cPU3 [I
0 100
o[58 s D 6 D

Figure 6-1. NightTune initial panels

NightStar RT Tutorial
Monitoring a Process

First monitor the running app process.

- Inthe Process List panel, click anywhere within the panel and the type
Ctrl+F.

- A Find bar appears at the bottom of the panel. Type app, and the process
list will be automatically expanded and the first process whose process
name includes the word app will be selected.

raptor Process List:
PID | State |Pmm| Size |%CPU|CPUT||ne|CPU|Aﬁinily|Nice|RPri|CL| Command a
E|._ Users
G+ @ apache
4534 Waitng 4527 1672 0.0 0.00 2 al 0 0 Of - @ ack_wpn
11501 1 137.. 0.0 16.47 o app
11513 Waiting 1 303.. 0.0 18.26 2 all 0 0 oT b assistant Japp
4633 Waiting 4628 4376 0.0 0.10 2 all 0 0 oT bash
7044 Waiting 7036 4372 0.0 0.15 1 all 0 0 or bash
7921 Waiting 7916 4380 0.0 0.09 3 all 0 0 or bash
BO78 Waiting 8973 4376 0.0 0.05 0 all 0 0 or bash
12024 Waiting 12019 4380 0.0 0.05 3 all 0 0 oT bash
15979 Waiting 15974 4380 0.0 0.12 0 all 0 0 oT bash
24991 Waiting 24986 4376 0.0 035 3 all 0 0 oT bash
11922 Waiting 1 5304 0.0 0.14 2 all 0 0 or geonfd-2
11886 1 120.. 0.0 25.66 ntrace
11902 Waiting 11901 7624 0.0 0.15 3 all 0 50 FF - ntracesern
2279 Waiting 4041 104.. 0.0 1324 1 all 0 0 oT smbd
G- @ jimbo @
Find: [app ¥ Next 4 Previous | | Match case Wrapped

Figure 6-2. Expanded Process List

If the selected process is not our app process, press the Next icon in the Find bar until
the correct process is selected.

Notice that the icon associated with the app process has a small gray gear superimposed
on the orange process icon. This indicates that process is multi-threaded.

&

6-2

Using NightTune

- Select the Show Threads option from the context menu associated with
the app process.

raptor Process List:
PID | State |Pmm| Size |%CPU|CPUTm1e|CPU|Aﬂinily|Nice|RPri|CL| e a [2]
E-_ Users
-- @ apache
G- @ bin -
B @ danr
ﬁ gdm
o @ jefih
4534 Waitng 4527 1672 0.0 0.00 2 al 0 0 OT i@ ackpn
11501 Waiting 0.4 1477 0 all 0 0 or
11521 Waiting 0.0 121 2 all 0 0 Oor -
11522 Waiting 0.0 117 1 all 0 0 oT
11523 Waiting 0.0 0.00 3 all 0 0 or i q
11513 Waiting 1303.. 0.0 18.26 2 all 0 0 ar @ assistant
4633 Waiting 4628 4376 0.0 0.10 2 all 0 0 or ¥ bash
7044 Waiting 7036 4372 0.0 0.15 2 all 0 0 or ¥ bash
7921 Waiting 7916 4380 0.0 0.09 3 all 0 0 oT & bash
8978 Waiting 8973 4376 0.0 0.05 0 all 0 0 or @ bash
12024 Waiting 12019 4380 0.0 0.05 3 all 0 0 or ¥ bash
15978 Waiting 15974 4380 0.0 0.12 0 all 0 0 or ¥ bash
24991 Waiting 24986 4376 0.0 035 3 all 0 0 oT i & bash
11886 1 126... 9.7 26,11 ’ @ ntrace @
Find: [app ¥ Next 4 Previous | | Match case Wrapped

Figure 6-3. Process List with Threads

The panel shows characteristics of each thread and of the entire process. In particular,
they include:

¢ the virtual memory size of the process

¢ the percentage and amount of CPU time used by each thread and by the
whole process.

* CPU on which each thread ran most recently

* CPU affinity for each thread (the set of CPUs on which the thread is
allowed to run)

* scheduling characteristics of each thread

The set of columns displayed can be modified by clicking the Display Fields option of
the context menu for the panel, and then choosing individual fields by checking or
unchecking their menu items.

6-3

NightStar RT Tutorial

Tracing System Calls

6-4

NightTune provides a handy interface for tracing system calls made by a process. This is
essentially the same as using the strace(1) command, except that NightTune provides the
output in a dialog which can be searched and controlled.

- Select the Trace System Calls... option from the context menu associ-
ated with the second thread in the app program and press the run button.

o strace of PID 6670: =
FREE

...... N T =

semop(98304, 0xb79ab3ae, 1) =0 (2]

semop(98304, 0xb79%ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, Oxb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79%ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, Oxb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79%ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1 [}5\.

Strace Options] D E] [Close l [Help]

Figure 6-4. Strace Output of Thread

As shown in the figure above, the selected thread makes no system calls other than
semop(2) which is associated with the line 46 of api - c, as shown in this code seg-
ment:

36 void *

37 sine_thread (void * ptr)

38 {

39 control_t * data = (control_t *)ptr;
40 struct sembuf wait = {0, -1, O};

41 work(1);

42

43 trace_set thread_name (data->name);
44

45 for (G3) {

46 semop(sema, &wait, 1);

47 data->count++;

48 data->angle += data->delta;

49 data->value = sin(data->angle);
50 }

51 }

- Press the Close button to stop the system call trace and close the dialog.

Using NightTune

Process Details

NightTune provides detailed analysis of process attributes.

- Select the Process Details... option from the context menu of any
thread in the app program.

NightTune Process Defails: raptor 8337: app

Memaory Usage [Memary | File Descriptors

Signals | LCapabilities | Environmem]

kB | Usage [IE——
Total 12084 Shared | |
Reserved 0 Residency I: |

Data/Heap 136

Stack 12 - -
Shared 5752 Residency: [l M1 _

Non-Shared 6332

Resident 652

Locked 0

Unlocked 652

(] | [«]»)

[Update H Close H Help]

Figure 6-5. Process Details Dialog

All information displayed in this dialog is read-only in nature. You cannot make changes
to process attributes using this dialog.

Six tabbed pages provide detailed information about the process, including:

* Memory Usage

* Memory details

6-5

NightStar RT Tutorial

* File Descriptors
* Signals

* Capabilities

* Environment

The Memory Usage page provides summary information of the virtual and resident usage
of memory in both textual and graphical panes.

Process Details - Memory Details

- Click on the Memory tab to raise that page.

Memory Usage Memory [File Descriptors | Signals | Capabilities | Environment

MNUMA Node !

Local MUMA Mode
|F‘|'c-|:c-ss bias is not restricted to a single node |

Locked/

Exists

Ox00002aaaaa__0000

Ox_000000000000000
] 1 5 3] i 8 a b C d f
R N T A U Y TN (U TN NN YN T AU O O

Status: Resident

al

[Previous Regicn] [Previcus F‘agel [Zoom Out l [MNext Page l [Next Regicn]

NUMA Node: 0

[Shift Min H Shift Left H Zoom In

[Shift Right H Shift Max

—Memory Region Information

File Mapping: /SYSV01050025, offset 0x7000
Addresses: 0x00002aaaaaae0000 - 0x00002aaaaaeeafff Active: 0 Shared: 0
Permissions: (%] Read (% Write [| Execute Inactive: 18446744073709551615 Shared Clean: 0
Shared: Shared Backed by Swap: 18446744073709551615 Shared Diry: 0
Size: 4239360 Private: 40960
Resident: 40960 Private Clean: 0
MUMA Policy: Default Private Dirty: 40960

[Update ” Close H Help l

Figure 6-6. Process Memory Details Page

6-6

Using NightTune

This dialog provides controls to allow you to get detailed memory information for any
segment or page within the address space.

The controls in the graphical rows are similar to NightTrace in nature.
- Click anywhere on or above the rulers.
- Press Alt+UpArrow to zoom out completely.

The process’s entire address space is now displayed. Each segment of the memory
address space that is associated with pages in your process is indicated by at least a single
vertical black line in the Exists row.

- Click on one of these lines

- Use the mouse wheel or the Zoom In button to zoom in until sufficient
detail is available.

In the figure above, memory segments are shown as gray areas in the Exists row. The
boundaries of memory segments are shown as vertical black lines. If the zoom factor is
large enough, a memory segment may be portrayed as merely one or two vertical black
lines.

Details about the memory segment are shown in the textual area in the bottom portion of
the page.

The other rows show per-page information, including NUMA pools, and Locked and Res-
ident attributes of the page.
NOTE
Locked and Resident information may not be available on all
operating system versions. NUMA information is only applicable

to systems supporting a Non-Uniform Memory Architecture and
the information is only provided by some operating systems.

Alternatively, you can select a specific address by typing it into the Current Page text
field.

See the NightTune User’s Guide for more information on the Memory page.
Process Details - File Descriptors

The File Descriptors page lists all open file descriptors associated with the process, and
provides a description of each.

6-7

NightStar RT Tutorial

The figure below shows the file descriptors in use by an ntune process.

NightTune Process Details: rapior 8344: ntune

[Memory Usage | Memory I File Descriptors [Signals | Capabilities | Environment

Pathname/Description

fdevipts/0 |

1]
_1.Fdevfpts.f0
_Z.I'dew'pts.m
_3 pipe:[121803] (pid 8344/ntune fd 4)
_4 pipe:[121803] (pid 8344/ntune fd 3)
3 pipe:[121806] (pid 8344 /ntune fd 6)

6| pipe:[121806] (pid 8344/ntune fd 5)
_? socket:[12 1807 unix/stream: state=CONMNECTED
_8 fusrflib/MightTune/lib/ntune.msg
_9 socket:[121829] tcp: local=raptor:42017 remote=raptor:25517 state=ESTAEBLISHED (pid 2320/nslm fd 5)
Ea’proc

11| /proc/shieldfirgs

12 jproc/shieldfitmrs File or device associated with the file descriptor in one of these formats:

— filename

13 | fprog/shield/pracs filename (deleted)

Ea’prodccur.-’switches pipe:finode] (other-pid)) .
socket[inode]: tcpfudpfraw: local=ip:port remote=ip:port state=s (other-pid) ...

15| jproc/stat socket[inode] unix: name=associated-filename state=s

. socket:inode] packet
16 | [proc/meminfo . .
I States are either TCP states like ESTABLISHED, LISTEN, FIN_WAIT1,

17 | jprocjvmstat etc., or STREAM states like LISTENING, CONNECTED, etc.
Other-pids are other processes on this system either using the same
pipe inode, or connected to the other end of a socket.

18| jproc/diskstats

19 | jprocfinterrupts
20| jproc/net/dev

[Update H Close H Help]

Figure 6-7. File Descriptors Page

The description includes the file name associated with a file descriptor (when relevant),
connection information for a socket, and even identifies other processes using a pipe or
socket when those processes are on the same system.

Process Details - Signals

v

The Signals table displays attributes of signals.

NightTune Process Defails: raptor 8337: app

Memaory Usage | Memaory | File Descriptors I Signals l Capabilities | Envircnment]

Using NightTune

Number ¥ | Name |Pending | Shared Pending | Blocked | lgnored | Handled| Restart | Descrigtion
1. SIGHUP] O O o O (1 Hangup
2 SIGINT O O O O | | Interrupt
3 sicquir - [O (| O (] O Quit
4 SIGILL O O O O O O lllegal instruction
5 SIGTRAP [O O O O O Trace/breakpoint trap
6 SIGABRT [O O O O O Abarted
7 SIGBUS O O O O O O Bus error
B SIGFPE O O O O O | Floating point exception
9 SIGKILL O O O O O O Killed
10 SIGUSRL [] O O O O O User defined signal 1
11 SIGSEGY O O O O O O Segmentation fault
12 SIGUSR2 [O O O) O User defined signal 2
13 SIGRIPE] O O O O O Broken pipe
14 SIGALRM [O O O O O Alarm clack
15 SIGTERM O O O O O O Terminated
16 SIGSTKFLT [O O O O | Stack fault
17 SIGCHLD] O O O O O Child exited
18 SIGCONT [O O O O O Continued
19 sigsToP] O O O O O Stopped (signal)
20 SIGTSTP [O O O O | Stopped
21 SIGTTIN O O O O O O Stapped (ty input)
22 sIGTTOU [O O O O O Stapped (ty output)
23 SIGURG [O O O O O Urgent /O conditian

a

Update H (;Io;e H Help l

Figure 6-8. Signals Page

The information shown includes indicators of signals currently pending or blocked by the

application, as well as whether the application has a handler installed for a signal.

In the figure above, the application has a handler registered for SIGUSR2.

6-9

NightStar RT Tutorial

Changing Process Scheduling Parameters

6-10

It may be desirable to change the scheduling properties of a thread or process while it is
running to see how that changes the behavior of an application. For instance, perhaps one
thread is being starved of CPU time by other threads. You may wish to change its sched-
uling class to a real-time class and/or its priority to a higher priority.

- Select the Process Scheduler... option of the context menu associated
with a thread in the app process.

raptord Nightiine - BrocessiScheduler (onlrapton) =

— Priarity

11521 (app)

— Current System Values

Scheduling Class: [Orher
Mice Value: "I]

Real-Time Priority: [

Scheduling Class: Other

Nice Value: 0

A

Real-Time Priority: 0

Time Quantun: 99 msecs

Time Quantum: [CPU Affinity: all
~ CPU Affinity
oo 1o® 2o ® 30 CPU Shielding Legend
{E’ Unshielded From Processes
l Set All l l Clear All] i": Shielded From Processes

(b. CPU Down

[oK H ST H Reset H Cancel H Help l

Figure 6-9. Process Scheduler Dialog

In this dialog, it is possible to change the Scheduling Class, Nice Value, Real-time
Priority, and/or Time Quantum. On multi-processor systems, it also is possible to
change the CPU Affinity. For each CPU on which the process or thread is allowed to
run, the checkbox with the number of that CPU should be checked. See “Setting Process
CPU Affinity” on page 6-11 for more on this topic.

- Change the Scheduling Class to Round Robin by selecting that from
a drop down list.

- Change the Real-time Priority to 3.
- Press the OK button.

Using NightTune

NOTE

To change the Scheduling Class to Round Robin and
change the Real-time Priority, it is necessary that NightTune
be run by the root user or that your user account has appropriate
privileges as described in “Setting Up User Privileges” on page
1-2.

The Process List panel now reflects these changes to the thread.

raptor Process List:
PID | State |Pmm| Size |%CPU|CPUT|me|CPU|Aﬂ'|nily|Nice|RPri|CL| e ATZ
IE!.- Users
-- ﬁ apache
@ bin
& @ danr
o @ gim
- @ jefh
4534 Waitng 4527 1672 0.0 000 2 al 0 o0 O e @ ack_vpn
11501 1137.. 13 1818 5 @ app
11501 Waiting 08 1567 2 al o o0 orf L@
11521 Waiting 04 128 0 al 0 3 RR =
11522 Waiting 0.0 123 0 al 0 o0 of
11523 Waiting 0.0 000 1 al o o0 or
11513 Waiting 1303.. 00 1827 2 al o o0 o assistant
4633 Waitng 4628 4376 0.0 010 2 al 0 o0 or bash
7044 Waiting 7036 4372 0.0 016 2 al o o0 o bash
7921 Waiting 7916 4380 0.0 009 3 al o o0 or bash
BO78 Waiting 8973 4376 0.0 005 0 al 0 o0 o bash
12024 Waiting 12019 4380 0.0 005 3 al o o0 of bash
15979 Waiting 15974 4380 0.0 012 0 al o o0 o - @ bash
24991 Waiting 24986 4376 0.0 035 3 al 0 o0 or - @ bash
11886 1131.. 00 2650 - @ ntrace @
Find: [app l ¥ Next 4 Previous [_| Match case Wrapped

Figure 6-10. NightTune Process List with modified thread

For the modified thread, the CL (Scheduling Class) field displays the value RR (Round
Robin), and the RPri (Real-time Priority) field displays the value 3.

Setting Process CPU Affinity

This section only is applicable if the system running NightTune is a multi-processor sys-
tem. If not, skip to “Conclusion - NightTune” on page 6-17.

6-11

NightStar RT Tutorial

6-12

The CPU Shielding and Binding panel shows the CPU hierarchy, shielding status (on
Concurrent RedHawk Linux only), CPU usage, and process and IRQ bindings.

raptor CPU Shielding and Binding:
raptor: Intel(R) Xeon(TM) CPU 2 40GHz |
)i System i
=+ Chip 0
E-() # OF @D CPUD [13% Usage]
() ¥ O@ A0 CPU2 [7% Usage]
= Chip 3
By # O 9D CPUL 6% Usage]
H-(h) # O P CPU3 [5% Usage]

Figure 6-11. CPU Shielding and Binding Panel

The hierarchy is useful in visualizing the relationship of logical CPUs, especially in the
presence of hyper-threaded and multi-core chips.

In the figure above, two chips each contain two local CPUs which are hyper-threaded sib-
lings of each other. Hyper-threaded CPUs share some physical resources between them,
yet operate in all user-visible ways as independent processors. Multi-core CPUs also
share physical resources between their siblings, but much less so than with the
hyper-threaded technology.

A process or thread has a CPU affinity, which determines the set of CPUs on which it may
execute. It may even be restricted such that it may run on only a single CPU. Often this is
called binding the process or thread. “Changing Process Scheduling Parameters” on page
6-10 described one way to change the CPU affinity. In addition, the CPU Status panel
can be used to bind a process or thread quickly.

- Select Expand All from the context menu associated with the System
item in the panel

The tree expands with leaves for bound processes and interrupts for each CPU.

- While the cursor is positioned over one of the threads in the app process,
press and hold the left mouse button, then drag the thread to one of the
CPUs in the CPU Shielding and Binding panel and release the mouse
button.

Using NightTune

raptor CPU Shielding and Binding:
raptor: Intel(R) Xeon(TM) CPU 2 40GHz

B-(h # OH @ CPUO 2% Usage]
~ Bound Processes: 0 Threads: 0

i Bound Interrupts: 0
=(h # O CcPUZ [5% Usage]
EI Bound Processes: 1 Threads: 1
. B336app (14)
. Bound Interrupts: 0
= Chip 3
E-(h # O9 @D CPUL B% Usage]
. i Bound Processes: 0 Threads: 0

- Bound Interrupts: 0
e # O8O0 CPU3 [5% Usage]
> Bound Processes: 0 Threads: 0

‘- Bound Interrupts: 0

Figure 6-12. CPU Shielding and Binding Panel with Bound Thread

This action binds the selected thread to the particular CPU. That is, its CPU affinity is set
to include only that single CPU. When a process’ or thread’s CPU affinity contains only a
single CPU, that process or thread is listed in the CPU Status panel under the particular
CPU’s Processes tab. In this case, there is one entry under CPU 1. Because only one
thread was bound to CPU 1 in this example, the entry includes the suffix (1/4), indicating
that only 1 of the 4 threads is bound to that CPU.

The thread’s new CPU affinity also is reflected in the Affinity field of the Process
Monitor panel. That field displays a bit mask in hexadecimal, where the low order bit
represents CPU 0, the next bit represents CPU 1, etc. In this case, the value 0x1 has only
the lowest bit turned on, indicating CPU 0.

NightTune also can unbind a process quickly.

- While the cursor is over the thread entry in the CPU Status
panel, press and hold the left mouse button, then drag the item to
the Unbind icon at the upper right of the window (resembling a
broken chain link) and release the mouse button.

£F

The Process List panel will reflect that the thread is unbound once again.

6-13

NightStar RT Tutorial

Setting Interrupt CPU Affinity

6-14

The functionality described in this section only is available if NightTune was executed by
the root user or your user account has appropriate privileges as described in “Setting Up
User Privileges” on page 1-2. If this is not the case, skip to “Conclusion - NightTune” on
page 6-17.

In addition to being able to set the CPU affinity of a process, NightTune can control the
CPU affinity of an interrupt.

It may be desirable to change the CPU affinity of an interrupt. For instance, an interrupt
may be occurring frequently and, depending on the CPU which handles it, may be inter-
fering with an application running on that same CPU.

- Close the Process List panel by clicking on the right-hand most box in
its title bar.

- Inits place, open the Interrupt Activity panel by selecting the Interrupt
Activity option from the Monitor menu and then the Text Pane option
from its sub-menu.

[NightTune

File View Monitor

PR AP 2B D F L cecraesFor[mpor -] F» W e

Using NightTune

Help

raptor CPU Shielding and Binding:

raptor Interrupt Activity (Interrupts/Second):

raptor: Intel(R) Xeon(TM) CPU 2 40GHz
__ 0 1000 0 0 0 timer

¥ CPUDl;f CPU1| ¥ CPU2|7 CPUBlDescriptinn |

0

B Chip 0 3 | 0 0 0 0 KGDB-stub
C B F OB @ cPuo 0% Usage] I
i~ Bound Processes: 0 Threads: 0 4 0 0 0 0 serial
- Bound Interrupts: 0 9_ 0 0 0 0 acpi
DB ¥ O@ @D CPU2 [25% Usage] —
E! Bound Processes: 1 Threads: 1 i 0 0 ! 0|ide0
i B336app (14) 177 39 0 0 0 uhci_hed
Bound Interrupts: 0 E 0 0 0 0 uhci_hcd
= Chip 3 —
E‘ d) ¥ A& crul [22% Usage] i 0 0 0 0 uhci_hcd
- Bound Processes: 0 Threads: 0 201 0 0 0 0 ehci_hcd
. Bound Interrupts: 0 200 | 0 0 0 0 Intel B2801DB-ICH4
() ¥ O @D CPU3 [26% Usagel |
’ Bound Processes: 0 Threads: 0 217 0 0 0 0/ rcim
‘- Bound Interrupts: 0 E 0 0 82 0 ethl
NMI 0 0 0 0 Non-maskable interrupts
raptor CPU Usage: LOC 1007 1000 1012 999 |ocal interrupts

CPUO [] |/ RES 240 230 234 208 Rescheduling interrupts
CPu1 [T] | | eAL 0 0 0
CPU2 [| | (g 0 0 0
CPU3 [| | 0 0 0

=

function call interrupts

(=1

TLB shootdowns

=

Thermal event interrupts
100 | |-

]
=
=
=]
=]
=]
=]

Spurious interrupts

=

Error interrupts

M5 0 0 0 0 APIC errata fixups

Legend:[P‘f Unshielded

[v Shielded

[(!) Inacrive”-ﬂ- Bound

Figure 6-13. NightTune with Interrupt Activity Panel

The panel shows the number of interrupts per second for each interrupt as handled on
each CPU (if on a multi-processor system).

The chain link icon in the Interrupt Activity panel indicates that an interrupt may be
handled by that particular CPU. However, if an interrupt may be handled by all CPUs,
then no icon appears for that interrupt. The same information is displayed in the Bound
Interrupts items for each CPU in the CPU Shielding and Binding panel.

Some systems may employ IRQ balancing which automatically changes IRQ affinities
over time. This interferes with attempts to control interrupt affinity manually. For pur-
poses of this tutorial, ensure that IRQ balancing is currently disabled by executing the fol-
lowing command as the root user:

/sbin/service irgbalance stop

To bind an interrupt to a single CPU, it may be dragged in much the same way as a pro-
Cess.

6-15

NightStar RT Tutorial

While the cursor is over an interrupt in the Interrupt Activity panel, you may press and
hold the left mouse button, then drag the interrupt to the particular CPU in the CPU
Shielding and Binding panel. Similarly, while the cursor is over an interrupt in the
Bound Interrupts list of a CPU inthe CPU Shielding and Binding panel, you may
press and hold the middle mouse button, then drag the interrupt to a different CPU in the
CPU Shielding and Binding panel.

To change an interrupt’s affinity to allow multiple CPUs, but possibly exclude one or
more, select the Set CPU Affinity... option from the context menu of any interrupt row
in the panel.

NOTE

If you are not running as the root user or your user lacks appropri-
ate privileges, the Set CPU Affinity... option will not be present in
the context menu.

“a NightTune -lInterrupt Affinity (on)
— Current Affinity
217 10-APIC-level rcim | |
a
Interrupt Affinity —CPU Shielding Legend

0 ® 17 25 35 K 5{ Unshielded From Interrupts
v Shielded From Interrupts
Set All Clear All
[B H i l ¢ cPUDown
[O] l Apply l [Reset l l Cancel l [Help l

Figure 6-14. Interrupt Affinity Dialog

For each CPU on which the interrupt is allowed to be handled, the checkbox with the num-
ber of that CPU should be checked. The changes take effect when the OK or Apply but-
ton is pressed.

NOTE

For certain interrupts, such as NMI, it is impossible to control
their CPU affinity.

6-16

Using NightTune

Shielding CPUs for Maximum Determinism and Performance

NightTune allows you to easily shield specific CPUs from processes, interrupts, and
shared resource interference from other CPUSs.

This is demonstrated as part of the NightSim section in this tutorial. See “Overrun Detec-
tion and System Tuning” on page 7-9 for more information.

Conclusion - NightTune

The remaining portion of the tutorial is unrelated to the execution of the app program.
Terminate the program by executing the following steps:

- Drag the app process from the Process List panel using the left mouse
button to the Kill icon on the toolbar and release.

X

- Terminate NightTune by selecting Exit from the File menu.

This concludes the NightTune portion of the NightStar RT Tutorial.

6-17

NightStar RT Tutorial

6-18

7
Using NightSim

NightSim is a graphical tool for scheduling multiple processes in a synchronized manner
and monitoring their execution.

NightSim provides a graphical interface to the Frequency Based Scheduler utilities.

If you don’t have the Frequency Based Scheduler installed on your system, this portion of
the tutorial isn’t applicable to you. Use the following command to see if the Frequency
Based Scheduler is installed:

rpm -q ccur-fbsched

This chapter of the tutorial also uses a real-time clock interrupt source from the Real-Time
Clock and Interrupt Module (RCIM) which is standard equipment on all Concurrent
iHawk systems. If your system does not include an RCIM device, this portion of the tuto-
rial isn’t applicable to you. Use the following command to see if an RCIM is installed:

cat /proc/driver/rcim/status

If the file shown above does not exist, an RCIM does not exist on your system or your ker-
nel has had the RCIM support removed.

For some aspects of this section, it will be necessary to execute NightSim and NightTune
as the root user or to ensure that your user account has appropriate privileges. See the
“Setting Up User Privileges” on page 1-2 for more information.

Creating FBS Applications

Itis trivial to modify cyclic applications so that they may be scheduled via NightSim.

A single API call is required.
The source code for our simplistic work application follows:

#include <fbsched.h>
int workload = 1000;
main()
{
int data = 0;
int i;
volatile double d = 1.0;
while (fbswait()==0) {
data = ldata;
for (i=0; i<workload; ++i) d = d/d;
3
3

7-1

NightStar RT Tutorial

The call to fbswait() causes the process to block until its next scheduled cycle at
which point it returns. The process then performs its workload and then loops to block in
fbswait() until its next scheduled cycle.

The work. c source file was copied from Zusr/lib/NightStar/tutorial into the
current working directory in an earlier portion of this tutorial.

Compile and link the application using the following command:

cc -g -o work work.c -lccur_fbsched -lIccur_rt

Invoking NightSim

A NightSim configuration file has been prepared for this tutorial and should have been
copied to your current working directory during the activities in the section entitled “Cre-
ating a Tutorial Directory” on page 1-3.

Launch NightSim specifying the configuration file, as show below:

nsim -f nsim.config -offline &

File

8B H B O) Il X [@mmo]]

Target System: localhost

Target View Scheduler Process Monitor Tools Help

Scheduler

Control — Definition ~ Interrupt

["] Automatic Configuration Interrupt Source [Real—rime clock rte2 |vl
Scheduler Key | 2778 Interrupt Device [dev/rcim/rtc2

[Siari l [B l [[l Cycles per Frame E Clock Period/Freq [0.1 HmSec |vl
Tasks per Cycle E Valid Range (0.001-655350.0) mSec

Tasks per Frame E
Refresh Rate |1.00 Hz E Permissions (rw—-)

Processes

| FPID | e |cpu IDsl Policy | Prio |Plrl|r|| Limit |Ov thl Deadline |DIth|0rigin| Schedule

— work 0 FIFO 1 o 0 false S o

S e [(o] Lo JLon e (e

Configuration File: nsim.config

4

7-2

Figure 7-1. NightSim Initial Window

Using NightSim
Creating a Scheduler

NightSim allows you to define the scheduling of multiple processes, using the following
parameters:

* The scheduling source (usually an external interrupt)
* The rate at which the interrupts occur (for clock-based interrupts)
* The period at which a process is scheduled

* The CPU affinity, scheduling policy and priority of scheduled processes
Collectively, these parameters define a scheduler.
A cycle is defined as the time between the scheduling sources (interrupts).

A frame is defined by a fixed number of cycles. Frames are useful concepts in many
cyclic applications where a series of discrete steps (cycles) must be executed in order
before the entire algorithm (frame) repeats.

The scheduler configured by the nsim.conTFig file specified on the command line in the
previous section defined a scheduler with the following attributes visible on the main win-
dow:

* Cycles Per Frame -- four cycles per frame

* Timing Source - an interrupt source using RTC2 of the Real-time Clock
and Interrupt Module device (RCIM)

* Clock Period -- a cycle time of 100 microseconds

* Processes -- a single process, work, schedule to run on every cycle of
the frame

To view the details of the attributes of the scheduled process, select the . /work process
in the process area at the bottom portion of the Processes panel and then press the
Edit... button in the lower-right portion of the panel.

7-3

NightStar RT Tutorial

The Edit Process dialog is displayed.

Edit Process

Target: localhost

Process Command Line

|-Mork| J Select...

FBS Schedule l BRuntime Properties | IfO and Debug]

Starting Cycle [0]%] [1]%] Period Within Frame

_ [] :
Parameter (Optional)
Soft Overrun Limit [Halt FBS if Overrun Limitis Exceeded.

[] Apply Deadlin

| =8

Cycle-Relative H

[] Halt on Deadline Violation

[oK H Reset H Cancel H Help

Figure 7-2. NightSim Edit Process Dialog

The FBS Schedule tab shows the starting cycle and period of the work process. The
Staring Cycle defines the cycle within the frame where the process will begin its execu-
tion. The Period defines the frequency of execution, in cycles. A period value of 1
causes the application to execute every cycle in the frame.

7-4

Using NightSim

Click on the Runtime Properties tab in the dialog.
= EE)

Target: localhost

Process Command Line

i
FBS Schedule | Runtime Properties IfO and Debug

Working Directary: [][Select...]

Scheduling Class: | FirstIn First Out | =

Priarity: E (Range: 1-99)

Available CPUS: Unknown (nsimis offline)

CPU List: (mask=0x1)

ﬂ

[o¢][Reset |[concel |[el |

Figure 7-3. Runtime Properties Tab

NOTE

The CPU Bias description area of the Runtime Properites
tab may vary depending on the number of CPUs on your system.

The Runtime Properties tab allows you to chose the CPU on which execution is
allowed, the scheduling policy, and the scheduling priority of the process.

Close the Edit Process window by pressing the Cancel button.

Notice that in addition to the work process, the Zidlle process is listed in the scheduling
area of the NightSim window. We have registered the Zidle process so that we may sub-
sequently monitor the amount of idle time available for each cycle. The Zidle process is
not a process that is scheduled, but rather it is a placeholder used to represent idle cycles.

7-5

NightStar RT Tutorial
Running the Scheduler

To start the scheduling of the process, press the Setup button followed by the Start but-
ton in the Control area.

NightSim'- /zoey/stuff/jeffh/test/tut/nsim.config

Fil= Target View Scheduler Process Monitor Tools Help

8z E ho) Il X

Scheduler

Target System: localhost

~ Control — Definition ~ Interrupt

’ [Automatic Configuration ’Real—time clock ric2 |v]
Running B

l Start over] l Pause] l Resume] CE ’ ”mSec |']
Frame: 27765 EE
- B
Refresh Rate [j8ili Hz =

Processes
| FPID | B |cpu IDsl Policy | Prio |Plrl|r|| Limit |Ov Hlltl Deadline |D|Hl|t|0rigiri Schedule

S e R R R

Configuration File: nsim.config y

Figure 7-4. Scheduling Started

Note the Frame count begins to increase under the Control area as the Cycle oscillates
between 0 and 3.

7-6

Using NightSim

To monitor the execution of the process, click on the Monitor tab near the top of the win-
dow.

& HEE
File Target View Scheduler Process Monitor Tools Help
@ B’ [j @ (D II x @Sewer(}nline H
Scheduler Maonitor
Metrics
) . |CPU| Start : Iter- Avg Last Total Soft |Over-| _ Deadline
FPID | Program | Policy | Prio | Period) % Used Limit| Hah?| =
Bias | Cycle ations Time (us) Time (us)| Time (us) |Ovrns | runs Violations
0 work FIFO 1 0x1 0 1 1055549 32.9 32,946 37.837 3.47Be+07 5623 5623 0 false -
1 idle - 0 0x1 0 1 1061172 55.0 55.031 52234 G5.836e+07 - - - - -
Scheduler Status: Running Frame: 267750 Cycle: 2
Percent of Period Used (CPU Time)
=1 Overrun Summary of Magnified Graph Area
— 100% |FPID |Min% Max % Avg%l e |
— aow B0 347 36.5 work
— 0% B] 549 549 549 fidle (cpu0)
— 70%
I M { s0%
_/\ _\ | | |/\\ / //\\/| ~
| ||I | ’ \/ \f | | s0%
| | . / |
i | I [[| | |- 0%
i
Il bl M ' —30%
'|| a ||| | |
||| |||| || | ||I || | |
I [
(. | | I lL ~ 10%
[U 0%
Newest
| show.. |[Hiee |
4] [«]»
["] Automatically Scale [| Freeze Graph Scheduler Status: Running Frame: 269332 Cycle:3
Configuration File: nsim.config y

Figure 7-5. NightSim Monitor Page

The NightSim Monitor page provides statistics about each individual process on the
scheduler. It includes the PID, program name, CPU bias, number of cycles executed, the
CPU times related to per cycle execution, counts of overruns, and the average percentage
of the frame used by each process. Additional statistics can be selected for display via the
Display Monitor Columns option item of the Monitor menu.

The lower half of the page shows the Percent of Period Used (CPU Time) graph.
There is a line for each process on the scheduler; the percent of time used (CPU time) dur-
ing the last cycle is plotted over time. If an application overruns its timeslot, a red dot is
shown on the graph. Points that fall within the square magnifier are detailed in the table to
the right. (Note that a process can overrun its deadline even if it doesn’t use more than
100% of its alloted CPU time -- other processes could be interfering with it or it may be
waiting on 1/O, etc.).

NightStar RT Tutorial

Watch the Last Time column. The values displayed are the CPU time used by each pro-
cess for their last cycle’s execution in microseconds. The values attributed to the Zidle
process indicate the remaining CPU time available within the cycle.

We will adjust the workload of the work process and see the effects shown in the Night-
Sim Monitor window.

Using Datamon to Modify Program Variables

7-8

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data monitoring allows you to specify executable programs that contain Ada, C, or For-
tran variables to be monitored, obtain and modify the values of selected variables by spec-
ifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

Data monitoring is a powerful capability with a rich APl. However, for our purposes, we
will write a very simple program which changes the value of a single variable.

Refer to the Data Monitoring Reference Manual for more information about data monitor-
ing.

The source code for our set_workload program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
iIT((X)) {fprintf(stderr, "%s\n", dm_get_error_string());exit(l);}

main(int argc, char * argv[])
{
program_descriptor_t pgm;
object descriptor_t obj;
char buffer[100];

if (argc '= 2) {
fprintf (stderr, "Usage: set workload integer-value\n™);
exit(l);

¥

check(dm_open_program(*‘work",0,&pgm));
check(dm_get_descriptor(*workload",0,pgm,&obj));
check(dm_get_value(&obj ,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf ("workload: old_value=%s, new_value=%s\n", buffer, argv[1l]);

}

The dm_open_program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

Using NightSim

The dm_get_descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
work process into the monitoring process.

The dm_get value and dm_set_value routines return and set the value of the vari-
able using direct memory reads and writes; the work process is not affected in any other
way than having the value of the workload variable changed.

The set_workload.c source file was copied into the current working directory during
the activities in “Creating a Tutorial Directory” on page 1-3.

Compile the program using the following command:
cc -g -0 set _workload set _workload.c -ldatamon -lccur_rt

Change the value of the workload variable in the work process by issuing the following
command:

./set_workload 0O

As shown in the source code above, the program prints the previous value of the work-
load variable and then sets it to the value specified as an argument to set_workload.

The Last Time field for . /work is affected by the reduced workload as shown in the
NightSim Monitor window.

Experiment with various values of workload using the set_workload program until
the average Last Cycle time for . /work is approximately 50 microseconds.

Overrun Detection and System Tuning

A scheduling overrun occurs when a process’s next cycle begins but it has not yet finished
execution of its previous cycle.

The NightSim Monitor window includes overrun counts for each process.

It is likely that several overruns have occurred for the work process.

NOTE

If overruns have not yet occurred, place some additional load on
the system. Running the following command in a separate termi-
nal session should have the desired effect:

find / -print

The NightTrace tool, as described in a previous chapter, is well suited for determining the
specific cause of process overruns. NightTrace kernel tracing provides a detailed view of
system activity on all CPUs, including process context switches, interrupts, system calls,
and machine exceptions.

7-9

NightStar RT Tutorial

For brevity, we will assume that the cause of the overruns is due to additional activities
unrelated to the scheduler are occurring on the CPU where work executes.

We will use NightTune to shield the CPU associated with our scheduler from other activi-
ties.

NOTE

If your system only has a single CPU, the remaining portion of
this section is inapplicable. Skip to “Shutting Down the Sched-
uler” on page 7-14 in this case.

Launch NightTune using the ntune.config file that was copied into the current work-
ing directory during the activities in “Creating a Tutorial Directory” on page 1-3:

ntune -c ./ntune.config &

NightTune

File View Monitor Tools Help
B I; &e} 1}3 " @ &y g =] a s 9 'ﬁ - m Create Panels For: » x »
raptor Interrupt Activity (Interrupts/Second): raptor CPU Shielding and Binding:
CcPUS raptor: Intel(R} Xeon(TM) CPU 2.40GHz
7 0 [rafs 2]y 3]pescription g T e
0 1000 0 0 0 timer & Chip 0
. [49% Usage]
3 0 0 0 0 KGDB-stub [32% Usagel
4 0 0 0 0 serial
s o o 0 o e
14 10 0 0 0 ided
177 0 0 0 0 uhci_hecd
185 0 0 0 0 uhci_hcd
193 0 0 0 0 uhci_hecd
201 0 0 0 0 ehci_hcd
209 0 0 0 0 Intel 82801DB-ICH4
217 9999 0 0 0 rcim
225 289 0 0 0 etho
238 9999 0 0 0 fbsched
NMI 0 0 0 0 Non-maskable interrupts T B e
Loc 999 999 999 999 Local interrupts CPUO T B
RES 102 492 2891 1080 Rescheduling interrupts CPULETTT |
CAL 0 0 0 0 function call interrupts CPU2 [.|
T8 2 1 1 1 TLBshootdowns CPU S I T
TRM 0 0 0 0 Thermal event interrupts 0 100
SPU 0 0 0 0 Spurious interrupts Legend: - - m
ERR 0 0 0 0 Error interrupts
MiS o o o o
Legend: 5} Unshielded"v Shielded" (b Inactive || <@ Bound
A

Figure 7-6. NightTune with Interrupt and CPU Shielding & Binding Panels

7-10

Using NightSim

A NightTune window appears which displays interrupt activity and the shielding and
bound status of all CPUs.

Right-click on the System icon in the CPU Shielding & Binding panel and select
Expand All from the context menu.

Note that work process is listed in the Bound Processes list of CPU 0.

Take the following actions to bind the RCIM interrupt to CPU 0 and shield CPU 0 from all
other activities:

- While the cursor is positioned in the Interrupt panel over the cell in
the Description column which contains the word rcim, press and
hold the left mouse button, then drag the interrupt onto the CPU 0
row in the CPU Shielding and Binding panel, and release the
mouse button. The rcim interupt is now bound to CPU 0.

raptor: Intel(R) Xeon(TM) CPU 2.40GHz

£+ Chip 0

B-¢h # O @ an CcPUO [0% Usage]

! [Bound Processes: 1 Threads: 1

¢ L. 22375 work
£} Bound Interrupts: 1

E L. 217 rcim

2-¢h # O an CPU2 [0% Usage]
... Bound Processes: 0 Threads: 0
... Bound Interrupts: 0

- Chip 3
B-¢h # O@an CPUL [1% Usage]
i i. Bound Processes: 0 Threads: 0

: - Bound Interrupts: 0

B-(h # O @ an CPU3 [0% Usage]
... Bound Processes: 0 Threads: 0
... Bound Interrupts: 0

Figure 7-7. Process and Interrupt Bound to CPU 0

7-11

NightStar RT Tutorial

- Right-click the row corresponding to CPU 0 in the CPU Shielding
and Binding panel and select the Change Shielding... option
from the context menu.

hd raptor; CPU - Shielding
Click on icons to change CPU shielding

NN Ny
o0 OO0
o 46
ee eeé
e Q@

[oK H Anply H Reset H Gancel H Help]

Figure 7-8. Change Shielding Dialog

7-12

Using NightSim

- Click the Maximize Shielding icon in the CPU 0 line (the maxi-
mize shielding icon is the right-most icon with three overlapping
shield figures).

b raptor: CPU - Shielding

Click on icons to change CPU shielding

[Serring differ from system]

El- System
EF Chip 0
L)

[oK H Apply H Reset H Cancel H Help]

L

Figure 7-9. Shielding Changes Pending

The CPU 0 line changes its display to indicate that all processes and interrupts other than
work and rcim will be shielded from CPU 0. Additionally, the sibling hyper-threaded
CPU (in this case CPU 2 as shown below CPU 0) is marked down so that hyper-threaded
execution on CPU 2 does not interfere with CPU 0.

NOTE

The hyperthreaded sibling of CPU 0 may be a logical CPU num-
ber other than CPU 2.

NOTE:

Your system may not support hyper-threading or it may not have
hyper-threading enabled in which case the CPUs are not displayed
in hyper-threaded groups.

- Press the OK button to activate the shielding changes.

Return to the NightSim Monitor window and watch the Overrun column. Itis likely that
overruns have ceased to occur. Clear the overrun count by selecting the Clear Perfor-
mance Data option item from the Monitor menu. This action resets all the statistics to
zero.

7-13

NightStar RT Tutorial

Watch the Overrun column to see if any overruns still occur.

Experiment with the ./set_workload program to make the workload of the ./work
application such that only 35 microseconds are left for Zidle processing.

If the system is properly configured, the scheduler should continue to execute without any
overruns on the shielded CPU.

Shutting Down the Scheduler

7-14

Return to the NightSim window and press the Remove button to terminate the sched-
uler. Press Yes when presented with the dialog which asks whether to kill the processes
associated with the scheduler.

Exit NightSim by selecting the Exit menu item from the File menu. A dialog asking
whether or not to save changes to nsim.config may appear; if so, press No.

You may also wish to clear the shielding attributes for CPU 0 and return the system to its
previous state using NightTune.

Exit NightTune by selecting the Exit from the File menu.

This concludes the NightSim portion of the NightStar RT Tutorial.

A
Tutorial Files

The following sections show the source listings for the files used in the NightStar RT Tuto-
rial.

- api.c

- app-c

- function.c

- report.c

- set_workload.c

- set_rate.c

A-1

NightStar RT Tutorial

api.c

A-2

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl_.h>
#include <errno.h>
#include <string.h>
#include <nprobe.h>

int cycles = 0;
int overruns = 0;
char * sample;

// Perform the work of consuming
sample from NightProbe.
//
int
work (FILE * ofile, np_handle h,
np_item * i;
int status;
int which;

// Read one sample, which may
processes
// and variables.
//
status = np_read (h, sample);
if (status <= 0) {
return status;

}

cycles++;

fprintf (ofile, "Sample %d\n",

a single Data Recording

np_header * hdr) {

contain data for multiple

cycles);

for (i = hdr->items; i; 1 = i->link) {

char buffer [1024];

sprintf (buffer, "item: %s:
fprintf (ofile, "%-30s", buffer); // Nice formatting

', I->name);

// Display the value of each item.

// For arrays, format each
//

individual item.

for (which = 1; which <= i->count; ++which) {
char * image = np_format (h, i, sample, which);

if (image '= NULL) {

fprintf (ofile, " %s', image);

} else {

Tutorial Files

fprintf (ofile, "\n<error: %s>\n", np_error (h));

return -1;

}

free (image);
by
fprintf (ofile, "\n");
by
fflush (ofile);

return 1;

int
main (int argc, char *argv[])
{

np_handle h;

np_header hdr;

np_process * p;

np_item * 1i;

int fd;

int status;

FILE * ofile = stdout;

fd = 0; // stdin

status = np_open (fd, &hdr, &h);

if (status) {
fprintf (stderr, "%s\n”, np_error (h));
exit(l);

¥

sample = (char *) malloc(hdr.sample_size);
if (sample == NULL) {

fprintf (stderr, "insufficient memory to allocate

sample buffer\n™);
exit(l);
¥

for (p = hdr.processes; p; p = p->link) {
if (p—>pid >= 0) {

fprintf (ofile, "process: %s (wd)\n', p->name, p-

>pid);
} else {
fprintf (ofile, "resource: %s (%s)\n", p->name, p-
>label);
¥
by

fprintf (ofile, "\n");

A-3

NightStar RT Tutorial

for (i = hdr.items; i; 1 = 1->1ink) {
fprintf (ofile, "item: %s (%s), size=%d bits, count=kd,
type=%d\n™,

i->name, I->process->name, 1->bit _size, i-
>count, i->type);

by
fprintf (ofile, "\n");

for (55) {
status = work (ofile, h, &hdr);
if (status <= 0) break;

}

fprintf (ofile, "Data Recording done: %d cycles fired, %d

overruns\n',
cycles, overruns);

if (ofile != stdout) {
fclose (ofile);

}

if (status < 0) {
fprintf (stderr, "%s\n", np_error (h));

¥
np_close (h);
// At this point, file descriptor 0O remains open, but is

no
// longer a NightProbe Data File/Stream.

A-4

app.c

Tutorial Files

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include <ntrace.h>
#include <math.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static void * heap_thread (void * ptr);
extern void work (int control);

typedef struct {
char * name;
int count;
double delta;
double angle;
double value;
} control_t;

control_t data[2] = { { "sin", 0, M_P1/360.0, 0.0,
""cos", 0, M_PI1/360.0, 0.0

enum { run, hold } state;

int rate = 50000000;

int sema;

eoNe]
(oNe]

extern double
FunctionCall(void)

{
return data[0].-value + data[l].value;
}
void *
sine_thread (void * ptr)
{
control_t * data = (control_t *)ptr;
struct sembuf wait = {0, -1, O};
work(1);
trace_set thread_name (data->name);
for (G3) {
semop(sema, &wait, 1);
data->count++;
data->angle += data->delta;
data->value = sin(data->angle);
}
}

A-5

NightStar RT Tutorial

A-6

void *

cosine_thread (void * ptr)

{
control_t * data = (control_t *)ptr;
struct sembuf wait = {0, -1, O};
work(1);

trace_set_thread_name (data->name);

for (55) {
semop(sema, &wait, 1);
data->count++;
data->angle += data->delta;
data->value = cos(data->angle);
3
¥

int
main (int argc, char * argv[])
{
pthread_t thread;
pthread attr_t attr;
struct sembuf trigger = {0, 2, 0};

trace _begin ("'/tmp/data’™,NULL);
sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, sine_thread, &data[0]);

pthread_attr_init(&attr);
pthread _create (&thread, &attr, cosine_thread, &data[l]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, heap_thread, NULL);

for (55) {
struct timespec delay = { 0, rate } ;
nanosleep(&delay,NULL);
work (random() % 1000);
if (state = hold) semop(sema,&trigger,l);

}

trace_end () ;

¥
void * ptrs[5];

static void *
heap_thread (void * unused)

{

Tutorial Files

int i = 5;

int scenario = -1;
void * ptr;

int * * iptr;

extern void * alloc_ptr (int size, int swtch);
extern void free_ptr (void * ptr, iInt swtch);

for (G3) {
sleep (5);
switch (scenario) {
case 1:
// Use of freed pointer
ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
memset (ptr, 47, 64);
break;
case 2:
// Double-free
ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
free(ptr);
break;
case 3:
// Overwriting past end of an allocated block
#define MyString "mystring"
ptr = alloc_ptr(strlen(MyString),2);
strcpy (ptr,MyString); // oops -- forgot the zero-

byte

break;

case 4:
// Uninitialized use
iptr = (int * *) alloc_ptr(sizeof(void*),2);
it (*iptr) **iptr = 2778;
break;

case 5:
// Leak -- all references to block removed
ptr = alloc_ptr(37,1);
ptr = 0O;
break;

case 6:
// Some more allocations we”’ll check on...
ptrs[0] = alloc_ptr(1024*1024,3);
ptrs[1] = alloc_ptr(1024,2);
ptrs[2] = alloc_ptr(62,1);
ptrs[3] = alloc_ptr(4564,3);
ptrs[4] = alloc_ptr(8177,3);
break;

3

(void) malloc(l);

scenario = 0;

3
3

A-7

NightStar RT Tutorial

A-8

void * func3 (int size, int count)

{
}

return malloc(size);

void * func2 (int size, int count)

{

it (--count > 0) return func3(size,count);
return malloc(size);

}

void * funcl (int size, int count)

{

it (--count > 0) return func2(size,count);
return malloc(size);

}

void free3 (void * ptr, int count)

{
}

free(ptr);

void free2 (void * ptr, int count)

{
if (--count > 0) {
free3(ptr,count);
return;
by
free(ptr);

}

void freel (void * ptr, int count)

{
if (--count > 0) {
free2(ptr,count);
return;

by
free(ptr);

}

void * alloc_ptr (int size, int count)

{
}

return funcl(size,count);

void free_ptr (void * ptr, int count)

{
}

freel(ptr,count);

void work (int control)

{

volatile double calculations[2048];

function.c

report.c

volatile double d = 0.0;

int i;

for (1=0; 1<2048; ++i) {
calculations[i] = 3.14159;

b

for (i=0; i<control*10; ++i) {
d = d*d;

calculations[i%2048] = d;

}
}

#include <signal.h>
int nosighup (void)

{
struct sigaction ignore;
ignore.sa_flags = O;
ignore.sa _handler = SIG_ICGN;
sigemptyset(&ignore.sa mask);
sigaction(SIGHUP, &ignore,NULL);

¥

double

FunctionCall(void)

{
static double counter;
return counter++;

}

#include <stdio.h>

void report (char * caller, double value)

{

static int count;

Tutorial Files

if (++count % 40) printf ('The value from %s is %f\n",

caller, value);

}

A-9

NightStar RT Tutorial
set_workload.c

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) 1F((x)) {fprintf(stderr, "%s\n",
dm_get _error_string());exit(1);}

main(int argc, char * argv[l)
{
program _descriptor_t pgm;
object descriptor_t obj;
char buffer[100];

if (argc 1= 2) {
fprintf (stderr, "Usage: set_workload integer-
value\n');
exit(l);
}

check(dm_open_program(*'work',0,&pgm)) ;
check(dm_get_descriptor(“'workload",0,pgm,&obj));
check(dm_get_value(&obj ,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf ('workload: old_value=%s, new_value=%s\n', buffer,
argv[1i]);
}

set_rate.c

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(X) If((X)) {fprintf(stderr, "%s\n',
dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{
program descriptor_t pgm;
object descriptor_ t obj;
char buffer[100];

if (argc 1= 2) {
fprintf (stderr, "Usage: set rate: integer-value\n);
exit(l);

}

A-10

Tutorial Files

check(dm_open_program(*‘app™,0,&pgm));
check(dm_get _descriptor('rate”,0,pgm,&obj));
check(dm_get value(&obj ,buffer,sizeof(buffer)));
check(dm_set value(&obj,argv[1]));

printf ('rate: old_value=%s, new_value=%s\n', buffer,

argv[1]);
}

A-11

NightStar RT Tutorial

A-12

	NightStar RT Tutorial
	Preface
	Contents
	Chapter 1 Overview
	Chapter 2 Panels
	Chapter 3 Using NightView
	Chapter 4 Using NightTrace
	Chapter 5 Using NightProbe
	Chapter 6 Using NightTune
	Chapter 7 Using NightSim
	Appendix A Tutorial Files

	Overview
	Getting Started
	Setting Up User Privileges
	Creating a Tutorial Directory
	Building the Program

	Panels
	Moving Panels
	Tabbed Panels
	Context Menus
	Tutorial Screen Shots

	Using NightView
	Invoking NightView
	Heap Debugging
	Activating Heap Debugging
	Controlling the app Program
	Scenario 1: Use of a Freed Pointer
	Scenario 2: Freeing an Invalid Pointer Value
	Scenario 3: Writing Past the End of an Allocated Block
	Scenario 4: Use of Uninitialized Heap Blocks
	Scenario 5: Detection of Leaks
	Scenario 6: Allocation Reports
	Disabling Heap Debugging

	Debugging Multiple Threads
	Using Monitorpoints
	Using Eventpoint Conditions and Ignore Counts
	Using Patchpoints
	Adding and Replacing Functions Dynamically
	Using Tracepoints
	Conclusion - NightView

	Using NightTrace
	Invoking NightTrace
	Configuring a User Daemon
	Streaming Live Data to the NightTrace GUI
	Using NightTrace Timelines
	Zooming
	Moving The Interval

	Using the Events Panel for Textual Analysis
	Customizing Event Descriptions
	Searching the Events List
	Halting the Daemon
	Using States
	Displaying State Duration
	Generating Summary Information

	Defining a Data Graph
	Kernel Tracing
	Obtaining Kernel Trace Data
	Using Prerecorded Kernel Data
	Analyzing Kernel Data
	Mixing Kernel and User Data

	Using the NightTrace Analysis API
	Automatically Tracing Your Application
	nlight Wizard - Selecting Programs
	nlight Wizard - Defining Illuminators
	nlight Wizard - Selecting Illuminators
	nlight Wizard - Relinking the Program
	nlight Wizard - Activating Illuminators
	nlight Wizard - Running the Program
	Analyzing Application Illumination Events
	Summarizing Workload Performance
	Batch Summary of Functions

	Shutting Down

	Conclusion - NightTrace

	Using NightProbe
	Invoking NightProbe
	Selecting Processes
	Viewing Live Data
	Modifying Variables
	Selecting Variables for Recording and Alternative Viewing

	Selection of Views
	Table View
	Graph View

	Sending Probed Data to Other Programs
	Using Datamon to Modify Program Variables
	Conclusion - NightProbe

	Using NightTune
	Invoking NightTune
	Monitoring a Process
	Tracing System Calls
	Process Details
	Process Details - Memory Details
	Process Details - File Descriptors
	Process Details - Signals

	Changing Process Scheduling Parameters
	Setting Process CPU Affinity
	Setting Interrupt CPU Affinity
	Shielding CPUs for Maximum Determinism and Performance
	Conclusion - NightTune

	Using NightSim
	Creating FBS Applications
	Invoking NightSim
	Creating a Scheduler
	Running the Scheduler
	Using Datamon to Modify Program Variables
	Overrun Detection and System Tuning
	Shutting Down the Scheduler

	Tutorial Files
	api.c
	app.c
	function.c
	report.c
	set_workload.c
	set_rate.c

