
NightStar RT Tutorial
Version 4.3

(RedHawkTM Linux®)

0898009-080

February 2013

Copyright 2013 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the pub-
lisher.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDATM is a trademark of NVIDIA Corporation.

Preface

General Information

NightStar RTTM allows users running RedHawk to schedule, monitor, debug and analyze
the run-time behavior of their time-critical applications as well as the operating system
kernel.

NightStar RT consists of the NightTraceTM event analyzer; the NightProbeTM data moni-
toring tool, the NightViewTM symbolic debugger, the NightSimTM scheduler, the Night-
TuneTM system and application tuner, the Data Monitoring API, and the Shmdefine shared
memory utility.

Scope of Manual

This manual is a tutorial for NightStar RT.

Structure of Manual

This manual consists of seven chapters and an appendix which comprise the tutorial for
NightStar RT.

Syntax Notation

The following notation is used throughout this guide:

italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in list bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in list bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in list type. Keywords also appear in
list type.

emphasis

Words or phrases that require extra emphasis use emphasis type.
3

NightStar RT Tutorial
window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

[]

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

{ }

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

...

An ellipsis follows an item that can be repeated.

::=

This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0898395 NightViewTM User’s Guide

0898398 NightTraceTM User’s Guide

0898465 NightProbeTM User’s Guide

0898480 NightSimTM User’s Guide

0898515 NightTuneTM User’s Guide
4

Contents

Chapter 1 Overview

Getting Started . 1-2
Setting Up User Privileges . 1-2
Creating a Tutorial Directory . 1-4
Building the Program . 1-4

Chapter 2 Panels

Moving Panels . 2-2
Tabbed Panels . 2-6
Context Menus. 2-8
Tutorial Screen Shots. 2-9

Chapter 3 Using NightView

Invoking NightView . 3-2
Heap Debugging . 3-5

Activating Heap Debugging . 3-5
Controlling the app Program . 3-7
Scenario 1: Use of a Freed Pointer . 3-9
Scenario 2: Freeing an Invalid Pointer Value . 3-12
Scenario 3: Writing Past the End of an Allocated Block 3-14
Scenario 4: Use of Uninitialized Heap Blocks . 3-15
Scenario 5: Detection of Leaks. 3-17
Scenario 6: Allocation Reports. 3-19
Disabling Heap Debugging . 3-21

Debugging Multiple Threads. 3-22
Traversing Linked Lists . 3-25
Using Monitorpoints . 3-30
Using Eventpoint Conditions and Ignore Counts . 3-33
Using Patchpoints . 3-34
Adding and Replacing Functions Dynamically. 3-37
Using Tracepoints . 3-39
Conclusion - NightView . 3-41

Chapter 4 Using NightTrace

Invoking NightTrace . 4-1
Configuring a User Daemon . 4-3
Streaming Live Data to the NightTrace GUI. 4-4
Using NightTrace Timelines . 4-7

Zooming . 4-8
Moving The Interval. 4-9

Using the Events Panel for Textual Analysis . 4-10
5

NightStar RT Tutorial
Customizing Event Descriptions . 4-11
Searching the Events List. 4-12
Halting the Daemon . 4-16
Using States . 4-17

Displaying State Duration. 4-21
Generating Summary Information . 4-22

Defining a Data Graph . 4-25
Kernel Tracing . 4-30

Obtaining Kernel Trace Data . 4-30
Using Prerecorded Kernel Data . 4-32
Analyzing Kernel Data . 4-33
Mixing Kernel and User Data . 4-36

Using the NightTrace Analysis API. 4-40
Automatically Tracing Your Application. 4-42

nlight Wizard - Selecting Programs . 4-43
nlight Wizard - Defining Illuminators . 4-45
nlight Wizard - Selecting Illuminators . 4-47
nlight Wizard - Relinking the Program. 4-49
nlight Wizard - Activating Illuminators . 4-51
Running the Program . 4-52
Analyzing Application Illumination Events . 4-52

Summarizing Workload Performance . 4-61
Batch Summary of Functions . 4-62

Shutting Down . 4-62
Conclusion - NightTrace . 4-63

Chapter 5 Using NightProbe

Invoking NightProbe . 5-1
Selecting Processes . 5-2
Viewing Live Data . 5-4

Modifying Variables . 5-5
Selecting Variables for Recording and Alternative Viewing 5-7

Selection of Views . 5-8
Table View . 5-8
Graph View . 5-11

Sending Probed Data to Other Programs . 5-15
Using Datamon to Modify Program Variables. 5-19
Conclusion - NightProbe . 5-21

Chapter 6 Using NightTune

Invoking NightTune . 6-1
Monitoring a Process . 6-2

Tracing System Calls . 6-3
Process Details . 6-4

Process Details - Memory Details . 6-6
Process Details - File Descriptors . 6-7
Process Details - Signals . 6-9

Changing Process Scheduling Parameters . 6-10
Setting Process CPU Affinity. 6-11
Setting Interrupt CPU Affinity. 6-14
Shielding CPUs for Maximum Determinism and Performance. 6-17
6

Contents
Conclusion - NightTune. 6-17

Chapter 7 Using NightSim

Creating FBS Applications . 7-1
Invoking NightSim . 7-2
Creating a Scheduler . 7-3
Running the Scheduler. 7-6
Using Datamon to Modify Program Variables . 7-7
Overrun Detection and System Tuning . 7-9
Shutting Down the Scheduler . 7-13

Appendix A Tutorial Files

api.c . A-2
app.c. A-5
function.c . A-9
report.c . A-10
set_workload.c . A-10
set_rate.c . A-11

..

Illustrations

Figure 2-1. Viewing Page with List & Graph Panels .2-2
Figure 2-2. Panel Detaches from Page .2-3
Figure 2-3. Panel Movement in Progress .2-4
Figure 2-4. Graph Panel on Top of List Panel .2-5
Figure 2-5. Table View added to Page .2-6
Figure 2-6. Panel in Motion Creating Tab .2-7
Figure 3-1. NightView Main Window .3-2
Figure 3-2. app Program Loaded .3-4
Figure 3-3. NightView Debug Heap Dialog .3-7
Figure 3-4. Heap Totals and Configuration .3-10
Figure 3-5. info memory Command Output .3-13
Figure 3-6. Heap Error Description .3-14
Figure 3-7. Heap Leaks Display .3-18
Figure 3-8. Still Allocated Blocks Display .3-20
Figure 3-9. Context Panel With Stack Frames Expanded3-22
Figure 3-10. Run Mode Selector .3-23
Figure 3-11. Pointer to Linked List Expanded .3-25
Figure 3-12. Dialog Selecting Linked List Component 3-26
Figure 3-13. Pointer Variable Displayed As Linked List 3-26
Figure 3-14. Filter Dialog .3-27
Figure 3-15. Filtered Linked List .3-28
Figure 3-16. Filtered Linked List Expanded .3-28
Figure 3-17. Monitorpoint Dialog .3-30
Figure 3-18. NightView Monitor Panel .3-31
Figure 3-19. Patchpoint Dialog .3-35
Figure 3-20. Result of Patching in Call to Newly Loaded Function3-38
Figure 3-21. Tracepoint Dialog .3-40
7

NightStar RT Tutorial
Figure 4-1. NightTrace Main Window . 4-2
Figure 4-2. Import Daemon Definitions Dialog . 4-3
Figure 4-3. Logging Data . 4-4
Figure 4-4. app_data Page . 4-5
Figure 4-5. NightTrace Timeline . 4-7
Figure 4-6. Timeline Interval Panel . 4-9
Figure 4-7. Events Panel . 4-10
Figure 4-8. Add Event Description dialog . 4-11
Figure 4-9. Searching using the Profiles Dialog . 4-13
Figure 4-10. Browse Events Dialog . 4-14
Figure 4-11. Events Panel After Search . 4-15
Figure 4-12. Timeline Panel After Search . 4-16
Figure 4-13. Profiles Dialog With Obtuse Profile Selected 4-17
Figure 4-14. Timeline Editing . 4-18
Figure 4-15. Edit State Graph Profile dialog . 4-19
Figure 4-16. Sine State in Timeline . 4-21
Figure 4-17. Summary Results Page . 4-23
Figure 4-18. Summary Graph . 4-24
Figure 4-19. State Durations Graph Modified . 4-25
Figure 4-20. Timeline in Edit Mode . 4-26
Figure 4-21. Adding a Data Graph . 4-27
Figure 4-22. Edit Data Graph Profile Dialog . 4-28
Figure 4-23. Display Page with Data Graph . 4-29
Figure 4-24. Edit Daemon Definition Dialog . 4-31
Figure 4-25. Kernel Display Page . 4-33
Figure 4-26. System Call Resume for Nanosleep . 4-35
Figure 4-27. Events Panel after Search . 4-36
Figure 4-28. Longest Instance of State . 4-38
Figure 4-29. Export Profiles to NightTrace API Source File dialog 4-40
Figure 4-30. nlight Wizard - Select Programs Step . 4-43
Figure 4-31. nlight Wizard - Define Illuminators Step 4-45
Figure 4-32. nlight Wizard - Select Illuminators Step 4-47
Figure 4-33. nlight Wizard - Relink Programs Step . 4-49
Figure 4-34. nlight Wizard - Activate Illuminators Step 4-51
Figure 4-35. NightTrace - Import File Name . 4-53
Figure 4-36. NightTrace - Daemon Ready to Launch 4-54
Figure 4-37. NightTrace - Daemon Collection Events 4-55
Figure 4-38. NightTrace - /tmp/data_import Timeline 4-56
Figure 4-39. NightTrace - Events Panel w/ Tool Tip . 4-57
Figure 4-40. NightTrace - Event Panel Search Dialog 4-58
Figure 4-41. NightTrace - Events Panel after Search 4-58
Figure 4-42. NightTrace - Events Panel Context Menu 4-59
Figure 4-43. NightTrace - Launches Editor with Source File at Line Number 4-60
Figure 4-44. NightTrace - Functions Summary Table 4-61
Figure 4-45. Function Details Table for the work function 4-62
Figure 5-1. NightProbe Main Window . 5-2
Figure 5-2. Program Selection Dialog . 5-3
Figure 5-3. Process Selection Dialog . 5-3
Figure 5-4. NightProbe Browse Panel . 5-4
Figure 5-5. Expanded Data Item . 5-5
Figure 5-6. Variable Modification in Progress . 5-6
Figure 5-7. Mark and Record Attributes Set . 5-7
Figure 5-8. Table View . 5-9
Figure 5-9. Item Selection Dialog . 5-10
8

Contents
Figure 5-10. Table in Automatic Sampling Mode .5-11
Figure 5-11. Graph Panel .5-12
Figure 5-12. Graph Panel Actively Displaying Values 5-13
Figure 5-13. Edit Curve Attributes Dialog .5-13
Figure 5-14. Graph Panel with Modified Curves .5-14
Figure 5-15. Recording area of Configuration Page .5-16
Figure 5-16. Clock Selection Dialog .5-16
Figure 5-17. Record To Program Dialog .5-17
Figure 5-18. Recording Area of Configuration Page w/ Destination 5-18
Figure 5-19. Example Output of Graph Program .5-19
Figure 6-1. NightTune initial panels .6-1
Figure 6-2. Expanded Process List .6-2
Figure 6-3. Process List with Threads .6-3
Figure 6-4. Strace Output of Thread .6-4
Figure 6-5. Process Details Dialog .6-5
Figure 6-6. Process Memory Details Page .6-6
Figure 6-7. File Descriptors Page .6-8
Figure 6-8. Signals Page .6-9
Figure 6-9. Process Scheduler Dialog .6-10
Figure 6-10. NightTune Process List with modified thread 6-11
Figure 6-11. CPU Shielding and Binding Panel .6-12
Figure 6-12. CPU Shielding and Binding Panel with Bound Thread 6-13
Figure 6-13. NightTune with Interrupt Activity Panel 6-15
Figure 6-14. Interrupt Affinity Dialog .6-16
Figure 7-1. NightSim Initial Window .7-2
Figure 7-2. NightSim Edit Process Dialog .7-4
Figure 7-3. Runtime Properties Tab .7-5
Figure 7-4. Scheduling Started .7-6
Figure 7-5. NightSim Monitor Page - Metrics Panel .7-6
Figure 7-6. NightSim Monitor Page - Percent of Period Used Panel 7-7
Figure 7-7. NightTune with Interrupt and CPU Shielding & Binding Panels . .7-10
Figure 7-8. Process and Interrupt Bound to CPU 0 .7-11
Figure 7-9. Change Shielding Dialog .7-11
Figure 7-10. Shielding Changes Pending .7-12
Figure 7-11. NightSim Percentage of Period Panel - Shielded CPU7-13
9

NightStar RT Tutorial
10

1
Chapter 1Overview

1
1
1

NightStar RTTM is an integrated set of debugging tools for developing time-critical Linux®

applications. NightStar RT are designed to be minimally intrusive, preserving the execu-
tion behavior and determinism of your applications. Users can quickly and easily debug,
monitor, analyze, and tune their applications.

The NightStar RT tools consist of:

• NightViewTM source-level debugger

• NightTraceTM event analyzer

• NightProbeTM data monitor

• NightTuneTM system and application tuner

• NightSimTM scheduler

In this tutorial, we will integrate these tools into one cohesive example incorporating vari-
ous scenarios which demonstrate their extensive functionality.
1-1

NightStar RT Tutorial
Getting Started 1

Certain activities in this tutorial require enhanced user privileges which are not granted to
user accounts by default. You will need to run as the root user, where indicated within this
tutorial, or obtain appropriate privileges as detailed in the “Setting Up User Privileges” on
page 1-2.

Setting Up User Privileges 1

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
tain privileged operations. pam_capability(8), the Pluggable Authentication Mod-
ule, is used to manage sets of capabilities, called roles, required for various activities.

Linux systems should be configured with a nightstar role which provides the capabili-
ties required by NightStar RT. In order to take full advantages of NightStar RT features,
each user must be configured to use (at a minimum) the capabilities specified below.

Edit /etc/security/capability.conf and define the nightstar role (if it is
not already defined) in the “ROLES” section:

role nightstar cap_sys_nice cap_ipc_lock

Additionally, for each NightStar RT user on the target system, add the following line at
the end of the file:

user username nightstar

where username is the login name of the user.

If the user requires capabilities not defined in the nightstar role, add a new role which
contains nightstar and the additional capabilities needed, and substitute the new role
name for nightstar in the text above.

In addition to registering your login name in /etc/security/capability.conf,
files under the /etc/pam.d directory must also be configured to allow capabilities to be
activated.

To activate capabilities, add the following line to the end of selected files in
/etc/pam.d if it is not already present:

session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.
1-2

Overview
If you modify /etc/pam.d/sshd or /etc/ssh/sshd_config, you must restart the
sshd service for the changes to take effect:

service sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.

NOTE

To verify that you have been granted capabilities, issue the fol-
lowing command:

 /usr/sbin/getpcaps $$

The output from that command will list the roles currently
assigned to you.

Table 1-1. Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment

remote telnet
rlogin
rsh (when used w/o a command)

Depending on your system, the remote file may
not exist.
Do not create the remote file, but edit it if it is
present.

login local login (e.g. console)
telnet*
rlogin*
rsh* (when used w/o a command)

*On some versions of Linux, the presence of the
remote file limits the scope of the login file to
local logins. In such cases, the other services listed
here with login are then affected solely by the
remote configuration file.

pass-
word-auth

Many services On newer Linux systems, this file also must be
modified. If it exists, add the line to this file as
well.

rsh rsh (when used with a command) e.g. rsh system_name a.out

sshd ssh You must also edit /etc/ssh/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no

gdm
gdm-password

gnome sessions On some systems you must modify
 gdm-password as well, if it exists.

kde kde sessions
1-3

NightStar RT Tutorial
Creating a Tutorial Directory 1

We will start by creating a directory in which we will do all our work. Create a directory
and position yourself in it:

- Use the mkdir(1) command to create a working directory.

We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the cd(1) com-
mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar/tutorial during the installation of NightStar RT. We will
copy these tutorial-related files to our tutorial directory.

- Copy all tutorial-related files to our local directory.

cp /usr/lib/NightStar/tutorial/* .

Building the Program 1

Our example uses a cyclic multi-threaded program which performs various tasks during
each cycle. The cycle will be controlled by the main thread which uses a timeout with a
configurable rate.

A portion of the main source file, app.c, is shown below:

int
main (int argc, char * argv[])
{

pthread_t thread;
pthread_attr_t attr;
struct sembuf trigger = {0, 2, 0};
nosighup();

trace_begin ("/tmp/data",NULL);

sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, sine_thread, &data[0]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, cosine_thread, &data[1]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, heap_thread, NULL);

for (;;) {
struct timespec delay = { 0, rate } ;
1-4

Overview
nanosleep(&delay,NULL);
work(random() % 1000);
if (state != hold) semop(sema,&trigger,1);

}

trace_end () ;
}

The program creates three threads and then enters a loop which cyclically activates each
of two threads based on a common timeout. The third thread, heap_thread, runs asyn-
chronously.

To build the executable

From the local tutorial directory, enter the following command:

cc -g -o app app.c -lntrace_thr -lpthread -lm

NOTE

The NightStar RT tools require that the user application is built
with DWARF debugging information in order to read symbol
table information from user application program files. For this
reason, the -g compile option is specified. However, the tools
can be used to debug programs without symbols with reduced
functionality.
1-5

NightStar RT Tutorial
1-6

2
Chapter 2Panels

2
2
2

NightStar provides flexibility in configuring the graphical user interface to suit your needs through the
use of resizable and movable panels.

This chapter presents the concepts involved in moving and resizing panels. It is designed merely for
reference, not as a step-by-step instructional guide.

Please read this chapter before proceeding to the first steps in using the tools, which follows in “Using
NightView” on page 3-1.
2-1

NightStar RT Tutorial
Moving Panels 2

Consider the following NightProbe page which contains a List view and a Graph view each in their
own panel:

Figure 2-1. Viewing Page with List & Graph Panels

Panels are moved by left-clicking the title bar, dragging them to a new location, and then releasing the
mouse button. Depending on the location of the panel when the mouse button is released, the panel will
either remain detached or will be inserted into the page again.
2-2

Panels
To detach the panel from the page without inserting it, click the left-most control box in the upper
right-hand corner of the panel.

Figure 2-2. Panel Detaches from Page

The Graph panel detaches from the page and becomes free floating.

If moved outside the boundaries of the main window and released, the panel will remain detached from
the main window. However, even in detached mode, if the main window is iconified, the detached panel
will be iconified with it. For this reason, detached panels are not very useful in and of themselves.
Detaching is most often useful as part of moving a panel and re-docking it.
2-3

NightStar RT Tutorial
To insert a panel into the page at a new location, drag the panel using the left mouse button on its title
bar and move it until it approaches a boundary of the page. The window will respond by creating space
indicating where the panel will be inserted.

Figure 2-3. Panel Movement in Progress

The figure above shows space being created above the List panel as the Graph panel is dragged towards
the upper horizontal boundary of the page.
2-4

Panels
At this point, releasing the mouse button will cause the Graph panel to be inserted into the page,
consuming the recently created space.

Figure 2-4. Graph Panel on Top of List Panel

IMPORTANT

When attempting to move panels inside of a page, if an empty
space does not appear where you desire it, try increasing the size
of the main window, decreasing the size of the undocked panel,
and moving an alternative edge of the undocked panel near where
you want to place it.
2-5

NightStar RT Tutorial
By default, the tools usually add panels to the right-hand side of the page when a new panel is created.

In the following figure, a Table panel has been added to the right-hand side of the Graph and List
panels.

Figure 2-5. Table View added to Page

Panels can be resized by left-clicking on the separator between the panels and dragging it to the desired
size.

Tabbed Panels 2

Another feature of the graphical user interface is the use of tabbed panels. Tabbed panels allow you to
maximize your GUI real estate by placing two or more panels in the same location by stacking them on
top of each other. You can then raise a panel to the top by clicking on its tab.
2-6

Panels
To create a tabbed panel, move a panel to the lower horizontal edge of another panel until a tab appears
at the bottom of the panel still connected to the page.

Figure 2-6. Panel in Motion Creating Tab

In the figure above, the Graph panel is being dragged from its original position on top of
the List panel towards the bottom of the List panel. A tab appears on the List panel indi-
cating that if the mouse button is released, the Graph and List panels will be tabbed and
therefore consume the same area of the page.
2-7

NightStar RT Tutorial
IMPORTANT

To move a panel above another panel, move the desired panel to
the top boundary of the other panel. If you move a panel to the
bottom boundary of another panel, it will become a tabbed panel
instead.

Context Menus 2

The NightStar tools rely heavily on use of context menus.

Context menus are menus that appear when you use the mouse to right-click when the
mouse cursor is positioned over an area or item of interest. They are called context menus
because their content is often dependent on the context of the area in which you
right-click, or the item which you right-click upon.

When in doubt, try a right-click operation and see if a menu becomes available.
2-8

Panels
Tutorial Screen Shots 2

In order to show full screen shots in this tutorial, the size of each main window has often
been left to its default setting. Displaying larger windows would require compression in
order to fit the image within the available space of a printed page; such compression
obscures detail.

However, as a user of the tutorial, increasing the size of the main window is highly rec-
ommended so you can see more data without having to scroll the contents of individual
panels.

In many cases within this tutorial, portions of expanded areas of the screen have been
extracted from the main window and are included as stand-alone screen shots. These cor-
respond to panels within the main window of each tool.
2-9

NightStar RT Tutorial
2-10

3
Chapter 3Using NightView

3
3
3

NightView is a graphical source-level debugging and monitoring tool specifically
designed for time-critical applications. NightView can monitor, debug, and patch multi-
ple processes running on multiple processors with minimal intrusion.

NightView supports all the features you find in standard debuggers, including:

• breakpoints

• single stepping through statements

• single stepping over function calls

• full symbolic expression analysis

• conditions and ignore counts for breakpoints

• hardware-assisted address traps (watchpoints)

• assembly and symbolic debugging

In addition to standard debugging capabilities, NightView provides the following features:

• application-speed eventpoint conditions

• the ability to patch code to change program flow or modify memory or reg-
isters during program execution

• hot patch and eventpoint control

• synchronous data monitoring

• loadable modules

• support of multi-threaded programs

• debugging of multiple processes

• dynamic memory debugging

• traversing linked lists

• searching segments of memory
3-1

NightStar RT Tutorial
Invoking NightView 3

- Execute NightView by issuing the following command:

nview &

at the command prompt or by double-clicking on the desktop icon.

NOTE

If you do not have desktop icons for the NightStar tools, run
/usr/lib/NightStar/bin/install_icons.

When we launch NightView, the NightView main window is presented.

Figure 3-1. NightView Main Window
3-2

Using NightView
NOTE

If this is the first time you’ve invoked NightView since installing
NightStar or upgrading to the latest version, you may see a wel-
come screen. You can disable the welcome screen for subsequent
invocations using the checkbox in the lower left corner of that
screen. If the screen appears, press the NightView button to pro-
ceed.

In our example, we’ll be debugging a single application.

NOTE

If you have not yet created the app program, see “Building the
Program” on page 1-4.

- Invoke our tutorial application in the NightView main window by selecting
Run... from the Process menu and entering:

./app

in the text field of the Run on local dialog.

- Press OK to close the dialog and run the program.

Any output generated by the program will appear in the Messages panel.
3-3

NightStar RT Tutorial
When the app program begins to execute, NightView displays the source in the source
panel and stops the program at the first line of code.

Figure 3-2. app Program Loaded

IMPORTANT

Do not resume execution of the program at this time.

NightView supports debugging multiple processes as well as single and multi-threaded
processes. In this tutorial, you will be debugging a single process.
3-4

Using NightView
Heap Debugging 3

Debugging dynamic memory problems can be difficult and extremely time-consuming.
The word heap refers to a collection of allocated and freed memory typically controlled by
the malloc() and free() utilities in the C language.

NightView provides the unique ability to monitor and detect memory allocations, frees,
and sets of user errors without requiring a non-standard allocator to be compiled or linked
into your program.

One advantage of this is that often when you switch to a debugging allocator, the way
blocks are allocated and freed changes -- often hiding the very bugs you’re trying to find.

NightView offers a variety of settings and debugging levels that are useful in catching
common heap-related errors. Some settings will change the behavior of the system alloca-
tor, affecting the size of allocated blocks and, ultimately, the address values returned.

Dynamic memory errors are detected in one of four ways:

- a check of the entire heap at a specified frequency in terms of the number
of heap functions (e.g., malloc, free, calloc, etc.) called

- a check of an individual allocated block when free or realloc is called

- a check of the entire heap when a heappoint is crossed

- a check of the entire heap when a heapcheck command is issued

The frequency setting of the heapdebug command or Debug Heap window controls
how often NightView should check for heap errors when a utility routine is called. Setting
the frequency to 1 causes NightView to check for heap errors on every heap operation.

A heappoint causes NightView to check for errors when the process executes instruc-
tions where the heappoint is inserted. An unlimited number of heappoints can be inserted
into your program.

The check of an individual block when free or realloc is called is automatic.

All four mechanisms are useful. With the first three mechanisms, the heap error detection
is executed at program application speed without context switching to the debugger.

Activating Heap Debugging 3

One limitation of heap debugging is that it requires that you activate the debugging before
any allocations occur in your program. If you attempt to activate the heap debugging fea-
tures after allocations have already occurred, NightView will inform you of its inability to
satisfy your request.
3-5

NightStar RT Tutorial
NOTE

If you have mistakenly resumed execution of the program already,
kill the program and restart it in the NightView main window.
Type the following commands in the Command area:

kill
run ./app

- Select the Debug Heap... menu option from the Process menu in the
NightView main window.

The Debug Heap window is shown.

- Select the Enable heap debugging checkbox at the top of the dialog.

- Press the Medium button in the Debugging Level area.

- Change the Specify check heap freq text field to 1.
3-6

Using NightView
The Debug Heap window should look similar to the following figure:

Figure 3-3. NightView Debug Heap Dialog

- Press the OK button to apply the changes and close the dialog.

These options instruct the debugger to activate heap debugging, retain freed blocks to
detect certain kinds of errors, allocate some additional memory past the end of the
requested size to detect errors, and stop the program when any heap error is detected.

Controlling the app Program 3

The third thread created by the main program executes a routine called heap_thread.

This routine iteratively executes various dynamic memory operations based on the setting
of the scenario variable. These operations are representative of common user errors
relating to dynamic memory.

Let’s set a breakpoint on line 115.
3-7

NightStar RT Tutorial
- Scroll to line 115 in the source window:

sleep(5);

- Right-click anywhere on that line and select Set simple breakpoint
from the pop-up menu.

NOTE

Optionally, you could set a breakpoint on line 115 by using either the Set Break-
point menu item from the Eventpoint menu or enter the following command in
the Command panel of the NightView main window:

break app.c:115
3-8

Using NightView
Scenario 1: Use of a Freed Pointer 3

A common error is to read or write a block of memory that has already been freed.

A way to detect this is to tell NightView to retain freed blocks and fill the freed blocks
with a specific pattern. If the blocks are subsequently read, your application may more
quickly discover the error since the contents are unexpected. If the blocks are subse-
quently written, NightView can detect this.

- Resume the process and let it reach the breakpoint on line 115 by pressing
the Resume icon on the Process toolbar:

NOTE

Alternatively, you can resume the process by typing resume into
the Command field:

By default, the heap_thread will not actually execute any of the five scenarios.

- To cause it to execute scenario 1, set the variable scenario to 1 by enter-
ing the following commands in the Command field:

set scenario=1
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(1024,3);
free_ptr (ptr,2);
memset (ptr, 47, 64);

The last line represents usage of dynamically allocated space that has already been freed.

NightView will detect this at a heappoint inserted by the user, or at a subsequent heap
operation (based on the frequency setting of the heapdebug command), in this case
on line 155.

NightView will stop the process once the heap error has been detected and issue a diag-
nostic similar to the following:

Heap errors in process local:3771:
 free-fill modified in free block (value=0x804a818)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

The error refers to the fact that locations within the freed block were modified by the pro-
cess after the block was freed.

The Data panel is useful for displaying heap-related information as well as a variety of
other attributes.
3-9

NightStar RT Tutorial
- Select Heap Information from the Data menu.

The Data panel is added to the NightView main window in the same location as the
Locals and Context panels. A new tab will be created for the Data panel.

- Click on the newly-created Data tab.

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

- Expand the Configuration item under Heap Information in the
Data panel to show the current heapdebug settings.

- Expand the Totals item under Heap Information to show summary
statistics related to heap activity.

Figure 3-4. Heap Totals and Configuration

NOTE

In general, all information in the Data panel is updated whenever
the process being debugged stops.
3-10

Using NightView
- Collapse the Totals and Configuration items.

- Click on the tab labeled Locals.

The list of items in the Locals panel changes each time the process stops to represent the
local variables associated with the current frame being displayed. Note that the value of
the variable ptr is displayed in red because it no longer contains a valid (allocated) heap
address.

Expanding the ptr item reveals the (heap info) item. Expanding that item reveals
additional information relating to the block that the pointer once referred to including:

• its state - freed, but retained

• its address range

• its size

• errors

• free and allocation information, which when expanded include walkback
information relating to the routines which allocated and freed the block
3-11

NightStar RT Tutorial
Scenario 2: Freeing an Invalid Pointer Value 3

Another common error is to free a pointer multiple times or to free a value which doesn’t
actually refer to a heap block.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 2:

set scenario=2
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
free(ptr);

NightView will detect the failure and print a diagnostic similar to the following:

Heap error in process local:3771: free called on freed or
unallocated block (value=0x804ac40)
#0 0x8048a78 in heap_thread(void*unused=0) at app.c line 127

Another way of obtaining information about the heap block in question is to use the info
memory command. It provides textual output of the information available in the Locals
panel under the ptr item to the Messages panel of the NightView main window.

- Issue the following command in the Command panel:

info memory ptr

NightView will provide output similar to the following in the Messages panel:
3-12

Using NightView
Figure 3-5. info memory Command Output

Note that it reports no error in the block per se. The actual problem here is that a second
attempt was made to free the block when it already had been freed previously.

In this case, the walkback information associated with the actual free is useful as you can
quickly locate what code segment actually freed the block.
3-13

NightStar RT Tutorial
Scenario 3: Writing Past the End of an Allocated Block 3

Another common error is to allocate insufficient space or to write past the end of an allo-
cated block.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 3:

set scenario=3
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(strlen(MyString),2);
strcpy (ptr, MyString); // oops -- forgot the zero-byte

NightView will detect the failure and print a diagnostic similar to the following:

Heap errors in process local:3771:
 post-fence modified in block (value=0x804b068)
#0 0x8048b6d in heap_thread(void*unused=0) at app.c line 155

Note that the description of the variable ptr in the Locals panel does not indicate an
invalid status. That is because ptr does point to a valid heap block.

However, expanding the (heap info) information for ptr and the errors list indi-
cates that the block referenced by the ptr is invalid because the post-fence was modified.

Figure 3-6. Heap Error Description
3-14

Using NightView
Scenario 4: Use of Uninitialized Heap Blocks 3

Another common error is forgetting to initialize dynamically allocated memory before
using it. Code segments may assume that dynamically allocated memory is initialized to
zero, as is the case with calloc() but not malloc().

- Resume the process and let it reach the breakpoint on line 115:

resume

- Tell NightView to stop whenever a SIGSEGV is sent to the process and
also set the variable scenario to 4:

handle sigsegv stop print pass
set scenario=4
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

iptr = (int**)alloc_ptr(sizeof(int*),2);
if (*iptr) **iptr = 2778;

NightView will detect the failure and print a diagnostic similar to the following:

Process local:3771 received SIGSEGV
#0 0x8048ad2 in heap_thread(void*unused=0) at app.c line 138

One heap debugging option instructs NightView to fill newly allocated, uninitialized
space with a specific pattern to make it easier to detect use of uninitialized memory. The
Fill malloc space field in the Debug Heap dialog that we used when enabling heap
debugging specified the byte pattern to be 0xc5.

- Issue the following command to view the content of the uninitialized mem-
ory block:

x/x iptr

A SIGSEGV signal is a fatal error so we must restart the process to continue the tutorial.

- Issue the following command:

kill

- Re-initiate the program by pressing the ReRun icon in the Process tool-
bar:

NOTE

Alternatively, you can issue the following command directly from
the Command field to initiate the process:

 rerun
3-15

NightStar RT Tutorial
NOTE

NightView automatically re-applies all eventpoint and heap con-
trol settings when it sees the subsequent execution of the program.
3-16

Using NightView
Scenario 5: Detection of Leaks 3

Another situation which may be indicative of error or inappropriate use of memory are
leaks. In this instance, we define a leak as a dynamically allocated block of memory that
is no longer referred to by any pointer in the program.

Detection of leaks is a very expensive process with respect to CPU utilization and intru-
sion on the user application. As such, leak detection is only executed when an explicit
request is made from the user.

- Resume the process and let it reach the breakpoint on line 115:

resume

- Set the variable scenario to 5:

set scenario=5
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc_ptr(37,1);
ptr = 0;

NightView does not detect the leak automatically, as mentioned above. The process will
stop again when the breakpoint on line 115 is reached.

- At that time, specifically request a leak report by selecting Heap
Leaks... from the Data menu, check the New Leaks radio button, and
press OK in the Data Heap Leaks dialog to add the item to the Data
panel.

This operation causes NightView to analyze the program for leaks and displays a
Leak Sets item in the Data panel. On small programs, this operation may appear
to be insignificant, but for larger programs it can take some significant time.

- Click on the Data tab.

- Expand the Leak Sets item, if necessary.

An additional item is displayed for every leak set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets provides the
common walkback shown for each allocation as well as expandable descriptions of
each individual leaked block.

- Expand the leak set item with size 37 and then expand the walkback item
associated with it.
3-17

NightStar RT Tutorial
Note the walkback indicating that it was allocated by the heap_thread() routine
on line 142 of app.c.

Figure 3-7. Heap Leaks Display

NOTE

The Leak Sets display will vary depending on your system
type. Concentrate on the leak set of 37 bytes as shown above.

NOTE

Unlike most items in the Data panel, the leak sets item is not
automatically updated when the process stops. The description is
a snapshot of the leaks at a certain moment in the execution of the
program, and therefore it will remain unchanged even if addi-
tional leaks occur. To get updated information, request another
leak report (select Heap Leaks... from the Data menu).
3-18

Using NightView
Scenario 6: Allocation Reports 3

NightView provides a detailed report of all allocated memory.

Construction of this report is a very expensive process with respect to CPU utilization and
intrusion on the user application execution time. As such, allocation reports are only exe-
cuted when an explicit request is made from the user.

- Set the variable scenario to 6:

set scenario=6
resume

This causes additional allocations to be made.

The process will stop again when the breakpoint on line 115 is reached.

- At that time, specifically request an allocation report by selecting Still
Allocated Blocks... from the Data menu, click the All Blocks radio
button, and press OK in the Data Still Allocated Blocks dialog to add
the item to the Data panel.

This operation causes NightView to analyze the program and displays a Still Allo-
cated Sets item in the Data panel. On small programs, this operation may appear to
be insignificant, but for larger programs it can take some significant time.

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

- Expand the Still Allocated Sets item, if necessary. An additional
item is displayed for every allocation set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets pro-
vides the common walkback shown for each allocation as well as expand-
able descriptions of each individual leaked block.

- Expand the allocated set item with size 1048576 and then expand the
walkback item associated with it.
3-19

NightStar RT Tutorial
Note the walkback indicating that it was allocated by the heap_thread() routine
on line 147 of app.c.

Figure 3-8. Still Allocated Blocks Display

NOTE

The data from the Still Allocated Sets will vary depending on
your system. Concentrate on the allocated set of 1048576 bytes as
shown above.

NOTE

Unlike most items in the Data panel, the Still Allocated
Sets item is not automatically updated when the process stops.
The description is a snapshot of the leaks at a certain moment in
the execution of the program, and therefore it will remain
unchanged even if additional items are allocated or freed. To
update the information, request another allocation report (select
Still Allocated Blocks... from the Data menu).
3-20

Using NightView
Disabling Heap Debugging 3

- Disable all overhead associated with heap debugging, issue the following
command:

heapdebug off

- Delete the breakpoint on line 115 by right-clicking on that breakpoint in
the Eventpoints panel and selecting Delete or by issuing the following
command:

clear app.c:115

This concludes the tutorial’s topic on heap debugging. We will now continue on to other
capabilities of NightView.
3-21

NightStar RT Tutorial
Debugging Multiple Threads 3

Our application consists of the main thread and three additional ones created by the main
thread.

- Set a breakpoint on line 47 by issuing the following command:

b 47

- Resume the process by clicking on the resume icon or by issuing the fol-
lowing command:

resume

The process will run until one of the threads reaches the breakpoint on line 47.

- Click on the Context tab to raise the Context panel.

- Expand the thread which is displayed in green.

- Expand the first item in the walkback list that appeared as a result of the
last step

Figure 3-9. Context Panel With Stack Frames Expanded

Expanding an individual Frame in the walkback list shows all local variables for that
frame. You can further expand composite and pointer variables in the local variables
items.

The source shown in the Source panel is that associated with the program counter of the
thread which caused the process to stop. You can tell which thread you are stopped in by
looking for the name of the thread’s start routine in parenthesis. NightView automatically
ass igns names to threads based on the s tar t rout ine which was passed to
pthread_create(2). Additionally, you can set the name of a thread inside Night-
View using the set-thread-name command.

You can switch to the context of other threads by clicking on the thread of interest. When
you click on a thread, the source displayed in the NightView main window changes to
location where that thread is executing.
3-22

Using NightView
Alternatively, you can use the select-context command and specify the thread name
as shown in the C Threads display or from the output of the info threads com-
mand:

info threads /v
select-context name=”cosine_thread”

When thread names are not unique across threads, you can use the thread ID which is
always unique. A thread ID is a hexadecimal number representing the thread -- it is
assigned by the threads library upon thread creation. The thread ID immediately follows
the words “C thread” on each thread item in the Context panel.

- Switch to the context of the thread executing sine_thread() by click-
ing on it.

NightView provides a Run Mode which specifies how threads are resumed and stopped.
By default, the Run Mode is Run All Threads. Thus when the application hits a
breakpoint or is otherwise stopped by NightView, all threads in the application will stop.
Similarly, when NightView resumes execution of a thread, all threads will resume execu-
tion.

If you change the Run Mode to Run One Thread, then when you resume a thread, it
is the only one that runs. All stopped threads remain stopped.

On one of the toolbars, you will see a option list which represents the current run mode.
By default, this item is at the bottom of the screen to the right of the Command area.

Figure 3-10. Run Mode Selector

- Change the mode to Run One Thread by clicking on the list and select-
ing that mode.

- Click the Next icon several times until the green PC icon
stops on line 46, the call to semop().

- Now click the Next icon one more time.

Notice that the Next operation does not complete. This is because we were only allowing
a single thread to execute, and the thread is blocked in the semop() call, waiting for
another thread to unblock it (the main thread).

- Press the Interrupt icon to cancel the Next operation.
3-23

NightStar RT Tutorial
NOTE

Some versions of glibc on some distributions may be missing
proper walkback information for the semop(2) routine, which is
where the thread is stopped. In this case, the walkback and
interest instructions below will not react as described below
for this specific example.

Also, some systems may have debug versions of glibc installed, in
which case NightView may show you source code inside
semop(), or routines it calls. Regardless, you will likely be pre-
sented with a gray triangular arrow, as described below, unless
you are stopped at the lowest level, a system call.

The gray triangular arrow before the line number in the source panel represents the fact
that we are positioned at a stack frame which is not the topmost stack frame and that the
current frame is executing a subprogram call.

By default, NightView hides uninteresting frames. If you desire to see all frames for all
routines, even those that have no debug information, you can set your interest threshold to
the keyword min:

interest threshold min

Once that command is issued, the walkback information shows all frames and you can
position to any frame and debug at the assembly level if desired.

- Reset the interest threshold to zero via the following command:

interest threshold 0

- Delete the breakpoint on line 47 by right-clicking on that breakpoint in the
Eventpoints panel and selecting Delete or by issuing the following
command:

clear app.c:47

- Change the Run Mode to Run All Threads.

- Resume execution of the process.

NOTE

A significant feature of NightView is the ability to execute most
debugging operations without having to stop execution of the pro-
cess.

All subsequent debugging operations in this tutorial can be done
without stopping the process!
3-24

Using NightView
Traversing Linked Lists 3

NightView’s data display panels allow you to view variables, indirect through pointers,
and expand or collapse levels of detail. Variables are presented in a tree to facilitate view-
ing.

NightView provides two features which make viewing complex data structures easier:
linked lists and filtering.

Our application has created a list of structures which are linked via a member of each
structure. The variable head represents the start of this linked list.

For simplicity, we will remove the existing data panel before proceeding with this section.

- Raise the existing data panel and then close it by clicking the close icon in
the upper-right of the panel’s control area.

- Add the variable head to a new data panel by typing the following com-
mand:

data head

A new data panel now appears and contains the pointer variable head.

- Expand the pointer variable and the link pointer member of it, and sev-
eral of its children.

Figure 3-11. Pointer to Linked List Expanded

As shown in the figure above, each node in the linked list is nested under the previous
node in the list. While this is a fine representation, it becomes cumbersome once you dis-
play more than just a few nodes.

As an alternative, you can tell NightView that the pointer is a member of a linked list.

- Right-click on the head variable and select Treat As Pointer To
Linked List...
3-25

NightStar RT Tutorial
A small dialog is presented which allows you to specify the member of the structure which
defines the next element in the list.

Figure 3-12. Dialog Selecting Linked List Component

NightView automatically populates a drop-down list with all members which have types
appropriate for indicating a link in a list. In our case, it has correctly chosen the member
which identifies the next node in the list.

- Press OK

The head variable in the data panel is now displayed using an alternative method.

Figure 3-13. Pointer Variable Displayed As Linked List

In the figure above, the various nodes in the linked list are displayed at the same level and
are numbered, starting from 0.

- Click on the guard symbol (blue triangle) several times until the “3rd” node
is shown and then expand it to match the figure above.

NightView will allow you to expand the list as long as the member that you selected above
that defines the next item in the list is not NULL. You can also use the context-menu to tell
NightView how many nodes in the list to display (as opposed to continuing to click on the
guard symbol to extend the list).
3-26

Using NightView
Often when viewing a linked list you may want to identify a particular node in the list. We
will use NightView’s filtering capability to do this.

- Right-click on the head variable and select Filter Elements with a
Condition...

The following dialog appears which allows you to type in an expression which defines the
nodes in the list to be shown.

Figure 3-14. Filter Dialog

The expression can include several special built-in variables which aid you in specifying
the filter. The text in the dialog explains these variables: $i, $p, and $v.

- Type in the following text in the Condition Filter Expression field, as
shown in the figure above, and the press OK.

$p->value % 7 == 0
3-27

NightStar RT Tutorial
We have told NightView to only show us nodes in the list whose member value is a mul-
tiple of seven.

Figure 3-15. Filtered Linked List

Initially, the first node in the list matching the filter condition is shown -- it is node # 1, the
second node in the list (node numbering starts at 0).

- Expand the filtered list by clicking the guard symbol two times, and then
expand all three filtered elements to match the figure below:

Figure 3-16. Filtered Linked List Expanded

See that all nodes shown in the list have a value member which is a multiple of seven,
which satisfies the filter expression we specified above.

Notice that an ellipsis follows each node number when the next node in the list is not con-
secutive, indicating that there are gaps in the displayed list due to filtering. The description
field of the head of the linked list also indicates filtering is active.

You can use NightView’s filtering capability on arrays as well as linked lists. In fact, you
can use it to search through memory for a particular value. Just add a pointer value to the
3-28

Using NightView
data panel, tell NightView to treat it as an array using the context menu, and then apply a
filter expression.
3-29

NightStar RT Tutorial
Using Monitorpoints 3

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor panel.

Unlike asynchronous sampling, monitorpoints allow you to view data which is synchro-
nized with execution of a particular location in your application.

- Right-click on line 46 and select Set eventpoint from the pop-up menu
and select Set Monitorpoint... from the sub-menu.

NOTE

Alternatively, you could select the Set Monitorpoint... option
from the Eventpoint menu or click the Set Monitorpoint icon
from the toolbar to launch the Set New Monitorpoint dialog.

Figure 3-17. Monitorpoint Dialog

- Ensure that the Location text field has app.c:46, correcting if it need
be.
3-30

Using NightView
- Enter the following:

data->count

in the text field below the Expression column head, but do not press the Enter
key yet.

- You can control the format in which the value is displayed by clicking the
option list under the Format column. Using the mouse, click and select
Hexadecimal from the list.

- Enter the following in the Label column:

sine count

- While still positioned in the cell under the Label column, press the Tab
key. This positions you to the next row and allows you to continue adding
expressions.

NOTE

If you have already left the cell and only one row is shown, press
the New button.

- In the second row under the Expression column, type the following:

data->value

- Set its label value in the Label column, by typing the following there:

sine value

- Press the OK button in the Set New Monitorpoint dialog.

A Monitor panel is created containing an entry for the commands entered above.

- Likewise, set a monitorpoint on line 63 with the same commands as in the
previous monitorpoint, substituting cosine for sine in the Label fields.

Figure 3-18. NightView Monitor Panel

At this point, the data values in the Monitor panel change.
3-31

NightStar RT Tutorial
The values are sampled whenever line 46 or 63 are executed, respectively. NightView
displays the latest set of values in the Monitor panel at a user-selectable rate.
3-32

Using NightView
Using Eventpoint Conditions and Ignore Counts 3

All eventpoints in NightView have optional condition and ignore attributes.

A condition is a user-supplied boolean expression of arbitrary complexity which is evalu-
ated before the eventpoint is executed. Conditions can involve function calls in the user
application.

Similarly, the ignore attribute is a count of the number of times to ignore an eventpoint
before actually executing it.

Conditions and ignore counts are evaluated by the application itself via patched-in code
and, as such, run at full application speed. Other debuggers evaluate the conditions and
ignore counts from within the context of the debugger which takes significant time and
can drastically affect the behavior of your program.

- Click the cell in the Ignore column of the first row of the Eventpoint
panel.

- Change the value to 500 and press Enter.

The Monitor panel now indicates that the values for that monitorpoint have not been sam-
pled by displaying a question mark before the value. When the ignore count reaches zero,
the values will start updating again.

Finally, monitorpoints can include complex expressions that aren’t just simple variables.

- Enter the following commands in the Command field of the NightView
main window:

monitor app.c:93
 p FunctionCall()
end monitor

A new item is added to the Monitor panel which represents the result of the function call
FunctionCall() as executed by the user application each time line 93 is crossed.
3-33

NightStar RT Tutorial
Using Patchpoints 3

Unlike breakpoints and monitorpoints, patchpoints allow you to modify the behavior of
your program.

Patchpoints allow you to change program flow or modify variables or machine registers.

First, we will use a patchpoint to branch around some statements in our program.

NOTE

If the source file app.c is not displayed, issue the following
command:

 l app.c:48

- Scroll the source file displayed in the NightView main window and
right-click on line 48:

data->angle += data->delta

and select Set eventpoint from the context menu and select Set Patchpoint...
from the sub-menu.
3-34

Using NightView
NOTE

Alternatively, you could select the Set Patchpoint... option
from the Eventpoint menu or click on the Set Patchpoint
icon in the toolbar to launch the Set New Patchpoint dialog.

Figure 3-19. Patchpoint Dialog

- In the Location text area, ensure the text indicates app.c:48.

- Click on the Branch to a different location radio button in the lower
portion of the dialog.

- In the Go To: text area, type:

app.c:49

then press the OK button.

This will effectively cause the application to skip execution of line 48, where it updates
the angle used in the subsequent sin() call.

Note that the sine value in the Monitor panel stops changing, yet the associated sine
count value continues to change.

Alternatively, we can use patchpoints to change the value of expressions or variables.

- Type the following command in the Command panel of the NightView
main window:
3-35

NightStar RT Tutorial
patch app.c:49 eval data->count -= 2

Note that the value of sine count is decrementing, because for each iteration, it contin-
ues to be incremented by 1, but now also is decremented by 2.

We can disable the patchpoints without deleting them.

- Select both patchpoints in the Eventpoints panel (as indicated in the
Type column by the word Patch), right-click and select Disable from
the pop-up menu.

The patches are disabled and the values shown in the Monitor panel return to their origi-
nal behavior.
3-36

Using NightView
Adding and Replacing Functions Dynamically 3

NightView provides the ability to dynamically add new functions to the application being
debugged, as well as to replace existing functions.

- In a terminal session outside of NightView, compile the report.c source
file which was copied into your current directory in the initial steps of this
tutorial:

cc -g -c report.c

- Load the new module into the program using the following command in
the Command panel of the NightView main window:

load report.o

We have added a simple function which prints information to stdout. The function
could have been arbitrarily complex and referenced any variable in the application. The
only limitation is that the function cannot reference symbols that are absent from the mod-
ule being loaded and are not already in the user application.

- Issue the following command to see the source code for the function
report():

l report.c

You will see that the report() function expects a pair of arguments whose types are
char * and double, respectively.

- Go back to the application source file by issuing the following command:

l app.c

We will install a new patchpoint which will call the newly added function.

- Set a patchpoint on line app.c:63 with the following expression:

report(“cos”,data->value)
3-37

NightStar RT Tutorial
The program is now generating output to stdout in the Messages panel of the Night-
View main window as calls to the report() function are executed.

Figure 3-20. Result of Patching in Call to Newly Loaded Function

- Disable the patchpoint that was just added by clearing its Enabled check-
box in the Eventpoint panel.

Finally, we will replace a function that already exists in the application.

- In a terminal session outside of NightView, list the contents of the source
file function.c which was copied into your current directory in the ini-
tial steps of this tutorial, and compile it with the following commands:

cat function.c
cc -g -c function.c

- Now load the replacement code by entering the following command in the
Command panel of the NightView main window:

load function.o

Note how the Monitor panel value for the FunctionCall() value no longer pertains
to the value computed by the application, but rather is a monotonically increasing number
as per the source file function.c.

- Return the NightView main window source panel to the app.c source file
via the following command:

l app.c:40
3-38

Using NightView
Using Tracepoints 3

The last portion of NightView we will cover in this tutorial is integration with NightTrace.

A tracepoint is a specialized eventpoint which essentially patches a call to log a trace
event with optional arguments.

Even if the application doesn’t already use the NightTrace API, NightView can link in the
required components and activate the tracing module. Our application already uses the
NightTrace API, so this will not be necessary (see the set-trace command in the
NightView User’s Guide for more information on using tracepoints in applications which
don’t already use the NightTrace API).

Suppose that we were interested in measuring the performance of our cycles in the
sine_thread() and cosine_thread() routines and that we also were interested in
logging data values during the cycle.

- Scroll the source file displayed in the NightView main window and
right-click on line 48:

data->angle += data->delta

and select Set eventpoint from the pop-up menu and select Set Tracepoint...
from the sub-menu.
3-39

NightStar RT Tutorial
NOTE

Alternatively, you could launch the dialog by selecting Set Tra-
cepoint... from the Eventpoint menu or click on the Set Tra-
cepoint icon on the toolbar to launch the Set New Trace-
point dialog.

Figure 3-21. Tracepoint Dialog

- In the Location: text field ensure that app.c:48 is displayed.

- In the Event ID field, type the following:

1

- Press the OK button

Similarly, we’ll set additional tracepoints but we will also specify a value to be logged
with the tracepoint.

- Set a tracepoint on line app.c:46 and specify an Event ID of 2 and
enter the following in the Value text field:

data->value

- Set a tracepoint on line app.c:63 and specify an Event ID of 3 and
enter the following in the Value text field:

data->value
3-40

Using NightView
Trace events can now be logged with the NightTrace tool which is described in the next
section of this tutorial.

- Launch NightTrace by selecting the NightTrace Analyzer menu item
from the Tools menu of the NightView main window.

The remaining sections of the tutorial do not use NightView, however, we want to keep
the tracepoints patched into the executable. We will now detach the program from Night-
View but it will continue to execute and will retain all patchpoints and tracepoints.

- Stop the processes by typing the following into the Command field:

stop

- Select the Detach option from the Process menu

- Select the Exit NightView option from the File menu to exit NightView.

NOTE

Normally, processes started from within NightView will be killed
when NightView exits, even if they have been detached. This is
because the shell that is used by NightView to invoke them sends
them a SIGHUP signal. Our application ignores SIGHUP, so it
can continue to execute.

Conclusion - NightView 3

This concludes the NightView portion of the NightStar RT Tutorial.
3-41

NightStar RT Tutorial
3-42

4
Chapter 4Using NightTrace

4
4
4

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. NightTrace can
also log kernel events such as individual system calls, context switches, machine excep-
tions, page faults and interrupts. By combining application events with kernel events,
NightTrace presents a synchronized view of the entire system. Furthermore, NightTrace
allows users to zoom, search, filter, summarize, and analyze those events in a wide variety
of ways.

Using NightTrace, users can manage multiple user and kernel NightTrace daemons simul-
taneously from a central location. NightTrace provides the user with the ability to start,
stop, pause, and resume execution of any of the daemons under its management.

NightTrace users can define and save a “session” consisting of one or more daemon defi-
nitions. These definitions include daemon collection modes and settings, daemon priori-
ties and CPU bindings, and data output formats, as well as the trace event types that are
logged by that particular daemon.

Invoking NightTrace 4

NightTrace was invoked during the last step of the Using NightView section.

If you skipped the Using NightView section, execute the steps in “Using Tracepoints” on
page 3-39 before beginning this section of the tutorial (and resume execution of the pro-
4-1

NightStar RT Tutorial
cess).

Figure 4-1. NightTrace Main Window

Below the menu bar and toolbar, the first page of the NightTrace main window contains
the following two panels:

The statistics on the Daemons panel indicate the number of raw events in the shared
memory buffer used between the daemon and the user application and the number of raw
events written to NightTrace by the daemon (under the Buffer and Logged columns,
respectively).

The Trace Segments panel indicates the number of processed events that are currently
available for immediate analysis through the Events panels and timelines.

Table 4-1. NightTrace Panels

Daemons Shows the daemons configured.

Trace Segments Shows each trace segment (contiguous collection
of trace data).
4-2

Using NightTrace
NOTE

The number of events shown in the Trace Segments panel will
normally differ from the number of events shown in the Dae-
mons panel. The former are processed events whereas the latter
are raw events -- a processed event is often constructed from mul-
tiple raw events.

Configuring a User Daemon 4

NightTrace allows the user to configure a user daemon to collect user trace events.

User trace events are generated by user applications that use the NightTrace API.

We will configure a user daemon to collect the events that our app program logs.

To configure a user daemon based on a running application

- Select the Running Application option from the Import... menu option
from the Daemons menu.

The Import Daemon Definitions dialog is presented:

Figure 4-2. Import Daemon Definitions Dialog

The Import Daemon Definit ions dialog allows the user to define daemon
attributes based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the app application.

- Press the Import Selected button.
4-3

NightStar RT Tutorial
The Import Daemon Definitions dialog closes and a new user daemon is cre-
ated and added to the Daemon Control Area in the NightTrace main window.

Streaming Live Data to the NightTrace GUI 4

NightTrace allows you to use a daemon to capture trace events and store them in a file for
subsequent analysis or to stream the events directly into the graphical interface for live
analysis.

Our daemon is configured for live streaming.

- Select the daemon labeled app_data from the Daemons panel in the
NightTrace main window.

- Press the Launch button.

- Press the Resume button.

The daemon is now collecting events which are being generated by the app program from
the tracepoints we inserted in “Using Tracepoints” on page 3-39.

In the Daemons panel, the count of events shown in the Buffer column will begin to
change.

Figure 4-3. Logging Data

NOTE

A tabbed page is created in the NightTrace main window when
Launch is pressed. This page is an automatically customized
page containing a list of the events logged and a timeline for
graphical representation of those events.
4-4

Using NightTrace
- Click on the newly-created tab labeled app_data that contains the
Events panel and the timeline associated with those events.

Figure 4-4. app_data Page

Initially, the panels will be mostly blank.

You can force events to be flushed from the daemon buffer and output stream to be
brought into the segment area for immediate viewing by zooming out on a timeline.

- Click anywhere in the display area containing the timelines.

- Press Up to zoom out

- Press Alt-Up to zoom out completely.

The Events list will be populated with the events currently logged and the timeline
will graphically display those events.

- Click in the middle of the lower panel.
4-5

NightStar RT Tutorial
NOTE

If you plan to leave the tutorial for an extended period of time
before returning, press the Pause button on the Trace page to
temporarily prevent the collection of trace points. When you
return, press the Resume button.
4-6

Using NightTrace
Using NightTrace Timelines 4

Figure 4-5. NightTrace Timeline

The timeline contains static and dynamic labels and event and state graphs.

By default, NightTrace detects the threads that have registered themselves through Night-
Trace API calls and creates individual labels and graphs for each thread.

Our application contains four threads: heap, sin, cos, and main. Rows for individual
threads show only events logged by that thread. In addition, there is a user events graph
near the bottom that shows events for all threads.

NOTE

You will see blank labels and graphs in your timeline. These are
the labels and graphs for the main and heap threads which are not
logging any events. The contents of the label are not shown until
at least one event is logged by the main thread.
4-7

NightStar RT Tutorial
If you see all blank labels, you likely didn’t click in the middle of
the timeline as instructed in the preceding step.

In “Using Tracepoints” on page 3-39 in the Using NightView section, we inserted trace-
points into the sine and cosine threads, which registered themselves as “sin” and
“cos”, respectively.

Zooming 4

Each vertical line in the graph represents at least one event. You can zoom in and zoom
out to adjust the level of detail.

- Left click anywhere within the timeline

- Press the Down key repeatedly until you can see individual lines in the
graph

- Press the Up key to zoom back out

- If you have a mouse wheel, move the wheel back and forth to zoom in and
out

The vertical dashed line is the current timeline and is directly connected to the highlighted
event in the Events panel.

Left-clicking the mouse in the display area moves the current timeline. The information in
the Event Detail area below the timeline changes to reflect the event closest to the left of
the current timeline.
4-8

Using NightTrace
Moving The Interval 4

Figure 4-6. Timeline Interval Panel

By default, each timeline panel has two ruler rows positioned below the event graphs and
above the descriptive boxes at the bottom of the panel.

The ruler on top indicates the timespan currently shown.

The ruler on the bottom indicates the timespan for all data currently available for viewing.
This ruler is called the control ruler and has a gray area within it. The gray area represents
the amount of the entire timespan that is currently shown in the panel. Thus zooming in
will decrease the width of the gray area and zooming out will have the opposite effect.

NOTE

If you do not see a gray area, zoom out until you do.

There are several methods of moving through the entire timeline.

- Press the Right key

This causes the current timeline to go to the next event. If you are zoomed out too
far, you may not notice the timeline moving. In this case, either zoom out or hold
the Right key down until you can see the timeline move.

Alternatively, pressing the Left key causes the current timeline to go to the previous
event.

- Press Ctrl+Right
4-9

NightStar RT Tutorial
This causes the displayed interval to move 25% of a section to the right by default.
The section is the amount of time currently visible in the interval. Notice how the
gray are in the control ruler moves.

Alternatively, pressing Ctrl+Left causes a shift one section to the left.

- Click midway between the gray area and the right hand portion of the con-
trol ruler

Clicking anywhere in the control ruler causes the interval to shift to be centered at
the selected time at the current zoom setting.

Thus to move the very beginning of the data set or the end, you can click the begin-
ning or end of the control ruler.

Using the Events Panel for Textual Analysis 4

Figure 4-7. Events Panel

The events shown in the Events panel are synchronized with the events shown in the
timeline. The highlighted event indicates the current timeline.

- Click on a line in the Events panel

- Press the Down key to advance to the next event.

- Press the Up key to advance to the previous event.

Whenever an event is selected or the current event line moves, the Event Detail area
below the timeline on the right shows additional information about the event, if available.

- Press the PageDown to advance to the next set of events.

- Press the PageUp to shift to the previous set

These actions only move the current timeline by the number of events that can be
shown in the Events panel.
4-10

Using NightTrace
Customizing Event Descriptions 4

The event values we logged with the tracepoint commands in NightView were event
IDs 1-3. We will customize the description of these events.

- Click on a row in the Event panel that shows event ID 1.

- Right-click that row and select Edit Current Event Description...
from the context menu.

Figure 4-8. Add Event Description dialog

- Enter:

cycle_start

in the Name field.

- Press OK.

- Right-click on an entry whose value in the Event column has the value 2.

- Select Edit Current Event Description... from the context menu.

- Enter:

cycle_end

 in the Name text field.

- Press the OK button.
4-11

NightStar RT Tutorial
The descriptions of the events in the Events panel now correspond to the textual identifi-
ers we assigned to them.

Searching the Events List 4

We can use the search capabilities of NightTrace to search for a specific occurrence of an
event or condition relating to an event or its arguments.

- Select the Change Search Profile... menu item from the Search
menu in the NightTrace main window or press Ctrl+F.
4-12

Using NightTrace
A dialog appears containing the Profile Status List and Profile Definition
areas:

Figure 4-9. Searching using the Profiles Dialog
4-13

NightStar RT Tutorial
- Press the Browse... button to the right of the Events field.

Figure 4-10. Browse Events Dialog

- Click in the Search text field and type cycle. The first event name that
includes that word is shown. Ensure that cycle_end is selected in the
event list, or press the Next icon until it is. Then press the Select button.

- Enter the following text in the Condition text field of the Profile panel:

arg_dbl > 0.8

- Enter the following text into the Name text field:

obtuse

- Press the Add button in the Profiles panel.

A profile called obtuse is now defined and appears in the Profile Status List
panel.
4-14

Using NightTrace
- Press the Search Forward button at the bottom of the Profiles dialog.

The current timeline is moved to the first event that matched the search criteria, that
being the end of a cycle when the sine value exceeded 0.8.

NOTE

If a pop-up dialog telling you that NightTrace has reached the end
of the available dataset and asks you whether it should resume the
search at the beginning, press OK.

- Click on the tab labeled app_data and verify that the current event listed
in the Events panel indicates arg1 with a value exceeding 0.8.

Figure 4-11. Events Panel After Search

Similarly, the timeline shows a description of the current event in the Event Detail area
in the bottom portion of the panel.
4-15

NightStar RT Tutorial
- Move the mouse cursor to the event description box at the bottom of the
panel and leave it there without moving it

Figure 4-12. Timeline Panel After Search

NOTE

It is possible that the search will fail if an insufficient number of
events have been brought into live analysis. If this occurs, bring
in more events using the Event list scroll bar and retry the search
by pressing the forward search icon on the tool bar.

Halting the Daemon 4

Since the NightTrace portion of the tutorial is rather lengthy and may likely be a new
experience for many users, we will halt the daemon to reduce memory usage.

On the Trace tab, halt the daemon by pressing the Halt button to reduce memory usage
as we slowly move through the NightTrace portion of the tutorial.

NOTE

Do not be concerned if the number of events shown in the Trace
Segments panel is smaller than the number of events shown in
the Daemon Control Area just before you halted the daemon. The
latter shows raw event counts whereas the Trace Segments
panel shows processed event counts -- a processed event is often
constructed from multiple raw events.
4-16

Using NightTrace
Using States 4

In addition to displaying individual events, NightTrace can display states.

- Click either of the Profiles icons on the toolbar

The Profiles dialog is displayed with the previously defined profile selected.

Figure 4-13. Profiles Dialog With Obtuse Profile Selected

- Press the Reset button.

- Select State in the Key / Value option list.

- Enter:

cycle_start

in the Start Events text area

- Enter:

cycle_end

 in the End Events text field.

- Enter:

sin
4-17

NightStar RT Tutorial
in the Threads text field.

- Enter:

sine

in the Name text field.

- Press the Add button.

- Close the dialog.

A state named sine has now been defined and occurrences can be displayed in the graphs
in the display page.

- Click on the tab labeled app_data to show the timeline.

- Right-click anywhere in the display area and select Edit Mode from the
context menu or press Ctrl-E to enter edit mode.

Figure 4-14. Timeline Editing

- Double-click on the graph associated with the row labeled “Thread: sin”.
That graph is a row with vertical lines representing events inside the larger
graph area, aligned with the label “Thread: sin”.
4-18

Using NightTrace
The Edit State Graph Profile dialog is displayed as shown below:

Figure 4-15. Edit State Graph Profile dialog

- Select State from the Key / Value option list.

- Press the Choose Profile... button.

The Choose Profile dialog is displayed.

- Select the sine state from the list.

- Make sure the Import by reference checkbox is checked.

- Press Select.
4-19

NightStar RT Tutorial
- Click on the colored button to the right of the row labelled State Color.
The Select color dialog is presented.

- Select a pleasing color in the Select color dialog and press OK.

- Press OK in the Edit State Graph Profile dialog.

- Right-click anywhere in the display area and select Edit Mode from the
pop-up menu or press Ctrl-E to return to view mode.

The graph has now been configured to display the sine state as a solid bar in the lower por-
tion of the state graph. Events will still be displayed as vertical black lines that extend
over the entire vertical height of the graph.

It is likely that the display page has not changed in a significant way. This is because the
cycle_start and cycle_end events occur so closely together in time that you cannot
distinguish them at the current zoom setting.

- Click in the middle of the state graph.

- Zoom in using the mouse wheel or using the Zoom In icon on the
toolbar or the Down key until the two events can be distinguished
and a state bar is shown.

You may need to readjust the current timeline as you zoom in.

NOTE

If the Down key has no effect, press the Num Lock key and try
again.
4-20

Using NightTrace
NOTE

The state may vanish at some zoom levels where it is still very
small compared to the zoom level’s scale. If so, just continue to
zoom in and it will reappear.

The figure below displays an instance of the sine state.

Figure 4-16. Sine State in Timeline

NOTE

If no states are visible, recheck the definition of the sine profile in
the Profiles panel as described in “Using States” on page 4-17.

Displaying State Duration 4

The duration of the most recently completed state can be displayed via a data box.

- Right-click anywhere in the display area on the page labeled app_data
and select Edit Mode from the pop-up menu or press Ctrl-E to enter edit
mode.

- Right-click anywhere in the grid and select Add Data Box option from
the pop-up menu.

The cursor will turn into a + character.

- Using the left mouse button, click an empty area in the left-side of the dis-
play page on the grid (outside of any currently displayed graph or data box
4-21

NightStar RT Tutorial
-- i.e. only on an available area whose background shows the dotted grid)
and drag the mouse to create the outline of the new data box -- release the
mouse button.

- Double-click the data box. The Edit Data Box Profile dialog is pre-
sented.

- Enter the following into the Output field:

format (“cycle = %F. ms”, state_dur(sine)*1000.0)

- Press the OK button.

- Right-click anywhere in the display area and select Edit Mode from the
pop-up menu or press Ctrl-E to return to view mode.

The data box now displays the length of the most recently completed instance of the sine
state in milliseconds.

Generating Summary Information 4

In addition to obtaining detailed information about specific events and states, summary
information is easily generated.

- Select the Change Summary Profile... menu item from the Sum-
mary menu.

- Select the profile matching the sine state from the list of profiles shown
in the Profile Status List table.

It is likely that the sine profile is already selected. Check the profile name shown
in the Name text area near the bottom of the dialog.

- Press the Summarize button.
4-22

Using NightTrace
A new page is created displaying the results of the summary.

Figure 4-17. Summary Results Page

The summary results page provides a number of columns of information including the
state’s starting and ending offsets, the state’s duration, and the gap between a state and its
most recent previous occurrence. You can click on the column headers to control how the
list is sorted.

Double-clicking on a row in the list positions the current timeline to the beginning of that
instance of the state and creates a tag at that position.

To go to the instance of the longest state duration, do the following:

- Click on the Duration header to select duration as the sort key

Repeated clicking on the header toggles the direction of the sort.

- Click the Duration header until the sort order is largest to smallest.

- The instance of the state with the longest duration is shown in the top row

- Double click on that row

The current timeline is moved to that instance of the state, as shown in the Events
and Timeline panels.
4-23

NightStar RT Tutorial
The minimum and maximum state occurrences are often of interest. However, a
graphical display of state durations can be more enlightening.

- Select the Graph State Durations... option from the Summary menu
in the Profiles dialog.

- Change the standard deviation value in the dialog to 0.

- Press the OK button.

Figure 4-18. Summary Graph

A new page is created with a summary graph and a textual description of the instances of
the state.

The row with blue shown indicates individual instances of the state. If the blue bar
appears to be a single bar, zoom in until individual instances can be seen.

- Zoom all the way out by pressing Alt+Up.

A data graph is shown in the wide column beneath the row with blue state indica-
tors.

Each red line indicates the duration of an instance of the state.
4-24

Using NightTrace
Sometimes a single occurrence of the state may be much longer than most occur-
rences. In such cases, the detail is obscured.

We can rebuild the page using a different standard deviation index.

- Right-click the tab that contains the summary and click Delete Current
Page.

- From the Summary menu, select Graphs State Durations and supply
a value of 1 to the standard deviation request dialog.

Figure 4-19. State Durations Graph Modified

The graph now shows more detail. The current timeline in the data graph is linked to the
current timeline in all timelines and the Events panel. Clicking anywhere in the graph
will move the current timeline in all such panels.

Defining a Data Graph 4

The area containing the timelines has a blank area above the graphs for each of the threads
in the program. We will now add a data graph in this area.
4-25

NightStar RT Tutorial
- Raise the app_data timeline page by clicking on its tab.

- Remove the Events panel by clicking the close box at the upper
right-most portion of the panel’s title bar.

- Right-click anywhere in the display panel labeled app_data and select
Edit Mode from the pop-up menu or press Ctrl-E to enter edit mode.

- Click on the middle of the upper horizontal line of the column containing
the graphs in the panel.

- Move the mouse cursor so that it hovers over the middle of the upper hori-
zontal line of the column.

- When the cursor changes to two arrows pointing up and down, click and
drag the upper boundary of the column upward to make space for the data
graph.

Figure 4-20. Timeline in Edit Mode

- Release the mouse button when sufficient space has been made (approxi-
mately an inch or more vertically).

- Click on the upper horizontal line of the column.

- Right-click inside the graph container and select Add to Selected
Graph Container from the pop-up menu and select Data Graph from
the sub-menu.

The cursor changes to a block plus sign
4-26

Using NightTrace
- Click in the space created by the previous steps.

Figure 4-21. Adding a Data Graph

- Click inside data graph you just inserted.

- Drag the top border to the top of the graph container and the bottom border
to the bottom of the graph container so that the data graph fills the graph
container you created.

- Click and drag the upper and lower lines of the newly inserted data graph
to fill the available space.

- Double-click in the middle of the data graph.
4-27

NightStar RT Tutorial
The Edit Data Graph Profile dialog is presented.

Figure 4-22. Edit Data Graph Profile Dialog

- Enter:

cycle_end

in the Events text field.

- Enter:

arg1_dbl

in the Value text field.

- Press OK to close the Edit Data Graph Profile dialog.

- Right-click inside the data graph and select Adjust Colors in Selected
from the pop-up menu and select Data Graph Value Color... from the
sub-menu.

- Select a pleasing color from the Select color dialog for the data graph.
Click OK to close the Select color dialog.

- Right-click anywhere in the display panel labeled app_data and select
Edit Mode from the pop-up menu or press Ctrl-E to return to view mode.
4-28

Using NightTrace
- Zoom the display to see the sine wave generated by the program.

Figure 4-23. Display Page with Data Graph
4-29

NightStar RT Tutorial
Kernel Tracing 4

Kernel tracing provides amazing insight into the activities of the system and how applica-
tions interact with each other and the kernel.

In order to use kernel tracing you must be running a trace-enabled kernel.

Kernels names ending in -trace and -debug have kernel tracing enabled. You may
check to see which kernel is running by using the following command:

uname -r

If you are not running a trace-enabled kernel, reboot now and select it from the GRUB
menu at boot time. If you are unable to reboot your system at this time, please follow the
tutorial and load the pre-recorded kernel data as instructed.

- Click on the first tab of the NightTrace main window.

- Ensure the user daemon is stopped by pressing the Halt button in the Dae-
mon Control Area if it is sensitized.

- Select the app_data segment in the Trace Segments panel.

- Press the Close Trace Data button in the Trace Segments panel.

CAUTION

If the trace segment was not removed it is likely that you selected
the app_data line from the Daemon Definition Area and not the
Trace Segments panel.

NightTrace will pop up a dialog warning you that the trace data has not been saved and
will be discarded; the data does not need to be saved for this tutorial.

Obtaining Kernel Trace Data 4

If you are not running a trace-enabled kernel, skip this section and refer to the section
“Using Prerecorded Kernel Data” on page 4-32.
4-30

Using NightTrace
- Double-click on the kernel_trace_to_gui entry in the Daemons
panel on the first page of the NightTrace main window.

Figure 4-24. Edit Daemon Definition Dialog

- Check the Buffer Wrap checkbox in the Trace Buffer Settings sec-
tion of the Edit Daemon Definition dialog.

- Press OK.

The kernel daemon is now configured to run in bufferwrap mode. This means that kernel
events are collected in kernel memory buffers and are not passed to NightTrace except by
explicit flush operations.

Depending on system activity, huge amounts of kernel trace data can be generated in a rel-
atively short period of time. Since operation of NightTrace is likely a new experience for
many users, we will restrict the data flow to a manageable size for new users.

- Ensure that kernel_trace_to_gui is selected in the Daemon Control
Area.

- Press the Launch button.

- Press the Resume button.
4-31

NightStar RT Tutorial
- Watch the daemon statistics in the Daemon Control Area; once
30,000-50,000 events are present in the Buffer column, press the Flush
button and then the Halt button.

Skip the next section and jump directly to “Analyzing Kernel Data” on page 4-33.

Using Prerecorded Kernel Data 4

This section is provided only for those using the tutorial that have not booted a
trace-enabled kernel.

If you collected live kernel trace data in the preceding section, skip to “Analyzing Ker-
nel Data” on page 4-33.

The NightStar RT tutorial directory contains some pre-recorded kernel data which
can be used in the section titled “Analyzing Kernel Data” on page 4-33.

- Select the Open Files... menu item from the NightTrace menu in the
NightTrace main window.

- Type the following into the file dialog in the Selection text field:

/usr/lib/NightStar/tutorial/.kernel-data

- Press the OK button.

Proceed to the next section.
4-32

Using NightTrace
Analyzing Kernel Data 4

NightTrace automatically generates a default kernel display page that is customized to the
system from which the kernel data was captured.

- Click on the tab created in the NightTrace main window to display the
newly-created kernel display page. The tab will have a name like
<machine_name> Timeline.

Figure 4-25. Kernel Display Page

NOTE

Your timelines may look significantly different if you have a dif-
ferent number of CPUs. Additional system activity can make the
display vary as well. Do not be concerned about such differences
at this step.

- Press Alt+Right to move to the end of the data set.

- Click in an active area and zoom in until detail can be seen.

For each CPU, the following information is displayed:
4-33

NightStar RT Tutorial
• interrupt activity (in red)

• machine exception activity (in green)

• system call activity (in blue)

• per-process CPU utilization (shown in a variety of colors)

• detailed kernel events (in dark red)

The data boxes on the left hand side of the display page are color coded to match the infor-
mation they describe. Their contents change dynamically based on the position of the cur-
rent timeline.

- Press Ctrl+F to switch to the Profiles panel.

- Click the Reset button to the right of the Key/Value selection area.

- Press the Browse... button to the right of the Processes text field.

The Select Processes dialog is presented.

- Select the app process from the list of known processes.

- Press the Select button to close the Select Processes dialog.

- Select the System Call Enter Events option from the Key / Value
option list.

The Select System Calls dialog is presented.

- Select nanosleep from the list of system calls shown.

- Press the Select button to close the Select System Calls dialog.

- Change the list of events in the Events text field to include only
SYSCALL_RESUME.

- Press the Search Forward button.

A new profile based on the information entered is added to the Profile Status List and
the current timeline is changed to the next occurrence of a resumption of a suspended
nanosleep system call in process app.

NOTE

If NightTrace fails to find an occurrence matching the sort criteria
just entered, recheck the search criteria. It is likely that you may
have skipped pressing the Reset button in the steps above.
Ensure that the Threads text field indicates ALL and not sin.

- Click on the tab corresponding to the kernel display page.
4-34

Using NightTrace
- Zoom in until detailed information is visible, similar to what is shown
below:

Figure 4-26. System Call Resume for Nanosleep

NOTE

Your timeline may look significantly different if you have a dif-
ferent number of CPUs. Additional system activity can make the
display vary as well. Repeat the search a few times to find an
occurrence that looks similar to the row that indicates the app
process. You can repeat the last search by pressing the forward
search icon on the toolbar or by pressing the Ctrl-G.

The red bar to the left of the current timeline indicates that an interrupt occurred. In this
case, it was a local_timer interrupt.
4-35

NightStar RT Tutorial
The tall vertical black line spanning the system call and exception rows represents a con-
text switch. The current timeline (dashed line spanning the entire rectangular display
area) is likely overlaid with the context switch line at this zoom setting.

- Select the highlighted event in the Events panel. This is the event at the
current timeline, which should be SYSCALL_RESUME.

The Description column in the Events panel for the currently highlighted event
describes the event in more detail with:

Figure 4-27. Events Panel after Search

- While the current timeline is at the SYSCALL_RESUME event, press the
Up key.

The current timeline is changed to the preceding event and the text description indicates a
context switch with text similar to the following:

idle switched out (runnable); app (12383) switched in

The blue bar represents system call activity. The data box to the left will describe the sys-
tem call name for the system call at or to the left of the current time line.

- Press the Ctrl-G key to advance back to the SYSCALL_RESUME event.

In the instance shown in the screen shot above, shortly after the sine thread returns from
nanosleep, the main thread is exiting the nanosleep call on line 93 of app.c. It
then enters a semop system call to execute the semop library call on line 94.

NOTE

On some systems, the system call may be described as ipc
instead of semop.

Mixing Kernel and User Data 4

If you are not running a trace-enabled kernel, skip this section and proceed to “Using
the NightTrace Analysis API” on page 4-40.

- Click on the first tab of the NightTrace main window.
4-36

Using NightTrace
- Ensure the kernel daemon is halted by pressing the Halt button if it is sen-
sitized (it should have been halted in a previous step).

- Select the kernel_trace_to_gui segment in the Trace Segments
panel and select the Close Trace Data menu option of the context
menu.

- Select both daemons in the Daemon Control Area using Click and
Shift+Click mouse and keyboard actions.

- Press the Launch button.

Read the next four steps before proceeding, then execute them in order.

- Press the Resume button.

- Wait about 2 seconds.

- Press the Flush button.

- Press the Halt button.

Data from both the user application and the kernel have been captured and brought into
NightTrace.

- Click on the Profiles tab.

- Select the sine profile from the Profile Status List at the top of the
page.

- Press the Summarize icon on the toolbar.

The last action caused a new page to be created containing a summary of the sine state
defined in “Generating Summary Information” on page 4-22.

The current timeline is automatically positioned to the longest instance of the state.

- Click on the tab corresponding to the kernel display page.

- Zoom in or out as required until you can clearly see the detail relating to
the sine thread’s cycle.
4-37

NightStar RT Tutorial
In the graphic shown below, the sine thread was preempted by a kernel processing of a
rcim interrupt.

Figure 4-28. Longest Instance of State

The reason for the extended cycle in your trace data may be due to other circumstances.

• Was the sine_thread() preempted by another process?

• Did an interrupt occur during the cycle?

• Was there significant activity on the hyper-threaded sibling CPU which
stole cycles from the CPU where the sine thread was executing?

• Did the application get a page fault or other machine exception?

• Did activity on a hyper-threaded sibling CPU interfere with the CPU where
app is executing.

Some of these circumstances are discussed in more detail in “Overrun Detection and Sys-
tem Tuning” on page 7-9.

Machine exceptions include information detailing the type of exception, the faulting
address (when applicable), and the PC at which the exception occurred.

- Type Ctrl+F while the kernel display page is selected.

- Select Exception All Events from the Key / Value option list.

- Select Page-Fault from the list of exceptions.

- Press the Select button.
4-38

Using NightTrace
- Press the Search/Forward button.

If a page fault is located, the current timeline is moved to the next occurrence of a page
fault. The text area at the top of the kernel display page includes detailed information
about the exception, including the PC at which the fault occurred and the faulting address.

You can use NightView to see the actual line number of programs (if they have debugging
information) based on the PC information with a command like: list *pc-address.
4-39

NightStar RT Tutorial
Using the NightTrace Analysis API 4

NightTrace provides a powerful API which allows user applications to analyze
pre-recorded trace data or to monitor and analyze live trace data.

Users can write programs that define states and conditions and process events as they
occur.

In this tutorial, we will instruct NightTrace to build an API program automatically.

- Click on the Profiles tab.

- Select the sine profile from the Profile Status List.

- Select the Export to API Source... menu item from the Profiles
menu.

The following dialog is displayed:

Figure 4-29. Export Profiles to NightTrace API Source File dialog

- Clear the State start callbacks checkbox.

- Press the Export button.

- Select the Exit Immediately menu item from the NightTrace menu to
exit NightTrace.

NightTrace has created an API program which listens for occurrences of the state defined
by the sine profile and prints out some information for each instance.

- Build the API program using the following command:

cc -g export_analysis_0.c -lntrace_analysis

This program expects to consume live trace data.
4-40

Using NightTrace
You can configure a user daemon with the NightTrace GUI and have NightTrace launch
the analysis program automatically.

Alternatively, you can use the command line user daemon program ntraceud to achieve
the same effect.

- Type the following command:

ntraceud --stream --join /tmp/data | ./a.out

This command instructs ntraceud to start capturing trace data from a running applica-
tion which is using the file /tmp/data as a handle. The --stream option indicates
that instead of logging the data to the named file, it should be sent to stdout.

The application program may not immediately begin generating output because the data
rate is fairly low and buffering is involved.

- To flush the current buffers for immediate consumption by the application,
issue the following command in a different terminal session:

ntraceud --flush /tmp/data

NOTE

You may need to repeat that command several times over a period
of a few seconds to allow the data to pass through system buffers.

Data similar to the following will appear on stdout in the terminal session where the
analysis program was launched:

sine (end)offset 665 occur 333 code 2 pid 3399 time 16.628649 duration 0.000003
sine (end)offset 667 occur 334 code 2 pid 3399 time 16.678631 duration 0.000003
sine (end)offset 669 occur 335 code 2 pid 3399 time 16.728655 duration 0.000003
sine (end)offset 671 occur 336 code 2 pid 3399 time 16.778676 duration 0.000003
sine (end)offset 673 occur 337 code 2 pid 3399 time 16.828693 duration 0.000003
sine (end)offset 675 occur 338 code 2 pid 3399 time 16.878716 duration 0.000004
sine (end)offset 677 occur 339 code 2 pid 3399 time 16.928745 duration 0.000003
sine (end)offset 679 occur 340 code 2 pid 3399 time 16.978760 duration 0.000003
sine (end)offset 681 occur 341 code 2 pid 3399 time 17.028779 duration 0.000003

- Issue the following command to terminate the daemon:

ntraceud --quit-now /tmp/data

If you are not running a trace-enabled kernel daemon, skip the remaining of this sec-
tion and proceed to “Conclusion - NightTrace” on page 4-63.

Several sample API programs are provided with NightTrace.

- Type the following commands to build the watchdog example program:

cp /usr/lib/NightTrace/examples/watchdog.c .
cc -g -o watchdog watchdog.c -lntrace_analysis

This simple sample program watches for context switches on a specific CPU and prints
the name of the process that is switching in.
4-41

NightStar RT Tutorial
This time the ntracekd kernel daemon will be used to capture 5 seconds of kernel data
and stream the output to the watchdog program.

- Issue the following command:

ntracekd --stream --wait=5 /tmp/x | ./watchdog 1

The program will generate output similar to the following:

context switch: 4.979350027 4 ksoftirqd/0
context switch: 4.979358275 2846 X
context switch: 4.983906074 0 idle
context switch: 4.983960385 2846 X
context switch: 4.994892976 3167 firefox-bin
context switch: 4.994989171 4492 ntfilterl
context switch: 4.995070736 4489 watchdog
context switch: 4.995092415 4492 ntfilterl
context switch: 4.995173214 4489 watchdog
context switch: 4.995188096 4492 ntfilterl
context switch: 4.995256175 4489 watchdog
context switch: 4.995270824 4492 ntfilterl
context switch: 4.995332743 4489 watchdog
context switch: 4.995355783 2846 X
context switch: 5.000351519 4 ksoftirqd/0
context switch: 5.000360675 2846 X

Automatically Tracing Your Application 4

This section will utilize a new invocation of the NightTrace analysis tool.

- If you still have a NightTrace session active, exit NightTrace by selecting
Exit NightTrace Immediately from the File menu.

NightTrace provides a component called Application Illumination, which automatically
instruments your application with trace points that record the entry and exit of subpro-
grams.

The arguments and return values to those subprogram calls, among other things, can be
included as part of the trace data, so that you can see them when you analyze the data.

Not all subprograms can be automatically instrumented. Application Illumination cannot
detect functions which do not have globally visible external symbol names (e.g. static
void func(); in the C programming language). Similarly, it cannot detect functions
which are completely internal to a linked shared library (i.e. functions that have no exter-
nal entry point). Similarly, by default, Application Illumination only operates on func-
tions which have compiler-generated debug information -- although you can change this
behavior.

The utility /usr/bin/nlight is the primary interface used to instrument your applica-
tion.

nlight provides for selection and exclusion of subprograms as well as customization of
detail levels.
4-42

Using NightTrace
In this tutorial, we’ll use nlight’s wizard to quickly and easily instrument the app pro-
gram we’ve been using thus far.

nlight Wizard - Selecting Programs 4

- While positioned in the tutorial test directory you created in the initial
stages of this tutorial, invoke the nlight tool:

nlight &

The following window is displayed.

Figure 4-30. nlight Wizard - Select Programs Step
4-43

NightStar RT Tutorial
The Wizard tab is raised by default and provides step-wise instructions for instrumenting
your application.

The bullet list on the left side of the page indicates what step you’re currently working on
within the wizard, while the Prev and Next buttons at the bottom navigate through the
steps.

The initial step is Select Program, in which we tell nlight which program to illumi-
nate.

- Press the Browse... button and select the app program file from the file
selection dialog, then press Save to close the file selection dialog.

Note that the Build Command text area below the program selection now contains a
default make command. While not specifically required, it is convenient to provide
nlight a command which can rebuild your original program, in case you should choose
to do so from within nlight. Further, nlight will automatically invoke this command
if it finds that the specified program file does not exist.

- Press the Next button to proceed to the next step.
4-44

Using NightTrace
nlight Wizard - Defining Illuminators 4

The Define Illuminators step is displayed, which allows us to select the portions of
code in the application that we want to illuminate.

Figure 4-31. nlight Wizard - Define Illuminators Step

The term illuminator refers to a directory which contains the nlight-generated files
required for instrumenting code. Normally, you don’t interact directly with the contents
of that directory; nlight does all the work. The Define an illuminator for this pro-
gram checkbox tells nlight that we want to instrument the statically-linked portions of
the app program.
4-45

NightStar RT Tutorial
This page also includes a selection and exclusion area which allows you to specify spe-
cific subprograms you want to include or exclude from instrumentation. You can also
specify patterns via regular expressions to include or exclude multiple functions easily.

We’ll just let nlight illuminate all the statically-linked portions of our app program at
this step.

- Ensure the checkbox labeled Define an illuminator for this program
is checked.

- Press the Next button to proceed to the next step.
4-46

Using NightTrace
nlight Wizard - Selecting Illuminators 4

The Select Illuminators step is now displayed.

Figure 4-32. nlight Wizard - Select Illuminators Step

This step allows us to select additional, predefined illuminators for our program.

NOTE

The list of predefined illuminators may be different on your sys-
tem. However, all systems should have main, glibc, and
pthread.
4-47

NightStar RT Tutorial
The main illuminator is special and is only needed if your application doesn’t already use
the NightTrace API. Our app program already does, so we should clear this checkbox.

- Clear the main checkbox.

Additional illuminators are already built and shipped with NightTrace. In the middle sec-
tion of the page, we can include illuminators for system libraries that our program uses.

- Check the glibc checkbox to include the glibc illuminator.

- Check the pthread checkbox to include the pthread illuminator.

- Press the Next button to proceed to the next step.
4-48

Using NightTrace
nlight Wizard - Relinking the Program 4

The Relink Programs step is now displayed.

Figure 4-33. nlight Wizard - Relink Programs Step

In order to utilize the illuminators, we need to create a new version of our executable pro-
gram which links with exactly the same objects and libraries as the original program, but
also includes the nlight-generated illuminator files.

The resultant executable will contain the unmodified object files and libraries from the
original program, but it will also include instrumented “wrapper” functions which inject
the actual trace event calls at runtime.
4-49

NightStar RT Tutorial
Since we need to essentially recreate the original program and add some new link options,
the wizard needs you to enter a command that will do this. The default “relink” command
is already filled in and assumes you will use the make utility to build the program. It
passes some make parameters which make it very easy for you to form the Makefile
rule to build the new program.

In most cases, you can simply copy the final rule required to create your original applica-
tion and rename it and add the options passed by the wizard on the link line.

Our Makefile in the tutorial test directory already has a rule defined for the instru-
mented program name, which, by convention, is the original name of the program with the
letters “AI” appended to it. The following is an excerpt from the Makefile that shows
the rules to build app and appAI.

app: app.c
cc -g -o app app.c \

-lntrace_thr -lpthread -lm

appAI: app.c
cc -g -o appAI app.c \

$(ILLUMINATOR_OPTIONS) -lntrace_thr -lpthread -lm

Notice that the rule to build appAI (the instrumented version of the program) is exactly
the same as the rule to build the original app program, except that we also include the
options passed in by the wizard in the “relink” command.

- Press the Next button to proceed to the next step.
4-50

Using NightTrace
nlight Wizard - Activating Illuminators 4

The Activate Illuminators step is now displayed.

Figure 4-34. nlight Wizard - Activate Illuminators Step

An important feature of Application Illumination is that once you relink your program and
include the illuminators, the illuminators are inert. You can run your application with zero
overhead while the illuminators are inert.

In this step, we’ll activate them so that when we run the program trace data will be logged.
4-51

NightStar RT Tutorial
The default activation level is 2, which provides a medium amount of detail with each
event. In this tutorial we want to see more detail, so we’ll increase the detail level of each
illuminator.

- Change the Detail Level for the glibc illuminator to 3.

- Change the Detail Level for the pthread illuminator to 3.

- Change the Detail Level for the app.ai illuminator to 3.

- Press the Next button to proceed to the next step.

Running the Program 4

The Run Scripts step is now displayed in the wizard.

The wizard provides this step for convenience.

We’ll go ahead and close nlight now and run the application ourselves outside of
nlight.

- Select Exit Immediately from the File menu.

- In a shell session, start the illuminated program: ./appAI &

IMPORTANT

Make sure you invoked appAI, the instrumented program, and
not app.

Analyzing Application Illumination Events 4

Now we’ll invoke NightTrace to analyze the data generated by our instrumented program.

- Enter the following command while positioned in the directory that con-
tains the appAI program: ntrace --import=appAI
4-52

Using NightTrace
The NightTrace analysis interface appears.

Figure 4-35. NightTrace - Import File Name

Since NightTrace was invoked with the --import option, it prompts you for the name of
the trace data file, which is the first parameter your program passed to the trace_begin
call.

- Enter /tmp/data in the prompt dialog and press OK.

Use of the --import option instructs NightTrace to load auxiliary data created by
nlight so that it can fully describe the trace events it collects. The location of that infor-
mation is embedded within the instrumented application, in our case, appAI.

NOTE

If the main illuminator had been selected in nlight, ntrace
would have already known the name of the trace file. In our
example, we didn’t include the main illuminator, because our
program already initiated tracing independently of nlight.
4-53

NightStar RT Tutorial
The Daemons panel now includes a user daemon which is ready to collect trace points
from our instrumented appAI program.

Figure 4-36. NightTrace - Daemon Ready to Launch

- Press the Launch button to launch the daemon.

- Press the Resume button to start collecting trace events.
4-54

Using NightTrace
Returning to the NightTrace window, you can see that the user daemon is collecting
events as the number in the Buffer column in the Daemons panel is steadily increasing.

Figure 4-37. NightTrace - Daemon Collection Events

- Wait until the event count in the Buffer column reaches 10,000 or more.

- Press the Halt button in the Daemons panel to stop the daemon.

- Click on the /tmp/data_import tab to bring the Events and Timeline
panels to the top of the NightTrace window.
4-55

NightStar RT Tutorial
- Click in the middle of the activity in the timeline.

Figure 4-38. NightTrace - /tmp/data_import Timeline

AI timelines are much like standard user trace timeline, except that the event description
and hover description areas are much bigger, because such descriptions are more detailed
and verbose than most ordinary trace data.

In the figure above, notice the description of the semop and nanosleep library calls,
including details about their arguments.

Let’s turn our attention to the Events panel.
4-56

Using NightTrace
- Hover the mouse over the description area of the selected event.

Figure 4-39. NightTrace - Events Panel w/ Tool Tip

As mentioned before, trace event descriptions are quite long, and the description in the last
column in the Events panel may be truncated. Hovering over those areas provides the
full description.

- Activate the Textual Search dialog by pressing Ctrl+T while the focus
is in the Events panel.
4-57

NightStar RT Tutorial
A textual search dialog is shown.

Figure 4-40. NightTrace - Event Panel Search Dialog

- Activate the Event Name field by checking its checkbox.

- Type ENTER_work into the Event Name text field and press the
Search Forward button.

The Events panel now has the next occurrence of the ENTER_work event selected.

Figure 4-41. NightTrace - Events Panel after Search
4-58

Using NightTrace
Notice that the description field includes the location of the caller using both the hexadec-
imal PC location as well as the name of the subprogram and file and line number informa-
tion (hover the mouse over the description to see it):

caller=0x400f83 [main() at app.c:95]

NOTE

Depending on compiler versions and actual source contents, the
line number displayed may actually be associated with the next
code-generating source line after the call. This is because the
return value of the PC that is included with the trace event is the
“return address”; the instruction that will execute after the called
function.

NightTrace will always attempt to map the PC address in the caller portion of the descrip-
tion to the subprogram and file/line values, but it will not be able to provide this informa-
tion if the corresponding routine wasn’t compiled with debug information.

When a file and line number is available in an event’s description, you can ask NightTrace
to show you the source line in a text editor using the context menu.

- Right-click the mouse on the description of the ENTER_work event and
select the Show Source File From Description... option from the context
menu.

Figure 4-42. NightTrace - Events Panel Context Menu
4-59

NightStar RT Tutorial
NightTrace will load the source file and position your text editor at the appropriate line
number, as shown in the following figure.

Figure 4-43. NightTrace - Launches Editor with Source File at Line Number

NOTE

As mentioned above, the return PC is always in the next instruc-
tion after the call, which may mean it is associated with the next
source line, as it is in the example above.

NOTE

NightTrace selects your editor via the EDITOR environment vari-
able.

- Close the editor before proceeding.
4-60

Using NightTrace
Summarizing Workload Performance 4

Remember that we summarized the workload performance of our threads in a previous
section of this tutorial? We used trace points that we inserted via NightView and defined
states for them.

We’ll do the same basic thing here, but this time we’ll just use the trace events that were
automatically created for us by nlight.

- Select Summarize Functions from the Summary menu.

A panel with a summary of all instrumented functions that were called appears.

Figure 4-44. NightTrace - Functions Summary Table

A table is created that presents a single row for each instrumented function. It contains
statistics about the number of invocations, their minimum, maximum, and average length,
and the name of the function.

The column labelled Active indicates whether a function call was ongoing at the end of
the data set (or the end of the summarized interval).

The context menu provides the following actions:

You can obtain details of a specific function by right-clicking its row in the table.

- Right click on the row for the work function and select Launch detailed
summary of calls for this function.
4-61

NightStar RT Tutorial
A table appears with a row for every invocation of that function.

Figure 4-45. Function Details Table for the work function

This table has a context menu that is similar to the Function Summary table’s context
menu.

Batch Summary of Functions 4

You can also use ntrace in non-GUI mode to obtain summary information for all func-
tions or for specific functions. Assuming you had captured some trace data for your appli-
cation; perhaps like this:

./appAI &
ntraceud --join /tmp/data
sleep 5
ntraceud --quit-now /tmp/data
killall appAI

You could invoke ntrace with either of the following commands:

ntrace --verbose --summary=fs:* appAI /tmp/data
ntrace --verbose --summary=fs:work appAI /tmp/data

and it would generate output similar to the contents of the tables generated in the figures
above, without presenting the graphical interface.

Shutting Down 4

- Select Exit Immediately from the File menu of NightTrace to terminate
the NightTrace session.
4-62

Using NightTrace
- Issue the following command from a terminal shell to kill the appAI pro-
cess which we left running:

killall appAI 2>/dev/null

Conclusion - NightTrace 4

This concludes the NightTrace portion of the NightStar RT Tutorial.
4-63

NightStar RT Tutorial
4-64

5
Chapter 5Using NightProbe

5
5
5

NightProbe is a graphical tool for viewing and modifying data from independently execut-
ing programs as well as recording data for subsequent analysis.

This chapter assumes you have already built the app program and it is running under the
control of NightView. If you have not built the program, do so using the instructions in
“Building the Program” on page 1-4 and execute the application via the following com-
mand before proceeding:

./app &

Invoking NightProbe 5

Programs to be probed do not need to be instrumented with any special API calls. How-
ever, in order for NightProbe to refer to symbolic variable names, the program should be
compiled with debug information (typically the -g compilation option).

- NightProbe takes advantage of significant performance capabilities of the
RedHawk kernel, eliminating intrusion on the process by sampling and
modifying variables in other programs using direct memory fetches and
stores.If the app program is still under control of NightView, which was
the case in a previous chapter, locate that NightView session, stop the pro-
cess, and exit NightView.

- The run the applicagtion from a shell session: ./app

Invoke NightProbe by selecting NightProbe Monitor from the Tools menu of any of the
NightStar Tools currently running. You may also invoke NightProbe by using the Night-
Probe desktop icon or type the following command:

nprobe &

at a command prompt.
5-1

NightStar RT Tutorial
The NightProbe main window is displayed.

Figure 5-1. NightProbe Main Window

Selecting Processes 5

NightProbe has the ability to probe several kinds of resources, including programs, shared
memory segments, memory mapped entities, and PCI devices.

- Right-click the Programs icon on the Configuration page and select
the Program... menu option.
5-2

Using NightProbe
The Program Selection dialog is presented:

Figure 5-2. Program Selection Dialog

- Press the Select... button to the right of the PID field

The Process Selection dialog will appear.

Figure 5-3. Process Selection Dialog

- Enter app in the Filter field and press the Enter key.

The list is filtered to only those process whose name includes app and an entry should be
selected in the table.

- Ensure that a single item appears in the table and press Enter again to
close the dialog. If multiple items appear in the table, double-click on the
app process associated with your user name.
5-3

NightStar RT Tutorial
The process ID associated with the app program is placed in the PID text field and the
Process Name and Symbol File text fields are updated accordingly.

- Press Enter to close the dialog.

The app program is added to the list of resources to be probed as is shown under the Pro-
grams item in the Configuration page.

Viewing Live Data 5

- Click on the Browse tab in the NightProbe main window.

The Live Browser is displayed.

Figure 5-4. NightProbe Browse Panel

The Browse page serves two purposes. It allows you to browse your program to select
variables of interest for recording or for viewing with alternative View panels.

It also provides you instant viewing of variables using the tree shown directly within the
Browse page.

- Expand the app entry in the tree.

The items under a program’s icon include all global variables as well as any nested scopes
such as Ada packages, or functions that contain static data items.
5-4

Using NightProbe
Each variable item has an icon which indicates whether the variable is a scalar, a pointer,
or a composite item such as an array or structure.

The data variable is a composite object and can be expanded.

- Expand the data variable.

Figure 5-5. Expanded Data Item

The downward pointing arrow head is the array subscript expansion icon. By clicking the
icon, an additional component of the array is shown.

- Click the array expansion icon so that data[1] is shown

- Expand both structures displayed, data[0] and data[1].

In the Browse page, the current value of all variables shown in the tree is displayed
whenever you press the Refresh button at the bottom of the page, whenever an automatic
refresh occurs as controlled by the Auto refresh checkbox.

- Click the Auto Refresh checkbox.

This causes the display to automatically refresh at the rate shown in the spinbox to the
right of the Auto Refresh checkbox.

Note the values of the count, angle, and value components of each component of the data
array changing.

Modifying Variables 5

The app main program wakes each thread iteratively to do processing. The state vari-
able controls whether this should occur or not.

Note that the current value of the state variable is the enumeration value run.
5-5

NightStar RT Tutorial
Double-click the value of the state variable.

Figure 5-6. Variable Modification in Progress

The cell containing the value is frozen from updates and the current value is selected.

To change the value of a variable, all we need to do is supply a new value and commit the
change to the program.

- Type the following in the cell:

hold

- Press the Enter key to commit the value to the program.

The value of the state variable is now hold which prevents the program from waking the
threads for computation, as shown in the source code snippet from app.c:

91 for (;;) {
92 struct timespec delay = { 0, rate };
93 nanosleep(&delay,NULL);
94 work(random() % 1000);
95 if (state != hold) semop(sema.&trigger,1);
96 }

- Change the value of the state variable back to run by double clicking the
cell and then selecting run from the enumeration list and press Enter.
5-6

Using NightProbe
Selecting Variables for Recording and Alternative Viewing 5

Each variable has a Mark and a Record attribute. The Mark attribute, when set, indi-
cates that the variable is of particular interest and may be viewed in other panels. The
Record attributes specifies that the variable is to be included in recording sessions.

Double-clicking an item causes the color to turn a reddish color and sets its Mark and
Record attributes. Alternatively, you can use an item’s context menu to individually set
its attributes.

- Double-click the count, angle, and value fields from both data[0]
and data[1] structures.

- Double-click the rate variable.

The Browse page tree should look similar to the following:

Figure 5-7. Mark and Record Attributes Set
5-7

NightStar RT Tutorial
Selection of Views 5

NightProbe provides various methods for viewing data:

• The Browse page

• List View

• Table View

• Spreadsheet View

• Graph View

Additionally, you can stream the output of a recording session to NightTrace or a user
application for live analysis, or to a file for subsequent analysis within NightProbe.

Table View 5

A Table view provides a scrollable table with variables spread across the columns and
rows containing the values of the variables, over time.
5-8

Using NightProbe
- Select the Table option from the View menu.

Figure 5-8. Table View

Initially, the table is empty. The first step is to select the items we wish to display in the
table.
5-9

NightStar RT Tutorial
- Press the Select Items... button.

Figure 5-9. Item Selection Dialog

This dialog allows you to select items that have the Mark or Record attribute set.

By default, the dialog sets up defaults to display such variables.

- Hide all elements of the data[1] component by clicking their rows in the
Hide column.

- Press the OK button.

The table now has five columns, one for the sample number and one for each of the vari-
ables we selected in the previous step.

- Check the Automatic Refresh checkbox
5-10

Using NightProbe
At the rate defined in the spinbox to the right of the Automatic Sampling checkbox,
new samples are taken of the variables in the table.

Figure 5-10. Table in Automatic Sampling Mode

Values are shown in blue if they have changed since the previous sample.

You can sort by variable value by clicking on a column header.

- Clear the Automatic Sampling checkbox

- Click on the column header for data[0].value and then click again so
that the table is sorted from largest to smallest value.

The value shown at the top should be nearly 1.0 if enough samples have been taken (the
value of data[0].value is that of a sine wave).

You can modify variables using the Table view in the same manner as described in
“Modifying Variables” on page 5-5.

Graph View 5

The Graph panel presents individual variables as separate lines on a graph.

- Select the Add New Page option from the View menu.
5-11

NightStar RT Tutorial
- Select the Graph option from the View menu.

Figure 5-11. Graph Panel

Initially, the graph is empty.

- Press the Select items... button.

Unlike the table view, none of the items in the Select Item dialog are selected to be
shown. Typically, only one or very few items are shown on a single graph.

- Mark the data[0].value and data[1].value items as Shown by
clicking their respective rows in the Show column.

- Press the OK button.

- Check the Automatic Refresh checkbox.

- Change the refresh rate to 1.0 seconds in the spinbox to the right of the
Automatic Sampling checkbox.
5-12

Using NightProbe
Two lines begin to be plotted as shown below.

Figure 5-12. Graph Panel Actively Displaying Values

- Select the Edit... option from the context menu of one of the value items in
the legend at the right-hand side of the graph panel (right-clicking activates
the context menu).

Figure 5-13. Edit Curve Attributes Dialog

- Select Sticks from the Style option list.
5-13

NightStar RT Tutorial
- Click on the colored block to activate a color selection dialog to change the
color.

- Press the OK button to close the color selection dialog.

- Press the OK button to close the Edit Curve Attributes dialog.

Figure 5-14. Graph Panel with Modified Curves

- Check the Automatic Scaling checkbox

- Change the refresh rate to 0.5 seconds

The program uses the rate variable to determine the frequency at which the threads are
activated to do their calculations.

- Using the Browse page or the Table panel, change the value of the rate
variable from 50000000 to 25000000.
5-14

Using NightProbe
This change effectively doubles the frequency at which the threads operate, so the sine and
cosine waves will change shape.

Sending Probed Data to Other Programs 5

Data values may be recorded to files for subsequent processing, or may be recorded and
streamed to NightTrace for live processing.

Similarly, you can send recorded data to any process of choice.
5-15

NightStar RT Tutorial
- Raise the Configuration page by clicking on its tab.

Figure 5-15. Recording area of Configuration Page

The Recording portion of the configuration tree indicates the Timing source for record-
ing, the recording Destinations, and the list of variables whose Record attributes are
set.

- Right-click on the Timer item in the Recording tree and select the
Clock... option.

Figure 5-16. Clock Selection Dialog

This dialog controls the rate at which recording samples will be taken.

- Change the units to Milliseconds from the option list Sampling Inter-
val option list.

- Change the Sampling Rate value to 100.0.

- Press the OK button.

The Timer item and description in the tree changes to reflect this activity.

The recording destination will be a user application.
5-16

Using NightProbe
- Right-click the Destinations item and select To Program...

Figure 5-17. Record To Program Dialog

- Type api into the Program Path text field.

- Replace the /dev/null text in the Output File text field with the fol-
lowing.

/tmp/api.out

- Press the OK button.

A simple application which uses the NightProbe API to consume and print the values of
recorded samples was copied into the tutorial directory in “Creating a Tutorial Direc-
tory” on page 1-4.

- Type the following command in your terminal session to build the pro-
gram:

cc -g -o api api.c -lnprobe
5-17

NightStar RT Tutorial
The Recording area of the Configuration page should look similar to the following.

Figure 5-18. Recording Area of Configuration Page w/ Destination

Now that we have selected the variables to record, the recording timing source, and the
recording destination, we can proceed to record samples and stream them to the api
application.

- Press the Record icon on the toolbar:

- View the output of the api program as samples are recorded and passed to
it.

- Enter the following command in a terminal session:

tail -f /tmp/api.out
5-18

Using NightProbe
The program will generate output similar to the following:

Figure 5-19. Example Output of Graph Program

- Stop the recording process by pressing the Stop icon on the Recording tool-
bar:

For more information on the NightProbe API, refer to the “NightProbe API” chapter in the
NightProbe User’s Guide.

Using Datamon to Modify Program Variables 5

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data Monitoring allows you to specify executable programs that contain Ada, C, or For-
tran variables to be monitored, obtain and modify the values of selected variables by spec-
ifying their names, and obtain information about the variables such as their addresses,
types, and sizes.
5-19

NightStar RT Tutorial
NOTE

Ada programs are only supported if compiled with the Concurrent
MAXAda compiler which generates proper DWARF debug infor-
mation.

Data Monitoring is a powerful capability with a rich API. It also allows you to obtain
detailed symbolic and attribute information for variables in a program file. However, for
our purposes, we will write a very simple program which changes the value of a single
variable.

Refer to the Data Monitoring Reference Manual for more information about Data Moni-
toring.

The source code for our set_rate program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
if((x)) {fprintf(stderr, "%s\n", dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{

program_descriptor_t pgm;
object_descriptor_t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set_rate integer-value\n");
exit(1);

}

check(dm_open_program("app",0,&pgm));
check(dm_get_descriptor("rate",0,pgm,&obj));
check(dm_get_value(&obj,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf ("rate: old_value=%s, new_value=%s\n", buffer, argv[1]);
}

The dm_open_program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get_descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
app process into the monitoring process.

The dm_get_value and dm_set_value routines return and set the value of the vari-
able using direct memory reads and writes; the app process is not affected in any other
way than having the value of the rate variable changed.

The set_rate.c source file was copied into the current working directory during the
activities in “Creating a Tutorial Directory” on page 1-4.

- Compile the program using the following command:
5-20

Using NightProbe
cc -g -o set_rate set_rate.c -ldatamon -lccur_rt

While this portion of the tutorial is in no way dependent on NightProbe itself, we will use
NightProbe to see the effect of changing the rate variable using the Datamon API.

- Raise the Graph panel by clicking on the tab labelled Page 4 in Night-
Probe.

- Use the Pan Right button in the graph panel to move the viewport to the
end of the graph set -- click the button repeatedly until the end of the graph
is seen:

- Change the value of the rate variable in the app process by issuing the
following command:

./set_rate 123456789

As shown in the source code above, the program prints the previous value of the rate
variable and then sets it to the value specified as an argument to set_rate.

The sine and cosine waves change shape as shown in the Graph panel.

Conclusion - NightProbe 5

To terminate NightProbe operations, execute the following steps:

- Select the Exit Immediately option from the File menu

This concludes the NightProbe portion of the NightStar RT Tutorial.
5-21

NightStar RT Tutorial
5-22

6
Chapter 6Using NightTune

6
6
6

NightTune is a graphical tool for analyzing and adjusting system activities.

This chapter assumes you have already built the app program and it is running. If you
have not built the program, do so using the instructions in “Building the Program” on page
1-4 and execute the application before proceeding: ./app &

Invoking NightTune 6

NightTune can be launched with the following command at a command prompt:

ntune &

Or it may be launched by double-clicking on the NightTune desktop icon.

For some aspects of this tutorial, it will be necessary to execute NightTune as the root
user or to ensure that your user account has appropriate privileges. See the “Setting Up
User Privileges” on page 1-2 for more information.

Figure 6-1. NightTune initial panels
6-1

NightStar RT Tutorial
Monitoring a Process 6

First monitor the running app process.

- In the Process List panel, click anywhere within the panel and the type
Ctrl+F.

- A Find bar appears at the bottom of the panel. Type app, and the process
list will be automatically expanded and the first process whose process
name includes the word app will be selected.

Figure 6-2. Expanded Process List

If the selected process is not our app process, press the Next icon in the Find bar until
the correct process is selected.

Notice that the icon associated with the app process has a small gray gear superimposed
on the orange process icon. This indicates that process is multi-threaded.
6-2

Using NightTune
- Select the Show Threads option from the context menu associated with
the app process.

Figure 6-3. Process List with Threads

The panel shows characteristics of each thread and of the entire process. In particular,
they include:

• the virtual memory size of the process

• the percentage and amount of CPU time used by each thread and by the
whole process.

• CPU on which each thread ran most recently

• CPU affinity for each thread (the set of CPUs on which the thread is
allowed to run)

• scheduling characteristics of each thread

• the thread name, if it is being debugged by NightView, or, if the applica-
tion is using the NightTrace API and names its threads via a call to
trace_set_thread_name(3x).

The set of columns displayed can be modified by clicking the Display Fields option of
the context menu for the panel, and then choosing individual fields by checking or
unchecking their menu items.

Tracing System Calls 6

NightTune provides a handy interface for tracing system calls made by a process. This is
essentially the same as using the strace(1) command, except that NightTune provides the
output in a dialog which can be searched and controlled.
6-3

NightStar RT Tutorial
- Select the Trace System Calls... option from the context menu associ-
ated with the sin thread in the app program and press the run button.

Figure 6-4. Strace Output of Thread

As shown in the figure above, the selected thread makes no system calls other than
semop(2) which is associated with the line 46 of api.c, as shown in this code seg-
ment:

36 void *
37 sine_thread (void * ptr)
38 {
39 control_t * data = (control_t *)ptr;
40 struct sembuf wait = {0, -1, 0};
41 work(1);
42
43 trace_set_thread_name (data->name);
44
45 for (;;) {
46 semop(sema, &wait, 1);
47 data->count++;
48 data->angle += data->delta;
49 data->value = sin(data->angle);
50 }
51 }

- Press the Close button to stop the system call trace and close the dialog.

Process Details 6

NightTune provides detailed analysis of process attributes.
6-4

Using NightTune
- Select the Process Details... option from the context menu of any
thread in the app program.

Figure 6-5. Process Details Dialog

All information displayed in this dialog is read-only in nature. You cannot make changes
to process attributes using this dialog.

Seven tabbed pages provide detailed information about the process, including:

• Memory Usage

• Memory Maps (not shown)

• Memory details

• File Descriptors

• Signals
6-5

NightStar RT Tutorial
• Capabilities

• Environment

The Memory Usage page provides summary information of the virtual and resident usage
of memory in both textual and graphical panes.

Process Details - Memory Details 6

- Click on the Memory tab to raise that page.

Figure 6-6. Process Memory Details Page

This dialog provides controls to allow you to get detailed memory information for any
segment or page within the address space.

The controls in the graphical rows are similar to NightTrace in nature.
6-6

Using NightTune
- Click anywhere on or above the rulers.

- Press Alt+UpArrow to zoom out completely.

The process’s entire address space is now displayed. Each segment of the memory
address space that is associated with pages in your process is indicated by at least a single
vertical black line in the Exists row.

- Click on one of these lines

- Use the mouse wheel or the Zoom In button to zoom in until sufficient
detail is available.

In the figure above, memory segments are shown as gray areas in the Exists row. The
boundaries of memory segments are shown as vertical black lines. If the zoom factor is
large enough, a memory segment may be portrayed as merely one or two vertical black
lines.

Details about the memory segment are shown in the textual area in the bottom portion of
the page.

The other rows show per-page information, including NUMA pools, and Locked and Res-
ident attributes of the page.

NOTE

Locked and Resident information may not be available on all
operating system versions. NUMA information is only applicable
to systems supporting a Non-Uniform Memory Architecture and
the information is only provided by some operating systems.

Alternatively, you can select a specific address by typing it into the Current Page text
field.

See the NightTune User’s Guide for more information on the Memory page.

Process Details - File Descriptors 6

The File Descriptors page lists all open file descriptors associated with the process, and
provides a description of each.
6-7

NightStar RT Tutorial
The figure below shows the file descriptors in use by an ntune process.

Figure 6-7. File Descriptors Page

The description includes the file name associated with a file descriptor (when relevant),
connection information for a socket, and even identifies other processes using a pipe or
socket when those processes are on the same system.
6-8

Using NightTune
Process Details - Signals 6

The Signals table displays attributes of signals.

Figure 6-8. Signals Page

The information shown includes indicators of signals currently pending or blocked by the
application, as well as whether the application has a handler installed for a signal.

In the figure above, the application has a handler registered for SIGUSR2.
6-9

NightStar RT Tutorial
Changing Process Scheduling Parameters 6

It may be desirable to change the scheduling properties of a thread or process while it is
running to see how that changes the behavior of an application. For instance, perhaps one
thread is being starved of CPU time by other threads. You may wish to change its sched-
uling class to a real-time class and/or its priority to a higher priority.

- Select the Process Scheduler... option of the context menu associated
with the sin thread in the app process.

Figure 6-9. Process Scheduler Dialog

In this dialog, it is possible to change the Scheduling Class, Nice Value, Real-time
Priority, and/or Time Quantum. On multi-processor systems, it also is possible to
change the CPU Affinity. For each CPU on which the process or thread is allowed to
run, the checkbox with the number of that CPU should be checked. See “Setting Process
CPU Affinity” on page 6-11 for more on this topic.

- Change the Scheduling Class to Round Robin by selecting that from
a drop down list.

- Change the Real-time Priority to 3.

- Press the OK button.
6-10

Using NightTune
NOTE

To change the Schedul ing Class to Round Robin and
change the Real-time Priority, it is necessary that NightTune
be run by the root user or that your user account has appropriate
privileges as described in “Setting Up User Privileges” on page
1-2.

The Process List panel now reflects these changes to the thread.

Figure 6-10. NightTune Process List with modified thread

For the modified thread, the CL (Scheduling Class) field displays the value RR (Round
Robin), and the RPri (Real-time Priority) field displays the value 3.

Setting Process CPU Affinity 6

This section only is applicable if the system running NightTune is a multi-processor sys-
tem. If not, skip to “Conclusion - NightTune” on page 6-17.
6-11

NightStar RT Tutorial
The CPU Shielding and Binding panel shows the CPU hierarchy, shielding status (on
Concurrent RedHawk Linux only), CPU usage, and process and IRQ bindings.

Figure 6-11. CPU Shielding and Binding Panel

The hierarchy is useful in visualizing the relationship of logical CPUs, especially in the
presence of hyper-threaded and multi-core chips.

In the figure above, two chips each contain two local CPUs which are hyper-threaded sib-
lings of each other. Hyper-threaded CPUs share some physical resources between them,
yet operate in all user-visible ways as independent processors. Multi-core CPUs also
share physical resources between their siblings, but much less so than with the
hyper-threaded technology.

A process or thread has a CPU affinity, which determines the set of CPUs on which it may
execute. It may even be restricted such that it may run on only a single CPU. Often this is
called binding the process or thread. “Changing Process Scheduling Parameters” on page
6-10 described one way to change the CPU affinity. In addition, the CPU Status panel
can be used to bind a process or thread quickly.

- Select Expand All from the context menu associated with the System
item in the panel

The tree expands with leaves for bound processes and interrupts for each CPU.

- While the cursor is positioned over one of the threads in the app process,
press and hold the left mouse button, then drag the thread to one of the
CPUs in the CPU Shielding and Binding panel and release the mouse
button.
6-12

Using NightTune
Figure 6-12. CPU Shielding and Binding Panel with Bound Thread

This action binds the selected thread to the particular CPU. That is, its CPU affinity is set
to include only that single CPU. When a process’ or thread’s CPU affinity contains only a
single CPU, that process or thread is listed in the CPU Status panel under the particular
CPU’s Processes tab. In this case, there is one entry under CPU 1. Because only one
thread was bound to CPU 1 in this example, the entry includes the suffix (1/4), indicating
that only 1 of the 4 threads is bound to that CPU.

The thread’s new CPU affinity also is reflected in the Affinity field of the Process
Monitor panel. That field displays a bit mask in hexadecimal, where the low order bit
represents CPU 0, the next bit represents CPU 1, etc. In this case, the value 0x1 has only
the lowest bit turned on, indicating CPU 0.

NightTune also can unbind a process quickly.

- While the cursor is over the thread entry in the CPU Status
panel, press and hold the left mouse button, then drag the item to
the Unbind icon at the upper right of the window (resembling a
broken chain link) and release the mouse button.

The Process List panel will reflect that the thread is unbound once again.
6-13

NightStar RT Tutorial
Setting Interrupt CPU Affinity 6

The functionality described in this section only is available if NightTune was executed by
the root user or your user account has appropriate privileges as described in “Setting Up
User Privileges” on page 1-2. If this is not the case, skip to “Conclusion - NightTune” on
page 6-17.

In addition to being able to set the CPU affinity of a process, NightTune can control the
CPU affinity of an interrupt.

It may be desirable to change the CPU affinity of an interrupt. For instance, an interrupt
may be occurring frequently and, depending on the CPU which handles it, may be inter-
fering with an application running on that same CPU.

- Close the Process List panel by clicking on the right-hand most box in
its title bar.

- In its place, open the Interrupt Activity panel by selecting the Interrupt
Activity option from the Monitor menu and then the Text Pane option
from its sub-menu.
6-14

Using NightTune
Figure 6-13. NightTune with Interrupt Activity Panel

The panel shows the number of interrupts per second for each interrupt as handled on
each CPU (if on a multi-processor system).

The chain link icon in the Interrupt Activity panel indicates that an interrupt may be
handled by that particular CPU. However, if an interrupt may be handled by all CPUs,
then no icon appears for that interrupt. The same information is displayed in the Bound
Interrupts items for each CPU in the CPU Shielding and Binding panel.

Some systems may employ IRQ balancing which automatically changes IRQ affinities
over time. This interferes with attempts to control interrupt affinity manually. For pur-
poses of this tutorial, ensure that IRQ balancing is currently disabled by executing the fol-
lowing command as the root user:

/sbin/service irqbalance stop

To bind an interrupt to a single CPU, it may be dragged in much the same way as a pro-
cess.
6-15

NightStar RT Tutorial
While the cursor is over an interrupt in the Interrupt Activity panel, you may press and
hold the left mouse button, then drag the interrupt to the particular CPU in the CPU
Shielding and Binding panel. Similarly, while the cursor is over an interrupt in the
Bound Interrupts list of a CPU in the CPU Shielding and Binding panel, you may
press and hold the middle mouse button, then drag the interrupt to a different CPU in the
CPU Shielding and Binding panel.

To change an interrupt’s affinity to allow multiple CPUs, but possibly exclude one or
more, select the Set CPU Affinity... option from the context menu of any interrupt row
in the panel.

NOTE

If you are not running as the root user or your user lacks appropri-
ate privileges, the Set CPU Affinity... option will not be present in
the context menu.

Figure 6-14. Interrupt Affinity Dialog

For each CPU on which the interrupt is allowed to be handled, the checkbox with the num-
ber of that CPU should be checked. The changes take effect when the OK or Apply but-
ton is pressed.

NOTE

For certain interrupts, such as NMI, it is impossible to control
their CPU affinity.
6-16

Using NightTune
Shielding CPUs for Maximum Determinism and Performance 6

NightTune allows you to easily shield specific CPUs from processes, interrupts, and
shared resource interference from other CPUs.

This is demonstrated as part of the NightSim section in this tutorial. See “Overrun Detec-
tion and System Tuning” on page 7-9 for more information.

Conclusion - NightTune 6

The remaining portion of the tutorial is unrelated to the execution of the app program.
Terminate the program by executing the following steps:

- Drag the app process from the Process List panel using the left mouse
button to the Kill icon on the toolbar and release.

- Terminate NightTune by selecting Exit from the File menu.

This concludes the NightTune portion of the NightStar RT Tutorial.
6-17

NightStar RT Tutorial
6-18

7
Chapter 7Using NightSim

7
7
7

NightSim is a graphical tool for scheduling multiple processes in a synchronized manner
and monitoring their execution.

NightSim provides a graphical interface to the Frequency Based Scheduler utilities.

If you don’t have the Frequency Based Scheduler installed on your system, this portion of
the tutorial isn’t applicable to you. Use the following command to see if the Frequency
Based Scheduler is installed:

rpm -q ccur-fbsched

This chapter of the tutorial also uses a real-time clock interrupt source from the Real-Time
Clock and Interrupt Module (RCIM) which is standard equipment on all Concurrent
iHawk systems. If your system does not include an RCIM device, this portion of the tuto-
rial isn’t applicable to you. Use the following command to see if an RCIM is installed:

cat /proc/driver/rcim/status

If the file shown above does not exist, an RCIM does not exist on your system or your ker-
nel has had the RCIM support removed.

For some aspects of this section, it will be necessary to execute NightSim and NightTune
as the root user or to ensure that your user account has appropriate privileges. See the
“Setting Up User Privileges” on page 1-2 for more information.

Creating FBS Applications 7

It is trivial to modify cyclic applications so that they may be scheduled via NightSim.

A single API call is required.

The source code for our simplistic work application follows:

#include <fbsched.h>
int workload = 1000;
main()
{

int data = 0;
int i;
volatile double d = 1.0;
while (fbswait()>=0) {

data = !data;
for (i=0; i<workload; ++i) d = d/d;

}
}

7-1

NightStar RT Tutorial
The call to fbswait() causes the process to block until its next scheduled cycle at
which point it returns. The process then performs its workload and then loops to block in
fbswait() until its next scheduled cycle.

The work.c source file was copied from /usr/lib/NightStar/tutorial into the
current working directory in an earlier portion of this tutorial.

Compile and link the application using the following command:

cc -g -o work work.c -lccur_fbsched -lccur_rt

Invoking NightSim 7

A NightSim configuration file has been prepared for this tutorial and should have been
copied to your current working directory during the activities in the section entitled “Cre-
ating a Tutorial Directory” on page 1-4.

Launch NightSim specifying the configuration file, as show below:

nsim -c nsim.nsc &

Figure 7-1. NightSim Initial Window
7-2

Using NightSim
Creating a Scheduler 7

NightSim allows you to define the scheduling of multiple processes, using the following
parameters:

• The scheduling source (usually an external interrupt)

• The rate at which the interrupts occur (for clock-based interrupts)

• The period at which a process is scheduled

• The CPU affinity, scheduling policy and priority of scheduled processes

Collectively, these parameters define a scheduler.

A cycle is defined as the time between the scheduling sources (interrupts).

A frame is defined by a fixed number of cycles. Frames are useful concepts in many
cyclic applications where a series of discrete steps (cycles) must be executed in order
before the entire algorithm (frame) repeats.

The scheduler configured by the nsim.config file specified on the command line in the
previous section defined a scheduler with the following attributes visible on the main win-
dow:

• Cycles Per Frame -- four cycles per frame

• Timing Source - an interrupt source using the First Available RTC
(real-time clock) of the Real-time Clock and Interrupt Module device
(RCIM)

• Clock Period -- a cycle time of 100 microseconds

• Processes -- a single process, work, schedule to run on every cycle of
the frame

To view the details of the attributes of the scheduled process, select the ./work process
in the process area at the bottom portion of the Processes panel and then press the
Edit... button in the lower-right portion of the panel.
7-3

NightStar RT Tutorial
The Edit Process dialog is displayed.

Figure 7-2. NightSim Edit Process Dialog

 The FBS Schedule tab shows the starting cycle and period of the work process. The
Staring Cycle defines the cycle within the frame where the process will begin its execu-
tion. The Period defines the frequency of execution, in cycles. A period value of 1
causes the application to execute every cycle in the frame.
7-4

Using NightSim
Click on the Runtime Properties tab in the dialog.

Figure 7-3. Runtime Properties Tab

NOTE

The CPU Bias description area of the Runtime Properties
tab may vary depending on the number of CPUs on your system.

The Runtime Properties tab allows you to chose the CPU on which execution is
allowed, the scheduling policy, and the scheduling priority of the process.

Close the Edit Process window by pressing the Cancel button.

Notice that in addition to the work process, the /idle process is listed in the scheduling
area of the NightSim window. We have registered the /idle process so that we may
subsequently monitor the amount of idle time available for each cycle. The /idle pro-
cess is not a process that is scheduled, but rather it is a placeholder used to represent idle
cycles.
7-5

NightStar RT Tutorial
Running the Scheduler 7

To start the scheduling of the process, press the Setup button followed by the Start but-
ton in the Control area.

Figure 7-4. Scheduling Started

Note the Frame count begins to increase under the Control area as the Cycle oscillates
between 0 and 3.

To monitor the execution of the process, click on the Monitor tab near the top of the win-
dow.

Figure 7-5. NightSim Monitor Page - Metrics Panel

The figure above isolates the Metrics panel from the rest of the NightSim window in
order to make the panel more readable in this manual.
7-6

Using NightSim
The NightSim Monitor Metrics panel provides statistics about each individual process on
the scheduler. It includes the PID, program name, CPU bias, number of cycles executed,
the CPU times related to per cycle execution, counts of overruns, and the average percent-
age of the frame used by each process. Additional statistics can be selected for display via
the Display Monitor Columns option item of the Monitor menu.

Figure 7-6. NightSim Monitor Page - Percent of Period Used Panel

The lower half of the page shows the Percent of Period Used (CPU Time) graph,
which has been extracted in the figure above. There is a line for each process on the
scheduler; the percent of time used (CPU time) during the last cycle is plotted over time.
If an application overruns its timeslot, a red dot is shown on the graph. Points that fall
within the square magnifier are detailed in the table to the right. (Note that a process can
overrun its deadline even if it doesn’t use more than 100% of its allotted CPU time -- other
processes could be interfering with it or it may be waiting on I/O, etc.).

Watch the Last Time column. The values displayed are the CPU time used by each pro-
cess for their last cycle’s execution in microseconds. The values attributed to the /idle
process indicate the remaining CPU time available within the cycle.

We will adjust the workload of the work process and see the effects shown in the Night-
Sim Monitor window.

Using Datamon to Modify Program Variables 7

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.
7-7

NightStar RT Tutorial
Data monitoring allows you to specify executable programs that contain Ada, C, or For-
tran variables to be monitored, obtain and modify the values of selected variables by spec-
ifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

Data monitoring is a powerful capability with a rich API. However, for our purposes, we
will write a very simple program which changes the value of a single variable.

Refer to the Data Monitoring Reference Manual for more information about data monitor-
ing.

The source code for our set_workload program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
if((x)) {fprintf(stderr, "%s\n", dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{

program_descriptor_t pgm;
object_descriptor_t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set_workload integer-value\n");
exit(1);

}

check(dm_open_program("work",0,&pgm));
check(dm_get_descriptor("workload",0,pgm,&obj));
check(dm_get_value(&obj,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf ("workload: old_value=%s, new_value=%s\n", buffer, argv[1]);
}

The dm_open_program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get_descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
work process into the monitoring process.

The dm_get_value and dm_set_value routines return and set the value of the vari-
able using direct memory reads and writes; the work process is not affected in any other
way than having the value of the workload variable changed.

The set_workload.c source file was copied into the current working directory during
the activities in “Creating a Tutorial Directory” on page 1-4.

Compile the program using the following command:

cc -g -o set_workload set_workload.c -ldatamon -lccur_rt

Change the value of the workload variable in the work process by issuing the following
command:
7-8

Using NightSim
./set_workload 0

As shown in the source code above, the program prints the previous value of the work-
load variable and then sets it to the value specified as an argument to set_workload.

The Last Time field for ./work is affected by the reduced workload as shown in the
NightSim Monitor window.

Experiment with various values of workload using the set_workload program until
the average Last Cycle time for ./work is approximately 50 microseconds.

Overrun Detection and System Tuning 7

A scheduling overrun occurs when a process’s next cycle begins but it has not yet finished
execution of its previous cycle.

The NightSim Monitor window includes overrun counts for each process.

It is likely that several overruns have occurred for the work process.

NOTE

If overruns have not yet occurred, place some additional load on
the system. Running the following command in a separate termi-
nal session should have the desired effect:

find / -print

The NightTrace tool, as described in a previous chapter, is well suited for determining the
specific cause of process overruns. NightTrace kernel tracing provides a detailed view of
system activity on all CPUs, including process context switches, interrupts, system calls,
and machine exceptions.

For brevity, we will assume that the cause of the overruns is due to additional activities
unrelated to the scheduler are occurring on the CPU where work executes.

We will use NightTune to shield the CPU associated with our scheduler from other activi-
ties.

NOTE

If your system only has a single CPU, the remaining portion of
this section is inapplicable. Skip to “Shutting Down the Sched-
uler” on page 7-13 in this case.
7-9

NightStar RT Tutorial
Launch NightTune using the ntune.config file that was copied into the current work-
ing directory during the activities in “Creating a Tutorial Directory” on page 1-4:

ntune -c ./ntune.config &

Figure 7-7. NightTune with Interrupt and CPU Shielding & Binding Panels

A NightTune window appears which displays interrupt activity and the shielding and
bound status of all CPUs.

Right-click on the System icon in the CPU Shielding & Binding panel and select
Expand All from the context menu.

Note that work process is listed in the Bound Processes list of CPU 0.

Take the following actions to bind the RCIM interrupt to CPU 0 and shield CPU 0 from all
other activities:

- While the cursor is positioned in the Interrupt panel over the cell in
the Description column which contains the word rcim, press and
hold the left mouse button, then drag the interrupt onto the CPU 0
7-10

Using NightSim
row in the CPU Shielding and Binding panel, and release the
mouse button. The rcim interrupt is now bound to CPU 0.

Figure 7-8. Process and Interrupt Bound to CPU 0

- Right-click the row corresponding to CPU 0 in the CPU Shielding
and Binding panel and select the Change Shielding... option
from the context menu.

Figure 7-9. Change Shielding Dialog
7-11

NightStar RT Tutorial
- Click the Maximize Shielding icon in the CPU 0 line (the maxi-
mize shielding icon is the right-most icon with three overlapping
shield figures).

Figure 7-10. Shielding Changes Pending

The CPU 0 line changes its display to indicate that all processes and interrupts other than
work and rcim will be shielded from CPU 0. Additionally, the sibling hyper-threaded
CPU (in this case CPU 2 as shown below CPU 0) is marked down so that hyper-threaded
execution on CPU 2 does not interfere with CPU 0.

NOTE

The hyperthreaded sibling of CPU 0 may be a logical CPU num-
ber other than CPU 2.

NOTE:

Your system may not support hyper-threading or it may not have
hyper-threading enabled in which case the CPUs are not displayed
in hyper-threaded groups.

- Press the OK button to activate the shielding changes.

Return to the NightSim Monitor window and watch the Overrun column. It is likely that
overruns have ceased to occur. Clear the overrun count by selecting the Clear Perfor-
mance Data option item from the Monitor menu. This action resets all the statistics to
zero.
7-12

Using NightSim
Watch the Overrun column to see if any overruns still occur.

If the system is properly configured, the scheduler should continue to execute without any
overruns on the shielded CPU.

Figure 7-11. NightSim Percentage of Period Panel - Shielded CPU

In the figure above, you can see when the process overruns stopped, due to the shielding
activities we took in NightTune.

Shutting Down the Scheduler 7

Return to the NightSim window and press the Remove button to terminate the sched-
uler. Press Yes when presented with the dialog which asks whether to kill the processes
associated with the scheduler.

Exit NightSim by selecting the Exit menu item from the File menu. A dialog asking
whether or not to save changes to nsim.nsc may appear; if so, press No.

You may also wish to clear the shielding attributes for CPU 0 and return the system to its
previous state using NightTune.

Exit NightTune by selecting the Exit from the File menu.

This concludes the NightSim portion of the NightStar RT Tutorial.
7-13

NightStar RT Tutorial
7-14

A
Appendix ATutorial Files

1
1
1

The following sections show the source listings for the files used in the NightStar RT
Tutorial.

- api.c

- app.c

- function.c

- report.c

- set_workload.c

- set_rate.c
A-1

NightStar RT Tutorial
api.c A

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <nprobe.h>

int cycles = 0;
int overruns = 0;
char * sample;

// Perform the work of consuming a single Data Recording
sample from NightProbe.
//
int
work (FILE * ofile, np_handle h, np_header * hdr) {

np_item * i;
int status;
int which;

// Read one sample, which may contain data for multiple

processes
// and variables.
//
status = np_read (h, sample);
if (status <= 0) {

return status;
}

cycles++;

fprintf (ofile, "Sample %d\n", cycles);
for (i = hdr->items; i; i = i->link) {

char buffer [1024];
sprintf (buffer, "item: %s:", i->name);
fprintf (ofile, "%-30s", buffer); // Nice formatting :-

)

// Display the value of each item.
// For arrays, format each individual item.
//
for (which = 1; which <= i->count; ++which) {

char * image = np_format (h, i, sample, which);

if (image != NULL) {
fprintf (ofile, " %s", image);
A-2

Tutorial Files
} else {
fprintf (ofile, "\n<error: %s>\n", np_error (h));
return -1;

}

free (image);
}
fprintf (ofile, "\n");

}
fflush (ofile);

return 1;

}

int
main (int argc, char *argv[])
{

np_handle h;
np_header hdr;
np_process * p;
np_item * i;
int fd;
int status;
FILE * ofile = stdout;

fd = 0; // stdin

status = np_open (fd, &hdr, &h);
if (status) {

fprintf (stderr, "%s\n", np_error (h));
exit(1);

}

sample = (char *) malloc(hdr.sample_size);
if (sample == NULL) {

fprintf (stderr, "insufficient memory to allocate
sample buffer\n");

exit(1);
}

for (p = hdr.processes; p; p = p->link) {

if (p->pid >= 0) {
fprintf (ofile, "process: %s (%d)\n", p->name, p-

>pid);
} else {

fprintf (ofile, "resource: %s (%s)\n", p->name, p-
>label);

}
}
fprintf (ofile, "\n");
A-3

NightStar RT Tutorial

for (i = hdr.items; i; i = i->link) {

fprintf (ofile, "item: %s (%s), size=%d bits, count=%d,
type=%d\n",

 i->name, i->process->name, i->bit_size, i-
>count, i->type);

}
fprintf (ofile, "\n");

for (;;) {

status = work (ofile, h, &hdr);
if (status <= 0) break;

}

fprintf (ofile, "Data Recording done: %d cycles fired, %d
overruns\n",

cycles, overruns);

if (ofile != stdout) {
fclose (ofile);

}

if (status < 0) {
fprintf (stderr, "%s\n", np_error (h));

}

np_close (h);

// At this point, file descriptor 0 remains open, but is
no

// longer a NightProbe Data File/Stream.
}

A-4

Tutorial Files
app.c A

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include <ntrace.h>
#include <math.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static void * heap_thread (void * ptr);
extern void work (int control);

typedef struct {
char * name;
int count;
double delta;
double angle;
double value;

} control_t;

control_t data[2] = { { "sin", 0, M_PI/360.0, 0.0, 0.0 },
 { "cos", 0, M_PI/360.0, 0.0, 0.0 } };

enum { run, hold } state;
int rate = 50000000;
int sema;

extern double
FunctionCall(void)
{

return data[0].value + data[1].value;
}

void *
sine_thread (void * ptr)
{

control_t * data = (control_t *)ptr;
struct sembuf wait = {0, -1, 0};
work(1);

trace_set_thread_name (data->name);

for (;;) {
semop(sema, &wait, 1);
data->count++;
data->angle += data->delta;
data->value = sin(data->angle);

}
}

A-5

NightStar RT Tutorial
void *
cosine_thread (void * ptr)
{

control_t * data = (control_t *)ptr;
struct sembuf wait = {0, -1, 0};
work(1);

trace_set_thread_name (data->name);

for (;;) {
semop(sema, &wait, 1);
data->count++;
data->angle += data->delta;
data->value = cos(data->angle);

}
}

int
main (int argc, char * argv[])
{

pthread_t thread;
pthread_attr_t attr;
struct sembuf trigger = {0, 2, 0};

trace_begin ("/tmp/data",NULL);

sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, sine_thread, &data[0]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, cosine_thread, &data[1]);

pthread_attr_init(&attr);
pthread_create (&thread, &attr, heap_thread, NULL);

for (;;) {
struct timespec delay = { 0, rate } ;
nanosleep(&delay,NULL);
work (random() % 1000);
if (state != hold) semop(sema,&trigger,1);

}

trace_end () ;
}

void * ptrs[5];

static void *
heap_thread (void * unused)
{

A-6

Tutorial Files
int i = 5;
int scenario = -1;
void * ptr;
int * * iptr;
extern void * alloc_ptr (int size, int swtch);
extern void free_ptr (void * ptr, int swtch);
trace_set_thread_name("heap_thread");

for (;;) {
sleep (5);
switch (scenario) {
case 1:

// Use of freed pointer
ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
memset (ptr, 47, 64);
break;

case 2:
// Double-free
ptr = alloc_ptr(1024,3);
free_ptr(ptr,2);
free(ptr);
break;

case 3:
// Overwriting past end of an allocated block

#define MyString "mystring"
ptr = alloc_ptr(strlen(MyString),2);
strcpy (ptr,MyString); // oops -- forgot the zero-

byte
break;

case 4:
// Uninitialized use
iptr = (int * *) alloc_ptr(sizeof(void*),2);
if (*iptr) **iptr = 2778;
break;

case 5:
// Leak -- all references to block removed
ptr = alloc_ptr(37,1);
ptr = 0;
break;

case 6:
// Some more allocations we’ll check on...
ptrs[0] = alloc_ptr(1024*1024,3);
ptrs[1] = alloc_ptr(1024,2);
ptrs[2] = alloc_ptr(62,1);
ptrs[3] = alloc_ptr(4564,3);
ptrs[4] = alloc_ptr(8177,3);
break;

}

(void) malloc(1);
scenario = 0;

}
}

A-7

NightStar RT Tutorial
void * func3 (int size, int count)
{

return malloc(size);
}

void * func2 (int size, int count)
{

if (--count > 0) return func3(size,count);
return malloc(size);

}

void * func1 (int size, int count)
{

if (--count > 0) return func2(size,count);
return malloc(size);

}

void free3 (void * ptr, int count)
{

free(ptr);
}

void free2 (void * ptr, int count)
{

if (--count > 0) {
free3(ptr,count);
return;

}
free(ptr);

}

void free1 (void * ptr, int count)
{

if (--count > 0) {
free2(ptr,count);
return;

}
free(ptr);

}

void * alloc_ptr (int size, int count)
{

return func1(size,count);
}

void free_ptr (void * ptr, int count)
{

free1(ptr,count);
}

void work (int control)
{

volatile double calculations[2048];
A-8

Tutorial Files
volatile double d = 0.0;
int i;
for (i=0; i<2048; ++i) {

calculations[i] = 3.14159;
}
for (i=0; i<control*10; ++i) {

d = d*d;
calculations[i%2048] = d;

}
}

struct node_t {
int value;
struct node_t * link;

};
struct node_t * head;
struct node_t * tail;

int add_link (void)
{

static int count;
count++;
if (count > 5 && count < 1000) {

struct node_t * n = (struct
node_t*)malloc(sizeof(struct node_t));

n->value = count;
n->link = NULL;
if (tail) {

tail->link = n;
} else {

head = n;
}

tail = n;
}

}

#include <signal.h>
int nosighup (void)
{

struct sigaction ignore;
ignore.sa_flags = 0;
ignore.sa_handler = SIG_IGN;
sigemptyset(&ignore.sa_mask);
sigaction(SIGHUP,&ignore,NULL);

}

function.c A
A-9

NightStar RT Tutorial
double
FunctionCall(void)
{

static double counter;
return counter++;

}

report.c A

#include <stdio.h>

void report (char * caller, double value)
{

static int count;

if (++count % 40) printf ("The value from %s is %f\n",
caller, value);
}

set_workload.c A

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) if((x)) {fprintf(stderr, "%s\n",
dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{

program_descriptor_t pgm;
object_descriptor_t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set_workload integer-

value\n");
exit(1);

}

check(dm_open_program("work",0,&pgm));
check(dm_get_descriptor("workload",0,pgm,&obj));
check(dm_get_value(&obj,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));
A-10

Tutorial Files
printf ("workload: old_value=%s, new_value=%s\n", buffer,
argv[1]);
}

set_rate.c A

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) if((x)) {fprintf(stderr, "%s\n",
dm_get_error_string());exit(1);}

main(int argc, char * argv[])
{

program_descriptor_t pgm;
object_descriptor_t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set_rate: integer-value\n");
exit(1);

}

check(dm_open_program("app",0,&pgm));
check(dm_get_descriptor("rate",0,pgm,&obj));
check(dm_get_value(&obj,buffer,sizeof(buffer)));
check(dm_set_value(&obj,argv[1]));

printf ("rate: old_value=%s, new_value=%s\n", buffer,
argv[1]);
}

A-11

NightStar RT Tutorial
A-12

	NightStar RT Tutorial
	Preface
	Contents
	Chapter 1 Overview
	Chapter 2 Panels
	Chapter 3 Using NightView
	Chapter 4 Using NightTrace
	Chapter 5 Using NightProbe
	Chapter 6 Using NightTune
	Chapter 7 Using NightSim
	Appendix A Tutorial Files

	Overview
	Getting Started
	Setting Up User Privileges
	Creating a Tutorial Directory
	Building the Program

	Panels
	Moving Panels
	Tabbed Panels
	Context Menus
	Tutorial Screen Shots

	Using NightView
	Invoking NightView
	Heap Debugging
	Activating Heap Debugging
	Controlling the app Program
	Scenario 1: Use of a Freed Pointer
	Scenario 2: Freeing an Invalid Pointer Value
	Scenario 3: Writing Past the End of an Allocated Block
	Scenario 4: Use of Uninitialized Heap Blocks
	Scenario 5: Detection of Leaks
	Scenario 6: Allocation Reports
	Disabling Heap Debugging

	Debugging Multiple Threads
	Traversing Linked Lists
	Using Monitorpoints
	Using Eventpoint Conditions and Ignore Counts
	Using Patchpoints
	Adding and Replacing Functions Dynamically
	Using Tracepoints
	Conclusion - NightView

	Using NightTrace
	Invoking NightTrace
	Configuring a User Daemon
	Streaming Live Data to the NightTrace GUI
	Using NightTrace Timelines
	Zooming
	Moving The Interval

	Using the Events Panel for Textual Analysis
	Customizing Event Descriptions
	Searching the Events List
	Halting the Daemon
	Using States
	Displaying State Duration
	Generating Summary Information

	Defining a Data Graph
	Kernel Tracing
	Obtaining Kernel Trace Data
	Using Prerecorded Kernel Data
	Analyzing Kernel Data
	Mixing Kernel and User Data

	Using the NightTrace Analysis API
	Automatically Tracing Your Application
	nlight Wizard - Selecting Programs
	nlight Wizard - Defining Illuminators
	nlight Wizard - Selecting Illuminators
	nlight Wizard - Relinking the Program
	nlight Wizard - Activating Illuminators
	Running the Program
	Analyzing Application Illumination Events
	Summarizing Workload Performance
	Batch Summary of Functions

	Shutting Down

	Conclusion - NightTrace

	Using NightProbe
	Invoking NightProbe
	Selecting Processes
	Viewing Live Data
	Modifying Variables
	Selecting Variables for Recording and Alternative Viewing

	Selection of Views
	Table View
	Graph View

	Sending Probed Data to Other Programs
	Using Datamon to Modify Program Variables
	Conclusion - NightProbe

	Using NightTune
	Invoking NightTune
	Monitoring a Process
	Tracing System Calls
	Process Details
	Process Details - Memory Details
	Process Details - File Descriptors
	Process Details - Signals

	Changing Process Scheduling Parameters
	Setting Process CPU Affinity
	Setting Interrupt CPU Affinity
	Shielding CPUs for Maximum Determinism and Performance
	Conclusion - NightTune

	Using NightSim
	Creating FBS Applications
	Invoking NightSim
	Creating a Scheduler
	Running the Scheduler
	Using Datamon to Modify Program Variables
	Overrun Detection and System Tuning
	Shutting Down the Scheduler

	Tutorial Files
	api.c
	app.c
	function.c
	report.c
	set_workload.c
	set_rate.c

