) NIGHTSTAR

NightView User’s Guide

Version 7.1
(RedHawk™ Linuxe)

& concurrent Cotober 200

y

Copyright 2008 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof isintended for use with Concurrent
products by Concurrent personnel, customers, and end—users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “ Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Qt's Assistant from Trolltech.

Scope of Manual

Preface

NightView is a general purpose source-level program debugger. Some of the features
make it useful for debugging systems of real-time programs, but it can also be used to
debug a single ordinary program.

NightView can debug programs written in multiple languages. Ada, C, C++ and Fortran
are supported.

NightView can debug multiple processes on the local system or on different hosts.

NightView has been designed to be as flexible as possible. The NightView command
interpreter includes macro processing so that you can write your own NightView com-
mands.

You communicate with NightView with one of three user interfaces. The command-line
interface is useful when no advanced terminal capabilities are present. A simple full-
screen interface is available for Ascil terminals. The graphical user interface provides the
most functionality.

This document is the user manual for the NightView debugger. It isintended for anyone
using NightView, regardless of their previous level of experience with debuggers. This
manual describes how to use NightView, by way of tutorial and reference guide. Thereis
also material for system administrators.

Structure of Manual

The manual begins with the short tutorials, Chapter 1 [A Quick Start] on page 1-1 and
Chapter 2 [A Quick Start - GUI] on page 2-1, giving you just enough information to get
you started. For more complete tutorials, see Chapter 4 [Tutorial] on page 4-1 and
Chapter 5 [Tutorial - GUI] on page 5-1.

The next section describes the major concepts you will need to understand in order to get
the best use out of NightView. See Chapter 3 [Concepts] on page 3-1.

More detailed information about the NightView commands is found in Chapter 7 [Com-
mand-Line Interface] on page 7-1.

The next chapter describes a simple full-screen interface to NightView. See Chapter 8
[Simple Full-Screen Interface] on page 8-1.

The next chapter describes the graphical user interface for NightView. See Chapter 9
[Graphical User Interface] on page 9-1.

NightView RT User’s Guide

Thismanual also contains several appendixes that may not be of interest to all users, such
as an implementation overview. A glossary of termsrelated to NightView and aquick ref-
erence guide are also provided.

Syntax Notation

The following notation is used throughout this guide:
italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and commentsin code may also appear in italic.

list bold

User input appearsin 1ist bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in 1ist bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appearsin 1ist type. Keywords also appear in
list type.

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.
Mutually exclusive choices are separated by the pipe (|) character.

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

An dlipsisfollows an item that can be repeated.

This symbol meansis defined asin Backus-Naur Form (BNF).

Related Publications

The following publications are referenced in this document:

0890514

NightBench™ User’s Guide

0898004

RedHawk Linux User’s Guide

0898008

NightSar RT Installation Guide

0898008

NightSar RT Tutorial

0898398

NightTrace™ User’s Guide

0898465

NightProbe™ User’s Guide

0898480

NightSm™ User’s Guide

0898515

NightTune™ User’s Guide

0898537

MAXAda™ for Linux Reference Manual

Preface

NightView RT User’s Guide

Vi

Chapter 1 A Quick Start

Contents

Sample Program 11
SArting UpP. . oo 1-2
Getting Help ... 1-3
Setting aBreakpoint 1-4
FiNiShing U . ..o 1-5

Chapter 2 A Quick Start - GUI

Sample Program - GUI 2-1
Starting Up - GUI .o 2-2
Getting Help - GUIo 2-3
Setting aBreakpoint - GUIo 2-5
Finishingup - GUI o 2-5
Chapter 3 Concepts

DEUGING - o e ot 31
AcCesSiNg FilES . .. o 31
Programs and PrOCESSES.ottt e e 32
MUIIPIE PrOCESSES . . . oottt 32
Families .. o 32
AttaChiNg .. oo 3-3
DEtaChiNg . . oot 33
Core RIS . . o 34
QUAlITIEIS . ot 34
DIalOgUES. . . oot 34
Didlogue l/O. . ..o 35
Real-TimeDebuggingt 36
Remote DialoguESot 36
ReMOtEFIlE ACCESS . . . oot 3-7
ReadyTODEDUG. . . . oottt 39
Finding Your Programt 39
Controlling YOUr Programot 39
BVENtPOINtS. 39
BreakpoiNtSot e 311
MONItOrPOINES . . . oot e 311
Patchpoints e 312
TraCEPOINES . . . ottt e e 312
HEAPPOINES. 312
WatChpoints. 3-13

SIONAIS . 314

Vii

NightView RT User’s Guide

viii

Restarting aProgramt 3-16
Restart Mechanism i e 3-16

Restart Information 3-17

Restart MaCros.o 3-18

Exited and Terminated Processes. . ..o v oo oot 3-18
PrOCESS SaES. . . oottt e 3-18
Operations Whilethe Process ISEXeCUting.ot 3-19
EXamining YOUr Program.ttt e 3-20
Expression Evaluation 3-20
AdaEXPreSSIONS . .. oot 321
CEXPrESSIONS . ottt et e e e 3-22

G EXPIESSIONS . v ettt 3-23

FOrtran EXPreSsionsS.ottt et e 323
Overloadingo 323
Program CoUNter. . .. oo 3-24

L0 1= 3-24
SO0 . . ottt 3-25
ACK . e 3-25
Current Frame. 3-25
REQISIES . .. e 3-26
INline SUDPIOgramSo e 3-26
Interesting SUDProOgramsSottt et e e 3-27
MonItor WINAOWo e e 3-28
DebuggingtheHeap. o i 3-29
Levelsand COMMON ErrOrSot e 3-30
FENCES . . . 331
Hardware Overrun Protection.ot 3-32
Retained FreeBIocks 3-33
Heap Check. 3-33
Leak Detectionot 3-34
ETOrS . 3-35
Command SIrEAMS oot 335
InterruptingtheDebugger ... i 3-36
MaCIOS . . . o e 3-37
Convenience Variables. 3-37
17 o 1o R 3-38
ValUE HIS Oy . ..o e 3-38
Command Historyo 3-38
Initialization Files 3-38
OPtiMIZAliON. . . .o 3-39
Debugging AdaProgramst 3-39
Packages e 3-39
ExceptionHandling i e 3-40
Multithreaded Programs.ttt e e e e 3-40
Limitationsand Warningsttt e e e 3-40
Setuid Programso 3-40
Attach Permissions. 3-41
Frequency-Based Scheduler i 341
NightTrace Monitort e et 341
Memory Mapped 1/O 341
Blocking INterrupts. oo 342
Debugging with Shared Libraries. 3-42

Chapter 4 Tutorial

Contents

Aboutthe Tutorial 4-1
Creating aProgram 4-2
Starting NightView 4-3
Getting General and Error Help.o 4-5
Starting Your Program.o 4-6
Debugging All Child Processes. . ..o oo 4-7
Handling SIgnals oo 4-7
Listingthe Source i 4-8
Setting the First Breakpoints.o e 4-9
ListingaBreakpointt 4-10
ContinUING EXECULIONottt 4-10
Not Entering FUNCLIONS oot e e 4-11
Entering INpULo 4-11
Creating Families. e 4-12
Continuing EXECUtION AQaINottt e 4-13
Creating FamilieS AQainttt e 4-14
Catchingupthe Child Process.ot e 4-15
Verifying DataValueSot 4-16
Entering FUNCLIONS.o 4-17
Examiningthe Stack Frames. 4-18
Movinginthe Stack Framesot 4-19
Verifying Data Valuesin Other Stack Frames. 4-20
ReturningtoaStack Frame. 4-21
ReSUMING EXECULIONo et e 4-22
Setting the Default Qualifier 4-22
Removing aBreakpoint. 4-23
Setting Conditional Breakpoints.t 4-23
Attaching an Ignore Countto aBreakpoint.cciiiiia.. 4-24
Attaching CommandstoaBreakpoint.o, 4-25
Automatically Printing Variables.o 4-26
Watching Inter-Process Communication., 4-26
Patching Your Programo 4-27
Disabling aBreakpoint i 4-28
Examining EVENtpOINtSo oo 4-29
Continuingto Completion.t 4-31
Leaving the DebUggErot 4-33

Chapter 5 Tutorial - GUI

Aboutthe Tutorial - GUI 5-1
CreatingaProgram- GUI e 5-2
Starting NightView - GUI e e e e 5-3
Getting General and Error Help-GUI i 54
Starting Your Program - GUIL. e 5-6
Debugging All ChildProcesses-GUI 5-7
Handling Signals- GUI e e 5-8
Setting the First Breakpoints-GUI i e 5-9
Continuing Execution- GUI e 5-10
Not Entering Functions-GUI i e 5-11
Entering Input - GUI 5-11
Continuing Execution Again-GUI i 5-12
Catchingupthe ChildProcess- GUI i 5-14

NightView RT User’s Guide

Verifying DataValues- GUI oo 5-14
Listingthe Source- GUI 5-15
Entering Functions- GUI. i 5-16
Examining the Stack Frames- GUI 5-17
Movinginthe Stack Frames- GUI i 5-19
Verifying Data Valuesin Other Stack Frames-GUI......................... 5-20
ReturningtoaStack Frame-GUI o i 5-20
Resuming Execution - GUI 5-21
Removing aBreakpoint- GUI 5-22
Setting Conditional Breakpoints- GUI 5-22
Attaching an Ignore Count to aBreakpoint- GUI. 5-23
Attaching Commandsto aBreakpoint-GUI., 5-24
Automatically Printing Variables- GUI. i 5-25
Watching Inter-Process Communication-GUIot 5-25
Patching Your Program-GUI i e 5-27
DisablingaBreakpoint- GUI i 5-28
Examining Eventpoints- GUI 5-28
Continuingto Completion-GUI i 5-30
LeavingtheDebugger - GUI i 5-31

Chapter 6 Invoking NightView

Chapter 7 Command-Line Interface

Command SYNEEX oo ettt e 7-1
Selecting Overloaded Entities. 7-2
Special EXPression SYNtaXxov v v vt 7-4

Predefined ConvenienceVariables it 7-6
A-32 REGISIErS . . et 7-7
AMDBA REISIEIS . o oottt e 7-11
LoCation SPeCifierS. . ..o v v e 7-14
Qualifier Specifiers.t 7-16
Eventpoint SPeCifiers 7-17
Regular EXPreSSioNSo vttt 7-18
Wildcard Patternso oo 7-19

Repeating Commandsot 7-20

Replying to Debugger QUESLIONS.o e 7-21

Controlling the DebUGQE. ot 7-22
QuItting NIghtVIew.o 7-23

QUIT. o e 7-23
Managing DialogUES.t 7-24
[OIN. e 7-24
debug . . .o 7-26
NOAEDUG . . . oo 7-27
set-debug-file-directory 7-27
translate-object-fileo 7-28
[OQOUL. . . o 7-30
oNdialogUe 7-30
apply ondialogue.o 7-32
Dialogue lnput and OQUEPUL o et e 7-33
D 7-33
S S S 010, 7-34
S 10, 7-35

MaNaging PrOCESSES ottt et e e 7-37
FUN . et e e e e e e 7-37
10 7-37
SEt-NOLIY . o 7-38
NOtITY . o 7-39
attaCh . .. 7-39
detach ..o 7-40
Kill 7-40
symbol-file 7-41
corefile. 7-41
eXeC-file. 7-43
ONPIOOIAIM . ettt et et et e e e e 7-44
APPIY ONPrOGraM « .ottt e et ettt e 7-46
ONFES A . . e e e 7-47
Checkpoint 7-48
family .. 7-48
set-children o 7-50
LSS T 7-50
WAL e 7-51
INEESEIVE . . ottt e et e e e et e e et e 7-52

Heap DebUggINg. . . .o i e e 7-53
heapdebug 7-53

Satting MOdES.o e 7-59
SO0 . . 7-59
Set-langUagE.o 7-59
set-qualifier 7-61
SE-NiStOrY . e 7-61
SEt-liMItS . . 7-61
SEL- P OMIPE . oo e 7-62
SEt-TErMINALOro 7-63
SEt-SA Y . . e 7-64
SE-TESlAT . . o 7-64
SEt-lOCaAl . .. 7-65
set-patCh-area-SiZze.o 7-65
1 == 7-66
Set-auto-frame 7-68
set-overload. 7-69
SEt-SEANCN. L . 7-69
SEt-EUiTOr . . . 7-70
set-preallocate. 7-70
SEE-TESUMIE . . .ot ittt e e 7-71
set-download 7-71
set-disassembly 7-72

Debugger Environment Control i 7-74
CO. o 7-74
WA 7-74

SOUNCE FIIES . . oo 7-75

Viewing and Editing SourceFiles i 7-75
LISt . 7-75
AireCtOry .. 7-77
BAIt. .. 7-78

SEAICNING . .ot e 7-79
forward-search. 7-79
FEVErse-SEarCho 7-79

Xi

NightView RT User’s Guide

Source Line Decorations. oot it e 7-81
Examiningand Modifying. 7-84
backtrace. e 7-84
0 7-84
. 7-86
X et e e e e e e 7-87
OULPUL . . .t e e e e e 7-90
BChO. . e 7-90
datadisplay.o 7-91
AigPlay . . oot 7-91
UNAISPlaY . . . oo 7-93
FEAiSPlaY . ..ot 7-93
DIt 7-94
0 7o P 7-94
Manipulating EVentpoints e 7-95
Eventpoint Modifiers 7-97
72T T 7-97
breakpoint e 7-98
PaChPOINt . . . e 7-99
S =0 7-101
raCEPOIN 7-102
MONItOrPOINE . . . o e e 7-104
hEapPOINt. e 7-105
MCONEIOL . . o e e e e e 7-106
ClEar. . 7-107
COMMANGS. . . . ottt e et e e e e e e e e 7-108
CONAITION . . o\ 7-109
JElEe. . . 7-110
disable. ..o 7-110
eNable . .. 7-111
0] 1] = 7-112
TOrEaK . . 7-113
11 7-113
WalChPOINL. . . oo 7-115
Controlling EXECULION ot 7-116
(0] 0111 1= 7-117
=== 0 T P 7-118
S 1< o 7-119
DXL . et 7-120
LS <o 7-121
NEXE .ot 7-122
fiNiSh . . 7-122
(0] 7-123
L8 0] 7-123
SIONAl . o e e e 7-124
handle 7-125
Selecting ConMtEXtt 7-128
frame. L . 7-128
o 7-129
JOWN .« 7-130
SElECE-CONEXE . . . oo 7-130
Miscellaneous Commands. oot 7-131
RElp . 7-131
1= = o T 7-132

Xii

delay ...t
InfoCommands..................
Status Information
infolog
info eventpoint.
info breakpoint
info tracepoint.

info patchpoint.
info monitorpoint.
info heappoint
info watchpoint
infoframe
info directories.
info convenience.
infodisplay
infohistory
infolimits
infforegisters
infosignal
infoprocess..............
infomemory
infodialogue
infofamily...............
infoname.
infoondialogue.
infoon program.
infoonrestart
inffoexception
inffothreads
heapcheck
Symbol Table Information
infoargs.................
infolocals
infovariables.............
inffoaddress..............
inffosources.
info functions.
infotypes.
infowhatis.

info representation.

info declaration
infofiles.................
infoline.................
Defining and Using Macros.
define Ll
Referencing Macros.
infomacros.

Chapter 8 Simple Full-Screen Interface

Using the Simple Full-Screen Interface

Xiii

NightView RT User’s Guide

Editing Commands in the Simple Full-Screen Interface. 8-2
Monitor Window - SimpleFull-Screen i 82

Chapter 9 Graphical User Interface

NightView GUI CONCEPLSottt e e i o-1
GUI ONlineHEIp. . .o 9-1
Context-SensitiveHelp 9-2
HElpBUIONSo 9-2
HelpCommand 9-2
Dialoguesand Dialog BOXES.o vt 9-2
CoMEXE MEBNU . . . oot e e e 9-3
CUIMENE PrOCESS. . . o vttt e e e 9-3
GUI Configurationouu e 9-3
MaiNnWINAOW. . . . oo e e e e 9-4
MeNU DEr. .. 9-4
FileMenu. 9-4
VIBW MENU. . oo 9-5
Shell Menu. 9-8
ProcessMenu.o 9-8
SOUrCEMENUt 9-10
Eventpoint MenuU.t e 9-12
DataMenU. 9-14
TOOISMENU . ..ot e e 9-16
HelpMenu. . ..o 9-18
TOOIDAIS. . oot 9-19
Command Toolbar. 9-19
Process Toolharo 9-20
Eventpoint Toolbaro 9-21
VaueToolbar. 9-22
SourceDisplay Toolbar 9-23
SaUS Bar ... 9-23
List Of ShOrtCULSo 9-25
Main Window Dialog BOXES.o oot 9-26
Run Program in Shell Didlog BoX. oo 9-26
Attach DIiglog BOX.o et 9-26
Source Selection Didlog BOX.o oo i i 9-26
File Selection Diadlog BOX« v v 9-27
Eventpoint Dialog BOXES.ot 9-28
Debug Heap Dialog BOXo oo 9-32
Remote Login Didlog BOX.o i e 9-34
RemoteLoginGeneral Page. 9-34
RemoteLogin Advanced Page., 9-34
RemoteLogin ActionButtons 9-36
Preferences Dialog BOXo oot 9-36
PreferencesGeneral Page. 9-37

SAf Y. . 9-37
Automatically ResumeOn 9-37

SEArChiNg. . .o 9-37

DataPanel 9-37

Display LIimits. 9-37

Source Panel Keystrokes. 9-37

Preferences AppearancePage.ot 9-38

Xiv

Panel FONtS o 9-38
SourceDisplay . ..t 9-38

Disassembly 9-38

Preferences Advanced Page.t 9-38

Source EAitor 9-38
RemoteObject FileCache, 9-39

Eventpoint Memory Preallocation 9-39

ReStart. .. 9-39
ValueHIsStory 9-39

Expression Evaluation Automatic Overloading. 9-39
RestoreDefaults 9-39

Process Settings Dialog BOXo 9-39
Process SettingsGeneral Page. 9-40

Debug Children. 9-40

Stop Before Exiting. 9-40
ExpressionLanguaget 9-40

Program. 9-40

Process SettingsInterestPage o L, 9-40

Process Settings SignalsPage oo 9-40

Process Settings AdaExceptionsPage 9-40

Browse Ada ExceptionsDialogBOX. 9-41
RenamePageDialogBoX 9-41
Print Didlog BOXot 9-41

List LocationDialog BOXcovii it 9-41
Eventpoint Panel Update Interval DialogBoX 9-41
PanElS. . . 9-42
FiNd Bar . ..o 9-42
SOUrCE Panelo 9-42
SourcePanel TargetLineci i 9-43
Source Panel Expression Tooltip. 9-43
Source Panel Context Menut 9-44
SourcePanel Tracking.t 9-48
Source Panel Keystrokes. oo 9-48
Shell Panel 9-49
Message Panel e 9-50
Eventpoint Panel. 9-51
Context Panel 9-53
LocalsPanelo 9-53
Monitor Panelo 9-53
DataPanel. 9-54
MONItOr Bar. . ..o 9-54
Dataltems . . .o 9-54
ExpressionDataltem............ ... i 9-55

Local VariablesDataltem, 9-55
RegistersDataltem i i 9-56

Stack Dataltem 9-56
ThreadsDataltem 9-56
ProcessesDataltem. ... 9-56
ShellsDataltem. i 9-56

Heap Information Dataltem, 9-56

Heap ErrorsDataltem. ... 9-57

Leak Sets/ Still Allocated SetsDataltems..................... 9-58

Block Dataltem. 9-58
Monitorpoint ValuesDataltem 9-59

NightView RT User’s Guide

DataPanel Context Menut 9-59
DataPanel Dialog BOXES. . .. oo it 9-66
DataPanel ItemDialogBOX.o 9-66
DataPanel ADd EXPressionovviiiinniii i 9-66
DataPanel AddHeap Errors 9-67
Data Panel Add Heap Information., 9-67
DataPanel AddHeapLeaks., 9-67
DataPanel Add Local Variables., 9-67
Data Panel Add Monitorpoints. 9-68
DataPanel Add Processescoi i 9-68
DataPanel Add Registers.o 9-68
DataPanel AddShells i 9-68
Data Panel Add Still AllocatedBlocks, 9-68
DataPanel AddStack. ... 9-69
DataPanel Add Threads. 9-69
DataPanel Call Stack Frames o, 9-69
DataPanel Edit EXpression 9-69
DataPanel Expand Tree.ot 9-69
DataPanel Describe. 9-70
DataPanel Load Layout.c.cciiiiiii iy 9-70
DataPanel Pointer Array Dimension. 9-70
DataPanel SavelLayout........... ..., 9-70
DataPanel SaveSnapshot i, 9-71
DataPanel Subscript Arraycoviiii i, 9-71
DataPanel Subscript EnUMATrTay ..o 9-72
DataPanel Linked List ExpressionDialog 9-72
Data Panel Condition Filter ExpressionDialog.................. 9-72
Monitorpoint Update Interval DialogBox...................... 9-74
HeElpWINdoWo e e 9-74

Appendix A NightStar Licensing

LiCENSE K Y S ot A-1
LiCENSE REQUESES ittt A-2
LI CENSE S VY . . ot A-2
LiCENSE REPOMS . . o e ettt e A-3
Firewall Configuration for Floating Licenses, A-3
LiCENSE SUPPOIT . . o ottt e e e e e e A-4

Appendix B Kernel Dependencies

Advantagesfor NightView. e B-1
Advantagesfor NightTracet e e e B-1
Advantagesfor NightProbe B-2
Advantagesfor NightTune. e B-2
Frequency Based Scheduler. B-3
PCl Bar File System. B-3

Contents

Appendix C Summary of Commands

Appendix D Quick Reference Guide

Appendix E

Invoking NIghtVIew oo e
Controlling the DebUGgErot
QuItting NightVIewo
Managing DialogUES.t e
Dialoguelnput and OQULPUL.o et
MaNaging PrOCESSES ottt et e
Heap DEDUGOING. -« o v v ettt et e e e e
SEtting MOdES.
Debugger Environment Control
SOUrCE RIIES . . o
Viewing and Editing SourceFiles
SEArCNING . o o
Examining and Modifying.
Manipulating EVentpointSo
ControlliNng EXECULION oo
SElECting CONLEXL. . . . oottt e
Miscellaneous CommaNdS. vt
INFOCOMMANAS. . .. oo e
Status Information e
Symbol TableInformation
Defining and USINg MaCrOS.ottt

Implementation Overview

Appendix F Tutorial Files

0= 1= 01 o
Child.C. .o e
Fortran Files. . ..o
MaINS
Parent.f .. e
Childf .o
111
AdaFIES . . e
7= 11 T P
0= 1= 01 =
Childaa. ... e

F-1

F-1
F-2

F-3
F-3

F-4
F-5
F-6
F-6

F-7

XVii

NightView RT User’s Guide

Appendix G Reporting Bugs

Glossary

Index

Tables

Table 3-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.

Xviii

Eventpoint SUMMaryt 3-10
Specia "$ CONSIUCES . ..o oo vt e 7-4
Predefined ConvenienceVariables 7-6
IA-32 Registers (iHawk Series860) ..., 7-8
AMDG64 Registers (iHawk Series870), 7-11
Regular EXPreSsions.o vv ittt 7-18
Wildcard Patterns.o 7-20
Source Line DecorationSo oot 7-81
Eventpoint Commands.t 7-96

1
A Quick Start

This chapter is for people who want to start using the command-line version of the
debugger before reading the whole manual. Y ou may also be interested in the graphical-
user-interface (GUI) version of this chapter in Chapter 2 [A Quick Start - GUI] on page
2-1. Thereisamore thorough tutorial in Chapter 4 [Tutorial] on page 4-1.

If you are familiar with the GNU debugger, gdb™, you should have very few problems
with NightView. The commands are almost all identica. The biggest difference
between NightView and other debuggers is how you tell NightView what program to
debug and how you start that program.

If you get any errors, the error message tells which section of the manua can help you
determine what went wrong. At any time, you can ask the debugger to display help on an
error message by mentioning that section's name as the argument to the help command
(see“help” on page 7-131).

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the help command to
get out of it.

Sample Program

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugsin it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c:

1-1

NightView RT User’s Guide

Starting Up

1-2

1 #include <stdio.h>

2

3 static int factorial (x)

4 int x;

5

6 if (x <= 1) {

7 return 1;

8 } else {

9 return x * factorial (x-1);
10 }

11}

12

13 void

14 main(argc, argv)

15 int argc;

16 char ** argv;

17 |

18 int i, errors;

19 for (1 = 1; i < argc; ++1i) {
20 long x1;

21 int x;

22 int answer;

23 char * ends = NULL;

24 x1 = strtol (argv[i], &ends, 10);
25 x = (int)xl;

26 answer = factorial (x) ;

27 printf ("factorial ($d) == %d\n", x, answer) ;
28 }

29 exit (0) ;

30 |}

The remainder of this chapter assumes that you compiled fact.c and put the resulting
executablein fact:

cc -g -o fact fact.c

You can start NightView with or without a program name. If you start it with a program
name, NightView runs the program in a dialogue shell (see “Dialogues’ on page 3-4). If
you start NightView without a program name or you want to debug another program, you
must execute the program with the run command (see “run” on page 7-37) in a dialogue
shell.

Below is an example of starting up the debugger with a program name and a program
argument. Note that throughout the quick start, the version and the link time might not
match exactly for your version of NightView. Also, some of the shell output and other
messages may not come out exactly as shown. Some messages might not appear, or
additional messages might appear, depending on your environment.

Getting Help

A Quick Start

$ nview -nogui ./fact 7
NightView debugger - Version 7.1, linked Fri Jun 8 10:24:51 EDT 2007
Copyright (C) 2007, Concurrent Computer Corporation

In case of confusion, type "help"

Note that you invoked NightView with a program name argument . /fact and program
argument 7. NightView responded with information about the debugger.

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to /users/bob/fact
/usr/lib/NightView/ReadyToDebug

$ /usr/lib/NightView /ReadyToDebug

$./fact 7

(local)

NightView always runs a special program, /usr/1ib/NightView/ReadyToDebug.
This program helps NightView synchronize with the shell. That's why you see that line
in the output. You might see only one echo of /usr/lib/NightView/
ReadyToDebug, depending on how quickly the dialogue shell starts. The dollar signs
("$") are prompts from the shell.

NightView automatically created a dialogue named local; it also displayed the string
local asthe prompt, showing that by default, commands apply to that dialogue (or the
processes running in that dialogue).

The debugger waited for the new program to get started. Because sending input to a
dialogue isjust like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused the fact program to be executed with the
single argument 7.

If the fact program had required input, you would have used the 1 command to send the
input to the program. See“!” on page 7-33.

When the dial ogue executed the program, NightView got control and informed you that a
new process was just started in dialogue local and told you that the process id was
2347.

Because this is the only program running in dialogue local, you do not have to do
anything special to cause any commands you type to refer to this process; the default
qudifier is aready set to local, so commands will automatically apply to the one
process running there.

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

(local) foo
Error: Unrecognized command "foo". [E-command proc003]

NightView responded to the bogus command with an error message and an error code
([E- command_proc003]).

1-3

NightView RT User’s Guide

Now get NightView to tell you more about the error message.

(local) help
E-command_proc003:
Unrecognized command "string".

STRING is not a valid NightView command. See "Summary of
Commands™" .

You typed help without any arguments to see more information about the error
message. NightView showed the extended error information.

In the command-line and and simple screen interfaces, online help is available only for
error messages. Consult a printed manual or view the online help with NightView's
graphical user interface.

If you are familiar with gdb, the remainder of this chapter will be fairly boring because
(once you get the program started) NightView and gdb look very much alike (at least for
all the commands demonstrated in this simple example).

Setting a Breakpoint

1-4

Y ou will now use the 1ist command to look at the source.

local) 1 1
#include <stdio.h>

static int factorial (x)
int x;

|

|

|

|

|

| if (x <= 1) {

| return 1;

| } else {

| return x * factorial (x-1);}
|
1

You told the 1ist command (abbreviated to 1 in this example) to list at line 1.

Y ou now decide where you want to set a breakpoint. An interesting spot in this program
is the return statement in the recursive routine factorial where it is about to start
backing out of the recursive calls.

(local) b 7
local:2347 Breakpoint 1 set at fact.c:7
(local)

The return wason line 7, so you used the breakpoint command (abbreviated to b)
to set abreakpoint on line 7.

Complete descriptions of the commands you used here appear in “list” on page 7-75 and
“breakpoint” on page 7-98.

Finishing up

A Quick Start

Now run the program until it reaches the breakpoint.

(local) ¢

local:2347: at Breakpoint 1, 0x100026fc in factorial (int
x = 1) at fact.c line 7

7 B=| return 1;

(local)

Y ou used the continue command (abbreviated to ¢) without any arguments. This told
the program to start running. It ran until it hit the breakpoint that you had set on line 7.
Note that your process ID and addresses will differ.

Now look at the call stack.

(local) bt

#0 0x100026fc in factorial(int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x = 5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x = 7) at fact.c line 9

#7 0x10002784 1in main(int argc =
char **argv = 0x2ff7eaec)
at fact.c line 26

|
N

(local)

You used the bt (backtrace) command to display the call stack. You saw all the
expected recursive calls (see “backtrace” on page 7-84).

Now look at the value of the variable x.

You used the p (print) command to print the variable x, verifying that it was equal to
1.

Now finish running the program.

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped inthe _exit () library
routine after the command below. If so, enter the command up
until the debugger reports that the processisin main.

NightView RT User’s Guide

(local) c
factorial (7) == 5040
Process local:2347 is about to exit normally
#0 0x100027ac in main(int argc = 2,
unsigned char **argv = 0x2ff7eaec)

at fact.c line 29
29 <>| exit (0) ;
(local)

Y ou used the ¢ (continue) command to allow the process to run to completion.

Exit from NightView.

Finally you typed q (quit) to leave the debugger. The fact program had not fully
exited, so NightView prompted, asking if the program should be killed. Y ou responded
with y, and the sample session ended. The commands used in this section appear in
“continue” on page 7-117, “backtrace” on page 7-84, “print” on page 7-84, and “quit” on

(local) q

Kill all processes being debugged? y
You are now leaving NightView. ..
Process local:2347 exited normally
Dialogue local has exited.

$

page 7-23.

1-6

2
A Quick Start - GUI

This chapter is for people who want to start using the graphical-user-interface (GUI)
version of the debugger before reading the whole manual. Y ou may also be interested in
the command-line version of this chapter in Chapter 1 [A Quick Start] on page 1-1. There
isamore thorough tutorial in Chapter 5 [Tutoria - GUI] on page 5-1.

In this manual, the words click, drag, press, and select always refer to mouse button 1.

This entire manual is available through the online help system built into the debugger. If
you get any errors, the error message tells which section of the manua can help you
determine what went wrong. At any time, you can ask the debugger to display any
section of the manual by clicking on the Help menu or using the H mnemonic. See
“Help Menu” on page 9-18. Click on the NightView User’s Guide menu item or use
the U mnemonic. NightView puts up a Help Window that displays the table of contents
for the manual. See “Help Window” on page 9-74. You can read this manual section by
clickingon A Quick Start - GUI.

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the Help menu to get out
of it.

Sample Program - GUI

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugsin it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c:

2-1

NightView RT User’s Guide

1 #include <stdio.h>

2

3 static int factorial (x)

4 int x;

5

6 if (x <= 1) {

7 return 1;

8 } else {

9 return x * factorial (x-1);
10 }

11}

12

13 void

14 main(argc, argv)

15 int argc;

16 char ** argv;

17 |

18 int i, errors;

19 for (1 = 1; i < argc; ++1i) {
20 long x1;

21 int x;

22 int answer;

23 char * ends = NULL;

24 x1 = strtol (argv[i], &ends, 10);
25 x = (int)xl;

26 answer = factorial (x) ;

27 printf ("factorial ($d) == %d\n", x, answer) ;
28 }

29 exit (0) ;

30 |}

The remainder of this chapter assumes that you compiled fact.c and put the resulting
executablein fact:

cc -g -o fact fact.c

Starting Up - GUI

2-2

You can start NightView with or without a program name and arguments. If you start it
with a program name, NightView begins debugging the program immediately. If you
start NightView without a program name, or you want to debug another program, you
may run the program with the Run menu item in the Process menu, or by typing in the
shell in ashell panel. See “Shell Panel” on page 9-49. |n either case, the program is run
in adialogue shell (see “Diaogues’ on page 3-4).

Below is an example of starting up the debugger with a program name and a program
argument. Note that throughout the quick start, the version and the link time might not
match exactly for your version of NightView. Also, some of the messages might not
come out exactly as shown. Some messages might not appear, or additional messages
might appear, depending on your environment.

Getting Help -

A Quick Sart - GUI

$ nview ./fact 7
NightView displays the main window. See“Main Window” on page 9-4.

Starting the debugger with the program name . /fact and argument 7 sent the line ./
fact 7 to the 1ocal dialogue and caused the debugger to wait for the new program to
get started. Because sending input to a dialogue is just like typing commands to a shell
(the dialogue is really running the same shell program you normally use), this caused the
fact program to be executed with the single argument 7.

If the fact program had required input, you would have typed the input into a shell
panel. See“Shell Panel” on page 9-49.

The message panel (see “Message Panel” on page 9-50) contains a message like the
following:

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to

/users/bob/fact

When the dial ogue executed the program, NightView got control and informed you that a
new process was just started in dialogue local and told you that the process id was
2347.

The status bar at the bottom of the window displays the program name, fact, the dialogue
name and PID, local:2347, and the state, Stopped for exec. See “Status Bar” on
page 9-23. The source panel title bar displays the program name, the dialogue name and
PID, and the name of the source file, fact.c. The source code from file fact . ¢ appears
in the source panel, centered around main. See“Source Panel” on page 9-42.

GUI

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

The command toolbar is labeled Command:. Click in the combo box of the command
toolbox (see“Command Toolbar” on page 9-19) and issue the following command:

foo

Press Return to enter the command.

NightView responded to the bogus command with the following message and error code:
Error: Unrecognized command "foo". [E-command proc003]

Now get NightView to tell you more about the error message. Click on the Help menu or
use the H mnemonic. See “Help Menu” on page 9-18. Click on the On Last Error
menu item or use the E mnemonic. NightView puts up a Help Window that displays the
following extended error information:

2-3

NightView RT User’s Guide

2-4

E-command_proc003
MESSAGE

ERROR: Unrecognized command "string".

EXPLANATION

string is not avalid NightView command. See Summary of Commands.

Next, dismiss the Help Window by selecting Exit from the File menu. See “Help
Window” on page 9-74.

Next you will read about the 1ist command. Click on the Help menu or use the H
mnemonic. See “Help Menu” on page 9-18. Click on the On Commands menu item
or use the m mnemonic. NightView puts up the following Help Window with a menu of
NightView commands.

Summary of Commands

This section gives a summary of al the commandsin NightView. Thetableis
organized a phabetically by command. The abbreviations for the commands are
included with the corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.
!
Pass input to adialogue.
apply on dialogue
Execute on dialogue commands for existing dialogues.
(etc.)

Most of the information would not fit on your display. The Help Window showed this by
having only a small thumb or slider on the vertical scroll bar. Scroll down to the 1ist
command by moving the thumb or by clicking on the arrow heads of the vertical scroll
bar. Click on the 1ist command. NightView displayed the following Help Window with

A Quick Sart - GUI

information about the 1ist command.
list
List asourcefile. Thiscommand has many forms, which are summarized bel ow.
list where-spec
List ten lines centered on the line specified by where-spec.
list where-specl, where-spec2
List the lines beginning with where-specl up to and including the where-spec2 line.
(etc.)

To see more about the 1ist command, you could move the thumb or click on the arrow
heads of the vertical scroll bar. However, rather than reading more, you make the Help
Window go away by selecting Exit from the File menu.

Setting a Breakpoint - GUI

Finishing up -

Y ou now decide where you want to set a breakpoint. An interesting spot in this program
is the return statement in the recursive routine factorial where it is about to start
backing out of the recursive calls.

Right-click on the line with the return statement (line 7) in the source panel. The line
becomes highlighted and a context menu appears. See “Source Panel Keystrokes’ on
page 9-48. Select thefirst item, Set Simple Breakpoint.

The source line decoration beside line 7 isnow astop sign @ to indicate a breakpoint.

See “breakpoint” on page 7-98 and “Source Line Decorations’ on page 7-81. The
eventpoint panel now has an entry for the breakpoint.

The message panel shows:

local:2347 Breakpoint 1 set at fact.c:7

GUI

Now you want to run the program until it reaches the breakpoint. Click on the Resume
button in the process toolbar. See “Process Toolbar” on page 9-20.

Clicking on Resume told the program to start running. It ran until it hit the breakpoint
that you had set on line 7. The source line decoration beside line 7 is now a stop sign
overlaid with a triangle pointing to the right @ to indicate where execution will
resume.

2-5

NightView RT User’s Guide

2-6

NightView responds with:

local:2347: at Breakpoint 1, 0x100026fc in factorial (int
x = 1) at fact.c line 7

Note that your process ID and addresses will differ. The status bar indicates the processis
Stopped at breakpoint 1. Now look at the call stack. The context panel and the
locals panel are in the same area with tabs below them. Click on the Context tab. The
context panel has an entry for each frame on the stack, displayed in tree form. See
“Context Panel” on page 9-53. You see al the expected recursive calls. Scroll to the
bottom of the panel. One of the icons is an arrowhead pointing down. = Click that
icon to show more stack frames, until you see the call to main. Then scroll to the top
again and click on the first frame.

Now look at the local variables. Click on the Locals tab. You see the local variables
displayed in tree form. In this case, there is only one loca variable, x. The locals panel
tracks the current context, which you set when you clicked in the context panel. The
value of x inthisframeis1. See“LocalsPanel” on page 9-53.

Now finish running the program. Click on the Resume button. See “Process Toolbar”
on page 9-20.

This alowed the process to run to completion. The program printed a message, which
appeared in the message panel:

factorial (7) == 5040

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped inthe exit () library
routine. If so, click the Up button f until the debugger reports
that the processisin main.

NightView showed the call to exit (0) in the source panel and displayed the following
message in the message panel.

Process local:2347 is about to exit normally

Exit from NightView by selecting the File menu. See “File Menu” on page 9-4. Click on
File or use the F mnemonic. Click on the Exit NightView menu item or use the X
mnemonic.

NightView responds with awarning dialog box. The warning dialog box says:
Kill all processes being debugged?

Finally you click on the OK bhutton to leave the debugger. The £act program had not
fully exited, so NightView prompted, asking if the program should be killed. You
responded by clicking OK, and the sample session ended.

3
Concepts

This section describes concepts you will need to understand in order to use the debugger
effectively.

Many of the concepts described in this section are also defined in the glossary. The
glossary is an aphabetical list of the concepts — the description here is organized
hierarchically.

Debugging

The term debugger is actually a misnomer. A debugger does not remove bugs from your
program. Instead, it is a tool to help you monitor and examine your program so that you
can find the bugs and remove them yourself.

A debugger primarily lets you do two things:

1. dtart and stop the execution of your program; and,

2. examine and alter the contents of the program's memory.

There are many ways to do these things, so there are lots of debugger commands. Also,
some of the commands control the debugger itself.

NightView is a symbolic debugger. That means that you can talk about your program
using the same high-level language constructs that you use when you write programs.
You can refer to variables, expressions and procedures as they appear in your program
source. You can aso refer to source files and line numbers within those files. For
example, you can tell your program to stop at a particular line. In order to use the
symbolic capabilities of the debugger, you must compile and link your program with
options that tell the compiler and linker to save the symbolic information along with your
program.

Sometimes, you want to be able to debug at a lower level, referring to machine language
instructions and registers. NightView lets you do that, too.

Accessing Files

During the course of debugging, NightView will likely have to access a number of files:
executable files for programs being debugged, source files for those programs, and
possibly object and library files. Those files must all reside, or be accessible from, the
system on which NightView is executing.

31

NightView RT User’s Guide

If you are debugging processes running on some other system, you will probably want to
have some of that system's files mounted via NFS™ on the system running NightView.
Furthermore, your debugging will probably go much easier if the pathnames to those files
(especially the executables) are the same on both systems. This will allow NightView to
find the executable files automatically most of the time. See “Finding Y our Program” on
page 3-9. If the pathnames of the executable files are different, you can use the
translate-object-£file command to tell how to trandate the names. See
“translate-object-file” on page 7-28. In addition, remote files can be specified by using
the form user@host : /path. See “ Remote File Access’ on page 3-7.

Programs and Processes

It is necessary to distinguish between a program and a process. A program is something
that you write, compile and link to form a program file. A process is an instance of
execution of a program. There may be several processes running the same program.

Multiple Processes

Families

3-2

The most typical use for NightView is debugging a single program running as a single
process, but NightView can also be used to debug an application consisting of multiple
processes, so the debugger has ways to describe multiple processes. If you come to a
section of the manual that describes multiple processes, and you are only debugging one
process, you can usualy just ignore the parts about multiple processes.

You may inadvertently create multiple processes, even though you only want to debug
one. This may happen if your program forks. For example, your program may call
system. This call works by using the fork service to create another process, which
then runs a shell. A process created this way is caled a child process. Because
NightView has the capability of debugging child processes, you are notified when this
happens. If you don't want to debug the child process, then you should detach from it,
which alows it to run without further interference from the debugger. See “detach” on
page 7-40. If you know in advance that you don't want to debug any child processes, you
can usethe set-children command to specify this. See“ set-children” on page 7-50.

If you use pipelines in the dialogue shell, or invoke shell scripts which call many other
programs, you are likely to get multiple processes which you are not interested in
debugging. (Dialogues are described in a later section, see “Dialogues’ on page 3-4.)
Again, if you don't want to debug those other processes, you should detach from them.

Another way to determine which processes are debugged is to use debug and nodebug,
which let you describe which processes you want to debug by their program names. See
“nodebug” on page 7-27.

One of the handy things NightView lets you do is group processes together into families.

Attaching

Detaching

Concepts

You do this by giving the family a name and telling the debugger what processes are in
that family. For example, you might have several processes executing the same program,
and you might want to set a breakpoint at the same source line in al of them. You could
define a family containing all of the processes and then use that family name with the
breakpoint command. See“family” on page 7-48.

Sometimes you want to debug a process that is aready running, rather than starting up a
new process running the same program. Y ou can do this with the attach command (see
“attach” on page 7-39) or with the Attach Dialog Box (see “ Attach Dialog Box” on page
9-26.)

In order to attach to a process, you must know its process identifier (or PID). Y ou can get
a list of running processes and their PIDs by clicking on the Attach menu item in the
Process menu (see“Process Menu” on page 9-8) to bring up the Attach Dialog Box.

As an dternative, you can run the ps (1) program. You can use the shell command
(see “shell” on page 7-133) to run ps (1) . If you want to attach to a process running on
another machine, you may have to use the remote shell command (/usr/bin/rsh) to
run ps (1) on the right machine.

Once you have attached to a process, you can debug it in the same way you would debug
aprocess started normally from a dialogue.

For the security restrictions on attach, see “Attach Permissions’ on page 3-41.

If the process to which you attach is stopped (<CONTROL z> stops a foreground processin
most shells), then the attach will not take effect until the process is continued from the
shell.

Detaching a process is the inverse of attaching one. When you detach a process it starts
running independently of the debugger. Nothing it does will get the debugger's attention.
Any children it forks will also be ignored by the debugger. Y ou have to explicitly attach
to the process again to make the debugger notice it.

Detaching from an exited or terminated process completely removes the process from the
system. See “Exited and Terminated Processes’ on page 3-18. Detaching from or killing
a pseudo-process associated with a core file (see “Core Files’ on page 3-4) is the only
way to make that pseudo-process go away.

Detaching from a process causes NightView to forget all the eventpoint settings and other
information it remembers about the process.

NightView typically uses some memory in the debugged process. If you detach and re-
attach repeatedly, NightView will eventually be unableto find memory whereit needsit in
the process. See Appendix E [Implementation Overview] on page E-1. See also “set-
patch-area-size” on page 7-65.

3-3

NightView RT User’s Guide

Core Files

Qualifiers

Dialogues

34

NOTE

Attaching to a process from which you have detached is not sup-
ported on Linux. Avoid detaching from processes unless you are
sure you will not want to debug them further.

A core file is a snapshot image of a process created by the system when the process
aborts (typical reasons for creating a core file include referencing an address outside the
memory allocated to the process, dividing by zero, floating-point exceptions, etc.).
NightView alows you to debug core files as well as processes (see “core-file” on page
7-41). Since a core fileis not actually a running process, all you can do islook at it. None
of the commands which require a running process will work on core files (for example,
you cannot continue a core file and you cannot evaluate any expression containing a
function call).

If acorefileisfrom aprocess that used dynamic linking, the core file must be debugged
on the same system where the process was running, otherwise information from the
libraries may not match the corefile.

If you are not debugging multiple processes, you will probably never need to worry about
command qualifiers, but for multiprocess debugging, they are essential. A qualifier is
used to restrict a command so it operates only on specific processes. There is aways a
default qualifier in effect, but any command may be given an explicit qualifier.

Most qualified commands act as though the command was specified once for each
process (for instance, the breakpoint command sets a separate breakpoint in each of
the processes specified in its qualifier).

Some commands treat the qualifier in special ways, and other commands ignore the
qualifier. Any special treatment is described in the section on each command.

Qualifiers are specified as a prefix on the command. The complete description may be
found in “Command Syntax” on page 7-1 and “Qualifier Specifiers’ on page 7-16.

Dialogues are one of the most important (and unique) concepts in NightView.
Essentially, a dialogue is just an ordinary shell where you run commands as you would
normally run them in the shell (in fact, you are running your normal shell), but in a
dialogue, you have the opportunity to debug any or al of the programs you run in the
dialogue shell. Most debuggers have special commands to tell the debugger which
program to debug and what arguments to give it. In NightView, the way to debug a

Dialogue 1/O

Concepts

program is to run it within a dial ogue shell. This means you can debug a program that is a
member of a pipe, or is invoked by some other program, and you can run the program in
the debugger using the exact same invocation you would normally use outside the
debugger. For instance, if your programs run under the control of the Frequency-Based
Scheduler, you could invoke rtep or NightSim™ from your dialogue.

The environment variable NIGHTVIEW ENV is set to 1 within a dialogue shell. This
allows you to alter the behavior of programs and scripts running in the dialogue shell. For
example, you may wish to avoid running some programs in a shell initialization file when
the shell isadialogue shell.

NightView sets the TERM environment variable to dumb in the dialogue shell, to avoid
problems with some shell programs.

Once the shell is started, you can change directory, set environment variables, or set
ulimit (1) parametersjust like anormal shell. Any processes you start in the dialogue
will automatically be debugged, except for programs in the standard directories such as
/bin. You may ater this default behavior using the debug and nodebug commands.
See “debug” on page 7-26 and “nodebug” on page 7-27.

When you start a program in a dialogue shell, the debugger prints a message describing
the new process that just started in the dialogue. The information printed includes the
program name, the arguments it received on startup and the process identifier (PID). This
new process is stopped immediately prior to executing any code. At this point you can
decide what to do with the process (set breakpoints, etc.) and tell it to continue, or detach
from it and let it run without being debugged.

At startup, NightView provides an initial dialogue named local. This initial dialogue
shell inherits the current working directory and environment variables in existence at the
time you started the debugger.

You may create additional dialogues at any time (see “login” on page 7-24). Multiple
dialogues allow you to debug distributed systems of processes running on different
computers. Each dialogue has a name. Unless you specify otherwise, the name of a
dialogue is the host name of the system to which it is connected. You may use dialogue
names in command qualifiers to tell NightView to which system you wish to talk, such
as, when you want to run acommand in a particular dialogue.

You send input to a dialogue shell or to a program you are debugging in the dialogue by
using the ' command (see “!” on page 7-33) or the run command (see “run” on page
7-37). The qualifier on the command determines which dialogue receives the input data
In the graphical user interface, you can send input to a dialogue with a shell panel (see
“Shell Panel” on page 9-49) for that dialogue.

Since each dialogue is a separate shell, the programs running in separate dialogues may
generate output at any time. In the command-line interface, it would be confusing to have
these print at any time. Instead, all the output generated by each dialogue shell and the
programs running in it is logged by NightView. You can control thislog using the set-
show command (see “set-show” on page 7-34), and you can review the log with the
show command (see “show” on page 7-35). In the graphical user interface, dialogue
output goes to the dialogue 1/0 areafor that dialogue.

35

NightView RT User’s Guide

Real-Time Debugging

By running NightView on a development system and starting a dialogue on a rea-time
system you are debugging, you can minimize the impact of the debugger on the real-time
system. Most of the debugger runs on the development system, and only a NightView
control program and the dialogue shell run on the real-time system. Y ou can also control
the CPU, memory, and other resource allocations of debugger processes to help minimize
the impact of the debugger on critical resources. See “Remote Dialogues’ on page 3-6.

Monitorpoints provide a means of monitoring the value of variables in your program
without stopping it. See “Monitorpoints’ on page 3-11.

NightTrace™ is another tool you may find useful in debugging real-time programs. It
allows you to gather performance information and record limited amounts of data with
minimal overhead. NightView provides facilities for using NightTrace from within the
debugger; see “ Tracepoints’ on page 3-12.

Remote Dialogues

3-6

A remote dialogue is a shell, controlled by NightView, running on a system other than the
one on which NightView was initially invoked. We refer to the system where NightView
was invoked as the "local system", while the system where the remote dialogue shell is
running is referred to as the "target” or "remote system".

Y ou may need to use aremote dialogue if:

* you need to debug programs running on multiple target systems simulta-
neoudly;

* your application uses most of the system’'s CPU or memory resources, |eav-
ing insufficient resources for NightView;

¢ the sourcefiles for your programs are not accessible on the target system;

* you do not wish to install all of NightView on the target system, perhaps to
conserve disk space on the target;

* you need to reduce network traffic on the target system by eliminating
NightView's GUI overhead;

* you need to reduce disk loading on the target system by eliminating Night-
View's reading of source and object files.

When you use a remote dialogue, the NightView user interface runs on the local system,
while another process, named NightView.p, runs on the remote system to access and
control the processes you are debugging. The following activities are performed on the
local systeminthis case:

¢ all user interaction, including command input/output and window manipu-
lation and updating;

* reading source and object files, including reading and interpreting debug
information in your program;

Concepts

* evaluation of expressions in commands such as print and x, except that
retrieving data from a debugged process (such as variable values) is per-
formed on the remote system.

The activities performed on the remote system are limited to storing and retrieving data to
and from a debugged process, controlling execution of a debugged process, and
supplying target-dependent information to the local system portion of NightView.
Additionally, NightView sometimes runs the C compiler on the target system to generate
code for eventpoints. See “Eventpoints’ on page 3-9.

You may wish to control how the target system allocates resources to NightView.p and
the dialogue shell, both to prevent them from interfering with your application and to
ensure that they get sufficient resources to give adequate response in NightView. You can
control the allocation of CPU and memory resources as well as the scheduling policy and
priority through either the login command or the remote login dialog. See “login” on
page 7-24. See “ Remote Login Dialog Box” on page 9-34.

Note that the parameters you specify for the remote dialogue will be inherited by
processes you execute within that dialogue shell. Y ou may wish to use the run (1) shell
command when you run your application in the dial ogue shell.

There are some things you need to be aware of when you use a remote dialogue. Because
source files and debug information are read on the local system, those files (or copies of
them) need to be accessible on the local system. Thisis particularly true of the executable
program file, because that is where the debug information resides. When a debugged
process execs a hew program, NightView attempts to determine the location of the
executable program file. See “Finding Your Program” on page 3-9. With a remote
dialogue, NightView assumes that the pathname of the executable program file is the
same (or locates identical files) on both systems. If thisis not true, then NightView is not
able to read debug information for that program until you specify the correct pathname
with the symbol-£file command or use object filename trandations. See “symbol-file”
on page 7-41. Also, see “trand ate-object-file’ on page 7-28.

Creating a new dialogue involves logging into a system (see “login” on page 7-24) via
ssh(1). You may login again as yourself, or as another user (subject to a password
check). When a dialogue is created, it executes your login shell (or, more accurately, the
login shell of the user whom you logged in as). For convenience with logging in, you
might want to investigate ssh-agent (1) .

Logging in runs your .profile or other initiaization file appropriate to your normal
login shell. Your .profile should avoid reading from the standard input if
NIGHTVIEW ENV hasanon-empty value.

Remote File Access
Referencing remote files can be useful either during remote debugging or when the files of
interest reside on another host.

For remote debugging, in most situations NightView can find files automatically and you
don’t need to worry about it. However, sometimes you need to provide more information.
In those situations, you need to know the rules used by NightView to find files.

3-7

NightView RT User’s Guide

3-8

If NightView cannot find an object file on the local host, including using object transla-
tions, and the download mode is not off , it attemptsto download it from the target system.
See “trandlate-object-file” on page 7-28 and “ set-download” on page 7-71.

If NightView cannot find a source file on the local host and the download mode is not off,
it triesto download it from the target system. See “directory” on page 7-77.

NightView always interprets exec-£file filenames and core-£file filenames relative
to the target system. See “ exec-file” on page 7-43 and “core-file” on page 7-41.

Filenames on other commands are interpreted relative to the local host by default; how-
ever, you may explicitly refer to files on other hosts using the form userehost : /path. If
you omit the user@ portion, your current user is used. When you use this form, NightView
transfers the file from the host system onto the local host system. (The file is downloaded
into a file cache. You can control the behavior of the file cache with the set -download
command (see “set-download” on page 7-71) or with the Preferences Advanced Pagein
the graphical user interface [see “ Preferences Advanced Page” on page 9-38].)

As aspecial case, if exec-£file seesthe userehost: /path form, the exec-£ile com-
mand is treated as a symbol - file command (see “symbol-file” on page 7-41).

If you need to refer to remote files but do not want NightView to transfer them, don’t use
the user@host : /path form. Instead, set up another way for NightView to see thefiles, such
as an NFS mount. NightView automatically sets up object file translations for NFS
mounts. See “translate-object-file” on page 7-28.

The following commands interpret filenames relative to the host by default, but can take
the user@host : /path form:

* symbol-file (See"“symbol-file” on page 7-41)
* translate-object-file (See“trandate-object-file’” on page 7-28)
* directory (see“directory” on page 7-77)
* source (see“source” on page 7-133)
* load (see“load” on page 7-94)
* list (see“lit” on page 7-75)
Example:

Assuming you have a remote dialogue to system fred (see “Remote Dialogues’ on page
3-6), and the program and its source are on that system, all you need to do is ensure that
the download mode is set (see “set-download” on page 7-71) and then run the program.

set-download temporary
Example:

Suppose that the program isin /usr/bif£ on system fred, but it has been stripped of
debugging information. The version with the debugging informationisin /usr/joe on
system barney. The sourceisin /usr/bob on system betty. Use the following com-
mands:

ReadyToDebug

Concepts

set-download temporary
translate-object-file /usr/biff/ barney:/usr/joe/
directory betty:/usr/bob

The program /usr/lib/NightView-release/ReadyToDebug is a specia
program used by NightView to synchronize with the dialogue shell (release is the
NightView release level). You will probably see this program name echoed when a
dialogue shell starts up. When NightView sees this program run, it knows that the shell is
through with any initialization. NightView then considers any new processes that run in
the shell to be candidates for debugging. This alows the initialization to take place
without debugging the programs that might run during that time.

Finding Your Program

When a program is started up from a dialogue, NightView is notified that a new program
is executing, but there is currently no way for NightView to find out exactly what
program is running.

NightView tries to guess the name of your program by looking at the arguments, the
current working directory, and the PATH environment variable of the program. Usualy,
these correctly identify the program name, but not always. Then NightView can't tell
what the program nameis. Also, sometimes NightView may guess wrong.

NightView prints a message with the name of the program when the program starts up. If
this name is wrong, then you will need to tell NightView the name of the program by
using the exec-£file command. See “exec-file” on page 7-43.

Most shells aready do this correctly, so you will rarely need to worry about it. The
problem sometimes occurs in programs that run other programs.

Controlling Your Program

Eventpoints

NightView provides many waysto control the execution of a program you are debugging.

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
tracepoints, watchpoints, and heappoints. All of these are different ways to debug or
modify the behavior of your program, and all of them are assigned unique numbers by the
debugger when you create them. These numbers are unique across all processes. For

39

NightView RT User’s Guide

3-10

example, if you use a command qualifier to set a breakpoint in many processes at once,
each breakpoint in each processis assigned a unique eventpoint number.

Breakpoints, monitorpoints, patchpoints, tracepoints, and heappoints are inserted
eventpoints. They are implemented by inserting code into your process. A watchpoint is
not an inserted eventpoint. This difference is mostly transparent to the user, but it does
cause some minor differencesin behavior. Those differences are noted where appropriate.

NightView allows you to set conditions on eventpoints, so the action associated with the
eventpoint is taken only if the condition is satisfied. For inserted eventpoints, the
condition is an arbitrary expression in the language of the routine where the eventpoint is
set (in other words, if you set a conditional eventpoint in a Fortran subroutine, you would
write the conditional expression in Fortran). NightView actually compiles the conditional
expressions and patches them into the program, so evaluating the condition does not
require the debugger to take control. This means that setting a conditional eventpoint only
adds the overhead required to evaluate the condition and the program will run at almost
full speed until the condition is satisfied. See “condition” on page 7-109. However, a
condition on a watchpoint is evaluated in the debugger. For watchpoints, the language of
the expression is determined by your language setting. See “set-language” on page 7-59.
Because watchpoint conditions are always evaluated in the global scope, if your language
setting isauto, NightView evaluates the condition in the language of the main program.

You can also specify an ignore count for an eventpoint. This means you must execute
past the eventpoint a certain number of times before it might be taken. The ignore count
is checked prior to the condition, so if you have both ignore counts and conditions, the
condition will not be checked until the ignore count is down to zero. See “ignore’ on
page 7-112. Like conditions, the code to implement ignore counts is patched into the
program for inserted eventpoints, so the program will execute at nearly full speed until
the ignore count reaches zero. An ignore count on a watchpoint is evauated in the
debugger.

There are several commands to manipulate eventpoints, but not every type of manipula-
tion makes sense for every type of eventpoint. Deleting, disabling, enabling, and attaching
ignore counts and conditions works for all types of eventpoints. See “ Manipulating Event-
points’ on page 7-95.

Table 3-1. Eventpoint Summary

. Codeis May have
Action .
inserted commands
breakpoint stop the process when the X X
breakpoint is reached
heappoint check the heap or config- X
ure the heap debugger
monitor point display the value of X X
expressions in the moni-
torpoint window

Breakpoints

Monitorpoints

Concepts

Table 3-1. Eventpoint Summary

Codeis May have

Action inserted commands

patchpoint execute an expression or X
modify the flow of the
program

tracepoint record an event when exe- X
cution reaches the trace-
point

watchpoint stop the process when the X
process reads or writes a
variable in memory

Inserted eventpoints eval uate their conditions and ignore counts at full program speed, and
may be manipulated while the process is running. Watchpoint conditions and ignore
counts are evaluated in the debugger. Watchpoints may be enabled and disabled only
while the processis stopped.

A breakpoint is one of the most frequently used features of a debugger. You can set a
breakpoint at any place in a program you are debugging, and when execution reaches that
point, the program will stop. You may then use the debugger to examine the current
values of variables, set additional breakpoints, etc. See “breakpoint” on page 7-98.

You may aso specify an arbitrary set of debugger commands to execute each time a
breakpoint is hit (if it is a conditional breakpoint, that means only when the condition is
satisfied). See “commands’ on page 7-108.

If you are debugging a real-time program, you may wish to monitor the value of one or
more variables without interrupting the execution of your program. Monitorpoints allow
you to do this. A monitorpoint is code inserted at a specified location by the debugger
that will save the value of one or more expressions, which you specify. Because the
expressions are evaluated by the program within a specific context, the expressions may
reference local stack variables and machine registers and may call functions in your
program. The saved values are then periodically displayed by NightView in a Monitor
Window (see “Monitor Window” on page 3-28). You can set a monitorpoint using the
monitorpoint command. See“monitorpoint” on page 7-104.

Note that the expressions you specify are evaluated every time execution passes the
location of the monitorpoint (unless the monitorpoint is disabled or has a condition or an
ignore count). However, NightView may not display every value saved by the
monitorpoint. If the monitorpoint location is executed more frequently than NightView
can update the Monitor Window, you will miss seeing some of the values evaluated by
the monitorpoint.

31

NightView RT User’s Guide

Patchpoints

Tracepoints

Heappoints

312

Note that there may be some delay between the time that NightView reads the values
saved by a monitorpoint and the time the values appear on your display. Therefore,
values sampled by different monitorpoints cannot reliably be related in time. However,
you may be sure that al the values sampled by a single monitorpoint were all evaluated at
the sametime.

During the course of debugging, you may find a small error you would like to fix, but
you would aso like to continue debugging the program without recompiling and
relinking. The patchpoint command (see “patchpoint” on page 7-99) allows you to
patch in a change to the memory image of the process and continue running. (Note that it
does not change the disk copy of the program file; recompiling and relinking is the only
way to make a permanent change.)

A patchpoint can cause an expression (including function calls) to be evaluated, modify a
variable, or cause the program to branch to a new location.

The 1load command (see “load” on page 7-94) provides the ability to make larger scale
changes by loading in whole object files. This feature may be used to replace defective
routines, or to load custom designed debugging routines that can do things like verify
complex data structures, or search through linked lists.

The manual for the NightTrace tool describes alibrary that may be used to generate trace
records by calling trace routines in your program. If you didn't initially build a program
with trace calls, (or you did, but decided later additional trace calls were necessary) the
tracepoint command (see “tracepoint” on page 7-102) may be used to patch in
tracepoints. The values traced may then be examined with the ntrace tool. For more
information on NightTrace, seentrace (1).

Because the program runs at full speed through a tracepoint, you can use tracepoints in
real-time applications where breakpoints are unacceptable.

One dignificant difference between a tracepoint and a monitorpoint is that values
recorded by a tracepoint are all available for later analysis, values will not be "lost"
because of delays in displaying, as they may with a monitorpoint. Another difference is
that tracepoints provide a reliable means of relating values of expressions at different
points of execution to the times those values were evaluated. Monitorpoints do not.

Heappoints can be used to narrow the search for amemory bug. A heappoint either checks
the process's heap or changes the configuration of heap debugging, depending on which
options you specify. Heappoints may be set only after configuring the heap debugger with
the heapdebug command (see “heapdebug” on page 7-53) or from the Process menu
(see “Process Menu” on page 9-8). Heappoints are set with the heappoint command
(see “heappoint” on page 7-105).

Watchpoints

Concepts

A watchpoint stops your program when a particular area of memory is read or written.
Thisis most useful in determining when a variable (or other program element) is being
changed to a"bad" value during execution. You could set a watchpoint on the variable,
and then the program would stop whenever the variable is modified. Watchpoints are set
with thewatchpoint command. See “watchpoint” on page 7-115.

Often you know what the bad value is. If so, you can set a condition on the watchpoint so
that the program will stop only when the variable is changed to the bad value. The condi-
tion is evaluated after the instruction that triggers the watchpoint has completed. Night-
View provides a process-local convenience variable, $1s, that is useful in watchpoint
conditional expressions. See “Convenience Variables’ on page 3-37. $is contains the
value of the variable (or other program element) after the instruction that triggers the
watchpoint has completed.

NOTE

In some cases it would be nice to have a Swas (the value of the
variable before the instruction began). NightView has no way to
know what the value was immediately before the instruction exe-
cuted. You can approximate $was by adding some code to your
conditional expression. However, note that this picks up the old
value only when the watchpoint is triggered and that there are cir-
cumstances, described below, that can change the value without
triggering the watchpoint.

Example:

This example code assumes the current language is C. Suppose
you want the process to stop if the old value was 1. Set the condi-
tion on the watchpoint to this expression:

Swas=S$prev, Sprev=$is, Swas==1
Set these convenience variabl es before resuming the process:

set $Swas=0

set S$prev=0
set-local Swas
set-local S$prev

A watchpoint condition is evaluated relative to the global scope of your program. The lan-
guage of the condition is controlled by your current language setting. If the setting is
auto, then the condition is evaluated in the language of the main program.

Unlike other eventpoints, a watchpoint is not associated with a code location. A watch-
point is not an inserted eventpoint. See “ Eventpoints’ on page 3-9.

You can have many watchpoints per process, but there is alimit on the number of watch-
points that can be enabled at the same time. On an IA-32 or AMDG64 system, at most 4
watchpoints can be enabled at one time.

3-13

NightView RT User’s Guide

Signals

314

A watchpoint can be set only on a program element in memory, not in a register. You
should be careful about setting awatchpoint on avariable on the stack, because the watch-
point probably will not be meaningful once the routine that contains the variable returns.

For watchpoint restart information, NightView always uses the same address that it cal cu-
lates when you originally create the watchpoint. Note that the specific address may or may
not be interesting in another run of your program, depending on exactly what your pro-
gram does. For example, a variable on the heap may always be allocated in the same place
each time your program runs, or it may be allocated at a different address depending on
when it is allocated, what other allocations are done, timing of external events, etc. You
may need to delete a watchpoint that was created by restarting and create a different
watchpoint. See “Restarting a Program” on page 3-16.

When you have a watchpoint set, your process does not incur any performance penalty
until it references the addresses being watched. When that happens, NightView gets con-
trol.

NOTE

If the target system is an 1A-32 system, then the mechanism
NightView uses for watchpoints watches 1, 2 or 4 bytes. If the
variable you are watching is 3 bytes long, then you may get some
extraneous triggers on the next byte. If the variable you are watch-
ing is longer than 4 bytes, only the smallest address bytes of the
variable are watched. If you need to watch more bytes of the vari-
able, you can use multiple watchpoints, specifying addresses and
lengths.

If the target system is an AMDG64 system, then the mechanism
NightView uses for watchpoints watches 1, 2, 4 or 8 bytes. If the
variable you are watching is 3, 5, 6 or 7 bytes long, then you may
get some extraneous triggers on the trailing bytes. If the variable
you are watching is longer than 8 bytes, only the smallest address
bytes of the variable are watched. If you need to watch more bytes
of the variable, you can use multiple watchpoints, specifying
addresses and lengths.

Because watchpoints are not inserted eventpoints, the debugger evaluates any ignore
count and condition, so the ignore count and condition are not evaluated at full program
speed. See “Eventpoints’ on page 3-9.

A watchpoint is not triggered if the variable is accessed by other processes through shared
memory (unless they are also being debugged and have watchpoints set) or if the variable
is accessed through 1/0O using direct memory access (DMA), such as alow-level read
from disk.

Usually, your process is stopped and the debugger gets control if the process receives a
signal. Signals may be generated by error conditions (such as dividing by zero or trying

Concepts

to write to a write-protected location). Other signals may be generated under program
control (the program can request the system to send it a SIGALRM periodically, or another
program may explicitly send asignal withthekill (2) system service).

Several ways in which to handle a signal are described in the handle command (see
“handle” on page 7-125).

In addition, you may use the debugger to explicitly send a signal to a process (see
“signal” on page 7-124). This is useful if you need to test the signal handler code in a
program (however, the debugger itself uses SIGTRAP, so it should not be used in any of
your code).

If you specify nostop, noprint, and pass for a signd, then the system will deliver
the signal to the process normally and bypass the debugger. This avoids any performance
penalty to your program if it makes frequent use of signals.

Signals may cause somewhat different behavior when you are single-stepping your
program (see “Controlling Execution” on page 7-116). If a signa occurs while you are
single-stepping, NightView's reaction depends on whether you specified stop or
nostop and pass or nopass in the handle command (see “handle” on page 7-125).
The four possible combinations are explained below.

nostop, pass

The single-step operation continues, but the signal will be passed to the program. If
you have a signal handler in your program, it will be executed without single-step-
ping. When the handler finishes executing, single-stepping will be resumed until it
is complete or another signal occurs.

nostop, nopass

The signal has no effect (other than temporarily interrupting execution). The single-
step operation continues until it is completed or another signal occurs.

stop, pass

The single-step operation is terminated and the process is stopped. If you issue
another single-step command or a continue command, or a resume command
with no argument, the signal is passed on to the process when it resumes execution.

stop, nopass

The single-step operation is terminated and the process is stopped. The signal is dis-
carded.

Some signals can have additional information passed to the signal handler via
siginfo (5). However, NightView has no mechanism for the user to specify this
information, so signals sent to the process using the signal or resume commands will
have no associated siginfo (5) information.

If a process stops with a signal that has associated siginfo (5) information, that
information is preserved by NightView whenever possible. If you specified pass for that
signal and you continue execution using the continue command or the resume
command with no argument, the siginfo (5) information will be delivered to the
process along with the signal. However, no siginfo (5) information is ever delivered
if you explicitly specify asignal number on the signal or resume commands.

3-15

NightView RT User’s Guide

Restarting a Program

Restarting execution of a program under NightView is different than in many other
debuggers, because instead of being executed directly by the debugger, programs are
executed from a dialogue shell, or by other programs. The typical way you restart a
program isto invoke it again in the dialogue shell. See “run” on page 7-37.

When NightView recognizes that a program is being run again, it automatically applies
the same eventpoints, and other information, to the new instance of the program.
NightView considers two programsto be the same if they have the same full pathname.

This method of restarting programs was chosen because of NightView's multi-process
nature. Y ou may actually want to debug multiple copies of the same program, and in that
case you may or may not want to have the same eventpoints set in each copy. However, if
you are debugging just one instance of one program, you can easily restart its execution
without having to manually duplicate your eventpoint settings.

Occasionally you may wish to run a program again and again without stopping when it
execs or when it exits. For instance, if a program sometimes dies with a signal, you
could run it repeatedly until the signal occurs and then examine where it occurred. To
avoid having the process stop when it execs, put a resume command (see “resume” on
page 7-118) inside an on program command (see “on program” on page 7-44), like
this:

on program yourprogram do
resume
end on program

The resume command will not actually take effect until after the process has been
initialized, so on program and on restart commands that set eventpoints and
otherwise modify the process work as expected. Note that the process does actually stop
when it execs, but the resume command tells it to start running again as soon as
NightView isfinished initiaizing it.

To avoid having the process stop when it exits, use the set-exit command. See “set-
exit” on page 7-50. These two mechanisms, in combination, alow you to run a program
repeatedly and only stop it if it hits a breakpoint or a watchpoint or gets asignal.

The following sections describe the details of how restarting works. Most users will not
need to know these details. The normal automatic mechanism handles most situations.

Restart Mechanism

3-16

At certain times in the execution of a program, NightView takes a checkpoint on that
program. A checkpoint saves information about the eventpoints, signal disposition, etc.
This information is called the restart information. Each checkpoint replaces the previous
restart information.

The restart information is stored as a sequence of commands associated with your
program name via an on restart command. See “on restart” on page 7-47. The
commands restore the eventpoints and other information in the new program.

Each time you execute a program, NightView checks to see if an on restart
command matches your program. If one matches, NightView executes the sequence of

Concepts

commands associated with your program.

Unlike other command streams, execution of an on restart command stream is not
terminated by an error. See “Command Streams’ on page 3-35.

NightView takes a checkpoint on a process when:

* |tisabout to exit, terminate with asignal, or be killed by NightView.
* [tisabout to exec anew program.

* You enter acheckpoint command. See“checkpoint” on page 7-48.

It is not possible to turn off checkpoints. However, you can control whether restart
information is applied. See “set-restart” on page 7-64.

Note that if you have a program that has not yet taken a checkpoint and you start a new
instance of that program, then no restart information is applied to the new instance
because there is none for that program.

You can save restart information to a file. See “info on restart” on page 7-151. This
allows you to save the information across debug sessions. Or, you can edit the file to
change the restart information. In either case, you would then source the file to restore
the restart information. See “source” on page 7-133.

Restart Information

This section describes the restart information saved during a checkpoint.

* Any memory reservations made with the mreserve command. See “mre-
serve” on page 7-52.

* Eventpoints, including any names, conditions, ignore counts and com-
mands associated with each eventpoint. See “ Eventpoints’ on page 3-9.

* Directory search path. See “directory” on page 7-77.

* Child disposition. See “set-children” on page 7-50.

* Signal and exception disposition. See “handle” on page 7-125.
* Digplay list. See “display” on page 7-91.

* Symbol file. See“symbol-file” on page 7-41.

¢ Default language. See “ set-language” on page 7-59.

* Whether or not the process will stop before exiting. See “set-exit” on page
7-50.

* The interest level threshold, the interest level for inline, justlines,
and nodebug, and any explicit interest levels for subprograms. See “inter-
est” on page 7-66.

* Information to reproduce the items in the data panel. See “Data Panel” on
page 9-54. See “data-display” on page 7-91.

3-17

NightView RT User’s Guide

Restart Macros

If anhon restart command is created by a checkpoint, then in addition to commands
to restore eventpoints and other program information, there are two macros:
restart begin hook, a the beginning of the commands, and
restart end hook a the end of the commands. Both macros are called with the
name of the program being restarted as an argument.

These macros let you customize restart processing. The initial definition of these macros
is

define restart begin hook(program name) apply on program
define restart end hook(program name) echo

This means that on program commands will be applied before any restart processing,
and nothing will be done afterwards. (restart end hook isdefined as echo because
there is no way to make an empty macro.)

Y ou can define these macros to be anything you wish. See “Defining and Using Macros’
on page 7-158. For example, you could define restart begin hook to be echo to
disablethe on program processing. See “on program” on page 7-44.

Exited and Terminated Processes

When a process terminates normally, it flushes its I/0 buffers, closes any open files, then
calls the exit service. By default, NightView automatically arranges for a process to stop
when it calls the exit system service. (You may alter this behavior with the set-exit
command. See “set-exit” on page 7-50.) When a process terminates abnormally, it
receives a signal, which causes the process to stop and NightView to get control. Thus,
you may always examine a program that is about to exit or terminate abnormally. The
process will still exist, so you can examine memory and registers.

If you continue execution of a process in one of these states, the process will cease to
exist and NightView will forget about all the eventpoints set in that process. The pID for
that process will be removed from all families (see “Families’ on page 3-2) in which it
appears. Detaching from such a process has the same effect (see “Detaching” on page
3-3).

Process States

3-18

A process is normally in one of two states; it is either running, or it is stopped. A process
is said to be stopped when it gets a signal (and it is being debugged) or it hits a
breakpoint or watchpoint (meaning that the point of execution reached the breakpoint or
the watchpoint was triggered, and all the conditions on the breakpoint or watchpoint were
satisfied). When it is stopped, the debugger has control. The debugger may continue to
execute commands attached to that breakpoint or watchpoint, but once the debugger
initially gets control, the process is considered to be stopped. (Thisis not the same type of
stop asjob control in the C shell or the Korn shell.)

Concepts

Some debugger commands require the process to be stopped. It is meaningful to examine
or modify stack locations or variables only if the process is stopped. Monitorpoints and
tracepoints provide ways to examine variables without stopping a process. See
“Monitorpoints’ on page 3-11. See “Tracepoints’ on page 3-12. The first inserted
eventpoint in a process must be set while the process is stopped, unless eventpoint
memory preallocation is on. See “Eventpoints’ on page 3-9. See “set-preallocate” on
page 7-70. A watchpoint may be enabled or disabled only when the process is stopped.
See “Watchpoints’ on page 3-13.

In addition to being stopped or running, a process may be exiting or terminated, or it may
be a pseudo-process associated with a core file. A pseudo-process cannot be continued.
Continuing an exiting or terminated process causes the process to cease existence.

Operations While the Process Is Executing

This section lists what you can do while the processis executing.

¢ Examine and modify statically-allocated variables. Thisincludes static
and global variables in C, and COMMON variables and variables with the
SAVE attribute in Fortran. It does not include variables allocated to regis-
ters or the stack.

¢ Examine and modify absolute memory locations. This includes accessing
memory referenced by a pointer variable, if the pointer variable is accessi-
ble as noted above.

* Evaluate expressions involving the above items. See “Expression Evalua-
tion” on page 3-20. Note that afunction call is not allowed.

For the purposes of establishing the scope and meaning of variable names,
and also the language for the expression, NightView uses the location
where the process was last stopped to determine the context of the expres-
sion (see “Context” on page 3-24). You can use the special forms Night-
View provides to change this context, if you want to access variables local
to a procedure, for instance. See “ Special Expression Syntax” on page 7-4.
However, note that the forms that refer to specific stack frames are not
allowed while the process is running, because the state of the stack isinde-
terminate.

* Examine, modify, and disassemble executable code.

* Create, manipulate, and destroy inserted eventpoints (breakpoints, moni-
torpoints, patchpoints, tracepoints, and heappoints). See “Eventpoints’ on
page 3-9. These types of eventpoints may be enabled and disabled, have
conditions added or removed, and have ignore counts modified. You may
modify the commands attached to breakpoints, monitorpoints and watch-
points. You may also get information about any type of eventpoint. See
“Manipulating Eventpoints’ on page 7-95.

Enabling or disabling watchpoints requires the process to be stopped. Any

of the other operations may be performed on watchpoints while the process
is executing. However, since, by default, watchpoints are enabled when

3-19

NightView RT User’s Guide

created, and disabled when destroyed, you cannot ordinarily create or
destroy a watchpoint while the process is executing. See “Watchpoints’ on
page 3-13.

If preallocation is on (default), the debugger performs special processing to
support eventpoints and monitorpoints as soon as the program starts. See
“set-preallocate” on page 7-70. If preallocation is off, the following restric-
tions apply to setting the first eventpoint and the first monitorpoint:

- Thefirst inserted eventpoint within a particular text region must be
set while the processis stopped. A text region is either your program
or the dynamic libraries it references.

- The first monitorpoint must be set while the process is stopped,
regardless of whether other eventpoints have been set in that region.
See “Monitorpoints’ on page 3-11.

This is necessary because NightView needs to do special processing when the first
eventpoint is created within a text region, or when the first monitorpoint is created.
That special processing requires the process to be stopped.

While the process is executing, you may not use forms of commands that depend on
knowing the program counter or the value of any machine register. See “Predefined
Convenience Variables’ on page 7-6.

Note that monitorpoints and tracepoints also provide ways of monitoring your program
without stopping it. See “Real-Time Debugging” on page 3-6.

Examining Your Program

If you specify running processes in the qualifier of a command which requires stopped
processes, you get a warning message about each running process, but the command
executes normally on any of the stopped processes in the qualifier.

Expression Evaluation

3-20

Because NightView is a symbolic debugger supporting multiple languages, you are
allowed to evaluate expressions written in different languages, but this does not mean you
have access to al the features of each language. (Specific language syntax is not
described here; consult the reference manual s for the language for that information.)

One important point to note is that the debugger may not aways precisely follow the
language semantics when evaluating an expression. In particular, the results of afloating-
point expression evaluated by the debugger may not be bit for bit identical to the results
the same expression would give if it were compiled and executed in your program. See
“Specia Expression Syntax” on page 7-4.

A program written in multiple languages may define identical names for different global
objects. NightView looks first for the name as defined in the language of the current

Ada Expressions

Concepts

context (see “Context” on page 3-24). If there is no current context, it uses the current
language setting to determine which symbols to look at first (see “ set-language” on page
7-59).

The debugger can evaluate arithmetic or logical expressions (essentialy anything that
may appear on the right hand side of an assignment). The debugger cannot declare new
variables.

In general, the debugger cannot execute statements, it can only evaluate expressions. For
Ada and Fortran, the concept of an expression is extended to assignment. (Assignment is
an expression in C and C++.)

In some ways the debugger is more flexible than the compiler. The debugger usually
allows you to evaluate expressions or assign new values to variables without the type
checking done by the compiler. Unless the expression simply makes no sense, the
debugger will evaluateit.

Remember that the debugger handles expressions (plus assignment and procedure calls),
not executable statements. You must leave off the trailing semicolon for an Ada
assignment or procedure call.

Most Ada expression forms are supported, but there are some restrictions and limitations,
summarized in the list below.

* Datatypes
All data types are supported, with afew exceptions:

- Task types are not fully supported as a data type. They are treated
simply as an address.

- Access to subprogram is not supported.

* Type conversions are supported as defined for the Ada language, and using
the same syntax as that of the language (i.e. type_mark (expression)), with
certain exceptions and additions. As defined by the language, conversions
involving numeric types convert the value of the expression, not the repre-
sentation. For example, £1loat (1) would return 1. 0. NightView allows
conversions from avalue of any type to any target type, not just those cases
allowed by the Adalanguage. Note that NightView does not perform repre-
sentation changes when converting to or from derived or convertible array
types with differing representations. Conversions involving non-numeric
types are performed by simply interpreting the left justified bit pattern of
the value as the value of the target type with the corresponding left justified
bit pattern. Note that, if the target type is smaller than the source value, the
rightmost bits of the converted value are indeterminate.

* NightView treats user-defined character types (i.e., enumerations which
have character literals as enumeration values) strictly as enumerations, not
as acharacter type. The chief effect of thisisthat you cannot use string-lit-
eral notation (e.g., "abc™") to form arrays of these types. In NightView,
string literals are always interpreted as arrays of the built-in type charac-
ter.

321

NightView RT User’s Guide

* Aggregatevalues, suchas (a => 1, b => 2), arenot supported. Other

expressions that yield aggregate values are allowed.
Subprogram calls

A NightView expression can contain subprogram calls (either functions or proce-
dures), provided that the arguments are either scalar types, statically-sized record
types, or arrays. Note that this excludes subprograms with aforma argument that is
an unconstrained record with discriminants, but unconstrained arrays are supported.
Functions that return arrays or records are supported.

Overloaded operators and functions are supported in NightView with help from the
user to select the correct function. See “Overloading” on page 3-23.

Attributes
Subprograms that rename attributes are not supported.

The following attributes are not supported: 'callable, 'count, 'key, 'lock,
'shm_id, 'terminated, and 'unlock.

The ' fore and 'aft attributes of fixed-point types may not give correct results.

Other attributes are supported in such commands as print and set, but they can-
not be used in monitorpoint, patchpoint, or tracepoint expressions, nor in an event-
point conditional expression.

One attribute, ' self, is supported as a language addition in the debugger. When
used on atagged type object or access to a tagged type object, the ' self attribute
returns the same object with the type set to the actual type of the real object as deter-
mined from the run time type information provided by the compiler.

The catenation operator, &, is not implemented.
Logical operations (e.g., the and operator) on arrays are not supported.

Relational operations that require ordering (e.g., <) are not supported for
all arrays, they are supported only for arrays of character. Equality opera-
tions (= and /=) are supported for all arrays.

&variable may be used as a synonym for variable' address.

Any exceptions raised in a monitorpoint, a patchpoint, or atracepoint, or in an eventpoint
conditional expression are propagated to the program.

C Expressions

All C expressions are supported.

The debugger supports array slices in expressions using the following syntax:

array_namell..u]

where | is the lower bound and u is the upper bound. The array_name may be any
expression that denotes either an array object or a pointer. The type of an array sliceisan
array whose bounds are the values of | and u, respectively.

3-22

C++ Expressions

Concepts

Most C++ expressions are supported, with afew exceptions noted bel ow.
The debugger supports array dicesin C++. See also “C Expressions’ on page 3-22.

In function calls and assignments, the debugger copies an object by copying the bytes of
the object. No copy constructor or user-defined assignment operator is called.

These C++ features are not supported:
* Exceptions.
* Templates.

Operator and function overloading is supported with additional input from the user used
to select the desired function. See “ Overloading” on page 3-23.

A special case form of the dynamic_cast<> function is supported. You may use
dynamic_cast<>, Spelled exactly this way (with no type name given as a template
argument inside the <>). This form of dynamic casting will cast an object or a pointer to
the actual type of that object as determined by run time type information provided by the
compiler.

Fortran Expressions

Overloading

All Fortran expressions are supported.

Fortran subroutines are treated as if they were functions with no return value. Fortran
assignments are supported except for Concurrent Fortran array assignments.

The debugger cannot execute statements of any kind (except assignments and procedure
calls), including Fortran 1/0 statements.

Overloading means that more than one entity with the same name is visible at the same
point in the program. Overloading is alowed for location specifiers and for expressions.
In C++ language mode, overloading of functions and operators is alowed. In Ada
language mode, overloading of enumeration constants, functions, operators and
procedures is allowed. See “set-language” on page 7-59. NightView refers to the
appropriate entity if it has enough context to determine that there is only one choice.
Otherwise, you need to provide NightView with additional information in the form of
special syntax added to the expression or location specifier where the overloaded nameis
used.

This is typically a two step process. You run the command once and get an error which
displays the possible choices. Then you run the command again with additional syntax to
request the specific candidate number from that list.

The specia syntax used to request candidates from the list is described in “Selecting
Overloaded Entities’ on page 7-2. Overloaded names are supported in language

3-23

NightView RT User’s Guide

expressions (see “Expression Evaluation” on page 3-20) and location specifiers (see
“Location Specifiers’ on page 7-14), and the same syntax is used for both.

The set-overload command (see “set-overload” on page 7-69) may also be used to
make NightView automatically generate overload candidate lists by turning on either of
the two separate overload modes for routine names and language operators. This
automates the first step of the two step process. The specia syntax may be used to
request overload candidate information for a single function or operator even when the
corresponding overload mode is off.

If overloading is on, NightView interprets overloaded entities according to the current
language. If overloading is off, NightView uses the built-in meaning of all operators, if
possible, and interprets all function and procedure calls as referring to one function or
procedure it arbitrarily picks from the list of candidates. If operator overloading is off and
the built-in operator does not make sense in the context in which it is used, NightView
gives an error.

If overloading is on, but a unique meaning for an overloaded operator or routine cannot
be determined, NightView gives an error that includes the list of the possible overload
candidates. Y ou may then run the command again, adding the syntax to select the correct
candidate.

The numbers assigned to the choices are unique for the specific context (see “Context” on
page 3-24) where the expression or location specifier appears. If, for example the 5th
item in a list of choices refers to a particular instance of the overloaded function
funcname when you are stopped at one point in your program, you may not assume the
5th item will refer to that same instance when you are stopped at a different location.

The one number you can rely on is 1 for overloaded operators. The built in language
operator is always number 1, and any user or library defined operators have numbers
greater than 1.

Program Counter

Context

3-24

When a process is stopped, it has stopped at one specific place in the program, which is
the address of the next instruction to be executed. This place is where the program counter
points. Different machines have different sets of registers, but the program counter is
aways referred to as Spc.

If the currently selected frame is not the most recently called frame, then the $cpc register
points to the instruction that made the call and the $pc register points to the place where
execution will return after the call. In the most recently called frame, $cpc and $pc point
to the same place.

The location pointed to by Scpc implies a specific context for evaluating expressions.
$cpc islocated in some procedure (or routine, or function — the terms are used inter-
changeably throughout this document). This procedure was coded in some language (Ada,

Scope

Stack

Current Frame

Concepts

C, C++, Fortran, or assembler). By default, the language of the routine containing the
$cpc isthe language used to evaluate any expressions.

Another component of the context is the current stack frame (see “Current Frame” on
page 3-25). It establishes which instance of a given local variable you are actualy
referring to in an expression. NightView provides specia syntax (see “ Special Expression
Syntax” on page 7-4) for referencing variablesin other contexts besides the current one.

Most languages have scoping rules, with local variables visible only in inner blocks and
more widely visible variables in outer blocks. Often the same name is used for different
variables in different scopes. Just as the $Scpc is located in a particular routine, it is also
located in a particular block of the routine. The variables that are directly visible to the
debugger are determined by the language rules and current block nesting structure of the
program at that point.

When debugging, you may need to look at other variables which would normally not be
visible by the strict language rules. NightView makes every effort to make any additional
variables visible for use in expressions (as long as the names do not conflict). If you
cannot reference a variable due to a naming conflict, NightView provides special syntax
(see “ Special Expression Syntax” on page 7-4) for referencing variables visible in other
scopes.

When a process stops, it not only stops at a particular program counter, but it also has a
current stack. The stack is used to hold local variables and return address information for
each routine. As a routine calls another routine, new entries (called frames) are made on
the stack. The stack can be examined to show the routines which were called to get to the
current routine using the backtrace command (see “backtrace” on page 7-84).

The debugger assigns numbers to each frame. The most recent frame is always frame
zero.

In a program with multiple threads or Adatasks, each thread or task hasits own stack. See
“select-context” on page 7-130.

Frames corresponding to uninteresting subprograms are not numbered and they are not
shown in a backtrace. See “Interesting Subprograms” on page 3-27.

When a process stops, the current frame is initialy the stack frame associated with the
most recently called routine (where $cpc points). This frame contains the local variables
for that routine, and these variables may be referenced in expressions you evaluate. Each
frame also contains the return address indicating the specific point in the older routine
where the $pc will be located when the current frame returns.

3-25

NightView RT User’s Guide

Registers

You may wish to examine the variables in one of the routines that called the current rou-
tine. To do that, you may use the up command (“up” on page 7-129) or the frame com-
mand (“frame” on page 7-128) to change the current frame. As you move up the stack
(towards older routines, or in the same direction areturn will go), the new stack frame
becomes the current frame. Any variables referenced are now evaluated in the context of
this new frame and new $cpc indicated by the called frame.

NightView also provides special syntax in expressions as an aternative to using the up or
frame commands. See “ Special Expression Syntax” on page 7-4.

Each stack frame also contains locations where registers are saved while in one routine so
they can be restored when returning to the calling routine. As the current frame is moved,
the debugger notices which registers will be saved and restored. If you look at registers
usingthe info registers command, or examine local variables which are being kept
in registers, you see the values as they will be restored when the process finally returns to
that frame. Referencing a specific register using the predefined convenience variable also
refersto the register relative to the current frame.

When examining a variable allocated to a register, you must be aware that the variable
may exist in that register for only a short time. Therefore, the contents of the register may
not accurately reflect the value of the variable. See “ Optimization” on page 3-39 for more
information.

Inline Subprograms

3-26

Ada and C++ programs can have inline subprograms. The code for these subprogramsis
expanded directly into the calling program rather than being called with a transfer of con-
trol. Thereis usually atime savings, sometimes at a cost in the size of the code.

NightView generally treatsinline subprogram calls the same as non-inline calls. Although
aninline call does not create a stack frame, NightView creates a frame for it to match the
semantics of the language and to simplify the model of debugging. You can use the usual
commands to move up and down the stack frames and view variables within each frame.
See “ Current Frame” on page 3-25.

You can use single step commands to step into inline subprograms, to step over them, or to
finish them. See “step” on page 7-119, “next” on page 7-120, and “finish” on page 7-122.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
thecall.

Concepts

If you set an eventpoint within an inline subprogram, NightView modifies each instance of
the subprogram. If there are alot of calls to the subprogram, this may take along time. If
execution is stopped in an inline subprogram and you set an eventpoint using the default
location specifier (which corresponds to $pc), the location specifier refers only to that
particular instance of the inline subprogram as opposed to all instances. See “L ocation
Specifiers’ on page 7-14.

You can set an interest level for individual inline subprograms. The interest level applies
to al instances of an inline. You can also set an interest level to avoid seeing any inline
subprograms. See “Interesting Subprograms” on page 3-27. This may be desirable
depending on how your program uses inline subprograms.

You may not call an inline subprogram in an expression, unless the compiler has created
an out-of-line instance of the subprogram. See “ Expression Evaluation” on page 3-20.

Interesting Subprograms

NightView considers some subprograms to be interesting and the rest to be uninteresting.
NightView avoids showing you uninteresting subprograms. Single-step commands do not
normally stop in an uninteresting subprogram. See “step” on page 7-119. A stack walk-
back does not display frames corresponding to uninteresting subprograms. See “ Stack” on
page 3-25.

In general, subprograms compiled with debug information are usually interesting and the
rest are usually uninteresting. NightView gives you control over which subprograms are
considered interesting by using the interest command. See “interest” on page 7-66.

Each process has a current interest level threshold. The default threshold is 0. NightView
uses rules to decide on the interest level of a subprogram. If the interest level of the sub-
program is greater than or equal to the interest level threshold, then the subprogram is con-
sidered to be interesting.

NightView uses theserules, in order, to determine the interest level for a subprogram:

1. Theinterest level may be specified for that subprogram with the inter-
est command.

2. If the subprogram is an inline subprogram, the value of the inline inter-
est level is compared to the interest level threshold. If the inline interest
level isless than the interest level threshold, then the interest level for the
subprogram is the minimum value. Otherwise, continue with the next rule.

3. Theinterest level may be recorded in the debug information for that sub-
program by the compiler. Some compilers have a way of designating an
interest level in the source.

4. If the subprogram has debug information, but no explicit interest level, the
interest level is 0.

5. If the subprogram has line number information, but no other debug infor-
mation, the interest level is the value of the justlines interest level for
that process.

3-27

NightView RT User’s Guide

6. If the subprogram has no debug information at al, the interest level is the
value of the nodebug interest level for that process.

In some situations there may be no interesting subprograms on the stack. In that case, the
most recently called subprogram is considered interesting.

You can make all subprograms interesting by setting the interest level threshold to the
minimum value.

Monitor Window

3-28

The Monitor Window shows the values of expressions being monitored by monitorpoints
(see “Monitorpoints’ on page 3-11). When you set a monitorpoint (see “monitorpoint” on
page 7-104), the Monitor Window is created if it does not aready exist, and the
expressions associated with that monitorpoint are automatically displayed in the Monitor
Window. The values in the window are updated approximately once a second to show the
values computed the last time each monitorpoint was executed.

The mcontrol command (see “mcontrol” on page 7-106) controls the monitorpoint
display. You can remove monitorpoint items from the display window (and add them
back in later). You can change the rate at which the window updates take place, and you
can stop updates completely, then start them again later. You can also turn the Monitor
Window off to remove it from your screen, then restore it later.

Note that interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-36.

The Monitor Window is not available in the command-line interface of the debugger.
You must use either the simple full-screen interface (see Chapter 8 [Simple Full-Screen
Interface] on page 8-1) or the graphical user interface (see Chapter 9 [Graphical User
Interface] on page 9-1) in order to take advantage of monitorpoints.

The monitored items are displayed in the Monitor Window using built-in information
about the precision of the data type to decide how many columns to use for the value.
Y ou have some control over this by using the format codes on the print command.

You also have some control over the layout of the items in the window. New items are
added across a line, from left to right, until there is not enough space remaining on the
line to add the current item. Then a new line is started. If you remove some items (by
using mcontrol nodisplay or by removing the monitorpoints), the remaining items
are shifted left and up to pack the display. If you then add the items back, they are added
at the end of the display (not in their original positions).

By default, each item is displayed with an identification string, a stale data indicator, then
the value itself laid out I€eft to right. The stale data indicator can be turned on and off via
mcontrol. There are 3 possible states that thisindicator can denote:

Updated

The monitorpoint location was executed and values were saved since the last time
NightView updated the display. Note that the location may have been executed

Concepts

many times in between successive display updates. The displayed value represents
the value as it existed the last time the monitorpoint location was executed.

Not executed

Execution has not reached the monitorpoint location since the last time NightView
updated the display. This may happen if that location is executed infrequently, if the
process gets suspended for some reason, or if the process is stopped by a signal or
breakpoint. The displayed value still represents the value as it existed the last time
the monitorpoint location was executed.

Executed but not sampled

Execution reached the monitorpoint location, but no values were saved because of
an ignore count or unsatisfied condition. In this case, the displayed value is not nec-
essarily the same as the value of the expression the last time the monitorpoint loca-
tion was executed.

The actual form of the stale data indicator depends on the interface being used. See
“Monitor Window - Simple Full-Screen” on page 8-2. See “Monitorpoint Values Data
Item” on page 9-59.

Debugging the Heap

NightView has features to help debug problems with a program's heap (i.e. memory
obtained viamalloc, calloc, realloc, etc.). Common problems with a program's
heap include buffer overruns, reads or writes of memory through "dangling" pointers
which reference freed memory, and memory leaks. The debugger can also provide infor-
mation about memory usage, such as the number of blocks that are allocated.

The heap debugger can be enabled and configured with the heapdebug command (see
“heapdebug” on page 7-53), or withthe Debug Heap... iteminthe Process menu. See
“Process Menu” on page 9-8.

Once enabled, the heap debugger intercepts calls to the following heap routines:
® calloc
* free
®* malloc
® memalign
®* posix memalign
® pvalloc
® realloc

* valloc

Before allowing the allocator to perform the requested operation, the heap debugger per-
forms some checks for each such call. In addition, it is usually configured to perform a

3-29

NightView RT User’s Guide

"heap check" with a specified frequency. Also, depending on the configuration, it may
allocate extra memory for each block or may fill certain regions with fill bytes. See “heap-
debug” on page 7-53 for details on configuration.

In addition, heappoints may be inserted at user-specified locations in the program. They
can perform heap checks or change the configuration of heap debugging dynamically. See
“Heappoints’ on page 3-12.

The heap debugger can remember a walkback list for each allocator operation. The walk-
back list has the program counter for the caller of the heap routine, and the caller of that
routine, and so on. If you encounter a heap error or a memory leak, this tells you which
part of your program allocated the block.

The heap debugger can be used to provoke bugs by filling allocated blocks with trash to
reveal problems with uninitialized fields, or by filling freed blocks with trash to reveal
problems with dangling pointer references. You can also discover how your program
behaves when it runs out of memory by restricting the amount of memory the heap debug-
ger will alocate.

You can aso hide the effects of some bugs. Thisis not intended as a remedy, but rather as
information about what might be wrong with your program. For example, you can alocate
extra memory for each block, which helps determine if your program is not allocating
blocks of the right size, or have malloc zero-fill each block, which helps determine if
your program is not initializing fields before using them.

Levels and Common Errors

3-30

If you have no interest in the details of heap debugging, you may want to use heap debug-
ging levels. Thelevels are just a convenient way to configure heap debugging.

Level O (Disable) sets the controls so that the heap debugger does as little as possible, but
can gtill issue errors for invalid heap operations.

Level 1 (Low) sets the heap debugger to do some heap checking with relatively small
overhead, and isthe default setting. Level 1 also enablesal the features that do not change
the behavior of the system allocator. That is, if you run your program without the heap
debugger and then you run your program with the heap debugger at level 1, you will get
the same pattern of block addresses and block sizes (however, note that some versions of
the operating system vary the address space layout randomly for each process). Enabling
more features may change the pattern.

Level 2 (Medium) sets the heap debugger to do more checking with greater overhead in
memory used and execution time. It may also cause subtle changes in the behavior of the
system allocator which can hide or expose different bugs.

Level 3 (High) doesavery high level of checking at the cost of extreme overhead in mem-
ory used and execution time. In particular, the heap is checked before every heap opera-
tion and all freed blocks are retained. It may also cause subtle changes in the behavior of
the system allocator.

Similarly, using the common_errors keyword in the heapdebug command (see
“heapdebug” on page 7-53), or clicking one of the Common Errors buttons in the

Fences

Concepts

graphical user interface, provides a convenient way to configure heap debugging for par-
ticular kinds of errors.

Entering
heapdebug common errors=block overrun

or clicking the Block Overrun button in the graphical user interface, configures the heap
debugger to detect if the program references past the end of an alocated block.

Entering
heapdebug common errors=dangling pointer

or clicking the Dangling Pointer button in the graphical user interface, configures the
heap debugger to detect if the program references a block after it has been freed.

Entering
heapdebug common errors=uninitialized field

or clicking the Uninitialized Field button in the graphical user interface, configures the
heap debugger to detect if the program reads from ablock that it has failed to initialize.

Once you have selected alevel or acommon error, you may then make more detailed cus-
tomizations if you wish. The heap debugging level does not affect error contral, fill byte
values, heap size, internal checks or slop.

The heap debugger can set "fences" on either end of each block. The fence before the
beginning of the block is called the pre-fence. The fence after the end of the block is called
the post-fence. The fence bytes are filled with a specified fill pattern. During a heap check,
or when the block is freed, the heap debugger checks that the fence bytes have not been
altered. If the fence bytes have been altered, it is an indication that your program iswriting
outside the block, and the heap debugger stops your process with an error status.

As aspecial case, blocks allocated with a size of zero have no pre-fence, no post-fence,
and no slop.

slop
bytes

pre-fence
bytes

bytes requested
by program

postfence
bytes

U —

aligned address returned
to your program

331

NightView RT User’s Guide

This figure shows the layout of heap debugger overhead in a block. The pre-fence, slop,
and post-fence are optional. See “slop=n" on page 7-58.

Hardware Overrun Protection

3-32

The heap debugger can also set up hardware overrun protection. When enabled, each
block is placed as close as possible to the end of a page, and the following page is pro-
tected from reads and writes. Then if your program triesto read or write past the end of the
block, it getsasigna (SIGSEGV). Note that thisis not reported as a heap error in the same
way that errors appear inthe info memory report (see “info memory” on page 7-146) or
in adata panel.

The advantage of hardware overrun protection is that it catches stray references immedi-
ately, which makes it easier to find bugs, and it catches both reads and writes. The main
disadvantage of hardware overrun protection is that it uses a great deal of overhead mem-
ory in order to position each block. (The protected page takes up virtual memory in your
address space, but does not use any physical memory or system swap space. However, the
overhead to position the block does take system memory.) It is possible for your program
to exhaust the system’'s memory. You may need to adjust your "ulimit -v" setting or
talk to your system administrator about increasing the system configuration variables
vm.max map count andvm.overcommit ratio.

This option is useful for small programs, and for large programs that overrun blocks
before they have allocated alot of memory. This option is also useful if you enable it dur-
ing only part of the process's execution so that only particular blocks are protected. See
“Heappoints’ on page 3-12.

Note also that the heap debugger cannot place every block such that it ends right at the end
of a page. The beginning of each block is aligned to an 8-byte boundary on I1A-32 and a
16-byte boundary on AMD®64. (For some allocation calls, your program may specify a
larger alignment.) If the block's sizeis not a multiple of this alignment, then there will be
a gap of afew bytes before the protected page. In this case, the program will not get the
SIGSEGV unlessit strays outside the block further than the gap.

When hardware overrun protection is turned on, the heap debugger automatically fills the
gap with post-fence fill bytes, to help catch stray references into the gap. The gap is hever
made wider than it has to be to accommodate the alignment and size restrictions. For hard-
ware overrun protection, the number of post-fence bytesis 8 on |A-32 (16 on AMD®64), or
the number you specify, whichever is larger, but no more than will fit in the gap.

Concepts

i i i | i
| | | | |
unused |prefence | bytesrequested | slop | gap | protected
: bytes : by program : bytes : : page
l I | l I
| page aligned address page —
boundary returned to your .
program boundaries

This figure shows the layout of heap debugger overhead in a block with hardware overrun
protection. The pre-fence and slop are optional. See “slop=n" on page 7-58. The gap
may be zero sized; otherwiseit typicaly isfilled with the post-fencefill byte.

Retained Free Blocks

Heap Check

You can configure the heap debugger to retain some number of free blocks, or even al free
blocks. A retained free block is not available for reuse. Once the desired number of
retained free blocks is reached, blocks are made available for reuse in the same order they
were freed by your program.

Retaining free blocks can help you find dangling pointer bugs. Thisis particularly effec-
tive when hardware overrun protection also is used, because when your program frees a
block it is protected from reads and writes. However, note that retaining alarge number of
free blocks can use alot more memory than your program would use normally, especially
when you also use hardware overrun protection.

Heap checks are scans of allocated blocks, and possibly some free blocks (see “Retained
Free Blocks’ on page 3-33), looking for errors that could not be detected immediately as
they occurred. The possible errors are:

¢ freefill modified
* post-fence modified
* pre-fence modified

A heap check will be performed in the following circumstances:

* repeated automatically after a specified number of heap operations

* when the heapcheck command with no expression is issued (see
“heapcheck” on page 7-153)

3-33

NightView RT User’s Guide

Leak Detection

3-34

* when selecting the Heap Errors... item from the Debug Display Menu,
and selecting either:

- Check Heap For New Errors First
- Check Heap For All Errors First

¢ when selecting one of the following menu items from the Data Item Popup
Menu:

- Check Heap and Report New Errors
- Check Heap and Report All Errors

* at a user-specified location with a heappoint check (see “heappoint”
on page 7-105)

In addition, alimited heap check, pertaining only to asingle block, is performed in the fol-
lowing circumstances:

¢ automatically when free or realloc iscaled on ablock
¢ when the heapcheck command with an expression isissued

* when selecting the Update Block Errors menu item from the Data Item
Popup Menu

Programs sometimes "leak" blocks, which wastes memory. If NightView's heap debug-
ging functionality is turned on with the heapdebug command (see “heapdebug” on page
7-53) or from the Process menu (see “Process Menu” on page 9-8), then it is possible to
obtain areport of leaked heap blocks. See “info memory” on page 7-146 or “Leak Sets/
Still Allocated Sets Data ltems” on page 9-58.

An alocated block is considered leaked if no pointer in your program referencesit. The
means of detecting leaks generally is conservative. It does not distinguish pointers from
other data types. So if, for example, an integer is encountered which happens to have a
value equivalent to that of a pointer to aleaked block, then leak detection will believe that
itisapointer to the leaked block, and therefore will not consider the block leaked.

Despite this conservatism, there are ways to disguise pointers which will cause leak detec-
tion to believe that aheap block isleaked when it really is not. Typically this ariseswhen a
pointer to a heap block is stored in some non-standard format. This could happen if a
pointer is stored in big endian format on a little endian machine, or vice versa, or if a
pointer is marshalled or pickled, and the original unmarshalled or unpickled pointer is
destroyed. In practice, these situations occur rarely.

Concepts

Errors

NightView error messages always have this format:
severity: text [error-message-id]
The severity can be one of:
Caution
Usually just an informational message. It is not serious.
Warning

A little more serious, but NightView tries to finish the current command as
you requested.

Error

A serious error. Thislevel of error terminates the current command. It also ter-
minates a command stream. See “ Command Streams’ on page 3-35.

Abort

So serious that NightView cannot continue running. This does not usually
indicate that you have done something wrong; either there is a system problem
or thereisabug in NightView.

The text isabrief explanation of the problem.

The error-message-id is a section name you can use with the help command to find out
more about the error and possibly how to fix it. An error-message-id begins with E-.

NOTE

Some libraries used by NightView, such as the X Window Sys-
tem™ , issue their own error messages in certain circumstances.
These error messages do not follow the format described above.
You can recognize these messages because they do not have the

[error-message-id] appended to the message.

Command Streams

A command stream is a set of commands that the debugger executes sequentially. There
are three kinds of command streams:

* Interactive command streams. These are commands entered directly by the
user.

3-35

NightView RT User’s Guide

* A file of commands being read by the source command is also a com-
mand stream. Execution of the source command suspends execution of
the command stream it appearsin and creates a new one that endures until
the file is exhausted.

* Event-driven command streams. For example, commands attached to a
breakpoint are an event-driven command stream. Each instance of hitting a
breakpoint creates a new command stream; the stream terminates when the
commands attached to the breakpoint are finished. These non-interactive
command streams always operate with safety level set to unsafe (see
“set-safety” on page 7-64).

The debugger may interleave the execution of two or more command streams. For
instance, it may execute some of the commands attached to one breakpoint, then execute
some of the commands attached to a different breakpoint (on behalf of a different
process), then execute more of the commands attached to the first breakpoint.

The debugger stops executing a command stream if it encounters a serious error (such as
an unknown command, or a badly formed command). A less severe error (such as a
warning about a process not being stopped) ssimply generates an error message, but the
debugger continues to execute the remaining commands. If a serious error terminates a
command stream, and that command stream was created by another command stream,
then the older command stream is also terminated. This goes on until the interactive
command stream is reached. The interactive command stream is not terminated.

on restart command streams are an exception to this rule. They continue to execute
even if the commands get errors. See “on restart” on page 7-47.

Interrupting the Debugger

3-36

The shell interrupt character (normally <CONTROL C>) does not terminate NightView.
Instead, it terminates whatever command is currently executing, if any. Y ou may wish to
useit if you accidentally ask NightView to print alarge quantity of information you don't
want. To type <CONTROL C>, press the ¢ key while holding down the control key.

In the graphical user interface, you can interrupt the debugger by clicking the Interrupt
button in the process toolbar. See Chapter 9 [Graphical User Interface] on page 9-1. See
“Process Toolbar” on page 9-20.

If you interrupt the debugger, all command streams except the standard input stream are
terminated. The standard input stream is interrupted, but not terminated, so it will prompt
for the next command immediately.

Furthermore, any output from debugged processes is temporarily halted (it is still
buffered, but not displayed) until after you enter the next debugger command. This gives
you a chance to type a command without interference from the debugger or the debugged
processes. See “Dialogue I/O” on page 3-5 for more information about controlling the
output from debugged processes.

Interrupting the debugger stops the Monitor Window from updating. See “Monitor
Window” on page 3-28.

Concepts

Macros

A macro is a named set of text, possibly with arguments, that can be substituted later in
any NightView command. When you define a macro, you specify its name, the names of
the formal arguments, and the text to be substituted. The text to be substituted is called
the body of the macro.

When you reference the macro in a NightView command, you again specify its name,
along with the actual arguments. Actual arguments are the text you want substituted for
the references to the formal arguments in the macro body. See “Defining and Using
Macros’ on page 7-158 for details on how to define and reference macros.

Macro expansion, the process of replacing the reference to a macro with its body, is
simply atextual substitution. Very little analysis is performed on the substituted text, so
macros can be a very powerful facility. Furthermore, a macro reference is expanded only
when it is needed.

Macros provide a way for you to extend the set of NightView commands. They also
provide away to define shortcuts for things frequently used in commands or expressions.

Convenience Variables

NightView provides an unlimited number of convenience variables. These are variables
you can assign values and reference in expressions, but they are managed by the
debugger, not stored in your program. You don't have to declare these variables, just
assign to them. They remember the data type and value last assigned to them.

There are two kinds of convenience variables — global and process local. Variables are
global by default, but by using the set-1local command (*set-local” on page 7-65) you
can make a variable local to a process. Once you declare a variable name process local,
each process maintains a separate copy of that convenience variable (a variable cannot be
local in one process, but shared among all other processes). It is possible to imagine other
types of scoping for convenience variables (such as breakpoint local or dialogue local),
but process local and global are the only kinds currently implemented.

Because conditions on inserted eventpoints and the expressions associated with monitor-
points, patchpoints, and tracepoints are compiled code executed in the process being
debugged, references to convenience variables in these expressions always treat the con-
venience variable as a constant, using the value the variable had at the time the expression
was defined. On the other hand, the commands associated with a breakpoint or watch-
point, and conditions attached to watchpoints, are always executed by the debugger, so a
convenience variable referenced in a command gets the value at the time the command or
condition is evaluated.

3-37

NightView RT User’s Guide

Logging

Value History

Each dialogue retains a buffer showing the output generated by the programs run in that
dialogue shell. This output may also be logged to afile (see “ set-show” on page 7-34).

In addition to the output log for each dialogue, you may log the commands you type, or
the entire debug session (see “set-log” on page 7-59).

NightView keeps the results of the print command (see “print” on page 7-84) on a
value history list. There is only one list for all the processes, and all printed values go on
this list regardless of the process. You can review this history (see “info history” on page
7-144), or use previous history values in new expressions (see “Specia Expression
Syntax” on page 7-4).

Command History

NightView keeps arecord of the commands you enter during a debugging session. There
are mechanisms in the simple full-screen interface and in the graphical user interface to
retrieve any of these commands, edit them, and re-enter them if desired. See “Editing
Commands in the Simple Full-Screen Interface” on page 8-2. See “ Command Toolbar” on
page 9-19.

NightView does not add a command to the command history if it is the same as the previ-
ous command. Empty lines are never added. Commands are added only from interactive
command streams. See “ Command Streams’ on page 3-35.

Initialization Files

3-38

When the debugger starts up, it looks for a file named .NightVviewrc in the current
working directory. If it can not find one there, it looks for $Shome/ .NightViewrc. The
file, if found, is then automatically executed as though it appeared as an argument to the
source command (see “source”’ on page 7-133).

Y ou can specify other initialization files, and you may disable the automatic execution of
the default initialization files, using options on the NightView command line. See
Chapter 6 [Invoking NightView] on page 6-1.

Optimization

Concepts

There are some problems associated with debugging optimized code. These are the most
common problems, but there are others:

* Machine language code may be moved around so that it does not corre-
spond line for line to the source code in your program.

* Variables may not have the values you expect. The most common reason
for thisis that the value of the variable is not needed at the current location
in your program and the register storing the value of the variable has been
reused for another value.

Concurrent compilers generate additional debug information that indicates
where variables are (i.e., register or stack) at different locations in your
program. NightView uses this information to access the variables when
their location(s) contain accurate values, and to prevent you from accessing
them when no location contains an accurate value.

In general, you must be aert to the possibility that the compiler has changed things in
your program. It may be easier to debug if you temporarily compile your program
without optimization, provided your bug is still reproducible in that case.

Compilers generate debugging information at high optimization levels because it is more
useful than to have nothing; however, the debug information is often inadequate to
describe an optimized program. (Future compilers may generate more accurate debug
information.) So, be careful and consult the appropriate manual for details.

Debugging Ada Programs

Packages

Ada programs employ severa concepts that are different from C, C++ and Fortran
programs. NightView provides methods to assist in debugging programs that utilize these
concepts.

Ada packages come in two parts: the specification, which gives the visible interface, and
the body, which contains the details. NightView knows what source file to display
depending on the execution context. For the Ada user, what is displayed is the body. If
the unit specification is of interest the 1ist command with the 'specification
modifier on the unit name may be used. (The modifier may be abbreviated.) See“list” on
page 7-75.

An Ada unit name may be used to specify alocation for those NightView commands that
need alocation specifier. See “Location Specifiers’ on page 7-14. For example, locations
are required for commands that manage eventpoints and the 1ist command. All Ada
unit names recorded in the debug table may be listed with the info functions

3-39

NightView RT User’s Guide

command.

With Ada programs, declarations are elaborated in linear order. The elaboration of adecla-
ration brings the item into existence, then evaluates and assigns any initial value to it.
Elaboration occurs before any statements are executed. If the program hasjust started, you
can step into the elaboration code of library-level units with the step command. See
“step” on page 7-119.

Exception Handling

Ada exception handling provides a method to catch and handle program errors. Each unit
may have exception handlers. Exceptions which occur in a unit without appropriate
handling code are propagated to the invoking unit. The unwinding process may be
complex, therefore NightView provides several mechanisms to assist in debugging. The
handle /exception command specifies whether to stop execution and notify the user
that an exception has occurred. See “handle” on page 7-125.

Multithreaded Programs

NightView gives you facilities for debugging threads and Ada tasks. On Linux, threads
are implemented with separate processes that share resources, including memory. In this
manual, those processes are referred to as thread processes. When this manual refersto a
process, that means all the thread processes together. Seepthread create (3).

When a process containing multiple threads or Ada tasks stops, NightView shows you the
thread process that caused the process to stop. To see other tasks, threads, or thread
processes, use the select-context command (see “select-context” on page 7-130).

It is important to note that NightView does not alow you to control the execution of a
task or thread independently of the others in that process. When you resume execution
(see “resume’ on page 7-118), all thread processes are allowed to execute. If you issue a
single-step command (see “step” on page 7-119), the selected task or thread will be
stepped according to the command, but the other thread processes may also execute one
or more instructions — they are not restricted to stepping the current line or instruction.

Each time your process stops, NightView automatically sets the current context to the
context of the task or thread that caused the process to stop. You may then use the
select-context command to change the context.

Limitations and Warnings

Setuid Programs

3-40

Setuid and setgid programs can be run in a dialogue shell. If you are the superuser or the

Concepts

owner of the setuid program, you may also debug the program. Otherwise, NightView
issues a warning message telling you that it has automatically detached from the process
and the program runs without being debugged. In this case, you also cannot debug any
child processes of such a program.

Note that programs run using the shell command (see “shell” on page 7-133) are not
controlled by the debugger and so may run setuid.

Attach Permissions

You are only alowed to attach to processes running as the same user and group as the
dialogue in which the attach command was issued, or, if a qualifier was specified, as
the dialogue in the qualifier. More precisely, the dialogue's effective uiD must be the
same as the real and saved uID of the process you want to attach, and the dialogue's
effective GID must be the same as the real and saved GID of the process you want to
attach. However, the root user can attach to any process.

Frequency-Based Scheduler

When a process running under control of the Frequency-Based Scheduler (FBS) hits a
breakpoint or watchpoint, or receives a signal that is handled by the debugger, the FBs
stops running. This means that other processes under control of the same F8s will no
longer be scheduled. Any other processes that are currently running will continue to run,
but once they do an £bswait (2) call, they will not start running again until the FBS is
restarted (it is asif the clock running the scheduler was stopped).

If you continue the stopped process, it will resume running, but once it executes an
fbswait (2) call, it will aso go to sleep and not wake up until the scheduler is
restarted.

It is your responsibility to start the scheduler running again. This can be done via the
resume command of the rtecp (1) program (perhaps using NightView's shell
command) or by clicking Resume in NightSim.

NightTrace Monitor

The tracepoint command (see “tracepoint” on page 7-102) can be used to trace
variables in a process. Tracing only works if the ntraceud (1) daemon has been
started prior to adding tracepoints to the process. It is the responsibility of the user to
make sure that the monitor is started (it may be started from within NightView using the
shell command, see “shell” on page 7-133). The ntraceud daemon may be started
within NightTrace by configuring a“user daemon™ and launching it.

Memory Mapped I/O

Special purpose programs often attach to regions of memory mapped to 1/0 space. This
memory is sometimes very sensitive to the size of reads and writes (often requiring an 8-
bit or 16-hit reference). The debugger may access memory using 8-bit, 16-bit, or 32-bit
references. This means you should probably avoid referencing 1/0 mapped memory
unless the size of access does not matter.

3-41

NightView RT User’s Guide

Be especially careful of printing pointers to strings (e.g., variables declared to be (char *)
in C or C++), because the debugger automatically dereferences these variables to print
the referenced string.

Note that accesses made by tracepoints, monitorpoints, and patchpoints will be made
according to the natural data type of the variable accessed, so those accesses should
normally work correctly.

Blocking Interrupts

If you are debugging a program containing sections of code that block interrupts, you can
easily get a CPU hung or crash the system by attempting to single step through this code
(or by hitting a breakpoint or watchpoint in a section of code which executes with
blocked interrupts).

Debugging with Shared Libraries

3-42

NightView provides the ability to debug programs that reference shared libraries, but
there are a few things you need to know to use this effectively. This section describes
how NightView interacts with shared libraries.

Shared libraries are a mechanism that alows many programs to share libraries of
common code without duplicating that code in each executable file. The executable files
for those programs contain the names of the shared-library files referenced by that
program. These references must be resolved before the program can reference data or
functions in the libraries. When the program first starts executing, a routine caled the
dynamic linker gets control and resolves referencesto shared libraries.

However, NightView gets control of a process befor e the dynamic linker executes. This
is useful for NightView, but not very useful for you the user, because until the dynamic
linker runs, you cannot reference any of the data or functions in the shared libraries. For
instance, you could not set a breakpoint in a function residing in a shared library.

Therefore, when NightView detects that the process references shared libraries, it lets the
dynamic linker execute before giving you control of the process. This allows you to
debug the entire program, without needing to know which parts reside in which shared
library.

One consequence of this action, however, concerns signals. If your process should
receive a signal while the dynamic linker is running, NightView will detect it and give
you an error message. You will not be able to reference the shared-library parts of your
program, and most likely the process will not be able to continue executing properly. One
source of such a signal is the dynamic linker itself. If it cannot find one or more of the
shared-library files referenced by the program, it will abort the process with asignal.

Some programs require more flexibility in their use of shared libraries. These programs
call the dlopen (3) service to load a shared library when it is needed. Because this
happens after the program has initialized, NightView is unaware that a new shared library
has been brought into the program'’s address space.

However, it is easy to make NightView aware of any dynamically loaded libraries at any

Concepts

time. Once your program has loaded alibrary or libraries using d1open, you can use the
exec-£file command to force NightView to reexamine the list of shared libraries
referenced by the program. See “exec-file” on page 7-43. After your program has called
dlopen, enter the following command:

exec-file program-name

where program-name is the name of the program you are running (the one that calls
dlopen). NightView updates its database of shared libraries, and you can then reference
data and procedures in the dynamically loaded libraries.

You can issue this exec-£ile command as often as you wish. If your program loads

severa libraries at various points during its execution, you may want to issue the exec -
file command several times.

3-43

NightView RT User’s Guide

3-44

4
Tutorial

This isthe tutorial for the command-line version of NightView. NightView’s command-
line interface runs on all terminals. For more information about the command-line inter-
face, see Chapter 7 [Command-Line Interface] on page 7-1. You may also be interested in
the graphical-user-interface (GUI) version of this chapter in Chapter 5 [Tutorial - GUI] on
page 5-1. Thereis amuch shorter tutorial in Chapter 1 [A Quick Start] on page 1-1.

About the Tutorial

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about processes and signals, but you do not need to know about
NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message to std-
out, sleeps, sends signal siIGUsR1 to the child, and loops. The child writes a message to std-
out when it receives the signal.

Become familiar with the tutorial’s source code; see Chapter F [Tutorial Files] on page F-1
or the files under the /usr/1ib/NightView/Tutorial directory. The source files

are;
C Fortran Ada
msg.h - - Defines constants
main.c main. £ main.a Forks a child and calls other rou-

tines

parent.c parent.f parent.a Sends signals to the child
child.c child.f child.a Receives signals from the parent
- ftint.c - Provides Fortran interfaces to

system services

Thistutorial takes at least two hours to do. Each section must be performed in order.

Exercisesin thistutorial tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps below:

1. Look up the information.

4-1

NightView RT User’s Guide

2. Try tofigure out the answer on your own.

3. Apply the provided solution. (Warning: Type the solutions exactly asthey
appear or your results may differ from those provided in later steps of the
tutorial. Do not type anything until you see the words "you should enter” in
the tutorial.)

You do not need to follow cross references in this tutorial unless you are explicitly told to
read them.

This tutorial often displays process IDs. Your process IDs will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your program
may differ from those shown. Additionally, the line breaks in your output may differ from
those shown because the lengths of displayed data items may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare this tutoria. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Creating a Program

4-2

NightView is mainly used with executables that contain debug information. To create such
aprogram, compile source files with a particular option, and link edit them.

Exercise:

Create a directory named nview where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

S mkdir nview
S cd nview

Note: do not enter the $. It is part of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
theindex.)

Solution:

From the index, Compiling has this information. The -g compiler option puts debug
information into an executable.

Tutorial

Exercise:

Decide what language program you want to debug. Do not copy the source files from the
/usr/lib/NightView/Tutorial directory, just compile and link these files. Make
the msg program contain debug information. For the Fortran program, you should also
build the ftint . c interface, but, for thistutorial, do not build it with debug information.
What command or commands did you use?

Solution:
For C, you should enter:

$ ce -g -o meg /usr/lib/NightView/Tutorial/*.c
For Fortran, you should enter:

$ ecc -c¢ /usr/lib/NightView/Tutorial/ftint.c
$ cf77 -g -o msg ftint.o \
/usr/lib/NightView/Tutorial/*.f

For MAXAda™, you should enter:

$ /usr/ada/bin/a.mkenv -g

$ /usr/ada/bin/a.path -I obsolescent

$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
msg

$ /usr/ada/bin/a.build -v msg

$ /usr/ada/bin/a.rmenv .

You should now have amsg program with debug information in your nview directory.
Note that for this tutorial, the source files should not be in this directory.

Starting NightView

You are ready to start up NightView without the graphical-user interface.

Exercise:
Read how to invoke the command-line interface of NightView. (You can find thisinforma-

tion in the manual, on the man page, or by invoking nview with the -help option.) Start
up the command-line interface of NightView.

Solution:

In the index, Sarting the debugger, Invoking the debugger, and nview, invoking have
thisinformation. See Chapter 6 [Invoking NightView] on page 6-1. You should enter one
of:

$ nview -nogui

4-3

NightView RT User’s Guide

4-4

$ nview -nog
Note that in this tutorial msg does not appear on the nview invocation line.
NightView responds with:

$ nview -nogui

NightView debugger - Version 5.1, linked Mon Jan 17
13:57:27 EST 2000

Copyright (C) 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Use the ’'run’ command to run your program under the
debugger
(local)

These messages include NightView version information, copyright information, help
information, and the command prompt, (1ocal). Your version number and date may dif-
fer. You will use online help later in this tutorial.

A dialogue contains a shell where you run shell commands and debug running programs.
Each dialogue has a name; the default dialogue is 1ocal. The default qualifier is also
local. The default command prompt is the qualifier in parentheses. For information
about dialogues, see “Dialogues’ on page 3-4. For information about qualifiers, see
“Qualifiers’ on page 3-4. For information about prompts, see “Command Syntax” on page
7-1.

In the command-line interface, NightView sometimes displays the command prompt
before it completes its output display. You think NightView may have some undisplayed
output.

Exercise:
To see the undisplayed output, wait a moment, press Space, then press Return.
NightView responds with:

/usr/lib/NightView-release/ReadyToDebug
$ /usr/lib/NightView-release/ReadyToDebug
S (local)

NightView runs the ReadyToDebug program and your executable in the dialogue shell.
You might see only one echo of /usr/1ib/NightView-release/ReadyToDebug,
depending on how quickly the dialogue shell starts (release is the NightView release
level). For information about ReadyToDebug, see “ReadyToDebug” on page 3-9. Note
that in thistutorial the dialogue shell promptis*“$. Yours may differ.

Tutorial
Getting General and Error Help

This tutorial expects you to look up information in the NightView manual. For the com-
mand-line and simple screen interfaces, online help is available only for error messages.
For general help you need to read the printed manual or consult the online help via Night-
View’s graphical user interface. When this tutorial refers to another section of the manual,
use one of those methods to read the section.

Exercise:

Try to use the non-existent "foo" command.

Solution:
You should enter:
(local) foo
Note: do not enter the (1local). Itis part of the command prompt.
NightView responds with:

Error: Unrecognized command "foo". [E-command proc003]
(local)

Exercise:

Now, invoke help without any arguments.

Solution:
You should enter one of:

(local) help
(local) he

NightView displays additional information about your most recent error and prints a new
command prompt.

Note that he is not an official abbreviation for the help command; however, you may
abbreviate NightView commands and some keywords to the shortest unambiguous prefix.
For more information, see “Command Syntax” on page 7-1. You cannot abbreviate file
names, symbolic names, or NightView construct names.

Exercise:

Once again, invoke help without any arguments.

Solution:

You should enter one of:

4-5

NightView RT User’s Guide

(local) help
(local) he

Note that NightView does not redisplay the extended error information; it assumes that
you have aready read that information. If there had been earlier errors, NightView would
display help for the next most recent error now. However, there are no earlier errors, so
NightView gives an error message indicating that.

NightView responds with the command prompt.

Starting Your Program

4-6

Most NightView commands operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must start msg now to debug it and to use most of the rest of the
NightView commandsin this tutorial.

Exercise:

Read about the run command. Use it to start the msg program and have the program wait
for debugging.

Solution:
You should enter one of:

(local) run ./msg
(local) ru ./msg

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

NightView responds with:

./msg

New process: local:15625 parent pid: 16428
Process local:15625 is executing /users/bob/nview/msg.
Reading symbols from /users/bob/nview/msg...done
Executable file set to

/users/bob/nview/msg

(local)

If msg was dynamically linked, NightView also displays the following messages:

Program was dynamically linked.

Dynamic linking completed.

The file "file" does not contain symbolic debug
information,

only external symbols will be visible.

The long message may not appear.

Tutorial

NightView shows the process ID (PID) of the new process and its parent process, the path
where your executable exists, and another local dialogue prompt. Your PIDs and the path
where your executable exists will probably differ from those in this tutorial. For informa-
tion about processes, see “Programs and Processes’ on page 3-2.

Note that by appending an ampersand (&) to the run command, you could have started
your program in the background of the dialogue shell. Thisis generally a good idea
because it gives you the flexibility to debug multiple programs in one NightView session;
however, in this tutorial, you will be supplying the program with input, so the program
needs to be running in the foreground.

Note also that although this tutorial does not ask you to do so, you can use the run com-
mand to rerun a program.

Debugging All Child Processes

By default, NightView debugs child processes only when they have called exec (3) . In
the msg program, the child process never calls exec. To be able to debug this child pro-
cess, you must use the set-children command before msg forks the child process.
Also, you have to issue the set-children command after the run command so the
set-children command can be applied to existing processes.

Exercise:

Read about the set -children command. Issue the set-children command so that
the child processin msg can be debugged.

Solution:
You should enter one of:

(local) set-children all
(local) set-c a

Handling Signals

By default, signals stop execution under the debugger. In the msg program, the parent pro-
cess sends signal sIGUsR1 to the child process. It then sleeps as a crude way of synchroniz-
ing the sending and receiving of signals. Having execution stop because of this signal is
not desirable in this case.

Exercise:

Read about the handle command. Use it to adjust the default handling of the siGusr1l
signal so that the process does not stop.

4-7

NightView RT User’s Guide

Solution:
You should enter one of:

(local) handle SIGUSR1 nostop
(local) ha usrl nos

NightView responds with:

Signal handling complete
(local)

Note: you had to issue the handle command after the run command so the handle
command could be applied to existing processes.

Listing the Source

4-8

You probably want to look at the source files before debugging them.

Exercise:

Read about the 1ist command. Notice all the syntax variations for this command, and
use one of them to examine the source file where main is defined.

Solution:

You should enter one of:

(local) list main.c:1 (for the C program)
(local) 1 main.c:1 (for the C program)
(local) list main.f:1 (for the Fortran program)
(local) 1 main.f:1 (for the Fortran program)
(local) list main.a:1 (for the Adaprogram)
(local) 1 main.a:l (for the Ada program)
(local) list main

(local) 1 main

(local) list

(local) 1

NightView responds by displaying ten numbered source lines. (You will see adifferent ten
source lines depending on how you ran the 1ist command.) Executable lines have an
asterisk (*) source line decoration beside the line numbers. For more information about
source line decorations, see “ Source Line Decorations” on page 7-81.

The 1ist command is repeatable. Press Return.
Now you see the next ten lines of the sourcefile.

Keep pressing Return until you get an end of file message.

Tutorial

Exercise:

List the source file so the display is centered around line 16.

Solution:

You should enter one of:

(local) list main.c:16 (for the C program)
(local) 1 main.c:16 (for the C program)
(local) list main.f:16 (for the Fortran program)
(local) 1 main.f:16 (for the Fortran program)
(local) list main.a:16 (for the Ada program)
(local) 1 main.a:16 (for the Ada program)
(local) 1list 16

(local) 1 16

NightView responds by listing the lines.

Setting the First Breakpoints

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpoint before it executes the instruction where the
breakpoint is set.

Exercise:

Read about the breakpoint command. Set a separate breakpoint to stop at each of the
following places:

* Thelinethat promptsfor the number of signalsto send
* Thecaltochild routine

* The comment beforethe call to parent routine

Solution:
For the C program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.c:18
(local) b 25
local:15625 Breakpoint 2 set at main.c:25
(local) b 30
local:15625 Breakpoint 3 set at main.c:30

For the Fortran program, this part of your debug session should look something like this:

(local) b 19
local:15625 Breakpoint 1 set at main.f:19

4-9

NightView RT User’s Guide

(local) b 26
local:15625 Breakpoint 2 set at main.f:26
(local) b 28
local:15625 Breakpoint 3 set at main.f:28

For the Ada program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.a:18
(local) b 25
local:15625 Breakpoint 2 set at main.a:25
(local) b 27
local:15625 Breakpoint 3 set at main.a:27

Note that the preceding examples could have spelled out the breakpoint command.
NightView gives each breakpoint an ordinal identification number beginning at 1. By
default, breakpoints are set in the current list file, main.c, main. £, or main.a inthis
tutorial.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line.

Listing a Breakpoint

NightView changes the list display when you set a breakpoint.

Exercise:

Issue the 1ist command that will relist the current lines.

Solution:
You should enter one of:

(local) list =
(local) 1 =

NightView redisplaysthe ten lines you were viewing. Note that if you are displaying aline
with a breakpoint on it, that line now has a B (for breakpoint) source line decoration.

Continuing Execution

To make use of the breakpoints you set, you must allow the msg program to execute up to
the statement with the breakpoint.

4-10

Tutorial

Exercise:

Read about the continue command. Use it to continue program execution up to the
statement with the breakpoint.

Solution:

You should enter one of:

(local) continue
(local) ¢

NightView displays the statement with the breakpoint. Note that the source line decoration
isnow aB=. The B still indicates a breakpoint, and the = indicates that execution is
stopped there.

Not Entering Functions

Execution is stopped at the line that prompts for the number of signals to send. You don’t
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about the next command. Use it to skip over the output statement (or function).

Solution:
You should enter one of:

(local) next
(local) n

The msg program writes the prompt "How many signals should the parent send the
child?'. NightView displays the next line. The = source line decoration shows that execu-
tionis stopped there.

Entering Input

You must respond to the msg program prompt "How many signals should the parent send
the child?'. By default, NightView interprets all input as debugger commands.

Exercise:

Assume that you want to send ten signals. See what problems arise when you simply enter
the number ten.

4-11

NightView RT User’s Guide

Solution:
You should enter:
(local) 10

NightView responds with an error message.

Exercise:

Read about the 1 command. Use it to make NightView understand that the 10 is data for
the msg program. (For information about Dialogue I/O, see “Diaogue I/O” on page 3-5
and “!” on page 7-33.)
Solution:
You should enter:

(local) !10
NightView responds with:

(local)

Asdescribed in “ Starting NightView” on page 4-3, NightView sometimes has output that
does not appear until you press Return.

Press Space, then press Return to see your input echoed.
NightView responds with:

10
(local)

Creating Families

4-12

Naming a process or process group has the following advantages over specifying PIDs.

* Mnemonic names are often easier to remember and type than numeric PIDs.

* You can group PIDS with a single name so that qualified NightView com-
mands act only on the processes in the group.

* You can write generic NightView command files that use process names
instead of specific PIDS.

In this tutorial, you will want to issue some NightView commands that pertain only to the
parent process and others that pertain only to the child process.

Tutorial

Exercise:

Read about the family command. Use it to give the name parent to all processes that
currently exist in your program. (There is only one process so far.)

Solution:

You should enter one of:

(local) family parent all
(local) fa parent all

Note that to name only the parent process, you had to issue this command before Night-
View executes the fork in the msg program. Note also that at this point, the a1l argu-
ment represents only one process, the parent process. Later you will seeit represent multi-
ple processes.

You will usethe parent family name later in the tutorial.

Continuing Execution Again

Before you can examine aspects of parent routine and child routine, you must
get NightView to stop at the callsto these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
You should enter one of:

(local) continue
(local) ¢

NOTE
If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the fork () library
routine. If so, the output below will not match what you see, but

thisis not significant to the remainder of the tutorial. Do not enter
any extracommands.

For the C program, NightView responds with:

New process: local:13504 parent pid: 15625

4-13

NightView RT User’s Guide

#0
20 < |

local:15625: at Breakpoint 3,

0x10002838

in main() at main.c line 20

pid = fork();

0x1000284c in main()

main.c line 31

31 B=|
(local)

parent routine(pid, total sig);

For the Fortran program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 22
22 < | pid = ftfork()
local:15625: at Breakpoint 3, 0x10003904 in main()
main.f line 29
29 B=| call parent routine(pid)
(local)
For the Ada program, NightView responds with:
New process: local:13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 21
21 < | pid := posix_1003_1.fork;
local:15625: at Breakpoint 3, 0x10010bdc in main()

main.a line 28

28 B=|
(local)

The first few lines are from the child process. (In your output, the parent lines might
appear first.) They show that you are currently calling fork (£t fork in the Fortran pro-
gram). The < source line decoration indicates that this line made a subprogram call which
has not yet returned. You may also see a > source line decoration, which indicates that
control will return to, or within, this line. The subprogram that implements fork is hid-
den. NightView usually does not show you system library routines. See “ Interesting Sub-

parent routine(pid, total sig);

programs’ on page 3-27.

In this example, the child process has process 1D 13504, and the parent process has process
ID 15625. Note that your process IDs will differ. Note also that after the fork, only the

parent process continued execution; the child processis still at the fork.

The source line decoration in the parent processis now aB=. The B still indicates a break-

point and the = indicates that execution is stopped there.

Creating Families Again

In this tutorial, you will want to issue some NightView commands that pertain only to the

parent process and others that pertain only to the child process.

Exercise:

Use the f£amily command to give the name child to only the newly forked child pro-

Cess.

4-14

at

at

at

Tutorial

Solution:
You should enter one of:

(local) family child all - parent
(local) fa child all - parent

At thistime, the a11 argument consists of both the parent and child PIDs. In section “Cre-
ating Families’ on page 4-12, you created the parent family so it consists of only the
parent PID. Subtraction leaves only the child PID inthe child family.

You will usethe child family name later in the tutorial.

Note that to name only the child process, you had to issue this command after NightView
executes the fork in the msg program.

Catching up the Child Process

To individually manipulate the parent and child processes, you must qualify your debug-
ger commands.

Exercise:

Read about qualifiers. Get the child process to continue execution up to the breakpoint on
the call to child routine (line25inmain.c, line2linmain. £, andline 25in
main.a).

Solution:
You should enter one of:

(local) (child) continue
(local) (child) c

For the C program, NightView displays:

local:13504: at Breakpoint 5, 0x10002840 in main() at
main.c line 25

25 B=| child routine(total sig);

(local)

For the Fortran program, NightView displays:

local:13504: at Breakpoint 4, 0x100038fc in main() at
main.f line 26

26 B=| call child routine()

(local)

For the Ada program, NightView displays:

4-15

NightView RT User’s Guide

local:13504: at Breakpoint 4, 0x10010bd0 in main() at
main.a line 25

25 B=| child routine(total sig);

(local)

This breakpoint in the child corresponds to breakpoint 2 in the parent. Inherited event-
points get new identifiers. The order of eventpoint numbersin the child is unpredictable,
S0 you might see a breakpoint number of 4, 5, or 6.

Note that you could have qualified the command with the child’s process ID number
instead of the child family name.

Verifying Data Values

4-16

You want to look at the value of variablesin the msg program.

Exercise:

Read about the print command. Use it to check that the total sig variable hasthe
value 10.

Solution:
You should enter one of:

(local) print total sig
(local) p total sig

NightView responds with:

Process local:15625:
$1: total sig = 10
Process local:13504:
$2: total sig = 10

By default, the 10 is printed in decimal. NightView keeps a history of printed values. The
$1 meansthat thisisthe first value in this history. For more information about the printed
value history, see “Value History” on page 3-38.

Note that if you had looked at the total sig variable after itslast use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For more
information, see “Optimization” on page 3-39. In the Fortran program, total sigwas
put in COMMON so you could consistently seeits value in the tutorial.

NightView displays values for both processes because there are multiple processes in the
default qualifier local.

Tutorial
Entering Functions

At this point, the parent process is about to run parent routine, and the child process
isabout to run child routine.

Exercise:

Read about the step command. Use it to simultaneously enter both routines.

Solution:
You should enter one of:

(local) step
(local) s

Note that if you had wanted to enter aroutine in only one process, you would have had to
qualify the step command. (For information about qualifiers, see “Qualifiers’ on page
3-4)

In all the following output descriptions, NightView displaysthe line you stepped to. The =
source line decoration indicates that execution is stopped there.

For the C program, NightView displays:

#0 0x10002884 1in child routine(int total sig = 10) at
child.c line 14
#0 0x10002944 in parent_routine(pid t child pid = 13504
, int total sig = 10)

at parent.c line 11

14 = | signal (SIGUSR1l, signal handler) ;
11 = | int isec = 2;
(local)

Line 14 isfrom the child process. Line 11 is from the parent process.
For the Fortran program, NightView displays:

#0 0x1000393c in child routine() at child.f line 17

17 = | ireturn = ftsignal(sigusrl, signal handler)
#0 0x10003a48 1in parent routine (INTEGER child pid /
13504 /)

at parent.f line 16
16 = | do 10 sig ct = 1, total sig
(local)

Line 17 isfrom the child process. Line 16 is from the parent process.
For the Ada program, NightView displays:

#0 0x100108fc in child routine(total sig : IN integer =
10) at child.a line 26

4-17

NightView RT User’s Guide

#0 0x10010578 in parent routine(child pid : IN pid t =

13504,

total sig : IN integer = 10) at parent.
a line 6
26 = | procedure child routine(total sig : integer) is
6 = | procedure parent routine(child pid : posix 1003
l.pid t; total sig : integer) 1is
(local)

Line 26 isfrom the child process. Line 6 is from the parent process.

NightView tells you when a step command takes you into (or out of) a subprogram call.
The lines that begin with #0 announce that you have entered child routine inthe
child process and parent routine in the parent process.

Note that the order of the lines displayed may vary.

Examining the Stack Frames

It is often helpful to see how you got to a certain point in a program.

Exercise:

Read about the backtrace command. Use it to display the list of currently active stack
frames.

Solution:
You should enter one of:

(local) backtrace
(local) bt

For the C program, NightView responds with:

Backtrace for process local:13504
#0 0x10002884 in child routine(int total sig = 10) at c
hild.c line 14
#1 0x10002848 in main() at main.c line 25
Backtrace for process local:15625
#0 0x10002944 in parent_routine(pid t child pid = 13504
, int total sig = 10)
at parent.c line 11
#1 0x10002854 in main() at main.c line 31
(local)

For the Fortran program, NightView responds:

Backtrace for process local:13504
#0 0x1000393c in child routine() at child.f line 17
#1 0x10003900 in main() at main.f line 26

4-18

Tutorial

Backtrace for process local:15625
#0 0x10003a48 in parent routine (INTEGER child pid /
13504 /)
at parent.f line 16
#1 0x10003910 in main() at main.f line 29
(local)

For the Ada program, NightView responds:

Backtrace for process local:13504
#0 0x100108fc 1in child routine(total sig : IN integer =
10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
#2 0x10022750 1in <anonymouss> ()
Backtrace for process local:15625
#0 0x10010578 1in parent routine(child pid : IN pid t =
13504,
total sig : IN integer = 10) at
parent.a line 6
#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymouss> ()
(local)

Note the order of the displayed lines may vary.
On lines labeled #0, NightView shows its location within the current routine. On lines
labeled #1, NightView shows the location of the call to the current routine within the call-

ing routine.

Inthe Ada program, stack frame #2 isfrom the library level elaboration routine, which has
no name.

Moving in the Stack Frames

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variable tracefile inmain.

Exercise:

Read about the up command. Qualify the up command so the current stack frame of the
parent processismain.

Solution:
You should enter:
(local) (parent) up

For the C program, NightView responds with:

4-19

NightView RT User’s Guide

Output for process local:15625

#1 0x10002854 in main() at main.c line 31
31 B<| parent routine(pid, total sig);
(local)

For the Fortran program, NightView responds with:

Output for process local:15625

#1 0x10003910 in main() at main.f line 29
29 B<| call parent routine(pid)
(local)

For the Ada program, NightView responds with:

Output for process local:15625

#1 0x10010be4 in main() at main.a line 28

28 B<| parent routine(pid, total sig);
(local)

The < source line decoration indicates that this line made a subprogram call which has not
yet returned. You may also see a > source line decoration, which indicates that control will
return to, or within, thisline.

Note that you could have qualified the command with the parent’s process ID humber
instead of the parent family name.

Verifying Data Values in Other Stack Frames

4-20

From main, you can examine local variables, run functions, etc.

Exercise:

Qualify aprint command so it displaysthe value of local variable tracefile inmain
only for the parent process.

Solution:
You should enter one of:

(local) (parent) print tracefile
(local) (parent) p tracefile

For the C program, NightView responds with:

$3: tracefile = 0x30003100 "msg file"
(local)

For the Fortran and Ada programs, NightView responds with:

$3: tracefile = "msg file"
(local)

Tutorial

Note that you could have qualified the command with the parent’s process ID number
instead of the parent family name.

Returning to a Stack Frame

You want to return to parent _routine.

Exercise:

Read about the down command. Qualify the down command so the current stack frame of
the parent processisparent routine.

Solution:
You should enter one of:

(local) (parent) down
(local) (parent) do

For the C program, NightView responds with:

Output for process local:15625
#0 0x10002944 in parent routine (pid t child pid =
13504, int total sig = 10)
at parent.c line 11
11 = | int isec = 2;
(local)

For the Fortran program, NightView responds with:

Output for process local:15625
#0 0x10003a48 in parent routine (INTEGER child pid /

13504 /)

at parent.f line 16
16 = | do 10 sig ct = 1, total sig
(local)

For the Ada program, NightView responds with:

Output for process local:15625
#0 0x10010578 1in parent routine(child pid : IN pid t =
13504,

total sig : IN integer = 10) at
parent.a line 6
6 = | procedure parent routine(child pid : posix 1003
l.pid t; total sig : integer) 1is
(local)

Note: it isnot meaningful to do a down without doing an up first (as you did in section
“Moving in the Stack Frames’ on page 4-19).

4-21

NightView RT User’s Guide

Resuming Execution

You want to continue the execution of the child process so that it will get signals as soon
asthey are sent by the parent process. The continue command can do this, but it ties up
the debugger’s input mechanism while waiting for the process. You don’t want to wait.

Exercise:

Read about the resume command. Qualify the resume command to resume execution
of the child process without the waiting that occurs with the continue command.

Solution:
You should enter one of:

(local) (child) resume
(local) (child) res

Note that you could have qualified the command with the child’s process ID number
instead of the child family name.

Setting the Default Qualifier

4-22

As described in “ Starting NightView” on page 4-3, the default qualifier is local, which
means that unqualified commands affect all processes. It is cumbersome to keep qualify-
ing commands that operate on a subset of these processes. The rest of the commandsin
this tutorial apply only to the parent process.

Exercise:

Read about the set-qualifier command. Use it to tell NightView that the default
qualifier for the remaining commands is the family that consists of only the parent pro-
Cess.

Solution:
You should enter one of:

(local) set-qualifier parent
(local) set-g parent

NightView changes the prompt to your new qualifier, parent.

Tutorial
Removing a Breakpoint

Breakpoint 1 (set in “ Setting the First Breakpoints’ on page 4-9) is no longer needed.

Exercise:

Read about the delete command. Use it to remove breakpoint 1.

Solution:
You should enter one of:

(parent) delete 1
(parent) d 1

Setting Conditional Breakpoints

It is often useful to suspend execution conditionally.

Exercise:

Read about the breakpoint command. Set a breakpoint on the line that displays how
long the parent is deeping in parent routine; the breakpoint should suspend execu-
tion when the value of isec equalsthevaueof total sig.

Solution:
For the C program, you should enter one of:

(parent) breakpoint 16 if isec == total sig
(parent) b 16 if isec == total sig

For the Fortran program, you should enter one of:

(parent) breakpoint 17 if isec .eq. total sig
(parent) b 17 if isec .eq. total sig

For the Ada program, you should enter one of:

(parent) breakpoint 15 if isec = total sig
(parent) b 15 if isec = total sig

For the C program, NightView responds with:
local:15625 Breakpoint 7 set at parent.c:16
For the Fortran program, NightView responds with:

local:15625 Breakpoint 7 set at parent.f:17

4-23

NightView RT User’s Guide

For the Ada program, NightView responds with:

local:15625 Breakpoint 7 set at parent.a:15

Attaching an Ignore Count to a Breakpoint

4-24

Sometimes you won’'t want to monitor each iteration of aloop. For example, assumethat a
loop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

Exercise:

Read about the ignore command. Set abreakpoint command on the line that dis-
plays how long the parent is sleeping in parent _routine. NightView has a predefined
name for the most-recently set breakpoint. For more information about this name, see
“Eventpoint Specifiers’ on page 7-17. Use this name on an ignore command on thisline
inparent routine; ignorethe next fiveiterations.

Solution:
For the C program, you should enter:

(parent) breakpoint 16
(parent) ignore . 5

or

(parent) b 16
(parent) ig . 5

For the Fortran program, you should enter:

(parent) breakpoint 17
(parent) ignore . 5

or

(parent) b 17
(parent) ig . 5

For the Ada program, you should enter:

(parent) breakpoint 15
(parent) ignore . 5

or

(parent) b 15
(parent) ig . 5

For the C program, NightView responds with:

Tutorial

local:15625 Breakpoint 8 set at parent.c:16
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Fortran program, NightView responds with:

local:15625 Breakpoint 8 set at parent.f:17
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Ada program, NightView responds with:

local:15625 Breakpoint 8 set at parent.a:15
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

Attaching Commands to a Breakpoint

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.
Exercise:

Read about the commands command. Attach a command stream that prints out the value
of total sig only when you hit the breakpoint you set in the previous step. Note: use
the NightView predefined name for the most-recently set breakpoint.

Solution:

You should enter one of:

(parent) commands
(parent) com .

NightView responds with:

Type commands for when the breakpoints are hit, one per
line.

End with a line saying just "end".

>

You should enter:

\%

print total sig
end

\%

or

\%

p total sig
end

\%

4-25

NightView RT User’s Guide

Automatically Printing Variables

You can create alist of one or more variables to be printed each time execution stops.

Exercise:

Read about the display command. Use a display command to display the value of
the sig_ct variable.

Solution:

You should enter one of:

(parent) display sig ct
(parent) disp sig ct

Note that this display command runs every time execution stops, and the print com-
mand from “ Attaching Commands to a Breakpoint” on page 4-25 runs only when execu-
tion stops at a specific breakpoint.

Watching Inter-Process Communication

4-26

You aready resumed the execution of the child process, so NightView gave you a prompt
and did not wait for the child process.

Exercise:

Now continue execution for the parent process.

Solution:
You should enter one of:

(parent) continue
(parent) c

NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Child got ordinal signal #1

3. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #2

4. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #3

5. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #4
Process local:13504 received SIGUSR1
Child got ordinal signal #5
local:15625: at Breakpoint 8, 0x10002950 in parent_ routine (

Tutorial

pid_t child pid = 13504, int total_sig = 10)

at parent.c line 16
16 B=| printf("%d. Parent sleeping for %d seconds\n", sig ct, isec);
1: sig ct = 6
(parent)

Note the order of the displayed lines may vary. For the Fortran and Ada programs, Night-
View prints the argument or arguments to parent routine differently.

Because of the ignore command on breakpoint 8, the parent process sent only five out of
ten signalsto the child process before the breakpoint was hit. The source code is written so
that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process. The lines that mention signal
SIGUSR1 appear because the handle command isimplicitly set to print and explicitly
set to nostop. Two lines show where execution stopped; these lines will differ depending
on your programming language. Another line shows the value of sig ct because of the
display command.

Note that the print total sig output did not appear if NightView returned your
prompt before the commandsin the commands command stream completed their output.

Exercise:

To seetheprint total sig output, enter a space and Return. (You do not need to
do thisif the output already appeared.)

WARNING
If you press Return without the space, you will repeat the con -
tinue command.)

NightView responds with the following:

$4: total sig = 10
(parent)

Patching Your Program

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how thisis donein the source.

Exercise:

List the sourcefile for theparent routine sothedisplay is centered around line 13.

Solution:
You should enter one of:

(parent) list parent.c:13 (for the C program)

4-27

NightView RT User’s Guide

(parent) 1 parent.c:13 (for the C program)
(parent) list parent.f:13 (for the Fortran program)
(parent) 1 parent.f:13 (for the Fortran program)
(parent) list parent.a:13 (for the Adaprogram)
(parent) 1 parent.a:13 (for the Ada program)

You will notice that the variable i sec aways has the value 2. Instead, you could vary the
sleep interval isec by assigning it a value from 1 through 3, based on the signal count
sig_ct. Hint: In Cthe % operator, or in Fortran the mod function, or in Ada the rem
operator may be useful.

Exercise:

Read about the patchpoint command. In the parent process, on the line that displays
how long the parent is deeping, patch in the assignment expression just described.

Solution:
For the C program, you should enter:
(parent) patchpoint at 16 eval isec = sig ct % 3 + 1
For the Fortran program, you should enter:
(parent) patchpoint at 17 eval isec = mod(sig ct, 3) + 1
For the Ada program, you should enter:
(parent) patchpoint at 15 eval isec := sig ct rem 3 + 1
For the C program, NightView responds with the following:
local:15625 Patchpoint 9 set at parent.c:16
For the Fortran program, NightView responds with the following:
local:15625 Patchpoint 9 set at parent.f:17
For the Ada program, NightView responds with the following:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint

You want to run msg to completion without stopping at breakpoint 8.

Exercise:

Read about the disable command. Useit to disable breakpoint 8 (set in section “ Attach-
ing an Ignore Count to a Breakpoint” on page 4-24).

4-28

Tutorial

Solution:
You should enter one of:

(parent) disable 8
(parent) disa 8

Examining Eventpoints

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
tracepoints, and heappoints. You want to examine the locations, associated commands,
and statistics related to the eventpoints you have set in msg.

Exercise:

Read about the info eventpoint command. Useit to examine all eventpoints.

Solution:

You should enter one of:

(parent) (local) info eventpoint
(parent) (local) i ev

(parent) (all) info eventpoint
(parent) (all) i ev

For the C program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
2 B Y main.c:25
3 B Y main.c:30
#crossings=1 #hits=1
7 B Y parent.c:16
only if isec == total_sig
#crossings=6
8 B N parent.c:16
#crossings=6 #hits=1
commands :
print total sig
9 P Y parent.c:16
eval = isec = sig ct % 3 + 1

Eventpoints for process local:13504:
ID Typ Enb Where

4 B Y main.c:18

4-29

NightView RT User’s Guide

#hits=1
.c:25

#hits=1
.c:30

#crossings=1

5 B Y main

#crossings=1

6 B Y main
(parent)

For the Fortran program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb

2 B

Y main.f:26

3 B Y main.f:28
#crossings=1 #hits=1

7 B Y parent.f:17
only if 1isec .eq. total sig
#crossings=6

8 B N parent.f:17
#crossings=6 #hits=1
commands :

print total sig
Y parent.f:17

isec = mod(sig ct, 3) + 1

9 P
eval =

Eventpoints for process local:13504:

ID Typ Enb

4 B
#crossings=1

Y main.f:26
#hits=1

5 B Y main.f:28
6 B Y main.f:19
#crossings=1 #hits=1
(parent)

For the Ada program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb

4-30

2
3

B
B

#crossings=1

B

only if

Y main.a:25

Y main.a:27
#hits=1
Y parent.a:15

isec = total sig

#crossings=6

B

#crossings=6

N parent.a:15
#hits=1

commands :

=

eval =

print total sig
Y parent.a:15
isec :=

sig ct rem 3 + 1

Continuing to

Tutorial

Eventpoints for process local:13504:

ID Typ Enb Where
4 B Y main.a:25
#crossings=1 #hits=1
5 B Y main.a:27
6 B Y main.a:18
#crossings=1 #hits=1
(parent)

NightView displays all eventpoints for process 1ocal: 15625 followed by the event-
points for process 1ocal : 13504.

Breakpoints 1, 2, and 3 were set in “ Setting the First Breakpoints’ on page 4-9. Breakpoint
1 has no entry because it was deleted in “Removing a Breakpoint” on page 4-23. Break-
points 2 and 3 are still enabled. Breakpoint 3 has been crossed once and hit once. This
means that its line has been executed once and stopped on once.

When the child process was forked, it inherited the parent process's breakpoints. The
child's breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The order
of the eventpoint numbers for inherited eventpoints is not necessarily the same as in the
parent.

Breakpoint 7 was set in “ Setting Conditional Breakpoints’ on page 4-23 and is still
enabled; note that NightView displays the condition on this breakpoint. This breakpoint
has been crossed six times without being hit. This means that the line has been executed
six times, but the condition has not been true yet.

Breakpoint 8 was set in “ Attaching an Ignore Count to a Breakpoint” on page 4-24 and
was disabled in “Disabling a Breakpoint” on page 4-28; note that NightView displays the
commands (print total sig) attached to this breakpoint. This breakpoint has been
crossed six times and has been hit only once. This means that the line has been executed
six times, but the ignore command has prevented the breakpoint from being hit more
than once.

Patchpoint 9 was set in “Patching Your Program” on page 4-27 and is still enabled; note
that NightView displays the expression associated with this patchpoint. This patchpoint
has not been crossed or hit yet so these statistics are omitted from the display.

Completion

There's nothing else to look at, so you decide to run msg to completion.

Exercise:

Use the continue command to continue execution.

4-31

NightView RT User’s Guide

4-32

Solution:
You should enter one of:

(parent) continue
(parent) c

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped inthe exit () library
routine. If so, enter the command up until the debugger reports

that the processisin main.

NightView responds with something like this:

6. Parent sleeping for 1 seconds
7. Parent sleeping for 2 seconds

Process local:13504 received
Child got ordinal signal #6

SIGUSR1

8. Parent sleeping for 3 seconds

Process local:13504 received
Child got ordinal signal #7

SIGUSR1

9. Parent sleeping for 1 seconds

Process local:13504 received
Child got ordinal signal #8

SIGUSR1

10. Parent sleeping for 2 seconds

Process local:13504 received
Child got ordinal signal #9
Process local:13504 received
Child got ordinal signal #10
Process local:15625 is about
Process local:13504 is about
#1 0x1000285c in main() at
#1 0x1000285c in main() at
34 <> exit(0);
34 <> exit(0);
--> Undisplayed items:

1: (print) sig ct
(parent)

Note the order of the displayed lines may vary.

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word " Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made. The lines
that mention signal SIGUSR1 appear because the handle command is implicitly set to

print and explicitly set to nostop.

The last two lines say that sig_ct isnot displayed. This message appears because of the
display command and because the sig ct variableis not visible at this point in the
parent process. For the Fortran program, depending on which compiler you used, sig ct

may still be available, so it may be displayed.

SIGUSR1
SIGUSR1

to exit normally
to exit normally
main.c line 34
main.c line 34

Tutorial
Leaving the Debugger

Thetutorial isover.

Exercise:

Read about the quit command. Use it to leave the debugger.

Solution:
You should enter one of:

(parent) quit
(parent) q

Neither process has completely exited, so NightView asks the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:
You should respond:

Kill all processes being debugged? y
NightView responds with:

You are now leaving NightView...
Process local:13504 exited normally
Process local:15625 exited normally
Dialogue local has exited.

4-33

NightView RT User’s Guide

4-34

5
Tutorial - GUI

This is the tutorial for the graphical user interface (GUI) version of NightView. Night-
View’s graphical user interface runs only on X servers. For more information about the
graphical user interface, see Chapter 9 [Graphical User Interface] on page 9-1. You may
also be interested in the command-line version of this chapter in Chapter 4 [Tutorial] on
page 4-1. Thereis amuch shorter tutorial in Chapter 2 [A Quick Start - GUI] on page 2-1.

About the Tutorial - GUI

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about window system concepts, processes, and signals, but you do
not need to know about NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message to std-
out, sleeps, sends signal siIGUsR1 to the child, and loops. The child writes a message to std-
out when it receives the signal.

Become familiar with the tutorial’s source code; see Chapter F [Tutoria Files] on page F-1
or the files under the /usr/1ib/NightView/Tutorial directory. The source files

are:
C Fortran Ada
msg.h - - Defines constants
main.c main. £ main.a Forks a child and calls other rou-

tines

parent.c parent.f parent.a Sends signals to the child
child.c child.f child.a Receives signals from the parent
- ftint.c - Provides Fortran interfaces to

system services

Thistutorial takes at least two hoursto do. Each section must be performed in order. If you
do not have two hours, you may want to see Chapter 2 [A Quick Start - GUI] on page 2-1.

Exercisesin thistutorial tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps below:

1. Look up the information.

2. Try to figure out the answer on your own.

51

NightView RT User’s Guide

3. Apply the provided solution. (Warning: Perform the solutions exactly as
indicated, or your results may differ from those provided in later steps of
the tutorial. Do not do anything until you see the words "you should" in the
tutorial.)

You do not need to follow cross references in this tutorial unless you are explicitly told to
read them.

Sometimes NightView displays a status so briefly that it seems to flash before being
replaced by another status. This tutorial documents only the last status displayed.

This tutorial often displays process IDs. Your process 1Ds will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your program
may differ from those shown. Additionally, the line breaks in your output may differ from
those shown because the lengths of displayed dataitems may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare this tutoria. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Some of the shortened commands that appear in thistutorial are not official abbreviations
for NightView commands; however, you may abbreviate NightView commands and some
keywords to the shortest unambiguous prefix. For more information, see “ Command Syn-
tax” on page 7-1. You cannot abbreviate file names, symbolic names, or NightView con-
struct names.

You could run this entire tutorial with commands and operations from the keyboard. How-
ever, to reduce confusion, use the mouse whenever possible during this tutorial. Use
mouse button 1 when you are told to click, drag, and select.

Creating a Program - GUI

5-2

NightView is mainly used with executables that contain debug information. To create such
aprogram, compile source files with a particular option, and link edit them.

Exercise:

Create a directory named nview where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

$ mkdir nview
$ cd nview

Note: do not enter the $. It is part of the shell prompt.

Tutorial - GUI

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
theindex.)

Solution:

From the index, Compiling has this information. The -g compiler option puts debug
information into an executable.

Exercise:

Decide what language program you want to debug. Do not copy the source files from the
/usr/lib/NightView/Tutorial directory, just compile and link these files. Make
the msg program contain debug information. For the Fortran program, you should also
build the ftint . c interface, but, for thistutorial, do not build it with debug information.
What command or commands did you use?

Solution:
For C, you should enter:

$ ee -g -o meg /usr/lib/NightView/Tutorial/*.c
For Fortran, you should enter:

$ ce -c¢ /usr/lib/NightView/Tutorial/ftint.c
S cf77 -g -o msg ftint.o \
/usr/lib/NightView/Tutorial/*.f

For MAXAda, you should enter:

$ /usr/ada/bin/a.mkenv -g

$ /usr/ada/bin/a.path -I obsolescent

$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
msg

$ /usr/ada/bin/a.build -v msg

$ /usr/ada/bin/a.rmenv .

You should now have amsg program with debug information in your nview directory.
Note that for this tutorial, the source files should not be in this directory.

Starting NightView - GUI

You are ready to start up NightView with the graphical user interface.

5-3

NightView RT User’s Guide

Exercise:

Read how to invoke the graphical user interface of NightView. (You can find thisinforma-
tion in the manual, on the man page, or by invoking nview with the -help option.) Start
up the graphical user interface of NightView.

Solution:

In the index, Starting the debugger, Invoking the debugger, and nview, invoking have
thisinformation. See Chapter 6 [Invoking NightView] on page 6-1. You should enter:

S nview
Note that in thistutorial msg does not appear on the nview invocation line.
NightView responds by displaying the main window.

NightView communicates with a system through a dialogue. A dialogue contains a shell
where you run shell commands and debug running programs. For information about dia-
logues, see “Dialogues’ on page 3-4.

You communicate with a dialogue shell through a shell panel. A shell panel is used to type
input to the shell and to see the shell output. For thistutorial wewill create ashell panel on
a separate page. Create a new page. Click on the View menu and select Add Page. A
new tabbed page appears with the name Page 2. The old page now shows a tab with the
name Main. Create ashell panel. Click on the View menu and select New Shell Panel.
Each dialogue has a name; the default dialogue is 1ocal. The page now has a panel with
thetitlelocal shell. For information about shell panels, see “ Shell Panel” on page 9-49.

The shell panel displays:

/usr/lib/NightView-release/ReadyToDebug
$ /usr/lib/NightView-release/ReadyToDebug
$

NightView runs the ReadyToDebug program automatically as part of initialization. You
might see only one echo of /usr/1ib/NightView-release/ReadyToDebug,
depending on how quickly the dialogue shell starts (release is the NightView release
level). For information about ReadyToDebug, see “ReadyToDebug” on page 3-9. Note
that in thistutorial the dialogue shell promptis*‘$"". Yours may differ.

Getting General and Error Help - GUI

54

This tutorial expects you to look up information in the NightView manual. You may read
the hard copy or the similar online manual. The online manual is accessible through the
Help menu.

Exercise:

Try to use the non-existent "foo" command.

Tutorial - GUI

Solution:

Switch back to thefirst page by clicking on the tab 1abeled Main. The command toolbar is
near the bottom of the window with alabel Command: and a combo box where you can
type commands. In the command toolbar, you should enter:

foo
and press Return.

NightView displaysin the message panel:

Error: Unrecognized command "foo". [E-command proc003]
Exercise:
Read about this error message.
Solution:

You should click on the Help menu and select On Last Error.
The help window displays additional information about your most recent error.

Read the information. Note that Summary of Commands appears highlighted.

Exercise:

Read about getting information about all NightView commands.

Solution:
In the help window, you should click on Summary of Commands.

The help window displays a list of NightView commands with each command high-
lighted. The vertical and horizontal scroll bars next to the help display let you examine the
rest of the help text.

Exercise:

Read about the command toolbar.

Solution:

In the NightView window, you should click on the Help menu and select On Context.
NightView changes your pointer to a modified question mark.

Click on the menu bar.

NightView restores your pointer. The help window displays information about the menu
bar.

When this tutorial asks you to read about buttons or panels, use this same procedure.

55

NightView RT User’s Guide

For now, you are finished using help.

Exercise:

Close the help window.

Solution:

In the help window, you should click on the File menu and select Exit. (The help window
is running a separate program, so only that program will exit. NightView will still be run-

ning.)
The help window goes away.

Thistutorial discussesthe Help menu againin “Debugging All Child Processes- GUI” on
page 5-7. For more information about help, see “GUI Online Help” on page 9-1.

Starting Your Program - GUI

5-6

Most NightView features operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must start msg now to debug it and to use most of the rest of the
NightView featuresin this tutorial.

Exercise:

Start the msg program, and have it wait for debugging.

Solution:

You should switch back to the page with the shell panel by clicking on the tab labeled
Page 2. You may need to click in the shell panel to give it the keyboard focus. In the
shell panel, you should enter:

./msg
and press Return.

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

You should switch back to the other page by clicking on the tab labeled Main.

The status bar at the bottom of the window shows that msg is the executable program the
processis running.

The message panel shows:

New Procesgss: local: 15625 parent pid: 17882
Process local:15625 is executing /users/bob/nview/msg.

Tutorial - GUI

Reading symbols from /users/bob/nview/msg...done
Executable file set to
/users/bob/nview/msg

If msg was dynamically linked, NightView a so displays the following messages:

Program was dynamically linked.
Dynamic linking completed.

NightView shows the process ID (PID) of the new process and the path where your execut-
able exists. Your PID and the path where your executable exists will probably differ from
those in this tutorial. For information about processes, see “Programs and Processes’ on

page 3-2.

The source panel title bar shows the program being debugged, msg, the qualifier,
local: 15625, and the name of the source file that is being displayed in the source
panel, main.c, main. f, Ormain. a.

In the source panel, NightView displays numbered source lines. Executable lines have a
small blue diamond source line decoration beside the line numbers.

For more information about source line decorations, see “ Source Line Decorations’ on
page 7-81. The vertical and horizontal scroll bars in the source panel let you examine the
rest of the sourcefile.

The status bar shows the status Stopped for exec. This means that the process has just
exec (3) 'ed anew program image.

The context panel has an entry for this process. The header shows the qualifier,
local: 15625, and the name of the program this process is running, msg. The context
panel entry is for the current stack frame, which isin a start-up routine that gets control
beforemain. Later, we will see process entries here, but for now thereis only one process,
and the context panel shows process entries only if there is more than once process. See
“Context Panel” on page 9-53.

Note that by appending an ampersand (&) to the . /msg, you could have started your pro-
gram in the background of the dialogue shell. This is generally a good idea because it
gives you the flexibility to debug multiple programs in one NightView session; however,
in this tutorial, you will be supplying the program with input, so the program needs to be
running in the foreground.

Note also that although thistutorial does not ask you to do so, you can rerun a program by
invoking it again in the shell panel, or by clicking on the Rerun button in the process
toolbar.

Debugging All Child Processes - GUI

By default, NightView debugs child processes only when they have called exec (3) . In
the msg program, the child process never calls exec. To be able to debug this child pro-
cess, you must tell NightView to debug children before msg forks the child process. Also,
you have tell NightView to debug children after invoking . /msg so this setting can be
applied to existing processes. See “Multiple Processes” on page 3-2.

5-7

NightView RT User’s Guide

Exercise:

Read about the process settings dial og.

Solution:

You should click on the Help menu and select NightView User’s Guide. Open the
contents tree to NightView User’s Guide, then Graphical User Interface, then
Main Window, then Menu Bar, then Process Menu. Scroll downto Process Set-
tings, and then follow the link to Process Settings Dialog Box. Read the informa-
tion that the help window displays about the process settings dialog box.

Exercise:

Use the File menu to close the help window.

Solution:
In the help window, you should click on the File menu and select Exit.
The help window goes away.

When this tutorial asks you to read about graphical components, use this same procedure.

Exercise:

Use the process settings dialog box to indicate that the child process in msg should be
debugged.

Solution:
You should click on the Process menu and select the Process Settings... entry.

Inthe General page, inthe Debug Children area, click on the combo box and select
always.

Click on the OK button to apply the change and dismiss the dialog box.

NightView echoesa set -children command in the message panel.

Handling Signals - GUI

5-8

By default, signals stop execution under the debugger. In the msg program, the parent pro-
cess sends signal sIGUsR1 to the child process. It then sleeps as a crude way of synchroniz-
ing the sending and receiving of signals. Having execution stop because of this signal is
not desirable in this case.

Tutorial - GUI

Exercise:

Use the process settings dialog box to adjust the default handling of the siGusr1 signal so
that the process does not stop.

Solution:
You should click on the Process menu and select the Process Settings... entry.

In the Signals page, scroll down to the entry for siGusr1. Turn off the checkbox for
Stop, but leave the checkboxes set for Print and Pass.

Click on the OK button to apply the change and dismiss the dialog box.
NightView echoes ahandle command in the message panel.

Note: you had to change the signal settings after invoking . /msg so they could be
applied to existing processes.

Setting the First Breakpoints - GUI

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpoint before it executes the instruction where the
breakpoint is set.

Exercise:

Read about the context menu in the source panel. Set a separate simple breakpoint to stop
at each of the following places:

* Theline that prompts for the number of signalsto send
* Thecaltochild routine

* The comment beforethe call to parent routine

Solution:

You should right click on the prospective breakpoint line in the source panel. Right click-
ing brings up the context menu for the source panel. Clicking on the particular line identi-
fiesit asthe target for the subsequent action. Thisisindicated by changing the background
color of theline. Select Set simple breakpoint in the context menu. Repeat thisfor the
other breakpoints.

For the C program, the lines are 18, 25, and 30. NightView displays the following infor-
mation in the message panel.

local:15625 Breakpoint 1 set at main.c:18
local:15625 Breakpoint 2 set at main.c:25
local:15625 Breakpoint 3 set at main.c:30

59

NightView RT User’s Guide

For the Fortran program, the lines are 19, 26, and 28. NightView displays the following
information in the message panel.

local:15625 Breakpoint 1 set at main.f:19
local:15625 Breakpoint 2 set at main.f:26
local:15625 Breakpoint 3 set at main.f:28

For the Ada program, the lines are 18, 25, and 27. NightView displays the following infor-
mation in the message panel.

local:15625 Breakpoint 1 set at main.a:18
local:15625 Breakpoint 2 set at main.a:25
local:15625 Breakpoint 3 set at main.a:27

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
tracepoints, and heappoints. NightView gives each eventpoint an ordinal identification
number beginning at 1.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line. How-
ever, the message in the message panel has the number of the line you clicked on.

NightView changes the source panel when you set a breakpoint. Note that each line with a
breakpoint on it now hasastop sign @ source line decoration.

Continuing Execution - GUI

5-10

To make use of the breakpoints you set, you must allow the msg program to execute up to
the statement with the breakpoint.

Exercise:

Read about the Resume button in the process toolbar. Use it to continue program execu-
tion up to the statement with the breakpoint.

Solution:
You should click on the Resume button. I’

The status bar shows the status Stopped at breakpoint 1. This means that the process
hit breakpoint number 1.

NightView changes the source line decoration on the statement with the breakpoint to a
stop sign overlaid with agreen triangle pointing to theright & . The stop sign still indi-
cates a breakpoint, and the triangle indicates that execution is stopped there.
For the C program, NightView displays the following in the message panel:

local:15625: at Breakpoint 1, 0x10002818 in main() at
main.c line 18

Tutorial - GUI

For the Fortran program, NightView displays the following in the message pandl:

local:15625: at Breakpoint 1, 0x10003878 in main() at
main.f line 19

For the Ada program, NightView displays the following in the message panel:

local:15625: at Breakpoint 1, 0x10010bl8 in main() at
main.a line 18

Not Entering Functions - GUI

Execution is stopped at the line that prompts for the number of signals to send. You don’t
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about the Next button. Use it to skip over the output statement (or function).

Solution:
You should click on the Next button. I;

In the source panel, NightView chanaes the source line decoration of the next line to a
green triangle pointing to theright, [l which shows that execution is stopped there.

The status bar shows the status Stopped after step. This means that the process has
finished a stepping command.

Switch to Page 2. The msg program writes the prompt "How many signals should the
parent send the child?" in the shell panel.

Entering Input - GUI

You must respond to the msg program prompt "How many signals should the parent send
the child?".

Exercise:

Send ten signals.

Solution:

Remember that you may need to click in the shell panel to put the keyboard focus there. In
the shell panel, you should enter:

51

NightView RT User’s Guide

10

and press Return. Switch back to the first page by clicking on the tab labeled Main.

Continuing Execution Again - GUI

5-12

Before you can examine aspects of parent routine and child routine, you must
get NightView to stop at the calls to these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
You should click on the Resume button. I’

The status bar shows the status Stopped at breakpoint 3. This means that the process
hit breakpoint number 3.

For the C program, NightView displays the following in the message panel:

local:15625: at Breakpoint 3, 0x1000284c in main() at
main.c line 31

For the Fortran program, NightView displays the following in the message pandl:

local:15625: at Breakpoint 3, 0x10003904 in main() at
main.f line 29

For the Ada program, NightView displays the following in the message panel:

local:15625: at Breakpoint 3, 0x10010bdc in main() at
main.a line 28

The source line decoration is now a stop sign overlaid with atriangle pointing to the right.
The stop sign still indicates a breakpoint, and the triangle indicates that execution is
stopped there. &

The context panel has a new entry for the child process. The child process is the one with
the status New Process. The parent process, 15625, is the current process, shown with
green text. Buttons, menus and commands generally apply to the current process.

You would like to view the child process as the current process.

Exercise:

Read about the context panel. Switch to the child process.

Tutorial - GUI

Solution:
In the context panel, you should click on the entry for the child process.
Now the source panel is displaying the child process.

The status bar still shows that msg is the executable program the current processis run-
ning. (The child is executing the same program as the parent.) The qualifier in the status
bar now shows the qualifier of the child process.

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the fork () library
routine. If so, click the Up button 1' until the debugger reports
that the processisin main.

For the C program, the message panel shows:

New process: local:13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20

For the Fortran program, the message panel shows:

New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 22

For the Ada program, the message panel shows:

New process: local:13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 23

In this example, the child process has process 1D 13504, and the parent process has process
ID 15625. Note that your process IDs will differ. Note also that after the fork, only the
parent process continued execution; the child processis still at the fork.

The source panel shows the main program because execution is stopped in a routine
(fEork (2)) which is hidden becauseit is uninteresting. NightView usually does not show
you system library routines. See “Interesting Subprograms’ on page 3-27. The source line
decoration, a gray (rather than green) triangle pointing to the right, indicates that this line
made a subprogram call which has not yet returned. [

The status bar shows the status New process. This means that the process has just been
created by a fork (2) call in the parent process. The process is stopped. See “Multiple
Processes’ on page 3-2.

The status bar shows the qualifier, local:13504.

The context panel lists entries for processes 15625 and 13504.

5-13

NightView RT User’s Guide

Catching up the Child Process - GUI

Exercise:

Get the child process to continue execution up to the breakpoint on the call to
child routine (line25inmain.c,line26inmain.f,andline25inmain.a).

Solution:
With the child as the current process, you should click on the Resume button. I’
For the C program, NightView displaysin the message panel:

local:13504: at Breakpoint 5, 0x10002840 in main() at mai
n.c line 25

For the Fortran program, NightView displays in the message panel:

local:13504: at Breakpoint 4, 0x100038fc in main() at mai
n.f line 26

For the Ada program, NightView displaysin the message panel:

local:13504: at Breakpoint 4, 0x10010bd0 in main() at mai
n.a line 25

The debug source filenameismain.c ofr main. f Or main.a.

NightView puts a source line decoration of a stop sign overlaid by a green triangle point-
ingto theright ¢@& in the source panel on line 25 for the C and Ada programs and line
26 for the Fortran program.

The status bar shows the status Stopped at breakpoint 5. This means that the process
hit breakpoint number 5. Breakpoint 5 in the child corresponds to breakpoint 2 in the par-
ent. Inherited eventpoints get new identifiers, but the order of the eventpoint identifiersis
unpredictable, so your breakpoint may have a different number.

Verifying Data Values - GUI

5-14

You want to look at the value of variablesin the msg program.

Exercise:

Read about the Print button in the value toolbar. Use it to check that the total sig
variable has the value 10.

Tutorial - GUI

Solution:

In the source panel, start at one side of any instance of the total sig variable, hold
down mouse button 1, drag it across the entire variable name, and release. (Alternatively,
you could double click on the variable name where it appears surrounded by spaces.)
Only the variable name should be highlighted. Click on the Print button. I—ﬁr

NightView displays in the message panel:
$1: total sig = 10

The Print button always prints integers in decimal. NightView keeps a history of printed
values. The $1 meansthat thisisthefirst value in this history. For more information about
the printed value history, see “Value History” on page 3-38.

Note that if you had looked at the total sig variable after itslast use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For more
information, see “Optimization” on page 3-39. In the Fortran program, total sigwas
put in COMMON so you could consistently seeits value in the tutorial.

Listing the Source - GUI

You want to look at the source code for child routine.

Exercise:

Read about the Source menu's List Function/Unit... item in “ Source Menu” on page
9-10. With the parent as the current process, use this item to display the source code for
child routine.

Solution:

You should switch to the parent process by clicking on the parent process's entry in the
context panel. (The parent has the status Stopped at breakpoint 3.) Then you should
click onthe Source menu, and select List Function/Unit....

After clicking on the parent process, the status bar shows Stopped at breakpoint
3. The source panel shows that execution is stopped at the call to parent routine.

After clicking in the Source menu, NightView puts up the Select a Function/Unit
dialog box.

Exercise:

Read about the Filter button inthe Select a Function/Unit dialog box. Useit to search
for child routine.

5-15

NightView RT User’s Guide

Solution:

Inthe Select a Function/Unit dialog box, you should enter child routine asthe
regular expression, and click on the Filter button. (For more information about regular
expressions, see “Regular Expressions’ on page 7-18.)

NightView findsthe child routine function and putsit in thelist.

Exercise:

Read about the Select button in the Select a Function/Unit dialog box. Use it to
change the source displayed.

Solution:
Inthe Select a Function/Unit dialog box, you should click on the Select button.
NightView closesthe Select a Function/Unit dialog box.

The title bar of the source panel changes the file nameto child.c, or child. £, or
child.a, and the source panel shows the source code.

Entering Functions - GUI

5-16

At this point, the parent process is about to run parent routine, and the child process
isabout to run child routine.

When this tutorial asks you to read about commands, click on the Help menu and select
On Commands. When the help window appears, scroll down to the desired command
and click on the link for the command. Read the information about the command and then
close the help window.

Exercise:

Read about the a11 qualifier. See “Qualifiers’ on page 3-4. Read about the step com-
mand. Use it to simultaneously enter both routines.

Solution:

Remember, you may need to click in the command toolbar to get the keyboard focus to be
there. In the command toolbar, you should enter one of:

(all) step
(all) s

Note that if you had wanted to enter aroutine in only one process, you could have quali-
fied the step command with the process 1D, or you could have made the process the cur-
rent process before entering the command.

Because you used the (all) qudifier, the step command causes both processesto step.

Tutorial - GUI

For the C program, NightView displays in the message panel:

#0 0x10002884 in child routine(int total sig = 10) at c
hild.c line 14
#0 0x10002944 in parent_routine(pid t child pid = 13504
, int total sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the message panel:

#0 0x1000393c in child routine() at child.f line 17
#0 0x10003a48 in parent routine (INTEGER child pid /
13504 /)
at parent.f line 16

For the Ada program, NightView displaysin the message panel:

#0 0x100108fc 1in child routine(total sig : IN integer =
10) at child.a line 26
#0 0x10010578 1in parent routine(child pid : IN pid t =
13504,
total sig : IN integer = 10) at parent.
a line 6

NightView tells you when a step command takes you into (or out of) a subprogram call.
The lines that begin with #0 announce that you have entered child routine inthe
child process and parent routine in the parent process.

Note that the order of the lines displayed may vary.

Both the process entries in the context panel show the status Stopped after step. This
means that the processes have finished a stepping command. The status bar shows the
same status for the parent process.

The source file name in the title bar of the source panel changesto parent . c, or par-
ent . f, or parent .a, and the source panel shows the source code.

Line 11 of parent.c, or line 16 of parent. £, or line 6 of parent . a in the source
panel has the source line decoration of a green triangle pointing to theright, [which
indicates that execution is stopped there.

Examining the Stack Frames - GUI

It is often helpful to see how you got to a certain point in a program.

Exercise:

Use the context panel to display thelist of currently active stack frames for both processes.

5-17

NightView RT User’s Guide

Solution:

You should observe the context panel. You may need to scroll and to expand the framesin
the child process by clicking on the box with the + sign: There are entries for the two pro-
cesses. Under each process are entries for the stack frames.

For the C program, NightView displays in the context panel:

15625 msg Stopped after single step
#0 0x10002944 in parent routine(pid t child pid =
13504, int total sig = 10) at parent.c line 11
#1 0x10002854 in main() at main.c line 31
#2 0xb7dd5879 in _ libc start main(...
13504 msg Stopped after single step
#0 0x10002884 in child routine(int total sig =
10) at
child.c line 14
#1 0x10002848 1in main() at main.c line 25
#2 0xb7dd5879 in _ libc start main(...

For the Fortran program, NightView displaysin the context panel:

15625 msg Stopped after single step
#0 0x10003a48 in parent routine (INTEGER child pid /
13504 /) at parent.f line 16
#1 0x10003910 in main() at main.f line 29
13504 msg Stopped after single step
#0 0x1000393c 1in child routine() at child.f line 17
#1 0x10003900 in main() at main.f line 26

For the Ada program, NightView displays in the message panel:

15625 msg Stopped after single step
#0 0x10010578 in parent routine(child pid : IN pid t
= 13504, total sig : IN integer = 10) at parent.a
line 6
#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 1in <anonymous> ()
13504 msg Stopped after single step
#0 0x100108fc in child routine(total sig : IN integer
= 10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
2 0x10022750 in <anonymouss ()

On lines labeled #0, NightView shows its location within the current routine. On lines
labeled #1, NightView shows the location of the call to the current routine within the call-
ing routine.

Inthe Ada program, stack frame #2 isfrom the library level elaboration routine, which has
no name.

5-18

Tutorial - GUI
Moving in the Stack Frames - GUI

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variable tracefile inmain.

Exercise:

Make sure the parent process is the current process.

Solution:

You should click on the entry for the parent process in the context panel.

Exercise:

Read about the Up button in the process toolbar. Use the Up button to make the current
stack frame of the parent process be main.

Solution:
In the process toolbar, you should click on the Up button. 1'

Thefile name in the source panel title bar changestomain.c, main. f, or main.a, and
the source panel shows the source code.

For the C program, NightView displaysin the message panel:

Output for process local:15625
#1 0x10002854 in main() at main.c line 31

For the Fortran program, NightView displays in the message panel:

Output for process local:15625
#1 0x10003910 in main() at main.f line 29

For the Ada program, NightView displaysin the message panel:

Output for process local:15625
#1 0x10010be4 in main() at main.a line 28

The source line decoration in the source panel is a gray triangle pointing to the right,
which indicates that execution will resume there when the called routine returns. This
source line decoration appears on line 34 of main.c and line 29 of main. £, and line 31
of main.a. The source line decoration may appear on different lines depending on which
compiler you used.

5-19

NightView RT User’s Guide

Verifying Data Values in Other Stack Frames - GUI

From main, you can examine local variables, run functions, etc.

Exercise:

Use the locals panel to display the value of local variable tracefile in main for the
parent process.

Solution:

The locals panel may be sharing screen space with the context panel. In that case there will
be tabs at the bottom of those panels. Click the one labeled Locals.

For the C program, NightView displaysin the locals panel:
tracefile 0x30003100 "msg file"
For the Fortran and Ada programs, NightView displaysin the locals panel:

tracefile "msg file"

Returning to a Stack Frame - GUI

5-20

You want to return to parent routine.

Exercise:

You could return to parent routine with the Down button. Another way to move in
the stack framesisto click on a stack frame in the context panel. Use the context panel to
make the current stack frame of the parent processbe parent routine.

Solution:

You should click on the entry for parent routine under the parent processin the con-
text panel. This frame becomes the current stack frame.

For the C program, NightView displaysin the message panel:

Output for process local:15625
#0 0x10002944 1in parent routine(pid t child pid =
13504, int total sig = 10)

at parent.c line 11

Tutorial - GUI

For the Fortran program, NightView displays in the message panel:

Output for process local:15625
#0 0x10003a48 in parent routine (INTEGER child pid /
13504 /)

at parent.f line 16

For the Ada program, NightView displaysin the message panel:

Output for process local:15625
#0 0x10010578 in parent routine(child pid : IN pid t =
13504,

total sig : IN integer = 10) at
parent.a line 6

Thefile name in thetitle bar of the source panel changesto parent . c or parent. f, or
parent . a, and the source panel shows the source code.

Thegreentriangle . source line decoration in the source panel indicates that execu-
tion stopped there. This source line decoration appears on line 11 of parent . c, and line
15 of parent. £, andline 6 of parent.a.

Resuming Execution - GUI

You want to continue the execution of the child process so that it will get signals as soon
asthey are sent by the parent process.

Exercise:

Use the Resume button in the process toolbar to resume execution of the child process.

Solution:

You should switch to the child process by clicking on the child process's entry. Then you
should click on the Resume button. I’

After clicking the child process's entry, the file name in the source panel title bar is
child.c,orchild.forchild.a.

After pressing Resume, NightView disables (dims) most of the buttons in the process
toolbar.

The status bar status bar shows the status Running. This means that the processis cur-
rently executing.

5-21

NightView RT User’s Guide

Removing a Breakpoint - GUI

Breakpoint 1 (set in “ Setting the First Breakpoints - GUI” on page 5-9) is no longer
needed.

Exercise:

Read about the eventpoint panel’s context menu in “Eventpoint Panel” on page 9-51. Use
the Delete item to remove breakpoint 1.

Solution:

You should right-click on the entry for breakpoint 1 in the eventpoint panel. The context
menu appears. Select Delete.

NightView deletes the breakpoint from the eventpoint panel.

Setting Conditional Breakpoints - GUI

5-22

It is often useful to suspend execution conditionally.

Exercise:

Read about the Eventpoint menu’'s Set Breakpoint... itemin “Eventpoint Menu” on
page 9-12. Use this feature to set a breakpoint on the line that displays how long the parent
is sleeping in parent routine; the breakpoint should suspend execution when the
value of isec equalsthevalueof total sig.

Solution:

In the source panel, you should click on the line. For parent . c, itisline 16. For par-
ent . f, itisline 17. For parent. a, it isline 15. You should click on the Eventpoint
menu. Select Set Breakpoint....

NightView displays the breakpoint dialog box.

Do not press Return after you enter the following text.

For the C program, you should enter in the Condition If: text input area:
isec == total sig

For the Fortran program, you should enter in the Condition If: text input area:
isec .eq. total_ sig

For the Ada program, you should enter in the condition text input area:

isec = total sig

Tutorial - GUI

You are ready to finish setting the conditional breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on the OK button.

NightView closes the breakpoint dialog box.

For the C program, NightView displaysin the message pandl:
local:15625 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView displays in the message panel:
local:15625 Breakpoint 7 set at parent.f:17

For the Ada program, NightView displaysin the message panel:
local:15625 Breakpoint 7 set at parent.a:15

The indicated line gets a stop sign source line decoration in the source panel.

Attaching an Ignore Count to a Breakpoint - GUI

Sometimes you won’'t want to monitor each iteration of aloop. For example, assumethat a
loop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

Exercise:

Set a breakpoint on the line that displays how long the parent is sleeping in
parent_ routine, ignoring the next fiveiterations.

Solution:

In the source panel, you should click on the line. For parent. c, itisline 16. For par-
ent . f, itisline 17. For parent . a, it isline 15. You should click on the Eventpoint
menu. Select Set Breakpoint....

NightView displays the breakpoint dialog box.
Enter 5 inthe lgnore Count: spin box. Do not press Return.

You are ready to finish attaching an ignore count to a breakpoint.

5-23

NightView RT User’s Guide

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on the OK button.

NightView closes the breakpoint dialog box.

For the C program, NightView displaysin the message pandl:
local:15625 Breakpoint 8 set at parent.c:16

For the Fortran program, NightView displays in the message panel:
local:15625 Breakpoint 8 set at parent.f:17

For the Ada program, NightView displaysin the message panel:

local:15625 Breakpoint 8 set at parent.a:15

Attaching Commands to a Breakpoint - GUI

5-24

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.

Exercise:

Attach a command stream that prints out the value of total sig only when you hit the
breakpoint you set in the previous step (set in “ Attaching an Ignore Count to a Breakpoint
- GUI” on page 5-23).

Solution:

In the eventpoint panel, you should right-click on the entry for breakpoint 8. The context
menu appears. Select Edit....

NightView displays the breakpoint dialog box.

Notethat 5 isinthelgnore Count: text input areafrom “ Attaching an Ignore Count to a
Breakpoint - GUI” on page 5-23.

Do not press Return after you enter the following text.
Inthe Commands: text input area, you should enter one of:

print total sig
p total sig

Tutorial - GUI

Exercise:

In the breakpoint dialog box, save your changes and make the dialog box go away.

Solution:
In the breakpoint dialog box, you should click on the OK button.

NightView closes the breakpoint dialog box.

Automatically Printing Variables - GUI

You can create alist of one or more expressions to be displayed each time execution stops.

Exercise:

Read about the Data Display button in the value toolbar. Use it to display the value of
the sig_ct variable.

Solution:

In the source panel, start at one side of any instance of the sig_ct variable, hold down
mouse button 1, drag it across the entire variable name, and release. (Alternatively, you
could double click on the variable name where it appears surrounded by spaces.) Only the
variable name should be highlighted. Click on the Data Display button. |E|

A data panel appears, with aline for sig_ct. The value displayed is meaningless,
because sig ct hasnot yet beeninitialized by the program.

Note that the data panel is updated every time execution stops, and the print command
from “ Attaching Commands to a Breakpoint - GUI” on page 5-24 runs only when execu-
tion stops at a specific breakpoint.

Watching Inter-Process Communication - GUI

You already resumed the execution of the child process, so NightView did not wait for the
child process.

Exercise:

Now continue execution for the parent process.

Solution:

You should click on the Resume button. I’

5-25

NightView RT User’s Guide

5-26

In the dialogue /O area, NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1

Child got ordinal signal #1

3. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #2

4. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #3

5. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #4
Process local:13504 received SIGUSR1
Child got ordinal signal #5

Because of the ignore count on breakpoint 8, the parent process sent only five out of ten
signals to the child process before the breakpoint was hit. The source code is written so
that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process. The lines that mention signal
SIGUSR1 appear because the signal settings are implicitly set to print and explicitly set
to nostop.

The status bar status bar shows the status Stopped at breakpoint 8. This means that
the process hit breakpoint number 8.

For the C program, NightView displays something like the following in the message
panel:

local:15625: at Breakpoint 8, 0x10002950 in
parent routine (
pid t child pid = 13504, int total sig
= 10)
at parent.c line 16
$3: total sig = 10

For the Fortran program, NightView displays something like the following in the message
panel:

local:15625: at Breakpoint 8, 0x105d0 in parent routine(
INTEGER child pid / 13504 /) at

parent.f line 17

$3: total sig = 10

For the Ada program, NightView displays something like the following in the message
panel:

local:15625: at Breakpoint 8, 0x30324 in parent routine(
child pid : IN integer 13504,
total sig : IN integer = 10) at

parent.a line 15
$3: total sig = 10

Tutorial - GUI

Initial lines show where execution stopped. One line shows the value of total sig
from the print command attached to breakpoint 8.

Note that the order of the displayed lines may vary.

The data panel showsthevalue of sig ct as®6.

Patching Your Program - GUI

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how thisis donein the source.

You will notice that the variable i sec aways has the value 2. Instead, you could vary the
sleep interval isec by assigning it avalue from 1 through 3, based on the signal count
sig_ ct. Hint: In C the % operator, or in Fortran the mod function, or in Adathe rem
operator may be useful.

Exercise:

Read about the Eventpoint menu's Set Patchpoint... item in “Eventpoint Menu” on
page 9-12. In the parent process, on the line that displays how long the parent is sleeping,
patch in the assignment expression just described.

Solution:

You should click on the line in the source panel, then click on the Eventpoint menu.
Select Set Patchpoint....

NightView displays the patchpoint dialog box.

Do not press Return after you enter the following text.

For the C program, you should enter in the Evaluate: text input area
isec = sig ct % 3 + 1

For the Fortran program, you should enter in the Evaluate: text input area:
isec = mod(sig ct, 3) + 1

For the Ada program, you should enter in the Evaluate: text input area:

isec := sig ct rem 3 + 1

You are ready to finish patching your program.

Exercise:

Save your changes and make the patchpoint dialog box go away.

5-27

NightView RT User’s Guide

Solution:
In the patchpoint dialog box, you should click on the OK button.
NightView closes the patchpoint dialog box.

Note that the line in the source panel with a patchpoint on it now has the multiple event-
point €f) sourceline decoration, because it now has multiple kinds of eventpoints,
breakpoint and patchpoint. Thisis overlaid with the program counter decoration. @

For the C program, NightView displaysin the message pandl:
local:15625 Patchpoint 9 set at parent.c:16
For the Fortran program, NightView displays in the message panel:
local:15625 Patchpoint 9 set at parent.f:17
For the Ada program, NightView displaysin the message panel:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint - GUI

You want to run msg to completion without stopping at breakpoint 8.

Exercise:
Disable breakpoint 8 (set in section “ Attaching an Ignore Count to a Breakpoint - GUI” on
page 5-23).
Solution:

In the eventpoint panel, you should click on the Enabled field of the entry for breakpoint
8, which currently has the value Yes. The enabled field becomes a combo box. Set the
combo box to No. You must click somewhere else in the eventpoint panel to remove the
combo box and update the value. For example, you might click on the PID field.

The eventpoint panel shows the new enabled status of breakpoint 8: No.

Examining Eventpoints - GUI

You want to examine the types, locations, and statuses of the eventpoints you have set in
msg.

5-28

Tutorial - GUI

Exercise:

Examine al eventpoints.

Solution:
Refer to the eventpoint panel.

For the C program, NightView displays in the eventpoint list:

EvptID Type Enabled Process - Address
2 B Enabled local:15625 at main.c:25
3 B Enabled local:15625 at main.c:30
7 B Enabled local:15625 at parent.c:16
8 B Disabled local:15625 at parent.c:16
9 P Enabled local:15625 at parent.c:16
4 B Enabled local:13504 at main.c:18
5 B Enabled local:13504 at main.c:25
6 B Enabled local:13504 at main.c:30

For the Fortran program, NightView displays in the eventpoint list:

EvptID Type Enabled Process - Address
2 B Enabled local:15625 at main.f:26
3 B Enabled local:15625 at main.f:28
7 B Enabled local:15625 at parent.f:17
8 B Disabled local:15625 at parent.f:17
9 P Enabled local:15625 at parent.f:17
4 B Enabled local:13504 at main.f:26
5 B Enabled local:13504 at main.f:28
6 B Enabled local:13504 at main.f:19

For the Ada program, NightView displaysin the eventpoint list:

EvptID Type Enabled Process - Address
2 B Enabled local:15625 at main.a:25
3 B Enabled local:15625 at main.a:27
7 B Enabled local:15625 at parent.a:15
8 B Disabled local:15625 at parent.a:15
9 P Enabled local:15625 at parent.a:15
4 B Enabled local:13504 at main.a:25
5 B Enabled local:13504 at main.a:27
6 B Enabled local:13504 at main.a:18

NightView displays all eventpoints for process 1ocal: 15625 followed by the event-
points for process local:13504.

Breakpoints 1, 2, and 3 were set in “ Setting the First Breakpoints - GUI” on page 5-9.
Breakpoint 1 has no entry because it was deleted in “Removing a Breakpoint - GUI” on
page 5-22. Breakpoints 2 and 3 are still enabled.

5-29

NightView RT User’s Guide

Continuing to

5-30

When the child process was forked, it inherited the parent process's breakpoints. The
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The order
of the eventpoint numbers for inherited eventpoints is not necessarily the same as in the
parent.

Breakpoint 7 was set in “ Setting Conditional Breakpoints - GUI” on page 5-22 and is still
enabled.

Breakpoint 8 was set in “ Attaching an Ignore Count to a Breakpoint - GUI” on page 5-23
and was disabled in “Disabling a Breakpoint - GUI” on page 5-28.

Patchpoint 9 was set in “Patching Your Program - GUI” on page 5-27 and is still enabled.

Completion - GUI

There's nothing else to look at, so you decide to run msg to completion.

Exercise:

Continue execution of msg.

Solution:

If the parent process is not the currently displayed process, you should switch to it. You
should click on the Resume button.

NightView displays in the message panel:

6. Parent sleeping for 1 seconds

7. Parent sleeping for 2 seconds
Process local:13504 received SIGUSRI1
Child got ordinal signal #6

8. Parent sleeping for 3 seconds
Process local:13504 received SIGUSRI1
Child got ordinal signal #7

9. Parent sleeping for 1 seconds
Process local:13504 received SIGUSRI1
Child got ordinal signal #8

10. Parent sleeping for 2 seconds
Process local:13504 received SIGUSRI1
Child got ordinal signal #9

Process local:13504 received SIGUSRI1
Child got ordinal signal #10

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the deep interval varies from 1 through 3 because of the patch you made in “Patching
Your Program - GUI” on page 5-27. The lines that mention signal SIGUSR1 appear because
the signal settings are implicitly set to print and explicitly set to nostop.

Note the order of the displayed lines may vary.

Tutorial - GUI

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped inthe _exit () library
routine. If so, click the Up button f until the debugger reports
that the processisin main.

The source panel shows the main program, at the call to exit.

The status bar status bar shows the status About to exit. This means that the process has
called the exit system service. See “Exited and Terminated Processes’ on page 3-18.

NightView displays in the message panel:
Process local:15625 is about to exit normally

The data panel shows that the sig ct variableis not visible at this point in the parent
process.

Identifier "sig ct" is not visible in the given context.

Depending on which compiler you used, the value may still be visible.

Leaving the Debugger - GUI

Thetutorial isover.

Exercise:

Read about the File menu. Use it to leave the debugger.

Solution:
You should click on the File menu. Select Exit NightView.

Neither process has completely exited, so NightView puts up awarning dialog box, asking
the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:
In the warning dialog box, you should click on the OK button.

The main window is removed.

5-31

NightView RT User’s Guide

5-32

6
Invoking NightView

This section describes how to start a NightView session.

You can start NightView without any arguments at all, if you wish. The arguments
available on the NightView command line control the initial state of the debugger, and
optionally alow you to specify the first program to be debugged. The command line to
invoke NightView looks like this:

nview [-attach pid] [-config configfile] [-core corefile] [-help]
[-nogui] [-nolocal] [-nx] [-prompt String]

[-safety safemode] [-simplescreen] [-version]

[-Xoption ...] [-x command-file]

[

program-name [program-argument . . .11
-attach pid

Attach to the process specified by pid in the local dialogue. Thisis similar to using
the attach command. See “attach” on page 7-39. This option is not meaningful
with -nolocal.

-config config-file

Load the configuration contained in config-file. Thisis similar to using the
Load Config... item in the File menu. See “File Menu” on page 9-4. This option
isvalid only in the graphical user interface.

-core corefile-name
When you supply a -core option, NightView starts out by creating a pseudo-pro-
cess for the given core file. See “Core Files’ on page 3-4 and “core-file” on page
7-41.

-help

Causes NightView to print its command line syntax followed by a brief description
of each option and then exit with code 0.

-nogui

Prevents NightView from automatically invoking the graphical user interface. See
Chapter 9 [Graphical User Interface] on page 9-1.

-nolocal

Prevents NightView from starting a dialogue on the local system. See “Dialogues’
on page 3-4. In the graphical user interface, if -nolocal is used, NightView pops
up a Remote Login Dialog Box (see “Remote Login Dialog Box” on page 9-34).

6-1

NightView RT User’s Guide

6-2

-nx

Prevents NightView from reading commands from the default initialization file. See
“Initialization Files’ on page 3-38.

-prompt string
Sets NightView's initial prompt string to string. See “set-prompt” on page 7-62.
-safety safe-mode

Sets the initial safety level to safe-mode, which can be forbid, verify, or
unsafe. The default level is verify. This controls the debugger's response to
dangerous commands. See “ set-safety” on page 7-64.

-simplescreen

Directs NightView to use a simple full-screen interface. This option implies
-nogui. See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

-version
Causes NightView to display its current version and then exit with code O.
- Xoption

NightView accepts a subset of the standard X Toolkit command line options (see
X (7x)). These options are allowed only when using the graphical user interface.
See below for alist of the options accepted.

-x command-file

Directs NightView to read commands from command-file before reading commands
from the default initialization file or from standard input. You may supply more than
one -x option if you like; the files are read in the order of their appearance on the
command line.

program-name [program-argument . . . |
If program-name is specified, NightView begins debugging that program.
All options may be abbreviated to unique prefixes. For example,
nview -si
invokes NightView with the simple full-screen interface.

If the environment variable DISPLAY is set, or the standard X Toolkit command line
option -display is used, then NightView communicates through a graphical user
interface. In this case, a subset of other standard X Toolkit command line options are also
allowed, e.g., -geometry geometry-string. See Chapter 9 [Graphical User Interface] on

page 9-1.

When using the graphical user interface, the X Toolkit options accepted include:

-display display

Invoking NightView

-geometry geometry

-fn font or -font font

-bg color or -background color
-fg color or -foreground color
-btn color or -button color
-name nName

-title title

NightView uses the NightStar License Manager (NSLM) to control access to the
NightStar tools. See “NightStar Licensing” on page A-1 for more information.

All NightView command line options are case-insensitive. However, note that X Toolkit
options are case-sensitive.

When NightView starts execution, it first attempts to read commands from any files
specified in -x options. It then looks for any initialization files to read (see “Initialization
Files’ on page 3-38), unless the -nx option was specified. When those files have all been
processed, NightView reads commands from standard input until it encounters the end of
thefile or the quit command is executed (see “quit” on page 7-23).

6-3

NightView RT User’s Guide

6-4

7
Command-Line Interface

This chapter describes how to interact with NightView through commands.

In some cases, this may be your only means of directing the debugger's actions. If you are
using the graphical user interface (see Chapter 9 [Graphical User Interface] on page 9-1),
however, commands are only one of several ways to control the debugger and your
programs.

Command Syntax

This section describes the general syntax and conventions of NightView commands.
Most commands have three parts. An optional qualifier appears first (in parentheses) and
is used to restrict the command to a certain set of processes or dialogues. Next comes the
keyword indicating which command is to be executed. The command arguments follow
as the third part. In general, you must separate syntactic items (like keywords and
argument values) with white space, unless they are separated by punctuation characters.
White space consists of one or more blank or tab characters. These rules may be different
within expressions, where the rules of the programming language apply.

Some commands apply to individual processes; others apply to dialogues. The qualifier is
a prefix that determines the dialogues and/or processes to which the following command
applies. A qualifier issimply alist of dialogues and/or processes enclosed in parentheses.
If a command applies only to dialogues, and the qualifier includes specific processes, the
command applies to the dialogues containing the processes. If a command applies only to
processes, but the qualifier includes dialogues, the command applies to al processes in
those dialogues. If a command affects neither dialogues nor processes, the qualifier is
ignored. You can set a default qualifier that will be applied when you don't provide one.
For more information on the syntax and operation of qualifiers, see “Qualifier Specifiers’
on page 7-16.

On startup, NightView provides you with a dialogue, 1ocal, for debugging on the local
machine. Theinitial default qualifier issetto all to indicate all dialogues and processes.

After the qualifier, if any, all commands start with a keyword, which may be abbreviated
to the shortest unambiguous prefix. Many frequently used commands also have special
abbreviations. Most commands have one or more arguments; some arguments are also
keywords, while others are information you supply. A keyword argument can usually be
abbreviated if it is unambiguous; any exceptions to this rule are noted in the section
describing the command. Both command and argument keywords are case-insensitive;
they can be entered in either upper or lower case. You cannot abbreviate file names,
symbolic names, or NightView construct names.

Commands are terminated by the end of the input line.

If you enter a line interactively consisting solely of a newline, NightView will usually

7-1

NightView RT User’s Guide

repeat the previous command. This is explained more fully later; see “Repeating
Commands’ on page 7-20.

You can include comment lines with your commands. A comment line starts with the #
character, which must be the first non-blank character on the line, and terminates at the
end of the input line. Comments are most useful when you write debugger source files or
macros (see “Defining and Using Macros’ on page 7-158 and “source” on page 7-133).

NightView prompts you for input. The format of the prompt may be controlled by the
set-prompt command (see “set-prompt” on page 7-62). The default prompt includes
the names of all the dialoguesin the default qualifier and lookslike this:

(local)

Some NightView commands require multiple lines of input. For these commands, the
command-line and simple full-screen interfaces change the prompt to > to remind you
that you are entering a multi-line command.

>

To terminate NightView, use the qui t command, which can be abbreviated g (see “quit”
on page 7-23).

The subsections below explain some common syntactic constructs that are used in a
variety of NightView commands.

Selecting Overloaded Entities

7-2

For general information about function and operator overloading, see “Overloading” on
page 3-23.

The special overloading syntax used in both expressions and location specifiersis always
introduced by a number sign character (#) used as a suffix directly following the entity (an
operator in an expression or a function or procedure name). The # is followed by addi-
tional information indicating the specific kind of overload request. There are three forms
of # syntax:

1 #2

A number sign followed by a question mark isaquery. It aways makesthe
command it appearsin fail, but the error message shows all the possible
choices for overloading the name or operator (even if there isonly 1
choice). The choices will be numbered starting at 1, and the number may
be used to select the specific function.

2. ##

Two number signsin arow act just asif set-overload wereon for that
one name. If there is only one possible choice, it is used; if there are multi-
ple choices, the command fails and the error message shows the list.

3. #<digits>

Command-Line Interface

A number sign followed by a number is the syntax used to pick a specific
overloaded function or operator from the list printed in the error message.

In C++, the function call and subscript operators don’t appear in a single location, but are
"spread out" with arguments or subscripts between the parenthesis or brackets. In these
cases the final bracket or parenthesisis the character which should be suffixed with the #.
For example:

function#5(12, 3)
This picks the 5th instance of the name function from alist of overloaded functions.
object (12,3) #5

This, on the other hand, picks the 5th version of an overloaded operator () function
call operator applied to the object variable.

The following example shows a use of the overloaded "+" operator in Ada. The #7? isfirst
used to do a query, then the desired operator is selected with #1 when the expression is
evaluated again.

(local) print a +#? b

Warning: local:5865 Cannot evaluate argument expression:
Reason follows [E-print cmd007]

Unresolved overloaded functions or operators:

#1 native language operator +
#2 interval timer.a:294
FUNCTION "+" (1 : IN time, r : IN time)
RETURN time
#3 interval timer.a:328
FUNCTION "+" (1 : IN time, r : IN integer)
RETURN time
#4 interval timer.a:375
FUNCTION "+" (1 : IN time, r : IN time)
RETURN long float
#5 interval timer.a:391
FUNCTION "+" (1 : IN time, r : IN time)
RETURN float
#6 interval timer.a:407
FUNCTION "+" (1 : IN time, r : IN time)
RETURN duration
(local) print a+#l1l b
$Sl: a +#1 b = 11

The following example shows that the set - overload command may be used to turn on
automatic overloading, in which case you will see the same error message without needing
the #? syntax.

(local) set-overload operator=on

Overload mode set to operator=on routine=off

(local) print a + b

Warning: local:5865 Cannot evaluate argument expression:
Reason follows [E-print cmd007]

NightView RT User’s Guide

#1 native language operator +
#2 interval timer.a:294
FUNCTION "+" (1 : IN time, r : IN time)
RETURN time

etc...
Overloaded procedures may also be referenced with similar syntax.

(local) set ada.text io.put#? ("Hello world")
Warning: local:5865 Unable to evaluate expression
" ada.text io.put#?("Hello world")": Problem follows [E-
set _cmd007]
Unresolved overloaded functions or operators:
#1 phase2/predefined/text io b.pp:1247
PROCEDURE text io.put(file : IN file ptr, item : IN
character)
#2 phase2/predefined/text io b.pp:1269
PROCEDURE text io.put(item : IN character)
#3 phase2/predefined/text io b.pp:1469
PROCEDURE text io.put(file : IN file ptr, item : IN
string)
#4 phase2/predefined/text io b.pp:1491
PROCEDURE text io.put(item : IN string)
(local) set ada.text jio.put#4 ("Hello world")

Special Expression Syntax

For general information about expression evaluation, see “Expression Evaluation” on
page 3-20. In addition to the standard language syntax, NightView offers a special syntax
for referencing convenience variables and variables from other scopes or stack frames.

The special constructs all start with’'$' as shown in the following table.

Table 7-1. Special '$’ Constructs

$
A simple’$' by itself is a specia convenience variable which always refers to the
last value history entry (see “print” on page 7-84). See “Value History” on page
3-38.

59
The name’$$' refersto the value history entry immediately prior to’'$'. See “Value
History” on page 3-38.

Snumber

A’'$ followed by a number refers to that number entry in the value history. See
“Value History” on page 3-38.

Command-Line Interface

${ -number }

A% followed by a negative number enclosed in braces refers to value history
entries prior to the most recent one. '${-0} ' is a complicated way to refer to the
samething as'$, and '${-1}' isthe same as’$$'. This syntax is useful when you
want to reference values farther back than -1. See “Value History” on page 3-38.

Sidentifier

Thisis the standard syntax for convenience variables. Many names are predefined
(for instance, all the machine registers may be referenced using predefined conve-
nience variables). See “ Convenience Variables’ on page 3-37, and “ Predefined Con-
venience Variables’ on page 7-6.

$ {file:lineexpression}

This syntax is used to evaluate the expression in the context specified by the given
file and line number. This is most useful for referencing static variables which are
not visible in the current context. If you reference alocal stack or register variable
from some other context, the results are not defined.

$ {+number : routine expression}

This syntax is used to go up the stack (see“up” on page 7-129) until you see number
previous occurrences of routine relative to the current frame. (It does not matter
what the current routine nameiis, this construct always backs up the frame first, then
starts looking for frames associated with the given routine.) The given expressionis
then evaluated in that context. For example, '${+1:fred x} ' refers to the variable
named ’'x’ in the first routine named £red above the current routine.

${+number expression}

This syntax simply refers to previous stack frames, regardless of the routine name.
The immediately previousframeis’+1'.

$ { -number : routine expression}

This syntax is useful only if you have changed your current frame with the up com-
mand. This allows you to refer to frames down the stack and is anal ogous to the ver-
sion above which usesthe’+' syntax.

${-number expression}

Thisis also analogous to the corresponding '+’ syntax, but refers to frames down,
rather than up the stack.

${=number expression}

This syntax evaluates the expression in the context of the given absolute frame num-
ber, regardless of the current frame. You can determine absolute frame numbers by
using thebacktrace command (see “backtrace” on page 7-84).

${*frame-addr expression}

This syntax uses frame-addr, which must be a numeric constant, as an absolute
frame address. It evaluates expression in the context of this frame address, regardless

7-5

NightView RT User’s Guide

of the current frame. If there is no frame on the current stack with this address, the
results are undefined.

You may wish to use this form in display expressions (see “display” on page 7-91) to
refer to a specific stack frame regardiess of where it appears relative to the current frame.
You can use the info frame command (see “info frame’ on page 7-142) to get the
frame address for any stack frame.

The above constructs may be used freely in any language expression. This means they
may be nested (in case you want to do something like back up the stack frame, then shift
to a different local scope in that routine). Because different frames may be associated
with routines in different languages, the expressions evaluated in any given context may
be expressions in different languages. This might not always make sense because
different languages support different data types. If NightView cannot figure out how to
evaluate a mixed language expression, it returns an error.

If you use any of these constructs in a conditional expression for an inserted eventpoint
(breakpoint, monitorpoint, patchpoint, tracepoint, or heappoint), or in a monitorpoint,
patchpoint or tracepoint expression, they are evaluated at the time you establish the
expression, not when the expression is evaluated within the eventpoint. This is because
the eventpoint expressions are compiled into your program by the debugger, and these
constructs must be evaluated at compile time.

In the rare case of a user program which contains variables that have a’$' in their name,
the user program variable is always referenced in preference to the convenience variable.

Predefined Convenience Variables

You may create any number of convenience variables simply by assigning values to new
names, but some variables are predefined and have special values. The '$ and '$$'
variables have already been documented (see “ Special Expression Syntax” on page 7-4).
The following special variables are all automatically defined on a per process basis.

Table 7-2. Predefined Convenience Variables

7-6

$

This variable holds the address of the last item dumped with the x command (see
“X" on page 7-87). It is also set by the eventpoint status commands to the address of
the last eventpoint listed, and the info line command to the address of the first
executable instruction in the line. If you were dumping words, it holds the address of
the last word. If you were dumping bytes, it holds the address of the last byte, etc.
See “X” on page 7-87, “info eventpoint” on page 7-135, “info breakpoint” on page
7-136, “info tracepoint” on page 7-137, “info patchpoint” on page 7-138, “info mon-
itorpoint” on page 7-139, “info heappoint” on page 7-140, and “info line” on page
7-157.

This variable holds the contents of the last item printed by the x command. If you
were dumping words, it holds the last word. If you were dumping bytes, it holds the
last byte, etc.

IA-32 Registers

$pc

Scpc

$sp

$fp

scfa

Sis

Command-Line Interface

This variable provides access to the program counter. This is amachine register, but
every machine hasa $pc, so this nameis common to al machines. When a program
is stopped, $pc isthe location where it stopped. On any given machine, $pc may
not map directly onto a specific machine register (RISC machines often have multi-
ple program counters), but it always represents the address at which the program
stopped. See “ Program Counter” on page 3-24.

Scpc issimilar to spc. Inframe O, if there are no hidden frames below frame 0
(because of uninteresting subprograms), $cpc has the same value as $pc. See
“Interesting Subprograms’ on page 3-27. In other frames (including frame O if there
are hidden frames below it), $cpc is the address of the instruction that is currently
executing. In most cases, thisis the call instruction that caused the frame immedi-
ately below the current frame to be created. For the frame immediately above asig-
nal-handler stack frame, $cpc isthe address of the instruction that was executing
when the signal occurred.

Most machines have a stack pointer. The stack pointer is aways called $Ssp.

Most machines either have a frame pointer, or have an implicit frame pointer
derived from information in the program. The $fp variable always represents the
frame address (even if it is not a specific hardware register), and local variables are
always described with some offset from the frame pointer (see “info address’ on
page 7-155 and “info frame” on page 7-142).

$cfa isthe canonical frame address. Thisis how the debug information describes
the locations of the return address and the low-level registers saved in aframe. This
may or may not be the same as $£p. See “info frame” on page 7-142.

$1is is defined when a watchpoint is triggered. See “Watchpoints’ on page 3-13.
$1is isthe value of the variable being watched after the instruction that causes the
trigger has compl eted.

IA-32 machines are based on the Intel |A-32 architecture (see |A-32 Intel Architecture
Software Developer's Manual for architectural details). See “info registers’ on page
7-144.

In addition to the common register definitions for stack pointer ($sp), frame pointer
($£p), and program counter ($pc), the 1A-32 machines support the registers shown in the
following table.

7-7

NightView RT User’s Guide

Table 7-3. IA-32 Registers (iHawk Series 860)

7-8

Seax, $Sebx, Secx, Sedx, Sesi, Sedi, Sebp, Sesp

These names map onto the 8 general purpose registers. Note that $sp isthe same as
$esp, and $£p may be the same as $ebp, depending on how the compiler gener-
ates code.

Sax, sbx, scx, $dx, $si, $di, sbp, $splé

These names map onto the lower 16 bits of each of the 8 general purpose registers
mentioned above, respectively. Note that the lower 16 bits of the ESP register is
more commonly known as simply SP. But the name $sp isreserved for an architec-
ture-independent stack pointer in NightView. So the name $sp16 is used for the
lower 16 bits of the ESP register, instead.

Sal, $bl, scl, sdl

These names map onto the low order 8 bits of each of the A%, BX, CX, and DX regis-
ters, respectively. In other words, they map onto bits 0-7 of each of the EAX, EBX,
ECX, and EDX registers, respectively.

$ah, $bh, $ch, $dh

These names map onto the high order 8 bits of each of the X, BX, CX, and DX regis-
ters, respectively. In other words, they map onto bits 8-15 of each of the EAX, EBX,
ECX, and EDX registers, respectively.

Seflags
The program status and control register. NightView and the kernel use the TF flag of
this register to implement stepping. See “step” on page 7-119, “stepi” on page
7-121, “next” on page 7-120, and “nexti” on page 7-122. Users should not modify

the TF field of the $ef1ags register. Other flagsin this register are used by the ker-
nel. Care should be taken if modifying this register.

$eip
Theinstruction pointer register. Thisis the same as the $pc register.
Scs

The code segment register. The |A-32 architecture uses this register to determine the
location of the executable code in memory. Users should not modify this register.
Modification of this register in patchpoints and eventpoint conditions is prohibited.

Sss

The stack segment register. The 1A-32 architecture uses this register to determine
the location of the process stack. Users should not modify this register.

$ds, ses, $fs, $gs

The data segment registers. The |A-32 architecture uses the $ds register to deter-
mine the location of the process data. Users should not modify that register. Care
should be taken if modifying Ses, $fs, or $gs.

Command-Line Interface

Scsbase, sdsbase, Sesbase, Sfsbase, $Sgsbase, $ssbase

These names map onto internal processor and kernel LDT data structures which
hold the base addresses associated with the $cs, $ds, $es, $fs, $gs, and $ss
registers, respectively. They are useful particularly for determining the location of
thread-specific and task-specific data. For instance, if a disassembly address mode
references memory with $£s:8 or $gs: (%eax), then the location can be deter-
mined in NightView with $fsbase+8 or Sgsbase+S$eax, respectively.

$st0 through $st7

These names map onto the 8 floating point registers. The floating point registers on
the 1A-32 always hold 80 bit double extended precision (i.e. long double) values.
Note that the architecture defines these registers as a stack. Also note that these reg-
isters are aliases of the registers $mmo through $mm?7.

$r0 through $r7

These names map onto $st0 through $st7, but always referenced as though the
floating point stack pointer were zero.

Scwd and $fctrl

These names map onto the floating point control register. They are synonyms.
Ssswdor $fstat

These names map onto the floating point status register. They are synonyms.
stwdor $ftag

These names map onto the floating point tag word register. They are synonyms.
These names may beused inthe info registers command or in expressionsin
the set and print commands, but not in patchpoints or eventpoint conditions.
This register may be read, but not modified. See $fxtag.

Sfxtag

This name maps to the floating point tag word register, but in a different form from
$ftag. The form of thisregister is one byte with each bit corresponding to a float-
ing point register. This name does not have the restrictions of Sftag.

Sfipor $fioff

These names map onto the lower 32 bits of the floating point last instruction pointer
register. They are synonyms.

Sfcsor $Sfiseg

These names map onto the upper 16 bits of the floating point last instruction pointer
register. They are synonyms.

$fop

This name maps onto the floating point opcode register.

7-9

NightView RT User’s Guide

7-10

Sfooor Sfooff

These hames map onto the lower 32 bits of the floating point last data (operand)
pointer register. They are synonyms.

Sfos or $Sfoseg

These hames map onto the upper 16 bits of the floating point last data (operand)
pointer register. They are synonyms.

$dro through $dr3

These names map onto the debug address registers. NightView uses these registers
to implement watchpoints. See “Watchpoints” on page 3-13. Users should not mod-
ify these registers.

sdré
This name maps onto the debug status register. NightView uses this register to
implement watchpoints and single step. See “Watchpoints’ on page 3-13, “step” on
page 7-119, “stepi” on page 7-121, “next” on page 7-120, and “nexti” on page
7-122. Users should not modify this register.

sdr7

This name maps onto the debug control register. NightView uses this register to
implement watchpoints. See “Watchpoints” on page 3-13. Users should not modify
thisregister.

$mm0 through $mm?7

These names map onto the 64 bit vector registers available with Intel MMX Tech-
nology. Note that these registers are aliases of the registers $st 0 through $st7.
However, the $mm0 through $mm7 registers are not defined as a stack.

$xmm0 through $xmm?7

These names map onto the 128 bit vector registers available with the Streaming
SIMD Extensions (SSE).

sSmxcsr
This name maps onto the SSE MXCSR control and status register.

Note that the floating point, debug, MM X, and SSE registers are not normally displayed
by the info registers command (see “info registers’ on page 7-144). If you want to
display those registers, you can do so with the following commands:

info registers st.* displays floating point registers
info registers dr.* displays debug registers

info registers mm.* displays MMX registers

info registers xmm.* displays SSE registers

info registers .* displays all registers

AMDG64 Registers

Command-Line Interface

AMD64 machines are based on the AMD AMD®64 architecture (see AMD64 Architecture
Programmer's Manual for architectural details). See “info registers’ on page 7-144.

In addition to the common register definitions for stack pointer ($sp), frame pointer
($£p), and program counter ($pc), the AMD64 machines support the registers shown in
the following table.

Table 7-4. AMD64 Registers (iHawk Series 870)

$rax, $Srbx, $rcx, $rdx, Srsi, $Srdi, Srbp, $Srsp, $Sr8 through $ris

These names map onto the 16 general purpose registers. Note that $sp isthe same
as $rsp, and $£p may be the same as $rbp, depending on how the compiler gener-
ates code.

Seax, $Sebx, Secx, $edx, $esi, Sedi, $ebp, Sesp, $rs8d through $r15d

These names map onto the lower 32 bits of each of the 16 general purpose registers
mentioned above, respectively.

$Sax, $bx, $cx, $dx, $si, $di, $bp, $spl6, $Sr8wthrough Srisw

These names map onto the lower 16 bits of each of the 16 general purpose registers
mentioned above, respectively. Note that the lower 16 bits of the RSP register is
more commonly known as simply SP. But the name $sp is reserved for an architec-
ture-independent stack pointer in NightView. So the name $sp16 is used for the
lower 16 bits of the RSP register, instead.

$al, $bl, $cl, 3d1, $sil, $dil, $bpl, $spl, Srs8b through $r15b

These names map onto the low order 8 bits of each of the AX, BX, CX, DX, Sl, DI,
R8W, ROW, R10W, R11W, R12W, R13W, R14W, and R15W registers, respectively.
In other words, they map onto bits 0-7 of each of the RAX, RBX, RCX, RDX, RSI,
RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14 and R15 registers, respectively.

$ah, $bh, $ch, $dh

These names map onto the high order 8 bits of each of the AX, BX, CX and DX reg-
isters, respectively. In other words, they map onto bits 8-15 of each of the RAX,
RBX, RCX, and RDX registers, respectively.

Seflags
The program status and control register. NightView and the kernel use the TF flag of
this register to implement stepping. See “step” on page 7-119, “stepi” on page
7-121, “next” on page 7-120, and “nexti” on page 7-122. Users should not modify

the TF field of the $ef1ags register. Other flagsin thisregister are used by the ker-
nel. Care should be taken if modifying this register.

Srip, Seip

$rip istheinstruction pointer register. Thisis the same as the $pc register. Seip
isthe lower 32 bits of the Srip.

7-1

NightView RT User’s Guide

7-12

$fs, $gs
The data segment registers. Care should be taken if modifying $fs or $gs.
Sfsbase, $gsbase

These names map onto the FS . base and GS . base model-specific registers or
internal processor and kernel LDT data structures which hold the base addresses
associated with the $£s and $gs registers, respectively. They are useful particularly
for determining the location of thread-specific and task-specific data. For instance,
if a disassembly address mode references memory with $£s:8 or $gs: (%eax),
then the location can be determined in NightView with $fsbase+8 or
$gsbase+$eax, respectively.

$sto through $st7

These names map onto the 8 floating point registers. The floating point registers on
the AMD64 always hold 80 bit double extended precision (i.e. long double) values.
Note that the architecture defines these registers as a stack. Also note that these reg-
isters are aliases of the registers Smm0 through Smm?7.

$fpro through $fpr7

These names map onto $st0 through $st7, but always referenced as though the
floating point stack pointer were zero.

Scwd and $fctrl

These names map onto the floating point control register. They are synonyms.
Sswd or Sfstat

These names map onto the floating point status register. They are synonyms.
stwdor $ftag

These names map onto the floating point tag word register. They are synonyms.
These names may beused inthe info registers command or in expressionsin
the set and print commands, but not in patchpoints or eventpoint conditions.
This register may be read, but not modified. See $fxtag.

Sfxtag

This name maps to the floating point tag word register, but in a different form from
$ftag. The form of this register is one byte with each bit corresponding to a float-
ing point register. This name does not have the restrictions of $ftag.

Sfrip
This name maps onto the 64-bit floating-point last instruction pointer register.
Sfioff

This name maps onto the lower 32 bits of the floating-point last instruction pointer
register.

Command-Line Interface

Sfrdp
This name maps onto the 64-hit floating-point last data (operand) pointer register.
Sfecsor $Sfiseg

These names map onto the upper 16 bits of the floating point last instruction pointer
register. They are synonyms.

$fop
This name maps onto the floating point opcode register.
Sfooor Sfooff

These hames map onto the lower 32 bits of the floating point last data (operand)
pointer register. They are synonyms.

Sfos or $Sfoseg

These names map onto the upper 16 bits of the floating point last data (operand)
pointer register. They are synonyms.

$dro through $dr3

These names map onto the debug address registers. NightView uses these registers
to implement watchpoints. See “Watchpoints” on page 3-13. Users should not mod-
ify these registers.

sdré
This name maps onto the debug status register. NightView uses this register to
implement watchpoints and single step. See “Watchpoints’ on page 3-13, “step” on
page 7-119, “stepi” on page 7-121, “next” on page 7-120, and “nexti” on page
7-122. Users should not modify this register.

sdr7

This name maps onto the debug control register. NightView uses this register to
implement watchpoints. See “Watchpoints’ on page 3-13. Users should not modify
thisregister.

$mm0 through $mm?7

These names map onto the 64 bit vector registers available with Intel MMX Tech-
nology. Note that these registers are aliases of the registers $st 0 through $st7.
However, the $mm0 through $mm7 registers are not defined as a stack.

$xmmoO through $xmm15

These names map onto the 128 hit vector registers available with the Streaming
SIMD Extensions (SSE).

$xmmOgf through $xmm15gf

These names map onto the single low-order 8-byte floating-point value for each of
the $xmm0 through $xmm15 registers, respectively.

7-13

NightView RT User’s Guide

$xmmOwf through $xmm15wf

These names map onto the single low-order 4-byte floating-point value for each of
the $xmmo0 through $xmm15 registers, respectively.

sSmxcsr
This name maps onto the SSE MXCSR control and status register.

Note that the floating point, debug, MM X, and SSE registers are not normally displayed
by the info registers command (see “info registers’ on page 7-144). If you want to
display those registers, you can do so with the following commands:

info registers st.* displays floating point registers
info registers dr.* displays debug registers

info registers mm.* displays MMX registers

info registers xmm.* displays SSE registers

info registers .* displays all registers

Location Specifiers

7-14

A location-spec is used in various commands to specify a location in the executable
program. It can be any of the following:

function_name or unit_name[' specification|'body]

specifies the beginning of the named function or Ada unit. Note that ' specifi-
cation and 'body are meaningful only with an Ada unit. If a unit name is speci-
fied and neither ' specification nor 'body are given, then 'body is assumed.
'specification and 'body may be abbreviated to unique prefixes.

file_name: line_number
specifies the first instruction generated for the given linein the given file
line_number : function_name or line_number : unit_name

specifies the first instruction for the given line in the file containing the given func-
tion or unit

file_name: function_name

specifies the beginning of the specified function declared in the given file (thisis
required for static functionsthat are not globally visible)

line_number

specifies the first instruction generated for the given linein the current file

Command-Line Interface

line_number : unit_name[' specification|'body]

specifies an Ada unit name, which may be specified as a fully expanded unit name,
preceded by the line number in the source file. If neither ' specification nor
'body are given, then 'body isassumed. ' specification and 'body may be
abbreviated to unique prefixes.

Note that when specifying aline number and a unit name as alocation specifier that
the line number comes first; whereas when specifying a filename with a line num-
ber, the line number islast.

*expression
specifies the address given by expression

If a location specifier is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “ Current Frame” on page 3-25.

Function names aways refer to the location of the first instruction following any
prologue code (the prologue is code that allocates local stack space, saves the return
address, etc.). To refer to the actual entry point of a function, use the *expression form
and write an expression that evaluates to the function entry point address (in C language
mode, this would look like *&function).

NOTE

A location specifier may sometimes designate multiple locations;
for instance, a line number within a procedure that has been
expanded inline several times will designate every location where
that procedure was expanded. If such alocation specifier is used
to set an eventpoint (see “Manipulating Eventpoints’ on page
7-95), NightView will set the eventpoint at each of the corre-
sponding locations. An eventpoint set at multiple locations is still
considered to be a single eventpoint. If you wish to set an event-
point at some subset of the locations that are implied by a particu-
lar location specifier, the info 1line command (see “info ling”
on page 7-157) may be used to determine the locations corre-
sponding to the particular location specifier. The *expression
form of location specifier may then be used to designate the
proper location.

Wherever a file_name appears, it may be enclosed in double quotes. This is necessary if
the file_name contains specia characters.

Wherever afunction name appears in alocation specifier, it may also appear with an over-
loading suffix to distinguish between multiple functions with the same name (see “ Select-
ing Overloaded Entities” on page 7-2). The names of operator functions in Ada or C++
may also be used as function names. In Ada, the operator name must appear in double
quotes, and in C++ the keyword operator should be followed by the operator name (the
same syntax used to declare operator functions in the language). Because the function
name form of operator functions is always used in location specifiers, the only set-
overload mode which affects location specifiersis the routine mode (see “ set-overload”
on page 7-69).

7-15

NightView RT User’s Guide

All commands that accept a location-spec argument allow the keyword at to precede the
location-spec. In most cases, the at keyword is optional, but a few commands require it
to be present. The syntax of each command indicates whether the keyword is reguired or
optional.

Qualifier Specifiers

Qualifiers are used to apply NightView commands to specific processes or dialogues. A
qualifier is simply a list of qualifier specifiers, each specifier representing one or more
processes or dialogues. You can supply a qualifier explicitly, in parentheses as a prefix to
the command, or implicitly, by using the set-qualifier command (see “set-
qualifier” on page 7-61). In a prefix qualifier, the list of specifiers is separated by either
blanks or tabs.

Each qualifier specifier can be any one of the following items:
family-name

A name given by you to a set of processes, called a family. See “family” on page
7-48.

dialogue-name

The name of adialogue in your NightView session. Thisis usually the name of the
system on which the dialogue is running, but you may also specify a different name
(see“login” on page 7-24). In contexts where the qualifier is being used to specify a
set of processes, a dialogue-name refers to all the processes being debugged in that
dialogue.

PID

The numeric value of the process ID of one of the processes being debugged by
NightView. You can use thisform only if the process ID is unique among all the pro-
cesses being debugged. This may not be true if you have multiple dialogues, but it is
awaystrueif you have only one dialogue.

If your processis threaded, the threads are implemented as multiple processes shar-
ing resources (thread processes). See “Multithreaded Programs’ on page 3-40. You
may use the PID of any of those thread processesin a qualifier. NightView considers
them all to refer to the same process.

dialogue-name:PID

Thisis how you specify a particular process when processes in different dialogues
have the same process ID.

all
This keyword designates all processes or dialogues known to NightView.
auto

This keyword designates the one process that is currently stopped and has been
stopped for the longest time. You may want to specify auto as your default quali-

7-16

Command-Line Interface

fier if you want to work on only one process at a time (see “set-qualifier” on page
7-61). NightView gives you an error message if you use auto when there are no
processes stopped.

Note that, because a qualifier specifier can be either a family name or a dialogue name,
you cannot have a dialogue with the same name as a process family.

In general, the specifiers in a qualifier are not evaluated until a qualified command
requests the information. A qualifier is evaluated when a command qualified by it needs
the information; that is, when the command is applied to the processes or dialogues in the
qualifier. Certain NightView commands ignore their qualifier, so they do not request
evaluation of the specifiersin the qualifier. This has several effects on you:

* A family-name appearing in a qualifier may remain undefined until a com-
mand requires evaluation of the qualifier. You may also change the defini-
tion of a family-name currently in use in a qualifier; such a change will
affect the next command that evaluates that qualifier.

* Evaluating a dialogue-name yields all the processes in the dialogue at the
time of the evaluation. Since evaluation is generally delayed until the last
possible moment, using a dialogue-name is usually a good way to refer-
ence all the currently-existing processes in a dialogue.

* The specifiersall and auto are evaluated at the time a command is actu-
ally executed.

Eventpoint Specifiers

Eventpoints may be grouped together and assigned a name (see “name” on page 7-97). In
addition, the name ’." is areserved name that always refers to the set of eventpoints most
recently created by a single command. (If an eventpoint creation command fails, the
definition of ’." is cleared.) Eventpoint numbers and eventpoint names are two types of
eventpoint specifiers.

Another kind of eventpoint specifier is a location-spec. The location-spec must begin
with the keyword at. See “Location Specifiers’ on page 7-14. A location-spec
eventpoint specifier with a line number refers only to eventpoints set at the beginning of
that source line, not to any eventpoints that may be set on addresses within the line. Note
also that a location-spec eventpoint specifier may refer to multiple locations, such as
when a breakpoint is set in an inline function that is expanded multiple times.

Some commands expect more arguments after the eventpoint specifier. These commands
do not accept a location-spec as an eventpoint specifier, because a location-spec
eventpoint specifier must be the last argument.

Eventpoint specifiers that refer only to breakpoints may also be called breakpoint

specifiers (tracepoint specifiers, patchpoint specifiers, monitorpoint specifiers, heappoint
specifiers, and watchpoint specifiers are similarly defined).

7-17

NightView RT User’s Guide

Regular Expressions

A regexp is used by many of the commands to specify a pattern used to match against a set
of names (like variable names or register namesin the info commands). Regular expres-
sions may be case-sensitive or case-insensitive depending on the set -search command
(see “ set-search” on page 7-69).

Regular expressions are similar to wildcard patterns, but are more flexible. Regular
expressions and wildcard patterns are used for different things in the debugger (see
“Wildcard Patterns’ on page 7-19). The descriptions of the commands tell if they take a
regular expression or awildcard pattern.

The regular expression syntax recognized is similar to that recognized by many other
common tools, but the details (as always) vary somewhat.

Table 7-5. Regular Expressions

7-18

A dot matches any character except a newline.

A star matches zero or more occurrences of the preceding regular expression. For
example, . * matches zero or more of any character except a newline.

A plus matches one or more occurrences of the preceding regular expression.

{m}

Matches exactly m occurrences of the preceding regular expression.

{m, }

Matches m or more occurrences of the preceding regul ar expression.

{m, n}

Matches from mto n occurrences of the preceding regular expression.

A caret matches at the beginning of a string.

A dollar sign matches at the end of a string.

Parentheses are used to group regular expressions.

Command-Line Interface

Brackets define a set of characters, any one of which will match. Within the brack-
ets, additional special characters are recognized:

AN

If the first character inside the brackets is a caret, then the set of characters
matched will be the inverse of the set specified by the remaining charactersin
the brackets.

A range of characters may be matched by specifying the starting and ending
characters in the range separated by a dash.

To define a set that includes a - character, specify the dash as the first or last
character in the set.

Any other character matches itself.

To literally match one of the special characters defined above, use a backslash (\)
character in front of it (to literally match a backslash, use two of them (\\)).

The mand n match counts above must be positive integers | ess than 256.

Most commands that use regular expressions do not require the use of '~ and'$' because
they implicitly assume that an anchored match is called for. Other commands (such asthe
forward-search and reverse-search commands) assume that only a partia
match is called for (and does not imply an anchored match). The description of each
command that uses regular expressions specifies whether or not it implicitly assumes its
regular expressions are to be anchored.

If you do not need the full expressive power of regular expressions, you can just use a
normal string.

Examples:
r[1-5]

This example matches the strings 'r1', 'r2, 'r3, 'r4, and 'r5. This might be a good
expression to match register names.

child pid

This example matches only the string 'child_pid'. This might be a good expression to
match a program variable name.

Wildcard Patterns

Wildcard patterns are used by the commands debug, nodebug and on program. See
“debug” on page 7-26, “nodebug” on page 7-27, and “on program” on page 7-44.

Wildcard patterns are similar to regular expressions, but are usually more convenient for

7-19

NightView RT User’s Guide

representing file names. See “Regular Expressions’ on page 7-18.

If the wildcard pattern starts with a /, it is assumed to be a pattern that must match a
complete absolute path name. Otherwise the pattern is matched against the rightmost
(trailing) components of the program name. Patterns are always matched to component
boundaries. Spaces and tabs are not allowed in wildcard patterns.

Wildcards are similar to wildcardsin sh.
Table 7-6. Wildcard Patterns
*
Matches zero or more characters (but does not match a /).
{ [chars] }

Matches any of the charactersin the set. A dash (-) can be used to separate arange
of characters and a leading bang (!) matches any characters except the onesin the
set (but not a /).

Matches any single character (except a /).
Any other character matches itself.
Unlike sh, a * matches aleading dot (.) in afile name.
If you do not need the full expressive power of wildcards, you can just use the file name.
Examples:
/bin/*
This matches any filein the directory /bin.
test>*
This matches any file that begins with the letters test, in any directory.
*.c

This matches any source file that ends with . ¢, in any directory. This might be a good
expression to match file names.

/usr/bob/myprog

This matches only the file /usr/bob/myprog.

Repeating Commands

A line typed from an interactive termina consisting solely of a newline (no other
characters, including blanks) generally causes NightView to repeat the previous

7-20

Command-Line Interface

command. Note that the blank line must come from an interactive device; a blank linein
amacro or in adisk file read by the source command does not cause repetition. The
command that gets repeated may, however, come from a macro.

Not all commands can be repeated in this manner. In general, commands whose result
would not be any different when repeated will not repeat. Typing a blank line after a non-
repeating command has no effect; it acts the same as a comment. If the description of a
command does not say it is repeatable, then it isn't.

A few commands, such as 1ist or x, alter their behavior slightly when repeated: instead
of exactly repeating the command, they typically repeat the action on a different set of
data. These differencesin behavior are documented in the description of the command.

In the following examples, assume all commands were entered interactively.

(local) list 20:func
(local)
(local)

In this example, lines 16-25 (approximately) of function func would be listed by the
list command. Repeating this command lists the next set of 10 lines, lines 26-35. Note
that 1ist is one of the commands whose behavior changes when it is repeated.

local) define mac(ln) as

(

> list @ln:func
> end define
(local) @mac(20)
(local)

(local)

This example is equivalent to the previous one. It demonstrates that the repeated
command may come from a macro.

local) define mac(vn) as

(

> x/20x @vn
> echo

> end define
(local) @mac (xstruct)
(local)

(local)

This example demonstrates how to write a macro that does not repeat at all. Since echo
is a non-repeating command, entering a blank line after the @mac (xstruct) line does
nothing.

Replying to Debugger Questions

This section describes how to respond when the debugger asks you a question.

Certain forms of some debugger commands are considered unsafe and will check the
debugger's safety level (see “ set-safety” on page 7-64) before executing. When the saf ety
level is verify, these commands will ask a question of the user and wait for

7-21

NightView RT User’s Guide

verification. The possible responses to the question are aways "yes' and "no" (case
insensitive). These responses may be abbreviated to their first letter if desired. The
response must be terminated by a carriage return.

A "yes" response indicates that the unsafe action is to be performed.

A "no" response indicates that the unsafe action is not to be performed.

In the graphical user interface, the debugger pops up awarning dialog box.

Controlling the Debugger

This section describes how to exit NightView, and the commands used to control
debugged processes and your interaction with them.

7-22

Command-Line Interface

Quitting NightView

quit

Stop everything. Exit the debugger.
quit
Abbreviation: g

This command terminates the debugger. If the safety level (see “set-safety” on page 7-64)
is forbid, you will not be alowed to quit unless there are no processes being debugged.
In other safety levels, any active processes will be killed when you quit. If the safety level
isverify, you will be prompted for confirmation before quitting causes any debugged
processes to be killed (see “ Replying to Debugger Questions” on page 7-21).

The processes killed include all active processes started in any dialogue shell and not
explicitly detached. NightView detaches from any processes that are being controlled but
are not being debugged by you because of a nodebug command. See “Detaching” on
page 3-3. See “nodebug” on page 7-27.

Processes started using the shell command are independent of the debugger, and are
not affected by aquit.

7-23

NightView RT User’s Guide

Managing Dialogues

A dialogue is an interaction with a particular host system for the purpose of debugging
one or more processes on that system under a particular user name. You may have as
many dialogues as you wish; there can even be more than one dialogue with a particular
host system. Dialogues are described in more detail in the Concepts chapter (see
“Dialogues’ on page 3-4).

login

Login to anew dialogue shell.

login

[/conditional] [/popup]l [name=dialoguename]
[user=loginname] [others ...] machine

NOTE

If present, the options /conditional and /popup Must appear
before the machine name and before any keywords.

The login command takes many keyword parameters. The most commonly used are;

/conditional

Ignore this Llogin command if a dialogue with this name aready exists. This
is useful from macros (see “Defining and Using Macros’ on page 7-158) and
for other programs that communicate with NightView.

/popup

Pop up the Remote Login Dialog Box (see “Remote Login Dialog Box” on
page 9-34) initialized with the machine name and the values of the name= and
user= keywords. No other keywords are allowed with this option. This
option is meaningful only in the graphical user interface.

name=dialogue name

Give this parameter to specify a name for the dialogue you are creating. If you
leaveit off, the dialogue name is the same as the name of the machine running
the dialogue. To run multiple dialogue shells on the same machine you must
give them unique names. No dialogue hame may be the same as a family
name (see “family” on page 7-48). A dialogue name must start with an alpha-
betic character and may be followed by any number of alphabetic, numeric or
underscore characters.

user=login name

7-24

Login as this user. Normally your current user name is used, but you may
login as any user.

Command-Line Interface

machine

Specify the machine where the programs to be debugged are located and the
dialogue shell will run. Thisis arequired parameter. It may be a host name,
with or without domain qualification, or it may be an IP address.

The following parameters are less frequently used, but are provided to alow you to
control the execution environment of the remote dial ogue.

nice=nicevalue

The dialogue normally runs with normal interactive priority. A positive nice
value lowers the priority (makes other programs seem more important). You
must have special privilegesto specify a negative nice value.

cpu=cpu list

Set the CPU bias for the dialogue. cpu list is a comma-separated list of CPU
IDs or CPU ID ranges. For example: "0,2-4,6". cpu list may also be
active or boot to specify all active processors or the boot processor,
respectively.

priority=value

Specify the priority of the remote dialogue processes. The scheduling policy
determines what values may be specified for the priority. value must be an
integer value that is valid for the current scheduling policy. Higher numerical
values represent more favorable scheduling priorities.

scheduling=sched keywords

Control the scheduling policy that will be used for the dialogue. The allowed
keywords are: sched fifo, fifo, sched rr, rr, sched other, and
other.

quantum=time

Control the time dlice quantum size for the process. A quantum value is mean-
ingful only under the sched rr and sched other scheduling policies.
timeis specified either as a nice value or a millisecond value corresponding to
anice value. Nice values must be between -20 and 19 inclusive. By default, a
guantum value of -20 results in a ~300ms slice, and a quantum value of 19
results in a~10ms slice. Millisecond values are in the form numberms and
must reflect the times defined in the system for the nice values. If a non-
defined millisecond value is supplied, an "unsupported quantum” error
message is returned.

The cpu, scheduling, priority, and quantum parameters all accept the same
arguments as the corresponding options on the run (1) command — see the man page
for details.

Any programs started in the dialogue shell will inherit al the above parameters. The
run (1) command can control all these parameters, and may be used within the dialogue
shell to debug programs and change the parameters.

When you use the login command you are asked for a password. See “Remote

7-25

NightView RT User’s Guide

debug

7-26

Dialogues’ on page 3-6 for ageneral discussion of how to use remote dialogues.
Example:

(afamily) login fred

To begin a remote debug session on 'fred', enter the
password for user 'wilma'.

Password: enter wilma's password

(afamily) login user=barney name=fredII fred

To begin a remote debug session on 'fred', enter the
password for user 'barney'.

Password: enter barney's password

(afamily)

The above example shows the creation of two new dialogues. The first Llogin command
starts a dialogue on a machine named fred and logs in as the current user (wilma in this
example). This dialogue is named £red, because no explicit name was given.

The second creates a dialogue on machine fred named fredII. In this case the user
logged into fred isbarney.

The login command is creating a new dialogue, so the qualifier has no effect on this
command.

Specify names for programs you wish to debug.
debug pattern ...
pattern

A wildcard pattern matching the name of a program to be debugged. Spaces
and tabs are not allowed in pattern. See “Wildcard Patterns’ on page 7-19.

This command and its inverse (see “nhodebug” on page 7-27) alow you to control which
programs get debugged. The list of programs applies to the individual dialogues specified
in the debug command qualifier (different dialogues may have different lists of
programs to be debugged).

The debug and nodebug commands work by remembering the list of debug and
nodebug commands. When a new file needs to be checked to see if it should be
debugged, the name is first compared to the pattern in the most recent command, then the
pattern in the next most recent command, and so on.

The first pattern that matches the file name determines what to do with the associated
process. If the matching pattern is on a debug command, then the process will be
debugged. If it was on anodebug command, then the process will not be debugged.

The pattern * matches everything, so the list of patterns is always reset when * appears
as an argument. Since each dialogue always starts with either debug * or nodebug *
inthelist, it isimpossible to pick afile name that does not match at some point in the list.

The default pattern list for adialogueis:

Command-Line Interface

nodebug /bin/* /sbin/* /usr/X11R6/bin/* /usr/ada/*/bin/*
/usr/ada/bin/* /usr/bin/* /usr/bin/X11/* /usr/ccs/*/*
/usr/ccs/*/*/*/* /usr/kerberos/bin/* /usr/kerberos/sbin/*
/usr/lib/* /usr/lib/*/* /usr/lib/*/*/* /usr/lib/*/*x/*/*
/usx/lib/*/*/*/*/* [Jusr/Llib/*/*/*/*/*/*
/usr/lib/*x/*/*x/*/*x/*/* Jusr/local/bin/* /usr/local/sbin/*
/usr/sbin/* /usr/ucb/* /usr/ucblib/*

debug *

To print the list of debug and nodebug patterns, see “info dialogue” on page 7-150.

nodebug

Specify names for programs you do not wish to debug.
nodebug pattern . ..
pattern
A wildcard pattern matching the name of a program to avoid debugging.

This command is typically used in combination with the debug command to control
which programs are debugged in a dialogue. The complete syntax of wildcards and the
algorithm used to match files is described in the debug command (see “ debug”’ on page
7-26).

Example:

(afamily) nodebug *
(afamily) debug x*

This example uses nodebug * to turn off all debugging. It then uses debug to turn on
debugging for any programs started where the basename begins with the letter x.

Note that even if one command is not debugged, its children may be debugged. To avoid
debugging a command as well as any children, you must use the detach command (see
“detach” on page 7-40).

To print the list of debug and nodebug patterns, see “info dialogue” on page 7-150.

set-debug-file-directory

Tell NightView whereto look for .debug files.
set-debug-file-directory [path]
path
The name of the directory in which to find .debug files.

The set-debug-file-directory sets the directory to use when searching for
.debug files associated with shared libraries, for each dialogue in the qualifier. With no
argument, NightView prints the current setting.

7-27

NightView RT User’s Guide

The default path is /usr/1ib/debug which is where .debuginfo rpms usualy install
their files.

If you don’t care about debugging libraries, you can improve performance by setting this
to adirectory that does not exist.

translate-object-file

Trand ate object filenames for aremote dialogue.
translate-object-£file [from [tO]]
Abbreviation: x1
from
Thefilename or filename prefix as seen by the remote system.
to
Thefilename or filename prefix as seen by the local system.

A fileresiding on a system other than the target system can be specified using
the form user@host : /path. NightView will download this file from the speci-
fied system to the host. See “ Remote File Access’ on page 3-7.

If both from and to are present, a trandation is added. If only from is present, the
translation exactly matching from is removed. If neither is present, all trandations are
removed.

NOTE

from and to are not wildcard patterns or regular expressions. See
“Wildcard Patterns’ on page 7-19. See “Regular Expressions’ on
page 7-18.

The translate-object-£file command manages trandations for object filenames
for each dialogue in the qualifier. Translations are useful when:

* An object file is visible from both systems, but its position in the file sys-
tem is different. For example, /usr on system fred may be mounted as
/fred/usr ontheloca system.

* An object fileis not visible from the local system, but you have a copy of
the file. For example, you might have a development directory from which
the image on the remote system is created.

* The object file on the remote system has been stripped, but you have a copy
with debugging information.

Object filenames from exec-£file and load commands are subject to object filename
translation. See “exec-file” on page 7-43. See “load” on page 7-94. Dynamic library

7-28

Command-Line Interface

names are also subject to object filename trandation. See “Debugging with Shared
Libraries’ on page 3-42. Object filenames from symbol-file commands are not
subject to object filename tranglation. See “symbol-file” on page 7-41.

NightView attempts to match trandations to the initial characters of the filename.
Filename component boundaries are not treated as a special case. If you want to match to
component boundaries, include slashes in the strings. NightView tries all trand ations that
match the strings, beginning with the longest matching translation, until it finds a
translated filename with the same text segment contents as the executing program. If no
file is found with the same text segment contents, NightView gives a warning and uses
the first trandlation that matched the object filename.

NightView automatically supplies a default set of trandlations when a remote dialogue is
created. The default set is made by inspecting the local system mount table and by
considering the set of cross-development environments on the local system. In many
cases, these trand ations are sufficient; additional trandlations are not necessary.

Translate-object-£file commands take effect in existing processes as well as
future ones.

Examples:

Suppose the object files that exist on the remote system under the directory
/wilma/pebbles exist on the local system under the directory pebbles (relative to
your current working directory).

(fred) x1 /wilma/pebbles/ pebbles/

This command translates any object filename beginning with the string
/wilma/pebbles/ to the same filename with /wilma/pebbles/ replaced by
pebbles/. For example, /wilma/pebbles/hair becomes pebbles/hair. Note
that pebbles/hair will be evaluated relative to NightView's current working
directory. See “pwd” on page 7-74.

Suppose the object files that exist on the remote system under /betty exist on the local
system under /barney. However, the files under /betty whose name begins with bam
should be found under /dino.

(fred) x1 /betty/ /barney/
(fred) x1 /betty/bam /dino/bam

These commands trand ate any object filename beginning with the string /betty/ to the
same filename with /betty/ replaced by /barney/ and any object filename
beginning with the string /betty/bam to the same filename with /betty/bam
replaced by /dino/bam. NightView picks /betty/bam in preference to /betty/
because /betty/bamislonger. For example,

/betty/dress becomes /barney/dress
/betty/bambam becomes /dino/bambam
/betty/bambino becomes /dino/bambino

A good place to put a translate-object-file command isin an on dialogue
command in your .NightViewrc file. See “on dialogue” on page 7-30. Also, see
“Initialization Files’ on page 3-38.

7-29

NightView RT User’s Guide

logout

on dialogue

7-30

Example:

(all) on dialogue fred.* do
x1 /usr/ /fred/usr/
> end on dialogue

This command trandates the directory /usr on the remote system to the directory
/usr/£fred ontheloca system, for dialogues whose name beginswith £red.

Terminate adialogue.
logout

The logout command terminates any dialogues named in the command qualifier. If
your safety level isunsafe then all processes being debugged in the dialogues are killed
(see “set-safety” on page 7-64). If your safety level isverify then you are prompted for
confirmation before the logout causes any debugged processes to be killed (see “ Replying
to Debugger Questions’ on page 7-21). If your safety level is forbid, then the logout
does not occur. If you want any processes to continue running, you must detach them
prior to using logout (see “detach” on page 7-40). NightView detaches from any
processes that are being controlled but are not being debugged by you because of a
nodebug command. See “Detaching” on page 3-3. Also, see “nodebug” on page 7-27.

If the didogue shell is still running at logout time, it is killed (you may send an exit
command to the shell to terminate it normally prior to logging out).

Example:
(adialogue) detach
(adialogue) !exit

(adialogue) logout

The example shows how to avoid having any processes killed. The detach command
allows all processes in the dialogue to continue running independently of the debugger.
The lexit command sends an exit command to the dialogue shell to terminate it
normally, then the logout command terminates the debugger dialogue.

Specify debugger commands to be executed when adialogue is created.
on dialogue [regexpl]

on dialogue regexp command

on dialogue regexp do

regexp

A regular expression to match against the names of newly created dialogues.
See “Regular Expressions’ on page 7-18.

Command-Line Interface

command

A debugger command to be executed when a new dialogue whose name
matches regexp is created.

In the third form of the on dialogue command, the debugger commands to be
executed must begin on the line following the do keyword. The list of debugger
commands to execute is terminated when a line containing only the words end on
dialogue isencountered.

Theon dialogue command allows a user-specified sequence of one or more debugger
commands to be executed immediately after creating a new dialogue within NightView.
When a new dialogue is created, the list of all on dialogue regular expressions is
checked to see if any of them match the name of the new dialogue. The most recently
specified on dialogue command whose regular expression matches the dialogue name
will have its commands executed.

In its first form (given only a regular expression), the on dialogue command will
remove any commands that were associated with the given regular expression. If no
regular expression is given, then all previously defined on dialogue commands are
removed. If your safety level is set to forbid, you are not alowed to remove al on
dialogue commands. If your safety level is set to verify, NightView requests
verification before removing al on dialogue commands. See “set-safety” on page
7-64.

Inits second and third forms, the on dialogue command will associate a sequence of
one or more user-specified debugger commands with the given regular expression. Macro
invocations are not expanded when reading the commands to associate with the regular
expression.

If didlogue 1ocal is started up automaticaly by NightView, then it will exist before any
commands in your .NightViewrc file are read. In this case, NightView automatically
runs the on dialogue command after all the initialization files have been processed.
See “apply on dialogue’ on page 7-32. See “Initialization Files” on page 3-38.

The default qualifier for all commands associated with the given regular expression will
be the newly created dialogue.

The commands specified by on dialogue are event-triggered commands. they have
an implied safety level (which may be different from the safety level that was set using
set-safety).

If you wish to list all on dialogue commands, or see which on dialogue
commands would be executed for a particular dialogue name, you should use the info
on dialogue command.

Example:
(local)on dialogue ben.* nodebug /usr/bin/*

After issuing the above command, if we now create a new dialogue named ben_hur,
then we will automatically set it up so that programs residing in the directory named
/usr/bin are not debugged by NightView.

7-31

NightView RT User’s Guide

apply on dialogue

7-32

Now suppose we do the following:

(local) on dialogue .*jerry do

> nodebug /usr/remote/*
> nodebug /usr/local/*
> end on dialogue

At this point, if we create another dialogue named ben n jerry, then this newly
created dialogue will automatically be set up so that programs residing in the directories
/usr/remote and /usr/local are not debugged by NightView. Note that even
though the name ben n jerry aso matches the regular expression ben. *, this
dialogue will try to debug programs that reside in the directory /usr/bin. This is
because on dialogue regular expressions are matched in reverse-chronological order
(most recent first), and only the first match found is used.

(local) info on dialogue ben n jerry
on dialogue .*jerry do
nodebug /usr/remote/*
nodebug /usr/local/*
end on dialogue

If we were to now issue the command:
(local) on dialogue .*jerry

Then this would remove . *jerry (and its associated commands) from the debuggers
on dialogue command list. Now, if we create yet another dialogue named
benny and jerry, then this third dialogue will not automatically debug programs
that reside in the directory /usr/bin, but it will debug programs that reside in
/usr/remote and /usr/local (just likethefirst one did).

(local) info on dialogue benny and jerry
on dialogue ben.* do

nodebug /usr/bin/*

end on dialogue

Execute on dialogue commands for existing dialogues.
apply on dialogue

The apply on dialogue command alows on dialogue commands to be
executed for existing dialogues. See “on dialogue” on page 7-30. For each dialogue
specified by the qualifier, the on dialogue commands which would match the name
of the dialogue are immediately executed on behalf of the dialogue.

When the debugger automatically creates a 1ocal dialogue, it does an on dialogue
command with a qualifier of (Local) after processing al the initiaization files. See
“Initialization Files’ on page 3-38. Because diadlogue local exists before the
customization commands in the user's .NightViewrc file are interpreted by the
debugger, the on dialogue command by itself cannot initialize the environment for
dialogue local (since it only applies to dialogues that will be created after the apply on
dialogue command is issued). The automatic on dialogue executes any on

Command-Line Interface

dialogue commands that refer to dialogue Local.

Dialogue Input and Output

Because each dialogue is a separate shell, each dialogue has its own input and output
streams. NightView has several options for sending input to dialogues and managing the
output data generated by the dialogue shell and the programs being run within it.

Pass input to a dialogue.
! [input line]
input line

If input line is specified, it is passed to the dialogue (or dialogues) determined
by the command qualifier.

If input line is not specified, then this command switches to a special dialogue
input mode.

If the qualifier for this command specifies more than one dialogue, then the same input
data is sent to al the dialogues. This can make sense if you are doing something like
debugging two versions of the same program and you want to see where they diverge. It
is up to you to insure that the input is sensible to al the dialogues (or that the command
qualifier only refers to one dialogue).

When you use the ! command without an input line argument to switch to dialogue input
mode, everything you type goes to the specified dialogues. Nothing you type is treated as
a debugger command until a special terminator string is recognized. The default
terminator string is -." (note that this is not the same as the **~." used by rlogin (1)
or cu(1)). See “set-terminator” on page 7-63, for information on how to change the
terminator string.

The ' command without an input line argument cannot be used inside a macro (see
“Defining and Using Macros’ on page 7-158), nor can it be used in the graphical or full-
screen user interfaces.

Macros are not expanded when reading the input (or arguments) to this command.

This command does not care if it is talking to the dialogue shell or to a program running
in the shell. If you start a program that requests input, you can pass the input to it using
this command.

See “Repeating Commands’ on page 7-20.
Example:
(afamily) !pwd

(afamily) !
PATH=/extra/progs: $PATH

7-33

NightView RT User’s Guide

ulimit -m 200
ulimit -4 100
ulimit -s 100

(afamily)

Thefirst line just sends apwd command to the dialogue. The second switches to dialogue
input mode and then severa lines of input are sent directly to the dialogue to set up
environment variables and limits on the amount of memory subsequent processes will be
allowed to use. Thefina "-." switches back to normal command input mode.

Note that if you just want to send a program name to the shell and wait for that program
to start, you may want to use the run command instead. See “run” on page 7-37.

set-show

Control where dialogue output goes.

set-show [silent | notify=mode | continuous=mode]
[log [=filename]] [buffer=number]

silent

Just buffer the dialogue output, do not display it. The show command may be
used to see what has accumulated (see “show” on page 7-35).

notify=mode

Do not display the dialogue output, but do print a notice when output first
becomes available.

continuous=mode
Display dialogue output when it is generated.

The notify and continuous modes both accept one of the following keyword
arguments:

immediate

In immediate mode the notification or actual output is displayed as soon as
output becomes available.

atprompt
In the atprompt mode, the output is displayed only when the debugger is not
requesting input. Thisis typically immediately prior to printing a new prompt
to request additional commands, but it also prints output when the debugger is
waiting for some event and has not yet prompted for new input.

Additional parameters on the set-show command control logging to afile and the size
of the internal buffer.

7-34

Command-Line Interface

log[=filename]

The 1og parameter without the =filename option turns off logging to afile and
resumes buffering alimited amount of output in memory. When afile nameis
specified, the output from the dialogue is logged to that file until the log
parameter is changed.

buf fer=number

The buf fer parameter is used to set the size of the buffer holding all the
most recent output from the dialogue. The default size is 10240 (10K bytes).
When the buffer fills up, the ol dest output is discarded. When logging to afile,
this parameter does not have any effect — alog file may grow until disk space
is exhausted.

This command only logs the output from dialogues. It does not log debugger commands,
nor does it directly log the input to a dialogue; however, the input will normally be
echoed by the system, so it will be logged as output from the dialogue.

To log the entire debug session, see “set-log” on page 7-59.
Each dialogue starts off in the default mode:

(all) set-show buffer=10240 continuous=atprompt

show

Control dialogue output.
show [number | all | none] [| shel-command]
number
The number of old output lines you wish to see again.
all

Specifying all instead of a number means show all the buffered output from
the dialogue shell.

none
Thenone keyword is used to tell the debugger you are not interested in any of
the buffered output. It pretends you have aready seen any data currently in the
buffer.

| shell-command

You may use avertical bar (shell pipe operator) to request the output be sent to
an arbitrary shell command, rather than being displayed. You may use thisto
run the output through a pager or filter of some kind.

The debugger aways internally buffers output generated by dialogues. The show com-
mand displays any buffered output from a dial ogue which you have not yet seen. The num-
ber or a1l arguments tell the debugger to display that many lines of previous output in

7-35

NightView RT User’s Guide

addition to the new output (so the total number of lines displayed may be greater than
number). The set -show command is used to control when dialogue output is printed
without a specific request viathe show command (see “ set-show” on page 7-34).

7-36

Command-Line Interface

Managing Processes

run

rerun

Run a program in a dialogue and wait for NightView to start debugging it.
run inputline
input line
The shell command that will start a program (or programs) to debug.

This command is very similar to the ! command (see “!” on page 7-33): it sends the
specified input line to the dialogue shell (or shells) specified by the qudifier. The
difference between run and ! isthat run waits for a new process to be debugged in one
of the dialogues specified by the qualifier.

NOTE

Even if the qualifier specifies multiple dialogues, the run com-
mand terminates as soon as one new process has started.

The run command does not check the given input line for validity; it simply passes it
unchanged to the dialogue shell, just like the 1 command. If it does not start a new
process to be debugged, then run will just continue waiting forever (or until you type
<CONTROL C>). If you issue a run command that starts more than one program, run will
only wait until one of them starts up and is noticed by NightView. The other programs
will start up and be debugged, but you probably won't know about them until after you
have entered the next command.

If you just want to send input to a program that is reading from the shell's input terminal,
or you want to start up a program or programs without waiting for them, just use the !
command.

If you want to run the same program again, use the run command again or use the
rerun command. See “Restarting a Program” on page 3-16. If you want multiple
programs to run concurrently, end the shell commands with & (ampersand). (Y ou can't do
thisif your program expects input from you.)

Run a program again.
rerumn

The qualifier must evaluate to exactly one process or exactly one dialogue and no
process. This command takes no arguments.

Whenever a process starts up, NightView remembers the most recent dialogue input line
and associates it with the new process.

7-37

NightView RT User’s Guide

set-notify

7-38

If the qualifier contains a process, NightView kills the process and sends the associated
dialogue input line again.

If there is no process, NightView sends the dialogue input line associated with the
process that terminated most recently in the specified dialogue.

The method of remembering recent dialogue input lines works for nearly all situations,
but there may be situations of complex process start-up where NightView cannot send an
appropriate dialogue input line and this command should not be used.

Control how you are notified of events.
set-notify [silent | continuous=mode]
silent
Only report events when explicitly requested.
continuous=mode
Display events when they happen.
The cont inuous mode accepts one of the following keyword arguments:
immediate
In immediate mode the notification is displayed as soon as the event happens.
atprompt

In the atprompt mode, the notification is displayed only when the debugger is
not requesting input. This is typically immediately prior to printing a new
prompt to request additional commands, but it also prints notifications when
the debugger is waiting for some event and has not yet prompted for new
input.

This command controls how the debugger tells you what is happening to the processes
you are debugging. Individual processes may be set to notify you in different ways (using
the command qualifier).

Events that might cause notification include hitting a breakpoint or watchpoint, getting a
signal (but see “handle” on page 7-125), or "exec’ing a new program. New processes to
be debugged also cause notification, but this notification is controlled by the notification
setting of the parent of the new process. Processes created directly by the dialogue shell
always cause notification in the default notify mode. When a process exits, you will be
notified by the process dialogue (but see “show” on page 7-35 and “set-show” on page
7-34).

The output generated by any commands attached to a breakpoint (or watchpoint) or any
automatic display expressionsis also controlled by set-notify. If you set notify mode
to silent for a process, all debugger output associated with that process will be
buffered up and saved until you ask to seeit.

notify

attach

Command-Line Interface

Any change to the notify mode of a process takes place immediately, so changing the
mode from silent to continuous may also result in large amounts of accumulated
event notifications and other buffered output being generated.

The notify command (see “notify” on page 7-39) can be used to explicitly request
notification of any events that have been saved up (thisis the only way to find out about
events that have happened in a process where the notify mode is silent).

If no arguments are given to the not i £y command, then the current notify mode of each
process in the qualifier is printed.

The default notify modeis:

(all) set-notify continuous=atprompt

Ask about pending event notifications.
notify

If you have been suppressing event notification on certain processes (see “set-notify” on
page 7-38), the not i fy command may be used to request any notifications that have not
yet been printed. It only tells you about pending events in the processes specified by the
command qualifier.

Attach the debugger to a process that is aready running.
attach [{/resume | /stop}] piD
/resume
Resume the process when the attach is complete.
/stop
Keep the process stopped when the attach is complete.
PID
The process ID of the running process.

This command alows a program to be debugged even if it was not started from a
debugger dialogue shell (see “Attaching” on page 3-3). The qualifier on this command
must specify a single dialogue indicating which machine is running the specified PID. An
error is reported if the qualifier implies multiple dialogues. It is aso an error to attempt to
attach to a program aready being debugged, or to attach any of the processes required to
run the debugger.

Since the program to which you are attaching is already running independently of the
debugger, you will not be able to send it input through the normal dialogue input
mechanism (see “!” on page 7-33) or see the output it generates (the input and output for

7-39

NightView RT User’s Guide

detach

kill

7-40

the process remain connected to the same streams they were connected to prior to the
attach).

Once you attach to a process, any future children it forks will also be debugged. See “set-
children” on page 7-50. Children created prior to the attach must be explicitly attached if
you want to debug them.

See “Attach Permissions’ on page 3-41 for a description of what processes you are
allowed to attach.

Once the attach is complete, the process will stay stopped or will be resumed
depending on the setting from the set-resume command (see “set-resume”’ on page
7-71). You can override that setting by explicitly giving a /resume or /stop option.

Stop debugging alist of processes.
detach

The detach command terminates the debugger's connection to al the processes named
in the command qualifier. Any breakpoints, monitorpoints, heappoints, or watchpoints set
in those processes are removed, but patchpoints and tracepoints remain if they are
enabled when you execute the detach command. See “breakpoint” on page 7-98,
“patchpoint” on page 7-99, “monitorpoint” on page 7-104, “heappoint” on page 7-105,
“tracepoint” on page 7-102, and “watchpoint” on page 7-115.

The processes are allowed to continue running normally and the debugger will not be
notified of any subsequent events that occur in those processes. If any of the processes
fork or exec new programs, the debugger will not see them.

When the safety level is unsafe (see “set-safety” on page 7-64), detaching a process
that was stopped while evaluating a debugger expression containing a function call aborts
any expression evaluation in progress. This returns the process to the state it was in when
you asked to evaluate the expression. At verify safety level, it asksfirst, and at safety
level forbid, it refusesto let you detach the process.

For another way of avoiding debugging certain processes, see “nodebug” on page 7-27.
Also, see “set-children” on page 7-50.

Terminate alist of processes.
kill
Thekill command terminates all the processes named in the command qualifier.

In the graphical user interface, if you use a’Kill’ button (as opposed to manually typing
the kill command) the debugger will check your safety level (see “set-safety” on page
7-64) before permitting you to kill the desired processes. If your safety level is forbid
then you will not be permitted to kill the selected processes. If your safety level is

symbol-file

core-file

Command-Line Interface

verify then you will be prompted for verification. If your safety level isunsafe then
the processes are terminated with no questions asked.

Establish the file containing symbolic information for a program.
symbol-file program-name
program-name

This must be the name of an executable file corresponding to the programs
running in the specified processes. It should contain symbolic debug informa-
tion for the program.

If program-name is arelative pathname, it is interpreted relative to Night-
View's current working directory.

If the program is on a remote system other than the specified target system,
use the form user@host : /path. NightView will download this file from the
remote system to read the debug information. See “Remote File Access’ on

page 3-7.

program-name is not subject to object filename trandations. See “trand ate-object-file” on
page 7-28.

A symbol file is an executable file from which NightView obtains information about
symbols in a program being debugged. Normally, the symbol file is the same as the
program's executable file, but it may be different if, for example, you are debugging a
stripped program (see strip(1)). In this case, you need to specify an unstripped
version of the program in the symbol-file command, if you want to access
information symbolically.

The symbol-£file command is applied to each process in the qualifier. You should
make sure that each of those processes is running the same program; otherwise, you may
get unpredictable results from the debugger when you examine variables or memory.

Note: If you have not specified a symbol file for a process, NightView attempts to obtain
the information from the executable file (see “exec-file” on page 7-43).

In some situations, such as when debug information is needed from shared libraries, an
object filename trandation is more appropriate than a symbol-£file command. See
“translate-object-file” on page 7-28.

Create a pseudo-process for debugging an aborted program's core image file.

core-file corefilename [exec-file=programname] [with-translations]
[interpreter-base=address]

7-41

NightView RT User’s Guide

7-42

corefile-name

The name of a core file. When used in aremote dialogue, this file must reside
on the target system.

If corefile-name is arelative pathname, it isinterpreted relative to NightView's
current working directory.

exec-file=programname

Specifies the name of the executable program that created the given core file.
When used in aremote dialogue, this file must reside on the target system.

If program-name is arelative pathname, it is interpreted relative to Night-
View's current working directory.

with-translations

Indicates that the lines following the core- £ile command are library trans-
lations.

interpreter-base=address

Specify the address of the dynamic loader. This may be useful for a core file
generated on a system different from the target system.

A core file is a copy of a processs memory made when a process is terminated
abnormally. You can examine these core files using NightView by specifying the core
file name in the core-£file command. NightView responds with a process ID (PID)
corresponding to a newly-created pseudo-process. This is nhot area executing process; a
pseudo-process is merely a mechanism for dealing with core files in NightView. The pPID
NightView assigns does not correspond to any running process, but you can use it in
qualifiers, and you can also include it in process families using the family command.
See “family” on page 7-48.

The qualifier for the core-file command is used only to determine with which
dialogue the pseudo-process should be associated. (Among other things, this determines
the type of machine that created the core file. The core file must have been created on the
system the dialogue is running on.) Thus, the qualifier should specify exactly one
dialogue; otherwise, NightView issues an error message and refuses to honor the
command.

If you specify the exec-£file=program-name option, it is equivalent to executing an
exec-£file command (see “exec-file” on page 7-43) on the pseudo-process created by
the core-file command. This is seldom required, since NightView attempts to
determine the location of the executable program from information saved in the core file
(see“Finding Y our Program” on page 3-9). If NightView is unable to correctly determine
the executable program, you will need to specify the exec- file=program-name option
or usethe exec- £ile command to specify the name of the executable program.

When debugging a core file, NightView uses the executable program file for two
purposes. NightView uses this file to obtain symbolic information about variables and
procedures in your program, just as it does when debugging normal processes. For core
files, NightView also must use this file to obtain the contents of read-only memory,

exec-file

Command-Line Interface

including the machine instructions of the program. If NightView is unable to locate the
executable program, then you will only be able to examine writable memory by absolute
address. You can specify the file, or files, NightView should use by specifying the
exec-file=program-name option or by using the exec-file and symbol-£file
commands (see “ exec-file’ on page 7-43 and “ symbol-file” on page 7-41).

If you specify with-translations, then the lines following the core-file
command are library trand ations of the form:

fromstring to-string
End the trandations with aline that contains only:
end translations

This allows debugging core files from dynamically-linked programs on systems where
the installed libraries do not match the libraries that were being used when the core file
was generated. This is not necessary for most users. The translations are similar to the
object file trandations in the translate-object-£file command, but they refer to
dynamic libraries and are applied only to this process (see “translate-object-file” on page
7-28). For remote debugging, the translations are applied on the target system, not the
host system.

Note that, unlike other debuggers, NightView allows you to examine the core file of a
process at the same time you are executing the program that produced the core file. This
allows you to try executing your program again to try to find the problem, while still
accessing information from the core file. For instance, you may find from the core file
that a certain global variable has an incorrect value. You could then run the program
again, stopping it at interesting points to check the value of that global variable. By using
an appropriate qualifier, you can easily print out the values of variables in both the
running program and the core file for easy comparison.

Specify the location of the executable file corresponding to a process.
exec-file program-name
program-name

Specifies the file containing the executable program corresponding to the
specified processes.

If program-name is arelative pathname, it is interpreted relative to Night-
View's current working directory.

If program-name is on a remote system other than the specified target system,
use the form user@host : /path. NightView will download this file from the
specified system to read the debug information. In this case, exec-£file is
treated as though you had used symbol-£file.

program-name is subject to object filename tranglations. See “transl ate-object-
file” on page 7-28.

This command tells NightView where to find the executable file corresponding to the

7-43

NightView RT User’s Guide

on program

7-44

processes specified by the qualifier. Obvioudy, you should ensure that all those processes
are, in fact, running the same program; otherwise, you may get strange behavior. (NOTE:
NightView does not do this verification for you because the processes may be executing
different copies of the same program on several different systems. NightView would not
be able to tell that these were the same program.)

You usualy use this command in conjunction with the core-file command (see
“core-file” on page 7-41). You may also need to use it if NightView is unable to
determine the executable file corresponding to a new process being debugged. See
“Finding Y our Program” on page 3-9.

If you do not explicitly specify a symbol file for a process (see “symbol-file” on page
7-41), NightView uses the executable file. Since the symbolic information is usually
contained in the executable file anyway, this is most often what you want. You can
specify the executable file and symbol filein any order for a given process.

When a new executable file is specified, any on program commands that match the
new file name are executed. See “on program” on page 7-44.

Examples:

(local) core-file ./mycore

New process: local:65536
/users/bob/mycore

was last modified on Wed Nov 18 17:48:38 1992
Core file indicates the executable file is
/users/bob/myprog

Executable file set to

/users/bob/myprog

Pseudo-process assigned PID 65536

Process 65536 terminated with SIGQUIT
(local) family mycore 65536

(local) (mycore) exec-file ./stripped prog
(local) (mycore) symbol-file ./full prog

The first command creates a new pseudo-process for the file mycore in NightView's
current directory. NightView assigns this pseudo-process PID number 65536. The
family command then gives the name mycore to this pseudo-process. The exec-
file command then establishesthefile stripped prog asthe executable file for that
process, while the symbol-£ile command establishes full prog as the name of the
symbol file.

When dealing with shared libraries, an object filename trandation is more appropriate
than aexec-file command. See “trandate-object-file’ on page 7-28.

Specify debugger commands to be executed when a program is ' exec’ ed.
on program [pattern]
on program pattern command

on program pattern do

Command-Line Interface

pattern

A wildcard pattern to match against the executable file names of newly
"exec’ed programs. See “Wildcard Patterns’ on page 7-19.

command

A debugger command to be executed when a new program whose executable
file name matches patternis’ exec’ed.

In the third form of the on program command, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on program is
encountered.

The on program command allows a user-specified sequence of one or more debugger
commands to be executed immediately after 'exec’ing a program that is being debugged
by NightView. When a debugged process performs an 'exec’ (or the exec-file
command is used to change the location of the executable file name), the list of on
program patterns for that process's controlling dialogue is checked to see if any of the
patterns match the executable file name of the program that was just ' exec’ ed. The most
recently specified on program command whose pattern matches the executable file
name of the newly ’'exec’ ed program will have its commands executed.

on program processing is related to on restart processing. When a program
execs (or the exec-£file command isused), NightView first checkstheon restart
patterns. See “on restart” on page 7-47. If a match is found, then the commands
associated with the matching pattern are executed. In this case, no on program patterns
are checked. However, on restart commands created by a checkpoint always begin
with a call to the macro restart begin hook. The initial definition of this macro
invokesthe apply on program command. So, by default, on program patterns are
checked and matching commands are run before the on restart commands are run.
See “Restarting a Program” on page 3-16.

If no match is found in the on restart patterns, then NightView checks the on
program patterns.

In its first form (given only a pattern), the on program command will remove any
commands that were associated with the given pattern for each dialogue specified in the
qualifier. If no pattern is given, then all previously defined on program commands are
removed from each dialogue specified in the qualifier. If your safety level is set to
forbid, you are not allowed to remove all on program commands. If your safety
level is set to verify, NightView requests verification before removing all on
program commands. See “ set-safety” on page 7-64.

In its second and third forms, the on program command will associate a sequence of
one or more user-specified debugger commands with the given pattern for each dialogue
specified by the qualifier. Macro invocations are not expanded when reading the
commands to associate with the pattern.

The default qualifier for all commands associated with the given pattern will be the
process performing the ' exec’.

The commands specified by on program are event-triggered commands: they have an
implied safety level (which may be different from the safety level that was set using
set-safety), and may be terminated automatically if they resume execution of the

7-45

NightView RT User’s Guide

"exec’ing process. See “Command Streams’ on page 3-35.

If youwishtolist dl on program commands, or see which on program commands
would be executed for a particular program name, you should use the info on
program command.

Example:
(local)on program ren* break main.c:24

After issuing the above command, if we now run a program in dialogue 1ocal named
ren n_stimpy, then we will automatically set a breakpoint in it at line 24 of the file
main.c.

Now suppose we do the following:

(local)on program *stimpy do

> handle 5 noprint nostop
> handle 6 noprint nopass
> end on program

At this point, if we run ren n_stimpy again, then this newly ’exec’ed program will
handle signals 5 and 6 in the specified manner. Note that even though the name
ren n_stimpy aso matches the pattern ren* that a breakpoint will not automatically
be set at line 24 of main.c in this new invocation of ren n_stimpy. Thisis because
on program patterns are matched in reverse-chronological order (most recent first),
and only the first match found is used.

(local) info on program ren n stimpy
on program *stimpy do
handle 5 noprint nostop

handle 6 noprint nopass
end on program

If we were to now issue the command:
(local)on program *stimpy

Then this would remove *stimpy (and its associated commands) from the on
program list for dialogue 1ocal. Now, if we run ren n_stimpy athird time, then
this third invocation will automatically have a breakpoint set at line 24 of main.c (just
like the first one did).

(local) info on program ren n stimpy
on program ren* do

break main.c:24
end on program

apply on program
Execute on program commands for existing processes.
apply on program

The apply on program command allows on program commands to be executed

7-46

on restart

Command-Line Interface

for existing processes. (See “on program” on page 7-44). For each process specified by
the qualifier, the on program commands which would match the executable file name
of the process are immediately executed on behalf of the process.

Example:

Suppose | want to set a breakpoint at the subroutine named main in all programs both
new and old that are debugged in dialogue 1ocal. Using the on program and apply
on program commands, this could be accomplished asfollows:

(local) on program * b main
(local) apply on program

Specify debugger commands to be executed when a program is restarted.

on restart [pattern]
on restart pattern command

on restart pattern do
pattern

A wildcard pattern to match against the executable file names of newly
execed programs. See “Wildcard Patterns’ on page 7-19.

command

A debugger command to be executed when a new program whose executable
file name matches pattern is execed.

In the third form of the on restart command, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on restart is
encountered.

Theon restart command is primarily intended to be used internally by the debugger
as part of the restart processing. See “Restarting a Program” on page 3-16. Y ou may use
on restart explicitly, if desired, but you should be wary of conflicts with the
debugger's use. The debugger creates on restart commands as a result of a
checkpoint.

on restart isvirtualy identical to on program in form and function. See “on
program” on page 7-44 for a description of the parameters and functionality of these
commands. That section also describes the interaction of these two commands.

If youwishtolistal on restart commands, or see which on restart commands
would be executed for a particular program name, use the info on restart
command. See “info on restart” on page 7-151.

7-47

NightView RT User’s Guide

checkpoint

family

7-48

Take arestart checkpoint now.
checkpoint

The checkpoint command saves restart information for the program running in each
processin the qualifier.

In most cases, you do not need to use the checkpoint command, because checkpoints
are taken automatically at certain times. See “Restarting a Program” on page 3-16.
checkpoint givesyou away to explicitly take a checkpoint at a time you choose. Note
that any later checkpoints (either explicit or automatic) will replace the restart
information.

Example:

In this example, you are debugging a complex program. Y ou know some good places to
set breakpoints, and you know that you need some more to find the bug, but are not sure
yet where they should be. You set your known breakpoints, take a checkpoint, and save
the restart information to afile. Then you experiment with some different breakpoints.

(local) # set known good breakpoints
(local) breakpoint fred.c:123
set other known breakpoints ...

(local) checkpoint
(local) info on restart output=restart info

(local) # now try experimental breakpoints
(local) breakpoint pebbles.c:456
set other experimental breakpoints ...

You decide to start the program again and want only the known breakpoints. You kill
your process, which takes a checkpoint, including the experimental breakpoints. Then
you source the file containing the restart information. The restart information is
replaced with only the known breakpoints. When you restart your program, only the
known breakpoints are restored.

(local) kill
(local) source restart_info
restart program

Give anameto afamily of one or more processes.
family family-name [[-] qualifier-spec]
family-name

The family name to be defined. This must not be the same as the name of any
dialogue you currently have. The family-name must consist only of aphanu-

Command-Line Interface

meric characters and underscores and must begin with an a phabetic character.
The family-name may be of arbitrary length.

qualifier-spec

Identifies one or more processes to be included or excluded in the family
named by family-name. See “ Qualifier Specifiers’ on page 7-16.

The total set of processes is accumulated by scanning the qualifier-spec arguments left to
right. An argument is added to the set unless it is preceded by a’-’, in which case it is
subtracted from the set accumulated so far.

If no qualifier-spec isincluded, then this command removes any previous definition of the
family-name. If your sefety level is set to forbid, you are not alowed to remove the
definition of a family-name that is present in the default qualifier. If your safety level is
set to verify, NightView requests verification before removing such a definition. See
“set-safety” on page 7-64.

If one or more qualifier-spec arguments are supplied, they are immediately evaluated (see
“Qualifier Specifiers’ on page 7-16) and the family-name is defined as the list of
processes indicated by those arguments. Evaluation of the arguments has the following
implications:

* Any family-name appearing in the argument list must be defined. Subse-
guent changes made to the definition of that family-name will have no
effect on the processes implied by the family-name being defined in the
family command.

* The processes denoted by any dialogue-name appearing in the argument list
are just those that exist at the time the £amily command is executed.

* The argument a1l denotes only those processes that exist at the time the
family command is executed.

* The argument auto denotes the process that has been stopped the longest
at the time the £amily command is executed.

Any qualifier applied to this command has no effect.

Note that you may use a family-name in a qualifier before it is actually defined, but you
must define the family-name before executing any command that needs to know what the
family-name refers to.

Examples:

(local) family faml 12 25 18
(local) family fam2 faml 99
(local) family faml faml 16

The first command gives the name faml to the processes identified by piDs 12, 18, and
25. The second command gives the name fam?2 to the three processes in faml plus
process 99. The third command extends the definition of faml to include process 16; thus
faml is a synonym for four processes: 12, 16, 18, and 25. Note that extending faml has
no effect on fam2, which still consists of processes 12, 18, 25, and 99.

Using the families defined in the previous examples, the use of a minus sign on
arguments can be illustrated by the following examples:

7-49

NightView RT User’s Guide

set-children

set-exit

7-50

(local) family fam3 faml fam2 -12
(local) family fam3 faml -12 fam2

The first command defines fam3 to be the processes 16, 18, 25, and 99. In contrast, the
second command defines fam3 to be the processes 12, 16, 18, 25, and 99. In this case, the
argument -12 removed process 12 from the set accumulated from faml, but the fam2
argument adds that process back in. In general, it is a good idea to put all the subtracted
arguments at the end of the list.

Control whether children should be debugged.
set-children { all [resume] | exec | none }
all

Debug all children. If the optional keyword resume is specified, then a child
processis resumed automatically after NightView has prepared it for debug-
ging. Thisis useful if your program creates many child processes that you
want to debug, but al you need to do is inherit the eventpoints and debug set-
tings from the parent process. See “Multiple Processes’ on page 3-2.

exec

Debug children only when they have called exec (3) (that is, when they are
running a different program). The program name is checked against the
debug/nodebug list for the controlling dialogue to seeif the program should be
debugged. See “debug” on page 7-26. Thisisthe default setting for direct chil-
dren of the dialogue shell and processes debugged with the attach com-
mand. See “attach” on page 7-39.

none
Ignore al children.

Sometimes you are not interested in the child processes of the process you are debugging.
For example, your program may make many calls to system(3) which you are not
interested in debugging. The set-children command gives you away of controlling
which children will be debugged without having to detach from each one individually.
See “detach” on page 7-40.

The set-children command applies to future children of the processes specified by
the qualifier. Existing children are not affected.

This mode isinherited by future children.

Control whether a process stops before exiting.

set-exit [stop | nostop]

wait

Command-Line Interface

stop

The process will stop if the exit system serviceiscalled.
nostop

The process will not stop before exiting.

The set-exit command controls whether the processes specified by the qualifier will
stop before exiting. The default state for a process is to stop before exiting. See “Exited
and Terminated Processes’ on page 3-18.

If no arguments are specified to the command, the command prints the current state for
each process in the qualifier. If an argument is specified, the command changes the state
of each process in the qualifier accordingly and then prints the new state.

Note that the initial set-exit mode for each process comes from the global set-
resume mode. See “set-resume” on page 7-71. Note also that the mode persists for the
entire life of the process, even across an exec system call, until modified by another
set-exit command. In the case of an exec, an on program Or on restart
command might specify a set-exit command that changes the mode. See “on
program” on page 7-44 and “on restart” on page 7-47. See also “Restarting a Program”
on page 3-16.

If you also want a process to automatically resume execution after an exec, use the
set-resume command, or put a resume command in an on program specification.
See “set-resume” on page 7-71, “resume” on page 7-118 and “on program” on page 7-44.

Wait for processes to stop.
wait [{all | any} [new]]
all
Wait for all processesin the qualifier to stop.
any
Wait for any processin the qualifier to stop.
new
Implicitly add any new processes that show up to the quélifier.

The wait command waits for processes in the qualifier to stop. See “Process States” on
page18. That is, no more commands are read from this command stream until the
specified processes stop. See “Command Streams’ on page 35. See “Interrupting the
Debugger” on page 36.

If no arguments are specified, the default behavior iswait any new.

7-51

NightView RT User’s Guide

mreserve

7-52

Reserve aregion of memory in a process.
mreserve start=address {length=hytes | end=address}
start=address
Specify the start address of the region.
length=hbytes
Specify the length of the region in bytes.
end=address
Specify the end address of the region.

The start=address parameter is required. Y ou must specify either alength or an end
address.

Themreserve command reserves a region of memory for each process specified by the
qualifier. This means that NightView will not allocate space for patch areas in that
region. See Appendix E [Implementation Overview] on page E-1.

This command does not directly affect the process. It is only an indication to NightView
to avoid placing patch areas in the specified region, presumably because your program
will be using that region later in its execution.

mreserve only affects future allocations. Y ou should reserve memory before using any
commands that alocate space in the process, including eventpoint commands, the 1oad
command, or any command with an expression that involves a function call. See
“Eventpoints’ on page 3-9. See “load” on page 7-94. See “Expression Evaluation” on
page 3-20.

Y ou should exercise some caution with this command. It is possible to reserve memory in
such away that NightView cannot function.

For convenience, you are allowed to specify reservations that overlap or contain existing
regionsin your process.

Memory reservations are printed as part of the info memory command. See “info
memory” on page 7-146.

Memory reservations are remembered as part of the restart information. See “Restart
Information” on page 3-17. During restart, memory reservations are applied before any
commands that would allocate space in the process.

Command-Line Interface
Heap Debugging

heapdebug

Specify parameters for heap debugging.

heapdebug [check free fill={0|1}]

[common_errors={block overrun |
dangling pointer |
uninitialized field}]

[do_free £ill={0]|1}]

[do_malloc fill={0]|1}]

[error-name [{noprint | nostop | print | stop} ...1]

[free fill byte={n | trash}]

[frequency=n[{k|m}]]

[heap size={n[{k|m}] | unlimited}]

[internal checks={0]|1}]

[level={0]|1]2]|3}]

[malloc_£fill byte={n | trash}]

[off]

[on]

[post fence size=n]

[post_fill byte={n | trash}]

[pre_fence size=n]

[pre fill byte={n | trash}]

[protected={0]|1}]

[retain free blocks={n[{k|m}] | unlimited}]

[slop=n]

[walkback=n]

Abbreviation: hd
check free fill={0|1}

During heap checks, check that the freefill has not been disturbed in retained
free blocks. Setting thisto O (turning it off) improves performance, but does
not detect as many errors. The default value is 1 (check freefill).

common_errors={block overrun | dangling pointer |
uninitialized field}

Thisisaconvenient way to set parameters to detect common program errors.
block_overrun
detect program writing past the end of a block
dangling pointer
detect program referencing afreed block
uninitialized field

detect program failing to initialize fields in a block

7-53

NightView RT User’s Guide

7-54

do free fill={0]|1}

When ablock is freed, fill it with the free_fill byte. Freefill appliesto
free blocks that are retained and also to free blocks that are immediately avail-
able for reuse. Setting thisto O (turning it off) will disable free filling. The
default valueis 1 (fill free blocks).

do malloc fill={0]|1}

When ablock is alocated, fill it withmalloc £ill byte. Setting thistoO
(turning it off) disables malloc filling. The default value is 1 (fill allocated
blocks).

error-name [{noprint | nostop | print | stop} ...]

Specify how the debugger responds when an error condition is detected.
stop

stop the process when the error occurs; impliesprint
nostop

let the process continue when the error occurs
print

print a message when the error occurs
noprint

do not print a message when the error occurs; impliesnostop
error-name can be any of the following:

free fill modified
free not at beginning
free_unallocated
internal error
malloc_zero

memalign not_power 2
out of memory

post fence modified
pre_fence modified
realloc_not at beginning
realloc_unallocated

The default for all the errorsis stop print, except for malloc zero,
memalign not power 2,andout of memory, which are not normally
considered to be heap errors; the defaults for those errors is nostop
noprint.

Blocks are checked for errors during a heap check (see “Heap Check” on page
3-33) and when they are freed or realloc'ed. Other errors are detected dur-
ing heap operations.

Command-Line Interface

free fill modified

The freefill pattern in aretained free block has been modified.
post fence modified

The post-fence fill pattern in ablock has been modified.
pre_fence modified

The pre-fencefill pattern in ablock has been modified.
free not_at beginning

free was called with an address that is within an allocated block, not at
the beginning of a block.

free unallocated

free was called with an address that does not correspond to any cur-
rently allocated block.

internal error

An inconsistency was found in the internal data structures. Thereis a
bug in the heap debugger, or the process has modified the heap debug-
ger'sinterna data structures.

malloc zero

The program asked for a block of size 0 bytes. Thisis not normally con-
sidered to be an error. The default disposition for malloc zero is
nostop, noprint.

memalign not power 2

The program called memalign with an alignment that is not a power of
2. Thisis not normally considered to be an error. The default disposition
for memalign not power 2iSnostop, noprint.

out_of memory

The process ran out of memory, either because the system could not sat-
isfy the request or because of the setting of the heapsize parameter. This
is not normally considered to be an error. The default disposition for
out_of memoryisnostop, noprint.

realloc not at beginning

realloc was caled with an address that is within an allocated block,
not at the beginning of a block.

realloc unallocated

realloc was called with an address that does not correspond to any
currently allocated block.

7-55

NightView RT User’s Guide

7-56

free fill byte={n | trash}

The value to put in each byte of each block when it is freed if
do free fillisl. Thedefaultistrash, which, for free fill byte
isOxc3.

frequency=n[{k|m}]

The heap is checked every n heap operations (mallocs, frees, €tc.). You
may append k to multiply n by 1024 or m to multiply by 1048576. If nis zero,
the heap is checked only by a heappoint (see “heappoint” on page 7-105)
or aheapcheck command (see “heapcheck” on page 7-153). The default
valueis 10000.

heap size={n[{k|m}] | unlimited}

The program is not allowed to allocate more than n total bytes. The default
valueisunlimited. You may append k to multiply n by 1024 or m to multi-
ply by 1048576.

internal checks={0|1}

If set to 1 (turned on), then during a heap check, check internal data structures
for integrity. This adds alarge overhead to each heap check. The default value
is 0 (do not check internal data structures).

level={0]|1|2]|3}

Thisis aconvenient way to set many of the other parameters.

0
disable checking
1
minimal checking
2
amedium level of checking
3

extreme checking

See “Levels and Common Errors’ on page 3-30 for a discussion of heap
debugging levels.

malloc_fill byte={n | trash}

The value to put in each byte of a block when it is allocated, if
do malloc £fill is 1. The default is trash, which, for
malloc fill byte, isOXc5.

Command-Line Interface

off
Turn heap debugging off.

If heap debugging is off when the process makes its first allocation, the heap
debugger adds little or no overhead. If heap debugging is turned off after the
first allocation, the heap debugger still adds overhead, but it no longer checks
for errors.

on
Turn heap debugging on.

Heap debugging may be turned on before the program makes its first alloca-
tion. After the program makes its first allocation, heap debugging may be
turned on only if it was on when the program made its first allocation.

post fence size=n

Add n bytes after the end of a block when it is allocated, fill them with
post_fill byte, and check them during a heap check. The default is zero
(no fence).

In hardware overrun protection mode, there may be a gap between the end of
the block and the protected page, due to aligment requirements and the size of
the block. At most n bytes of the gap are filled and checked. See “Hardware
Overrun Protection” on page 3-32.

post fill byte={n | trash}

The value to put in each post-fence byte of a block when it is alocated. The
default is trash, which, for post _£fill byte, isOxaf.

pre_fence size=n

Add n bytes before the beginning of ablock wheniit isallocated, fill them with
pre fill byte, and check them during a heap check. The default is zero
(no fence).

pre_fill byte={n | trash}

The value to put in each pre-fence byte of a block when it is allocated. The
default is trash, which, for pre fill byte, isOxbf.

protected={0]|1}

If set to 1, turn on hardware overrun protection. Each block is allocated such
that the end of the block is as near as possible to the end of a page. The follow-
ing page is protected from reads and writes. See “Hardware Overrun Protec-
tion” on page 3-32.

The default value is 0 (no hardware overrun protection).

7-57

NightView RT User’s Guide

retain free blocks={n[{k|m}] | unlimited}

The number of recently-freed blocks to retain. You may append k to multiply
n by 1024 or m to multiply by 1048576. Retained free blocks are not immedi-
ately available for reuse. See “Retained Free Blocks” on page 3-33.

The default value is 0 (no retained blocks).

slop=n

Add n bytes to the size of each alocation. For example, if nis 4 and the pro-
gram callsmalloc (8), the alocation proceeds as though the program had
cadledmalloc (12). Thedefault valueis 0 (no slop).

walkback=n

The maximum number of walkback entries to keep for each heap operation
(malloc, free, etc.). More walkback entries may help you identify which
routines are causing heap problems. The default value is 8 entries. This count
refers to physical walkback entries. The number of walkback frames may dif-
fer from this number when displayed in NightView. The number of frames
displayed may include extra inline frames, as they are not physical frames.
The number of frames displayed may be fewer if certain frames are deemed
uninteresting (see “interest” on page 7-66). See “Debugging the Heap” on
page 3-29.

The heapdebug command configures the heap debugger in each of the processesin the
qualifier. See “Debugging the Heap” on page 3-29. Another way to configure the heap in
the graphical user interface iswith the Debug Heap... itemin the Process menu (see
“Process Menu” on page 9-8).

All arguments may be abbreviated to the shortest unambiguous prefix.

The heap debugger remembers its settings when turned off. This way, it can be turned
back on at alater time and will retain all of its former settings.

7-58

Setting Modes

set-log

set-language

Command-Line Interface

Log session to file.
set-log keyword filename
keyword
The keyword parameter must be one of the following:
all

Log entire session (commands as well as the output generated by com-
mands).

commands
Log just commands typed.
close
Closealogfile.
filename
Name of the log file.

This command starts logging the debugger session to afile. If the file already exists, the
log information is appended to it. You may log just the commands (by using the
commands keyword) or the entire session (a1l keyword) to afile (if the named file is
already an open log file, specifying a different keyword simply changes the mode of the
log). You may open multiple log files (although more than one of each type of log would
be rather redundant).

The close keyword is used to close the log associated with the file. (See “info log” on
page 7-135).

The qualifier does not have any effect on this command. Any logs are global to the debug
session.

Note that this command logs everything that happens during the debug session

(essentially, everything you see on your terminal). The set-show command may be
used to log output from a single dialogue (see “ set-show” on page 7-34).

Establish a default language context for variables and expressions.

set-language {ada | auto | ¢ | c++ | fortran}

7-59

NightView RT User’s Guide

7-60

ada
Indicates that the default language should be Ada.
auto

Indicates that the default language should be determined automatically.

Indicates that the default language should be C.
C++
Indicates that the default language should be C++.
fortran
Indicates that the default language should be Fortran.
The arguments to this command can be in any mixture of upper and lower case.

For each process specified by the qualifier, set-language sets the default language
used to interpret expressions and variables in commands. If a default language has not
been established, or if the default has been set to auto, NightView decides the language
in one of two ways. If the object file contains DWARF, then it contains the language
information. Otherwise, NightView infers the language from the extension (the last few
characters) of the source file name associated with the frame selected when the
expression or variable is mentioned. The following extensions are recognized:

.a

The language is assumed to be Ada.
.C

Thelanguage is assumed to be C.
.C

The language is assumed to be C++.
.£

The language is assumed to be Fortran.

Although this indicates an assembler source file, NightView uses the C lan-
guage for such files. C expressions include nearly all the operators allowed by
the assembler, plus much more.

The language determines the meaning of operators and constants in expressions;
determines the syntax of some kinds of expressions (e.g., C type casts); controls the
visibility of variable names; and controls the significance of case (upper versus lower) in
variable names. The language also controls the formatting of output from the print

set-qualifier

set-history

set-limits

Command-Line Interface

command (see “print” on page 7-84), especialy the way the type of an expression is
indicated.

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers.

set-qualifier [qualifier-spec...]
qualifier-spec
Specifies a process or dialogue to be included in the default qualifier list (see
“Qualifier Specifiers’ on page 7-16). Any family names in the qualifier-spec
are evaluated at the time of each command, not at the time of set-quali-

fier.

If no argument is specified, the default qualifier is set to null, meaning that a qualifier
must be supplied to subsequent commands that require qualification.

Specify the number of itemsto be kept in the value history list.
set-history count
count
The number of itemsto be kept in the value history.

The qualifier is ignored on this command. The default history list size is 1000. If more
history items than that are created, the oldest ones are discarded. No matter how many
items are in the list, each new history item gets the next highest number.

Specify limits on the number of array elements, string characters, or program addresses
printed when examining program data.

set-limits {array=number | string=number | addresses=number}
array=humber

The array keyword parameter specifies the maximum number of array ele-
ments to be printed. If you want unlimited output, specify zero as the limit.

string=number

The string keyword parameter specifies the maximum number of charac-
ters of a string to be printed. If you want unlimited output, specify zero asthe
limit.

7-61

NightView RT User’s Guide

set-prompt

7-62

addresses=number

The addresses keyword parameter specifies the maximum number of
addresses to be printed for a particular location (See “Location Specifiers’ on
page 7-14). If you want unlimited output, specify zero as the limit.

The array, string, and addresses keywords may be specified in any order.

The qualifier is ignored on this command. The limits set by set-1imits apply to al
output of variables or expressions or program locations. If a printed value is truncated
because of these limits, the value will be followed by ellipses.

Note that the limitation on array elements applies to each dimension of a multi-
dimensiona array. If you print a50 x 20 two-dimensional array, and you have the
array limit set to 5, then you will see the first 5 elements of the each of the first 5 rows
(or columns, for Fortran).

The default limits are 100 array elements, 100 characters, and 10 addresses. To find out
what the current limits are, use the info 1limits command (See “info limits’ on page
7-144).

Set the string used to prompt for command input.
set-prompt string
string

Specify the string the debugger uses to prompt for command input. The string
must be enclosed in double quotes. If you include any of the following sub-
strings in the prompt, they will be expanded by the debugger immediately
prior to printing the prompt.

%q
Expands to the current default qualifier. This prints out the same way
the qualifier was defined. If you used afamily name, it shows the family
name (not the individual PIDS), etc. If the default qualifier is auto, it
prints the current automatically selected PID.

5P

Expands to the complete list of PIDs implied by the current default qual-
ifier.

oe
Q.

Expands to the complete list of dialoguesimplied by the current default
qualifier.

oe
o))

Expands to the complete list of dialogues, if the current default qualifier
isall. Otherwise, this expands to the current default qualifier.

set-terminator

Command-Line Interface

o\
o\°

Expands to the single character %.

The string argument may also include the escape segquences recognized in C language
strings, such as’\n’ to indicate a newline.

Thestring ™ (%a) " isthe default prompt.
The qualifier onthe set -prompt command isignored.
Examples:

(afamily) set-prompt "%p> "
local:2047,2048>

The above example shows what happens when the default qualifier is a process family
named afamily assumed to contain two PIDS (2047 and 2048), both in dialogue 1ocal.
The initial prompt is" (%g)" and the set-prompt command changes it to expand to a
list of PIDs.

(afamily) set-prompt "Dialogues: %d\nProcesses: %p>"
Dialogues: machl,mach2

Processes: machl:15 mach2:15,549,2047,2048>

The above example prints two lines as a prompt, the first containing a list of dialogues
and the second containing a list of processes.

Set the string used to recognize end of dialogue input mode.
set-terminator string
string

Define the string used to terminate dial ogue input mode (see “!” on page
7-33).

When the ! command is used to switch all input to a dialogue, the terminator string is
recognized to switch input back to the debugger. The terminator string must appear on a
line by itself to be recognized. The default string is "-." (different from rlogin and
cu).

Unlike normal debugger commands, this string must be typed exactly as specified in the
set-terminator command. The case of the letters must match, and the full string
must be typed.

Only one terminator string is defined. The qualifier on this command isignored.

Leading and trailing whitespace in the specified terminator string is ignored. Macros are
not expanded when reading the new terminator string.

If no terminator string is given, then the current terminator string is printed, otherwise the
new terminator string is printed.

7-63

NightView RT User’s Guide

set-safety

Control debugger response to dangerous commands.
set-safety [forbid | verify | unsafe]
forbid

In forbid mode, the debugger simply refuses to execute a dangerous com-
mand and explains why it will not execute. (You may have tried to quit
while processes were still running, etc.).

verify

In verify mode, the debugger tells you what dangerous thing you are about
to do and asksif you really meant that (see “ Replying to Debugger Questions’
on page 7-21). If you answer yes, it goes ahead and doesit. Thisis the default
safety level of the debugger.

unsafe

In unsafe mode, the debugger simply tells you what it did. It assumes you
meant what you said and does not try to stop you.

If no mode is specified then the set -safety command prints the current safety level.

The qualifier onthe set-safety command isignored.

set-restart

Control whether restart information is applied.
set-restart [always | never | verify]
always

Restart information is unconditionally applied when a program starts. Thisis
the default mode.

never
Restart information is never applied when a program starts.
verify

When a program starts, you are asked whether to apply restart information to
it.

If no keyword is specified then the set-restart command prints the current restart
mode.

The restart mode is a global mode, not a per-process or per-dialogue mode. The qualifier
on the set-restart command isignored.

See “Restarting a Program” on page 3-16.

7-64

Command-Line Interface

set-local

Define process local convenience variables.
set-local identifier ...
identifier

The name of a convenience variable (the leading '$’ on each identifier, nor-
mally used to reference convenience variables, is optional).

Each named identifier is defined to be a process local convenience variable.

A process local variable always has a unique value in each process. If the variable was
already defined as a global at the time it appearsin a set-local command, then each
process gets a separate copy of the current global value, but future changes will be unique
for each process.

The command qualifier does not have any effect on this command. It is not possible to
define a variable to be local for only one process, but globally shared among other
processes.

set-patch-area-size

Control the size of patch areas created in your process.

set-patch-area-size {data=data-Size | eventpoint=eventpoint-size |
monitor=monitor-size | text=text-size}

data=data-size
The data keyword parameter specifies the size of the data areain kilobytes.
monitor=monitor-size

The monitor keyword parameter specifies the size of the shared memory
region used by all monitorpoints in this dialogue, in kilobytes.

text=text-size
The text keyword parameter specifies the size of the text areain kilobytes.
eventpoint=eventpoint-size

The eventpoint keyword parameter specifies the size of the eventpoint
areasin kilobytes.

The data, monitor, text, and eventpoint keywords may be abbreviated and may
be specified in any order.

NightView creates some regions in your process, and uses these regions to store text and
data. There is usually one data region, one text region, one or more eventpoint regions,
and, if there are any monitorpoints in the process, one shared memory region for the
monitorpoints. These regions are called patch areas. See Appendix E [Implementation
Overview] on page E-1.

7-65

NightView RT User’s Guide

interest

7-66

Y ou can adjust the sizes of the patch areas with this command. For example, if you have
alot of conditional eventpoints, then you may need to make the size of the eventpoint and
text regions larger so that NightView has room to allocate all the code necessary for those
eventpoints. Similarly, if you have alot of monitorpoints, then you may need to make the
size of the monitorpoint shared memory region larger. On the other hand, if system
memory resources are scarce, then you may need to make some of these regions smaller.

The patch area size values are associated with each dialogue and apply to al processes
within the dialogue. This command sets the values for each dialogue specified in the
qualifier.

Note that these values only apply to patch areas created in the future. Existing regions are
not changed. Therefore, if you want to debug a program and use a large text or data area,
you need to specify that before you run your program (i.e., before the process calls
exec). (For fork, the child process inherits its regions from the parent, so the regions
are the same size in the child and the parent.)

Each process has its own data, eventpoint and text areas, but the monitorpoint shared
memory region is shared by all the processes that have monitorpoints in the dialogue, and
by the dialogue itself. Therefore, if you want to change the size of the monitorpoint
shared memory region, you need to do so before creating any monitorpoints in the
dialogue. See “Monitorpoints’ on page 3-11.

Theinitial values of the patch area sizes are 512 kilobytes each for the data and text patch
areas, 256 kilobytes for the eventpoint areas, and 32 kilobytes for the monitorpoint shared
memory region. Thisis adeguate for most applications.

Use info dialogue to see the current patch area size values. (see “info dialogue’ on
page 7-150).

You can see information about the patch areas in an existing process with the info
memory command (see “info memory” on page 7-146).

Control which subprograms are interesting.
interest [leve] [[at] [location-spec]]
Set or query the interest level for a subprogram.
interest inline [=leve]

interest justlines [=leve]

interest nodebug [=levd]

interest threshold[=levd]
Set or query the interest keyword values.
level

Specify alevel for the subprogram defined by location-spec, or avalue for the
specified keyword. level is a signed integer or the keywords minimum or

Command-Line Interface

maximum. If thisargument is not present, then this command queriesthelevel
of the subprogram or the specified keyword.

[at] location-spec

Set or query the interest level for the subprogram specified by location-spec.
See “Location Specifiers’ on page 7-14. If no location-spec is present, it
defaults to *scpc. If the at keyword is present, it must be followed by a
location-spec. If no level is specified, then the at keyword is required to dis-
tinguish some forms of location specifiers from alevel.

inline

Set or query theinline interest level. If thislevel is less than the interest level
threshold, then all inline subprograms have the minimum interest level unless
their interest level has been explicitly set with interest level location-spec.
Theinitial value of thislevel is 0.

justlines

Set or query the interest level for subprograms with line number information
but no other debug information. Theinitial valueis -2.

nodebug

Set or query the interest level for subprograms with no debug information
(e.g., system library routines). Without debug information, the interest level
cannot be specified for individual subprograms, so NightView uses the value
specified by thisform. Theinitial vaueis -4.

threshold

Set or query the interest level threshold NightView uses to decide whether a
subprogram isinteresting. The initial valueis 0.

The interest command sets or queries the information NightView usesto decide which
subprograms are interesting for each process in the qualifier. See “Interesting Subpro-
grams’ on page 3-27.

The minimum keyword specifies the lowest possible interest level. The maximum key-
word specifies the highest possible interest level.

A query prints theinterest information requested. If an interest level is being set, the com-
mand prints the new interest level.

Some compilers provide a means to specify the interest level of a subprogram through the
debug information. If the subprogram has debug information, but it does not specify an
interest level, the default level is 0. The interest command overrides an interest level
set at compiletime.

The interest levels and the interest level threshold are remembered as part of the restart
information. See “Restart Information” on page 3-17. For away to see al the interest lev-
elsthat have been explicitly set, see “info on restart” on page 7-151.

If an interest level or the interest level threshold is changed, then NightView checks the
current frame to see if it has become uninteresting. See “ Current Frame” on page 3-25. If

7-67

NightView RT User’s Guide

set-auto-frame

7-68

it has, then the current frame is reset to frame 0 of the current context and frame informa-
tion is printed. See “select-context” on page 7-130. Even if the current frame does not
have to bereset, it gets adifferent frame number if frames below it have become hidden or
unhidden.

Examples:

(local) run fact 7

...process startup information...

(local) interest

local:6729: Interest level is -4 (uninteresting) for 0x100024d0
(nodebug)

You query the interest level, using the default location specifier of * $cpc. The program
begins in the C runtime startup routine, which has no debug information, so it is uninter-
esting.

(local) breakpoint 26

local: 6729 Breakpoint 1 set at fact.c:26

(local) continue

local:6729: at Breakpoint 1, 0x10002780 in main(int argc = 2,
unsigned char ** argv = 0x2ff7eaed4) at fact.c line 26

26 B=| answer = factorial (x);

(local) step

#0 0x100026f4 1in factorial(int x = 7) at fact.c line 6

6 = | if (x <= 1) |

(local) interest -1

local:6729: Interest level set to -1 (uninteresting) for
factorial

#0 0x10002780 in main(int argc = 2, unsigned char ** argv =
0x2ff7eaed4 at fact.c line 26S

26 B<>| answer = factorial (x);

You step into the factorial function, then decide that it is not interesting. You mark
factorial uninteresting, using the default location specifier. Your current frame
becomes uninteresting, so it is reset to frame 0. Frame 0 is now the frame for main,
because factorial isnot interesting. The source decorations for line 26 show that Spc
and scpc are within that line. See “ Source Line Decorations’ on page 7-81.

(local) interest threshold=-1

local:6729: threshold interest level set to -1

(local) frame

Output for process local:6729

#1 0x10002780 in main(int argc = 2, unsigned char ** argv =
0x2ff7eae4) at fact.c line 26

26 B<>| answer = factorial (x);

You change the interest level threshold, which makes factorial interesting again. Your
current frame is still interesting, so it is not reset to frame 0. The £rame command shows
that your current frameis still the frame for ma in, but now that frame is frame number 1.

Control the positioning of the stack when a process stops.

set-auto-frame args ...

set-overload

set-search

Command-Line Interface

The functionality of this command has been subsumed by the interest command. See
“interest” on page 7-66. This command has been retained for compatibility, but it might be
removed in some future release.

Control how NightView treats overloaded operators and routines in expressions.
set-overload [operator={on | off}] [routine={on | off}]
operator={on | off}
Turn operator overloading on or of £.
routine={on | off}
Turn routine overloading on or of £.

The set-overload command determines how NightView treats overloaded operators,
functions, and procedures in expressions. See “ Expression Evaluation” on page 3-20. This
behavior can be controlled for operators separately from functions and procedures using
the keywords on the command. The specified settings apply to all expressions evaluated
by NightView. The qualifier isignored by the set -overload command. The routine
mode also controls overloading of function names which appear in location specifiers.

After setting the specified overloading modes, the set-overload command prints the
new settings. If no arguments are specified, the command simply prints the existing
overloading modes.

For adiscussion of how overloading worksin NightView see “ Overloading” on page 3-23.
For the details of the syntax used to specify overloading in expressions and location spec-
ifiers see “ Selecting Overloaded Entities’ on page 7-2.

When NightView starts, the overloading modes are initialy:

set-overload operator=off routine=on

Control case sensitivity of regular expressionsin NightView.
set-search [sensitive | insensitive]
sensitive
Make regular expressions case sensitive (this is the default setting).
insensitive
Make regular expressions case insensitive.

The set-search command controls case sensitivity for the regular expressions (see
“Regular Expressions’ on page 7-18) used by several commands as well as some dialog
boxes in the graphical interface.

7-69

NightView RT User’s Guide

set-editor

set-preallocate

7-70

When the set-search command is run with no argument, it reports (but does not
change) the current mode setting.

When the sensitive argument is specified, regular expressions become case sensitive.
The case of alphabetic characters must match exactly as written in the regular expression.
Thisisthe default set -search mode.

When the insensitive argument is specified, regular expressions become case insen-
sitive. Either the upper case or the lower case form of an alphabetic character will match
both the upper and lower case form of that same character.

Set the mode for editing commands in the simple full-screen interface.
set-editor mode
mode
Oneof emacs, gmacs or vi.

Determine which kind of keystroke commands are available to edit commands in the sm-
ple full-screen interface.

See “Editing Commands in the Simple Full-Screen Interface” on page 8-2.

Control how NightView preallocates memory for eventpoints and monitorpoint buffers.
set-preallocate [/eventpoint] [/monitorpoint] [{off | on}]
/eventpoint
Indicates the eventpoint mode should be set or queried.
/monitorpoint
Indicates the monitorpoint buffer mode should be set or queried.
{off | on}

Turn preallocation off or on for eventpoints or monitorpoint buffers as speci-
fied.

The default is for NightView to preallocate space in the user process for eventpoints and
monitorpoint buffers. If these modes are off, then NightView allocates space only when
needed. However, space can be allocated only when the process is stopped. With preallo-
cation, you do not need to worry about whether the process is stopped when you set an
eventpoint. See “Process States’ on page 3-18. See “ Operations While the Process |'s Exe-
cuting” on page 3-19.

Monitorpoints cannot be used in the command-line interface, so in that interface monitor-
point buffers are never preallocated.

Command-Line Interface

Thisisaglobal mode. The qualifier isignored.

With no arguments, set-preallocate printsthe current settings.

set-resume

Control NightView's behavior on events that normally stop a process.
set-resume [/attach] [/exec] [/exit] [/fork] I[{off | on}]
/attach
Indicates the attach mode should be set or queried.
/exec
Indicates the exec mode should be set or queried.
/exit
Indicates the exit mode should be set or queried.
/fork
Indicates the fork mode should be set or queried. NightView pays attention to
thisfor achild only if the parent processhas set-children all. See*set-
children” on page 7-50.
{off | on}
Turn automatic resume off or on for the modes specified.
A process is normally stopped when NightView attaches to it, when it execs, when it is
about to exit, and when it is created (i.e., its parent forks). This command allows you to
control that for each case.

Thisisaglobal mode. The qualifier isignored.

If of £ or on isnot specified, set-resume printsthe current settings.

set-download

Control how NightView downloads files from remote targets.

set-download [{off | permanent | temporary}]
[directory=path-to-cache]

off
This disables the download feature.

permanent

This enables downloading files to the cache. The files are left in the cache for
future use.

7-71

NightView RT User’s Guide

set-disassembly

7-72

temporary

This enables downloading files to the cache. When NightView exits, it
removes all the files in the cache that were downloaded under temporary
mode. Thisisthe default setting.

directory=path-to-cache

This specifies the directory to use to build the cache. The default directory
nameis ~/ .NightViewCache. The downloads will be faster if this direc-
tory islocal to the system where you are running NightView.

If NightView cannot find an object file on the local system, and this processisin aremote
dialogue, then NightView searches on the target system for the file and copies it to the
cache directory. See “Remote File Access’ on page 3-7.

Thisisaglobal mode. Any qualifier isignored.

To manipulate this mode in the graphical user interface, see “ Preferences Advanced Page”
on page 9-38.

With no arguments, set-download prints the current download information.

Control how NightView displays disassembled instructions.

set-disassembly [flavor={att | intel}] [symbols={off | on}]
[comment level=number]

flavor={att | intel}
Set the flavor of disassembly to the att style or the intel style.

The default flavor isatt. The att flavor isthe one used by the standard
compilation tools. The intel flavor is the one described in the |A-32 Intel
Architecture Software Developer's Manual or the AMD64 Architecture Pro-
grammer's Manual. For a discussion of the differencesin the two flavors,
enter this command in a shell outside of NightView:

info 'gas' 'Machine Dependencies' i386-Dependent
symbols={off | on}

Indicate whether each line of the disassembly should include the name of the
routine being disassembled. If thisis set to on, <routine+offset> is appended
to each address, where routine is the name of the routine being disassembled
and offset is the offset (in bytes) from the beginning of routine. If thisis set to
of £, then the routine name appears once at the beginning of the disassembly,
and < +offset> is appended to each address. References to addresses outside
the routine being disassembled include the name in either mode. The default is
of £, which makes the disassembly listing more compact.

Command-Line Interface

comment_level=number

Indicate the kind of comments the disassembler should provide. Comments
provide more information about the instructions.

number is one of:

0

never print comments
1

print operation information for certain instructions
2

print "aka" ("also known as") opcode aliases in addition to the level 1
comments

This command sets the disassembly modes for the debug session. Any qualifier isignored.
See “X” on page 7-87. See “ Source Menu” on page 9-10.

If no arguments are specified, set-disassembly prints the current disassembly infor-
mation.

7-73

NightView RT User’s Guide

Debugger Environment Control

cd

pwd

7-74

Set the debugger's default working directory.
cd dirname
dirname
The name of the directory.

The e¢d command changes the working directory of NightView to the specified directory.
You usualy use this command to control the search for source files, core files, and
program files. It affects the behavior of the following commands:

* shell (see“shell” on page 7-133)

* list (see“lit” on page 7-75)

* directory (see“directory” on page 7-77)

* symbol-file (See"“symbol-file” on page 7-41)
* core-file (see“core-file” on page 7-41)

* exec-file (see“exec-file” on page 7-43)

The ed command does not affect commands executed in dialogue shells (see “login” on
page 7-24). Also, the qualifier does not have any effect on this command.

You can use the pwd command to find out what NightView's current working directory
is. See “pwd’ on page 7-74.

Print NightView's current working directory.
pwd

This command prints the current working directory of the debugger. Note that this
directory may not be the same as the current working directory of your dialogue shells,
nor need it be the same as the current working directory of any program you are
debugging.

You can use the cd command to set the current working directory. (see “cd” on page
7-74).

The qualifier does not have any effect on this command.

Source Files

Command-Line Interface

This section describes commands to view and edit source files and to search for text in
source files.

Viewing and Editing Source Files

list

List asource file. This command has many forms, which are summarized below.
list where-spec
List ten lines centered on the line specified by where-spec.
list where-specl, where-spec2
List the lines beginning with where-specl up to and including the where-spec2 line.
list ,where-spec
List ten lines ending at the line specified by where-spec.
list where-spec,
List the ten lines starting at where-spec. Note the comma.
list +
List the ten linesjust after the lines last listed.
list -
List the ten linesimmediately preceding the lines last listed.
list =

List the last set of lines listed. If the previous command was a search command, list
the ten lines around the line found by the search.

list

If alist command has not been given since the current source file was last estab-
lished (see below), thisform lists the ten lines centered around the line where execu-
tion is stopped in the current source file. Otherwise, this form lists the ten lines just
after the last lines listed.

Abbreviation: 1

Each where-spec argument can be any one of the following forms.

7-75

NightView RT User’s Guide

7-76

[at] location-spec

Specifies alocation in the program or a source file (See “Location Specifiers’
on page 7-14). No matter which form of location-spec you use, it is always
translated into a source line specification for this command. If you give two
arguments on the 1ist command, they cannot specify different source files.

[at] file_ name

Specifies the first line of the file. The file_name may be a quoted or unquoted
string, but be aware that an unquoted string may be ambiguous. A string with-
out quotes will beinterpreted first as a function name or an Ada unit name; if
no such function or Ada unit exists, the string will then be interpreted as afile
name.

A file name on a remote system can be specified using the form
usere@host: /path. See “Remote File Access’ on page 3-7.

+Nn

Specifies the line that is n lines after the last line in the last group listed (see
below). If thisis the second where-spec, it specifies the line n lines after the
first argument.

Like +n, except it specifies the line n lines before the last line in the last group
listed (see below). If thisis the second where-spec, it specifies the line n lines
before the first argument.

The 1ist command is applied to each process in the qualifier. If the qualifier specifies
more than one process, you get one listing for each process; each listing is preceded by a
notation indicating which process the listing is for. The specified source file is found
using the directory search path you established using the directory command (see
“directory” on page 7-77). Note that each program has its own directory search path.

NightView maintains, for each process, a current source file. The current source file is
usually the most recent file listed or searched. However, when the process stops
execution, the current source file is automatically set to the file where execution stopped.
The context selection commands (see “Selecting Context” on page 7-128) also set the
current source file to the one associated with the selected stack frame. When a process
first starts execution, the current source file is the one containing the main program. If the
first argument to the 1ist command does not explicitly specify a source file, then the
current source file is used.

When you list one or more lines in a source file, NightView remembers the first and last
line of that group. If you subsequently give a 1ist command that uses a relative where-
pec or contains just a + or - argument, those arguments are interpreted relative to the
lines in the last group listed. Arguments containing a + are relative to the last line in the
group, and arguments containing a - are relative to the first line in the group. This also
affects the forward-search and reverse-search commands. See “forward-
search” on page 7-79 and “reverse-search” on page 7-79.

Repeating the 1ist command by entering a blank line behaves differently depending on
the form of 1ist you used last. In most cases, repeating the command lists the next ten
lines following the last line in the last group. However, if you used the 1ist - form

directory

Command-Line Interface

last, then repetition lists the ten lines preceding the first line in the last group.

The listed source lines are preceded by source decorations. (see “Source Line
Decorations’ on page 7-81).

You can usethe info line command to determine the location in your program of the
code for a particular source line. (see “info ling” on page 7-157).

Set the directory search path.
directory [dirname ...]
dirname

The name of adirectory to include in the search path. If thisis not an absolute
pathname, it is interpreted relative to NightView's current working directory
and transformed into an absolute pathname. Thus, if you later change Night-
View's working directory, the search path will not be affected. See “cd” on
page 7-74 and “pwd” on page 7-74.

The search can be performed on remote systems by specifying dirname in the
form user@host: /dirname. See “Remote File Access’ on page 3-7.

The directory command sets the directory search path for the program in each process
in the qualifier. The arguments are used in order as the elements of the directory search
path. Subsequent directory commands contribute directories to the head of the current
search path.

The directory search path is used for displaying source files. When you list a source file
(see“list” on page 7-75), NightView looks for the source file in each of the directoriesin
the search path, starting at the beginning of the search path each time.

If no directory command has been specified for the program, the search path
implicitly contains the path to the executable file and NightView's current working
directory. Once a directory command is specified for the program, these directories
are no longer implicit in the search path.

If you enter a directory command with no arguments, the search path is reset to its
initial state.

The directory search path is associated with a program, not with a process. If you debug
multiple instances of a program, the directory search path is the same for each instance. If
your process calls exec (3), the directory search path is implicitly set for the new
program.

Use the info directories command to display the directory search path for a
program. See “info directories’ on page 7-143.

For ELF programs, the debugging information contains absolute pathnames to source
files, so the directory search path may not be needed. It is till sometimes useful to
indicate that a source tree is not where the debugging information indicates.

7-77

NightView RT User’s Guide

edit

7-78

Examples:

Suppose your ELF program was compiled from two source files:
/usr/bob/src/main/main.c and /usr/bob/src/doit/doit.c. You want to
debug your program, but you have moved the source files to
/usr/joe/main/main.c and /usr/joe/doit/doit.c. Enter a directory
command to indicate the new root of the source tree:

(local) directory /usr/joe
Similarly, if the source files are now on system "oursys", use this command:

(local) directory oursys:/usr/joe

Edit the current source file.
edit

This command invokes a text editor on the source file currently displayed in the source
panel.

This command can be used only from the graphical user interface. See “ Source Panel” on
page 9-42.

Searching

forward-search

reverse-search

Command-Line Interface

Search forward through the current source file for a specified regular expression.
forward-search [regexpl]

Abbreviation: fo

regexp

The regular expression to search for. No anchored match isimplied. (see
“Regular Expressions” on page 7-18). If regexp is omitted, the previous
regexp is used.

The search command is applied to the current source file of each process specified by the
qualifier.

The search starts at the first line displayed by the last 1ist command, the last place the
process stopped, or the last place a search was satisfied, whichever was most recent, and
proceeds forward through the file to the end. In the graphical user interface, the search
position is not affected by scrolling the source panel. If the regular expression is found,
the containing source line is listed. This will affect subsequent 1ist commands that
specify relative arguments.

If the end of the file is encountered without finding the regular expression, a message is
printed indicating the search was unsuccessful. For a definition of current source file, see
“list” on page 7-75.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-69).

Search backwards through the current source file for a specified regular expression.

reverse-search [regexp]

regexp

The regular expression to search for. No anchored match isimplied. (see
“Regular Expressions” on page 7-18). If regexp is omitted, the previous
regexpis used.

The search command is applied to the current source file of each process specified by the
qualifier. The search starts at the last line displayed by the last 1ist command, the last
place the process stopped, or the last place a search was satisfied, whichever was most
recent, and proceeds backward through the file to the beginning. In the graphical user
interface, the search position is not affected by scrolling the source panel. If the regular
expression is found, the containing source lineis listed. Thiswill affect subsequent 1ist
commands that specify relative arguments.

7-79

NightView RT User’s Guide

If the beginning of the file is encountered without finding the regular expression, a
message is printed indicating the search was unsuccessful. For a definition of current

source file, see “list” on page 7-75.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-69).

7-80

Command-Line Interface

Source Line Decorations

When NightView lists source lines in your program or displays the disassembled
instructions of your program, it precedes each line with decorations providing
information about that line. Every source line gets a line number, which is relative to the
beginning of that file. Each instruction displayed is preceded by the line number of the
source line that generated it (see “x” on page 7-87).

In the serial interface, line numbers precede the decorations. If multiple decorations are
needed, they are concatenated, such asBP=.

In the graphical user interface, line numbers follow the decorations. If multiple
eventpoints are present, that is represented by a separate icon. If the program is stopped
on the line, the program counter icon is overlaid on any other icon. See “ Graphical User
Interface” on page 9-1. If you hover the mouse pointer over the icon, atooltip shows the
eventpoint information for the line.

Also, in the graphical user interface, the icon may indicate additional information. Here
aretherules NightView uses for choosing which icon is displayed:

* |f there are different kinds of eventpoints on the line, a generic eventpoint
icon is shown. No other information is represented with thisicon. @)

¢ |f dl the eventpoints on the line are disabled, the icon has reduced color.

* |f the eventpoint has a non-zero ignore count, or the eventpoint has a condi-
tion, or there are multiple eventpoints (of the same kind) on the line, the
icon has a pink background. This indicates that more information is avail-

able. @
* Otherwise, this is a single simple eventpoint and the regular icon is used.
@

The following table lists the source line decorations. The decoration for the seria
interfaceis listed first, followed by the icon for the graphical user interface.

Table 7-7. Source Line Decorations

,B, .

Indicates that one or more breakpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, thisindicates that one or more break-
points are set on this instruction. (See “breakpoint” on page 7-98).

H @
Indicates that one or more heappoints, possibly disabled, are set somewhere within

this source line. When displaying instructions, this indicates that one or more heap-
points are set on thisinstruction. (See “heappoint” on page 7-105).

yMy

Indicates that one or more monitorpoints, possibly disabled, are set somewhere
within this source line. When displaying instructions, thisindicates that one or more
monitorpoints are set on this instruction. (See “monitorpoint” on page 7-104).

7-81

NightView RT User’s Guide

7-82

=

Indicates that one or more patchpoints, possibly disabled, have been inserted some-
where within this source line. (See “patchpoint” on page 7-99). When displaying
instructions, thisindicates the instruction where the patchpoint was inserted, and the
patched expressions are displayed el sewhere.

T O

Indicates that one or more tracepoints, possibly disabled, are set within this source
line. When displaying instructions, this indicates a tracepoint immediately preced-
ing thisinstruction. (See “tracepoint” on page 7-102).

®

Indicates that multiple kinds of eventpoints, possibly disabled, are set within this
source line. When displaying instructions, this indicates multiple kinds of event-
points immediately preceding this instruction. In the serial interface, eventpoint
characters are concatenated.

B

Indicatesthat execution is stopped somewhere within or at the beginning of thisline.
When displaying instructions, this indicates the instruction at which execution is
stopped (the one that will next be executed). In the graphical user interface, thisicon
isoverlaid over any other icon.

Indicates the line (or instruction) in the current frame (see “frame” on page 7-128),
where execution will resume when the called routine returns. Thisis not represented
in the graphical user interface.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the’=" decoration will appear in its place.

=

Indicates the line (or instruction) in the current frame (see “frame” on page 7-128),
which was executing when the called frame was created, i.e., $cpc. See “Program
Counter” on page 3-24.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the'="decoration will appear in its place.

Indicates that this source line corresponds to executable code. A line that appears
executable may still not have executable code associated with it because of optimi-
zation or conditional compilation. Not used when displaying instructions.

This decoration is not displayed if there are any other indicators also on that line,
since the other indicators imply there is executable code for the line.

Command-Line Interface

1@1 -

Used only when displaying instructions, this decoration indicates that the associated
instruction isthe first for the corresponding source line.

In the serial interface, NightView reserves enough columns for displaying a 3-digit line
number, 2 decoration characters, and a 2-character separator. If the line number and
decorations fit within this space, the source text displayed lines up in columns just as it
does in the source file. If more space is needed for line number or decorations, the lineis
shifted over accordingly. In the graphical user interface, the line numbers are expanded as
necessary and the source decorations always take the same amount of space.

In the serial interface source listing, the 2-character separator is avertical bar followed by
a space. This helps distinguish decorations from source characters. In the seria interface
disassembly listing, the 2-character separator consists of 2 spaces.

Example source listing, in the serial interface:

20 | void

21 * | main(argc, argv)

22 | int argc;

23 | char ** argv;

20 |

25 | int i, errors;

26 * | errors = 0;

27 * | for (i = 1; i < argc; ++1i) {

28 | long x1;

29 | int x;

30 | int answer;

31 * | char * ends = NULL;

32 T | x1 = strtol(argv([i], &ends, 10);
33 B=| x = (int)x1;

34 B | answer = factorial (x);

35 P | printf ("factorial ($d) == %$d\n", x, answer) ;
36 | }

37 * | exit (errors) ;

38 |}

In this example, line 32 has a tracepoint set on it; line 33 has a breakpoint set somewhere
within the line, and execution is stopped on the line (but not necessarily at the
breakpoint). Line 34 has a breskpoint set somewhere within the line (perhaps on the
return from factorial). Line 35 has a patchpoint inserted somewhere within it. Apart
from these lines, the other lines with asterisks on them have executable code associated
with them.

Example instruction listing:

31 @ 0x10002788 <main+52>: 1i r6,0

31 0x1000278c <main+56>: stw r6,0x40(rl)

32 @T 0x10002790 <main+60>: slwi r5,rl6,2

32 0x10002794 <main+64>: lwzx r3,rl7,r5

32 0x10002798 <main+68>: addi r4,rl,64

32 0x1000279¢c <main+72>: 1i ¥5,10

32 0x100027a0 <main+76>: bl 0x100010e0 <strtols>
33 @B= 0x100027a4 <main+80>: mr r20,r3

34 @ 0x100027a8 <main+84>: bl 0x10002700 <factorials>
34 B 0x100027ac <main+88>: mr r5,r3

35 @P 0x100027b0 <main+92>: lis r3,12288

7-83

NightView RT User’s Guide

35 0x100027b4 <main+96>: addi r3,r3,12528
35 0x100027b8 <main+100>: mr r4,r20
35 0x100027bc <main+104>: bl 0x10001100 <printfs>

Thisisapartial disassembly listing for the preceding example source listing.

Examining and Modifying

backtrace

print

7-84

Print an ordered list of the currently active stack frames.
backtrace [number-of-frames]
Abbreviation: bt
number -of-frames
Number of stack framesto print, starting with the currently executing frame.

The backtrace command prints, for each process specified in the qualifier, a summary
of the active stack frames, starting with the currently executing frame. Each subsequent
entry corresponds to the caller of the frame which precedes it in the listing. All active
frames are indicated, unless a value for number-of-frames is given, in which case, the
given number of framesis printed.

Each entry in the backtrace listing includes the frame number (the first frame is num-
bered 0), the program counter, the subprogram name (if known), the arguments of the sub-
program (if known), the source file name (if known), and the line number (if known).

For information on changing the current stack frame, see “frame” on page 7-128, “up” on
page 7-129, or “down” on page 7-130.

Frames corresponding to uninteresting subprograms are not shown in the listing. See
“Interesting Subprograms’ on page 3-27.

Print the value of alanguage expression.
print [/print-format-letter] expression

Abbreviation: p

Command-Line Interface

print-format-letter

One of the following letters specifying the format in which to print each com-
ponent value of the expression:

a

expression

Print the value of the expression in hexadecimal and as an address rela-
tive to a program symbol.

Treat the rightmost (least significant) eight bits of the value as a charac-
ter constant and print the constant.

Print the bit representation of the value in signed decimal.

Print the bit representation of the value as a single precision floating-
point number and print using floating-point syntax. If the data type of
the language expression is double precision, however, then the bit repre-
sentation is printed as a double precision floating-point number.

Print the bit representation of the value in octal.

Print the data as a character string. Arrays of characterswill print asone
character string (terminated with a zero byte if the language is C or
C++); scalar types will print using their default format plus the bytes of
the value will be printed as a string. (You might want to use thisin For-
tran if you put Hollerith datain INTEGER variables.)

See note below about limits on the length of printed strings.

Print the bit representation of the value in unsigned decimal.

Print the bit representation of the value in hexadecimal.

A language expression (see “ Expression Evaluation” on page 3-20).

print displays the value of a language expression in each process specified by the
qualifier. When the expression is an aggregate item, such as an array, record, or union,
each component value of the expression is printed, along with the appropriate subscript,
record field name, etc.

7-85

NightView RT User’s Guide

set

7-86

The space between print and / may be omitted. If no print-format-letter is given,
expression is printed in a format corresponding to the data type of the expression in the
currently defined language.

The printed value is given a value history number (see “Vaue History” on page 3-38),
indicated in the output by $ followed by the history number.

If the value printed contains an array or a character string, the number of array elements
and characters will be limited to the values set by the set-1imits command (see “set-
limits” on page 7-61).

NOTE

For ease in debugging C and C++ programs, the print command
treats expressions of type 'char *’ specially. Whenever print
prints the value of a’char *’ pointer, it also prints the string it
points to, inside double-quote marks; print assumesthe string is
terminated by anull byte.

Most other commands that print expressions or variables also treat
"char *’ pointersin this manner.

Examples:

(local) (12) p/x var name*4
(local) (12) p array name

The first example prints, in hexadecimal, a number equal to four times the value of
var_name, for process 12. The second example prints the value of each member of the
array array_name in aformat based on the data type of array name, for process 12.

Evaluate alanguage expression without printing its value.
set expresson
expression
A language expression (see “ Expression Evaluation” on page 3-20).

This command is similar to the print command (see “print” on page 7-84), in that it
evaluates alanguage expression for each process specified in the qualifier. However, set
does not accept a format specifier, print the value of the expression, or place the value of
the expression in the value history. It is useful for doing assignments to language objects
(e.g., memory addresses preceded by the C language cast syntax, variables, and array
elements) and convenience variables, as well as for performing calls to subprograms
whose return value is unimportant.

Examples:

local
local
local
local

()
()
()
()

Command-Line Interface

set $i = 98

(27) set vector([5] x * 2.5
set *(int *)0x1234 = 0Oxabcd0123
set routine(3,4)

The first example assigns the value 98 to the convenience variable $1i. The second exam-
ple assignsthevalue of x * 2.5 to element five of array vector, in process 27. The
third example assigns the hexadecimal value abcd0123 to the hexadecimal absolute
memory location 1234. The final example performs a call to the subprogram routine.

Print the contents of memory beginning at a given address.

x [/ [repeat-count] [Size-letter] [x-format-letter]] [addr-expression]

repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

One of the following letters specifying the size of each memory unit:

b

Each memory unit is one byte (8 bits) long.

Each memory unit is one halfword (two bytes) long.

Each memory unit is one word (four bytes) long.

Each memory unit is one giant word (eight bytes) long.

Each memory unit is the size of a pointer on the target system. On an
IA-32 system, thisis 4 bytes. On an AMD64 system, thisis 8 bytes.

Each memory unit isthe size of aC 1ong double on the target system.
On an |A-32 system, thisis 12 bytes. On an AMD64 system, thisis 16
bytes. A t memory unit cannot be printed as decimal 4 or u.

The size-letter may appear either before or after the x-format-letter.

7-87

NightView RT User’s Guide

x-format-letter

One of the following letters specifying the format in which to print the con-
tents of memory:

a

7-88

Print as an integer in hexadecimal and as an address relative to a pro-
gram symbol. This format ignores size-letter and always uses p.

Print as character constants. This format ignores size-letter and always
uses b.

Print as signed integers in decimal format.

Print as floating-point values.

Print as machine instructions in assembler syntax, using the length of
each instruction as the unit size. A repeat-count given with this format
indicates how many instructionsto print.

See “ set-disassembly” on page 7-72 to control the form of the diassem-
bly.

You can also view disassembly in a source panel (see* Source Menu” on
page 9-10).

Print as unsigned integersin octal format.

Print as a null-terminated string, using the length of the string (including
the null byte) as the specified unit size; the size-letter, if any, isignored.
A repeat-count given with this format indicates how many strings to
print.

If the string to be printed is longer than the string limit set by the set-
limits command, theinitial characters of the string are printed, with
an ellipsis following the closing quote. (see “ set-limits’ on page 7-61).

Print as unsigned integersin decimal format.

Print as unsigned integersin hexadecimal format.

Command-Line Interface

Print as unsigned integers in hexadecimal format with a display of the
corresponding AscClI characters.

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-20).

The x command prints the contents of memory beginning at the address specified by
addr-expression in each process specified by the qualifier. If an addr-expression is not
given, the address corresponds to the byte following the end of the memory contents
printed in the last x command.

The space between x and / may be omitted. If repeat-count is omitted, one memory unit
is printed. If either size-letter or x-format-letter is omitted, the default is the last value
used in an x command (beginning defaults are p and 4, respectively).

If the x command is repeated, memory contents are printed using the same repeat-count,
size-letter, and x-format-letter as in the previous x command, and the beginning address
corresponds to the byte following the end of the memory contents printed in the previous
command.

A 0 precedes octal numbers. A 0x precedes hexadecimal numbers. Thus decimal 64
would appear in hexadecimal as 0x40 and in octal as 0100.

The x-format-letter z produces a hexadecimal display without the leading 0x prefix. The
character display shows non-printable characters replaced by . (period). Here, printable
is determined by the current locale. The display of charactersisframedin | and |.

After an x command, the convenience variables $ and s are set and ready to use in
expressions (see “Predefined Convenience Variables’ on page 7-6). The convenience
variable $_ is set to the address of the last memory unit examined. The convenience
variable $__ is set to the contents and type of the last memory unit examined.

Examples:

(local) (14544) x/4i $pc

7 @B= 0x1000271c <factorial+28>: 1i r3,1

7 0x10002720 <factorial+32>: 1lwz rlé6,0x40(rl)
7 0x10002724 <factorial+36>: 1lwz rl3,0x58(rl)
7 0x10002728 <factorial+40>: mtlr rl3

For the process with process id 14544, print memory as four machine instructions starting
with the address of the current program counter. See “ Source Line Decorations’ on page
7-81 for adescription of the characters at the beginning of each line of this format.

(local) x /4wx 0x40al88

0x0040a188: 0x77767574 0x73727170 0x6f6e6d6c 0x6b6a6968
(local) x /8bz 4235656

0x0040a188: 77 76 75 74 73 72 71 70 |wvutsrgp|

(local)

0x0040a190: 6f 6e 6d 6c 6b 6a 69 68 |onmlkjih]|

(local) p $ - 4235656

17: $_ - 4235656 = Oxf

(local) p §_

7-89

NightView RT User’s Guide

output

echo

7-90

$18: $ = 104 'h!'

Print memory as four words (four-byte memory units) starting at hexadecimal address
0x0040a188 asunsigned integers in hexadecimal format with 0x prefixes.

Print memory as eight bytes (one-byte memory units) starting at the same address
expressed in decimal (4235656) as unsigned integers in hexadecimal format with a
display of the printable characters.

Print in the same format and repeat count starting at the next address (0x0040a190).

Print an expression s - 4235656 to show the relative difference between the address
of the last memory unit printed $ - 4235656 and address of the first memory unit
two commands ago 4235656.

Print expression $___ to show the value of the last memory unit printed.

Print the value of alanguage expression with minimal output.
output [/print-format-letter] expression
print-format-letter

A letter specifying the format in which to print the expression, as described in
theprint command (see“print” on page 7-84).

expression
A language expression (see “ Expression Evaluation” on page 3-20).

output prints the value of a language expression for each process specified by the
qudifier in the same manner as the print command, except that a newline is not
printed, the value is not entered in the value history, and the "s$history-number =
string does not prefix the output.

The space between output and / may be omitted. If no print-format-letter is given,
expression is printed in aformat corresponding to the data type of the expression.

Print arbitrary text.
echo text
text

Arbitrary text to be printed, up to the end of the line. Non-printing characters
may be represented with C language escape sequences, such as’\n’ for new-
line.

data-display

display

Command-Line Interface

This command prints the given text. It is intended as an adjunct to the other commands
which print information about the program, so that the output can be customized to
whatever is desired.

A backslash ('\') may be used to correctly print leading and trailing spaces. In other
words, a backslash may be used at the beginning of text to print leading spaces appearing
after the backslash, and one may be used at the end of text to print the spaces appearing
before the backslash. The backslash characters themselves are not printed.

Note that a newlineis not printed unless the newline sequence ('\n’) isincluded.
Examples:

(local) echo \ Text with two leading spaces and a newline\n
(local) echo A backslash (\\) and the number three (\063)

The first example prints " Text with two leading spaces and a newline", followed by a
newline. The second example prints "A backslash (\) and the number three (3)", but does
not print a newline.

Control itemsin adata panel.
data-display [/window="windowname"] {/kind=value | expression}
/window="window name"
Determines which data panel is affected by this command.
ThedefaultisData.
/kind=value

value indicates which kind of item to placed in the data panel. value is one of
locals, registers, callstack or threads.

expression

An expression to place in a data window. There should not be a /kind key-
word in this form of the command.

The data-display command is not intended to be used directly by users. Its main use
isin restart information. See “Restart Information” on page 3-17. A description of all the
forms of this command is beyond the scope of this document. However, users may some-
times have a use for the simplest forms of the data-display command described here.

Add to the list of expressions to be printed each time the process stops.

7-91

NightView RT User’s Guide

7-92

display [[/print-format-letter] expression]
display / [repeat-count] [size-letter] [x-format-letter] addr-expression

print-format-letter

A letter specifying the format in which to print the expression, as in the
print command (see“print” on page 7-84).

expression
A language expression (see “ Expression Evaluation” on page 3-20).
repeat-count

Decimal number of consecutive memory unitsto print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

A letter specifying the size of each memory unit, as described in the x com-
mand (see “X” on page 7-87). The size-letter may appear either before or after
the x-format-letter.

x-format-|etter

A letter specifying the format in which to print the contents of memory, as
described in the x command (see “x” on page 7-87).

addr-expression

An expression yielding a memory address (see “ Expression Evaluation” on
page 3-20).

The display item list contains language and memory address expressions which will be
used to print expression values or contents of memory, respectively, each time one of the
specified processes in the qualifier stops (hits a breakpoint, receives a signal, etc.).
display adds alanguage or memory address expression to the list.

In order to determine whether the given expression is a language or address expression,
the parameters before the expression are first examined. If a repeat-count or size-letter is
given, or if either of the x-format-letters’s or ’i’ is given, then the expression is treated
as an addr-expression. Otherwise, the expression is treated as a language expression.

When one of the processes specified by the qualifier stops, each enabled item in the
display item list is evauated. The indicated expression value or memory location is
displayed, each item beginning on a new line. Each display item has an item number,
followed by the text of the expression and then the expression's value or the contents of
memory. If alanguage expression for an item cannot be evaluated in the currently defined
language, output will not appear for that item; however, a summary of the unevaluated
items will appear at the end of the display output.

The space between display and / may be omitted. If no print-format-letter is given for
a language expression, expression is printed in a format corresponding to the data type of
the expression at the time the process stops. If repeat-count is omitted, one memory unit
will be printed. If size-letter or x-format-letter is omitted, the defaults are w and 4,
respectively.

undisplay

redisplay

Command-Line Interface

If display is entered on a line by itself, the current values of the expressions or
contents of memory for each item on the display list are printed. To simply see the
expressions themselves, use the info display command (see “info display” on page
7-143).

Examples:

(local) (12) display/x var name
(local) (12) display/4d 0x1234

If these commands are entered, then each time process 12 stops, the value of var name
will be printed in hexadecimal on one ling, and four words of memory starting at
hexadecimal address 1234 will be printed on the next line.

Disable an item from the display expression list.
undisplay item number ...
item_number

An item number of an item to be disabled in the list of expressions to be
printed each time the program stops, as specified in previous display com-
mands (see “display” on page 7-91).

The undisplay command disables the given itemsin each of the processes specified by
the qualifier. The associated expressions or memory locations cease to be displayed when
the corresponding process stops, until you enable them again using the redisplay
command (see “redisplay” on page 7-93). The effect of the qualifier on this command is
to limit the items to be disabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering the info display command (see “info
display” on page 7-143).

Enable a display item.
redisplay item number ...
item_number

An item number of an item to be enabled in the list of expressions to be
printed each time the program stops, as specified in previous display com-
mands (see “display” on page 7-91).

The redisplay command enables the specified display items so that they once again
print data when the corresponding process stops. The redisplay command reverses the
effect of the undisplay command. The effect of the qualifier on this command is to

7-93

NightView RT User’s Guide

printf

load

7-94

limit the items to be enabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering the info display command (see “info
display” on page 7-143).

Print the values of language expressions using a format string.
printf format-string[, expression ...]
format_string

A string within quotes containing text to be printed and print formats for
expressions to be printed.

expression
A language expression (see “ Expression Evaluation” on page 3-20).

printf prints user-specified text plus, optionally, values of language expressions
evaluated in the currently defined language, for each process specified in the qualifier.
This command acts the same as the C language library routine print£ (3), with the
exception of the '%n’ format descriptor. As in that routine, each print format (i.e.,
substring beginning with '%’ and or width specifier "*’) in the format-string corresponds
to one language expression in the specified list. The number of language expressions
entered must match the number of print formats.

If a’%n’ format descriptor is present in the format string, it is considered a syntax error
and the print £ command is aborted.

Example:
(local) (27) printf "The value of var name = %d.\n", var name

This example prints "The value of var_name = " followed by the decimal vaue of
var_name and anewline, for the process with PID 27.

Dynamically load an object file, possibly replacing existing routines.
load object
object
The name of an object file to be loaded into the program.

To specify an object file on a remote system, use the form user@host : /path.
NightView downloads the file from the remote system to the host system to be
loaded into the program. See “Remote File Access’ on page 3-7.

Command-Line Interface

object is subject to object filename trandations (see “trand ate-object-file” on
page 7-28).

This command dynamically loads the designated object file into the address space of the
running program. If the loaded file contains any routines which are already defined in the
program, the entry points of the existing routines are patched to jump directly to the new
routines just loaded. If there are any active stack frames for old routines, the return
addressesin the stack still point to the old code. New calls made following the Load will
call the new routines.

If you had any breakpoints or other eventpoints set in the old routine, you may need to set
equivalent ones again in the new routine (the old ones are still there, but since the old
routine will never be called again, you will probably never hit any of them).

The primary purpose of this command is to allow you to replace an existing routine with
a new version, avoiding the overhead of forcing you to stop debugging the program,
relink it, and rerun to get back to the point of interest.

This command must be used with care. If the new object file contains any global data
definitions, you are very likely to wind up with an erroneous program in which old
routines refer to the original data locations and new routines refer to the newly loaded
data definitions. Patching the old routine entry points to jump to the new routine
definitions is simple, but it is not possible to locate all the places that might refer to data
items defined in the object file, so loading object files that define static data items is
likely to generate unexpected results.

If the object file refers to other routines or external data items that are not already defined
in the program file, you are told about the undefined symbols, and the object file is not
loaded. If you load an object file that defines new symbols, they are added to the symbol
table for the program, so subsequent loads may refer to the new names.

This command checks for obvious problems with the new object file and warns you of
anything that is likely to be amistake, but it loads the new object anyway.

Manipulating Eventpoints

This subsection describes the various commands that are used to set and modify
eventpoints.

Some of the commands which operate on breakpoints also operate on patchpoints,
tracepoints, monitorpoints, heappoints, and watchpoints as well. The following table
indicates which types of eventpoints may be affected by which commands:

7-95

NightView RT User’s Guide

Table 7-8. Eventpoint Commands

Command
Name

What the Command May Apply To

Breakpoints

Patchpoints

Tracepoints

M onitorpoints

Watchpoints

Heappoints

name

X

X

X

X

X

X

clear

X

X

X

commands

condition

delete

disable

enable

ignore

X| X | X| X| X

X| X | X| X| X

X | X | X| X|X]| X

X | X | X| X| X]| X

X| X | X| X| X

tbreak

X | X | X| X[X]| X|X

tpatch

7-96

Command-Line Interface

Eventpoint Modifiers

name

An eventpoint modifier modifies the setting of eventpointsin a program.
The modifiers come after the eventpoint commands as follows:
command [modifier ...]

The eventpoint modifiers are:

/delete

Causes the eventpoint to be deleted after the first hit. This eventpoint modifier is
valid only with the enable command (see “enable” on page 7-111).

/disabled

Causes the eventpoint to be created in a disabled state. You must use the enable
command to activate the eventpoint (see “enable” on page 7-111).

Give aname to a group of eventpoints.
name [/add] name [[-] eventpoint-spec]
/add
Add the eventpoints to the named set, rather than redefining the set.
name

The name of the set of eventpoints to be defined. This must not be the same as
the name of any dialogue you currently have, or of any process family that is
currently defined. The name must consist only of a phanumeric characters and
underscores and must begin with an a phabetic character. The name may be of
arbitrary length.

eventpoint-spec
An eventpoint specifier. See “ Eventpoint Specifiers’ on page 7-17.

The total set of eventpoints is accumulated by scanning the eventpoint-spec
arguments left to right. An argument is added to the set unless it is preceded
by a’-', inwhich case it is subtracted from the set accumulated so far.

If no eventpoint-spec is given, then this command removes any previous definition of
name.

Any qualifier applied to this command has the effect of restricting the set of eventpoints
named to those which exist in the processes specified by the qualifier.

Examples:

7-97

NightView RT User’s Guide

breakpoint

7-98

(local) name evptl 12 25 18
(local) name evpt2 evptl 99
(local) name evptl evptl 16

The first command gives the name evptl to three eventpoints identified by eventpoints
12, 18, and 25. The second command gives the hame evpt2 to the three eventpoints in
evptl plus eventpoint 99. The third command extends the definition of evptl to include
eventpoint 16; thus evptl is a synonym for four eventpoints: 12, 16, 18, and 25. Note that
extending evptl has no effect on evpt2, which still consists of eventpoints 12, 18, 25, and
9.

Using the names defined in the previous examples, the use of a minus sign on arguments
can be illustrated by the following examples:

(local) name evpt3 evptl evpt2 -12
(local) name evpt3 evptl -12 evpt2

The first command defines evpt3 to be the eventpoints 16, 18, 25, and 99. In contrast,
the second command defines evpt3 to be the eventpoints 12, 16, 18, 25, and 99. In this
case, the argument -12 removed eventpoint 12 from the set accumulated from evpt1,
but the evpt 2 argument adds that eventpoint back in.

Set a breakpoint.

breakpoint [eventpoint-modifier] [name=breakpoint-name]
[[at] location-spec] [if conditional-expression]

Abbreviation: b
eventpoi nt-modifier
Specifies the breakpoint modifier. See “Eventpoint Modifiers’ on page 7-97.
name=breakpoint-name

Gives a name to the breakpoint for later reference. (see “name” on page 7-97).
If breakpoint-nameis already defined, then this command adds the newly cre-
ated breakpointsto the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. (see “Location Specifiers’ on page 7-14).

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “ Current Frame” on page 3-25.

if conditional-expression

Specifies a breakpoint condition. The language and scope of the expression is
determined by the location at which the breakpoint is set (see* Scope” on page
3-25 and “ Context” on page 3-24). See also “Expression Evaluation” on page
3-20.

patchpoint

Command-Line Interface

NOTE

The at, if, and name keywords may not be abbreviated in this
command.

breakpoint sets a breakpoint in each of the processes specified by the qualifier. This
causes the program to suspend execution at the breakpoint location. An optional
condition may be applied to the breakpoint which causes execution to be suspended only
if the condition evaluates to TRUE. The conditional expression is evaluated in the user
program when the breakpoint location is reached (unless the breakpoint is currently being
ignored, see “ignore” on page 7-112).

If more than one breakpoint is set (through the use of more than one process in the
qualifier) then each breakpoint in each process is assigned a unique breakpoint number.

You can specify debugger commands to be executed when a breakpoint is hit. See
“commands’ on page 7-108.

It is possible (and sometimes useful) to set more than one breakpoint at the same location
in a process. Perhaps you have two breakpoints set at the same place and each has its own
set of commands. By enabling only one of the two breakpoints at a time, you can
effectively toggle the set of commands that gets executed when the process reaches that
location.

If more than one breakpoint is set at the same location in a given process, then the ol dest
breakpoint with an ignore count of zero and a condition that evaluates to TRUE will be the
first breakpoint responsible for stopping the process. After this breakpoint has stopped
the process, before continuing on to the next instruction, NightView will check for any
remaining breakpoints at that location which may stop the process. If there are any, then
the process will stop at |east once more (at the same location) before continuing on to the
next instruction.

Example:
(local) (441 115) break name=loop sort.c:42

This example sets two breakpoints at line 42 of the file named sort.c and associates
both breakpoints with the name 'loop’. One of the breakpoints is set in process 441 and
the other breakpoint is set in process 115. Each of the two breakpoints is assigned a
unique breakpoint number.

Install asmall patch to aroutine.

patchpoint [eventpoint-modifier] [name=patchpoint-name]
[[at] location-spec] eval expression

Insert an expression in the program.

patchpoint [eventpoint-modifier] [name=patchpoint-name]
[[at] location-spec] goto location-spec

7-99

NightView RT User’s Guide

Insert a branch in the program.

eventpoi nt-modifier

Specifies the patchpoint modifier. See “ Eventpoint Modifiers’ on page 7-97.

name=patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well asthe
name command (see “name” on page 7-97) may be used to give them names.
See “Manipulating Eventpoints’ on page 7-95.

at location-spec

Specify the exact point in the program to execute the patchpoint (see “Loca
tion Specifiers’ on page 7-14). The patchpoint is executed immediately prior
to any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

eval expresson

This variant of the patchpoint command specifies an expression to insert
in the program at the designated location-spec. Ada, C and C++ programmers
should note that thisis an expression and not a statement; therefore, it does not
end with a semicolon. (The concept of expression is extended to include
assignments and procedure callsin Adaand Fortran.) See “Expression Evalu-
ation” on page 3-20.

goto location-spec

This variant of the patchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

Note that if an expression is used as a location-spec, the expression is evalu-
ated only once for each process in the qualifier. For example, if the location-
spec is *$1r, the value of register 1r in the current context is used as the
location to branch to.

NOTE

The keywords name, at, eval, and goto may not be abbrevi-
ated in this command.

Once an eval patchpoint isinstalled, the language expression will be executed each time
control reaches location-spec in the program. After the patchpoint is executed, the
original instruction will also execute.

Once a goto patchpoint is installed, the branch will be executed before the patched
instruction each time execution reaches location-spec in the program. It is important to
note that the original instruction is not executed if the patchpoint is hit (that is, depending

7-100

set-trace

Command-Line Interface

on the enabled status, the ignore count and any eventpoint condition on the patchpoint). If
the patchpoint is not hit, the original instruction is executed normally.

When patching in agoto, you should be aware that the compiler has probably generated
code which expects certain register contents and altering the flow of control in your pro-
gram can very easily send it to a new location with unexpected values in registers, so the
goto patchpoint should be used only when you are sure you know all the conseguences.

You may attach a condition or ignore count to both kinds of patchpoints, using the
condition (See “condition” on page 7-109) or ignore (see “ignore” on page 7-112)
commands. This suppresses execution of the patched expression unless the ignore count
is zero and the conditional expression evaluates to TRUE.

Patchpoints are implemented by modifying the executable code for the program, so they
will remain in effect until the program exits, even if you detach the debugger from the
program, unless the patchpoint was disabled when you detached (see “detach” on page
7-40 and “disable” on page 7-110). Note that the disk copy of the program is not
modified; you must edit your source, recompile and relink to make a permanent
modification to the program.

If multiple patchpoints are made at the same point in the program, they will al be
executed in the order they were applied. This is especialy important to note for goto
patchpoints, because once a goto is executed, any subsequent patchpoints (or other
kinds of eventpoints, such as breakpoints and tracepoints) at that same location will not
be executed. If agoto patchpoint is not hit (because it was disabled, or the ignore count
or condition caused it to be skipped), then the branch will not be taken and subsequent
patchpoints will be executed, as well as the original patched instruction.

Example:
(local) patchpoint file.c:12 eval i=0

This C example patches the code to initialize the variable 1 to zero immediately prior to
executing line 12 in thefile £ile. c. Note that no semicolon appearsin this example.

Establish tracing parameters.
set-trace [eventmap=event-map-file]
eventmap=event-map-file

Names the file that contains the mapping between symbolic trace-event tags
and numeric trace-event IDS. This should be the same as the event-map file
passedtontrace (1).

The set-trace command is used to specify information that may be required before
any tracepoints may be set in a process (see “tracepoint” on page 7-102).

If you want to use symboalic trace-event tags rather than numeric trace-event IDs as the
event-id parameter of the tracepoint command, then you must specify an event-map
file. You may specify multiple event-map files by repeating the eventmap parameter.

7-101

NightView RT User’s Guide

As long as the files do not contain conflicting definitions for tags, al the tags will be
defined for use as trace-event identifiers.

tracepoint

Set atracepoint.

tracepoint

7-102

eventpoint-modifier] event-id [name=tracepoint-name]
[at] location-spec]

value=logged-expression [, logged-expression...]]

if conditional-expression]

— /s — e

eventpoi nt-modifier
Specifies the tracepoint modifier. See “Eventpoint Modifiers’ on page 7-97.
event-id

An identifier for the trace event to be traced by NightTrace. Thisis either a
numeric trace-event 1D or a symbolic trace-event tag obtained from the event-
map file specified by the eventmap parameter of the set-trace command
(see " set-trace” on page 7-101).

name=tracepoint-name

Gives anameto the tracepoint for later reference. See “name” on page 7-97. If
tracepoint-name is already defined, then this command adds the newly created
tracepoints to the list of eventpoints associated with the name.

location-spec
Specifies the tracepoint location. See “Location Specifiers’ on page 7-14.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

value=logged-expression [, logged-expression...]

Specifies that the value of each logged-expression should be recorded with the
trace event. The expressions are separated by commas. (To include a comma
in an expression, surround the expression by parentheses.)

The number of expressions and the type of the expressions must match a
trace_ event routine defined by the ntrace library. See the section
"trace_event() and Its Variants' in the "Using the NightTrace Logging API"
chapter of the NightTrace User’s Guide.

The expressions are evaluated in the user program, so they obey the same
rules that conditional and patchpoint expressions do. See “ Expression Evalua
tion” on page 3-20.

Command-Line Interface

if conditional-expression

Specifies a tracepoint condition. The language and scope of the expression is
determined by the location at which the tracepoint is set (see “ Scope” on page
3-25 and “ Context” on page 3-24). See also “Expression Evaluation” on page
3-20.

NOTE

The name, value, and i £ keywords may not be abbreviated in
this command.

The tracepoint command sets a tracepoint in each of the processes specified by the
qualifier. This causes the program to emit special tracing output at the tracepoint location.
An optional condition may be applied to the tracepoint which causes tracing to be
performed only if the condition evaluates to TRUE. The conditional expression
conditional-expression is evaluated in the user program when the tracepoint location is
reached (unless the tracepoint is currently being ignored, see “ignore” on page 7-112).

Tracepoints set in a process remain set even if you detach the debugger from the
program, unless the tracepoint was disabled at the time you detached (See “detach” on
page 7-40 and “ disable” on page 7-110).

NOTE

Thentrace (3) routines must have been linked into the pro-
gram when it was built. If the program does not initialize tracing,
then you must initialize tracing manually by evaluating expres-
sions that contain calls to the appropriate trace routines
(trace_start followed by trace open thread).

The debugger does not start thentraceud (1) monitor process.
You must do that manually (see “NightTrace Monitor” on page
3-41).

If more than one tracepoint is set (through the use of more than one process in the
qualifier) then each tracepoint in each process is assigned a unique tracepoint number.

It is possible (and sometimes useful) to set more than one tracepoint at the same location
in a process. Perhaps there is more than one noteworthy event that takes place at the same
location in your program. If more than one tracepoint is set at the same location in a
given process, then the tracepoints at that location are recorded in the order they were
defined.

Example:
(local) (441 115) tracepoint 27 name=loop trace sort.c:42

This example sets two tracepoints at line 42 of the file named sort.c and associates
both tracepoints with the name ’'loop_trace’. One of the tracepoints is set in process 441

7-103

NightView RT User’s Guide

monitorpoint

7-104

and the other tracepoint is set in process 115. Each of the two tracepoints is assigned a
unique tracepoint number. The ID of the trace event to trace is given by the number 27.

Monitor the values of one or more expressions at a given location.

monitorpoint [eventpoint-modifier] [name=monitorpoint-name]
[[at] location-spec]

eventpoi nt-modifier

Specifies the monitorpoint modifier. See “ Eventpoint Modifiers” on page
7-97.

name=monitorpoint-name

Gives a name to the monitorpoint for later reference. See “name” on page
7-97. If monitorpoint-name is already defined then this command adds the
newly created monitorpoints to the list of eventpoints associated with the
name.

location-spec
Specifies the monitorpoint location. See “L ocation Specifiers’ on page 7-14.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

Themonitorpoint command sets a monitorpoint in each of the processes specified by
the quaifier. Each line following the monitorpoint command must be a special form
(described later) of print command; each print command specifies an expression to
be evaluated and monitored at the location of the monitorpoint. To end the list of print
commands, type end monitor onalineby itself.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering the attached print commands. See “Command Syntax” on page 7-1.

When the monitorpoint is executed, the expressions specified in the attached commands
will be evaluated and their values saved in a location reserved by NightView. The
monitored values are displayed periodically in a monitor display area; see “Monitor
Window” on page 3-28. For a more detailed description of monitorpoints, see
“Monitorpoints’ on page 3-11.

The syntax of the commands attached to a monitorpoint is:
print [/print-format-letter] [id="string"] expression

This syntax is identical to the print NightView command (see “print” on page 7-84),
with the addition of the optional id="string" argument. The string, if specified, is used
to identify the monitored expression in the monitor display area. If you do not specify the
id= parameter, the text of the expression itself is used as the identifying string. Note that
you may not abbreviate the 1d= keyword to anything shorter (like "i").

Command-Line Interface

Once you have created a monitorpoint, you can change the set of commands attached to it
(and thus the expressions being monitored) using the commands command. See
“commands’ on page 7-108.

Example:

(local) monitorpoint file.c:12

> print variablel

> print id="Velocity (ft/sec)" variable2
> end monitor

In this example, two variables will be monitored at line 12 of £ile.c. Thefirst variable,
variablel, will be displayed using its name as the identifying string. The second
variable, variable2, will be displayed with the string Vvelocity (ft/sec).

heappoint

Check the heap for errors, or change the heap debugger settings, at a given location.

heappoint [eventpoint-modifier] [name=heappoint-name] [[at] location-spec]
[{check | debug parameters}}] [if conditional-expression]

eventpoi nt-modifier
Specifies the heappoint modifier. See “Eventpoint Modifiers’ on page 7-97.
name=heappoint-name

Gives aname to the heappoint for later reference. See “name” on page 7-97. If
heappoint-name is already defined then this command adds the newly created
heappoints to the list of eventpoints associated with the name.

location-spec
Specifies the heappoint location. See “Location Specifiers’ on page 7-14.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

check

Specifies that the heappoint does a heap check. Thisis the default if neither
check nor debug is specified.

debug parameters

Specifies that the heappoint changes the heap debugger settings. parameters
are the same as the arguments to the heapdebug command (see “ heapde-
bug” on page 7-53).

if conditional-expression

Specifies a heappoint condition. The language and scope of the expression is
determined by the location at which the heappoint is set (see “ Scope” on page

7-105

NightView RT User’s Guide

mcontrol

7-106

3-25 and “ Context” on page 3-24). See also “Expression Evaluation” on page
3-20.

The heappoint command sets a heappoint in each of the processes specified by the
qualifier. See “Heappoints’ on page 3-12.

When the heappoint is executed, the process does a heap check if check was specified, or
changes the heap debugger settings if debug was specified. The check and debug
parameters are mutually exclusive.

Putting check heappoints at various places in your program can help you narrow down
where heap problems are occurring.

Changing the heap debugger settings dynamically within your program can help you get
reasonable performance while still getting strong heap checking. For example, if you have
a suspicious section of code, you could set a heappoint at the beginning of the section to
set automatic heap checks to occur before every heap operation, and set another heappoint

at the end of the section to set automatic heap checks to occur only every 10,000 heap
operations.

Control the monitor display window.
mcontrol {display | nodisplay} [monitorpoint-spec .. .]
Turn on or off the display of individual monitorpoints in the monitor window.
mcontrol delay milliseconds
Set the milliseconds to delay between monitor window updates.
mcontrol {off | on | stale | nostale | hold | release}
Toggle amonitoring parameter.
Abbreviation: hold
Thisis an abbreviation for mcontrol hold.
Abbreviation: release
Thisisan abbreviation for mcontrol release.
display nodisplay

These keywords are used to enable or disable the display of specific monitor-
points in the monitor window. The monitorpoints appearing in the argument
and in the processes specified by the qualifier are either added to or removed
from the monitor window display area. This does not affect the monitorpoint
itself, it simply determines which monitorpoints are shown in the window. See
“monitorpoint” on page 7-104.

clear

Command-Line Interface

on off

These keywords turn the monitor window on or off. You may wish to turn off
the monitor window to reclaim screen space, then turn it back on later. Turn-
ing of £ the window also does a hold, but turning the window on does not
implicitly do arelease.

stale nostale

The monitor window normally displays a stale data indication next to each
value. The nostale keyword causes the monitor window to display blank
space rather than one of the stale dataindicators. Theindicators may be turned
back on with the stale keyword.

hold release

Thehold and release keywords are used to hold or release updates of the
monitor window. When the window is held, the values displayed in the moni-
tor window will no longer change (the processes containing the values are not
affected, they continue to run). The release keyword allows the monitor
window to start updating the values again.

Interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-36.

delay

The monitor window normally waits one second (1000 milliseconds) between
updates. A different number of milliseconds may be specified following the
delay keyword. If you tell it to wait zero milliseconds, it updates the monitor
window asfast asit possibly can.

All of the mcontrol parameters allow you to control various aspects of the monitor
display window (see “Monitor Window” on page 3-28).

You may not combine parameters on the mcontrol command. Only one keyword may
be used in one invocation of the command. The command qualifier is only used when the
display or nodisplay keywords are used to specify alist of monitorpoints.

Clear al eventpoints at a given location.
clear [[at] location-spec]
location-spec

Specifies the location from which all eventpoints are to be removed. See
“Location Specifiers’ on page 7-14.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “ Current Frame” on page 3-25.

clear removes al eventpoints at the specified location in each process. Once an

7-107

NightView RT User’s Guide

commands

7-108

eventpoint has served its purpose, the eventpoint may be removed by using the clear or
delete commands (see “delete” on page 7-110). Both commands remove an eventpoint.
clear removes eventpoints based on where they are in the process. delete removes
eventpoints specified by name or by eventpoint-number.

NOTE

A location specifier may sometimes designate multiple locations
(see “Location Specifiers’ on page 7-14). Hence, it is possible for
a single eventpoint to be set at multiple locations. If any of the
locations at which an eventpoint is set match any of the locations
implied by the location specifier for the clear command, then
that eventpoint will be removed (from all of its corresponding
locations).

It is unnecessary to clear a breakpoint in order to continue execution after the breakpoint
has stopped the program.

Example:
(local) clear sort.c:42

This example removes all eventpoints set at line 42 of the file named sort. c in each of
the processes specified by the default qualifier.

Attach commands to a breakpoint, monitorpoint, or watchpoint.
commands eventpoint-spec
eventpoi nt-spec

The breakpoints, monitorpoints, or watchpoints to which the given commands
are attached. See “Eventpoint Specifiers’ on page 7-17.

The commands command attaches the given list of commands to the given breakpoints,
monitorpoints, or watchpoints in processes specified by the qualifier. Each line following
the commands command-line should be a command to associate with the eventpoints.
To end the list of commands, type’end’ on aline by itself.

Each of the commands given isimplicitly qualified with the PID of the process associated
with the eventpoint.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering this command. See “Command Syntax” on page 7-1.

If the first line given is’silent’, then the usual message that is printed when a breakpoint
or watchpoint stops the process will be suppressed. Furthermore, the ’silent’ command
will also prevent the current source line from being listed, and will prevent any displays
from being updated. The’'silent’” command is valid only when attached to a breakpoint or

condition

Command-Line Interface

watchpoint and is useful for breakpoints or watchpoints that are intended only to print a
specific message and then resume execution.

Certain commands (such as continue, resume, and signal), once executed, will
automatically terminate the command stream associated with a set of commands that
were attached to a breakpoint or watchpoint using the commands command. See
“continue” on page 7-117, “resume” on page 7-118, and “signal” on page 7-124.

Although you can use the commands command to attach commands to breakpoints,
monitorpoints, or watchpoints, the eventpoints specified on the command line must be all
of the same type. Also note that the commands allowed for monitorpoints are restricted to
print commands. See “monitorpoint” on page 7-104.

Attach a condition to an eventpoint.
condition eventpoint-spec [conditional-expression]
eventpoint-spec

The eventpoints associated with the condition. See “ Eventpoint Specifiers’ on
page 7-17.

conditional-expression

The condition to be associated with the eventpoints. See “ Expression Evalua-
tion” on page 3-20.

The simplest type of breakpoint is one which stops the program each time it is
encountered (an unconditional breakpoint). Often however, you may wish to stop the
program at a given location only after a certain event has occurred or when a specified
condition has been met (a conditional breakpoint). The condition command may be
used to attach a condition to a breakpoint.

In a similar manner, conditions may also be attached to tracepoints, monitorpoints,
heappoints, patchpoints, and watchpoints, causing the associated action to take effect
only when the attached condition evaluates to TRUE.

The condition command attaches the condition conditional-expression to one or more
eventpoints in the processes specified by the qualifier. If conditional-expression is
omitted, then any condition attached to the specified eventpoint is removed in each of the
processes specified by the quaifier, and the eventpoint becomes an unconditional one. If
the specified eventpoint already has a condition attached to it, the existing condition is
replaced with conditional -expression.

Examples:

(local) breakpoint name=loop at foo.c:12
(local) condition loop (index == 0)
(local) condition loop

The first condition command attaches a condition to the breakpoint named 'loop’ so
that it only stops the program when the variable 'index’ is zero. The second condition

7-109

NightView RT User’s Guide

delete

disable

7-110

command removes any condition associated with the breakpoint named 'loop’ (thus
making it an unconditional breakpoint).

(local) trace MyEvent name=tracel at foo.c:12
(local) condition tracel (x>12)

In this example, atracepoint named "tracel’ is set, and the condition *x>12" is attached to
the tracepoint. Therefore, the event will be traced only when’'x’ is greater than 12.

Delete an eventpoint.
delete [eventpoint-spec ...]
Abbreviation: 4
eventpoint-spec
The eventpoints to be deleted. See “Eventpoint Specifiers’ on page 7-17.

delete removes the specified eventpoints in each of the processes specified by the
qualifier. Both delete and clear may be used to delete eventpoints (see “clear” on
page 7-107). The difference is that delete removes eventpoints specified by name or by
eventpoint-number and clear removes eventpoints specified by location.

If eventpoint-spec is omitted and your safety level isunsafe then all eventpoints in the
processes specified by the qualifier are removed (see “set-safety” on page 7-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are removed (see “ Replying to Debugger Questions’
on page 7-21). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are removed.

The effect of the qualifier on this command is to limit the eventpoints deleted to be only
those that occur in the processes specified by the qudlifier.

Examples:

(local) d loop
(local) 4 2 5

The first example removes al eventpoints associated with the name 'loop’. The second
example removes eventpoints 2 and 5.

Disable an eventpoint.

disable [eventpoint-spec . . .]

enable

Command-Line Interface

eventpoint-spec
The eventpoints to be disabled. See “ Eventpoint Specifiers’ on page 7-17.

The disable command disables the given eventpoints in each of the processes specified
by the qualifier. Disabling an eventpoint is not quite the same as removing an eventpoint.
When an eventpoint is removed, it is made inoperative and all the information associated
with the eventpoint is removed. When an eventpoint is disabled, it is simply made
inoperative. It may still be seen, however, if you usethe info eventpoint command
(see “info eventpoint” on page 7-135). All information associated with the eventpoint is
still retained so that the eventpoint may later be reactivated using the enable command
(see“enable” on page 7-111).

If eventpoint-spec is omitted and your safety level is unsafe then all eventpoints in the
processes specified by the qualifier are disabled (see “set-safety” on page 7-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are disabled (see “Replying to Debugger Questions’
on page 7-21). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are disabled.

The effect of the qualifier on this command is to limit the eventpoints disabled to be only
those that occur in the processes specified by the qudlifier.

Example:

(local) disable 4
(local) (115 441) disable calvin
(local) (549) disable 8 hobbes 12 14

The first example disables eventpoint number 4 in the processes specified by the default
qualifier. The second example disables the eventpoints associated with the name
"calvin’ in process 115 and in process 441. The third example disables the eventpoints
associated with the name "hobbes' and disables eventpoints numbered 8, 12, and 14 in
process 549.

Enable an eventpoint for a specified duration.
enable [/once|/delete] [eventpoint-spec . ..]
/once

Specify whether the given eventpoints are to be enabled once only and then
immediately disabled after the next time they are hit. There need not be a
space between the command name and the’/".

/delete

Valid only for breakpoints and watchpoints. Specify whether the given break-
points and watchpoints are to be enabled once only and then immediately
deleted after the next time they are executed. There need not be a space
between the command name and the'/".

7-11

NightView RT User’s Guide

ignore

7-112

eventpoint-spec
The eventpoints to be enabled. See “Eventpoint Specifiers’ on page 7-17.

The enable command enables for the specified duration each of the eventpoints in the
processes specified by the qualifier. If neither /once nor /delete is specified, then the
given eventpoints are simply enabled. If /once is specified, then the given eventpoints
are temporarily enabled. The eventpoints will be disabled again after the next time they
are hit. If /delete is specified, then for each process in the qualifier, the given
breakpoints and watchpoints are enabled and also marked for deletion. The breakpoints
and watchpoints will be deleted after the next time they are hit.

If eventpoint-spec is omitted and your safety level is unsafe then all eventpoints in the
processes specified by the qualifier are enabled (see “set-safety” on page 7-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are enabled (see “Replying to Debugger Questions’
on page 7-21). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are enabled.

The effect of the qualifier on this command is to limit the eventpoints enabled to be only
those that occur in the processes specified by the qudlifier.

Examples:

(local) enable calvin
(local) enable /once 4 6 23
(local) enable /delete 8 hobbes

The first example enables al eventpoints associated with the name "calvin’ in the default
qualifier. The second example enables eventpoints number 4, 6, and 23 for once-only
execution (the eventpoints will be disabled after the next time they are hit). The third
example enables breakpoint number 8, and the breakpoints and watchpoints associated
with the name "hobbes’ for deletion (these breakpoints and watchpoints will be deleted
after the next time they are hit).

Attach an ignore-count to an eventpoint.
ignore eventpoint-spec count
eventpoint-spec
The eventpoints to be ignored. See “ Eventpoints’ on page 3-9.
count

The number of times to ignore the eventpoint. Specifying an ignore-count of
zero has the effect of causing the eventpoints to no longer be ignored. The
ignore-count is evaluated in the user's process.

The ignore command causes the specified eventpoints to be skipped the next count
times execution reaches them (even if the eventpoint is a conditional eventpoint). Thisis
accomplished by attaching an ignore-count to the given eventpoints. In the case of a

tbreak

tpatch

Command-Line Interface

breakpoint, any NightView commands associated with the breakpoint will not be
executed until the breakpoint is hit.

Example:
(local) ignore calvin 4

This example causes the eventpoints associated with the name 'calvin’ to be ignored 4
times before they may be hit again.

Set atemporary breakpoint.

tbreak [name=breakpoint-name] [[at] location-spec]
[1f conditional-expresson]

name=breakpoint-name

Gives a hame to the breakpoint for later reference. See “name” on page 7-97.
If breakpoint-name is already defined then this command adds the newly cre-
ated breakpointsto the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. See “L ocation Specifiers’ on page 7-14.
if conditional-expression

Specifies an eventpoint condition. The language and scope of the expression
is determined by the location at which the breakpoint is set (see “Scope” on
page 3-25 and “ Context” on page 3-24). See “Expression Evaluation” on page
3-20.

Note: The at, if, and name keywords may not be abbreviated in this command.

Like the breakpoint command (see “breakpoint” on page 7-98), the tbreak
command sets a breakpoint. The difference between the two is that tbreak sets a one-
time-only breakpoint in each of the processes specified by the qualifier. The breakpoint
will be disabled after being hit once.

Example:
(local) (115) tbreak sort.c:48

This example sets a temporary breakpoint in process 115 at line 48 of the source file
sort.c.

Set a patchpoint that will execute only once.

7-113

NightView RT User’s Guide

tpatch [name=patchpoint-name] [[at] location-spec] eval expression

Insert an expression in the program that will be executed the next time the patchpoint is
hit, then never executed again unless explicitly enabled. See “enable” on page 7-111.

tpatch [name=patchpoint-name] [[at] location-spec] goto location-spec

Overwrite an instruction in the program with a branch that will only be taken once.
Subsequent execution will ignore the patchpoint and execute the original instruction.

name= patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well asthe
name command (See “name” on page 7-97) may be used to give them names.
See “Manipulating Eventpoints’ on page 7-95.

at location-spec

Specify the exact point in the program to execute the patchpoint. See “Loca
tion Specifiers’ on page 7-14. The patchpoint is executed immediately prior to
any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “ Current Frame” on page 3-25.

eval expresson

This variant of the patchpoint command specifies an expression to insert
in the program at the designated location-spec. Ada, C and C++ programmers
should note that thisis an expression and not a statement; therefore, it does not
end with a semicolon. (The concept of expression is extended to include
assignments and procedure callsin Adaand Fortran.) See “Expression Evalu-
ation” on page 3-20.

goto location-spec

This variant of the patchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

NOTE

The keywords name, at, eval, and goto may not be abbrevi-
ated in this command.

The tpatch command is a variant of the patchpoint command. See “patchpoint” on
page 7-99. It works exactly like the patchpoint command, but a temporary patchpoint will
automatically disable itself after executing one time. A temporary patchpoint may be
enabled later, in which case it will act exactly like a normal patchpoint. See “enable” on
page 7-111.

A temporary patchpoint may be useful for patching in initiaization code which should
only execute once.

7-114

watchpoint

Command-Line Interface

Set awatchpoint.

watchpoint [eventpoint-modifier] [/oncel [/read] [/write]
[name=watchpoint-name] [at] lvalue [if conditional-expression]

watchpoint [eventpoint-modifier] [/once] [/read] [/write] /address
[name=watchpoint-name] [at] address-expresson {size Size-expresson | type
expresson} [if conditional-expression]
eventpoi nt-modifier
Specifies the watchpoint modifier. See “Eventpoint Modifiers’ on page 7-97.
/once
The watchpoint is enabled only until the first timeit is hit.
/read

Watchpoint processing occurs for aread (i.e., a"load") of the specified
address. Either or both of /read and /write may be specified.

/write

Watchpoint processing occurs for a write (i.e., a "store") of the specified
address. Either or both of /read and /write may be specified. If neither is
specified, the default is /write.

Watchpoint processing always occurs for awrite, even if /write isomitted,
because it is not possible to create a read-only watchpoint on an |A-32 or
AMDG64.

/address
Indicates thisis the address-expression form of the command.
name=watchpoint-name

Gives anameto the watchpoint for later reference. (see “name” on page 7-97).
If watchpoint-name is already defined, then this command adds the newly cre-
ated watchpoints to the list of eventpoints associated with the name.

Ivalue

An expression that yields an addressable item to watch. For example, Ivalue
may be a variable name or an array element.

address-expression
An expression that yields an address to watch.
size Size-expression

The size of theitem to watch, in bytes.

7-115

NightView RT User’s Guide

type expression

An expression whose type indicates the size of the item to watch. type is
used only in restart information.

if conditional-expression

Sets a condition on the watchpoint. The watchpoint is considered to be hit
only if conditional-expression evaluates to TRUE. The conditional-expression
is always evaluated in the global scope. conditional-expression is eval uated
after the process has executed the instruction causing the trap.

conditional-expression may refer to the process-local convenience variable
$is. $is isthe value of the watched item after the process has executed the
instruction causing the trap. See “Watchpoints’ on page 3-13.

NOTE

The at, if, name, size and type keywords may not be abbre-
viated in this command.

watchpoint sets awatchpoint in each of the processes specified by the qualifier. This
causes the process to stop when it accesses the Ivalue or address-expression. See “Watch-
points’ on page 3-13.

You can specify commands to be executed when the watchpoint is hit. See “commands’
on page 7-108.

Controlling Execution

7-116

This section describes commands used to control the execution of a process.

Most of the commands described in this section cause the processes specified in the
qualifier to resume execution and then wait for something to happen. (This is what you
usually want when you are debugging a single process) Only resume resumes
execution and then returns immediately for another command.

Some of the commands continue until something special happens. For example, step
continues until control crosses a source line boundary. However, you should be aware
that another event, such as a signal or hitting a breakpoint, may cause the process to stop
sooner.

If the process stopped because of a signal, then it will receive that signal when the
process resumes, subject to the setting of the handle command, see “handle’ on page
7-125. If you want the process to receive a different signal, or no signal at al, then use
the signal command. See“signal” on page 7-124.

continue

Command-Line Interface

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

If you ask to continue execution of a process with any of the commands here, and that
process is aready executing, then you get a warning message. Any other processes
specified by the qualifier are continued.

If a process is stopped at a breakpoint or watchpoint, it is not necessary to remove the
breakpoint or watchpoint before continuing.

Continue execution and wait for something to happen.
continue [count]
Abbreviation: ¢

count

If the count argument is specified, the processes will not stop at the current
breakpoint or watchpoint again until they have hit it count times. This argu-
ment is ignored for any processes that are not stopped at breakpoints or watch-
points.

continue causes the processes specified by the qualifier to resume execution at the
point where they last stopped. Processes run concurrently. Each process will execute until
some event, such as hitting a breakpoint, causesit to stop.

If this command is entered interactively, the debugger does not prompt for any more
commands until one of the processes specified by the qualifier stops executing for some
reason. Note that only one of the specified processes has to stop for the continue
command to complete; it does not wait for all of the processes to stop. Note also that a
process is considered to be stopped the moment it hits a breakpoint or watchpoint; if the
breakpoint or watchpoint has commands attached to it, they probably will not execute
before you receive a prompt for another command.

If a continue command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a continue
command continues execution of a process that is currently executing another breakpoint
(or watchpoint) command stream, the continue command does not take effect until
that command stream has completed execution. See “Command Streams’ on page 3-35.

If a continue command continues execution of a process that is currently executing an
on program Of on restart command stream, the continue command does not
take effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

continue issimilar to resume. See“resume” on page 7-118.

7-117

NightView RT User’s Guide

resume

7-118

Example:
(local) ¢ 5

The processes specified by the default qualifier are resumed and will not stop again at the
current breakpoint or watchpoint until it has been hit 5 times.

Continue execution.
resume [Sgid]
sigid

The processes receive the specified signal when they resume execution. sigid
isasignal name or number. You may specify a signal name with or without
the sIG prefix; the name is case-insensitive. If sigid is 0, then the processes
receive no signal when they resume execution. See “signal” on page 7-124.

If this argument is not present, then the processes are resumed with the signal
that caused them to stop, similar to continue.

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

resume causes the processes specified by the qualifier to resume execution at the point
where they last stopped. The processes run concurrently. Each process will execute until
some event, such as hitting a breakpoint or watchpoint, causes it to stop.

If a resume command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a resume command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the resume command does not take effect until that
command stream has completed execution. See “Command Streams’ on page 3-35.

If aresume command continues execution of a process that is currently executing an on
program Of on restart command stream, the resume command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

The difference between resume and continue is that resume does not wait for the
processes to stop. The debugger continues to read and process commands. See “ continue”
on page 7-117.

Example:

(local) resume 0

step

Command-Line Interface

The processes specified by the default qualifier are resumed with no signal.
Example:
(local) resume 2

The processes specified by the default qualifier are resumed with signal number 2.

Execute one line, stepping into procedures.

step [repeat]

Abbreviation: s

repeat

The repeat argument specifies the number of lines to single step. The default
isoneline.

step causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With a repeat count, this happens repeat times.

step follows execution into called procedures. That is, if the current line is a procedure
cal, and you step, then the process will execute until it is in that new procedure and
then stop. If you want to step over the procedure, use next. See “next” on page 7-120.

If astep command causes execution to enter or leave a called procedure, then the output
includes the equivalent of a frame 0 command to show this. See “frame” on page
7-128.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-14 for a discussion of the interactions between single-stepping and
signals.

step isinterpreted relative to the current frame. See “Current Frame” on page 3-25. That
is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “stepi” on page 7-121
and “nexti” on page 7-122.

When the program has just started, step steps to the beginning of the procedure that calls
stetic initializers or library-level elaboration procedures, if any. If there are none, step
stepsto the beginning of the main procedure.

Because of optimization and other considerations, a process may appear to stop multiple
times in the same line or not at al in some lines. The decorations that appear when you
list the source can help you decide which lines are executable (see “Source Line
Decorations’ on page 7-81). Also, disassembly can help you determine the flow of
control through your program (see “X” on page 7-87 and “ Source Menu” on page 9-10).

7-119

NightView RT User’s Guide

next

7-120

If the step command causes execution to enter a procedure which is uninteresting, the
step acts like next. See “Interesting Subprograms’ on page 3-27. See “next” on page
7-120.

If an exception propagates to the current frame or a calling frame, then the step com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
thecall.

Execute one line, stepping over procedures.

next [repeat]

Abbreviation: n
repeat

The repeat argument specifies the number of lines to single step. The default
isoneline.

next causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With arepeat count, this happens repeat times.

next steps over called procedures, including "inline" procedures. See “Inline
Subprograms’ on page 3-26. That is, if the current line is a procedure call, and you single
step with next, then the process will execute until that new procedure has returned. If
you want to follow execution into the procedure, use step. See “step” on page 7-119.

If a next command causes execution to leave a called procedure, then the output
includes the equivalent of a frame 0 command to show this. See “frame” on page
7-128.

This command completes only when al of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-14 for a discussion of the interactions between single-stepping and
signals.

next isinterpreted relative to the current frame. See “ Current Frame” on page 3-25. That
is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “nexti” on page
7-122 and “ stepi” on page 7-121.

When the program has just started, next steps to the beginning of the main procedure.

Because of optimization and other considerations, each process may appear to stop

stepi

Command-Line Interface

multiple times in the same line or not at all in some lines. The decorations that appear
when you list the source can help you decide which lines are executable (see “Source
Line Decorations’ on page 7-81). Also, disassembly can help you determine the flow of
control through your program (see “X” on page 7-87 and “ Source Menu” on page 9-10).

If an exception propagates to the current frame or a calling frame, then the next com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
thecall.

Execute one instruction, stepping into procedures.
stepi [repeat]
Abbreviation: si

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.

stepi executes a single machine instruction in each of the processes specified by the
qualifier.

This is very similar to step, except that step executes lines and stepi executes
individua instructions. See “ step” on page 7-119.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-14 for a discussion of the interactions between single-stepping and
signals.

stepi isinterpreted relative to the current frame. See “ Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

Sometimes, when stepping by instructions, it is useful to set up a display command to
show the instruction that is just about to be executed each time the process stops. To do

that, say
(local) display/i $pc
See“display” on page 7-91.

If the stepi command causes execution to enter a procedure which is uninteresting, the
stepi actslike nexti. See “Interesting Subprograms’ on page 3-27. See “nexti” on
page 7-122.

7-121

NightView RT User’s Guide

nexti

finish

7-122

If an exception propagates to the current frame or a calling frame, then the stepi com-
pletes and execution is stopped at the beginning of the exception handler.

Execute one instruction, stepping over procedures.
nexti [repeat]
Abbreviation: ni

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.

nexti executes a single machine instruction in each of the processes specified by the
qualifier, except that nexti steps over procedure calls and inlined procedures. See
“Inline Subprograms’ on page 3-26.

This is very similar to next, except that next executes lines and nexti executes
individual instructions. See “next” on page 7-120.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-14 for a discussion of the interactions between single-stepping and
signals.

nexti isinterpreted relative to the current frame. See “ Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

If an exception propagates to the current frame or a calling frame, then the nexti com-
pletes and execution is stopped at the beginning of the exception handler.

Continue execution until the current function finishes.
finish

finish causes a process to continue execution until the current frame returns. This
happens in each process specified by the qualifier.

Note that this may cause the process to finish multiple procedures, depending on which
frame is the current frame. See “frame” on page 7-128. If the current frame is in the
context of atask, thread, or thread process chosen by the select-context command,
execution continues until that task, thread, or thread process completes execution of that
procedure, or until the process stops for some other reason. See “Multithreaded
Programs’ on page 3-40.

stop

jump

Command-Line Interface

In general, the exact action of this command is dependent on the language being
debugged.

The finish command causes execution to leave a called procedure, so the output
includes the equivalent of a frame 0 command to show this.

This command completes only when all of the processes specified by the qualifier have
completed the function execution or stopped for some other reason (like receiving a
signal). The discussion in “Signals’ on page 3-14 concerning interactions between single-
stepping and signals also appliesto the £inish command.

If an exception propagates past the current frame, then the £inish completes and execu-
tion is stopped at the beginning of the exception handler.

Stop a process.
stop

The stop command stops each of the processes specified by the qualifier. In many cases
(such as setting breakpoints), NightView requires a process to be stopped before a
command may be applied to the process.

The stop command does not complete until al of the specified processes have been
stopped. If a specified process is aready stopped, this command silently ignores that
process.

WARNING

Itis possible, though unlikely, that the process will stop of its own
accord (say by hitting a breakpoint) while NightView is trying to
stop it. If that happens, your process may receive a spurious
SIGTRAP signal the next time you resume its execution. This signal
should be harmless; resuming your process after this signal occurs
should get everything back to normal.

Example:
(local) (addams) stop

This example stops each of the processesin the process family named ’addams'.

Continue execution at a specific location.

jump [at] location-spec

7-123

NightView RT User’s Guide

signal

7-124

location-spec

The location-spec specifies where to continue execution. See “L ocation Speci-
fiers” on page 7-14.

jump causes execution to continue at the specified location. This happens for each
process specified in the qualifier.

jump does not modify the stack frames or registers, it just modifies the program counter
and continues execution. Unless you are sure the registers have the right contents for the
new location, you are cautioned to avoid using this command.

You must bein frame 0, with no hidden frames below frame zero, to use jump. See“Inter-
esting Subprograms” on page 3-27.

Continue execution with asignal.
signal sSgid
sigid

Specifies the name or number of the signal with which to continue. If sigidis
0, then the processes are continued without a signal. You may specify asignal
name with or without the sIG prefix; the name is case-insensitive.

signal resumes execution of the processes specified in the qualifier, passing them a
signal.

signal is useful if aprocess has received asignal (causing it to stop and be recognized
by the debugger), but you don't want it to see the signal. Then, rather than using
continue to continue the process, use signal 0.

Or, perhaps you want the process to receive a different signal. signal can resume your
process with any signal.

If a signal command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a signal command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the signal command does not take effect until that
command stream has completed execution. See “Command Streams’ on page 3-35.

If asignal command continues execution of a process that is currently executing an on
program Of on restart command stream, the signal command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

For a way to have the debugger deal with signals automatically, see “handl€” on page
7-125. signal overridesthe pass setting of handle.

handle

Command-Line Interface

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

Type info signal toget alist of all of the signals on your system. See “info signal”
on page 7-145.

Example:
(local) signal 2

The processes resume with signal number 2.

Specify how to handle signals and Ada exceptions in the user process.

handle [/signal] sgid keyword ...

handle /exception exception-name keyword . ..
handle /exception unit-name keyword . ..
handle /exception all keyword ...

handle /unhandled exception keyword ...
/signal
Specifies handling of asignal. Thisis the default.
sigid

Specifies the name or number of asignal to handle. Does not apply to han-
dle /exception commands. You may specify asignal name with or with-
out the sIG prefix; the name is case-insensitive.

/exception
Specifies handling of an Ada exception.
exception-name

Specifies the name of a particular Ada exception to be handled. This form of
handle/exception takes precedence over any previous han-
dle/exception command that specified all.

unit-name

Specifies that all Ada exceptions defined in the specified unit will be handled
according to the keyword specifications. The effect is identical to the effect

7-125

NightView RT User’s Guide

obtained by mentioning each of those exceptionsin ahandle/exception
command.

all

Specifies that all Ada exceptions will be handled as specified by the key-
words. This overrides any previous handle/exception command that
specifies either an exception-name or a unit-name. Doesn't apply to signal han-
dling specifications, nor to the handling of exceptionsfor which the user pro-
gram does not have a handler (use handle/unhandled exception for
that).

/unhandled_exception

Specifies the handling (by NightView) of exceptions raised by the program
when the program has no handler of its own for that exception.

keyword

keyword is one of stop, nostop, print, noprint, pass Or nopass.
Multiple keywords may be specified.

handle tells the debugger how to deal with signals sent to, or exceptions generated by,
the user program.

Here are the meanings of the keywords:

7-126

stop

The process stops when it getsthis signal or exception. print isimplied with
this keyword.

nostop

The process continues executing automatically after the signal or exception.
You may still use print to tell you when the signal or exception has
occurred.

print

NightView notifies you that the signal or exception has occurred. In the com-
mand-line interface, a message is printed to your terminal. In the graphical
user interface, amessage is printed in the Debug Message Area. See Chapter 9
[Graphical User Interface] on page 9-1. See “Message Panel” on page 9-50.

noprint

You do not receive notification when the signal or exception occurs. nostop
isimplied with this keyword.

pass

The signal will be passed to your process the next time it executes. This key-
word is not applicable to Ada exceptions.

Command-Line Interface

NOTE

There is no way to pass SIGSTOP to a process being debugged.

nopass

The signal is discarded, after stopping and printing if that's appropriate. This
keyword is not applicable to Ada exceptions.

In most cases, asignal sent to a debugged program will cause that program to be stopped
and NightView to be notified of the signal. NightView's normal action for most signalsis
to notify you of the signal and save it to be passed to the process the next time it is
continued. For example, the default setting for sSIGQuUIT would be described as:

(local) handle sigquit stop print pass

This default behavior can be atered by the handle command. Some settings allow the
system to avoid stopping your process and notifying NightView of the signal. See
“Signals’ on page 3-14 for more information about this.

The default action for a few signals is different than the behavior described above.
Consider SIGALRM, which is not usually an error; it is used in the normal functioning of
the program. You usually don't want to know when your program gets a SIGALRM (but
your program does) so the default setting for SIGALRM is:

(local) handle sigalrm nostop noprint pass

This says that if NightView discovers that your process has been sent a SIGALRM, it will
automatically resume execution and pass the signal to the process without notifying you.
(NightView may not even be aware of the signal with these settings of the handle
command. See “Signals’ on page 3-14.)

SIGINT is handled alittle differently; when the process receives a SIGINT, the process stops
and NightView notifies you, but the signal is discarded, so that the process never sees it.
The normal setting for SIGINT is:

(local) handle sigint stop print nopass

Ada programs use some signals in the run-time library, so, by default, NightView sets
theseto nostop, noprint, pass. These are SIGABRT, SIGFPE, SIGSEGV and signal 47.

For away to deal with signals one at atime, see “signal” on page 7-124.
To find out the current settings for all the signals, see “info signal” on page 7-145.

If two conflicting keywords are specified, they are both applied, in the order they appear.
For example, if the initia setting for signal number 1 is stop, print, pass, and you

say.
(local) handle 1 noprint print
then the new setting isnostop, print, pass, because noprint impliesnostop.

handle appliesto al the processes specified in the qualifier.

7-127

NightView RT User’s Guide

The default settings for all Ada exceptions are nostop, noprint. If the settings are
changed to stop and print, then execution is stopped in the Ada runtime routine that
routes exceptions to the proper handler. This routine is usually uninteresting, so the cur-
rent frame is set to the code that caused the exception. See “Interesting Subprograms” on
page 3-27. The user isinformed of the name of the exception and the Ada Reference Man-
ual references.

To find out how one or more exceptions will be handled, you may use the info
exception command. See “info exception” on page 7-152.

Selecting Context

frame

7-128

Select a new stack frame or print a description of the current stack frame.
frame [frame-number]
frame *expresson [at location-spec]
Abbreviation: £
frame-number

Frame number selected as the new current stack frame. Frame number zero
corresponds to the currently executing frame. Frame numbers for all the cur-
rently available stack frames may be obtained with the backtrace com-
mand (see “backtrace” on page 7-84).

*expression

Expression which yields an address at which the stack frame should start. This
isthe value that $cfa would have, not the value of $sp.

location-spec
Specifies alocation in the program to use to interpret the stack frame at the

address given by *expression. See “Location Specifiers’ on page 7-14. If you
do not supply this argument, the default is the current value of Scpc.

NOTE
The at keyword may not be abbreviated in this command.
If no argument is given, a brief description of the current stack frame is printed. If

multiple processes are specified in the command qualifier, each of them is described
separately. For amore complete description of aframe, see “info frame” on page 7-142.

up

Command-Line Interface

If a frame-number is given, the chosen stack frame is selected as the current frame (see
“Current Frame” on page 3-25).

The *expression form of this command is provided for those occasions in which the stack
isin aninconsistent state, or you wish to examine some memory whose contents look like
stack frames. Y ou should be very careful when using this form, observing the following
cautions.

* A stack frame cannot be interpreted except in the context of some program-
counter value. Therefore, you must be sure that the location-spec you give
(or the value of $cpc) is consistent with the stack frame you are examin-
ing.

* The values of the machine registers are not altered by this form of the
frame command. This means that variables that reside in registers cannot
be reliably examined.

* The up, down, and backtrace commands are executed relative to the
given frame address and program-counter value. However, the register
contents for calling frames may still be incorrect, since only the registers
saved in the stack can be restored by NightView.

* Modifying aregister (or a variable stored in a register) may ater the cur-
rent value of a machine register, or it may alter the value of that register
stored on the stack. You must be very careful when doing this.

¢ Unless you have modified $pc or other machine registers, resuming exe-
cution of the process will resume with the state the process was in before
the £rame command was issued.

Once you have issued a £rame command with a *expression argument, you can restore
the previous view of the stack by issuing a frame command with a frame-number
argument. This restores NightView's view of the stack to what it was before you issued
the frame *expression command.

We recommend that, while you have the frame set using the *expression form, you
should restrict yourself to just using the up, down, backtrace, and print commands,
and that you print only global variables or variables stored on the stack.

Move one or more stack frames toward the caller of the current stack frame.
up [number-of-frames]
number -of-frames

Number of stack frames to advance toward the oldest calling frame. The num-
ber zero may be used to restore the current source position in the current frame
(see “Current Frame” on page 3-25). If a negative number is specified, then
frames are advanced toward the newest stack frame (see “down” on page
7-130).

7-129

NightView RT User’s Guide

If number-of-frames is not given, the number defaults to one, corresponding to the
caller of the current frame.

This command is applied to each processin the qualifier.

down

Move one or more stack frames toward frames called by the current stack frame.
down [number-of-frames]
number -of-frames

Number of stack frames to advance toward the currently executing (newest)
stack frame. The number zero may be used to restore the current source posi-
tion in the current frame (see “ Current Frame” on page 3-25). If a negative
number is specified, then frames are advanced toward the oldest stack frame
(see“up” on page 7-129).

If number-of-frames is not given, the number defaults to one, corresponding to the
frame called by the current frame.

This command is applied to each processin the qualifier.

select-context

Select the context of an Adatask, athread, or athread process.
select-context default
select-context task=expresson
select-context thread=expresson
select-context pid=pid
default
This keyword selects the stack frame for the context where the process has

stopped. If the process has threads, the default context is the thread process
that stopped the process. See “Multithreaded Programs” on page 3-40.

task=expression
The task= keyword selects the context of an Adatask. The expression must

either denote a task object or it must be an intege