
NightTrace User’s Guide
Version 7.3

(RedHawkTM Linux®)

0898398-180
January 2013

Copyright 2013 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDATM is a trademark of NVIDIA Corporation.

Preface

Scope of Manual

This manual is a reference document and user’s guide for NightTraceTM - a graphical,
interactive debugging and performance analysis tool.

Structure of Manual

The manual includes four major parts as shown below:

• Event Logging and Capture – Chapters 2 through 6

• Graphical Analysis – Chapters 7 through 17

• Programmatic Analysis – Chapter 18

• Reference – appendices and index

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:

italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in list bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in list bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in list type. Keywords also appear in
list type.

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.
iii

NightTrace RT User’s Guide
[]

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

{ }

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

...

An ellipsis follows an item that can be repeated.
iv

Contents

Chapter 1 Introduction

User Trace Point Placement. .1-2
Kernel Trace Point Placement .1-2
Timestamps .1-3
Languages .1-3
Information Displayed .1-4

Chapter 2 Using the NightTrace Logging API

Language-Specific Source Considerations .2-1
C .2-1
Fortran .2-2
Ada .2-2
Java .2-3
CUDA. .2-6

Inter-Process Communication and Library Routines .2-6
Understanding NightTrace Library Calls .2-7

trace_begin, Trace.begin. .2-8
trace_event, Trace.event and their variants .2-14
trace_enable, trace_disable, and their variants .2-21
trace_flush, Trace.flush, trace_trigger, and Trace.trigger.2-25
trace_set_thread_name, Trace.setThreadName .2-27
trace_close_thread, Trace.closeThread. .2-28
trace_end, Trace.end. .2-30
trace_diag_mode. .2-32
trace_diag_func .2-33

Disabling Tracing .2-34
Threads and Logging .2-34
NightTrace CUDA Tracing API .2-35

ntrace_cuda.h .2-35
ntrace_cuda_device.h .2-38

Compiling and Linking .2-39
C Compilation and Linking .2-39
Fortran Compilation and Linking. .2-40
Ada Example .2-40
Java Example .2-40
CUDA Example .2-40

Chapter 3 Capturing User Events with ntraceud

The ntraceud Daemon .3-1
ntraceud Modes .3-2
The Default User Daemon Configuration .3-2
ntraceud Options .3-3
Invoking ntraceud .3-6
v

NightTrace RT User’s Guide
Chapter 4 Capturing Kernel Events with ntracekd

The ntracekd Daemon . 4-1
ntracekd Modes . 4-1
ntracekd Options . 4-2
ntracekd Invocations . 4-5

Chapter 5 Application Illumination

Overview . 5-2
Illuminator . 5-2
nlight . 5-2
Work Flow Illustration . 5-2
Provided Illuminators . 5-3
Detail Levels . 5-3

Limitations . 5-5
The nlight Graphical User Interface. 5-6

File . 5-7
View . 5-10
Tools . 5-13
Help. 5-15

Wizard . 5-17
Navigation Panel. 5-17
Common Buttons . 5-19
Select Programs with Debug Information . 5-20
Define an Illuminator for each Program . 5-22
Select Predefined Illuminators for each Program . 5-26
Relink Illuminated Programs . 5-29
Activate Illuminators in each Program . 5-32
Run Scripts to Launch Programs and NightTrace 5-35

Session Manager . 5-40
The Application Illumination Root Item . 5-41
Select Code with Debug Information . 5-42

Context Menus. 5-42
Building Object . 5-44

Create, Customize, and Build Illuminators. 5-45
Context Menu . 5-45
Context Menu on Individual Illuminators . 5-47

Relink Programs . 5-49
Context Menus. 5-49
Path . 5-50
Relink Command. 5-50
Illuminators . 5-52

Activation Sets . 5-54
Settings For “main” Illuminator . 5-55
Settings For Ordinary Illuminators . 5-56
Context Menu for an Illuminator. 5-56
Context Menu for a Program . 5-57
Context Menu for an Activation Set . 5-58

Scripts . 5-60
New Script . 5-60
New Script from Activation Set (NightTrace in File Mode) 5-61
New Script from Activation Set (NightTrace in Stream Mode),
New Script from Activation Set (Launch Programs) 5-62
vi

Contents
Console .5-63
Predefined Illuminators .5-64

Detail Levels. .5-64
main .5-64
glibc .5-64
pthread .5-65
ccur_rt. .5-65
cuda. .5-65

Illuminator Files .5-66
config.xml. 5-66
next_event.txt. 5-66
illuminator.h 5-66
illuminator.map 5-66
illuminator_level.fmt 5-67
illuminator_level.o 5-67
illuminator_level.list 5-67
illuminator.o 5-67
illuminator.vararg 5-67

nlight Command Line Mode .5-68
Commands for Manipulating an Illuminator .5-68

nlight --create .5-68
nlight --populate .5-71
nlight --build .5-72
nlight --report .5-72

Commands for Linking with Illuminators .5-73
nlight --gcc .5-73
nlight --g77 .5-74
nlight --cf77. .5-74
nlight --ada .5-74

Command for Activating and Deactivating Illuminators5-74
Using NightTrace with Illuminators. .5-75

Customizing an Illuminator with the Editor .5-77
Buttons .5-77
Search Editor .5-79
Options .5-81

Event IDs. .5-81
Limit on Size of Aggregates Recorded .5-81
Include Functions without Dwarf Debug Info 5-81
Regular Expressions .5-82
Object Filenames. .5-84

Detail Levels. .5-85
Variables to Record. .5-88
Groups .5-90

Create a Group .5-90
Customize a Group .5-91
Selecting Members of a Group .5-94

Functions .5-95
Adding a Function. .5-95
Customizing a Function .5-95
Adding a Function to a Group. .5-98

Customizing an Illuminator by Editing the config.xml File5-100
comments .5-100
config .5-100
declare. .5-101
vii

NightTrace RT User’s Guide
defaults . 5-101
exclude . 5-102
function . 5-102
group . 5-103
level. 5-104

caller={yes|no} .5-105
frame={yes|no} .5-105
aggregate_limit=limit. .5-105
args={yes|no}. .5-105
addr_args={yes|no} 5-106
return_val={yes|no} .5-106
addr_ret={yes|no}. .5-106
variables={yes|no}. .5-106
errno={yes|no} .5-106
exclude={yes|no} .5-106

options. 5-107
event_ids=“N-[M]” . 5-107
aggregate_limit=“limit” 5-107
nodebug={yes|no} .5-107
underscores={yes|no} .5-107
std={yes|no} .5-108
iregex=“regex”, xregex=“regex” 5-108
filename=“filename” 5-108

variable . 5-108
wrapper . 5-109
wrapper_file_scope. 5-109
wrapper_post. 5-109
wrapper_pre . 5-109
wrapper_real . 5-110

Examples . 5-112

Chapter 6 Performance Tuning

Preventing Trace Event Loss . 6-1
Daemon Scheduling Adjustment . 6-1
Increasing Trace Buffer Size. 6-2
Programmatic Flushing. 6-3

Conserving Disk Space . 6-3
Conserving Memory and Accelerating ntrace . 6-3

Chapter 7 Invoking NightTrace

Command-line Options . 7-1
Summary Criteria . 7-6

Command-line Arguments . 7-10
Trace Event Files . 7-11
Event Map Files . 7-11
Table Files. 7-14

Tables. 7-14
String Tables . 7-15
Pre-Defined Strings Tables. 7-17
Format Tables . 7-20

Session Configuration Files . 7-24
viii

Contents
Trace Data Segments .7-25

Chapter 8 The NightTrace Main Window

Menu Bar .8-2
File .8-2
View .8-7
Daemons .8-9
Search .8-9
Summary .8-13
Profiles .8-17

Export Profiles to NightTrace API Source File.8-18
Timelines .8-20
Tools .8-29
Help .8-31

Toolbars .8-32
Pages .8-35
Panels. .8-37
Preferences Dialog. .8-41

General Preferences .8-42
Timeline Preferences .8-43
Font Preferences .8-44

NightStar Global Fonts Dialog .8-48
Advanced Preferences .8-51

Chapter 9 Daemons Panel

Context Menu .9-2
Control Buttons .9-6
Edit Daemon Definition. .9-8

General Settings .9-9
Trace Buffer Settings. .9-11

Trace Daemon Runtime Settings .9-14
Enabled Events .9-15

Triggers .9-16
Edit Triggers Dialog .9-17

Streaming Memory Usage Control .9-18
Streaming Memory Usage Control Dialog. .9-19

Chapter 10 Trace Segments Panel

Trace Segments Table .10-1
Context Menu .10-2
Control Buttons .10-4

Chapter 11 Events Panel

Textual Event Tables .11-1
Context Menu .11-3

Event Panel Search Dialog .11-6
ix

NightTrace RT User’s Guide
Chapter 12 Timeline Panels

Default Timeline . 12-1
Current Timeline Indicator. 12-2
Global Ruler . 12-2
Interval Ruler . 12-3
Event Graphs . 12-5
Event Description Area . 12-6
Keyboard Traversal . 12-7
Creating Timeline Objects . 12-8

Event Graph . 12-10
State Graph . 12-11
Data Graph . 12-12

Data Graph Options Dialog . 12-13
Drawing and Coloring Examples . 12-16
Color Selection Dialog . 12-17
Standard Color Names. 12-19

Interval Ruler . 12-20
Global Ruler . 12-20
Label . 12-20
Data Box . 12-20

Default CUDA AI Timeline. 12-22
Default CUDA GPU Timeline . 12-23

Chapter 13 Profiles

Profiles Dialog . 13-2
Profile Status List . 13-2
Context Menu . 13-3
Profile Definition . 13-4
Control Buttons. 13-12

Summarizing Statistical Information . 13-13
Condition Summaries . 13-13
State Summaries . 13-13
Summary Scripts. 13-13

Summary Script Environment Variables . 13-14

Chapter 14 Event Descriptions Panel

Chapter 15 Tags List Panel

Creating Tags . 15-1
Tags List Table . 15-2
Context Menu. 15-2
Control Buttons . 15-3

Chapter 16 Using Expressions

Overview . 16-1
Operators . 16-1
Operands . 16-1
Constants . 16-2
x

Contents
Functions .16-4
Function Parameters .16-10
Function Terminology .16-12
String Functions .16-17

strcmp() .16-17
strncmp() .16-18

Trace Event Functions .16-19
id() .16-21
arg() .16-22
arg_dbl() .16-23
arg_long() .16-24
arg_long_dbl() .16-25
arg_long_long() .16-26
blk_arg() .16-27
blk_arg_bits() .16-28
blk_arg_char() .16-29
blk_arg_dbl() .16-30
blk_arg_flt() .16-31
blk_arg_long() .16-32
blk_arg_long_bits() .16-33
blk_arg_long_dbl() .16-34
blk_arg_long_long() .16-35
blk_arg_long_ubits() .16-36
blk_arg_short() .16-37
blk_arg_string() .16-38
blk_arg_ubits() .16-39
blk_arg_uchar() .16-40
blk_arg_uint() .16-41
blk_arg_ulong_long() .16-42
blk_arg_ushort() .16-43
num_args() .16-44
cuda functions .16-45
pid() .16-46
thread_id() .16-47
task_id(). .16-48
tid() .16-49
cpu() .16-50
offset() .16-51
time() .16-52
node_id() .16-53
pid_table_name(). .16-54
tid_table_name() .16-55
node_name() .16-56
process_name() .16-57
task_name() .16-58
thread_name() .16-59
Multi-Event Functions. .16-60

event_gap(). .16-60
event_matches() .16-61

State Functions .16-62
Start Functions. .16-62

start_id() .16-64
start_arg() .16-65
start_arg_dbl() .16-66
xi

NightTrace RT User’s Guide
start_arg_long() . 16-67
start_arg_long_dbl() . 16-68
start_arg_long_long() . 16-69
start_blk_arg() . 16-70
start_blk_arg_bits(). 16-71
start_blk_arg_char() . 16-72
start_blk_arg_dbl() . 16-73
start_blk_arg_flt(). 16-74
start_blk_arg_long() . 16-75
start_blk_arg_long_bits() . 16-76
start_blk_arg_long_dbl() . 16-77
start_blk_arg_long_long() . 16-78
start_blk_arg_long_ubits() . 16-79
start_blk_arg_short() . 16-80
start_blk_arg_string() . 16-81
start_blk_arg_ubits(). 16-82
start_blk_arg_uchar() . 16-83
start_blk_arg_uint() . 16-84
start_blk_arg_ulong_long() . 16-85
start_blk_arg_ushort() . 16-86
start_num_args(). 16-87
start_pid() . 16-88
start_thread_id() . 16-89
start_task_id() . 16-90
start_tid() . 16-91
start_cpu(). 16-92
start_offset() . 16-93
start_time() . 16-94
start_node_id() . 16-95
start_pid_table_name() . 16-96
start_tid_table_name() . 16-97
start_node_name() . 16-98

End Functions . 16-99
end_id(). 16-101
end_arg(). 16-102
end_arg_dbl() . 16-103
end_arg_long() . 16-104
end_arg_long_dbl() . 16-105
end_arg_long_long() . 16-106
end_blk_arg() . 16-107
end_blk_arg_bits() . 16-108
end_blk_arg_char(). 16-109
end_blk_arg_dbl() . 16-110
end_blk_arg_flt() .16-111
end_blk_arg_long() . 16-112
end_blk_arg_long_bits(). 16-113
end_blk_arg_long_dbl() . 16-114
end_blk_arg_long_long() . 16-115
end_blk_arg_long_ubits(). 16-116
end_blk_arg_short() . 16-117
end_blk_arg_string() . 16-118
end_blk_arg_ubits() . 16-119
end_blk_arg_uchar(). 16-120
end_blk_arg_uint() . 16-121
xii

Contents
end_blk_arg_ulong_long(). .16-122
end_blk_arg_ushort() .16-123
end_num_args() .16-124
end_pid() .16-125
end_thread_id() .16-126
end_task_id() .16-127
end_tid() .16-128
end_cpu() .16-129
end_offset() .16-130
end_time() .16-131
end_node_id() .16-132
end_pid_table_name() .16-133
end_tid_table_name(). .16-134
end_node_name(). .16-135

Multi-State Functions .16-136
state_gap() .16-136
state_dur() .16-137
state_matches(). .16-138
state_status(). .16-139

Offset Functions .16-140
offset_id() .16-142
offset_arg() .16-143
offset_arg_dbl() .16-144
offset_arg_long() .16-145
offset_arg_long_dbl() .16-146
offset_arg_long_long() .16-147
offset_blk_arg() .16-148
offset_blk_arg_bits() .16-149
offset_blk_arg_char() .16-150
offset_blk_arg_dbl() .16-151
offset_blk_arg_flt() .16-152
offset_blk_arg_long() .16-153
offset_blk_arg_long_bits() .16-154
offset_blk_arg_long_dbl(). .16-155
offset_blk_arg_long_long(). .16-156
offset_blk_arg_long_ubits() .16-157
offset_blk_arg_short() .16-158
offset_blk_arg_string() .16-159
offset_blk_arg_ubits() .16-160
offset_blk_arg_uchar() .16-161
offset_blk_arg_uint(). .16-162
offset_blk_arg_ulong_long(). .16-163
offset_blk_arg_ushort() .16-164
offset_num_args() .16-165
offset_pid() .16-166
offset_thread_id() .16-167
offset_task_id() .16-168
offset_tid() .16-169
offset_cpu() .16-170
offset_time() .16-171
offset_node_id() .16-172
offset_pid_table_name() .16-173
offset_tid_table_name() .16-174
offset_node_name(). .16-175
xiii

NightTrace RT User’s Guide
offset_process_name() . 16-176
offset_task_name() . 16-177
offset_thread_name() . 16-178

Summary Functions . 16-179
min() . 16-179
max() . 16-180
avg(). 16-181
sum() . 16-182
min_offset() . 16-183
max_offset(). 16-184
summary_matches(). 16-185

Format and Table Functions . 16-186
get_string(). 16-186
get_item(). 16-188
get_format() . 16-190
format() . 16-192
lookup_pc() . 16-193

Profile References . 16-195

Chapter 17 Kernel Tracing

Primary Kernel Trace Events . 17-1
Context Switch Trace Event . 17-2
Interrupt Trace Events. 17-2
Exception Trace Events . 17-3
Syscall Trace Events . 17-4
Kernel Work Events . 17-5

Additional Kernel Events. 17-7
Logging Custom Kernel Events . 17-8

From User Programs . 17-9
From Kernel Modules . 17-9
Retrieving Custom Events . 17-10

Viewing Kernel Trace Event Files . 17-11
Kernel Timelines. 17-12

Node and CPU Information . 17-13
Context Switch Information . 17-13
Interrupt Information . 17-14
Exception Information . 17-14
System Call Information . 17-15
Process Information . 17-16
Kernel Events . 17-16
Color Information . 17-17

Kernel String Tables . 17-17

Chapter 18 Using the NightTrace Analysis API

NightTrace Analysis Application Programming Interface 18-1
Data Structures . 18-3

tr_arg_t. 18-3
tr_cb_t . 18-4
tr_cond_cb_func_t . 18-4
tr_cond_func_t. 18-5
tr_cond_t . 18-5
xiv

Contents
tr_dir_t. .18-5
tr_offset_t .18-5
tr_state_action_t .18-6
tr_state_cb_func_t .18-6
tr_state_info_t .18-7
tr_state_t .18-8
tr_stream_event_t .18-8
tr_stream_func_t .18-8
tr_string_node_t .18-8
tr_t .18-9

Functions .18-10
API Initialization and Destruction. .18-15

tr_init() .18-15
tr_destroy(). .18-15

Error Detection, Collection, and Reporting .18-17
tr_error_clear() .18-17
tr_error_check() .18-18

Input Specification and Streaming Control .18-19
tr_open_file() .18-19
tr_open_stream() .18-20
tr_close() .18-21
tr_stream_notify() .18-22
tr_stream_read() .18-23
tr_stream_size() .18-24
tr_free() .18-25

Event Offset Positioning .18-26
tr_next_event() .18-26
tr_next_event_() .18-27
tr_prev_event(). .18-27
tr_prev_event_(). .18-28
tr_search() .18-29
tr_seek() .18-30

Basic Event Attribute Functions .18-31
tr_id() .18-33
tr_id_() .18-33
tr_time() .18-34
tr_time_() .18-35
tr_nargs() .18-36
tr_nargs_() .18-36
tr_arg_int() .18-37
tr_arg_int_() .18-38
tr_arg_dbl() .18-39
tr_arg_dbl_() .18-39
tr_arg_long() .18-40
tr_arg_long_() .18-41
tr_arg_long_dbl() .18-42
tr_arg_long_dbl_() .18-42
tr_arg_long_long() .18-43
tr_arg_long_long_() .18-44
tr_arg_int_() .18-45
tr_arg_dbl() .18-46
tr_arg_dbl_() .18-46
tr_arg_long() .18-47
tr_arg_long_() .18-48
xv

NightTrace RT User’s Guide
tr_arg_long_dbl() . 18-49
tr_arg_long_dbl_() . 18-49
tr_arg_long_long() . 18-50
tr_argtype() . 18-51
tr_argtype_() . 18-52
tr_blk_arg(). 18-52
tr_blk_arg_(). 18-53
tr_blk_arg_bits() . 18-54
tr_blk_arg_bits_() . 18-55
tr_blk_arg_char() . 18-56
tr_blk_arg_char_() . 18-56
tr_blk_arg_dbl() . 18-57
tr_blk_arg_dbl_() . 18-58
tr_blk_arg_flt() . 18-59
tr_blk_arg_flt_() . 18-59
tr_blk_arg_long() . 18-60
tr_blk_arg_long_() . 18-61
tr_blk_arg_long_bits() . 18-62
tr_blk_arg_long_bits_() . 18-63
tr_blk_arg_long_dbl(). 18-64
tr_blk_arg_long_dbl_(). 18-64
tr_blk_arg_long_long(). 18-65
tr_blk_arg_long_long_(). 18-66
tr_blk_arg_long_ubits() . 18-67
tr_blk_arg_long_ubits_() . 18-68
tr_blk_arg_short(). 18-69
tr_blk_arg_short_(). 18-69
tr_blk_arg_string() . 18-70
tr_blk_arg_string_() . 18-71
tr_blk_arg_ubits() . 18-72
tr_blk_arg_ubits_() . 18-73
tr_blk_arg_uchar() . 18-74
tr_blk_arg_uchar_() . 18-75
tr_blk_arg_ushort(). 18-76
tr_blk_arg_ushort_(). 18-76
tr_pid() . 18-77
tr_pid_() . 18-78
tr_tid(). 18-79
tr_tid_(). 18-79
tr_thread_id() . 18-80
tr_thread_id_() . 18-81
tr_task_id() . 18-82
tr_task_id_() . 18-82
tr_cpu() . 18-83
tr_cpu_() . 18-84
tr_node() . 18-85
tr_node_() . 18-85
tr_process_name() . 18-86
tr_process_name_() . 18-87
tr_task_name() . 18-87
tr_task_name_() . 18-88
tr_thread_name() . 18-89
tr_thread_name_() . 18-89

Conditions . 18-91
xvi

Contents
tr_cond_create() .18-92
tr_cond_reset() .18-93
tr_cond_find() .18-93
tr_cond_id() .18-94
tr_cond_id_range(). .18-95
tr_cond_id_clear() .18-96
tr_cond_cpu() .18-97
tr_cond_cpu_clear() .18-98
tr_cond_pid() .18-99
tr_cond_pid_name() .18-100
tr_cond_pid_clear() .18-101
tr_cond_tid(). .18-102
tr_cond_tid_name() .18-103
tr_cond_tid_clear(). .18-104
tr_cond_node() .18-105
tr_cond_node_clear() .18-106
tr_cond_func_or() .18-107
tr_cond_func_and() .18-109
tr_cond_func_clear() . 18-111
tr_cond_expr_and() .18-112
tr_cond_expr_or() .18-113
tr_cond_not() .18-114
tr_cond_or() .18-115
tr_cond_and() .18-116
tr_cond_copy() .18-117
tr_cond_name() .18-119
tr_cond_satisfy() .18-119
tr_cond_satisfy_() .18-120
tr_cond_register(). .18-121
tr_cond_offset() .18-122

State-oriented Interfaces .18-123
tr_state_create() .18-123
tr_state_find(). .18-124
tr_state_name(). .18-125
tr_state_start_id() .18-126
tr_state_start_id_range() .18-127
tr_state_start_id_clear() .18-128
tr_state_end_id() .18-128
tr_state_end_id_range() .18-129
tr_state_end_id_clear(). .18-130
tr_state_start_cond(). .18-131
tr_state_start_cond_clear(). .18-132
tr_state_end_cond() .18-132
tr_state_end_cond_clear() .18-133
tr_activate() .18-134
tr_state_info(). .18-135
tr_state_info_(). .18-136
tr_state_active() .18-137
tr_state_active_() .18-138

Output Function. .18-139
tr_copy_input(). .18-139
tr_copy_input_range() .18-140

String Table Functions. .18-141
tr_get_string(). .18-141
xvii

NightTrace RT User’s Guide
tr_get_item() . 18-142
tr_create_table() . 18-143
tr_append_table() . 18-144

Callback Interfaces . 18-146
tr_iterate() . 18-146
tr_halt() . 18-147
tr_cancel_cb() . 18-147
tr_cond_cb() . 18-148
tr_state_cb() . 18-149

Appendix A NightStar Licensing

License Keys . A-1
License Requests . A-2
License Server . A-2
License Reports . A-3
Firewall Configuration for Floating Licenses . A-3
License Support . A-4

Appendix B Kernel Dependencies

Advantages for NightView. B-1
Advantages for NightTrace . B-1
Advantages for NightProbe . B-2
Advantages for NightTune . B-3
Frequency Based Scheduler . B-3

Appendix C Privileged Access

Capabilities. C-1

Appendix D NightTrace Logging API Examples

Single Threaded C Example . D-1
Multi-Threaded C++ Example . D-3
Fortran Example. D-6
Simple Java Example . D-6
Multi-Threaded Java Example . D-8
Rare Occurrence Example . D-9
CUDA Example . D-11

Appendix E NightTrace Analysis API Examples

list. E-2
list.c. E-2

search . E-4
search.c . E-4

watchdog . E-6
watchdog.c . E-6

ptime. E-9
ptime.c. E-10

browse . E-12
xviii

Contents
browse.c . E-12
detect . E-23

detect.c . E-24

Appendix F NightTrace Application Illumination Examples

Illuminating Some Object Files . F-1
Illuminating A Library. F-5
Illuminating An Entire Program . F-6
Illuminating A C++ Class -- Excluding Some Functions F-7
Illuminating An API -- Libraries Without Source or Debug Info F-9
Customizing an Illuminator -- Logging Extra InformationF-11
Tutorial Files . F-13

main.c . F-13
math.c . F-13
work.c . F-14
classy.c . F-14
api.h . F-15

Appendix G Answers to Common Questions

Appendix H Glossary

Index

Illustrations

Figure 2-1. Inter-Process Communication and Library Routines.2-4
Figure 8-1. NightTrace Main Window .8-1
Figure 8-2. File Menu .8-2
Figure 8-3. View Menu .8-6
Figure 8-4. Toolbars Menu .8-7
Figure 8-5. Daemons Menu .8-8
Figure 8-6. Search Menu .8-9
Figure 8-7. Summary Menu .8-11
Figure 8-8. Profiles Menu .8-13
Figure 8-9. Export Profiles Dialog .8-14
Figure 8-10. Timelines Menu .8-17
Figure 8-11. Default User Timeline .8-18
Figure 8-12. Create Custom Kernel Timeline Dialog .8-19
Figure 8-13. Tools Menu .8-20
Figure 8-14. Help Menu .8-22
Figure 8-15. Tab Context Menu .8-26
Figure 8-16. Rename Page Dialog .8-26
Figure 8-17. Move Page Dialog .8-27
Figure 8-18. Page with Profile Panels .8-28
Figure 8-19. Panel Detaches from Page .8-29
Figure 8-20. Panel Movement in Progress .8-30
Figure 8-21. Profile Status List Panel on Top of Profile Definition Panel 8-31
Figure 8-22. Event Descriptions Panel added to Page .8-32
Figure 8-23. Panel in Motion Creating Tab .8-33
xix

NightTrace RT User’s Guide
Figure 9-1. Daemons Panel . 9-1
Figure 9-2. Daemons Panel Context Menu . 9-2
Figure 9-3. Import Daemon Definitions Dialog . 9-3
Figure 9-4. Attach to Running Daemons Dialog . 9-4
Figure 9-5. Edit Triggers Dialog . 9-6
Figure 9-6. Add Triggers Entry Dialog . 9-7
Figure 9-7. Edit Daemon Definition Dialog . 9-10
Figure 10-1. Trace Segments Panel . 10-1
Figure 10-2. Trace Segment Panel Context Menu . 10-2
Figure 10-3. Trace Data Segment Properties Description Dialog 10-3
Figure 11-1. Events Panel . 11-1
Figure 11-2. Events Panel Context Menu . 11-3
Figure 11-3. Search Events for Text Dialog . 11-4
Figure 11-4. Edit Event Description Dialog . 11-6
Figure 12-1. Default User Timeline . 12-1
Figure 12-2. Global Ruler . 12-2
Figure 12-3. Interval Ruler . 12-3
Figure 12-4. Event Graph with Labels . 12-5
Figure 12-5. Event Description Area . 12-6
Figure 12-6. Timeline Editing . 12-8
Figure 12-7. Timeline Context Menu . 12-9
Figure 12-8. Edit Event Graph Profile Dialog . 12-10
Figure 12-9. Edit State Graph Profile Dialog . 12-11
Figure 12-10. Edit Data Graph Profile Dialog . 12-12
Figure 12-11. Edit Data Box Profile . 12-14
Figure 13-1. Profile Definition Panel . 13-2
Figure 13-2. Profile Status List Panel . 13-12
Figure 13-3. Profile Status List Panel Context Menu 13-13
Figure 14-1. Event Descriptions Panel . 14-1
Figure 14-2. Event Description Dialog . 14-2
Figure 15-1. Tags List Panel . 15-1
Figure 15-2. Tags List Panel Context Menu . 15-3
Figure 16-1. Function Terminology Illustrated . 16-12
Figure 16-2. States and Events . 16-12
Figure 17-1. Sample Kernel timeline . 17-10
Figure 17-2. Node and CPU Box . 17-11
Figure 17-3. Context Switch Lines . 17-11
Figure 17-4. Interrupt Box and Interrupt Graph . 17-12
Figure 17-5. Exception Box and Exception Graph . 17-12
Figure 17-6. System Call Box and System Call Graph. 17-13
Figure 17-7. Process Information Row . 17-14
Figure 17-8. Kernel Events Row . 17-14
Figure 17-9. Color Key . 17-15
Figure B-1. Automatically Generated Data Display Page C-5

Tables

Table 3-1. NightTrace Configuration Defaults . 3-3
Table 5-1. Character Entities. 5-15
Table 5-2. System Defaults . 5-19
Table 12-1. Timeline Keyboard Traversal . 12-7
Table 16-1. Time Units and Constant Suffixes . 16-3
Table 16-1. NightTrace Functions. 16-5
xx

Contents
Table 17-1. PROCESS Event Codes . 17-6
Table 17-2. NETWORK Kernel Event Sub-ID Codes . 17-6
Table 17-3. MEMORY Kernel Event Sub-ID Codes . 17-7
xxi

NightTrace RT User’s Guide
xxii

1
Chapter 1Introduction

1
1
1

NightTrace is a member of the NightStarTM family of tools. NightTrace provides an inter-
active debugging and performance analysis tool, trace data collection daemons, and two
Application Programming Interfaces (APIs) allowing user applications to log data values
as well as analyze data collected from user or kernel daemons. NightTrace allows you to
graphically display information about important events in your application and the kernel,
including event occurrences, timings, and data values. NightTrace consists of the follow-
ing parts:

ntrace

a graphical tool that controls daemon sessions and presents user and kernel
trace events for interactive analysis

ntraceud

a daemon program that copies user applications’ trace events from shared
memory to trace event files

ntracekd

a daemon program that copies operating system kernel trace events from ker-
nel memory to trace event files

NightTrace Logging API

libraries and include files for use in user applications that log trace events to
shared memory

NightTrace Analysis API

libraries and include files for use in user applications that want to analyze data
collected from user or kernel daemons

nlight

a command line tool for generating code to log trace events at function entry
and return points

NightTrace operates in conjunction with other members of the NightStar RT family.
NightView, a multi-process and multi-thread application debugger, provides for dynamic
insertion of trace points in programs being debugged. The NightProbe data recording util-
ity allows sampled data to be passed directly to NightTrace for graphic or textual display.

NightTrace uses the NightStar License Manager (NSLM) to control access to the
NightStar tools. See “NightStar Licensing” on page A-1 for more information.
1-1

NightTrace RT User’s Guide
IMPORTANT

Kernel tracing is only supported on some operating system distri-
butions. See “Kernel Dependencies” on page B-1 for more infor-
mation.

User Trace Point Placement 1

A user trace point is a place of interest in application source code. At each user trace
point, you make your application log some user-specified information. This logged infor-
mation is collectively called a trace event. Each trace event has a user-defined trace event
ID number and optional user-supplied arguments.

Some typical user trace-point locations include:

• Suspected bug locations

• Process, subprogram, or loop entry and exit points

• Timing points

• Synchronization points for multi-process interaction

• Endpoints of atomic operations

The Application Illumination facility can be used to automatically generate user trace
points for function entry and return. These trace events can include return address, param-
eter values, return values, etc. as arguments.

In addition to the user-supplied information, trace events automatically contain informa-
tion identifying the process ID of the program generating the trace event. For
multi-threaded applications, the thread ID of the specific thread generating the trace is
recorded.

Kernel Trace Point Placement 1

Operating system distributions which support NightTtrace kernel tracing build their trace
and debug kernels with trace points inserted at various points throughout the kernel source
code. These trace point provide information relating to:

• System call entry and exit

• Interrupt entry and exit

• Exception entry and exit

• Kernel service routines

• Process creation, termination, and signalling
1-2

Introduction
• Network activity

Analysis of kernel trace events can provide significant insight into the operation of the
system and interactions between user applications. In addition to graphical displays,
NightTrace provides textual description of kernel trace events which reveal useful infor-
mation even for those not familiar with kernel programming.

For kernel programmers, additional custom trace events can be logged with simple kernel
utility routines which can be inserted into the kernel source or in kernel module source
routines.

Timestamps 1

Each trace event is tagged with a timestamp with sub-microsecond precision. This allows
you to view and comprehend complex interactions between multiple processes and the
operating system, executing on single or multiple CPU systems.

By default, an architecture-specific timing source is utilized. For Intel and AMD64, the
Intel Time Stamp Counter (TSC register) is used.

If your operating system supports the Real-Time Clock and Interrupt Module (RCIM),
that clock can be also used as a timestamp source.

The RCIM is a hardware module available from Concurrent Computer Corpration which
provides a variety of clocks and interrupt sources, including two high-resolution timers
which may be synchronized between multiple systems. Use of the RCIM timing source
by NightTrace is advantageous when gathering data from multiple systems simulta-
neously. NightTrace can then present a synchronized view of user and kernel activity on
multiple systems from a single session.

NightTrace can also present such a synchronized view of activity between systems if the
systems utilize an alternative method of time synchronization, such as NTP or PTP. RCIM
time synchronization is extremely accurate; other solutions often are not as accurate, or
may take a long time to actually synchronize system time.

For more information about the RCIM, please see the clock_synchronize(1M),
rcim(7), rcimconfig(1M), and sync_clock(7) man pages.

Languages 1

The application programming interface for logging trace events is provided in C and For-
tran for use with the following compilers:

• Concurrent Ada

• GNU C/C++

• GNU Fortran
1-3

NightTrace RT User’s Guide
• Intel C/C++

• Intel Fortran

• Concurrent Fortran 77

• CUDA - a mechanism for executing C/C++ code on an NVIDIA Graphical
Processing Unit

The application programming interface for trace event analysis is provided solely in C for
use with C and C++ programs.

Information Displayed 1

The ntrace display utility lets you examine trace events. Data appear as numerical sta-
tistics and as graphical images. You can create and configure the graphical components
called display objects or use the defaults. By creating your own display objects, you can
make the graphical displays more meaningful to you. You can customize display objects to
reflect your preferences in content, labeling, position, size, color, and font.

With the ntrace display utility, you can perform customized searches and summaries for
individual events or user-defined states. Summaries can be generated via command line
invocation of ntrace for generating automated reports.
1-4

2
Chapter 2Using the NightTrace Logging API

2
2
2

This chapter describes language-specific considerations for using NightTrace with user
applications.

Sample programs using these functions are also provided (see “NightTrace Logging API
Examples” on page D-1).

Language-Specific Source Considerations 2

NightTrace applications can be written in C, C++, Ada, Fortran, or Java.

The NightTrace Logging API has been tested with the following compilers:

- Concurrent Ada (MAXAda)

- Concurrent Fortran 77

- GNU C/C++

- GNU Fortran

- Intel C/C++

- Intel Fortran

- Sun Java 1.5 or later

- Aonix Perc Ultra Java 5.1 or later

- NVIDIA nvcc CUDA preprocessor

Generally, for your applications to trace events, you must edit your source code and insert
NightTrace library routine calls. This is called instrumenting your code. Alternatively, the
Application Illumination facility (see “Application Illumination” on page 5-1) can be used
to instrument your code without making any source changes. Before you begin the task of
inserting trace event calls, read the following section that applies to the language in which
your application is written.

C 2

NightTrace applications written in C or C++ include the NightTrace header file
/usr/include/ntrace.h with the following line:
2-1

NightTrace RT User’s Guide
#include <ntrace.h>

The ntrace.h file contains the following:

• Function prototypes for all NightTrace library routines

• Return values for all NightTrace library routines

• Macros (described in “Disabling Tracing” on page 2-34)

The library routine return values identify the type of error, if any, the NightTrace routine
encountered.

Programs that are multi-thread can also be traced with the NightTrace library routines. For
multi-thread programs, a thread identifier is stored in each trace event, uniquely identify-
ing which thread was running at the time the trace event was logged.

IMPORTANT

To fully utilize the features of NightTrace with multi-threaded
applications, additional considerations must be taken into account.
See the description of “Threads and Logging” on page 2-34 for
more information.

Minimally, a C or C++ program can log trace points using the following sequence of
library routine invocations:

trace_begin(“file”,NULL); // Called once
...
trace_event(11,2) // Log Event ID 11 with argument 2

Fortran 2

All NightTrace library routines return INTEGERS, but because they begin with a “t”, For-
tran implicitly types them as REAL. You must include the NightTrace-provided file
/usr/include/ntrace_.h or explicitly type them as INTEGER so that return values
are interpreted correctly.

Minimally, a Fortran program can log trace points using the following sequences of library
calls:

call trace_begin(“data”,0) (called once)
...
call trace_event(11)

Ada 2

Ada applications can access the NightTrace library routines via the Ada package
night_trace_bindings which is included with the MAXAda product. The bindings
2-2

Using the NightTrace Logging API
can be found in the bindings/general environment in the source f i le
night_trace.a.

 The night_trace_bindings package contains the following:

• An enumeration type consisting of the return values for all NightTrace
library routines

• The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in the MAXAda
for Linux Reference Manual.

Java 2

Java applications can access the NightTrace library routines via classes in the
ntrace.logging package. Java NightTrace class files are located in /usr/lib; be
sure to add this path when using the -classpath java option or CLASSPATH environ-
ment variable. The Java bindings are provided via the Java Native Interface (JNI). The
JNI component of the NightTrace bindings is provided in libntrace-java.so, which
will be automatically loaded by the Java Virtual Machine. libntrace-java.so
resides in the /usr/lib directory.

The ntrace.logging package contains the Trace class, along with two nested static
classes which are used by routines in the outer Trace class:

Trace.Config

Defines a configuration object, which can be specified to the Trace.begin() call
to define daemon logging options.

Trace.Error

Exception class to hold NightTrace error returns and accessor functions to describe
the specific error.

Minimally, a Java program can log trace points using the following sequences of code:

import ntrace.logging;
...
Trace.Begin(“data”); // (called once)
...
Trace.Event(11);
2-3

NightTrace RT User’s Guide
The Java Trace Class

Unlike C, Ada and Fortran, the files associated with the Java API do not contain a
header-like file which you can refer to when coding.

The relevant public portions of the Trace class and its nested classes are described in
the following sections for each routine.

However, for convenience, a listing of all relevant public portions of the Trace class
is shown below:

public class Trace {

 public static class Error extends RuntimeException {
 public enum Msg {
 NTNOERROR,
 NTNODAEMON,
 NTNOTRACEFILE,
 NTINVALID,
 NTPERMISSION,
 NTALREADY,
 NTNOSHMID,
 NTRESOURCE,
 NTINIT,
 NTLOSTDATA,
 NTPGLOCK,
 NTNOMEM,
 NTMAPCLOCK,
 NTBADVERSION,
 NTLISTEN,
 NT_THREAD_ERR,
 DEFAULT;
 }
 public final Msg getError();
 }

 public static class Config {
 public enum ClockSource { DefaultClock, RCIMTickClock; }
 public enum PageLocking { Default, Locked, Unlocked; }
 public Config();
 public PageLocking getPageLocking();
 public boolean getDaemonSettingsPreferred();
 public int getBufferLength();
 public int getNumBuffers();
 public int getSharedMemoryPermissions();
 public ClockSource getClockSource();
 public void setPageLocking(PageLocking pl);
 public void setDaemonSettingsPreferred(boolean dsp);
 public void setBufferLength(int bl);
 public void setNumBuffers(int nb);
 public void setSharedMemoryPermissions(int smp);
 public void setClockSource(ClockSource cs);
 }

 public static void begin(String file, Config config);
 public static void begin(String file);

 public static void setThreadName(String name);

 public static void event(int id);
 public static void event(int id, int arg1);
 public static void event(int id, int arg1, int arg2);
 public static void event(int id, int arg1, int arg2, int arg3);
2-4

Using the NightTrace Logging API
 public static void event(int id, int arg1, int arg2, int arg3, int
arg4);
 public static void event(int id, float arg1);
 public static void event(int id, float arg1, float arg2);
 public static void event(int id, double arg1);
 public static void event(int id, double arg1, double arg2);
 public static void event(int id, long arg1);
 public static void event(int id, long arg1, long arg2);
 public static void event(int id, String arg1);
 public static void event(int id, boolean[] arg1);
 public static void event(int id, byte[] arg1);
 public static void event(int id, char[] arg1);
 public static void event(int id, short[] arg1);
 public static void event(int id, int[] arg1);
 public static void event(int id, long[] arg1);
 public static void event(int id, float[] arg1);
 public static void event(int id, double[] arg1);

 public static void disable(int id);
 public static void disable(int id_low, int id_high);
 public static void disable();
 public static void enable(int id);
 public static void enable(int id_low, int id_high);
 public static void enable();

 public static void flush();
 public static void trigger();

 public static void closeThread();

 public static void end();

 public static void enableDiagnostics(boolean on);
}

Error Handling

Unlike the other language interfaces, error conditions in the Java API are handled by
throwing a Trace.Error object.

Objects of that class can be caught and queried for a specific enumerated reason
associated with the error.

The public members of the Error class are shown in “The Java Trace Class” on page
2-4.

The following snippet of code demonstrates how you might use this class:

try {
 Trace.event(5);
} catch (Trace.Error e) {
 if (e.getError() == Trace.Error.Msg.NTINIT) {
 System.out.println("Oops; forgot to start ntraceud!");
 }
}

2-5

NightTrace RT User’s Guide
CUDA 2

CUDA applications that wish to include trace points in GPU-executed code should
include the following header files:

#include <ntrace_cuda.h>
#include <ntrace_cuda_device.h>

The former is required for calls that setup the NightTrace session in CPU-executed code,
while the latter is for calls that actually log trace points in GPU-executed code.

Minimally, a CUDA program can use tracing with the following sequence of library rou-
tine invocations in CPU-executed code:

ntrace_cuda_context *ncc =
ntrace_cuda_begin(“file”,NULL); // Called once

gpu_code<<<x,y>>>(ntrace_cuda_sync(ncc));
/* ntrace_cuda_sync called once for each GPU kernel
invocation */

ntrace_cuda_flush(); // Called once to flush events
ntrace_cuda_end(); // Called once to terminate tracing

To actually log trace points in code executed by an NVIDIA GPU, use the following func-
tions:

ntrace_cuda_event(ncs,1);
ntrace_cuda_event(ncs,2,int_arg);
ntrace_cuda_evnet(ncs,3,float_arg1,float_arg2);
ntrace_cuda_event(ncs3,ptr,bytes);

where ncs is the return value from ntrace_cuda_sync that was passed into your
GPU-executed code.

There are additional overloaded functions named ntrace_cuda_event in
ntrace_cuda_device.h.

For a complete description of CUDA-related NightTrace interfaces, please see “Night-
Trace CUDA Tracing API” on page 2-35

Inter-Process Communication and Library Routines 2

Your application logs trace events to a shared memory area. A user daemon copies trace
events from shared memory buffers to the trace event file or to the NightTrace graphical
analysis tool. The relationship between your application and the user daemon and the
sequence of library calls needed to maintain this relationship appears in the figure below.
2-6

Using the NightTrace Logging API
Figure 2-1. Inter-Process Communication and Library Routines

Understanding NightTrace Library Calls 2

There are C, Ada, Fortran, and Java versions of each NightTrace library routine. These
routines perform the following functions:

• Initialize a tracing session

• Log trace events to shared memory

• Enable and disable specified trace events

• Explicitly notify the daemon to copy shared memory to disk

Parent processes follow this sequence:

trace_begin()
 log trace events

trace_end() [optional]

Threads follow this sequence:

trace_set_thread_name() [optional]
log trace events
trace_close_thread() [optional]

Process A

Thread 1

Thread 2

Process B

Child of B Shared
Memory
Buffer

 user

Child of B

Process C

Task 1

Task 2

daemon

Trace File

ntrace GUI
or
2-7

NightTrace RT User’s Guide
• Control how diagnostics are generated

• Terminate a tracing session

trace_begin, Trace.begin 2

The trace_begin and Trace.begin routines initialize the tracing session and
acquire resources for your process.

SYNTAX

C:

int trace_begin(char *trace_file,
 ntconfig_t * cfg);

Fortran:

integer function trace_begin(trace_file, cfg)
character *(*) trace_file
integer cfg(NTC_SIZE)

Ada:

function trace_begin(
 trace_file : string;
 num_buffers : integer; -- default is 8
 buffer_length : integer; -- default is 32768
 lock_pages : boolean := true;
 clock : ntclock_t := NT_USE_ARCHITECTURE_CLOCK;
 shmid_perm : integer := 8#666#;
 inherit : boolean := true)
return ntrace_error;

Java:

package ntrace.logging;
public class Trace {
 static class Config {
 Config();
 enum ClockSource {
 DefaultClock,
 RCIMTickClock;}
 enum PageLocking {
 Default,
 Locked,
 Unlocked;}
 PageLocking getPageLocking();
 boolean getDaemonSettingsPreferred();
 int getBufferLength();
 int getNumBuffers();
 int getSharedMemoryPermissions()
 ClockSource getClockSource();
2-8

Using the NightTrace Logging API
 void setPageLocking(PageLocking);
 void setDaemonSettingsPreferred(boolean);
 void setBufferLength(int);
 void setNumBuffers(int);
 void setSharedMemoryPermissions(int);
 void setClockSource(ClockSource);
 };
 static void begin (String trace_file);
 static void begin (String trace_file, Config cfg);
};

PARAMETERS

trace_file

The user daemon logs trace events to an output file, trace_file. When you
invoke the user daemon, you must specify this file’s name. For the user dae-
mon to log your process’ trace events to this file, the trace event file parameter
in your trace_begin call must correspond to the key file value on the dae-
mon invocation. The names do not have to exactly match textually, but they
do have to refer to the same actual pathname; for example, one path name may
begin at your current working directory and the other may begin at the root
directory. When a user daemon is sending trace data directly to the NightTrace
graphical analysis tool, this file name serves only as a handle so that the user
daemon and the application can communicate -- no data is transferred to the
file in this case.

cnf

C

cfg must be either a NULL pointer, in which case the default settings are
used, or a pointer to a ntconfig_t structure.

The following function can also be used to initialize cfg to appropriate
default values:

void trace_default_config (ntconfig_t * config);

Therefore, the following code sequence:

ntconfig_t config;
trace_default_config(&config);
trace_begin(“file”,&config);

is equivalent to:

trace_begin(“file”,NULL);

This is most useful when you wish to change just a few specific config-
uration parameters without having to explicitly define all parameters.
For example:

ntconfig_t config;
trace_default_config(&config);
2-9

NightTrace RT User’s Guide
config.ntc_num_buffers = 64;
trace_begin(“file”,&config);

Ada

The individual members of the structure are supplied directly as param-
eters to the routine, with appropriate default values. Both the user appli-
cation and the user daemon associated with it must agree on the config-
uration settings (or indicate that the other’s settings may be preferred).

Fortran

The cfg record must be represented by an array of NTC_SIZE integer
items. Member of the array must be provided as described below.

Java

The cfg parameter is optional. If specified, it must be an instance of the
Trace.Config class. You can use the mutator methods within that
class to set options in the Trace.Config object.

The following describe the individual parameters or mutator Java functions:

C: ntc_version
Fortran: config(ntc_version)
Java: n/a

The value of the NTC_VERSION macro from ntrace.h

C: ntc_lock_pages
Ada: lock_pages
Fortran: cfg(ntc_lock_pages)
Java: cfg.setPageLocking(PageLocking)

For C, Ada, and Fortran, one of the following values: ntp_default,
which specifies that page locking should default; ntp_lock, which
specifies that critical pages are to be locked in memory; or
ntp_no_lock, which specifies that critical pages shall not be locked in
memory. ntp_default does not request page locking, but does conflict
with a user daemon configuration setting of ntp_lock or ntp_no_lock.

For Java, one of the values:

 PageLocking.Default
 PageLocking.Locked
 PageLocking.Unlocked

which specifies that page locking should default, be locked, or be
unlocked, respectively.

C: ntc_clock
Ada: clock
Fortran: cfg(ntc_clock)
Java: cfg.setClockSource(ClockSource)
2-10

Using the NightTrace Logging API
Specifies which clock to use as a timing source.

F o r C , A d a , a n d F o r t r a n , t h i s v a l u e m u s t b e
NT_USE_ARCHITECTURE_CLOCK or NT_USE_RCIM_TICK_CLOCK. The
user daemon default value is NT_USE_ARCHITECTURE_CLOCK.

For Java, one of the following values:

 ClockSource.Default
 ClockSource.RCIMTickClock

The daemon default is to use the Default (Architecture) clock.

C: ntc_shmid_perm
Ada: shmid_perm
Fortran: cnf(ntc_shmid_perm)
Java: cnf.setSharedMemoryPermissions(int)

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

C: ntc_daemon_preferred
Ada: inherit
Fortran: cnf(ntc_daemon_preferred)
Java: cnf.setDaemonSettingsPreferred(boolean)

When set to TRUE, this parameter causes conflicts between the con-
figuration as specified by the user and by the corresponding user dae-
mon to be resolved in favor of the daemon. Otherwise, conflicts will
be resolved in favor of the first configuration that executes, which
w i l l c a u s e t h e s u b s e q u e n t u s e r d a e m o n i n v o c a t i o n o r
trace_begin (or Trace.begin) call to fail.

C: ntc_num_buffers, ntc_buffer_length
Ada: num_buffers, buffer_length
Fortran: cnf(ntc_num_buffers), cnf(ntc_buffer_length)
Java: cnf.setNumBuffers(int), cnf.setBufferLength(int)

These two parameters define the amount of memory used to hold
trace events. The user daemon configuration defaults to 8 buffers
which individually hold 32768 events. The values as specified here
will be rounded up to the closest power of two. The units of buffer
length are in units of minimally-sized events. Some trace event inter-
faces with additional user-specified arguments require additional
space. The default daemon values for these fields are 8 buffers of
length 32768.

C: ntc_daemon_wait_usec
Fortran: config(ntc_daemon_wait_usec)
Java: n/a
2-11

NightTrace RT User’s Guide
Specifies the number of microseconds the user daemon should pause
between busy-wait contention for control of the shared memory buff-
ers when flushing buffers to the output device. The user daemon
configuration for this parameter defaults to 100 us. This value
should be kept relatively short to prevent data loss if massive user
application trace activity prevents the daemon from flushing the
shared memory buffers.

C: ntc_reserved
Fortran: cnf(ntc_reserved)
Java: n/a

These parameters are reserved for future use; currently, they must be
set to zero for proper future operation.

DESCRIPTION

The trace_begin and Trace.begin routines perform the following opera-
tions:

• Verify that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
it is already running

• Verify the supplied configuration settings are not in conflict with a
pre-existing daemon or define the configuration with these settings if
the user daemon does not yet exist.

• Verify that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

• Attach the shared memory buffer (after creating it if needed)

• Lock critical NightTrace library routine pages in memory as directed.
Note that you must have the CAP_SYS_NICE capability to lock
pages in memory (see “Privileged Access” on page C-1 for details).

• Initialize trace event tracing in this process

A process that results from the execve(2) system service does not inherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize the
trace with trace_begin or Trace.begin. Processes that result from a fork in a
process that has already initialized the tracing session need not call trace_begin.

The trace_begin or Trace.begin routine must be called only once per parent
process (unless an intervening trace_end or Trace.end call has been made).

If Application Illumination is used, the main illuminator (see “Application Illumina-
tion” on page 5-1) will perform a trace_begin() call. The nlight tool (see
“Settings For “main” Illuminator” on page 5-55) can be used to set some of the
parameters to this call.

RETURN CONDITIONS

C, Ada, and Fortran:
2-12

Using the NightTrace Logging API
Upon successful operation, the trace_begin routine returns NTNOERROR
or NTLISTEN; the latter in the case where no daemon has yet been started.
Otherwise, an error value as defined in ntrace.h and ntrace_.h is
returned, as shown in the Error Code section below.

Java:

The Trace.begin() routine has no return value. It returns if the call is
successful (including the case of where no daemon has yet been started). Oth-
erwise, a Trace.Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s getError()
rout ine to obtain the specif ic error enumerat ion value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTNOERROR

A daemon has already been started that matches the filename passed as
key_file.

NTLISTEN

All operations were successful, but no user daemon matching the filename
passed as key_file could be found. The application can continue to make
NightTrace API calls but attempts to log events will fail until a daemon is
started, at which point logging of events will succeed.

NOTE

This error enumeration is not ever thrown by the Java API. Calls to
Trace.begin() will silently succeed even if a matching daemon has not
yet been started.

NTALREADY

The application has already initialized the trace without an intervening
trace_end or Trace.end call. Tracing can continue in spite of this error.

NTBADVERSION

The calling application is linked with the static NightTrace library and the
static library is not compatible with the NightTrace library being used by the
user daemon. Solution: Relink the application with the static library version
which matches the library version being used by the daemon.

NTMAPCLOCK

The selected event timestamp source could not be attached. Solution: If read
access is lacking, see your system administrator.

This can also occur if the RCIM synchronized tick clock is selected as the
event timestamp source but the tick clock is not counting. Solution: Start the
2-13

NightTrace RT User’s Guide
synchronized tick clock by using the clock_synchronize(1M) com-
mand and restart the application.

NTPERMISSION

The calling application lacks permission to attach the shared memory buffer.
Solution: Make sure that the same user who started the user daemon is the
current user logging trace events in the application.

NTPGLOCK

Permission to lock the text and data pages of the NightTrace library routines
was denied. If the user is not privileged to lock pages, see your system admin-
istrator or change the page locking configuration setting to FALSE. (See
ntc_lock_pages or Config.setPageLocking() above).

NTNOSHMID

This can occur if the size of the shared memory buffer exceeds the system lim-
its or the shared memory buffer already exists but the size required by the
parameters defining the number of buffers and buffer length exceeds the cur-
rent size. To increase the system limits on shared memory, adjust the ker-
nel.shmmni, kernel.shmall, and kernel.shmmax parameters using systcl(8).
Use ipcrm(1) to remove the existing shared memory segment if it is not
being used by another application.

SEE ALSO

• trace_end(), Trace.end()

trace_event, Trace.event and their variants 2

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX

C:

int trace_event (int ID);

int trace_event_arg (int ID, int arg);

int trace_event_two_arg (int ID, int arg1, int arg2);

int trace_event_three_arg (int ID, int arg1, int arg2, int arg3);

int trace_event_four_arg(int ID, int arg1, int arg2, int arg3, int

arg4);

int trace_event_long (int ID, long arg);

int trace_event_two_long (int ID, long arg1, long arg2);

int trace_event_long_long (int ID, long long arg);
2-14

Using the NightTrace Logging API
int trace_event_two_long_long (int ID, long long arg1, long long

arg2);

int trace_event_flt (int ID, float arg);

int trace_event_two_flt (int ID, float arg1, float arg2);

int trace_event_dbl (int ID, double arg);

int trace_event_two_dbl (int ID, double arg1, double arg2);

int trace_event_long_dbl (int ID, long double arg);

int trace_event_blk(int ID, void *args, int bytes);

int trace_event_string(int ID, char *str);

Fortran:

integer function trace_event (ID)
integer ID

integer function trace_event_arg (ID, arg)
integer function trace_event_two_arg(ID, arg1, arg2)
integer function trace_event_three_arg (ID, arg1, arg2, arg3)
integer function trace_event_four_arg (ID,arg1,arg2,arg3,arg4)
integer ID, arg, arg1, arg2, arg3, arg4

integer function trace_event_long (ID, arg)
integer function trace_event_two_long (ID, arg1, arg2)
integer ID
integer arg, arg1, arg2 (32-bit OS)
integer*8 arg, arg1, arg2 (64-bit OS)

integer f unction trace_event_long_long (ID, arg)
integer function trace_event_two_long_long (ID, arg1, arg2)
integer ID
integer*8 arg, arg1, arg2

integer function trace_event_dbl (ID, arg)
integer function trace_event_two_dbl (ID, arg1, arg2)
integer ID
double precision arg , arg1, arg2

Ada:

type event_type is range 0..4095;

 (procedures)

procedure trace_event (ID : event_type);

procedure trace_event (ID : event_type;
 arg : integer);

procedure trace_event (ID : event_type;
 arg : float);
2-15

NightTrace RT User’s Guide
procedure trace_event (ID : event_type;
 arg1 : float;
 arg2 : float);

procedure trace_event (ID : event_type;
 arg : long_float);

procedure trace_event (ID : event_type;
 arg1 : long_float;
 arg2 : long_float);

procedure trace_event (ID : event_type;
 arg1 : integer;
 arg2 : integer;
 arg3 : integer;
 arg4 : integer);

 (functions)

function trace_event (ID : event_type)
return ntrace_error;

function trace_event (ID : event_type; arg : integer)
return ntrace_error;

function trace_event (ID : event_type;
 arg : float)
return ntrace_error;

function trace_event (ID : event_type;
 arg1 : float;
 arg2 : float)
return ntrace_error;

function trace_event (ID : event_type;
 arg : long_float)
return ntrace_error;

function trace_event (ID : event_type;
 arg1 : long_float;
 arg2 : long_float)
return ntrace_error;

function trace_event (ID : event_type;
 arg1 : integer;
 arg2 : integer;
 arg3 : integer;
 arg4 : integer)
return ntrace_error;

Java:

package ntrace.logging;

class Trace {

 static void event(int ID);
2-16

Using the NightTrace Logging API
 static void event(int ID, int arg);
 static void event(int ID, int arg1, int arg2);
 static void event(int ID, int arg1, int arg2, int arg3);
 static void event(int ID, int arg1, int arg2, int arg3, int arg4);
 static void event(int ID, long arg);
 static void event(int ID, long arg1, long arg2);
 static void event(int ID, double arg);
 static void event(int ID, double arg1, double arg2);
 static void event(int ID, String arg);
 static void event(int ID, char[] arg);
 static void event(int ID, int[] arg);
 static void event(int ID, double[] arg);
 static void event(int ID, byte[] arg);
 static void event(int ID, float[] arg);
 static void event(int ID, long[] arg);
 static void event(int ID, short[] arg);
 static void event(int ID, boolean[] arg);
}

PARAMETERS

ID

Each trace event has a user-defined trace event ID, ID. This ID is a valid inte-
ger in the range rese rved fo r use r t r ace even t s (0-4095 , and
3,000,000-3,999,999). See “Pre-Defined Strings Tables” on page 7-17 for
more information about trace event IDs.

IMPORTANT

Trace event IDs in the range 3,000,000 through 3,999,999 cannot
be disabled (“Disabling Tracing” on page 2-34) and can only be
used with the function trace_event_arg_blk().

argN

Sometimes it is useful to log the current value of a variable or expression, arg,
along with your trace event. The trace event logging routines provide this
capability. They differ by how many and what types of numeric arguments
they accept. If you want the ntrace display utility to display these trace
event arguments in anything but decimal integer format, you can enter the
trace event in an event-map file. See “Event Map Files” on page 7-11 for more
information on event-map files and formats. Alternatively, you could call the
format function. See “format()” on page 16-192 for details.

DESCRIPTION

A trace point is a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis.
2-17

NightTrace RT User’s Guide
TIP

To save time re-editing, recompiling, and relinking your applica-
tion, consider beginning with many trace points in the source
code. You can dynamically enable or disable specific trace events.

Some typical trace points include the following:

• Suspected bug locations

• Process, subprogram, or loop entry and exit points

• Timing points, especially for clocking I/O processing

• Synchronization points for multi-process interaction

• Endpoints of atomic operations

• Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

By convention, each trace event logging invocation should log a different trace
event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in.
However, it is sometimes useful to log the same trace event ID in multiple places.
This makes it possible to group trace events from related, but not identical, activi-
ties. In this case, a change of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to identify states. Typically, two
different trace event IDs delimit the boundaries of a state. Most applications log
recurring states with different time gaps (from the end of one instance of a state to
the start of another) and different state durations (from the start of one instance of a
state to its end).

TIP

Consider putting related trace event IDs within a range. Library
routines and user daemon options let you manipulate trace events
by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace_enable, trace_disable, and their variants” on
page 2-21 for more information.
2-18

Using the NightTrace Logging API
TIP

Consider using symbolic constants instead of numeric trace event
IDs. This would make your calls to NightTrace routines more
readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with State Graphs, Event Graphs, and Data Graphs in the
ntrace display utility. See “State Graph” on page 12-11, “Event Graph” on page
12-10, and “Data Graph” on page 12-12 for more information about these display
objects.

RETURN CONDITIONS

C, Ada, and Fortran:

These routines return a zero value (NTNOERROR) on successful completion.
Otherwise, an error value as defined in ntrace.h and ntrace_.h is
returned, as shown in the Error Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace.Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s getError()
rout ine to obtain the specif ic error enumerat ion value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTINVALID

An invalid trace event ID has been supplied. Solution: Use trace event IDs
only in the range 0-4095 (or 3,000,000-3,999,999 when used with
trace_event_arg_blk()).

NTINIT

The NightTrace library routines were not initialized or they were initialized
but no user daemon has yet been initiated. Ensure a trace_begin or
Trace.begin call precedes the trace event logging routine call. Once a user
daemon is started, subsequent attempts at logging events will succeed.

NTLOSTDATA

The trace event was lost because the shared memory buffers were full. This
can occur if the user daemon cannot empty the shared memory buffer quickly
enough. Increase the priority of the user daemon and/or schedule it on a CPU
with less activity. Additionally, the size of the shared memory buffers can be
increased using the --num_bufs and --buflen options to ntraceud, the
User Event Buffer settings on the User Trace tab of the Daemon Def-
inition dialog in ntrace tool, or the number of buffers or buffer length can
be adjusted as part of the trace_begin or Trace.begin calls.
2-19

NightTrace RT User’s Guide
SEE ALSO

• trace_flush(), Trace.flush()

• trace_trigger(), Trace.trigger()

• trace_enable(), Trace.enable()

• trace_enable_range()

• trace_enable_all()

• trace_disable(), Trace.disable()

• trace_disable_range()

• trace_disable_all()
2-20

Using the NightTrace Logging API
trace_enable, trace_disable, and their variants 2

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_disable, trace_disable_range, trace_disable_all, and
Trace.disable routines respectively make your application ignore requests to log one
o r more t r ace even t s . The trace_enable , trace_enable_range ,
trace_enable_all and Trace.enable routines respectively make your application
notice previously disabled requests to log one or more trace events.

SYNTAX

C:

int trace_enable (int ID);
int trace_enable_range (int ID_low, int ID_high);
int trace_enable_all ();

int trace_disable (int ID);
int trace_disable_range (int ID_low, int ID_high);
int trace_disable_all ();

Fortran:

integer function trace_enable (ID)
integer ID

integer function trace_enable_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_enable_all ()

integer function trace_disable (ID)
integer ID

integer function trace_disable_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_disable_all ()

Ada:

type event_type is range 0..4095;

 (procedures)

procedure trace_enable (ID : event_type);

procedure trace_enable (ID_low : event_type;
 ID_high : event_type);

procedure trace_enable_all;

procedure trace_disable (ID : event_type);
2-21

NightTrace RT User’s Guide
procedure trace_disable (ID_low : event_type;
 ID_high : event_type);

procedure trace_disable_all;

 (functions)

function trace_enable (ID : event_type)
return ntrace_error;

function trace_enable (ID_low : event_type;
 ID_high : event_type)
return ntrace_error;

function trace_enable_all

return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (ID_low : event_type;
 ID_high : event_type)
return ntrace_error;

function trace_disable_all

return ntrace_error;

Java:

package ntrace.logging;
class Trace {
 static void enable(int ID);
 static void enable(int ID_low, int ID_high);
 static void enable();
 static void disable(int ID);
 static void disable(int ID_low, ID_high);
 static void disable();
}

PARAMETERS

ID

Each trace event has a user-defined trace event ID, ID. This ID is a valid inte-
ger in the range reserved for user trace event IDs (0-4095, inclusive). See
“trace_event, Trace.event and their variants” on page 2-14 for more informa-
tion.

IMPORTANT

Trace event IDs in the range 3,000,000-3,999,999 cannot be used
with these functions. Such event IDs are always enabled.
2-22

Using the NightTrace Logging API
ID_low

It is possible to manipulate groups of trace event IDs by specifying a range of
trace event IDs. ID_low is the smallest trace event ID in the range.

ID_high

It is possible to manipulate groups of trace event IDs by specifying a range of
trace event IDs. ID_high is the largest trace event ID in the range.

DESCRIPTION

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events
appears first because initially all trace events are enabled.

Sometimes, so many trace events that it is hard to understand the ntrace display.
Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions
exist, it is useful to disable the extraneous trace events. You can disable trace events
temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enable them.

NOTE

These routines enable and disable trace events in all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requests to log trace
event(s) to the shared memory buffers. The disable routines differ by how many
trace events they disable. trace_disable, and Trace.disable with a single
argument, disable one trace event ID. trace_disable_range, and
Trace.disable with two arguments, disable a range of trace event IDs, includ-
ing both range endpoints. trace_disable_all, and Trace.disable without
any arguments, disable all trace events. Disabling an already disabled trace event
has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffers. The
enable routines differ by how many trace events they enable. trace_enable, and
Trace.enable with a s ingle argument , enable one t race event ID.
trace_enable_range, and Trace.enable with two arguments, enable a
range of trace event IDs, including both range endpoints. trace_enable_all,
and Trace.enable without arguments, enable all trace events. Enabling an
already enabled trace event has no effect.
2-23

NightTrace RT User’s Guide
TIP

Consider invoking the user daemon with events disabled instead
of calling the enable and disable routines. Using these options
saves you from re-editing, recompiling and relinking your appli-
cation.

TIP

If you want to log only a few of your trace events, disable all trace
events and then selectively enable the trace events of interest.

RETURN CONDITIONS

C, Ada, and Fortran:

These routines return a zero value (NTNOERROR) on successful completion.
Otherwise, an error value as defined in ntrace.h and ntrace_.h is
returned, as shown in the Error Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace.Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s getError()
routine to obtain the specif ic error enumerat ion value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTINIT

The NightTrace library routines were not initialized. Solution: Be sure a
trace_begin or Trace.begin call precedes the call to the disable or
enable routine.

NTINVALID

An invalid trace event ID has been supplied. Solution: Use trace event IDs
only in the range 0-4095, inclusive.

SEE ALSO

• trace_event, Trace.event and its variants
2-24

Using the NightTrace Logging API
trace_flush, Trace.flush, trace_trigger, and Trace.trigger 2

The flush and trigger routines asynchronously wake the user daemon and direct it to copy
trace events from the shared memory buffers to the trace event file on disk. Note: These
routines do not wait for the copy to complete.

SYNTAX

C:

int trace_flush();
int trace_trigger();

Fortran:

integer function trace_flush()
integer function trace_trigger()

Ada:

 (procedures)

procedure trace_flush;
procedure trace_trigger;

 (functions)

function trace_flush
return ntrace_error;

function trace_trigger
return ntrace_error;

Java:

package ntrace.logging;
class Trace {
 static void flush();
 static void trigger();
}

DESCRIPTION

When the user daemon is idle, it sleeps. The process of copying trace events from
the shared memory buffers to a trace event file is called flushing the buffers. The
user daemon wakes up and flushes when any of these conditions exist:

• At least one of the individual buffers is filled with trace events

• Your application calls trace_flush, trace_trigger,
trace_end, Trace.flush, Trace.trigger, or
Trace.end

• ntraceud is invoked with the --flush-now option
2-25

NightTrace RT User’s Guide
• The NightTrace graphical analysis tool requests a flush for immedi-
ately analysis of the latest trace events

TIP

The trigger functions work identically to the flush functions,
except that the trigger functions work only in buffer-wraparound
mode. Call trace_trigger instead of trace_flush so that
only buffer-wraparound’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older (and therefore presumably less-vital) trace events when the shared
memory buffer gets full. In buffer-wraparound mode, you must explicitly call
trace_flush, Trace.flush, trace_trigger, or Trace.trigger. Only
then, does the user daemon copy the remaining trace events from the shared memory
buffer to the trace event file. However, do not call these functions too often or you
will reduce the effectiveness of this mode. See “ntraceud Options” on page 3-3 for
more information on buffer-wraparound mode.

RETURN CONDITIONS

C, Ada, and Fortran:

The trace_flush and trace_trigger routines return a zero value
(NTNOERROR) on successful completion. Otherwise, an error value as
defined in ntrace.h and ntrace_.h is returned, as shown in the Error
Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace.Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s getError()
routine to obtain the specif ic error enumerat ion value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTFLUSH

A failure occurred while attempting to flush the shared memory buffer. Solu-
tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

SEE ALSO

• trace_event, Trace.event and its variants
2-26

Using the NightTrace Logging API
trace_set_thread_name, Trace.setThreadName 2

The trace_set_thread_name and Trace.setThreadName routines associate the
current C thread, Ada task, or Java thread with a user-specified name. Use of this library
routine is optional, as described in the Description paragraph below.

SYNTAX

C:

int trace_set_thread_name(const char *thread_name);

Fortran:

integer function trace_set_thread_name(thread_name)
character *(*) thread_name

Java:

package ntrace.logging;
class Trace {
 static void setThreadName(String thread_name);
}

PARAMETERS

thread_name

NightTrace’s graphical displays and textual summary information indicate
which threads logged trace events.

Naming your threads can make the displays much more readable. This func-
tion lets you associate a meaningful character string name with the current
threads’ more cryptic numeric ID. If you provide a character string as the
thread name, the ntrace display utility uses it as a label in its displays.
Because ntrace may be unable to display long strings in the limited screen
space available, keep thread names short.

Thread names should be limited to alpha-numeric characters and should con-
tain at least one non-numeric character. Names that are entirely numeric may
be discarded if a more descriptive name is available (including the default
thread name “main”). Some special characters are allowed, but their use is not
recommended. Do not use the names “ALL” or “NONE” as they are used
internally within NightTrace and may cause unexpected results.

DESCRIPTION

When using Java or when linking with the thread-aware version of the NightTrace
Logging API library (libntrace_thr), the default thread name is formed
directly from the thread’s internal gettid(2) value.
2-27

NightTrace RT User’s Guide
For C and Ada programs, if not using the thread-aware version of the library, you
cannot distinguish which threads logged which trace events -- all threads share the
same name.

By default, the main program thread is called “main”.

Calling trace_set_thread_name or Trace.setThreadName sets the name
of the calling thread to the specified name, overriding any previous name, default or
otherwise, given to the thread.

Calling trace_set_thread_name or Trace.setThreadName multiple
times for the same thread is not recommended, as it can cause confusion. Depend-
ing on the mode of trace event collection, some trace event may have the prior name
and some may have the new name -- or, all trace events may have the name associ-
ated with the last call to trace_set_thread_name.

RETURN CONDITIONS

C, Ada, and Fortran:

The trace_set_thread_name routine returns a zero value (NTNOER-
ROR) on successful completion. Otherwise, an error value as defined in
ntrace.h and ntrace_.h is returned, as shown in the Error Code section
below.

Java:

On successful completion, Trace.setThreadName returns without any
value. Otherwise, a Trace.Error exception object is thrown, which further
describes the error. When caught, you can use the exception object’s getEr-
ror() routine to obtain the specific error enumeration value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTINVALID

An invalid thread name was specified.

SEE ALSO

• trace_begin(), Trace.begin()

• trace_close_thread(), Trace.closeThread()

trace_close_thread, Trace.closeThread 2

The trace_close_thread and Trace.closeThread routines inform the Night-
Trace Logging API library that the calling thread will no longer log trace events. These
functions are only useful when you have a multi-threaded application which has been
linked with the thread-aware version of the NightTrace Logging API library
(libntrace_thr) or you have a multi-threaded Java program.
2-28

Using the NightTrace Logging API
SYNTAX

C:

int trace_close_thread;

Fortran:

integer function trace_close_thread

Ada:

function trace_close_thread return
ntrace_error;

Java:

package ntrace.logging;
class Trace {
 static void closeThread();
}

DESCRIPTION

Use of this function is optional, but it is good practice to call this function for all
threads which have logged trace events.

If you do not call trace_close_thread or Trace.closeThread and you
have logged trace events from a thread other than the main program thread, then the
shared memory resources associated with the NightTrace logging API session will
remain attached to the process even after a call to trace_end or Trace.end is
made.

RETURN CONDITIONS

C, Ada, and Fortran:

The trace_close_thread routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the
error condition. A list of trace_close_thread error codes follows.

Java:

On successful completion, Trace.closeThread returns without any
value. Otherwise, a Trace.Error exception object is thrown, which further
describes the error. When caught, you can use the exception object’s getEr-
ror() routine to obtain the specific error enumeration value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTINIT

The NightTrace l ibrary routines were not init ialized by a call to
trace_begin or Trace.begin.
2-29

NightTrace RT User’s Guide
SEE ALSO

• trace_begin(), Trace.begin()

• trace_end(), Trace.end()

trace_end, Trace.end 2

The trace_end and Trace.end routines free resources and terminate the trace session
in your process. Use of these routines is not strictly necessary, since all tracing resources
are automatically freed when the application exits. However, for applications that may
continue to execute but have no need for subsequent tracing, calling these routines is
appropriate.

SYNTAX

C:

int trace_end;

Fortran:

integer function trace_end

Ada:

function trace_end
return ntrace_error;

Java:

package ntrace.logging;
class Trace {
 static void end();
}

DESCRIPTION

This routine performs the following operations:

• Terminates trace event tracing in this process

• Flushes trace events from the shared memory buffer to the trace
event file

• Detaches the shared memory buffer

NOTE

If you have a mult i - threaded program l inked with the
thread-aware version of the NightTrace logging API, the shared
memory will not be detached from the process if you have logged
t race even ts f rom th reads which have no t ye t ca l l ed
trace_close_thread.
2-30

Using the NightTrace Logging API
• Notifies the user daemon that the current process has finished log-
ging trace events

RETURN CONDITIONS

C, Ada, and Fortran:

The trace_end routine returns a zero value (NTNOERROR) on successful
completion. Otherwise, an error value as defined in ntrace.h and
ntrace_.h is returned, as shown in the Error Code section below.

Java:

On successful completion, Trace.end returns without any value. Other-
wise, a Trace.Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s getError()
rout ine to obtain the specif ic error enumerat ion value from the
Trace.Error.Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTFLUSH

A failure occurred while attempting to flush the shared memory buffer. Solu-
tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

NTNODAEMON

There is no user daemon with a trace event file name that matches the one on
the trace_begin or Trace.begin call attached to the shared memory
region. This condition is not always detectable. Solution: Use the ntrace
display utility to analyze your logged trace events.

SEE ALSO

• trace_begin(), Trace.begin()

• trace_close_thread(), Trace.closeThread
2-31

NightTrace RT User’s Guide
trace_diag_mode 2

The trace_diag_mode routine controls the generation of diagnostics for critical Night-
Trace API routines.

The NightTrace API diagnostic routine is called when critical errors occur for some Night-
Trace API routines if the diagnostic mode is set to TRUE (on).

SYNTAX

C:

void trace_diag_mode (int on);

Fortran:

external trace_diag_mode

Java:

package ntrace.logging;
class Trace {
 static void enableDiagnostics(boolean);
}

DESCRIPTION

These functions control whether diagnostic text is sent to stderr by NightTrace
logging API routines when significant or critical errors are encountered. Regardless
of the setting of the diagnostic mode, individual functions within the NightTrace
logging API will use return values (or exceptions in the case of Java) to inform you
of error conditions.

For C and Fortran, specify a zero value to turn diagnostics off, or a non-zero value
to enable diagnostics.

For Java, pass true to enable diagnostics, and false to disable them.

For C, the NightTrace API diagnostic routine may be changed via the
trace_diag_func routine.

NOTE

Setting the NTRACE_SILENT environment variable to a non-null
value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

• trace_diag_func()
2-32

Using the NightTrace Logging API
trace_diag_func 2

The trace_diag_func routine replaces the default NightTrace API diagnostic routine
with one supplied with the function invocation.

SYNTAX

C:

void trace_diag_func (void(*func)(char*,int));

DESCRIPTION

The specified function is invoked when critical errors occur for some NightTrace
API routines if the trace diagnostic mode is set to TRUE. If this function is not
called, an internal NightTrace library routine is invoked when significant errors
occur, which prints a diagnostics to stderr, unless the diagnostics have been
turned off via trace_diag_mode().

NOTE

Setting the NTRACE_SILENT environment variable to a non-null
value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

• trace_diag_mode()
2-33

NightTrace RT User’s Guide
Disabling Tracing 2

There are five ways to disable tracing in your application:

• For C applications that include /usr/include/ntrace.h, you must
recompile your application with the -DNNTRACE preprocessor option or
insert the following preprocessor control statement before the #include
<ntrace.h>.

#define NNTRACE

The NightTrace header file, ntrace.h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status.

• Call the trace_disable_all routine near the top of the source, recom-
pile, and relink your application. (For more information about this routine,
see “trace_enable, trace_disable, and their variants” on page 2-21.) If your
application calls any of the enable routines, this method is not entirely
effective.

NOTE

Event IDs in the range 3,000,000-3,999,999 cannot be disabled by
this mechansim.

• Start a user daemon with all events disabled.

• Do not start a user daemon.

The trace library routines have been highly optimized to have minimal overhead,
especially when no user daemon has been initiated.

• If you application trace instrumentation was done solely via Application
Illumination, you can make the instrumentation 100% inert with zero over-
head to the application by deactivating it using the nlight tool. You can
then reactivate instrumentation (without relinking) at a subsequent time.
See “Command for Activating and Deactivating Illuminators” on page
5-74 for more information.

Threads and Logging 2

In order to distinguish between multiple threads in a multi-threaded application, the fol-
lowing step must be taken:

• C applications must be linked with the thread-aware version of the Night-
Trace logging API by specifying the -lntrace_thr link option.
2-34

Using the NightTrace Logging API
• Ada tasking applications automatically include the -lntrace_thr
option when using the Ada NightTrace bindings.

• Threaded Java applications automatically include the -lntrace_thr
library when using the ntrace.logging.Trace class.

If the thread-aware version of the library is not used, calls to log trace events from threads
will succeed but cannot be distinguished from other threads or the main thread.

By default, when using the thread-aware version of the library, threads are named using
their internal gettid(2) value. You can explicitly set the name of a thread to some-
thing more useful by calling trace_set_thread_name or Trace.setThread-
Name.

NightTrace CUDA Tracing API 2

The API for CUDA tracing consists of functions found in the following include files:

/usr/include/ntrace_cuda.h
/usr/include/ntrace_cuda_device.h

ntrace_cuda.h 2

This include file defines the functions and types used to initiate a tracing session for a
CUDA application and to flush any trace data from memory to the collecting daemon.

See “ntrace_cuda_device.h” on page 2-38 for information on functions used to actually
generate trace points in GPU-executed code.

SYNTAX

ntrace_cuda_context ntrace_cuda_begin(
const char * filename,
ntconfig_t * config = NULL,
unsigned flags = 0,
int buffer_size_events = 0x1000);

ntrace_cuda_handle * ntrace_cuda_sync(
ntrace_cuda_context ncc);

int ntrace_cuda_flush(
ntrace_cuda_context ncc);

vooid ntrace_cuda_end(
ntrace_cuda_context ncc);
2-35

NightTrace RT User’s Guide
PARAMETERS

filename

This parameter to ntrace_cuda_begin identifies the tracing session and
enables inter-process communication between a NightTrace collection dae-
mon and the application generating trace events. This parameter would also
be passed to the invocation of a NightTrace daemon as a command line argu-
ments. See “The ntraceud Daemon” on page 3-1 for more information.

The file must be writable and may already exist, but its contents will be over-
written.

config

This optional parameter to ntrace_cuda_begin allows you to specify
daemon collection parameters. See /usr/include/ntrace.h for more
information.

flags

This optional parameter to ntrace_cuda_begin is reserved for future use.
If specified, its value must currently be zero.

buffer_size_events

This optional parameter defines the size of the memory block which is allo-
cated out of GPU memory to hold trace events. It is specified in units of a
minimally sized event (an event with no arguments, which is 24 bytes).

Trace events logging in GPU-executed code reside completely in GPU mem-
o r y u n t i l f l u s h e d o u t t o t h e c o l l e c t i o n d a e m o n b y a c a l l t o
ntrace_cuda_flush().

If the memory buffer fills during GPU execution, it will overwrite the oldest
events, preserving the latest events.

ncc

This parameter is used with many of the API functions. It defines the context
of the NightTrace CUDA session.

It is returned from ntrace_cuda_begin and must be passed to the other
functions described above.

SEMANTICS

ntrace_cuda_begin

This function initiates a NightTrace CUDA session. No other NightTrace
CUDA API calls can be made until this function is called and completes suc-
cessfully.

It creates or attaches to a shared memory segment based on the name of the
filename parameter. This shared memory segment allows a NightTrace dae-
mon to collect data from the application.
2-36

Using the NightTrace Logging API
It also allocates a memory buffer in CUDA device memory. This buffer is
used to hold all CUDA trace events until ntrace_cuda_flush is called.

This function also initiates a normal NightTrace session, in the same manner
as trace_begin (see “trace_begin, Trace.begin” on page 2-8). Thus after
ntrace_cuda_begin completes, you can log trace events in CPU-exe-
cuted code as well as in GPU-executed code.

ntrace_cuda_sync

This function synchronizes the GPU clocks with the system timing device and
returns a handle which must be passed through to user code that executes on
the GPU. The handle is a required parameter for logging all trace points in
GPU-executed code.

IMPORTANT

Do not make copies or otherwise reuse the return value of
ntrace_cuda_sync in CPU-executed code. Only pass the
return value through to GPU- executed code on each kernel launch
(kernel is this context is a CUDA term representing a segment of
user code that is executed by the GPU).

ntrace_cuda_flush

This function transfers all the events from the buffer in CUDA device memory
to the shared memory buffer so that a NightTrace daemon may collect the
events.

IMPORTANT

No CUDA trace events will be passed to the NightTrace daemon
until this function is called. Typically, you will launch a kernel,
wait for the GPU to finish its execution, and then call this function
to copy the events from GPU memory into the shared memory
buffer.

ntrace_cuda_end

This function terminates the NightTrace CUDA session. While it is not
strictly necessary to call this function, it does free up the memory resources it
allocated and detaches from the shared memory buffer created or attached in
ntrace_cuda_begin.

RETURN VALUES

ntrace_cuda_begin
2-37

NightTrace RT User’s Guide
A non-zero ntrace_cuda_context value is returned on success. Otherwise, a
zero value is returned and a diagnostic is printed to stderr describing the
problem.

ntrace_cuda_sync

An ntrace_cuda_handle* is returned. This value should be passed to a kernel
invocation as it is required as a paramter to all ntrace_cuda_event func-
tions. See “ntrace_cuda_device.h” on page 2-38 for more information.

ntrace_cuda_flush

A zero value is returned on success. Otherwise, a diagnostic is printed to
stderr describing the problem.

ntrace_cuda_device.h 2

SYNTAX

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id);

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id,
int arg1 [,arg2[,arg3[,arg4[,arg5]]]]);

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id,
long arg1 [,arg2]);

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id
float arg1 [,arg2[,arg3[,arg4[,arg5]]]]);

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id
double arg1 [,arg2]);

void ntrace_cuda_event(
ntrace_cuda_handle * h,
int id,
void * data,
int bytes);

SEMANTICS

The required ntrace_cuda_handle* parameter should be the value returned from
ntrace_cuda_sync that was passed as an argument during the CUDA kernel
launch.

An trace event is logged into GPU device memory with the specified id and optional
arguments. Valid values of id include 0-4095 and 3,000,000-3,999,999.
2-38

Using the NightTrace Logging API
The following information is automatically logged with the event; you do not need
to pass this information as arguments:

• The symmetric processor ID

• The thread dimensions

• The block dimensions

• The lane ID

• The warp ID

• The raw clock time

See “cuda functions” on page 16-45 for a description on how you can retrieve this
information from events within ntrace.

As indicated in the pseudo-syntax above, you can pass from 1 to 5 int arguments, 1
to 5 float arguments, and 1 to 2 long or double arguments.

The last form of the function allows you to pass an arbitrary number of bytes as
arguments, as defined by the data and bytes parameters.

The events are stored into the buffer in wrap-around mode. Thus if the buffer fills,
the newest events overwrite the oldest events in the buffer.

The buffer is flushed by a call to ntrace_cuda_flush in CPU-executed code
only.

Some example source code can be found in the section entitled “CUDA Example”
on page D-11.

Compiling and Linking 2

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events.

For single-threaded applications, specify the /usr/lib/libntrace.a library.

For multi-threaded applications, specify the /usr/lib/libntrace_thr.a library
(Multi-threaded Java and Ada applications will automatically use the threaded NightTrace
library).

C Compilation and Linking 2

Single-threaded example:

$ cc app.c -lntrace

Multi-threaded example:
2-39

NightTrace RT User’s Guide
$ cc app.c -lntrace_thr -lpthread

See “NightTrace Logging API Examples” on page D-1 for more demonstrative examples.

Fortran Compilation and Linking 2

RedHawk Linux:

$ cf77 app.f -lntrace

or

$ g77 app.f -lntrace

See “NightTrace Logging API Examples” on page D-1 for more demonstrative examples.

Ada Example 2

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda for Linux Reference
Manual.

Java Example 2

Ensure that a path to a valid Java development environment bin directory is in your
$PATH variable.

$ javac -classpath /usr/lib:. app.java

See “NightTrace Logging API Examples” on page D-1 for more demonstrative examples.

CUDA Example 2

Single-threaded example:

$ nvcc \
--gencode=arch=compute_11,code=\”sm_11,code=compute_11\” \
--gencode=arch=compute_20,code=\”sm_20,code=compute_20\” \
--compiler-options -DUNIX -g -G -I/usr/include \
-c device_code.cu
$ cc main.c device_code.o ... -lntrace_cuda -lntrace

Multi-threaded example:
2-40

Using the NightTrace Logging API
$ nvcc \
--gencode=arch=compute_11,code=\”sm_11,code=compute_11\” \
--gencode=arch=compute_20,code=\”sm_20,code=compute_20\” \
--compiler-options -DUNIX -g -G -I/usr/include \
-c device_code.cu
$ cc main.c device_code.o ... -lntrace_cuda -lntrace_thr

See “NightTrace Logging API Examples” on page D-1 for more demonstrative
examples.
2-41

NightTrace RT User’s Guide
2-42

3
Chapter 3Capturing User Events with ntraceud

3
3
3

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

• Use the graphical user interface provided in the ntrace dialog as
described in “Edit Daemon Definition” on page 9-8.

• Use the command line tool ntraceud.

The interactive interface is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the application continues to log trace data; this
optional feature is called streaming. Alternatively, the ntraceud command line tool is
useful in scripts where automation is required.

This chapter describes the ntraceud command line tool broken down into the following
topics:

• “The ntraceud Daemon” on page 3-1

• “ntraceud Modes” on page 3-2

• “The Default User Daemon Configuration” on page 3-2

• “ntraceud Options” on page 3-3

• “Invoking ntraceud” on page 3-6

The ntraceud Daemon 3

When you start up ntraceud, it creates a daemon background process and then returns
control to the invoking program, normally the shell. The daemon creates a shared mem-
ory buffer in global memory. Your application writes trace events into this buffer, and the
daemon copies these trace events to the output device, usually a file.

You supply the name of the trace event file on your ntraceud invocation and in the
trace_begin() library call in your application. If this file does not exist, ntraceud
creates it; otherwise, ntraceud overwrites it.

A single ntraceud daemon may service several running applications or processes. Sev-
eral ntraceud daemons can run simultaneously; the system identifies them by their dis-
tinctive trace event file names. The ntraceud daemon resides on your system
under/usr/bin/ntraceud.

The daemon remains idle until one of the following conditions exist:

• One of the shared memory buffers fills
3-1

NightTrace RT User’s Guide
• You terminate execution of ntraceud

• Your application calls trace_flush(), trace_trigger(), or
trace_end()

• A subsequent invocation of ntraceud explicitly requests a flush

ntraceud Modes 3

By default, ntraceud operates in an expansive mode, continually increasing the size of
the output file as events are copied from the shared memory buffers to disk.

ntraceud also offers a file-wrap mode. This mode essentially places a limit on the max-
imum size the file can grow to. Once the limit is reached, the oldest events in the file are
overwritten.

ntraceud also offers a buffer-wrap mode. In this mode, the shared memory buffers are
filled without waking the daemon. When all buffers have been filled, the oldest events are
overwritten with the newest ones. No disk activity occurs until ntraceud is terminated,
or an explicit flush operation is requested, at which time, all buffers are copied to the out-
put file.

Both file-wrap and buffer-wrap modes may be used together.

The Default User Daemon Configuration 3

Invoking ntraceud with a trace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking ntraceud with particular options. Table 3-1 summarizes these
options. Detailed descriptions of these options are described in the following section.

However, if a user application has already been initiated, it may have specified a
non-default configuration via the trace_begin() call. If the critical settings in the con-
figuration defined by the user application differ from those specified by ntraceud, then
ntraceud will fail to initialize with an appropriate diagnostic.

In the default configuration, all trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
source is utilized, which for Intel and AMD Opteron based machines is the Time Stamp
Counter (TSC register). On operating systems that support the Real-Time Clock and
Interrupt Module (RCIM), the RCIM’s clock can be used as a timestamp source by using
the --rcim option to ntraceud (see “ntraceud Options” on page 3-3).

ntraceud and the NightTrace library routines optionally use page locking to prevent
page faults during trace event logging.

A summary of NightTrace configuration defaults follows.
3-2

Capturing User Events with ntraceud

ntraceud Options 3

ntraceud copies trace events from shared memory buffers to the output device, which is
normally a file.

The ntraceud invocation syntax is:

ntraceud [options] trace-filename

The trace-filename parameter is required for all ntraceud invocations. When starting a
daemon, it defines the shared memory identifier that the daemon and application will use
to communicate. When requesting statistics for a running daemon or when stopping a dae-
mon, it identifies the running daemon. Finally, unless run in streaming mode, the
trace-filename defines the output file which will hold trace events as they are copied from
memory.

The command-line options to ntraceud are:

--bufferwrap
-b

Collect events in the shared memory buffers, but do not output them to the
output device until ntraceud is terminated or an explicit flush request
occurs via an ntraceud invocation or from the NightTrace Logging API.

When the shared memory buffers are completely filled, the oldest trace events
are overwritten by the newest events.

--buflen=buflen
-Bl buflen

Sets the length of each of the shared memory buffers used by ntraceud to
buflen. The value represents the number of parameterless events that can be
stored in each buffer. The value buflen should be a power of 2 -- otherwise the

Table 3-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option

Number of buffers 8 --numbufs=number

Size of each buffer 32768 raw events --buflen=len

Buffer wrap mode No wrapping --bufferwrap

Trace event file size Indefinite --filewrap=bytes

Trace events enabled for logging All --disable =ID and
--enable=ID

Page Locking No Page Locking --lock
3-3

NightTrace RT User’s Guide
value is automatically adjusted by ntraceud. Use this option in conjunction
with --numbufs to control the amount of shared memory to be used. The
default value for buflen is 32768. Note that trace_event_arg API calls
(and other similar interfaces which include parameters) consume more space
than those without parameters.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel.shmmax and kernel.shmall variables via the sysctl(8) command.

--disable=ID[-ID]
--enable=ID[-ID]
-d ID[-ID]
-e ID[-ID]

Disable or enable one trace event ID or a range of trace event IDs, as defined
by ID or the range ID-ID, from being logged. Any number of these options
may be specified. Upon the first invocation of ntraceud that creates the
daemon process, the first --enable option disables all other trace events.
When ntraceud is invoked subsequently to adjust status of events for the
current session, --enable options only enable the specified trace events.
By default, all trace events are enabled.

--filewrap=bytes
-fw bytes

Start the ntraceud daemon in file-wrap mode such that the maximum trace
file size will be bytes bytes. A K or M suffix indicates that the size is in kilo-
byte or megabyte units, respectively. Once the maximum size has been
reached, ntraceud overwrites the oldest trace events logged by the applica-
tion.

--flush

This option forces a flush of all shared memory buffers that contain trace
events. This is especially useful when the daemon is operating in bufferwrap
mode or ntraceud is stream data to an application linked with the Night-
Trace Analysis API when the rate of events is relatively low.

--help
-h

Display a brief description of ntraceud options to stdout and exit.

--info
-i

Display summary information about a running ntraceud daemon. The dis-
play includes information about the number of events generated, events in the
shared memory buffers, events written to the output device and any data loss
that has occurred.

Data loss usually occurs because your application is writing trace events to the
shared memory buffers faster than ntraceud can copy them to the
trace-event file. Limit data loss by increasing the --numbufs and
3-4

Capturing User Events with ntraceud
--buflen option settings or using --bufferwrap and by executing
ntraceud with urgent priority.

--join
-j

Allow the initiation of an ntraceud daemon even if a user application has
already initiated a trace session using the specified trace-filename argument.

--lock
--no-lock

Specify whether critical pages are to be locked in memory or should not be
locked in memory. Note that you must have the CAP_IPC_LOCK capability
to lock pages in memory (see “Privileged Access” on page C-1 for details).

--numbufs=numbufs
-Bn numbufs

Sets the number of shared memory buffers used by ntraceud to numbufs.
The value numbufs should be a power 2 -- the value is automatically adjusted
by ntraceud if this is not the case. Use this option in conjunction with
--buflen to control the amount of shared memory to be used. The default
value of numbufs is 8.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel.shmmax and kernel.shmall variables via the sysctl(8) command.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with --priority
and --processor to adjust the scheduling attributes of ntraceud. See
sched_setscheduler(2) for more information on scheduling policies.
Note that you must have the CAP_SYS_NICE capability to set a real-time
scheduling policy (see “Privileged Access” on page C-1 for details).

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, prio is 0 and the scheduling policy is other
w h i c h d i c t a t e s n o r m a l i n t e r a c t i v e s c h e d u l i n g . S e e
sched_setscheduler(2) for more information on scheduling priorities.
Note that you must have the CAP_SYS_NICE capability to set a real-time
scheduling priority (see “Privileged Access” on page C-1 for details)

--processor=bias

The bias parameter must be a comma-separated list of logical CPU numbers
or ranges. This option restricts the daemon to only run on the specified
CPU(s).
3-5

NightTrace RT User’s Guide
--quit
-q

After all processes associated with the ntraceud session defined by
trace-filename have exited or called trace_end, flush all remaining events
in the shared memory buffers, terminate the corresponding ntraceud dae-
mon, remove the corresponding shared memory identifier, and close the file.
This option causes ntraceud to wait for all processes to either exit or call
trace_end before tracing is terminated, whereas the --quit-now option
terminates the daemon without waiting.

--quit-now
-qn

Immediately flush all remaining events in the shared memory buffers, termi-
nate the corresponding ntraceud daemon, remove the corresponding shared
memory identifier, and close the file.

--rcim

Specify use of the RCIM synchronized tick clock as the timing source. This
option is useful when simultaneously capturing data from multiple systems
since the RCIM tick clock can be synchronized between systems.

This option is only available on operating systems that support the RCIM.

--stream

This option causes binary trace data to be output to stdout. This option is
intended to provide streaming data to applications using the NightTrace Anal-
ysis API; e.g. ntraceud --stream /tmp/key | a.out. In this case,
the trace-filename specified is not modified (although it will be created if it
does not already exist).

--version
-v

Display the current ntraceud version to stdout and exit.

Invoking ntraceud 3

This section describes a few common ntraceud invocation examples. In each example,
the trace_file argument corresponds to the trace event file name you supply on your call to
the trace_begin() library routine.

Normally, your first ntraceud invocation looks something like the following sample.

ntraceud trace_file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.
3-6

Capturing User Events with ntraceud
ntraceud --numbufs=16 --buflen=65536 trace_file

To eliminate any disk activity, or to run for long periods of time and only capture the latest
data, the following invocation might be used.

ntraceud --bufferwrap trace_file

To conserve disk space for long runs, the following invocation might be used.

ntraceud --filewrap=bytes trace_file

The following invocation should be used when the user application is already running and
you wish to start collecting trace data from it.

ntraceud --join trace_file

To obtain information on the status of an active daemon, the following invocation could be
used:

ntraceud --info trace_file

The following invocation waits for all user applications associated with the running
ntraceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running ntra-
ceud.

ntraceud --quit trace_file

Similarly, the following invocation immediately flushes remaining trace events to the
trace file, closes the file, and terminates the running ntraceud daemon. User applica-
tions can continue to run and make NightTrace Logging API calls, but no trace events will
be logged. Subsequently, a new user daemon can be initiated and trace events will start
being logged again:

ntraceud --quit-now trace_file

To provide streaming trace data to an application written using the NightTrace Analysis
API, the following information could be used:

ntraceud --stream trace_file | ./a.out

Note that in the above invocation, the trace_file parameter serves only as a handle for
communication between the daemon and the user application that is logging the events; no
data is written to the file. The --stream option instructs that the binary data stream be
redirected to stdout. See “NightTrace Analysis Application Programming Interface” on
page 18-1 for more information.
3-7

NightTrace RT User’s Guide
3-8

4
Chapter 4Capturing Kernel Events with ntracekd

4
4
4

A kernel daemon is required in order to capture trace events logged by the operating sys-
tem kernel. There are two methods for controlling kernel daemons:

• Using the graphical user interface provided in NightTrace Main Window

• Using the command line tool ntracekd

The interactive method is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the kernel continues to log trace data; this
optional feature is called streaming. Alternatively, the ntracekd command line tool is
useful in scripts where automation is required.

This chapter describes the ntracekd command line tool and consists of the following
sections:

• “The ntracekd Daemon” on page 4-1

• “ntracekd Modes” on page 4-1

• “ntracekd Options” on page 4-2

• “ntracekd Invocations” on page 4-5

The ntracekd Daemon 4

When you initiate ntracekd, it creates a daemon background process and returns while
that daemon process executes. Once it returns to the invoking process, usually the shell,
the background process has already initiated kernel tracing.

You supply the name of the trace event output file on your ntracekd invocation. Since
the capture of kernel data can quickly consume vast quantities of disk space, the
ntracekd tool requires that you specify a limit on the size of the output file. Once the
limit is reached, older kernel data in the file will be overwritten with newer data. The
interface does allow you to specify an unlimited file size; however, this is not recom-
mended.

The ntracekd daemon resides on your system under/usr/bin/ntracekd.

ntracekd Modes 4

ntracekd essentially always operates in a file-wraparound mode, since it requires you to
put a limit on the maximum size of the output file. If the limit is reached, then kernel trac-
4-1

NightTrace RT User’s Guide
ing continues, but newer kernel events overwrite older events in the file. When viewed by
the NightTrace analyzer, the events will be appropriately displayed in chronological order.

ntracekd also offers a buffer-wraparound mode. This mode stipulates that the kernel
continues to log kernel events to its internal buffers located in kernel memory, overwriting
the oldest kernel trace events with the newest ones. No disk activity occurs until
ntracekd is terminated or an explicit flush request is made via a subsequent ntracekd
invocation, at which time, all kernel trace buffers are copied to the output file.

ntracekd Options 4

The full ntracekd invocation syntax is:

ntracekd [options] filename

The filename parameter is required for all ntracekd invocations. When starting a dae-
mon, it defines the output file. When requesting statistics for a running daemon or when
stopping a daemon, it identifies the running daemon.

The command-line options to ntracekd are:

--bufferwrap
-b

Collect events in kernel bufferwrap mode, delaying output to filename until
stopped or flushed. This delays the disk activity normally involved in copying
kernel buffers to the output file as they become full.

--cpu=cpu

Set the mask of CPUs to trace to those specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges. If this option
is omitted, then all processors are trace. If provided, tracing will not occur on
processors that are not specified.

--events=events
-e events

Set the state for the events listed in the list events to enabled or disabled.
Events is a comma-separated list of event numbers or names preceded with a +
(meaning enabled) or - (meaning disabled). A + or - without a number or
name means enable or disable all, respectively. This option can be used after a
daemon is already running to dynamically disable or enable events.

For example, to disable all events except those representing context switches,
you could enter:

ntracekd --events=-,+schedchange
4-2

Capturing Kernel Events with ntracekd
--flush

This option flushes all kernel buffers. It is particularly useful in conjunction
with the --stream option when streaming binary data to a NightTrace Anal-
ysis API application.

--help
-H

Prints a description of the available options and exits.

--info
-i

This option can be specified to obtain statistics about a kernel daemon already
initiated by a previous ntracekd command. It prints statistics to stdout.

--kill
-k

Kill any active kernel daemon without regard to proper shutdown procedures.
This will allow subsequent kernel daemons to be initiated but data from the
previous daemon may be lost.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with --priority
and --processor to adjust the scheduling attributes of ntracekd. See
sched_setscheduler(2) for more information on scheduling policies.

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, prio is 0 and the scheduling policy is other
w h i c h d i c t a t e s n o r m a l i n t e r a c t i v e s c h e d u l i n g . S e e
sched_setscheduler(2) for more information on scheduling priorities.

--processor=bias

The bias parameter must be a comma-separated list of logical CPU numbers
or ranges. This option restricts the daemon to only run on the specified
CPU(s). This is unrelated to the --cpu option which specifies the CPUs to
trace.

--quit
-q

Stop an existing kernel daemon. Once kernel tracing has been stopped, all
remaining trace events already logged in the kernel buffers are copied to the
output file. The ntracekd command will not return until the copy is com-
plete.
4-3

NightTrace RT User’s Guide
--raw
-x

Disable automatic filtration of the kernel data leaving the format of the output
file as a raw kernel file. Raw kernel files can be passed directly to NightTrace
which will execute the filtration process on the fly. By default, ntracekd
filters the raw data to avoid otherwise unnecessary repetitive filtration by
NightTrace. This option is not normally used.

--rcim
-r

Use the RCIM tick clock as the timing source instead of the default timing
source.

This option can only be used on operating systems that support the RCIM.

--size=size
-s size

This option specifies the maximum size of the output file. It is required when
initiating a daemon unless the --wait or --bufferwrap options are used.
size may be specified as an integer number optionally followed by a K, M, or G,
which indicates kilobytes, megabytes, or gigabytes, respectively. If no letter
is specified, the units are assumed to be in bytes. size may also be +, which
indicates that the output may grow without limit. Use of + is not recom-
mended as kernel tracing can quickly consume vast quantities of disk space.

--stream

This option causes output to be sent to stdout in binary form for use as input to
a NightTrace Analysis API application. When this option is used, the filename
parameter still required, but no data will be written to it. With --stream the
filename serves solely as a communication handle between ntracekd invo-
cations.

--verbose
-v

When this option is used in conjunction with --info, it includes the list of
enabled events.

--wait=seconds
-w seconds

Start the daemon and begin kernel tracing for seconds before stopping the dae-
mon.

--bufsize=sz
-Bs sz

This option defines the size of each kernel buffer. sz may be specified as an
integer number optionally followed by a K, M, or G, which indicates kilobytes,
megabytes, or gigabytes, respectively. If no letter is specified, the units are
assumed to be in bytes. The default size of a kernel buffer is 250000 bytes.
4-4

Capturing Kernel Events with ntracekd
--numbufs=n
-Bn n

This option defines the number of kernel buffers. n must be an integer num-
ber. The number of kernel buffers defaults to 4.

ntracekd Invocations 4

A typical invocation of ntracekd to initiate kernel tracing would be:

> ntracekd --size=10M kernel-data

This starts a kernel trace daemon in the background and specifies a maximum size limit
for the output file kernel-data of 10 megabytes. The command returns as soon as ker-
nel tracing has begun.

To check on the status of the running daemon, the following command might be used:

> ntracekd --info kernel-data
status: running
events lost: 0
events captured: 13465
events written: 13465
events in buffer: 1493

To terminate the running daemon, the following command would be used:

> ntracekd --quit kernel-data

To initiate a daemon to capture kernel data while a user application executes, then to ter-
minate the daemon and view the data, the following sequence of commands might be
used:

> ntracekd --size=10M kernel-data
> ./a.out
> ntracekd --quit kernel-data
> ntrace kernel-data

To initiate a daemon to capture kernel data for five seconds and then terminate the daemon
and view the data, the following sequence of commands might be used:

> ntracekd --wait=5 kernel-data
> ntrace kernel-data
4-5

NightTrace RT User’s Guide
4-6

5
Chapter 5Application Illumination

5
5
5

The challenge of debugging real-time programs is that problems are often time sensitive.
Stepping through the program one statement at a time with a traditional debugger is little
help in debugging such problems. Even the expedience of inserting printf() state-
ments may introduce sufficient I/O overhead to interfere with the behavior of a real-time
program. NightTrace’s trace points have little overhead, but it can be tedious to insert
large numbers of them into the source code.

Application Illumination is a facility to automatically generate trace points for function
calls and returns. It patches them into the object code, and thus requires no source
changes.

This chapter describes the Application Illumination facility and consists of the following
sections:

• “Overview” on page 5-2

• “The nlight Graphical User Interface” on page 5-6

• “Wizard” on page 5-17

• “Session Manager” on page 5-40

• “Console” on page 5-63

• “Predefined Illuminators” on page 5-64

• “Illuminator Files” on page 5-66

• “nlight Command Line Mode” on page 5-68

• “Customizing an Illuminator with the Editor” on page 5-77

• “Customizing an Illuminator by Editing the config.xml File” on page 5-100
5-1

NightTrace RT User’s Guide
Overview 5

Illuminator 5

An illuminator is a directory that contains an object file with a set of “wrapper” routines,
an event map and format tables for ntrace to use, and various other support files. Calls
to the routines that are going to be traced will be diverted to their corresponding “wrap-
per” functions, which record the entry event, call the real function, record the return event,
and then return to the original call site.

nlight 5

nlight is the tool used to create, manipulate, and use illuminators. It can be used via
command line options or in GUI mode.

Work Flow Illustration 5

The following transcript illustrates illuminating the code of a simple user program using
nlight command line options.

1. Build your code with debug information so that Application Illumination
knows the signatures of your functions:

$ gcc -g -c *.c
$ gcc *.o

2. Create and build an illuminator called a.ai for the a.out program:

$ nlight --build=a.ai a.out

3. Relink your program with the illuminator that was constructed in step 2,
along with a predefined illuminator called main that performs the
trace_begin() operation. At this point, although the illuminators are
linked into the program, they are inert. Calls to the routines to be traced are
still called directly. Illuminators may sit in your program unused and not
interfering with performance at all until you need them.

$ gcc *.o -o a.outAI ‘nlight --gcc main a.ai‘

4. Activate the illuminators in a.outAI. Calls to the routines to be traced
are now diverted to the “wrapper” functions.

$ nlight --illuminate=a.outAI main a.ai

5. Start up a daemon to record the events, run the program, shut the daemon
down, and run ntrace, which finds the trace file and illuminator support
files from paths embedded in a.outAI:

5-2

Application Illumination
$ ntraceud trace_file
$ a.outAI
$ ntraceud -q trace_file
$ ntrace a.outAI

Provided Illuminators 5

Illuminators are provided for some system libraries: glibc, pthread, ccur_rt, and
cuda (on some systems). Since the building of illuminators depends on DWARF debug
information which is not normally in system libraries, creating custom illuminators for
system libraries requires the installation of appropriate debug-info RPMs or versions of
the system libraries with debug information still in them (different Linux distributions take
differing approaches to this).

An illuminator for main() is also provided that will perform the trace_begin()
operation for programs that aren’t already using NightTrace (see “trace_begin,
Trace.begin” on page 2-8).

Detail Levels 5

When activating an illuminator, a named detail level may be specified (the default one is
called 2). A detail level may be customized to trace a particular subset of the functions
that can be traced and to log more or less information as arguments to the events. By
default, illuminators have detail levels called 1, 2, and 3, providing increasing amounts of
detail recorded in the arguments of the events. Custom detail level names are not limited
to numbers.

1. Relink the previous example to include the glibc illuminator:

$ gcc *.o -o a.outAI ‘nlight --gcc main a.ai glibc‘

2. Activate the a.ai illuminator specifying a higher level of detail than we
used above, and glibc with a low level of detail:

$ nlight --illuminate=a.outAI main a.ai=3 glibc=1

3. Start up a daemon to record the events, run the program, shut the daemon
down, and run ntrace, which finds the trace file and illuminator support
files from paths embedded in a.outAI:

$ ntraceud tracefile
$ a.outAI
$ ntraceud -q tracefile
$ ntrace a.outAI
5-3

NightTrace RT User’s Guide
Here is some sample output of a few events with detail level 3:

 9: cpu=?? ENTER_regcomp test_illuminator main 0.010745903
 calling regcomp(preg=0x60f120,pattern=0x60f170,cflags=9)
 *preg={
 buffer=0x0,
 allocated=0,
 used=0,
 syntax=0,
 ...}
 *pattern="^main$"
 caller=0x478f44
 frame=0x7fbfff5870

 10: cpu=?? RETURN_regcomp test_illuminator main 0.010800482
 returning from regcomp()=0
 errno=0

 11: cpu=?? ENTER_strlen test_illuminator main 0.010801628
 calling strlen(s=0x4bb374)
 s=".\.internal_io\.ada"
 caller=0x478f07
 frame=0x7fbfff5870

 12: cpu=?? RETURN_strlen test_illuminator main 0.010802240
 returning from strlen()=20
 errno=0
5-4

Application Illumination
Limitations 5

nlight automatically instruments the function entry and return of the following types of
functions:

• Functions at the global scope in statically linked portions of a program

• Function entry points in shared libraries (those functions accessed from
outside the shared library)

nlight does not illuminate the following types of functions:

• Functions within a shared library that are not called from outside the shared
library

• Functions defined with the C/C++ keyword static

• Inlined functions

• Functions without compiler debug information (this can be overridden as
explained below)

Functions that take a variable number of arguments (often called varargs functions)
only have their entry point instrumented. There will be no trace point logged for their
return due to a limitation in the Application Binary Interface (ABI). Note that a Night-
Trace string table is generated automatically by nlight which identifies these functions.
It is automatically included when analyzing the resultant data in ntrace. The name of
the string table is vararg_functions. See “Tables” on page 7-14 for more informa-
tion about using string tables.

nlight uses debug information generated by compilers to automatically describe the
arguments passed to functions in detail. When debug information is not available, this
argument information is absent. However, function entry events can still generated if you
explicitly tell nlight to pay attention to such functions. Use the --do_nodebug
option to nlight or override the default behavior in the graphical user interface. See
“Commands for Manipulating an Illuminator” on page 5-68 and “Include Functions with-
out Dwarf Debug Info” on page 5-81 for more information. Since there is no description
available as to the number of arguments or their type, nlight treats these functions as
vararg_functions. No trace event will be associated with the return of such func-
tions.
5-5

NightTrace RT User’s Guide
The nlight Graphical User Interface 5

To invoke the nlight graphical user interface, invoke nlight without any options:

$ nlight &

This will open the New Session window:

Figure 5-1. nlight Main WIndow

You may also specify a previously saved session or the path to an illuminator on the com-
mand line.

The first five radio buttons on the left side of the Wizard page correspond to the five steps
outlined in the “Work Flow Illustration” on page 5-2. The Wizard guides you with
step-by-step instructions on how to use the most common features of the tool.

There is also a Manager page that contains five similar nodes in a tree. Most actions
within it are taken through context menus by right clicking on the various items in the tree.

The menu bar provides access to session configuration services, additional tools, and help.
The menu bar provides the following menus:

• File
5-6

Application Illumination
• View

• Tools

• Help

Each menu is described in the sections that follow:

File 5

Accelerator: Alt+F

The File menu contains session-related items such as creating a new session, saving the
current session or illuminator, and opening a previously-saved session or illuminator.

Figure 5-2. File Menu

The following paragraphs describe the options on the File menu in more detail.

New Session

Mnemonic: N
Accelerator: Ctrl+N

Creates a new session.

If an existing session is open, it is first closed by this operation.

If changes have been made to the current session but have not yet been saved,
nlight will ask you if you wish to save the current session before proceeding.
5-7

NightTrace RT User’s Guide
Open Session

Mnemonic: O
Accelerator: Ctrl+O

Launches a standard file selection dialog which allows you to specify a previ-
ously-saved session file.

If changes have been made to the current session but have not yet been saved,
nlight will ask you if you wish to save the current session before proceeding.

Save Session

Mnemonic: S
Accelerator: Ctrl+S

Saves the current session to a session configuration file quickly.

You are not prompted for the filenames where the session is to be saved. It is auto-
matically saved to the same file it was opened from or previously saved to.

If the current session has not been saved to a file in the past, a Save Session As
action will be done.

Save Session As

Mnemonic: A
Accelerator: Ctrl+A

Launches a standard file selection dialog which allows you to specify the filename
where the session will be saved

Open Illuminator

Launches a standard file selection dialog which allows you to specify an illumina-
tor’s config.xml file to edit.

If changes have been made to the current illuminator but have not yet been saved,
nlight will ask you if you wish to save the current illuminator before proceeding.

The illuminator is opened in the Editor page (or window), but is not added to the
session. To add an illuminator to the session, open the illuminator through the con-
text menu on the Create, Customize, and Build branch of the Manager page
(or window).

Save Illuminator

Saves the current illuminator to a config.xml file quickly (see “Illuminator
Files” on page 5-66).

You are not prompted for the filename where the illuminator is to be saved. It is
automatically saved to its previously associated filename.
5-8

Application Illumination
Save Illuminator As

Launches a standard file selection dialog which allows you to specify the filename
where the illuminator’s config.xml will be saved (see “Illuminator Files” on
page 5-66).

Exit

Mnemonic: X
Accelerator: Ctrl+Q

Closes the session and exits nlight completely.

If changes have been made to the current session or illuminator but have not yet
been saved, nlight will ask you if you wish to save the session or illuminator
before exiting.

Exit Immediately

Mnemonic: I
Accelerator: Alt+Q

Closes the session and illuminator and exits nlight without prompting to save
changes that have been made. Any changes will be lost.
5-9

NightTrace RT User’s Guide
View 5

Accelerator: Alt+V

The View menu contains items for controlling the appearance of Console, Editor, and
Wizard pages (or windows) of the graphical user interface. The Console page (or win-
dow) captures output from external commands that nlight invokes. The Editor page
(or window) is used to customize an illuminator. The Wizard page (or window) provides
a simplified guide through the work flow.

Figure 5-3. View Menu

Console in Page

Accelerator: Alt+K

Toggles placing the Console window (the window to which output from invoked
commands is logged) in a tabbed page within the main window.

Show Console

Mnemonic: C
Accelerator: Ctrl+K

Toggles showing or hiding the Console window (or page).

Clear Console

Clears the contents of the Console window (or page).
5-10

Application Illumination
Editor in Page

Accelerator: Alt+E

Toggles placing the Editor window (the window in which an individual illuminator
may be customized) in a tabbed page within the main window.

Show Editor

Mnemonic: E
Accelerator: Ctrl+E

Toggles showing or hiding the Editor window (or page).

Search Editor

Mnemonic: S
Accelerator: Ctrl+F

Toggles displaying the search bar in the Editor window (or page).

Search Editor Again

Mnemonic: A
Accelerator: Ctrl+G

Repeats the search in the search bar in the Editor window (or page).

Wizard in Page

Accelerator: Alt+W

Toggles placing the Wizard window (the window that provides a simpler guided
interface through the workflow) in a tabbed page within the main window.

Wizard Console

Mnemonic: W
Accelerator: Ctrl+W

Toggles showing or hiding the Wizard window (or page).

Verbose Wizard

Accelerator: Alt+V

Toggles whether the Wizard window (or page) includes verbose instructions guid-
ing you through the workflow.
5-11

NightTrace RT User’s Guide
The figure below shows the main window if the Console and Editor are shown in
tabbed pages, the search bar is displayed on the Editor page, and the Wizard is hidden:

Figure 5-4. Console and Editor in Tabbed Pages with Search Bar Displayed
5-12

Application Illumination
Tools 5

Mnemonic: Alt+L

Figure 5-5. Tools Menu

The following describe the options on the Tools menu:

NightProbe Monitor

Mnemonic: P

Opens the NightProbe Data Monitoring tool. NightProbe is a real-time graphical
tool for monitoring, recording, and altering program data within one or more execut-
ing programs without significant intrusion. NightProbe can be used in a develop-
ment environment as a tool for debugging or in a production environment for data
capture or to create a “control panel” for program input and output.

NightSim Scheduler

Mnemonic: S

Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

NOTE

NightSim is not available on some systems. NightSim depends on
the Frequency Based Scheduler. See “Kernel Dependencies” on
page B-1 for more information.

NightTune Tuner

Mnemonic: U

Opens the NightTune Tuner. NightTune is a graphical tool for analyzing the status
of the system in terms of processes, interrupts, context switches, interrupt CPU
affinity, processor shielding and hyper-threading control as well as network and disk
5-13

NightTrace RT User’s Guide
activity. NightTune can adjust the scheduling attributes of individual or groups of
processes, including priority, policy, and CPU affinity.

For systems that support CPU shielding, NightTune provides a handy interface for
controlling shielding, including downing sibling hyper-threaded CPUs to avoid
interference.

NightView Debugger

Mnemonic: V

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications and multi-threaded applications. NightView can monitor, debug, and
patch multiple real-time processes running on multiple processors with minimal
intrusion.
5-14

Application Illumination
Help 5

Mnemonic: Alt+H

Figure 5-6. Help Menu

The following describe the options on the Help menu:

On Context

Mnemonic: C

Gives context-sensitive help on dialogs and various items within dialogs, pages, and
windows.

Help for a particular item is obtained by first choosing this menu option, then click-
ing the mouse pointer on the object for which help is desired (the mouse pointer will
become a floating question mark when the On Context menu item is selected).
The cursor turns to a circle with a backslash when the item under the cursor has no
help description associated with it.

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. NightStar’s online help system will open with the
appropriate topic displayed.

NightTrace User’s Guide

Mnemonic: G

Opens the online version of the NightTrace User’s Guide in the NightStar help
viewer.

NightStar RT Tutorial

Mnemonic: T

Opens the online version of the NightStar RT Tutorial in the online help viewer.
5-15

../nstar/nstar-tutorial.html

NightTrace RT User’s Guide
License Report

Mnemonic: L

Opens a license dialog which indicates the current license server and the number of
licenses available on the system.

On Version

Mnemonic: V

Displays a short description of the current version of nlight.

Check for Updates...

Mnemonic: U

Launches NUU (Network Update Utility) enabling you to update your system with
the latest NightStar software. This requires network access to Concurrent’s Updates
web site. Updates require a login and user ID issued by Concurrent. Refer to
http://redhawk.ccur.com/updates for complete information.
5-16

http://redhawk.ccur.com/updates

Application Illumination
Wizard 5

The wizard guides you through the basic functionality of the nlight tool with more
descriptive on-screen text than the session manager provides. It consists of a sequence of
six pages that may be accessed in any order via the navigation panel on the left edge of
each page, or sequentially via the Prev and Next buttons at the bottom of each page.

Navigation Panel 5

Figure 5-7. Wizard Navigation Panel

The four buttons at the top are for creating, opening, and saving sessions. These com-
mands may also be accessed through the File menu (see “File” on page 5-7).

 New Session

Creates a new session. If the current session has unsaved modifications, you will
will be prompted to save it before the new session is created.

 Open Session

Opens a saved session. If the current session has unsaved modifications, you will be
prompted to save it before the saved session is opened.

 Save Session

Saves the current session. If the session has never been saved to a file, you will be
prompted for a filename to save it to.

 Save Session As

Saves the current session to a new filename that you will be prompted for.
5-17

NightTrace RT User’s Guide
The next six buttons are radio buttons that select which of the six Wizard pages to dis-
play.

Select Programs

Goes directly to the Select Programs with Debug Information page. In this
dialog, you will tell nlight about the programs you wish to instrument with trace
events. See “Select Programs with Debug Information” on page 5-20.

Define Illuminators

Goes directly to the Define an Illuminator for each Program page. On this
page, you will optionally create an illuminator for the statically linked portion of
each program. See “Define an Illuminator for each Program” on page 5-22.

Select Illuminators

Goes directly to the Select Predefined Il luminators for each Program
page. On this page, you will select from the illuminators provided with NightTrace
(main, glibc, pthread, and ccur_rt) to link with each program. See “Select
Predefined Illuminators for each Program” on page 5-26.

Relink Programs

Goes directly to the Relink Illuminated Programs page. On this page, you will
tell NightTrace how to relink your programs to include the user-defined and pro-
vided illuminators. See “Relink Illuminated Programs” on page 5-29.

Activate Illuminators

Goes directly to the Activate Illuminators in each Program page. On this
page, you will select the illuminators to activate, the trace file name, and the amount
of detail to record with each illuminator’s events. See “Activate Illuminators in
each Program” on page 5-32.

Run Scripts

Goes directly to the Run Scripts to Launch Programs and NightTrace
page. On this page, you will create scripts to run your programs and analyze the
resulting events with NightTrace. See “Run Scripts to Launch Programs and Night-
Trace” on page 5-35.
5-18

Application Illumination
Common Buttons 5

These buttons are found at the bottom of each page.

Figure 5-8. Wizard Common Buttons

Advanced...

Opens the appropriate spot in the Manager to perform more advanced operations
related to the current page. On the Define an Illuminator for each Program
page, this button is actually a menu of advanced operations.

Prev

Goes to the previous page in the workflow.

Next

Goes to the next page in the workflow.

Help

Gets help on the current page.
5-19

NightTrace RT User’s Guide
Select Programs with Debug Information 5

Informs nlight about the programs that you wish to instrument with trace points.

Figure 5-9. Select Programs with Debug Information Page

Program

Selects which program is the current program. Add or remove programs from this
list with the Browse... and Delete buttons.

Browse...

Browses for another program to add to the list of programs using the standard file
selection dialog. The program does not have to be built already (see Build Com-
mand, below).

Delete

Removes the current program from the list of programs. The program’s executable
file is not deleted.

Build Command

Specifies a command that may be used to build the current program. If the program
isn’t already built, nlight will automatically invoke this command when it needs
to access the program. To explicitly rebuild a program, build it at a shell prompt or
use the Build or Build All buttons.
5-20

Application Illumination
Build

Builds the current program by invoking the Build Command.

Build All

Builds all programs listed in the Program list by invoking their Build Com-
mands.

Advanced...

Brings the session manager to the top and expands the Select Code with Debug
Information branch down to the current program (see “Select Code with Debug
Information” on page 5-42). There, object files, archives, and shared objects may
also be selected. Illuminators may be constructed for any of these. In most situa-
tions, creating illuminators for whole programs is what you will want to do.

Figure 5-10. Select Programs Advanced Settings
5-21

NightTrace RT User’s Guide
Define an Illuminator for each Program 5

Optionally defines an illuminator for the functions in the statically linked portion of each
program. The default is to create the illuminator. Clear the check box to delete the illumi-
nator. Regular expressions may be used to control which functions the illuminator will
trace.

Figure 5-11. Define an Illuminator for each Program Page

Program

Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

Define an illuminator for this program

Creates an illuminator to hold the code to record trace events on function entry and
return for functions defined in the statically linked portion of the current program.
This item will be selected by default. Clearing the checkbox will delete the illumi-
5-22

Application Illumination
nator. To temporarily disable the illuminator, see “Activate Illuminators in each
Program” on page 5-32. The name of illuminator will be currentProgramName.ai.

Functions Included or Excluded from Being Traced

Controls which functions are traced with a list of regular expressions that are
applied in sequence from top to bottom. To restrict instrumentation to a small list of
functions, first exclude all functions matching the POSIX regular expression “.*”,
then include those functions you wish to trace. See “Add” on page 5-23 for docu-
mentation on the various regular expressions available. By default, all functions are
included except those beginning with underscore, those in the C++ std namespace,
main, and Ada’s internal routines (see “Regular Expressions” on page 5-82).

Add

Adds a regular expression that will include or exclude functions from being traced.
Select the expression from the menu of choices that pop up when this button is
clicked.

Include functions beginning with an underscore
Exclude functions beginning with an underscore

Includes or excludes functions whose names start with an underscore charac-
ter. All aliases of a function and the fully qualified C++ name (if applicable)
must begin with an underscore in order to match these criteria. A fully quali-
fied C++ name matches if the function name or the name of any containing
classes start with an underscore.

The rationale for this is that functions and class names that begin with under-
scores are typically vendor implementation routines that are of less interest.
But it is also common practice to create a strongly defined function that starts
with an underscore, then weakly define aliases to that function that do not.
These functions, like many in Glibc, are likely to be interesting, and so aren’t
matched by these expressions.

The default is to exclude functions beginning with an underscore.

Include functions in the C++ std namespace
Exclude functions in the C++ std namespace

Includes or excludes C++ functions in the std namespace.

The default is to exclude C++ functions in the std namespace. Such func-
tions are often inlined; inlined instances cannot be traced.

Include functions matching POSIX regex
Exclude functions matching POSIX regex

Includes or excludes functions whose names match a POSIX regular expres-
sion (see regex(7)). A function name matches the regular expression if
any alias or fully qualified C++ name (if applicable) matches it. The regular
expression must match the whole name (an implicit ^ and $ are placed before
and after the regular expression respectively).
5-23

NightTrace RT User’s Guide
By default main and Ada’s internal I/O routines are excluded.

You will be prompted for a POSIX regular expression to type in when this
menu item is selected.

Edit...

Edits the POSIX regular expression of the currently selected regular expression.

Delete

Deletes the currently selected regular expression.

Up

Moves the currently selected regular expression up one place in the list.

Down

Moves the currently selected regular expression down one place in the list.

Advanced

Provides a menu of advanced actions to choose from.

Edit...

Opens the illuminator for the current program in the Editor window (or page)
to perform advanced customization. See “Customizing an Illuminator with
the Editor” on page 5-77

Manage...

Brings the session manager to the top and expand the Create, Customize,
and Build Illuminators branch. Additional custom illuminators may be
created and customized here. The provided illuminators (main, glibc,
pthread, and ccur_rt) may also be customized (requires that the debug-
info packages for Glibc be installed). See “Create, Customize, and Build Illu-
minators” on page 5-45.
5-24

Application Illumination
Figure 5-12. Define Illuminators Advanced Settings

Populate

Populates the illuminator for the current program with the functions and vari-
ables found in the program. It is not necessary to populate an illuminator to
customize, build, or use it. Populating an illuminator can be convenient for
making lots of customizations to it. See “Populate” on page 5-47 and “nlight
--populate” on page 5-71.

Report

Creates a report about the functions being traced by the illuminator for the
current program. The report is written to the Console window (or page).
See “nlight --report” on page 5-72.

Build

Builds the illuminator. If an illuminator’s config.xml file or the program or
object files it illuminates have changed, nlight will update the illuminator any-
time it needs to access its files. So, it is normally not necessary for you to use this
button. However, initiating the build manually is useful to verify that customiza-
tions done through the Editor window (or page) will build successfully.
5-25

NightTrace RT User’s Guide
Select Predefined Illuminators for each Program 5

Selects predefined illuminators to link into the illuminated program (in addition to the
user-defined illuminator created in the previous page). See “Predefined Illuminators” on
page 5-64.

Figure 5-13. Select Predefined Illuminators for each Program Page

Program

Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

main

Links the main illuminator into the current program, which does not record any
events, but calls trace_begin() before main() is called. This is necessary if
the traced program does not do its own trace_begin() call. Do not use the
main illuminator in programs that already call trace_begin() on their own.
See “main” on page 5-64.

glibc

Links the glibc illuminator into the current program, which illuminators calls to
the system C library. See “glibc” on page 5-64.

pthread

Links the pthread illuminator into the current program, which illuminates calls to
the system POSIX threads library. See “pthread” on page 5-65.
5-26

Application Illumination
ccur_rt

Links the ccur_rt illuminator into the current program, which illuminates calls to
the Concurrent real-time library. See “ccur_rt” on page 5-65.

NOTE

This illuminator will only appear in the list if it is available.

cuda

Links the cuda illuminator into the current program, which illuminates calls to the
CUDA libraries.

NOTE

This illuminator will only appear in the list if it is available.

Advanced...

Brings the session manager to the top and expands the Create, Customize, and
Build Illuminators branch and the Relink Programs branch down to the Illu-
minators list of the current program. Additional illuminators may be created or
linked with programs. See “Create, Customize, and Build Illuminators” on page
5-45 and “Relink Programs” on page 5-49.

Figure 5-14. Select Illuminators Advanced Settings
5-27

NightTrace RT User’s Guide
NOTE

The list of predefined illuminators (those in italics) may differ on
your system. On Concurrent RedHawk systems, additional illu-
minators may be available.
5-28

Application Illumination
Relink Illuminated Programs 5

Links a copy of each program to include the code from their illuminators to record the
events.

Program

Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

Illuminated Program Path

Specifies the path name of the illuminated copy of the program. The original pro-
gram is relinked with the illuminators specified for it in the previous two pages and
is given a distinct name. By default, it is called originalProgramPathAI. See “Path”
on page 5-50.

Browse

Browses the file system using the standard file selection dialog for the Illuminated
Program Path.
5-29

NightTrace RT User’s Guide
Relink Command

Specifies the external command to relink the program. By default, it is a make
command using the Illuminated Program Path as the target name. There are a
number of substitution variables that may be specified in the command. These
begin with the “%” character and are replaced by nlight when the command is
invoked. See “Relink Command” on page 5-50

View Typical Makefile Target

Displays a typical Makefile target assuming the default make command. You
will need to modify your Makefile to include the Illuminated Program Path
as a target.

View Substitution Variables

Displays a list and brief description of the available substitution variables for the
Relink Command.

%RELINK

Substituted with the Relink Path value. It is handy to use as a make target
or as the operand of a -o option in a.link, gcc, or other compiler.

%AI

Substituted with the full paths of the illuminators to be linked in for use as a
make file target’s dependency list. The default make command passes %AI
to make using the variable ILLUMINATORS.

%GCC, %G77, %CF77, %ADA

Substituted with the options, files, and libraries that are need to link with the
illuminators using the gcc, g77, cf77, or a.link commands (respec-
tively). This includes the NightTrace library. The default make command
passes %GCC to make using the variable ILLUMINATOR_OPTIONS.

Default Make

Sets the Relink Command to the default make command.

Default a.link

Sets the Relink Command to the default a.link command (for Ada programs).

Relink

Relinks the current program by invoking the Relink Command. nlight will
automatically relink your program (and apply the default activation set to it) when-
ever it is out-of-date and the relinked program is needed. The Relink button is use-
ful to test changes to the Relink Command right away.
5-30

Application Illumination
Relink All

Relinks all programs listed in the Program list by invoking their Relink Com-
mands.

Advanced...

Brings the session manager to the top and expands the Relink Programs branch
down to the current program. There are no additional features here to access. See
“Relink Programs” on page 5-49.

Figure 5-15. Relink Programs Advanced Settings
5-31

NightTrace RT User’s Guide
Activate Illuminators in each Program 5

Activates illuminators so that they record events. Illuminators are “inert”, having no
run-time overhead and recording no events, when first linked into a program. They must
first be activated. Check the box next to each illuminator you want activated. Only those
illuminators that are actually linked into the program will appear on this page.

Figure 5-16. Activate Illuminators in each Program Page

main
glibc
pthread
currentProgram.ai

Enables (if checked) or disables (if not checked) an illuminator. Only predefined or
the user-defined illuminators that are actually linked into the illuminated program
are listed. Additional custom illuminators added as an advanced feature in the ses-
sion manager can only be enabled or disabled from the session manager. A notice
will appear in the page if such illuminators exist.
5-32

Application Illumination
Figure 5-17. Notice That Additional Illuminators Are Linked In

Trace File

Specifies the file that events will be recorded in. This is a parameter to the
trace_begin() call that the main illuminator does.

Browse...

Browses for the Trace File using the standard file selection dialog.

Detail Level

Specifies the level of detail that will be recorded as arguments to the events recorded
by each illuminator. See “Detail Levels” on page 5-64 and “Detail Levels” on page
5-85.

Advanced...

Brings the session manager to the top and expands the Activation Sets branch
down through the default activation set. A different activation set may be desig-
nated as the default. The Wizard always manipulates the default activation set. If
no default activation set has been designated, the Wizard will create one called
Wizard. See “Activation Sets” on page 5-54.
5-33

NightTrace RT User’s Guide
Figure 5-18. Activation Sets Advanced Settings
5-34

Application Illumination
Run Scripts to Launch Programs and NightTrace 5

Runs scripts for collecting and analyzing trace data. NightTrace may collect data from
programs in two ways. In File mode, your programs communicate with daemons to log
events to a file on disk, then NightTrace is used to analyze those events. In Stream mode,
your programs stream events directly to a running NightTrace. Simple scripts are auto-
matically generated, and may then be customized, to run NightTrace and your programs in
these two modes. See “Scripts” on page 5-60.

Figure 5-19. Run Scripts to Launch Programs and NightTrace Page in File Mode
5-35

NightTrace RT User’s Guide
Figure 5-20. Run Scripts to Launch Programs and NightTrace Page in Stream Mode

Mode

Selects between File mode and Stream mode. The page reconfigures itself to
show the scripts appropriate to each mode.

In File mode, a single script (called Wizard in the session manager) is generated
that will start daemons to record events in files, run your programs, stop the dae-
mons, and run NightTrace on the trace files.

In Stream mode, two scripts (called Wizard Stream and Wizard Launch in
the session manager) are generated. The first will run NightTrace in stream mode,
and the second will run your programs.
5-36

Application Illumination
Script to Run Programs and NightTrace in File Mode

Launches (for File mode) user daemons for all your programs, runs your programs
in sequence, halts the daemons, and runs NightTrace on the resulting trace files.
nlight only knows the daemons to launch for programs that use the main illumi-
nator to do the trace_begin() call. For other programs, you will need to modify
the script to launch them yourself.

If you add or remove programs, change the path to any of the relinked programs, or
change the file events are recorded in, you can recreate the script by clicking on the
Default button. Any edits you’ve done will be lost when you do this. In the ses-
sion manager, this is the Wizard script.

Script to Launch NightTrace in Stream Mode

Launches (for Stream mode) NightTrace in stream mode. You may then launch,
start, and stop the daemons from within NightTrace. NightTrace will know the dae-
mons needed only for programs linked with the main illuminator. For other pro-
grams, it will prompt for the daemon name. Events will stream directly into Night-
Trace when your programs are launched with the following script.

If you add or remove programs, change the path to any of the relinked programs, or
change the file events are recorded in, you can recreate the script by clicking on the
Default button. Any edits you’ve done will be lost when you do this. In the ses-
sion manager, this is the Wizard Stream script.

Script to Launch Programs

Launches (for Stream mode) your programs in sequence. If NightTrace has been
launched and used to start the daemons, events from these programs will stream
directly into NightTrace.

If you add or remove programs or change the path to any of the relinked programs,
you can recreate the script by clicking on the Default button. Any edits you’ve
done will be lost when you do this. In the session manager, this is the Wizard
Launch script.

Run

Runs the adjacent script using /bin/sh. The output from the script is written to
the Console page (or window) by default. The scripts that launch your programs
may optionally be run in other terminal sessions, such as an xterm by using the
Terminal Session setting next to the script.

Default

Resets the adjacent script to a default value that is based on the current list of pro-
grams defined and options set for them. Any edits you’ve done will be lost when
you do this.
5-37

NightTrace RT User’s Guide
Terminal Session

Selects from a menu of terminal sessions that the adjacent script may be run in.

Figure 5-21. Terminal Session Menu

Console

Captures all output from the adjacent script in the Console page (or win-
dow). This is inconvenient if the program needs to get input from the user.

X Terminal
Gnome Terminal
KDE Terminal

Selects various kinds of virtual terminals to run the adjacent script in. These
are convenient if the program needs to get input from the user or must run in a
terminal emulator.

Custom

Selects running the adjacent script using the Custom Terminal Session
Command (which may only be modified through the Advanced... button).
It defaults to being an X Terminal.
5-38

Application Illumination
Advanced...

Brings the session manager to the top and expands the Scripts branches for the cur-
rent mode’s scripts. See “Scripts” on page 5-60.

Figure 5-22. Run Scripts Advanced Settings
5-39

NightTrace RT User’s Guide
Session Manager 5

The session manager guides you through the five-step work flow. Each branch of the tree
structure represents one step. Hovering over each step will bring up a tool tip describing
the step. Use context menus on each item of the tree to configure and execute each step.
Click on the symbol to expand branches of the tree. Values in the Value column may
be edited in place by clicking on them. Settings with Edit items in their context menus
can usually be edited by double clicking on them.

Figure 5-23. Tool Tips in the Session Manager
5-40

Application Illumination
The Application Illumination Root Item 5

The root item in the Application Illumination tree displays a context menu when you
right click on it.

Figure 5-24. Application Illumination Context Menu

Build All Objects, Illuminators, Programs

Update steps 1-3 of the work flow. Also, if there is a default activation set (see
“Make Default Activation Set” on page 5-58), that is applied to each relinked pro-
gram.

Kill Invoked Program

Kill any program that nlight has invoked to perform a task. This might be neces-
sary if a user program or script (as in the illustration above) has entered an infinite
loop. Note the busy indicator in the above illustration at the bottom of the window.
5-41

NightTrace RT User’s Guide
Select Code with Debug Information 5

The first step in the nlight workflow is to select the code to have function entry and
return events generated (that is, to be illuminated). nlight uses debug information to
generate the illuminators and descriptions of the events that will be traced. These events
can record values of parameters, global variables, return values, etc. The debug informa-
tion is needed to know the names, types, and locations of these values.

Context Menus 5

Right click on Select Code with Debug Information to inform nlight about
objects and to build them.

Figure 5-25. Build Code with Debug Information Context Menu

New Object File
New Archive
New Shared Object
New Program

Tells nlight about the various kinds of objects that you will be creating illumina-
tors for.

Build All

Builds all the objects. Each object must have a Build Command configured for it
for this to work, else you should build the objects outside of nlight control.

Associated with each object is a build command. The default command that is filled in is
a simple make command. Shared objects may optionally have a separate object file con-
taining the debug information, called a debug info file. Programs also automatically get
an entry in the Relink Programs section (step 3 of the workflow, see “Relink Pro-
grams” on page 5-49).
5-42

Application Illumination
Figure 5-26. Various Objects Added to the Session Manager

The context menu for each object may be used to create an illuminator for the functions in
that object, build that object, rearrange that object, or remove that object from the session
manager (removing does not delete the file).

Figure 5-27. Context Menu on an Object

Create Illuminator

Creates an illuminator for the functions in this object.

Add to Existing Illuminator

Causes an existing illuminator (selected in a page from those listed in the Create,
Customize, and Build Illuminators section) to also illuminate the functions in
this object.

Build

Builds this object using the Build Command.

Move Up
Move Down

Changes the order of objects in this branch.
5-43

NightTrace RT User’s Guide
Remove Object

Removes all references to this object in nlight. It does not remove the actual file,
nor does it remove references to the object in any illuminators.

To edit the build command, you may double click on the command itself and edit it in
place, double click on Build Command and edit it in a dialog, or use the Edit Build
Command item in Build Command’s context menu.

Figure 5-28. Build Command Dialog

Building Object 5

When nlight performs an action that requires accessing an object, such as building an
illuminator for it, and that object has not been built yet, nlight will invoke its Build
Command automatically.

However, since nlight knows nothing about the build dependencies of an object, it will
not automatically rebuild an object if it is stale. You must do this manually. This may be
done several ways:

• Build the object outside of nlight;

• Right click on the object in the Select Code with Debug Information
section and select Build from the context menu that pops up;

• Right click on Select Code with Debug Information and select
Build All from the context menu that pops up; or,

• Right click on Application Illumination (the root item in the tree) and
select Build All Objects, Illuminators, and Programs from the con-
text menu that pops up.
5-44

Application Illumination
Create, Customize, and Build Illuminators 5

The Create, Customize, and Build Illuminators section is pre-populated with the
predefined illuminators:

• main, which sets up a trace_begin() call.

• ccur_rt, glibc and pthread, which trace functions in the corresponding
system libraries.

• cuda (when available), which traces functions in the corresponding sys-
tem library.

The predefined illuminators are displayed in an italic font unless they have been custom-
ized. A customized predefined illuminator is copied to the current working directory and
is displayed using a plain roman font.

When building illuminators, nlight will automatically adjust illuminator event ranges
so that they do not overlap with each other, unless you have explicitly specified a
non-default range of event numbers. A default range of event numbers is one that ends in
29,999,999.

Context Menu 5

The context menu on the root item of this section may be used to create, open, populate, or
build illuminators.

Figure 5-29. Create, Customize, and Build Illuminators Context Menu

New Illuminator

Creates a new illuminator. A file dialog will prompt you for the illuminator’s name.
A directory of that name will be created with a config.xml file in it.

This illuminator must be customized and built before it can be used because the cre-
ated config.xml file will not specify any object file to search for functions to illu-
minate.
5-45

NightTrace RT User’s Guide
New Illuminator from Object

Creates a new illuminator. A dialog will prompt for an object containing the func-
tions to be illuminated. Then a file dialog will prompt for the illuminator’s name. A
directory of that name will be created with a config.xml file in it.

An easier way to achieve the same result is to right click on the object in the Select
Code with Debug Information section and select Create Illuminator from
the context menu that pops up.

Figure 5-30. New Illuminator from Object Dialog

Open Existing Illuminator

Opens an illuminator created in another session, or with a command line option, or
by manually creating a directory containing a config.xml file.

Populate All Illuminators

Populates all non-predefined illuminators with functions and variables found in their
objects. It is not necessary to populate an illuminator to customize, build, or use it.
Populating an illuminator can be convenient for making customizations to it.

Build All Illuminators

Builds all non-predefined illuminators. An illuminator must be built before using it.
It is not necessary to explicitly build illuminators. They will be updated if necessary
when they are used. This context menu item is useful mainly for convenience when
debugging customizations (it is possible for a customization to result in an error at
build time).
5-46

Application Illumination
Context Menu on Individual Illuminators 5

The context menu on an individual illuminator may be used to populate, edit (that is, cus-
tomize), build, rearrange, or delete the illuminator.

Figure 5-31. Context Menu on an Individual Illuminator

Add Object

Brings up a standard file browsing dialog which allows you to add additional object
files to the illuminator.

Populate

Populates a non-predefined illuminator with functions and variables found in its
objects. It is not necessary to populate an illuminator to customize, build, or use it.
Populating an illuminator can be convenient for making customizations to it.

Report

Creates a report about all variables and functions found, and what groups the func-
tions are in, on the Console window (or page).

Edit

Customizes an illuminator by editing its config.xml file in the Editor window
(or page). If the illuminator is a predefined illuminator, a copy of it is made in the
current working directory and it is this copy that is customized. The italic font used
for predefined illuminators is changed to a plain roman font.
5-47

NightTrace RT User’s Guide
Build

Builds a non-predefined illuminator. An illuminator must be built before using it. It
is not necessary to explicitly build illuminators. They will be updated if necessary
when they are used. This context menu item is useful mainly for convenience when
debugging customizations (it is possible for a customization to result in an error at
build time).

Move Up,
Move Down

Rearranges the order of the illuminators in this section.

Delete Illuminator

For customized predefined illuminators

Deletes the customized illuminator from the current working directory. All
references to this illuminator revert to the pre-defined illuminator and the font
used to display the name of this illuminator is changed back to italic.

For predefined illuminators

Deletes all references to the pre-defined illuminator. The predefined illumina-
tor will remain in the list.

For non-predefined illuminators

Deletes the illuminator from the disk and removes all references to it from the
session manager, including from this section.
5-48

Application Illumination
Relink Programs 5

The third step in the workflow is to relink the programs, this time including the illumina-
tors that have been built. The Relink Programs section is populated automatically with
the programs that are in the Select Code with Debug Information section (see
“Select Code with Debug Information” on page 5-42).

Context Menus 5

The context menus for Relink Programs and for individual programs under that are
fairly simple. You can relink all the programs or relink individual ones. Programs are
relinked if they are stale when they are needed, so it should rarely be necessary to explic-
itly relink them unless you are using the relinked programs outside of the control of the
nlight GUI. All programs may also be relinked by choosing the Build All Object,
Illuminators, Programs item in the context menu on the root Application Illumina-
tion item. If there is a default activation set, it will be applied when the program is
relinked (see “Activation Sets” on page 5-54).

Figure 5-32. Relink Programs Context Menu

Relink All

Relinks all the programs and applies the default activation set (if there is one).
5-49

NightTrace RT User’s Guide
Figure 5-33. Individual Relinked Program Context Menu

Relink

Relinks this single program and applies the default activation set.

Path 5

The Path setting under individual programs is the file name of the relinked copy of the
program. By default, it is the path of the original program (without illuminators linked in)
with the capital letters “AI” appended.

The Path setting may be edited by double clicking on it or by right clicking on it and
choosing the Edit Relink Path context menu item. A file selection dialog will display
allowing you to select a new file path.

Relink Command 5

The Relink Command is the external command that will be used to relink the program. By
default it is a make command. There are a number of substitution variables that may be
specified in the command. These begin with the “%” character and are replaced by
nlight when the command is invoked (see below for details).

There are a number of ways the Relink Command can be edited:

• Double click on the value of the Relink Command: this allows the com-
mand to be edited in place;

Figure 5-34. Editing Relink Command In Place
5-50

Application Illumination
• Double click on the Relink Command label: this pops up a line editing
dialog;

Figure 5-35. Edit Relink Command Dialog

• Right click on the Relink Command and select Edit Relink Com-
mand from the context menu: this also pops up a line editing dialog;

Figure 5-36. Relink Command Context Menu

• Right click on the tree item and select Set to Default make Com-
mand: this sets it to:

make %RELINK ILLUMINATOR_OPTIONS=“%GCC” \
 ILLUMINATORS=“%AI”

or,

• Right click on the tree item and select Set to Default a.link Com-
mand: this sets it to:

a.link -o %RELINK %ADA program

There are a number of substitution variables that may be specified in the Relink Com-
mand:
5-51

NightTrace RT User’s Guide
%RELINK

This is substituted with the Relink Path value. It is handy to use as a make target
or as the operand of a -o option in a.link, gcc, or other compiler.

%AI

This is substituted with the full paths of illuminators to be linked in. This is conve-
nient for adding to a make file target’s dependency list. The default make com-
mand passes this to make using the variable ILLUMINATORS.

%GCC, %G77, %CF77, %ADA

This is substituted with the options, files, and libraries that are needed to link with
the illuminators using the gcc, g77, cf77, or a.link commands (respectively).
This includes the NightTrace library. The default make command passes %GCC to
make using the variable ILLUMINATOR_OPTIONS.

Illuminators 5

The Illuminators branch allows you to select which illuminators are linked into the pro-
gram:

Figure 5-37. Illuminators Context Menu
5-52

Application Illumination
By default the predefined main illuminator and any illuminator you create for the pro-
gram are linked into it. You may select others:

Figure 5-38. Select Illuminators Dialog

NOTE

The list of illuminators shown in the dialog may differ on your
system. Concurrent RedHawk systems have additional pre-
defined illuminators now shown in the dialog above.

Remove illuminators from the list of illuminators linked in by unchecking them in the
Select Illuminators Dialog, or by using the context menu to remove them:

Figure 5-39. Relinked Illuminator Context Menu
5-53

NightTrace RT User’s Guide
Activation Sets 5

When illuminators are first linked with a program, they are inert. The fourth step in the
work flow is to activate one or more of them. An activation set is a named set of activa-
tions that may be applied to your programs. During the course of analyzing a performance
problem, you will typically turn on and off various illuminators, and adjust their options
and detail levels. This can be done with one or more activation sets.

To create an activation set, right click on Activation Sets and select New Activation
Set from the context menu that pops up:

Figure 5-40. Creating New Activation Set

You will be prompted to provide a name for the new activation set. By default every pro-
gram will be included in the set and every illuminator in the program will be activated.
The below figure illustrates the default values given to settings on each illuminator:

Figure 5-41. Default Options on Illuminators
5-54

Application Illumination
To see a list of the current activations and options set for them, right click on Activation
Sets and select Query Current Activations. You will get a dialog box showing the
current activations:

Figure 5-42. Query Current Activations Results

The “!” preceding an illuminator name indicates it is not activated. Periods in illuminator
names are transformed to an underscore since internally these are parts of C symbol
names.

Settings For “main” Illuminator 5

The main illuminator is special. It does not generate any trace events, but it does do a
trace_begin() call before main() begins executing. The settings allow you to spec-
ify parameters to pass to that trace_begin().

Activated

Controls whether the illuminator will be activated (yes) or deactivated (no). It
defaults to yes.

TRACE_FILE

Sets the path to the file that the NightTrace events will be recorded in. It defaults to
“trace_file” in the current working directory.

NUM_BUFFERS

Sets the number of buffers that the NightTrace library will use for recording events.
It defaults to 16 buffers.

BUFFER_LENGTH

Sets the number of bytes in each buffer that the NightTrace library will use for
recording events. It defaults to 65536 bytes.
5-55

NightTrace RT User’s Guide
Settings For Ordinary Illuminators 5

All other illuminators record events. By default, there are three detail levels for each illu-
minator, named 1, 2, and 3. Each record more detail than the next lower numbered one.
Customized illuminators may have additional detail levels, whose names are not limited to
numbers, but may be anything.

Activated

Controls whether the illuminator will be activated (yes) or deactivated (no). It
defaults to yes.

Detail Level

Sets the name of the detail level that the activated illuminator will use to record
events. It defaults to 2.

Context Menu for an Illuminator 5

Right clicking on an illuminator in the Activation Sets section brings up a context
menu:

Figure 5-43. Context Menu on an Illuminator in an Activation Set

Apply Activation

Activates (or deactivates) a single illuminator in a single program. The other illumi-
nators and other programs are not effected.
5-56

Application Illumination
Remove Illuminator

Removes an illuminator from the activation set. Once removed from the activation
set, that activation set will neither activate nor deactivate that illuminator. The illu-
minator remains linked with the program in whatever activation state it already has.
For example, you can set up a collection of activation sets that control the activation
of the glibc illuminator and another collection of activation sets that control all
illuminators but glibc.

Context Menu for a Program 5

Right clicking on a program in the Activation Sets section brings up a context menu:

Figure 5-44. Context Menu on a Program in an Activation Set

Apply Activations

Applies the activations to just this program’s illuminators, but does not modify any
other program.

Select Illuminators

Brings up a dialog that allows selecting which illuminators that are linked in to this
program are to be activated (or deactivated). Deselected illuminators will remain
linked with the program in whatever activation state they are already in.

Move Up,
Move Down

Rearranges the order of the programs. This is purely cosmetic.

Remove Program

Removes the program from this activation set. No changes to the activations of the
program will be made by this activation set.
5-57

NightTrace RT User’s Guide
Context Menu for an Activation Set 5

Right clicking an activation set name in the Activation Sets section brings up a context
menu:

Figure 5-45. Context Menu on an Activation Set

Apply Activation Set

Applies all the activations (or deactivations) of all the illuminators in all the pro-
grams that are in this activation set.

Select Programs

Brings up a dialog that allows you to choose which programs are in this activation
set. By default, all programs are selected.

Copy Activation Set

Brings up a dialog asking for the name of a new activation set, and creates a copy of
this activation set with that name.

Make Default Activation Set

Designates a single activation set as the default activation set. It immediately
applies it. Then, whenever a program gets relinked, this activation set is immedi-
ately applied to it.
5-58

Application Illumination
Whenever a change is made to a setting in the default activation set, that change is
immediately applied to that illuminator in that program. This means if you apply a
different activation set, then modify the default activation set, the current activations
will be a mixture of the two activation sets.

The Wizard window (or page) will modify the default activation set. If there isn’t
one, it will create one called Wizard.

The default activation set is displayed in a bold font.

Figure 5-46. Default Activation Set in Bold

Forget Default Activation Set

Removes the default activation set designation. It does not change the current acti-
vations, but whenever a program is relinked in the future, it will default to having no
illuminators activated.

Create Default Script (NightTrace in File Mode),
Create Default Script (NightTrace in Stream Mode),
Create Default Script (Launch Programs)

Creates scripts based on the programs and settings in an activation set. See “New
Script from Activation Set (NightTrace in File Mode)” on page 5-61 and “New
Script from Activation Set (NightTrace in Stream Mode), New Script from Activa-
tion Set (Launch Programs)” on page 5-62 for details on these actions.

Move Up,
Move Down

Changes the order of the activation sets. This is purely cosmetic.

Rename Activation Set

Prompts you for a new name for an activation set.

Remove Activation Set

Deletes an activation set from the session. No changes are made to the current acti-
vations.
5-59

NightTrace RT User’s Guide
Scripts 5

The fifth and final step in the workflow is to run your instrumented programs and Night-
Trace. The Scripts section of nlight allows you to set up scripts for automating this
process. Right click on Scripts to get a context menu for creating a script:

Figure 5-47. Scripts Context Menu

New Script 5

Selecting New Script prompts for a name for the script. The script has some settings for
controlling how it is invoked. When nlight invokes a script, it places it in a file called
.nlight_script_n in the current working directory. By default, output from the
script is directed to the Console window (or page). If it is necessary to interact with the
script, you can run it under an X Terminal, Gnome Terminal, KDE Terminal, or invoke it
by a custom method.

Figure 5-48. Run Script in Terminal Session

When Custom is selected, the script is invoked by the Custom Terminal Session
Command. By default, this is an xterm command for illustration purposes. The Cus-
tom Terminal Session Command can be used to invoke the script any arbitrary way
or to pass an option to the script:
5-60

Application Illumination
Figure 5-49. Invoking a Script on the Console While Passing an Option

Double click on Script or select Edit Script from its context menu to bring up an editor
dialog for editing the script.

New Script from Activation Set (NightTrace in File Mode) 5

As a convenience, nlight can use the information in an activation set to create a first
draft of a script. nlight prompts you for an activation set and then scans the “main”
illuminators for trace files and creates commands to start a user daemon for each one, run
each of the programs in succession, stop the daemons, and invoke NightTrace. As a short-
cut, you can also right click on an activation set and select Create Default Script
(NightTrace in File Mode) from the context menu (see “Create Default Script (Night-
Trace in File Mode), Create Default Script (NightTrace in Stream Mode), Create Default
Script (Launch Programs)” on page 5-59). You can then edit the script to add options to
the commands, control the order your programs are run, etc:

Figure 5-50. Default Script created for an Activation Set
 (NightTrace in File Mode)
5-61

NightTrace RT User’s Guide
New Script from Activation Set (NightTrace in Stream Mode),
New Script from Activation Set (Launch Programs) 5

If you want to use NightTrace in its streaming mode, you can create a pair of scripts: one
to launch NightTrace with the appropriate daemons, and one to launch your instrumented
programs. The New Script from Activation Set (NightTrace in Stream Mode)
and New Script from Activation Set (Launch Programs) will prompt you for an
activation set and create a first draft of the scripts for doing this. As a short cut, you can
also right click on an activation set and select the corresponding Create Default Script
context menu item (see “Create Default Script (NightTrace in File Mode), Create Default
Script (NightTrace in Stream Mode), Create Default Script (Launch Programs)” on page
5-59).

Figure 5-51. Activation Set for an Elaborate Script Example
5-62

Application Illumination
Console 5

The Console window (or page) captures output from external commands and scripts.
For each command invoked, the console includes a heading with a time stamp, a descrip-
tion of the action, and the command being invoked. Command output follows and then
finally the status returned by the command. Scripts can have their output directed to a dif-
ferent terminal session.

The status is green if zero, and red if non-zero. You will also get a warning dialog for any
non-zero status that is returned. Scripts might not return an error status but still have error
messages.

Figure 5-52. Non-zero Status Warning

Figure 5-53. Console Output
5-63

NightTrace RT User’s Guide
Predefined Illuminators 5

Detail Levels 5

Except for main, all predefined illuminators have the three default detail levels: 1, 2, and
3. The table below details what information is recorded on the events that nlight gener-
ates for function entry and return events.

main 5

The main illuminator is special. It does not record any events. Linking with and activat-
ing it causes trace_begin() to be called before main() is called. This is necessary if
the traced program does not do its own trace_begin() call.

If a program does its own trace_begin() call, do not use this illuminator. In this situ-
ation, nlight and NightTrace will not know automatically what user trace daemon is
needed by the instrumented program, so generated scripts will have to be edited to include
the appropriate daemon and trace file.

glibc 5

The glibc illuminator illuminates functions from the system C library. The thousands of
functions are partitioned into dozens of named groups for convenience when customizing
the glibc illuminator (see “Groups” on page 5-90). Use the Editor window (or page) by
editing the illuminator, select the Report menu item from the context menu from the
Create, Customize, and Build Illuminators section of the session manger, or use
the following command to see a list of all groups and their functions:

Table 5-1. Values Recorded As Arguments to Illumination Events

1 2 3

return address (entry events) x x x

frame pointer (entry events) x x

byte limit on aggregate size (all events) 16 16 16

parameters (entry events) x x

indirect through pointer parameters (entry events) x

return values (return events) x x x

indirect through pointer return values (return events) x

errno (return events) x
5-64

Application Illumination
nlight --report=glibc

pthread 5

The pthread illuminator illuminates functions from the system pthread library. The
functions are partitioned into two named groups for convenience when customizing the
pthread illuminator:

• glibc - functions that are redundant with functions in the C library; and

• pthread - the functions implementing threads.

ccur_rt 5

The ccur_rt illuminator illuminates functions from the ccur_rt library. This illumi-
nator will be present only on systems with the ccur_rt library installed. The numerous
functions are partitioned into several named groups for convenience when customizing the
ccur_rt illuminator. Use the Editor window (or page), use the Report context menu
item, or use the following command to see a list of all groups and their functions:

nlight --report=ccur_rt

cuda 5

The cuda illuminator illuminates functions from the CUDA libraries. NVIDIA provides a
CUDA API which allows an NVIDIA GPU to execute user-specified code. This illumina-
tor will be present only on systems with the cuda driver installed. The numerous func-
tions are partitioned into several named groups for convenience when customizing the
cuda illuminator. Use the Editor window (or page), use the Report context menu item,
or use the following command to see a list of all groups and their functions:

nlight --report=cuda
5-65

NightTrace RT User’s Guide
Illuminator Files 5

The following files are created in the illuminator directory:

config.xml 5

The file that holds all the settings and customizations for an illuminator. An illuminator
that has not yet been built will contain only this file.

next_event.txt 5

The next event number after the last one assigned. Its purpose is to assist in creating mul-
tiple wrapper libraries that use contiguous ranges of events.

$ nlight --build=fred --event_ids=10000000-10002000
$ nlight --build=barney \
 --event_ids=‘cat fred/next_event.txt‘-10003999

NOTE

When building multiple illuminators using the graphical interface
of nlight, nlight will automatically adjust event ranges so
that they do not overlap (assuming the illuminators otherwise
have default event range specifications).

illuminator.h 5

Header file that #defines a name for each event for use in calling the NightTrace analy-
sis API. The names are of the form:

TRACE_EVENT_illuminator_ENTER_function and
TRACE_EVENT_illuminator_RETURN_function.

When a function has been aliased to have multiple names (usually a strongly and a weakly
defined name), only a single event pair is allocated for it. The function name used to build
the event name is the shortest alias (then lexically earliest if there are two or more shortest
aliases). Each alias will get its own wrapper function, but they will each record the same
entry and return event IDs.

illuminator.map 5

NightTrace event map naming the events. The names are of the form:
5-66

Application Illumination
ENTER_function and
RETURN_function.

illuminator_level.fmt 5

NightTrace format table called illumination. There is one for each detail level so
NightTrace knows what details were recorded in the trace file.

illuminator_level.o 5

Object file that gets copied into the user program by nlight --illuminate to control
the level of detail recorded by each function in the wrapper library.

illuminator_level.list 5

The list of functions to wrap or not wrap for each detail level. It is used by the nlight
--illuminate command.

illuminator.o 5

Relocatable object file containing all the “wrapper” functions.

illuminator.vararg 5

NightTrace table called vararg_functions indexed by entry event number. The
indexed entry will be “true” if the corresponding function is a “vararg” function (and
thus doesn’t generate a return event) or “false” otherwise.
5-67

NightTrace RT User’s Guide
nlight Command Line Mode 5

Illuminators can be created, manipulated, used, activated, and deactivated by using
nlight in command-line mode rather that running the tool in GUI mode.

Commands for Manipulating an Illuminator 5

nlight --create 5

Usage:

$ nlight --create=illuminator [options] [object files]

Creates a directory called illuminator (with periods changed to underscores) and places in
it a config.xml file that reflects the options and object files specified on the remainder
of the command line. If illuminator already exists, it will be modified to include the addi-
tional options and object files that are specified.

The following options may be specified:

--aggregate_limit=limit
--config=config.xml
--do_nodebug
--dont_nodebug
--event_ids=N-[M]
--install=path
--iunderscores
--iregex=regex
--istd
--xunderscores
--xregex=regex
--xstd

The object files that may be specified are those containing the functions to be illuminated.
They may be a whole program, archives, shared objects, individual object files, or
debug-info files. If the DWARF debug information has been placed in a separate
debug-info file, it must be listed immediately after its corresponding object file.

--aggregate_limit=limit

Limits the recording of aggregate values to limit bytes. Aggregates might get
recorded with an event if a function’s parameter or return value is a C/C++ struct
type, for example. Only the first limit bytes of the aggregate are recorded.

This option may also be set in a config.xml file:

 <defaults><options aggregate_limit=limit/></defaults>

(See “aggregate_limit=limit” on page 5-105).
5-68

Application Illumination
The limit must be at least 16 bytes. The default limit is 16 bytes.

--config=config.xml

Reads configuration from an XML file. More than one instance of this option may
be specified to merge several such files together. Options specified on the command
line after the --config option will override options set in the config.xml file. One
use of this might be to generate a customized glibc illuminator.

$ nlight --create=myglibc \
 --config=/usr/lib/NightTrace/illuminators/glibc/config.xml \
 --aggregate_limit=64

This would initialize myglibc/config.xml with /usr/lib/Night-
Trace/illuminators/glibc/config.xml, but change the aggregate limit
from 16 to 64.

--do_nodebug, --dont_nodebug

Creates or blocks creation of trace events for functions that have no DWARF debug
information. The default is to not create such trace events. Only entry events are
generated for functions without debug information. An alternative to
--do_nodebug is to use a config.xml file to provide a signature for the function
(See “declare” on page 5-101).

This option may also be set in a config.xml file:

 <defaults><options nodebug={yes|no}></defaults>

(See “nodebug={yes|no}” on page 5-107).

--event_ids=N-[M]

Specifies the range of NightTrace event IDs to use for the function entry and return
events. If the range is exceeded, a warning is generated.

This option may also be set in a config.xml file:

 <defaults><options event_ids=N-[M]></defaults>

(See “event_ids=“N-[M]”” on page 5-107).

The defaults for N and M are 10,000,000 and 29,999,999 respectively. The highest
possible event ID is 29,999,999.

If the upper bound is 29,999,999 and the illuminator is built through the graphical
interface, nlight will change the lower bound to be a value in the range
10,000,000 through 29,999,999 so that the illuminator’s event range will not overlap
other illuminators in the session that also have their upper bound set to 29,999,999.

--install=path

Specifies an installed location for an illuminator, in contrast to the location where it
is actually built. This path is recorded in the object files for ntrace to find the
5-69

NightTrace RT User’s Guide
event map and format tables (see “Using NightTrace with Illuminators” on page
5-75).

--i*, --x*

Includes or excludes functions from getting entry and return events based on the
functions’ names. Multiple instances of these options may be specified. The last
one specified that matches a function’s name determines whether that function is
included or excluded. Excluded functions are not included in the --populate
output.

--iunderscores, --xunderscores

Includes or excludes functions whose names start with an underscore character. All
aliases of a function and the fully qualified C++ name (if applicable) must begin
with an underscore in order to match these options (in contrast to --iregex=_.*
or --xregex=_.*). A fully qualified C++ name matches if the function name or
name of any containing classes start with an underscore.

The rationale for this is that functions and class names that begin with underscores
are typically vendor implementation routines that are of less interest. But it is also
common practice to create a strongly defined function that starts with an underscore,
then weakly define aliases to that function that do not. These functions, like many
in Glibc (see NOTE), are likely to be interesting, and so aren’t matched by these
options.

NOTE

Many functions in Glibc for which all aliases begin with an under-
score do not follow standard function call conventions, and so
should never be traced via Application Illumination.

These options may also be specified in a config.xml file:

 <defaults><options underscores={yes|no}/></defaults>

(See “underscores={yes|no}” on page 5-107).

The default is --xunderscores.

--iregex=regex, --xregex=regex

Includes or excludes functions whose names match a POSIX regular expression (see
regex(7)). A function name matches the regular expression if any alias or fully
qualified C++ name (if applicable) matches it. The regular expression must match
the whole name (an implicit ^ and $ is placed before and after the regular expres-
sion respectively).

These options may also be specified in a config.xml file:
5-70

Application Illumination
 <defaults>
 <option iregex=regex/>
 <option xregex=regex/>
 </defaults>

(See “iregex=“regex”, xregex=“regex”” on page 5-108).

By default

main,
.*\.internal_io.ada, and
.*\.internal_io\.ada\.\..*

are excluded.

To include only functions matching a particular regex, first exclude all functions:

--xregex=.* --iregex=regex

--istd, --xstd

Includes or excludes C++ functions in the std namespace.

These options may also be specified in a config.xml file:

 <defaults><option std={yes|no}/></defaults>

(See “std={yes|no}” on page 5-108).

The default is to exclude C++ functions in the std namespace. Such functions are
often inlined and so tracing them usually doesn’t provide a lot of useful information.

nlight --populate 5

Usage:

$ nlight --populate=illuminator [options] [object files]

Creates or updates (like --create) the illuminator’s config.xml file to add the
options and object files specified, then populates the config.xml file with a list of all the
functions found on the object files that it will generate trace points for and all the global
variables it can record as arguments to return events. This can be a great convenience
when you want to create a number of function-specific customizations by editing the
config.xml file. If such customizations are made, they will be retained if you run the
nlight --populate command again, which you will likely want to do anytime you
add or remove functions or change the function’s signatures that you are illuminating.
5-71

NightTrace RT User’s Guide
nlight --build 5

Usage:

$ nlight --build=illuminator [options] [object files]

Creates or updates (like --create) the illuminator’s config.xml file to reflect the
options and object files specified, then builds the “wrapper” functions, event map, format
tables, etc. You will want to do this any time you change the types or function signatures
that Application Illumination uses to create trace points.

By default, three detail levels are created for the illuminator: 1, 2, and 3. You may edit the
config.xml file to modify these detail levels or to create custom detail levels.

nlight --report 5

Usage:

$ nlight --report=illuminator

Generates a report about an illuminator on functions, function groups, global variables,
etc. For example:

$ nlight --report=pthread
The following global variables were found:
The following subroutines had no debug information or
<declare>:
 __pread64
 __pwrite64
 lseek64
 pread
 pread64
 pwrite
 pwrite64
The following subroutines were excluded because of their
names:
 __errno_location
 __h_errno_location
 __libc_allocate_rtsig
 ...
 _pthread_cleanup_pop
 _pthread_cleanup_pop_restore
 _pthread_cleanup_push
 _pthread_cleanup_push_defer
The following subroutines are in group "glibc":
 _IO_flockfile
 _IO_ftrylockfile
 _IO_funlockfile
 ...
 wait
 waitpid
 write
The following subroutines are in group "pthread":
5-72

Application Illumination
 __pthread_atfork
 __pthread_getspecific
 ...
 pthread_testcancel
 pthread_timedjoin_np
 pthread_tryjoin_np
 pthread_yield
 sem_close
 sem_destroy
 sem_getvalue
 sem_init
 sem_open
 sem_post
 sem_timedwait
 sem_trywait
 sem_unlink
 sem_wait
The following subroutines are in no group:
$

Commands for Linking with Illuminators 5

Once built, an illuminator’s “wrapper” functions must be linked into your program with
the -Wl,--emit-relocs and either -lntrace or -lntrace_thr options. The
nlight program with the below options can be used between back-quotes to conve-
niently generate all the options to reference the needed object files and options. When an
illuminator is specified with a relative path, the program will search for it first relative to
the current directory, and then relative to /usr/lib/NightTrace/illuminators.
Alternatively, an absolute path to the illuminator directory may be given.

When an illuminator is first linked into your program, it is inert. It does not intercept any
function calls or interfere with your program’s performance at all until it is activated with
the nlight --illuminate command (see “Command for Activating and Deactivat-
ing Illuminators” on page 5-74).

nlight --gcc 5

Usage:

$ gcc ... ‘nlight --gcc [-t] illuminator_list‘

Generates options suitable for gcc to link in a list (separated by whitespace) of illumina-
tors. The -t option specifies the use of the threaded ntrace library.

This generates the following options:

• illuminator_path/illuminator.o (for each illuminator)

• -Wl,--emit-relocs

• -lntrace[_thr]
5-73

NightTrace RT User’s Guide
nlight --g77 5

Generates options suitable for g77. See “nlight --gcc” on page 5-73.

nlight --cf77 5

Generates options suitable for cf77. See “nlight --gcc” on page 5-73.

nlight --ada 5

Generates options suitable for a.link. See “nlight --gcc” on page 5-73.

This generates the following options:

• -ld illuminator_path/illuminator.o (for each illuminator)

• --emit-relocs

• -so=ntrace[_thr]

Command for Activating and Deactivating Illuminators 5

Once the illuminators are linked into a program, they can be activated by using the
nlight --illuminate command. This command scans the user program for calls to
the functions to be traced, and redirects them to the “wrapper” functions in the illuminator
that record the entry event, call the real function, record the return event, and return.

Usage:

$ nlight --illuminate program [[!]main[,options]] \
 [[!]illuminator[=level]]...

program

Specifies the program you linked with illuminators. nlight --illuminate
may be run on the program multiple times to turn on and off various illuminators
and to change their detail levels.

!

Deactivates the illuminator the “!” is prefixed to. When deactivated, an illuminator
has no run-time overhead.

main[,options]

Specifies the main illuminator and its options. This illuminator is special. It
“wraps” only the main() routine, and records no events. Instead, it performs a
trace_begin() call (see “trace_begin, Trace.begin” on page 2-8). Rather than
5-74

Application Illumination
specifying a detail level, you may specify a comma-separated list of options to the
trace_begin() call:

• TRACE_FILE=filename

Specifies the name of the file that will hold the trace events. The default is
trace_file.

• NUM_BUFFERS=count

Specifies the number of buffers used for recording trace events. The default is 8.

• BUFFER_LENGTH=size

Specifies the length in bytes of each buffer used for recording trace events. The
default is 32768.

illuminator

Specifies the name of the illuminator. This can be an absolute or relative path to the
directory containing the illuminator’s files. Relative paths will be searched for rela-
tive to the current directory and then relative to /usr/lib/NightTrace/illu-
minators. The following illuminators are provided in /usr/lib/Night-
Trace/illuminators:

• main

• glibc

• pthread

• ccur_rt

The following illuminators are provided in the directory /usr/lib/Night-
Trace/illuminators2 on systems where CUDA is available:

• cuda

level

Specify the level of detail to be recorded by the illuminator’s events. The default is
2. By default, illuminators have detail levels 1, 2, and 3. These levels may be cus-
tomized, or custom details may be created, for any illuminator.

Using NightTrace with Illuminators 5

Illuminators have a NightTrace event map and, for each detail level, a NightTrace format
table, within them. The absolute path to these files are embedded in programs that have
the illuminator linked in. If the main illuminator is used, the (possibly relative) path to
the trace file is also embedded in the program. You may specify a program on the
ntrace command line, and NightTrace will extract these embedded paths and use them.
5-75

NightTrace RT User’s Guide
Usage:

$ ntrace a.outAI

Note that because the path to the trace file may be a relative path, the ntrace command
should be run with the current working directory being the same as when a.outAI was run.
5-76

Application Illumination
Customizing an Illuminator with the Editor 5

The Editor is invoked by selecting the Edit context menu item on an illuminator in the
Illuminators section of the session manager window (or page), by double clicking on
that same illuminator, or by specifying an illuminator on the nlight command line. The
editor can be in its own window or in a page in the session manager, depending on the
Show Editor in Page setting in the View menu.

The Editor presents the configuration of an illuminator in a tree structure much like the
session manager.

Figure 5-54. Editor Page

Buttons 5

The row of buttons above the settings tree allow loading and saving of the config.xml
files that define the customizations of an illuminator and toggle the search bar.

Open...

Launches a standard file selection dialog which allows you to specify an illumina-
tor’s config.xml file to edit.

If changes have been made to the current illuminator but have not yet been saved,
nlight will ask you if you wish to save the current illuminator before proceeding.
5-77

NightTrace RT User’s Guide
Save

Saves the current illuminator to a config.xml file quickly.

You are not prompted for the filename where the illuminator is to be saved. It is
automatically saved to the same file it was opened from or previous saved to.

Save As...

Launches a standard file selection dialog which allows you to specify the filename
where the illuminator’s config.xml file will be saved.

Search

Toggles displaying the search bar at the bottom of the Editor window (or page).
5-78

Application Illumination
Search Editor 5

The Search Editor menu item in the View menu or the Search button turns on the
search bar in the Editor window (or page). All of the items in the editor’s trees also
include Search in their context menus.

Figure 5-55. The Search Bar

Closes the search bar.

Specifies the text or regular expression to search for. If a Search context menu is
used, it is initialized with a regular expression that will match the value of the item
that was right clicked on exactly.
5-79

NightTrace RT User’s Guide
Searches for the next or previous instance of the search string or regular expression.

Opens up a pull down menu that allows you to specify search options. The label on
the button reflects the settings of these search options.

Capitalization and Punctuation indicate case and regular expression settings.

All

Capitalized: matches case.

all

 All lower case: matches ignoring case.

All*

Capitalized with an asterisk: matches regular expression.

The word indicates the type of value to search for. When using the Search context
menu item on a setting with a particular type, the type setting will be set to that type,
regular expression.

All, all, All*

Searches all text in the tree structure, including values that are multi-line
blocks of text.

Group, group, Group*

Searches only group names.

Function, function, Function*

Searches only function names

Level, level, Level*

Searches only detail level names.

Text, text, Text*

Searches only multi-line text block values.
5-80

Application Illumination
Variable, variable, Variable*

Searches only variable names.

Options 5

The options section contains settings that are not specific to any detail level, group, or
function.

Figure 5-56. Options

Event IDs 5

Specifies the range of event_ids to be mapped to entry and return events. (See
“event_ids=“N-[M]”” on page 5-107). If the upper bound of the specified range is
29,999,999, nlight will take over assigning the lower bound to the range 10,000,000
through 29,999,999 such that the assigned event IDs won’t overlap other managed illumi-
nator’s ranges in the session.

Limit on Size of Aggregates Recorded 5

Limits the number of bytes of an aggregate that may be recorded with an event. The limit
must be at least 16 bytes. (See “aggregate_limit=“limit”” on page 5-107).

Include Functions without Dwarf Debug Info 5

Specifies whether functions that have no debug information are to be illuminated or not.
Return events are not generated for functions without debug information. (See “node-
bug={yes|no}” on page 5-107).
5-81

NightTrace RT User’s Guide
Regular Expressions 5

Specifies whether function names that match regular expressions are to be illuminated or
not. Multiple expressions may be specified. Each regular expression either specifies
functions to include in the illuminated functions list or specifies functions to exclude. If
more than one regular expression matches a function name, the last one to match overrides
the previous ones. Right click on Regular Expressions to bring up the context menu of
regular expressions that may be added to the list.

Figure 5-57. Regular Expressions Context Menu

Include Functions Beginning with Underscore,
Exclude Functions Beginning with Underscore

Includes or excludes functions whose names start with an underscore character. All
aliases of a function and the fully qualified C++ name (if applicable) must begin
with an underscore in order to match these options (in contrast to --iregex=_.*
or --xregex=_.*). A fully qualified C++ name matches if the function name or
name of any containing classes start with an underscore.

The rationale for this is that functions and class names that begin with underscores
are typically vendor implementation routines that are of less interest. But it is also
common practice to create a strongly defined function that starts with an underscore,
then weakly define aliases to that function that do not. These functions, like many
in Glibc (see NOTE), are likely to be interesting, and so aren’t matched by these
options.

NOTE

Many functions in Glibc for which all aliases begin with an under-
score do not follow standard function call conventions, and so
should never be traced via Application Illumination.
5-82

Application Illumination
The default is to exclude functions beginning with underscore.

 (See “underscores={yes|no}” on page 5-107).

Include Functions in Standard Namespace,
Exclude Functions in Standard Namespace

Includes or excludes C++ functions in the std namespace.

The default is to exclude C++ functions in the std namespace. Such functions are
often inlined and so tracing them usually doesn’t provide a lot of useful information.

 (See “std={yes|no}” on page 5-108).

Include Functions Matching POSIX Regular Expression,
Exclude Functions Matching POSIX Regular Expression

Includes or excludes functions whose names match a POSIX regular expression (see
regex(7)). A function name matches the regular expression if any alias or fully
qualified C++ name (if applicable) matches it. The regular expression must match
the whole name (an implicit ^ and $ is placed before and after the regular expres-
sion respectively).

 <defaults>
 <option iregex=regex/>
 <option xregex=regex/>
 </defaults>

By default

main,
.*\.internal_io.ada, and
.*\.internal_io\.ada\.\..*

are excluded.

To include only functions matching a particular regex, first exclude all functions:

--xregex=.* --iregex=regex

 (See “iregex=“regex”, xregex=“regex”” on page 5-108).
5-83

NightTrace RT User’s Guide
The context menu on an individual regular expression allows you to change their order
(order is important!) or remove a regular expression from the list.

Figure 5-58. Regular Expression Context Menu

Object Filenames 5

Specifies object files that contain the functions to be illuminated. They may be a whole
program, archives, shared objects, individual object files, or debug-info files. If the
DWARF debug information has been placed in a separate debug-info file, it must be listed
immediately after its corresponding object file.

Right click on Object Filenames to get the context menu. Browse for Object Files
brings up a standard file dialog for selecting object files. Multiple object files may be
selected using control and shift click.

Figure 5-59. Object Filenames Context Menu

The context menu on an individual object file allows you to change their order (this is
important only for debug-info files), edit the path to the object file, or remove it from the
list.

The Object Filenames list is normally filled in when the session manager creates the illu-
minator.
5-84

Application Illumination
 (See “filename=“filename”” on page 5-108).

Detail Levels 5

Named detail levels control what functions are illuminated and what details are recorded
with those illuminated functions’ entry and return events. By default there are three detail
levels, 1, 2, and 3. You may delete these and/or add more. Their names are not limited to
numbers, but may be any string that can be part of a filename.

Figure 5-60. Detail Levels

There are numerous settings that can be made for each detail level. If a setting has the
default value, it is displayed in gray. The default Limit on Size of Aggregates
Recorded is inherited from the Limit on Size of Aggregates Recorded setting in
Options. The Regular Expressions list is empty by default.

The default value for the other settings depends on the name of the detail level as detailed
by the table below. To return a setting to the default setting right click on it and select
Clear Setting from the context menu.
5-85

NightTrace RT User’s Guide
(See “level” on page 5-104).

In the table above, the Custom column is indicating the default setting for the attribute
when a custom detail level is initially created. You can of course change the setting when
you edit the custom detail level.

Record Caller on Entry

Records the return address on entry events. (See “caller={yes|no}” on page
5-105).

Record Frame Pointer on Entry

Records the caller’s frame pointer on entry events. (See “frame={yes|no}” on
page 5-105).

Limit on Size of Aggregates Recorded

Sets a size limit (in bytes) on aggregate values recorded with entry and return
events. The aggregate value recorded is truncated beyond the limit. (See
“aggregate_limit=limit” on page 5-105).

Record Arguments on Entry

Records a function’s arguments on entry events. If the argument is an aggregate
type (class, structure, union, or array), only a limited number of bytes will be
recorded. This limit is set by the Limit on Size of Aggregates Recorded set-
ting. (See “args={yes|no}” on page 5-105).

Record Indirect through Arguments on Entry

Records the value pointed to by a function’s pointer arguments on entry events. If
the argument is a pointer to an aggregate type (class, structure, union, or array), only

Table 5-2. Detail Levels Settings Defaults

Attribute 1 2 3 Custom

Record Caller on Entry yes yes yes no

Record Frame Pointer on Entry no yes yes no

Record Arguments on Entry no yes yes no

Record Indirect through Arguments on Entry no no yes no

Record Return Values on Return yes yes yes no

Record Indirect through Return Values on Return no no yes no

Record Global Variables on Return no no yes no

Record errno on Return no no yes no

Exclude All Functions no no no no
5-86

Application Illumination
a limited number of bytes will be recorded. This limit is set by the Limit on Size
of Aggregates Recorded setting. (See “addr_args={yes|no}” on page
5-106).

Record Return Values on Return

Records a function’s return value and out arguments on return events. If the value is
an aggregate type (class, structure, union, or array), only a limited number of bytes
will be recorded. This limit is set by the Limit on Size of Aggregates
Recorded setting. (See “return_val={yes|no}” on page 5-106).

Record Indirect through Return Values on Return

Records the value pointed to by a function’s pointer return value and pointer out
arguments on return events. If the value is an aggregate type (class, structure, union,
or array), only a limited number of bytes will be recorded. This limit is set by the
L i m i t o n S i z e o f A g g r e g a t e s R e c o r d e d s e t t i n g . (S e e
“addr_ret={yes|no}” on page 5-106).

Record Global Variables on Return

Records select global variables and indirection through select global variables on
return events. If the value is an aggregate type (class, structure, union, or array),
only a limited number of bytes will be recorded. This limit is set by the Limit on
Size of Aggregates Recorded setting. The list of variables is empty by
default. See “Variables to Record” on page 5-88, “Select Variables to Record, Add
Variable to Record” on page 5-93, “Select Variables to Record Add Variable to
Record” on page 5-96, “variables={yes|no}” on page 5-106).

Record errno on Return

Records the value of errno on return events. (See “errno={yes|no}” on page
5-106).

Exclude All Functions

Excludes all functions from having entry and return events recorded for them at this
detail level. This can be convenient for restricting a detail level to a small set of
functions by then overriding this setting for individual groups or functions. (See
“exclude={yes|no}” on page 5-106).

Regular Expressions

Excludes or includes select functions from having entry and return events recorded
from them. The same regular expressions may be used here as in the Options sec-
tion (see “Regular Expressions” on page 5-82). Functions cannot be included here
that were excluded in the Options sections. The inclusion regular expressions are
for putting back functions that were excluded by previous regular expressions. For
example, you could exclude “.*”, then include “c_.*” to restrict this detail level to
just those functions starting with “c_”. But if the Options section had excluded
functions matching “c_a.*”, they would not be included. (See “under-
5-87

NightTrace RT User’s Guide
scores={yes |no}” on page 5-107, “std={yes |no}” on page 5-108,
“iregex=“regex”, xregex=“regex”” on page 5-108).

Variables to Record 5

Detail level 3 (by default) and any detail level with the Record Global Variables on
Return setting turned on will record any global variables or indirection through global
variables that are listed in this section on function return events. The function must have
the global variable declared in its DWARF debugging information. No error is generated
for functions that don’t have the global variable in their DWARF, they just don’t record the
variable in their return events.

Right click on Variables to Record and select Add Variable or Select Variables
to Record to add variables or indirection through variables to this list. (See “variable”
on page 5-108).

Figure 5-61. Variables to Record

Add Variable

Brings up a dialog to allow you to type in a variable name. If the variable name is
preceded by an asterisk (“*”), then the value pointed to by the variable, if it is a
pointer, is recorded instead. If the variable isn’t a pointer and indirection is
requested, no value is recorded.

Figure 5-62. Add Variable Dialog
5-88

Application Illumination
Select Variables to Record

Brings up a dialog with a list of variables and their types that were discovered by
populating the illuminator (see “Populate” on page 5-47). Pointer variables will be
in the list twice: once for themselves and once for indirection through them. Select
or deselect the variables desired by clicking in the check box next to them.

Figure 5-63. Select Variables to Record Dialog

To remove a variable from this list, use the Select Variables to Record dialog to
deselect them, or right click on the variable to be removed and select the Remove Vari-
able context menu item. This context menu may also be used to rearrange the variables
in the list.
5-89

NightTrace RT User’s Guide
Figure 5-64. Variable Name Context Menu

Groups 5

Functions may be placed in named groups. This is convenient for applying customiza-
tions. Perhaps, for example, you want more details on the functions in the group iconv.
You could create a copy of detail level 1 called iconv_details, and then customize
that detail level to include more details for functions in the iconv group. (See “group”
on page 5-103).

Create a Group 5

To create a group, right click on Groups and select New Group from the context menu
that pops up. A dialog will pop up asking for a name for the group.

Figure 5-65. Groups Context Menu
5-90

Application Illumination
Customize a Group 5

Right click on the group name and select an item from the context menu that pops up.

Figure 5-66. Group Name Context Menu
5-91

NightTrace RT User’s Guide
Select Detail Levels to Customize

This allows you to customize a detail level for a particular group. A dialog pops up
allowing you to select or deselect which detail levels you want to customize.

Figure 5-67. Select Detail Level to Customize Dialog

An additional branch is added to the group’s tree for each customized detail level.
The values for each detail level setting are gray when they are inherited from the
Detai l Levels section. The Exclude This Group setting overrides the
Exclude All Functions setting in the Detail Levels section. To create a cus-
tom detail level that only records events for one group’s functions, set Exclude All
Functions in the Detail Levels section to yes, then override that for a particular
group by setting Exclude This Group to no.
5-92

Application Illumination
Figure 5-68. A Customized Custom Detail Level for a Group

Select Variables to Record,
Add Variable to Record

These allow you to record additional global variables for return events of just this
group’s functions for detail levels that have Record Global Variables on
Return true. The same dialogs are brought up to select variables as in the Vari-
ables to Record section (see “Variables to Record” on page 5-88).

Figure 5-69. A Group with Additional Variables to Record

Rename Group

This pops up a dialog that prompts for a new name for the group.

Delete Group

This deletes a group.
5-93

NightTrace RT User’s Guide
Selecting Members of a Group 5

To select which functions are in a group, right click on the Functions branch under a
group name and select the Select Functions in Group context menu item.

Figure 5-70. Member Functions Context Menu

This brings up a dialog with a list of all functions defined in the Functions section to
select or deselect from.

Figure 5-71. Select Functions Dialog

Functions may also be added to a group from the Functions section (see “Adding a
Function to a Group” on page 5-98).
5-94

Application Illumination
Functions 5

The Function section allows customization of individual functions. A function does not
have to be listed here to be illuminated (although it does need to be here to be a member of
a group). (See “function” on page 5-102).

Adding a Function 5

Functions are usually added to this section by using the populate command in the session
manager (see “Populate” on page 5-47) or nlight --populate on a command line
(see “nlight --populate” on page 5-71). Functions may also be added by right clicking on
Functions and selecting Add a Function from the context menu that pops up. A dia-
log will pop up asking for the function name.

Figure 5-72. Functions Context Menu

Customizing a Function 5

To customize a function, right click on the function name and choose an item from the
context menu that pops up.

Figure 5-73. Function Context Menu
5-95

NightTrace RT User’s Guide
Select Detail Levels to Customize

This allows you to customize a detail level for a particular function. It works just
like customizing a detail level for a particular group (see “Select Detail Levels to
Customize” on page 5-92).

Exclude This Function from All Levels

This allows you to prevent this function from being illuminated for all detail levels.
Another way to do this would be to use a regular expression to exclude the function
in the Options section.

To remove the exclusion, right click on Exclude This Function From All
Detail Levels and select Remove Exclusion from the context menu that pops
up.

(See “exclude” on page 5-102).

Figure 5-74. Remove Exclusion Context Menu Item

Select Variables to Record
Add Variable to Record

These allow you to record additional global variables for just the return event of this
function for detail levels that have Record Global Variables on Return true.
The same dialogs are brought up to select variables as in the Variables to Record
section (see “Variables to Record” on page 5-88). Settings in gray are inherited
from the Groups section (see “Select Variables to Record, Add Variable to Record”
on page 5-93). If a function is a member of more than one group, the first group in
the list that provides an explicit setting is the effective value.

Insert File Scope Code
Insert Pre-Entry Event Code
Insert Post-Return Event Code
Replace Real Function Call Code

These are advanced items for inserting assembly code fragments in the function
“wrapper” code that records the entry and return events. To edit the code that is to
be inserted, double click on the appropriate Handcoded item or right click on it
and select Edit from the context menu that pops up. This brings up a text editor dia-
log. See “wrapper_file_scope” on page 5-109, “wrapper_post” on page 5-109,
5-96

Application Illumination
“wrapper_pre” on page 5-109, “wrapper_real” on page 5-110 for more detailed doc-
umentation on these code fragments.

Figure 5-75. Edit Handcoded Dialog

Provide C Declaration

Provides a C language declaration for functions that do not have DWARF debug
information (perhaps the function was written in assembly, for example). This set-
ting is ignored if the function has DWARF debug information. The declaration may
be preceded by #includes and type definitions. The declaration itself should not
include an extern, nor be terminated by a semi-colon. (See “declare” on page
5-101).
5-97

NightTrace RT User’s Guide
Figure 5-76. Edit Declaration Dialog

Rename This Function

Pops up a dialog that prompts for a new name for the function.

Delete This Function

Deletes a function from the Functions section. This does not stop the function from
being illuminated, it only removes the customizations for the function and the func-
tion’s group memberships.

Adding a Function to a Group 5

To add a function to a named group of functions that is defined in the Groups section,
right click on the Groups branch under a function name and select the Select Groups
context menu item.

Figure 5-77. Member of Groups Context Menu

This brings up a dialog with a list of all groups defined in the Groups section to select or
deselect from.
5-98

Application Illumination
Figure 5-78. Select Groups Dialog

Functions may also be added to a group from the Groups section (see “Selecting Mem-
bers of a Group” on page 5-94).
5-99

NightTrace RT User’s Guide
Customizing an Illuminator by Editing the config.xml File 5

The config.xml file in the illuminator directory may be edited to customize the illumi-
nator. This section provides a brief dictionary for the supported XML elements. Each ele-
ment is documented in alphabetical order and is headed with a brief synopsis that shows
the context in which it appears, as well as other elements in may contain.

comments 5

Comments (<!-- comment -->) may be placed amongst the XML using standard XML
comment syntax. Elements that enclose text (such as <declare>, <wrapper> and
<wrapper_*> may not have comments embedded in the text. Comments are lost when a
config.xml file is repopulated with the nlight --populate command. There is
no guarantee on the order of the elements, so there is no way to know exactly where to
place the comments in the repopulated file. The three-way comparison tool, diff3(1),
may be used to help reinsert them into the approximate correct place.

config 5

<config>
 [<defaults>
 [<level .../> ...]
 [<options .../> ...]
 [<variable name=[*]variable_name/> ...]
 </defaults> ...]
 [<variable name=variable_name
 [type=type_name ptr={yes|no}]/> ...]
 [<group name=group_name>
 [<variable name=[*]variable_name/> ...]
 </group> ...]
 [<function name=function_name>
 [<exclude/>]
 [<level ... /> ...]
 [<group name=group_name/> ...]
 [<wrapper>wrapper function</wrapper>]
 [<wrapper_file_scope>some code</wrapper_file_scope>]
 [<wrapper_pre>some code</wrapper_pre>]
 [<wrapper_real>call to real function</wrapper_real>]
 [<wrapper_post>some code</wrapper_post>]
 [<declare>declaration</declare>]
 [<variable name=[*]variable_name/> ...]
 </function> ...]
</config>

Encloses the entire file. It may contain four types of elements: <defaults> (see page
5-101), <variable> (see page 5-108), <group> (see page 5-103), and <function>
(see page 5-102).
5-100

Application Illumination
declare 5

<function ...>
 <declare>declaration</declare>
</function>

Provides a C language declaration for functions (see “function” on page 5-102) that do not
have DWARF debug information (perhaps the function was written in assembly, for exam-
ple). This element is ignored if the function has DWARF debug information. The decla-
ration may be preceded by #includes and type definitions. The declaration itself should
not include an extern, nor be terminated by a semi-colon. Here is an example:

<declare>
 #include <sys/types.h>
 pid_t getpgid(pid_t pid)
</declare

Certain characters are special in XML and must be replaced with “character entities”:

defaults 5

<config>
 <defaults>
 [<level name=level_name
 [caller={yes|no}]
 [frame={yes|no}]
 [aggregate_limit=limit]
 [args={yes|no}]
 [addr_args={yes|no}]
 [return_val={yes|no}]
 [addr_ret={yes|no}]
 [variables={yes|no}]
 [errno={yes|no}]
 [exclude={yes|no}]>
 [<options [underscores={yes|no}]
 [std={yes|no}]
 [xregex=regex]
 [iregex=regex]/> ...]
 </level> ...]
 [<options .../> ...]

Table 5-3. Character Entities

& &

< <

> >

" “

' ‘
5-101

NightTrace RT User’s Guide
 [<variable name=[*]variable_name/> ...]
 </defaults>
</config>

Defines the defaults for all functions and groups (see “config” on page 5-100). It may
contain zero or more <level> elements (see “level” on page 5-104) to customize the
detail levels 1, 2, or 3, or to define a user-named custom detail level. It may contain zero
or more <options> elements (see “options” on page 5-107) to specify values for certain
command line options.

Finally, it may contain zero or more <variable> elements (see “variable” on page
5-108) to specify global variables to be recorded with the return event for any function
whose DWARF defines the global variables when the detail level includes variables.

exclude 5

<function ...>
 <exclude/>
</function>

Excludes a function (see “function” on page 5-102) from all detail levels without having
to list separate <level> (see “level” on page 5-104) elements. If both the <exclude/>
element and an exclude attribute (see “exclude={yes|no}” on page 5-106) for a spe-
cific <level> are specified in a <function> element, the exclude attribute takes pre-
cedence. Thus:

<function name=hello>
 <exclude/>
 <level=3 exclude=no>
</function>

will exclude hello() from all detail levels except 3.

function 5

<config>
 <function name=function_name>
 [<exclude/>]
 [<level ... /> ...]
 [<group name=group_name/> ...]
 [<wrapper>wrapper function</wrapper>]
 [<wrapper_file_scope>some code</wrapper_file_scope>]
 [<wrapper_pre>some code</wrapper_pre>]
 [<wrapper_real>call to real function</wrapper_real>]
 [<wrapper_post>some code</wrapper_post>]
 [<declare>declaration</declare>]
 [<variable name=[*]variable_name/> ...]
 </function>
</config>
5-102

Application Illumination
Defines settings for a specific function (see “config” on page 5-100). It may contain:

• zero or more <level> elements (see “level” on page 5-104) to override
the defaults for the detail levels for function_name;

• zero or more <group> elements (see “group” on page 5-103) to designate
function_name as a member of a group of functions;

• an optional <wrapper> element (see “wrapper” on page 5-109) to pro-
vide a hand written “wrapper” function;

• optional <wrapper_*> elements (see “wrapper_file_scope” on page
5-109, “wrapper_post” on page 5-109, “wrapper_pre” on page 5-109, and
“wrapper_real” on page 5-110) to provide some code to insert into or
replace parts of the machine generated “wrapper” function;

• an optional <declare> element (see “declare” on page 5-101) to provide
the declaration of the function being “wrapped”;

• zero or more <variable> elements (see “variable” on page 5-108) to
specify global variables to be recorded with return events if the function’s
DWARF defines the global variables when the detail level includes vari-
ables.

group 5

<config>
 <group name=group_name>
 [<level ... /> ...]
 [<variable name=[*]variable_name/> ...]
 </group>
</config>

Defines settings for a named group of functions (see “config” on page 5-100). It may con-
tain zero or more <level> elements (see “level” on page 5-104) to specify settings for
particular detail levels for the named group of functions. The named levels must be one of
the three predefined levels, or a user-named custom level defined in a defaults element.

It may also contain zero or more <variable> elements (see “variable” on page 5-108)
to specify global variables to be recorded with return events for all functions in the group
whose DWARF defines the global variables when the detail level includes variables.

<function ...>
 <group name=group_name/>
</function>

Designates in a <function> element (see “function” on page 5-102) that the subject
function is a member of group_name. In this context it may not contain any <level> or
<variable> elements.
5-103

NightTrace RT User’s Guide
level 5

<defaults>
 <level name=level_name
 [caller={yes|no}]
 [frame={yes|no}]
 [aggregate_limit=limit]
 [args={yes|no}]
 [addr_args={yes|no}]
 [return_val={yes|no}]
 [addr_ret={yes|no}]
 [variables={yes|no}]
 [errno={yes|no}]
 [exclude={yes|no}]>
 [<options [underscores={yes|no}]
 [std={yes|no}]
 [xregex=regex]
 [iregex=regex]/>]
 </level>
</defaults>

Modifies the default settings (see “defaults” on page 5-101) for predefined detail levels or
defines a custom detail level. The attributes and elements control whether a function is
traced, and what details are recorded with the trace events if it is.

<options> elements (see “options” on page 5-107) corresponding to --x* and --i*
command line options may also be specified in a <level> element when it appears in a
<defaults> element. These may not be used to include any functions that were
excluded at the command line level or by the corresponding <options> element within
a <defaults> element, but may be used to restrict a level to a smaller subset for a spe-
cific detail level. One way of creating a new level that excludes all functions but one is:

<defaults>
 <level name=0>
 <options xregex=”.*” iregex=”pthread_create”/>
 </level>
</defaults>

The effective value of each attribute for a given function and detail level is determined by
searching for a definition of the attribute in the following places in the following order:

• a <level> element in the function’s <function> element;

• a <level> element in each of the function’s group memberships, in the
order the <group> elements were listed;

• a <level> element in the <defaults> element;

• the system defaults.
5-104

Application Illumination
The system defaults for the attributes are:

The details that can be recorded are partitioned into several named classes. To turn on one
of those classes, specify classname=yes as an attribute to the <level> element. For
example, to create a custom detail level to record only the function arguments, you would
code the following element in a <defaults> element:

<level name=“argsonly” args=yes/>

To turn off an attribute specify attribute=no.

caller={yes|no} 5

The return address in the caller is recorded on entry events.

frame={yes|no} 5

The address of the frame of the caller is recorded on entry events.

aggregate_limit=limit 5

A limit is set on the number of bytes of an aggregate that can be recorded with an entry or
return event. The limit must be at least 16 bytes.

args={yes|no} 5

The arguments passed to the traced function are recorded on entry events, and out argu-
ments are recorded on return events.

Table 5-4. System Defaults

Attribute Level 1 Level 2 Level 3 Custom
Levels

caller yes yes yes no

frame no yes yes no

aggregate_limit 16 16 16 16

args no yes yes no

addr_args no no yes no

return_val yes yes yes no

addr_ret no no yes no

variables no no yes no

errno no no yes no

exclude no no no no
5-105

NightTrace RT User’s Guide
addr_args={yes|no} 5

The variables pointed to by arguments that are pointers are recorded on entry events. The
variables pointed to by out arguments that are pointers are recorded on return events.
When these are aggregates (strings, arrays, structures, or unions), the number of bytes that
may be recorded is limited by the aggregate_limit setting.

return_val={yes|no} 5

The return value of the function (if it has one) is recorded on return events.

addr_ret={yes|no} 5

The variable pointed to by the return value, if it is a pointer, is recorded on return events.
When this is an aggregate (string, array, structure, or union), the number of bytes that may
be recorded is limited by the aggregate_limit setting.

variables={yes|no} 5

Variables or indirection through variables specified with <variable> elements (see
“variable” on page 5-108) in <defaults>, <group>, and <function> elements are
recorded on return events.

errno={yes|no} 5

The value of errno is recorded on return events.

exclude={yes|no} 5

Functions are entirely excluded from being recorded. Normally this would be set to yes
only on individual functions or groups of functions. Or, one could set it to yes in
<defaults>, then override that on individual functions or groups of functions in order
to only include those functions. For example, the following creates a new detail level that
excludes all but one function:

<defaults>
 <level name=0 exclude=yes/>
</defaults>
<function name=pthread_create>
 <level name=0 exclude=no/>
</function>

See also “exclude” on page 5-102 for a shorthand way to exclude a function from all detail
levels.
5-106

Application Illumination
options 5

<defaults>
 <options [event_ids=“N-[M]”]
 [aggregate_limit=“limit”]
 [nodebug={yes|no}]
 [underscores={yes|no}]
 [std={yes|no}]
 [xregex=“regex”]
 [iregex=“regex”]
 [filename=“filename”]
 />
</defaults>

Specifies values for several command line options (see “defaults” on page 5-101, “nlight
--create” on page 5-68). Options specified after a --config option on the command line
will override those set in the config.xml file.

<defaults>
 <level name=level_name ...>
 [<options [underscores={yes|no}]
 [std={yes|no}]
 [xregex=regex]
 [iregex=regex]/>]
 </level>
</defaults>

Specifies level-specific overrides for command line options that exclude or include func-
tions by their name (see “level” on page 5-104, “--i*, --x*” on page 5-70).

event_ids=“N-[M]” 5

Specifies the range of event_ids to be mapped to entry and return events (see
“--event_ids=N-[M]” on page 5-69).

aggregate_limit=“limit” 5

Limits the number of bytes of an aggregate that may be recorded with an event (see
“--aggregate_limit=limit” on page 5-68). The limit must be at least 16 bytes.

nodebug={yes|no} 5

Specifies whether function names that have no debug information are to be included or
excluded respectively (see “--do_nodebug, --dont_nodebug” on page 5-69).

underscores={yes|no} 5

Specifies whether function names that start with an underscore are to be included or
excluded respectively (see “--iunderscores, --xunderscores” on page 5-70).
This may also be specified for a particular level (see “level” on page 5-104).
5-107

NightTrace RT User’s Guide
std={yes|no} 5

Specifies whether function names in the C++ std namespace are to be included or
excluded respectively (see “--istd, --xstd” on page 5-71). This may also be speci-
fied for a particular level (see “level” on page 5-104).

iregex=“regex”, xregex=“regex” 5

Specifies whether function names that match the POSIX regular expression are to be
included or excluded respectively (see “--iregex=regex, --xregex=regex” on page
5-70). This may also be specified for a particular level (see “level” on page 5-104).

To specify multiple instances of these attributes, you must use separate <options> ele-
ments since XML syntax does not allow duplicate attribute names.

filename=“filename” 5

Specifies an object file, shared object file, debug-info file, archive, or program to read
DWARF from to generate “wrapper” functions. These filenames may also be specified as
arguments to the nlight --create command (see “nlight --create” on page 5-68).

To specify more than one filename, you must use multiple <options> elements since
XML syntax does not allow duplicate attribute names.

variable 5

<config>
 <variable name=variable_name [type=type_name ptr={yes|no}]/>
</config>

Defines a a global variable (see “config” on page 5-100). illuminator does not actu-
ally use this element. It is populated by the nlight --populate command (see “nlight
--populate” on page 5-71). You may wish to consult this list (or nlight --report
output, see “nlight --report” on page 5-72) to get the exact correct spelling of certain vari-
able names in name-mangling languages. The fully qualified name is reconstructed from
the mangled name, and may include elements that are implicit in the original source.

<{defaults|group|function}>
 <variable name=[*]variable_name/>
</{defaults|group|function}>

Names a variable (with optional indirection), when it appears in a <defaults>,
<group>, or <function> element (see “defaults” on page 5-101, “group” on page
5-103, “function” on page 5-102), that will be recorded on return events at detail levels
that have the variables=yes attribute set (see “variables={yes|no}” on page
5-106). Depending on which element it appears in, it may apply to all functions, all func-
tions in a group, or a particular function (for <defaults>, <group>, or <function>
elements respectively). The function’s DWARF must include a definition of the variable
in question. No error message is generated if it is absent from the DWARF.
5-108

Application Illumination
wrapper 5

<function ...>
 <wrapper>assembly “wrapper” function</wrapper>
</function>

Specifies a hand coded “wrapper” function for a specific function (see “function” on page
5-102). The text between the opening and closing tags is copied verbatim into the “wrap-
per” function assembly language source file. It may not be used with the other
<wrapper_*> elements.

wrapper_file_scope 5

<function ...>
 <wrapper_file_scope>some code</wrapper_file_scope>
</function>

Specifies assembly language code to be inserted in “file scope” just before the “wrapper”
function (see “function” on page 5-102). It may not be used with a <wrapper> element.

wrapper_post 5

<function ...>
 <wrapper_post>some assembly code</wrapper_post>
</function>

Specifies assembly language code to insert into a generated “wrapper” function after the
return event is recorded but just before actually returning (see “function” on page 5-102).
One use might be to insert some debug code into the application. It may not be used with
a <wrapper> element.

wrapper_pre 5

<function ...>
 <wrapper_pre>some assembly code</wrapper_pre>
</function>

Specifies assembly language code to insert into a generated “wrapper” function before the
entry event is recorded (see “function” on page 5-102). One use might be to test for a sit-
uation where you don’t want an event to be recorded. It may not be used with a <wrap-
per> element.
5-109

NightTrace RT User’s Guide
wrapper_real 5

<function ...>
 <wrapper_real>assembly code call to real function</wrapper_real>
</function>

Specifies assembly language code to call the real function in place of the default code in a
generated “wrapper” function (see “function” on page 5-102). It may not be used with a
<wrapper> element.

Here’s an example of intercepting a function called through a pointer parameter in
pthread_create() in order to call trace_register_thread() in the newly cre-
ated thread:

<function name=pthread_create>
 <wrapper_file_scope>
 ###
 # Set up a function that gets called by the new #
 # thread instead of start_routine. This function #
 # gets an arg that informs it of the original #
 # function and its arg. #
 ###
 .type prestart_routine,@function
prestart_routine:
 pushq %rdi; # save the arg while I do a call
 call trace_register_thread
 movq (%rsp),%rax # get the arg back
 movq 8(%rax),%rdi # get the original arg
 movq (%rax),%r11 # get the original start_routine
 call *%r11 # call it
 pushq %rax # save return value
 movq 8(%rsp),%rdi # free myarg
 call free
 popq %rax;
 addq $8,%rsp
 ret
 .size prestart_routine,.-prestart_routine
 </wrapper_file_scope>
 <wrapper_real>
 # allocate arg for the interceptor routine (thread safe)
 movq $16,%rdi
 call malloc

 # store the original start_routine
 # and arg into the new arg
 movq -24(%rbp),%r11 # start_routine
 movq %r11,(%rax)
 movq -32(%rbp),%r11 # arg
 movq %r11,8(%rax)

 # set up parameters to the interceptor routine
 movq -8(%rbp),%rdi # newthread
 movq -16(%rbp),%rsi # attr
 lea prestart_routine(%rip),%rdx # interceptor start
 # routine
 movq %rax, %rcx # myarg

 # call the real function passing my interceptor routine
 call __real_pthread_create
 </wrapper_real>
</function>
5-110

Application Illumination
Note that to call the real function from a “wrapper” you call __real_function, other-
wise, the call to function would be diverted to __wrap_function and become an infi-
nite recursion.

The NightTrace function trace_register_thread() is obsolete in the latest Night-
Trace release, but is retained in this example because it makes such a good illustration of
doing something complex with inserting code in an illuminator.
5-111

NightTrace RT User’s Guide
Examples 5

Appendix F includes several examples with step-by-step instructions for using Applica-
tion Illumination in a variety of scenarios.

See “NightTrace Application Illumination Examples” on page F-1.
5-112

6
Chapter 6Performance Tuning

6
6
6

The NightTrace default configuration is often sufficient for most tracing needs, however,
situations with exceptionally high trace event rates or those requiring precise control over
disk activity may require adjustment. This chapter discusses the following:

• “Preventing Trace Event Loss” on page 6-1

• “Conserving Disk Space” on page 6-3

• “Conserving Memory and Accelerating ntrace” on page 6-3

Preventing Trace Event Loss 6

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events as long as it can copy the shared memory buffers to the output device faster than
the application or kernel can fill up all remaining shared memory buffers.

NightTrace reports lost trace events in several ways:

• The --info options to ntraceud and ntracekd describe the number
of lost events

• The Daemon Control area in ntrace displays event loss counts

• NightTrace display pages include a visual indicator on the ruler, a capital L
character, indicating where event loss started to occur

• An internal trace point, NT_LOST_DATA, is included in the trace data out-
put at the point where trace events began to be lost

NOTE

Events that are overwritten in file-wrap and buffer-wrap modes
are not considered lost events and are not reported.

Daemon Scheduling Adjustment 6

The scheduling policy, priority, and CPU bias of daemons can be adjusted using the fol-
lowing methods:
6-1

NightTrace RT User’s Guide
• Invoke ntraceud and ntracekd with the --priority=P, --pol-
icy=P, and --processor=C command line options to select scheduling
priority, policy and CPU binding.

• Select the scheduling policy, scheduling priority and CPU bias from the
Runtime tab of the Daemon Definition dialog in the ntrace tool.

Increasing Trace Buffer Size 6

The number of trace buffers and the size of trace buffers can be adjusted using the follow-
ing methods:

• Specify larger values using the --numbufs and --buflen options to
ntraceud. The default values for these options are 8 and 32768, respec-
tively.

• Specify larger values for the ntc_num_buffers and ntc_buffer_length fields
in the ntconfig_t configuration record passed to trace_begin. The
default values for these fields are 8 and 32768, respectively. Note that
these configuration values will be ignored if the corresponding user dae-
mon has already started and the value of ntc_daemon_preferred is set to
TRUE.

• Specify larger values using the --numbufs and --bufsize options to
ntracekd. The default values for these options are 4 and 50000, respec-
tively.

• Specify larger values for Number of Buffers and Buffer Size in the
User Trace tab of the Daemon Definition dialog in the ntrace tool.
The default values for these settings are 8 and 32768, respectively.

• Specify larger values for Number of Trace Buffers and Trace Buffer
Size using the Other tab of the Daemon Definit ion dialog in the
ntrace tool. The default values for these settings are 4 and 50000,
respectively.

When increasing user trace buffer sizes, your request may be rejected if the total trace
buffer shared memory size exceeds system limitations. You can increase the system
shared memory limits by adjusting the kernel.shmmax and kernel.shmall variables using
the systctl(8) command.

For user trace buffers, the number of buffers and buffer length must be individually a
power of two. These values are automatically increased to the next highest power of two
if this is not the case.

Since daemons are notified immediately when a single trace buffer fills, adding additional
buffers is sometimes as effective as increasing the size of buffers. The kernel and applica-
tions continue to log trace events to the next shared memory buffer while the daemon
flushes the filled buffer.
6-2

Performance Tuning
Programmatic Flushing 6

For applications which log trace events, the trace_flush API routine can be used to
cause the associated user daemon to wake up and flush all filled buffers.

Modifying the sizes and number of trace buffers as described in the previous section is
usually more effective than relying on trace_flush, since the daemon automatically
wakes and empties buffers as individual buffers are filled.

Conserving Disk Space 6

If disk space is an important consideration and you are most interested in the latest events
that are logged, use of file-wrap and buffer-wrap modes is helpful.

In buffer-wrap mode, no disk activity occurs until the daemon is terminated or an explicit
flush is requested. When all trace buffers are filled, the oldest events are overwritten by
the newest events.

In file-wrap mode, a file size maximum is imposed and the oldest events are overwritten
by the newest events when the maximum size is reached.

Both of these options can be useful when desiring to obtain trace data from a situation
which rarely appears.

For example, the following commands might be used to capture kernel and user trace data
for an extended period of time (even hours or days) until your application detects a spe-
cific situation:

> ntracekd --size=20M kernel-data
> ntraceud --filewrap=10M user-data
> ./a.out
> ntraceud --quit user-data
> ntracekd --quit kernel-data

When capturing kernel data from the ntrace graphical analysis tool and streaming the data
for immediate analysis, buffer-wrap mode is also very useful.

The Linux kernel can generate huge numbers of events on busy systems. Use of buffer-
wrap mode allows you to take snapshots of kernel data for immediate analysis or to be
saved for future analysis. Select the Buffer Wrap option on the General tab of the
Daemon Definition dialog and subsequently press the Flush button in the Daemon
Control area of the NightTrace Main window when you wish to sample kernel data.

Conserving Memory and Accelerating ntrace 6

ntrace can be a memory-intensive tool. By default, when ntrace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace event
6-3

NightTrace RT User’s Guide
file(s), the more memory ntrace uses. When you move the scroll bar on a display page
to change the displayed interval, ntrace processes all trace events between the last inter-
val and this one; if there are many trace events, the display update (or search) may be
slow. To conserve memory and accelerate ntrace:

• Log only trace events you are really interested in.

• Disable uninteresting events via the --disable option to ntraceud,
the --events option to ntracekd command lines or via the Events
tab of the Daemon Definition dialog in the ntrace tool.

• Invoke ntrace only with the trace event files that are essential to your
analysis.

• Once ntrace is launched, select a data region of interest and discard all
other events to reduce the working set size by selecting the Discard
Events... option from the Events menu of a display page.

• Operate the daemons in file-wrap or buffer-wrap modes to reduce data set
size in favor of keeping the most recent events.
6-4

7
Chapter 7Invoking NightTrace

7
7
7

NightTrace is invoked using ntrace which is normally installed in /usr/bin.

The full command syntax for ntrace is:

ntrace [-h] [--help] [--help-summary]
 [-v] [--version] [-l] [--listing]
 [--stats] [-n] [--notimer]
 [-s val] [--start={ offset | time{ s | u } | percent% }]
 [-e val] [--end={ offset | time{ s | u } | percent% }]
 [-x] [--nopages]
 [-u] [--use-session] [--summary=criteria]
 [--import=a.out | a.out]
 [--verbose]
 [--crash=crash_options]
 [file ...] [program_file]

Depending on the options and arguments specified to ntrace, NightTrace:

• loads all trace event information into memory

• checks the syntax of specifications in each file argument

• processes each file argument

• loads any display pages and their objects into memory

• presents any timeline panels (see “Timeline Panels” on page 12-1)

• displays the NightTrace Main Window (see “The NightTrace Main Win-
dow” on page 8-1)

Command-line Options 7

The command-line options to ntrace are:

-h
--help

Displays ntrace invocation syntax and a list of all command line options to stan-
dard output.

--help-summary

Displays help specific to the --summary option to standard output.

See “Summary Criteria” on page 7-6 for more information.
7-1

NightTrace RT User’s Guide
-v
--version

Displays the current version of NightTrace to standard output and exits.

--crash=crash_options

Displays available kernel trace data at the time of system crash. This option is use-
ful if kernel tracing was running when the system crashed. It extracts kernel trace
data from the in-memory kernel buffers at the time of the crash.

The crash option parameter may be either the time-date format of the crash dump
under /var/crash/save (or /var/kdump) or the full paths of the namelist and
vmcore files if the default crash path has been changed. For example:

--crash=08.02.06-19.11.47
--crash=/crashfiles/vmlinux-33,/crashfiles/vmcore-33.gz

The --crash option is only supported under Redhawk 4.1 or later and may not be
available on AMD64 systems.

-l
--listing

Displays a chronological listing of all trace events and their arguments from all sup-
plied trace-event data files to standard output and exits.

The output includes the following information about a trace event:

• relative timestamp

• trace event ID

• any trace event argument(s)

• the process identifier (PID), process name, or thread name

• the system node name (when data sets from multiple systems are
present)

• the CPU

The timestamp for the first trace event is zero seconds (0s). All other timestamps
are relative to the first one.

If you supply an event map file on the invocation line, NightTrace displays symbolic
trace event names instead of numeric trace event IDs, and displays trace event argu-
ments in the format you specify in the file, rather than the hexadecimal default for-
mat. For more information on event map files, see “Event Map Files” on page 7-11.

NOTE

The CPU field is only meaningful for kernel trace events; for user
trace events, the CPU field is displayed as CPU=??.
7-2

Invoking NightTrace
--stats

Displays simple overall statistics about the trace-event data files to standard output
and exits.

The statistics are grouped by trace event file, with cumulative statistics for all trace
event files.

The statistics include:

• the number of trace event files

• their names

• the number of trace events logged

• the number of trace events lost

For example, the following command:

ntraceud /tmp/data

collects trace data from any user applications which are logging the data to
/tmp/data. (see “Capturing User Events with ntraceud” on page 3-1).

Issuing the command:

ntrace --stats /tmp/data

results in the output similar to the following (assuming user application were actu-
ally logging data):

Read 1 trace event segment timestamped with Intel TSC.
(1) User trace event log file: /tmp/data.
 2268 trace events saved.
 0 trace events lost.
 2.9707482s time span, from 0.0000000s to 2.9707482s.

 2268 total events read from disk.
 2268 total events saved in memory.
 0 total trace events lost.
 2.9707482s total time span saved in memory.

Detailed summary information about a trace data set is available via the
--summary option.

-n
--notimer

Excludes from analysis trace events for system timer interrupts in the kernel trace
file.
7-3

NightTrace RT User’s Guide
-s val
--start={ offset | time{ s | u } | percent% }

Excludes from analysis trace events before the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.

The specified values can be:

offset

Load trace events after the specified trace event offset.

time{ s | u }

Load trace events after the specified relative time in seconds (s) or microsec-
onds (u).

percent%

Load trace events after the specified percent of total trace events. The % is
required.

If you invoke NightTrace with several --start options, NightTrace pays attention
only to the last one.

-e val
--end={ offset | time{ s | u } | percent% }

Excludes from analysis trace events after the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.

The specified values can be:

offset

Load trace events before the specified trace event offset.

time{ s | u }

Load trace events before the specified relative time in seconds (s) or micro-
seconds (u).

percent%

Load trace events before the specified percent of total trace events. The % is
required.

If you invoke NightTrace with several --end options, NightTrace pays attention
only to the last one.

-x
--notimelines

Starts NightTrace but does not include any timeline panels.
7-4

Invoking NightTrace
-u
--use-session

Automatically loads the last session used in a previous invocation of NightTrace.
All files associated with the previous session are automatically loaded.

--summary=criteria

Provides a textual summary of specified trace events using the supplied criteria.
Summary results are sent to standard output.

See “Summary Criteria” on page 7-6 for details regarding valid criteria.

--import=a.out
a.out

These options specify the executable file containing daemon definitions and the
location of format tables and event description files. This information is embedded
in executable files when they contain instrumented code generated by the Night-
Trace illuminator tool.

A daemon definition is created with the number of buffers, buffer length, and trace
key file information extracted from the file. If the executable file does not include
such information, ntrace queries the user for the name of the trace key file, and uses
default values for other daemon settings.

NightTrace loads all event description and format table files gleaned from the exe-
cutable.

Specifying a.out as a standalone argument processes executable files in the same
manner as those specified with --import. In addition, NightTrace loads the user
trace data file as specified by information embedded by the built-in “main” illumi-
nator if it was included in the program. NightTrace also records the pathname of the
specified file and associates it with any references to the base name of the file in
lookup_pc() references during the NightTrace session. For example:

ntrace /tmp/a.out

References to “a.out” in lookup_pc() expressions in the session will use
/tmp/a.out as the path to the file from which PC descriptions (routine, file and
line number) are read.

--verbose

In addition to the cumulative statitistics normally output, this option provides
detailed information about each occurrence of the item being summarized.

file ...

You can invoke NightTrace with arguments such as trace event files, event map
files, page configuration files, session configuration files, or trace data segments.

See “Command-line Arguments” on page 7-10 for a description of these types of
files.
7-5

NightTrace RT User’s Guide
By default, when NightTrace starts up, it reads and loads all trace events from all trace
event files into memory. The --process, --start, and --end options let you pre-
vent the loading (but not the reading) of certain trace events.

For example, the following invocation displays only those trace events logged 0.5 seconds
or more after the start of the data set.

ntrace --start=0.5s /tmp/data

Summary Criteria 7

The --summary option is supplied with criteria for command-line usage without ever
using the GUI to perform summaries.

NOTE

The --verbose option provides detailed information about each
occurance of the item being summarized in addition to the cumu-
lative statitistics normally output.

This criteria consists of a comma-separated list of any of the following:

crit

This allows previously-defined profiles to be referenced when doing com-
mand line summaries.

To use previously-defined profiles when executing a summary from the com-
mand line, specify the desired profile name (crit) on the command line along
with the NightTrace session configuration file which contains that profile

 ev:event

Summarizes the number of occurrences of the specified event.

f:func

Summarizes all function entry events for the specified function func. This
option is only useful if you have loaded Application Illumination data. See
“Application Illumination” on page 5-1 for more infomation.

fr:func

Summarizes all function return events for the specified function func. This
option is only useful if you have loaded Application Illumination data. See
“Application Illumination” on page 5-1 for more infomation.

fe:func

Summarizes all function entry and return events for the specified function
func. This option is only useful if you have loaded Application Illumination
data. See “Application Illumination” on page 5-1 for more infomation.
7-6

Invoking NightTrace
fs:func

Summarizes all function call states for the specified function func. This
option is only useful if you have loaded Application Illumination data. See
“Application Illumination” on page 5-1 for more infomation.

fs:*

Summarizes all function calls statistics for all functions. This option is only
useful if you have loaded Application Illumination data. See “Application
Illumination” on page 5-1 for more infomation.

p:process

Summarizes all events associated with the specified process.

t:thread

Summarizes all events associated with the specified thread.

s:call

Summarizes all events associated with the entry or resumption of the specified
system call.

sl:call

Summarizes all events associated with the exit or suspension of the specified
system call.

se:call

Summarizes all events associated with the specified system call.

ss:call

Summarizes all occurrences of a state defined by system call activity for the
specified system call.

i:intr

Summarizes all events associated with the entry or resumption of the specified
interrupt intr.

il:intr

Summarizes all events associated with the exit or interruption of the specified
interrupt intr.

ie:intr

Summarizes all events associated with the specified interrupt intr.

is:intr

Summarizes all occurrences of a state defined by interrupt activity for the
specified interrupt intr.
7-7

NightTrace RT User’s Guide
e:exc

Summarizes all events associated with the entry or resumption of the specified
exception exc.

el:exc

Summarizes all events associated with the exit or interruption of the specified
exception exc.

ee:exc

Summarizes all events associated with the specified exception exc.

es:exc

Summarizes all occurrences of a state defined by exception activity for the
specified exception exc.

skip:on

Suppresses summarization for all subsequent criteria in the list (or until a
skip:off criteria is seen) if there are no summarization matches for the cri-
teria.

skip:off

Reactivates summarization for all subsequent criteria in the list (or until a
skip:on criteria is seen) if there are no summarization matches for the crite-
ria.

st:start-end

Summarizes all occurrences of the state defined by the starting event start and
terminated by the ending event end.

These may be combined together along with tagged criteria from the Summarize
NightTrace Events dialog in a comma-separated list.

Consider the following example:

ntrace --summary=ev:5,ss:read,ss:alarm,crit_0 event_file my_session

Using the trace event file event_file as the trace data source (see “Trace Event Files”
on page 7-11), NightTrace will:

1. summarize the number of occurrences of user events with a trace event ID
of 5 as well as information about the gaps between the events (min, max,
avg)

2. summarize the number of occurrences of read and alarm system call
states that occur in the data source; provide information pertaining to the
duration of each state (min, max, avg, sum); and provide information
related to the gaps between each state (min, max, avg, sum)

3. perform a summary using the profile defined by crit_0 in the
my_session session file (see “Session Configuration Files” on page
7-24)
7-8

Invoking NightTrace
NOTE

In order to use a summary criteria tag on the command line, the
NightTrace session configuration file in which it was defined
must be specified on the command line as well (see “Session Con-
figuration Files” on page 7-24).

The following criteria may be specified alone (not part of a comma-separated list):

k[:proc]

Summarize kernel states: system calls, exceptions, and interrupts. If :proc is
provided, only those states involving process proc are summarized.

ksc[:proc]

Summarize kernel system call durations. If :proc is provided, only those sys-
tem calls involving process proc are summarized.

kexc[:proc]

Summarize kernel exception durations. If :proc is provided, only those
exceptions involving process proc are summarized.

kintr[:proc]

Summarize kernel interrupt durations. If :proc is provided, only those inter-
rupts involving process proc are summarized.

evt[:proc]

Summarize the number of occurrences of all events named in event map files.
User events which are not named in event map files are not shown. If :proc is
provided, only those events associated with proc are summarized.

proc

Summarize the number of events for each process.
7-9

NightTrace RT User’s Guide
Command-line Arguments 7

You can supply filenames as arguments to the ntrace command when invoking Night-
Trace. These files may contain trace event data, display page layouts, additional configu-
ration information, or information related to a previously-saved session.

These arguments can be:

• trace event files

Trace event files are captured by a user or kernel trace daemon and contain
sequences of trace events logged by your application or the operating system kernel.

See “Trace Event Files” on page 7-11 for more information.

• event map files

Event map files map short mnemonic trace event names to numeric trace event IDs
and associate data types with trace event arguments. These ASCII files are created
by the user.

See “Event Map Files” on page 7-11 for more information.

• session configuration files

Session configuration files define a list of daemon sessions and their individual con-
figurations. In addition, session configuration files contain definitions of profiles
and search and summary configurations from previous uses of the session. Also,
session configuration files contain a list of any files the user associated with the ses-
sion, such as event map files and trace data files.

See “Session Configuration Files” on page 7-24 for more information.

• trace data segments

Trace data segments are conglomerations of all trace data saved in a much more effi-
cient format than raw trace event files providing for faster initialization at startup.
These files are created using the Save Trace Segments... menu choice of the
File menu on the NightTrace Main Window.

See “Trace Data Segments” on page 7-25 for more information.

• program file

Application Illumination embeds in executable object files paths to various support
files that ntrace can extract:

• event map files defining names for the events generated for function
entry and return points;

• configuration files containing format tables to neatly format the
events and their arguments generated for function entry and return
points;
7-10

Invoking NightTrace
a trace event file if the main illuminator is used (this file may be recorded using a
relative path; if this is the case, ntrace must be invoked with the same current work-
ing directory that the program file was executed with).

See “Application Illumination” on page 5-1 for more information.

Trace Event Files 7

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. NightTrace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

To load a trace event file, either:

• specify the trace event file as an argument to the ntrace command when
you invoke NightTrace, or

• select the Open Files... menu option from the File menu of the Night-
Trace main window and select the trace event file from the file selection
dialog

Event Map Files 7

NightTrace does not require you to use event map files. However, using these files can
improve the readability of your NightTrace displays.

An event map file allows you to associate meaningful names with the more cryptic trace
event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Although NightTrace does not require you to use event map files, labels
and display formats can make graphical NightTrace displays and textual summary infor-
mation much more readable.

To load an existing event map file, perform any of the following:

• specify the event map file as an argument to the ntrace command when
you invoke NightTrace

• select the Open Files... menu item from the File menu on the Night-
Trace Main Window

You can create an event map file with a text editor before you invoke NightTrace.

There is one trace event name mapping per line. White space separates each field except
the conversion specifications; commas separate the conversion specifications. NightTrace
ignores blank lines and treats text following a # as comments.

The syntax for the trace event mappings in the event map file follows:
7-11

NightTrace RT User’s Guide
event: ID “event_name” [nargs [conv_spec, ...]]

Fields in this file are:

event:

The keyword that begins all trace event name mappings.

ID

A valid integer in the range reserved for user trace events (0-4095, inclusive).
Each time you call a NightTrace trace event logging routine, you must supply
a trace event ID.

event_name

A character string to be associated with event_ID. Trace event names must
begin with a letter and consist solely of alphanumeric characters and under-
scores. Keep trace event names short; otherwise, NightTrace may be unable
to display them in the limited window space available.

The following words are reserved in NightTrace and should not be used in
uppercase or lowercase as trace event names:

- NONE

- ALL

- ALLUSER

- ALLKERNEL

- TRUE

- FALSE

- CALC

TIP

Consider giving your trace events uppercase names in event map
files and giving any corresponding profile referring to those
events the same name in lowercase. For more information about
profiles of events, see “Profile References” on page 16-195.

If your application logs a trace event with one or more numeric arguments, by default
NightTrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs

The number of arguments associated with a particular trace event. If nargs is
too small and you invoke NightTrace with the event map file and the
--listing option, NightTrace shows only nargs arguments for the trace
event.
7-12

Invoking NightTrace
conv_spec

A conversion specification or display format for a trace event argument.
NightTrace uses conversion specification(s) to display the trace event’s argu-
ment(s) in the designated format(s). There must be one conversion specifica-
tion per argument. Valid conversion specifications for displays include the fol-
lowing:

%d

signed decimal integer (default)

%o

unsigned octal integer

%x

unsigned hexadecimal integer

%lf

signed double precision, decimal floating point

For more information on these conversion specifications, see printf(3).

The following line is an example of an entry in an event map file:

event: 5 “Error” 2 %x %lf

NightTrace displays trace event 5 and labels the trace event “Error”. Trace event 5 also
has two (2) arguments. NightTrace displays the first argument in unsigned hexadecimal
integer (%x) format and the second argument in signed double precision decimal floating
point (%lf) format. (You may override these conversion specifications when you config-
ure display objects.)

For more information on event map files, see “Pre-Defined Strings Tables” on page 7-17.
7-13

NightTrace RT User’s Guide
Table Files 7

A table file contains information used to obtain verbose descriptions of events or argu-
ments associated with events..

A table file is an ASCII file containing such definitions as:

• string table definitions (see “String Tables” on page 7-15)

• format table definitions (see “Format Tables” on page 7-20)

NOTE

Any tables found in page configuration files are imported into the
session; when the session is saved, these tables are saved with the
session. Tables are no longer saved as part of the page configura-
tion files.

NOTE

If you define a string table or format table more than once in a
configuration file, NightTrace merges the two tables; if there are
duplicate entries, values come from the last definition.

To load an existing table file, either:

• specify the configuration file as an argument to the ntrace command
when you invoke NightTrace

• Select the Open Files... menu option from the NightTrace menu of the
NightTrace Main window and select the configuration file from the file
selection dialog

Tables 7

The table file may contain two types of tables, both of which can improve the readability
of your NightTrace displays:

• string tables (see “String Tables” on page 7-15)

• format tables (see “Format Tables” on page 7-20)

A table lets you associate meaningful character strings with integer values such as trace
event arguments. These character strings may appear in NightTrace displays.

The following table names are reserved in NightTrace and should not be redefined in
uppercase or lowercase:

- event

- pid
7-14

Invoking NightTrace
- tid

- boolean

- name_pid

- name_tid

- node_name

- pid_nodename

- tid_nodename

- vector

- syscall

- device

- vector_nodename

- syscall_nodename

- device_nodename

- vararg_functions

The results are undefined if you supply your own version of these tables.

NOTE

The only way to put tables into your configuration file is by text
editing the file before you invoke NightTrace. To avoid any for-
ward-reference problems, define all string tables before any for-
mat tables.

For more information on pre-defined tables, see “Pre-Defined Strings Tables” on page
7-17, and page 17-17.

If you define a string table or format table more than once in a configuration file, Night-
Trace merges the two tables; if there are duplicate entries, values come from the last defi-
nition.

String Tables 7

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for a string table is:

string_table (table_name) = {
 item = int_const, “str_const” ;
 ...
7-15

NightTrace RT User’s Guide
 [default_item = “str_const” ;]
};

Include all special characters from the syntax except the ellipsis (...) and square brackets
([]).

The fields in a string table definition are:

string_table

The keyword that starts the definition of all string tables.

table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this string table.

An item line associates an integer value with a character string. This line extends from the
keyword item through the ending semicolon. You may define any number of item lines
in a single string table. The fields in an item line are:

item

The keyword that begins all item lines.

int_const

An integer constant that is unique within table_name. It may be decimal, octal,
or hexadecimal. Decimal values have no special prefix. Octal values begin
with a zero (0). Hexadecimal values begin with 0x.

str_const

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for a newline, not a carriage return in the middle of the
string.

The optional default item line associates all other integer values (those not explicitly refer-
enced) with a single string.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get_string() call with
this table name as the first parameter needs no second parameter.

NightTrace returns a string of the item number in decimal if:

• there is no default item line, and the specified item is not found

• the string table is not found (The first time NightTrace cannot find a
particular string table, NightTrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.
7-16

Invoking NightTrace
string_table (curr_state) = {
 item = 3, “Processing Data”;
 item = 1, “Initializing”;
 item = 99, “Terminating”;
 default_item = “Other”;
};

In this example, your application logs a trace event with a numeric argument that identi-
fies the current state (curr_state). This argument has three significant values (3, 1,
and 99). When curr_state has the value 3, the NightTrace display shows the string
“Processing Data.” When it has the value 1, the display shows “Initializing.”
When it has the value 99, the display shows “Terminating.” For all other numeric
values, the display shows “Other.”

For more information on string tables and the get_string() function, see page 16-186.

Pre-Defined Strings Tables 7

The following string tables are pre-defined in NightTrace:

event

The event string table is a dynamically generated table which contains all trace
event names.

This table is indexed by an event code or an event code name. Examples of using
this table are:

get_string(event, 4306)
get_item(event, “IRQ_EXIT”)

pid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates global process ID numbers with process names of the processes being traced.
In kernel tracing, it associates process ID numbers with all active process names and
resides in the dynamically generated vectors file.

NOTE

When analyzing trace event files from multiple systems, process
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the pid table may result in an incorrect process
name being returned for a particular process ID. To get the cor-
rect process name for a process ID, the pid table for the node on
which the process identifier occurs should be used instead. The
pid table is maintained for backwards compatibility.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get_string(pid, pid())
get_item(pid, “ntraceud”)
7-17

NightTrace RT User’s Guide
tid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates NightTrace thread ID numbers with thread names. In kernel tracing, this table
is not used.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get_string(tid, tid())
get_item(tid, “cleanup_thread”)

boolean

A string table which associates 0 with false and all other values with true.

name_pid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s process ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(name_pid, node_id())
get_item(name_pid, “system123”)

Consider the following example:

get_string(get_string(name_pid,node_id()),pid)

The nested call to get_string(name_pid,node_id()) returns the name of
the process ID table on the system where this trace point was logged. We then index
that table with the current process ID (since processes IDs are guaranteed to be
unique when analyzing mutipile trace event files obtained from multiple systems) to
obtain the name of the current process.

NOTE

The predefined process_name() function is equivalent to the
express ion above - and much s impler to wr i te ! (See
“process_name()” on page 16-57 for more information.)

name_tid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s thread ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(name_tid, 1)
7-18

Invoking NightTrace
get_item(name_tid, “charon”)

node_name

A dynamically generated string table internal to NightTrace. It associates node ID
numbers (which are internally assigned by NightTrace) with node names.

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get_string(node_name, node_id())
get_item(node_name, “gandalf”)

pid_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, it
associates process ID numbers with all active process names for a particular node
and resides in that node’s vectors file. In user tracing, it associates global process
ID numbers with process names of the processes being traced for a particular node.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get_string(pid_sbc1, pid())
get_item(pid_engsim, “nfsd”)

tid_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, this
table is not used. In user tracing, it associates NightTrace thread ID numbers with
thread names for a particular node.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get_string(tid_harpo, 1234567)
get_item(tid_shark, “reaper_thread”)

vector

See page 17-17.

syscall

See page 17-17.

device

See page 17-17.

vector_nodename

See page 17-17.

syscall_nodename

See page 17-17.
7-19

NightTrace RT User’s Guide
vararg_functions

This table is generated by nlight (see “Application Illumination” on page 5-1). It
identifies functions that have variable numbers of arguments.

The table is indexed by the trace ID value of the function’s ENTRY_ event and
returns the string “true” for functions have have variable numbers of arguments
and “false” otherwise. Vararg functions do not have any RETURN_ events asso-
ciated with them (see “Limitations” on page 5-5 for more information).

device_nodename

See page 17-17.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get_string()function to look up values in string tables.

Format Tables 7

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for a format table is:

format_table (table_name) = {
 [index_type = “event”;]
 item = int_const, “format_string” [, “value1”] ... ;
 ...
 [default_item = “format_string” [, “value1”] ... ;]
};

Include all special characters from the syntax except the ellipses (...) and square brack-
ets ([]).

The fields in a format table are:

format_table

The keyword that begins the definition of all format tables.

table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this format table.

An index_type of “event” may be specified to direct ntrace to use this table to format
events and their arguments. More than one table may have the event index_type.

An item line associates a single integer value with a character string. This line extends
from the keyword item through the ending semicolon. You may have any number of
item lines in a single format table.
7-20

Invoking NightTrace
The fields in an item line are:

item

The keyword that begins all item lines.

int_const

An integer constant that is unique within table_name. This value may be deci-
mal, octal, or hexadecimal. Decimal values have no special prefix. Octal val-
ues begin with a zero (0). Hexadecimal values begin with 0x.

format_string

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for a newline, not a carriage return in the middle of the
string.

The string contains zero or more conversion specifications or display formats.
Valid conversion specifications for displays include the following:

%i

Signed integer

%u

Unsigned decimal integer

%d

Signed decimal integer

%o

Unsigned octal integer

%x

Unsigned hexadecimal integer

%lf

Signed double precision, decimal floating point

%e

Signed decimal floating point, exponential notation

%c

Single character

%s

Character string
7-21

NightTrace RT User’s Guide
%%

Percent sign

 \n

Newline

For more information on these conversion specifications, see printf(3).

format_string may contain any number of conversion specifications. There is a
one-to-one correspondence between conversion specifications and quoted val-
ues. A particular conversion specification-quoted value pair must match in
both data type and position. For example, if format_string contains a %s and a
%d, the first quoted value must be of type string and the second one must be of
type integer. If the number or data type of the quoted value(s) do not match
format_string, the results are not defined.

value1

A value associated with the first conversion specification in format_string.
The value may be a constant string (literal) expression or a NightTrace expres-
sion. A string literal expression must be enclosed in double quotes. An
expression may be a get_string() call (see page 16-186). For more infor-
mation on expressions, see “Using Expressions” on page 16-1.

The optional default_item line associates all other integer values with a single format
item. NightTrace flags it as an error if an expression evaluates to a value that is not on an
item line and you omit the default item line.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get_format() call with
this table name as the first parameter needs no second parameter.

The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {
 item = 3, “Processing Data”;
 item = 1, “Initializing”;
 item = 99, “Terminating”;
 default_item = “Other”;
};

format_table (event_info) = {
 item = 186, “Search for the next time we process data”;
 item = 25, “The current state is %s”,
 “get_string (curr_state, arg1())”;
 item = 999, “Current state is %s, current trace event is
%d”,
 “get_string (curr_state, arg1())”,
7-22

Invoking NightTrace
 “offset()”;
 default_item = “Other”;
};

In this example, the first numeric argument associated with a trace event represents the
current state (curr_state), and the event_info format table represents information
a s s o c i a t e d w i t h t h e t r a c e e v e n t I D s . W h en t r ac e e v e n t 186 o c c u r s , a
get_format(event_info,186) makes NightTrace display:

Search for the next time we process data

When trace event 25 occurs, NightTrace replaces the conversion specification (%s) with
the result of the get_string() call. If arg1() has the value 1, then NightTrace dis-
plays:

The current state is Initializing

When trace event 999 occurs, NightTrace replaces the first conversion specification (%s)
with the result of the get_string() call and replaces the second conversion
specification (%d) with the integer result of the numeric expression offset(). If
arg(1) has the value 99 and offset() has the value 10, then NightTrace displays:

Current state is Terminating, current trace event is
10

For all other trace events, NightTrace displays “Other”.

For more information on get_string(), see “get_string()” on page 16-186.

For more information on format tables and the get_format() function, see
“get_format()” on page 16-190.

For more information about arg1(), see “arg()” on page 16-22.

For more information about offset(), see “offset()” on page 16-51.
7-23

NightTrace RT User’s Guide
Session Configuration Files 7

A session configuration file defines a NightTrace session.

NOTE

NightTrace remembers the last session loaded or saved on a
per-user basis. To simplify restarting NightTrace at another time
to analyze the same data, the usage of the --use-session (-u)
command line option (see “-u --use-session” on page 7-5)
is strongly encouraged to invoke NightTrace with the last session
loaded or saved.

A session configuration may include:

• daemon definitions

See “Edit Daemon Definition” on page 9-8 for more information.

• display page configurations

See “Table Files” on page 7-14 for more information.

• string tables

- event names specified for user event IDs

- any user-defined string tables

- string tables imported from generated Ada display page configura-
tion files

- any modifications to default NightTrace string tables, or string tables
embedded in trace data files

• profiles of conditions and states

See “Using Expressions” on page 16-1 for more information.

• named tags

See “Tags List Panel” on page 15-1 for more information.

• previously-executed searches

• previously-executed summaries

• references to saved trace data segment files

See “Trace Data Segments” on page 7-25 for more information.

• references to kernel trace files generated by ntracekd (see “The ntracekd
Daemon” on page 4-1), or a kernel daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)
7-24

Invoking NightTrace
• references to user trace files generated by ntraceud (see “The ntraceud
Daemon” on page 3-1), or a user daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)

Session configuration files can be generated by the following menu items in the File
menu of the NightTrace Main Window:

Upon exiting when there are unsaved changes to the session, the user is given the chance
to save the changes before NightTrace exits.

The user may load the session on a subsequent invocation of NightTrace by either:

- specifying the session configuration filename on the command-line when
invoking ntrace (see “Invoking NightTrace” on page 7-1)

- using the Load Session dialog to open the session configuration file
from the NightTrace Main Window

Trace Data Segments 7

Trace data segments are conglomerations of all trace data saved in a much more efficient
format than raw trace event files providing for faster initialization at startup.

Trace data segments are saved using the Save Trace Data button on the Trace Seg-
ments panel (see “Trace Segments Panel” on page 10-1 for more information).
7-25

NightTrace RT User’s Guide
7-26

8
Chapter 8The NightTrace Main Window

8
8
8

The NightTrace GUI is invoked using ntrace (see “Invoking NightTrace” on page 7-1).

By default, the NightTrace main window is presented as shown in the figure below.

Figure 8-1. NightTrace Main Window

The NightTrace main window consists of the following components:

• Menu Bar

• Toolbars

• Pages and Panels
8-1

NightTrace RT User’s Guide
Menu Bar 8

The menu bar provides access to session configuration services, additional tools, and help.
The menu bar provides the following menus:

• File

• View

• Daemons

• Search

• Summary

• Profiles

• Timelines

• Tools

• Help

Each menu is described in the sections that follow.

File 8

Accelerator: Alt+F

The File menu contains session-related items such as initiating a new session, saving the
current session, and opening a previously-saved session or data file.

A session includes daemon configurations, trace data sets, configuration options, display
pages, and user-defined profiles.
8-2

The NightTrace Main Window
Figure 8-2. File Menu

The following paragraphs describe the options on the File menu in more detail.

New Session

Mnemonic: N

Creates a new session.

If an existing session is open, it is first closed by this operation.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

Load Session...

Mnemonic: L

This option launches a standard file selection dialog which allows you to specify a
previously-saved session file. Filenames displayed in the file selection dialog are
relative to the host system.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

NOTE

NightTrace will automatically load the last session used when
invoked with the -u option. See “Invoking NightTrace” on page
7-1 for more information.
8-3

NightTrace RT User’s Guide
Save Session

Mnemonic: S
Accelerator: Ctrl+S

Save Session saves the current session to a session configuration file.

Save Session allows for quickly saving a session. The user is not prompted for
the filenames where the session, trace data, or display pages are to be saved. These
are automatically saved in appropriately named files in the current working direc-
tory.

If the current session has not been saved to a file in the past, the session is automati-
cally saved to a new session configuration file. The new filename appears in the
window title.

If the current session was loaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events. In addition, trace data from a
trace data segment file where one or more segments have been saved to another
trace data segment file or closed is saved.

If the trace data was loaded from a previously saved trace data segment file, the data
is saved to that file. If the trace data has never been saved to a trace data segment
file, the data is automatically saved to a newly created trace data segment file

If the display pages were loaded from a previously saved display page file, the page
is saved to that file.

If the display page has never been saved to a display page file, the page is automati-
cally saved to a newly created display page file.

Save Session As...

Mnemonic: A

This option launches a standard file selection dialog which allows you to specify the
a filename where the session will be saved. Filenames displayed in the file selection
dialog are relative to the host system.

Save Session Copy

Mnemonic: C

Save Session Copy saves the current session to a newly created session config-
uration file (see “Session Configuration Files” on page 7-24 for a complete descrip-
tion of the contents of a session).

In addition, all trace data and display pages are saved to new file names using a
common session file name prefix.

Save Session Copy allows for quickly saving one or more copies of a session at
certain stages. The user is not prompted for the filenames where the session, trace
8-4

The NightTrace Main Window
data, or display pages are to be saved. These are saved in appropriately named files
in the current working directory.

Preferences...

Mnemonic: F

This option launches the Preferences Dialog which allows you to specify prefer-
ences for NightTrace, including font selection.

Saved user preferences are applied to all NightTrace invocations for the user. Pref-
erences are saved in the user’s home directory and have a broader application than
session configuration files.

See “Preferences Dialog” on page 8-41 for more information.

Open Files...

Mnemonic: O
Accelerator: Ctrl+O

Presents the user with a standard file selection dialog so that they may select a trace
event file, event map file, or configuration file to load.

The trace event file can be a user trace data file or a kernel trace data file. See
“Trace Event Files” on page 7-11 for more information.

An event map file provides ASCII names for specific trace event values. See “Event
Map Files” on page 7-11 for more information.

Configuration files contain string and format tables as well as display page defini-
tions. See “Table Files” on page 7-14 for more information.

Close All Trace Data

Mnemonic: D
Accelerator: Alt+W

Closes the trace data segments currently selected in the Trace Segments area. The
events associated with the closed segments are immediately removed from the cur-
rent data set being analyzed.

Data segments that were not associated with a trace file and that have not yet been
saved will be lost when closed.

Exit

Mnemonic: X
Accelerator: Ctrl+Q

Closes the session and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
NightTrace will ask you if you wish to save the session before proceeding.
8-5

NightTrace RT User’s Guide
Exit Immediately

Mnemonic: I
Accelerator: Alt+Q

Closes the session and exits NightTrace without prompting to save changes that
have been made. Any changes will be lost.
8-6

The NightTrace Main Window
View 8

Accelerator: Alt+V

The View menu allows you to add, rename, or delete pages and controls which panels in
pages are visible.

Figure 8-3. View Menu

Add Page

Mnemonic: A
Accelerator: Ctrl+A

This option adds a new page to the right of the last page in the main window.

Rename Current Page...

Mnemonic: R

This option launches a dialog that allows you to change the name of the current
page. The current page is the page which is currently being displayed in the main
window.

This option is also available from the context menu which appears when you
right-click on a page's tab.

Delete Current Page

Mnemonic: D

This option deletes the current page and all panels it contains. The current page is
the page which is currently being displayed in the main window.
8-7

NightTrace RT User’s Guide
This option is also available from the context menu which appears when you
right-click on a pages’s tab.

Toolbars

Mnemonic: B

Figure 8-4. Toolbars Menu

This menu allows you to hide or show individual Toolbars on the main window.
You can also hide or show toolbars using the context menu that appears when you
right-click a toolbar.

Events

This checkbox controls whether the Events panel is displayed. See “Events Panel”
on page 11-1 for information its operation.

Daemons

This checkbox controls whether the Daemons panel is displayed. See “Daemons
Panel” on page 9-1 for information on its operation.

Trace Segments

This checkbox controls whether Trace Segments panel is displayed. See “Trace
Segments Panel” on page 10-1 for information on its operation.

Event Descriptions

This checkbox controls whether the Event Descriptions panel is displayed. See
“Event Descriptions Panel” on page 14-1 for information on its operation.

Tags List

This checkbox controls whether the Tags List panel is displayed. See “Tags List
Panel” on page 15-1 for information on its operation.
8-8

The NightTrace Main Window
Timelines and Panels

When timelines or other panels are added, an entry for each is added to the View
menu. These entries are checkboxes which toggle the visibility of the panel in the
current page.

Daemons 8

Accelerator: Alt+D

The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.

Figure 8-5. Daemons Menu

This menu is identical to the context menu shown when right-clicking inside the Daemons
panel, as described in “Daemons Panel” on page 9-1.

Search 8

Accelerator: Alt+R

The Search menu contains search-related items such as opening the Profile Definition
panel to define search criteria, executing a forward or backward search with the most
recent search criteria, or modifying search options.
8-9

NightTrace RT User’s Guide
Figure 8-6. Search Menu

Text Search

This option launches the Search Events for Text dialog which allows you to
specify textual search criteria for searching the contents of an Events panel. See
“Text Search” on page 11-3 for a description of this dialog and its actions.

Change Search Profile...

Mnemonic: S
Accelerator: Ctrl+F

Displays the Profiles dialog allowing you to define the search criteria and to exe-
cute a search for an event or condition in a Timeline panel. See “Profiles Dialog”
on page 13-2 for more information.

Search Forward

Mnemonic: R
Accelerator: Ctrl+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed.
8-10

The NightTrace Main Window
Search Backward

Mnemonic: K
Accelerator: Ctrl+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed.

Search Forward withinTimeline Interval

Accelerator: Alt+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed. The search is
bounded by the events in the current timeline interval.

Search Backward within Timeline Interval

Accelerator: Alt+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed. The
search is bounded by the events in the current timeline interval.

Goto Next Tag
Goto Previous Tag

Mnemonics:] and [

These options search forward or backward, respectively, to the next or previous
tagged event or time in the data set.

Go Back to Previous Interval

Accelerator: Ctrl+V

This option toggles the current timeline between its current position and its last posi-
tion. Using this option or accelerator, you can easily revert back to a location in the
data set after executing a search or clicking elsewhere in a timeline or ruler.

Goto...

Mnemonic: G
Accelerator: Ctrl+I
8-11

NightTrace RT User’s Guide
This option launches the Change Interval dialog which allows you to change the
current time and boundaries of the current interval.

Figure 8-7. Change Interval Dialog

The Change Interval dialog is launched from the Goto... option of the Search
menu. It is also launched whenever you click on any of the values in the interval
value boxes in the lower-left corner of a timeline,

as shown in the picture above (highlighted with a reddish background).

The dialog allows you to enter values as event offsets or times. Values entered in
floating-point notation are interpreted as times, as are values with a trailing s char-
acter (meaning seconds). Integer values without a trailing s character are inter-
preted as event offsets.

In most situations, you should change at most one or two of the values in the dialog,
and let NightTrace adjust the unmodified values for you when you press OK; in
order to accommodate your specifications.
8-12

The NightTrace Main Window
For example, if you simply change the Interval End setting to a larger number,
NightTrace will expand the Interval Span (and change the Current timeline
value if necessary) when you press OK.

The dialog was designed for quick access and use. For example, to change the cur-
rent timeline to time 3.5s, you could use the following 6 keystrokes when a timeline
panel has focus (the keystrokes are separated by whitespace for clarity below):

Ctrl+I 3 . 5 s Enter

When the dialog is launched via the menu or accelerator sequence, the Current
time value is fully selected so that it will be replaced immediately with whatever
characters you type. The OK button has the activation focus, so that hitting the
Enter key activates the OK button.

When the dialog is launched by clicking on one of the actual values that define the
interval in the lower-left corner of a timeline (see picture above), the value that you
clicked on is fully selected in the dialog, ready for immediate substitution.

Goto First Event

Mnemonic: F
Accelerator: Alt+LeftArrow

This option searches to the first event in the data set.

Goto Last Event

Mnemonic: L
Accelerator: Alt+Right

This option searches to the last event in the data set.

Ask Before Wrapping for Search

When checked, this causes a dialog to pop up when either end of the data set is
reached during a search operation; it allows you to continue searching at the other
end or to cancel the search.

Zoom to Search Match

When checked and a search criteria is found, the timeline is zoomed to include the
number of events specified by the Limit Number of Events Displayed...
option of the Timelines menu.

Summary 8

Accelerator: Alt+U

The Summary menu provides for defining profiles for summaries, executing summaries,
and controlling summary options.
8-13

NightTrace RT User’s Guide
Figure 8-8. Summary Menu

Change Summary Profile...

Mnemonic: U
Accelerator: Ctrl+U

This option opens the Profiles dialog allowing you to select a profile to summarize
or define a new profile to summarize. See “Profiles” on page 13-1 for more infor-
mation.

Summarize

Mnemonic: Z
Accelerator: Ctrl+Z

This option executes a summary on the current profile. If no profiles have been
defined, a summary of all events is executed. For each summary of a specific pro-
file, a new page is created to hold the summary results, including any required data
graphs as directed by the Graph State Durations... or Graph State Gaps...
options of the Summary menu.

Summarize within Timeline Interval

Mnemonic: I
Accelerator: Alt+Z

This option is identical to the Summarize option except that the list of events to
summary is constrained by those in the current timeline interval.

Summarize Functions

Mnemonic: F

This option executes a summary on Application Illumination data to summarize the
occurrences of all function calls and returns associated with such data. It presents
the data in a table in a panel which shows you the number of calls and the minimum,
maximum, and average duration times.
8-14

The NightTrace Main Window
This menu option requires that you have used nlight to instrument code with such
trace events. See “Application Illumination” on page 5-1 for more information.

The following figure illustrates such a summary:

Figure 8-9. Summarize Function Results

The table headings are mostly self explanatory, except for the Active column. This
value indicates whether the call was still active and the end of the trace data set (or
interval if summarizing only part of the data set).

Right-clicking on a row in the table launches the following context menu:

Figure 8-10. Summary Functions Table Context Menu

Selecting Launch detailed summary of calls for this function generates a
table with each row representing a single call for the currently selected function, as
shown in the following figure:
8-15

NightTrace RT User’s Guide
Figure 8-11. Function Call Details Table

Both tables are sortable; click on the heading of interest to sort. Click again to
change the sort direction.

Both tables have context menus that allow you to set the current timeline to a value
associated with the selected row, and to save the table in textual format to a file.

Summarize Functions within Timeline Interval

Mnemonic: U

This option is identical to the Summarize Functions option except that the list
of events to summary is constrained by those in the current timeline interval.

Graph State Durations...

Mnemonic: D

This option displays the Graph State Durations dialog which allows you to
select whether you want a data graph generated when summarizing the current pro-
file. The data graph shows the individual durations of each instance of the state as
defined by the profile, plotted vertically.

The dialog also allows you to specify a standard deviation value which instructs the
summary action to graph values that fall outside the specified domain as the maxi-
mum defined by that domain.

Graph State Gaps...

Mnemonic: G

This option is identical to the Graph State Durations option except that it con-
trols the graphing of the gaps between instances of states as defined by the current
profile.
8-16

The NightTrace Main Window
Prevents the current timeline from being moved, but the summary results are still
displayed in page text areas.

Profiles 8

Accelerator: Alt+P

The Profiles menu manipulates the list of profiles shown in the Profile Status List
area of the Profiles dialog.

A profile is a set of criteria either defining a state with beginning and end conditions, or
simply a condition. Profiles are used for searches, summaries, and graphs.

Figure 8-12. Profiles Menu

New Profile...

Mnemonic: N
Accelerator: Ctrl+P

This option shows the Profiles dialog to allow you to create a new profile. See
“Profiles Dialog” on page 13-2 for more information on using profiles.

Delete

Mnemonic: D

This menu choice deletes all profiles currently selected in the Profile Status List
area of the Profiles dialog.

Move Up
Move Down

Accelerator: Ctrl+UpArrow and Ctrl+DownArrow

These options move the currently selected profiles in the Profile Status List in
the Profiles dialog towards the beginning or end of the list, respectively.
8-17

NightTrace RT User’s Guide
Export to API Source...

This option opens the Export Profiles to NightTrace API Source File dialog
to automatically generate source code defining and referencing profiles, for use with
applications using the NightTrace Analysis API (see “Using the NightTrace Analy-
sis API” on page 18-1).

String Tables

This option expands to a sub-menu which allows you to select an existing string
table for modification, or to create a new string table.

Format Tables

This option expands to a sub-menu which allows you to select an existing format
table for modification, or to create a new format table.

Export Profiles to NightTrace API Source File 8

The Export Profiles to NightTrace API Source File dialog is presented when the
Export to API Source... menu item is selected from the Profiles menu.

Figure 8-13. Export Profiles Dialog

This dialogs generates C source code using the NightTrace Analysis API to define and
install listener callback functions for the profiles selected from the Profile Status List
area of the Profiles dialog when the dialog was launched.
8-18

The NightTrace Main Window
Define main() function

When checked, this option generates source code for a main C program which cre-
ates an instance of the Analysis API and installs all definitions and callbacks
selected in this dialog.

Define callback functions

When checked, this option generates stub routines for all callback functions that are
defined by this dialog. The stub routines are empty unless the Include default
printf() output in callbacks option is checked. If this option is not checked, the
function profiles are still generated, but no definitions are generated.

Default printf()’s in callbacks

When checked, this option generates source code to print information about
instances of the selected profiles in the callback function definitions.

Report analysis API errors

When checked, this function will report all errors from API calls to stderr; other-
wise, errors are ignored.

Read trace data from stdin

This option controls the initial API calls which either open a pre-existing data file or
read data from stdin in streaming mode.

State start callbacks

When checked, a callback profile is generated and registered with the API for the
start event of the selected state profiles.

State end callbacks

When checked, a callback profile is generated and registered with the API for the
end event of the selected state profiles.

State active callbacks

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are active.

State inactive callbacks

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are inactive.
8-19

NightTrace RT User’s Guide
Trace Data File

When Read trace data from stdin is not checked, this text field defined the
data file from which pre-existing data will be read.

Profiles Source

This text area defines the name of the source file for all source code generated
except for callback definitions.

Callbacks Source

This text area defines the name of the source file for all source code that define call-
back routines.

By default, the dialog is set to create a fully functional program that you can compile and
link using a command similar to the following:

cc export_analysis_0.c -lntrace_analysis

You could subsequently feed live NightTrace data to the program using an invocation sim-
ilar to the following:

ntraceud --stream /tmp/key-file | ./a.out

See “Using the NightTrace Analysis API” on page 18-1 for more information.

Timelines 8

Accelerator: Alt+M

The Timelines menu allows to create new timeline panels and provides controls for
moving and changing timeline intervals.
8-20

The NightTrace Main Window
Figure 8-14. Timelines Menu

The Timelines menu in the main window menu bar is essentially identical to the context
menu available from all Timeline panels, with the addition of the New submenu which
allows you to create new timelines.

This section will describe the New sub-menu.

New

Mnemonic: N

Custom Kernel Timeline...

Mnemonic: K

Presents the Build Custom Kernel Page dialog to quickly build a custom-
ized kernel page based on choices of nodes, CPUs, and graphs. When loading
kernel trace events in NightTrace, default kernel display pages are displayed
for each node where trace data originated. These pages show each CPU for
each node, as well as a fixed number of graphs and data boxes per CPU.

However, there may be cases where the default display page for kernel data is
not desirable:

- on multi-CPU nodes, the vertical height of the default kernel
page may be too large

- when shielding a CPU, or running a process with a CPU bias, it
may be desirable to see only data for that CPU

- one or more of the default graphs per CPU may not be of inter-
est
8-21

NightTrace RT User’s Guide
Figure 8-15. Create Custom Kernel Timeline Dialog

The checkboxes allow you to select which event and state graphs you wish to build for
which CPUs.

The checkboxes allow you to select which event and state graphs you wish to build for
which CPUs.

The Options area of the dialog provides additional tailoring choices, especially useful
when you have 8 or more CPUs to view.

The Zoom Factor specifies the percentage of the default kernel timeline geometry that
should be used in creating the new page. For most monitors, a kernel timeline for 8 CPUs
doesn’t fit vertically in the visible area of the display (although the timeline does have a
scroll bar so you can scroll to see all CPUs). Selecting a percentage less than 100% may
be useful in such a situation.

The Zoom to fill panel checkbox tells NightTrace to automatically calculate the Zoom
Factor so that all the CPUs will fit in the available vertical space of screen. NightTrace
calculates the available space based on the current size of the NightTrace main window.
For best results, increase the size of the NightTrace main window (or maximize the win-
dow to fill the entire screen) before creating the custom timeline.

The Zoom to fill panel checkbox disables and overrides the Zoom Factor setting,
because it automatically calculates the setting when creating the timeline.
8-22

The NightTrace Main Window
The Widescreen checkbox splits the kernel timeline in half, creating two columns of
CPUs. You can select the Widescreen option as well as a zoom option.

See “Kernel Tracing” on page 17-1 for more information.

Per Process Kernel Timeline...

Mnemonic: P

Presents a list of processes in the current kernel data set which allows you to
quickly build a customized kernel timeline that is filtered to display specific
processes.

NOTE

Support for kernel tracing is only available under some operating
system distributions. See “Kernel Dependencies” on page B-1 for
more information.

Empty Timeline

Mnemonic: T

This menu choice opens a new timeline so that the user may configure it from
scratch. The grid must be populated with display objects before trace infor-
mation can be analyzed or graphically examined. See “Timeline Panels” on
page 12-1.

Default User Timeline

Mnemonic: U

This menu choice opens the default user timeline which is automatically
pre-configured to show all user events and specific descriptions of the event
ID and the first argument of each event.

The default user timeline includes a row that includes events for each regis-
tered thread in the application, as well as a row that includes events for all
threads.
8-23

NightTrace RT User’s Guide
Figure 8-16. Default User Timeline

Default Ada Timeline

Mnemonic: A

This menu choice builds a user timeline which is automatically configured to
show task-information displays for every Ada task in the current trace data
set.

A task-information display includes the following information: the task name,
the pid and Ada task ID, and a state graph indicating various Ada language
events and states, especially as related to tasking and exceptions.

Default AI Timeline...

Mnemonic: I

This menu choice opens the default Application Illumination timeline. This is
essentially a single-thread version of the default timeline, but with bigger
hover and descriptive areas, as Application Illumination event descriptions
tend to be verbose.

See “Application Illumination” on page 5-1 for more information.
8-24

The NightTrace Main Window
CUDA

Mnemonic: C

This menu choice opens a sub-menu with the following choices.

Default CUDA AI Timeline:

Mnemonic: A

A CUDA AI timeline is much like a normal AI timeline, except that
information is included that relates to use of the NVIDIA CUDA API
and the execution of CUDA kernels. See “Default CUDA AI Timeline”
on page 12-22 for a complete description.

Default CUDA GPU Timeline:

Mnemonic: G

This presents a timeline that focuses on trace events that were logged
from code executed by an NVIDIA GPU. See “Default CUDA GPU
Timeline” on page 12-23 for a complete description.

Limit Number of Events Displayed...

This option launches a simple dialog which allows you to set a display limit, in units
of events. This limit is consulted when doing search operations and when using the
Zoom In to Limit action.

Zoom

Mnemonic: Z

Figure 8-17. Zoom sub-menu of Timelines Menu

Zoom In

Mnemonic: I
Accelerator: =

Change the current interval such that fewer events are displayed, but with
more detail.
8-25

NightTrace RT User’s Guide
The amount the interval changes is dependent on whether or not you have
selected events in a timeline.

If you use the mouse to click-and-drag to select events in a timeline, then the
Zoom In action will change the interval to include only the events you have
selected.

Otherwise, a Zoom In action will change the interval by the Zoom Factor.

Zoom In to Limit

Mnemonic: L
Accelerator: Alt+Down, Alt+=

Change the current interval by zooming in to the smallest interval as defined
by the Limit Number of Events Displayed... menu setting described
above.

The Alt+Down accelerator is affected by the Zooming Control prefer-
ences. Depending on your preference setting, Alt+Down may actually zoom
fully out. See “Zooming Controls” on page 8-42 for more information.

Zoom Out

Mnemonic: O
Accelerator: -

Change the current interval such that more events are displayed, but with less
detail. The change in interval is controlled by the Zoom Factor.

Show All Events

Mnemonic: A
Accelerator: Alt+Up

Change the current interval by zooming all the way out such that the interval
contains the entire data set. When fully zoomed out, the display isn’t useful
for detailed analysis, but it is useful for identifying areas of significant activ-
ity, etc.

The Alt+Up accelerator is affected by the Zooming Control preferences.
Depending on your preference setting, Alt+Up may actually zoom fully in.
See “Zooming Controls” on page 8-42 for more information.

Set Zoom Factor...

Mnemonic: F

This menu option launches a simple dialog which allows you to change the
Zoom Factor. The Zoom Factor is a floating point number which repre-
sents the change in interval when incremental zoom actions are taken.
8-26

The NightTrace Main Window
Thus a zoom factor of 2.0 will cause roughly twice as long an interval to be
displayed after a single zoom out action, and 1/2 as long an interval to be dis-
played after a zoom in action.

Changing the Zoom Factor preference in the Preferences dialog will
change this setting. See “Zooming Controls” on page 8-42 for more informa-
tion.

Shift Left

Mnemonic: L
Accelerator: Ctrl+Left

Shift the current interval “left”, so that the interval now includes earlier times. The
amount the interval changes is controlled by the Interval Shift setting, which you
can set via the Shift Percentage... menu option.

By default, the Interval Shift setting is 25%, so that when you shift an interval left
(or right), the new interval still includes 75% of the time covered by the previous
interval. This can be helpful when you want to maintain some context while travers-
ing the data set.

Shift Right

Mnemonic: R
Accelerator: Ctrl+Right

Shift the current interval “right”, so that the interval now includes later times. The
amount the interval changes is controlled by the Interval Shift setting, which you
can set via the Shift Percentage... menu option.

By default, the Interval Shift setting is 25%, so that when you shift an interval
right (or left), the new interval still includes 75% of the time covered by the previous
interval. This can be helpful when you want to maintain some context while travers-
ing the data set.

Shift Percentage...

Mnemonic: P

This option launches a simple dialog which allows you to change the Interval
Shift value. The Interval Shift is a percentage that controls how much the inter-
val changes when you do Shift Left or Shift Right interval options (as described
above).

Setting the percentage to 25% will maintain 75% of the current interval’s timespan
in the new interval. This is useful when you want to maintain some context from the
previous view while traversing the data set.

Setting the percentage to 100% will present an entirely new timespan for the next
interval (contiguous with the previous interval).
8-27

NightTrace RT User’s Guide
Center Current Timeline

Mnemonic: C
Accelerator: =

This option adjusts the interval such that the current timeline is centered in the inter-
val.

This option has no effect if there are insufficient events outside the current interval
to accommodate the current Interval Span setting. In such circumstances, you
should Zoom In sufficiently before selecting this option.

Discard Selected...

Mnemonic S

This option discards all events from the data set that are currently selected in the
timeline (selection is done using click-and-drag operations with the mouse).

A verification dialog is presented before the events are discarded.

This option is most useful when you have a very large data set and want to concen-
trate on a small portion of the data and use selection to identify events you want to
delete.

 In such circumstances, it may be useful to save a copy of your session using the
Save Session Copy... option from the File menu before discarding events. The
Save Session Copy... option creates a copy of all your session information as
well as all the current trace data; thus you can easily revert back to the original data
set subsequently.

Discard Unselected...

Mnemonic: U

This option discards all events from the data set that are not currently selected in the
timeline (selection is done using click-and-drag operations with the mouse).

A verification dialog is presented before the events are discarded.

This option is most useful when you have a very large data set and want to concen-
trate on a small portion of the data.

 In such circumstances, it may be useful to save a copy of your session using the
Save Session Copy... option from the File menu before discarding events. The
Save Session Copy... option creates a copy of all your session information as
well as all the current trace data; thus you can easily revert back to the original data
set subsequently.

Distinguish Process Name By PID

Mnemonic: D

This option causes the process names shown in timelines to be distinguished from
other processes by appending the Process ID to the name.
8-28

The NightTrace Main Window
Edit Current Event Description...

Mnemonic: E
Accelerator: Ctrl+D

This option launches the Edit Event Description dialog which allows you to
define or change the name of an event and its description. See “Edit Current Event
Description...” on page 11-4 for a description of that dialog.

Tools 8

Mnemonic: Alt+L

Figure 8-18. Tools Menu

The following describe the options on the Tools menu:

NightProbe Monitor

Mnemonic: P

Opens the NightProbe Data Monitoring tool. NightProbe is a real-time graphical
tool for monitoring, recording, and altering program data within one or more execut-
ing programs without significant intrusion. NightProbe can be used in a develop-
ment environment as a tool for debugging or in a production environment for data
capture or to create a “control panel” for program input and output.

NightSim Scheduler

Mnemonic: S

Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.
8-29

NightTrace RT User’s Guide
NightTrace Illuminator

Mnemonic: T

Opens the NightTrace Application Illumination tool, which automatically instru-
ments user application code with trace points that log the entry and exit of functions,
with their arguments and return values.

NightTune Tuner

Mnemonic: U

Opens the NightTune Tuner. NightTune is a graphical tool for analyzing the status
of the system in terms of processes, interrupts, context switches, interrupt CPU
affinity, processor shielding and hyper-threading control as well as network and disk
activity. NightTune can adjust the scheduling attributes of individual or groups of
processes, including priority, policy, and CPU affinity.

For systems that support CPU shielding, NightTune provides a handy interface for
controlling shielding, including downing sibling hyper-threaded CPUs to avoid
interference.

NightView Debugger

Mnemonic: V

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications and multi-threaded applications. NightView can monitor, debug, and
patch multiple real-time processes running on multiple processors with minimal
intrusion.
8-30

The NightTrace Main Window
Help 8

Mnemonic: Alt+H

Figure 8-19. Help Menu

The following describe the options on the Help menu:

On Context

Mnemonic: C

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for a particular item is obtained by first choosing this menu option, then click-
ing the mouse pointer on the object for which help is desired (the mouse pointer will
become a floating question mark when the On Context menu item is selected).
The cursor turns to the a circle with a backslash when the item under the cursor has
no help description associated with it.

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. NightStar’s online help system, will open with the
appropriate topic displayed.

NightTrace User’s Guide

Mnemonic: G

Opens the online version of the NightTraceRT User’s Guide in the online help
viewer.

NightStar RT Tutorial

Mnemonic: T

Opens the online version of the NightStar RT Tutorial in the online help viewer.
8-31

../nstar/nstar-tutorial.html

NightTrace RT User’s Guide
License Report

Mnemonic: T

Opens a license dialog which indicates the current license server and the number of
licenses available on the system.

On Version

Mnemonic: V

Displays a short description of the current version of NightTrace.

Check for Updates...

Mnemonic: U

 Launches NUU (Network Update Utility) enabling you to update your system with
the latest NightStar software. This requires network access to Concurrent’s Updates
web site. Updates require a login and user ID issued by Concurrent. Refer to
http://redhawk.ccur.com/updates for complete information.

Toolbars 8

NightTrace includes four toolbars which can be dragged and placed on any corner or side
of the main window. These include:

• the File Toolbar

• the Search Toolbar

• the Daemons Toolbar

• the Panels Toolbar

File Toolbar

This toolbar consists of two icons.

Open Files

When pressed, this icon invokes the action associated with the Open
Files.... option of the File menu.
8-32

http://redhawk.ccur.com/updates

The NightTrace Main Window
Save Session

When pressed, this icon invokes the action associated with the Save Ses-
sion option of the File menu. This icon is disabled if no changes have been
made to the current session since it was last loaded or saved.

Search Toolbar

This toolbar consists of seven icons.

Search Backward

When pressed, this icon searches backward in the data set from the current
timeline for the nearest occurrence of the profile selected in the Profile Sta-
tus List in the Profiles dialog. If no profile is selected, it searches back-
ward for the nearest event.

Search Forward

When pressed, this icon searches forward in the data set from the current time-
line for the nearest occurrence of the profile selected in the Profile Status
List in the Profiles dialog. If no profile is selected, it searches forward for
the nearest event.

Go Back To Previous Interval

When pressed, this icon invokes the Go Back to Previous Interval option
of the Search menu, allowing you to switch back and forth between the cur-
rent timeline and the last value of the current timeline.

Goto

When pressed, this icon invokes the Goto... option of the Search menu,
allowing you to type in an event offset or time of interest.

Goto First Event

When pressed, this icon changes the current timeline to be the first event in
the data set.

Goto Last Event

When pressed, this icon changes the current timeline to be the last event in the
data set.
8-33

NightTrace RT User’s Guide
Zoom In

When pressed, this icon causes the time interval to be reduced by the zoom
factor set using the Set Zoom Factor... option of the Zoom submenu of
the Timelines menu.

Zoom Out

When pressed, this icon causes the time interval to be increased by the zoom
factor set using the Set Zoom Factor... option of the Zoom submenu of
the Timelines menu.

Summarize

When pressed, this icon invokes the Summarize option of the Summary
menu which operates on the profile currently selected in the Profile Status
List in the Profiles dialog. If no profile is currently selected, a summary of
all events is executed.

Daemons Toolbar

This toolbar consists of four icons.

Launch

When pressed, this icon launches all daemons currently selected in the Dae-
mons panel.

Resume

When pressed, this icon resumes all daemons currently selected in the Dae-
mons panel.

Pause

When pressed, this icon pauses all daemons currently selected in the Dae-
mons panel.

Halt

When pressed, this icon halts all daemons currently selected in the Daemons
panel.
8-34

The NightTrace Main Window
Panels Toolbar

This toolbar consists of six icons, representing each of the available panel types in
NightTrace. When pressed, the icon toggles the visibility of the corresponding
panel in the current page.

Profiles Toolbar

This toolbar consists of two icons that represent the Profiles Status List and
Profi le Definit ion areas of the Profi les dialog. When pressed, the dialog
appears and the focus is set in the appropriate area.

Pages 8

The remaining area of the main window is reserved for various tabbed pages which can
contain any of the seven panel types available within NightTrace.

Each page has a tab which contains the page title. When clicked or right-clicked, the page
is raised to the top and becomes the current page.

Each tab has a context menu which allows you to manipulate the page position and title.

Figure 8-20. Tab Context Menu

Delete Current Page

Mnemonic: D

This option deletes the current page.
8-35

NightTrace RT User’s Guide
Rename Current Page

Mnemonic: R

This option launches a dialog which allows you to rename the current page.

Figure 8-21. Rename Page Dialog

If the page title contains an ampersand character (&), it causes the next character to
be underlined, provides a keyboard shortcut for that page, and the ampersand
becomes invisible in the title that is shown for the page. In the example above, the
keyboard shortcut for this page will be Alt+4 and the displayed title will become
Page 4. Activating the shortcut for a page causes it to be raised to the top and it
becomes the current page. Care should be taken when choosing shortcuts for pages
so they do not conflict with other shortcuts. If you desire to have an ampersand dis-
played in the actual page title (as opposed to defining a shortcut), use two amper-
sand characters, back to back in the Rename Page dialog.

Move Current Page

Mnemonic: M

This option launches a dialog which allows you to reposition the current page
among other pages. This option will be disabled unless at least two viewing pages
exist.

Figure 8-22. Move Page Dialog
8-36

The NightTrace Main Window
Panels 8

NightTrace provides flexibility in configuring the graphical user interface to suit your needs through the
use of resizable and movable panels.

Consider the following page which contains a Timline panel and an Event List panel:

Figure 8-23. Page with Events and Timeline Panels

Panels are moved by left-clicking the title bar, dragging them to a new location, and then releasing the
mouse button. Depending on the location of the panel when the mouse button is released, the panel will
either remain detached or will be inserted into the page again.
8-37

NightTrace RT User’s Guide
To detach the panel from the page without inserting it, click the left-most control box in the upper
right-hand corner of the panel.

Figure 8-24. Panel Detaches from Page

The Timeline panel detaches from the page and becomes free floating. If moved outside the boundaries
of the main window and released, the panel will remain detached from the main window. However, even
in detached mode, if the main window is iconified, the detached panel will be iconified with it.
8-38

The NightTrace Main Window
To insert a panel into the page at a new location, drag the panel using the left mouse button on its title
bar and move it until it approaches a boundary of the page. NightTrace will respond by creating space
indicating where the panel will be inserted.

Figure 8-25. Panel Movement in Progress

The figure above shows space being created above the Events panel as the Timeline panel is dragged
towards the upper boundary of the page.

IMPORTANT

When attempting to move panels inside of a page, if an empty
space does not appear where you desire it, try increasing the size
of the main window, decreasing the size of the undocked panel,
and moving an alternative edge of the undocked panel near where
you want to place it.

Panels can be resized by left-clicking on the separator between the panels and dragging it to the desired
size.

Another feature of the graphical user interface is the use of tabbed panels. Tabbed panels allow you to
maximize your GUI real estate by placing two or more panels in the same location by stacking them on
top of each other. You can then raise a panel to the top by clicking on its tab.
8-39

NightTrace RT User’s Guide
To create a tabbed panel, move a panel to the lower horizontal edge of another panel and release.

Figure 8-26. Panels as Tabs

In the figure above, the Timeline panel has been inserted as a tab with the Events panel,
conserving space.

IMPORTANT

To move a panel above another panel, move the desired panel to
the top boundary of the other panel. If you move a panel to the
bottom boundary of another panel, it will become a tabbed panel
instead.

The orientation and size of panels within pages is saved as part of a NightTrace session.
8-40

The NightTrace Main Window
Preferences Dialog 8

The Preferences Dialog is launched via the Preferences... option of the File menu.

Figure 8-27. Preferences Dialog -- General Tab

Preference settings are not saved with session files. They live in a separate file in your
home directory: ~/.NightTrace_prefs.

When you change a preference with this dialog, the change is only applied to the current
NightTrace invocation, unless you press the Save button. This allows you to experiment
with preference changes without having to commit to them permanently.
8-41

NightTrace RT User’s Guide
General Preferences 8

The General tab controls preferences for tool tips, timestamp display, zooming controls,
tag panel effects, and other miscellaneous behavior.

Hover Popups

These preferences control whether tool tips are displayed when you hover the mouse
cursor over items in Event and Timeline panels.

A tool tip is a small notation that appears near the mouse cursor which provides
additional information about items near the cursor than what is typically displayed
in the panel. This information is normally useful, but some users are distracted by
this behavior.

Timestamps

By default, timestamps are displayed as fractional numbers in seconds, with 9 trail-
ing digits so that you can see detail down to the nanosecond. Selecting the Use
underscores in timestamp fractions preference causes timestamps to be dis-
played with underscores in the fractional portion between the digits that separate
milliseconds, microseconds, and nanoseconds. This makes it easier to determine
relative times between events.

For example:

2.023_121_767 .vs. 2.023121767

Zooming Controls

The traditional controls for zooming in NightTrace are at odds with popular applica-
tions; depending on your point of view, the traditional actions make perfect sense to
you, or surprise you.

You can select how the Up and Down keys and the mouse wheel affect zooming,
using these preferences.

You can also set the default zoom factor which is used for any single zoom in or out
action.

Tags

By default, when you select a tag in the tags list panel, the current time changes on
all timelines and events panel to the time associated with the selected tag. Clear the
Change “Current Time” when selecting a tag in the Tags List panel
checkbox to prevent this behavior.

Similarly, by default, when selecting a tag not only does the current time change, but
the time interval is restored to the value it had when the tag was created. Clear the
Restore t ime interval span when selecting a tag in the Tags List
panel checkbox to prevent this behavior. Of course this preference is meaningless
if the current timeline isn’t moved when selecting a tag.
8-42

The NightTrace Main Window
Miscellaneous

By default, relative pathnames are used in session files. This is handy if you wish to
save a session and then send the relevant files to another person for their analysis. If
you wish full pathnames to be used, clear the Use relative notation for path-
names in session files checkbox.

Timeline Preferences 8

Figure 8-28. Preferences Dialog -- Timelines Tab

This tab allows you to define default colors for timelines.
8-43

NightTrace RT User’s Guide
If you want the preferences to apply to existing timelines, be sure to check the Apply to
existing timelines box at the bottom of the dialog. Otherwise, the colors are only con-
sulted when you create a new timeline. Once created, you can manually override individ-
ual colors using the context menu in a timeline.

Backgrounds

Here you can set the background color of grids, columns, rulers, locators, data
boxes, state graphs, data graphs, and labels. You can also choose to use a graphic
image as the background for a timeline grid.

To change colors, type in the hexadecimal RGB code or press the colored bar to the
right of the relevant field and select a color from a standard color selection dialog.

Kernel and Ada Tasking Timelines

These areas allow you to define the color used for categories of events and states.
The color will be used as the state color and data graph color for such graphs as well
as for any text describing instances of these items in labels.

Restore all color settings to their default values

This button is provided in case your experimentation takes a wrong turn and you end
up nauseated. Pressing the button returns all the values to their NightTrace-default
state.

Font Preferences 8

NightTrace uses multiple fonts to present text in the most effective manner throughout the
various display areas of the tool.

Variable-width fonts are most commonly used; these fonts most closely resemble how
people write or print words.

Fixed-width fonts require that all characters and numbers have the same width (visual
footprint). Fixed-width fonts are of benefit when source code is being displayed or manip-
ulated or when columns of numbers are viewed.

NightTrace further divides the use of fonts into the following categories; default, panel,
and timeline.

Default fonts are used for text associated with operational description and control, includ-
ing: menus, buttons, selection devices, labels, tool tips, status bar messages, and generally
descriptive verbiage.

Panel fonts are used in NightTrace panels, which display the data of highest importance.

Timeline fonts are used in Event Timelines. Timeline fonts are separated from panel fonts
in NightTrace because it may be advantageous to use a small font in timelines where space
may be at a premium, especially for kernel display pages on systems with more than a few
CPUs.
8-44

The NightTrace Main Window
Fonts are selected by querying font preferences from the following sources until a prefer-
ence is found:

• Your NightTrace preference

• Your NightStar-wide preference

• The system’s NightTrace preference

• The system’s NightStar-wide preference

• NightTrace’s ultimate default

Figure 8-29. Preferences Dialog -- Fonts Tab

This page is divided into three sections.
8-45

NightTrace RT User’s Guide
Global NightStar Fonts

The Change... button in this area launches the NightStar Global Fonts dialog
which allows you to set your Nightstar-wide preferences, your preferences for
another specific NightStar tool, or the system’s tool or NightStar-wide preferences.

Note:

Setting a NightStar preference for the system typically requires
root access.

Changes saved in the NightStar Global Fonts dialog are always saved to disk
and apply to the current and subsequent NightTrace invocations.

My NightTrace Fonts

This area allows you to set or clear your user’s preferences for NightTrace.

Selection of the checkboxes for the individual font categories control whether or not
your preferences are to be consulted. Clearing a checkbox effectively removes your
user preference for that category. Setting a checkbox allows you to select specific
fonts within the category.

Changes to any of the settings in this area, including individual fonts or category
checkboxes, are immediately reflected in the Effective NightTrace Fonts area
at the bottom of the page so you can see the ultimate effect a change will have.

To change a specific font, ensure that the corresponding category’s checkbox is
checked and then press the Change... button. This will launch a standard font
selection dialog. When you select a font from the dialog and press OK, the name of
the font family is displayed to the left of the Change... button and is displayed in
the selected font as well.

Effective NightTrace Fonts

This area shows you the effective fonts that will be used based on your user settings
and consultation of global settings which aren’t shown in the page.

The values in this area immediately change to reflect the effective font whenever
any change is made within the page.

Your changes in the My NightTrace Fonts area are applied to the current invocation of
NightTrace when you press the OK button. However, your changes are not saved to disk
and will not affect subsequent invocations of NightTrace unless you press the Save but-
ton.

Separation of Apply and Save operations make it easy to experiment with fonts in the
current invocation without affecting long-term usage.
8-46

The NightTrace Main Window
Note:

Changes to font preferences in the NightStar Global Fonts
dialog are always saved to disk and apply to the current and sub-
sequent NightTrace invocations; i.e. there is no way to experiment
with a global font preference without affecting subsequent Night-
Trace invocations.

The buttons at the bottom of the page control the application of your changes.

OK

Applies any changes made directly in the Font Preferences page to the current
invocation of NightTrace and closes the dialog. The changes will not be saved to
disk or affect subsequent NightTrace invocations unless you return to the Prefer-
ences... dialog and press Save.

Reset

Discards any changes you have made directly to the Font Preferences page
since the dialog was launched and resets the dialog accordingly.

Note:

Changes made in the NightTrace Global Fonts dialog cannot
be discarded via the Reset button.

Save

Applies the preferences from the dialog to the current invocation of NightTrace,
saves the preferences to disk thereby affecting subsequent NightTrace invocations,
and closes the dialog.

Cancel

Cancels any pending changes and closes the dialog.

Help

Opens the help system to display this section.
8-47

NightTrace RT User’s Guide
NightStar Global Fonts Dialog 8

The NightStar Global Fonts dialog allows you to set your Nightstar-wide preferences,
your preferences for another specific NightStar tool, or the system’s tool or Night-
Star-wide preferences.

Figure 8-30. NightStar Global Fonts Dialog

Keep in mind that fonts are selected by querying font preferences from the following
sources until a preference is found:

• Your NightTrace preference

• Your NightStar-wide preference

• The system’s NightTrace preference

• The system’s NightStar-wide preference
8-48

The NightTrace Main Window
• NightTrace’s ultimate default

This dialog has two control areas which define the scope of font preference application.

Changes Fonts For...

By default, the dialog is set up to apply font preferences to your user account. Select
the Entire System button if you wish to set the system’s preferences.

Note:

Changing font preference for the system typically requires root
access.

Apply Fonts To...

This area additionally controls the scope of font preference application. You can
change a preference for a specific NightStar tool or change the NightStar-wide pref-
erence.

If you wish to change the font for more than one tool from this dialog, but not
change the NightStar-wide preference, select the first tool of interest, make your
preference change in the areas below, and then press the Save button. Then select
the second tool of interest and repeat.

Set Default Fonts
Set Panel Fonts
Set Timeline Fonts

These areas contain the variable and fixed-width font preferences for each of the
font categories, identified by the label next to each checkbox.

To remove the preferences in a category, clear its checkbox.

To change a specific font, ensure that the category’s checkbox is checked and then
press the Change... button. This will launch a standard font selection dialog.
When you select a font from the dialog and press OK, the name of the font family is
displayed to the left of the Change... button and is displayed in the selected font as
well.

The buttons at the bottom of the page control the application of your changes.

Save & Close

Saves any changes made in this dialog to disk, thus affecting subsequent tool invo-
cations, and closes the dialog.

These changes may affect the effective font preferences for the current invocation of
NightTrace. When the dialog is closed, the fonts shown in the Effective Night-
Trace Fonts section of the Preferences dialog are updated. If you apply the
changes in that dialog, they will take effect in the current invocation of NightTrace.
8-49

NightTrace RT User’s Guide
Save

Applies the preferences from the dialog to the current invocation of NightTrace,
saves the preferences to disk thereby affecting subsequent NightTrace invocations.

These changes may affect the effective font preferences for the current invocation of
NightTrace. When this dialog is subsequently closed, the fonts shown in the Effec-
tive NightTrace Fonts section of the Preferences dialog are updated. If you
apply the changes in that dialog, they will take effect in the current invocation of
NightTrace.

Cancel

Cancels any unsaved changes and closes the dialog.

Help

Opens the help system to display this section.
8-50

The NightTrace Main Window
Advanced Preferences 8

Figure 8-31. Preferences Dialog -- Advanced Tab

This tab shows advanced preferences.

Trace Data File Cache

NightTrace has the ability to start tracing daemons on remote systems. When trac-
ing to a file, the file is created on the remote system. After tracing is complete, you
can press the Display button on the Daemons panel to load the file into the current
NightTtrace session.

If the file is remote, NightTrace consults these preferences to determine the appro-
priate action.
8-51

NightTrace RT User’s Guide
If the Cache Mode is off, no action will be taken, other than a dialog indicating
that your preference prevents NightTrace from downloading the file.

If the Cache Mode is on, then NightTrace will consult the Cache Directory to
see if the file already has been downloaded and that the file on the remote system
has a matching timestamp. If the file needs to be downloaded NightTrace will do so
and place it the specified Cache Directory. Consulting the cache before down-
loading may seem unusual, but it is helpful when viewing a file which has already
been downloaded in a previous session.

If the Cache Mode is temporary, the actions are identical to the on case, except
that the file will be deleted when you exit NightView.

Pressing the Delete Cache... button deletes the contents of the Cache Direc-
tory.
8-52

9
Chapter 9Daemons Panel

9
9
9

The Daemons panel provides for the creation and control of user and kernel daemons
which are used to collect data from user applications and the operating system, respec-
tively.

It is often more convenient to use the Daemons panel to launch and run daemons as
opposed to relying solely on the ntraceud and ntracekd command line invocations as
described in “Capturing User Events with ntraceud” on page 3-1 and “Capturing Kernel
Events with ntracekd” on page 4-1.

Additionally, the Daemons panel aids in locating user applications that are attempting to
log trace data yet have no trace daemons currently associated with them. You can also
gain control of a previously-executed command line daemon by using the Attach feature
of the Daemons panel.

Figure 9-1. Daemons Panel

All daemons defined in the current session are shown as individual rows in the panel.

Using the buttons at the bottom of the panel, you can control the execution of the daemons
as well as bring data into NightTrace Timeline panels for immediate viewing.
9-1

NightTrace RT User’s Guide
Context Menu 9

The panel’s context menu provides a super-set of the activities controlled by the buttons at
the bottom of the panel, including the ability to create and edit daemon definitions.

Figure 9-2. Daemons Panel Context Menu

New Kernel Daemon...

Mnemonic: K

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-8) allowing the user to configure a new kernel daemon definition.

NOTE

Support for kernel tracing is only available on some operating
system distributions. See “Kernel Dependencies” on page B-1 for
more information.
9-2

Daemons Panel
New User Daemon...

Mnemonic: U

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-8) allowing the user to configure a new user daemon definition.

Import...

Mnemonic: I

Presents a dialog which lists all user applications on the target system that are
attempting to log trace data but that do not currently have user daemons associated
with them.

Figure 9-3. Import Daemon Definitions Dialog

Each application that has called trace_begin(), but that does not yet have a daemon,
is listed in a row in the table.

The table includes the Process ID, Program name, User, and the name of the Key
File as passed to trace_begin().

To import any daemon configuration information specified by the user application (the
second parameter to trace_begin()), click the row of interest and press the Import
Selected button.

This causes a daemon definition to be automatically created and the Edit Daemon Def-
inition dialog is launched so you can make any required adjustments, as described in
“Edit Daemon Definition” on page 9-8.

Attach...

Mnemonic: A
9-3

NightTrace RT User’s Guide
Allows the user to query any target system for user application trace daemons and
displays the results in a dialog.

Figure 9-4. Attach to Running Daemons Dialog

The user may then attach to the desired daemon and control it, by selecting a dae-
mon from the list and pressing the Attach to Selected button.

A daemon definition is created for the daemon and it is added to the list of daemons
in the panel.

Properties...

Mnemonic: O

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-8) allowing the user to configure the currently selected daemon.

Delete

Mnemonic: D

Deletes the daemon definition currently selected in the panel.

Launch

Mnemonic: L

Starts execution of the daemon(s) currently selected in the panel.
9-4

Daemons Panel
NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon is launched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.

Resume

Mnemonic: R

Resumes execution of the daemon(s) currently selected in the panel. Once resumed,
incoming events are placed into the daemon buffer for subsequent processing by the
daemon.

Pause

Mnemonic: P

Pauses the execution of the daemon(s) currently selected in the panel.

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

Flush

Mnemonic: F

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the panel to either the NightTrace display buffer or to the output file.

Halt

Mnemonic: H

Stops execution of the daemon(s) currently selected in the panel.

Detach

Relinquishes control of the running daemon(s) currently selected in the panel. Dae-
mons writing to a file will continue to execute and will continue to write events to a
file. If the file has no size limit associated with it, it could consume large amounts
of disk space.
9-5

NightTrace RT User’s Guide
You cannot detach from a daemon which is streaming events directly to NightTrace,
however you can detach to daemons streaming to a user application. The streaming
will continue when detached.

Refresh Rate...

Mnemonic: S

Provides a dialog which controls the refresh interval of statistics for active daemons
as shown in the panel.

Triggers...

Mnemonic: T

This option launches the Edit Triggers dialog.

Triggers allow you to set a condition which is continually evaluated as streaming
data is sent to NightTrace. When the condition evaluates to true, NightTrace will
stop all executing daemons under its control. Daemons with triggers must be
streaming data into NightTrace -- daemons writing to files are not eligible for trig-
gers.

See “Triggers” on page 9-16 for more information.

Streaming Memory Usage Control...

Mnemonic: M

This option launches the Streaming Memory Usage Control dialog.

For streaming daemons, the Streaming Memory Usage Control limit defines
the maximum amount of memory that NightTrace should use to hold streaming data.

See “Streaming Memory Usage Control” on page 9-18 for more information.

Display Fields

The Display Fields submenu provides checkboxes for each of the column headers
that can be displayed in the panel. When checked, the column is present; otherwise
the column is hidden.

Control Buttons 9

At the bottom of the panel there are a series of buttons that operate on daemons that are
currently selected in the panel.

Most of the buttons execute obvious actions, as described in detail in the panel’s Context
Menu. The descriptions below provide a brief summary of those actions as well as
detailed descriptions of actions not available in the Context Menu.
9-6

Daemons Panel
Launch

Launches the currently selected daemons. See “Launch” on page 9-4 for more
information.

Resume

Resumes the currently selected daemons. See “Resume” on page 9-5 for more
information.

Pause

Pauses the currently selected daemons. See “Pause” on page 9-5 for more informa-
tion.

Halt

Halts the currently selected daemons. See “Halt” on page 9-5 for more information.

Flush

Flushes the internal buffers of the currently selected daemons, forcing the data to be
sent to the output device (file or stream attached to NightTrace). See “Flush” on
page 9-5 for more information.

Display

This option is equivalent to flush except in the case of a daemon writing to a file.
Once such a daemon is stopped, pressing Display will load the contents of the file
containing the trace data.

Triggers...

This button launches the Edit Triggers dialog.

Triggers allow you to set a condition which is continually evaluated as streaming
data is sent to NightTrace. When the condition evaluates to true, NightTrace will
stop all executing daemons under its control. Daemons with triggers must be
streaming data into NightTrace -- daemons writing to files are not eligible for trig-
gers.

See “Triggers” on page 9-16 for more information.

Enable Events

Launches a dialog which allows you to enable or disable events while the daemon is
executing.

Delete

Deletes the currently selected daemons; daemons cannot be deleted until halted.
9-7

NightTrace RT User’s Guide
Edit Daemon Definition 9

The Edit Daemon Definition dialog allows the user to create and modify the various
aspects of a daemon configuration.

Figure 9-5. Edit Daemon Definition Dialog

The Edit Daemon Definition dialog is divided into a number of areas that contain spe-
cific information about the current configuration, including:

• “General Settings” on page 9-9

• Trace File, Stream, and Consumer Output Settings (see “General Settings”
on page 9-9)

• “Trace Buffer Settings” on page 9-11

• “Trace Daemon Runtime Settings” on page 9-14

• “Enabled Events” on page 9-15
9-8

Daemons Panel
General Settings 9

The General area of the dialog contains information such as the name of the daemon
configuration, the target system on which the daemon will run, the user name, and the out-
put method.

Name

This field is automatically populated with the name user_daemon or
kernel_daemon for each new daemon definition. A..x notation is appended
when required, starting at 1, in order to keep the daemon names unique within a
NightTrace session.

The Name is merely a label to aid the user in identifying specific daemons with a
session. It has no external meaning and is unrelated to the NightTrace API. The
user may change this to a name of their choosing.

Target

The system on which this trace daemon will run.

RCIM Clock

When checked, the RCIM tick clock will be used to timestamp data. By default, the
system’s architecture clock is used as a timing source. Use of the RCIM tick clock
is advantageous when multiple systems are being traced at the same time and their
RCIM clocks are synchronized through an RCIM cable.

User

The name of the user on the specified target system responsible for running this
daemon.

Output

These radio buttons define the output method.

File

When selected, all trace data is written directly to a disk file. You cannot ana-
lyze the data until the daemon has stopped collecting data and you load it into
NightTrace using the Display button in the Daemons panel or the Open
Files... option of the File menu in the main window.

Use of the File method requires you to enter information in the Trace File
Settings group area which appears immediately below the General Set-
tings area when this method is selected. For kernel daemons, this can be any
filename. For user daemons, this must be the pathname the user application
specified to the trace_begin, Trace.begin() call to initiate tracing.
9-9

NightTrace RT User’s Guide
If you check the File Wrap checkbox, the file size will be limited by the
value in the Size Limit (bytes) field. When the limit is reached, the oldest
trace data is overwritten with newer trace data.

Stream

When selected, all trace data is streamed directly into the current NightTrace
session for immediate analysis. You can analyze trace data as it is collected or
save it to a file for subsequent analysis.

You can adjust the Stream Buffer Size (byte) value in the Stream Set-
tings group area which appears immediately below the General Settings
group area when this mode is selected. You may wish to increase the size of
the internal buffer NightTrace uses to pass data between the daemon and the
analysis modules of NightTrace. If this buffer is too small, NightTrace itera-
tively pauses and resumes the daemon to catch up with processing (in which
case you will see P and R markers in timeline rulers indicating the Pause and
Resume operations). Normally, the default value is sufficient for most data
rates.

This buffer is only used during the transfer of data blocks between the daemon
and the analysis modules. It is unrelated to the Streaming Memory
Usage Control limit, which sets a boundary for the amount of memory used
to hold all trace data for all active streams. See “Streaming Memory Usage
Control” on page 9-18 for more information.

Consumer

When selected, all trace data is streamed directly into a user application of
your choice. It is assumed that the user application is written using the
“NightTrace Analysis Application Programming Interface” on page 18-1.

You must specify the command that launches your application in the Con-
sumer Application field which appears in the Consumer Application
Settings group area immediately below the General Settings area when
this mode is selected. You may specify arguments in the field as well.

When launched, the stdin file descriptor associated with your program is
associated with the stream of trace data being generated by the daemon.

Key File

This is required for user daemons. This field does not appear for kernel daemons
and it is also hidden for user daemons that specify File output, in which case the
filename is specified in the Trace File field as described under File above.

This must be the pathname the user application specified to the trace_begin,
Trace.begin() call to initiate tracing.
9-10

Daemons Panel
Trace Buffer Settings 9

The contents of the Trace Buffer Settings area differ depending on whether the daemon is
a user or kernel daemon.

User Daemons

Buffer Wrap

When checked, events remain in memory and are not written to the output
device until an explicit flush operation is executed. When all buffers are full,
the oldest trace events are overwritten with new trace events.

Bufferwrap can be extremely useful in the following situations:

• When an event of interest occurs very infrequently and the
trace data of interest is that only leading up to the event.

• When even the activity of writing events from memory to the
output device can adversely affect system or application condi-
tions.

• When the trace data rate is so intense that capturing all events
overloads the network or NightTrace. Using bufferwrap and
examining snapshots using the Flush button can still be useful
in these situations.

Default Page Policy

When checked, the default page-locking policy is in effect. The default policy
is to leave pages in their default state (which would normally be unlocked
unless the user application has taken some action outside of the NightTrace
API, such as mlock(2)).

Lock Critical Pages

When checked, pages in use by the NightTrace API, as well as the shared
memory pages associated with daemon buffers and control structures, will be
locked in memory.

NOTE

Locking pages requires the user application to run as root or to
have privileged capabilities. See pam_capability(3) for
more information on granting privileged access to non-root users.

Inherit Settings

When checked, the daemon will defer to any configuration settings the user
application may have specified on the trace_begin, Trace.begin()
call, if the user application has already started.
9-11

NightTrace RT User’s Guide
When unchecked and the user application has already started, any critical con-
figuration mismatches (e.g. use of an alternative clock, ability to lock pages,
etc.) will cause the daemon invocation to fail with an appropriate diagnostic.

Number Buffers

This setting controls the number of shared memory buffers in use between the
user application and the daemon. This number, combined with the setting for
Buffer Size, defines the total number of raw events that can be held in mem-
ory. In default operating mode (i.e. not buffer-wrap), when a single buffer
fills, the user application automatically informs the NightTrace daemon and
the daemon wakes up and copies the buffer to the output device.

Reducing the number of buffers reduces the number of wakeup events the user
application needs to make to the daemon (although these are very short and
efficient). However, reducing the number of buffers to a value less than 8 can
cause loss of data when trace data rates are high.

The value specified is automatically rounded up to a power of two if it is not
already a power of two.

A raw event is the amount of storage required to hold an event without argu-
ments. Events with arguments require two or more raw events to hold their
data.

Buffer Size

This setting controls the number of raw events that an individual buffer can
hold. This setting, combined with the setting for the number of buffers,
defines the total number of raw events that can be held in memory.

Increasing the Buffer Size setting is recommended if you have high trace data
rates or are losing trace events.

A raw event is the amount of storage required to hold an event without argu-
ments. Events with arguments require two or more raw events to hold their
data.

Shared Mem Perms

This area allows you to set the permissions to be applied on the shared mem-
ory buffer which is used to hold events logged by the user application before
they are written to the output device by the user daemon.

Kernel Daemons

Buffer Wrap

When checked, events remain in memory and are not written to the output
device until an explicit flush operation is executed. When all buffers are full,
the oldest trace events are overwritten with new trace events.

Bufferwrap can be extremely useful in the following situations:
9-12

Daemons Panel
• When an event of interest occurs very infrequently and the
trace data of interest is that only leading up to the event.

• When even the activity of writing events from memory to the
output device can adversely affect system or application condi-
tions.

• When the trace data rate is so intense that capturing all events
overloads the network or NightTrace. Using bufferwrap and
examining snapshots using the Flush button can still be useful
in these situations.

Specify Non-Default Number Buffers

This setting controls the number of kernel memory buffers in use between the
kernel and the daemon. This number, combined with the setting for Specify
Non-Default Buffer Size, defines the total number of bytes that can be held in
memory. In default operating mode (i.e. not buffer-wrap), when a single
buffer fills, the kernel automatically informs the NightTrace daemon and the
daemon wakes up and copies the buffer to the output device.

Reducing the number of buffers to a value less than 8 can cause loss of data
when trace data rates are high.

The value specified is automatically rounded up to a power of two if it is not
already a power of two.

Specify Non-Default Buffer Size

This setting controls the number of bytes that an individual buffer can hold.
This setting, combined with the setting for the number of buffers, defines the
total number of bytes that can be held in memory.

Increasing the setting is recommended if you have high trace data rates or are
losing trace events.

Trace CPUs

This setting defines the list of CPUs which should be traced.

The list can either be the word all, or a comma-separated list of CPU numbers or
ranges of CPU numbers; for example: 0,2-3.

To the right of the text field a description of the resultant CPU mask is shown. Some
system interfaces require CPU affinity to be specified as a mask, with each bit in the
mask representing a CPU. The mask is shown to remind you that the numbers you
enter into the text field here are logical CPU numbers, not hexadecimal characters in
a CPU mask.

If you enter something invalid into the text field, the description to the right changes
to the word invalid, shown in red. Ultimately, syntactically-invalid CPU lists are
automatically replaced with a list indicating all.
9-13

NightTrace RT User’s Guide
NOTE

Support for kernel tracing is only available on some operating
system distributions. See “Kernel Dependencies” on page B-1 for
more information.

Trace Daemon Runtime Settings 9

The Trace Daemon Runtime Settings area allows the user to specify the scheduling
policy, CPU bias, and memory binding policies for the daemon.

Policy

POSIX defines three types of policies that control the way a process is scheduled by
the operating system. They are SCHED_FIFO (FIFO), SCHED_RR (Round
Robin), and SCHED_OTHER (Other). Each of these scheduling policies is associ-
ated with one of the System V scheduler classes.

FIFO

The FIFO (first–in–first–out) policy (SCHED_FIFO) is associated with the
fixed-priority class in which critical processes can run in predetermined
sequence. Fixed priorities never change except when a user requests a
change.

This policy is almost identical to the Round Robin (SCHED_RR) policy.
The only difference is that a process scheduled under the FIFO policy does
not have an associated time quantum. As a result, as long as a process sched-
uled under the FIFO policy is the highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED_RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.

Other (Interactive)

The Time-Shar ing policy (SCHED_OTHER) is associated with the
time-sharing class, changing priorities dynamically and assigning time slices
of different lengths to processes in order to provide good response time to
interactive processes and good throughput to CPU-bound processes.
9-14

Daemons Panel
Priority

The Priority is relative to the selected Scheduling Policy and the range of
allowable values is dependent on the operating system.

On most Linux systems, the priority values for the FIFO class include 1..99, where
99 is the most urgent user priority available on the system.

It is recommended that a reasonable urgent priority is specified when using the
FIFO scheduling policy to prevent event loss.

CPU List

NightTrace daemon process execution will be constrained to the CPUs listed here.

By default, the list is all, which means the daemon process can run on any CPU on
the target system which isn’t shielded from process execution (consult the
shield(1) man page for more information on shielding).

The list can either be the word all, or a comma-separated list of CPU numbers or
ranges of CPU numbers; for example: 0,2-3.

To the right of the text field a description of the resultant CPU mask is shown. Some
system interfaces require CPU affinity to be specified as a mask, with each bit in the
mask representing a CPU. The mask is shown to remind you that the numbers you
enter into the text field here are logical CPU numbers, not hexadecimal characters in
a CPU mask.

If you enter something invalid into the text field, the description to the right changes
to the word invalid, shown in red. Ultimately, syntactically-invalid CPU lists are
automatically replaced with a list indicating all.

Enabled Events 9

The Enabled Events area allows you to specify which trace event types will be handled
by the daemon.

You may also change this list dynamically while the daemon is executing by pressing the
Enable Events button in the panel.

User Tracing

By default, all user trace events are enabled.

Kernel Tracing

For kernel trace daemons, the default set of enabled events is highly recommended.
You may wish to enable additional events that you may have added to the kernel, a
kernel module, or through a kernel event logged through an ioctl(2) call. See
“Additional Kernel Events” on page 17-7 for more information about adding kernel
events.
9-15

NightTrace RT User’s Guide
You should not disable kernel events that are enabled by default unless you are an
expert in kernel tracing, as it may have an adverse affect on the default kernel dis-
play pages generated by NightTrace.

NOTE

Support for kernel tracing is only available on some operating system distributions.
See “Kernel Dependencies” on page B-1 for more information.

Triggers 9

Triggers are conditions that are evaluated as NightTrace analyzes trace events from
streaming daemons. (A streaming daemon is one that sends trace data directly to the
ntrace tool for immediate processing, as opposed to a daemon that sends such data to a
file for subsequent processing).

When a trigger condition is evaluated to true, all streaming daemons are automatically
halted and the Current Timeline is set to the event which caused the trigger.

Triggers are useful when you are trying to capture data associated with an event that may
occur very rarely.

You may need to capture user and kernel data over a long period of time before the event
actually occurs.

With the trigger capability, you can set your conditions, launch your daemons, and then
walk away from NightTrace and let it run and capture data until triggered.

When capturing kernel data, or even user data, huge amounts of data may be collected
over a fairly short period of time. NightTrace limits the amount of memory it will use to
hold streaming trace data via a user-specified setting.

When the memory limit is reached, NightTrace will either halt current daemons or discard
the oldest trace events in order to stay under the specified memory limit.
9-16

Daemons Panel
Edit Triggers Dialog 9

The Edit Triggers dialog is activated by the Triggers... option in the Daemons menu
and the Daemons Panel context menu, as well as by the Triggers... button in the
Daemons panel.

Figure 9-6. Edit Triggers Dialog

Trigger conditions are specified using NightTrace profiles (see “Profiles” on page 13-1).

Enable Triggers

When checked, triggers are enabled, and NightTrace will continually process
streaming trace data to evaluate the trigger conditions.

Trigger if All/Any conditions are true

This option list indicates whether All conditions must be true before daemons will
be halted, or if only one (Any) of the conditions must be true.
9-17

NightTrace RT User’s Guide
Add

Pressing the Add button launches a dialog which allows you to select an existing
profile and optionally apply a count criteria to it.

Figure 9-7. Add Triggers Entry Dialog

Edit

Pressing the Edit button launches a dialog which allows you to change the selected
profile and count criteria.

Remove

Pressing the Remove button removes all selected profiles from the list.

Change Setting...

The warning text and the Change Setting... button will only appear if the current
Streaming Memory Usage Control action is set to stop daemons when the
memory limit for streaming events is exceeded.

This may cause your daemons to be halted before the trigger condition of interest
has occurred. Typically, when using triggers, you will want to change the Stream-
ing Memory Usage Control action such that the oldest trace events are dis-
carded when the memory limit is exceeded.

Pressing the Change Setting... button launches a dialog which allows you to
change the memory limit and set the associated action. See “Streaming Memory
Usage Control Dialog” on page 9-19

Streaming Memory Usage Control 9

When daemons stream trace data directly to NightTrace for immediate analysis, the trace
events are kept in memory. You can set the limit for the total amount of memory to be
9-18

Daemons Panel
used to hold streamed events. You can also instruct NightTrace as to which action to take
when the limit is reached; halt streaming daemons or discard the oldest trace events.

Streaming Memory Usage Control Dialog 9

Figure 9-8. Streaming Memory Usage Control Dialog

Memory Usage

Enter the maximum amount of memory, in megabytes, that NightTrace should use to
hold streaming trace data. When the limit is reached, the Action criteria defines
what action NightTrace will take.

Action

Select the desired action for NightTrace to take when the amount of memory
required to hold streaming trace data exceeds the maximum limit set above.

If you have enabled Triggers (See “Triggers” on page 9-16), then you will most
likely want to set the action to Delete oldest trace data at limit. Otherwise,
the daemons may be shut down before your triggering condition actually occurs.
9-19

NightTrace RT User’s Guide
9-20

10
Chapter 10Trace Segments Panel

10
10
10

The Trace Segments panel describes individual trace data segments that are loaded into
the current NightTrace session.

Trace Segments Table 10

Figure 10-1. Trace Segments Panel

A trace data segment represents data collected from a single user or kernel daemon.

Type

This column provides an icon which indicates whether the daemon is a user daemon
or kernel daemon (U or K), and whether it is a streaming daemon (a horizontal line
through the letter).

NOTE

Kernel tracing is on support under certain operating system distri-
butions. See “Kernel Dependencies” on page B-1 for more infor-
mation.

Trace Segment

This column provides the name of the segment which is used merely for identifica-
tion purposes within a NightTrace session.
10-1

NightTrace RT User’s Guide
Target

This column indicates the target system name where the data was collected.

Logged

This column provides a count of the actual number of events present in the data set.
This number almost always differs from the statistics shown in the Daemons panel.
The event counts in that panel are raw events. Processed events often consume
more than one raw event.

Lost

This column displays a count of the number of raw events that have been lost
between the logging agent (kernel or user application) and the daemon.

Event loss can occur for a variety of reasons. See “Preventing Trace Event Loss” on
page 6-1 for more information.

When events are lost, an L character appears on trace display Timelines indicating
the time at which the loss was recorded.

Duration

This column displays the duration of the data segment.

Unsaved

This column displays an icon indicating the data segment has not yet been saved to
disk. This occurs when streaming trace data into NightTrace.

Context Menu 10

The Trace Segment panel’s context menu is shown below:

Figure 10-2. Trace Segment Panel Context Menu
10-2

Trace Segments Panel
Open Trace File...

This option launches a standard file browser that allows you to select a NightTrace
data file to be loaded into the current session.

Save Trace Data...

This option saves all the selected data segments to a NightTrace segment file which
can be reloaded in subsequent NightTrace sessions. While the segment file is saved
as a single entity, the distinction of the individual data segments is not lost when
reloading.

Properties...

This option displays information about the trace segment, including the system
name and type, the clock source, and general timing information.

Figure 10-3. Trace Data Segment Properties Description Dialog

The Raw Header... button displays low-level information which is primary
intended for use by NightTrace developers.

Close Trace Data

This option deletes the selected data segments from the current session. All events
associated with them are discarded. If the events were streamed into NightTrace
and have not yet been saved, a dialog will give you the opportunity to save them
before closing them.
10-3

NightTrace RT User’s Guide
Display Fields

This option displays a sub-menu which allows you to customize which columns are
visible in the Trace Segments panel.

Control Buttons 10

The buttons at the bottom of the panel provide save and close operations on the selected
trace segments, as described in “Save Trace Data...” on page 10-3 and “Close Trace Data”
on page 10-3.
10-4

11
Chapter 11Events Panel

11
11
11

The Events panel provides a textual table describing all trace events in all trace segments
in chronological order.

Textual Event Tables 11

Figure 11-1. Events Panel

The current timeline is displayed in the panel as the selected event. By selecting a new
event in the panel, the current timeline is changed. Thus the Events panel is synchro-
nized with all Timeline panels.

The Events panel table consists of the following columns:
11-1

NightTrace RT User’s Guide
Offset

This column displays the ordinal event offset number within the combined trace
data set for the session. The first event in chronological time order has offset zero,
the second offset one, and so on.

This is the same value as would be returned by the NightTrace offset() function.

Node

This column displays the name of the system where the event was logged. This col-
umn is hidden by default if there is trace data from only one system.

Event

This column displays the event ID as a numeric value, or using the corresponding
event name, if one exists. Event IDs maybe assigned event names by using the Edit
Current Event Description... option of the Event panel context menu, or
using the Event Descriptions Panel panel.

CPU

When kernel trace data is present, this column displays the CPU where the event
was logged. If user trace data is also present, NightTrace can provide the same infor-
mation for user trace points, since it tracks the CPU upon which each process exe-
cutes from the kernel data (user trace data does not, in and of itself, include the CPU
number). This information cannot always be calculated (e.g. data loss), in which
case a value of ?? is displayed.

This column is hidden by default when no kernel trace data is present.

Process

This column displays the process name that logged the trace event. If a process
name is not available, the process ID is used.

Thread

This column displays the thread name or thread ID associated with the trace event.
Kernel trace events normally do not have thread names associated with them, unless
the user trace data segment is loaded with the kernel trace data and individual
t h r e a d s w i t h i n t h e u s e r a p p l i c a t i o n w e r e n a m ed w i t h a c a l l t o
trace_set_thread_name. See “trace_set_thread_name, Trace.setThread-
Name” on page 2-27.

Time

This column displays the time of the event, in seconds, relative to the first event in
the combined data set.
11-2

Events Panel
Tag

This column displays an event’s tag name, if present. Events of interest can be
tagged by double-clicking any cell in the row of an event. You can also create a tag
by double-clicking an event in a Timeline panel or double-clicking in a ruler in a
Timeline panel

Tags allow you to quickly locate events of interest. Tag names are saved as part of a
NightTrace session so you can refer to them subsequently. You can annotate a tag
with descriptive text using the Tags List Panel or using the context-menu of a tag
in a ruler in a Timeline panel (see “Timeline Panels” on page 12-1 for more infor-
mation).

Description

This column displays an event’s description. By default, kernel event descriptions
are already associated with all kernel event IDs. For events without descriptions,
the values of any arguments are displayed.

You can customize an event’s description using the Event Descriptions Panel
or by invoking the Edit Current Event Description... option of the Events
panel’s context menu.

Context Menu 11

The Events panel context menu is shown below.

Figure 11-2. Events Panel Context Menu

Text Search

Accelerator: Ctrl+T

This option launches a search dialog which allows you to locate user-specified text
within the Events panel. See “Event Panel Search Dialog” on page 11-6 for more
information.
11-3

NightTrace RT User’s Guide
Search Forward

Mnemonic: R
Accelerator: Ctrl+G

Executes a forward search on the previously defined text search. If no such text
search has been defined, it searches for the immediately following event.

IMPORTANT

When the focus is in an Events panel, Ctrl+G execute a textual
search of that panel. However, when the focus is in a Timeline
panel, Ctrl+G executes a profile search as defined by the cur-
rently selected profile.

Search Backward

Mnemonic: K
Accelerator: Ctrl+B

Executes a backward search on the previously defined text search. If no such text
search has been defined, it searches for the immediately preceding event.

IMPORTANT

When the focus is in an Events panel, Ctrl+B execute a textual search of that panel.
However, when the focus is in a Timeline panel, Ctrl+B executes a profile search as
defined by the currently selected profile.

Goto...

This option launches a dialog which allows you to type in an integer event offset
value or a floating point number which is interpreted as a time stamp. Pressing OK
on the dialog causes the current timeline to move to the specified location.

Distinguish Process Name by PID

This option changes the description of process names to append their process ID.
This can be useful when you have multiple processes of interest that have the same
simple name.

Edit Current Event Description...

This option launches the Edit Event Description dialog which allows you to define
or change the name of an event and its description.
11-4

Events Panel
Figure 11-3. Add/Edit Event Description Dialog

Code

This field contains the event ID of interest.

Name

This field defines the textual name that will be displayed in lieu of the event
ID.

Description

This field allows you to use the NightTrace format() function to define a
(possibly complex) textual description of the event and its arguments.

Close All Trace Data

This option closes all trace data segments; if some segments have not yet been
saved, a dialog gives you the opportunity to cancel the operation.
11-5

NightTrace RT User’s Guide
Display Fields

This option presents a sub-menu which allows you to select the columns to be dis-
played in the table.

Event Panel Search Dialog 11

This dialog searches the Events panel for text. It does not search for text in Time-
line panels.

Figure 11-4. Event Panel Search Dialog

This dialog is intended for textual searching of the information displayed in the Events
panel. A more powerful search mechanism is available by pressing the Profile Search
button which launches the Profiles dialog; see “Profiles Dialog” on page 13-2 for more
information.

Event panel searches are controlled by checking the various fields of interest and specify-
ing their search criteria.

The Search Options area contains the following.
11-6

Events Panel
Treat search text as regular expression

When checked, all text in all search criteria fields are interpreted as regular
expressions as defined by regex(3); otherwise, the search is executed for
the exact text entered (modified by the Case sensitive search setting).

Case sensitive search

When unchecked, the search is executed without regard to case.

Close dialog on successful search

This search dialog is non-modal, so it can stay open even after a search com-
pletes. Check this box if you want the dialog to automatically close if the
search is successful.

Match any/all criteria

This selection controls whether all or any of the checked fields must match
their search criteria for a successful search.

The Search Criteria area contains individual text fields for the various columns in the
Events panel. If the field is enabled (checked) then the text inside the field defines the
criteria for that column.

Search Forward

Executes a forward search of the Events panel based on the specified criteria.

This button does not search for text in Timeline panels. Use the Profiles dialog
(see “Profiles Dialog” on page 13-2) for such actions.

Search Backward

Executes a backward search of the Events panel based on the specified criteria.

This button does not search for text in Timeline panels. Use the Profiles dialog
(see “Profiles Dialog” on page 13-2) for such actions.
11-7

NightTrace RT User’s Guide
11-8

12
Chapter 12Timeline Panels

12
12
12

A timeline panel allows you to analyze trace events both graphically and textually.

Default Timeline 12

There are two basic types of default timelines; user timelines and kernel timelines. Both
operate in essentially the same manner, but a kernel timeline is automatically tailored to
aid in viewing kernel events.

The figure below is an example of a default user timeline (see “Kernel Timelines” on page
17-12 for a kernel timeline example).

Figure 12-1. Default User Timeline

A default user timeline consists of the following areas.

• Current Timeline Indicator

• Global Ruler
12-1

NightTrace RT User’s Guide
• Interval Ruler

• Event Graphs

• Event Description Area

The timeline is laid out horizontally and displays trace events as they occurred over time.
Events to the left occurred chronologically before events to the right.

The timeline display is interactive. It reacts to zoom, search, and positioning operations.

Current Timeline Indicator 12

The Current Timeline Indicator is a vertical dashed line which spans much of the ver-
tical area of a timeline. It represents the current time and is synchronized with all other
panels throughout the current NightTrace session.

Clicking anywhere within a ruler or event graph in a timeline moves the current timeline.
It also responds to search operations throughout NightTrace.

Global Ruler 12

The Global Ruler is the bottom-most ruler in the timeline.

Figure 12-2. Global Ruler

This ruler is the basic mechanism used for moving throughout the entire trace data set with
the mouse.

The ruler is annotated with hash marks with time values in units of seconds. It represents
the entire data set, not just the data that is currently viewed (also known as the current
interval).

The portion of the ruler that has a gray background represents the section of the entire data
set that comprises the current interval -- that is, the events that are currently visible in the
timeline. Inside the gray area is a single vertical black line which extends through the
entire height of the ruler. It represents the location of the current timeline within the cur-
rent interval.
12-2

Timeline Panels
NOTE

If the current interval is sufficiently small, the width of the gray
area may be indistinguishable from the vertical black line within
it.

To change the current interval, simply click anywhere in the global ruler. Hence, to look
at data near the end of the data set, click very near the end in the global ruler.

See “Keyboard Traversal” on page 12-7 for valuable information on how to use the key-
board to traverse within the current interval and throughout the entire data set.

Interval Ruler 12

The Interval Ruler is the ruler just above the Global Ruler.

Figure 12-3. Interval Ruler

The Internal Ruler represents the current interval. It is annotated with hash marks with
time values in seconds.

Clicking anywhere in the ruler changes the current timeline to that location.

See “Keyboard Traversal” on page 12-7 for valuable information on how to use the key-
board to traverse within the current interval and throughout the entire data set.

The interval ruler can also contain additional objects, as described below.

Tags

A tag icon is displayed on the ruler for any tag associated with that time. Tags are
convenient ways of marking events of interest. They can be annotated with user
comments and are saved across NightTrace sessions.

To create a tag using the timeline, double-click a location in the Interval Ruler. You
can then annotate the tag by right-clicking on its icon and selecting Annotate...
from the context menu.

See “Tags List Panel” on page 15-1 for more information.

Daemon Paused

This icon is displayed when a daemon is Paused. Events are no longer collected
until the daemon is resumed.
12-3

NightTrace RT User’s Guide
NOTE

If the incoming data rate in streaming mode exceeds NightTrace’s
ability to pass data from the daemon to the display buffer, Night-
Trace automatically pauses and resumes the daemon in order to
catch up. You can increase the Stream Buffer Size using the Dae-
mons Definition dialog to avoid this.

Daemon Resumed

This icon is displayed when a daemon is Resumed.

Lost Data

This icon is displayed when event loss is detected. It is associated with an
NT_LOST_DATA event, which is not normally displayed in event graphs; however,
you can explicitly search for this event. The first argument to the event contains the
number of events that were lost.

When event loss occurs, all states currently active in state graphs are terminated and
all knowledge of which processes were executing on which CPUs are lost until the
next context switch event occurs on each CPU, respectively. (See “Primary Kernel
Trace Events” on page 17-1 for more information on kernel event and state graphs).

Event loss can occur for a variety of reasons. See “Preventing Trace Event Loss” on
page 6-1.

Time Warp

This icon is displayed when an internal inconsistency is detected within timestamps.
This is most often indicative of a system problem or an internal operating system
issue. This is essentially an internal operating system or hardware error, but instead
of throwing all data away, NightTrace marks the data set and continues as best it
can.
12-4

Timeline Panels
Event Graphs 12

An Event Graph is a rectangular area within a timeline which contains vertical lines
representing events of interest.

Figure 12-4. Event Graph with Labels

The graphic above shows data boxes on the left hand side which react to changes in the
current timeline.

The event graphs on the right display a vertical line when at least one event occurs at that
location. Zooming in may provide more detail and the single vertical line may expand to
indicate individual events.

Event graphs can be tailored to display events meeting only certain criteria. See “Creating
Timeline Objects” on page 12-8 for information on creating and modifying event graphs.

In a default user timeline, an event graph is created for each thread that has logged trace
events, if the application has been linked with the thread-aware version of the NightTrace
Logging API library (See “Threads and Logging” on page 2-34 for more information.).
Each of these graphs only displays events logged by their respective thread. The bot-
tom-most event graph in a user timeline represents all user events -- those logged by any
thread, registered or not.

A textual description of the closest event immediately preceding the current timeline is
displayed in right-hand portion of the Event Description Area at the bottom of the
panel.

As you hover the mouse cursor over any event in the event graphs, a textual description of
the event under the mouse cursor is displayed in the left-hand portion of the Event
Description Area at the bottom of the panel.
12-5

NightTrace RT User’s Guide
Event Description Area 12

The Event Description Area provides a textual description of the events.

Figure 12-5. Event Description Area

The area consists of two rectangular text areas.

Hover Event Description

The area on the left-hand side describes the event immediately under the mouse cur-
sor. As you move the mouse throughout the timeline and hover over an event, this
area updates. If multiple events reside under the mouse cursor, the hover area indi-
cates this. You must zoom in to obtain individual event information in such cases.

The detailed textual description in this area includes the timespan between the hover
event and the current timeline.

TIP

To determine the amount of time between two events within the
current interval, set the current timeline on one event and then
hover the mouse cursor over the second event of interest.

To determine the amount of time between two events which are
not both visible in the current timeline, either zoom out so both
events are visible or tag each event and use the Tags List Panel
to examine the timespans.

Current Event Description

The area on the right-hand side describes the current event. The current event is the
event immediately at the current timeline or the event most closely preceding it in
time.

Event descriptions are provided by default by NightTrace. You can control how events are
described by providing customized event descriptions using the Event Descriptions
Panel.
12-6

Timeline Panels
Keyboard Traversal 12

Timelines are designed to be efficiently traversed through keyboard shortcuts when the
window focus is in a timeline.

The following table describes keyboard traversal.

In addition to keyboard shortcuts, moving the mouse wheel back and forth causes the
timeline to zoom in and out.

Table 12-1. Timeline Keyboard Traversal

Key Sequence Action

RightArrow Moves the current timeline to the next event in time

LeftArrow Moves the current timeline to the previous event in time

UpArrow Zooms in or out, depending on the Zooming preference (see “Zooming Controls” on
page 8-42).

DownArrow Zooms in or out, depending on your Zooming preference (see “Zooming Controls” on
page 8-42).

Alt+UpArrow Zooms all the way in or out, depending on your Zooming preference (see “Zooming
Controls” on page 8-42).

Alt+DownArrow Zooms all the way in or out, depending on your Zooming preference (see “Zooming
Controls” on page 8-42).

Alt+LeftArrow Goes to the first event in the data set

Alt+RightArrow Goes to the last event in the data set

Ctrl+RightArrow Shifts the current interval to the right

Ctrl+LeftArrow Shifts the current interval to the left

Ctrl+F Displays the Profiles Dialog to allow you to define or select a search criteria

Ctrl+G Executes a forward search using the currently selected profile in the Profile Status
List. If no profile is selected, it searches for the next event.

Ctrl+B Executes a backward search using the currently selected profile in the Profile Sta-
tus List. If no profile is selected, it searches for the previous event.

Ctrl+I Launches the Goto dialog which allows you to enter times or offsets that control
which events are displayed in the interval.

Alt+G Identical to Ctrl+G except that the search is constrained by the bounds of the current
interval.

Alt+B Identical to Ctrl+B except that the search is constrained by the bounds of the current
interval.

Alt+V Toggles between the current timeline and the last location of the current timeline.
This is especially useful for returning to the previous location after executing a search.
12-7

NightTrace RT User’s Guide
Creating Timeline Objects 12

Timeline objects can be created or modified by entering Edit mode using the context menu
of a Timeline panel.

Figure 12-6. Timeline Editing

In edit mode, the background of the timeline turns into a grid. Objects can be created and
inserted into the grid using the context menu.
12-8

Timeline Panels
Figure 12-7. Timeline Context Menu

Most timeline objects must be inserted into a Graph Container. By default, a user timeline
contains one large graph container consuming the center and largest portion of the time-
line.

To insert an event graph, state graph, data graph, ruler, or locator into a graph container,
select the graph container by clicking on it and then select the appropriate option from the
context menu.

NOTE

If you cannot select the graph container because its edges are
obscured by graphs within the container, click on any object in the
container, then Shift+Click to select that container.

Once selected, the mouse cursor will change. Click inside the graph container and drag
the mouse up or down and release the mouse button. The new object is inserted.

NOTE

Graph containers, and objects in general, can be resized using the
mouse. Position the cursor over an edge or corner, wait for the
cursor to change to a resizing cursor, then left click and drag to
resize.

Double-click the new object to bring up its editing dialog, as described in the sections
below.
12-9

NightTrace RT User’s Guide
Event Graph 12

An Event Graph displays vertical lines for each event that matches the criteria of the
event graph.

Figure 12-8. Edit Event Graph Profile Dialog

The definition of an event graph is essentially identical to defining a condition profile
using the Profiles Dialog.

Only events matching the conditions set within this dialog will be shown in the event
graph.

Colors can be specified in the Event Color field by clicking on the color bar to the right
of the text field and selecting a color from the Color Selection dialog or by entering in
the text field a standard color name (see “Standard Color Names” on page 12-19) or RGB
notation (i.e., #rrggbb where r, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).

Additional adjustments can be made by selecting various options from the context menu
when the event graph is selected.
12-10

Timeline Panels
State Graph 12

A State Graph is an Event Graph that can optionally display states as well.

Figure 12-9. Edit State Graph Profile Dialog

The definition of a state graph is essentially identical to defining a state profile using the
Profiles Dialog, with the additional capability of selecting individual events to be dis-
played as in an Event Graph.

During the time in which a state is active, a solid bar appears in the lower vertical half of
the state graph. Events as selected by the Events field in this dialog appear as vertical
lines spanning the entire vertical space of the graph.

Colors can be specified in the Event Color and State Color fields by clicking on the
color bar to the right of the text field and selecting a color from the Color Selection dia-
log or by entering in the text field a standard color name (see “Standard Color Names” on
page 12-19) or RGB notation (i.e., #rrggbb where r, g and b are hexadecimal characters
representing the red, green and blue color components, respectively).

Additional adjustments can be made by selecting various options from the context menu
when the state graph is selected.
12-11

NightTrace RT User’s Guide
Data Graph 12

A Data Graph is similar to a State Graph, except that a data block or line is shown in
lieu of the solid state bar of a state graph. The height of the line or block indicates the
value of the data.

Figure 12-10. Edit Data Graph Profile Dialog

The definition of a data graph is essentially identical to defining a condition profile using
the Profiles Dialog, with the addition of three fields which define how the data is to be
displayed.

Value

This field must be a valid NightTrace expression which defines a value. Typically
this will be something simple like an argument associated with the events as defined
in the Events field; e.g. arg1. See “Using Expressions” on page 16-1 for more
information on expressions.

Min Value
Max Value

If set to CALC, NightTrace automatically calculates the minimum and/or maximum
values of all data items matching the profile’s criteria and adjusts the vertical scaling
appropriately such that the largest data value consumes the entire vertical space of
the graph and the smallest consumes a single pixel.

You may change the fields to specific values and NightTrace will adjust the scaling
accordingly. Data values that fall outside the specified minimum or maximum val-
ues will be plotted as the minimum or maximum value specified, respectively.
12-12

Timeline Panels
Drawing and Coloring Options...

Pressing this button displays the Data Graph Options dialog that allows you to
select the color of data values and their boundaries and select attributes which affect
how the data graph is drawn.

Additional adjustments can be made by selecting various options from the context menu
when the data graph is selected.

Data Graph Options Dialog 12

The Data Graph Options dialog is launched from the Edit Data Graph Profile dia-
log when the Drawing and Coloring Options... button is pressed.

Figure 12-11. Data Graph Options Dialog

The dialog consists of two areas which control how data graphs are drawn and the colors
used for the data values and boundaries.

Combining the various Drawing and Coloring options provides a wide variety of graph
types, as shown in “Drawing and Coloring Examples” on page 12-16.
12-13

NightTrace RT User’s Guide
Drawing Attributes

Connect Data Values

This option draws a line between all consecutive data items. Each data item is
drawn as a small point on the graph.

Extend Data Values

This option causes a polygon to be drawn, which extends from the X coordi-
nate of the last data item up to the X coordinate of the current data item.

Coloring

The Coloring area defines the color mode used to draw the data graph and the col-
ors associated with the mode selected from the drop-down:

Figure 12-12. Data Graph Options Dialog Color Mode Selector

The color mode selector provides four options:

Single Color

In Single Color mode, a single color is used to draw all data values. The color
is defined by the Primary Color item in the dialog.

Gradient

In Gradient mode, a linear color gradient is used to draw all data values and
data value boundaries. The end-points of the gradient are defined by the Pri-
mary Color and High Color items in the dialog. The color gradient is
strictly vertical, reflecting the value of each data item. Primary Color repre-
sents the smallest data value whereas High Color represents the largest data
value.

Discrete Thresholds

In Discrete Thresholds mode, a set of colors is used to reflect various value
thresholds of the data. An arbitrary number of thresholds can be entered, using
the Color Thresholds table in the dialog.
12-14

Timeline Panels
The Primary Color is used as the default threshold -- the threshold matching
all values not covered by specific thresholds entered in the table.

The portions of the data items and boundaries that are drawn that fall into each
threshold will be of the corresponding threshold color.

Auto Differentiated

In Auto Differentiated mode, a unique color is randomly assigned to each data
value encountered in the data graph. You cannot predict which color will be
assigned to which data value, but once the color is shown it will remain asso-
ciated with only that data value.

This option is not recommended for data sets which have a large range of val-
ues, since individual colors become hard to distinguish as the number of col-
ors required increases dramatically.

An interesting application of this color mode combines its use with Extend
Data Values and a strict application of graph Minimum and Maximum
boundaries.

Consider a data set consisting of non-negative integers, such as the PID value
of a set of processes. Setting the Minimum and Maximum graph boundaries
in the Data Graph dialog to zero and one, respectively, combined with
Extend Data Values and Auto Differentiated will cause a single block
of data to be drawn for each data value of the same height, but with a unique
color. Kernel display pages use this technique to show process activities on
each CPU.

Primary Color

The Primary Color is used for the Single Color, Gradient , and Discrete
Thresholds color modes.

A color may be selected by clicking on the color bar to the right of the text field and
selecting a color from the Color Selection dialog or by entering in the text field a
standard color name (see “Standard Color Names” on page 12-19) or RGB notation
(i.e., #rrggbb where r, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).

When a color is entered in the text field and the dialog focus moves away from the
text field, the color bar is updated with the new color (unless it is invalid, in which
case it turns black).

High Color

The High Color is only used with the Gradient color mode.

Colors may be selected by clicking on the color bar to the right of the text field and
selecting a color from the Color Selection dialog or by entering in the text field a
standard color name (see “Standard Color Names” on page 12-19) or RGB notation
(i.e., #rrggbb where r, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).
12-15

NightTrace RT User’s Guide
When a color is entered in the text field and the dialog focus moves away from the
text field, the color bar to the text field is updated with the new color (unless it is
invalid, in which case it turns black).

Color Thresholds

The Color Thresholds table is only used with the Discrete Thresholds color
mode.

The table automatically expands as you enter individual thresholds.

Enter a color by clicking or entering a cell in the Color column. This launches a
Color Selection dialog.

Enter a threshold value as an integer or floating-point numeric literal in the
Threshold column by double-clicking in the cell or typing while positioned in the
cell.

The value entered for a threshold is the inclusive lower bound of the threshold. The
exclusive upper bound is defined by the closest threshold above it by value, not nec-
essarily by visual position in the table. If no threshold exists, the upper bound
extends to the maximum value that can be plotted.

Traverse the cells in the table by clicking with the mouse or using the arrow keys.
Using the Tab key will cause the focus to leave the table.

Remove cells by selecting the cells to be removed and pressing the Delete key (or
Crtl+X).

Thresholds are automatically sorted in ascending order by NightTrace before and
after the dialog is shown.

The Primary Color is used for the default threshold, which matches all values
lower than the lowest threshold entered in the table.

Drawing and Coloring Examples 12

Figure 12-13 shows several different data graphs reflecting the same data, but using differ-
ent combinations of Drawing and Coloring attributes.
12-16

Timeline Panels
Figure 12-13. Data Graph Examples

Color Selection Dialog 12

The Color Selection Dialog aids you in selecting a color by allowing you to select
from a list of basic or customized colors, enter RGB values, or select a color from a spec-
trum.

It is launched when clicking on a colored button to the right of a color selection text field,
or when clicking in cells in the Color column of the Color Thresholds table.
12-17

NightTrace RT User’s Guide
Figure 12-14. Color Selection Dialog

When using the mouse to select a color from the spectrum, be sure to choose an Alpha
value from the slider at the right-hand side of the dialog.

A common error is to click in the spectrum area and click on OK, expecting to get the
exact color associated with your mouse click in the spectrum, but effectively getting black
instead due to the Alpha setting. The color in the spectrum is modified by the Alpha value
associated with the vertical slider setting. The actual color you are selecting is always
shown in the medium-sized rectangle beneath the lower-left corner of the spectrum.
12-18

Timeline Panels
Standard Color Names 12

NightTrace supports the standard color names shown in Table 12-1.
Table 12-1. Standard Color Names

aliceblue darkslategray lightpink paleturquoise
antiquewhite darkslategrey lightsalmon palevioletred

aqua darkturquoise lightseagreen papayawhip
aquamarine darkviolet lightskyblue peachpuff

azure deeppink lightslategray peru
beige deepskyblue lightslategrey pink

bisque dimgray lightsteelblue plum
black dimgrey lightyellow powderblue

blanchedalmond dodgerblue lime purple
blue firebrick limegreen red

blueviolet floralwhite linen rosybrown
brown forestgreen magenta royalblue

burlywood fuchsia maroon saddlebrown
cadetblue gainsboro mediumaquamarine salmon

chartreuse ghostwhite mediumblue sandybrown
chocolate gold mediumorchid seagreen

coral goldenrod mediumpurple seashell
cornflowerblue gray mediumseagreen sienna

cornsilk grey mediumslateblue silver
crimson green mediumspringgreen skyblue

cyan greenyellow mediumturquoise slateblue
darkblue honeydew mediumvioletred slategray
darkcyan hotpink midnightblue slategrey

darkgoldenrod indianred mintcream snow
darkgray indigo mistyrose springgreen

darkgreen ivory moccasin steelblue
darkgrey khaki navajowhite tan

darkkhaki lavender navy teal
darkmagenta lavenderblush oldlace thistle

darkolivegreen lawngreen olive tomato
darkorange lemonchiffon olivedrab turquoise
darkorchid lightblue orange violet

darkred lightcoral orangered wheat
darksalmon lightcyan orchid white

darkseagreen lightgoldenrodyellow palegoldenrod whitesmoke
darkslateblue lightgray palegreen yellow
12-19

NightTrace RT User’s Guide
Interval Ruler 12

You can add an Interval Ruler to a graph container using the Ruler option of the Add
to Selected Graph Container sub-menu of the timeline’s context menu.

Global Ruler 12

You can add a Global Ruler to a graph container using the Locator option of the Add
to Selected Graph Container sub-menu of the timeline’s context menu.

Label 12

Labels are static text areas that can be placed anywhere within a timeline. They do not
have to be inserted into a graph container.

You can add a label by using the Add Label option of the timeline’s context menu.

Once added, double-click the label to set its text.

Once defined, you can adjust attributes of the label by selecting various options from the
context menu when the label is selected, for example:

Adjust Font/Alignment in Selected

This menu item allows you to select a font for the label, and to adjust its vertical and
horizontal alignment.

Adjust Colors in Selected

This menu item allows you to select the color of the text and the color of the label’s
background.

Data Box 12

A Data Box is a dynamic label that can be placed anywhere in a timeline. The value dis-
played in the box is dependent on the current timeline.
12-20

Timeline Panels
Figure 12-15. Edit Data Box Profile

The definition of a Data Box is essentially identical to defining a condition profile using
the Profiles Dialog, with the addition of the following field:

Output

This field must be a valid NightTrace string expression. Typically, it involves use of
the format() function. For example:

format(“The current value is: %f”, arg_dbl())

See “Using Expressions” on page 16-1 for more information.

Once defined, you can adjust the box by selecting various options from the context menu
when the data box is selected; for example:

Adjust Font/Alignment in Selected

This menu item allows you to select font for the text to be displayed and to adjust its
vertical and horizontal alignment.

Adjust Colors in Selected

This menu item allows you to select the color of the text and the color of the label’s
background.
12-21

NightTrace RT User’s Guide
Default CUDA AI Timeline 12

Figure 12-16. CUDA AI Timeline

When CUDA Application Illumination trace points are detected in the event data set (see
“cuda” on page 5-65), NightTrace automatically builds a timeline similar to the figure
above.

The following features distinguish CUDA AT timelines from others.

• The databox on the left side in the middle of the panel lists details about the
execution of the CUDA kernel at or immediately prior to the current time-
line. It includes the grid and block configurations, the name of the kernel,
and execution times.

• The tall data graph in the middle of the panel plots the duration of individ-
ual CUDA kernel executions.
12-22

Timeline Panels
Default CUDA GPU Timeline 12

When CUDA GPU trace points are detected in the event data set (see “NightTrace CUDA
Tracing API” on page 2-35), NightTrace automatically builds a timeline similar to the fol-
lowing.

Figure 12-17. Default CUDA GPU Timeline

The colorful rows represent activity on individual Symmetric Multiprocessors (SM) inside
a GPU. The actual number of rows will depend on the number of SMs your GPU had and
whether they logged any trace data.

The following features distinguish CUDA GPU timelines from others:

• The trace data is segregated by SM (instead of by CPU as in a kernel time-
line).

• The only events shown (by default) are those logged by
ntrace_cuda_event() calls executed by the GPU.
12-23

NightTrace RT User’s Guide
• A single vertical line in one of the event graphs may actually (and usually
does) represent more than one event. Unlike most all other trace data, the
times of these individual events are identical, and you will only see a single
vertical line no matter how far you zoom in.

Due to the last issue in the bullet list above, another panel is included along with the
CUDA GPU timeline; that panel is shown here.

Figure 12-18. CUDA Warp Panel

A CUDA Warp panel is very much like an Events panel, except it only shows the
events associated with a GPU’s execution of a single warp. A warp, in CUDA parlance, is
the execution of a subset of threads by a single symmetric processor. Effectively, all
events logged by the same ntrace_cuda_event() by the same warp will be at the
same exact time.

Thus they appear as a single vertical line in the CUDA GPU timeline.

As you traverse through the data set, this panel shows you all the events for the warp asso-
ciated with the current time.

Checking the Filter to unique trace event/argument values checkbox causes the
warp to coalesce events with the same event ID and argument set within the warp, as
shown by the following figure.
12-24

Timeline Panels
Figure 12-19. Filtered CUDA Warp Panel

As you can see, there are two sets of similar events in this warp.

If you hover over one of the sets, a tool tip more fully describes the members of the set.

As you move through events within the current warp, the representative event will change
in the filtered CUDA Warp panel so that it is shown. For example, if you moved the time-
line an event or two forward, the first event in the figure above might be at Offset 12920.
12-25

NightTrace RT User’s Guide
12-26

13
Chapter 13Profiles

13
13

Profiles include any condition or state you use within a NightTrace session, including
those used in search and summary operations.

In NightTrace, a condition is the "logical and" of several criteria such as event codes, pro-
cesses, and threads. Conditions may be used to examine matching events of interest.

A state profile is a combination of two conditions which identify the start and end require-
ments of a state. All other profiles are simply condition profiles, although they can be as
complex as you need them to be.

Profiles can be used in:

• searches

• summaries

• graphs

Profiles are managed using the Profiles dialog.
13-1

NightTrace RT User’s Guide
Profiles Dialog 13

This dialog contains a list of profiles and allows you to define new profiles using
drop-down option lists for commonly requested conditions and states. Profiles can be fur-
ther customized providing you complete control over detailed profile conditions.

Figure 13-1. Profiles Dialog

Profile Status List 13

The top portion of the dialog contains the Profile Status List table. Profiles are dis-
played in a table with the following columns:

Type

This column displays a state icon for state profiles; otherwise nothing is displayed.

Name

This column displays the profile’s name.

Status

This column indicates whether the event at or immediately previous to the current
timeline satisfies the conditions of the profile.
13-2

Profiles
Count

This column displays a count of the number of instances of events that satisfy the
conditions of the profile.

Last

This column displays the last event offset before the current timeline which satisfied
the conditions of the profile.

Offset

This column displays the last event offset that concluded the profile’s state -- this is
only valid for states.

Context Menu 13

The Profile Status List table’s context menu is shown below.

Figure 13-2. Profile Status List Table Context Menu

Delete

This option deletes the profile definitions currently selected in the table.

Search Forward

This option executes a forward search for the currently selected profile.

Search Backward

This option executes a backward search for the currently selected profile.
13-3

NightTrace RT User’s Guide
Search Forward within Timeline Interval

This option executes a forward search for the currently selected profile; the range of
events to search is constrained by the current Timeline interval.

Search Backward within Timeline Interval

This option executes a backward search for the currently selected profile; the range
of events to search is constrained by the current Timeline interval.

Summarize

This option executes a summary action on the currently selected profile.

Summarize within Timeline Interval

This option executes a summary action on the currently selected profile; the range of
events to summary is constrained by the current Timeline interval.

Move Up

This option moves the currently selected profiles one position towards the beginning
of the table.

Move Down

This option moves the currently selected profiles one position towards the end of the
table.

Display Fields

This option displays a sub-menu which allows you to select which columns are visi-
ble within the table.

Profile Definition 13

This area of the dialog contains various criteria fields which define a profile.
13-4

Profiles
Key/Value

The Key/Value option list provides a starting point for profile definition. Selecting
items from the option list populates the individual condition fields below with the
values and expressions required to specify the key (and value) you have selected.

The option list provides the following items:

Condition

This option populates the condition fields to create a condition profile which
will match any event, unconditionally. It is useful when you wish to manually
enter conditions starting from a clean template.

State

This option populates the condition fields to create a state profile which starts
on any event and ends on any event. It is useful when you wish to manually
enter state conditions starting from a clean template.

System Call All Events
System Call Enter Events
System Call Exit Events
System Call State

These options populate the condition fields such that the profile detects the
existence of a specific system call, as indicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.
13-5

NightTrace RT User’s Guide
Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

Selecting System Call State defines a state which begins when a system
calls is entered or resumed, and terminates when the system call is suspended
or exits.

When a specific system call is selected, the name of the system call will
appear in a read-only text field beneath the Key/Value option list. The spe-
cific system call associated with the profile can be changed by pressing the
Values... button and selecting a different value from the list.

NOTE

Multiple system calls may be selected from the Key/Value pop-up
menu.

Exception All Events
Exception Enter Events
Exception Exit Events
Exception State

These options populate the condition fields such that the profile detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
allowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

Selecting Exception State defines a state which begins when an exception
is entered or resumed, and terminates when the exception is suspended or
exits.

When a specific exception is selected, the name of the exception will appear
in a read-only text field beneath the Key/Value option list. The specific
exception associated with the profile can be changed by pressing the Val-
ues... button and selecting a different value from the list.

NOTE

Multiple exceptions may be selected from the Key/Value pop-up
menu.
13-6

Profiles
Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events
Interrupt State

These options populate the condition fields such that the profile detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

Selecting Interrupt State defines a state which begins when an interrupt is
entered and terminates when the interrupt exits.

When a specific interrupt is selected, the name of the interrupt will appear in a
read-only text field beneath the Key/Value option list. The specific interrupt
associated with the profile can be changed by pressing the Values... button
and selecting a different value from the list.

NOTE

Multiple interrupts may be selected from the Key/Value pop-up
menu.

Function All Events
Function Enter Events
Function Exit Events
Function State

These options are for use when you have loaded Application Illumination (AI)
trace data. AI trace data is generated by using the nlight(1) tool to instru-
ment your user application automatically, recording the call and return from
all (or selected) functions in your application. See Chapter 5, “Application
Illumination” for more information.

These options populate the condition fields such that the profile detects the
existence of a specific function calls, as indicated by the specific option
selected. After selecting one of these options, a function list will launch
allowing you to select an individual function (or several functions).

Selecting Function All Events will match events representing the entry,
suspension, resumption, and exit of a function.

Selecting Function Enter Events or Function Exit Events will match
events representing entry and return from of a function, respectively.
13-7

NightTrace RT User’s Guide
Selecting Function State defines a state which begins when a function is
entered and terminates when the function returns.

NOTE

Multiple functions may be selected from the Key/Value pop-up
menu.

Tagged Events

This option populates the condition fields such that the profile detects the
event associated with the tag that you select from the list that is launched
when choosing this option.

When a specific tag is selected, the name of the tag will appear in a read-only
text field beneath the Key/Value option list. The specific tag associated with
the profile can be changed by pressing the Values... button and selecting a
different value from the list.

If no tagged events exist, this menu option is desensitized.

NOTE

Multiple tags may be selected from the Key/Value pop-up menu.

Choose Profile...

You can select from previously-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the Profile Def-
inition criteria with the conditions associated with that profile. The current profile
becomes the profile you selected. Subsequent changes will be applied to the profile
if you press the Apply, Search/Close, or Summarize buttons. A new profile
will be created if you press the Add button.

Alternatively, when checking the Import by Reference checkbox in the
Choose Profile dialog, the Profile Definition criteria will be populated with a
condition that references the selected profile. This technique allows you to add
additional conditions to the selected profile while preserving the named association.
Thus subsequent changes to the selected profile will be reflected in the new profile
you create.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection lists in the dialog.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default condi-
tions that were populated when you selected the profile.
13-8

Profiles
Events
Start Events
End Events

The Events, Start Events and End Events criteria allows you restrict the con-
dition to events listed in the text fields. Values in the text fields are required to be a
comma-separated list of numeric event numbers or ranges or event names. The
Browse... buttons to the right of the text fields allows you to select from a list of
known event names. The values ALL, ALLADA, ALLKERNEL, and ALLUSER
are special entries referring to classes of events, as indicated by their name.

Start Events and End Events are only shown for state profiles whereas Events
is only shown for condition profiles. Start Events and End Events refers to
events which are candidates for the beginning or end of a state, respectively.
Events refers to all events.

Exclude Events

Exclude Events allows you restrict the condition to events that are not listed in
the text field. It is only shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field allows you to select from a list of known event names. The value NONE is a
special entry referring to null set of events, which means that no events are
excluded.

Condition
Start Condition
End Condition

The Condit ion , Start Condit ion , and End Condit ion criteria allows you
restrict the profile using NightTrace’s expression language. Values in the text fields
are required to be a boolean NightTrace expressions whose syntax is roughly that of
the C language, with built-in functions for accessing attributes of events. See
“Using Expressions” on page 16-1 for more information on expression syntax and
semantics.

Start Condition and End Condition are only shown for state profiles whereas
Condition is only shown for condition profiles. Start Condition and End Con-
dition refers to the conditions which must be met for the beginning or end of a state,
respectively, whereas Condition applies globally to the profile.

Processes

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Values in the text field are required to be a comma-separated list of process names or
PIDs (see getpid(2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from a list of known processes.
13-9

NightTrace RT User’s Guide
NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the thread’s TID (see gettid(2)).

If multiple processes have the same name (perhaps two unrelated programs both
called a.out) selecting that name from the list or placing that text in the text field
will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process_name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from a list of known threads by name. This list is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-34 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing a thread name in the Threads list is equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:

thread_name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname(1)). The Browse... button to the right of the text field allows
you to select from a list of known hosts present in the loaded trace data sets by
name.

Use of the Nodes condition is only useful when capturing and analyzing data from
multiple systems; this requires using the Real-time Clock and Interrupt Module
(RCIM) as a synchronized timing source or having multiple systems synchronized
through another means; e.g. NTP or PTP. See the Real-Time Clock and Interrupt
Module User’s Guide (0891082) for more information.
13-10

Profiles
Placing a node name in the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node_name == “a.out”

Output Script

This text field does not impose a constraint on the profile. It allows you to specify
an alternative shell script that is executed for summary operations. By default, the
following scripts are executed for condition and state profile summaries, respec-
tively:

• /usr/lib/NightTrace/bin/event-summary.sh

• /usr/lib/NightTrace/bin/state-summary.sh

All script output generated to stdout will be displayed in the Profiles Result panel
which is automatically created when a summary is executed for a new profile. Out-
put from stderr is not captured.

Summary data is passed to the specified script via environment variables. See
“Summary Script Environment Variables” on page 13-14 for more information.

The path to the summary output script is saved as part of a NightTrace session and
can be utilized in subsequent ntrace invocations, including batch mode summary
execution via command line options.

CPUs

The CPUs list allows you to place CPU restrictions on the profile.

The list can either be the word all, or a comma-separated list of CPU numbers or
ranges of CPU numbers; for example: 0,2-3.

To the right of the text field a description of the resultant CPU mask is shown. Some
system interfaces require CPU affinity to be specified as a mask, with each bit in the
mask representing a CPU. The mask is shown to remind you that the numbers you
enter into the text field here are logical CPU numbers, not hexadecimal characters in
a CPU mask.

If you enter something invalid into the text field, the description to the right changes
to the word invalid, shown in red. Ultimately, syntactically-invalid CPU lists are
automatically replaced with a list indicating all.

Name

The Name text field defines the name of the profile. The profile’s name is auto-
matically set when selecting a previously-defined profile or when creating a new
profile. You can change the name by typing in a modified name in the text field.
Changing the name of a profile does not, in and of itself, create a new profile. A
new profile is created if you press the Add button. Pressing the Apply,
Search/Close, or Summaries buttons applies the name change (and all other
outstanding profiles changes) to the current profile as well as executes the associ-
ated action, if any.
13-11

NightTrace RT User’s Guide
Control Buttons 13

The checkbox and buttons at the bottom of the dialog operate on the profile as defined by
the remainder of the dialog.

Close dialog on summary or successful search

The Profiles dialog is non-modal, so it can stay open after search or summary opera-
tions. Clear this checkbox if you want the dialog to remain visible after a summary
or successful search operation.

Add

The Add button creates a new profile based on the Profile criteria. If another pro-
file with the same name already exists, the name of the new profile is automatically
adjusted to be unique by appending a numeric value to the name.

Apply

The Apply button modifies an existing profile based on the Profile criteria. If the
profile did not previously exist, it adds the profile.

Search Backward

Executes a backward search for the selected profile.

Search Forward

Executes a forward search for the selected profile.

Halt Search

Halts a currently active search.

Summarize

The Summarize button executes a summary action based on the current profile.

Summaries can also be executed by pressing the Summary icon on the tool bar or
selecting the Summarize option from the Summary menu.

See “Summarizing Statistical Information” on page 13-13 for more information.
13-12

Profiles
Summarizing Statistical Information 13

A variety of statistics are available for summaries of condition and state profiles.

Condition Summaries 13

The following statistics are provided for condition profile summaries:

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

State Summaries 13

The following statistics are generated for state profile summaries:

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

• The sum of the time gaps between matches

• The minimum time duration of a match and the ordinal trace event number
(offset) where it began

• The maximum time duration of a match and the ordinal trace event number
(offset) where it began

• The average time duration of a match

• The sum of the time durations of matches

Summary Scripts 13

Summary results are printed by invoking summary scripts to display the statistical infor-
mation. By default, NightTrace provides an event summary and a state summary script
that print the statistics as described above.
13-13

NightTrace RT User’s Guide
User-define scripts may be used in place of the default scripts. See “Output Script” on
page 13-11 for more information on specifying user-defined scripts.

Summary Script Environment Variables 13

The following summary environment variables are passed to summary scripts

Table 12-2. Summary Script Environment Variables

Variable Meaning

NT_SUM_TYPE Contains text describing the type of summary:
“Event Summary” or “State Summary”.

NT_SUM_NUM The number of occurrences of the state or
event, expressed in decimal integer format.

NT_SUM_MIN_GAP The minimum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_MAX_GAP The maximum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_AVG_GAP The average gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_TOTAL_GAP The total time for all gaps between occurrences
of the state or event, expressed in seconds in
decimal floating point format.

NT_SUM_MIN_GAP_OFFSET The offset at which the minimum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MAX_GAP_OFFSET The offset at which the maximum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MIN_DURATION For states, the minimum state duration
expressed in seconds in decimal floating point
format.

NT_SUM_MAX_DURATION For states, the maximum state duration
expressed in seconds in decimal floating point
format.

NT_SUM_AVG_DURATION For states, the average state duration expressed
in seconds in decimal floating point format.
13-14

Profiles
NT_SUM_TOTAL_DURATION For states, the total of all state durations,
expressed in seconds in decimal floating point
format.

NT_SUM_MIN_DURATION_OFFSET For states, the offset at which the minimum
state duration occurred, expressed in decimal
integer format.

NT_SUM_MAX_DURATION_OFFSET For states, the offset at which the maximum
state duration occurred, expressed in decimal
integer format.

Table 12-2. Summary Script Environment Variables

Variable Meaning
13-15

NightTrace RT User’s Guide
13-16

14
Chapter 14Event Descriptions Panel

13
14
14

The Event Descriptions panel presents a table with a row for each known event ID.
The table describes the event name and description associated with each event ID.

Figure 14-1. Event Descriptions Panel

The table can be sorted by clicking on a column header. Subsequent clicks on a column
header cell that is already defined as the sort key (as indicated by the dark-red chevron),
causes the sort direction to reverse.

The table consists of the following columns.

Code

This column contains the event ID of interest.

Name

This column defines the textual name that will be displayed in lieu of the event ID.

Description

This column describes the format of the textual description used for the event.

Pressing the Add... or Edit buttons launches the Event Description dialog which allows
you to change these values.
14-1

NightTrace RT User’s Guide
Figure 14-2. Event Description Dialog

The Description field allows you to use the NightTrace format() function to define a
(possibly complex) textual description of the event and its arguments.
14-2

15
Chapter 15Tags List Panel

14
15
15

The Tags List panel presents a table of all tagged events in the current NightTrace ses-
sion.

Figure 15-1. Tags List Panel

Tags are a convenient mechanism of identifying an event or time of interest.

Tags appears as small yellow notes with the tag’s number on the ruler of Timelines.

Tags are saved as part of NightTrace sessions, so they can be useful in quickly locating an
event of interest in subsequent execution of NightTrace on the same data set.

The notation capability allows you to add explanatory text for a tag and to share it with
others by saving the session and directing another user to look for a specific tag name.

Creating Tags 15

You can create a tag using one of the following three methods:

1. Double-click on any row in an Events panel; the tag will be associated
with the time of the event whose row you double-clicked.

2. Double-click on any event in an EventGraph in a Timeline; the tag will
be associated with the time of the event you double-clicked.

3. Double-click on a ruler in a Timeline -- the tag will be associated with the
time associated with the location you clicked in the ruler.
15-1

NightTrace RT User’s Guide
Tags List Table 15

Clicking on a row in the Tags List table causes the current timeline to be moved to the
time associated with the tag.

The Tags List table consists of the following columns:

Tag

This column shows the name of the tag.

ID

This column shows the tag’s integer ID value.

Tag Time

This column shows the time of the tag.

Near Offset

This column shows the ordinal offset of the nearest event.

From Current

This column shows the time between the tag and the current timeline.

Since the current timeline is always moved to the time associated with the tag you
click in the table, its From Current value will often be zero (unless you change the
location of the current timeline with some other operation -- e.g. executing a search
or clicking in a Timeline panel).

Notation

The notation field is free-form text which you can provide.

Context Menu 15

The Tags List panel context menu is shown below.
15-2

Tags List Panel
Figure 15-2. Tags List Panel Context Menu

Annotate...

This option opens a simple dialog which lets you add or change the notation associ-
ated with the selected tag. This option is disabled if multiple tags are currently
selected.

Delete

This option deletes all currently selected tags.

Delete All

This option deletes all tags in the current session.

Display Fields

This option displays a sub-menu which allows you to select which columns are visi-
ble within the table.

Control Buttons 15

The Annotate... and Delete buttons operate on the currently selected tags in the table
(the Annotate... button is disabled if more than one tag is selected).

The Delete All button deletes all tags from the current session.
15-3

NightTrace RT User’s Guide
15-4

16
Chapter 16Using Expressions

15
16
16

Overview 16

NightTrace allows you to use expressions to aid in the analysis of trace data.

NightTrace expressions are comprised of a combination of operators and operands and
can evaluate to numbers, strings, or boolean values.

See “Operators” on page 16-1 for a list of valid operators and “Operands” on page 16-1
for a discussion of valid operands.

Operators 16

Operators in NightTrace expressions include:

• arithmetic operators: (), *, /, % (modulo), +, -, unary -

• shift operators: <<, >>

• bitwise operators: ~ (not), & (and), ^ (exclusive or), | (or)

• logical operators: ! (not), && (and), || (or)

• relational operators: <, <=, >, >=, == (equivalence), != (non-equivalence)

• conditional operator: expr ? true_value : false_value

• unary cast operations for the following supported data types (where the
parentheses are required):

- (long long)
- (long double)
- (unsigned long)
- (unsigned long long)

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operands 16

Operands include:

• “Constants” on page 16-2
16-1

NightTrace RT User’s Guide
• “Functions” on page 16-4

• “Profile References” on page 16-195 (in functions only)

Operand types are largely based on the C programming language and include:

• integer

• long integer

• long long integer

• double-precision floating point

• long double-precision floating point

• character

• string

• boolean

• bit fields

Constants 16

Constants are one type of operand that may be used in NightTrace expressions.

Integer literals may be expressed using typical C language notation:

• decimal literals have no special prefix

• octal literals begin with a zero

• hexadecimal literals begin with a 0x

Floating point literals are always considered to be double-precision floating point literals.

Standard C decimal floating point literals are supported and have the following syntax:

fore.aft[E |e[+ |-]exp]

fore.aft

any combination of decimal digits 0 through 9

E or e

can optionally precede an optional sign and exponent

+ or -

optional sign
16-2

Using Expressions
exp

a decimal number specifying the power of 10 to which fore.aft is multiplied

Alternatively, floating point literals following the C99 standard are also supported and
have the following syntax:

0xfore.aft [P | p[+ |-]exp]

0x

defines this as a hexadecimal literal

fore.aft

any combination of hexadecimal digits 0 through 9, a through f, or A through F.

P or p

can optionally precede an optional sign and exponent

+ or -

optional sign

exp

a decimal number specifying the power of 2 to which fore.aft is multiplied

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possible \”meltdown\” alert”

The case-insensitive boolean constants TRUE and FALSE have the values 1 and 0,
respectively.

Table 16-1 shows units and suffixes for time constants.

Table 16-1. Time Units and Constant Suffixes

Time Unit Suffix

Seconds (This is the default) s

Milliseconds (10e-3 seconds) ms

Microseconds (10e-6 seconds) us

Nanoseconds (10e-9 seconds) ns
16-3

NightTrace RT User’s Guide
Functions 16

Functions are pre-defined NightTrace entities that may be used in an expression. Night-
Trace defines five classes of functions:

• “String Functions” on page 16-17

• “Trace Event Functions” on page 16-19

• “State Functions” on page 16-62

• “Offset Functions” on page 16-140

• “Summary Functions” on page 16-179

• “Format and Table Functions” on page 16-186

The general syntax of all function calls except summary, format, and table functions is as
follows. (Optional parts of function calls are in brackets ([]).)

function_name[([parameter])]

The prefix of the function_name determines its class as follows:

offset_

Functions with this prefix provide information about the trace event at the specified
offset (or ordinal trace event number). See “Offset Functions” on page 16-140.

start_

Functions with this prefix provide information about the start event of the most
recent instance of a state. See “Start Functions” on page 16-62.

end_

Functions with this prefix provide information about the end event of the last com-
pleted instance of a state See “End Functions” on page 16-99.

state_

Functions with this prefix provide information about instances of states. See
“Multi-State Functions” on page 16-136.

event_

Functions with this prefix provide information about instances of events. See
“Multi-Event Functions” on page 16-60.

Some functions can be optionally suffixed by a number, N, which specifies the Nth argu-
ment logged with the trace event. N defaults to 1 and can have the values 1 through the
maximum argument logged. For example,

arg()

Returns the first argument
16-4

Using Expressions
arg1()

Returns the first argument

arg3()

Returns the third argument

start_id()

Returns a trace event ID

state_gap()

Returns the time between instances of a state

Table 16-1 contains a complete list of functions sorted by general catagories. For an alpha-
betic list of all functions, refer to the Index.

Table 16-1. NightTrace Functions

Syntax Return Type

strcmp (s1, s2)
strncmp (s1, s2, n)

An integer indicating less than, equal to, or
greater than zero as s1, or the first n bytes
thereof, is compared to s2.

 id [([PR])]
 start_id [([PR])]
 end_id [([PR])]

 offset_id (offset_expr)

The integer trace event ID.

 arg[N] [([PR])]
 start_arg[N] [([PR])]
 end_arg[N] [([PR])]

 offset_arg[N] (offset_expr)

The integer trace event argument.

 arg[N]_dbl [([PR])]
 start_arg[N]_dbl [([PR])]
 end_arg[N]_dbl [([PR])]

offset_arg[N]_dbl (offset_expr)

The double-precision floating point trace
event argument.

 arg[N]_long [([PR])]
 start_arg[N]_long [([PR])]
 end_arg[N]_long [([PR])]

offset_arg[N]_long (offset_expr)

The long integer trace event argument.

 arg[N]_long_dbl [([PR])]
 start_arg[N]_long_dbl [([PR])]
 end_arg[N]_long_dbl [([PR])]

offset_arg[N]_long_dbl (offset_expr)

The long double-precision trace event argu-
ment.

 arg[N]_long_long [([PR])]
 start_arg[N]_long_long [([PR])]
 end_arg[N]_long_long [([PR])]

offset_arg[N]_long_long (offset_expr)

The long long integer trace event argument.
16-5

NightTrace RT User’s Guide
 blk_arg (byte_offset[,PR])
 start_blk_arg (byte_offset[,PR])
 end_blk_arg (byte_offset[,PR])

 offset_blk_arg (byte_offset,offset_expr)

The integer trace event argument at a partic-
ular byte offset in the argument space.

 blk_arg_bits
(byte_offset,bit_offset,bit_size[,PR])

 start_blk_arg_bits
(byte_offset,bit_offset,bit_size[,PR])

 end_blk_arg_bits
(byte_offset,bit_offset,bit_size[,PR])

 offset_blk_arg_bits
(byte_offset,bit_offset,bit_size,offset_expr)

The integer trace event argument extracted
as a signed bit field with a particular byte
offset, bit offset, and bit size in the argument
space.

 blk_arg_char (byte_offset[,PR])
 start_blk_arg_char (byte_offset[,PR])
 end_blk_arg_char (byte_offset[,PR])

 offset_blk_arg_char (byte_offset,offset_expr)

The signed character trace event argument
at a particular byte offset in the argument
space.

 blk_arg_dbl (byte_offset[,PR])
 start_blk_arg_dbl (byte_offset[,PR])
 end_blk_arg_dbl (byte_offset[,PR])

 offset_blk_arg_dbl (byte_offset,offset_expr)

The double-precision trace event argument
at a particular byte offset in the argument
space.

 blk_arg_flt (byte_offset[,PR])
 start_blk_arg_flt (byte_offset[,PR])
 end_blk_arg_flt (byte_offset[,PR])

 offset_blk_arg_flt (byte_offset,offset_expr)

The single-precision trace event argument
at a particular byte offset in the argument
space.

 blk_arg_long (byte_offset[,PR])
 start_blk_arg_long (byte_offset[,PR])
 end_blk_arg_long (byte_offset[,PR])

 offset_blk_arg_long (byte_offset,offset_expr)

The long integer trace event argument at a
particular byte offset in the argument space.

 blk_arg_long_bits (byte_offset[,PR])
 start_blk_arg_long_bits (byte_offset[,PR])
 end_blk_arg_long_bits (byte_offset[,PR])

 offset_blk_arg_long_bits (byte_offset,offset_expr)

The long integer trace event argument
extracted as a signed bit field with a particu-
lar byte offset, bit offset, and bit size in the
argument space.

 blk_arg_long_dbl (byte_offset[,PR])
 start_blk_arg_long_dbl (byte_offset[,PR])
 end_blk_arg_long_dbl (byte_offset[,PR])

 offset_blk_arg_long_dbl (byte_offset,offset_expr)

The long double-precision trace event argu-
ment at a particular byte offset in the argu-
ment space.

 blk_arg_long_long (byte_offset[,PR])
 start_blk_arg_long_long (byte_offset[,PR])
 end_blk_arg_long_long (byte_offset[,PR])

 offset_blk_arg_long_long (byte_offset,offset_expr)

The long long integer trace event argument
at a particular byte offset in the argument
space.

 blk_arg_long_ubits (byte_offset[,PR])
 start_blk_arg_long_ubits (byte_offset[,PR])
 end_blk_arg_long_ubits (byte_offset[,PR])

 offset_blk_arg_long_ubits (byte_offset,offset_expr)

The long integer trace event argument
extracted as an unsigned bit field with a par-
ticular byte offset, bit offset, and bit size in
the argument space.

Table 16-1. NightTrace Functions

Syntax Return Type
16-6

Using Expressions
 blk_arg_short (byte_offset[,PR])
 start_blk_arg_short (byte_offset[,PR])
 end_blk_arg_short (byte_offset[,PR])

 offset_blk_arg_short (byte_offset,offset_expr)

The short integer trace event argument at a
particular byte offset in the argument space.

 blk_arg_string (byte_offset,max_size[,PR])
 start_blk_arg_string (byte_offset,max_size[,PR])
 end_blk_arg_string (byte_offset,max_size[,PR])

 offset_blk_arg_string
(byte_offset,max_size,offset_expr)

The null-byte terminated string trace event
argument at a particular byte offset in the
argument space.

 blk_arg_ubits
(byte_offset,bit_offset,bit_size[,PR])
 start_blk_arg_ubits

(byte_offset,bit_offset,bit_size[,PR])
 end_blk_arg_ubits

(byte_offset,bit_offset,bit_size[,PR])
 offset_blk_arg_ubits

(byte_offset,bit_offset,bit_size,offset_expr)

The integer trace event argument extracted
as an unsigned bit field with a particular
byte offset, bit offset, and bit size in the
argument space.

 blk_arg_uchar (byte_offset[,PR])
 start_blk_arg_uchar (byte_offset[,PR])
 end_blk_arg_uchar (byte_offset[,PR])

 offset_blk_arg_uchar (byte_offset,offset_expr)

The unsigned character trace event argu-
ment at a particular byte offset in the argu-
ment space.

blk_arg_uint (byte_offset[,PR])
start_blk_arg_uint (byte_offset[,PR])
end_blk_arg_uint (byte_offset[,PR])

offset_blk_arg_uint (byte_offset[,PR])

The unsigned integer trace event argument
at a particular byte offset in the argument
space, converted to type long.

blk_arg_ulong_long (byte_offset[,PR])
start_blk_arg_ulong_long (byte_offset[,PR])
end_blk_arg_ulong_long (byte_offset[,PR])

offset_blk_arg_ulong_long (byte_offset[,PR])

The unsigned long long integer trace event
argument at a particular byte offset in the
argument space.

 blk_arg_ushort (byte_offset[,PR])
 start_blk_arg_ushort (byte_offset[,PR])
 end_blk_arg_ushort (byte_offset[,PR])

 offset_blk_arg_ushort (byte_offset,offset_expr)

The unsigned short integer trace event argu-
ment at a particular byte offset in the argu-
ment space.

 num_args [([PR])]
 start_num_args [([PR])]
 end_num_args [([PR])]

 offset_num_args (offset_expr)

The number of arguments associated with a
trace event.

cuda [([PR])] Returns one if the event is a CUDA GPU
event, otherwise zero. See “NightTrace
CUDA Tracing API” on page 2-35.

cuda_warp [([PR])] Returns the warp ID of the event. See
“NightTrace CUDA Tracing API” on page
2-35.

Table 16-1. NightTrace Functions

Syntax Return Type
16-7

NightTrace RT User’s Guide
cuda_sm [([PR])] Returns the GPU symmetric multiprocessor
(SM) ID that logged the event. See “Night-
Trace CUDA Tracing API” on page 2-35.

cuda_lane [([PR])] Returns the ID of the lane that logged the
event. See “NightTrace CUDA Tracing
API” on page 2-35.

cuda_thr_x [([PR])] Returns the index in the X dimension of the
CUDA thread that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_thr_y [([PR])] Returns the index in the Y dimension of the
CUDA thread that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_thr_z [([PR])] Returns the index in the Z dimension of the
CUDA thread that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_blk_x [([PR])] Returns the index in the X dimension of the
CUDA block that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_blk_y [([PR])] Returns the index in the Y dimension of the
CUDA thread that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_blk_z [([PR])] Returns the index in the Z dimension of the
CUDA block that logged the event. See
“NightTrace CUDA Tracing API” on page
2-35.

cuda_time [([PR])] Returns the raw clock value of the GPU
symmetric processor at the time the event
was logged. See “NightTrace CUDA Trac-
ing API” on page 2-35.

 pid [([PR])]
 start_pid [([PR])]
 end_pid [([PR])]

 offset_pid (offset_expr)

The integer process identifier (PID) associ-
ated with a trace event.

 thread_id [([PR])]
 start_thread_id [([PR])]
 end_thread_id [([PR])]

offset_thread_id (offset_expr)

The integer thread identifier (thread ID)
associated with a trace event.

Table 16-1. NightTrace Functions

Syntax Return Type
16-8

Using Expressions
 task_id [([PR])]
 start_task_id [([PR])]
 end_task_id [([PR])]

 offset_task_id (offset_expr)

The integer Ada task identifier associated
with a trace event.

 tid [([PR])]
 start_tid [([PR])]
 end_tid [([PR])]

 offset_tid (offset_expr)

The integer NightTrace thread identifier
(TID) associated with a trace event.

 cpu [([PR])]
 start_cpu [([PR])]
 end_cpu [([PR])]

 offset_cpu (offset_expr)

The integer logical CPU number associated
with a trace event. This function is only
valid when applied to events from Night-
Trace kernel trace event files.

 time [([PR])]
 start_time [([PR])]
 end_time [([PR])]

 offset_time (offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace event and the earliest trace event from
all trace event files currently in use.

 node_id [([PR])]
 start_node_id [([PR])]
 end_node_id [([PR])]

 offset_node_id (offset_expr)

The internally-assigned integer node identi-
fier associated with a trace event.

 pid_table_name [([PR])]
 start_pid_table_name [([PR])]
 end_pid_table_name [([PR])]

offset_pid_table_name (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with a trace event.

 tid_table_name [([PR])]
 start_tid_table_name [([PR])]
 end_tid_table_name [([PR])]

offset_tid_table_name (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (TID
table) associated with a trace event.

 node_name [([PR])]
 start_node_name [([PR])]
 end_node_name [([PR])]

 offset_node_name (offset_expr)

The string describing the name of the sys-
tem from which a trace event was logged.

 process_name [([PR])]
offset_process_name (offset_expr)

The string describing the name of the pro-
cess (PID) associated with a trace event.

 task_name [([PR])]
 offset_task_name (offset_expr)

The string describing the name of the Ada
task associated with a trace event.

 thread_name [([PR])]
 offset_thread_name (offset_expr)

The string describing the name of the C
thread associated with a trace event.

 event_gap [([PR])]
 state_gap [([PR])]

The double-precision floating point time,
expressed in units of seconds, between the
instances of either a trace event or a state.

Table 16-1. NightTrace Functions

Syntax Return Type
16-9

NightTrace RT User’s Guide
Function Parameters 16

If the function has a parameter, the parentheses are required. Otherwise, they are optional.
For example,

arg2

No parentheses are required

arg2()

No parentheses are required

 state_dur [([PR])] The double-precision floating point time,
expressed in units of seconds, of an instance
of a state.

 event_matches [([PR])]
 state_matches [([PR])]

 summary_matches [()]

The integer number of instances of either a
trace event or a state.

 state_status [([PR])] The boolean status of a state; true if the cur-
rent time line is within an instance of the
state, false otherwise. See “state_status()”
on page 16-139 for important details.

 offset [([PR])]
 start_offset [([PR])]
 end_offset [([PR])]

The integer ordinal number (offset) of a
trace event.

 min_offset (expr)
 max_offset (expr)

The integer ordinal number (offset) of a
trace event associated with a minimum or
maximum occurrence of expr.

 min (expr)
 max (expr)
 avg (expr)
 sum (expr)

The minimum, maximum, average, or sum
of expr values before the current time. The
return type is that of expr.

get_string (table_name[, int_expr]) The character string associated with item
int_expr in string table table_name.

 get_item (table_name, “str_const”) The first integer item number associated
with string str_const in string table
table_name.

get_format (table_name[, int_expr]) The character string associated with item
int_expr in format table table_name.

 format (“format_string” [, arg] ...) A character string to format and display.

Table 16-1. NightTrace Functions

Syntax Return Type
16-10

Using Expressions
arg2(Myprof)

Parentheses are required

In many functions, the parameter is optional because it can be inferred from context. For
trace event functions, the current trace event is used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

arg1()

Operates on the current trace event

arg1(my_cond)

Operates on the profile reference my_cond

end_arg1()

Operates on the last completed instance of the state being defined and can only
appear within a state definition

end_arg1(my_state)

Operates on the last completed instance of the state defined by the profile reference
my_state

This manual uses the following conventions for function parameters:

PR

A user-defined profile reference. If supplied, the function applies to the specified
profile. For more information, see “Profiles Dialog” on page 13-2.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

expr

Any valid NightTrace expression (see “Overview” on page 16-1).

table_name

An unquoted character string that represents the name of a string table or format
table.

int_expr

An integer expression that acts as an index into the specified string table or format
table. int_expr must either match an identifying integer value in the table_name
table, or the table_name table must have a default item line.

str_const

A string constant literal that acts as an index into the specified string table.
16-11

NightTrace RT User’s Guide
format_string

A character string that contains literal characters and conversion specifications.
Conversion specifications modify zero or more args.

arg

An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined profile references.

Function Terminology 16

In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

A trace event represents a user-defined or kernel-defined event, logged with optional data
arguments. Events are given discrete numbers to identify them; this number is called the
trace event ID. A state is defined to be the interval of time between two specific events.

The descriptions of the functions further speak in terms of “instances” of states. These are
best defined as:

current instance

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

last completed instance

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

most recent instance

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it is the last completed instance of a state.

Figure 16-1 illustrates some of these concepts with a State Graph.
16-12

Using Expressions

Figure 16-1. Function Terminology Illustrated

A more detailed example is illustrated in Figure 16-2.

Figure 16-2. States and Events

The following discusses the terminology with respect to time line x, time line y, and time
line z.

Assuming the current time line was positioned at time line x in Figure 16-2, the various
“instances” would be defined as:

current instance
16-13

NightTrace RT User’s Guide
No current instance is defined since the current time line is not positioned within
any instance of a state.

last completed instance

Instance B

most recent instance

Instance B. Since the current time line is not positioned within any instance of a
state, the most recent instance is the last completed instance.

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line x in Figure 16-2.

.

Assuming the current time line was positioned at time line y in Figure 16-2, the various
“instances” would be defined as:

current instance

Instance C

state_status() false The current time line was not posi-
tioned within a current instance of a
state.

state_gap() ~0.000020 The durat ion of t ime in seconds
between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state_dur() ~0.000090 The durat ion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631750 The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
16-14

Using Expressions
last completed instance

Instance B

most recent instance

Instance C

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line y in Figure 16-2.

Assuming the current time line was positioned at time line z in Figure 16-2, the various
“instances” would be defined as:

current instance

No current instance is defined since the current time line is positioned on the end
event of an instance of a state.

last completed instance

Instance C

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The durat ion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000090 The durat ion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
16-15

NightTrace RT User’s Guide
most recent instance

Instance C

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line z in Figure 16-2.

.

state_status() false The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an end event of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap() ~0.000030 The durat ion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000040 The durat ion of t ime in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_matches() 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).
16-16

Using Expressions
String Functions 16

The string functions compare two strings. They include the following:

• strcmp()

• strncmp()

strcmp() 16

DESCRIPTION

The strcmp() function compares the two strings, s1 and s2. It returns an integer
less than, equal to, or greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2.

SYNTAX

strcmp(s1, s2);

PARAMETERS

s1

The string to be compared to s2

s2

The string to be compared to s1

RETURN TYPE

integer

SEE ALSO

• “strncmp()” on page 16-18
16-17

NightTrace RT User’s Guide
strncmp() 16

DESCRIPTION

The strncmp() function is similar to strcmp() in that it compares two strings,
s1 and s2, and returns an integer less than, equal to, or greater than zero if s1 is
found, respectively, to be less than, to match, or be greater than s2. However,
strncmp() only compares the first (at most) n bytes of s1 and s2.

SYNTAX

strncmp(s1, s2) n;

PARAMETERS

s1

The string to be compared to s2

s2

The string to be compared to s1

n

The maximum number of bytes in s1 and s2 to be compared

RETURN TYPE

integer

SEE ALSO

• “strcmp()” on page 16-17
16-18

Using Expressions
Trace Event Functions 16

The trace event functions operate on either the profile reference specified to that function
or the current trace event. They include the following:

• id

• arg

• arg_dbl()

• arg_long()

• arg_long_dbl()

• arg_long_long()

• blk_arg()

• blk_arg_bits()

• blk_arg_char()

• blk_arg_dbl()

• blk_arg_flt()

• blk_arg_long()

• blk_arg_long_bits()

• blk_arg_long_dbl()

• blk_arg_long_long()

• blk_arg_long_ubits()

• blk_arg_short()

• blk_arg_string()

• blk_arg_ubits()

• blk_arg_uchar()

• blk_arg_uint()

• blk_arg_ulong_long()

• blk_arg_ushort()

• cuda()

• cuda_warp()

• cuda_sm()

• cuda_lane()

• cuda_thr_y()

• cuda_thr_y()
16-19

NightTrace RT User’s Guide
• cuda_thr_z()

• cuda_blk_x()

• cuda_blk_y()

• cuda_blk_z()

• cuda_time()

• num_args()

• pid()

• cpu()

• thread_id()

• task_id()

• tid()

• offset()

• time()

• node_id()

• pid_table_name()

• tid_table_name()

• node_name()

• process_name()

• task_name()

• thread_name()

• Multi-event functions
16-20

Using Expressions
id() 16

DESCRIPTION

The id() function returns the trace event ID of the last instance of a trace event.

SYNTAX

id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the trace event ID
of the last instance of the trace event which satisfies the conditions of the specified
specified profile. If omitted, the function returns the trace event ID of the current
trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “start_id()” on page 16-64

• “end_id()” on page 16-101

• “offset_id()” on page 16-142
16-21

NightTrace RT User’s Guide
arg() 16

DESCRIPTION

The arg() function returns the value of a particular trace event argument.

SYNTAX

arg[N] [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “arg_long()” on page 16-24

• “arg_dbl()” on page 16-23

• “arg_long_long()” on page 16-26

• “arg_long_dbl()” on page 16-25

• “num_args()” on page 16-44

• “start_arg()” on page 16-65

• “end_arg()” on page 16-102

• “offset_arg()” on page 16-143
16-22

Using Expressions
arg_dbl() 16

DESCRIPTION

The arg_dbl() function returns the value of a particular trace event argument.

SYNTAX

arg[N]_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg()” on page 16-22

• “arg_long()” on page 16-24

• “num_args()” on page 16-44

• “start_arg_dbl()” on page 16-66

• “end_arg_dbl()” on page 16-103

• “offset_arg_dbl()” on page 16-144
16-23

NightTrace RT User’s Guide
arg_long() 16

DESCRIPTION

The arg_long() function returns the value of a particular trace event argument.

SYNTAX

arg[N]_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg()” on page 16-22

• “num_args()” on page 16-44

• “start_arg_long()” on page 16-67

• “end_arg_long()” on page 16-104

• “offset_arg_long()” on page 16-145
16-24

Using Expressions
arg_long_dbl() 16

DESCRIPTION

The arg_long_dbl() function returns the value of a particular trace event argu-
ment.

SYNTAX

arg[N]_long_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “arg()” on page 16-22

• “num_args()” on page 16-44

• “start_arg_long_dbl()” on page 16-68

• “end_arg_long_dbl()” on page 16-105

• “offset_arg_long_dbl()” on page 16-146
16-25

NightTrace RT User’s Guide
arg_long_long() 16

DESCRIPTION

The arg_long_long() function returns the value of a particular trace event
argument.

SYNTAX

arg[N]_long_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long long integer

SEE ALSO

• “arg()” on page 16-22

• “num_args()” on page 16-44

• “start_arg_long_long()” on page 16-69

• “end_arg_long_long()” on page 16-106

• “offset_arg_long_long()” on page 16-147
16-26

Using Expressions
blk_arg() 16

DESCRIPTION

The blk_arg() function returns the value of a trace event argument located at a
particular byte offset in the argument space associated with an event.

SYNTAX

blk_arg (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg()” on page 16-70

• “end_blk_arg()” on page 16-107

• “offset_blk_arg()” on page 16-148
16-27

NightTrace RT User’s Guide
blk_arg_bits() 16

DESCRIPTION

The blk_arg_bits() function returns the value of a trace event signed bit field
argument located at a particular byte and bit offset with a particular bit size in the
argument space associated with an event.

SYNTAX

blk_arg_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_bits()” on page 16-71

• “end_blk_arg_bits()” on page 16-108

• “offset_blk_arg_bits()” on page 16-149
16-28

Using Expressions
blk_arg_char() 16

DESCRIPTION

The blk_arg_char() function returns the value of a trace event signed character
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk_arg_char (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_char()” on page 16-72

• “end_blk_arg_char()” on page 16-109

• “offset_blk_arg_char()” on page 16-150
16-29

NightTrace RT User’s Guide
blk_arg_dbl() 16

DESCRIPTION

The blk_arg_dbl() function returns the value of a trace event double-precision
floating point argument located at a particular byte offset in the argument space
associated with an event.

SYNTAX

blk_arg_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_dbl()” on page 16-73

• “end_blk_arg_dbl()” on page 16-110

• “offset_blk_arg_dbl()” on page 16-151
16-30

Using Expressions
blk_arg_flt() 16

DESCRIPTION

The blk_arg_flt() function returns the value of a trace event single-precision
floating point argument located at a particular byte offset in the argument space
associated with an event.

SYNTAX

blk_arg_flt (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_flt()” on page 16-74

• “end_blk_arg_flt()” on page 16-111

• “offset_blk_arg_flt()” on page 16-152
16-31

NightTrace RT User’s Guide
blk_arg_long() 16

DESCRIPTION

The blk_arg_long() function returns the value of a trace event long integer
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk_arg_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_long()” on page 16-75

• “end_blk_arg_long()” on page 16-112

• “offset_blk_arg_long()” on page 16-153
16-32

Using Expressions
blk_arg_long_bits() 16

DESCRIPTION

The blk_arg_long_bits() function returns the value of a trace event signed
long bit field argument located at a particular byte and bit offset with a particular bit
size in the argument space associated with an event.

SYNTAX

blk_arg_long_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_long_bits()” on page 16-76

• “end_blk_arg_long_bits()” on page 16-113

• “offset_blk_arg_long_bits()” on page 16-154
16-33

NightTrace RT User’s Guide
blk_arg_long_dbl() 16

DESCRIPTION

The blk_arg_long_dbl() function returns the value of a trace event long dou-
ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with an event.

SYNTAX

blk_arg_long_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_long_dbl()” on page 16-77

• “end_blk_arg_long_dbl()” on page 16-114

• “offset_blk_arg_long_dbl()” on page 16-155
16-34

Using Expressions
blk_arg_long_long() 16

DESCRIPTION

The blk_arg_long_long() function returns the value of a trace event long long
integer argument located at a particular byte offset in the argument space associated
with an event.

SYNTAX

blk_arg_long_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_long_long()” on page 16-78

• “end_blk_arg_long_long()” on page 16-115

• “offset_blk_arg_long_long()” on page 16-156
16-35

NightTrace RT User’s Guide
blk_arg_long_ubits() 16

DESCRIPTION

The blk_arg_long_ubits() function returns the value of a trace event
unsigned long integer bit field argument located at a particular byte and bit offset
with a particular bit size in the argument space associated with an event.

SYNTAX

blk_arg_long_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_long_ubits()” on page 16-79

• “end_blk_arg_long_ubits()” on page 16-116

• “offset_blk_arg_long_ubits()” on page 16-157
16-36

Using Expressions
blk_arg_short() 16

DESCRIPTION

The blk_arg_short() function returns the value of a trace event short integer
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk_arg_short (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_short()” on page 16-80

• “end_blk_arg_short()” on page 16-117

• “offset_blk_arg_short()” on page 16-158
16-37

NightTrace RT User’s Guide
blk_arg_string() 16

DESCRIPTION

The blk_arg_string() function returns the value of a trace event null termi-
nated string argument located at a particular byte offset in the argument space asso-
ciated with an event.

SYNTAX

blk_arg_string (byte_offset,max_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, this is also the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

string

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_string()” on page 16-81

• “end_blk_arg_string()” on page 16-118

• “offset_blk_arg_string()” on page 16-159
16-38

Using Expressions
blk_arg_ubits() 16

DESCRIPTION

The blk_arg_ubits() function returns the value of a trace event unsigned bit
field argument located at a particular byte and bit offset with a particular bit size in
the argument space associated with an event.

SYNTAX

blk_arg_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_ubits()” on page 16-82

• “end_blk_arg_ubits()” on page 16-119

• “offset_blk_arg_ubits()” on page 16-160
16-39

NightTrace RT User’s Guide
blk_arg_uchar() 16

DESCRIPTION

The blk_arg_uchar() function returns the value of a trace event unsigned char-
acter argument located at a particular byte offset in the argument space associated
with an event.

SYNTAX

blk_arg_uchar (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_uchar()” on page 16-83

• “end_blk_arg_uchar()” on page 16-120

• “offset_blk_arg_uchar()” on page 16-161
16-40

Using Expressions
blk_arg_uint() 16

DESCRIPTION

The blk_arg_uint() function converts the unsigned integer trace event argu-
ment at a particular byte offset in the argument space to a long.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) blk_arg_uint(0) > 0x80000000

SYNTAX

blk_arg_uint (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

long

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_uint()” on page 16-84

• “end_blk_arg_uint()” on page 16-121

• “offset_blk_arg_uint()” on page 16-162
16-41

NightTrace RT User’s Guide
blk_arg_ulong_long() 16

DESCRIPTION

The blk_arg_ulong_long() function returns the value of a trace event
unsigned long long integer argument located at a particular byte offset in the argu-
ment space associated with an event.

SYNTAX

blk_arg_ulong_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

unsigned long long integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_ulong_long()” on page 16-85

• “end_blk_arg_ulong_long()” on page 16-122

• “offset_blk_arg_ulong_long()” on page 16-163
16-42

Using Expressions
blk_arg_ushort() 16

DESCRIPTION

The blk_arg_ushort() function returns the value of a trace event unsigned
short integer argument located at a particular byte offset in the argument space asso-
ciated with an event.

SYNTAX

blk_arg_ushort (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_blk_arg_ushort()” on page 16-86

• “end_blk_arg_ushort()” on page 16-123

• “offset_blk_arg_ushort()” on page 16-164
16-43

NightTrace RT User’s Guide
num_args() 16

DESCRIPTION

The num_args() function returns the number of arguments logged with a trace
event. For events recorded with trace_event_blk(), it returns the number of
bytes recorded in the argument space.

SYNTAX

num_args [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the number of
arguments of the last instance of the trace event which satisfies the conditions for
the specified profile. If omitted, the function returns the number of arguments of the
current trace event. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 16-22

• “start_num_args()” on page 16-87

• “end_num_args()” on page 16-124

• “offset_num_args()” on page 16-165
16-44

Using Expressions
cuda functions 16

DESCRIPTION

All the cuda functions listed here relate to events that were logged by a CUDA
Graphical Processing Unit. See “NightTrace CUDA Tracing API” on page 2-35 for
more information.

This description assumes the user has in-depth knowledge of the workings of
CUDA and the attributes referenced below.

The first function in the list below, cuda, returns 1 if the event is an event logged by
a CUDA GPU. Otherwise it returns zero.

The last function in the list below, cuda_time, returns the raw clock time of the
GPU symetrical multiprocessor when the event was logged.

All the other functions return the CUDA attribute as per their name.

SYNTAX

cuda [([PR])]
cuda_warp[([PR])]
cuda_sm[([PR])]
cuda_lane[([PR])]
cuda_thr_y[([PR])]
cuda_thr_y[([PR])]
cuda_thr_z[([PR])]
cuda_blk_x[([PR])]
cuda_blk_y[([PR])]
cuda_blk_z[([PR])]
cuda_time[([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the appropriate
CUDA attribute of the last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the appropriate CUDA
attribute of the current trace event. For more information, see “Profile References”
on page 16-195.

NOTE

If the event is not a CUDA GPU event, the return value will be
zero. See “NightTrace CUDA Tracing API” on page 2-35 for
more information.

RETURN TYPE

integer
16-45

NightTrace RT User’s Guide
pid() 16

DESCRIPTION

The pid() function returns the global process identifier (PID) associated with a
trace event.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the actually the thread’s TID (see gettid(2)).

SYNTAX

pid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the global process
identifier of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the global process identifier of the
current trace event. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “start_pid()” on page 16-88

• “end_pid()” on page 16-125

• “offset_pid()” on page 16-166
16-46

Using Expressions
thread_id() 16

DESCRIPTION

The thread_id() function returns the thread identifier associated with a trace
event. The thread identifier is the value of the system call gettid(2).

SYNTAX

thread_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the thread identi-
fier of the last instance of the trace event which satisfies the conditions for the spec-
ified profile. If omitted, the function returns the thread identifier of the current trace
event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “start_thread_id()” on page 16-89

• “end_thread_id()” on page 16-126

• “offset_thread_id()” on page 16-167
16-47

NightTrace RT User’s Guide
task_id() 16

DESCRIPTION

The task_id() function returns the Ada task identifier associated with a trace
event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

task_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the Ada task iden-
tifier of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the Ada task identifier of the cur-
rent trace event. For more information, see “Profile References” on page
16-195Profile References.

RETURN TYPE

integer

SEE ALSO

• “start_task_id()” on page 16-90

• “end_task_id()” on page 16-127

• “offset_task_id()” on page 16-168
16-48

Using Expressions
tid() 16

DESCRIPTION

The tid() function returns the internally-assigned NightTrace thread identifier
(TID) associated with a trace event.

SYNTAX

tid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the NightTrace
thread identifier of the last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the NightTrace thread iden-
tifier of the current trace event. For more information, see “Profile References” on
page 16-195.

RETURN TYPE

integer

SEE ALSO

• “start_tid()” on page 16-91

• “end_tid()” on page 16-128

• “offset_tid()” on page 16-169
16-49

NightTrace RT User’s Guide
cpu() 16

DESCRIPTION

The cpu() function returns the logical CPU number associated with a trace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating system distributions. See “Kernel Dependencies” on
page B-1 for more information.

SYNTAX

cpu [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the logical CPU
number of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the logical CPU number of the
current trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “start_cpu()” on page 16-92

• “end_cpu()” on page 16-129

• “offset_cpu()” on page 16-170
16-50

Using Expressions
offset() 16

DESCRIPTION

The offset() function returns the ordinal number (offset) of a trace event.

SYNTAX

offset [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the ordinal number
(offset) of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the ordinal number (offset) of the
current trace event. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “start_offset()” on page 16-93

• “end_offset()” on page 16-130

• “min_offset()” on page 16-183

• “max_offset()” on page 16-184
16-51

NightTrace RT User’s Guide
time() 16

DESCRIPTION

The time() function returns the time, in seconds, associated with a trace event.
Times are relative to the earliest trace event from all trace data files currently in use.

SYNTAX

time [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the time, in sec-
onds, of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the time, in seconds, of the current
trace event. For more information, see “Profile References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “event_gap()” on page 16-60

• “start_time()” on page 16-94

• “end_time()” on page 16-131

• “state_gap()” on page 16-136

• “state_dur()” on page 16-137

• “offset_time()” on page 16-171
16-52

Using Expressions
node_id() 16

DESCRIPTION

The node_id() function returns the internally-assigned node identifier associated
with a trace event.

NOTE

The node_id() function is of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. The node_name() function is more useful, as it
returns the name of the system from which a trace event was
logged. (See “node_name()” on page 16-56 for more information
about this function.)

SYNTAX

node_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the node identifier
of the last instance of the trace event which satisfies the conditions for the specified
profile. If omitted, the function returns the node identifier of the current trace event.
For more information, see “Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “start_node_id()” on page 16-95

• “offset_node_id()” on page 16-172

• “end_node_id()” on page 16-132
16-53

NightTrace RT User’s Guide
pid_table_name() 16

DESCRIPTION

The pid_table_name() function returns the name of the internally-assigned
NightTrace process identifier table (PID table) associated with a trace event.

SYNTAX

pid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the name of the
process identifier table (PID table) of the last instance of the trace event which satis-
fies the conditions for the specified profile. If omitted, the function returns the name
of the process identifier table (PID table) of the current trace event. For more infor-
mation, see “Profile References” on page 16-195.

RETURN TYPE

string

SEE ALSO

• “start_pid_table_name()” on page 16-96

• “offset_pid_table_name()” on page 16-173

• “end_pid_table_name()” on page 16-133
16-54

Using Expressions
tid_table_name() 16

DESCRIPTION

The tid_table_name() function returns the name of the internally-assigned
NightTrace thread identifier table (TID table) associated with a trace event.

SYNTAX

tid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the name of the
thread identifier table (TID table) of the last instance of the trace event which satis-
fies the conditions for the specified profile. If omitted, the function returns the name
of the thread identifier table (TID table) of the current trace event. For more infor-
mation, see “Profile References” on page 16-195.

RETURN TYPE

string

SEE ALSO

• “start_tid_table_name()” on page 16-97

• “offset_tid_table_name()” on page 16-174

• “end_tid_table_name()” on page 16-134
16-55

NightTrace RT User’s Guide
node_name() 16

DESCRIPTION

The node_name() function returns the name of the system from which a trace
event was logged.

SYNTAX

node_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the name of system
from which the last instance of the trace event which satisfies the conditions for the
specified profile was logged. If omitted, the function returns the name of the system
from which the current trace event was logged. For more information, see “Profile
References” on page 16-195.

RETURN TYPE

string

SEE ALSO

• “start_node_name()” on page 16-98

• “offset_node_name()” on page 16-175

• “end_node_name()” on page 16-135
16-56

Using Expressions
process_name() 16

DESCRIPTION

The process_name() function returns the name of the process associated with a
trace event.

SYNTAX

process_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the name associ-
ated with the PID of the last instance of the trace event which satisfies the condi-
tions for the specified profile. If omitted, the function returns the name associated
with the PID of the current trace event. For more information, see “Profile Refer-
ences” on page 16-195.

RETURN TYPE

string

SEE ALSO

• “offset_process_name()” on page 16-176
16-57

NightTrace RT User’s Guide
task_name() 16

DESCRIPTION

The task_name() function returns the name of the task associated with a trace
event.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

task_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the name of the
task associated with the last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the name of the task associ-
ated with the current trace event. For more information, see “Profile References”
on page 16-195.

RETURN TYPE

string

SEE ALSO

• “offset_task_name()” on page 16-177
16-58

Using Expressions
thread_name() 16

DESCRIPTION

The thread_name() function returns the thread name associated with a trace
event.

Thread names are only available when user trace data is loaded and then only for
threads registered with the NightTrace Logging API.

See “Threads and Logging” on page 2-34 for a discussion of the threads and the
NightTrace Logging API.

SYNTAX

thread_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the thread name
associated with the last instance of the trace event which satisfies the conditions for
the specified profile. If omitted, the function returns the thread name associated
with the current trace event. For more information, see “Profile References” on
page 16-195.

RETURN TYPE

string

SEE ALSO

• “offset_thread_name()” on page 16-178
16-59

NightTrace RT User’s Guide
Multi-Event Functions 16

Multi-event functions return information about one or more instances of an event:

• event_gap()

• event_matches()

event_gap() 16

DESCRIPTION

The event_gap() function returns the time, in seconds, between the most recent
occurrence of a specific event and its immediately preceding occurrence.

SYNTAX

event_gap [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function calculates the gap between
the two most recent occurrences of events which satisfy the conditions of the speci-
fied profile. If omitted, the function calculates the gap between the current trace
event and the event immediately preceding it. For more information, see “Profile
References” on page 16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 16-52

• “state_gap()” on page 16-136

• “state_dur()” on page 16-137
16-60

Using Expressions
event_matches() 16

DESCRIPTION

The event_matches() function returns the number of occurrences of a trace
event on or before the current time line.

SYNTAX

event_matches [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function calculates the number of
occurrences of events which satisfy the conditions of the specified profile on or
before the current time line. If omitted, the function calculates the number of occur-
rences of all events on or before the current time line. For more information, see
“Profile References” on page 16-195.

RETURN TYPE

integer

SEE ALSO

• “summary_matches()” on page 16-185
16-61

NightTrace RT User’s Guide
State Functions 16

In its simplest form, a state is a region of time bounded by two trace events. A state defi-
nition requires the specification of two trace events, a start event and an end event, respec-
tively. Additional conditions may be specified in a state definition to further constrain the
state. The state functions include the following:

• “Start Functions” on page 16-62

• “End Functions” on page 16-99

• “Multi-State Functions” on page 16-136

NOTE

Currently, NightTrace does not supported nesting of states. Thus,
once the conditions which satisfy a start event are met, no other
instances of that state can begin until the end condition has been
met.

Start Functions 16

The start functions provide information about the start event of the most recent instance of
a state. The state to which the start function applies is either the profile reference specified
to the function, or the state being currently defined. Thus, if a profile is not specified, start
functions are only meaningful when used in expressions associated within a state defini-
tion. In addition, start functions should not be used in a recursive manner in a Start
Expression; a start function should not be specified in a Start Expression that applies
to the state definition containing that Start Expression. Conversely, an End Expres-
sion may include start functions that apply to the state definition containing that End
Expression.

NOTE

Start functions provide information about the most recent instance
of a state, whereas end functions (see “End Functions” on page
16-99) provide information about the last completed instance of a
state.

Start functions include the following:

• start_id()

• start_arg()

• start_arg_dbl()

• start_arg_long()

• start_arg_long()
16-62

Using Expressions
• start_arg_long_dbl()

• start_arg_long_long()

• start_blk_arg()

• start_blk_arg_bits()

• start_blk_arg_char()

• start_blk_arg_dbl()

• start_blk_arg_flt()

• start_blk_arg_long()

• start_blk_arg_long_bits()

• start_blk_arg_long_dbl()

• start_blk_arg_long_long()

• start_blk_arg_long_ubits()

• start_blk_arg_short()

• start_blk_arg_string()

• start_blk_arg_ubits()

• start_blk_arg_uchar()

• start_blk_arg_uint()

• start_blk_arg_ulong_long()

• start_blk_arg_ushort()

• start_num_args()

• start_pid()

• start_thread_id()

• start_task_id()

• start_tid()

• start_cpu()

• start_offset()

• start_time()

• start_node_id()

• start_pid_table_name()

• start_tid_table_name()

• start_node_name()
16-63

NightTrace RT User’s Guide
start_id() 16

DESCRIPTION

The start_id() function returns the trace event ID of the start event of the most
recent instance of a state.

SYNTAX

start_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 16-21

• “end_id()” on page 16-101

• “offset_id()” on page 16-142
16-64

Using Expressions
start_arg() 16

DESCRIPTION

The start_arg() function returns the value of a particular trace event argument
associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the start event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 16-22

• “start_arg_dbl()” on page 16-66

• “start_num_args()” on page 16-87

• “end_arg()” on page 16-102

• “offset_arg()” on page 16-143
16-65

NightTrace RT User’s Guide
start_arg_dbl() 16

DESCRIPTION

The start_arg_dbl() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the start event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 16-23

• “start_arg()” on page 16-65

• “start_num_args()” on page 16-87

• “end_arg_dbl()” on page 16-103

• “offset_arg_dbl()” on page 16-144
16-66

Using Expressions
start_arg_long() 16

DESCRIPTION

The start_arg_long() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the start event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 16-23

• “start_arg()” on page 16-65

• “start_num_args()” on page 16-87

• “end_arg_dbl()” on page 16-103

• “offset_arg_long()” on page 16-145
16-67

NightTrace RT User’s Guide
start_arg_long_dbl() 16

DESCRIPTION

The start_arg_long_dbl() function returns the value of a particular trace
event argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_long_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “arg_long_dbl()” on page 16-25

• “end_arg_long_dbl()” on page 16-105

• “offset_arg_long_dbl()” on page 16-146
16-68

Using Expressions
start_arg_long_long() 16

DESCRIPTION

The start_arg_long_long() function returns the value of a particular trace
event argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N]_long_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “arg_long_long()” on page 16-26

• “num_args()” on page 16-44

• “end_arg_long_long()” on page 16-106

• “offset_arg_long_long()” on page 16-147
16-69

NightTrace RT User’s Guide
start_blk_arg() 16

DESCRIPTION

The start_blk_arg() function returns the value of a trace event argument
located at a particular byte offset in the argument space associated with the event
associated with the start event of the most recent instance of a state.

SYNTAX

start_blk_arg (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg()” on page 16-27

• “end_blk_arg()” on page 16-107

• “offset_blk_arg()” on page 16-148
16-70

Using Expressions
start_blk_arg_bits() 16

DESCRIPTION

The start_blk_arg_bits() function returns the value of a trace event signed
bit field argument located at a particular byte and bit offset with a particular bit size
in the argument space associated with the event associated with the start event of the
most recent instance of a state.

SYNTAX

start_blk_arg_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_bits()” on page 16-28

• “end_blk_arg_bits()” on page 16-108

• “offset_blk_arg_bits()” on page 16-149
16-71

NightTrace RT User’s Guide
start_blk_arg_char() 16

DESCRIPTION

The start_blk_arg_char() function returns the value of a trace event signed
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the start event of the most recent instance of a
state.

SYNTAX

start_blk_arg_char (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_char()” on page 16-29

• “end_blk_arg_char()” on page 16-109

• “offset_blk_arg_char()” on page 16-150
16-72

Using Expressions
start_blk_arg_dbl() 16

DESCRIPTION

The start_blk_arg_dbl() function returns the value of a trace event dou-
ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start_blk_arg_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_dbl()” on page 16-30

• “end_blk_arg_dbl()” on page 16-110

• “offset_blk_arg_dbl()” on page 16-151
16-73

NightTrace RT User’s Guide
start_blk_arg_flt() 16

DESCRIPTION

The start_blk_arg_flt() function returns the value of a trace event sin-
gle-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start blk_arg_flt (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_flt()” on page 16-31

• “end_blk_arg_flt()” on page 16-111

• “offset_blk_arg_flt()” on page 16-152
16-74

Using Expressions
start_blk_arg_long() 16

DESCRIPTION

The start_blk_arg_long() function returns the value of a trace event long
integer argument located at a particular byte offset in the argument space associated
with the event associated with the start event of the most recent instance of a state.

SYNTAX

start_blk_arg_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long()” on page 16-32

• “end_blk_arg_long()” on page 16-112

• “offset_blk_arg_long()” on page 16-153
16-75

NightTrace RT User’s Guide
start_blk_arg_long_bits() 16

DESCRIPTION

The start_blk_arg_long_bits() function returns the value of a trace event
signed long bit field argument located at a particular byte and bit offset with a partic-
ular bit size in the argument space associated with the event associated with the start
event of the most recent instance of a state.

SYNTAX

start_blk_arg_long_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_bits()” on page 16-33

• “end_blk_arg_long_bits()” on page 16-113

• “offset_blk_arg_long_bits()” on page 16-154
16-76

Using Expressions
start_blk_arg_long_dbl() 16

DESCRIPTION

The start_blk_arg_long_dbl() function returns the value of a trace event
long double-precision floating point argument located at a particular byte offset in
the argument space associated with the event associated with the start event of the
most recent instance of a state.

SYNTAX

start_blk_arg_long_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_dbl()” on page 16-34

• “end_blk_arg_long_dbl()” on page 16-114

• “offset_blk_arg_long_dbl()” on page 16-155
16-77

NightTrace RT User’s Guide
start_blk_arg_long_long() 16

DESCRIPTION

The start_blk_arg_long_long() function returns the value of a trace event
long long integer argument located at a particular byte offset in the argument space
associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start_blk_arg_long_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_long()” on page 16-35

• “end_blk_arg_long_long()” on page 16-115

• “offset_blk_arg_long_long()” on page 16-156
16-78

Using Expressions
start_blk_arg_long_ubits() 16

DESCRIPTION

The start_blk_arg_long_ubits() function returns the value of a trace
event unsigned long integer bit field argument located at a particular byte and bit
offset with a particular bit size in the argument space associated with the event asso-
ciated with the start event of the most recent instance of a state.

SYNTAX

start_blk_arg_long_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_ubits()” on page 16-36

• “end_blk_arg_long_ubits()” on page 16-116

• “offset_blk_arg_long_ubits()” on page 16-157
16-79

NightTrace RT User’s Guide
start_blk_arg_short() 16

DESCRIPTION

The start_blk_arg_short() function returns the value of a trace event short
integer argument located at a particular byte offset in the argument space associated
with the event associated with the start event of the most recent instance of a state.

SYNTAX

start_blk_arg_short (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_short()” on page 16-37

• “end_blk_arg_short()” on page 16-117

• “offset_blk_arg_short()” on page 16-158
16-80

Using Expressions
start_blk_arg_string() 16

DESCRIPTION

The start_blk_arg_string() function returns the value of a trace event null
terminated string argument located at a particular byte offset in the argument space
associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start_blk_arg_string (byte_offset,max_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, this is also the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_string()” on page 16-38

• “end_blk_arg_string()” on page 16-118

• “offset_blk_arg_string()” on page 16-159
16-81

NightTrace RT User’s Guide
start_blk_arg_ubits() 16

DESCRIPTION

The start_blk_arg_ubits() function returns the value of a trace event
unsigned bit field argument located at a particular byte and bit offset with a particu-
lar bit size in the argument space associated with the event associated with the start
event of the most recent instance of a state.

SYNTAX

start_blk_arg_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ubits()” on page 16-39

• “end_blk_arg_ubits()” on page 16-119

• “offset_blk_arg_ubits()” on page 16-160
16-82

Using Expressions
start_blk_arg_uchar() 16

DESCRIPTION

The start_blk_arg_uchar() function returns the value of a trace event
unsigned character argument located at a particular byte offset in the argument space
associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start_blk_arg_uchar (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uchar()” on page 16-40

• “end_blk_arg_uchar()” on page 16-120

• “offset_blk_arg_uchar()” on page 16-161
16-83

NightTrace RT User’s Guide
start_blk_arg_uint() 16

DESCRIPTION

The start_blk_arg_uint() function converts the unsigned integer trace event
argument at a particular byte offset in the argument space associated with the start
event of the most recent instance of a state to a long.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) start_blk_arg_uint(0) > 0x80000000

SYNTAX

start_blk_arg_uint (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

unsigned integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uint()” on page 16-41

• “end_blk_arg_uint()” on page 16-121

• “offset_blk_arg_uint()” on page 16-162
16-84

Using Expressions
start_blk_arg_ulong_long() 16

DESCRIPTION

The start_blk_arg_ulong_long() function returns the value of a trace
event unsigned long long integer argument located at a particular byte offset in the
argument space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start_blk_arg_ulong_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

unsigned long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ulong_long()” on page 16-42

• “end_blk_arg_ulong_long()” on page 16-122

• “offset_blk_arg_ulong_long()” on page 16-163
16-85

NightTrace RT User’s Guide
start_blk_arg_ushort() 16

DESCRIPTION

The start_blk_arg_ushort() function returns the value of a trace event
unsigned short integer argument located at a particular byte offset in the argument
space associated with the event associated with the start event of the most recent
instance of a state.

SYNTAX

start_blk_arg_ushort (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ushort()” on page 16-43

• “end_blk_arg_ushort()” on page 16-123

• “offset_blk_arg_ushort()” on page 16-164
16-86

Using Expressions
start_num_args() 16

DESCRIPTION

The start_num_args() function returns the number of arguments associated
with the start event of the most recent instance of a state. For events recorded with
trace_event_blk(), it returns the number of bytes recorded in the argument
space.

SYNTAX

start_num_args [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “start_arg()” on page 16-65

• “num_args()” on page 16-44

• “end_num_args()” on page 16-124

• “offset_num_args()” on page 16-165
16-87

NightTrace RT User’s Guide
start_pid() 16

DESCRIPTION

The start_pid() function returns the PID associated with the start event of the
most recent instance of a state.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
is the actually the thread’s TID (see gettid(2)).

SYNTAX

start_pid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 16-46

• “end_pid()” on page 16-125

• “offset_pid()” on page 16-166
16-88

Using Expressions
start_thread_id() 16

DESCRIPTION

The start_thread_id() function returns the thread identifier associated with
the start event of the most recent instance of a state. The thread identifier is the
value of the system call gettid(2).

SYNTAX

start_thread_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 16-47

• “end_thread_id()” on page 16-126

• “offset_thread_id()” on page 16-167
16-89

NightTrace RT User’s Guide
start_task_id() 16

DESCRIPTION

The start_task_id() function returns the Ada task identifier associated with
the start event of the most recent instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

start_task_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 16-48

• “end_task_id()” on page 16-127

• “offset_task_id()” on page 16-168
16-90

Using Expressions
start_tid() 16

DESCRIPTION

The start_tid() function returns the internally-assigned NightTrace thread
identifier (TID) associated with the start event of the most recent instance of a state.

SYNTAX

start_tid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 16-49

• “end_tid()” on page 16-128

• “offset_tid()” on page 16-169
16-91

NightTrace RT User’s Guide
start_cpu() 16

DESCRIPTION

The start_cpu() function returns the logical CPU number associated with the
start event of the most recent instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies” on page B-1
for more information.

SYNTAX

start_cpu [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 16-50

• “end_cpu()” on page 16-129

• “offset_cpu()” on page 16-170
16-92

Using Expressions
start_offset() 16

DESCRIPTION

The start_offset() function returns the ordinal number (offset) of the start
event of the most recent instance of a state.

SYNTAX

start_offset [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “offset()” on page 16-51

• “end_offset()” on page 16-130
16-93

NightTrace RT User’s Guide
start_time() 16

DESCRIPTION

The start_time() function returns the time, in seconds, associated with the start
event of the most recent instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

start_time [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 16-52

• “end_time()” on page 16-131

• “state_gap()” on page 16-136

• “state_dur()” on page 16-137

• “offset_time()” on page 16-171
16-94

Using Expressions
start_node_id() 16

DESCRIPTION

The start_node_id() function returns the internally-assigned node identifier
associated with the start event of the most recent instance of a state.

SYNTAX

start_node_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 16-53

• “offset_node_id()” on page 16-172

• “end_node_id()” on page 16-132
16-95

NightTrace RT User’s Guide
start_pid_table_name() 16

DESCRIPTION

The start_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_pid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 16-54

• “offset_pid_table_name()” on page 16-173

• “end_pid_table_name()” on page 16-133
16-96

Using Expressions
start_tid_table_name() 16

DESCRIPTION

The start_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_tid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 16-55

• “offset_tid_table_name()” on page 16-174

• “end_tid_table_name()” on page 16-134
16-97

NightTrace RT User’s Guide
start_node_name() 16

DESCRIPTION

The start_node_name() function returns the name of the system from which
the start event of the most recent instance of a state was logged.

SYNTAX

start_node_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 16-56

• “offset_node_name()” on page 16-175

• “end_node_name()” on page 16-135
16-98

Using Expressions
End Functions 16

The end functions provide information about the end event of the last completed instance
of a state. The state to which the end function applies is either the profile reference speci-
fied to the function, or the state being currently defined. Thus, if a profile is not specified,
end functions are only meaningful when used in expressions associated within a state def-
inition.

NOTE

End functions provide information about the last completed
instance of a state, whereas start functions (see “Start Functions”
on page 16-62) provide information about the most recent
instance of a state.

End functions include:

• end_id()

• end_arg()

• end_arg_dbl()

• end_arg_long_dbl()

• end_arg_long_long()

• end_blk_arg()

• end_blk_arg_bits()

• end_blk_arg_char()

• end_blk_arg_dbl()

• end_blk_arg_flt()

• end_blk_arg_long()

• end_blk_arg_long_bits()

• end_blk_arg_long_dbl()

• end_blk_arg_long_long()

• end_blk_arg_long_ubits()

• end_blk_arg_short()

• end_blk_arg_string()

• end_blk_arg_ubits()

• end_blk_arg_uchar()

• end_blk_arg_uint()

• end_blk_arg_ulong_long()
16-99

NightTrace RT User’s Guide
• end_blk_arg_ushort()

• end_num_args()

• end_pid()

• end_thread_id()

• end_task_id()

• end_tid()

• end_cpu()

• end_offset()

• end_time()

• end_node_id()

• end_pid_table_name()

• end_tid_table_name()

• end_node_name()
16-100

Using Expressions
end_id() 16

DESCRIPTION

The end_id() function returns the trace event ID associated with the end event of
the last completed instance of a state.

SYNTAX

end_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 16-21

• “start_id()” on page 16-64

• “offset_id()” on page 16-142
16-101

NightTrace RT User’s Guide
end_arg() 16

DESCRIPTION

The end_arg() function returns the value of a particular trace event argument
associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N] [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 16-22

• “start_arg()” on page 16-65

• “end_arg()” on page 16-102

• “end_num_args()” on page 16-124

• “offset_arg()” on page 16-143
16-102

Using Expressions
end_arg_dbl() 16

DESCRIPTION

The end_arg_dbl() function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N]_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 16-23

• “start_arg_dbl()” on page 16-66

• “end_num_args()” on page 16-124

• “offset_arg_dbl()” on page 16-144
16-103

NightTrace RT User’s Guide
end_arg_long() 16

DESCRIPTION

The end_arg_long() function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N]_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_long()” on page 16-24

• “start_arg_long()” on page 16-67

• “end_num_args()” on page 16-124

• “offset_arg_long()” on page 16-145
16-104

Using Expressions
end_arg_long_dbl() 16

DESCRIPTION

The end_arg_long_dbl() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

end_arg[N]_long_dbl [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “arg_long_dbl()” on page 16-25

• “start_arg_long_dbl()” on page 16-68

• “offset_arg_long_dbl()” on page 16-146
16-105

NightTrace RT User’s Guide
end_arg_long_long() 16

DESCRIPTION

The end_arg_long_long() function returns the value of a particular trace
event argument.

SYNTAX

end_arg[N]_long_long [([PR])]

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “arg_long_long()” on page 16-26

• “num_args()” on page 16-44

• “start_arg_long_long()” on page 16-69

• “offset_arg_long_long()” on page 16-147
16-106

Using Expressions
end_blk_arg() 16

DESCRIPTION

The end_blk_arg() function returns the value of a trace event argument located
at a particular byte offset in the argument space associated with the event associated
with the end event of the most recent instance of a state.

SYNTAX

end_blk_arg (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg()” on page 16-27

• “start_blk_arg()” on page 16-70

• “offset_blk_arg()” on page 16-148
16-107

NightTrace RT User’s Guide
end_blk_arg_bits() 16

DESCRIPTION

The end_blk_arg_bits() function returns the value of a trace event signed bit
field argument located at a particular byte and bit offset with a particular bit size in
the argument space associated with the event associated with the end event of the
most recent instance of a state.

SYNTAX

end_blk_arg_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_bits()” on page 16-28

• “start_blk_arg_bits()” on page 16-71

• “offset_blk_arg_bits()” on page 16-149
16-108

Using Expressions
end_blk_arg_char() 16

DESCRIPTION

The end_blk_arg_char() function returns the value of a trace event signed
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the end event of the most recent instance of a
state.

SYNTAX

end_blk_arg_char (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_char()” on page 16-29

• “start_blk_arg_char()” on page 16-72

• “offset_blk_arg_char()” on page 16-150
16-109

NightTrace RT User’s Guide
end_blk_arg_dbl() 16

DESCRIPTION

The end_blk_arg_dbl() function returns the value of a trace event double-pre-
cision floating point argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end_blk_arg_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_dbl()” on page 16-30

• “start_blk_arg_dbl()” on page 16-73

• “offset_blk_arg_dbl()” on page 16-151
16-110

Using Expressions
end_blk_arg_flt() 16

DESCRIPTION

The end_blk_arg_flt() function returns the value of a trace event single-pre-
cision floating point argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end_blk_arg_flt (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_flt()” on page 16-31

• “start_blk_arg_flt()” on page 16-74

• “offset_blk_arg_flt()” on page 16-152
16-111

NightTrace RT User’s Guide
end_blk_arg_long() 16

DESCRIPTION

The end_blk_arg_long() function returns the value of a trace event long inte-
ger argument located at a particular byte offset in the argument space associated
with the event associated with the end event of the most recent instance of a state.

SYNTAX

end_blk_arg_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long()” on page 16-32

• “start_blk_arg_long()” on page 16-75

• “offset_blk_arg_long()” on page 16-153
16-112

Using Expressions
end_blk_arg_long_bits() 16

DESCRIPTION

The end_blk_arg_long_bits() function returns the value of a trace event
signed long bit field argument located at a particular byte and bit offset with a partic-
ular bit size in the argument space associated with the event associated with the end
event of the most recent instance of a state.

SYNTAX

end_blk_arg_long_bits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_bits()” on page 16-33

• “start_blk_arg_long_bits()” on page 16-76

• “offset_blk_arg_long_bits()” on page 16-154
16-113

NightTrace RT User’s Guide
end_blk_arg_long_dbl() 16

DESCRIPTION

The end_blk_arg_long_dbl() function returns the value of a trace event long
double-precision floating point argument located at a particular byte offset in the
argument space associated with the event associated with the end event of the most
recent instance of a state.

SYNTAX

end_blk_arg_long_dbl (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_dbl()” on page 16-34

• “start_blk_arg_long_dbl()” on page 16-77

• “offset_blk_arg_long_dbl()” on page 16-155
16-114

Using Expressions
end_blk_arg_long_long() 16

DESCRIPTION

The end_blk_arg_long_long() function returns the value of a trace event
long long integer argument located at a particular byte offset in the argument space
associated with the event associated with the end event of the most recent instance of
a state.

SYNTAX

end_blk_arg_long_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_long()” on page 16-35

• “start_blk_arg_long_long()” on page 16-78

• “offset_blk_arg_long_long()” on page 16-156
16-115

NightTrace RT User’s Guide
end_blk_arg_long_ubits() 16

DESCRIPTION

The end_blk_arg_long_ubits() function returns the value of a trace event
unsigned long integer bit field argument located at a particular byte and bit offset
with a particular bit size in the argument space associated with the event associated
with the end event of the most recent instance of a state.

SYNTAX

end_blk_arg_long_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_ubits()” on page 16-36

• “start_blk_arg_long_ubits()” on page 16-79

• “offset_blk_arg_long_ubits()” on page 16-157
16-116

Using Expressions
end_blk_arg_short() 16

DESCRIPTION

The end_blk_arg_short() function returns the value of a trace event short
integer argument located at a particular byte offset in the argument space associated
with the event associated with the end event of the most recent instance of a state.

SYNTAX

end_blk_arg_short (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_short()” on page 16-37

• “start_blk_arg_short()” on page 16-80

• “offset_blk_arg_short()” on page 16-158
16-117

NightTrace RT User’s Guide
end_blk_arg_string() 16

DESCRIPTION

The end_blk_arg_string() function returns the value of a trace event null ter-
minated string argument located at a particular byte offset in the argument space
associated with the event associated with the end event of the most recent instance of
a state.

SYNTAX

end_blk_arg_string (byte_offset,max_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, this is also the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_string()” on page 16-38

• “start_blk_arg_string()” on page 16-81

• “offset_blk_arg_string()” on page 16-159
16-118

Using Expressions
end_blk_arg_ubits() 16

DESCRIPTION

The end_blk_arg_ubits() function returns the value of a trace event unsigned
bit field argument located at a particular byte and bit offset with a particular bit size
in the argument space associated with the event associated with the end event of the
most recent instance of a state.

SYNTAX

end_blk_arg_ubits (byte_offset,bit_offset,bit_size[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ubits()” on page 16-39

• “start_blk_arg_ubits()” on page 16-82

• “offset_blk_arg_ubits()” on page 16-160
16-119

NightTrace RT User’s Guide
end_blk_arg_uchar() 16

DESCRIPTION

The end_blk_arg_uchar() function returns the value of a trace event unsigned
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the end event of the most recent instance of a
state.

SYNTAX

end_blk_arg_uchar (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uchar()” on page 16-40

• “start_blk_arg_uchar()” on page 16-83

• “offset_blk_arg_uchar()” on page 16-161
16-120

Using Expressions
end_blk_arg_uint() 16

DESCRIPTION

The end_blk_arg_uint() function converts the unsigned integer trace event
argument at a particular byte offset in the argument space associated with the end
event of the most recent instance of a state to a long.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) end_blk_arg_uint(0) > 0x80000000

SYNTAX

end_blk_arg_uint (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

unsigned integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uint()” on page 16-41

• “start_blk_arg_uint()” on page 16-84

• “offset_blk_arg_uint()” on page 16-162
16-121

NightTrace RT User’s Guide
end_blk_arg_ulong_long() 16

DESCRIPTION

The end_blk_arg_ulong_long() function returns the value of a trace event
unsigned long long integer argument located at a particular byte offset in the argu-
ment space associated with the event associated with the end event of the most
recent instance of a state.

SYNTAX

end_blk_arg_ulong_long (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

unsigned long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ulong_long()” on page 16-42

• “start_blk_arg_ulong_long()” on page 16-85

• “offset_blk_arg_ulong_long()” on page 16-163
16-122

Using Expressions
end_blk_arg_ushort() 16

DESCRIPTION

The end_blk_arg_ushort() function returns the value of a trace event
unsigned short integer argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end_blk_arg_ushort (byte_offset[,PR])

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ushort()” on page 16-43

• “start_blk_arg_ushort()” on page 16-86

• “offset_blk_arg_ushort()” on page 16-164
16-123

NightTrace RT User’s Guide
end_num_args() 16

DESCRIPTION

The end_num_args() function returns the number of arguments associated with
the end event of the last completed instance of a state. For events recorded with
trace_event_blk(), it returns the number of bytes recorded in the argument
space.

SYNTAX

end_num_args [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_num_args()” on page 16-87

• “end_arg()” on page 16-102

• “offset_num_args()” on page 16-165
16-124

Using Expressions
end_pid() 16

DESCRIPTION

The end_pid() function returns the PID associated with the end event of the last
completed instance of a state.

NOTE

All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging API, the value logged as the process
identifier is the common PID. For kernel events, the value logged for the process
identifier is the actually the thread’s TID (see gettid(2)).

SYNTAX

end_pid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 16-46

• “start_pid()” on page 16-88

• “offset_pid()” on page 16-166
16-125

NightTrace RT User’s Guide
end_thread_id() 16

DESCRIPTION

The end_thread_id() function returns the thread identifier associated with the
end event of the last completed instance of a state. The thread identifier is that
returned by the system call gettid(2).

SYNTAX

end_thread_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 16-47

• “start_thread_id()” on page 16-89

• “offset_thread_id()” on page 16-167
16-126

Using Expressions
end_task_id() 16

DESCRIPTION

The end_task_id() function returns the Ada task identifier associated with the
end event of the last completed instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

end_task_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 16-48

• “start_task_id()” on page 16-90

• “offset_task_id()” on page 16-168
16-127

NightTrace RT User’s Guide
end_tid() 16

DESCRIPTION

The end_tid() function returns the internally-assigned NightTrace thread identi-
fier (TID) associated with the end event of the last completed instance of a state.

SYNTAX

end_tid [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 16-49

• “start_tid()” on page 16-91

• “offset_tid()” on page 16-169
16-128

Using Expressions
end_cpu() 16

DESCRIPTION

The end_cpu() function returns the logical CPU number associated with the end
event of the last completed instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies” on page B-1
for more information.

SYNTAX

end_cpu [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 16-50

• “start_cpu()” on page 16-92

• “offset_cpu()” on page 16-170
16-129

NightTrace RT User’s Guide
end_offset() 16

DESCRIPTION

The end_offset() function returns the ordinal number (offset) of the end event
of the last completed instance of a state.

SYNTAX

end_offset [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “offset()” on page 16-51

• “start_offset()” on page 16-93
16-130

Using Expressions
end_time() 16

DESCRIPTION

The end_time() function returns the time, in seconds, associated with the end
event of the last completed instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

end_time [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 16-52

• “start_time()” on page 16-94

• “state_gap()” on page 16-136

• “state_dur()” on page 16-137

• “offset_time()” on page 16-171
16-131

NightTrace RT User’s Guide
end_node_id() 16

DESCRIPTION

The end_node_id() function returns the internally-assigned node identifier asso-
ciated with the end event of the last completed instance of a state.

SYNTAX

end_node_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 16-53

• “start_node_id()” on page 16-95

• “offset_node_id()” on page 16-172
16-132

Using Expressions
end_pid_table_name() 16

DESCRIPTION

The end_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
end event of the last completed instance of a state.

SYNTAX

end_pid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 16-54

• “start_pid_table_name()” on page 16-96

• “offset_pid_table_name()” on page 16-173
16-133

NightTrace RT User’s Guide
end_tid_table_name() 16

DESCRIPTION

The end_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the end
event of the last completed instance of a state.

SYNTAX

end_tid_table_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 16-55

• “start_tid_table_name()” on page 16-97

• “offset_tid_table_name()” on page 16-174
16-134

Using Expressions
end_node_name() 16

DESCRIPTION

The end_node_name() function returns the name of the system from which the
end event of the last completed instance of a state was logged.

SYNTAX

end_node_name [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 16-56

• “start_node_name()” on page 16-98

• “offset_node_name()” on page 16-175
16-135

NightTrace RT User’s Guide
Multi-State Functions 16

Multi-state functions return information about one or more instances of a state:

• state_gap()

• state_dur()

• state_matches()

• state_status()

For restrictions on usage, see “State Graph” on page 12-11.

state_gap() 16

DESCRIPTION

The state_gap() function returns the time in seconds between the start event of
the most recent instance of the state and the end event of the instance immediately
preceding it or zero if there was no previous instance.

SYNTAX

state_gap [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “start_time()” on page 16-94

• “end_time()” on page 16-131

• “event_gap()” on page 16-60

• “state_dur()” on page 16-137
16-136

Using Expressions
state_dur() 16

DESCRIPTION

The state_dur() function returns the time in seconds between the start event and the
end event of the last completed instance of a state. Thus, if the current time line occurs
within an instance of the state but before it has ended, state_dur() returns the duration
of the previous instance or zero if there was no previous instance.

SYNTAX

state_dur [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

double-precision floating point

SEE ALSO

• “state_gap()” on page 16-136
16-137

NightTrace RT User’s Guide
state_matches() 16

DESCRIPTION

The state_matches() function returns the number of completed instances of a
state on or before the current time line.

SYNTAX

state_matches [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

integer

SEE ALSO

• “Start Functions” on page 16-62

• “summary_matches()” on page 16-185
16-138

Using Expressions
state_status() 16

DESCRIPTION

The state_status() function indicates whether the current time line resides
within a current instance of a state. Thus, if the current time line is positioned in the
region from the start event up to, but not including, the end event of an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

state_status [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-195.

RETURN TYPE

boolean
16-139

NightTrace RT User’s Guide
Offset Functions 16

All offset functions take an expression that evaluates to an ordinal trace event (offset) as a
parameter. (Offsets begin at zero.) These functions include the following:

• offset_id()

• offset_arg()

• offset_arg_dbl()

• offset_arg_long()

• offset_arg_long_dbl()

• offset_arg_long_long()

• offset_blk_arg()

• offset_blk_arg_bits()

• offset_blk_arg_char()

• offset_blk_arg_dbl()

• offset_blk_arg_flt()

• offset_blk_arg_long()

• offset_blk_arg_long_bits()

• offset_blk_arg_long_dbl()

• offset_blk_arg_long_long()

• offset_blk_arg_long_ubits()

• offset_blk_arg_short()

• offset_blk_arg_string()

• offset_blk_arg_ubits()

• offset_blk_arg_uchar()

• offset_blk_arg_uint()

• offset_blk_arg_ulong_long()

• offset_blk_arg_ushort()

• offset_num_args()

• offset_pid()

• offset_thread_id()

• offset_task_id()

• offset_tid()

• offset_cpu()
16-140

Using Expressions
• offset_time()

• offset_node_id()

• offset_pid_table_name()

• offset_tid_table_name()

• offset_node_name()

• offset_process_name()

• offset_task_name()

• offset_thread_name()

Usually, these functions take one of the following functions as a parameter:

• offset()

• start_offset()

• end_offset()

• min_offset()

• max_offset()

For information about these functions, see “offset()” on page 16-51, “start_offset()” on
page 16-93, “end_offset()” on page 16-130, “min_offset()” on page 16-183, and
“max_offset()” on page 16-184.
16-141

NightTrace RT User’s Guide
offset_id() 16

DESCRIPTION

The offset_id() function returns the trace event ID of the ordinal trace event
(offset).

SYNTAX

offset_id(offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “id()” on page 16-21

• “start_id()” on page 16-64

• “end_id()” on page 16-101
16-142

Using Expressions
offset_arg() 16

DESCRIPTION

The offset_arg() function returns the value of a particular trace event argument
for the ordinal trace event (offset).

SYNTAX

offset_arg[N] (offset_expr)

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “arg()” on page 16-22

• “start_arg()” on page 16-65

• “end_arg()” on page 16-102

• “offset_arg_dbl()” on page 16-144

• “offset_num_args()” on page 16-165
16-143

NightTrace RT User’s Guide
offset_arg_dbl() 16

DESCRIPTION

The offset_arg_dbl() function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_dbl (offset_expr)

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_dbl()” on page 16-23

• “start_arg_dbl()” on page 16-66

• “end_arg_dbl()” on page 16-103

• “offset_arg()” on page 16-143

• “offset_num_args()” on page 16-165
16-144

Using Expressions
offset_arg_long() 16

DESCRIPTION

The offset_arg_long() function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_long (offset_expr)

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “arg_long()” on page 16-24

• “start_arg_long()” on page 16-67

• “end_arg_long()” on page 16-104

• “offset_arg()” on page 16-143

• “offset_num_args()” on page 16-165
16-145

NightTrace RT User’s Guide
offset_arg_long_dbl() 16

DESCRIPTION

The offset_arg_long_dbl() function returns the value of a particular trace
event argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_long_dbl (offset_expr)

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “arg_long_dbl()” on page 16-25

• “start_arg_long_dbl()” on page 16-68

• “end_arg_long_dbl()” on page 16-105
16-146

Using Expressions
offset_arg_long_long() 16

DESCRIPTION

The offset_arg_long_long() function returns the value of a particular trace
event argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N]_long_long (offset_expr)

PARAMETERS

N

Specifies the Nth argument logged with the trace event. Defaults to 1.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “arg_long_long()” on page 16-26

• “start_arg_long_long()” on page 16-69

• “end_arg_long_long()” on page 16-106
16-147

NightTrace RT User’s Guide
offset_blk_arg() 16

DESCRIPTION

The offset_blk_arg() function returns the value of a trace event argument
located at a particular byte offset in the argument space associated with the ordinal
trace event (offset).

SYNTAX

offset_blk_arg (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg()” on page 16-27

• “start_blk_arg()” on page 16-70

• “end_blk_arg()” on page 16-107
16-148

Using Expressions
offset_blk_arg_bits() 16

DESCRIPTION

The offset_blk_arg_bits() function returns the value of a trace event
signed bit field argument located at a particular byte and bit offset with a particular
bit size in the argument space associated with the event associated with the ordinal
trace event (offset).

SYNTAX

offset_blk_arg_bits (byte_offset,bit_offset,bit_size,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_bits()” on page 16-28

• “start_blk_arg_bits()” on page 16-71

• “end_blk_arg_bits()” on page 16-108
16-149

NightTrace RT User’s Guide
offset_blk_arg_char() 16

DESCRIPTION

The offset_blk_arg_char() function returns the value of a trace event
signed character argument located at a particular byte offset in the argument space
associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_char (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_char()” on page 16-29

• “start_blk_arg_char()” on page 16-72

• “end_blk_arg_char()” on page 16-109
16-150

Using Expressions
offset_blk_arg_dbl() 16

DESCRIPTION

The offset_blk_arg_dbl() function returns the value of a trace event dou-
ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_dbl (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_dbl()” on page 16-30

• “start_blk_arg_dbl()” on page 16-73

• “end_blk_arg_dbl()” on page 16-110
16-151

NightTrace RT User’s Guide
offset_blk_arg_flt() 16

DESCRIPTION

The offset_blk_arg_flt() function returns the value of a trace event sin-
gle-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk_arg_flt (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_flt()” on page 16-31

• “start_blk_arg_flt()” on page 16-74

• “end_blk_arg_flt()” on page 16-111
16-152

Using Expressions
offset_blk_arg_long() 16

DESCRIPTION

The offset_blk_arg_long() function returns the value of a trace event long
integer argument located at a particular byte offset in the argument space associated
with the event associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_long (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long()” on page 16-32

• “start_blk_arg_long()” on page 16-75

• “end_blk_arg_long()” on page 16-112
16-153

NightTrace RT User’s Guide
offset_blk_arg_long_bits() 16

DESCRIPTION

The offset_blk_arg_long_bits() function returns the value of a trace
event signed long bit field argument located at a particular byte and bit offset with a
particular bit size in the argument space associated with the event associated with
the ordinal trace event (offset).

SYNTAX

offset_blk_arg_long_bits (byte_offset,bit_offset,bit_size,
 offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_bits()” on page 16-33

• “start_blk_arg_long_bits()” on page 16-76

• “end_blk_arg_long_bits()” on page 16-113
16-154

Using Expressions
offset_blk_arg_long_dbl() 16

DESCRIPTION

The offset_blk_arg_long_dbl() function returns the value of a trace event
long double-precision floating point argument located at a particular byte offset in
the argument space associated with the event associated with the ordinal trace event
(offset).

SYNTAX

offset_blk_arg_long_dbl (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long double-precision floating point

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_dbl()” on page 16-34

• “start_blk_arg_long_dbl()” on page 16-77

• “end_blk_arg_long_dbl()” on page 16-114
16-155

NightTrace RT User’s Guide
offset_blk_arg_long_long() 16

DESCRIPTION

The offset_blk_arg_long_long() function returns the value of a trace
event long long integer argument located at a particular byte offset in the argument
space associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_long_long (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_long()” on page 16-35

• “start_blk_arg_long_long()” on page 16-78

• “end_blk_arg_long_long()” on page 16-115
16-156

Using Expressions
offset_blk_arg_long_ubits() 16

DESCRIPTION

The offset_blk_arg_long_ubits() function returns the value of a trace
event unsigned long integer bit field argument located at a particular byte and bit
offset with a particular bit size in the argument space associated with the ordinal
trace event (offset).

SYNTAX

offset_blk_arg_long_ubits (byte_offset,bit_offset,bit_size,
 offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_long_ubits()” on page 16-36

• “start_blk_arg_long_ubits()” on page 16-79

• “end_blk_arg_long_ubits()” on page 16-116
16-157

NightTrace RT User’s Guide
offset_blk_arg_short() 16

DESCRIPTION

The offset_blk_arg_short() function returns the value of a trace event short
integer argument located at a particular byte offset in the argument space associated
with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_short (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_short()” on page 16-37

• “start_blk_arg_short()” on page 16-80

• “end_blk_arg_short()” on page 16-117
16-158

Using Expressions
offset_blk_arg_string() 16

DESCRIPTION

The offset_blk_arg_string() function returns the value of a trace event
null terminated string argument located at a particular byte offset in the argument
space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_string (byte_offset,max_size,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, this is also the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_string()” on page 16-38

• “start_blk_arg_string()” on page 16-81

• “end_blk_arg_string()” on page 16-118
16-159

NightTrace RT User’s Guide
offset_blk_arg_ubits() 16

DESCRIPTION

The offset_blk_arg_ubits() function returns the value of a trace event
unsigned bit field argument located at a particular byte and bit offset with a particu-
lar bit size in the argument space associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_ubits (byte_offset,bit_offset,bit_size,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.

bit size

Specifies the size in bits of the argument record with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ubits()” on page 16-39

• “start_blk_arg_ubits()” on page 16-82

• “end_blk_arg_ubits()” on page 16-119
16-160

Using Expressions
offset_blk_arg_uchar() 16

DESCRIPTION

The offset_blk_arg_uchar() function returns the value of a trace event
unsigned character argument located at a particular byte offset in the argument space
associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_uchar (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uchar()” on page 16-40

• “start_blk_arg_uchar()” on page 16-83

• “end_blk_arg_uchar()” on page 16-120
16-161

NightTrace RT User’s Guide
offset_blk_arg_uint() 16

DESCRIPTION

The offset_blk_arg_uint() function converts the unsigned integer trace
event argument at a particular byte offset in the argument space associated with the
ordinal trace event (offset) to a long.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) offset_blk_arg_uint(0) > 0x80000000

SYNTAX

offset_blk_arg_uint (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

unsigned integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_uint()” on page 16-41

• “start_blk_arg_uint()” on page 16-84

• “end_blk_arg_uint()” on page 16-121
16-162

Using Expressions
offset_blk_arg_ulong_long() 16

DESCRIPTION

The offset_blk_arg_ulong_long() function returns the value of a trace
event unsigned long long integer argument located at a particular byte offset in the
argument space associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_ulong_long (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

unsigned long long integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ulong_long()” on page 16-42

• “start_blk_arg_ulong_long()” on page 16-85

• “end_blk_arg_ulong_long()” on page 16-122
16-163

NightTrace RT User’s Guide
offset_blk_arg_ushort() 16

DESCRIPTION

The offset_blk_arg_ushort() function returns the value of a trace event
unsigned short integer argument located at a particular byte offset in the argument
space associated with the ordinal trace event (offset).

SYNTAX

offset_blk_arg_ushort (byte_offset,offset_expr)

PARAMETERS

byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “blk_arg_ushort()” on page 16-43

• “start_blk_arg_ushort()” on page 16-86

• “end_blk_arg_ushort()” on page 16-123
16-164

Using Expressions
offset_num_args() 16

DESCRIPTION

The offset_num_args() function returns the number of arguments logged with
the ordinal trace event (offset). For events recorded with trace_event_blk(),
it returns the number of bytes recorded in the argument space.

SYNTAX

offset_num_args (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “num_args()” on page 16-44

• “start_num_args()” on page 16-87

• “end_num_args()” on page 16-124

• “offset_arg()” on page 16-143

• “offset_arg_dbl()” on page 16-144
16-165

NightTrace RT User’s Guide
offset_pid() 16

DESCRIPTION

The offset_pid() function returns the PID from which the ordinal trace event
(offset) was logged.

NOTE

All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging API, the value logged as the process
identifier is the common PID. For kernel events, the value logged for the process
identifier is the actually the thread’s TID (see gettid(2)).

SYNTAX

offset_pid (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “pid()” on page 16-46

• “start_pid()” on page 16-88

• “end_pid()” on page 16-125
16-166

Using Expressions
offset_thread_id() 16

DESCRIPTION

The offset_thread_id() function returns the thread identifier from which the
ordinal trace event (offset) was logged. The thread identifier is the value returned
from the system call gettid(2).

SYNTAX

offset_thread_id (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “thread_id()” on page 16-47

• “start_thread_id()” on page 16-89

• “end_thread_id()” on page 16-126
16-167

NightTrace RT User’s Guide
offset_task_id() 16

DESCRIPTION

The offset_task_id() function returns the Ada task identifier from which the
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

offset_task_id (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “task_id()” on page 16-48

• “start_task_id()” on page 16-90

• “end_task_id()” on page 16-127
16-168

Using Expressions
offset_tid() 16

DESCRIPTION

The offset_tid() function returns the internally-assigned NightTrace thread
identifier (TID) from which the ordinal trace event (offset) was logged.

SYNTAX

offset_tid (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “tid()” on page 16-49

• “start_tid()” on page 16-91

• “end_tid()” on page 16-128
16-169

NightTrace RT User’s Guide
offset_cpu() 16

DESCRIPTION

The offset_cpu() function returns the logical CPU number on which the ordinal
trace event (offset) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies” on page B-1
for more information.

SYNTAX

offset_cpu (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “cpu()” on page 16-50

• “start_cpu()” on page 16-92

• “end_cpu()” on page 16-129
16-170

Using Expressions
offset_time() 16

DESCRIPTION

The offset_time() function returns the time in seconds between the beginning
of the trace run and the ordinal trace event (offset).

SYNTAX

offset_time (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

double-precision floating point

SEE ALSO

• “time()” on page 16-52

• “start_time()” on page 16-94

• “end_time()” on page 16-131
16-171

NightTrace RT User’s Guide
offset_node_id() 16

DESCRIPTION

The offset_node_id() function returns the internally-assigned node identifier
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_node_id (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

integer

SEE ALSO

• “node_id()” on page 16-53

• “start_node_id()” on page 16-95

• “end_node_id()” on page 16-132
16-172

Using Expressions
offset_pid_table_name() 16

DESCRIPTION

The offset_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX

offset_pid_table_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “pid_table_name()” on page 16-54

• “start_pid_table_name()” on page 16-96

• “end_pid_table_name()” on page 16-133
16-173

NightTrace RT User’s Guide
offset_tid_table_name() 16

DESCRIPTION

The offset_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) for the ordinal trace
event (offset).

SYNTAX

offset_tid_table_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “tid_table_name()” on page 16-55

• “start_tid_table_name()” on page 16-97

• “end_tid_table_name()” on page 16-134
16-174

Using Expressions
offset_node_name() 16

DESCRIPTION

The offset_node_name() function returns the name of the system from which
the ordinal trace event (offset) was logged.

SYNTAX

offset_node_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “node_name()” on page 16-56

• “start_node_name()” on page 16-98

• “end_node_name()” on page 16-135
16-175

NightTrace RT User’s Guide
offset_process_name() 16

DESCRIPTION

The offset_process_name() function returns the name of the process (PID)
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_process_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “process_name()” on page 16-57
16-176

Using Expressions
offset_task_name() 16

DESCRIPTION

The offset_task_name() function returns the name of the task from which the
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

offset_task_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “task_name()” on page 16-58
16-177

NightTrace RT User’s Guide
offset_thread_name() 16

DESCRIPTION

The offset_thread_name() function returns the thread name from which the
ordinal trace event (offset) was logged.

SYNTAX

offset_thread_name (offset_expr)

PARAMETERS

offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of a trace
event.

RETURN TYPE

string

SEE ALSO

• “thread_name()” on page 16-59
16-178

Using Expressions
Summary Functions 16

You usually use summary functions on the Summar i ze Fo rm . Except for
summary_matches(), all of these functions take another expression as a parameter.
They include the following:

• min()

• max()

• avg()

• sum()

• min_offset()

• max_offset()

• summary_matches()

min() 16

DESCRIPTION

The min() function returns the minimum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

min (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 16-179
16-179

NightTrace RT User’s Guide
max() 16

DESCRIPTION

The max() function returns the maximum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

max (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 16-179
16-180

Using Expressions
avg() 16

DESCRIPTION

The avg() function returns the average value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

avg (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 16-179
16-181

NightTrace RT User’s Guide
sum() 16

DESCRIPTION

The sum() function returns the sum value of all occurrences of expr within a time
range. When used in a Summarize Form, the time range is defined by that form.
When used elsewhere, the time range is defined as the region starting with the first
trace event and ending with the current trace event.

SYNTAX

sum (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

• “Summary Functions” on page 16-179
16-182

Using Expressions
min_offset() 16

DESCRIPTION

The min_offset() function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thus, if
the same minimum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

min_offset (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(min_offset(arg1()))

SEE ALSO

• “Summary Functions” on page 16-179
16-183

NightTrace RT User’s Guide
max_offset() 16

DESCRIPTION

The max_offset() function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thus, if
the same maximum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

max_offset (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(max_offset(arg1()))

SEE ALSO

• “Summary Functions” on page 16-179
16-184

Using Expressions
summary_matches() 16

DESCRIPTION

The summary_matches() function returns the number of times the summary cri-
teria was matched in the time range.

SYNTAX

summary_matches ()

RETURN TYPE

integer

SEE ALSO

• “event_matches()” on page 16-61

• “state_matches()” on page 16-138
16-185

NightTrace RT User’s Guide
Format and Table Functions 16

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functions include the following:

• get_string()

• get_item()

• get_format()

• format()

• lookup_pc()

For more information about tables, see “Tables” on page 7-14 and “Kernel String Tables”
on page 17-17.

get_string() 16

The get_string() routine dynamically looks up a string in a string table.

SYNTAX

get_string (table_name[, int_expr])

PARAMETERS

table_name

table_name is an unquoted character string that represents the name of a string table.
To avoid possible forward reference problems, try to make your get_string()
calls refer to previously-defined string tables. The following string table names are
pre-defined in NightTrace: event, pid, tid, boolean, name_pid,
name_tid, node_name, pid_nodename, tid_nodename, vector,
syscall, and device. For more information on these tables, see “Pre-Defined
Strings Tables” on page 7-17 and “Kernel String Tables” on page 17-17.

int_expr

int_expr is an integer expression that acts as an index into the specified string table.
int_expr must either match an identifying integer value in the table_name string
table, or the table_name string table must have a default item line; otherwise
get_string() returns a string of int_expr in decimal. Often int_expr is based on a
NightTrace function.

If your table consists of only a default item line, omit this parameter.
16-186

Using Expressions
DESCRIPTION

The following NightTrace constructs can call get_string() to dynamically
locate a static string in a string table:

• A Condition, Start Condition, or End Condition of a display
object configuration

• A Condition, Start Condition, or End Condition of a Profile
configuration

• An Output Text field of a Data Box

• A value field of a format table

For each get_string() call, NightTrace follows these steps:

1. Evaluates int_expr

2. Uses this value as an index into table_name

3. Retrieves the associated string from table_name

4. Returns a string

The following lines provide a brief example of a call to get_string().

string_table (conditions) = {
 item = 1, “normal”;
 item = 50, “YELLOW ALERT”;
 item = 99, “RED ALERT”;
 default_item = “N/A”;
};

In this example the numeric argument associated with a trace event represents the
current conditions (conditions). If the argument has the value 99, NightTrace:

1. Uses the value 99 as in index into conditions

2. Retrieves the associated string (“RED ALERT”) from conditions

3. Returns “RED ALERT”

RETURN TYPES

On successful completion, get_string() returns a string from a string table.
NightTrace returns a string of the item number, int_expr, in decimal if table_name is
not found, or if int_expr is not found and there is no default item line. The first time
table_name is not found, NightTrace issues an error message. Because
get_string() returns a string, you can use it anywhere a string expression is
appropriate.

For more information on string tables, see “String Tables” on page 7-15.
16-187

NightTrace RT User’s Guide
get_item() 16

The get_item() routine looks up an item number in a string table.

SYNTAX

int get_item (table_name, “str_const”)

PARAMETERS

table_name

table_name is an unquoted character string that represents the name of a string table.
To avoid possible forward reference problems, try to make your get_item() calls
refer to previously-defined string tables. The following string table names are
pre-defined in NightTrace: event, pid, tid, boolean, name_pid,
name_tid, node_name, pid_nodename, tid_nodename, vector,
syscall, and device. For more information on these tables, see “Kernel
String Tables” on page 17-17.

str_const

str_const is a string constant literal that acts as an index into the specified string
table. str_const must either exactly match a string value in the table_name string
table, or the table_name string table must have a default item line; otherwise the
results are undefined. A table_name may contain several item lines with the same
str_const value.

DESCRIPTION

Typically, a get_item() call is used in conditional expressions for profiles,
searches, summaries, or display object configurations.

The get_item() call returns an index number into the specified string table
(table_name) for the first item in the table which matches the specified string
(str_const).

For example, assume that the following string table definition is in your page con-
figuration file (see “String Tables” on page 7-15):

string_table (fruit) = {
 item = 3, “apple”;
 item = 4, “orange”;
 item = 5, “cherry”;
 item = 6, “banana”;
 default_item = “Unknown”;
};

A get_item() call can be used in an Condition when configuring a Data Box
(see “Data Graph” on page 12-12):

Condition

arg1 = get_item(fruit,"cherry")
16-188

Using Expressions
requiring the first argument of the associated trace event to be the same as the index
value matching the entry for cherry in the fruit string table (which, in our
example, is 5).

RETURN TYPES

On successful completion, get_item() returns an item number from a string
table. If several item lines within the string table have the same string value as
str_const, get_item() returns the first item number from one of these item lines.
If table_name is not found, NightTrace issues an error message, and the results are
undefined. If str_const is not found and there is no default item line, the results are
undefined. Because get_item() returns an integer, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “String Tables” on page 7-15.
16-189

NightTrace RT User’s Guide
get_format() 16

The get_format() routine dynamically looks up a string in a format table.

SYNTAX

get_format (table_name[, int_expr])

PARAMETERS

table_name

table_name is an unquoted character string that represents the name of a format
table. To avoid possible forward reference problems, try to make your
get_format() calls refer to previously-defined format tables.

int_expr

int_expr is an integer expression that acts as an index into the specified format table.
int_expr must either match an identifying integer value in the table_name format
table, or the table_name format table must have a default item line; otherwise, the
results are undefined. Often int_expr is based on a NightTrace function.

If your table consists of only a default item line, omit this parameter.

DESCRIPTION

A call to get_format() must be the first function call in an expression. You
must not nest calls to get_format().

The Output Text field of a Data Box configuration can call get_format() to
dynamically locate a string in a format table. For each get_format() call, Night-
Trace follows these steps:

1. Evaluates int_expr

2. Uses this value as an index into table_name

3. Retrieves the associated string from table_name

4. Replaces any conversion specifications in the associated string

5. Returns a string

Assume that the following format table definition is in your configuration file.

format_table (what_pid) = {
 item = 1, “Trace event 1 logged by pid %d’%d”, “raw_pid()”,
 “lwpid()”;
 default_item = “Unaccounted for event ID (%d)”, “id()”;
};

Assume that you make the following call in the Then-Expression of a Data Box.

get_format (what_pid, id())
16-190

Using Expressions
In this example, the what_pid format table associates one dynamically-generated
string with trace event ID 1 (id() == 1) and another string with all other trace
events (default_item). When NightTrace processes a trace event for the display
object with the above get_format(), it:

1. Evaluates the NightTrace id() function. (Assume it evaluates to 1)

2. Calls get_format()

3. Uses this value (1) as an index into the what_pid format table

4. Retrieves the associated string (“Trace event 1 logged by
pid %d’%d”) from the what_pid format table

5. Evaluates the NightTrace raw_pid() and lwpid() functions.
(Assume they evaluate to 213 and 1 respectively)

6. Replaces the %d conversion specifiers with the raw_pid() and
lwpid() values

7. Displays “Trace event 1 logged by pid 213’1”

RETURN TYPES

On successful completion, get_format() returns a format table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables” on page 7-20.
16-191

NightTrace RT User’s Guide
format() 16

The format() routine displays a string.

SYNTAX

format (“format_string” [, arg] ...)

PARAMETERS

format_string

format_string controls how the optional args are displayed. format_string is based on
the format parameter used in the printf(3) routine in C. It is a character string
enclosed in double quotes that contains literal characters and conversion specifica-
tions. The literals are copied as is to the display object. Conversion specifications
modify zero or more args.

arg

arg is an optional expression to be formatted and displayed.

DESCRIPTION

Call the format() function to display a string. You can do this only from the Out-
put Text field of a Data Box. A call to format() must be the first function call
in an expression. You must not nest calls to format().

The following lines provide examples of format() statements and what they dis-
play. Assume all variables have a value of 10 (decimal).

RETURN TYPES

On successful completion, format() returns a string. Otherwise, it returns an
empty string.

 format("Error”) Error

 format("Event=%d”, id()) Event=10

 format("Argument is %X”, arg1()) Argument is A
16-192

Using Expressions
lookup_pc() 16

The lookup_pc() routine returns the location of a program counter in the specified exe-
cutable file.

SYNTAX

char * lookup_pc (long pc_value, char * executable_file_path)

PARAMETERS

pc_value

the address pointer value of the instruction to be located.

executable_file_path

the path of the executable file containing the pc.

DESCRIPTION

This function can be used in expressions, typically in format() statements.

Given a PC value, it returns a string describing the location of the PC in the speci-
fied executable file. The string returned includes the name of the routine containing
it and the file and line number associated with the PC, depending on how much
symbolic and debug information is available in the file.

N i g h t Tr ac e a t t e m p t s t o l o c a t e t h e ex e c u t a b l e u s i n g t h e sp e c i f i e d
executable_file_path. If the specified path is a simple file name without a directory
indication, NightTrace will first attempt to match the file’s specified simple name
with those of any executables given on the command line. Otherwise, NightTrace
will attempt to locate the file exactly as specified. For example,

ntrace /tmp/a.out
...
format (“My PC is %s”, lookup_pc(arg1,”a.out”))

will refer to /tmp/a.out, whereas

format (“My PC is %s”, lookup_pc(arg1,”./a.out”))

 will reference $PWD/./a.out.

A handy way to use lookup_pc is to use the built-in NightTrace function
process_name(). For example:

format (“My PC is %s”, lookup_pc(arg1,process_name()))

substitutes the name of the process associated with the current trace event.
16-193

NightTrace RT User’s Guide
RETURN TYPES

A string is always returned from lookup_pc()regardless of whether it can locate
the specified file or can obtain symbolic information from it. At a minimum, the
string returned includes the address passed in as pc_value in hexadecimal notation.
16-194

Using Expressions
Profile References 16

Profile references provide a means for referencing a set of one or more trace events which
may be restricted by conditions specified by the user.

Profile references can be used within trace event functions (see “Trace Event Functions”
on page 16-19).

A profile reference is simply the name of the profile.

Profiles are created and managed using the Profiles Definition panel (see “Profiles Dia-
log” on page 13-2 for more information).
16-195

NightTrace RT User’s Guide
16-196

17
Chapter 17Kernel Tracing

16
17
17

This chapter provides an introduction to kernel tracing. It also discusses the steps required
to produce a highly detailed picture of kernel activity with NightTrace. You can customize
the default NightTrace kernel timelines or combine kernel information with user-applica-
tion trace information.

NOTE

Not all operating system distributions support NightTrace kernel
tracing. See “Kernel Dependencies” on page B-1 for more infor-
mation.

N i g h t Tr ac e t r a n s f o r m s t h e r a w k e r n e l e v e n t s a s d e f i n e d i n
/usr/include/linux/tracer.h to NightTrace events. The raw kernel event num-
bers are biased by the value 4300 to form the NightTrace event ID number. Normally, the
arguments logged with the raw kernel events are directly converted to integer-sized Night-
Trace arguments. There are some exceptions which are noted in this chapter.

Primary Kernel Trace Events 17

The following kernel trace events are of primary interest:

• SCHEDCHANGE

• SYSCALL_ENTRY,SYSCALL_EXIT, SYSCALL_SUSPEND,
and SYSCALL_RESUME

• IRQ_ENTRY, IRQ_EXIT, SOFT_IRQ_ENTRY,
and SOFT_IRQ_EXIT

• TRAP_ENTRY, TRAP_EXIT, TRAP_SUSPEND, and TRAP_RESUME

• PROCESS, NETWORK, and MEMORY

These trace events and several others are enabled by default when starting a kernel trace
daemon. You can change the default enabled event set in ntrace in the Enabled
Events area of the Edit Daemon Definition dialog or using -events command line
option to ntracekd.

The following sections discuss the primary trace events.
17-1

NightTrace RT User’s Guide
Context Switch Trace Event 17

There is only one context switch trace event:

SCHEDCHANGE arg1

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. This trace event has one argument:

arg1

The process identifier (PID) of the process being switched in. This informa-
tion is somewhat redundant, since it is identical to the PID that is already asso-
ciated with the trace event. A PID of 0 indicates that the CPU is idle.

This identifier is identical to the return value of the gettid(2) system call.
See “pid()” on page 16-46.

NOTE:

The SCHEDCHANGE event argument differs from the argument
logged with the corresponding raw kernel event as described in
/usr/include/linux/tracer.h.

Interrupt Trace Events 17

There are two trace events associated with machine interrupts:

IRQ_ENTRY arg1 arg2 arg3

This trace event is logged whenever an interrupt occurs. It has three arguments:

arg1

Reserved for future use

arg2

The interrupt nesting level used by the pre-defined kernel pages to graph the
different heights associated with the nesting level. This argument will be 1 for
the first interrupt, 2 for a second interrupt that interrupted the first interrupt, 3
for a third interrupt that interrupted the second interrupt, etc.

arg3

The interrupt vector number that indicates the type of interrupt. This is an
index into the vector string table that is contained within the vectors file
generated by NightTrace when consuming kernel data. For more information
about the vector string table, see “Kernel String Tables” on page 17-17.
17-2

Kernel Tracing
IRQ_EXIT arg1 arg2 arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of the IRQ_ENTRY trace event.

NOTE:

The IRQ_ENTRY and IRQ_EXIT event arguments differ from
t h e i r r a w k e r n e l c o u n t e r p a r t s a s d e s c r i b e d i n
/usr/include/linux/tracer.h.

Additional exception processing is done on behalf of the kernel by kernel daemons
that run as user-level processes. Such exception processing is identified by the fol-
lowing two events:

SOFT_IRQ_ENTRY arg1 arg2
SOFT_IRQ_EXIT

These event pairs surround soft interrupt processing and are usually associated with
a ksoftirq daemon process.

The arguments logged with SOFT_IRQ_ENTRY are internal kernel parameters
which are explained in /usr/include/linux/tracer.h.

Exception Trace Events 17

There are four trace events associated with exceptions:

TRAP_ENTRY arg1 arg2 arg3

This trace event is logged whenever a machine exception occurs. It has three argu-
ments:

arg1

This argument contains the value of the exception vector number that indi-
cates the type of exception. This is an index into the vector string table that
is contained within the vectors file. For more information about the vector
string table, see “Kernel String Tables” on page 17-17.

arg2

This argument contains the value of the program counter where the exception
occurred.

arg3

This argument contains the value of the faulting address, for those exception
types which involved virtual memory faults.
17-3

NightTrace RT User’s Guide
TRAP_EXIT arg1

This trace event is logged whenever exception processing is completed. It has one
argument that is identical to the first argument that is logged with the TRAP_ENTRY
trace event.

TRAP_SUSPEND arg1
TRAP_RESUME arg1

These trace events are logged when exception processing is suspended before it is
completed, and subsequently resumed. A TRACE_SUSPEND event will be followed
immediately by a SCHEDCHANGE event which signifies a context switch to another
process while the process that caused the exception is blocked pending exception
processing completion. The single argument logged for both events is the exception
vector number associated with the originating TRAP_ENTRY event.

Syscall Trace Events 17

There are four trace events associated with system calls:

SYSCALL_ENTRY arg1 arg2 arg3

This trace event is logged whenever a system call is entered. It has three arguments:

arg1

This argument is the value of the program counter from which the system call
was made. Depending on the system type, this value may not be particularly
useful as many system calls occur from the same page in virtual memory,
commonly referred to as the fast system call page.

arg2

This argument is the value of the system call number that identifies the system
call. This is an index into the pre-defined syscall string table.

arg3

This argument is the value of the device number that indicates the type of
device that is associated with the system call, if any. This is an index into the
pre-defined device string table.

For more information about the pre-defined syscall and device string tables,
see “Kernel String Tables” on page 17-17.

SYSCALL_EXIT arg1 arg2 arg3

This trace event is logged whenever a system call is completed. It has three argu-
ments; the second and third arguments are identical to the second and third argu-
ments logged with the originating SYSCALL_ENTRY trace event. The first argu-
ment is the value returned by the system call.
17-4

Kernel Tracing
NOTE:

The return value of the system call is only available on RedHawk
version 2.3 and beyond. On previous versions, the value will be
zero, regardless of the success or failure of the system call.

SYSCALL_SUSPEND arg1 arg2 arg3
SYSCALL_RESUME arg1 arg2 arg3

These trace events are logged when system call processing is suspended before it is
completed, and subsequently resumed. A SYSCALL_SUSPEND event will be fol-
lowed immediately by a SCHEDCHANGE event which signifies a context switch to
another process while the process that executed the system call is blocked pending
system call processing completion. The arguments logged for both events are identi-
cal to the arguments associated with the originating SYSCALL_ENTRY event.

NOTE:

The SYSCALL_ENTRY and SYSCALL_EXIT event arguments
differ from their raw kernel counterparts as described in
/usr/include/linux/tracer.h.

Kernel Work Events 17

Kernel work events occur during system calls, exceptions, and interrupt processing. They
include the following events:

PROCESS arg1 arg2 arg3

The PROCESS event represents process creation, exit, and signalling events. The
following arguments provide detail:

arg1
17-5

NightTrace RT User’s Guide
This argument is an event code specific to PROCESS events as defined by
/usr/include/linux/tracer.h. The codes and their mean-
ings are described in the Table 17-1:

arg2

The meaning of this argument is dependent on the value of arg1. Normally,
this argument is the process ID of the process associated with the event. How-
ever, when a signal is sent, this argument is the signal number.

arg3

The meaning of this argument is dependent on the value of arg1. Normally,
this argument is the value of an internal kernel function pointer. However,
when a signal is sent, this argument is the process ID of the process being sig-
nalled.

NETWORK

This event is logged to indicate networking activity.

arg1

This argument is an event code specific to NETWORK events as defined
by /usr/include/linux/tracer.h. The codes and their mean-
ings are described in Table 17-2:

arg2

This argument is an internal kernel data value associated with the event.

Table 17-1. PROCESS Event Codes

Code Meaning

1 Kernel thread creation

2 Process creation (fork or
clone)

3 Process exit

4 Process wait

5 Process signal

6 Process wake-up

Table 17-2. NETWORK Kernel Event Sub-ID Codes

Code Meaning

1 A packet was received

2 A packet was sent
17-6

Kernel Tracing
MEMORY

This event is logged to indicate a variety of virtual memory events.

arg1

This argument is an event code specific to MEMORY events as defined by
/usr/include/linux/tracer.h. The codes and their meanings
are described in Table 17-3:

arg2

This argument is an internal kernel data value associated with the event.

Additional Kernel Events 17

There are many more kernel events that occur other than those described in the sections
a b o v e . T h e y a r e d e f i n e d b y t h e e n u m e r a t e d t y p e event_id i n t h e
/usr/include/linux/tracer.h header file. Not all events defined in that file are
enabled by default.

For many kernel events, a corresponding structure is defined. The content of the structure
contains additional detail describing the event. The structure is unpacked into individual
arguments which are logged with the event. As many integer arguments are logged as
required to cover the size of the structure.

For example, an IPC kernel event includes data in the following structure, as defined by
/usr/include/linux/tracer.h:

Table 17-3. MEMORY Kernel Event Sub-ID Codes

Code Meaning

1 Allocating pages

2 Freeing pages

3 Swapping in pages

4 Swapping out pages

5 Start to wait for page

6 End waiting for page
17-7

NightTrace RT User’s Guide
/* TRACE_EV_IPC */
typedef struct {
 unsigned int event_sub_id;
 unsigned int event_data1;
 unsigned int event_data2;
} trace_ipc;

The following arguments are logged with an IPC event:

arg1

This first word of the structure -- event_sub_id

arg2

The second word of the structure -- event_data1

arg2

The third word of the structure -- event_data2

The kernel includes a CUSTOM event which can contain dynamically-sized data. This flex-
ible unpacking scheme allows new dynamically-sized events to be created and logged
effectively by NightTrace.

Logging Custom Kernel Events 17

The CUSTOM event is not enabled by default in kernel trace daemons. You can change the
default enabled event set in ntrace in the Events area of the Edit Daemon Defini-
tion dialog or using the --events command line option to ntracekd, e.g:

ntracekd --size=20M --events=+CUSTOM data-file
17-8

Kernel Tracing
From User Programs 17

User programs can log CUSTOM kernel trace events with ioctl calls.

The following structure is defined in /usr/include/ntrace.h:

typedef struct {
 unsigned int id; // Custom event ID
 unsigned int data_size; // Size of optional data
 void * data; // Optional data
} nt_trace_custom;

The following code fragment provides an example of how to log a custom kernel event
from a user application:

#include <ntrace.h>
#include <fcntl.h>
...
{ int fd;
 int err;
 typedef struct {
 int i;
 int j;
 double d;
 } my_data_t;
 my_data_t data = { 47, 0, 3.14159 };
 nt_trace_custom event;
 event.id = 17;
 event.data_size = sizeof(data);
 event.data = &data;
 fd = open (“/dev/tracer”, O_RDWR, 0);
 err = ioctl(fd,NT_TRACER_LOG_CUSTOM_EVENT,&event)==-1;
 close(fd);
};

From Kernel Modules 17

The following code fragment provides an example of how to insert CUSTOM kernel trace
events inside kernel code; for example, a kernel module.
17-9

NightTrace RT User’s Guide
#include <linux/tracer.h>
...
typedef struct {
 int i;
 int j;
 double d;
} my_data_t;
my_data_t data = { 47, 0, 3.14159 };
TRACE_CUSTOM(17,&data,sizeof(data))

Retrieving Custom Events 17

Custom events are always logged with the trace event ID of “CUSTOM”, which is the
value 4319.

A minimum of three data values are always logged with it; these correspond to the compo-
nents of the following structure defined in /usr/include/linux/tracer.h:

typedef struct {
 unsigned int id; // Custom Event ID
 unsigned int data_size; // Size of data recorded by event
 void * data; // Data recorded by event
} trace_custom;

This structure corresponds directly to nt_trace_custom from the example under
“From User Programs” on page 17-9 and the arguments to the TRACE_CUSTOM call in the
example under “From Kernel Modules” on page 17-9 (although the order of the arguments
in the Kernel Modules example differs from the order of the components).

The additional data logged with the event immediately follows as additional values. The
entire set of values, those from the trace_custom structure and those from additional
supplied data items if any, are logged as a continual block of memory.

Note that the actual value of the trace_custom.data component is not very interest-
ing from within ntrace. The actually data it originally pointed to now immediately fol-
lows the trace_custom.data component in memory.

Extracting the values of interest within ntrace is best done with the blk_arg family of
NightTrace functions. These functions all take a byte offset as their first argument. The
function name itself defines the type (and therefore the size) of the data value to be
extracted; for example, blk_arg_dbl extracts double-precision floating point.

The following table shows NightTrace expressions and their corresponding value for the
event logged in both examples above (the examples were constructed so that they effec-
tively logged the same data values):
17-10

Kernel Tracing
The offsets supplied in the blk_arg* expressions differ between architectures; the size
of the void* component of trace_custom is 4 bytes on i386 systems but 8 bytes on
x86_64 systems.

NOTE

By default within ntrace, the entire block of memory is dis-
played as a series of integer-sized arguments since the layout of
the additional data items is unknown to NightTrace.

Viewing Kernel Trace Event Files 17

NightTrace automatically builds kernel timelines when ntrace is invoked with kernel
data (see “Kernel Timelines” on page 17-12). The number of CPUs is detected from the
kernel trace data and controls how the page is built.

In addition, you may customize a kernel timeline using the Build Custom Kernel
Timeline dialog (see “Custom Kernel Timeline...” on page 8-21) which is accessed by
selecting the Custom Kernel Timeline... menu item from the Timelines menu on the
NightTrace Main Window (see “Custom Kernel Timeline...” on page 8-21).

Expressions

Value Commenti386 x86_64

blk_arg(0) blk_arg(0) 17 This corresponds to the event.id component in
the User Program example and the first argument to
TRACE_CUSTOM in the Kernel Modules example.

blk_arg(12) blk_arg(16) 47 This corresponds to the data.i component in both
examples.

blk_arg_dbl(20) blk_arg_dbl(24) 3.14159 This corresponds to the data.d component in both
examples.
17-11

NightTrace RT User’s Guide
Kernel Timelines 17

Figure 17-1 shows a sample kernel timeline for a quad CPU system.

Figure 17-1. Sample Kernel timeline

For each CPU, several rows of information are displayed. The position of the current time
line determines the values that appear on the kernel timelines. Moving the current time
line within the current interval does not change the graphical displays. However, the tex-
tual displays always reflect the last values prior to or at the current time line.

The following sections discuss all of the different pieces of information in detail

• “Node and CPU Information” on page 17-13

• “Context Switch Information” on page 17-13

• “Interrupt Information” on page 17-14

• “Exception Information” on page 17-14

• “System Call Information” on page 17-15
17-12

Kernel Tracing
• “Process Information” on page 17-16

• “Kernel Events” on page 17-16

• “Color Information” on page 17-17

Node and CPU Information 17

Figure 17-2 shows the Grid Label (see “Label” on page 12-20) that appears on kernel
timelines which displays information about the node and CPU corresponding to the trace
data being displayed.

Figure 17-2. Node and CPU Box

The node identifies the node from which the displayed data was obtained.

The CPU identifies the logical CPU to which the displayed data corresponds. Logical
CPU numbers are related to, but not necessarily identical to, physical CPU numbers.

The cpu(1) command displays the relationship of physical CPU numbers to logical
CPU numbers, but since most all interfaces use logical CPU numbers, it is not normally of
significant interest.

Context Switch Information 17

Figure 17-3. Context Switch Lines

Figure 17-3 shows an example of several context switch lines. Context switch lines are
superimposed on the exception and system call graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. There is a direct correlation between context switch lines and the Process Infor-
mation box: the Process Information box shows the process associated with the context
switch line that immediately precedes the current time line.
17-13

NightTrace RT User’s Guide
Interrupt Information 17

Figure 17-4. Interrupt Box and Interrupt Graph

Figure 17-4 shows an interrupt box and an interrupt graph. The interrupt graph displays a
state that is drawn whenever an interrupt is executing on the associated CPU. Interrupts
can be interrupted while executing, and the interrupt graph shows this interrupt nesting by
increasing the height of the state bar. Although interrupts can nest, all interrupts must
complete before the process they interrupt can be switched out. Therefore, you will never
see a context switch occur in the middle of an interrupt.

The interrupt box displays the name of the last interrupt prior to or immediately at the cur-
rent time line that executed (and may still be executing) on the associated CPU. It can be
used with the interrupt graph to identify any interrupts that are currently visible on the
graph. Simply move the current time line onto a graphed interrupt, and the interrupt box
will update to display the name of the interrupt.

Because the interrupt box displays the name of the last interrupt that executed, it is possi-
ble for there to be no interrupts visible on the interrupt graph even though the interrupt box
contains a valid interrupt name. This signifies that the last interrupt on the CPU ended
prior to the beginning of the current interval.

An interrupt that is seen very often is the timer interrupt, usually once every 10 millisec-
onds. The interrupt box is a Data Box (“Data Box” on page 12-20) and the interrupt graph
is a Data Graph (“Data Graph” on page 12-12). See “Creating Timeline Objects” on page
12-8 for more information on configuring Data Boxes and Data Graphs.

Exception Information 17

Figure 17-5. Exception Box and Exception Graph

Figure 17-5 shows a exception box and an exception graph. The exception graph displays
a state that is drawn whenever an exception is executing on the associated CPU. Unlike
interrupts, exceptions cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 17-5.
17-14

Kernel Tracing
The exception box displays the last exception prior to or at the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the exception box will update to
display the name of the exception.

Because the exception box displays the name of the last exception that executed, it is pos-
sible for there to be no exceptions visible on the exception graph even though the excep-
tion box contains a valid exception name. This signifies that the last exception on the CPU
ended prior to the beginning of the current interval.

The exception box is a Data Box (“Data Box” on page 12-20) and the last exception graph
is a State Graph (see “State Graph” on page 12-11). See “Creating Timeline Objects” on
page 12-8 for more information on creating and configuring Data Boxes and State Graphs.

System Call Information 17

Figure 17-6. System Call Box and System Call Graph

Figure 17-6 shows a system call box and a system call graph. The system call graph dis-
plays a state that is drawn whenever a system call is executing on the associated CPU.
Unlike interrupts, system calls cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on system call graphs. It is common to see a con-
text switch line at what looks like the very end (or beginning) of a system call. Usually,
this does not indicate that the system call has ended, only that it has been suspended
because the process that originated the system call has switched out. The system call
resumes when the process is switched back in again. An example of a system call being
suspended and resumed can be seen at the right end of the system call graph in the figure.

The system call box displays the last system call prior to or at the current time line that
executed (and may still be executing) on the associated CPU. If the system call is associ-
ated with a device, the name of the device is shown after the name of the system call.

The system call box can be used with the system call graph to identify any system calls
that are currently visible on the graph. Simply move the current time line onto a graphed
system call, and the system call box will update to display the name of the system call.

Because the system call box displays the name of the last system call that executed, it is
possible for there to be no system calls visible on the system call graph even though the
system call box contains a valid system call name. This signifies that the last system call
on the CPU ended prior to the beginning of the current interval.

It is possible for the first system call logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a system
call that was previously suspended. If this occurs, the system call box will display “can’t
determine” for the name of the system call.
17-15

NightTrace RT User’s Guide
The system call box is a Data Box (see “Data Box” on page 12-20), and the last system
call graph is a State Graph (see “State Graph” on page 12-11). See “Creating Timeline
Objects” on page 12-8 for more information on configuring Data Boxes and State Graphs.

Process Information 17

Figure 17-7. Process Information Row

Figure 17-7 shows the Process Information row which includes a process data box (see
“Data Graph” on page 12-12) and a process state graph (see “State Graph” on page 12-11).
See “Creating Timeline Objects” on page 12-8 for more information on creating and con-
figuring Data Boxes and State Graphs.

The data box indicates the name of the process (other than /idle) that last executed on
the CPU prior to or at the current timeline.

The state graph uses multi-colored states to indicate when a process other than /idle is
executing on a CPU. The colors are assigned by NightTrace using a heuristic that takes
into account all processes represented by the data set. You cannot predict which color will
be associated with a specific process, but once the color is assigned, it remains constant
throughout the current NightTrace session.

Kernel Events 17

Figure 17-8. Kernel Events Row

Figure 17-8 shows the Kernel Events row which includes a kernel event data box (see
“Data Box” on page 12-20) and a kernel event graph (see “Event Graph” on page 12-10).
See “Creating Timeline Objects” on page 12-8 for more information on creating and con-
figuring Data Boxes and Event Graphs.

The data box indicates the name of the last kernel event logged for that CPU prior to or at
the current timeline.

The event graph shows a vertical line for every kernel event.
17-16

Kernel Tracing
Color Information 17

Figure 17-9. Color Key

Figure 17-9 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel timelines.

The text in the color key is color-coded. By default, the word “Interrupt” is red, and all
display objects on the kernel timeline that display information about interrupts are also
red. By default, the word “Exception” is green, and all display objects that display infor-
mation about exceptions are also green. By default, the word “Syscall” is blue, and all
display objects that display information about system calls are also blue. By default, the
word “KernelEvent” is dark red, and all display objects that display kernel events in that
row are dark red.

Currently, the default colors cannot be modified. Setting color preferences will be pro-
vided in a future update.

Kernel String Tables 17

There are nine kernel related pre-defined string tables. They are:

vector

This string table contains the interrupt and exception vector names associated with
the system that the kernel tracing was performed on. It is contained in the vectors
file.

This table is indexed by an exception/interrupt vector number or an exception/inter-
rupt vector name. Examples of using this table are:

get_string(vector, arg3())
get_string(vector, 15)
get_item(vector, “ide0”)

syscall

This string table contains the names of all the possible system calls that can occur on
the system. It is contained in the vectors file.

This table is indexed by a system call number or a system call name. Examples of
using this table are:
17-17

NightTrace RT User’s Guide
get_string(syscall, 44)
get_string(syscall, arg2())
get_item(syscall, “fork”)

device

This string table contains the names the devices that are currently configured in the
kernel. It is contained in the vectors file.

This table is indexed by a device number or a device name. Examples of using this
table are:

get_string(device, arg3())
get_string(device, 720900)
get_item(device, “gd”)

name_pid

This string table contains the name of each node's process ID table. It is dynami-
cally built as the trace event files are processed upon initialization.

node_name

This string table contains the names of all nodes that have a trace event file associ-
ated with them. It is dynamically built as the trace event files are processed upon
initialization.

pid_nodename

This string table contains the names associated with all process identifiers found in
trace event files for node name nodename. It is dynamically built as the trace event
files are processed upon initialization. It is contained in the vectors file. Because
process identifiers are not guaranteed to be unique across nodes, using the pre-
defined string table pid to get the process name for a process ID may result in an
incorrect name being returned from the table. Using the node process ID tables
ensures that the correct process name is returned for a process ID unless the process
name is not unique on that particular node.

These tables are indexed by a process identifier or a process name. Examples of
using these tables are:

get_string(pid_hal, pid())
get_item(pid_simulator, “odyssey”)

Note that using the NightTrace function process_name() is more convenient
than having to dynamically locate and index the correct pid_nodename table to
get the current process name.

For example, the following two expressions are equivalent:

process_name()
get_string(get_string(name_pid,node_id()),pid())

syscall_nodename

This string table contains the names of all possible system calls that can occur in
trace event files for node name nodename. It is contained in the vectors file.
17-18

Kernel Tracing
This table is indexed by a system call number or a system call name. Examples of
using this table are:

get_string(syscall_systemx, 31)
get_string(syscall_systemy, arg2())
get_item(syscall_systemz, “read”)

vector_nodename

This string table contains the interrupt and exception vector names associated with
trace event files for node name nodename. It is contained in the vectors file.

This table is indexed by an exception/interrupt vector number or an exception/inter-
rupt vector name. Examples of using this table are:

get_string(vector_machine1, arg3())
get_string(vector_machine2, 585)
get_item(vector_system3, “data access”)

device_nodename

This string table contains the names of devices configured in the kernel for trace
event files from node name nodename. It is contained in the vectors file.

This table is indexed by a device number or a device name. Examples of using this
table are:

get_string(device_simulator1, arg3())
get_string(device_simulator4, 3604484)
get_item(device_controller, “rtc”)

The pid string table is also used by the kernel timelines. For more information on the
pid string table, see “Pre-Defined Strings Tables” on page 7-17.
17-19

NightTrace RT User’s Guide
17-20

18
Chapter 18Using the NightTrace Analysis API

17
18
18

The NightTrace graphical user interface is one of the primary tools for analyzing trace
data (see “The NightTrace Main Window” on page 8-1). However, the NightTrace Analy-
sis Application Programming Interface provides users with even further control in sum-
marizing or monitoring trace data.

The NightTrace Analysis API provides a basic interface to the data produced by Night-
Trace allowing users to process NightTrace data programmatically. It allows users to cus-
tomize their analysis of NightTrace data, both expressly via user-written programs and as
customized batch summaries.

For instance, a user may want to provide customized reports on user application activity,
monitor a user application or the operating system itself and take action when a specific
situation occurs, or filter a trace data file (to significantly reduce its size) for subsequent
use with the GUI or API.

The NightTrace Analysis API can use either NightTrace data files generated by Night-
Trace kernel or user daemons or may reference a file descriptor connected to a streaming
daemon as the input source.

The API allows the user to control the order in which the data is accessed and provides for
event filtration as well as customized event and state definition specification using condi-
tions currently provided in the NightTrace GUI tool.

In addition, all functions supported by the NightTrace GUI expression language are pro-
vided as user-callable functions.

The following sections describe the data structures and functions that comprise the Night-
Trace Analysis API.

Sample programs using these data structures and functions are also provided (see “Night-
Trace Analysis API Examples” on page E-1).

NightTrace Analysis Application Programming Interface 18

The NightTrace Analysis Application Programming Interface consists of a number of data
structures (see “Data Structures” on page 18-3) and functions (see “Functions” on page
18-10).

These data structures and functions are accessible via the C header file:

/usr/include/ntrace_analysis.h

and the C library:

/usr/lib/libntrace_analysis.a

and can be called by C and C++ programs.
18-1

NightTrace RT User’s Guide
Another useful file is /usr/include/ntrace_events.h. That file contains #define
values for all the kernel events and other special NightTrace events.
18-2

Using the NightTrace Analysis API
Data Structures 18

The following data structures are part of the NightTrace Analysis Application Program-
ming Interface:

- tr_arg_t (see “tr_arg_t” on page 18-3)

- tr_cb_t (see “tr_cb_t” on page 18-4)

- tr_cond_cb_func_t (see “tr_cond_cb_func_t” on page 18-4)

- tr_cond_func_t (see “tr_cond_func_t” on page 18-5)

- tr_cond_t (see “tr_cond_t” on page 18-5)

- tr_dir_t (see “tr_dir_t” on page 18-5)

- tr_offset_t (see “tr_offset_t” on page 18-5)

- tr_state_action_t (see “tr_state_action_t” on page 18-6)

- tr_state_cb_func_t (see “tr_state_cb_func_t” on page 18-6)

- tr_state_info_t (see “tr_state_info_t” on page 18-7)

- tr_state_t (see “tr_state_t” on page 18-8)

- tr_stream_event_t (see “tr_stream_event_t” on page 18-8)

- tr_stream_func_t (see “tr_stream_func_t” on page 18-8)

- tr_string_node_t (see “tr_string_node_t” on page 18-8)

- tr_t (see “tr_t” on page 18-9)

See “Functions” on page 18-10 for information about the functions available in the Night-
Trace Analysis API.

tr_arg_t 18

tr_arg_t is defined as:

typedef enum { int_arg,
 long_arg,
 dbl_arg,
 long_dbl_arg,
 string_arg,
 long_long_arg } tr_arg_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.
18-3

NightTrace RT User’s Guide
tr_cb_t 18

tr_cb_t is an opaque handle that identies a particular callback. It is defined as:

typedef int tr_cb_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_cond_cb_func_t 18

tr_cond_cb_func_t is defined as:

typedef void (*tr_cond_cb_func_t) (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

PARAMETERS

t

data set handle

c

handle of the condition associated with this call

offset

offset of the trace event satisfying the condition

occurrence

number of times the condition has been satisfied thus far

context

user-defined field specified when the callback is defined

disable

pointer to an integer; if the user sets the integer to a non-zero value, the registration
of this function for the specified condition will be disabled for the remainder of the
iteration pass

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.
18-4

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5

tr_cond_func_t 18

tr_cond_func_t is defined as:

typedef int (*tr_cond_func_t) (tr_t t,
 tr_offset_t event_offset,
 void *context);

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_cond_t 18

tr_cond_t is an opaque handle used to identify a particular condition. It is defined as:

typedef long tr_cond_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_dir_t 18

tr_dir_t is defined as:

typedef enum {tr_forward, tr_backward} tr_dir_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_offset_t 18

tr_offset_t is defined as:

typedef int tr_offset_t;

Values of type tr_offset_t represent the offset (aka position) of a trace event within
the data set. Event offsets are assigned as monotonically increasing integers, starting with
zero as the offset of the first event in the data set.

Functions which return tr_offset_t may return TR_EOF, which indicates exceeding
past either the beginning or end of the data set, respectively.

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.
18-5

NightTrace RT User’s Guide
tr_state_action_t 18

tr_state_action_t is an enumerated type which is used to specify when a certain
function will be called. It is defined as:

typedef enum { tr_state_start_action,
 tr_state_end_action,
 tr_state_active_action,
 tr_state_inactive_action }
 tr_state_action_t;

where:

tr_state_start_action

called for every event which starts the state

tr_state_end_action

called for every event which ends an active state

tr_state_active_action

called for every event for which the state is active

tr_state_inactive_action

called for every event for which the state is inactive

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_state_cb_func_t 18

tr_state_cb_func_t is defined as:

typedef void (*tr_state_cb_func_t) (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

PARAMETERS

t

data set handle

state

handle of the state associated with this call
18-6

Using the NightTrace Analysis API
offset

offset of the trace event satisfying the condition

occurrence

number of times the condition has been satisfied thus far

context

user-defined field specified when the callback is defined

disable

pointer to an integer; if the user sets the integer to a non-zero value, the registration
of this function for the specified state will be disabled for the remainder of the itera-
tion pass

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_state_info_t 18

tr_state_info_t is defined as:

typedef struct {
 tr_offset_t start_offset;
 tr_offset_t end_offset;
 double gap;
 double duration;
 int count;
} tr_state_info_t;

where:

start_offset

offset of the event that started the specified state

end_offset

offset of the event that ended the specified state

gap

time in seconds between the beginning of the last instance of the specified
state and the end of the previous instance (or zero if no previous instance
exists)

duration

time in seconds during which the specified state was active

count

number of completed instances of the specified state
18-7

NightTrace RT User’s Guide
See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_state_t 18

tr_state_t is an opaque handle used to identify a particular state. It is defined as:

typedef long tr_state_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_stream_event_t 18

tr_stream_event_t is defined as:

typedef enum { tr_stream_overflow,
 tr_stream_stall } tr_stream_event_t;

NOTE

The tr_stream_overflow event has been deprecated and no
longer occurs.

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_stream_func_t 18

tr_stream_func_t is defined as:

typedef void (*tr_stream_func_t) (tr_t t,
 tr_stream_event_t event);

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.

tr_string_node_t 18

tr_string_node_t is defined as:

typedef struct {
 int item;
 char * value;
} tr_string_node_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.
18-8

Using the NightTrace Analysis API
tr_t 18

tr_t is an opaque handle used to identify a particular data set. It is defined as:

typedef long tr_t;

See “Data Structures” on page 18-3 for other data structures included in the NightTrace
Analysis API.
18-9

NightTrace RT User’s Guide
Functions 18

The functions that comprise the NightTrace Analysis Application Programming Interface
are broken down into the following categories:

• “API Initialization and Destruction” on page 18-15

• “Error Detection, Collection, and Reporting” on page 18-17

• “Input Specification and Streaming Control” on page 18-19

• “Event Offset Positioning” on page 18-26

• “Basic Event Attribute Functions” on page 18-31

• “Conditions” on page 18-91

• “State-oriented Interfaces” on page 18-123

• “Output Function” on page 18-139

• “String Table Functions” on page 18-141

• “Callback Interfaces” on page 18-146

The following is a complete list of functions included in the NightTrace Analysis API:

- tr_activate() (see “tr_activate()” on page 18-134)

- tr_append_table() (see “tr_append_table()” on page 18-144)

- tr_arg_dbl() (see “tr_arg_dbl()” on page 18-39)

- tr_arg_dbl_() (see “tr_arg_dbl_()” on page 18-46)

- tr_arg_int() (see “tr_arg_int()” on page 18-37)

- tr_arg_int_() (see “tr_arg_int_()” on page 18-45)

- tr_argtype() (see “tr_argtype()” on page 18-51)

- tr_argtype_() (see “tr_argtype_()” on page 18-52)

- tr_blk_arg() (see “tr_blk_arg()” on page 18-52)

- tr_blk_arg_() (see “tr_blk_arg_()” on page 18-53)

- tr_blk_arg_bits() (see “tr_blk_arg_bits()” on page 18-54)

- tr_blk_arg_bits_() (see “tr_blk_arg_bits_()” on page 18-55)

- tr_blk_arg_char() (see “tr_blk_arg_char()” on page 18-56)

- tr_blk_arg_char_() (see “tr_blk_arg_char_()” on page 18-56)

- tr_blk_arg_dbl() (see “tr_blk_arg_dbl()” on page 18-57)

- tr_blk_arg_dbl_() (see “tr_blk_arg_dbl_()” on page 18-58)

- tr_blk_arg_flt() (see “tr_blk_arg_flt()” on page 18-59)
18-10

Using the NightTrace Analysis API
- tr_blk_arg_flt_() (see “tr_blk_arg_flt_()” on page 18-59)

- tr_blk_arg_long() (see “tr_blk_arg_long()” on page 18-60)

- tr_blk_arg_long_() (see “tr_blk_arg_long_()” on page 18-61)

- tr_blk_arg_long_bits() (see “tr_blk_arg_long_bits()” on page
18-62)

- tr_blk_arg_long_bits_() (see “tr_blk_arg_long_bits_()” on page
18-63)

- tr_blk_arg_long_dbl() (see “tr_blk_arg_long_dbl()” on page
18-64)

- tr_blk_arg_long_dbl_() (see “tr_blk_arg_long_dbl_()” on page
18-64)

- tr_blk_arg_long_long() (see “tr_blk_arg_long_long()” on page
18-65)

- tr_blk_arg_long_long_() (see “tr_blk_arg_long_()” on page
18-61)

- tr_blk_arg_long_ubits() (see “tr_blk_arg_long_ubits()” on page
18-67)

- tr_blk_arg_long_ubits_() (see “tr_blk_arg_long_ubits_()” on
page 18-68)

- tr_blk_arg_short() (see “tr_blk_arg_short()” on page 18-69)

- tr_blk_arg_short_() (see “tr_blk_arg_short_()” on page 18-69)

- tr_blk_arg_string() (see “tr_blk_arg_string()” on page 18-70)

- tr_blk_arg_string_() (see “tr_blk_arg_string_()” on page 18-71)

- tr_blk_arg_ubits() (see “tr_blk_arg_ubits()” on page 18-72)

- tr_blk_arg_ubits_() (see “tr_blk_arg_ubits_()” on page 18-73)

- tr_blk_arg_uchar() (see “tr_blk_arg_uchar()” on page 18-74)

- tr_blk_arg_uchar_() (see “tr_blk_arg_uchar_()” on page 18-75)

- tr_blk_arg_ushort() (see “tr_blk_arg_ushort()” on page 18-76)

- tr_blk_arg_ushort_() (see “tr_blk_arg_ushort_()” on page 18-76)

- tr_cancel_cb() (see “tr_cancel_cb()” on page 18-147)

- tr_close() (see “tr_close()” on page 18-21)

- tr_cond_and() (see “tr_cond_and()” on page 18-116)

- tr_cond_cb() (see “tr_cond_cb()” on page 18-148)

- tr_cond_copy() (see “tr_cond_copy()” on page 18-117)

- tr_cond_cpu() (see “tr_cond_cpu()” on page 18-97)

- tr_cond_cpu_clear() (see “tr_cond_cpu_clear()” on page 18-98)
18-11

NightTrace RT User’s Guide
- tr_cond_create() (see “tr_cond_create()” on page 18-92)

- tr_cond_expr_and() (see “tr_cond_expr_and()” on page 18-112)

- tr_cond_expr_or() (see “tr_cond_expr_or()” on page 18-113)

- tr_cond_find() (see “tr_cond_find()” on page 18-93)

- tr_cond_func_and() (see “tr_cond_func_and()” on page 18-109)

- tr_cond_func_clear() (see “tr_cond_func_clear()” on page 18-111)

- tr_cond_func_or() (see “tr_cond_func_or()” on page 18-107)

- tr_cond_id() (see “tr_cond_id()” on page 18-94)

- tr_cond_id_clear() (see “tr_cond_id_clear()” on page 18-96)

- tr_cond_id_range() (see “tr_cond_id_range()” on page 18-95)

- tr_cond_name() (see “tr_cond_name()” on page 18-119)

- tr_cond_node() (see “tr_cond_node()” on page 18-105)

- tr_cond_node_clear() (see “tr_cond_node_clear()” on page 18-106)

- tr_cond_not() (see “tr_cond_not()” on page 18-114)

- tr_cond_offset() (see “tr_cond_offset()” on page 18-122)

- tr_cond_or() (see “tr_cond_or()” on page 18-115)

- tr_cond_pid() (see “tr_cond_pid()” on page 18-99)

- tr_cond_pid_clear() (see “tr_cond_pid_clear()” on page 18-101)

- tr_cond_pid_name() (see “tr_cond_pid_name()” on page 18-100)

- tr_cond_register() (see “tr_cond_register()” on page 18-121)

- tr_cond_reset() (see “tr_cond_reset()” on page 18-93)

- tr_cond_satisfy() (see “tr_cond_satisfy()” on page 18-119)

- tr_cond_satisfy_() (see “tr_cond_satisfy_()” on page 18-120)

- tr_cond_tid() (see “tr_cond_tid()” on page 18-102)

- tr_cond_tid_clear() (see “tr_cond_tid_clear()” on page 18-104)

- tr_cond_tid_name() (see “tr_cond_tid_name()” on page 18-103)

- tr_copy_input() (see “tr_copy_input()” on page 18-139)

- tr_copy_input_range() (see “tr_copy_input_range()” on page
18-140)

- tr_cpu() (see “tr_cpu()” on page 18-83)

- tr_cpu_() (see “tr_cpu_()” on page 18-84)

- tr_create_table() (see “tr_create_table()” on page 18-143)

- tr_destroy() (see “tr_destroy()” on page 18-15)
18-12

Using the NightTrace Analysis API
- tr_error_check() (see “tr_error_check()” on page 18-18)

- tr_error_clear() (see “tr_error_clear()” on page 18-17)

- tr_free() (see “tr_free()” on page 18-25)

- tr_get_item() (see “tr_get_item()” on page 18-142)

- tr_get_string() (see “tr_get_string()” on page 18-141)

- tr_halt() (see “tr_halt()” on page 18-147)

- tr_id() (see “tr_id()” on page 18-33)

- tr_id_() (see “tr_id_()” on page 18-33)

- tr_init() (see “tr_init()” on page 18-15)

- tr_iterate() (see “tr_iterate()” on page 18-146)

- tr_nargs() (see “tr_nargs()” on page 18-36)

- tr_nargs_() (see “tr_nargs_()” on page 18-36)

- tr_next_event() (see “tr_next_event()” on page 18-26)

- tr_next_event_() (see “tr_next_event_()” on page 18-27)

- tr_node() (see “tr_node()” on page 18-85)

- tr_node_() (see “tr_node_()” on page 18-85)

- tr_open_file() (see “tr_open_file()” on page 18-19)

- tr_open_stream() (see “tr_open_stream()” on page 18-20)

- tr_pid() (see “tr_pid()” on page 18-77)

- tr_pid_() (see “tr_pid_()” on page 18-78)

- tr_prev_event() (see “tr_prev_event()” on page 18-27)

- tr_prev_event_() (see “tr_prev_event_()” on page 18-28)

- tr_process_name() (see “tr_process_name()” on page 18-86)

- tr_process_name_() (see “tr_process_name_()” on page 18-87)

- tr_search() (see “tr_search()” on page 18-29)

- tr_seek() (see “tr_seek()” on page 18-30)

- tr_state_active() (see “tr_state_active()” on page 18-137)

- tr_state_active_() (see “tr_state_active_()” on page 18-138)

- tr_state_cb() (see “tr_state_cb()” on page 18-149)

- tr_state_create() (see “tr_state_create()” on page 18-123)

- tr_state_end_cond() (see “tr_state_end_cond()” on page 18-132)

- tr_state_end_cond_clear() (see “tr_state_end_cond_clear()” on
page 18-133)
18-13

NightTrace RT User’s Guide
- tr_state_end_id() (see “tr_state_end_id()” on page 18-128)

- tr_state_end_id_clear() (see “tr_state_end_id_clear()” on page
18-130)

- tr_state_end_id_range() (see “tr_state_end_id_range()” on page
18-129)

- tr_state_find() (see “tr_state_find()” on page 18-124)

- tr_state_info() (see “tr_state_info()” on page 18-135)

- tr_state_info_() (see “tr_state_info_()” on page 18-136)

- tr_state_name() (see “tr_state_name()” on page 18-125)

- tr_state_start_cond() (see “tr_state_start_cond()” on page
18-131)

- tr_state_start_cond_clear() (see “tr_state_start_cond_clear()”
on page 18-132)

- tr_state_start_id() (see “tr_state_start_id()” on page 18-126)

- tr_state_start_id_clear() (see “tr_state_start_id_clear()” on
page 18-128)

- tr_state_start_id_range() (see “tr_state_start_id_range()” on
page 18-127)

- tr_stream_notify() (see “tr_stream_notify()” on page 18-22)

- tr_stream_read() (see “tr_stream_read()” on page 18-23)

- tr_stream_size() (see “tr_stream_size()” on page 18-24)

- tr_task_id() (see “tr_task_id()” on page 18-82)

- tr_task_id_() (see “tr_task_id()” on page 18-82)

- tr_task_name() (see “tr_task_name()” on page 18-87)

- tr_task_name_() (see “tr_task_name_()” on page 18-88)

- tr_thread_id() (see “tr_thread_id()” on page 18-80)

- tr_thread_id_() (see “tr_thread_id_()” on page 18-81)

- tr_thread_name() (see “tr_thread_name()” on page 18-89)

- tr_thread_name_() (see “tr_thread_name_()” on page 18-89)

- tr_tid() (see “tr_tid()” on page 18-79)

- tr_tid_() (see “tr_tid_()” on page 18-79)

- tr_time() (see “tr_time()” on page 18-34)

- tr_time_() (see “tr_time_()” on page 18-35)
18-14

Using the NightTrace Analysis API
API Initialization and Destruction 18

The functions related to API initialization and destruction are:

- tr_init() (see page 18-15)

- tr_destroy() (see page 18-15)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_init() 18

tr_init() returns an opaque handle that is required for all subsequent API functions
and which identifies the data set.

SYNTAX

extern tr_t tr_init (void);

RETURN VALUES

Returns an opaque handle that is required for all subsequent API functions and
which identifies the data set; in the event there is insufficient memory,
TR_NO_HANDLE will be returned.

See “API Initialization and Destruction” on page 18-15 for related functions. See “Func-
tions” on page 18-10 for a complete list of functions included in the NightTrace Analysis
API.

SEE ALSO

• “tr_t” on page 18-9

tr_destroy() 18

tr_destroy() frees up any remaining memory associated with a handle returned by
tr_init().
18-15

NightTrace RT User’s Guide
NOTE

tr_destroy() expects a pointer to a handle, whereas all other
functions expect the handle itself.

SYNTAX

extern void tr_destroy (tr_t * t);

PARAMETERS

t

data set handle

See “API Initialization and Destruction” on page 18-15 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_init()” on page 18-15
18-16

Using the NightTrace Analysis API
Error Detection, Collection, and Reporting 18

Most individual functions within the API return an indiciation of whether the requested
operation was successful. Most often, zero indicates success, and non-zero indicates fail-
ure. Exceptions to this rule are indiciated for each function.

Errors are collected by the API and can be retreived after calling a series of functions.

The functions related to error detection, collection, and reporting are:

- tr_error_clear() (see page 18-17)

- tr_error_check() (see page 18-18)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_error_clear() 18

tr_error_clear() is used to flush any collected errors and set the internal error state
to zero, meaning success.

SYNTAX

extern void tr_error_clear (tr_t t);

PARAMETERS

t

data set handle

See “Error Detection, Collection, and Reporting” on page 18-17 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_error_check()” on page 18-18
18-17

NightTrace RT User’s Guide
tr_error_check() 18

tr_error_check() is used to determine the errors that have occurred since the begin-
ning of the program or since the last time the error list was cleared.

SYNTAX

extern int tr_error_check (tr_t t,
 tr_string_node_t**list);

PARAMETERS

t

data set handle

list

the list of errors that have occurred (since the last call to tr_error_clear() or
the beginning of the program). For each entry in the list, value describes the error
and item refers to errno (if appropriate). (See “tr_string_node_t” on page 18-8
for more information.)

RETURN VALUES

Returns zero if no errors have occurred (since the last call to tr_error_clear()
or the beginning of the program); otherwise, returns the number of errors in the list
of errors pointed to by list. If the user passes in a NULL value for the address of list,
list is not set.

See “Error Detection, Collection, and Reporting” on page 18-17 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_string_node_t” on page 18-8

• “tr_error_clear()” on page 18-17
18-18

Using the NightTrace Analysis API
Input Specification and Streaming Control 18

The functions related to input specification and streaming control are:

- tr_open_file() (see page 18-19)

- tr_open_stream() (see page 18-20)

- tr_close() (see page 18-21)

- tr_stream_notify() (see page 18-22)

- tr_stream_read() (see page 18-23)

- tr_stream_size() (see page 18-24)

- tr_free() (see page 18-25)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_open_file() 18

tr_open_file() opens the specified NightTrace data file and initializes the API for
operation on the contained data set.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern int tr_open_file (tr_t t,
 char * filename);

PARAMETERS

t

data set handle

filename

the pathname of the NightTrace data file

RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the data file.

See “Input Specification and Streaming Control” on page 18-19 for related functions.
18-19

NightTrace RT User’s Guide
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_close()” on page 18-21

tr_open_stream() 18

tr_open_stream() associates the specified file descriptor with a stream of raw trace
data. The stream is normally generated by invoking ntraceud or ntracekd with the
--stream option and piping stdout to the user application's stdin. Alternatively, the
NightTrace GUI can launch a user application providing stdin as the data stream.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern int tr_open_stream tr_t t,
 int fd,
 int size,
 int flags);

PARAMETERS

t

data set handle

fd

file descriptor providing streaming raw data

size

specifies the memory limit (in bytes) associated with events that have been read
from the stream file descriptor but have not yet been consumed. This size can be
dynamically adjusted via the tr_stream_size() function.

flags

may contain the following value:

TR_STREAM_SAVE - this instructs the API to retain all streamed events in memory
even after they have been consumed. By default, for streaming data, once an event
has been consumed by an API call, its memory will be (eventually) released and it
cannot be referenced subsequently.
18-20

Using the NightTrace Analysis API
RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the data stream.

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_stream_size()” on page 18-24

• “tr_close()” on page 18-21

tr_close() 18

tr_close() closes the specified data set and associated data file or stream file descrip-
tor. In the case of a data stream, if the associated daemon is still running, the daemon will
terminate with an error.

NOTE

Currently, only one input source is allowed per handle (until it is
closed via tr_close()).

SYNTAX

extern void tr_close (tr_t t);

PARAMETERS

t

data set handle

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_open_file()” on page 18-19

• “tr_open_stream()” on page 18-20
18-21

NightTrace RT User’s Guide
tr_stream_notify() 18

tr_stream_notify() defines a callback which will occur when a stream event occurs
as defined by tr_stream_event_t.

SYNTAX

extern int tr_stream_notify (tr_t t,
 tr_stream_event_t event,
 tr_stream_func_t func);

PARAMETERS

t

data set handle

event

can be:

tr_stream_overflow - This event has been deprecated and no longer occurs.
See tr_stream_read() for control over stream I/O operations.

tr_stream_stall - A stall occurs when there is an insufficient number of events
available to form a segment for consumption.

func

callback function

RETURN VALUES

Returns zero on success; returns -1 if the specified arguments are invalid or there is
insufficient memory available to register the callback function.

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_stream_event_t” on page 18-8

• “tr_stream_func_t” on page 18-8

• “tr_stream_size()” on page 18-24

• “tr_stream_read()” on page 18-23
18-22

Using the NightTrace Analysis API
tr_stream_read() 18

tr_stream_read() reads events from the input stream until no events are currently
available or until the specified maximum is reached. A segmented input approach is uti-
lized so that the actual number of events read may exceed the specified maximum (by the
minimum segments size).

This function need not be called at all. The stream of data is read automatically as events
are consumed (by tr_next_event(), tr_iterate(), or tr_copy_input()).

This function is provided for situations where the rate at which events are generated
exceeds that at which they are currently being consumed. If the consumption rate is sig-
nificantly lower than the generation rate, the daemon writing the data to the stream could
otherwise stall (block on the write) and data would be lost when the daemon’s buffers fill.
Calling tr_stream_read() in such situations ensures that data is read and stored
internally for use when events are subsequently consumed by tr_next_event(),
tr_iterate(), or tr_copy_input().

SYNTAX

extern int tr_stream_read (tr_t t,
 int max_events);

PARAMETERS

t

data set handle

max_events

maximum number of events to be read

RETURN VALUES

Returns the number of events read.

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_next_event()” on page 18-26

• “tr_iterate()” on page 18-146

• “tr_copy_input()” on page 18-139
18-23

NightTrace RT User’s Guide
tr_stream_size() 18

tr_stream_size() dynamically changes the memory limit originally specified via
tr_open_stream(). It controls the amount of memory used to hold events that have
been read from the stream file descriptor but have not yet been consumed.

SYNTAX

extern int tr_stream_size (tr_t t,
 int size);

PARAMETERS

t

data set handle

size

memory limit associated with streaming events

RETURN VALUES

Returns zero on success; returns -1 if the specified size is invalid.

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_open_stream()” on page 18-20
18-24

Using the NightTrace Analysis API
tr_free() 18

tr_free() releases the memory associated with events whose offsets are less than or
equal to the specified offset, if those events have been consumed.

This function has no effect if the events have not been consumed or if events are not being
saved (e.g., tr_open_stream() called without the TR_STREAM_SAVE flag value).

SYNTAX

extern int tr_free (tr_t t,
 int event_offset);

PARAMETERS

t

data set handle

event_offset

specifies that the memory associated with events whose offsets are less than or equal
to this value will be released when this function is called

RETURN VALUES

Returns zero on success; returns -1 if the specified offset is invalid.

See “Input Specification and Streaming Control” on page 18-19 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_open_stream()” on page 18-20
18-25

NightTrace RT User’s Guide
Event Offset Positioning 18

The functions related to event offset positioning are:

- tr_next_event() (see page 18-26)

- tr_next_event_() (see page 18-27)

- tr_prev_event() (see page 18-27)

- tr_prev_event_() (see page 18-28)

- tr_search() (see page 18-29)

- tr_seek() (see page 18-30)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_next_event() 18

tr_next_event() advances the offset to the next consecutive trace event.

SYNTAX

extern tr_offset_t tr_next_event (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-26

Using the NightTrace Analysis API
tr_next_event_() 18

tr_next_event_() advances to the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr_offset_t tr_next_event_ (tr_t t,
 tr_cond_t condition);

PARAMETERS

t

data set handle

condition

handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5

tr_prev_event() 18

tr_prev_event() advances to the previous trace event.

SYNTAX

extern tr_offset_t tr_prev_event (tr_t t);

PARAMETERS

t

data set handle
18-27

NightTrace RT User’s Guide
RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_prev_event_() 18

tr_prev_event_() advances to the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr_offset_t tr_prev_event_ (tr_t t,
 tr_cond_t condition);

PARAMETERS

t

data set handle

condition

handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-28

Using the NightTrace Analysis API
• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5

tr_search() 18

tr_search() searches for the trace event matching the specified condition in the direc-
tion specified. The current position remains unchanged.

SYNTAX

extern tr_offset_t tr_search(tr_t t,
 tr_dir_t direction,
 tr_cond_t condition);

PARAMETERS

t

data set handle

direction

direction in which to search

condition

handle of the desired condition

RETURN VALUES

Returns the position of the matching trace event; if no matching event is found,
TR_EOF is returned.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_dir_t” on page 18-5

• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5
18-29

NightTrace RT User’s Guide
tr_seek() 18

tr_seek() sets the position to the specified offset. If the offset specifies a position that
exceeds the offset of the last trace event, the position is set to the last event in the data set.

SYNTAX

extern tr_offset_t tr_seek (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

The offset of the trace event at the resultant position is returned.

See “Event Offset Positioning” on page 18-26 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-30

Using the NightTrace Analysis API
Basic Event Attribute Functions 18

The functions that deal with the basic attributes of trace events are:

- tr_id() (see page 18-33)

- tr_id_() (see page 18-33)

- tr_time() (see page 18-34)

- tr_time_() (see page 18-35)

- tr_nargs() (see page 18-36)

- tr_nargs_() (see page 18-36)

- tr_arg_int() (see page 18-37)

- tr_arg_int_() (see page 18-38)

- tr_arg_dbl() (see page 18-39)

- tr_arg_dbl_() (see page 18-39)

- tr_blk_arg() (see page 18-52)

- tr_blk_arg_() (see page 18-53)

- tr_blk_arg_bits() (see page 18-54)

- tr_blk_arg_bits_() (see page 18-55)

- tr_blk_arg_char() (see page 18-56)

- tr_blk_arg_char_() (see page 18-56)

- tr_blk_arg_dbl() (see page 18-57)

- tr_blk_arg_dbl_() (see page 18-58)

- tr_blk_arg_flt() (see page 18-59)

- tr_blk_arg_flt_() (see page 18-59)

- tr_blk_arg_long() (see page 18-60)

- tr_blk_arg_long_() (see page 18-61)

- tr_blk_arg_long_bits() (see page 18-62)

- tr_blk_arg_long_bits_() (see page 18-63)

- tr_blk_arg_long_dbl() (see page 18-64)

- tr_blk_arg_long_dbl_() (see page 18-64)

- tr_blk_arg_long_ubits() (see page 18-67)

- tr_blk_arg_long_ubits_() (see page 18-68)

- tr_blk_arg_short() (see page 18-69)

- tr_blk_arg_short_() (see page 18-69)
18-31

NightTrace RT User’s Guide
- tr_blk_arg_string() (see page 18-70)

- tr_blk_arg_string_() (see page 18-71)

- tr_blk_arg_ubits() (see page 18-72)

- tr_blk_arg_ubits_() (see page 18-73)

- tr_blk_arg_uchar() (see page 18-74)

- tr_blk_arg_uchar_() (see page 18-75)

- tr_blk_arg_ushort() (see page 18-76)

- tr_blk_arg_ushort_() (see page 18-76)

- tr_pid() (see page 18-77)

- tr_pid_() (see page 18-78)

- tr_tid() (see page 18-79)

- tr_tid_() (see page 18-79)

- tr_thread_id() (see page 18-80)

- tr_thread_id_() (see page 18-81)

- tr_task_id() (see page 18-82)

- tr_task_id_() (see page 18-82)

- tr_cpu() (see page 18-83)

- tr_cpu_() (see page 18-84)

- tr_node() (see page 18-85)

- tr_node_() (see page 18-85)

- tr_process_name() (see page 18-86)

- tr_process_name_() (see page 18-87)

- tr_task_name() (see page 18-87)

- tr_task_name_() (see page 18-88)

- tr_thread_name() (see page 18-89)

- tr_thread_name_() (see page 18-89)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-32

Using the NightTrace Analysis API
tr_id() 18

tr_id() returns the trace ID associated with the current trace event.

SYNTAX

extern int tr_id (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the trace ID associated with the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_id_() 18

tr_id_() returns the trace ID associated with the trace event at the specified offset.

SYNTAX

extern int tr_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the trace ID associated with the trace event at the specified offset; returns
zero if an invalid offset is specified.
18-33

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_time() 18

tr_time() returns the timestamp (in seconds) of the current trace event.

NOTE

A timestamp is relative to the beginning of the trace logging dae-
mon.

SYNTAX

extern double tr_time (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the timestamp (in seconds) of the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-34

Using the NightTrace Analysis API
tr_time_() 18

tr_time_() returns the timestamp (in seconds) of the trace event at the specified offset.

NOTE

A timestamp is relative to the beginning of the trace logging dae-
mon.

SYNTAX

extern double tr_time_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the timestamp (in seconds) of the trace event at the specified offset; returns
zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-35

NightTrace RT User’s Guide
tr_nargs() 18

tr_nargs() returns the number of arguments associated with the current trace event.

SYNTAX

extern int tr_nargs (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the number of arguments associated with the current trace event. In the case
o f a t r ac e e v e n t r ec o r d e d w i t h trace_event_string() o r
trace_event_blk(), it returns the number of four-byte integers that would be
required to hold the data.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_nargs_() 18

tr_nargs_() returns the number of arguments associated with the trace event at the
specified offset.

SYNTAX

extern int tr_nargs_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event
18-36

Using the NightTrace Analysis API
RETURN VALUES

Returns the number of arguments associated with the trace event at the specified off-
set; returns zero if an invalid offset is specified. In the case of a trace event recorded
with trace_event_string() or trace_event_blk(), it returns the num-
ber of four-byte integers that would be required to hold the data.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_arg_int() 18

tr_arg_int() returns the desired integer argument of the current trace event.

SYNTAX

extern int tr_arg_int (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired integer argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-37

NightTrace RT User’s Guide
tr_arg_int_() 18

tr_arg_int_() returns the desired integer argument of the trace event at the specified
offset.

SYNTAX

extern int tr_arg_int_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specified offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-38

Using the NightTrace Analysis API
tr_arg_dbl() 18

tr_arg_dbl() returns the desired double argument of the current trace event.

SYNTAX

extern double tr_arg_dbl (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_dbl_() 18

tr_arg_dbl_() returns the desired double argument of the trace event at the specified
offset.

SYNTAX

extern double tr_arg_dbl_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-39

NightTrace RT User’s Guide
arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_arg_long() 18

tr_arg_long() returns the desired long integer argument of the current trace event.

SYNTAX

extern long int tr_arg_long (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.
18-40

Using the NightTrace Analysis API
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_long_() 18

tr_arg_long_() returns the desired long integer argument of the trace event at the
specified offset.

SYNTAX

extern long int tr_arg_long_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-41

NightTrace RT User’s Guide
tr_arg_long_dbl() 18

tr_arg_long_dbl() returns the desired double argument of the current trace event.

SYNTAX

extern long double tr_arg_long_dbl (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_long_dbl_() 18

tr_arg_dbl_() returns the desired long double argument of the trace event at the spec-
ified offset.

SYNTAX

extern long double tr_arg_long_dbl_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-42

Using the NightTrace Analysis API
arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long double argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_arg_long_long() 18

tr_arg_long_long() returns the desired long long integer argument of the current
trace event.

SYNTAX

extern long long int tr_arg_long_long (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long long integer argument of the current trace event; returns
zero if an invalid offset is specified or an invalid argument number is specified.
18-43

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_long_long_() 18

tr_arg_long_long_() returns the desired double argument of the trace event at the
specified offset.

SYNTAX

extern long long int tr_arg_long_long_(tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-44

Using the NightTrace Analysis API
tr_arg_int_() 18

tr_arg_int_() returns the desired integer argument of the trace event at the specified
offset.

SYNTAX

extern int tr_arg_int_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specified offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-45

NightTrace RT User’s Guide
tr_arg_dbl() 18

tr_arg_dbl() returns the desired double argument of the current trace event.

SYNTAX

extern double tr_arg_dbl (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_dbl_() 18

tr_arg_dbl_() returns the desired double argument of the trace event at the specified
offset.

SYNTAX

extern double tr_arg_dbl_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number
18-46

Using the NightTrace Analysis API
number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_arg_long() 18

tr_arg_long() returns the desired long integer argument of the current trace event.

SYNTAX

extern long int tr_arg_long (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.
18-47

NightTrace RT User’s Guide
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_long_() 18

tr_arg_long_() returns the desired long integer argument of the trace event at the
specified offset.

SYNTAX

extern long int tr_arg_long_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-48

Using the NightTrace Analysis API
tr_arg_long_dbl() 18

tr_arg_long_dbl() returns the desired double argument of the current trace event.

SYNTAX

extern long double tr_arg_long_dbl (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_arg_long_dbl_() 18

tr_arg_dbl_() returns the desired long double argument of the trace event at the spec-
ified offset.

SYNTAX

extern long double tr_arg_long_dbl_ (tr_t t,
 int arg_number,
 tr_offset_t offset);

PARAMETERS

t

data set handle

arg_number
18-49

NightTrace RT User’s Guide
number of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long double argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_arg_long_long() 18

tr_arg_long_long() returns the desired long long integer argument of the current
trace event.

SYNTAX

extern long long int tr_arg_long_long (tr_t t,
 int arg_number);

PARAMETERS

t

data set handle

arg_number

number of the desired argument

RETURN VALUES

Returns the desired long long integer argument of the current trace event; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.
18-50

Using the NightTrace Analysis API
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_argtype() 18

tr_argtype() returns the type of arguments associated with the current event.

SYNTAX

extern tr_arg_t tr_argtype (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the type of arguments associated with the current event. For events recorded
with trace_event_blk(), this function returns int_arg.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_arg_t” on page 18-3
18-51

NightTrace RT User’s Guide
tr_argtype_() 18

tr_argtype_() returns the type of arguments associated with the event at the specified
offset.

SYNTAX

extern tr_arg_t tr_argtype_ (tr_t t, tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the type of arguments associated with the current (or optionally specified)
event. For events recorded with trace_event_blk(), this function returns
int_arg.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg() 18

tr_blk_arg() returns the integer argument at a particular byte offset in argument space
of the current trace event.

SYNTAX

extern long tr_blk_arg (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle
18-52

Using the NightTrace Analysis API
byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired integer argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_() 18

tr_blk_arg_() returns the integer argument at a particular byte offset in argument
space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.
18-53

NightTrace RT User’s Guide
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_bits() 18

tr_blk_arg_bits() returns the integer bit field argument of a particular bit size at a
particular byte and bit offset offset in argument space of the current trace event.

SYNTAX

extern long tr_blk_arg_bits (tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

RETURN VALUES

Returns the desired integer bit field argument of the current trace event; returns zero
if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-54

Using the NightTrace Analysis API
tr_blk_arg_bits_() 18

tr_blk_arg_bits_() returns the integer bit field argument of a particular bit size at a
particular byte and bit offset offset in argument space of the trace event at the specified
offset.

SYNTAX

extern long tr_blk_arg_bits_(tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired integer bit field argument of the trace event at the specifed off-
set; returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-55

NightTrace RT User’s Guide
tr_blk_arg_char() 18

tr_blk_arg_char() returns the character argument at a particular byte offset in argu-
ment space of the current trace event.

SYNTAX

extern long tr_blk_arg_char (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired character argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_char_() 18

tr_blk_arg_char_() returns the character argument at a particular byte offset in
argument space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_char_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-56

Using the NightTrace Analysis API
byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired character argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_dbl() 18

tr_blk_arg_dbl() returns the double argument at a particular byte offset in argument
space of the current trace event.

SYNTAX

extern double tr_blk_arg_dbl (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.
18-57

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_dbl_() 18

tr_blk_arg_dbl_() returns the double argument at a particular byte offset in argu-
ment space of the trace event at the specified offset.

SYNTAX

extern double tr_blk_arg_dbl_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-58

Using the NightTrace Analysis API
tr_blk_arg_flt() 18

tr_blk_arg_flt() returns the float argument at a particular byte offset in argument
space of the current trace event.

SYNTAX

extern double tr_blk_arg_flt (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired float argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_flt_() 18

tr_blk_arg_flt_() returns the float argument at a particular byte offset in argument
space of the trace event at the specified offset.

SYNTAX

extern double tr_blk_arg_flt_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-59

NightTrace RT User’s Guide
byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired float argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_long() 18

tr_blk_arg_long() returns the long integer argument at a particular byte offset in
argument space of the current trace event.

SYNTAX

extern long tr_blk_arg_long (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long integer argument of the current trace event; returns zero if
an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.
18-60

Using the NightTrace Analysis API
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_long_() 18

tr_blk_arg_long_() returns the long integer argument at a particular byte offset in
argument space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_long_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-61

NightTrace RT User’s Guide
tr_blk_arg_long_bits() 18

tr_blk_arg_long_bits() returns the long integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the current trace
event.

SYNTAX

extern long tr_blk_arg_long_bits (tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

RETURN VALUES

Returns the desired long integer bit field argument of the current trace event; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-62

Using the NightTrace Analysis API
tr_blk_arg_long_bits_() 18

tr_blk_arg_long_bits_() returns the long integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the trace event at the
specified offset.

SYNTAX

extern long tr_blk_arg_long_bits_(tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long integer bit field argument of the trace event at the specifed
offset; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-63

NightTrace RT User’s Guide
tr_blk_arg_long_dbl() 18

tr_blk_arg_long_dbl() returns the long double argument at a particular byte offset
in argument space of the current trace event.

SYNTAX

extern long double tr_blk_arg_long_dbl (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_long_dbl_() 18

tr_blk_arg_long_dbl_() returns the long double argument at a particular byte off-
set in argument space of the trace event at the specified offset.

SYNTAX

extern long double tr_blk_arg_long_dbl_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-64

Using the NightTrace Analysis API
byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long double argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_long_long() 18

tr_blk_arg_long_long() returns the long long integer argument at a particular byte
offset in argument space of the current trace event.

SYNTAX

extern long long tr_blk_arg_long_long (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long long argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.
18-65

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_long_long_() 18

tr_blk_arg_long_long_() returns the long long integer argument at a particular
byte offset in argument space of the trace event at the specified offset.

SYNTAX

extern long long tr_blk_arg_long_long_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long long integer argument of the trace event at the specifed off-
set; returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-66

Using the NightTrace Analysis API
tr_blk_arg_long_ubits() 18

tr_blk_arg_long_ubits() returns the unsigned long integer bit field argument of a
particular bit size at a particular byte and bit offset offset in argument space of the current
trace event.

SYNTAX

extern long tr_blk_arg_long_ubits (tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

RETURN VALUES

Returns the desired unsigned long integer bit field argument of the current trace
event; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-67

NightTrace RT User’s Guide
tr_blk_arg_long_ubits_() 18

tr_blk_arg_long_ubits_() returns the unsigned long integer bit field argument of
a particular bit size at a particular byte and bit offset offset in argument space of the trace
event at the specified offset.

SYNTAX

extern long tr_blk_arg_long_ubits_(tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned long integer bit field argument of the trace event at the
specifed offset; returns zero if an invalid offset is specified or an invalid argument
byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-68

Using the NightTrace Analysis API
tr_blk_arg_short() 18

tr_blk_arg_short() returns the short integer argument at a particular byte offset in
argument space of the current trace event.

SYNTAX

extern long tr_blk_arg_short (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired short integer argument of the current trace event; returns zero if
an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_short_() 18

tr_blk_arg_short_() returns the short integer argument at a particular byte offset in
argument space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_short_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-69

NightTrace RT User’s Guide
byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired short integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_string() 18

tr_blk_arg_string() returns a pointer to the null terminated string argument at a
particular byte offset in argument space of the current trace event and limited to a particu-
lar string size.

SYNTAX

extern char *tr_blk_arg_string (tr_t t,
 int byte_offset,
 int string_size);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

string_size

the maximum length of the string
18-70

Using the NightTrace Analysis API
RETURN VALUES

Returns the desired string argument of the current trace event; returns NULL if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_string_() 18

tr_blk_arg_string_() returns a pointer to the null terminated string argument at a
particular byte offset in argument space of the trace event at the specified offset and lim-
ited to a particular string size.

SYNTAX

extern char *tr_blk_arg_string_(tr_t t,
 int byte_offset,
 int string_size,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

string_size

the maximum length of the string

offset

offset of the trace event

RETURN VALUES

Returns the desired string argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.
18-71

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_ubits() 18

tr_blk_arg_ubits() returns the unsigned integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the current trace
event.

SYNTAX

extern long tr_blk_arg_ubits (tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

RETURN VALUES

Returns the desired unsigned integer bit field argument of the current trace event;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-72

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_ubits_() 18

tr_blk_arg_ubits_() returns the unsigned integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the trace event at the
specified offset.

SYNTAX

extern long tr_blk_arg_ubits_(tr_t t,
 int byte_offset,
 int bit_offset,
 int bit_size,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

bit_offset

bit offset of the desired argument

bit_size

bit size of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned integer bit field argument of the trace event at the
specifed offset; returns zero if an invalid offset is specified or an invalid argument
byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-73

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_blk_arg_uchar() 18

tr_blk_arg_uchar() returns the unsigned character argument at a particular byte off-
set in argument space of the current trace event.

SYNTAX

extern long tr_blk_arg_uchar (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired unsigned character argument of the current trace event; returns
zero if an invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-74

Using the NightTrace Analysis API
tr_blk_arg_uchar_() 18

tr_blk_arg_uchar_() returns the unsigned character argument at a particular byte
offset in argument space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_uchar_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned character argument of the trace event at the specifed
offset; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-75

NightTrace RT User’s Guide
tr_blk_arg_ushort() 18

tr_blk_arg_ushort() returns the unsigned short integer argument at a particular
byte offset in argument space of the current trace event.

SYNTAX

extern long tr_blk_arg_ushort (tr_t t,
 int byte_offset);

PARAMETERS

t

data set handle

byte_offset

byte offset of the desired argument

RETURN VALUES

Returns the desired unsigned short integer argument of the current trace event;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_blk_arg_ushort_() 18

tr_blk_arg_ushort_() returns the unsigned short integer argument at a particular
byte offset in argument space of the trace event at the specified offset.

SYNTAX

extern long tr_blk_arg_ushort_(tr_t t,
 int byte_offset,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-76

Using the NightTrace Analysis API
byte_offset

byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned short integer argument of the trace event at the spec-
ifed offset; returns zero if an invalid offset is specified or an invalid argument byte
offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_pid() 18

tr_pid() returns the process identifier (PID) associated with the current trace event.

SYNTAX

extern int tr_pid (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the process ID of the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-77

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

tr_pid_() 18

tr_pid_() returns the process identifier (PID) associated with the trace event at the
specified offset.

SYNTAX

extern int tr_pid_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the process identifier (PID) associated with the trace event at the specified
offset; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-78

Using the NightTrace Analysis API
tr_tid() 18

tr_tid() returns the internally-assigned NightTrace thread identifier (TID) associated
with the current trace event.

SYNTAX

extern int tr_tid (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_tid_() 18

tr_tid_() returns the internally-assigned NightTrace thread identifier (TID) associated
with the trace event at the specified offset.

SYNTAX

extern int tr_tid_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event
18-79

NightTrace RT User’s Guide
RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the trace event at the specified offset; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_thread_id() 18

tr_thread_id() returns and NightTrace internal thread identifier associated with the
current trace event.

SYNTAX

extern int tr_thread_id (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the thread identifier associated with the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-80

Using the NightTrace Analysis API
tr_thread_id_() 18

tr_thread_id_() returns the NightTrace internal thread identifier associated with the
trace event at the specified offset.

SYNTAX

extern int tr_thread_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the thread identifier associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-81

NightTrace RT User’s Guide
tr_task_id() 18

tr_task_id() returns the Ada task identifier associated with the current trace event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

extern int tr_task_id (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the Ada task identifier associated with the current trace event; returns zero
if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_task_id_() 18

tr_task_id_() returns the Ada task identifier associated with the trace event at the
specified offset.

SYNTAX

extern int tr_task_id_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-82

Using the NightTrace Analysis API
offset

offset of the trace event

RETURN VALUES

Returns the Ada task identifier associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_cpu() 18

tr_cpu() returns the CPU where the current trace event was logged. CPUs are logically
numbered starting at 0 and monotonically increase thereafter.

NOTE

The CPU is only recorded for trace events logged by the operating
system kernel. Kernel tracing is not supported on all operating
system distributions. See “Kernel Dependencies” on page B-1 for
more information.

SYNTAX

extern int tr_cpu (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, a value of -1 is returned (which indicates any
CPU).
18-83

NightTrace RT User’s Guide
See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_cpu_() 18

tr_cpu_() returns the CPU where the current trace event was logged. CPUs are logi-
cally numbered starting at 0 and monotonically increase thereafter.

NOTE

The CPU is only recorded for trace events logged by the operating
system kernel. Kernel tracing is not supported on all operating
system distributions. See “Kernel Dependencies” on page B-1 for
more information.

SYNTAX

extern int tr_cpu_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, a value of -1 is returned (which indicates any
CPU). If an invalid offset is specified, a value of -1 is returned.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-84

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_node() 18

tr_node() returns the name of the system where the current trace event was logged.

SYNTAX

extern char * tr_node (tr_t t);

PARAMETERS

data set handle

RETURN VALUES

Returns the name of the system where the current trace event was logged.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_node_() 18

tr_node_() returns the name of the system where the trace event at the specified offset
was logged.

SYNTAX

extern char * tr_node_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle
18-85

NightTrace RT User’s Guide
offset

offset of the trace event

RETURN VALUES

Returns the name of the system where the trace event at the specified offset was
logged; returns NULL if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_process_name() 18

tr_process_name() returns the name of the process associated with the current trace
event.

SYNTAX

extern char * tr_process_name (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the name of the process associated with the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-86

Using the NightTrace Analysis API
tr_process_name_() 18

tr_process_name_() returns the name of the process associated with the trace event
at the specified offset.

SYNTAX

extern char * tr_process_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the name of the process associated with the trace event at the specified off-
set; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5

tr_task_name() 18

tr_task_name() returns the name of the task associated with the current trace event.

SYNTAX

extern char * tr_task_name (tr_t t);

PARAMETERS

t

data set handle
18-87

NightTrace RT User’s Guide
RETURN VALUES

Returns the name of the task associated with the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_task_name_() 18

tr_task_name_() returns the name of the task associated with the trace event at the
specified offset.

SYNTAX

extern char * tr_task_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event

RETURN VALUES

Returns the name of the task associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-88

Using the NightTrace Analysis API
tr_thread_name() 18

tr_thread_name() returns the thread name associated with the current trace event.

SYNTAX

extern char * tr_thread_name (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns the thread name associated with the current trace event.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_thread_name_() 18

tr_thread_name_() returns the thread name associated with the trace event at the
specified offset.

SYNTAX

extern char * tr_thread_name_ (tr_t t,
 tr_offset_t offset);

PARAMETERS

t

data set handle

offset

offset of the trace event
18-89

NightTrace RT User’s Guide
RETURN VALUES

Returns the thread name associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions” on page 18-31 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_offset_t” on page 18-5
18-90

Using the NightTrace Analysis API
Conditions 18

The functions that deal with the creation and manipulation of conditions and their require-
ments are:

- tr_cond_create() (see page 18-92)

- tr_cond_reset() (see page 18-93)

- tr_cond_find() (see page 18-93)

- tr_cond_id() (see page 18-94)

- tr_cond_id_range() (see page 18-95)

- tr_cond_id_clear() (see page 18-96)

- tr_cond_cpu() (see page 18-97)

- tr_cond_cpu_clear() (see page 18-98)

- tr_cond_pid() (see page 18-99)

- tr_cond_pid_name() (see page 18-100)

- tr_cond_pid_clear() (see page 18-101)

- tr_cond_tid() (see page 18-102)

- tr_cond_tid_name() (see page 18-103)

- tr_cond_tid_clear() (see page 18-104)

- tr_cond_node() (see page 18-105)

- tr_cond_node_clear() (see page 18-106)

- tr_cond_func_or() (see page 18-107)

- tr_cond_func_and() (see page 18-109)

- tr_cond_func_clear() (see page 18-111)

- tr_cond_expr_and() (see page 18-112)

- tr_cond_expr_or() (see page 18-113)

- tr_cond_not() (see page 18-114)

- tr_cond_or() (see page 18-115)

- tr_cond_and() (see page 18-116)

- tr_cond_copy() (see page 18-117)

- tr_cond_name() (see page 18-119)

- tr_cond_satisfy() (see page 18-119)

- tr_cond_satisfy_() (see page 18-120)

- tr_cond_register() (see page 18-121)

- tr_cond_offset() (see page 18-122)
18-91

NightTrace RT User’s Guide
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_cond_create() 18

tr_cond_create() creates a new condition which will (initially) match all events.

SYNTAX

extern tr_cond_t tr_cond_create (tr_t t,
 char * name);

PARAMETERS

t

data set handle

name

name to subsequently reference newly-created condition; if the name is non-null, the
condition may be retrieved via tr_cond_find() subsequently; if a condition
with the same name already exists, the existing condition will become unnamed but
will not be otherwise modified.

RETURN VALUES

Returns an opaque handle which identifies the condition; in the event there is insuf-
ficient memory to create the condition, TR_NO_COND will be returned.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_find()” on page 18-93
18-92

Using the NightTrace Analysis API
tr_cond_reset() 18

tr_cond_reset() resets the condition to match all events; all previous modifications
to the specified condition are discarded.

SYNTAX

extern void tr_cond_reset (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of condition to reset

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_create()” on page 18-92

tr_cond_find() 18

tr_cond_find() locates an existing condition (perhaps imported from a file) and
returns its handle.

SYNTAX

extern tr_cond_t tr_cond_find (tr_t t,
 char * name);

PARAMETERS

t

data set handle

name

name used to reference the desired condition as defined in tr_cond_create()
18-93

NightTrace RT User’s Guide
RETURN VALUES

Returns the handle of the desired condition; returns TR_NO_COND if the named con-
dition does not exist.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_create()” on page 18-92

tr_cond_id() 18

tr_cond_id() appends the specified trace ID to the list of required trace IDs that must
be matched for a particular condition to evaluate to TRUE.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern int tr_cond_id (tr_t t,
 tr_cond_t cond,
 int id);

PARAMETERS

t

data set handle

cond

handle of the condition with which the given trace ID is to be associated

id

trace ID to add to those that must be matched for the given condition to evaluate to
TRUE
18-94

Using the NightTrace Analysis API
RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_create()” on page 18-92

• “tr_cond_id_range()” on page 18-95

• “tr_cond_id_clear()” on page 18-96

tr_cond_id_range() 18

tr_cond_id_range() appends the trace IDs included in the given trace ID range to
the list of required trace IDs that must be matched for the given condition to evaluate to
TRUE.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern int tr_cond_id_range (tr_t t,
 tr_cond_t cond,
 int id1,
 int id2);

PARAMETERS

t

data set handle

cond

handle of the condition with which the given trace ID range is to be associated
18-95

NightTrace RT User’s Guide
id1

minimum value in the range of trace IDs to be associated with the given condition

id2

maximum value in the range of trace IDs to be associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_id()” on page 18-94

• “tr_cond_id_clear()” on page 18-96

tr_cond_id_clear() 18

tr_cond_id_clear() removes all trace ID requirements from a particular condition.

NOTE

Before the first tr_cond_id() or tr_cond_id_range()
call, or after calling tr_cond_id_clear(), the trace ID
requirement is empty which matches any ID.

SYNTAX

extern void tr_cond_id_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle
18-96

Using the NightTrace Analysis API
cond

handle of the condition from which all trace ID requirements will be removed

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_id()” on page 18-94

• “tr_cond_id_range()” on page 18-95

tr_cond_cpu() 18

tr_cond_cpu() sets the CPU requirement to any of the CPUs defined in the specified
CPU bias.

SYNTAX

extern void tr_cond_cpu (tr_t t,
 tr_cond_t cond,
 int cpu_bias);

PARAMETERS

t

data set handle

cond

handle of the condition with which to associate the given CPU bias

cpu_bias

CPU bias to apply to the given condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-97

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_cpu_clear()” on page 18-98

tr_cond_cpu_clear() 18

tr_cond_cpu_clear() clears the CPU requirement for the given condition.

NOTE

This function is equivalent to calling tr_cond_cpu() with -1
as the CPU bias.

SYNTAX

extern void tr_cond_cpu_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_cpu()” on page 18-97
18-98

Using the NightTrace Analysis API
tr_cond_pid() 18

tr_cond_pid() appends the specified process ID to the list of required processes that
must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern int tr_cond_pid (tr_t t,
 tr_cond_t cond,
 int pid);

PARAMETERS

t

data set handle

cond

handle of the condition

pid

process ID to be added to the list of processes associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified process ID.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_pid_name()” on page 18-100

• “tr_cond_pid_clear()” on page 18-101
18-99

NightTrace RT User’s Guide
tr_cond_pid_name() 18

tr_cond_pid_name() appends the process with the specified name to the list of
required processes that must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern int tr_cond_pid_name (tr_t t,
 tr_cond_t cond,
 char * process_name);

PARAMETERS

t

data set handle

cond

handle of the condition

process_name

name of the process to be added to the list of processes associated with the given
condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the process with the specified name.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-100

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_pid()” on page 18-99

• “tr_cond_pid_clear()” on page 18-101

tr_cond_pid_clear() 18

tr_cond_pid_clear() removes all process requirements from a particular condition.

NOTE

B e f o r e t h e f i r s t tr_cond_pid() c a l l o r
tr_cond_pid_name() , o r a f t e r c a l l i n g
tr_cond_pid_clear(), the process requirement is empty
which matches any process.

SYNTAX

extern void tr_cond_pid_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_pid()” on page 18-99

• “tr_cond_pid_name()” on page 18-100
18-101

NightTrace RT User’s Guide
tr_cond_tid() 18

tr_cond_tid() appends the specified thread ID to the list of required threads IDs that
must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern int tr_cond_tid (tr_t t,
 tr_cond_t cond,
 int tid);

PARAMETERS

t

data set handle

cond

handle of the condition

tid

thread ID to be added to the list of threads associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified thread ID.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_tid_name()” on page 18-103

• “tr_cond_tid_clear()” on page 18-104
18-102

Using the NightTrace Analysis API
tr_cond_tid_name() 18

tr_cond_tid_name() appends the thread with the specified name to the list of
required threads that must be matched for the given condition to evaluate to TRUE.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern int tr_cond_tid_name (tr_t t,
 tr_cond_t cond,
 char * tid_name);

PARAMETERS

t

data set handle

cond

handle of the condition

tid_name

name of the thread to be added to the list of threads associated with the given condi-
tion

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the thread with the specified name.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_tid()” on page 18-102

• “tr_cond_tid_clear()” on page 18-104
18-103

NightTrace RT User’s Guide
tr_cond_tid_clear() 18

tr_cond_tid_clear() removes all thread requirements from a particular condition.

NOTE

B e f o r e t h e f i r s t tr_cond_tid() c a l l o r
tr_cond_tid_name() , o r a f t e r c a l l i n g
tr_cond_tid_clear(), the thread requirement is empty
which matches any thread.

SYNTAX

extern void tr_cond_tid_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5
18-104

Using the NightTrace Analysis API
tr_cond_node() 18

tr_cond_node() appends the specified system node name to the list of required node
names that must be matched for the given condition to evaluate to TRUE.

NOTE

Before the first tr_cond_node() call or after calling
tr_cond_node_clear(), the node requirement is empty
which matches any node.

SYNTAX

extern int tr_cond_node (tr_t t,
 tr_cond_t cond,
 char * node);

PARAMETERS

t

data set handle

cond

handle of the condition

node

name of the node to be added to the list of nodes associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified node.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_node_clear()” on page 18-106
18-105

NightTrace RT User’s Guide
tr_cond_node_clear() 18

tr_cond_node_clear() removes all node name requirements from a particular con-
dition.

NOTE

Before the first tr_cond_node() call or after calling
tr_cond_node_clear(), the node requirement is empty
which matches any node.

SYNTAX

extern void tr_cond_node_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_node()” on page 18-105
18-106

Using the NightTrace Analysis API
tr_cond_func_or() 18

tr_cond_func_or() modifies the specified condition to include an additional require-
ment as specified by the user-callable function. The context parameter will be passed to
the specified user function.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern int tr_cond_func_or (tr_t t,
 tr_cond_t cond,
 tr_cond_func_t func,
 void *context);

PARAMETERS

t

data set handle

cond

handle of the condition

func

user-callable function to be associated with the given condition

context

user-defined field to be passed to the specified user function

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs

- event's thread ID matches one of the specified thread IDs

- event's task ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias
18-107

NightTrace RT User’s Guide
If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or 0 (false) if
it is not met.

Before calling tr_cond_func_or(), the condition will evaluate to TRUE if all
other requirements have been met.

User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition already resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)

Thus calling:

tr_cond_func_or(cond,A);
tr_cond_func_and(cond,B);
tr_cond_func_or(cond,C);
tr_cond_func_and(cond,D);

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_func_t” on page 18-5

• “tr_cond_or()” on page 18-115

• “tr_cond_and()” on page 18-116

• “tr_cond_func_and()” on page 18-109

• “tr_cond_func_clear()” on page 18-111
18-108

Using the NightTrace Analysis API
tr_cond_func_and() 18

tr_cond_func_and() modifies the specified condition to include an additional
requirement as specified by the user-callable function. The context parameter will be
passed to the specified user function.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern int tr_cond_func_and (tr_t t,
 tr_cond_t cond,
 tr_cond_func_t func,
 void *context);

PARAMETERS

t

data set handle

cond

handle of the condition

func

user-callable function to be associated with the given condition

context

user-defined field to be passed to the specified user function

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs

- event's thread ID matches one of the specified thread IDs

- event's task ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias
18-109

NightTrace RT User’s Guide
If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or 0 (false) if
it is not met.

Before calling tr_cond_func_and(), the condition will evaluate to TRUE if all
other requirements have been met.

User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition already resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)

Thus calling:

tr_cond_func_or(cond,A);
tr_cond_func_and(cond,B);
tr_cond_func_or(cond,C);
tr_cond_func_and(cond,D);

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_func_t” on page 18-5

• “tr_cond_or()” on page 18-115

• “tr_cond_and()” on page 18-116

• “tr_cond_func_or()” on page 18-107

• “tr_cond_func_and()” on page 18-109
18-110

Using the NightTrace Analysis API
tr_cond_func_clear() 18

tr_cond_func_clear() clears all previously specified user function requirements.

SYNTAX

extern void tr_cond_func_clear (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_func_or()” on page 18-107

• “tr_cond_func_clear()” on page 18-111
18-111

NightTrace RT User’s Guide
tr_cond_expr_and() 18

tr_cond_expr_and() modifies the specified condition to include an additional
requirement as specified by a valid NightTrace expression.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern char * tr_cond_expr_and (tr_t t,
 tr_cond_t cond,
 char * expr);

PARAMETERS

t

data set handle

cond

handle of the condition

expr

string containing the NightTrace expression to be associated with the given condi-
tion

RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sion is invalid.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_expr_or()” on page 18-113
18-112

Using the NightTrace Analysis API
tr_cond_expr_or() 18

tr_cond_expr_or() modifies the specified condition to include an additional require-
ment as specified by a valid NightTrace expression.

NOTE

M u l t i p l e r e q u i r e m e n t s m a y b e a p p e n d e d b y c a l l i n g
tr_cond_or() / tr_cond_and() multiple times on the same
condition.

SYNTAX

extern char * tr_cond_expr_or (tr_t t,
 tr_cond_t cond,
 char * expr);

PARAMETERS

t

data set handle

cond

handle of the condition

expr

string containing the NightTrace expression to be associated with the given condi-
tion

RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sion is invalid.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_expr_and()” on page 18-112
18-113

NightTrace RT User’s Guide
tr_cond_not() 18

tr_cond_not() creates a new condition which evaluates to TRUE only if the specified
condition evaluates to FALSE.

NOTE

The new condition will still reference the specified condition; thus
subsequent changes to the specified condition will affect the out-
come of the created condition.

SYNTAX

extern tr_cond_t tr_cond_not (tr_t t,
 char* name,
 tr_cond_t cond);

PARAMETERS

t

data set handle

name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if name is NULL, the newly-created condition will be unnamed

cond

existing condition on which to base the newly-created condition

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-114

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_or()” on page 18-115

• “tr_cond_and()” on page 18-116

tr_cond_or() 18

tr_cond_or() creates a new condition which evaluates to TRUE if either of the speci-
fied conditions evaluate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr_cond_t tr_cond_or (tr_t t,
 char * name,
 tr_cond_t left,
 tr_cond_t right);

PARAMETERS

t

data set handle

name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if name is NULL, the newly-created condition will be unnamed

left

one of two existing conditions either of which must evaluate to TRUE for the
newly-created condition to evaluate to TRUE

right

one of two existing conditions either of which must evaluate to TRUE for the
newly-created condition to evaluate to TRUE
18-115

NightTrace RT User’s Guide
RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_not()” on page 18-114

• “tr_cond_and()” on page 18-116

tr_cond_and() 18

tr_cond_and() creates a new condition which evaluates to TRUE only if both of the
specified conditions evaluate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr_cond_t tr_cond_and (tr_t t,
 char * name,
 tr_cond_t left,
 tr_cond_t right);

PARAMETERS

t

data set handle

name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if name is NULL, the newly-created condition will be unnamed
18-116

Using the NightTrace Analysis API
left

one of two existing conditions which must both evaluate to TRUE for the newly-cre-
ated condition to evaluate to TRUE

right

one of two existing conditions which must both evaluate to TRUE for the newly-cre-
ated condition to evaluate to TRUE

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_not()” on page 18-114

• “tr_cond_or()” on page 18-115

tr_cond_copy() 18

tr_cond_copy() creates a copy of the root of specified condition.

NOTE

If the specified condition contains references to other conditions,
(e.g. it was created by a tr_cond_or() / tr_cond_and()
call), the references remain (i.e. this operation only copies the root
and not all conditions it may reference).
18-117

NightTrace RT User’s Guide
SYNTAX

extern tr_cond_t tr_cond_copy (tr_t t,
 char * name,
 tr_cond_t cond);

PARAMETERS

t

data set handle

name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if name is NULL, the newly-created condition will be unnamed

cond

handle of existing condition to copy to create new condition

RETURN VALUES

Returns the handle of the newly-created copy of the specified condition; returns
TR_NO_COND if insufficient memory is available to create the new condition.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_cond_or()” on page 18-115

• “tr_cond_and()” on page 18-116
18-118

Using the NightTrace Analysis API
tr_cond_name() 18

tr_cond_name() returns the name of the specified condition.

SYNTAX

extern char * tr_cond_name (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

RETURN VALUES

Returns the name of the specified condition (for debugging purposes) or NULL if it
is unnamed.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

tr_cond_satisfy() 18

tr_cond_satisfy() is used to determine if the current event satisfies the specified
condition.

SYNTAX

extern int tr_cond_satisfy (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle
18-119

NightTrace RT User’s Guide
cond

handle of the condition

RETURN VALUES

Returns TRUE if the current event satisfies the specified condition; returns FALSE
otherwise.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

tr_cond_satisfy_() 18

tr_cond_satisfy_() is used to determine if the trace event at the specified offset sat-
isfies the specified condition.

SYNTAX

extern int tr_cond_satisfy_ (tr_t t,
 tr_cond_t cond,
 tr_offset_t offset);

PARAMETERS

t

data set handle

cond

handle of the condition

offset

offset of the trace event

RETURN VALUES

Returns TRUE if the trace event at the specified offset satisfies the specified condi-
tion; returns FALSE otherwise.
18-120

Using the NightTrace Analysis API
See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5

tr_cond_register() 18

tr_cond_register() registers the specified condition so that it is evaluated for every
event.

NOTE

Registration of conditions increases processing time.

SYNTAX

extern void tr_cond_register (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of condition to register

ADDITIONAL INFORMATION

This is the implementation of NightTrace “profiles” which are basically conditions
that are evaluated as each event is consumed.

tr_activate() should be called after all desired conditions are registered.

Registering conditions is only necessary if you wish to refer to the offset at which
the specified condition was last active.

Failure to call tr_activate() after registration of conditions will result in erro-
neous statistics about such conditions.

See “Conditions” on page 18-91 for related functions.
18-121

NightTrace RT User’s Guide
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_activate()” on page 18-134

• “Profile References” on page 16-195

tr_cond_offset() 18

tr_cond_offset() returns the offset at which the specified condition last evaluated to
TRUE.

SYNTAX

extern tr_offset_t tr_cond_offset (tr_t t,
 tr_cond_t cond);

PARAMETERS

t

data set handle

cond

handle of the condition

RETURN VALUES

Returns the offset at which the specified condition last evaluated to TRUE; returns
TR_EOF if the condition has not yet evaluated to true up to the current offset.

See “Conditions” on page 18-91 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5

• “tr_offset_t” on page 18-5
18-122

Using the NightTrace Analysis API
State-oriented Interfaces 18

The functions that deal with the creation, configuration, and activation of states are:

- tr_state_create() (see page 18-123)

- tr_state_find() (see page 18-124)

- tr_state_name() (see page 18-125)

- tr_state_start_id() (see page 18-126)

- tr_state_start_id_range() (see page 18-127)

- tr_state_start_id_clear() (see page 18-128)

- tr_state_end_id() (see page 18-128)

- tr_state_end_id_range() (see page 18-129)

- tr_state_end_id_clear() (see page 18-130)

- tr_state_start_cond() (see page 18-131)

- tr_state_start_cond_clear() (see page 18-132)

- tr_state_end_cond() (see page 18-132)

- tr_state_end_cond_clear() (see page 18-133)

- tr_activate() (see page 18-134)

- tr_state_info() (see page 18-135)

- tr_state_info_() (see page 18-136)

- tr_state_active() (see page 18-137)

- tr_state_active_() (see page 18-138)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_state_create() 18

tr_state_create() creates a new state with the following attributes:

Start Events:

ALL

End Events:

ALL

Start Condition:

TRUE
18-123

NightTrace RT User’s Guide
End Condition:

TRUE

SYNTAX

extern tr_state_t tr_state_create (tr_t t,
 char * name);

PARAMETERS

t

data set handle

name

name to reference the newly-created state; if an existing state already exists with the
specified name, it becomes unnamed but remains otherwise unchanged; if name is
NULL, the newly-created state will be unnamed

RETURN VALUES

Returns an opaque handle which identifies the newly-created state; returns
TR_NO_STATE if there is insufficient memory available to create the state.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

tr_state_find() 18

tr_state_find() locates an existing state (perhaps imported from a file) and returns
its handle.

SYNTAX

extern tr_state_t tr_state_find (tr_t t,
 char * name);

PARAMETERS

t

data set handle
18-124

Using the NightTrace Analysis API
name

name used to reference the desired state as defined in tr_state_create()

RETURN VALUES

Returns the handle of the desired state; returns TR_NO_STATE if the named state
does not exist.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_state_create()” on page 18-123

tr_state_name() 18

tr_state_name() returns the name of the specified state.

SYNTAX

extern char * tr_state_name (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

RETURN VALUES

Returns the name of the specified state (for debugging purposes) or NULL if the state
is unnamed.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-125

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

tr_state_start_id() 18

tr_state_start_id() appends the specified trace ID to the list of required trace IDs
that must be matched for the start event that defines the state.

SYNTAX

extern int tr_state_start_id (tr_t t,
 tr_state_t state,
 int id);

PARAMETERS

t

data set handle

state

handle of the state

id

trace ID to add to the list of required trace IDs for the start event that defines the
state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8
18-126

Using the NightTrace Analysis API
tr_state_start_id_range() 18

tr_state_start_id_range() appends the trace IDs included in the given trace ID
range to the list of required trace IDs that must be matched for the start event that defines
the state.

SYNTAX

extern int tr_state_start_id_range (tr_t t,
 tr_state_t state,
 int id1,
 int id2);

PARAMETERS

t

data set handle

state

handle of the state

id1

minimum value in the range of trace IDs to be associated with the given state

id2

maximum value in the range of trace IDs to be associated with the given state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8
18-127

NightTrace RT User’s Guide
tr_state_start_id_clear() 18

tr_state_start_id_clear() removes all trace ID requirements related to the start
event that defines a particular state (such that that all events are candidates to start a state).

SYNTAX

extern void tr_state_start_id_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

tr_state_end_id() 18

tr_state_end_id() appends the specified trace ID to the list of required trace IDs
that must be matched for the end event that defines the state.

SYNTAX

extern int tr_state_end_id (tr_t t,
 tr_state_t state,
 int id);

PARAMETERS

t

data set handle

state

handle of the state
18-128

Using the NightTrace Analysis API
id

trace ID to add to the list of required trace IDs for the end event that defines the state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

tr_state_end_id_range() 18

tr_state_end_id_range() appends the trace IDs included in the given trace ID
range to the list of required trace IDs that must be matched for the end event that defines
the state.

SYNTAX

extern int tr_state_end_id_range (tr_t t,
 tr_state_t state,
 int id1,
 int id2);

PARAMETERS

t

data set handle

state

handle of the state

id1

minimum value in the range of trace IDs to be associated with the given state

id2

maximum value in the range of trace IDs to be associated with the given state
18-129

NightTrace RT User’s Guide
RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

tr_state_end_id_clear() 18

tr_state_end_id_clear() removes all trace ID requirements related to the end
event that defines a particular state (such that that all events are candidates to end a state).

SYNTAX

extern void tr_state_end_id_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8
18-130

Using the NightTrace Analysis API
tr_state_start_cond() 18

tr_state_start_cond() associates a certain condition with start of a particular
state.

SYNTAX

extern void tr_state_start_cond (tr_t t,
 tr_state_t state,
 tr_cond_t cond);

PARAMETERS

t

data set handle

state

handle of the state

cond

handle of the condition to associate with the start of the specified state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_cond_t” on page 18-5
18-131

NightTrace RT User’s Guide
tr_state_start_cond_clear() 18

tr_state_start_cond_clear() clears any conditions associated with start of a
particular state.

SYNTAX

extern void tr_state_start_cond_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

tr_state_end_cond() 18

tr_state_end_cond() associates a certain condition with end of a particular state.

SYNTAX

extern void tr_state_end_cond (tr_t t,
 tr_state_t state,
 tr_cond_t cond);

PARAMETERS

t

data set handle

state

handle of the state
18-132

Using the NightTrace Analysis API
cond

handle of the condition to associate with the end of the specified state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_cond_t” on page 18-5

tr_state_end_cond_clear() 18

tr_state_end_cond_clear() clears any conditions associated with end of a partic-
ular state.

SYNTAX

extern void tr_state_end_cond_clear (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8
18-133

NightTrace RT User’s Guide
tr_activate() 18

tr_activate() must be called after the configuration of all states and the registration
of all conditions is complete. It may be called multiple times.

NOTE

Failure to call this function will result in undefined state evalua-
tion and false conditions.

SYNTAX

extern int tr_activate (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns zero upon successful activation or -1 if a circular dependency between
states is detected.

ADDITIONAL INFORMATION

If the current position is other than the beginning of the data set, user-defined func-
tions associated with conditions in states may be called during the invocation of
tr_state_active().

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_active()” on page 18-137
18-134

Using the NightTrace Analysis API
tr_state_info() 18

tr_state_info() returns a structure containing the current values associated with the
last completed instance of the specified state

SYNTAX

extern void tr_state_info (tr_t t,
 tr_state_t state,
 tr_state_info_t * info);

PARAMETERS

t

data set handle

state

handle of the state

info

pointer to a structure which will contain the current values associated with the last
completed instance of the specified state

RETURN VALUES

The return values are contained in the tr_state_info_t structure (see
“tr_state_info_t” on page 18-7).

If the state has never been active, start_offset and end_offset are set to
TR_EOF and gap and duration are set to zero.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_state_info_t” on page 18-7
18-135

NightTrace RT User’s Guide
tr_state_info_() 18

tr_state_info_() returns a structure containing the current values associated with
the given state at the specified offset.

NOTE

Calling tr_state_info_() is an expensive operation if the
specified offset is not the current position.

SYNTAX

extern void tr_state_info_ (tr_t t,
 tr_state_t state,
 tr_state_info_t * info,
 tr_offset_t offset);

PARAMETERS

t

data set handle

state

handle of the state

info

pointer to a structure which will contain the current values associated with the given
state at the specified offset

offset

offset of the specifed state

RETURN VALUES

The return values are contained in the tr_state_info_t structure (see
“tr_state_info_t” on page 18-7).

If the state has never been active, start_offset and end_offset are set to
TR_EOF and gap and duration are set to zero.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-136

Using the NightTrace Analysis API
SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_state_info_t” on page 18-7

• “tr_offset_t” on page 18-5

tr_state_active() 18

tr_state_active() is used to determine if the specified state is active at the current
offset.

SYNTAX

extern int tr_state_active (tr_t t,
 tr_state_t state);

PARAMETERS

t

data set handle

state

handle of the state

RETURN VALUES

Returns TRUE if the specified state is active at the current offset; returns FALSE oth-
erwise.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8
18-137

NightTrace RT User’s Guide
tr_state_active_() 18

tr_state_active_() is used to determine if the given state is active at the specified
offset.

NOTE

Calling tr_state_active_() is an expensive operation if the
specified offset is not the current position.

SYNTAX

extern int tr_state_active_ (tr_t t,
 tr_state_t state,
 tr_offset_t offset);

PARAMETERS

t

data set handle

state

handle of the state

offset

offset of the specified state

RETURN VALUES

Returns TRUE if the given state is active at the specified offset; returns FALSE oth-
erwise.

See “State-oriented Interfaces” on page 18-123 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_offset_t” on page 18-5
18-138

Using the NightTrace Analysis API
Output Function 18

The function dealing with the output of trace data is:

- tr_copy_input() (see page 18-139)

- tr_copy_input_range() (see page 18-140)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_copy_input() 18

tr_copy_input() consumes the entire input data set and copies all events which sat-
isfy the specified condition to the output file.

SYNTAX

extern int tr_copy_input (tr_t t,
 char * output_file,
 tr_cond_t cond,
 int mode);

PARAMETERS

t

data set handle

output_file

pathname of the output file

cond

handle of the condition

mode

parameter passed to the system call invoked to open/create the specified output file

RETURN VALUES

Returns zero upon success; returns -1 upon error in which case errno will be set to
a value as per open(2) or read(2).

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5
18-139

NightTrace RT User’s Guide
tr_copy_input_range() 18

tr_copy_input_range() copies all the events in the data set whose offsets lie in the
range specified.

SYNTAX

extern int tr_copy_input_range (tr_t t,
 char * output_file,
 int mode);
 int start);
 int end);

PARAMETERS

t

data set handle

output_file

pathname of the output file

mode

parameter passed to the system call invoked to open/create the specified output file

start

start of the range

end

end of the range

RETURN VALUES

Returns zero upon success; returns -1 upon error in which case errno will be set to
a value as per open(2) or read(2).

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5
18-140

Using the NightTrace Analysis API
String Table Functions 18

The following functions are provided to create, manage, and search NightTrace string
tables:

- tr_get_string() (see page 18-141)

- tr_get_item() (see page 18-142)

- tr_create_table() (see page 18-143)

- tr_append_table() (see page 18-144)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_get_string() 18

tr_get_string() returns the string associated with the number of the desired item in
the specified table.

SYNTAX

extern char * tr_get_string (tr_t t,
 char * table_name,
 int item);

PARAMETERS

t

data set handle

table_name

name of the string table

item

position of the desired item in the specified table

RETURN VALUES

Returns the string associated with the number of the desired item in the specified
table; returns “” if no match is found.

See “String Table Functions” on page 18-141 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-141

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “String Tables” on page 7-15

tr_get_item() 18

tr_get_item() returns the item number associated with the string entry in the speci-
fied table that matches the specified value.

SYNTAX

extern int tr_get_item (tr_t t,
 char * table_name,
 char * value);

PARAMETERS

t

data set handle

table_name

name of the table to search for the specified string

value

string entry to search for in the specified table

RETURN VALUES

Returns the item number associated with the string entry in the specified table that
matches the specified value; returns zero if no match is found.

See “String Table Functions” on page 18-141 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “String Tables” on page 7-15
18-142

Using the NightTrace Analysis API
tr_create_table() 18

tr_create_table() is used to create a string table.

SYNTAX

extern int tr_create_table (tr_t t,
 char * table_name,
 char * default_value,
 tr_string_node_t * list,
 int count);

PARAMETERS

t

data set handle

table_name

name to subsequently reference the newly-created table

default_value

string to associate with integer values that are not explicitly referenced in the table

list

pointer to a list of string table entries

count

number of entries in the list of string table entries

RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “String Table Functions” on page 18-141 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9
18-143

NightTrace RT User’s Guide
• “tr_string_node_t” on page 18-8

• “String Tables” on page 7-15

tr_append_table() 18

tr_append_table() associates a particular string with a certain position in a given
string table.

NOTE

If the position specified is already associated with a string,
tr_append_table() will overwrite the previous entry.

SYNTAX

extern int tr_append_table (tr_t t,
 char * table_name,
 char * value,
 int item);

PARAMETERS

t

data set handle

table_name

name of the table to modify

value

character string to assign to the given item number

item

position in the table to associate with the given string

RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “String Table Functions” on page 18-141 for related functions.
18-144

Using the NightTrace Analysis API
See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “String Tables” on page 7-15
18-145

NightTrace RT User’s Guide
Callback Interfaces 18

The following functions deal with the callback capabilities of the NightTrace Analysis
Application Programming Interface:

- tr_iterate() (see page 18-146)

- tr_halt() (see page 18-147)

- tr_cancel_cb() (see page 18-147)

- tr_cond_cb() (see page 18-148)

- tr_state_cb() (see page 18-149)

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

tr_iterate() 18

tr_iterate() iteratively processes all events starting at the current position through
the end of the data set. For each event, user-defined callback functions registered with
tr_cond_cb() or tr_state_cb() will be invoked as required.

SYNTAX

extern int tr_iterate (tr_t t);

PARAMETERS

t

data set handle

RETURN VALUES

Returns zero on success and non-zero if an error occurs. Currently, the only error is
to reach the memory limit specified on the tr_open_stream() call if the input
source is streaming data.

See “Callback Interfaces” on page 18-146 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_cb()” on page 18-148

• “tr_state_cb()” on page 18-149

• “tr_open_stream()” on page 18-20
18-146

Using the NightTrace Analysis API
tr_halt() 18

tr_halt() halts the iteration process, causing tr_iterate() to return.

SYNTAX

extern void tr_halt (tr_t t);

PARAMETERS

t

data set handle

See “Callback Interfaces” on page 18-146 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_iterate()” on page 18-146

tr_cancel_cb() 18

tr_cancel_cb() cancels the specified callback.

SYNTAX

extern void tr_cancel_cb (tr_t t,
 tr_cb_t cb);

PARAMETERS

t

data set handle

cb

handle of the callback to be cancelled

See “Callback Interfaces” on page 18-146 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-147

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “tr_cb_t” on page 18-4

tr_cond_cb() 18

tr_cond_cb() registers a user-defined callback function which will be iteratively
called for every event that satisfies the specified condition.

SYNTAX

extern tr_cb_t tr_cond_cb (tr_t t,
 tr_cond_t cond,
 tr_cond_cb_func_t func,
 void * context);

PARAMETERS

t

data set handle

cond

handle of the condition that must be satisfied in order for the callback function to be
called

func

function to be called if the given condition is satisfied for a particular event

context

user defined value which is passed to the specified callback function

RETURN VALUES

Returns an opaque handle which identifies the callback; returns TR_NO_CB if the
specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “Callback Interfaces” on page 18-146 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

• “tr_t” on page 18-9

• “tr_cond_t” on page 18-5
18-148

Using the NightTrace Analysis API
• “tr_cond_cb_func_t” on page 18-4

• “tr_cb_t” on page 18-4

tr_state_cb() 18

tr_state_cb() registers a user-defined callback function which will be iteratively
invoked for every event that affects the given state in the manner specified.

SYNTAX

extern tr_cb_t tr_state_cb (tr_t t,
 tr_state_t state,
 tr_state_action_t action,
 tr_state_cb_func_t func,
 void * context);

PARAMETERS

t

data set handle

state

handle of the state

action

specif ies the manner in which the given funct ion wil l be cal led (see
“tr_state_action_t” on page 18-6)

func

function which will be iteratively invoked for every event that affects the given state
in the specified manner

context

user defined value which is passed to the specified callback function

RETURN VALUES

Returns an opaque handle which identifies the callback; returns TR_NO_CB if the
specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “Callback Interfaces” on page 18-146 for related functions.

See “Functions” on page 18-10 for a complete list of functions included in the NightTrace
Analysis API.
18-149

NightTrace RT User’s Guide
SEE ALSO

• “tr_t” on page 18-9

• “tr_state_t” on page 18-8

• “tr_state_action_t” on page 18-6

• “tr_state_cb_func_t” on page 18-6

• “tr_cb_t” on page 18-4
18-150

A
Appendix ANightStar Licensing

A
A
A

NightStar RT uses the NightStar License Manager (NSLM) to control access to the Night-
Star RT tools.

License installation requires a licence key provided by Concurrent (see “License Keys” on
page A-1).The NightStar RT tools request a licence (see “License Requests” on page A-2)
from a license server (see “License Server” on page A-2).

Two license modes are available, fixed and floating, depending on which product option
you purchased. Fixed licenses can only be served to NightStar RT users from the local sys-
tem. Floating licenses may be served to any NightStar RT user on any system on a net-
work.

Tools are licensed per system, per concurrent user. A single license is shared among any or
all of the NightStar RT tools for a particular user on a particular system. The intent is to
allow n developers to fully utilize all the tools at the same time while only requiring n
licenses. When operating the tools in remote mode, where a tool is launched on a local
system but is interacting with a remote system, licenses are required only from the host
system.

You can obtain a license report which lists all licenses installed on the local system, cur-
rent usage, and expiration date for demo licenses (see “License Reports” on page A-3).

The default configuration includes a strict firewall which interferes with floating licenses.
See “Firewall Configuration for Floating Licenses” on page A-3 for information on han-
dling such configurations.

See “License Support” on page A-4 for information on contacting Concurrent for addi-
tional assistance with licensing issues.

License Keys 1

Licenses are granted to specific systems to be served to either local or remote clients,
depending on the license model, fixed or floating.

License installation requires a license key provided by Concurrent. To obtain a license
key, you must provide your system identification code. The system identification code is
generated by the nslm_admin utility:

nslm_admin --code

System identification codes are dependent on system configurations. Reinstalling Linux
on a system or replacing network devices may require you to obtain new license keys.

To obtain a license key, use the following URL:
A-1

NightTrace RT User’s Guide
http://www.ccur.com/NightStarRTKeys

Provide the requested information, including the system identification code. Your license
key will be immediately emailed to you.

Install the license key using the following command:

nslm_admin --install=xxxx-xxxx-xxxx-xxxx-xxxx

where xxxx-xxxx-xxxx-xxxx-xxxx is the key included in the license acknowledgment email.

License Requests 1

By default, the NightStar RT tools request a license from the local system. If no licenses
are available, they broadcast a license request on the local subnet associated with the sys-
tem’s hostname.

You can control the license requests for an entire system using the /etc/nslm.config
configuration file.

By default, the /etc/nslm.config file contains a line similar to the following:

:server @default

The argument @default may be changed to a colon-separated list of system names, system
IP addresses, or broadcast IP addresses. Licenses will be requested from each of the enti-
ties found in the list, until a license is granted or all entries in the list are exhausted.

For example, the following setting prevents broadcast requests for licenses, by only speci-
fying the local system:

:server localhost

The following setting requests a license from server1, then server2, and then a
broadcast request if those fail to serve a license:

:server server1:server2:192.168.1.0

Similarly, you can control the license requests for individual invocations of the tools using
the NSLM_SERVER environment variable. If set, it must contain a colon-separated list of
system names, system IP addresses, or broadcast IP addresses as described above. Use of
the NSLM_SERVER environment variable takes precedence over settings defined in
/etc/nslm.config.

License Server 1

The NSLM license server is automatically installed and configured to run when you install
NightStar RT.
A-2

http://www.ccur.com/NightStarRTKeys

NightStar Licensing
The nslm service is automatically activated for run levels 2, 3, 4, and 5. You can check on
these settings by issuing the following command:

/sbin/chkconfig --list nslm

In rare instances, you may need to restart the license server via the following command:

/sbin/service nslm restart

See nslm(1) for more information.

License Reports 1

A license report can be obtained using the nslm_admin utility.

nslm_admin --list

lists all licenses installed on the local system, current usage, and expiration date (for demo
licenses). Use of the --verbose option also lists individual clients to which licenses are
currently granted.

Adding the --broadcast option will list this information for all servers that respond to
a broadcast request on the local subnet associated with the system’s hostname.

See nslm_admin(1) for more options and information.

Firewall Configuration for Floating Licenses 1

RedHawk does not support a firewall configuration by default, because iptables support is
disabled. However, it is possible to build a custom kernel with iptables support enabled. If
that is done, and floating licenses are used, the iptables firewall rules must be configured
to allow the license requests and responses to pass.

If the system with iptables support and firewall rules is serving licenses, then the firewall
rules must be arranged to allow license requests on UDP port 25517 and TCP port 25517
from any systems that will make license requests. For example, in a simple firewall, rules
like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --dport 25517 -j ACCEPT
iptables -A INPUT -p tcp -m tcp -s subnet/mask --dport 25517 -j ACCEPT

If the system with iptables support and firewall rules is running NightStar RT tools and
receiving floating licenses, then the firewall rules must be arranged to allow license
responses on UDP port 25517 from any system serving licenses. For example, in a simple
firewall, rules like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --sport 25517 -j ACCEPT
A-3

NightTrace RT User’s Guide
License Support 1

For additional aid with licensing issues, contact the Concurrent Software Support Center
at our toll free number 1-800-245-6453. For calls outside the continental United States, the
number is 1-954-283-1822. The Software Support Center operates Monday through Fri-
day from 8 a.m. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Com-
puter Corporation web site at http://www.ccur.com/isd_support_contact.asp or by send-
ing an email to support@ccur.com.
A-4

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

B
Appendix BKernel Dependencies

A
A
A

Concurrent’s RedHawk kernel provides features and performance gains that are critical
for the optimal operation of the NightStar RT tools.

The NightStar RT tools can operate in a host-only mode on many different Linux distribu-
tions without a RedHawk kernel, cross-targeting to RedHawk systems.

Additionally, the NightStar RT tools can function on such host systems in target mode
without the RedHawk kernel, but will lack the numerous advantages afforded by running
with it.

Advantages for NightView 2

The following advantages are afforded NightView when a RedHawk kernel is running:

• Application speed conditions

Provides “execution-speed” patches, conditions, and ignore counts.

• Signal handling

Allows NightView to pass signals directly to a particular process, avoiding context
switching and stopping the process if the signal is handled.

• Branch tracking

Allows NightView to show you a history of branches. This is especially useful for
programs that end up in unexpected locations, usually the result of returning from a
routine with a corrupted stack frame. The branch history often allows you to locate
where the program execution went awry.

Advantages for NightTrace 2

The following advantages are afforded NightTrace when a RedHawk tracing kernel is run-
ning:

• Kernel tracing

Users of NightTrace gain the ability to obtain kernel trace data and combine that
with user trace data. Kernel tracing is an incredibly powerful feature that not only
provides insight into the operating system kernel but also provides useful informa-
tion relating to the execution of user applications.
B-1

NightTrace RT User’s Guide
The RedHawk real-timekernel is provided in three flavors:

• Tracing

• Debug

• Plain

The Tracing and Debug flavors provide the features required for NightTrace kernel
tracing. These kernels can be selected at boot-time from the boot-loader menu.

• CUDA Application Tracing

While not specifically a RedHawk kernel feature, RedHawk provides an optimized
NVidia driver along with a pre-built NightTrace Illuminator for the CUDA API
library. This illuminator automatically instruments user applications that utilize the
CUDA API so that you can see all API function entries and returns. This includes
the execution of user routines on the GPU itself along with the amount of time spent
executing on the GPU.

Advantages for NightProbe 2

The following advantages are afforded NightProbe when a RedHawk kernel is running:

• Minimal intrusion

Allows NightProbe to read and write variables without stopping the process for each
sample or write operation.

• Sampling performance

Allows NightProbe to use direct memory fetches for data sampling (as opposed to
programmed I/O) which is important for high-rate data acquisition.

• Concurrent debugging/probing

Allows NightProbe to probe programs already under the control of a debugger or
another NightProbe session.

• PCI Device probing

Allows NightProbe to probe PCI device memory via the Base Address Register
(BAR) file system.

The PCI BAR File System is only available with the RedHawk kernel from Concur-
rent Computer Corporation. On other systems, PCI Device probing will be disabled
within NightProbe.
B-2

Kernel Dependencies
Advantages for NightTune 2

The following advantages are afforded NightTune when a RedHawk kernel is running:

• Context switch rate

Allows NightTune to display the context switch counts per CPU instead of for the
overall system.

• CPU shielding

Individual CPUs can be shielded from interrupts and processes allowing CPUs to be
dedicated solely to specific interrupts and processes that are bound to the CPU.

• CPU sibling interference

Individual CPUs can be marked down to avoid interfering with hyperthreaded sib-
ling CPUs and dual-core sibling CPUs. Hyperthreaded CPUs share all the resources
of their sibling CPU. Dual-core CPUs share the CPU cache and a path to memory
with their sibling CPU.

• Detailed memory information

Detailed process memory descriptions include the residency and lock state of any
page in a process, and their association with physical memory pools for NUMA sys-
tems.

• Kernel Activity and Single Process Activity panels

Provides non-intrusive monitoring of kernel or process/thread activity, including
percent of time spent in individual routines in the kernel, in shared libraries, and in
user processes. Routines are described using their symbolic name.

• Single Process Counter

Provides non-intrusive monitoring of low-level CPU operations, such as cpu cycles,
instructions, bus cycles, branches, cache hits and misses, page faults, cpu migra-
tions, and context switches for individual processes/threads.

• CUDA Configuration and Activity

While not specifically a RedHawk kernel feature, RedHawk provides an optimized
NVidia driver that allows NightTune to show detailed CUDA configuration infor-
mation as well as CUDA device activity, including GPU usage, fan speed, GPU
memory usage, etc.

Frequency Based Scheduler 2

The Frequency Based Scheduler is only available on RedHawk systems from Concurrent
Computer Corporation. It is required for all NightSim usage.
B-3

NightTrace RT User’s Guide
FBS Process Deadlines are only available for use on RedHawk 5.2.1 and later systems.

On systems without FBS Process Deadline support, the “Apply Deadline” group box will
appear shaded and disabled.

NightSim is only included in NightStar distributions intended for use on RedHawk sys-
tems.
B-4

C
Appendix CPrivileged Access

B
B
B

Some features of NightTrace require either root access or privileged access as described
below.

This chapter provides an overview of the capabilities mechanism support by some operat-
ing systems.

The following operating system kernels support the capabilities mechanism:

• RedHawk Linux (all versions)

• SUSE Linux Enterprise Real Time (versions 1.0-1.6 only)

Capabilities 3

The following capabilities may be required when using NightTrace:

• CAP_SYS_NICE

If you wish to run the ntraceud daemon with a real-time scheduling policy and
priority, you must have this capability. For example:

ntraceud --policy=fifo --priority=50 data-file

• CAP_IPC_LOCK

If you wish to run the ntraceud daemon and force shared pages between the user
application and the daemon to be locked in memory, you must have this capability.
Similarly, this capability is required if you specify page locking when configuring a
daemon via the API. For example:

ntraceud --lock data-file

or

ntconfig_t config;
trace_default_config(&config);
config.ntc_lock_pages = ntp_lock;
config.ntc_daemon_preferred = false;
trace_begin(“data-file”,&config);

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
t a in p r iv i l eged ope ra t ions . The P luggab le Authen t i ca t ion Modu le (see
pam_capability(8)) is used to manage sets of capabilities, called roles, required for
various activities.
C-1

NightTrace RT User’s Guide
Linux systems should be configured with an ntraceuser role which provides the
CAP_SYS_NICE and CAP_IPC_LOCK capabilities.

Edit /etc/security/capability.conf and define the ntraceuser role (if it is
not already defined) in the “ROLES” section:

role ntraceuser CAP_SYS_NICE CAP_IPC_LOCK

Additionally, for each NightTrace user on the target system, add the following line at the
end of the file:

user username ntraceuser

where username is the login name of the user.

If the user requires capabilities not defined in the ntraceuser role, add a new role
which contains ntraceuser and the additional capabilities needed, and substitute the
new role name for ntraceuser in the text above.

In addition to registering your login name in /etc/security/capability.conf,
certain files under the /etc/pam.d directory must also be configured to allow capabili-
ties to be activated.

To activate capabilities, add the following line to the end of selected files in /etc/pam.d
if it is not already present:

session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

Table C-1. Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment

remote telnet
rlogin
rsh (when used w/o a command)

Depending on your system, the remote file may
not exist. Do not create the remote file, but edit it
if it is present.

login local login (e.g. console)
telnet*
rlogin*
rsh* (when used w/o a command)

*On some versions of Linux, the presence of the
remote file limits the scope of the login file to
local logins. In such cases, the other services listed
here with login are then affected solely by the
remote configuration file.

pass-
word-auth

Many Recent versions of the Linux kernel require this file
be modified as well.

rsh rsh (when used with a command) e.g. rsh system_name a.out
C-2

Privileged Access
If you modify /etc/pam.d/sshd or /etc/ssh/sshd_config, you must restart the
sshd service for the changes to take effect:

service sshd restart
bash /etc/init.d/sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.

NOTE

To verify that you have been granted capabilities, issue the
following command:

 /usr/sbin/getpcaps $$
 /sbin/getpcaps $$

The output from that command will list the roles currently
assigned to you.

sshd ssh You must also edit /etc/ssh/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no

gdm gnome sessions

kde kde sessions

Table C-1. Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment
C-3

NightTrace RT User’s Guide
C-4

D
Appendix DNightTrace Logging API Examples

C
B
C

This chapter provides several examples using the NightTrace Logging API.

Single Threaded C Example 4

This example uses demonstrates a minimalist approach to tracing, foregoing any error
checking and logging very simple events.

#include <ntrace.h>

main()
{
 volatile double x = 0.0;
 int i,j;

 trace_begin ("data",0);

 for (j=0; j<100; ++j) {
 trace_event (1);
 for (i=0; i<1000; ++i) {
 x = x * x;
 }
 trace_event (2);
 }
}

The call to trace_begin() initializes tracing with default parameters.

We call trace_event() with different event identifiers immediately before and after our
application’s workload, represented by the inner loop.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

Using the command line summary option to ntrace, print a summary of each execution of
the outer loop:

$ ntrace --summary=st:1-2 data
===
Summary: States starting with event 1, ending with event 2:
D-1

NightTrace RT User’s Guide
Condition Summary Results
=========================

Number of matching events found: 100
Average gap between matching events: 0.000000184

Maximum gap between matching events: 0.000000391
Maximum gap event offset: 15

Minimum gap between matching events: 0.000000165
Minimum gap event offset: 17
D-2

NightTrace Logging API Examples
Multi-Threaded C++ Example 4

This example demonstrates using NightTrace event logging from multiple threads.

#include <stdio.h>
#include <stdlib.h>
#include <ntrace.h>
#include <time.h>

#define Start 100
#define End 200

volatile int done = 0;

int work (int input)
{
 // do something
 return input;
}

void *
thread_a (void * ptr)
{
 int i = 0;
 int result;
 trace_set_thread_name ("romeo");
 struct timespec ts = { 0, 20000000};
 while (!done) {
 trace_event_arg (Start, i);
 result = work(i++);
 trace_event_arg(End, result);
 nanosleep(&ts,0);
 }
}

void *
thread_b (void * ptr)
{
 int i=9999999;
 int result;
 trace_set_thread_name ("juliet");
 struct timespec ts = { 0, 20000000};
 while (!done) {
 trace_event_arg (Start, i);
 result = work(i--);
 trace_event_arg(End, result);
 nanosleep(&ts,0);
 }
}

int
main (int argc, char * argv[])
{
 pthread_t thread;
 pthread_attr_t attr;
 int status;

 status = trace_begin ("data",NULL);
 switch (status) {
 case NTLISTEN:
 printf ("No daemon is listening -- "
 "proceeding in case one shows up\n");
D-3

NightTrace RT User’s Guide
 break;
 case NTNOERROR:
 break;
 default:
 printf ("An error occurred during ntrace initialization (%d)\n",
 status);
 exit(1);
 }

 pthread_attr_init(&attr);
 pthread_create (&thread, &attr, thread_a, NULL);

 pthread_attr_init(&attr);
 pthread_create (&thread, &attr, thread_b, NULL);
 sleep(1);

 done = 1;
}

The call to trace_begin() initializes tracing with default parameters.

Immediately within the thread routines, each thread identifies itself with a symbolic name
via a call to trace_set_thread_name(). If these calls were not made, the threads
would be automatically named by NightTrace using the thread’s internal gettid(2)
integer value.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace_thr -lpthread
$ ntraceud data; ./a.out; ntraceud -q data

NOTE

Note the use of the thread-aware version of the NightTrace log-
ging API library, -lntrace_thr. This is required for use with
multi-threaded programs if you want to be able to distinguish
between individual threads in trace events. See “Threads and
Logging” on page 2-34 for more information).

The following command invokes ntrace to graphically view the events. A customized
page is automatically built which distinguishes events between the two threads: romeo
and juliet:
D-4

NightTrace Logging API Examples
$ ntrace data

Figure C-1. Automatically Generated Data Display Page
D-5

NightTrace RT User’s Guide
Fortran Example 4

This example uses demonstrates a simple Fortran program logging a trace event.

 program ftrace

 include "/usr/include/ntrace_.h"

 integer void

 void = trace_begin("data",0)

 do 10 i=1,10
 void = trace_event_arg(1,i)
10 continue

 void = trace_end()

 end

The call to trace_start() initializes tracing with default parameters.

We call trace_event_arg() with the loop iterator for each iteration.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ g77 -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

Using the command line listing option to ntrace, we see the values of the iterator as event
points are logged:

$ ntrace --listing data
 0: cpu=?? 1 pid=a.out thr=main time=0.000000000s arg1=0x1
 1: cpu=?? 1 pid=a.out thr=main time=0.000002481s arg1=0x2
 2: cpu=?? 1 pid=a.out thr=main time=0.000003103s arg1=0x3
 3: cpu=?? 1 pid=a.out thr=main time=0.000003536s arg1=0x4
 4: cpu=?? 1 pid=a.out thr=main time=0.000003976s arg1=0x5
 5: cpu=?? 1 pid=a.out thr=main time=0.000004386s arg1=0x6
 6: cpu=?? 1 pid=a.out thr=main time=0.000004882s arg1=0x7
 7: cpu=?? 1 pid=a.out thr=main time=0.000005302s arg1=0x8
 8: cpu=?? 1 pid=a.out thr=main time=0.000005820s arg1=0x9
 9: cpu=?? 1 pid=a.out thr=main time=0.000006294s arg1=0xa
 ...

Simple Java Example 4

This example demonstrates a minimalist approach to tracing in Java, foregoing any error
checking and logging very simple events.
D-6

NightTrace Logging API Examples
import ntrace.logging.Trace;

class SimpleTracing {
 public static void main (String args[]) {
 Trace.begin("data");
 for (int j=0; j<10; j++) {
 Trace.event(1,j);
 }
 System.out.println("That was easy!");
 }
}

The call to Trace.begin() initializes tracing with default parameters.

In the code above, we call Trace.event() with different trace argument values inside
the loop, but always with the trace event ID of 1.

The following commands could be used to build and execute the application:

$ javac -classpath /usr/lib:. SimpleTracing.java
$ ntraceud data
$ java -classpath /usr/lib:. SimpleTracing
That was easy!
$ ntraceud -q data

NOTE:

Some versions of java require you to explicitly place /usr/lib
in your LD_LIBRARY_PATH environment variable. If you get an
error when invoking the java class that mentions java.lang.Unsat-
isfiedLinkError, then try setting LD_LIBRARY_PATH to include
/usr/lib.

Use the command line --summary option to ntrace to summarize the logged events:

$ ntrace --summary=ev:1 data

===
Summary: Occurrences of event 1

Condition Summary Results
=========================

Number of matching events found: 10
Average gap between matching events: 0.000002778

Maximum gap between matching events: 0.000018644
Maximum gap event offset: 5

Minimum gap between matching events: 0.000000975
Minimum gap event offset: 9
D-7

NightTrace RT User’s Guide
Multi-Threaded Java Example 4

This example demonstrates tracing in a multi-threaded Java program.

import ntrace.logging.Trace;

class ThreadedTracing {

 public static class MyThread extends Thread {
 public MyThread (String name) {
 super(name);
 }
 public void run () {
 Trace.setThreadName(getName());
 for (int i=0; i<10; ++i) {
 int nap = (int)(Math.random()*100);
 Trace.event(100,nap);
 try {
 Thread.sleep(nap);
 } catch (InterruptedException e) {}
 Trace.event(101);
 }
 }
 }

 public static void main (String args[]) {
 Trace.begin("data");
 new MyThread("Solo").start();
 new MyThread("Trinil").start();
 System.out.println("That was still easy!");
 }
}

The call to Trace.begin() initializes tracing with default parameters.

In the code above, we create a user-defined thread class called MyThread.

The first thing we do in the body of the thread is tell the NightTrace API the name of
our thread by calling Trace.setThreadName(). This is a convenience, but
important, so we can subsequently determine in NightTrace which thread logged a
specific trace point by using its name, instead of an integer thread ID which changes
from run to run and cannot be predicted.

In each iteration of the loop in the run() routine, each thread will sleep for a ran-
dom amount of time, surrounded by a pair of trace events with ID values of 100,
and 101, respectively. When logging event ID 10, we also have chosen to log a
string argument which describes the amount of time we will request to sleep.

The main java routine creates two instances of MyThread and names them “Solo”
and “Trinil”, in honor of Java Man, discovered in 1891 by Eugene Dubois.

The following commands could be used to build and execute the application:
D-8

NightTrace Logging API Examples
$ javac -classpath /usr/lib:. ThreadedTracing.java
$ ntraceud data
$ java -classpath /usr/lib:. ThreadedTracing
That was still easy!
$ ntraceud -q data

NOTE

Some versions of Java require you to explicitly place /usr/lib
in your LD_LIBRARY_PATH environment variable. If you get an
e r r o r w h e n i n v o k i n g t h e j a v a c l a s s t h a t m e n t i o n s
java.lang.UnsatisfiedLinkError, then try setting
LD_LIBRARY_PATH to include /usr/lib.

If we now invoke the NightTrace analysis program, ntrace(1), we will see a dis-
play which breaks down the trace events on a per-thread basis, as seen in the rows in
the center of the figure below.

Rare Occurrence Example 4

This example uses demonstrates how one might use buffer-wrap mode to catch a rare
occurrence of bug.
D-9

NightTrace RT User’s Guide
#include <ntrace.h>
#include <time.h>
#include <stdio.h>

void
incredibly_rare_event (void)
{
 trace_event(2);
 time_t t = time(0);
 printf ("a.out: Badness occurred at %s", asctime(localtime(&t)));
 trace_flush();
}

main()
{
 volatile double x = 0.0;
 int j;
 unsigned i = 0;

 trace_begin ("data",0);
 for (;;) {
 trace_event_arg (1,i);
 for (j=0; j<100; ++j) x = x * x;
 if ((++i % 10000000) == 0) {
 incredibly_rare_event();
 }
 }
}

The call to trace_begin() initializes tracing with default parameters.

We call trace_event_arg() with the loop iterator for each iteration of the outer loop to
simulate logging useful data.

When the process detects something has gone wrong, it logs a new trace event and then
flushes the trace buffers with a call to trace_flush().

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace
$ ntraceud --bufferwrap data
$./a.out &
a.out: Badness occurred at Fri Oct 7 18:00:26 2005
a.out: Badness occurred at Fri Oct 7 23:12:55 2005
$ ntraceud --quit-now data
$ jobs
[1] + Running a.out
a.out: Badness occurred at Sat Oct 8 02:45:01 2005
a.out: Badness occurred at Sat Oct 8 08:21:17 2005

The program continues to execute despite the detection of the condition, but on each
detection, the history of events that were still in the trace shared memory buffers are writ-
ten to the output file.

The latter invocation of ntraceud to stop the daemon, indicates is should not wait for
the logging application to complete.
D-10

NightTrace Logging API Examples
We can now analyze the data from the two occurrences of the problematic event.

Alternatively, we could have started the program without an ntraceud daemon running,
and subsequently used the ntrace, the NightTrace GUI to start a daemon, and immedi-
ately analyze the trace data as more data is being collected.

CUDA Example 4

This small example shows how to log trace events in user code that is executed by an
NVIDIA Graphical Processing Unit, using NVIDIA’s CUDA API.

#include <ntrace_cuda.h>
#include <ntrace_cuda_device.h>

__global__ void MyKernel (float *result, ntrace_cuda_handle*h)
{
 int v = threadIdx.x * threadIdx.y;
 ntrace_cuda_event(h,47,v%2);
 result[v] = v;
}

int main()
{
 dim3 threads(8,4,2);
 dim3 grid(16,16,2);
 float * result;
 cudaMalloc(&result,sizeof(float)*16*16*2*8*4*2);

 ntrace_cuda_context ncc = ntrace_cuda_begin("user-data");

 MyKernel<<<grid,threads>>>(result,ntrace_cuda_sync(ncc));
 cudaThreadSynchronize();

 ntrace_cuda_flush(ncc);
}

This overly simply example shows how to use the basic NightTrace CUDA API calls to
log trace events in code executed by the GPU.

In the main function (code executed by the CPU): we initate the NightTrace session by
calling ntrace_cuda_begin; we launch our kernel (the line that starts with MyKer-
nel<<<) and pass the return value of ntrace_cuda_sync; we wait for the kernel to
complete (call to cudaThreadSynchronize); finally we call ntrace_cuda_flush to
allow the events to be collected by a NightTrace daemon.

When the kernel is launched, the CPU continues on to the next statement (cudaThread-
Synchronize) and the GPU begins to execute MyKernel in parallel using its many cores.

You can see that for every invocation of MyKernel, we log a single trace event with an ID
value of 47, and an integer argument with the value 0 or 1.
D-11

NightTrace RT User’s Guide
The following commands can be used to compile, link, and execute the program, and then
list the generated trace events:

$ nvcc \ --gencode=arch=compute_11,code=\”sm_11,compute_11\” \
--gencode=arch=compute_20,code=\”sm_20,compute_20\” \
--compiler-options -DUNIX -g -G -I/usr/include \
-c mycode.cu
$ cc -o mycode mycode.o -lcuda_rt -lntrace_cuda -lntrace
$ ntraceud user-data # This starts a NightTrace daemon
$./mycode
$ ntraceud -q user-data # This stops the NightTrace daemon
$ ntrace --listing user-data
0: cpu=?? 47 pid=mycode thr=main time=0.000000000s arg1=0x0 CUDA
thread(0,0,0)/block(14,0,0) on GPU lane=0 warp=15 sm=0 at time=480290
1: cpu=?? 47 pid=mycode thr=main time=0.000000000s arg1=0x0 CUDA
thread(1,0,0)/block(14,0,0) on GPU lane=0 warp=15 sm=0 at time=480290
...
D-12

E
Appendix ENightTrace Analysis API Examples

D
C
D

The following programs are given as examples of how to use the NightTrace Analysis
Application Programming Interface (see “Using the NightTrace Analysis API” on page
18-1).

NOTE

The source f i l e s fo r these p rograms a re ins t a l l ed in
/usr/lib/NightTrace/examples.

- list (see “list” on page E-2)

This program simply lists each NightTrace event using a simple main loop to posi-
tion to the next event.

- search (see “search” on page E-4)

This program utilizes the callback features of the API to locate and describe all
events which satisfy a specified condition.

- watchdog (see “watchdog” on page E-6)

This program illustrates how to monitor a certain condition in real-time and then act
upon it accordingly.

- ptime (see “ptime” on page E-9)

This program illustrates how to use the NightTrace GUI to export complex condi-
tions and states to a source file which uses the API.

- browse (see “browse” on page E-12)

This program contains a collection of code segments which might be useful for ref-
erence.

- detect (see “detect” on page E-23)

This program monitors live kernel trace data looking for a user-specified event in
the form of a NightTrace expression.
E-1

NightTrace RT User’s Guide
list 5

Usage

./list trace_data_file

This program simply lists each NightTrace event using a simple main loop to position to
the next event.

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

list.c 5

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ntrace_analysis.h>

// Simple example to list all events in a trace data file

// Usage: ./list data_file

static void print (tr_t t, tr_offset_t offset);

int
main (int argc, char * argv[])
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
 int i;
 int errs;

 if (argc != 2) {
 printf ("Usage: list data_file\n");
 exit(1);
 }

 t = tr_init();
 tr_open_file(t,argv[1]);

 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }
E-2

NightTrace Analysis API Examples

 for (;;) {
 offset = tr_next_event(t);
 if (offset == TR_EOF) break;
 print(t, offset);
 }

 tr_close(t);
 tr_destroy(&t);
}

static
void
print (tr_t t, tr_offset_t offset)
{
 int i;

 printf ("%5d pid=%5d id=%4d %8.9f nargs=%1d",
 offset,
 tr_pid(t),
 tr_id(t),
 tr_time(t),
 tr_nargs(t));
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

E-3

NightTrace RT User’s Guide
search 5

Usage

./search trace_data_file "NightTrace_Expression"

This program utilizes the callback features of the API to locate and describe all events
which satisfy the specified condition.

The NightTrace_Expression is a valid NightTrace expression (see “NightTrace allows you
to use expressions to aid in the analysis of trace data.” on page 16-1) enclosed by double
quotes.

The search program builds a condition object and assigns the specified expression to
that condition. It then registers a callback to the print function for every event that sat-
isfies the condition. It then invokes the iterate function to process the entire
trace_data_file.

To call the search program with a trace_data_file named my_trace_data and the
NightTrace_Expression:

num_args>1 && arg2==0

you would issue the following command:

./search my_trace_data "num_args>1 && arg2==0"

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

search.c 5

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ntrace_analysis.h>

// Simple example to search for all events in a trace data file
// which satisfy the specified condition.

// Usage: ./search data_file "expression"

// Example: ./search data_file "num_args>1 && arg2 == 1"

static void print (tr_t, tr_cond_t c, tr_offset_t, int, void *, int *);

int
main (int argc, char * argv[])
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
E-4

NightTrace Analysis API Examples
 tr_cond_t cond;
 int i;
 int errs;

 if (argc < 3) {
 printf ("Usage: search data_file \"expression\"\n");
 exit(1);
 }

 // Initialize the API and open the input data file
 t = tr_init();
 tr_open_file(t,argv[1]);

 // Create a condition using the specified expression and
 // register a callback for it.
 cond = tr_cond_create(t,"search");
 tr_cond_expr_and(t,cond,argv[2]);
 tr_cond_cb(t,cond,print,0);

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 tr_close(t);
}

static
void
print (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;

 printf ("%5d pid=%5d id=%4d %8.9f nargs=%1d",
 offset,
 tr_pid(t),
 tr_id(t),
 tr_time(t),
 tr_nargs(t));
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

E-5

NightTrace RT User’s Guide
watchdog 5

Usage

./watchdog cpu_mask

This program illustrates how to monitor a certain condition in real-time and then act upon
it accordingly.

In this case, the input to the program is the output of a NightTrace kernel daemon. The
program watches for any context switches on the CPU specified in cpu_mask.

This test program make use of kernel tracing which is not available on all operating sys-
tem distributions. See “Kernel Dependencies” on page B-1 for more information.

For simplicity, this program only lists the time at which the context switch occurred and
the process being switched in.

This program may be invoked with the following command:

ntracekd --stream /tmp/handle | ./watchdog 1

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition. See “Consumer” on page 9-10 for more information.

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

watchdog.c 5

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ntrace_analysis.h>

// Example watchdog program; detect context switches on
// shielded CPU

// Usage: ./watchdog cpu_mask

// stdin is assumed to be the output of ntracekd (or watchdog
// was launched from the NightTrace GUI which set stdin to
// daemon output).

static void print (tr_t, tr_cond_t c, tr_offset_t, int, void *, int *);

int
main (int argc, char * argv[])
{
 tr_t t;
E-6

NightTrace Analysis API Examples
 tr_string_node_t * list;
 tr_offset_t offset;
 tr_cond_t cond;
 int i;
 int cpu;
 int errs;

 if (argc != 2) {
 printf ("Usage: ntracekd --stream handle | watchdog cpu_mask\n");
 exit(1);
 }
 if (isatty(0)) {
 printf ("error: expect stdin to be streaming data from ntracekd\n");
 exit(1);
 }
 cpu = atoi(argv[1]);
 if (cpu == 0) {
 printf ("error: cpu_mask must be a MASK of CPU bits\n");
 exit(1);
 }

 // Initialize the API
 t = tr_init();

 // Create a condition detecting context switches on specified CPU
 // and register a callback for it.
 cond = tr_cond_create(t,"switch");
 tr_cond_id(t,cond,4150);
 tr_cond_cpu(t,cond,cpu);
 tr_cond_cb(t,cond,print,0);

 // Open the input stream
 tr_open_stream(t, 0, 1024*1024*50, 0);

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }

 tr_close(t);
}

static
void
print (tr_t t,
 tr_cond_t c,
 tr_offset_t offset,
E-7

NightTrace RT User’s Guide
 int occurrence,
 void * context,
 int * disable)
{
 int pid = tr_pid(t);
 char * name = tr_process_name(t);

 if (!name) name = "<unknown>";

 printf ("context switch: %8.9f %5d %s\n", tr_time(t), pid, name);
}

E-8

NightTrace Analysis API Examples
ptime 5

This program illustrates how to use the NightTrace GUI to export complex conditions and
states to a source file which uses the API.

Usage

./ptime kernel_trace_file

In this case, ptime.c contains the main program and the callback functions; we use the
GUI to export an initialization routine which defines the states and registers the callbacks.

A NightTrace session file, ptime.session, is provided in this directory which contains
a definition of a state called ksoftirqd.

In order to build the program ptime, you need to invoke NightTrace and export the state:

 ksoftirqd

to generate the source file export_0.c.

1. Issue the following command:

ntrace ptime.session

2. From the NightTrace menu, select the Export API Source File...
menu item.

3. Select ksoftirqd in the list.

4. Clear checkbox for Generate main() function.

5. Clear checkbox for Generate callback function definitions.

6. Click on Export Selected.

7. Click on Close.

8. From the NightTrace menu, select Exit Immediately.

NOTE

Optionally, NightTrace can create a main program and callback
bodies for you as well.

The ksoftirqd state tracks when the process ksoftirqd/0 is active on CPU 0.

The ptime program simply collects the durations of each occurrence of the state and
prints the total time at the end of the program.

To generate the kernel_trace_file, issue the following command:

ntracekd --wait=5 /tmp/kernel-data
E-9

NightTrace RT User’s Guide
You may then invoke the program:

./ptime /tmp/kernel-data

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

ptime.c 5

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ntrace_analysis.h>

// Example to calculate the amount of time the Kernel daemon
// ksoftirqd/0 spends processing on the CPU.

// The purpose of this example is to demonstrate use of the
// NightTrace GUI export feature to aid in forming conditions,
// states, and registering callbacks.

// Usage: ./ptime kernel_data_file

static double time = 0.0;

extern void tr_session_init(tr_t);

int
main (int argc, char * argv[])
{
 tr_t t;
 tr_string_node_t * list;
 tr_offset_t offset;
 tr_cond_t cond;
 int i;
 int errs;

 if (argc < 2) {
 printf ("Usage: search data_file\n");
 exit(1);
 }

 // Initialize the API and open the input data file
 t = tr_init();
 errs = tr_open_file(t,argv[1]);

 // Invoke the initialization function generated by the
 // NightTrace GUI to form string tables, conditions,
 // expressions, and register callbacks.
 if (!errs) {
E-10

NightTrace Analysis API Examples
 tr_session_init(t);
 tr_activate(t);
 }

 // Ensure all is copasetic
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
 }

 // Process all events
 tr_iterate(t);

 tr_close(t);
 tr_destroy(&t);

 printf ("ksoftirqd/0 used %9.8f seconds of CPU time\n", time);
}

void
ksoftirqd_start_func (tr_t input, tr_state_t state,
 tr_offset_t offset, int occurrence,
 void * context, int * disable) {
}

void
ksoftirqd_end_func (tr_t input, tr_state_t state,
 tr_offset_t offset, int occurrence,
 void * context, int * disable) {
 tr_state_info_t info;
 tr_state_info(input,state,&info);
 time += info.duration;
}

E-11

NightTrace RT User’s Guide
browse 5

Usage

./browse [-e expression] data_file

This program contains a collection of code segments which might be useful for reference.

It implements a simple command-line oriented browser.

NOTE

The browse program is included mainly for reference; the Night-
Trace GUI is much more suitable for interactive browsing.

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

browse.c 5

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "ntrace_analysis.h"

// This test program implements a command-line orienter
// browser. It is provided because some of the code
// segments may be useful for reference. The NightTrace
// GUI tool is *much* more suitable for interactive browsing.

tr_t t;

static char buffer[128];
static char * _c;
static FILE * input;

#define get_line(x) \
 write (1, x, sizeof(x)); \
 _c = fgets(buffer,sizeof(buffer),input); \
 _c[strlen(_c)-1] = '\0'

static
void
print (tr_offset_t offset)
{
 int i;
E-12

NightTrace Analysis API Examples
 double time = tr_time(t);
 char * process = tr_process_name(t);

 if (process && process[0]) {
 printf ("%5d pid=%s %3d %8.9f %1d", offset, process, tr_id(t), time,
tr_nargs(t));
 } else {
 printf ("%5d pid=%d %3d %8.9f %1d", offset, tr_pid(t), tr_id(t), time,
tr_nargs(t));
 }
 for (i=1; i<=tr_nargs(t); ++i) {
 printf (" %5d", tr_arg_int(t,i));
 }
 printf ("\n");
}

static
void
print_event (tr_offset_t offset)
{
 int i;
 double time = tr_time_(t,offset);

 printf ("%5d %5d %3d %8.9f %1d", offset, tr_pid_(t,offset),
 tr_id_(t,offset), time, tr_nargs_(t,offset));
 for (i=1; i<=tr_nargs_(t,offset); ++i) {
 printf (" %5d", tr_arg_int_(t,i,offset));
 }
 printf ("\n");
}

typedef enum { CMD_LIST,
 CMD_NEXT,
 CMD_PREV,
 CMD_SEEK,
 CMD_SEARCH,
 CMD_COPY_FILE,
 CMD_STATE,
 CMD_CONDITION,
 CMD_CALLBACK,
 CMD_ITERATE,
 CMD_REWIND,
 CMD_QUIT,
 CMD_UNKNOWN}
 commands;

static commands last_cmd = CMD_QUIT;

static int cond1 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) > 0 && tr_arg_int_(t,1,offset) > 10;
}
static int cond2 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_time_(t,offset) < 0.03712;
}
static int cond3 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) > 0 && tr_arg_int_(t,1,offset) > 10;
E-13

NightTrace RT User’s Guide
}
static int cond4 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_nargs_(t,offset) == 4;
}
static int cond5 (tr_t t, tr_offset_t offset, void * v)
{
 return tr_id_(t,offset) % 2 == 0;
}

static
void
event_cb (tr_t t, tr_cond_t c, tr_offset_t offset,
 int count, void * context, int * disable)
{
 printf ("event callback function\n");
 print(offset);
}

static
void
state_cb (tr_t t, tr_state_t s, tr_offset_t offset, int count, void * context,
 int * disable)
{
 tr_state_info_t info;
 print (offset);
 printf ("state callback function\n");
 tr_state_info (t, s, &info);
 printf (" active = %d\n", tr_state_active(t,s));
 printf (" start_offset = %d\n", info.start_offset);
 printf (" end_offset = %d\n", info.end_offset);
 printf (" gap = %12.9fs\n", info.gap);
 printf (" duration = %12.9fs\n", info.duration);
}

static
commands
get_cmd (void)
{
 get_line(": ");

 if (strcmp(buffer,"") == 0) {
 return last_cmd;
 } else if (!strcmp(buffer,"list")) {
 return last_cmd=CMD_LIST;
 } else if (!strcmp(buffer,"next")) {
 return last_cmd=CMD_NEXT;
 } else if (!strcmp(buffer,"prev")) {
 return last_cmd=CMD_PREV;
 } else if (!strcmp(buffer,"seek")) {
 return last_cmd=CMD_SEEK;
 } else if (!strcmp(buffer,"search")) {
 return last_cmd=CMD_SEARCH;
 } else if (!strcmp(buffer,"copy_file")) {
 return last_cmd=CMD_COPY_FILE;
 } else if (!strcmp(buffer,"iterate")) {
 return last_cmd=CMD_ITERATE;
 } else if (!strcmp(buffer,"state")) {
E-14

NightTrace Analysis API Examples
 return last_cmd=CMD_STATE;
 } else if (!strcmp(buffer,"condition")) {
 return last_cmd=CMD_CONDITION;
 } else if (!strcmp(buffer,"callback")) {
 return last_cmd=CMD_CALLBACK;
 } else if (!strcmp(buffer,"rewind")) {
 return last_cmd=CMD_REWIND;
 } else if (!strcmp(buffer,"quit")) {
 return last_cmd=CMD_QUIT;
 } else {
 return last_cmd=CMD_UNKNOWN;
 }
}

static
void
do_search (void)
{
 tr_cond_t c;
 tr_dir_t dir;
 tr_offset_t o;

 get_line ("forward or backward (f/b): ");
 if (buffer[0] == 'b') {
 dir = tr_backward;
 } else {
 dir = tr_forward;
 }

 get_line ("enter name of condition to search for: ");
 c = tr_cond_find(t,buffer);
 if (c == TR_NO_COND) {
 printf ("could not locate condition \"%s\"\n", buffer);
 return;
 }
 o = tr_search (t, dir, c);
 if (o == TR_EOF) {
 printf ("Event Not Found\n");
 } else {
 print_event(o);
 }
}

static char * expression;

static
void
prime (void)
{
 tr_cond_t c1, c2, c3, c4, c5;
 char * err;

 c1 = tr_cond_create(t,"_cond1");
 tr_cond_func_and(t,c1,cond5,0);

 c2 = tr_cond_create(t,"_cond2");
 tr_cond_func_and(t,c2,cond4,0);

 c3 = tr_cond_create(t,"_cond3");
E-15

NightTrace RT User’s Guide
 tr_cond_id_range (t, c3, 50, 60);

 c4 = tr_cond_create(t,"_test");
 err = tr_cond_expr_and(t,c4,expression);
 if (err) {
 printf ("%s\n", err);
 }

 c5 = tr_cond_create(t,"_cond5");
 tr_cond_pid_name(t,c5,"foo");

 tr_activate(t);

#if 0
 {
 char * errs;
 int i;

 tr_error_clear(t);
 tr_session_init(t);
 errs = tr_error_check(t,&list);
 if (errs) {
 printf ("tr_session_init() failed:\n");
 }
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
#endif
}

static
void
def_state (void)
{
 tr_state_t s;
 int error;
 int i;
 int low[2], high[2];
 tr_cond_t cond[2];

 for (i=0; i<2; ++i) {
 const char * prompt = (i ? "end: " : "start: ");
 write (1, prompt, strlen(prompt));
 get_line ("enter low bound of id range: ");
 low[i] = atoi(buffer);
 get_line ("enter high bound of id range: ");
 high[i] = atoi(buffer);
 }

 for (i=0; i<2; ++i) {
 const char * prompt = (i ? "end: " : "start: ");
 write (1, prompt, strlen(prompt));
 get_line ("enter condition name or <enter> for none: ");
 if (buffer[0] == '\0') {
 cond[i] = TR_NO_COND;
 } else {
 cond[i] = tr_cond_find(t,buffer);
 if (cond[i] == TR_NO_COND) {
 printf ("no such condition\n");
E-16

NightTrace Analysis API Examples
 return;
 }
 }
 }

 get_line ("enter name of state to be defined: ");

 s = tr_state_create (t, buffer);
 if (s == TR_NO_STATE) {
 printf ("state creation failed\n");
 return;
 }

 error = tr_state_start_id_range(t,s,low[0],high[0]);
 error |= tr_state_end_id_range(t,s,low[1],high[1]);
 if (cond[0] != TR_NO_COND) {
 tr_state_start_cond(t,s,cond[0]);
 }
 if (cond[1] != TR_NO_COND) {
 tr_state_end_cond(t,s,cond[1]);
 }
 if (error) {
 printf ("configuration of state failed\n");
 return;
 }

 tr_activate(t);

 printf ("state \"%s\" has been successfully configured\n", buffer);
}

static
void
def_condition (void)
{
 tr_cond_t c;
 int low, high;
 int cpu;
 int pid;
 int error;
 int and_;
 tr_cond_func_t func;

 get_line ("enter low bound of id range or <enter> for none: ");
 low = atoi(buffer);
 get_line ("enter high bound of id range or <enter> for none: ");
 high = atoi(buffer);
 get_line ("enter cpu bias or <enter> for none: ");
 cpu = atoi(buffer);
 get_line ("enter pid or <enter> for none: ");
 pid = atoi(buffer);
 get_line ("enter name of condition to be defined: ");

 c = tr_cond_create (t, buffer);
 if (c == TR_NO_COND) {
 printf ("condition creation failed\n");
 return;
 }
E-17

NightTrace RT User’s Guide
 error = 0;

 if (low) error |= tr_cond_id_range(t,c,low,high);
 if (cpu) tr_cond_cpu(t,c,cpu);
 if (pid) error |= tr_cond_pid(t,c,pid);

 for (;;) {
 get_line ("enter \"and\", \"or\", or <enter> for function conditions: ");
 if (buffer[0] == '\0') break;
 else if (!strcmp(buffer,"and")) and_ = 1;
 else if (!strcmp(buffer,"or")) and_ = 0;
 else {
 printf ("illegal response\n");
 return;
 }
 get_line ("enter condition callback function or expression: ");
 func = NULL;
 if (!strcmp(buffer,"cond1")) { func = cond1; }
 else if (!strcmp(buffer,"cond2")) { func = cond2; }
 else if (!strcmp(buffer,"cond3")) { func = cond3; }
 else if (!strcmp(buffer,"cond4")) { func = cond4; }
 else if (!strcmp(buffer,"cond5")) { func = cond5; }
 else func = NULL;
 if (func == NULL) {
 char * err;
 if (and_)
 err = tr_cond_expr_and(t,c,buffer);
 else
 err = tr_cond_expr_or(t,c,buffer);
 if (err) {
 printf ("invalid expression:\n%s\n",err);
 error = 1;
 }
 } else {
 if (and_) {
 error |= tr_cond_func_and(t,c,func,0);
 } else {
 error |= tr_cond_func_or(t,c,func,0);
 }
 }
 }

 if (error) {
 printf ("configuration of condition failed\n");
 } else {
 printf ("condition has been successfully configured\n");
 }

 tr_activate(t);
}

static
void
destroy_callback (void)
{
 tr_cb_t id;

 get_line ("enter callback id to cancel: ");
 id = atoi(buffer);
E-18

NightTrace Analysis API Examples
 printf ("cancelling callback with ID %d\n", id);
 tr_cancel_cb (t, id);
}

static
void
def_callback (void)
{
 tr_cond_t c;
 tr_state_t s;
 int is_state;
 int id;
 tr_state_action_t a;

 get_line ("create or destroy a callback? (c/d) [c]: ");
 if (buffer[0] == 'd') {
 destroy_callback();
 return;
 }

 get_line ("state or condition callback? (s/c): [c]: ");
 is_state = buffer[0] == 's';

 if (is_state) {
 get_line ("enter state callback trigger: start, end, active, inactive: ");
 if (!strcmp(buffer,"start")) a = tr_state_start_action;
 else if (!strcmp(buffer,"end")) a = tr_state_end_action;
 else if (!strcmp(buffer,"active")) a = tr_state_active_action;
 else if (!strcmp(buffer,"inactive")) a = tr_state_inactive_action;
 else {
 printf ("illegal response\n");
 return;
 }
 get_line ("enter state name: ");
 s = tr_state_find(t,buffer);
 if (s == TR_NO_STATE) {
 printf ("unable to locate state \"%s\"\n", buffer);
 return;
 }
 id = tr_state_cb (t, s, a, state_cb, 0);
 } else {
 get_line ("enter condition name: ");
 c = tr_cond_find(t,buffer);
 if (c == TR_NO_COND) {
 printf ("unable to locate condition \"%s\"\n", buffer);
 return;
 }
 id = tr_cond_cb (t, c, event_cb, 0);
 }

 if (id == TR_NO_CB) {
 printf ("callback registration failed\n");
 } else {
 printf ("callback for %s \"%s\" was successfully registered as id %d\n",
 (is_state ? "state" : "condition"), buffer, id);
 }
}

int
E-19

NightTrace RT User’s Guide
main (int argc, char * argv[])
{
 int status;
 int i;
 int done = 0;
 int arg = 1;
 int streaming = 0;
 int cmd;
 tr_offset_t o;
 char buffer[100];

 expression = "true";

 for (;;) {
 if (argc < 2) {
 printf ("usage: %s [options] trace_data_file\n", argv[0]);
 printf ("options:\n"
 " -e expr (expr) Create an expression named \"_test\"\n"
 " using \"expr\" as the expression\n"
 "\n"
 "If \"trace_data_file\" is \"-\", then we assume stdin\n"
 "is a stream from a NightTrace daemon\n");
 exit(1);
 }
 if (argv[arg][0] == '-') {
 if (!strcmp(argv[arg],"-e")) {
 --argc;
 expression = argv[++arg];
 } else if (!strcmp(argv[arg],"-")) {
 streaming = 1;
 break;
 } else {
 argc = 0;
 }
 } else {
 break;
 }
 ++arg;
 --argc;
 }

 t = tr_init();

 if (streaming) {
 input = fopen("/dev/tty","r");
 //status = tr_open_stream(t,0,1024*1024*20, TR_STREAM_SAVE);
 status = 1;
 } else {
 input = stdin;
 status = tr_open_file(t,argv[arg]);
 }
 if (status) {
 tr_string_node_t * list;
 int errs;
 printf ("tr_open_*() failed:\n");
 errs = tr_error_check(t,&list);
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 exit(1);
E-20

NightTrace Analysis API Examples
 }

 prime();

 cmd = -1;

 while (!done) {

 switch (cmd) {

 case CMD_LIST:
 for (;;) {
 o = tr_next_event(t);
 if (o == TR_EOF) break;
 print(o);
 }
 break;

 case CMD_NEXT:
 o = tr_next_event(t);
 print(o);
 break;

 case CMD_PREV:
 o = tr_prev_event(t);
 print(o);
 break;

 case CMD_SEEK:
 printf ("Input event offset of interest: ");
 fflush (stdout);
 o = atoi(fgets(&buffer[0],sizeof(buffer),input));
 printf ("seeking to %d\n", o);
 o = tr_seek(t,o);
 print(o);
 break;

 case CMD_SEARCH:
 do_search();
 break;

 case CMD_COPY_FILE:
 {
 tr_cond_t c;
 c = tr_cond_find(t, "copy");
 if (c == TR_NO_COND) {
 printf ("you must first define a condition called \"copy\"\n");
 } else {
 get_line ("Enter output file name: ");
 if (tr_copy_input(t,buffer,c,0666)) {
 printf ("failed to write events\n");
 }
 }
 break;
 }

 case CMD_STATE:
 def_state();
 break;
E-21

NightTrace RT User’s Guide
 case CMD_CONDITION:
 def_condition();
 break;

 case CMD_CALLBACK:
 def_callback();
 break;

 case CMD_ITERATE:
 tr_iterate(t);
 break;

 case CMD_REWIND:
 (void) tr_seek(t,-1);
 break;

 case CMD_QUIT:
 done = 1;
 continue;
 //break;

 default:
 printf ("Commands:\n"
 " list\n"
 " next\n"
 " prev\n"
 " seek\n"
 " search\n"
 " copy_file\n"
 " state\n"
 " condition\n"
 " callback\n"
 " iterate\n"
 " rewind\n"
 " quit\n");
 }

 cmd = get_cmd();

 } while (!done);

 tr_close (t);
 tr_destroy (&t);

 return 0;
}

E-22

NightTrace Analysis API Examples
detect 5

Usage

./detect expression

This program monitors live kernel trace data looking for a user-specified event in the form
of a NightTrace expression. When the event is detected, it writes out a kernel trace data
file which contains the detected event as well as 500 events previous to it. It then termi-
nates.

This program illustrates how to monitor a certain condition in real-time and then save
trace data prior to and including the event when the condition was detected.

This would be useful in order to collect kernel trace data continually until some complex
event occurs - then to save the relevant kernel data for later analysis.

This program may be invoked with the following command:

 ntracekd --stream /tmp/handle | ./detect "process_name==\"ntracekd\""

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition. See “Consumer” on page 9-10 for more information.

In this case, the expression provided instructs the program to look for the first kernel event
associated with the daemon that is collecting the kernel data and sending it to our
./detect program. This example is used simply for demonstration - it is not very inter-
esting in and of itself.

A f t e r e x e c u t i n g h a s s t o p p e d , a k e r n e l t r a c e d a t a f i l e c a l l e d
copy_current_input.data has been written to the current working directory. You
can invoke ntrace on that data file to view the 500 events just prior to the first
ntracekd event:

 ntrace copy_current_input.data

NOTE

There may be fewer than 500 events saved since we may encoun-
ter ntracekd almost immediately.

See “NightTrace Analysis API Examples” on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.
E-23

NightTrace RT User’s Guide
detect.c 5

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ntrace_analysis.h>

// This program detects the first event where the expression is true
// and saves the desired number of events to the output file.

static char* detect_usage =
"Usage: \n"
"\n"
" ntracekd --stream output | ./detect 500 \"NightTrace Expression\" \n"
"\n"
" This will detect the first event where the condition is met \n"
" and copy the last 500 events prior to that event to the output \n"
" file. Tracing will be stopped at that point. \n"
"\n"
" ntracekd --stream output | ./detect --bracket 500 \"NightTrace Expression\"
\n"
"\n"
" This will detect the first event where the condition is met \n"
" and copy the 500 events prior to and after that event to the \n"
" output file. Tracing will be stopped at that point. \n"
"\n"
;

// IMPORTANT: stdin is assumed to be the output of ntracekd (or detect was
// launched from the NightTrace GUI which set stdin to daemon output).

// Callbacks
static void copy_input_range_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

static void copy_current_input_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable);

static int range = 0;

int
main (int argc, char * argv[])
E-24

NightTrace Analysis API Examples
{
 tr_t t;
 tr_cond_t user;
 tr_cond_t start;
 tr_cond_t filter;
 tr_state_t state;
 int copy_range = 0;
 int copy_current = 0;
 char option [1024];
 char range_s [1024];
 char expr [1024];

 if (isatty(0)) {
 printf ("error: expect stdin to be streaming data from ntracekd\n");
 exit(1);
 }

 if (argc == 3) {
 sprintf(option,"%s",argv[1]);
 if (!strcmp(option,"--bracket")) {
 printf(detect_usage);
 exit (1);
 }

 sprintf(expr,"%s",argv[2]);
 sprintf(range_s,"%s",argv[1]);
 range = atoi(range_s);

 copy_current = 1;
 } else if (argc == 4) {

 sprintf(option,"%s",argv[1]);
 if (strcmp(option,"--bracket")) {
 printf(detect_usage);
 exit (1);
 }

 sprintf(expr,"%s",argv[3]);
 sprintf(range_s,"%s",argv[2]);
 range = atoi(range_s);

 if (range <= 0) {
 printf("error: range must be greater than zero\n");
 }
 copy_range = 1;

 } else {
 printf(detect_usage);
 exit (1);
 }

 // Initialize the API
 t = tr_init();

 // Create a condition structure representing the users condition
 user = tr_cond_create(t,"user");
 tr_cond_expr_and(t,user,expr);

E-25

NightTrace RT User’s Guide
 // Create a state which starts when the condition true starts (which
 // will be true for the very first event and stops when the user's
 // condtion is met.
 start = tr_cond_create(t,"start");
 tr_cond_expr_and(t, start, "offset>=0");
 state = tr_state_create(t,"state");
 tr_state_start_cond(t,state,start);
 tr_state_end_cond(t,state,user);

 // Create a condition which is true when the state becomes inactive
 filter = tr_cond_create(t,"filter");
 tr_cond_expr_and(t, filter, "state_status(state)==0");

 // Open the input stream
 tr_open_stream(t, 0, 1024*1024*5, 0);

 if (copy_range){

 tr_cond_cb(t,filter,copy_input_range_cb,0);
 tr_iterate(t);

 } else if (copy_current){

 tr_cond_cb(t,filter,copy_current_input_cb,0);
 tr_iterate(t);

 }

 tr_close(t);

}

static
void
copy_input_range_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;
 int errs;
 tr_string_node_t * list;
 int start = offset - range;
 int end = offset + range;

 if (start <= 0) start = 0;
 if (end <= 0) end = 1;
 if (start == end) end++;

 tr_copy_input_range(t,"copy_input_range.data",0666,start,end);
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
E-26

NightTrace Analysis API Examples
 *disable = 1;
}

static
void
copy_current_input_cb
 (tr_t t,
 tr_state_t state,
 tr_offset_t offset,
 int occurrence,
 void * context,
 int * disable)
{
 int i;
 int errs;
 tr_string_node_t * list;
 int start = offset - range;
 int end = offset;

 if (start <= 0) start = 0;
 if (end <= 0) end = 1;
 if (start == end) end++;

 tr_copy_input_range(t,"copy_current_input.data",0666,start, end);
 errs = tr_error_check(t,&list);
 if (errs) {
 for (i=0; i<errs; ++i)
 printf (" %s (%s)\n", list[i].value, strerror(list[i].item));
 }
 tr_halt(t);
}

E-27

NightTrace RT User’s Guide
E-28

F
Appendix FNightTrace Application Illumination Examples

E
D
E

This appendix provides several examples using the NightTrace Application Illumination.

Most of these examples build on knowledge and experience obtained from the previous
example, so it is best to visit them in order.

These examples utilize Application Illumination’s command-line interface. The graphical
user interface provides all of these capabilities as well a Wizard which guides you
through the steps of illuminating an entire program. We recommend reading this appendix
first to become comfortable with the concepts before using the graphical interface. Alter-
natively, just skip this appendix and go directly to the graphical interface and start with the
Wizard. To do this, simply invoke the command nlight without any arguments. A
tutorial for the graphical interface is available from the NightStar Tutorial manual
which can be accessed from the Help menu of nlight (or any other NightStar tool).

Before you begin the examples, think of an illuminator as an opaque object that automati-
cally instruments object code to issue NightTrace events on entry and exit from functions.
For the most part, you don’t really need to be concerned with what is actually inside an
illuminator, just remember that it is associated with some sort of object code and you link
parts of an illuminator into your application.

Illuminating Some Object Files 6

Often you may have a program which links with some objects files, and you’d like to sim-
ply instrument a few of those with NightTrace events.

All you need to do is to create an illuminator using the compiled object files as input and
build it -- the object files are not modified at all. Then you can link your application that
uses those object files and simply include the illuminator. When linked, your application
will execute exactly the same way it did before, because the illuminator will initially be in
a disabled state. There is zero runtime overhead for including an illuminator in your appli-
cation in the disabled state.

Subsequently, when you need to see trace data for code in those object files, you activate
the illuminator and run your program while capturing trace data.

This example uses three simple C source files which are included at the end of this chap-
ter: math.c, work.c, and main.c.

For purposes of this example, assume that at each step, you start in a base directory which
contains two directories, objects and progs, and that you build your application from
the progs directory which uses object files from the objects directory.

To get the most benefit from this example, follow along by executing the steps described
below.
F-1

NightTrace RT User’s Guide
- Setup a test area for this example and copy the files into the subdirectories
as shown below.

mkdir /tmp/example1
cd /tmp/example1
mkdir objects
mkdir progs
Copy math.c and work.c into objects
Copy main.c into progs

- For this example, assume that the following commands are the usual way
in which your object files and program are built.

cd objects
cc -g -c math.c work.c

NOTE:

It is important to compile with the -g option, which instructs the
compiler to generate debug information for use by debuggers and
other tools (like NightTrace Application Illumination!). By
default, Application Illumination only operates on functions with
debug information. This topic is dicussed in more detail in “Illu-
minating An API -- Libraries Without Source or Debug Info” on
page F-9.

cd ../progs
cc -g main.c ../objects/*.o -lm

- Create an illuminator for the object files in the objects directory.

cd ../objects
nlight --create=obj.ai *.o

What just happened? A new directory called obj.ai was created in the objects
directory. The object files that you put on the command line were not modified in
any way, but they are now registered as being associated with the obj.ai illumina-
tor. When the illuminator is built, it will read those object files.

- Build the illuminator.

nlight --build=obj.ai

- Now link your program as usual, but, add some linker options so that the
illuminator is included as well.

cd ../progs
cc -g main.c ../objects/*.o -lm \
 $(nlight --gcc ../objects/obj.ai main)
F-2

NightTrace Application Illumination Examples
NOTE:

If you copy and paste the last command from above into a shell, it
may not execute properly. Try copying and pasting the characters
up until the \ and newline and then copy and past the rest of the
characters on the second line before pressing <enter>.

The command above includes an invocation of nlight that supplies the required
linker options so that the illuminator is included in your program.

Note the specification of the predefined main illuminator in the command above. It
was included because the program did not previously use the NightTrace Logging
API. If your program already uses the NightTrace Logging API (and includes a call
to trace_begin()), you should not include the predefined main illuminator.

Now the program a.out has the capability to generate trace events, but, as it stands
now, the illuminators are inert and have no effect on the program.

- Activate the illuminators so that when you next run your program, you can
generate and capture trace data.

nlight --illuminate=a.out ../objects/obj.ai=3 main

Again, the predefined main illuminator was activated as well as the illuminator you
built for your object files, because the program did not already use the NightTrace
Logging API.

Additionally, notice the =3 notation that was applied to the obj.ai illuminator in
the command above. This set the illumination level to three (by default there are
three levels: 1-3, which generate increasing levels of event detail). The default illu-
mination level is two.

- Now we’re ready to capture trace data. There are a variety of ways to cap-
ture the data, but for simplicity in instruction, we’ll use the command line
tool ntraceud.

ntraceud trace_file
./a.out
ntraceud --quit trace_file

The commands above started a user daemon in the background, executed the illumi-
nated program, and then stopped the user daemon. Alternatively, you might want to
capture trace data for a short period while your application is already running.

./a.out --forever &
ntraceud --join trace_file
sleep 5
ntraceud --quit-now trace_file

Notice the --join and --quit-now options used above. These are required if
you are going to start a daemon for a program which is already running and when
you want the daemon to stop before the program terminates.

Why did the commands above specify trace_file as the name of the trace data
file to ntraceud? That’s because that is the default trace data file name used by
F-3

NightTrace RT User’s Guide
the predefined main illuminator. You can change that file name when you activate
the main illuminator, or, if your program already used the NightTrace Logging API,
you would have specified the filename that your program passed to the
trace_begin() call instead.

- Regardless of the ntraceud method you chose, you can now see a chro-
nological listing of the function calls and returns associated with the object
files you illuminated in the third step (see above), by invoking ntrace.

ntrace --listing a.out

Notice that we simply requested a listing and provided the name of the illuminated
executable to ntrace. ntrace examines the executable and knows how to find
the required information from the illuminator in the objects directory. Alterna-
tively, you could have specified the trace data file and the meta-information
included in the illuminator by hand.

ntrace --listing trace_file \
 ../objects/obj.ai/obj.ai.map \
 ../objects/obj.ai/obj.ai_3.fmt

In addition to the former method being more convenient, specifying the path to the
illuminated program file also allows ntrace to translate PC values (for callers of
illuminated functions) to routine names with source file and line number details.

The following shows partial output from the ntrace commands above -- your results
will differ in terms of addresses, PC values, times, and white space expansion:

...
2: cpu=?? ENTER_work pid=a.out thr=main time=0.500641565s
 calling work(how_much_pie=6.28318)
 caller=0x804872b [main() at main.c:19]
 frame=0xbffda258

3: cpu=?? ENTER_calc pid=a.out thr=main time=0.500660731s
 calling calc(angle=6.28318)
 caller=0x80487c8 [work() at work.c:27]
 frame=0xbffda218

4: cpu=?? RETURN_calc pid=a.out thr=main time=0.500661643s
 returning from calc()=-5.30718e-06
 errno=3
...

This is the last portion of this example, but you might want to execute ntrace without
the --listing option to see how the graphical interface presents the same data to you.

In the next example, we’ll apply the experience from this example to illuminate a library.
F-4

NightTrace Application Illumination Examples
Illuminating A Library 6

In this example, we’ll illuminate a library used by our application instead of object files.
The library can be an archive of object files or a shared library (e.g. libcode.so.1).

The concepts and commands involved are actually almost identical to illuminating object
files. The following steps assume you’re familiar with the example above, “Illuminating
Some Object Files” on page F-1, and as such, the steps below have curtailed descriptions.

This example uses the same three simple C source files from the previous example, which
are included at the end of this chapter: math.c, work.c, and main.c.

- Setup a test area for this example and copy the files from the previous
example directory into the subdirectories as shown below.

mkdir /tmp/example2
cd /tmp/example2
mkdir libraries
cp /tmp/example1/objects/*.c libraries
mkdir progs
cp /tmp/example1/progs/*.c progs

- For this example, assume that the following commands are the usual way
in which your object files and program are built.

cd libraries
cc -g -c math.c work.c
ar crv libmylib.a *.o

cd ../progs
cc -g main.c -L../libraries -lmylib -lm

- Create an illuminator for the library in the libraries directory and build
it.

cd ../libraries
nlight --create=lib.ai libmylib.a
nlight --build=lib.ai

- Now link your program as usual, but, add some linker options so that the
illuminator is included as well.

cd ../progs
cc -g main.c -L../libraries -lmylib -lm \
 $(nlight --gcc ../libraries/lib.ai main)

- Activate the illuminators so that when you next run the program, you can
generate and capture trace data.

nlight --illuminate=a.out ../libraries/lib.ai=3 main

At this point you’re ready to run your program and generate and capture trace events.

See the last portion of the first example, “Illuminating Some Object Files” on page F-1, if
you need to see instructions on how to do that.
F-5

NightTrace RT User’s Guide
In the next example, we’ll illuminate an entire program.

Illuminating An Entire Program 6

In this example, we’ll illuminate an entire application instead of just a few object files or a
library.

The concepts and commands involved are similar to the previous examples in this chapter.
The following steps assume you’re familiar with the example above, “Illuminating Some
Object Files” on page F-1, and as such, the steps below have curtailed descriptions.

It may be more convenient to illuminate an entire program than just some pieces, espe-
cially if you don’t know specifically what you’re looking for.

However, if the program is large, you may not be able to illuminate the entire thing with-
out customizing the illuminator to ignore some unimportant functions (each function is
assigned a NightTrace identifier which must be unique, and there are a limited number of
these values (~32678)). The next example, “Illuminating A C++ Class -- Excluding Some
Functions” on page F-7, deals with customizing an illuminator. For the remainder of this
example, we’ll just operate on the entire program.

This example differs slightly from the previous examples in that we create a new and sep-
arate program file when we illuminate an entire program. The reasoning for that will
become clear in the description of the steps below.

This example uses the same three simple C source files from the previous examples,
which are included at the end of this chapter: math.c, work.c, and main.c.

- Setup a test area for this example and copy the files from the previous
example directory into the subdirectories as shown below.

mkdir /tmp/example3
cd /tmp/example3
cp /tmp/example1/objects/*.c .
cp /tmp/example1/progs/*.c .

- For this example, assume that the following command is the usual way in
which your program is built. Build the program.

cc -g *.c -lm

- Create an illuminator for the program and build it.

nlight --create=prog.ai a.out
nlight --build=prog.ai

- Now link a new copy of your program using the same command you use
for the original program, but, add some linker options so that the illumina-
tor is included as well and a -o option to specify a different program file
name.

cc -g -o a.outAI *.c -lm \
 $(nlight --gcc prog.ai main)
F-6

NightTrace Application Illumination Examples
Why did we create a separate program file, called a.outAI? Because the illumina-
tor prog.ai requires a.out as its input file (and will need that program to exist if it
needs to be rebuilt or if a.out changes in the future).

It is important to keep the original program file and the illuminated program file
separate so that we don’t try to illuminate an illuminated program file subsequently!

- Activate the illuminators so that when you next run the new program, you
can capture trace data.

nlight --illuminate=a.outAI prog.ai=3 main

At this point you’re ready to run your new program file and generate and capture trace
events.

See the last portion of the first example, “Illuminating Some Object Files” on page F-1, if
you need to see instructions on how to do that, but remember that the new program file is
called a.outAI, not a.out.

In the next example, we’ll illuminate functions associated with a C++ class.

Illuminating A C++ Class -- Excluding Some Functions 6

Assume that we are only interested in illuminating the code associated with a C++ class.

We could either create an illuminator specifically for the object files which comprise the
class or we could illuminate the entire program and customize the illuminator so that it
only includes functions related to the C++ class.

The latter method may be more effective because it will include out-of-line instances of
inlined class member functions. It also may be simpler to illuminate the program than to
try to track down all the object files related to a class’s implementation.

The following steps assume you’re familiar with the example above, “Illuminating An
Entire Program” on page F-6, and as such, the steps below have curtailed descriptions.

Assume that your program a.out contains lots of code and includes usage of a C++ class
called Classy. This example uses two of the source files from our previous example and
additional one, all found at the end of this appendix: math.c, work.c, and classy.c.

- Setup a test area for this example and copy some of the files from the previ-
ous example directory into the directory as shown below and copy the
classy.c from the back of this chapter into the directory as well.

mkdir /tmp/example4
cd /tmp/example4
cp /tmp/example1/objects/*.c .
Copy classy.c into this directory

- For this example, assume that the following command is the usual way in
which your program is built. Build the program.

g++ -g *.c -lm
F-7

NightTrace RT User’s Guide
- Create an illuminator for your program, but add the following options as
shown here.

nlight --create=prog.ai \
 --xregex=’.*’ --iregex=’.*Classy.*’ a.out

The first option, --xregex=’.*’, instructed nlight to exclude all functions
from illumination, effectively giving us a clean regular expression base from which
to add back specific functions.

The second option, --iregex=’.*Classy.*’, instructed nlight to include
all functions that have the word Classy in their name. Since all C++ functions
associated with a class will include the demangled class name in them, this effec-
tively identifies the code associated with your class. Alternatively, you could have
specified ‘.*Classy::.*’, which would further restrict functions to being
actual members of the class (otherwise an unrelated function named AClassy-
Function would also match).

- Build the illuminator.

nlight --build=prog.ai

- Link a new program file with the illuminator, activate the illuminator, and
execute the program capturing NightTrace data.

g++ -o a.outAI -g *.c -lm \
 $(nlight --gcc prog.ai main)
nlight --illuminate=a.outAI prog.ai=3 main
ntraceud trace_file
./a.outAI
ntraceud --quit trace_file

- Invoke ntrace and request a summary of all instances of the function
Classy::crunch.

ntrace --summary=fs:Classy::crunch trace_file \
 prog.ai/*.map

Example output from the command in the last step is shown below; your time values will
differ and the white space has been compressed for inclusion here.

Summary: Classy::crunch Function entry/return states
State Summary Results
=====================
Number of states found: 2
Maximum state duration: 0.000027885 at offset: 9
Minimum state duration: 0.000015472 at offset: 11
Average state duration: 0.000021678
Total of state durations: 0.000043357

Number of state gaps found: 2
==========================
Maximum state gap: 0.000000296 at offset: 11
Minimum state gap: 0.000000296 at offset: 11
Average state gap: 0.000000148
Total of state gaps: 0.000000296
F-8

NightTrace Application Illumination Examples
In the next example, we’ll examine a nifty method for illuminating third-party libraries.

Illuminating An API -- Libraries Without Source or Debug Info6

By default, Application Illumination works on the debug information found in object files
when they were compiled with the -g option. If you have a third party library without
debug information and no source code from which to rebuild it, your illumination options
are limited.

You could illuminate the library and instruct nlight to illuminate functions without
debug information (via the --do_nodebug option), but no argument information will be
logged and returns from functions cannot be traced.

An alternative is to illuminate the functions associated with the Application Programming
Interface of the library (if one exists).

Typically, such libraries will ship with C/C++ header files which declare the function pro-
totypes of all API functions. The trick is to copy the header file into a dummy source file
and turn all function prototypes into dummy function bodies.

The following steps assume you’re familiar with the example above, “Illuminating Some
Object Files” on page F-1, and as such, the steps below have curtailed descriptions. It also
assumes you have built a library as shown in “Illuminating A Library” on page F-5.

Consider the api.h file found at the end of this chapter. We’ll use the main.c source file
from previous examples and the library we built in the second example (“Illuminating A
Library” on page F-5).

- Setup a test area for this example and copy files as shown.

mkdir /tmp/example5
cd /tmp/example5
cp /tmp/example2/libraries/libmylib.a .
cp /tmp/example2/progs/main.c .
Copy api.h into this directory

- Strip the library of all debug symbols.

strip -g libmylib.a
ls

api.h libmylib.a main.c

We have no simulated a third-party library without debug information or source files
to rebuild it, but with a header file which defines the API.

- Create a dummy source file which provides dummy functions for each
function in the header file.

cat api.h | sed “s/)[]*;/){}/” > dummy.c

Obviously that command isn’t sufficient for header files in general, but for our pur-
poses, it shows how you can fairly easily copy a function prototype and add two
braces to create a dummy function body.
F-9

NightTrace RT User’s Guide
- Now compile the dummy source file and illuminate the resultant object.

cc -g -c dummy.c
nlight --create=api.ai dummy.o
nlight --build=api.ai

- Now build your program as usual, but add the illuminator we created.

cc -g main.c -L. -lmylib -lm \
 $(nlight --gcc api.ai main)
nlight --illuminate=a.out api.ai=3 main

- Run the program and generate a listing of entry and exit to all API func-
tions declared in the header file.

ntraceud trace_file
./a.out
ntraceud --quit trace_file
ntrace --listing a.out

The following is an excerpt from such a listing, which includes the API entry and exit
points from the library libmylib.a, even no there was no debug information in the
library.

...
4: cpu=?? ENTER_work pid=a.out thr=main time=0.004399090s
 calling work(how_much_pie=6.28318)
 caller=0x804872b [main() at main.c:19]
 frame=0xbfa834f8

5: cpu=?? ENTER_calc pid=a.out thr=main time=0.004418028s
 calling calc(angle=6.28318)
 caller=0x8048784 [work+52()]
 frame=0xbfa834b8

6: cpu=?? RETURN_calc pid=a.out thr=main time=0.004427885s
 returning from calc()=-5.30718e-06
 errno=2

7: cpu=?? ENTER_calc pid=a.out thr=main time=0.004428331s
 calling calc(angle=6.26573)
 caller=0x8048784 [work+52()]
 frame=0xbfa834b8

8: cpu=?? RETURN_calc pid=a.out thr=main time=0.004428825s
 returning from calc()=-0.0174577
 errno=2
...

In the next example, we’ll customize an illuminator to log additional information.
F-10

NightTrace Application Illumination Examples
Customizing an Illuminator -- Logging Extra Information 6

This example assumes you are familiar with the concepts of Application Illumination and
you have tried or read the previous examples in this chapter.

Customization options include filtering functions for illumination, adjusting the default
amount of data logged for aggregate arguments and pointers to such arguments, changing
the behavior of illumination levels, or requested that specific global variables be logged
with function return events.

This example will do the latter; we’ll request that the global variable state be logged on
all returns from the function, calc().

This example uses the three simple C source files which were used in Example 1 (“Illumi-
nating Some Object Files” on page F-1) and assumes you are familiar with the setup and
procedures described in the example.

- Setup a test area for this example and copy the files into the subdirectories
as shown below.

mkdir /tmp/example6
cd /tmp/example6
mkdir objects
mkdir progs
cp /tmp/example1/objects/*.c objects
cp /tmp/example1/progs/*.c progs

- For this example, assume that the following commands are the usual way
in which your object files and program are built.

cd objects
cc -g -c math.c work.c

cd ../progs
cc -g main.c ../objects/*.o -lm

- Create an illuminator for the object files in the objects directory.

cd ../objects
nlight --create=obj.ai *.o

- Populate the illuminator with function information from its associated
object files so that it is easier to customize.

nlight --populate=obj.ai

At this point the illuminator’s configuration file (obj.ai/config.xml) file has
an entry for every function that can be illuminated.

- Edit the obj.ai/config.xml file and add the following XML element
immediately before the first line which starts with <function.

<group name=”mygroup”>
<variable name=”state” />
<level name=”3” aggregate_limit=”24” />
</group>
F-11

NightTrace RT User’s Guide
The group element is a basic means of customizing selected functions, as opposed
to making changes that apply globally to the illuminator.

The variable sub-element indicates that the named global variable (state in
this case), will be logged with all function return events for functions that are mem-
bers of the group my_group.

The level sub-element specifies that when level 3 is active, functions which
belong to this group will log up to 24 bytes of data for aggregates (instead of the
default limit of 16 bytes).

9. Edit the obj.ai/config.xml file, locate the function element for
calc, and make that function a member of group my_group.

<function name=”calc”>
 <group name=”mygroup” />
</function>

The element for function calc should look like the above now. Be sure that its first
line does not end in />, but rather just >.

The function element for calc already existed because we populated the illumina-
tor in step 1. It is not strictly necessary to populate the illuminator; you could create
the function element manually instead.

- Now build the illuminator, link the application with the illuminator and
activate it.

nlight --build=obj.ai
cd ../progs
cc -g main.c ../objects/*.o -lm \
 $(nlight --gcc ../objects/obj.ai main)
nlight --illuminate=a.out ../objects/obj.ai=3 main

- Now execute the application while capturing the trace data and then create
a listing of the traced data.

ntraceud trace_file
./a.out
ntraceud --quit trace_file
ntrace --listing a.out

The following is an example of a portion of such output, showing the event logged during
a return from function calc:

...
6: cpu=?? RETURN_calc pid=a.out thr=main time=0.002270483s
 returning from calc()=-5.30718e-06
 state={
 counter=1,
 last_angle=6.28318,
 last_sine=-5.30718e-06}
 errno=2
...

The graphical interface to nlight (invoke nlight without any arguments), provides a
more convenient way to customize illuminators.
F-12

NightTrace Application Illumination Examples
This concludes the example on customizing an illuminator.

Tutorial Files 6

main.c 6

int main(int argc, char * argv[])
{
 int forever = 0;
 if (argc > 1 && strcmp(argv[1],"--forever")==0) {
 forever = 1;
 }
 extern double work(double);

 do {
 work(2*3.14159);
 usleep(100000);
 } while (forever);

 return 0;
}

math.c 6

#include <math.h>

typedef struct {
 int counter;
 double last_angle;
 double last_sine;
} state_t;

state_t state;

double calc (double angle)
{
 state.counter++;
 state.last_angle = angle;
 state.last_sine = sin(angle);
 return state.last_sine;
}

F-13

NightTrace RT User’s Guide
work.c 6

#include <stdlib.h>
#include <math.h>

extern double calc(double);

double work (double how_much_pie)
{
 double * results = (double*)
 malloc(sizeof(double)*100000);
 double * result = results;
 double ret;

 while (how_much_pie > 0.0) {
 *result++ = calc(how_much_pie);
 how_much_pie -= M_PI/180.0;
 }
 ret = results[0] + results[7];

 free(results);
 return ret;
}

classy.c 6

#include <stdio.h>
#include <math.h>

class Classy {
public:
 Classy (double angle);
 void crunch();
 bool operator > (Classy &);
private:
 double angle;
 double value;
};

Classy::Classy(double angle) : angle(angle), value(0.0) {}

void Classy::crunch() {
 extern double work(double);
 value = work(angle);
}

bool Classy::operator > (Classy & right) {
 return value > right.value;
}

int main ()
F-14

NightTrace Application Illumination Examples
{
 Classy raspberry(M_PI/4.0+0.2);
 Classy pumpkin(M_PI/4.0);

 pumpkin.crunch();
 raspberry.crunch();

 printf ("raspberry > pumpkin ? %s\n", raspberry > pumpkin
? "yes" : "no");
}

api.h 6

extern double calc(double angle);
extern double work (double how_much_pie);
F-15

NightTrace RT User’s Guide
F-16

G
Appendix GAnswers to Common Questions

E
F
F

What can I do if trace events are not logging at all?

Verify that the trace event file name on the trace_begin() call matches the one on the
user daemon invocation. Furthermore, check that the file exists and that you have
permission to read and write it. Check the return codes from the API calls. See
“trace_begin, Trace.begin” on page 2-8 for more information.

When should I log a different trace event ID number?

Each endpoint of a state should have a different trace event ID number. Usually each
trace event logging routine logs a different trace event ID number. This lets you eas-
ily identify which source line logged the trace event, how often that source line exe-
cuted, and what order source lines executed in. However, it is sometimes useful to
log the same trace event ID in multiple places. This makes it possible to group trace
events from related, but not identical, activities. For more information, see
“trace_event, Trace.event and their variants” on page 2-14.

How can I prevent user trace events from being discarded or lost?

Use expansive mode; avoid use of buffer or file wrapping options. Flush the shared
memory buffer more often by tuning:

• The shared memory buffer sizes

• The number of shared memory buffers

• Increase the priority of the user trace daemon

• Bind the user trace daemon to a CPU with minimal activity

See “Preventing Trace Event Loss” on page 6-1 and Chapter 3 for more information.

What can I do if trace events are not appearing in an ntrace display?

Press Refresh, fill out the Search Form, fill in values in the interval control area, use
the interval scroll bar, keep pressing the Zoom Out icon until you see trace events,
examine a display object configuration so you know what it is “listening” for, add or
reconfigure display objects on the grid.

How can I prevent kernel trace events from being lost?

• Verify that the raw kernel trace output file (if not streaming) is on a
local file system and not an NFS file system.

• Increase the size and number of the kernel trace buffers

• Increase the priority of the kernel trace daemon
G-1

NightTrace RT User’s Guide
• Bind the kernel trace daemon to a CPU with minimal activity

See “Preventing Trace Event Loss” on page 6-1 and Chapter 3 for more information.

Why can’t I see my individual thread names?

In order to distinguish between threads, you must link with the thread-aware version
of the NightTrace Logging API. You can name your threads with meaningful sym-
bolic names by using the trace_set_thread_name routine. See “Threads and
Logging” on page 2-34 for more information.
G-2

H
Appendix HGlossary

This glossary defines terms used in the documentation. Terms in italics are defined here.

Ada task

An Ada task is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

argument

See trace event argument.

boolean table

A pre-defined string table which associates 0 with false and all other values with
true.

buffer-wraparound mode

The mode that causes the ntraceud daemon to treat the shared memory buffer as a
circular queue and to overwrite the oldest trace events with the newest ones; this
means that ntraceud intentionally discards the oldest trace events to make room
for the newest ones. Invoke ntraceud with the -bufferwrap option to obtain
this behavior. The two other ntraceud modes are expansive mode and file-wrap-
around mode.

button

See mouse button, push button, and radio button.

click

To press and release a mouse button without moving the pointer. Usually you do
this in NightTrace to select menu items, push buttons, or radio buttons.

Close

A push button that closes a dialog box. This can also be a menu item that makes a
window close.

Column

A display object that constrains the width of State Graphs, Event Graphs, Data
Graphs, and Rulers.
Glossary-1

NightTrace RT User’s Guide
configuration

The definition of a display object or profile.

configuration file

An NightTrace-generated ASCII file that holds display pages, and profile defini-
tions. This can also be a hand-edited table file, containing definition of string tables
and/or format tables.

context switch

An action that occurs inside the kernel. Its functions are to save the state of the
process that is currently executing, to initialize the state of the process to be run, and
to begin execution of the new process.

context switch line

A vertical line superimposed on an exception graph or a syscall graph on a kernel
display page. It indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

control

See mouse button, push button and radio button.

CPU box

A Grid Label on a kernel display page. It identifies which logical central processing
unit the displayed data corresponds to. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

current instance of a state

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

current time

The time in the interval up to which all display objects on a display page have been
updated.

current time line

The dashed vertical bar that represents the current time in a Column.

current trace event

The last trace event on or before the current time line.
Glossary-2

Glossary
cursor

See text cursor.

daemon definition

The configuration of a particular trace daemon which includes daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats,
as well as which trace event types are handled by that daemon.

Data Box

A display object that displays possibly variable textual or numeric information.

Data Graph

A scrollable display object that graphically displays a bar chart of an expression’s
value as it changes over the interval.

Default Kernel Page

A menu item that automatically creates a display page to depict context switches,
interrupts, exceptions, and system calls with display objects for each CPU on the
system.

Default Page

A menu item that automatically creates a display page with a State Graph for each
trace event logging process in your trace event file(s).

device table

A pre-defined, dynamically generated string table in the vectors file created by
ntrace when consuming raw kernel trace data files. string table contains the
names of the devices that are currently configured in the kernel.

dialog box

A transient secondary window that accepts input or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionally called a
pop-up window.

dimmed

See disabled.

disabled

To flag a component, such as a menu item or push button, as temporarily unavail-
able by graying out the label.
Glossary-3

NightTrace RT User’s Guide
discarded trace event

A trace event that ntraceud intentionally did not log in buffer-wraparound or
file-wraparound mode.

display object

A user-configured graphical component of a display page that shows trace events,
states, trace event arguments, other numeric and text data. Display objects include
the following: Grid Labels, Data Boxes, Columns, State Graphs, Event Graphs,
Data Graphs and Rulers.

display page

The NightTrace window that allows you to layout display objects and see trace event
and state information in them. You can store display pages in configuration files.

dotted area

See grid.

drag

To press and hold down a mouse button while moving the mouse. Usually you do
this in NightTrace to position a display object.

duration

The period of time between the start and end trace events of some state.

Edit mode

The display-page mode that allows you to create, edit, and configure display
objects. The other display-page mode is View mode.

ellipses (...)

An indicator at the end of a menu item that tells you this selection makes a dialog
box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
is allowed.

end function

A state function that provides information about the ending trace event of the last
completed instance of a state. The state to which the end function applies is either
the state specified to the function, or the state being currently defined. Thus, if a
qualfied state is not specified, end functions are only meaningful when used in
expressions associated within a state definition.

event

See trace event.
Glossary-4

Glossary
event_arg_dbl_summary table

A pre-defined format table which contains formats for statistical displays of trace
event matches and type double arguments.

event_arg_summary table

A pre-defined format table which contains formats for statistical displays of trace
event matches and type long arguments.

Event Graph

A scrollable display object that graphically displays trace events as vertical lines in
a Column.

event ID

See trace event ID.

event map file

User-generated ASCII file that lets you associate or map short mnemonic names
with numeric trace event IDs.

event table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
maps all known numeric trace event IDs with symbolic trace event names.

exception

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

exception graph

A State Graph on a kernel display page. It displays states representing exceptions
executing on the associated CPU.

expansive mode

The (default) mode that causes the ntraceud daemon to copy all trace events that
ever reach the shared memory buffer to the indefinitely-sized trace event file.
Invoke ntraceud without the -filewrap and -bufferwrap options to obtain
this behavior. The two other ntraceud modes are buffer-wraparound mode and
file-wraparound mode.

expression

A combination of operators and operands that evaluate to a value. Operands include
constants, function calls, and profile referneces.
Glossary-5

NightTrace RT User’s Guide
Exit

A menu item that terminates an NightTrace session.

file-wraparound mode

The mode that causes the ntraceud daemon to overwrite the oldest trace events in
the beginning of the trace event file with the newest ones; this means that
ntraceud intentionally discards the oldest trace events to make room for the
newest ones. Invoke ntraceud with the -filewrap option to obtain this
behavior. The two other ntraceud modes are expansive mode and buffer-wrap-
around mode.

flushing the buffer

The process of the ntraceud daemon copying trace events from the shared
memory buffer to a trace event file.

font

A style of text characters.

format function

A function that allows you to display a string.

format table

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tables into configuration files.
The related structure is a string table.

function

A pre-defined NightTrace entity that may be used in an expression. NightTrace pro-
vides several classes of functions: trace event, multi-event, start, end, multi-state,
offset, summary, format, and table functions.

gap

The period of time between two trace events, possibly the end of one state and the
beginning of another.

global process identifier

See PID.

Global Window

The NightTrace window that displays summary statistics pertaining to your trace
event files and allows you to open NightTrace-related files.
Glossary-6

Glossary
graphical user interface

The mechanism NightTrace uses to receive input and provide displays. It is based on
the X Window System and Motif.

grid

The region of the display page filled with parallel rows and columns of dots that
holds display objects.

Grid Label

A display object that displays constant textual information.

GUI

See graphical user interface.

Help

A menu item that presents the online manual using the HyperHelp viewer.

host system

The system on which the NightTrace GUI is running.

icon

The small graphical image and/or text label that represents a window or window
family when the window is minimized. The text label is either the window title or
an abbreviated form of the title. Iconified windows are still active.

ID

See trace event ID.

instrumented code

Source code after you have put calls to NightTrace library routines into it.

interrupt

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of a lower-IPL interrupt.

interrupt graph

A Data Graph on a kernel display page. It displays states representing interrupts
executing on the associated CPU.
Glossary-7

NightTrace RT User’s Guide
interrupt priority level (IPL) register

A system register than can be used by the NightTrace library to prevent rescheduling
and interrupts during trace event logging.

interval

A time period in the trace session delimited by the Start Time and End Time
fields of the interval control area.

interval control area

The region of the display page that holds nine numeric fields that define and
manipulate the interval and the display objects on the grid.

interval timer

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTrace uses to timestamp trace events.

Kernel Trace Event File

A trace event file is generated by a kernel trace daemon. This file contains raw ker-
nel data and is automatically transformed into a filtered file (with a new filename
using the “.ntf” suffix) by ntrace. Either a raw kernel trace event file or a fil-
tered file may be specified to ntrace. The filtering process also creates a vectors
file which is formed by appending a “.vec” suffix to the original trace event file
name.

keyboard

A traditional input device for entering text into fields. In this manual, this is a
standard 101-key North American keyboard.

last completed instance of a state

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

last exception box

A Data Box on a kernel display page. It displays the last exception prior to the
current time line that executed (and may still be executing) on the associated CPU.

last interrupt box

A Data Box on a kernel display page. It displays the name of the last interrupt prior
to the current time line that executed (and may still be executing) on the associated
CPU.
Glossary-8

Glossary
last syscall box

A Data Box on a kernel display page. It displays the last syscall prior to the current
time line that executed (and may still be executing) on the associated CPU.

lost trace event

A trace event ntraceud was unable to log. Several ntraceud options exist to
prevent this trace event loss.

mark

The solid triangle on a Ruler that points to a particular time.

match

A trace event or state that meets user-defined qualifying configuration criteria.

menu

A list of user-selectable choices.

menu bar

The horizontal band near the top of a window that contains a list of labeled
pull-down menus.

message display area

The scrolling region of the Global Window or the display page that holds textual
statistics, as well as error and warning messages.

most recent instance of a state

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it is the last completed instance of a state.

mouse

In this manual, a three-button pointing device for point-and-click interfaces.

mouse button

A part of the mouse that you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for moving display objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You may click, drag, press, and release
mouse buttons.
Glossary-9

NightTrace RT User’s Guide
multi-event function

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, before the current time line.

multi-state function

Multi-state functions return information about instances of states, or relationships
between instances of states, before the current time line.

name_pid table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's process ID table.

name_tid table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's thread ID table.

New Page

A menu item that creates an empty display page.

NightTrace

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of the ntraceud daemon, NightTrace library routines, and
the ntrace display utility. This product allows you to log trace events and data
from applications written in C, Ada, or Fortran; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel through the ntrace display utility.

NightTrace thread

A NightTrace thread is either a process, an Ada task or a POSIX thread (or a set of
any combination of these). The name of a thread is either a numeric value represent-
ing a threads internal identifier (usually its gettid(2) value), or a symbolic name
assigned by various parties. For Ada tasks, the Ada runtime automatically names
each thread (task) using its Ada-assigned name, when using the -trace or
-ntrace link options. NightTrace defaults the name of the main thread of a pro-
c e s s t o “ m a i n ” . T h e u se r c an s e t t h e n am e o f a t h r ea d u s i n g
trace_set_thread_name. See “Threads and Logging” on page 2-34 for more
information.

NightTrace thread identifier

See TID.

NightView

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
Glossary-10

Glossary
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

node

A system from which a trace event file can come from.

node box

If the RCIM synchronized tick clock is used to timestamp events, this is a Grid
Label on a kernel display page. It identifies which node to which the displayed data
corresponds.

node ID

A unique identifier internally assigned by NightTrace to every node that has an trace
event file in a trace file analysis.

node name

The name of a system from which a trace event file can come.

node_name table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with node names.

node PID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names for a particular node. The
name of each node's table is pid_nodename where nodename is the node's name. If
kernel tracing, this table is stored in the vectors file.

node TID table

A pre-defined, dynamically generated string table. It is internal to NightTrace. If
user tracing, it associates NightTrace thread ID numbers with thread names for a
particular node. If kernel tracing, this table is not used. The name of each node's
table is tid_nodename where nodename is the node's name.

NT_ASSOC_PID

An overhead trace event that ntraceud logs at the beginning and end of each
process.

NT_ASSOC_TID

An overhead trace event that ntraceud logs at the beginning and end of each
thread and Ada task.
Glossary-11

NightTrace RT User’s Guide
NT_CONTINUE

An overhead trace event that ntraceud logs for multi-argument trace events.

ntrace display utility

The part of NightTrace that graphically displays trace events, trace event data, and
states for debugging and performance analysis.

ntraceud

The NightTrace daemon process that allows you to log user-defined trace events and
data from user applications written in C, Ada, or Fortran. These applications may be
composed of one or more processes, running on one or more CPUs.

object

See display object.

offset

The number that identifies the position of a trace event in the chronologi-
cally-ordered sequence of trace events, regardless of the trace event ID. Counting
starts from zero. For example, if a trace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

offset function

A function that takes an expression that evaluates to an offset as a parameter.

OK

A push button that acknowledges the warning in a dialog box.

Open

A menu item and push button that opens an existing file.

ordinal trace event number

See offset.

panel

A window component that groups related buttons, for example push buttons.

PID

A 32-bit integer that represents an operating system process, which is normally the
value returned by getpid(2) for single-threaded applications, and gettid(2) for
multi-threaded application in kernel data.
Glossary-12

Glossary
PID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernel tracing, the pid
string table in the vectors file.

point

To move the mouse so the mouse pointer is positioned at the place of interest.

pointer

A graphical symbol that represents the mouse pointer’s current location in the
window. The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper left.

pop-up window

See dialog box.

press

To hold down a mouse button without releasing it or to depress a keyboard key.

profile

The "logical and" of several criteria such as event codes, processes, and threads.
conditions used to identify an event or a state.

profile reference

The name of a profile.

pull-down menu

A set of critera defining conditions for an event or state; e.g event IDs, argument
values, CPU, process, thread.

push button

A graphic image of a labeled button. Click on a push button to select it.

radio button

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio buttons. Click on a radio button to select it.

RCIM

The Real-Time Clock and Interrupt Module is a multi-function PCI mezzanine card
(PMC) designed for time-critical applications that require rapid response to external
Glossary-13

NightTrace RT User’s Guide
events, synchronized clocks, and/or synchronized interrupts. The RCIM provides
synchronized clocks (tick timer and posix format clock), edge-triggered interrupts,
real-time clocks, and programmable interrupts.

RCIM synchronized tick clock

The primary clock on an RCIM. It is a 64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides a time base that is consistent for all connected sin-
gle board computers.

Read

A menu item and push button that read an existing file.

record

See trace event.

region

The period of time between the mark and the current time.

release

To let go of the currently-pressed mouse button.

Reset

A push button that cancels (undoes) all unapplied changes.

Restore

A push button that cancels all changes since the dialog box was displayed.

Ruler

A scrollable display object that appears as a hash-marked timeline within a Column.
The Ruler may also contain reverse video “L”s indicating lost trace events and
user-defined marks.

running process box

A Data Box that shows the process that is executing at the current time line on the
associated CPU. If the RCIM module is used to timestamp events, this Data Box
will show the process that is executing at the current time line on both the associated
CPU and node.

Save

A menu item and push button that overwrite an existing configuration file with the
current display page.
Glossary-14

Glossary
Save As

A menu item that saves the current display page in a new configuration file.

Save Text

A menu item that overwrites an existing summary text file with text from the
summary display area.

Save Text As

A menu item that saves the current summary text from the summary display area
into a new summary text file.

SBC

Single-board computer.

scroll bar

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in the window. It consists of a trough, a slider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

Search Form

The NightTrace form that allows you to define criteria to be used to locate a trace
event in a trace event file by its configured characteristics and its location in the file.

selection

The display object that you clicked on. Alternatively, a selection may be the region
of a text field you dragged the mouse over. For menu items, push buttons, and radio
buttons NightTrace indicates selection by highlighting your choice. For display
objects, NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

separator

A line that groups related window components or menu components.

session

A session consists of daemon definitions, display page configurations, string tables,
profiles, named tags, previously-executed searches, and previously-executed sum-
maries. A session also includes references to saved trace data segment files, kernel
trace files, and user trace files. A session can be saved to a session configuration file
and reloaded in subsequent invocations of NightTrace.

shared memory buffer

The intermediate destination of trace events before ntraceud copies them to the
trace event file on disk.
Glossary-15

NightTrace RT User’s Guide
slider

The graphic part of a scroll bar that you move in the trough to change the display.
This component is sometimes called a thumb.

spin lock

A device used to protect a resource, for example, the shared memory buffer.

start function

A state function that provides information about the start event of the most recent
instance of a state. The state to which the start function applies is either the state
specified to the function, or the state being currently defined. Thus, if a state is not
specified, start functions are only meaningful when used in expressions associated
within a state definition. In addition, start functions should not be used in a recur-
sive manner in a Start Expression; a start function should not be specified in a
Start Expression that applies to the state definition containing that Start
Expression. Conversely, an End Expression may include start functions that
apply to the state definition containing that End Expression.

state

A state is a region of time bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start event and end
event, including the start and end events themselves. Additional conditions may be
specified in a state definition to further constrain the state. Instances of states do not
nest; that is, once a state becomes active, events that might normally satisfy the con-
ditions for the start event are ignored until the end event is encountered.

state function

The class of NightTrace functions which provide information about states, includ-
ing: start functions, end functions, and multi-state functions.

State Graph

A scrollable display object that graphically displays states as bars and trace events
as vertical lines in a Column.

streaming

The method used by the NightTrace of sending trace data from daemons directly to
the NightTrace display.

string table

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tables into configuration files. The related structure is a format
table.
Glossary-16

Glossary
Summarize Form

The NightTrace form that allows you to obtain trace event and state statistics, such
as minimum, maximum, average, and total values of gaps, durations, and trace
event arguments.

summary display area

The scrolling region of the Summarize Form that holds textual summary
statistics.

summary function

A funct ion that takes another express ion as a parameter (except for
summary_matches()).

summary syscall

A system call that is a special type of exception. A syscall is made when a user
program forces a trap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

syscall

System call.

syscall graph

A State Graph on a kernel display page. It displays states representing system calls
(syscalls) executing on the associated CPU.

syscall table

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the names of all the possible system calls (syscalls) that can occur on
the system.

table

See format table and string table.

table function

A function that allows you to extract information from user-defined and pre-defined
string tables and format tables.

tag

A uniquely-numbered indicator on a Ruler that represents an individual point of
interest in the trace data (either a particular time or event) and which can be identi-
fied by a name.
Glossary-17

NightTrace RT User’s Guide
task

See Ada task.

task ID

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada task within an Ada program.

text cursor

The blinking vertical bar in an editable text field that shows your current edit
position within the field.

thread

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every process linked with the Threads Library contains at least
one, and possibly many, threads. Threads within a process share the address space of
the process.

thread ID

A 16-bit integer chosen by the threads library that uniquely identifies a thread
within a given process.

TID

A 32-bit integer that represents an internal NightTrace context to which trace events
can be associated.

TID table

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates NightTrace thread identifiers (TIDs) with thread names. This table is not
used in kernel tracing.

timestamp

The time at which a specific trace event was logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembled.

time quantum

The fixed period of time for which the kernel allocates the CPU to a process.

trace event

A user-defined point of interest in an application’s source code that NightTrace
represents with an integer trace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event ID, NightTrace records the
Glossary-18

Glossary
timestamp when the trace event occurred, any arguments logged with the trace
event, and the logging process identifier (PID).

trace event argument

A user-defined numeric value logged by an application via a trace event.

trace event file

An ntraceud-created binary file that contains sequences of trace events and data
that your application and the ntraceud daemon logged.

trace event function

The class of NightTrace functions that provide information about trace events. They
operate on either the profile specified to that function or, if unspecified, the current
trace event. Trace event functions include multi-event functions.

trace event ID

An integer that identifies a trace event. User trace event IDs are in the range
0-4095, inclusive. Kernel trace event IDs are in the range 4100-4300, inclusive.

trace point

A place of interest in the source code. In user tracing, at each trace point in your
application you call a trace event logging routine to log a trace event, possibly with
additional data describing part of your program’s state at that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

trough

The graphic part of a scroll bar that holds the slider.

vector table

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the interrupt and exception vector names associated with the system
on which the kernel tracing was performed.

View mode

The display page mode that allows you to see, search for, and summarize trace event
information in the message display area, the summary display area, and display
objects on the grid.

widget

A window component, for example a scroll bar or push button.
Glossary-19

NightTrace RT User’s Guide
window

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.

window manager

The program that controls window placement, size, and operations.

wraparound mode

The mode that causes the ntraceud daemon to intentionally discard old events.
There are two forms of wraparound mode: buffer-wraparound and file-wraparound.
The other ntraceud mode is expansive mode.
Glossary-20

Index
Symbols

/usr/bin/ntracekd 4-1
/usr/bin/ntraceud 3-1
/usr/include/ntrace.h 2-1
/usr/lib/libntrace.a 2-31
/usr/lib/libntrace_thr.a 2-31
/usr/lib/NightTrace/illuminators 5-10
“wrapper” routines 5-1
‹!-- comment --› 5-14
‹config› 5-14
‹declare› 5-15
‹defaults› 5-16
‹exclude› 5-16
‹function› 5-17
‹group› 5-18
‹level› 5-18
‹options› 5-21
‹variable› 5-22
‹wrapper_file_scope› 5-23
‹wrapper_post› 5-23
‹wrapper_pre› 5-24
‹wrapper_real› 5-24
‹wrapper› 5-23

A

a.link 5-11
a.out 5-14
Ada language

compiling and linking 2-32
Ada task identifier 16-8, 16-46, 16-88, 16-125, 16-166,

18-82
addr 5-19
addr_args 5-19, 5-20
addr_ret 5-19, 5-20
aggregate_limi 5-20
aggregate_limit 5-19, 5-22
Application Illumination 5-1
arg function 16-4, 16-21
arg_dbl function 16-22, 16-23
arg_long_dbl function 16-24

arg_long_long function 16-25, 16-67
arg1 function 7-22, 16-5, 16-190
arg2 function 16-9
args 5-19, 5-20
avg function 16-179

B

blk_arg function 16-26
blk_arg_bits function 16-27
blk_arg_char function 16-28
blk_arg_dbl function 16-29
blk_arg_flt function 16-30
blk_arg_long function 16-31
blk_arg_long_bits function 16-32
blk_arg_long_dbl function 16-33
blk_arg_long_long function 16-34
blk_arg_long_ubits function 16-35
blk_arg_short function 16-36
blk_arg_string function 16-37
blk_arg_ubits function 16-38
blk_arg_uchar function 16-39
blk_arg_uint function 16-40
blk_arg_ulong_long function 16-41
blk_arg_ushort function 16-42
boolean table 7-18
Box

interrupt 17-12
syscall 17-13

Box exception 17-12
BUFFER_LENGTH 5-13
Buffer-wraparound mode 2-23

C

C language
compiling and linking 2-32
source considerations 2-1

caller 5-19, 5-20
ccur_rt 5-2, 5-12
character entities 5-15
Index-1

NightTrace RT User’s Guide
clock_synchronize(1M) command 2-9
Comments

event-map file 7-11
Configuration parameters

Then-Expression 16-188
Conserving disk space 6-3
Constant string literals 7-22, 16-11, 16-186
Constant times 16-3
Context switch

lines 17-11, 17-12, 17-13
Context-sensitive help 8-22
cpu function 16-48
Current time line 17-10, 17-12, 17-13

D

Data Box 16-188, 17-12, 17-13, 17-14
Data Graph 17-12
detail leve 5-13
detail level 5-7
Detail Levels 5-2
device table 7-19, 17-4, 17-16
device_nodename table 7-20, 17-17
Disabling

library routines 2-18, 2-29
trace events 2-19
tracing 2-18, 2-29

Discarding trace events 2-23, E-1
Display object

Data Box 16-188, 17-12, 17-13, 17-14
Data Graph 17-12
Event Graph 17-14
State Graph 17-13, 17-14

Display object configuration parameters
Then-Expression 16-188

Display page area
interval scroll bar E-2

Duration
state 16-135

E

Enabling
trace events 2-19

End functions 16-97
end_arg function 16-100
end_arg_dbl function 16-101, 16-102
end_arg_long_dbl function 16-103
end_arg_long_long function 16-104
end_blk_arg function 16-105

end_blk_arg_bits function 16-106
end_blk_arg_char function 16-107
end_blk_arg_dbl function 16-108
end_blk_arg_flt function 16-109
end_blk_arg_long function 16-110
end_blk_arg_long_bits function 16-111
end_blk_arg_long_dbl function 16-112
end_blk_arg_long_long function 16-113
end_blk_arg_long_ubits function 16-114
end_blk_arg_short function 16-115
end_blk_arg_string function 16-116
end_blk_arg_ubits function 16-117
end_blk_arg_uchar function 16-118
end_blk_arg_uint function 16-119
end_blk_arg_ulong_long function 16-120
end_blk_arg_ushort function 16-121
end_cpu function 16-127
end_id function 16-99
end_node_id function 16-130
end_node_name function 16-133
end_num_args function 16-122
end_offset function 16-128
end_pid function 16-123
end_pid_table_name function 16-131
end_task_id function 16-125
end_thread_id function 16-124
end_tid function 16-126
end_tid_table_name function 16-132
end_time function 16-129
Environment variable

NSLM_SERVER A-2
errno 5-19, 5-20, 18-139, 18-140
Event

gap 16-58
matches 16-59
qualified 16-191

Event Graph 17-14
Event ID. see Trace event

ID
event table 7-17
Event. see Trace event
event_gap function 16-58
event_ids 5-21
event_matches function 16-59
Event-map file 2-15, 7-2, 7-11
Exception 17-3, 17-12, 17-15, 17-17

graph 17-12
resumption 17-12
suspension 17-12

Exception box 17-12
exclude 5-19, 5-20
execve(2) service 2-8
Expressions

constant string literals 7-22, 16-11, 16-186
Index-2

Index
functions 16-4
operands 16-1
operators 16-1

F

File
/usr/bin/ntracekd 4-1
/usr/bin/ntraceud 3-1
/usr/include/ntrace.h 2-1
/usr/lib/libntrace.a 2-31
/usr/lib/libntrace_thr.a 2-31
event-map 2-15, 7-2, 7-11
trace event 2-6, 3-1, 7-10
vectors 7-17, 17-2, 17-15, 17-16, 17-17

File system
NFS E-2

filename 5-22
Fixed licenses A-1
Floating licenses A-1
Flushing shared memory buffer 2-22
fork(2) service 2-8
Format

functions 16-184
format function 16-190
Format table 7-20, 16-188

get_format function 16-188
Fortran language

compiling and linking 2-32
frame 5-19, 5-20
Functions 16-4

arg 16-4, 16-21
arg_dbl 16-22, 16-23
arg_long_dbl 16-24
arg_long_long 16-25, 16-67
arg1 7-22, 16-5, 16-190
arg2 16-9
avg 16-179
blk_arg 16-26
blk_arg_bits 16-27
blk_arg_char 16-28
blk_arg_dbl 16-29
blk_arg_flt 16-30
blk_arg_long 16-31
blk_arg_long_bits 16-32
blk_arg_long_dbl 16-33
blk_arg_long_long 16-34
blk_arg_long_ubits 16-35
blk_arg_short 16-36
blk_arg_string 16-37
blk_arg_ubits 16-38
blk_arg_uchar 16-39

blk_arg_uint 16-40
blk_arg_ulong_long 16-41
blk_arg_ushort 16-42
cpu 16-48
end 16-97
end_arg 16-100
end_arg_dbl 16-101, 16-102
end_arg_long_dbl 16-103
end_arg_long_long 16-104
end_blk_arg 16-105
end_blk_arg_bits 16-106
end_blk_arg_char 16-107
end_blk_arg_dbl 16-108
end_blk_arg_flt 16-109
end_blk_arg_long 16-110
end_blk_arg_long_bits 16-111
end_blk_arg_long_dbl 16-112
end_blk_arg_long_long 16-113
end_blk_arg_long_ubits 16-114
end_blk_arg_short 16-115
end_blk_arg_string 16-116
end_blk_arg_ubits 16-117
end_blk_arg_uchar 16-118
end_blk_arg_uint 16-119
end_blk_arg_ulong_long 16-120
end_blk_arg_ushort 16-121
end_cpu 16-127
end_id 16-99
end_node_id 16-130
end_node_name 16-133
end_num_args 16-122
end_offset 16-128
end_pid 16-123
end_pid_table_name 16-131
end_task_id 16-125
end_thread_id 16-124
end_tid 16-126
end_tid_table_name 16-132
end_time 16-129
event_gap 16-58
event_matches 16-59
format 16-184
format 16-190
get_format 16-188
get_item 16-186
get_string 7-22, 16-184
id 16-20, 16-188, 16-190
max 16-178
max_offset 16-182
min 16-177
min_offset 16-181
multi-event 16-58
multi-state 16-134
node_id 16-51
Index-3

NightTrace RT User’s Guide
node_name 16-54
num_args 16-43
offset 16-138
offset 7-22, 16-49
offset_arg 16-141
offset_arg_dbl 16-142, 16-143
offset_arg_long_dbl 16-144
offset_arg_long_long 16-145
offset_blk_arg 16-146
offset_blk_arg_bits 16-147
offset_blk_arg_char 16-148
offset_blk_arg_dbl 16-149
offset_blk_arg_flt 16-150
offset_blk_arg_long 16-151
offset_blk_arg_long_bits 16-152
offset_blk_arg_long_dbl 16-153
offset_blk_arg_long_long 16-154
offset_blk_arg_long_ubits 16-155
offset_blk_arg_short 16-156
offset_blk_arg_string 16-157
offset_blk_arg_ubits 16-158
offset_blk_arg_uchar 16-159
offset_blk_arg_uint 16-160
offset_blk_arg_ulong_long 16-161
offset_blk_arg_ushort 16-162
offset_cpu 16-168
offset_id 16-140, 16-181, 16-182
offset_node_id 16-170
offset_node_name 16-173
offset_num_args 16-163
offset_pid 16-164
offset_pid_table_name 16-171
offset_process_name 16-174
offset_task_id 16-166
offset_task_name 16-175
offset_thread_id 16-165
offset_thread_name 16-176
offset_tid 16-167
offset_tid_table_name 16-172
offset_time 16-169
pid 16-44, 16-188
pid_table_name 16-52
process_name 16-55
start 16-60
start_arg 16-63
start_arg_dbl 16-64, 16-65
start_arg_long_dbl 16-66
start_blk_arg 16-68
start_blk_arg_bits 16-69
start_blk_arg_char 16-70
start_blk_arg_dbl 16-71
start_blk_arg_flt 16-72
start_blk_arg_long 16-73
start_blk_arg_long_bits 16-74

start_blk_arg_long_dbl 16-75
start_blk_arg_long_long 16-76
start_blk_arg_long_ubits 16-77
start_blk_arg_short 16-78
start_blk_arg_string 16-79
start_blk_arg_ubits 16-80
start_blk_arg_uchar 16-81
start_blk_arg_uint 16-82
start_blk_arg_ulong_long 16-83
start_blk_arg_ushort 16-84
start_cpu 16-90
start_id 16-5, 16-62
start_node_id 16-93
start_node_name 16-96
start_num_args 16-85
start_offset 16-91
start_pid 16-86
start_pid_table_name 16-94
start_task_id 16-88
start_thread_id 16-87
start_tid 16-89
start_tid_table_name 16-95
start_time 16-92
state_dur 16-135
state_gap 16-5, 16-134
state_matches 16-136
state_status 16-137
string 16-16
sum 16-180
summary 16-177
summary_matches 16-183
table 16-184
task_id 16-46
task_name 16-56
thread_id 16-45
thread_name 16-57
tid 16-47
tid_table_name 16-53
time 16-50
trace event 16-18

G

Gap
event 16-58
state 16-134

get_format function 16-188
get_item function 16-186
get_string function 7-22, 16-184
glibc 5-2, 5-12
Global process identifier 16-7, 16-44
Graph
Index-4

Index
data 17-12
event 17-14
exception 17-12
interrupt 17-12
state 17-13, 17-14
syscall 17-13

H

Hardclock interrupts 17-12
Help

On Context 8-22

I

id function 16-20, 16-188, 16-190
illuminate 5-12
illuminator 5-1, 5-4

--ada 5-11
--aggregate_limit 5-4
--build 5-7
--cf77 5-11
--config 5-4
--create 5-4
--do_nodebug 5-5
--dont_nodebug 5-5
--event_ids 5-5
--g77 5-11
--gcc 5-11
--i 5-5
--install 5-5
--iregex 5-6
--istd 5-7
--iunderscores 5-6
--populate 5-7
--report 5-9
--x 5-5
--xregex 5-6
--xstd 5-7
--xunderscores 5-6

illuminator.h 5-8
illuminator.map 5-8
illuminator.o 5-9
illuminator_level.fmt 5-9
illuminators 5-10
Inter-process communication 2-4
Interrupt 17-2, 17-12, 17-15, 17-17

graph 17-12
hardclock 17-12

Interrupt box 17-12

Interval
scroll bar E-2

iregex 5-22
IRQ_ENTRY trace event 17-2
IRQ_EXIT trace event 17-3

K

Kernel tracing 7-17, 7-18, 17-1

L

Language
Ada 2-32
C 2-1, 2-32
Fortran 2-32

level, detail 5-13
libntrace.a 2-31
libntrace_tjr.a 2-31
Library routines 2-1

overloading in Ada 2-3
return values 2-2
trace_begin 2-17, 2-21, 2-25, 3-1, E-1
trace_close_thread 2-24
trace_disable 2-18
trace_disable_all 2-18, 2-29
trace_disable_range 2-18
trace_enable 2-18
trace_enable_all 2-18
trace_enable_range 2-18
trace_end 2-9, 2-22, 2-25, 3-2
trace_event 2-12
trace_flush 2-22, 3-2
trace_open_thread 2-11, 2-24
trace_trigger 2-22, 3-2

licences 1-1
License A-1

firewall configurations A-4, A-5, A-7, A-8
fixed A-1
floating A-4
installation A-1
keys A-1
modes A-1
nslm_admin A-1, A-3
report A-3
requests A-2
server A-3, A-4, A-5
support A-10

License manager 1-1
lluminator_level.list 5-9
Index-5

NightTrace RT User’s Guide
lluminator_level.o 5-9
-lntrace 5-10
-lntrace_thr 5-10
Loading

trace event 7-5
Logging

trace event 6-4, E-1
Loss

trace event 2-17, E-1

M

Macros 16-191
main 5-2, 5-12
Map file. see Event-map file
Matches

event 16-59
state 16-136
summary 16-183

max function 16-178
max_offset function 16-182
Maximum value 16-178, 16-182
Menu option

On Context 8-22
On Help 8-22, 8-23

min function 16-177
min_offset function 16-181
Minimum value 16-177, 16-181
Mode

buffer-wraparound 2-23
Multi-event functions 16-58
Multi-state functions 16-134

N

name_pid table 7-18, 17-16
name_tid table 7-18
next_event.txt 5-8
NFS file system E-2
NightStar Licence Manager 1-1
NightTrace thread identifier 16-8, 16-47, 16-89, 16-126,

16-167, 18-79
NLSM 1-1
Node identifer 16-51
Node identifier

ending trace event 16-130
offset 16-170
starting trace event 16-93

Node name 16-54
ending trace event 16-133

ordinal trace event 16-173
starting trace event 16-96

node_id function 16-51
node_name function 16-54
node_name table 7-19, 17-16
nodebug 5-22
nslm_admin A-1, A-3
NSLM_SERVER A-2
ntrace 1-4

format tables 7-20
functions 16-4
operands 16-1
operators 16-1
performance considerations 7-5
string tables 7-15

ntrace functions 16-4
ntrace option

--end (load events before constraint) 7-4
--listing (list trace events) 7-12
--start (load events after constraint) 7-4

ntrace qualified states 16-62, 16-63, 16-64, 16-65,
16-66, 16-67, 16-68, 16-69, 16-70, 16-71,
16-72, 16-73, 16-74, 16-75, 16-76, 16-77,
16-78, 16-79, 16-80, 16-81, 16-82, 16-83,
16-84, 16-85, 16-86, 16-87, 16-88, 16-89,
16-90, 16-91, 16-92, 16-93, 16-94, 16-95,
16-96, 16-97, 16-99, 16-100, 16-101, 16-102,
16-103, 16-104, 16-105, 16-106, 16-107,
16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-123, 16-124, 16-125, 16-126, 16-127,
16-128, 16-129, 16-130, 16-131, 16-132,
16-133, 16-134, 16-135, 16-136, 16-137

ntrace.h 2-1
ntracekd

daemon 4-1
ntraceud

daemon 3-1
invoking 3-6

ntraceud mode
buffer-wraparound 2-23

num_args function 16-43
NUM_BUFFERS 5-13

O

Offset 7-4, 16-4, 16-9, 16-10, 16-138, 16-140, 16-141,
16-142, 16-143, 16-144, 16-145, 16-146,
16-147, 16-148, 16-149, 16-150, 16-151,
16-152, 16-153, 16-154, 16-155, 16-156,
16-157, 16-158, 16-159, 16-160, 16-161,
Index-6

Index
16-162, 16-163, 16-164, 16-165, 16-166,
16-167, 16-168, 16-169, 16-170, 16-171,
16-172, 16-173, 16-174, 16-175, 16-176

offset function 7-22, 16-49
Offset functions 16-138
offset_arg function 16-141
offset_arg_dbl function 16-142, 16-143
offset_arg_long_dbl function 16-144
offset_arg_long_long function 16-145
offset_blk_arg function 16-146
offset_blk_arg_bits function 16-147
offset_blk_arg_char function 16-148
offset_blk_arg_dbl function 16-149
offset_blk_arg_flt function 16-150
offset_blk_arg_long function 16-151
offset_blk_arg_long_bits function 16-152
offset_blk_arg_long_dbl function 16-153
offset_blk_arg_long_long function 16-154
offset_blk_arg_long_ubits function 16-155
offset_blk_arg_short function 16-156
offset_blk_arg_string function 16-157
offset_blk_arg_ubits function 16-158
offset_blk_arg_uchar function 16-159
offset_blk_arg_uint function 16-160
offset_blk_arg_ulong_long function 16-161
offset_blk_arg_ushort function 16-162
offset_cpu function 16-168
offset_id function 16-140, 16-181, 16-182
offset_node_id function 16-170
offset_node_name function 16-173
offset_num_args function 16-163
offset_pid function 16-164
offset_pid_table_name function 16-171
offset_process_name function 16-174
offset_task_id function 16-166
offset_task_name function 16-175
offset_thread_id function 16-165
offset_thread_name function 16-176
offset_tid function 16-167
offset_tid_table_name function 16-172
offset_time function 16-169
On Context menu option 8-22
On Help menu option 8-22, 8-23
Operands

constants 16-2
functions 16-4
qualified states 16-62, 16-63, 16-64, 16-65, 16-66,

16-67, 16-68, 16-69, 16-70, 16-71, 16-72,
16-73, 16-74, 16-75, 16-76, 16-77, 16-78,
16-79, 16-80, 16-81, 16-82, 16-83, 16-84,
16-85, 16-86, 16-87, 16-88, 16-89, 16-90,
16-91, 16-92, 16-93, 16-94, 16-95, 16-96,
16-97, 16-99, 16-100, 16-101, 16-102,
16-103, 16-104, 16-105, 16-106, 16-107,

16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-123, 16-124, 16-125, 16-126, 16-127,
16-128, 16-129, 16-130, 16-131, 16-132,
16-133, 16-134, 16-135, 16-136, 16-137

Operands in expressions 16-1
Operators in expressions 16-1

P

Performance considerations
ntrace 7-5

PID 16-7, 16-44
pid function 16-44, 16-188
pid table 7-17, 17-17
PID table name 16-52
pid_nodename table 7-19, 17-16
pid_table_name function 16-52
Pre-defined tables 7-17, 17-4, 17-15
printf(3) routine 7-13, 7-21
printf(3S) routine 16-190
Process identifier

ending trace event 16-131
offset 16-171
starting trace event 16-94

Process identifier table name 16-52
Process name 16-55

ordinal trace event 16-174
process_name function 16-55
pthread 5-2, 5-12
Push button

Zoom Out E-2

Q

Qualified events 16-191
Qualified states 16-62, 16-63, 16-64, 16-65, 16-66,

16-67, 16-68, 16-69, 16-70, 16-71, 16-72,
16-73, 16-74, 16-75, 16-76, 16-77, 16-78,
16-79, 16-80, 16-81, 16-82, 16-83, 16-84,
16-85, 16-86, 16-87, 16-88, 16-89, 16-90,
16-91, 16-92, 16-93, 16-94, 16-95, 16-96,
16-97, 16-99, 16-100, 16-101, 16-102, 16-103,
16-104, 16-105, 16-106, 16-107, 16-108,
16-109, 16-110, 16-111, 16-112, 16-113,
16-114, 16-115, 16-116, 16-117, 16-118,
16-119, 16-120, 16-121, 16-122, 16-123,
16-124, 16-125, 16-126, 16-127, 16-128,
16-129, 16-130, 16-131, 16-132, 16-133,
Index-7

NightTrace RT User’s Guide
16-134, 16-135, 16-136, 16-137

R

Record. see Trace event
Return values 2-2
return_val 5-19, 5-20

S

SCHED_CHANGE trace event 17-2
Scroll bar E-2
Shared memory

failure to attach 2-9
flushing 2-22

SOFT_IRQ_ENTRY trace event 17-3
SOFT_IRQ_EXIT trace event 17-3
Start functions 16-60
start_arg function 16-63
start_arg_dbl function 16-64, 16-65
start_arg_long_dbl function 16-66
start_blk_arg function 16-68
start_blk_arg_bits function 16-69
start_blk_arg_char function 16-70
start_blk_arg_dbl function 16-71
start_blk_arg_flt function 16-72
start_blk_arg_long function 16-73
start_blk_arg_long_bits function 16-74
start_blk_arg_long_dbl function 16-75
start_blk_arg_long_long function 16-76
start_blk_arg_long_ubits function 16-77
start_blk_arg_short function 16-78
start_blk_arg_string function 16-79
start_blk_arg_ubits function 16-80
start_blk_arg_uchar function 16-81
start_blk_arg_uint function 16-82
start_blk_arg_ulong_long function 16-83
start_blk_arg_ushort function 16-84
start_cpu function 16-90
start_id function 16-5, 16-62
start_node_id function 16-93
start_node_name function 16-96
start_num_args function 16-85
start_offset function 16-91
start_pid function 16-86
start_pid_table_name function 16-94
start_task_id function 16-88
start_thread_id function 16-87
start_tid function 16-89
start_tid_table_name function 16-95

start_time function 16-92
State 2-16, 17-12

duration 16-135
gap 16-134
matches 16-136

State Graph 17-13, 17-14
state_dur function 16-135
state_gap function 16-5, 16-134
state_matches function 16-136
state_status function 16-137
Statistics

multi-event 16-58
multi-state 16-134
summary 16-177

std 5-22
strcmp function 16-16
String functions

strcmp 16-16
strncmp 16-17

String table 7-15, 16-184, 16-186
boolean 7-18
device 7-19, 17-4, 17-16
device_nodename 7-20, 17-17
event 7-17
get_item function 16-186
get_string function 7-22, 16-184
name_pid 7-18, 17-16
name_tid 7-18
node_name 7-19, 17-16
pid 7-17, 17-17
pid_nodename 7-19, 17-16
syscall 7-19, 17-4, 17-15
syscall_nodename 7-19, 17-16
tid 7-18
tid_nodename 7-19
vector 7-19, 17-2, 17-3, 17-15
vector_nodename 7-19, 17-16

strncmp function 16-17
sum function 16-180
Summary

matches 16-183
Summary functions 16-177
summary_matches function 16-183
Syscall 17-4, 17-13, 17-15

graph 17-13
suspension 17-13

Syscall box 17-13
syscall table 7-19, 17-4, 17-15
SYSCALL_EXIT trace event 17-4
syscall_nodename table 7-19, 17-16
SYSCALL_RESUME trace event 17-5
SYSCALL_SUSPEND trace event 17-5
System call 17-4, 17-13, 17-15
Index-8

Index
T

Table
boolean 7-18
device 7-19, 17-4, 17-16
device_nodename 7-20, 17-17
event 7-17
format 7-20, 16-188
functions 16-184
name_pid 7-18, 17-16
name_tid 7-18
node_name 7-19, 17-16
pid 7-17, 17-17
pid_nodename 7-19, 17-16
pre-defined 7-17, 17-4, 17-15
string 7-15, 16-184, 16-186
syscall 7-19, 17-4, 17-15
syscall_nodename 7-19, 17-16
tid 7-18
tid_nodename 7-19
vector 7-19, 17-2, 17-3, 17-15
vector_nodename 7-19, 17-16

Task name 16-56
ordinal trace event 16-175

task_id function 16-46
task_name function 16-56
Then-Expression configuration parameter 16-188
Thread event

ordinal 16-172
Thread identifier

ending trace event 16-132
offset 16-172
starting trace event 16-95

Thread identifier table name 16-53
Thread name 16-57

ordinal trace event 16-176
Thread names 7-2, 7-18
thread_id function 16-45
thread_name function 16-57
TID 16-8, 16-47, 16-89, 16-126, 16-167, 18-79
tid function 16-47
tid table 7-18
TID table name 16-53
tid_nodename table 7-19
tid_table_name function 16-53
time function 16-50
Times

constant 16-3
Timestamp 7-2, 16-50, 16-92, 16-129, 16-169
tr_activate() 18-134
tr_append_table() 18-144
tr_arg_dbl() 18-39, 18-46
tr_arg_dbl_() 18-39, 18-46

tr_arg_int() 18-37
tr_arg_int_() 18-38, 18-45
tr_arg_long() 18-40, 18-47
tr_arg_long_() 18-41, 18-48
tr_arg_long_dbl() 18-42, 18-49
tr_arg_long_dbl_() 18-42, 18-49
tr_arg_long_long() 18-43, 18-50
tr_arg_long_long_() 18-44, 18-51
tr_arg_t 18-2
tr_argtype 18-51
tr_argtype_ 18-52
tr_blk_arg() 18-52
tr_blk_arg_() 18-53
tr_blk_arg_bits() 18-54
tr_blk_arg_bits_() 18-55
tr_blk_arg_char() 18-56, 18-74
tr_blk_arg_char_() 18-56
tr_blk_arg_dbl() 18-57
tr_blk_arg_dbl_() 18-58
tr_blk_arg_flt() 18-59
tr_blk_arg_flt_() 18-59
tr_blk_arg_long() 18-60
tr_blk_arg_long_() 18-61
tr_blk_arg_long_bits) 18-62
tr_blk_arg_long_bits_() 18-63
tr_blk_arg_long_dbl() 18-64
tr_blk_arg_long_dbl_() 18-64
tr_blk_arg_long_long() 18-65
tr_blk_arg_long_long_() 18-66
tr_blk_arg_long_ubits() 18-67
tr_blk_arg_long_ubits_() 18-68
tr_blk_arg_short() 18-69
tr_blk_arg_string() 18-70
tr_blk_arg_string_() 18-71
tr_blk_arg_ubits() 18-72
tr_blk_arg_ubits_() 18-73
tr_blk_arg_uchar_() 18-75
tr_blk_arg_ushort() 18-76
tr_blk_arg_ushort_() 18-69, 18-76
tr_cancel_cb() 18-147
tr_cb_t 18-3
tr_close() 18-20
tr_cond_and() 18-116
tr_cond_cb() 18-148
tr_cond_cb_func_t 18-3
tr_cond_copy() 18-117
tr_cond_cpu() 18-97
tr_cond_cpu_clear() 18-98
tr_cond_create() 18-92
tr_cond_expr_and() 18-112
tr_cond_expr_or() 18-113
tr_cond_find() 18-93
tr_cond_func_and() 18-109
tr_cond_func_clear() 18-111
Index-9

NightTrace RT User’s Guide
tr_cond_func_or() 18-107
tr_cond_func_t 18-4
tr_cond_id() 18-94
tr_cond_id_clear() 18-96
tr_cond_id_range() 18-95
tr_cond_name() 18-118
tr_cond_node() 18-105
tr_cond_node_clear() 18-106
tr_cond_not() 18-114
tr_cond_offset() 18-122
tr_cond_or() 18-115
tr_cond_pid() 18-99
tr_cond_pid_clear() 18-101
tr_cond_pid_name() 18-100
tr_cond_register() 18-121
tr_cond_reset() 18-93
tr_cond_satisfy() 18-119
tr_cond_satisfy_() 18-120
tr_cond_t 18-4
tr_cond_tid() 18-102
tr_cond_tid_clear() 18-104
tr_cond_tid_name() 18-103
tr_copy_input() 18-139
tr_copy_input_range() 18-140
tr_cpu() 18-83
tr_cpu_() 18-84
tr_create_table() 18-143
tr_destroy() 18-14
tr_dir_t 18-4
TR_EOF 18-4, 18-26, 18-27, 18-28, 18-29, 18-122,

18-135, 18-136
tr_error_check() 18-17
tr_error_clear() 18-16
tr_free() 18-25
tr_get_item() 18-142
tr_get_string() 18-141
tr_halt() 18-147
tr_id() 18-33
tr_id_() 18-33
tr_init() 18-14
tr_iterate() 18-146
tr_nargs() 18-36
tr_nargs_() 18-36
tr_next_event() 18-26
tr_next_event_() 18-27
TR_NO_CB 18-148, 18-149
TR_NO_COND 18-92, 18-94, 18-114, 18-116, 18-117,

18-118
TR_NO_HANDLE 18-14
TR_NO_STATE 18-124, 18-125
tr_node() 18-85
tr_node_() 18-85
tr_offset_t 18-4
tr_open_file() 18-18

tr_open_stream() 18-19
tr_pid() 18-77
tr_pid_() 18-78
tr_prev_event() 18-27
tr_prev_event_() 18-28
tr_process_name() 18-86
tr_process_name_() 18-87
tr_search() 18-29
tr_seek() 18-30
tr_state_action_t 18-5
tr_state_active() 18-137
tr_state_active_() 18-138
tr_state_cb() 18-149
tr_state_cb_func_t 18-5
tr_state_create() 18-123
tr_state_end_cond() 18-132
tr_state_end_cond_clear() 18-133
tr_state_end_id() 18-128
tr_state_end_id_clear() 18-130
tr_state_end_id_range() 18-129
tr_state_find() 18-124
tr_state_info() 18-135
tr_state_info_() 18-136
tr_state_info_t 18-6
tr_state_name() 18-125
tr_state_start_cond() 18-131
tr_state_start_cond_clear() 18-131
tr_state_start_id() 18-126
tr_state_start_id_clear() 18-128
tr_state_start_id_range() 18-127
tr_state_t 18-7
tr_stream_event_t 18-7
tr_stream_func_t 18-7
tr_stream_notify() 18-21
tr_stream_read() 18-23
TR_STREAM_SAVE 18-19
tr_stream_size() 18-24
tr_string_node 18-7
TR_SYSCALL_ENTRY trace event 17-4
tr_t 18-8
tr_task_id() 18-82
tr_task_id_() 18-82
tr_task_name() 18-87
tr_task_name_() 18-88
tr_thread_id() 18-80
tr_thread_id_() 18-81
tr_thread_name() 18-89
tr_thread_name_() 18-89
tr_tid() 18-79
tr_tid_() 18-79
tr_time() 18-34
tr_time_() 18-35
Trace event 1-2

arguments 2-15, 7-2, 7-12, 7-14, 16-21, 16-22,
Index-10

Index
16-23, 16-24, 16-25, 16-26, 16-27, 16-28,
16-29, 16-30, 16-31, 16-32, 16-33, 16-34,
16-35, 16-36, 16-37, 16-38, 16-39, 16-40,
16-41, 16-42, 16-43, 16-63, 16-64, 16-65,
16-66, 16-67, 16-68, 16-69, 16-70, 16-71,
16-72, 16-73, 16-74, 16-75, 16-76, 16-77,
16-78, 16-79, 16-80, 16-81, 16-82, 16-83,
16-84, 16-85, 16-100, 16-101, 16-102,
16-103, 16-104, 16-105, 16-106, 16-107,
16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-141, 16-142, 16-143, 16-144, 16-145,
16-146, 16-147, 16-148, 16-149, 16-150,
16-151, 16-152, 16-153, 16-154, 16-155,
16-156, 16-157, 16-158, 16-159, 16-160,
16-161, 16-162, 16-163

context switch 17-2
disabling 2-19
discarding 2-23, E-1
enabling 2-19
exception 17-3
file 2-6, 3-1, 7-10
functions 16-18
ID 1-2, 2-15, 2-19, 7-2, 7-10, 7-12, E-1
information 16-18
interrupt 17-2
IRQ_ENTRY 17-2
IRQ_EXIT 17-3
loading 7-5
logging 6-4, E-1
loss 2-17, E-1
node identifer (ending trace event) 16-130
node identifer (offset) 16-170
node identifer (starting trace event) 16-93
node identifier 16-51
node name 16-54
node name (ending trace event) 16-133
node name (ordinal trace event) 16-173
node name (starting trace event) 16-96
offset 16-138
offset. see Offset
ordinal 16-170, 16-171, 16-173, 16-174, 16-175,

16-176
ordinal number. see Offset
PID table name 16-52
process identifer (ending trace event) 16-131
process identifer (offset) 16-171
process identifer (starting trace event) 16-94
process identifier table name 16-52
process name 16-55
process name (ordinal trace event) 16-174
SCHED_CHANGE 17-2
SOFT_IRQ_ENTRY 17-3

SOFT_IRQ_EXIT 17-3
syscall 17-4
SYSCALL_EXIT 17-4
SYSCALL_RESUME 17-5
SYSCALL_SUSPEND 17-5
task name 16-56
task name (ordinal trace event) 16-175
thread identifer (ending trace event) 16-132
thread identifer (offset) 16-172
thread identifer (starting trace event) 16-95
thread identifier table name 16-53
thread name 16-57
thread name (ordinal trace event) 16-176
TID table name 16-53
timestamp 7-2, 16-50, 16-92, 16-129, 16-169
TR_SYSCALL_ENTRY 17-4
TRAP_ENTRY 17-3
TRAP_EXIT 17-4
TRAP_RESUME 17-4
TRAP_SUSPEND 17-4

Trace point 1-2, 2-15
trace_begin 2-17, 2-21, 2-25, 3-1, E-1
trace_close_thread 2-24
trace_disable 2-18
trace_disable_all 2-18, 2-29
trace_disable_range 2-18
trace_enable 2-18
trace_enable_all 2-18
trace_enable_range 2-18
trace_end 2-9, 2-22, 2-25, 3-2
trace_event 2-12
TRACE_FILE 5-13
trace_flush 2-22, 3-2
trace_open_thread 2-11, 2-24
trace_trigger 2-22, 3-2
Tracing

disabling 2-18, 2-29
kernel 7-17, 7-18, 17-1

TRAP_ENTRY trace event 17-3
TRAP_EXIT trace event 17-4
TRAP_RESUME trace event 17-4
TRAP_SUSPEND trace event 17-4

U

underscores 5-22

V

variables 5-19, 5-20
Index-11

NightTrace RT User’s Guide
vector table 7-19, 17-2, 17-3, 17-15
vector_nodename table 7-19, 17-16
vectors file 7-17, 17-2, 17-15, 17-16, 17-17

W

-Wl,--emit-relocs 5-10

X

xregex 5-22

Z

Zoom Out push button E-2
Index-12

	NightTrace User’s Guide
	Preface
	Contents
	Appendix A NightStar Licensing
	Appendix B Kernel Dependencies
	Appendix C Privileged Access
	Appendix D NightTrace Logging API Examples
	Appendix E NightTrace Analysis API Examples
	Appendix F NightTrace Application Illumination Examples
	Appendix G Answers to Common Questions
	Appendix H Glossary
	Index

	Introduction
	User Trace Point Placement
	Kernel Trace Point Placement
	Timestamps
	Languages
	Information Displayed

	Using the NightTrace Logging API
	Language-Specific Source Considerations
	C
	Fortran
	Ada
	Java
	CUDA

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_begin, Trace.begin
	trace_event, Trace.event and their variants
	trace_enable, trace_disable, and their variants
	trace_flush, Trace.flush, trace_trigger, and Trace.trigger
	trace_set_thread_name, Trace.setThreadName
	trace_close_thread, Trace.closeThread
	trace_end, Trace.end
	trace_diag_mode
	trace_diag_func

	Disabling Tracing
	Threads and Logging
	NightTrace CUDA Tracing API
	ntrace_cuda.h
	ntrace_cuda_device.h

	Compiling and Linking
	C Compilation and Linking
	Fortran Compilation and Linking
	Ada Example
	Java Example
	CUDA Example

	Capturing User Events with ntraceud
	The ntraceud Daemon
	ntraceud Modes
	The Default User Daemon Configuration
	ntraceud Options
	Invoking ntraceud

	Capturing Kernel Events with ntracekd
	The ntracekd Daemon
	ntracekd Modes
	ntracekd Options
	ntracekd Invocations

	Application Illumination
	Overview
	Illuminator
	nlight
	Work Flow Illustration
	Provided Illuminators
	Detail Levels

	Limitations
	The nlight Graphical User Interface
	File
	View
	Tools
	Help

	Wizard
	Navigation Panel
	Common Buttons
	Select Programs with Debug Information
	Define an Illuminator for each Program
	Select Predefined Illuminators for each Program
	Relink Illuminated Programs
	Activate Illuminators in each Program
	Run Scripts to Launch Programs and NightTrace

	Session Manager
	The Application Illumination Root Item
	Select Code with Debug Information
	Context Menus
	Building Object

	Create, Customize, and Build Illuminators
	Context Menu
	Context Menu on Individual Illuminators

	Relink Programs
	Context Menus
	Path
	Relink Command
	Illuminators

	Activation Sets
	Settings For “main” Illuminator
	Settings For Ordinary Illuminators
	Context Menu for an Illuminator
	Context Menu for a Program
	Context Menu for an Activation Set

	Scripts
	New Script
	New Script from Activation Set (NightTrace in File Mode)
	New Script from Activation Set (NightTrace in Stream Mode), New Script from Activation Set (Launch Programs)

	Console
	Predefined Illuminators
	Detail Levels
	main
	glibc
	pthread
	ccur_rt
	cuda

	Illuminator Files
	config.xml
	next_event.txt
	illuminator.h
	illuminator.map
	illuminator_level.fmt
	illuminator_level.o
	illuminator_level.list
	illuminator.o
	illuminator.vararg

	nlight Command Line Mode
	Commands for Manipulating an Illuminator
	nlight --create
	nlight --populate
	nlight --build
	nlight --report

	Commands for Linking with Illuminators
	nlight --gcc
	nlight --g77
	nlight --cf77
	nlight --ada

	Command for Activating and Deactivating Illuminators
	Using NightTrace with Illuminators

	Customizing an Illuminator with the Editor
	Buttons
	Search Editor
	Options
	Event IDs
	Limit on Size of Aggregates Recorded
	Include Functions without Dwarf Debug Info
	Regular Expressions
	Object Filenames

	Detail Levels
	Variables to Record
	Groups
	Create a Group
	Customize a Group
	Selecting Members of a Group

	Functions
	Adding a Function
	Customizing a Function
	Adding a Function to a Group

	Customizing an Illuminator by Editing the config.xml File
	comments
	config
	declare
	defaults
	exclude
	function
	group
	level
	caller={yes|no}
	frame={yes|no}
	aggregate_limit=limit
	args={yes|no}
	addr_args={yes|no}
	return_val={yes|no}
	addr_ret={yes|no}
	variables={yes|no}
	errno={yes|no}
	exclude={yes|no}

	options
	event_ids=“N-[M]”
	aggregate_limit=“limit”
	nodebug={yes|no}
	underscores={yes|no}
	std={yes|no}
	iregex=“regex”, xregex=“regex”
	filename=“filename”

	variable
	wrapper
	wrapper_file_scope
	wrapper_post
	wrapper_pre
	wrapper_real

	Examples

	Performance Tuning
	Preventing Trace Event Loss
	Daemon Scheduling Adjustment
	Increasing Trace Buffer Size
	Programmatic Flushing

	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	Invoking NightTrace
	Command-line Options
	Summary Criteria

	Command-line Arguments
	Trace Event Files
	Event Map Files
	Table Files
	Tables
	String Tables
	Pre-Defined Strings Tables
	Format Tables

	Session Configuration Files
	Trace Data Segments

	The NightTrace Main Window
	Menu Bar
	File
	View
	Daemons
	Search
	Summary
	Profiles
	Export Profiles to NightTrace API Source File

	Timelines
	Tools
	Help

	Toolbars
	Pages
	Panels
	Preferences Dialog
	General Preferences
	Timeline Preferences
	Font Preferences
	NightStar Global Fonts Dialog

	Advanced Preferences

	Daemons Panel
	Context Menu
	Control Buttons
	Edit Daemon Definition
	General Settings
	Trace Buffer Settings

	Trace Daemon Runtime Settings
	Enabled Events

	Triggers
	Edit Triggers Dialog

	Streaming Memory Usage Control
	Streaming Memory Usage Control Dialog

	Trace Segments Panel
	Trace Segments Table
	Context Menu
	Control Buttons

	Events Panel
	Textual Event Tables
	Context Menu

	Event Panel Search Dialog

	Timeline Panels
	Default Timeline
	Current Timeline Indicator
	Global Ruler
	Interval Ruler
	Event Graphs
	Event Description Area
	Keyboard Traversal
	Creating Timeline Objects
	Event Graph
	State Graph
	Data Graph
	Data Graph Options Dialog
	Drawing and Coloring Examples
	Color Selection Dialog
	Standard Color Names

	Interval Ruler
	Global Ruler
	Label
	Data Box

	Default CUDA AI Timeline
	Default CUDA GPU Timeline

	Profiles
	Profiles Dialog
	Profile Status List
	Context Menu
	Profile Definition
	Control Buttons

	Summarizing Statistical Information
	Condition Summaries
	State Summaries
	Summary Scripts
	Summary Script Environment Variables

	Event Descriptions Panel
	Tags List Panel
	Creating Tags
	Tags List Table
	Context Menu
	Control Buttons

	Using Expressions
	Overview
	Operators
	Operands
	Constants
	Functions
	Function Parameters
	Function Terminology
	String Functions
	strcmp()
	strncmp()

	Trace Event Functions
	id()
	arg()
	arg_dbl()
	arg_long()
	arg_long_dbl()
	arg_long_long()
	blk_arg()
	blk_arg_bits()
	blk_arg_char()
	blk_arg_dbl()
	blk_arg_flt()
	blk_arg_long()
	blk_arg_long_bits()
	blk_arg_long_dbl()
	blk_arg_long_long()
	blk_arg_long_ubits()
	blk_arg_short()
	blk_arg_string()
	blk_arg_ubits()
	blk_arg_uchar()
	blk_arg_uint()
	blk_arg_ulong_long()
	blk_arg_ushort()
	num_args()
	cuda functions
	pid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_arg_long()
	start_arg_long_dbl()
	start_arg_long_long()
	start_blk_arg()
	start_blk_arg_bits()
	start_blk_arg_char()
	start_blk_arg_dbl()
	start_blk_arg_flt()
	start_blk_arg_long()
	start_blk_arg_long_bits()
	start_blk_arg_long_dbl()
	start_blk_arg_long_long()
	start_blk_arg_long_ubits()
	start_blk_arg_short()
	start_blk_arg_string()
	start_blk_arg_ubits()
	start_blk_arg_uchar()
	start_blk_arg_uint()
	start_blk_arg_ulong_long()
	start_blk_arg_ushort()
	start_num_args()
	start_pid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_arg_long()
	end_arg_long_dbl()
	end_arg_long_long()
	end_blk_arg()
	end_blk_arg_bits()
	end_blk_arg_char()
	end_blk_arg_dbl()
	end_blk_arg_flt()
	end_blk_arg_long()
	end_blk_arg_long_bits()
	end_blk_arg_long_dbl()
	end_blk_arg_long_long()
	end_blk_arg_long_ubits()
	end_blk_arg_short()
	end_blk_arg_string()
	end_blk_arg_ubits()
	end_blk_arg_uchar()
	end_blk_arg_uint()
	end_blk_arg_ulong_long()
	end_blk_arg_ushort()
	end_num_args()
	end_pid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_arg_long()
	offset_arg_long_dbl()
	offset_arg_long_long()
	offset_blk_arg()
	offset_blk_arg_bits()
	offset_blk_arg_char()
	offset_blk_arg_dbl()
	offset_blk_arg_flt()
	offset_blk_arg_long()
	offset_blk_arg_long_bits()
	offset_blk_arg_long_dbl()
	offset_blk_arg_long_long()
	offset_blk_arg_long_ubits()
	offset_blk_arg_short()
	offset_blk_arg_string()
	offset_blk_arg_ubits()
	offset_blk_arg_uchar()
	offset_blk_arg_uint()
	offset_blk_arg_ulong_long()
	offset_blk_arg_ushort()
	offset_num_args()
	offset_pid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()
	lookup_pc()

	Profile References

	Kernel Tracing
	Primary Kernel Trace Events
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events
	Kernel Work Events

	Additional Kernel Events
	Logging Custom Kernel Events
	From User Programs
	From Kernel Modules
	Retrieving Custom Events

	Viewing Kernel Trace Event Files
	Kernel Timelines
	Node and CPU Information
	Context Switch Information
	Interrupt Information
	Exception Information
	System Call Information
	Process Information
	Kernel Events
	Color Information

	Kernel String Tables

	Using the NightTrace Analysis API
	NightTrace Analysis Application Programming Interface
	Data Structures
	tr_arg_t
	tr_cb_t
	tr_cond_cb_func_t
	tr_cond_func_t
	tr_cond_t
	tr_dir_t
	tr_offset_t
	tr_state_action_t
	tr_state_cb_func_t
	tr_state_info_t
	tr_state_t
	tr_stream_event_t
	tr_stream_func_t
	tr_string_node_t
	tr_t

	Functions
	API Initialization and Destruction
	tr_init()
	tr_destroy()

	Error Detection, Collection, and Reporting
	tr_error_clear()
	tr_error_check()

	Input Specification and Streaming Control
	tr_open_file()
	tr_open_stream()
	tr_close()
	tr_stream_notify()
	tr_stream_read()
	tr_stream_size()
	tr_free()

	Event Offset Positioning
	tr_next_event()
	tr_next_event_()
	tr_prev_event()
	tr_prev_event_()
	tr_search()
	tr_seek()

	Basic Event Attribute Functions
	tr_id()
	tr_id_()
	tr_time()
	tr_time_()
	tr_nargs()
	tr_nargs_()
	tr_arg_int()
	tr_arg_int_()
	tr_arg_dbl()
	tr_arg_dbl_()
	tr_arg_long()
	tr_arg_long_()
	tr_arg_long_dbl()
	tr_arg_long_dbl_()
	tr_arg_long_long()
	tr_arg_long_long_()
	tr_arg_int_()
	tr_arg_dbl()
	tr_arg_dbl_()
	tr_arg_long()
	tr_arg_long_()
	tr_arg_long_dbl()
	tr_arg_long_dbl_()
	tr_arg_long_long()
	tr_argtype()
	tr_argtype_()
	tr_blk_arg()
	tr_blk_arg_()
	tr_blk_arg_bits()
	tr_blk_arg_bits_()
	tr_blk_arg_char()
	tr_blk_arg_char_()
	tr_blk_arg_dbl()
	tr_blk_arg_dbl_()
	tr_blk_arg_flt()
	tr_blk_arg_flt_()
	tr_blk_arg_long()
	tr_blk_arg_long_()
	tr_blk_arg_long_bits()
	tr_blk_arg_long_bits_()
	tr_blk_arg_long_dbl()
	tr_blk_arg_long_dbl_()
	tr_blk_arg_long_long()
	tr_blk_arg_long_long_()
	tr_blk_arg_long_ubits()
	tr_blk_arg_long_ubits_()
	tr_blk_arg_short()
	tr_blk_arg_short_()
	tr_blk_arg_string()
	tr_blk_arg_string_()
	tr_blk_arg_ubits()
	tr_blk_arg_ubits_()
	tr_blk_arg_uchar()
	tr_blk_arg_uchar_()
	tr_blk_arg_ushort()
	tr_blk_arg_ushort_()
	tr_pid()
	tr_pid_()
	tr_tid()
	tr_tid_()
	tr_thread_id()
	tr_thread_id_()
	tr_task_id()
	tr_task_id_()
	tr_cpu()
	tr_cpu_()
	tr_node()
	tr_node_()
	tr_process_name()
	tr_process_name_()
	tr_task_name()
	tr_task_name_()
	tr_thread_name()
	tr_thread_name_()

	Conditions
	tr_cond_create()
	tr_cond_reset()
	tr_cond_find()
	tr_cond_id()
	tr_cond_id_range()
	tr_cond_id_clear()
	tr_cond_cpu()
	tr_cond_cpu_clear()
	tr_cond_pid()
	tr_cond_pid_name()
	tr_cond_pid_clear()
	tr_cond_tid()
	tr_cond_tid_name()
	tr_cond_tid_clear()
	tr_cond_node()
	tr_cond_node_clear()
	tr_cond_func_or()
	tr_cond_func_and()
	tr_cond_func_clear()
	tr_cond_expr_and()
	tr_cond_expr_or()
	tr_cond_not()
	tr_cond_or()
	tr_cond_and()
	tr_cond_copy()
	tr_cond_name()
	tr_cond_satisfy()
	tr_cond_satisfy_()
	tr_cond_register()
	tr_cond_offset()

	State-oriented Interfaces
	tr_state_create()
	tr_state_find()
	tr_state_name()
	tr_state_start_id()
	tr_state_start_id_range()
	tr_state_start_id_clear()
	tr_state_end_id()
	tr_state_end_id_range()
	tr_state_end_id_clear()
	tr_state_start_cond()
	tr_state_start_cond_clear()
	tr_state_end_cond()
	tr_state_end_cond_clear()
	tr_activate()
	tr_state_info()
	tr_state_info_()
	tr_state_active()
	tr_state_active_()

	Output Function
	tr_copy_input()
	tr_copy_input_range()

	String Table Functions
	tr_get_string()
	tr_get_item()
	tr_create_table()
	tr_append_table()

	Callback Interfaces
	tr_iterate()
	tr_halt()
	tr_cancel_cb()
	tr_cond_cb()
	tr_state_cb()

	NightStar Licensing
	License Keys
	License Requests
	License Server
	License Reports
	Firewall Configuration for Floating Licenses
	License Support

	Kernel Dependencies
	Advantages for NightView
	Advantages for NightTrace
	Advantages for NightProbe
	Advantages for NightTune
	Frequency Based Scheduler

	Privileged Access
	Capabilities

	NightTrace Logging API Examples
	Single Threaded C Example
	Multi-Threaded C++ Example
	Fortran Example
	Simple Java Example
	Multi-Threaded Java Example
	Rare Occurrence Example
	CUDA Example

	NightTrace Analysis API Examples
	list
	list.c

	search
	search.c

	watchdog
	watchdog.c

	ptime
	ptime.c

	browse
	browse.c

	detect
	detect.c

	NightTrace Application Illumination Examples
	Illuminating Some Object Files
	Illuminating A Library
	Illuminating An Entire Program
	Illuminating A C++ Class -- Excluding Some Functions
	Illuminating An API -- Libraries Without Source or Debug Info
	Customizing an Illuminator -- Logging Extra Information
	Tutorial Files
	main.c
	math.c
	work.c
	classy.c
	api.h

	Answers to Common Questions
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

