
NightProbe RT User’s Guide
Version 3.1

(RedHawkTM Linux®)

0898465-090
July 2006

Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Concurrent
products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

NightProbe, NightStar, iHawk, RedHawk, MAXAda, NightBench, NightSim, NightTrace, NightTune, and NightView are trademarks of Concur-
rent Computer Corporation.

Red Hat is a registered trademark of Red Hat, Inc.

The registered trademark Linux is used pursuant to a sublicense from the Linux Mark Institute, the exclusive licensee of Linus Torvalds, owner of
the mark in the U.S. and other countries.

HyperHelp is a trademark of Bristol Technology Inc.

OSF/Motif is a registered trademark of The Open Group.

X Window System and X are trademarks of The Open Group.

The Table widget is a 1990, 1991, and 1992 copyright of David E. Smyth with the following warning: "Permission to use, copy, modify, and dis-
tribute this software and its documentation for any purpose without fee is granted, provided that the above copyright notice appear in all copies and
that both copyright notice and this permission notice appear in supporting documentation, and that the name of David E. Smyth not be used in
advertising or publicity pertaining to distribution of the software without specific written prior permission."

Preface

Scope of Manual

This guide is designed to assist you in using NightProbeTM, a real-time NightStarTM RT
tool that provides a graphical user interface to data recording services.

Structure of Manual

This manual consists of fifteen chapters and five appendices. A brief description of the
chapters and appendices is presented as follows.

• Chapter 1 introduces you to the concepts and components of NightProbe, a
real-time tool that is part of the NightStar development environment.

• Chapter 2 explains how to invoke NightProbe.

• Chapter 3 introduces the components of the NightProbe main window, the
main control window for NightProbe.

• Chapter 4 describes NightProbe’s Target Server dialog.

• Chapter 5 describes NightProbe’s timing source configuration options.

• Chapter 6 describes NightProbe’s various output methods.

• Chapter 7 describes NightProbe’s Program Window.

• Chapter 8 describes NightProbe’s PCI Device Window.

• Chapter 9 describes NightProbe’s Shared Memory Window.

• Chapter 10 describes NightProbe’s Mapped Memory Window.

• Chapter 11 describes how to use NightProbe’s Item Browser.

• Chapter 12 describes how to use NightProbe’s Item Definition window.

• Chapter 13 describes NightProbe’s Item Properties window.

• Chapter 14 describes NightProbe’s Spreadsheet Viewer window in detail.

• Chapter 15 documents the NightProbe Application Programming Interface
and provides sample programs to demonstrate usage of the data structures
and functions in the API.

• Appendix A discusses the NightStar License Manager (NSLM) and how to
obtain and install licenses. It also discusses approaches for dealing with a
firewall either on the system acting as the license server or on a system
hosting the NightStar RT tools.
iii

NightProbe RT User’s Guide
• Appendix C describes the syntax for specifying full variable names and eli-
gibility rules.

• Appendix D provides a reference table for keyboard shortcuts to activating
menu items, controlling data sampling, and traversing dialogs.

• Appendix E consists of tutorials for probing a program and a PCI device.

• Appendix F contains information about customizing the NightProbe graph-
ical user interface.

• Appendix G provides an overview of the user and system configuration
requirements that need to be taken into account prior to running Night-
Probe on a target system.

Syntax Notation

The following notation is used throughout this manual:

italic Titles of books, reference cards, and items that you must specify
appear in italic type. Special terms may also appear in italics.

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and sys-
tem manual page references also appear in list bold type.

list Operating system and program output such as prompts and messages
and listings of files and programs appear in list type.

window Keyboard sequences and window features such as button, field, and
menu labels, and window titles appear in window type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify such options or
arguments.

Referenced Publications

The following publications are referenced in this document:

0890514 NightBenchTM User’s Guide
0898004 RedHawk Linux User’s Guide
0898008 NightStar RT Installation Guide
0898008 NightStar RT Tutorial
0898395 NightViewTM RT User’s Guide
0898398 NightTraceTM RT User’s Guide
0898458 NightSimTM RT User’s Guide
0898515 NightTuneTM RT User’s Guide
0898537 MAXAda for RedHawk Linux Reference Manual
iv

Contents

Chapter 1 Overview

Recording and Monitoring. 1-1
Eligible Variables . 1-1
Sampling. 1-2

Using NightProbe . 1-3

Chapter 2 Invoking NightProbe

Getting Help . 2-3

Chapter 3 NightProbe Main Window

Menu Bar . 3-2
NightProbe . 3-2
Timer . 3-4
Output . 3-4
Resource . 3-5
Control . 3-5
Tools . 3-6
Help . 3-8

Session Configuration Status Area . 3-10
Sampler Control Area . 3-10
Session Overview Area . 3-12

Target System Selection . 3-12
Timer Selection. 3-12
Outputs . 3-14
Resources . 3-16
Probe Items. 3-18

Chapter 4 Target Server Selection

User Authentication . 4-2
Run Time Settings . 4-3

Chapter 5 Timing Source Configuration

Set System Timer. 5-1
Set FBS Timer . 5-3

Select Frequency Based Scheduler. 5-4
Set Trigger Timer. 5-6

Chapter 6 Output Configuration

File Output . 6-1
v

NightProbe RT User’s Guide
NightTrace Output . 6-3
List Viewer . 6-10

Menu Bar . 6-11
File . 6-11
Help . 6-12

Control Area . 6-12
Spreadsheet Viewer . 6-13
Program Output . 6-14

Chapter 7 Program Window

Chapter 8 PCI Device Window

Chapter 9 Shared Memory Window

Chapter 10 Mapped Memory Window

Chapter 11 Item Browser

Interactive Variable Browser . 11-3

Chapter 12 Item Definition Window

Interactive Type Browser . 12-4

Chapter 13 Item Properties Window

Chapter 14 Spreadsheet Viewer

Menu Bar . 14-2
File . 14-2
Selected. 14-4

Spreadsheet Variables . 14-6
Cell Attributes . 14-7

Edit . 14-8
Layout . 14-9
Help. 14-11

Layout Configuration Status Area . 14-11
Spreadsheet Viewing Area . 14-12
Control Area. 14-12

Cell Color Legend. 14-13

Chapter 15 NightProbe API

NightProbe Datastream API. 15-1
NightProbe Data Format . 15-1
Data Structures . 15-2

np_endian_type . 15-3
np_handle. 15-3
np_header. 15-3
vi

Contents
np_item . 15-4
np_process. 15-4
np_type . 15-5

Functions . 15-6
np_open() . 15-6
np_avail() . 15-7
np_read() . 15-8
np_close() . 15-9
np_format() . 15-10
np_host_endian() . 15-11
np_error() . 15-11

Sample Programs . 15-13
program_output_test.c. 15-13
program_output_fbs_test.c . 15-16

NightProbe Trigger API. 15-20
Data Structures . 15-20

np_trigger_handle . 15-20
Functions . 15-21

np_trigger_open() . 15-21
np_trigger() . 15-22
np_trigger_close() . 15-23
np_trigger_error() . 15-23

Sample Program . 15-25
nprobe_trigger_test.c. 15-25

Appendix A NightStar Licensing

License Keys . A-1
License Requests . A-2
License Server . A-2
License Reports . A-3
Firewall Configuration for Floating Licenses . A-3
License Support . A-4

Appendix B Kernel Dependencies

Advantages for NightView . B-1
Advantages for NightTrace . B-2
Advantages for NightProbe . B-2
Advantages for NightTune. B-3
Advantages for NightSim . B-3

Appendix C Variables

Variable Name Notation . C-1
Composite Types . C-2
Array Slices . C-2

Variable Eligibility for Program Resources. C-4
vii

NightProbe RT User’s Guide
Appendix D Keyboard Traversal

Appendix E Tutorials

Probing Programs Tutorial . E-1
Creating and Selecting a Program . E-1
Variable Browsing. E-3
Using the Spreadsheet. E-5

Quickly Adding Multiple Variables. E-6
Selecting a Timing Source. E-7
Start Data Sampling. E-8
Modifying the Value of Variables . E-8

Ada Sample - ada_sample.a. E-11
C++ Sample - cpp_sample.cpp . E-13
C Sample - c_sample.c . E-17

Probing Devices Tutorial . E-18
Selecting the RCIM . E-18
Creating a View into the Device . E-20
Selecting the List Viewer . E-20
Probing the RCIM. E-21
C Source -- rcim.c . E-23

Conclusion . E-23

Appendix F GUI Customization

X Window System Resources . F-1
Command-Line Options. F-2
Application Resources . F-2

NightStar Resources . F-2
NightProbe Resources. F-3
Font Resources . F-3
Color Resources . F-4

Appendix G Target System Requirements

Capabilities. G-1

Index

Illustrations

Figure 1-1. Selecting Variables with the Item Browser . 1-2
Figure 3-1. NightProbe main window . 3-1
Figure 3-2. NightProbe menu . 3-2
Figure 3-3. Timer menu . 3-4
Figure 3-4. Output menu . 3-4
Figure 3-5. Resource menu . 3-5
Figure 3-6. Control menu . 3-5
Figure 3-7. Tools menu . 3-6
Figure 3-8. Help menu . 3-8
Figure 4-1. Target Server dialog . 4-1
viii

Contents
Figure 4-2. User Authentication dialog . 4-2
Figure 4-3. Run Time Settings dialog . 4-3
Figure 5-1. Set System Timer dialog . 5-1
Figure 5-2. Set FBS Timer dialog . 5-3
Figure 5-3. Select Frequency Based Scheduler dialog . 5-5
Figure 5-4. Set Trigger Timer dialog . 5-6
Figure 6-1. File Output dialog . 6-1
Figure 6-2. NightTrace Output dialog . 6-3
Figure 6-3. NightTrace Event ID dialog . 6-4
Figure 6-4. NightTrace Graph Style dialog . 6-4
Figure 6-5. Choose Color dialog . 6-5
Figure 6-6. NightTrace display page . 6-9
Figure 6-7. List Viewer window . 6-10
Figure 6-8. File menu . 6-11
Figure 6-9. Spreadsheet Viewer window . 6-13
Figure 6-10. Program Output dialog . 6-14
Figure 7-1. Program Window . 7-1
Figure 7-2. Select Process ID dialog . 7-3
Figure 8-1. PCI Device WIndow . 8-1
Figure 8-2. PCI Device Selection Window . 8-3
Figure 9-1. Shared Memory WIndow . 9-1
Figure 9-2. Select IPC Shared Memory Segment dialog . 9-3
Figure 9-3. Select POSIX Shared Memory Segment dialog 9-5
Figure 10-1. Mapped Memory WIndow . 10-1
Figure 11-1. Item Browser . 11-1
Figure 12-1. Item Definition Window . 12-1
Figure 13-1. Item Properties Window . 13-1
Figure 14-1. Spreadsheet Viewer window . 14-1
Figure 14-2. File menu . 14-2
Figure 14-3. Selected menu . 14-4
Figure 14-4. Spreadsheet Variables dialog . 14-6
Figure 14-5. Cell Attributes dialog . 14-7
Figure 14-6. Edit menu . 14-8
Figure 14-7. Layout menu . 14-10
Figure 15-1. Structure of NightProbe datastream . 15-2

Tables

Table 3-1. NightProbe Accelerators . D-2
Table 6-1. Recommended /etc/pam.d Configuration . G-2
ix

NightProbe RT User’s Guide
x

1
Chapter 1Overview

1
1
1

NightProbe is a graphical tool for recording, viewing, and modifying data within a variety
of resources:

- executing programs

- shared memory segments

- memory-mapped files and devices

- PCI devices

Data is sampled using non-intrusive techniques to guarantee short response time and min-
imal impact on the target resources and the target system. The source code of target pro-
grams does not need to be modified or recompiled in order to be monitored. Executing
programs can be monitored and recorded without being stopped and restarted.

NightProbe can be run on a different processor or system from the target resource, which
minimizes NightProbe’s impact upon the target system.

Furthermore, NightProbe can probe executable programs which have been stripped of
debug and symbol information, such as those in deployed scenarios. In such cases, a copy
of the program containing the necessary debug and symbol information must be available
for reading on the host system.

Recording and Monitoring 1

Data recording refers to sampling memory locations in target resources and recording that
data for subsequent analysis. Memory locations may be identified by logical address, off-
set, or by variable name. NightProbe allows you to record data to a file in NightProbe
Datastream API format as well as NightTrace data format (see “NightProbe Datastream
API” on page 15-1).

Data monitoring refers to displaying the sampled data for interactive visual inspection
and, optionally, modification.

Eligible Variables 1

Variables with static addresses and layouts may be sampled. Supported languages include
C, C++, and Fortran, as well as Ada programs built with the MAXAda compiler.

You can monitor and record any valid memory location in a program’s address space,
whether that location corresponds to a named variable or not.
1-1

NightProbe RT User’s Guide
Variables are selected from program symbol files using the Item Browser dialog as
shown in Figure 1-1 (see Chapter 11, “Item Browser” for more information on this dia-
log):

Figure 1-1. Selecting Variables with the Item Browser

Configuration files can be created and saved to retain variable selections and display lay-
out, allowing for fast start-up on subsequent invocations of NightProbe.

Sampling 1

Data sampling is the process of collecting the values from target memory locations and
making the sampled data available to output or viewer processes that can record the data
or display the data for interactive monitoring.

Data sampling occurs when a sampling event is triggered by a NightProbe timing source.
The rate at which sampling occurs can be regular or irregular, depending on the timing
source selected.
1-2

Overview
NightProbe supports four mechanisms which define the sampling rate:

- on-demand sampling

- iterative sampling driven by the system clock

- iterative sampling controlled by a frequency-based scheduler

- programmed sampling driven by a NightProbe Trigger Client program

See “Timer Selection” on page 3-12 for a more complete discussion of these timing
sources.

Using NightProbe 1

The primary steps in using NightProbe are:

1. Define the target system.

2. Select the target resources you wish to probe.

3. Select variables from target resource programs or create artificial variables
to create views into a target resource.

4. Specify the desired sampling timer mechanism.

5. Select output methods.

6. Connect NightProbe to the target system and target resources.

7. Start sampling.

NOTE

On RedHawk® Linux® systems, you must have appropriate file
access to the target resource or be granted the CAP_SYS_RAWIO
capability in order to record, monitor, or modify the resource.

In order to set the CPU bias of the NightProbe server or of the
program specified using the Program Output method (see “Pro-
gram Output” on page 6-14), you must have the CAP_SYS_NICE
capability.

See “Capabilities” on page G-1 for more information.
1-3

NightProbe RT User’s Guide
1-4

2
Chapter 2Invoking NightProbe

2
2
2

The NightProbe tool is available on your system as /usr/bin/nprobe. The format for
executing nprobe is described below.

To get information about NightProbe:

nprobe [--help] [--version]

To use NightProbe to record or monitor variable locations:

nprobe [--record=output_file]
 [--trace=key_file]
 [--sheet=config_file]
 [--program=program_file]
 [--list]
 [-Xoption ...]
 [config_file | executable_file]

To translate data files to text:

nprobe --input=data_file

Options are described as follows:

--help

This option allows you to display the usage information for nprobe and then
exit. The X Window interface will not be started if you use this option.

--version

This option allows you to display the version and copyright information for
nprobe and then exit. The X Window interface will not be started if you use
this option.

--program=progfile

This option sends sampled data to the executable program progfile which is
launched when sampling begins. The program should consume the data using
the NightProbe Datastream API (see “NightProbe Datastream API” on page
15-1).

--record=output_file

Activate recording to file output_file when sampling begins.
2-1

NightProbe RT User’s Guide
--trace=key_file

Activate streaming of recorded data to a NightTrace user daemon using a
shared memory buffer designated by key_file. The thread name nprobe will
be used, and several NightTrace configuration files prefixed with the thread
name will be generated when you connect, including nprobe.session.

--sheet=layout_file

Activate a spreadsheet viewer using the layout configuration in file
layout_file.

--list

Activate a list viewer.

--input=data_file

Translate a previously recorded data file from its internal format to printable
ASCII text. The --input option must be followed by '=' and the path to the
data file. The text translation will be written to standard output. No other
options should be used with --input. The X Window interface will not be
started when using the --input option.

-Xoption

You may also specify any standard X Toolkit command-line option. Such
options include -bg color to set the color for the window background; -fg
color to set the color to use for text or graphics; and -xrm resourcestring to
set selected resources. For a complete list of these options, refer to the X(7x)
system manual page.

config_file

This argument allows you to specify the name of a file that contains data sam-
pling configuration data. You may specify a full or relative path name. The file
may be one that you have created by using nprobe or a text editor of your
choice.

If you use nprobe to create this file, you open a NightProbe main window,
configure a data recording session, and then select the Save Session As...
menu item from the NightProbe menu. Procedures are fully explained in
Chapter 3, “NightProbe Main Window”.

executable_file

This argument allows you to specify the name of an executable file. It is auto-
matically added to the list of target resources so that you may immediately
begin browsing for items within that file.

You may invoke nprobe without specifying any options or arguments.
2-2

Invoking NightProbe
NOTE

nprobe requires that your DISPLAY environment variable is set
appropriately.

Getting Help 2

In addition to the NightProbe User’s Guide, there are several sources of information on the
operation of NightProbe. These include:

• the Help menu on the menu bars of the NightProbe windows (see “Help”
on page 3-8)

• the Help button on the NightProbe dialogs

• the --help command line option

• the nprobe(1) system manual page
2-3

NightProbe RT User’s Guide
2-4

3
Chapter 3NightProbe Main Window

3
3
3

The NightProbe main window is the primary control window for NightProbe. From this
window you will configure and control the data sampling process.

The NightProbe main window consists of the following components:

• Menu Bar (see “Menu Bar” on page 3-2)

• Session Configuration Status Area (see “Session Configuration Status
Area” on page 3-10)

• Sampler Control Area (see “Sampler Control Area” on page 3-10)

• Session Overview Area (see “Session Overview Area” on page 3-12)

Figure 3-1. NightProbe main window
3-1

NightProbe RT User’s Guide
Menu Bar 3

The menu bar provides access to session configuration services, additional tools, and help.
The activities provided in the pop-up menus in the Session Overview Area are available
from the menu bar as well. The menu bar provides the following menus:

• NightProbe (see “NightProbe” on page 3-2)

• Timer (see “Timer” on page 3-4)

• Output (see “Output” on page 3-4)

• Resource (see “Resource” on page 3-5)

• Control (see “Control” on page 3-5)

• Tools (see “Tools” on page 3-6)

• Help (see “Help” on page 3-8)

Each menu is described in the sections that follow.

NightProbe 3

Mnemonic: Alt+N

The NightProbe menu allows you to load a configuration, save the current configuration
to a file, or create a new configuration. The NightProbe menu also contains the means
to exit NightProbe.

Figure 3-2. NightProbe menu

The following paragraphs describe the options on the NightProbe menu in more detail.

New Session

Mnemonic: N

This option allows you to clear all information from the current session and reset the
various areas to blank or default values. If the window contains unsaved changes,
NightProbe displays a warning dialog. You may save the changes, clear the window
3-2

NightProbe Main Window
without saving the changes, cancel the operation, or display help related to the dia-
log.

Open Session...

Mnemonic: O

This option allows you to open a session configuration file that you have previously
saved and load all the configuration items into the current session.

If the window contains unsaved changes, NightProbe displays a warning dialog.
You may proceed to open the new session, thereby discarding any unsaved changes,
or cancel the operation.

When you select this option, NightProbe displays a file selection dialog.

To select the file to be opened, use the directory mask text area, scrolled list of
directories, scrolled list of files, and file selection text area as appropriate. After
making a selection, you may open the selected file, search for another file, cancel
the operation, or display help related to the dialog.

Save Session

Mnemonic: S
Accelerator: Ctrl+S

This option allows you to save the configuration data from the current session in the
configuration file that is associated with the window. If the window is not associated
with a configuration file name, this option is the same as Save Config File As.

Save Session As...

Mnemonic: A

This option allows you to specify the name of the file in which you wish the config-
uration data from the current session to be saved.

When you select this option, NightProbe displays a file selection dialog. After mak-
ing a selection, you may save the configuration data from the current session in the
selected file, search for another file, cancel the operation, or display help related to
the dialog.

Exit

Mnemonic: X
Accelerator: Ctrl+Q

This option exits NightProbe. If there are unsaved changes in the current session, a
dialog will ask you if you wish to save the session before exiting.
3-3

NightProbe RT User’s Guide
Timer 3

Mnemonic: Alt+T

Figure 3-3. Timer menu

These menu items activate the timing selection as described in “Timer Selection” on page
3-12.

Output 3

Mnemonic: Alt+O

You must select at least one destination for output or NightProbe will not allow connection
to the target resource (see “Sampler Control Area” on page 3-10).

Figure 3-4. Output menu

These menu items activate output selection as described in “Outputs” on page 3-14.
3-4

NightProbe Main Window
Resource 3

Mnemonic: Alt+R

Figure 3-5. Resource menu

These menu items activate resource selection as described in “Resources” on page 3-16.

Control 3

Mnemonic: Alt+C

Figure 3-6. Control menu

See “Sampler Control Area” on page 3-10 for a description of these controls.
3-5

NightProbe RT User’s Guide
Tools 3

Mnemonic: Alt+L

Figure 3-7. Tools menu

The following describe the options on the Tools menu:

NightBench Builder

Mnemonic: B

Opens the NightBench Program Development Environment. NightBench is a set of
graphical user interface (GUI) tools for developing software with the Concurrent
C/C++ and MAXAdaTM compiler toolsets.

NOTE

NightBench is only available on RedHawk systems that have
MAXAda installed.

See also:

• NightBench User’s Guide

NightSim Scheduler

Mnemonic: S

Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

See also:

• NightSim RT User’s Guide
3-6

NightProbe Main Window
NightTrace Analysis

Mnemonic: T

Opens the NightTrace Analyzer. The NightTrace Analyzer is a graphical tool for
analyzing the dynamic behavior of multiprocess and/or multiprocessor user applica-
tions and operating system activity. NightTrace allows you to control user and ker-
nel trace collection daemons and can graphically display the interplay between
many real-time programs and processes across multiple processors and systems.

See also:

• NightTrace RT User’s Guide

NightTune Tuner

Mnemonic: U

Opens the NightTune Tuner. NightTune is a graphical tool for analyzing the status
of the system in terms of processes, interrupts, context switches, interrupt CPU
affinity, processor shielding and hyperthreading control as well as network and disk
activity. NightTune can adjust the scheduling attributes of individual or groups of
processes, including priority, policy, and CPU affinity.

See also:

• NightTune RT User’s Guide

NightView Debugger

Mnemonic: V

Opens the NightView Source-Level Debugger. NightView is a graphical source-
level debugging and monitoring tool specifically designed for real-time applica-
tions. NightView can monitor, debug, and patch multiple real-time processes run-
ning on multiple processors with minimal intrusion.

See also:

• NightView RT User’s Guide
3-7

NightProbe RT User’s Guide
Help 3

Mnemonic: Alt+H

Figure 3-8. Help menu

The following describe the options on the Help menu:

On Context

Mnemonic: C

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for a particular item is obtained by first choosing this menu option, then click-
ing the mouse pointer on the object for which help is desired (the mouse pointer will
become a floating question mark when the On Context menu item is selected).

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. HyperHelpTM, NightProbe’s online help system, will
open with the appropriate topic displayed.

On Window

Mnemonic: W

Displays help information for the current window.

On Help

Mnemonic: H

Displays help information about how to use HyperHelpTM, NightProbe’s online help
system.
3-8

NightProbe Main Window
NightProbe User’s Guide

Mnemonic: U

Opens the online version of the NightProbe User’s Guide in the HyperHelp viewer.

NightProbe Tutorial

Mnemonic: T

Opens HyperHelp, NightProbe’s online help system, to the section containing tutori-
als which show some of the commonly-used features of NightProbe.

NightStar RT Tutorial

Mnemonic: S

Opens a HyperHelp window containing a tutorial which demonstrates the features
of NightSim, NightProbe, NightView, NightTrace, and NightTune in one cohesive
example.

Bookshelf

Mnemonic: B

Opens a HyperHelp window that lists all of the currently available HyperHelp publi-
cations.

On Version

Mnemonic: V

Displays a short description of the current version of NightProbe.
3-9

NightProbe RT User’s Guide
Session Configuration Status Area 3

The Session Configuration Status Area is located just below the menu bar and contains
information on the name of the currently selected session configuration file and a warning
indicator icon if the current configuration is different from what was loaded from or last
saved to that file. Configuration files are selected with the Open Session... menu
option on the File menu or are provided on the command line.

Sampler Control Area 3

The Sampler Control Area provides buttons for controlling the state of data recording and
monitoring as well text fields indicating its current status.

Connect

Accelerator: Ctrl+T

Pressing Connect initiates sampler activity. A sampler process is initiated on the
target system. All memory pages associated with the selected variables for each
resource are mapped into the sampler process’s address space. Output methods and
timer functions are elaborated which may involve creating or opening files, initiat-
ing NightTrace API calls, joining a Frequency Based Scheduler, or connecting to a
NightProbe Trigger API Client program. If any of these activities cannot be suc-
cessfully completed, a diagnostic window is shown, all associations with target
resources and the target system are released, and the connection process terminates.

This is desensitized unless a resource has been defined (see “Resources” on page
3-16), probe items have been selected or defined (see “Probe Items” on page 3-18),
and an output method has been defined (see “Outputs” on page 3-14).

You must be in a connected state to begin data sampling. Note that sampling does
not actually begin until Start or Sample is pressed.

Changes to the session configuration are not allowed while in the connected state.

Disconnect

Accelerator: Ctrl+D

Pressing Disconnect terminates sampler activity. If sampling is active, it is
stopped. The connection to the target system is terminated after all memory map-
pings to all target resources are released.

Start

Accelerator: Ctrl+R

Pressing Start initiates sampling. The Start button will be desensitized unless
Connect has already been pressed and the selected timing source is not On
3-10

NightProbe Main Window
Demand. If the timing source is System Clock, sampling will begin at the spec-
ified rate.

If the timing source is Frequency Based Scheduler, sampling will begin on
the next cycle associated with the scheduler. If the scheduler is not running, sam-
pling will not begin until the scheduler is started or resumed. The scheduler is con-
trolled externally from NightProbe, by either NightSim, the rtcp(1) command, or
a program using the Frequency Based Scheduler API (see fbsconfigure(3)).
NightSim can be launched from the Tools menu

If the timing source is Trigger API, sampling will begin on the next receipt of a
NightProbe Trigger Client's sample request on the NightProbe Trigger Queue. If the
NightProbe Trigger Client is not yet running, sampling will not begin until the Trig-
ger Client program is started.

If NightTrace output has been selected, samples will be discarded if an associated
NightTrace daemon is not running. They will begin to be collected when the dae-
mon initiates. A NightTrace daemon can be launched via the ntraceud(1) com-
mand or from the NightTrace graphical interface which can be launched from the
Tools menu.

Stop

Accelerator: Ctrl+P

Pressing Stop halts sampling. The Stop button will be desensitized unless Start
has already been pressed. The sampler process remains in a connected state. Sam-
pling will resume when Start is pressed. Note that if the selected timing source is
the Frequency Based Scheduler, pressing Stop does not stop the scheduler --
it merely halts sampling. This will not result in scheduler overruns, as the sampler
process continues to cycle, but without sampling activity.

Sample

Accelerator: Ctrl+L

Pressing Sample causes a single sample to be obtained from the sampler process.
The Sample button will be desensitized unless Connect has already been pressed
(see “Connect” on page 3-10) and the selected timing source is On Demand (see
“On Demand” on page 3-13).
3-11

NightProbe RT User’s Guide
Session Overview Area 3

The Session Overview Area provides primary access and control over the five main con-
figurable areas of data recording:

• Target System Selection (see “Target System Selection” on page 3-12)

• Timer Selection (see “Timer Selection” on page 3-12)

• Output Method (see “Outputs” on page 3-14)

• Target Resources (see “Resources” on page 3-16)

• Probe Items (see “Probe Items” on page 3-18)

NOTE

All icons in the Session Overview Area support right-click pop-up
menu actions which allow you to add, remove, view, and manipu-
late the items. These menus are not available when in the con-
nected state; the session configuration may not be modified while
connected. In addition, double-click may be used to access prop-
erties where applicable.

Target System Selection 3

To the right of the Target System icon, the name of the target system is displayed.

Right-clicking the icon will display a menu which contains Properties.... Selection of
that menu option launches the Target Server dialog which allows you to change the tar-
get system, the user name, and the scheduling attributes of the sampler process. This dia-
log may also be launched by double-clicking the Target System icon.

See “Target Server Selection” on page 4-1 for more information.

Timer Selection 3

To the right of the Timer icon, the description of the selected timing source is displayed.
3-12

NightProbe Main Window
Right-clicking the Timer icon displays the following menu:

By default, On Demand sampling is selected.

On Demand

The sampler will sample the variables only when the Sample button in the Sampler
Control Area is pressed.

System Clock...

Launches the Set System Timer dialog (see “Set System Timer” on page 5-1)
which allows you to chose the rate at which sampling will occur.

Frequency Based Scheduler...

Launches the Set FBS Timer dialog (see “Set FBS Timer” on page 5-3) which
allows you to chose the scheduler ID and period at which samples should be taken.
Use of a frequency-based scheduler as the timing source allows for synchronization
of data sampling with the target application, if that application is also scheduled on
the same frequency-based scheduler.

Trigger API...

Launches the Set Trigger Timer dialog (see “Set Trigger Timer” on page 5-6)
which allows the user to specify the name of the NightProbe Trigger Server Queue
on the target system corresponding to that specified in the np_trigger_open()
call made by the NightProbe Trigger Client. See “NightProbe Trigger API” on page
15-20 for more information.

Selecting the Properties... option from the Timer option menu will launch the appro-
priate timing source dialog so that you can make adjustments.

Selection of a timing source may also be initiated using the Timer menu (see “Timer” on
page 3-4) on the menu bar of the NightProbe main window.
3-13

NightProbe RT User’s Guide
NOTE

The timing source may not be changed while the sampler is in the
connected state. The Timer option menus will be disabled while
connected.

Outputs 3

The Outputs icon lists all outputs you select. The list can be expanded or collapsed by
clicking the control box to the left of the icon.

Right-clicking the icon will display the following menu:

File Output...

Launches the File Output dialog which allows you to specify a pathname for the
file to which data samples will be written. See “File Output” on page 6-1 for more
information. A file icon and the name of the selected file will be added to the list of
Outputs.

NightTrace Output...

Launches the NightTrace Specification dialog which allows you to configure
how NightTrace will capture and possibly display the data. See “NightTrace Out-
put” on page 6-3 for more information. An icon representing NightTrace will be
added to the list of Outputs.

List Window Output

Displays a List Viewer window and adds a List Window icon to the list of Out-
puts. The list viewer displays the names and values of all Probe Items in a scrol-
lable text area. See “List Viewer” on page 6-10 for more information.

Spreadsheet Output

Displays the Spreadsheet Viewer window and adds a Spreadsheet Window icon
to the list of outputs. The Spreadsheet Viewer displays variables in a config-
urable grid and allows for modification of variables as well. See “Spreadsheet
Viewer” on page 6-13 for more information.
3-14

NightProbe Main Window
Program Output

Launches the Program Output dialog which allows you to specify a program that
will be used to process the data recording output using the NightProbe Datastream
API (see “NightProbe Datastream API” on page 15-1). See “Program Output” on
page 6-14 for more information.

Multiple outputs can be added to the list, but only one instance of each output option can
be present at any given time.

Once an item is added to the output list, right-clicking the icon representing it will display
the following menu:

Remove Output

Removes the selected item from the list.

Properties...

Launches the appropriate output properties window which allows you to modify
configurable settings.

Selection of an output may also be initiated using the Output menu (see “Output” on
page 3-4) on the menu bar of the NightProbe main window.

NOTE

Items in the Outputs list can not be removed nor their properties
modified while in the connected state. While connected, the out-
put menus are disabled.
3-15

NightProbe RT User’s Guide
Resources 3

The Resources icon lists all target resources you select. The list can be expanded or
collapsed by clicking the control box to the left of the icon.

Right-clicking the icon will display the following menu:

Add Program...

Launches the Program Window which allows you to specify a program file, pro-
cess name, and process ID. See “Program Window” on page 7-1 for more informa-
tion.

Add PCI Device...

Launches the PCI Device window which allows you to specify a PCI device
which you wish to probe. The device may be specified using the Vendor ID, Device
ID, Region Number, and Slot Number or can be selected from a descriptive list. See
“PCI Device Window” on page 8-1 for more information.

Add Shared Memory...

Launches the Shared Memory window which allows you to select a shared mem-
ory segment which you wish to probe. The segment may be selected by IPC Key,
IPC Shared memory ID, IPC Key File pathname, or POSIX Shared Memory name.
See “Shared Memory Window” on page 9-1 for more information.

Add Mapped Memory...

Launches the Mapped Memory window which allows you to specify a device
pathname which will be mapped and probed. The device may be /dev/mem,
another device, or any file that the mmap(2) system service supports mapping. See
“Mapped Memory Window” on page 10-1 for more information.
3-16

NightProbe Main Window
Once a resource is added to the output list, right-clicking the icon representing it will dis-
play a menu similar to the following:

Add Item from resource...

Launches the Item Browser window which allows you to choose variables that
you want to probe in that program. This menu option is not available for non-pro-
gram resources. See “Item Browser” on page 11-1 for more information.

New Item for resource...

Launches the Item Definition window which allows you to create artificial vari-
ables by browsing program files for types, selecting a desired type, and specifying
resource addresses or offsets to the new items. These new items are not allocated by
NightProbe in the target resource. They merely represent a view of a location that
already exists in the resource. See Chapter 12, “Item Definition Window” for more
information.

Remove resource

Removes the selected resource from the list. Any variables associated with the
resource will also be removed from the Probe Items list.

Properties...

Launches the appropriate resource properties window which allows you to modify
configurable settings.

Selection of a resource may also be initiated using the Resource menu (see “Resource”
on page 3-5) on the menu bar of the NightProbe main window.

NOTE

Resources can not be removed nor their properties modified while
in the connected state. While connected, the resource menus are
disabled.
3-17

NightProbe RT User’s Guide
Probe Items 3

The Probe Items icon lists all target probe items you selected in the order in which they
will be sampled. The list can be expanded or collapsed by clicking the control box to the
left of the icon.

Right-clicking the icon will display the following menu:

Add Item from Program...

Launches the Item Browser window which allows you to select variables from
program files and add them to the list of items to be probed. See “Item Browser” on
page 11-1 for more information.

NOTE

This option is only valid for program resources.

New Item...

Launches the Item Definition window which allows you to create artificial vari-
ables by browsing program files for types, selecting a desired type, and specifying
resource addresses or offsets to the new items. These new items are not allocated by
NightProbe in the target resource, they merely represent a view of a location that
already exists in the resource. See Chapter 12, “Item Definition Window” for more
information.

Once an item is added to the Probe Items list, its name and description will displayed to
the right of the icon representing the item. The description includes the address, bit size,
bit offset, the class of type, and the type name or type declaration.
3-18

NightProbe Main Window
Right-clicking on an item icon will display the following menu:

Enable
Disable

Selection of the Enable or Disable menu options toggles the enabled setting.

If an item in the list is disabled, it is ignored and not included in data samples. Items
may become disabled automatically if they are no longer valid with respect to their
program file (e.g. a variable entered from a previous configuration file was since
removed from the program).

Enabled items are presented with an orange item icon while disabled icons are
white.

Multiple items may be disabled or enabled together using multiple selection.

Move Item Up
Move Item Down

Moves the item in the selected direction. The ordering of items in the list controls
the order in which they are sampled. In most cases, this ordering is unimportant, but
for some hardware devices the order in which items are referenced is critical. Items
may also be reordered by selecting an item and using Shift-UpArrow and Shift-
DownArrow keys.

Properties...

Launches the Item Properties window which allows you to select the default dis-
play format and specify an array slice for array items.

Remove Item

Removes the item from the Probe Items list. Multiple items may be removed
together using multiple selection.
3-19

NightProbe RT User’s Guide
NOTE

Item menus are disabled while in the connected state.
3-20

4
Chapter 4Target Server Selection

4
4
4

The Target Server dialog allows you to specify the system on which the target
resources exist, the login name of the user connecting to the target system, and the run-
time attributes associated with the data monitoring activities on the target. NightProbe
uses a TCP/IP socket connection to the NightStar daemon (nstar.d) on the target sys-
tem to communicate with the NightProbe server.

The Target Server dialog is launched from the Properties... menu option of the Tar-
get icon in the Session Overview Area (see “Session Overview Area” on page 3-12) of
the NightProbe main window.

The Target Server dialog is shown in Figure 4-1.

Figure 4-1. Target Server dialog

Target Hostname

The name of the system to be probed.

Server Runtime...

Presents the Run Time Settings dialog (see “Run Time Settings” on page
4-3) allowing the user to specify the scheduling policy, priority, and CPU bias
for programs running on the target system.

Username

The login name of the user connecting to the target system.
4-1

NightProbe RT User’s Guide
Working Directory

The working directory for the NightProbe Server running on the target system.

Select

Presents a file selection dialog from which to select the working directory.

User Authentication 4

User authentication may be necessary when NightProbe attempts to connect to the target
system as the specified user.

If user authentication is required, the following dialog will be presented when the
Connect button on the NightProbe main window is pressed (see “Sampler Control Area”
on page 3-10).

Figure 4-2. User Authentication dialog

The User Authentication dialog contains the following fields:

User

The name of the user connecting to the target system.

Password

The password for the specified User on the target system.
4-2

Target Server Selection
Once authentication has succeeded, NightProbe will no longer require you to re-authenti-
cate even if you disconnect and reconnect, unless you change the target system or user
name, or exit NightProbe. Note that NightProbe does not store any password information
on disk.

Run Time Settings 4

The Run Time Settings dialog allows you to specify the scheduling policy, priority,
and CPU bias for a particular program and is presented when the user presses:

- the Server Runtime... button on the Target Server dialog (see “Tar-
get Server Selection” on page 4-1)

- the Runtime... button on the Program Output dialog (see “Program
Output” on page 6-14)

The Run Time Settings dialog is shown in Figure 4-3.

Figure 4-3. Run Time Settings dialog

Scheduler Policy

This drop-down menu allows you to select the POSIX scheduling policy for the
specified program. POSIX defines three types of policies that control the way a pro-
cess is scheduled by the operating system. They are SCHED_FIFO (FIFO),
SCHED_RR (Round Robin), and SCHED_OTHER (Time-Sharing).
4-3

NightProbe RT User’s Guide
FIFO

The FIFO (first–in–first–out) policy (SCHED_FIFO) is associated with the
fixed-priority class in which critical processes can run in predetermined
sequence. Fixed priorities never change except when a user requests a
change.

This policy is almost identical to the Round Robin (SCHED_RR) policy.
The only difference is that a process scheduled under the FIFO policy does
not have an associated time quantum. As a result, as long as a process sched-
uled under the FIFO policy is the highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED_RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.

Time-Sharing

The Time-Sharing policy (SCHED_OTHER) is associated with the time-
sharing class, changing priorities dynamically and assigning time slices of dif-
ferent lengths to processes in order to provide good response time to interac-
tive processes and good throughput to CPU-bound processes.

For a full description of the behavior of processes that are scheduled under the
respective policies on RedHawk Linux systems, refer to the “Process Scheduling”
chapter of the RedHawk Linux User's Guide.

Priority

The priority of the program used to process data recording output. The range of pri-
ority values that you can enter is governed by the scheduling policy specified (see
“Scheduler Policy” above). Higher numerical values correspond to more favorable
scheduling priorities.

For example, on RedHawk Linux systems, the priority values for the FIFO class
include 1..99, where 99 is the most urgent user priority available on the system.

For complete information on scheduling policies and priorities on RedHawk Linux
systems, refer to the “Process Scheduling” chapter of the RedHawk Linux User's
Guide.

CPU Bias

This panel of checkbuttons allows you to select the processor or processors on
which a particular program can be scheduled.
4-4

Target Server Selection
You can choose to run the program that processes the data recording output on a dif-
ferent CPU from the CPU on which their shielded application is running, thereby
reducing interference.

All CPUs

Specifies that the program can be scheduled on all available processors.
4-5

NightProbe RT User’s Guide
4-6

5
Chapter 5Timing Source Configuration

5
5
5
6

The selection of the timing source controls when, and at what rate, data sampling will
occur.

On Demand sampling (see “On Demand” on page 3-13) means that samples will only
be taken when you press the Sample button (see “Sample” on page 3-11) on the Night-
Probe main window.

This chapter discusses the dialogs relating to the selection of timing sources:

• Set System Timer (see “Set System Timer” on page 5-1)

• Set FBS Timer (see “Set FBS Timer” on page 5-3)

• Set Trigger Timer (see “Set Trigger Timer” on page 5-6)

Selecting the Properties... menu option from the Timer icon menu in the Session Over-
view Area (see “Session Overview Area” on page 3-12) of the NightProbe main window
will launch the appropriate timing source dialog so that you can make adjustments. Dou-
ble-clicking the Timer icon has the same effect.

See “Timer Selection” on page 3-12 for more information.

Set System Timer 5

Selecting the System Clock... menu option from the Timer icon in the Session Over-
view Area (see “Session Overview Area” on page 3-12) or from the Timer menu of the
NightProbe main window launches the Set System Timer dialog.

Selection of this timing source means the sampler will use the system clock as the timing
source at the interval you select in the dialog.

Figure 5-1. Set System Timer dialog
5-1

NightProbe RT User’s Guide
Sampling Rate

Choose a unit of time measurement using the drop-down menu to the right of the
Sampling Rate text field and then enter the amount of time that should pass
between samples. The interval you select is displayed to the right of the Timer icon
in the Session Overview Area (see “Session Overview Area” on page 3-12).

You can change the interval subsequently by selecting the Properties... option from the
option menu on the Timer icon in the Session Overview Area of the NightProbe main
window. See “Timer Selection” on page 3-12 for more information.
5-2

Timing Source Configuration
Set FBS Timer 5

Selecting the Frequency Based Scheduler... menu option from the Timer icon
menu in the Session Overview Area (see “Session Overview Area” on page 3-12) or from
the Timer menu of the NightProbe main window launches the Set FBS Timer dialog.

Figure 5-2. Set FBS Timer dialog

Selecting this option means that the NightProbe will take samples as directed by a fre-
quency-based scheduler. This allows for synchronization of data sampling with the appli-
cation. This dialog allows the user to configure the sampling interval.

NOTE

The frequency-based scheduler that you specify must be running
by the time you connect NightProbe.

Scheduler Key

A positive integer value that identifies an existing frequency-based scheduler.

Select...

Presents the Select Frequency-Based Scheduler dialog (see “Select
Frequency Based Scheduler” on page 5-4) to select a scheduler that has
already been set up and configured.

Starting Cycle

This field allows you to specify the first minor cycle in which the specified program
is to be wakened in each major frame.

The minor cycle is the smallest unit of frequency maintained by the frequency–
based scheduler. A minor cycle has associated with it a duration, which is the time
5-3

NightProbe RT User’s Guide
that elapses between interrupts generated by the timing source that is attached to the
scheduler.

A major frame is defined as one pass through all of the minor cycles with which a
frequency–based scheduler is configured.

Period

Specifies the frequency with which a specified program is to be wakened in each
major frame. A period of one indicates that the program is to be wakened every
minor cycle; a period of two indicates that it is to be wakened once every two minor
cycles; and so on.

See “Timer Selection” on page 3-12 for more information.

Select Frequency Based Scheduler 5

The Select Frequency Based Scheduler dialog is presented:

- when the user presses the Select... button for the Scheduler Key field
on the Set FBS Timer dialog (see “Set FBS Timer” on page 5-3)

- when the user presses the Select... button for the Key field on the Pro-
gram Output dialog (see “Program Output” on page 6-14)

The Select Frequency Based Scheduler dialog is shown in Figure 5-3:
5-4

Timing Source Configuration
Figure 5-3. Select Frequency Based Scheduler dialog

Choosing the desired scheduler frosm the list populates the Selected field appropriately;
pressing the Select button propagates the choice to the parent dialog.
5-5

NightProbe RT User’s Guide
Set Trigger Timer 5

Selecting the Trigger API... menu option from the Timer icon in the Session Overview
Area (see “Session Overview Area” on page 3-12) or from the Timer menu of the Night-
Probe main window (see “Timer” on page 3-4) launches the Set Trigger Timer dialog.

The NightProbe Trigger API provides a means for synchronizing data capture in a probed
application. While it may be convenient to synchronize samples from the probed applica-
tion, the NightProbe Trigger Client can be any application running on the target system,
including, for example, a custom cyclic scheduler, or a program which monitors interrupts
from a device on the system. The Trigger Client opens a connection to the NightProbe
Trigger Server Queue via a call to np_trigger_open() and “triggers” samples using
the np_trigger() call. See “NightProbe Trigger API” on page 15-20 for more infor-
mation.

The Set Trigger Timer dialog allows the user to specify the name of the NightProbe
Trigger Server Queue on the target system corresponding to the name specified in the
np_trigger_open() call in the NightProbe Trigger Client.

Figure 5-4. Set Trigger Timer dialog

Trigger Name

The name of the NightProbe Trigger Server Queue on the target system which corre-
sponds to the name specified in the np_trigger_open() call in the NightProbe
Trigger Client. See “NightProbe Trigger API” on page 15-20 for more information.

Select...

Presents the Select Synchronized Trigger dialog allowing the user to
select the desired Trigger Server Queue from the target system.
5-6

6
Chapter 6Output Configuration

7
6
6

The selection of the output methods controls where sampled data is sent or viewed.

There are five output methods available:

• File output (see “File Output” on page 6-1)

• NightTrace output (see “NightTrace Output” on page 6-3)

• List Viewer output (see “List Viewer” on page 6-10)

• Spreadsheet Viewer output (see “Spreadsheet Viewer” on page 6-13)

• Program output (see “Program Output” on page 6-14)

File Output 6

The File Output dialog is launched by selecting the File Output... menu item from the
Outputs icon menu (see “Outputs” on page 3-14) or from the Output menu (see “Out-
put” on page 3-4) on the NightProbe main window.

Figure 6-1. File Output dialog

This output option allows you to specify a file as a destination for the output of the
sampler (the recording file).

Output File

Pathname of the file to be used as a destination for the output of the sampler.

Select...

Presents a file selection dialog to select a new or existing file.
6-1

NightProbe RT User’s Guide
The data recording output file subsequently can be processed using the NightProbe Datas-
tream API (see “NightProbe Datastream API” on page 15-1), can be viewed using the List
Window dialog from within NightProbe (see “List Viewer” on page 6-10), or can be dis-
played with the nprobe --input option (see page 2-2).
6-2

Output Configuration
NightTrace Output 6

The NightTrace Output dialog is launched by selecting the NightTrace Output...
menu item from the Outputs icon menu (see “Outputs” on page 3-14) or from the Out-
put menu (see “Output” on page 3-4) on the NightProbe main window.

Figure 6-2. NightTrace Output dialog

This output option allows you to save the sampled data in the form of NightTrace records
that can be streamed to a NightTrace daemon for collection.

Each sampled data value will be logged as a trace event that can be viewed using Night-
Trace. In addition, the value of those data values can be graphed on a NightTrace Data
Graph.

See the NightTrace User’s Guide for more information.

The top portion of this dialog contains a list of items being probed. For each item, the fol-
lowing information is displayed:

Probe Item

The name of the variable being monitored.
6-3

NightProbe RT User’s Guide
Event ID

Unique identifier used as the trace event ID for the trace events associated with this
variable.

Double-clicking on the event ID displays the NightTrace Event ID dialog allow-
ing the user to change the value of the unique identifier for the trace events associ-
ated with this particular variable.

The NightTrace Event ID dialog is shown in Figure 6-3:

Figure 6-3. NightTrace Event ID dialog

Graph

Trace events may appear as either lines or bars of varying height in the Data Graphs
on the NightTrace display page associated with this session of NightProbe. The
height of the bar or line reflects the value of the variable.

Double-clicking in this column displays the NightTrace Graph Style dialog
which allows the user to select the graph style for this particular variable.

The NightTrace Graph Style dialog is shown in Figure 6-4:

Figure 6-4. NightTrace Graph Style dialog
6-4

Output Configuration
Color

Specifies the color of the bar or line representing the trace event associated with the
variable.

Double-clicking on the color presents the Choose Color dialog allowing the user
to change the color of the lines or bars associated with this particular variable in the
Data Graph on the NightTrace display page.

The color can be selected using sliders that control the amount of each of the red,
green, or blue components. Alternately, a color value (e.g. #b22222) or name (e.g.
firebrick) can be entered in the Color Value field.

The Choose Color dialog is shown in Figure 6-5:

Figure 6-5. Choose Color dialog

Right-clicking on one of the items in this top portion displays the following pop-up menu
for that item:
6-5

NightProbe RT User’s Guide
Graph with line

Values for the particular Probe Item associated with this pop-up menu will be
graphed as lines of varying height in the Data Graph on the NightTrace display page
associated with this session of NightProbe. The height of the line reflects the value
of the variable.

Graph with fill

Values for the particular Probe Item associated with this pop-up menu will be
graphed as bars of varying height in the Data Graph on the NightTrace display page
associated with this session of NightProbe. The height of the bar reflects the value
of the variable.

Do not graph

Specifies that the values for the particular Probe Item associated with this pop-up
menu will not be graphed in the Data Graph on the NightTrace display page associ-
ated with this session of NightProbe.

Set trace event ID...

Displays the NightTrace Event ID dialog (see Figure 6-3) allowing the user to
change the value of the unique identifier for the trace events associated with the par-
ticular Probe Item associated with this pop-up menu.

Set graph color...

Displays the Choose Color dialog allowing the user to change the color of the
lines or bars in the Data Graph on the NightTrace display page associated with the
particular Probe Item associated with this pop-up menu.
6-6

Output Configuration
Graph all items with line

Values for all Probe Items will be graphed as lines of varying height in the Data
Graph on the NightTrace display page associated with this session of NightProbe.
The height of the line reflects the value of the variable.

Graph all items with fill

Values for all Probe Items will be graphed as bars of varying height in the Data
Graph on the NightTrace display page associated with this session of NightProbe.
The height of the bar reflects the value of the variable.

Do not graph any items

Specifies that none of the values for any Probe Items will be graphed in the Data
Graph on the NightTrace display page associated with this session of NightProbe.

The bottom portion of the dialog contains the following fields:

NightTrace Directory

NightProbe generates support files that will be used by NightTrace. This directory
specifies where NightProbe should save them.

The default location is the current working directory.

Select...

Presents a file selection dialog from which to select the directory in which to
store the generated NightTrace configuration files.

Key File

The Key File helps to synchronize the transfer of data from NightProbe to Night-
Trace. When the NightTrace daemon is started, it is given the value of this key file
so that it can receive the trace event data from NightProbe. For instance, if the key
file was /tmp/mykeyfile, the NightTrace daemon could be invoked with the key
file:

ntraceud /tmp/mykeyfile

Select...

Presents a file selection dialog from which to select the key file.

Thread Name

Trace events in NightTrace are associated with a particular thread. Trace events
associated with the data streamed from this NightProbe session will have the value
of this field as their thread name in NightTrace. This can be useful in cases where
6-7

NightProbe RT User’s Guide
data is streamed to NightTrace from multiple data sources; the thread name can help
to determine the data source.

The default Thread Name for data being streamed to NightTrace from Night-
Probe is nprobe.

Session File

Session configuration files contain information (such as display page configurations
and daemon definitions) specific to a particular session of NightTrace. Information
related to this session of NightProbe will be stored in the file listed here.

Timing Source

Allows the user to select between the system clock and the RCIM tick clock as the
timing mechanism used for trace record timestamps.

Launch on next connect

When this option is selected, NightTrace will be started the next time that Night-
Probe connects to the target application (see “Sampler Control Area” on page 3-10).

You may then start the daemon either through the NightTrace GUI or by invoking
the user daemon ntraceud(1) from the command line.

If NightProbe disconnects from the target application and changes are made in this
dialog, NightTrace must reload its configuration files to be informed of the changes.

NOTE

If this option is not selected, NightTrace may be started by issuing
ntrace(1) on the command line or by selecting the Night-
Trace Analysis menu item from the Tools menu on the Night-
Probe main window (see “Tools” on page 3-6). See the Night-
Trace User’s Guide for more information on this tool.

Figure 6-2 shows a NightTrace display page generated using the NightTrace Output
method. Data Graphs for two variables appear on the grid. The Data Graph associated
with the variable c_global_int contains red bars of varying heights; the Data Graph
associated with the variable c_static_int consists of blue lines of varying heights.
6-8

Output Configuration
Figure 6-6. NightTrace display page
6-9

NightProbe RT User’s Guide
List Viewer 6

The List Viewer window is launched by selecting the List Window Output menu
item from the Outputs menu (see “Outputs” on page 3-14) or from the Output menu
(see “Output” on page 3-4) on the NightProbe main window.

Figure 6-7. List Viewer window

The List Viewer window (shown in Figure 6-7) is the simpler of the two viewing
windows. It allows you to:

• view a scrolled text report on the sampled data

• view previously recorded data files as text within a scrolled window

• display sampled data after every sample, after a set number of samples, or
upon demand

The List Viewer window contains:

• Menu Bar (see “Menu Bar” on page 6-11)

• Viewing Area

• Control Area (see “Control Area” on page 6-12)
6-10

Output Configuration
Menu Bar 6

The List Viewer window menu bar contains File and Help menus. These are described
in the next two sections.

File 6

Mnemonic: F

Figure 6-8. File menu

New

Mnemonic: N
Accelerator: Ctrl+N

This option allows you to clear the scrolled text viewing area. If you are monitoring
a running program, you will not be able to recall the erased information in this
window.

Open Data File...

Mnemonic: O
Accelerator: Ctrl+O

This option allows you to open a data file that was created using the File Output
option on the Output menu. The data file will be translated to ASCII text and dis-
played in the scrolled text viewing area.

Save As Text...

Mnemonic: A
Accelerator: Ctrl+S

This option allows you to save the current contents of the text area (including what
is not visible in the viewing area) to a file. You will be presented with a file selection
dialog with which to choose a file name.

Close Window

Mnemonic: C
Accelerator: Ctrl+W
6-11

NightProbe RT User’s Guide
Using this option closes this window and removes it from the Outputs list.

Help 6

Mnemonic: H

The Help menu operates exactly like the menu provided in the NightProbe main window.
It lists a number of topics on which help is available, and selecting any topic will display a
help window.

See “Getting Help” on page 2-3 for details.

Control Area 6

The Control Area appears at the bottom of the List Viewer window. It allows you to
control when new information is added to the viewing area. When using the On
Demand timing source (see “On Demand” on page 3-13), sample data is displayed each
time a new sample is recorded. Because intermediate refreshes of the display are not nec-
essary when using On Demand timing, the Control Area is unavailable while connected.
The Control Area will remain available using any other timing source.

Auto Refresh

The Auto Refresh checkbox and text entry field control how often the sampled
values are displayed. The List Viewer is designed for displaying values at human-
readable rates, not necessarily displaying all sampled values (especially if the sam-
pling rate is extremely fast).

Refresh

The Refresh button can be used when Auto Refresh is turned off. The
Refresh button gets the most recent sample taken and displays it in the List
Viewer window. Note that the Refresh button does not cause the sampler to take
a new sample or record a sample to a file.
6-12

Output Configuration
Spreadsheet Viewer 6

The Spreadsheet Viewer window is launched by selecting the Spreadsheet Out-
put menu item from the Outputs icon menu (see “Outputs” on page 3-14) or from the
Output menu (see “Output” on page 3-4) on the NightProbe main window.

Figure 6-9. Spreadsheet Viewer window

The Spreadsheet Viewer as shown in Figure 6-9, allows you to monitor and modify
variables while the program is running. The Spreadsheet Viewer window has many
configuration options and is described in detail in its own chapter, Chapter 14, “Spread-
sheet Viewer”.
6-13

NightProbe RT User’s Guide
Program Output 6

Mnemonic: P

The Program Output dialog is launched by selecting the Program Output menu item
from the Outputs icon menu (see “Outputs” on page 3-14) or from the Output menu
(see “Output” on page 3-4) on the NightProbe main window.

This dialog allows you to specify a program that will be used to process the data recording
output using the NightProbe Datastream API (see “NightProbe Datastream API” on page
15-1).

Figure 6-10. Program Output dialog

Process Name

The name of the program used to process the data recording output streamed from
NightProbe.

Select...

Presents a file selection dialog from which to select the desired program.
6-14

Output Configuration
NOTE

Pathnames are relative to the host system.

Process Arguments

Any arguments to be passed to the program are entered in this field.

Working Directory

The current working directory for the program.

Select...

Presents a file selection dialog from which to select the current working direc-
tory.

NOTE

Pathnames are relative to the host system.

Program Output

If specified, stdout from the program used to process the data recording output is
redirected to this file.

Select...

Presents a file selection dialog from which to select the output file.

NOTE

Pathnames are relative to the host system.

Launch via

Indicates where the program used to process the data recording output should be
executed:

NightProbe GUI

where the GUI portion of NightProbe is running

NightProbe Server

where the probed application is running
6-15

NightProbe RT User’s Guide
Runtime...

Presents the Run Time Settings dialog (see “Run Time Settings” on page 4-3)
allowing the user to specify the scheduling policy, priority, and CPU bias for the
program used to process the data recording output streamed from NightProbe.

Process DISPLAY

When an output program uses the X Window System for display purposes, a display
device is required. This field allows the user to specify the X display to be used by
the output program on the target system. The value entered here will be set in the
DISPLAY environment variable of the program being invoked.

This field is not relevant to output programs which do not use the X Window Sys-
tem.

On FBS

This checkbox should be checked if the program processing the data recording out-
put is to be scheduled on the frequency-based scheduler.

Scheduling the program in cycles unused by the probed application allows for mini-
mal interference with that application.

Key

This field allows you to specify the key of the frequency–based scheduler that you
wish to use. The key is a user–chosen numeric identifier with which the scheduler is
associated.

Select...

Presents the Select Frequency Based Scheduler dialog (see “Select
Frequency Based Scheduler” on page 5-4) allowing you to select a frequency-
based scheduler on the target system.

Start Cycle

This field allows you to specify the first minor cycle in which the specified program
is to be wakened in each major frame. Enter a number ranging from zero to the total
number of minor cycles per frame minus one.

Selecting a start cycle which is not used by the probed application will reduce the
interference with that application.

Period

This field allows you to establish the frequency with which the specified program is
to be wakened in each major frame. A period of one indicates that the specified
program is to be wakened every minor cycle; a period of two indicates that it is to be
wakened once every two minor cycles, etc. Enter the number of minor cycles repre-
senting the frequency with which you wish the program to be wakened. This num-
6-16

Output Configuration
ber can range from zero to the number of minor cycles that compose a frame on the
scheduler.

On Disconnect

This selection determines how NightProbe handles the program which processed the
data recording output when NightProbe disconnects from the target program.

Release Program

Allow the program which processed the data streamed from NightProbe to
continue running after NightProbe has disconnected from the target program
(see “Sampler Control Area” on page 3-10).

Terminate Program

Terminates with SIGTERM the program which processed the data streamed
from NightProbe after NightProbe has disconnected from the target program
(see “Sampler Control Area” on page 3-10).
6-17

NightProbe RT User’s Guide
6-18

7
Chapter 7Program Window

8
7
7

The Program Window specifies a program to be probed.

It is launched by selecting the Add Program... menu item from the Resources icon
menu (see “Resources” on page 3-16) or from the Resource menu (see “Resource” on
page 3-5) on the NightProbe main window.

The Program Window is shown in Figure 7-1.

Figure 7-1. Program Window

Resource Tag

A Resource Tag acts as an identifier for the resource. It is used to maintain rela-
tionships between variables and resources in the session configuration file so that
configurations may be saved and reloaded in the future.

A resource tag begins with an alphabetic character and is followed by a contiguous
series of non-blank characters.

A unique resource tag is assigned when the window is launched. The default value
of this tag corresponds to the basename of the value used in the Process Name
field when the Add button is pressed.

If the tag name is modified, it will be adjusted if it conflicts with another resource.
In such cases, NightProbe will append an underscore and number to the value of the
Resource Tag field when the Add button is pressed and pop up a dialog indicat-
ing the conflict and tag adjustment.

Furthermore, if a resource tag containing illegal characters is entered, NightProbe
will construct a legitimate alternative and ask the user for approval.
7-1

NightProbe RT User’s Guide
Symbol File

A Symbol File is an executable file which contains symbolic and debug informa-
tion that allows NightProbe to identify and list variables that can be probed.

A Symbol File is not strictly required for probing a process, but without it, you
can only define artificial variables using the Item Definition dialog.

If no Symbol File is specified, but a filename is specified for the Process
Name, NightProbe will automatically attempt to use that filename as the symbol
file.

If you specify a file name for the Symbol File and have not specified a value for
the Process Name, NightProbe automatically fills in the Process Name with
the specified file name.

If specified, the Symbol File must exist, be accessible from the host system, and
be a valid executable program file containing symbolic debugging information.

Select...

Presents the Select Symbol File for Resource dialog, a file selection
dialog allowing the user to navigate to the directory where the symbol file is
located and select it.

Process Name

A Process Name is required in order to probe programs. The Process Name
is used to identify running processes when no PID is specified, or when the speci-
fied PID cannot be found.

When attempting to connect, if the specified PID is not found, NightProbe will
attempt to locate a process that matches the Process Name. If a matching pro-
cess can be located, NightProbe pops up a dialog indicating the situation and asks if
the connection should proceed or be terminated.

Normally, the Process Name and Symbol File are the same but they do not
have to be. The Process Name could be a file name of a stripped executable.
The Process Name file does not have to exist on the host system.

The Process Name is the only required piece of information that must be entered
in this dialog. It is normally sufficient to just type in the name of the executable file
the Process Name text field or select it using the Select... file dialog and then
click Add to exit the dialog.

Select...

Presents the Select Pathname for Resource dialog, a file selection dia-
log allowing the user to navigate to the directory where the executable is
located and select it.
7-2

Program Window
PID

The PID is an optional field which specifies a specific process ID to probe.

If the PID is left blank or if the specified PID is not running when you connect,
NightProbe will automatically attempt to locate a running process that matches the
Process Name. If the PID was blank, NightProbe silently proceeds to connect
using the process ID it located. If the PID was not blank, NightProbe will pop up a
dialog indicating the newly located PID and ask whether the connection should pro-
ceed or be terminated.

Select...

The Select... button brings up the Select Process ID dialog, which pre-
sents a list of the process IDs, owner user names, and process names running
on the target system and allows you to select one for monitoring. Selecting a
file in the Select Process ID dialog automatically fills in the Resource
Tag, Symbol File, Process Name and PID in the Program Window.

Figure 7-2. Select Process ID dialog

7-3

NightProbe RT User’s Guide
Filters are patterns constructed using standard regular expression syntax as
defined by regex(7). The default Filter is “*” which means that all pro-
cesses are displayed. An empty filter shows all processes as well.

Clicking on the PID, Owner, or Name headings will sort the list of pro-
cesses using that field as the sort key. Or, if that field already was the sort key,
it will reverse the order of the sort.

When you use the Select Process ID dialog to select a program, Night-
Probe uses information available in the target's /proc file system to obtain
the full pathname of the executable program on the target file system. If this
pathname is not the same on the host file system, you may need to modify the
selected pathname.

If the executable file selected has no symbolic debug information within (for
example, if it is a stripped executable file), you will need to specify a symbol
file pathname, relative to the host system, containing the additional symbolic
debugging information needed to load symbol information.
7-4

8
Chapter 8PCI Device Window

9
8
8

The PCI Device Window specifies a PCI device to be monitored or recorded.

It is launched by selecting the Add PCI Device... menu item from the Resources
icon menu (see “Resources” on page 3-16) or from the Resource menu (see “Resource”
on page 3-5) on the NightProbe main window.

The PCI Device Window is shown in Figure 8-1.

Figure 8-1. PCI Device WIndow

The PCI Device Window is only available for target systems running RedHawk Linux.
PCI device mapping depends on the Base Address Register file system extension to
/proc/bus/pci , w h i ch i s o n l y a v a i l a b l e u n d e r R e d H a w k L i n u x .
(bar_scan_open(3))

Resource Tag

A Resource Tag acts as an identifier for the resource. It is used to maintain rela-
tionships between variables and resources in the session configuration file so that
configurations may be saved and reloaded in the future.

A resource tag begins with an alphabetic character and is followed by a contiguous
series of non-blank characters.
8-1

NightProbe RT User’s Guide
A unique resource tag is assigned when the window is launched.

If the tag name is modified, it will be adjusted if it conflicts with another resource.
In such cases, NightProbe will append an underscore and number to the value of the
Resource Tag field when the Add button is pressed and pop up a dialog indicat-
ing the conflict and tag adjustment.

Furthermore, if a resource tag containing illegal characters is entered, NightProbe
will construct a legitimate alternative and ask the user for approval.

Symbol File

A Symbol File is an executable file which contains symbolic and debug informa-
tion that allows NightProbe to identify and list types that can be associated with arti-
ficial variables you associate with the PCI device.

A Symbol File is not required for probing a PCI device, but without it, you can
only define artificial variables using basic numeric and character types in the Item
Definition dialog.

If specified, the Symbol File must exist, be accessible from the host system, and
be a valid executable program file.

PCI Device Specification

PCI devices are probed by mapping regions of PCI memory into the address space
of the sampler process.

Since the memory addresses of devices on the PCI bus are dynamic in nature, the
specification of the device itself is the preferred approach.

Alternatively, if the address is known, you can use the Memory Mapped dialog
using /dev/mem as the device.

NightProbe can only probe PCI devices with mappable register or memory regions.
It cannot probe I/O ports.

Region numbers start at zero for each PCI device and are monotonically increasing.

To specify a PCI device, the following pieces of information are required: Vendor
ID, Device ID, Region Number, and Slot Number.

These fields only accept numeric input and are limited to values in the range 0x0 ..
0xffff. A Region Number of zero corresponds to the first mappable region for
the device.

The Slot Number is not always required. It is required only to differentiate
between two or more devices having identical Vendor and Device IDs installed
on the same system. If it is left blank, when connecting and their are multiple such
devices, NightProbe will allow you to select the appropriate device using the PCI
Device Selection window. If you choose not to select a device, NightProbe will
issue a diagnostic and terminate the connection.

If these values are readily available, you can enter them in the text fields.
8-2

PCI Device Window
Alternatively, pressing the Search... button will launch the PCI Device Selec-
tion window:

Figure 8-2. PCI Device Selection Window

The PCI Device Selection Window presents an interactive PCI device browser
containing a list of PCI devices and their mappable regions organized in a tree.

The tree contains a list of all PCI devices installed on the target system.

PCI devices having mappable registers, or regions, are shown with an expandable
control box to the left of their icon. Click the control box to see the mappable
regions for each device.

The Select button will remain desensitized until you select a mappable region
node. Since devices without mappable regions are not able to be probed by Night-
Probe, the Select button will remain desensitized if you select a PCI device node.

If the Vendor ID, Device ID, or Slot Number text fields of the PCI Device
Window contain data when the Search... button is pressed, a message dialog asks
whether you wish to filter the list of PCI devices by the values of those fields or
would prefer to see the complete list of PCI devices on the target system.

If you select the filtering option, but no PCI devices match the supplied values, a
diagnostic will be issued and the entire list of PCI devices will be presented in the
tree.
8-3

NightProbe RT User’s Guide
Offset

By default, the Offset value field is set to zero. This value defines the base offset
from the beginning of the selected PCI device memory region for all artificial vari-
ables to be associated with the region. The Offset in the Item Definition dialog
is added to the base offset defined here.

Read Only

Optionally, the Read Only checkbox may be activated. If selected, the mapping to
the PCI device’s memory region will be done in read-only mode to prevent acciden-
tal modification when using the Spreadsheet Viewer.
8-4

9
Chapter 9Shared Memory Window

10
9
9

The Shared Memory Window specifies a shared memory segment to be monitored or
recorded.

It is launched by selecting the Add Shared Memory. . . menu item from the
Resources icon menu (see “Resources” on page 3-16) or from the Resource menu
(see “Resource” on page 3-5) on the NightProbe main window.

The Shared Memory Window is shown in Figure 9-1.

Figure 9-1. Shared Memory WIndow

Resource Tag

A Resource Tag acts as an identifier for the resource. It is used to maintain rela-
tionships between variables and resources in the session configuration file so that
configurations may be saved and reloaded in the future.

A resource tag begins with an alphabetic character and is followed by a contiguous
series of non-blank characters.

A unique resource tag is assigned when the window is launched.
9-1

NightProbe RT User’s Guide
If the tag name is modified, it will be adjusted if it conflicts with another resource.
In such cases, NightProbe will append an underscore and number to the value of the
Resource Tag field when the Add button is pressed and pop up a dialog indicat-
ing the conflict and tag adjustment.

Furthermore, if a resource tag containing illegal characters is entered, NightProbe
will construct a legitimate alternative and ask the user for approval.

Symbol File

A Symbol File is an executable file which contains symbolic and debug informa-
tion that allows NightProbe to identify and list types that can be associated with arti-
ficial variables you create and associate with the shared memory segment.

A Symbol File is not required for probing a shared memory segment, but without
it, you can only define artificial variables using basic numeric and character types in
the Item Definition dialog.

If specified, the Symbol File must exist, be accessible from the host system, and
be a valid executable program file.

Specification

The Specification field contains a menu list describing the method for identifying
the shared memory segment:

IPC Key Value

When this menu option is selected, the value supplied in the Value text field
will be interpreted as a shared memory key as supplied to the shmget(2)
system call. Specification of an IPC_PRIVATE key value is inappropriate and
is disallowed.

The Select... button to the right of the Value text field presents the Select
IPC Shared Memory Segment dialog which provides a list of all exist-
ing shared memory segments on the target system.

The Selec t IPC Shared Memory Segment dialog is shown in
Figure 9-2.
9-2

Shared Memory Window
Figure 9-2. Select IPC Shared Memory Segment dialog

NOTE

Clicking on the Key, ShmID, Owner, Perms, Size or Num
Attached headings will re-sort the list of processes using that
field as the sort key. Or, if that field already was the sort key, it
will reverse the order of the sort.

Filters are patterns constructed using standard regular expression syntax as
defined by regex(7). The default Filter is “*” which means that all shared
memory segments are displayed. An empty filter shows all shared memory
segments as well.

IPC Shared Memory ID

When this menu option is selected, the value supplied in the Value text field
will be interpreted as a shared memory identifier as returned from the
shmget(2) system call.

The Select... button to the right of the Value text field presents the Select
IPC Shared Memory Segment dialog (see Figure 9-2) which provides a
list of all existing shared memory segments on the target system.
9-3

NightProbe RT User’s Guide
IPC Key File Pathname

When this menu option is selected, the value supplied in the Value text field
will be interpreted as a pathname. The shared memory segment will be identi-
fied using the ftok(3) service using the specified pathname and ftok
Project ID value in the text field below the Value text field.

The Select... button to the right of the Value text field presents the Select
IPC Key File Pathname for Resource dialog which provides a stan-
dard file selection dialog to specify the pathname.

NOTE

The filenames provided in the file selection dialog are relative to
the host system, even though the selected file must be accessible
from the target system when NightProbe connects to the target
system.

POSIX Shared Memory Name

When this menu option is selected, the value supplied in the Value text field
will be interpreted as POSIX shared memory object as created by the
shm_open(3) service.

The Select... button to the right of the Value text field presents the Select
POSIX Shared Memory Segment dialog which provides a list of all
existing named POSIX shared memory objects.

The Select POSIX Shared Memory Segment dialog is shown in
Figure 9-3.
9-4

Shared Memory Window
Figure 9-3. Select POSIX Shared Memory Segment dialog

Filters are patterns constructed using standard regular expression syntax as
defined by regex(7). The default Filter is “*” which means that all
POSIX shared memory objects are displayed. An empty filter shows all
POSIX shared memory objects as well.

Value

The contents of this field will be interpreted based on the selection from the Speci-
fication drop-down as described above.

Select...

Pressing this button presents a dialog allowing the user to select an existing
shared memory object or to specify a key file pathname (based on the selec-
tion of the Specification as described above).

ftok Project ID

When IPC Key File Pathname is selected in the Value drop-down, this field
allows the user to provide a proj_id parameter for the ftok(3) key translation
in order to generate a System V IPC key.
9-5

NightProbe RT User’s Guide
The least significant 8 bits (1..255) are used to designate a project ID. Its value must
be non-zero. The user is allowed to specify it here because their application may use
a specific value of proj_id and it is not possible to generate the same key unless
the same proj_id is used.

The defult value is 1.

Offset

The Offset value defaults to zero. This value defines the base offset from the
beginning of the shared memory segment for all variables to be associated with this
shared memory segment. The Offset in the Item Definition dialog is added to the
base offset defined here.

Read Only

If the Read Only checkbox is activated, the attachment of the shared memory
region to the sampler process’s address space will be done in read-only mode, pre-
venting modification of the region via the Spreadsheet Viewer. Selection of the
Read Only checkbox precludes selection of the Create Memory option.

Create Memory

If the Create Memory checkbox is selected, the Size of the shared memory seg-
ment must be specified. When the sampler process connects to the target system, it
will create the shared memory segment if it does not already exist. If it already
exists and is of insufficient size, the connection will fail with a diagnostic.

Permissions

When the Create Memory checkbox is selected, this field allows the user to spec-
ify the permissions with which to create the shared memory segment.

Size

When the Create Memory checkbox is selected, this field allows the user to spec-
ify the size (in bytes) of the shared memory segment.

Bind

If the Create Memory option is selected, you may also select the Bind option and
specify a physical memory address to which to bind the created shared memory seg-
ment. If this option is specified, the address will be passed to the shmbind(2)
system service during connection.

Physical Address

When the Bind checkbox is selected, this field is used to specify the physical mem-
ory address to which to bind the created shared memory segment.
9-6

Shared Memory Window
WARNING

Extreme care is recommended when choosing physical addresses.
Probing inappropriate physical addresses can cause system insta-
bility or crashes.
9-7

NightProbe RT User’s Guide
9-8

10
Chapter 10Mapped Memory Window

11
10
10

The Mapped Memory Window specifies a device or file to monitored or recorded via
memory mapping.

It is launched by selecting the Add Mapped Memory. . . menu item from the
Resources icon menu (see “Resources” on page 3-16) or from the Resource menu
(see “Resource” on page 3-5) on the NightProbe main window.

The Mapped Memory Window is shown in Figure 10-1.

Figure 10-1. Mapped Memory WIndow

Resource Tag

A Resource Tag acts as an identifier for the resource. It is used to maintain rela-
tionships between variables and resources in the session configuration file so that
configurations may be saved and reloaded in the future.

A resource tag begins with an alphabetic character and is followed by a contiguous
series of non-blank characters.

A unique resource tag is assigned when the window is launched.

If the tag name is modified, it will be adjusted if it conflicts with another resource.
In such cases, NightProbe will append an underscore and number to the value of the
Resource Tag field when the Add button is pressed and pop up a dialog indicat-
ing the conflict and tag adjustment.
10-1

NightProbe RT User’s Guide
Furthermore, if a resource tag containing illegal characters is entered, NightProbe
will construct a legitimate alternative and ask the user for approval.

Symbol File

A Symbol File is an executable file which contains symbolic and debug informa-
tion that allows NightProbe to identify and list types that can be associated with arti-
ficial variables you create and associate with the mapped memory segment.

A Symbol File is not required for probing a mapped memory segment, but without
it, you can only define artificial variables using basic numeric and character types in
the Item Definition dialog.

If specified, the Symbol File must exist, be accessible from the host system, and
be a valid executable program file.

Device Pathname

A Device Pathname must be specified. It identifies the device or file that will be
mapped into the sampler process’s memory via the mmap(2) system service.

The specified pathname does not have to be accessible from the host system.

The Select... button to the right of the Device Pathname text field provides a
standard file selection dialog to locate specify the pathname.

NOTE

The pathnames provided in the file selection dialog are relative to
the host system, even though the selected file must be accessible
from the target system when NightProbe connects to the target
system.

System memory may be probed by specifying /dev/mem as the Device Path-
name.

WARNING

Extreme care is recommended in probing system memory as this
can easily destabilize or crash the system

Offset

An Offset must be specified. By default, the Offset value field is set to zero. This
value defines the base offset from the beginning of the mapped memory segment for
all variables to be associated with this mapped memory segment. The Offset in the
Item Definition dialog is added to the base offset defined here.
10-2

Mapped Memory Window
Size

The Size of the memory segment must be specified. When NightProbe connects to
the target system, if the specified size exceeds the size of the device specified in the
Device Pathname text field, the connection will fail with a diagnostic.

Read Only

The Read Only checkbox may be activated. If activated, the memory mapping
will be done in a read-only mode preventing modification of the probed file or
device from the Spreadsheet Viewer window.
10-3

NightProbe RT User’s Guide
10-4

11
Chapter 11Item Browser

12
11
11

The Item Browser allows you to navigate the list of variables in a program symbol file
and select variables to be probed.

It is launched by selecting the Add Items from Program... menu item from the
Probe Items icon menu (see “Probe Items” on page 3-18) or from the Resource menu
(see “Resource” on page 3-5) on the NightProbe main window.

The Item Browser is shown in Figure 11-1:

Figure 11-1. Item Browser

The top portion of the Item Browser consists of the Interactive Variable Browser (see
“Interactive Variable Browser” on page 11-3) which provides expandable and collapsible
lists of entities organized in a tree containing scopes, variables, and components of com-
posite variables.
11-1

NightProbe RT User’s Guide
The remaining fields are described below:

Scope Filter

The Scope Filter allows a regular expression to be applied to the entire tree of
lists that contain variables. The expression should adhere to the syntax as defined
by regex(7). The expression is not automatically bound to the start or end of an
item name. Thus to filter scopes that start with “sched_”, you would enter the reg-
ular expression:

^sched_.*

In addition, an empty filter or the pattern "*" show all scopes.

Item Filter

The Item Filter allows a regular expression to be applied to all variables in the
tree. The expression should adhere to the syntax as defined by regex(7). The
expression is not automatically bound to the start or end of a name. Thus to filter
variables that end with “_counter”, you would enter the regular expression:

.*_counter$

Item filtering stops at the variable level, it is not applied to components of composite
variables.

In addition, an empty filter or the pattern "*" show all items.

Item to Add

Variables may be directly added to the list of Probe Items of the NightProbe main
window by typing their fully-expanded name in the Item To Add text field.

See “Variable Name Notation” on page C-1 for information on how to specify a
variable in fully-expanded name format.

For array variables, a subscript or slice may be added to the name. See “Array
Slices” on page C-2 for information on array slice syntax.

For record or structure variables, a component may be specified.

When the Add button is pressed, the variable is added to the Probe Items list in
the Session Overview Area of the NightProbe main window. If the variable does not
match any existing eligible variable in the symbol file, it will be added in a disabled
state and its description will indicate “no matching symbol”. Variables in the
Probe Items list which are in a disabled state have a white icon.
11-2

Item Browser
Interactive Variable Browser 11

The Interactive Variable Browser appears at the top of the Item Browser and provides
expandable and collapsible lists of entities organized in a tree containing scopes, variables,
and components of composite variables. The root of the tree is a list of all programs that
have an associated symbol file.

For each node in the tree that has children, the list can be expanded or collapsed by click-
ing the control box to the left of the icon.

Keyboard traversal is also supported within the tree:

Up Arrow

Pressing the Up Arrow key will cause the node immediately above the current node
in a list of siblings to be selected unless the top node in a list has been reached. If
the top node has been reached, the key has no effect.

Down Arrow

Pressing the Down Arrow key will cause the node immediately below the current
node in a list of siblings to be selected unless the bottom node in a list has been
reached. If the bottom node has been reached, the key has no effect.

Left Arrow

Pressing the Left Arrow key will cause the parent of the current list to be selected.
When a root node is reached, the key has no effect.

Right Arrow

Pressing the Right Arrow key will cause automatically expand the current node
and cause the first child node to become selected. If the current node is a leaf, the
key has no effect.

Space

Pressing the Space toggles the expansion setting of the current node. If the current
node has no children, the key has no effect.

For each resource node, there are four main nodes which provide lists of Functions,
Globals, and Files, and Packages which contain scopes and variables.

Functions

The Functions list is populated with the names of identifiable functions within the
symbol file. Functions that contain scopes or variables that can be recorded will
have an expandable control box to their left. Fortran subroutines containing com-
mon blocks are an example of a function which contains a nested scope.
11-3

NightProbe RT User’s Guide
Globals

The Globals list is populated with variables that are defined in the global scope.
Typically these are C and C++ variables declared as extern.

Files

The Files list is populated with all identifiable source files within the symbol file.
Files may contain scopes, such as packages or functions, and static variables
declared outside of functions.

Packages

The Packages list is populated with all identifiable library level Ada packages
within the symbol file. Packages contain other packages or variables that can be
probed.

Variables

Variables appear by name with boxes as their icon. If a variable is a composite type
(an array, structure, or record), it will appear with an expandable control box. All
record and structure components are shown when a record or structure is expanded.
Array components can also be expanded, but are limited by the resource
Nprobe.text.maxArrayExpansion, which defaults to 1000.

To add a variable to the list of Probe Items of the NightProbe main window, select the
variable and click Add. Alternatively, pressing the <Enter> key or double-clicking the
variable adds the selected variable as well. Pressing the <Enter> key also exits the win-
dow immediately after adding the item.

Composite variables may be added as a whole, or individual components may be added.

Variables that have been added to the Probe Items list are indicated with a orange icon.

Variables in source files that were compiled without the symbolic debug option (-g) or are
not elligible to be recorded will not appear in the Item Browser.
11-4

12
Chapter 12Item Definition Window

13
12
12

The Item Definition window allows you to create an artificial variable which is a view
into the associated resource.

It is launched by selecting the New Item... menu item from the Probe Items icon
menu (see “Probe Items” on page 3-18) or from the Resource menu (see “Resource” on
page 3-5) on the NightProbe main window

The Item Definition window is shown in Figure 12-1:

Figure 12-1. Item Definition Window

Item Tag

An I tem Tag is simply a short-hand identifier for the artificial variable being
defined by this dialog.

By default, a unique Item Tag is assigned when the window is launched.
12-1

NightProbe RT User’s Guide
If you modify the Item Tag value and it conflicts with an existing Item Tag name,
a dialog will pop up and request a change.

Base Address or Offset

The Base Address or Base Offset must be defined for the artificial variable
being defined by this dialog.

For artificial variables associated with program resources, the Base Address
should be set to the virtual address you wish to probe within the program.

For artificial variables associated with other resources, the Base Offset should be
set to the offset you wish to view within the memory region of the resource. This
value added to the Base Offset that was supplied in the associated resource selec-
tion window to calculate the final offset of the item in the resource.

Output Format

The Output Format can be selected via the drop-down list. The default setting is
Default , which will cause variable values to be displayed in their natural format as
described in the following table:

Alternatively, you can select a display format from the list.

Define Array

When the Define Array checkbox is selected, the artificial item will be defined as
an array of the type that you select in the Interactive Type Browser (see “Interactive
Type Browser” on page 12-4).

Lower Bound

Specifies the lower bound of the defined array. The value can be set either by enter-
ing the number in the text field or by using the increase/decrease arrows.

Type Class Format

Signed Integers Decimal

Unsigned Integers Hexadecimal

Real Exponential

Fixed Point Exponential

Enumerations Enumeration Image

Character Arrays String

Pointers Hexadecimal
12-2

Item Definition Window
Upper Bound

Specifies the upper bound of the defined array. The value can be set either by enter-
ing the number in the text field or by using the increase/decrease arrows.

The bottom portion of the Item Definition window consists of the Interactive Type
Browser (see “Interactive Type Browser” on page 12-4) which provides expandable and
collapsible lists of entities organized in a tree containing scopes, types, and type compo-
nents.
12-3

NightProbe RT User’s Guide
Interactive Type Browser 12

The Interactive Type Browser appears in the bottom portion of the Item Definition
Window and provides expandable and collapsible lists of entities organized in a tree con-
taining scopes, types, and type components.

For each node in the tree that has children, the list can be expanded or collapsed by click-
ing the control box to the left of the icon.

Keyboard traversal is also supported within the tree:

Up Arrow

Pressing the Up Arrow key will cause the node immediately above the current node
in a list of siblings to be selected unless the top node in a list has been reached. If
the top node has been reached, the key has no effect.

Down Arrow

Pressing the Down Arrow key will cause the node immediately below the current
node in a list of siblings to be selected unless the bottom node in a list has been
reached. If the bottom node has been reached, the key has no effect.

Left Arrow

Pressing the Left Arrow key will cause the parent of the current list to be selected.
When a root node is reached, the key has no effect.

Right Arrow

Pressing the Right Arrow key will cause automatically expand the current node
and cause the first child node to become selected. If the current node is a leaf, the
key has no effect.

Space

Pressing the Space bar toggles the expansion setting of the current node. If the
current node has no children, the key has no effect.

For each resource node, there are four main nodes which provide lists of Functions,
Globals, and Files, and Packages which contain scopes and types.

Functions

The Functions list is populated with the names identifiable functions within the
symbol file. Functions that contain scopes or types that can be recorded will have an
expandable control box to their left.

Globals

The Globals list is populated with basic numeric and character types.
12-4

Item Definition Window
Files

The Files list is populated with all identifiable source files within the symbol file.
Files may contain scopes, such as packages or functions, and types declared outside
of functions.

Packages

The Packages list is populated with all identifiable library level Ada packages
within the symbol file. Packages contain other packages or types.

Types

Types appear by name with boxes as their icon. If a type is a composite type (an
array or structure or record), it will appear with an expandable control box. All
record and structure components are shown when a record or structure is expanded.
Array components can also be expanded, but are limited by the resource
Nprobe.text.maxArrayExpansion, which defaults to 1000.

For resources that do not have symbol files associated with them, only the Globals list
will be populated with types.

For resources that have symbol files, types will appear in the tree only if the associated
source files were compiled with the symbolic debug option (-g). Further, depending on
the compiler version, types that were not applied to a variable in such source files may be
omitted from the tree.

Each type node contains the type name and a description of the type, including any offset
from its composite parent, its bit size, bit offset, and type class (e.g. array, structure, inte-
ger, or record).

To select a type for the new variable being defined in this dialog, select the desired type
node.

A composite type may be added as a whole, or individual components may be added.

If a component of a composite type is added, the offset of the component within the base
composite type will be added to the Base Offset value when the new variable is added
to the list of Probe Items. This association is maintained in the session configuration..

Thus, if a saved configuration is reloaded and the component’s offset had changed due to a
modified symbol file, the component offset is adjusted accordingly.
12-5

NightProbe RT User’s Guide
12-6

13
Chapter 13Item Properties Window

14
13
13

The Item Properties window allows you view and modify some attributes of variables
listed in the Probe Items of the NightProbe main window.

It is launched by selecting the Properties... menu item from the pop-up menu for the
probe item of interest listed under Probe Items (see “Probe Items” on page 3-18) in the
Session Overview Area of the NightProbe main window.

The Item Properties window is shown in Figure 13-1:

Figure 13-1. Item Properties Window

Item Tag

The Item Tag, a short-hand identifier for the item, is displayed here.

Output Format

The setting for the default Output Format is displayed in the drop-down list.

This field can be modified to affect how values of this item are displayed.
13-1

NightProbe RT User’s Guide
The Default setting will cause item value to be displayed in its natural format as
described in the following table:

Description

The Description of the item includes:

Item Address or Offset

The first field in the Description is the virtual address of a real program
variable or the offset of an artificial variable.

For artificial variables which were defined as components of a composite
type, the value displayed here may differ from the value displayed in the
Base Offset field. For such artificial variables, the value displayed here is
the sum of the Base Offset and any offset associated with this component
within the outermost enclosing composite type.

Bit Size and Bit Offset

The second field in the Description is the Bit Size and Bit Offset, dis-
played together, separated by a colon.

Type Class

The third field in the Description is the Type Class, displayed in paren-
theses. Type classes include:

• Enumeration

• Floating Point

• Fixed Point

• Integer

• Record

• Array

• Character

Type Class Format

Signed Integers Decimal

Unsigned Integers Hexadecimal

Real Exponential

Fixed Point Exponential

Enumerations Enumeration Image

Character Arrays String

Pointers Hexadecimal
13-2

Item Properties Window
• Pointer

• (Fortran) Complex

Type Name

The last field in the Description is the Type Name , or short-hand type
declaration if no specific type name is available.

Base Address or Offset

The Base Address of program items or the Base Offset of artificial items is
shown here.

This value may be modified only for artificial variables created with the Item Def-
inition window.

The Base Offset may differ from the offset displayed in the Description field.
This occurs only for artificial items which were defined as components of a compos-
ite type. The final offset of the item is defined by the Base Offset plus the compo-
nent’s offset within the outermost containing composite type.

Array Slice

If the item is an array, the current slice information is shown and may be modified.

If a slice is specified, only those array components are sampled.

See “Array Slices” on page C-2 for more information on array slice syntax.
13-3

NightProbe RT User’s Guide
13-4

14
Chapter 14Spreadsheet Viewer

15
14
14

The Spreadsheet Viewer window provides for both viewing and modifying sampled
data.

It is launched by selecting the Spreadsheet Output menu item from the Outputs icon
menu (see “Outputs” on page 3-14) or from the Output menu (see “Output” on page 3-4)
on the NightProbe main window.

The Spreadsheet Viewer window is shown in Figure 14-1:

.

Figure 14-1. Spreadsheet Viewer window

The Spreadsheet Viewer window:

• allows for flexible placement of data values and labels within a spreadsheet
with user-defined number and sizes of rows and columns

• allows selection and modification of more than one cell at a time

• allows for the spreadsheet layout to be saved and restored

• displays sampled data after every sample, after a set number of samples, or
upon demand

• allows modification of data simply by entering the new value into the
spreadsheet cell

For a tutorial on using the spreadsheet viewer, see “Using the Spreadsheet” on page E-5
for an example using a C++ and C and Ada program.
14-1

NightProbe RT User’s Guide
The Spreadsheet Viewer window consists of the following components:

• Menu Bar (see “Menu Bar” on page 14-2)

• Layout Configuration Status Area (see “Layout Configuration Status Area”
on page 14-11)

• Spreadsheet Viewing Area (see “Spreadsheet Viewing Area” on page
14-12)

• Control Area (see “Control Area” on page 14-12)

Menu Bar 14

The Spreadsheet Viewer window menu bar contains the following menus.

• File (see “File” on page 14-2)

• Selected (see “Selected” on page 14-4)

• Edit (see “Edit” on page 14-8)

• Layout (see “Layout” on page 14-9)

• Help (see “Help” on page 14-11)

Each menu is described in the sections that follow.

File 14

Mnemonic: Alt+F

The File menu on the Spreadsheet Viewer window contains items for creating new
layout files, opening existing layout files, and saving the current layout file.

Figure 14-2. File menu

The File menu allows you to load a previously-saved layout configuration, save the cur-
rent layout configuration to a file, or get a new, clean layout configuration. The File
14-2

Spreadsheet Viewer
menu also contains the means to close the window. The following paragraphs describe the
options on the File menu in more detail.

New

Mnemonic: N
Accelerator: Ctrl+N

This option allows you to clear the cells in the spreadsheet and the layout
configuration.

This item is desensitized when you are connected to the program being monitored.

Open Layout File...

Mnemonic: O
Accelerator: Ctrl+O

This option allows you to open a layout file that was created using the Save Lay-
out File or Save Layout File As options. The layout file saves all information
about how the cells in the spreadsheet are used to display the sampled data. You
will be presented with a file selection dialog from which to choose a filename.

This item is desensitized when you are connected to the program being monitored.

Save Layout File

Mnemonic: S
Accelerator: Ctrl+S

This option allows you to save the spreadsheet layout configuration to the current
layout file. If the spreadsheet viewer is not currently associated with a layout con-
figuration file name, this option is the same as Save Layout File As.

Save Layout File As...

Mnemonic: A

This option allows you to save the spreadsheet layout configuration to a file. You
will be presented with a file selection dialog with which to choose a file name.

You may also save the image of the currently selected cells as text information to a
file by selecting the Save As Text... item from the Selected menu (see “Save as
Text” on page 14-5).

Close Window

Mnemonic: C
Accelerator: Ctrl+W

Using this option closes this window and removes it from the Output list.

This item is desensitized when you are connected to the program being monitored.
14-3

NightProbe RT User’s Guide
Selected 14

Mnemonic: Alt+S

The Selected menu on the Spreadsheet Viewer window contains items for placing
varibles in the spreadsheet, changing the attributes of cells in the spreadsheet, enabling/
disabling of updates, and the alignment of the content with the cells.

Figure 14-3. Selected menu

The Selected menu operates on a group of spreadsheet cells that have already been
selected. Select cells by clicking mouse button 1 with the mouse pointer over the cell, or
by dragging the mouse pointer across a rectangle of cells while mouse button 1 is
depressed. Selected cells will be highlighted.

Place Variables

Mnemonic: V
Accelerator: Ctrl+V

Selecting the Place Variables menu option displays the Spreadsheet Vari-
ables window (see “Spreadsheet Variables” on page 14-6) which contains controls
to place variable cells onto a spreadsheet.

Cell Attributes

Mnemonic: A
Accelerator: Ctrl+A

Selecting the Cell Attributes menu option displays the Cell Attributes dialog
(see “Cell Attributes” on page 14-7) which allows you to view and change various
attributes associated with a spreadsheet cell.

NOTE

The window is only active when a Variable cell is selected.
14-4

Spreadsheet Viewer
Enable Updates

Mnemonic: E
Accelerator: Ctrl+E

Updates the selected cells when new samples are displayed. This reverses the action
of the Disable Updates selection.

Disable Updates

Mnemonic: D
Accelerator: Ctrl+D

Does not update the selected cells when new samples are displayed. These cells
have a darker background color than enabled cells. You would use this option to
hold on to a data value in the display while allowing the sampler to continue running
and updating other values.

Align Left

Mnemonic: L
Accelerator: Ctrl+L

Data values in the selected cells will be aligned with the left edge of the cell.

Align Right

Mnemonic: R
Accelerator: Ctrl+R

Data values in the selected cells will be aligned with the right edge of the cell.

Identify

Mnemonic: I
Accelerator: Ctrl+I

Displays the variable names or addresses with which the selected cells are associ-
ated. The next update will revert to displaying the data values.

Save as Text

Mnemonic: S
Accelerator: Ctrl+Y

Writes as text information to a file the image of the currently selected cells. You
will be presented with a file selection dialog with which to choose a file name.

You may also save the spreadsheet layout configuration to a file by selecting the
Save Layout File As... item from the File menu (see “File” on page 14-2).
14-5

NightProbe RT User’s Guide
Spreadsheet Variables 14

The Spreadsheet Variables dialog is presented when the user selects the Place
Variables... menu item from the Selected menu of the Spreadsheet Viewer win-
dow (see “Spreadsheet Viewer” on page 14-1).

The Spreadsheet Variables dialog is shown in Figure 14-4:

Figure 14-4. Spreadsheet Variables dialog

To use this dialog, first select a cell in the spreadsheet by clicking on it with the mouse.
This will be the starting cell for placing variables.

Next, select the variable or variables you wish to place from the list in the Variable
Placement window. You may place more than one variable at a time.

Below the list of variables are four option menus for controlling placement:

Cell Layout

The Cell Layout menu is used whenever you place more than one variable at once.
It specifies whether to place the variables going down from the starting cell (Verti-
cal layout) or going across the spreadsheet (Horizontal layout).

Label Position

The Label Position menu controls an optional label cell which will be placed
along with the variable cell. The label cell will contain the name of the variable.
You can choose None for no label, or a position relative to the Variable cell (Top,
Bottom, Left, or Right).

Expansion

The Expansion menu specifies what to do with variables that represent composite
types. Selecting None will place all array elements in a single cell. Selecting
Records will automatically expand the record allocating a cell for each individual
component. Selecting Arrays will automatically expand array components as indi-
vidual cells. Selecting Both will expand arrays and records. Expansion is limited to
a single level; components which are themselves composites will not be expanded.
14-6

Spreadsheet Viewer
Direction

The Direction menu is sensitized when composite expansion is selected. Selecting
Horizontal or Vertical will place each composite in its own cell, laid out in the
specified direction.

When you have selected your variables and options, click the OK button to place them on
the spreadsheet and close the window, or the Apply button to place the variables and
leave the window open. The Close button closes the window without placing any vari-
ables.

Cell Attributes 14

The Cell Attributes dialog is presented when the user selects the Cell Attribues...
menu item from the Selected menu of the Spreadsheet Viewer window (see
“Spreadsheet Viewer” on page 14-1).

The Cell Attributes dialog is shown in Figure 14-5:

Figure 14-5. Cell Attributes dialog

Variable
Info

These fields show the variable name and information about the selected cell’s vari-
able. They are read-only text fields. To change a cell’s variable or to create new
variable cells, use the Place Variables option under the Selected menu.

Format

This option menu allows you to choose the output format for the cell.

Array Slice

This field allows you to specify the array indices, if the variable is an array, to dis-
play in the cell. You may specify a single index number or a range of numbers such
14-7

NightProbe RT User’s Guide
as 3..7 or 3:7 for elements 3 through 7, inclusive. For more information about
array slices, see “Array Slices” on page C-2.

Low Caution
High Caution
Low Danger
High Danger

These fields specify limits for the specified variable. They are only appropriate for
use with scalar types. When the value in the cell goes outside these boundaries, the
cell’s background color will change. You can define the colors of these cells with
resources described in “NightStar Resources” on page F-2.

Clicking the OK button applies any changes you have made to the cell and closes the
window. Clicking the Apply button applies the changes without closing the window.
Clicking the Cancel button closes the window without making any changes (this button
will be labeled Close if no changes were made).

Edit 14

Mnemonic: Alt+E

The Edit menu provides the means to perform some editing operations on the cells and
the layout configuration.

Figure 14-6. Edit menu

Cut

Mnemonic: T
Accelerator: Ctrl+X

Removes the layout configuration information from the selected cells and stores that
information in the layout clipboard. The selected cells are cleared.

This item is desensitized when you are connected to the program being monitored.
14-8

Spreadsheet Viewer
Copy

Mnemonic: C
Accelerator: Ctrl+C

Copies the layout configuration information from the selected cells and stores that
information in the layout clipboard. The selected cells are unaffected.

This item is desensitized when you are connected to the program being monitored.

Paste

Mnemonic: P
Accelerator: Ctrl+V

Inserts the contents of the layout clipboard at the current selection point. The layout
clipboard retains its information and can be used again.

This item is desensitized when you are connected to the program being monitored.

Clear

Mnemonic: E
Accelerator: Ctrl+B

Clears the selected cells.

This item is desensitized when you are connected to the program being monitored.

Select All

Mnemonic: A
Accelerator: Ctrl+/

Puts all cells into the “selected” state for other operations.

Deselect All

Mnemonic: S
Accelerator: Ctrl+\

Puts all cells into the “unselected” state.

Layout 14

Mnemonic: Alt+L

The Layout menu provides controls for organizing the display area into a rectangular grid
of spreadsheet cells.
14-9

NightProbe RT User’s Guide
Figure 14-7. Layout menu

Sheet Size

Mnemonic: S

Displays a dialog that allows you to specify the number of rows and columns in the
spreadsheet.

This item is desensitized when you are connected to the program being monitored.

Column Width

Mnemonic: C

Displays a dialog that allows definition of the width (in character positions) of the
currently selected columns.

NOTE

Cell width is limited to 255 characters.

Insert Row

Mnemonic: I

Inserts one row above the current selection point.

This item is desensitized when you are connected to the program being monitored.

Insert Column

Mnemonic: N
14-10

Spreadsheet Viewer
Inserts one column to the left of the current selection point.

This item is desensitized when you are connected to the program being monitored.

Delete Rows

Mnemonic: D

Deletes the selected rows.

This item is desensitized when you are connected to the program being monitored.

Delete Columns

Mnemonic: E

Deletes the selected columns.

This item is desensitized when you are connected to the program being monitored.

Grid Lines

Mnemonic: G

Enables or disables the lines delineating the spreadsheet cells by clicking on the tog-
gle button.

Help 14

Mnemonic: Alt+H

The Help menu operates exactly like the menu provided in the NightProbe main window.
It lists a number of topics on which help is available, and selecting any topic will display a
help window.

See “Getting Help” on page 2-3 for more information.

Layout Configuration Status Area 14

The Layout Configuration Status Area displays the file name of the layout file, if any has
been specified. It also indicates via an icon at the end of the name if there are unsaved
modifications to the layout configuration.
14-11

NightProbe RT User’s Guide
Spreadsheet Viewing Area 14

The Spreadsheet Viewing Area is composed of rows and columns of spreadsheet cells.
Each cell can contain either a text label or the contents of a monitored data location. Enter
text labels merely by selecting the cell and typing the label. Use the Place Variables
menu option (from the Selected menu) to associate a selected cell with a data location.

Data values in the spreadsheet are updated according to the specifications of the Control
Area (see “Control Area” on page 14-12).

You may use the scroll bars below and to the right of the viewing area to see cells that are
not in the current display window.

Once NightProbe has been connected to the target system, you can use the spreadsheet to
modify data values. To modify a variable’s value, click on the variable cell, type a new
value, and press the <Enter> key. Values may be entered as decimal numbers, octal num-
bers when preceded by 0, hexadecimal numbers when preceded by 0x, enumeration con-
stants as identifiers, or character strings when enclosed in double quotes (“).

Control Area 14

The Control Area appears at the bottom of the window. It allows you to control when new
information is added to the viewing area. When using the On Demand timing source
(see “On Demand” on page 3-13), sample data is displayed each time a new sample is
recorded. Because intermediate refreshes of the display are not necessary when using On
Demand timing, the Control Area is unavailable while connected. The Control Area will
remain available using any other timing source. In addition, the Control Area contains a
legend indicating the two caution and two danger colors (see “Cell Color Legend” on page
14-13).

Auto Refresh

The Auto Refresh checkbox and text entry field allow you to display every nth
sample, where n is a value you select. This is useful if you want to monitor a
program while it is running but the sampler is recording values so fast they cannot
be seen. (See also “Invoking NightProbe” on page 2-1 and “NightStar Resources”
on page F-2.)

Refresh

The Refresh button gets the most recent sample taken and displays it in the
Spreadsheet Viewer window. The Refresh button does not cause the sampler
to take a new sample or record a sample to a file.
14-12

Spreadsheet Viewer
Cell Color Legend 14

These four squares are a legend indicating the colors used when the value in a cell exceeds
its defined limits.

Limits for a cell can be set using the Cell Attributes dialog (see “Cell Attributes” on
page 14-4).

You can define the colors of these cells with resources described in “NightStar Resources”
on page F-2.

 represents Low Danger

 represents Low Caution

 represents High Caution

 represents High Danger
14-13

NightProbe RT User’s Guide
14-14

15
Chapter 15NightProbe API

16
15
15

NightProbe provides two sets of APIs for use in applications. The NightProbe Datastream
API (see “NightProbe Datastream API” on page 15-1) provides a basic interface to the
data produced by NightProbe. These data structures and functions allow the user to pro-
cess the data sampled by NightProbe either in real-time or via a previously recorded file.

The NightProbe Trigger API (see “NightProbe Trigger API” on page 15-20) provides an
interface to the NightProbe Trigger Server Queue allowing an application to control the
sampling of data by NightProbe in a synchronized manner.

NightProbe Datastream API 15

The NightProbe Datastream Application Programming Interface provides a basic interface
to the data produced by NightProbe.

This API can be used with data recording output generated by NightProbe using the File
Output and Program Output methods (see “File Output” on page 6-1 and “Program
Output” on page 6-14).

The following sections describe the general format of the data generated by NightProbe
sampling (see “NightProbe Data Format” on page 15-1) as well as the data structures and
functions (see “Data Structures” on page 15-2 and “Functions” on page 15-6) that com-
prise the NightProbe Datastream API.

Sample programs using the NightProbe Datastream API are also provided (see “Sample
Programs” on page 15-13).

NightProbe Data Format 15

This section describes the general format of data generated by NightProbe sampling. This
format is used when you select either the File Output or Program Output method (see
“File Output” on page 6-1 and “Program Output” on page 6-14).

The NightProbe Datastream API allows you to open a previously recorded file and decode
the individual data items, or to consume the data as it is being generated by NightProbe.
In either case, the incoming data is referred to as a datastream.

When the File Output method is selected (see “File Output” on page 6-1), NightProbe
writes the data to a file, and a user program opens that file and passes the file descriptor to
the NightProbe Datastream API calls to decode the data.

When the Program Output method is selected (see “Program Output” on page 6-14), a
user program is launched from NightProbe and its stdin file descriptor is set to the read
15-1

NightProbe RT User’s Guide
end of a socket or pipe. The user program then passes the stdin file descriptor to the
NightProbe Datastream API calls to decode the data.

The following diagram describes the general layout of a datastream:

Figure 15-1. Structure of NightProbe datastream

The NightProbe Datastream API functions provide a simple interface for obtaining infor-
mation about the programs from which the data was obtained, information about the vari-
ables within those programs, and individual data samples. See “Functions” on page 15-6
for more information about these functions.

Data Structures 15

The following data structures are part of the NightProbe Datastream Application Program-
ming Interface:

- np_endian_type (see “np_endian_type” on page 15-3)

- np_handle (see “np_handle” on page 15-3)

- np_header (see “np_header” on page 15-3)

- np_item (see “np_item” on page 15-4)

- np_process (see “np_process” on page 15-4)

- np_type (see “np_type” on page 15-5)

See “Functions” on page 15-6 for information about the functions available in the Night-
Probe Datastream API.
15-2

NightProbe API
np_endian_type 15

np_endian_type is used to represent the endian order of the NightProbe data and of
the host system.

typedef enum np_endian_type_code {
 NP_LITTLE_ENDIAN, /* Addresses designate the Least
 Significant Byte of a value. */
 NP_BIG_ENDIAN, /* Addresses designate the Most
 Significant Byte of a value. */
} np_endian_type ;

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.

np_handle 15

np_handle is a unique integer value denoting a single NightProbe datastream.

typedef int np_handle;

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.

np_header 15

np_header is a structure which is used to describe the processes and items from which
data in the NightProbe datastream originates. This information is needed to interpret the
sample data returned by np_read().

typedef struct {
 int num_items;
 int num_processes;
 int sample_size;
 np_endian_type sample_endian;
 np_process * processes;
 np_item * items;
} np_header ;

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.

SEE ALSO

• “np_endian_type” on page 15-3

• “np_process” on page 15-4

• “np_item” on page 15-4

• “np_read()” on page 15-8
15-3

NightProbe RT User’s Guide
np_item 15

np_item is a structure that describes a single data item present in the NightProbe datas-
tream.

typedef struct np_item np_item;
struct np_item {
 char * name; // name of item
 unsigned bit_offset; // bit offset within each sample
 unsigned bit_size; // atomic size in bits
 unsigned count; // number of atoms
 np_type type; // data type
 unsigned event_id; // NightTrace event ID for item
 np_process * process; // process info
 np_item * link; // next item pointer
};

The item occupies count instances of bit_size bits beginning at bit_offset within
the sample.

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.

SEE ALSO

• “np_process” on page 15-4

• “np_type” on page 15-5

np_process 15

np_process is a structure which contains information about a particular process from
which real-time data originates.

typedef struct np_process np_process;
struct np_process {
 int pid;
 char * name;
 np_process * link;
};

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.
15-4

NightProbe API
np_type 15

The np_type enumeration in the np_item structure may be used (along with size) in
order to determine an appropriate format for displaying a value from the sample buffer.

typedef enum np_type_code {
 NP_VOID_TYPE, /* void */
 NP_CHAR_TYPE, /* signed byte character */
 NP_UNSIGNED_CHAR_TYPE, /* unsigned byte character */
 NP_SHORT_INT_TYPE, /* signed short int */
 NP_UNSIGNED_SHORT_INT_TYPE, /* unsigned short int */
 NP_INT_TYPE, /* signed int */
 NP_UNSIGNED_INT_TYPE, /* unsigned int */
 NP_LONG_INT_TYPE, /* signed long int */
 NP_UNSIGNED_LONG_INT_TYPE, /* unsigned long int */
 NP_FLOAT_TYPE, /* single precision float */
 NP_DOUBLE_TYPE, /* double precision float */
 NP_LONG_DOUBLE_TYPE, /* long double precision float */
 NP_SHORT_LOGICAL_TYPE, /* short logical (boolean) */
 NP_LOGICAL_TYPE, /* logical (boolean) */
 NP_COMPLEX_TYPE, /* Fortran complex type */
 NP_DOUBLE_COMPLEX_TYPE, /* Fortran double complex */
 NP_POINTER_TYPE, /* Pointer to unspecified type */
 NP_FIXED_POINT_TYPE, /* fixed point */
 NP_EXCEPTION_TYPE, /* exception */
 NP_STRUCTURE_BYTES /* structure bytes */
} np_type ;

See “Data Structures” on page 15-2 for other data structures included in the NightProbe
Datastream API.

SEE ALSO

• “np_item” on page 15-4
15-5

NightProbe RT User’s Guide
Functions 15

The following functions are part of the NightProbe Datastream API:

- np_open() (see “np_open()” on page 15-6)

- np_avail() (see “np_avail()” on page 15-7)

- np_read() (see “np_read()” on page 15-8)

- np_close() (see “np_close()” on page 15-9)

- np_format() (see “np_format()” on page 15-10)

- np_error() (see “np_error()” on page 15-11)

np_open() 15

np_open() is used to open and initialize an input NightProbe datastream on an open file
descriptor.

SYNTAX

int np_open (int fd, np_header *header, np_handle *handle);

PARAMETERS

fd file descriptor associated with the file created using the File
Output output method (see “File Output” on page 6-1) which
contains the data recording output

If data recording output is streamed directly from NightProbe
using the Program Output output method (see “Program
Output” on page 6-14), fd should be set to the stdin file
descriptor, 0.

header structure to contain information describing the processes from
which the NightProbe data originates, as well as the number,
names and types of the items appearing in the NightProbe
datastream

handle a unique value denoting the open NightProbe datastream

RETURN VALUES

0 indicates successful completion

-1 indicates a failure

handle contains a value which may be passed to np_error()
to obtain a diagnostic message describing the failure
15-6

NightProbe API
IMPORTANT

If you call np_open() on a data file that was produced on a tar-
get architecture having a different endian order from the host (e.g.
big-endian data file/little-endian host, or vice versa), all data
returned to you by np_read() will be of the data file's orienta-
tion. In order to obtain meaningful information about the probe
samples in the file in such situations, you must first convert the
format of the data in the sample buffer to the proper endian format
for the host before calling np_format().

See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_header” on page 15-3

• “np_handle” on page 15-3

• “np_read()” on page 15-8

• “np_error()” on page 15-11

np_avail() 15

np_avail() is used to check a NightProbe datastream for available data items.

SYNTAX

int np_avail (np_handle handle);

PARAMETERS

handle value (obtained from np_open()) which identifies the Night-
Probe datastream of interest

RETURN VALUES

0 if data is not currently available on the NightProbe datastream
and np_read() would block

> 0 if data is currently available for np_read()

-1 indicates a failure

If handle is non-zero, np_error() may be called to obtain a
diagnostic message describing the failure.
15-7

NightProbe RT User’s Guide
See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_open()” on page 15-6

• “np_read()” on page 15-8

• “np_error()” on page 15-11

np_read() 15

Read a single data sample from the NightProbe datastream.

SYNTAX

int np_read (np_handle handle, void *sample);

PARAMETERS

handle value (obtained from np_open()) which identifies the Night-
Probe datastream of interest

sample upon successful completion, sample contains the NightProbe
entire sample data

To get at individual data items, use the information from the
np_header structure returned from np_open(). For each
item, retrieve the appropriate number of bytes (as specified by
size in the np_item structure associated with that item) off-
set from the beginning of the sample buffer (as specified by
offset in the np_item structure associated with that item)

See “Sample Programs” on page 15-13 for examples.

RETURN VALUES

> 0 value represents the number of bytes in the sample obtained

0 if end-of-file (EOF) was encountered on the NightProbe datas-
tream

-1 indicates a failure

If handle is non-zero, np_error() may be called to obtain a
diagnostic message describing the failure.
15-8

NightProbe API
IMPORTANT

If you call np_open() on a data file that was produced on a tar-
get architecture having a different endian order from the host (e.g.
big-endian data file/little-endian host, or vice versa), all data
returned to you by np_read() will be of the data file's orienta-
tion. In order to obtain meaningful information about the probe
samples in the file in such situations, you must first convert the
format of the data in the sample buffer to the proper endian format
for the host before calling np_format().

NOTE

np_read() will block waiting for data to become available on
the datastream if data is not immediately available. If time is crit-
ical and a blocking read is not desired, use np_avail() to first
check if data is available prior to reading.

See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_header” on page 15-3

• “np_item” on page 15-4

• “np_open()” on page 15-6

• “np_avail()” on page 15-7

• “np_error()” on page 15-11

• “np_format()” on page 15-10

np_close() 15

Close a NightProbe datastream.

SYNTAX

void np_close (np_handle handle);

PARAMETERS

handle value (obtained from np_open()) which identifies the Night-
Probe datastream of interest

15-9

NightProbe RT User’s Guide
Upon completion, handle no longer refers to an open Night-
Probe datastream.

NOTE

No further diagnostic messages are available from np_error()
after calling np_close().

Furthermore, the file descriptor passed to np_open() remains
open after the np_close() call. The NightProbe datastream is
logically closed, but the associated file descriptor remains open.
close(2) must be called to close the file descriptor as well, if
desired.

See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_open()” on page 15-6

• “np_error()” on page 15-11

np_format() 15

Return an allocated string representation of the specified np_item value from the given
sample. The caller is responsible for freeing the memory associated with the returned
string once it is no longer needed.

SYNTAX

char * np_format (np_handle handle,
np_item * i,
void * sample,
int which);

PARAMETERS

handle value (obtained from np_open()) which identifies the Night-
Probe datastream of interest

i a pointer to an np_item descriptor denoting a single item
within a data sample. The np_item i s par t of the
np_header obtained from the previous call to np_open().

sample a pointer to the contents of a single sample obtained from a call
to np_read()

which for items with multiple atoms (i.e. i->count > 1), which deter-
mines the atom to be formatted. A which value of 1 indicates
the first atom for the item.
15-10

NightProbe API
RETURN VALUES

non-NULL value represents a textual representation of the specified data in
a format based on the np_type of the item

NULL a parameter was invalid, or the NightProbe Datastream API
was unable to allocate memory for the result. np_error may be
called to obtain a diagnostic message describing the failure.

See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_header” on page 15-3

• “np_item” on page 15-4

• “np_error()” on page 15-11

np_host_endian() 15

Returns the np_endian_type value denoting the endian order of the host system.

SYNTAX

np_endian_type np_host_endian (void);

See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_endian_type” on page 15-3

np_error() 15

Return a diagnostic message describing the most recent failure encountered by a prior call
to np_open(), np_avail(), or np_read().

SYNTAX

char * np_error (np_handle handle);

PARAMETERS

handle value (obtained from np_open()) which identifies the Night-
Probe datastream of interest
15-11

NightProbe RT User’s Guide
See “Functions” on page 15-6 for other functions included in the NightProbe Datastream
API.

SEE ALSO

• “np_open()” on page 15-6

• “np_avail()” on page 15-7

• “np_read()” on page 15-8
15-12

NightProbe API
Sample Programs 15

The following programs are given as examples of how to use the NightProbe Datastream
API (see “NightProbe Datastream API” on page 15-1).

program_output_test.c

This program uses the NightProbe Datastream API to process a NightProbe data
sample.

program_output_fbs_test.c

This program uses the NightProbe Datastream API to process a NightProbe data
sample but uses a frequency-based scheduler in order to coordinate data recording
activity so as to minimize interference with the probed application.

program_output_test.c 15

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <nprobe.h>

int cycles = 0 ;
int overruns = 0 ;
char * sample;

// Perform the work of consuming a single Data Recording sample from NightProbe.
//
int
work (FILE * ofile, np_handle h, np_header * hdr) {
 np_item * i;
 int status;
 int which ;

 // Read one sample, which may contain data for multiple processes
 // and variables.
 //
 status = np_read (h, sample);
 if (status <= 0) {
 return status;
 }

 cycles++ ;

 fprintf (ofile, "Sample %d\n", cycles);
 for (i = hdr->items; i; i = i->link) {
 char buffer [1024] ;
15-13

NightProbe RT User’s Guide
 sprintf (buffer, "item: %s:", i->name) ;
 fprintf (ofile, "%-30s", buffer) ; // Nice formatting :-)

 // Display the value of each item.
 // For arrays, format each individual item.
 //
 for (which = 1; which <= i->count; ++which) {
 char * image = np_format (h, i, sample, which) ;

 if (image != NULL) {
 fprintf (ofile, " %s", image) ;
 } else {
 fprintf (ofile, "\n<error: %s>\n", np_error (h)) ;
 return -1 ;
 }

 free (image) ;
 }
 fprintf (ofile, "\n");
 }
 fflush (ofile) ;

 return 1 ;
}

int
main (int argc, char *argv[])
{
 np_handle h;
 np_header hdr;
 np_process * p;
 np_item * i;
 int fd;
 int status;
 FILE * ofile = stdout ;

 fd = 0 ; // stdin

 status = np_open (fd, &hdr, &h);
 if (status) {
 fprintf (stderr, "%s\n", np_error(h));
 exit(1);
 }

 sample = (char *) malloc(hdr.sample_size);
 if (sample == NULL) {
 fprintf (stderr, "insufficient memory to allocate sample buffer\n");
 exit(1);
 }

 for (p = hdr.processes; p; p = p->link) {
 if (p->pid >= 0) {
 fprintf (ofile, "process: %s (%d)\n", p->name, p->pid);
 } else {
 fprintf (ofile, "resource: %s (%s)\n", p->name, p->label);
15-14

NightProbe API
 }
 }
 fprintf (ofile, "\n");

 for (i = hdr.items; i; i = i->link) {
 fprintf (ofile, "item: %s (%s), size=%d bits, count=%d, type=%d\n",
 i->name, i->process->name, i->bit_size, i->count, i->type);
 }
 fprintf (ofile, "\n");

 for (;;) {
 status = work (ofile, h, &hdr) ;
 if (status <= 0) break ;
 }

 fprintf (ofile, "Data Recording done: %d cycles fired, %d overruns\n",
 cycles, overruns) ;

 if (ofile != stdout) {
 fclose (ofile) ;
 }

 if (status < 0) {
 fprintf (stderr, "%s\n", np_error(h));
 }

 np_close (h);

 // At this point, file descriptor 0 remains open, but is no
 // longer a NightProbe Data File/Stream.
}

15-15

NightProbe RT User’s Guide
program_output_fbs_test.c 15

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <nprobe.h>
#ifdef linux
#include <fbsched.h>
#else
#include <fbslib.h>
#endif

int cycles = 0 ;
int overruns = 0 ;
char * sample;

// Perform the work of consuming a single Data Recording sample from NightProbe.
//
// This function is called once every time the fbswait() system call returns
// successfully.
//
int
work (FILE * ofile, np_handle h, np_header * hdr) {
 np_item * i;
 int status;
 int n;
 char * ptr;

 // 0, 1, or >1 trigger events may have occurred since we last work()ed.
 //
 // Check whether data is available, and process it as long as new
 // data is already available within this work cycle.
 //
 // A more sophisticated program would limit the number of np_read() calls
 // per work cycle based upon how much time is left in the current cycle.
 //
 while (np_avail (h)) {

 // Read one sample, which may contain data for multiple processes
 // and variables.
 //
 status = np_read (h, sample);
 if (status <= 0) {
 return status;
 }

 cycles++;

 fprintf (ofile, "\n");
 for (i = hdr->items; i; i = i->link) {
 fprintf (ofile, "item: %25s :", i->name);
15-16

NightProbe API
 // Calculate the address of the item within the sample buffer.
 // This formula calculates the address of the first byte of
 // data corresponding to the item.
 //
 // The first bit is at i->bit_offset % 8 within that byte.
 //
 ptr = sample + (i->bit_offset/8);

 for (n = 0; n < i->count; ++n) {

 // Note that this simple example assumes type/format from
 // the size of the data item. The 'i->type' field should
 // be taken into account for a more accurate means of
 // determining the data format.
 //
 if (i->bit_offset % 8) {
 fprintf (ofile, " <size=%d bits, offset=%d bits>",
 i->bit_size, i->bit_offset % 8) ;
 } else {
 switch (i->bit_size) {
 case 8:
 fprintf (ofile, " 0x%1x", ((char*)ptr)[n]);
 break;
 case 16:
 fprintf (ofile, " 0x%1x", ((unsigned short*)ptr)[n]);
 break;
 case 32:
 fprintf (ofile, " 0x%1x", ((unsigned*)ptr)[n]);
 break;
 case 64:
 fprintf (ofile, " %lf", ((double*)ptr)[n]);
 break;
 default:
 fprintf (ofile, " <size=%d bits>", i->bit_size) ;
 }
 }
 }
 fprintf (ofile, "\n");
 }
 fflush (ofile);
 }

 return 1;
}

int
main (int argc, char *argv[])
{
 np_handle h;
 np_header hdr;
 np_process * p;
 np_item * i;
 int fd;
 int status;
 FILE * ofile = stdout ;
15-17

NightProbe RT User’s Guide
#ifdef linux
 if (!fbsavail()) {
 fprintf (ofile, "fbsavail() reports No FBS on this target\n") ;
 fclose (ofile) ;
 exit (1) ;
 }
#endif

 fd = 0 ; // stdin

 status = np_open (fd, &hdr, &h);
 if (status) {
 fprintf (stderr, "%s\n", np_error(h));
 exit(1);
 }

 sample = (char *) malloc(hdr.sample_size);
 if (sample == NULL) {
 fprintf (stderr, "insufficient memory to allocate sample buffer\n");
 exit(1);
 }

 for (p = hdr.processes; p; p = p->link) {
 if (p->pid >= 0) {
 fprintf (ofile, "process: %s (%d)\n", p->name, p->pid);
 } else {
 fprintf (ofile, "resource: %s (%s)\n", p->name, p->label);
 }
 }
 fprintf (ofile, "\n");

 for (i = hdr.items; i; i = i->link) {
 fprintf (ofile, "item: %s (%s), size=%d bits, count=%d, type=%d\n",
 i->name, i->process->name, i->bit_size, i->count, i->type);
 }
 fprintf (ofile, "\n");

 for (;;) {

 // We wait till the Concurrent FBS wakes us up at the time which is
 // appropriate for performing data recording. This program must be
 // scheduled on the FBS, but doing so allows the scheduling of data
 // recording activity at a time that won't disturb other critical
 // application cycles.
 //
 int stat = fbswait() ;

 // Diagnose the return value from fbswait()
 if (stat < 0) {
 switch (stat) {
 case -1:
 if (errno == ENOENT) {
 fprintf (ofile,
 "%s has been removed from the scheduler\n", argv[0]) ;
 } else {
15-18

NightProbe API
 fprintf (ofile, "fbs_wait(3) failed on cycle %d: "
 "errno is %d (%s)\n",
 cycles, errno, strerror (errno)) ;
 }
 break ;
 default:
 fprintf (ofile, "fbs_wait(3) returned unexpected %d on cycle %d\n",
 stat, cycles) ;
 break ;
 }

 break ;
 }

 switch (stat) {
 case 0:
 break ;
 case 1:
 fprintf (ofile, "fbstrig(2) caused sim to fire: cycle %d\n", cycles) ;
 break ;
 case 2:
 fprintf (ofile, "soft overrun %d detected on cycle %d\n",
 ++overruns, cycles) ;
 break ;
 }

 status = work (ofile, h, &hdr);
 if (status <= 0) {
 break;
 }
 }

 fprintf (ofile, "Data Recording done: %d cycles fired, %d overruns\n",
 cycles, overruns) ;

 if (ofile != stdout) {
 fclose (ofile) ;
 }

 if (status < 0) {
 fprintf (stderr, "%s\n", np_error(h));
 }

 np_close (h);

 // At this point, file descriptor 0 remains open, but is no
 // longer a NightProbe Data File/Stream.
}

15-19

NightProbe RT User’s Guide
NightProbe Trigger API 15

The NightProbe Trigger API provides an interface to the NightProbe Trigger Server
Queue allowing an application (the NightProbe Trigger Client) to cause the NightProbe
Server to sample data in a synchronized manner.

The name of the Trigger Server Queue can be specified to NightProbe using the Set
Trigger Timer dialog (see “Set Trigger Timer” on page 5-6).

The following sections describe the data structures and functions (see “Data Structures”
on page 15-20 and “Functions” on page 15-21) that comprise the NightProbe Trigger API.

A sample program using the NightProbe Trigger API is also provided (see “Sample Pro-
gram” on page 15-25).

Data Structures 15

The following data structure is part of the NightProbe Trigger Application Programming
Interface:

- np_trigger_handle (see “np_trigger_handle” on page 15-20)

See “Functions” on page 15-21 for a list of functions included in the NightProbe Trigger
API.

np_trigger_handle 15

np_trigger_handle is a unique integer value denoting a connection to a NightProbe
Trigger Server Queue. The np_trigger_handle may be used to request sampling
events and/or obtain further information about a failure.

typedef int np_trigger_handle;
15-20

NightProbe API
Functions 15

The following functions are part of the NightProbe Trigger API:

- np_trigger_open() (see “np_trigger_open()” on page 15-21)

- np_trigger() (see “np_trigger()” on page 15-22)

- np_trigger_close() (see “np_trigger_close()” on page 15-23)

- np_trigger_error() (see “np_trigger_error()” on page 15-23)

np_trigger_open() 15

np_trigger_open() is used to open a connection to a NightProbe Trigger Server
Queue, allowing the caller to control when NightProbe samples are captured.

SYNTAX

int np_trigger_open (char *name, np_trigger_handle *sampler);

PARAMETERS

name a unique identifier for the NightProbe Trigger Server Queue on
the target system. This is the same name assigned to the trigger
in the Set Trigger Timer dialog (see “Set Trigger Timer” on
page 5-6)

name must be a legal filename containing no '/' characters.
The length of name is restricted to at most (MAXNAMELEN-15).

sampler returns an np_trigger_handle designating the active
NightProbe Trigger Sampler Queue connection.

RETURN VALUES

0 indicates successful completion

-1 indicates a failure

np_trigger_error() may be used to obtain further infor-
mation about the reason for the failure.

See “Functions” on page 15-21 for other functions included in the NightProbe Trigger
API.

SEE ALSO

• “np_trigger_handle” on page 15-20

• “np_trigger_error()” on page 15-23
15-21

NightProbe RT User’s Guide
np_trigger() 15

np_trigger() requests a sample be taken by the NightProbe sampler. If there is an
active NightProbe Trigger Server connected to the queue, np_trigger() sends a trig-
ger request to the NightProbe Trigger Server Queue and returns.

SYNTAX

int np_trigger (np_trigger_handle sampler);

PARAMETERS

sampler an np_trigger_handle specifying the active NightProbe
Trigger Sampler Queue connection

RETURN VALUES

0 indicates successful completion

1 no NightProbe Trigger Server was connected.

This is not necessarily an error, but the result is provided so
that the NightProbe Trigger API Client can determine when a
server disconnects.

Note that the server may later re-connect, and subsequent
np_trigger() calls will again return 0.

-1 indicates a failure

np_trigger_error() may be used to obtain further infor-
mation about the reason for the failure.

See “Functions” on page 15-21 for other functions included in the NightProbe Trigger
API.

SEE ALSO

• “np_trigger_handle” on page 15-20

• “np_trigger_open()” on page 15-21

• “np_trigger_error()” on page 15-23
15-22

NightProbe API
np_trigger_close() 15

np_trigger_close() is used to disconnect from the NightProbe Trigger Server
Queue.

SYNTAX

int np_trigger_close (np_trigger_handle sampler);

PARAMETERS

sampler an np_trigger_handle specifying the active NightProbe
Trigger Sampler Queue connection to be closed

sampler is no longer valid after this call.

RETURN VALUES

0 indicates successful completion

-1 indicates a failure

np_trigger_error() may be used to obtain further infor-
mation about the reason for the failure.

See “Functions” on page 15-21 for other functions included in the NightProbe Trigger
API.

SEE ALSO

• “np_trigger_handle” on page 15-20

• “np_trigger_open()” on page 15-21

• “np_trigger_error()” on page 15-23

np_trigger_error() 15

np_trigger_error() returns an error message describing the most recent failure
detected by the NightProbe Trigger API functions.

SYNTAX

char *np_trigger_error (np_trigger_handle sampler);

PARAMETERS

sampler an np_trigger_handle specifying the active NightProbe
Trigger Sampler Queue connection
15-23

NightProbe RT User’s Guide
RETURN VALUES

Returns the error message describing the most recent failure detected by the Night-
Probe Trigger API functions.

Returns ‘No error’ if no errors have occurred.

See “Functions” on page 15-21 for other functions included in the NightProbe Trigger
API.

SEE ALSO

• “np_trigger_handle” on page 15-20

• “np_trigger_open()” on page 15-21
15-24

NightProbe API
Sample Program 15

The following program is given as an example of how to use the NightProbe Trigger API
(see “NightProbe Trigger API” on page 15-20).

nprobe_trigger_test.c

This program uses the NightProbe Trigger API.

nprobe_trigger_test.c 15

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>

#include "nprobe_trigger.h"

int
main (int argc, char * argv[])
{
 np_trigger_handle h;
 int status;
 int i ;

 if (argc != 2) {
 fprintf (stderr, "Usage: nprobe_trigger_test trigger_name\n");
 exit(1);
 }

 printf ("Trigger %s: connecting...\n", argv[1]);
 status = np_trigger_open (argv[1], &h);
 if (status) {
 fprintf (stderr, "%s\n", np_trigger_error(h));
 exit(1);
 }
 printf ("Trigger %s: conected to trigger server queue\n", argv[1]);

 for (i = 0 ; i >= 0 ; i++) {
 sleep (1) ;
 if ((status = np_trigger (h)) < 0) {
 fprintf (stderr, "%s\n", np_trigger_error(h));
 exit(1);
 } else if (status == 0) {
 printf ("Trigger %s: triggered %d\n", argv[1], i);
 } else {
 printf ("Trigger %s: dropped %d\n", argv[1], i);
 }
 }

 np_trigger_close (h);
 printf ("Trigger %s: closed.\n", argv[1]);

 exit (0);
}

15-25

NightProbe RT User’s Guide
15-26

A
Appendix ANightStar Licensing

A
A
A

NightStar RT uses the NightStar License Manager (NSLM) to control access to the Night-
Star RT tools.

License installation requires a licence key provided by Concurrent.The NightStar RT tools
request a licence (see “License Requests” on page A-2) from a license server (see
“License Server” on page A-2).

Two license modes are available, fixed and floating, depending on which product option
you purchased. Fixed licenses can only be served to NightStar RT users from the local sys-
tem. Floating licenses may be served to any NightStar RT user on any system on a net-
work.

Tools are licensed per system, per concurrent user. A single license is shared among any or
all of the NightStar RT tools for a particular user on a particular system. The intent is to
allow n developers to fully utilize all the tools at the same time while only requiring n
licenses. When operating the tools in remote mode, where a tool is launched on a local
system but is interacting with a remote system, licenses are required only from the host
system.

You can obtain a license report which lists all licenses installed on the local system, cur-
rent usage, and expiration date for demo licenses (see “License Reports” on page A-3).

The default configuration includes a strict firewall which interferes with floating licenses.
See “Firewall Configuration for Floating Licenses” on page A-3 for information on han-
dling such configurations.

See “License Support” on page A-4 for information on contacting Concurrent for addi-
tional assistance with licensing issues.

License Keys 1

Licenses are granted to specific systems to be served to either local or remote clients,
depending on the license model, fixed or floating.

License installation requires a license key provided by Concurrent. To obtain a license
key, you must provide your system identification code. The system identification code is
generated by the nslm_admin utility:

nslm_admin --code

System identification codes are dependent on system configurations. Reinstalling Linux
on a system or replacing network devices may require you to obtain new license keys.

To obtain a license key, use the following URL:
A-1

NightProbe RT User’s Guide
http://www.ccur.com/NightStarRTKeys

Provide the requested information, including the system identification code. Your license
key will be immediately emailed to you.

Install the license key using the following command:

nslm_admin --install=xxxx-xxxx-xxxx-xxxx-xxxx

where xxxx-xxxx-xxxx-xxxx-xxxx is the key included in the license acknowledgment email.

License Requests 1

By default, the NightStar RT tools request a license from the local system. If no licenses
are available, they broadcast a license request on the local subnet associated with the sys-
tem’s hostname.

You can control the license requests for an entire system using the /etc/nslm.config
configuration file.

By default, the /etc/nslm.config file contains a line similar to the following:

:server @default

The argument @default may be changed to a colon-separated list of system names, system
IP addresses, or broadcast IP addresses. Licenses will be requested from each of the enti-
ties found in the list, until a license is granted or all entries in the list are exhausted.

For example, the following setting prevents broadcast requests for licenses, by only speci-
fying the local system:

:server localhost

The following setting requests a license from server1, then server2, and then a
broadcast request if those fail to serve a license:

:server server1:server2:192.168.1.0

Similarly, you can control the license requests for individual invocations of the tools using
the NSLM_SERVER environment variable. If set, it must contain a colon-separated list of
system names, system IP addresses, or broadcast IP addresses as described above. Use of
the NSLM_SERVER environment variable takes precedence over settings defined in
/etc/nslm.config.

License Server 1

The NSLM license server is automatically installed and configured to run when you install
NightStar RT.
A-2

http://www.ccur.com/NightStarRTKeys

NightStar Licensing
The nslm service is automatically activated for run levels 2, 3, 4, and 5. You can check on
these settings by issuing the following command:

/sbin/chkconfig --list nslm

In rare instances, you may need to restart the license server via the following command:

/sbin/service nslm restart

See nslm(1) for more information.

License Reports 1

A license report can be obtained using the nslm_admin utility.

nslm_admin --list

lists all licenses installed on the local system, current usage, and expiration date (for demo
licenses). Use of the --verbose option also lists individual clients to which licenses are
currently granted.

Adding the --broadcast option will list this information for all servers that respond to
a broadcast request on the local subnet associated with the system’s hostname.

See nslm_admin(1) for more options and information.

Firewall Configuration for Floating Licenses 1

RedHawk does not support a firewall configuration by default, because iptables support is
disabled. However, it is possible to build a custom kernel with iptables support enabled. If
that is done, and floating licenses are used, the iptables firewall rules must be configured
to allow the license requests and responses to pass.

If the system with iptables support and firewall rules is serving licenses, then the firewall
rules must be arranged to allow license requests on UDP port 25517 and TCP port 25517
from any systems that will make license requests. For example, in a simple firewall, rules
like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --dport 25517 -j ACCEPT
iptables -A INPUT -p tcp -m tcp -s subnet/mask --dport 25517 -j ACCEPT

If the system with iptables support and firewall rules is running NightStar RT tools and
receiving floating licenses, then the firewall rules must be arranged to allow license
responses on UDP port 25517 from any system serving licenses. For example, in a simple
firewall, rules like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subnet/mask --sport 25517 -j ACCEPT
A-3

NightProbe RT User’s Guide
License Support 1

For additional aid with licensing issues, contact the Concurrent Software Support Center
at our toll free number 1-800-245-6453. For calls outside the continental United States, the
number is 1-954-283-1822. The Software Support Center operates Monday through Fri-
day from 8 a.m. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Com-
puter Corporation web site at http://www.ccur.com/isd_support_contact.asp or by send-
ing an email to support@ccur.com.
A-4

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

B
Appendix BKernel Dependencies

A
A
A

Concurrent’s RedHawk kernel provides features and performance gains that are critical
for the full operation of the NightStar RT tools.

The NightStar RT tools can operate in a host-only mode on Red Hat systems without Con-
current’s RedHawk kernel, cross-targeting to RedHawk systems. Additionally, the Night-
Star RT tools can function on Red Hat systems without the RedHawk kernel, but will lack
the numerous advantages afforded by running with it.

The following sections describe the additional functionality and capabilities of the Night-
Star RT tools when running Concurrent’s RedHawk kernel.

Advantages for NightView 2

The following advantages are afforded NightView when Concurrent’s RedHawk kernel is
running:

• Application speed conditions

Provides “execution-speed” patches, conditions, and ignore counts.

• Hot operations

Users of NightView gain the ability to read and write to a particular process without
having to stop it. Thus, all eventpoints can be applied and modified during applica-
tion program execution without stopping the process. User variables also can be
read and modified without stopping the process.

• Signal handling

Allows NightView to pass signals directly to a particular process, avoiding context
switching.

NOTE

NightView may not operate at all on older versions of Red Hat
without the RedHawk kernel.
B-1

NightProbe RT User’s Guide
Advantages for NightTrace 2

The following advantage is afforded NightTrace when Concurrent’s RedHawk tracing
kernel is running:

• Kernel tracing

Users of NightTrace gain the ability to obtain kernel trace data and combine that
with user trace data. Kernel tracing is an incredibly powerful feature that not only
provides insight into the operating system kernel but also provides useful informa-
tion relating to the execution of user applications.

The RedHawk kernel is provided in three flavors:

• Tracing

• Debug

• Plain

The Tracing and Debug flavors provide the features required for NightTrace kernel trac-
ing. These kernels can be selected at boot-time from the boot-loader menu.

Advantages for NightProbe 2

The following advantages are afforded NightProbe when Concurrent’s RedHawk kernel is
running:

• Minimal intrusion

Allows NightProbe to read and write variables without stopping the process for each
sample or write operation.

• Sampling performance

Allows NightProbe to use direct memory fetches for data sampling (as opposed to
programmed I/O) which is important for high-rate data acquisition.

• Concurrent debugging/probing

Allows NightProbe to probe programs already under the control of a debugger or
another NightProbe session.

• PCI Device probing

Allows NightProbe to probe PCI device memory via the Base Address Register
(BAR) file system.
B-2

Kernel Dependencies
Advantages for NightTune 2

The following advantage is afforded NightTune when Concurrent’s RedHawk kernel is
running:

• Context switch rate

Allows NightTune user to display the context switch counts per CPU instead of for
the overall system.

• CPU shielding

Individual CPUs can be shielded from interrupts and processes allowing CPUs to be
dedicated solely to specific interrupts and processes that are bound to the CPU.

• CPU sibling interference

Individual CPUs can be marked down to avoid interfering with hyperthreaded sib-
ling CPUs and dual-core sibling CPUs. Hyperthreaded CPUs share all the resources
of their sibling CPU. Dual-core CPUs share the CPU cache and a path to memory
with their sibling CPU.

Advantages for NightSim 2

The following advantage is afforded NightSim when Concurrent’s RedHawk kernel is
running:

• Scheduling target

Allows NightSim to schedule processes on the system via Concurrent’s Fre-
quency-Based Scheduler.
B-3

NightProbe RT User’s Guide
B-4

C
Appendix CVariables

B
B
B

This section describes the notation used to reference variables in program resources (see
"Variable Name Notation"), and describes the criteria used to determine eligibility of a
variable for probing (see “Variable Eligibility for Program Resources” on page C-4).

Variable Name Notation 3

Variable names may be used to identify memory addresses in C, C++, and Fortran, as well
as Ada (using the MAXAda compiler) programs. NightProbe accepts and displays vari-
ables with the following syntax.

Syntax

["file".][/common/][scope.] ... name[(array_slice)]
0xaddress[:n]

Parameters

file The source file name enclosed in double-quotes.

common The common block name enclosed in slashes (or // for
unnamed common blocks)

scope The name of the scope. Includes the names of enclosing func-
tions, packages, or composite variables. Each one is separated
from the next by a dot (.). (See “Composite Types” on page
C-2 for information about composite types.)

name The name of the variable. The variable may be either a scalar,
an array, a structure or record, or a component of a variable of a
composite type.

array_slice An index representing a single array element or an index range
representing an array slice. Array_slices must be enclosed in
either parentheses () or square brackets []. (See “Array
Slices” on page C-2 for information about array slices.)

address A memory address beginning with a number. If it begins with
0, it is treated as an octal address. If it begins with 0x, it is
treated as a hexadecimal address.

n An integer representing the size in bytes. It has a colon prefix.

Note that name, name(), and name[] all refer to the entire array.
C-1

NightProbe RT User’s Guide
For some examples using variables in NightProbe, see “Variable Browsing” on page E-3
and “Creating a View into the Device” on page E-20.

Composite Types 3

To NightProbe, arrays, C and C++ structures and unions as well as C++ classes and Ada
records are composite types. Composite objects may be recorded as a whole or individual
components within the object may be recorded.

Array Slices 3

Array slices identify a single element or a range of elements in an array. You select one
array element in a manner just like you would use in your program:

var (5)

Some programming languages use brackets instead of parentheses, as in

var [5]

NightProbe accepts either convention.

In some cases, it is appropriate to select a range of elements. These elements must be
contiguous, and all must lie within the stated bounds of the original array declaration. You
specify a range by providing the first and last items that you wish to select. The following
syntaxes are all equivalent and may be used with programs of any language.

array_name (first_item : last_item)
array_name [first_item : last_item]
array_name (first_item .. last_item)
array_name [first_item .. last_item]

where:

array_name The name of an array.

first_item A valid array index, greater than or equal to the lower bound of
the array and less than or equal to last_item.

last_item A valid array index, less than or equal to the upper bound of
the array and greater than or equal to first_item.

For example, in Fortran the array declaration

integer*4 var (10)

declares an array of ten integers with indices 1 through 10. To specify an array slice
containing the first five elements, you would use

var (1:5)

C programs use 0 as the lower bound of all arrays. The declaration
C-2

Variables
int var [10];

also declares an array of ten integers, but with indices 0 through 9.

The equivalent array slice would be

var (0:4)

Of course, if you are a C programmer you would probably use brackets:

var [0:4]

and you might prefer the Ada range notation:

var [0..4]

The previous examples are all equivalent.

In C and C++ as well as Ada, the rightmost subscript of a multi-dimensional array changes
most quickly. In Fortran, the leftmost subscript of a multi-dimensional array changes
most quickly. Array slices must identify elements that are contiguous in memory. For
example, for an 8 by 8 array:

C

Specify var[1][2] to refer to the memory location right after var[1][1]. The
following array slice is valid: var[3][1:5].

Fortran

Specify var(2,1)to refer to the memory location right after var(1,1).The
following array slice is valid: var(1:5,3).

Ada

Specify var(1,2)to refer to the memory location right after var(1,1). The
following array slice is valid: var(3,1..5).
C-3

NightProbe RT User’s Guide
Variable Eligibility for Program Resources 3

Any process on any processor can be a target program for data recording and monitoring.

As stated before, variable names may be used to identify memory addresses in programs.
If you wish to identify memory locations by variable name, the target program file must
contain symbol table and debug information. Use the -g compiler option to generate
debug information, and do not use the -s linker option that strips symbol table informa-
tion from the executable program file.

Any fixed (static) address in a program can be monitored and recorded. The following
text lists eligible variables by language.

C

• Variables typed static

• Global variables declared outside all functions

Fortran

• Variables typed static or save

• Variables initialized in a data statement

• Variables placed in a common block

Ada

The following criteria are used to determine if an Ada data object is eligible for data
monitoring/recording:

• The compilation unit containing the object must be a library-level
package specification or body. Objects declared in nested packages
inside a library-level package are also eligible.

• The object must not be declared in a generic or in the instantiation of
a generic.

• The object must have a size and representation which is statically
determined at compile time.

• The object may be declared in a library-level package marked with
pragma SHARED_PACKAGE.

The following Ada data types are eligible for data monitoring/recording:

• Any integer, fixed-point or floating-point type or subtype.

• Any character, Boolean or enumeration type or subtype.

• Access types.
C-4

Variables
• Array and record types (for records with variant parts, only
components that have a statically determined component offset are
eligible).

NOTE

Task types and variables declared in Ada procedures or tasks, or
objects in an access type’s collection, are allocated dynamically,
and are, therefore, ineligible for data monitoring/recording.
C-5

NightProbe RT User’s Guide
C-6

D
Appendix DKeyboard Traversal

C
C
C

NightProbe uses certain key combinations as shortcuts for displaying menus and selecting
menu items. These key combinations are called accelerators and mnemonics. Each
window has its own set of accelerators and mnemonics that are active only while the key-
board focus is in that window. However, the keyboard focus does not have to be in any
particular field of the window to use accelerators and mnemonics. This manual shows the
supplied mnemonics and accelerators associated with a menu or menu item. However,
users can alter this behavior with resources. See “NightStar Resources” on page F-2 for
details.

• Menus can be displayed with mnemonics.

Menus can be displayed from the keyboard by typing <Alt>+mnemonic. Each of the
main windows has a menu bar near the top of the window. The different menus are
labeled. For example, the Main window has a Timer menu. If you look at the
Timer menu, you can see that the T is underlined. T is the mnemonic for the Timer
menu. That means that, in addition to displaying the Timer menu by clicking on it
with mouse button 1, you can also display it with <Alt>+t (hold down <Alt> and
press t).

If you decide you don’t want to select any of the menu items, you can make the
menu go away by typing <Esc> or by clicking somewhere else.

• Menu items can be selected with mnemonics.

Once a menu is displayed, you can select a menu item by typing only the mnemonic
for that item. The mnemonics for the menu items are underlined, just as the
mnemonics for the menus are underlined. To select a menu item by using its mne-
monic, just press the key.

• Menu functions can be invoked with accelerators.

Some commonly used menu items have accelerator keys. The functions associated
with these menu items can be invoked directly, without displaying the menu, by
pressing the accelerator keys. The accelerator keys for a particular menu item are
listed next to the item in the menu.

The accelerator keys are often a combination of a control key plus a letter, such as
Ctrl+O. To type Ctrl+O, hold down the control key and press o.

In addition to mnemonics and accelerators, there are also special keys used for navigation
within and among windows and fields. These keys include Tab, Shift Tab, Home ,
End, Page Up, Page Down and the arrow keys. The documentation of these keys is
beyond the scope of this chapter. For more information about keys, see the OSF/Motif
User’s Guide.

There are many special keys used to edit text input areas.
D-1

NightProbe RT User’s Guide
Table 3-1 contains a list of some of NightProbe’s accelerators and the resulting actions;
where applicable, it indicates the menu items for which the accelerators provide shortcuts.
Note that you can define additional accelerators through the use of XTM resources (refer to
the X(7x) system manual page).

Table 3-1. NightProbe Accelerators

Accelerator Menu Item Action

<Control> <S> File Ì Save Config File Saves the configuration data in the file that is associated
with the current window

<Control> <Q> File Ì Exit Exits nprobe

<Control> <A> Resource Ì Add Item Opens the Item Browser window.

<Control> <I> Resource Ì New Item Opens the Item Definition window.

<Control> <T> Control Ì Connect Connects to target system and resources.

<Control> <D> Control Ì Disconnect Disconnects from target system and resources.

<Control> <R> Control Ì Start Starts iterative sampling.

<Control> <P> Control Ì Stop Stops iterative sampling.

<Control> <L> Control Ì Sample Obtains a single sample

<F1> Displays help for the component that currently has the
focus

<Shift> <F1> Performs same function as Help -> On Context
D-2

E
Appendix ETutorials

D
D
D

This section contains two separate tutorials which demonstrate the commonly used fea-
tures of NightProbe:

- “Probing Programs Tutorial” on page E-1 demonstrates probing a program
written in C++ and C and Ada

- “Probing Devices Tutorial” on page E-18 demonstrates probing a PCI
device

Probing Programs Tutorial 5

This tutorial demonstrates some of the commonly used features of NightProbe including:

- Creating and selecting a program

- Variable browsing

- Spreadsheet use

The supplied tutorial programs declare and initialize static and dynamic variables. Some
of the variables are scalars, some are arrays, and some are records and structures.

The tutorial files are in the /usr/lib/NightProbe/Tutorial directory. Source
listings of these files are in:

- “Ada Sample - ada_sample.a” on page E-11

- “C Sample - c_sample.c” on page E-17

Creating and Selecting a Program 5

1. The source code for the sample program used in this tutorial, as well as the
c o m p i l e d a n d l i n k e d b i n a r y, c a n b e f o u n d i n t h e
/usr/lib/NightProbe/Tutorial directory and are included at the
end of this chapter for reference. The sample program contains C++ and C
and Ada code (the latter compiled with the Concurrent MAXAda
compiler).
E-1

NightProbe RT User’s Guide
2. Either copy the appropriate binary file for your system from
/usr/lib/NightProbe/Tutorial, or copy the source files and
compile the program:

For example:

/usr/bin/uncompress -c \
 /usr/lib/NightProbe/Tutorial/ada_sample.pentium.Z > ada_sample

chmod 777 ada_sample

- or -

/usr/bin/uncompress -c \
 /usr/lib/NightProbe/Tutorial/ada_sample.amd64.Z > ada_sample

chmod 777 ada_sample
/usr/bin/uncompress -c \

 /usr/lib/NightProbe/Tutorial/cpp_sample.pentium.Z > sample
chmod 777 sample

- or -

/usr/bin/uncompress -c \
 /usr/lib/NightProbe/Tutorial/cpp_sample.amd64.Z > sample

chmod 777 sample

- or -

cp /usr/lib/NightProbe/Tutorial/ada_sample.a .
cp /usr/lib/NightProbe/Tutorial/cpp_sample.cpp .
cp /usr/lib/NightProbe/Tutorial/c_sample.c .

cc -g -c c_sample.c
gcc -g -c -o c_sample.o c_sample.c
g++ -g -c -o cpp_sample.o cpp_sample.cpp
g++ -g -o sample cpp_sample.o c_sample.o
PATH=$PATH:/usr/ada/bin
a.mkenv -g
a.intro ada_sample.a
a.partition -create active ada_sample
a.build ada_sample

3. Invoke NightProbe with the following command:

/usr/bin/nprobe &

NightProbe displays the NightProbe main window.

4. Invoke the sample program with the following command:

./ada_sample

./sample

5. In the NightProbe main window, right-click the Resources icon in the
Session Overview Area and select the Add Program... menu option.

NightProbe displays the Program Window.

6. In the Program Window, press the Select... button to the right of the
PID text field to bring up the Select Process ID dialog.
E-2

Tutorials
Select the executing process ada_sample as shown in the list of processes associ-
ated with your user.

NOTE

You can narrow your search by entering ada_sample in the Fil-
ter field and pressing the Filter button.

Press Select after selecting the desired process.

7. In the Program Window, press the Add button. You will see your pro-
gram in the Resources list in the Session Overview Area of the Night-
Probe main window.

Variable Browsing 5

The following sections provide an example of the use of the Item Browser window. For
more information about the Item Browser window, see Chapter 11, “Item Browser”.

Right-click the Probe Items icon in the Session Overview Area of the NightProbe
main window and select the Add Item from Program... menu option.

The Item Browser window appears and contains a single root item, ada_sample, rep-
resenting our program resource. Expand that root item by clicking the control box to the
left of the icon. FourThree new items will appear:

- Functions

- Globals

- Files

- Packages

Adding a global C variable

1. Expand the Globals list by clicking the control box to the left of the Glo-
bals icon.

2. Select the c_global_int variable by clicking on its icon once.

3. Press the Add button.

The item now appears in the Probe Items list in the NightProbe main window
and its color has turned to orange in the Item Browser to indicate it has been
added.

4. Collapse the Globals list by clicking on the control box to the left of the
Globals icon.
E-3

NightProbe RT User’s Guide
Adding a static C variable declared inside a function

1. Expand the Functions list by clicking the control box to the left of the
Functions icon.

2. Expand the list of variables inside c_routine by clicking the control box
to the left of the c_routine icon.

3. Expand the c_static_array component list by clicking the control box to
the left of the c_static_array icon.

4. Select two components of the array by clicking on one, then clicking on the
next one in the list while holding down the Shift key.

5. Press the Add button.

The two components now appears in the Probe Items list in the NightProbe
main window and their color has turned to orange in the Item Browser to indicate
they have been added.

6. Click on the c_static_array icon once.

7. Now press the left arrow key on your keyboard until the Functions list is
selected (if no action occurs, make sure that the c_static_array icon is
selected and that your NumLock key is not on).

8. Press the Space to collapse the Functions list.

Adding Ada variables declared in packages

1. Now that you’re an expert at navigating, browse the list of Packages
until the variables in the package ada_pkg are visible.

2. Select the ada_pkg_record icon in the ada_pkg package.

3. Press the Add button to add the entire record to the list of Probe Items.

4. Add the control variable in the ada_pkg package as well.

5. Press the Done button to exit the dialog.

Adding C++ variables declared in classes

1. Expand the Files list by clicking the control box to the left of the Files
icon.

2. Click the control box to the left of "cpp_sample.cpp".

3. Select the sample_class entry.

4. Press the Add button to add the entire class to the list of Probe Items.

5. Press the Done button to exit the dialog.
E-4

Tutorials
At this point, the NightProbe main window should look like this:

If the list of Probe Items differs from the above figure, go back into the Item Browser
and add the items shown above to the list.

NOTE

The addresses to the right of each item may differ from the figure
above; that is expected and can be ignored.

Using the Spreadsheet 5

This section provides an example of the use of the Spreadsheet Viewer window. For
more information about the Spreadsheet Viewer window, see “Spreadsheet Viewer”
on page 14-1.

To launch the Spreadsheet Viewer

1. Right-click the Outputs icon in the Session Overview Area of the Night-
Probe main window and select the Spreadsheet Output menu option.
E-5

NightProbe RT User’s Guide
Quickly Adding Multiple Variables 5

1. In the Spreadsheet Viewer window, click on the uppermost left hand
cell.

The selected cell gets a black outline and an I-beam cursor.

2. From the Selected menu, select Place Variables...

The Spreadsheet Variables window appears. All the variables from
the Probe Items list in the NightProbe main window are shown in the
list of variables in this window.

3. In the Spreadsheet Variables window, select all of the entries by hold-
ing down the left mouse button on the top entry and dragging the cursor
down through the last entry and then releasing the left mouse button. All of
the items should be highlighted.

4. Set the Cell Layout to Vertical.

5. Set the Label Position to Left.

6. Set the Expansion to Both.

7. Set the Direction to Vertical.

8. Press the OK button.

The spreadsheet cells starting with the uppermost left cell now describe the vari-
ables you selected. The left-hand column is a label field which includes the name of
the variable. This field can be edited. The right-hand column initially contains the
same text, but will be replaced by the value of the associated variable when actual
data sampling occurs.

9. Select a cell in the first column and use the Column Width menu option
from the Layout menu to widen the column to 30 characters.

10. Select a cell in the second column and use Column Width menu option
from the Layout menu to widen the column to 15 characters.

NOTE

You may need to resize the Spreadsheet Viewer window in
order to see the expanded cells in their entirety.
E-6

Tutorials
At this point, the spreadsheet window should look like this:

If your spreadsheet differs significantly from the above figure, select the cells with con-
tent, remove their content using the Cut menu item from the Edit menu and repeat the
steps above.

Selecting a Timing Source 5

1. In the NightProbe main window, right-click the Timer icon in the Ses-
sion Overview Area and select the System Clock... menu option.
E-7

NightProbe RT User’s Guide
A Set System Timer window will appear.

2. Ensure the sampling rate is 1 second.

3. Press the Set Timer button.

Start Data Sampling 5

1. Connect to the target process by pressing the Connect button in the Sam-
pler Control Area of the NightProbe main window.

2. Begin sampling data by pressing the Start button in the Sampler Control
Area of the NightProbe main window.

See the values of the variables displayed in the second column of cells in the
Spreadsheet Viewer window. The ada_sample program changes the values
of its variables once per second. (Note that the frequency in which values are
updated in the spreadsheet is actually unrelated to the frequency at which the sam-
pling occurs; but by circumstance, they both currently happen to be 1 second.)

The bottom pane of the Spreadsheet Viewer window controls the frequency of
spreadsheet refreshes. This is especially important in situations in which Night-
Probe is being used to record and log data to a file at high-frequency rates but at the
same time is being used interactively to peek and poke at variables.

Modifying the Value of Variables 5

Variables can be modified through the spreadsheet by entering new values directly into
their cells.

1. Click the data value cell associated with c_global_int (in the second
column of the first row of the spreadsheet).

The value moves to the left-hand side of the cell and stops updating but the remain-
der of the spreadsheet continues to be refreshed with data samples.

2. Type in a new value for the cell by backspacing over the existing text and
entering 200.

3. Press the Enter key.

The value of c_global_int has been modified and is displayed. The program
increments the value once per second.
E-8

Tutorials
The main program uses the variable ada_pkgsample_class.control to control
execution of the program in the following manner:

loop
 case ada_pkg.control is
 when halt => exit program
 when run => update variables
 when hold => do nothing
 end case ;
 sleep 1 second
end loop ;
while (sample_class.control != cpp_class::halt) {
 switch (sample_class.control) {

 case cpp_class::run:
 sample_class.cpp_procedure();
 c_routine();
 local_float = sample_class.get_private_float() + 0.25;
 sample_class.set_private_float(local_float);
 break;

 case cpp_class::hold:
 case cpp_class::halt:
 break;
 }

 increment_counter();
 sleep(1);
}

4. Click on the cell showing the value of the
ada_pkg"cpp_sample.cpp".sample_class.control variable
(whose label is displayed in the cell to its left).

5. Backspace over the existing value and type in:

hold

6. Press the Enter key

This causes the program to skip updating variables. Notice how the values in the
spreadsheet no longer change even though sampling is still active.

7. Click on the same cell and change the value back to:

run

which causes the program to resume updating variables.

8. Click on the same cell and change the value to:

halt

which causes the program to exit.

NOTE

Look at the terminal screen where you invoked the ada_sample
program; it should have exited.
E-9

NightProbe RT User’s Guide
9. Exit NightProbe by choosing the Exit menu option from the NightProbe
menu in the NightProbe main window.

When asked about saving changes to the session, press the No button.
E-10

Tutorials
Ada Sample - ada_sample.a 5

package ada_pkg is
--
 type states is (none, init, freeze, start, stop, in_flight, approach, land);
 type controls is (halt, run, hold);

 type record1_type is
 record
 int : integer := 0;
 flt : float := 0.0;
 enum : states := none;
 end record;

 ada_pkg_int : integer := 0;
 ada_pkg_float : float := 0.0;
 ada_pkg_enum : states := none;
 ada_pkg_record : record1_type;

 control : controls := halt;

 package nested is
 type array_type is array (1..4) of integer;
 type record2_type is
 record
 x : record1_type;
 y : array_type;
 end record;
 data : record2_type;
 end nested;
--
end ada_pkg;

with ada_pkg;

procedure ada_routine is
begin
--
 -- Increment variables in ada_pkg
 ada_pkg.ada_pkg_int := ada_pkg.ada_pkg_int + 1;
 ada_pkg.ada_pkg_float := ada_pkg.ada_pkg_float + 2.0;
 case ada_pkg.ada_pkg_enum is
 when ada_pkg.states'last =>
 ada_pkg.ada_pkg_enum := ada_pkg.states'first;
 when others =>
 ada_pkg.ada_pkg_enum := ada_pkg.states'succ(ada_pkg.ada_pkg_enum);
 end case;
 ada_pkg.ada_pkg_record.int := ada_pkg.ada_pkg_record.int + 1;
 ada_pkg.ada_pkg_record.flt := ada_pkg.ada_pkg_record.flt + 2.0;
 case ada_pkg.ada_pkg_enum is
 when ada_pkg.states'last =>
 ada_pkg.ada_pkg_record.enum := ada_pkg.states'first;
 when others =>
 ada_pkg.ada_pkg_record.enum :=
 ada_pkg.states'succ(ada_pkg.ada_pkg_record.enum);
 end case;

 -- Increment variables in nested_pkg in ada_pkg
 for i in ada_pkg.nested.data.y'range loop
 ada_pkg.nested.data.x.int := ada_pkg.nested.data.x.int + 1;
 ada_pkg.nested.data.y(i) :=
 ada_pkg.nested.data.y(i) + i;
 end loop;
E-11

NightProbe RT User’s Guide
--
end ada_routine;

with ada_routine;
with ada_pkg;

procedure ada_sample is
--
 procedure c_routine;
 pragma import (C, c_routine);
 pragma linker_options ("c_sample.o");
--
begin
--
 ada_pkg.control := ada_pkg.run;

 loop
 case ada_pkg.control is
 when ada_pkg.halt =>
 exit;
 when ada_pkg.run =>
 ada_routine;
 c_routine;
 when ada_pkg.hold =>
 null;
 end case;
 delay 1.0;
 end loop;
--
end ada_sample;
E-12

Tutorials
C++ Sample - cpp_sample.cpp 5

#include <stdlib.h>
#include <unistd.h>

#define ARRAY_SIZE 4

class cpp_class {
public:
 enum states {
 none, init, freeze, start, stop, in_flight, approach, land
 };

 enum controls {
 halt, hold, run
 };

 struct struct_type {
 int struct_int;
 float struct_float;
 float struct_float_array [ARRAY_SIZE];
 states struct_enum;
 } cpp_class_struct;

 union union_type {
 int union_int;
 float union_float;
 } cpp_class_union;

 int cpp_class_int;
 float cpp_class_float;
 states cpp_class_enum;

 float get_private_float(void);
 void set_private_float(float new_value);

 controls control;

 cpp_class (void);

 class nested {
 public:
 struct nested_struct {
 struct_type nested_struct_struct;
 int nested_struct_int_array [ARRAY_SIZE];
 } cpp_nested_class_struct;

 nested (void);
 } nested;

 void cpp_procedure(void);

private:

 int cpp_class_private_int;
 float cpp_class_private_float;

};

cpp_class::nested::nested(void){
E-13

NightProbe RT User’s Guide
 // Initialize variables in the nested cpp_class::nested class.

 cpp_nested_class_struct.nested_struct_struct.struct_int = 0;
 cpp_nested_class_struct.nested_struct_struct.struct_float = 0;
 cpp_nested_class_struct.nested_struct_struct.struct_enum = none;

 for (int i = 0; i < ARRAY_SIZE; i++) {
 cpp_nested_class_struct.nested_struct_int_array[i] = i * 100;
 }
}

cpp_class::cpp_class (void) {

 // Initialize variable cpp_class

 cpp_class_int = 0;
 cpp_class_float = 0.0;
 cpp_class_enum = none;

 cpp_class_struct.struct_int = 0;
 cpp_class_struct.struct_float = 0.0;
 cpp_class_struct.struct_enum = none;

 for (int i = 0; i < ARRAY_SIZE; i++) {
 cpp_class_struct.struct_float_array[i] = i * 100.0;
 }

 control = run;

 cpp_class_private_int = 100;
 cpp_class_private_float = 100.0;
}

float
cpp_class::get_private_float(void)
{
 return cpp_class_private_float;
}

void
cpp_class::set_private_float(float new_value)
{
 cpp_class_private_float = new_value;
}

void
cpp_class::cpp_procedure()
{

 // Increment variables in cpp_class

 cpp_class_int++;
 cpp_class_float += 2.0 ;

 switch (cpp_class_enum) {
 case land:
 cpp_class_enum = none;
 break ;

 default:
 cpp_class_enum = (states) (cpp_class_enum + 1);
 break;
 }
E-14

Tutorials
 cpp_class_struct.struct_int += 1;
 cpp_class_struct.struct_float += 2.0;

 switch (cpp_class_enum) {
 case land:
 cpp_class_struct.struct_enum = none;
 break;
 default:
 cpp_class_struct.struct_enum =
 (states)(cpp_class_struct.struct_enum + 1);
 break;
 }

 for (int i = 0; i < ARRAY_SIZE; i++) {
 cpp_class_struct.struct_float_array[i] *= .995;
 }

 // Increment variables in nested class in cpp_class.
 for (int i = 0 ; i < ARRAY_SIZE ; i++) {
 nested.cpp_nested_class_struct.nested_struct_struct.struct_int += 1;
 nested.cpp_nested_class_struct.nested_struct_struct.struct_float += 2.0;

 switch (nested.cpp_nested_class_struct.nested_struct_struct.struct_enum) {
 case land:
 nested.cpp_nested_class_struct.nested_struct_struct.struct_enum = none;
 break ;

 default:
 nested.cpp_nested_class_struct.nested_struct_struct.struct_enum =
 (states) (nested.cpp_nested_class_struct.
 nested_struct_struct.struct_enum + 1);
 break ;
 }

 nested.cpp_nested_class_struct.nested_struct_int_array[i] += 1;
 }
}

void
increment_counter(void)
{

 enum state {even, odd};

 struct counter_struct_type {
 int counter_struct_int;
 state counter_struct_state;
 };

 static struct counter_struct_type counter_static_struct = {0, even};

 if (++counter_static_struct.counter_struct_int % 2) {
 counter_static_struct.counter_struct_state = odd;
 }
 else {
 counter_static_struct.counter_struct_state = even;
 }

}

E-15

NightProbe RT User’s Guide
// Driver program. Continuously loop, calling the modules
// for each language.

cpp_class sample_class;

extern "C" void c_routine(void);

int
main() {

 static int main_static_int = 0;
 float local_float = 0.0;

 sample_class.control = cpp_class::run;

 while (sample_class.control != cpp_class::halt) {
 switch (sample_class.control) {

 case cpp_class::run:
 sample_class.cpp_procedure();
 c_routine();
 local_float = sample_class.get_private_float() + 0.25;
 sample_class.set_private_float(local_float);
 break;

 case cpp_class::hold:
 case cpp_class::halt:
 break;
 }

 increment_counter();
 sleep(1);
 }

 return main_static_int;
}

E-16

Tutorials
C Sample - c_sample.c 5

long c_global_int = 1;

static long c_static_int = 10;

void
c_routine(void)
{
 struct struct_type {
 int int_component;
 float float_component;
 };

 static struct struct_type c_static_struct = {1, 2.0};
 static float c_static_array[4] = {0.0,1.0,2.0,3.0};
 static int c_static_func_int = 50;
 auto int c_stack_int = 0;
 auto int i;

 c_global_int ++;
 c_static_int += 2;
 c_static_func_int += 3;
 c_stack_int += 4;
 c_static_struct.int_component ++;
 c_static_struct.float_component += 1.1;

 for (i=0; i<4; i++) {

if (c_static_array[i] > 10000.0) {
 c_static_array[i] /= 1.754;

} else {
 c_static_array[i] *= 1.754;

}
 }
}

E-17

NightProbe RT User’s Guide
Probing Devices Tutorial 5

This tutorial demonstrates NightProbe’s ability to probe PCI devices. We will probe the
sync_clock timer on the Real-Time Clock and Interrupt Module (RCIM).

NOTE

This tutorial is only applicable to systems running RedHawk
Linux that have an RCIM installed.

This tutorial requires that you run as the root user or that your user has the
CAP_SYS_RAW_IO system capability as described in “Capabilities” on page G-1.

Selecting the RCIM 5

We will use some type structures from a compiled program file to aid in viewing the
RCIM device.

1. Copy the rcim.c source file from:

/usr/lib/NightProbe/Tutorial/rcim.c

and compile and link it in a working directory:

cp /usr/lib/NightProbe/Tutorial/rcim.c .
g++ -g -o rcim rcim.c

2. Invoke NightProbe:

/usr/bin/nprobe &

3. Right-click the Resources icon and select the Add PCI Device...
menu option in the Session Overview Area of the NightProbe main win-
dow.

4. Press the Search... button on the PCI Device Window dialog to
launch the PCI Device Selection Window.

5. Scroll through the list of PCI devices until you see one labeled:

PLX Technology, Inc. RCIM Realtime Clock and Interrupt Module

or

Concurrent Computer Corporation unknown device
E-18

Tutorials
6. Expand the list of regions for that device by clicking the control box to the
left of the PCI card icon on that row.

The window contents should look similar to the following, with the actual set of PCI
devices dependent on your specific system:

7. Select the third region for the RCIM Device, the Memory region listed
after the I/O ports by clicking it once.

8. Press the Select button.

The PCI Device Selection Window will exit and the Vendor ID, Device ID,
Slot, and Region Number fields in the PCI Device Window will be popu-
lated.

9. Change the Offset text field in the lower portion of the PCI Device
Window to the value 0x1000 (4096 decimal) which is the offset of the
sync_clock timer on the RCIM.

10. In the Symbol File text field of the PCI Device Window, type in the
name of the rcim program we built in the steps above:

./rcim

11. Change the Resource Tag text field to rcim for clarity.

12. STOP!

Make sure that the Offset field in Step 9 is set to 0x1000.

Proceed.

13. Press the Add button.
E-19

NightProbe RT User’s Guide
The selected PCI device memory region will now appear in the Resources list in
the Session Overview Area of the NightProbe main window.

Creating a View into the Device 5

In order to view locations within the PCI device, we need to create artificial variables to
which we assign offsets and types. These variables are not allocated by NightProbe in the
PCI device; they merely represent a view into a memory location that already exists in the
device.

1. Right-click the PCI card icon in the Resources list in the Session Over-
view Area of the NightProbe main window and select the New Item
for PCI Device... menu option.

The Item Definition window appears. In the list area, you should see three root
items representing Functions, Globals, and Files. The lists can be expanded so
that you can browse for types to apply to the artificial variable you are creating
within this dialog.

NOTE

If the only root item in the list is Globals, you forgot to specify a
Symbol File value in the PCI Device Window. Exit this dia-
log, right-click on the PCI card icon in the NightProbe main
window, choose Properties... and type in ./rcim in the Sym-
bol File text field and then return to this dialog.

2. Expand the Files list by clicking the control box to the left of the Files
icon.

3. Expand the list of types inside rcim.c by clicking the control box to the
left of the rcim.c icon.

4. Select the struct rcim_timer type by clicking on its icon once; do not
expand the list of components.

5. Change the Item Tag text field to the value sync_clock for clarity in
subsequent displays.

6. Press the Add button.

The artificial variable sync_clock has been added to the Probe Items list in the
Session Overview Area of the NightProbe main window.

Selecting the List Viewer 5

For brevity, we will select the simplest output method, the List Viewer window.
E-20

Tutorials
To launch the List Viewer

1. Right-click the Outputs icon in the Session Overview Area of the Night-
Probe main window and select the List Window Output menu option.

A List Viewer window will appear and its textual contents will be empty.

Probing the RCIM 5

1. Press the Connect button in the Sampler Control Area of the Night-
Probe main window.

NOTE

If NightProbe pops up a diagnostic window that says you do not
have sufficient permission to mmap the memory region, you need
to either run as the root user or have your system administrator
give you the CAP_SYS_RAW_IO capability as described in Capa-
bilities in “Capabilities” on page G-1.

Save the current NightProbe session by selecting Save Session
from the NightProbe menu in the NightProbe main window
and then exit NightProbe. You can return to this spot in the tuto-
rial as the root user or after you have been granted the required
capability. Invoke nprobe with the name of the session file you
just saved as its argument.

At this time we have connected to the target system and mapped the memory region
of the RCIM into the sampler process’s address space. No sampling or probing has
yet occurred.

NOTE

For PCI device probing, it is usually best to use On Demand
sampling since many devices may be sensitive to reads.

In the List Viewer window, a header has appeared:

pci 1 : PCI Device rcim

2. Press the Sample button in the Sampler Control Area of the NightProbe
main window.

3. Press the Sample button again.

The List Viewer window will automatically display the contents of the artificial
variable we created in rcim.c.
E-21

NightProbe RT User’s Guide
The RCIM sync_clock timer has three portions: a high-order 32-bit value and a
low-order 32-bit value separated by a 32-bit "hole". The low-order word ticks once every
400 nanoseconds. The high-order word ticks once the low-order word reaches 2**32
ticks.

4. Exit NightProbe using the Exit menu option from the NightProbe menu
of the NightProbe main window
E-22

Tutorials
C Source -- rcim.c 5

struct rcim_counter {
 int high;
 int hole;
 unsigned low;
};

struct rcim_counter counter;

main(){}

Conclusion 5

This concludes both tutorials. We hope that we have given you a sufficient overview so
that you can get started using NightProbe. Refer to the NightProbeRT User’s Guide or use
the context-sensitive help for the product if you have any questions.
E-23

NightProbe RT User’s Guide
E-24

F
Appendix FGUI Customization

E
E
E

You may customize the appearance of NightProbe using:

• X Window System resources (see “X Window System Resources” on page
F-1)

• command-line options (see “Command-Line Options” on page F-2)

• application resources (see “Application Resources” on page F-2)

X Window System Resources 6

The graphical user interface (GUI) for NightProbe is based on OSF/Motif, and it runs in
the environment of the X Window SystemTM. All XTM applications may be customized
using X resources. Resources specify application attributes such as fonts, colors, screen
layout, button and label names, mnemonics, accelerators, and text messages.

NightProbe provides default values for its X resources. Each user may override any X
resources with personal preferences, or a site may provide for different defaults. These
new settings can appear in the following places:

• In your .Xdefaults file

• On the nprobe invocation line (See “Command-Line Options” on page
F-2.)

• In a resource file that the xrdb(1) X resource database manager reads

If you specify the same X resource on the nprobe invocation line and in your
.Xdefaults file, the setting on the invocation line overrides the one in the file.

This appendix contains information that you need if you want to customize the graphical
user interface.

NightProbe’s behavior may be modified by specifying resources. Resources can be speci-
fied in many ways. One way to specify resources is to copy the default resource file to
your home directory and change your version of NightProbe’s resource file. That is the
method used in this appendix. For more information on setting X11 client resources, refer
to the X Window System User’s Guide, to the OSF/Motif Style Guide, or to the X(7x) and
xrdb(1) man pages.

The following files in the /usr/lib/X11/app-defaults directory contain Night-
Probe’s default resources:

Nprobe Application default resources file
F-1

NightProbe RT User’s Guide
You can look in this file for examples of ways to customize NightProbe’s appearance and
behavior. To see all the NightProbe resources, use the editres(1) tool.

Command-Line Options 6

NightProbe has its own set of command-line options. (See “Invoking NightProbe” on page
2-1.) When you invoke NightProbe, you may also specify any standard X tool kit com-
mand-line option. Such options include -bg color to set the color for the window back-
ground; -fg color to set the color to use for text or graphics; and -xrm resourcestring to
set selected resources. For example:

nprobe -xrm "*drecWindow*geometry:-0+0" &

would put the Main window in the upper right corner. For a complete list of these options,
refer to the X(7x) man page.

Application Resources 6

In addition to the standard resources associated with an X11 or Motif program, Night-
Probe defines special application resources you can use to customize NightProbe’s
appearance and behavior. These resources affect the entire NightProbe graphical user
interface; they are “global” to the application.

There are two categories of application resources used by NightProbe. One set of
application resources applies to all products that are part of the NightStar tool set. In
addition to these, NightProbe has its own application resources.

NightStar Resources 6

NightProbe is part of the NightStar tool set. To provide a consistent appearance among
these tools and to provide an easy way for you to change the default appearance, special
application resources exist that define fonts and colors. They allow you to change one
resource (instead of many) to affect the font or color for a set of window components that
have similar characteristics. These resources are applied only to certain window
components; many of NightProbe’s window components are unaffected by the NightStar
resources.

For example, some textual display areas show only program output and some areas accept
input only from you. Different colors are used for these areas to distinguish them. If you
want to change the color for input fields, for example, you need to change only one
resource in NightProbe’s resource file. See “Color Resources” on page F-4. The next time
you run NightProbe, the color of all the input fields has the new setting.

Changing the inputBackground line in your Nprobe file to:
F-2

GUI Customization
*inputBackground: Yellow

causes the background color for all input areas to be yellow.

NightProbe Resources 6

NightProbe resources are not shared by other NightStar tools. A list of NightProbe
resources follows.

lowCautionColor

Control the color of the Low Caution field of the Spreadsheet Viewer
window. The default value is orange. (See “Cell Color Legend” on page
14-13.)

lowDangerColor

Control the color of the Low Danger field of the Spreadsheet Viewer
window. The default value is magenta. (See “Cell Color Legend” on page
14-13.)

highCautionColor

Control the color of the High Caution field of the Spreadsheet Viewer
window. The default value is yellow. (See “Cell Color Legend” on page
14-13.)

highDangerColor

Control the color of the High Danger field of the Spreadsheet Viewer
window. The default value is red. (See “Cell Color Legend” on page 14-13.)

text.maxArrayExpansion

Control the maximum number of array components which can are shown
when expanding an array variable or type in the Item Browser and Item
Definition windows. The default value is 1000 components. (See “Interac-
tive Variable Browser” on page 11-3 and “Interactive Type Browser” on page
12-4.)

Font Resources 6

Your X terminal vendor supplies you with vendor-specific directories and files that pertain
to fonts. The programs xlsfonts(1) and xfontsel(1) can be used to help you find
f o n t n a m e s . N i g h t P r o b e ’s f o n t r e s o u r ce s a r e i n t h e f i l e
/usr/lib/X11/app-defaults/Nprobe. This section describes the special font
resources available for NightStar tools in general and NightProbe in particular.

NightStar tools use proportional-width fonts except in areas that depend on text alignment;
in these instances a fixed-width font is important for readability. If you decide to change
F-3

NightProbe RT User’s Guide
fonts, make sure that you choose another fixed-width font for the font resources that have
fixed in their names.

NightStar font resources include:

smallFontList Used for areas that require a smaller font.
NightProbe does not currently use this font.

infoFontList Used for areas that display informational
messages, warnings, errors. NightProbe uses
this font for text fields.

fixedFontList Used for areas that depend on text alignment.
NightProbe uses this font for lists and the
viewing area of the Spreadsheet Viewer
window.

smallFixedFontList Used for areas that depend on text alignment
but require a smaller font. NightProbe does
not currently use this font.

NightProbe uses a default font for most of the textual display in the windows. This
proportional-width font is specified as the value of the standard Motif fontList
resource. This font is used by window components that do not have a font specified for
them. For example, changing the fontList line in your Nprobe file to:

*fontList: 9x15

would cause NightProbe to use the 9x15 font for the default font of most textual displays.

Color Resources 6

This section describes the special color resources available for NightStar tools in general
and NightProbe in particular.

NightStar tools use the same color scheme to indicate that they are part of the same tool
set and to provide cues about the usage of different areas in the windows. Each NightStar
tool uses a unique color for its menu bars.

The following NightStar color application resources are defined:

NightProbe uses a default color for most of the window areas. This color is specified as
the value of the standard X11 background resource. This color is used by window com-
ponents that do not have a color specified for them.

outputBackground
outputForeground

Used for the background and foreground
colors in output-only areas.

inputBackground
inputForeground

Used for the background and foreground
colors in areas that accept user input.

distinctBackground
distinctForeground

Used for the background and foreground in
colors areas that require user input.
F-4

G
Appendix GTarget System Requirements

F
F
F

This chapter provides an overview of the user and system configuration requirements that
need to be taken into account prior to running NightProbe on a target system.

Capabilities 7

The following capabilites may be required when using NightProbe:

• CAP_SYS_RAWIO

If you wish to probe PCI devices or other target resources to which you do not have
appropriate file access (e.g. /dev/mem or a shared memory segment or process
owned by a different user), you must have this capability.

• CAP_SYS_NICE

In order to set the CPU bias of the NightProbe target or of the program specified
using the Program Output method (see “Program Output” on page 6-14), you must
have this capability.

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
ta in p r iv i l eged opera t ions . The P luggable Authen t ica t ion Module (see
pam_capability(8)) is used to manage sets of capabilities, called roles, required for
various activities.

Linux systems should be configured with an nprobeuser role which provides the
CAP_SYS_RAWIO and CAP_SYS_NICE capabilities.

Edit /etc/security/capability.conf and define the nprobeuser role (if it is
not already defined) in the “ROLES” section:

role nprobeuser CAP_SYS_RAWIO CAP_SYS_NICE

Additionally, for each NightProbe user on the target system, add the following line at the
end of the file:

user username nprobeuser

where username is the login name of the user.

If the user requires capabilities not defined in the nprobeuser role, add a new role
which contains nprobeuser and the additional capabilities needed, and substitute the
new role name for nprobeuser in the text above.
G-1

NightProbe RT User’s Guide
In addition to registering your login name in /etc/security/capability.conf,
certain files under the /etc/pam.d directory must also be configured to allow capabili-
ties to be activated.

To activate capabilities, add the following line to the end of selected files in /etc/pam.d
if it is not already present:

session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

If you modify /etc/pam.d/sshd or /etc/ssh/sshd_config, you must resetart
the sshd service for the changes to take effect:

service sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.

Table 6-1. Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment

remote telnet
rlogin
rsh (when used w/o a command)

Depending on your system, the remote file may
not exist. Do not create the remote file, but edit it
if it is present.

login local login (e.g. console)
telnet*
rlogin*
rsh* (when used w/o a command)

*On some versions of Linux, the presence of the
remote file limits the scope of the login file to
local logins. In such cases, the other services listed
here with login are then affected solely by the
remote configuration file.

rsh rsh (when used with a command) e.g. rsh system_name a.out

sshd ssh You must also edit /etc/ssh/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no

gdm gnome sessions

kde kde sessions
G-2

Target System Requirements
NOTE

To verify that you have been granted capabilities, issue the
following command:

 /usr/sbin/getpcaps $$

The output from that command will list the roles currently
assigned to you.
G-3

NightProbe RT User’s Guide
G-4

Index
Symbols

.Xdefaults file F-1
/usr/bin/nprobe 2-1
/usr/lib/X11/app-defaults directory F-1
/usr/lib/X11/app-defaults/Nprobe file F-3
/usr/lib/X11/app-defaults/Nprobefile F-2

A

Accelerator D-1
Access type C-4
Address

memory C-1
Alt key D-1
Application resources F-2
Array index 14-7, C-1, C-2
Array slice 14-8, C-1, C-2
Array Slice field 14-7
Array type C-5
Auto Refresh button 6-12, 14-12
Auto Refresh field 14-12

B

background resource F-4
Boolean type C-4
Boundary conditions (see Limits)
Button

Auto Refresh 6-12, 14-12
Help 2-3
Refresh 6-12, 14-12

C

C program C-1
CAP_SYS_NICE capability 1-3, G-1
CAP_SYS_RAWIO capability 1-3, G-1

Capabilities
CAP_SYS_NICE 1-3, G-1
CAP_SYS_RAWIO 1-3, G-1

Caution 14-8, 14-12, F-3
Cell Attributes dialog 14-13
Cell Attributes menu option 14-4
Cell Attributes window 14-4
Cell Layout menu 14-6
Character type C-4
Clear menu option 14-9
Close Window menu option 6-11, 14-3
Color

caution 14-12, F-3
danger 14-12, F-3
default F-4

Color resources F-4
Column Width menu option 14-10
Common block

Fortran C-4
Compilation C-4
Composite C-2
Configuration

data sampling 2-2, 3-2, 3-10
spreadsheet 14-3

Configuration file 1-2
Context-sensitive help 3-8
Control key D-1
Copy menu option 14-9
Cut menu option 14-8

D

Danger 14-8, 14-12, F-3
Data monitoring 1-1
Data recording 1-1
Data sampling 1-2, 3-1
Data sampling configuration 2-2, 3-2, 3-10
data statement

Fortran C-4
Data structures

np_endian_type 15-3
np_handle 15-3
np_header 15-3
Index-1

NightProbe RT User’s Guide
np_item 15-4
np_process 15-4
np_trigger_handle 15-20
np_type 15-5

Debugging information C-4
Default color F-4
Default font F-4
Delete Columns menu option 14-11
Delete Rows menu option 14-11
Deselect All menu option 14-9
Dialog

Cell Attributes 14-13
File Output 6-1
NightTrace Output 6-3
Program Output 6-14
Select Process ID 7-3
Target Server 4-1

Directory
/usr/lib/X11/app-defaults F-1

Disable Updates menu option 14-5
distinctBackground resource F-4
distinctForeground resource F-4

E

Edit menu 14-8
editres(1) F-2
Enable Updates menu option 14-5
End key D-1
Enumeration C-4
Environment variable

NSLM_SERVER A-2
Esc key D-1
Exit menu option 3-3

F

Field
Array Slice 14-7
Auto Refresh 14-12
High Caution 14-8
High Danger 14-8
Info 14-7
Low Caution 14-8
Low Danger 14-8
Variable 14-7

File
.Xdefaults F-1
/usr/bin/nprobe 2-1
/usr/lib/X11/app-defaults/Nprobe F-2, F-3

configuration 1-2
layout 14-3, 14-11
Nprobe F-1
spreadsheet layout 14-3, 14-11

File menu 3-2, 6-11, 14-2
File Output dialog 6-1
File Output menu option 6-1
Fixed licenses A-1
fixedFontList resource F-4
Fixed-point type C-4
Floating licenses A-1
Floating-point type C-4
Font F-3, F-4

default F-4
fontList resource F-4
foreground resource F-4
Format menu option 14-7
Fortran program C-1
Functions

np_avail() 15-7
np_close() 15-9
np_error() 15-11
np_format() 15-10
np_host_endian() 15-11
np_open() 15-6
np_read() 15-8
np_trigger() 15-22
np_trigger_close() 15-23
np_trigger_error() 15-23
np_trigger_open() 15-21

G

Generic C-4
geometry resource F-2
Global variable C-4
Graphical user interface F-1
Grid Lines menu option 14-11
GUI F-1

H

Help
On Context 3-8
On Window 3-8

Help button 2-3
Help menu 2-3, 3-8, 6-12, 14-11
High Caution color 14-13
High Caution field 14-8
High Danger color 14-13
Index-2

Index
High Danger field 14-8
highCautionColor resource F-3
highDangerColor resource F-3
Home key D-1

I

Identify menu option 14-5
Index

array 14-7, C-1, C-2
Info field 14-7
infoFontList resource F-4
Input area

editing D-1
inputBackground resource F-4
inputForeground resource F-4
Insert Column menu option 14-10
Insert Row menu option 14-10
Integer type C-4
Item Browser 11-1
Item Definition Window 12-1
Item Properties window 13-1

K

Key
Alt D-1
Control D-1
End D-1
Esc D-1
Home D-1
Page Down D-1
Page Up D-1
Shift Tab D-1
Tab D-1

L

Label Position menu 14-6
Layout file 14-3, 14-11
Layout menu 14-9
License A-1

fixed A-1
installation A-1
keys A-1
modes A-1
nslm_admin A-1, A-3
report A-3

requests A-2
server A-2
support A-4

Limits 14-8
List

Output 6-12, 14-3
List Viewer window 6-10, 6-12
List Window Output menu option 6-10
Low Caution color 14-13
Low Caution field 14-8
Low Danger color 14-13
Low Danger field 14-8
lowCautionColor resource F-3
lowDangerColor resource F-3

M

Mapped Memory Window 10-1
Memory address C-1
Menmonic

menu D-1
menu item D-1

Menu
Cell Layout 14-6
Edit 14-8
File 3-2, 6-11, 14-2
Help 2-3, 6-12, 14-11
Label Position 14-6
Layout 14-9
Output 3-4, 6-11
Selected 14-4, 14-7, 14-12
Timer 3-4

Menu Help 3-8
Menu option

Cell Attributes 14-4
Clear 14-9
Close Window 6-11, 14-3
Column Width 14-10
Copy 14-9
Cut 14-8
Delete Columns 14-11
Delete Rows 14-11
Deselect All 14-9
Disable Updates 14-5
Enable Updates 14-5
Exit 3-3
File Output 6-1
Format 14-7
Grid Lines 14-11
Identify 14-5
Insert Column 14-10
Insert Row 14-10
Index-3

NightProbe RT User’s Guide
List Window Output 6-10
New 3-2, 6-11, 14-3
NightTrace Output 6-3
On Context 3-8
On Help 3-8, 3-9
On Window 3-8
Open Config File 3-3
Open Data File 6-11
Open Layout File 14-3
Open Session 3-10
Paste 14-9
Place Variables 14-4, 14-7, 14-12
Program Output 6-14
Save As 6-11
Save as Text 14-5
Save Config File 3-3
Save Config File As 3-3
Save Layout File 14-3
Save Layout File As 14-3
Select All 14-9
Sheet Size 14-10
Spreadsheet Output 6-13

Mnemonic D-1
Monitoring (see Data monitoring and Viewer)
Mouse button 1 D-1

N

New menu option 3-2, 6-11, 14-3
NightProbe DataStream API

np_endian_type 15-3
np_handle 15-3

NightProbe Datastream API
np_avail() 15-7
np_close() 15-9
np_error() 15-11
np_format() 15-10
np_header 15-3
np_host_endian() 15-11
np_item 15-4
np_open() 15-6
np_process 15-4
np_read() 15-8
np_type 15-5

NightProbe resources F-3
NightProbe Trigger API

np_handle 15-20
np_trigger() 15-22
np_trigger_close() 15-23
np_trigger_error() 15-23
np_trigger_open() 15-21

NightStar resources F-2

NightStar tool set F-2
NightTrace 1-1
NightTrace Output dialog 6-3
NightTrace Output menu option 6-3
np_avail() 15-7
np_close() 15-9
np_endian_type 15-3
np_error() 15-11
np_format() 15-10
np_handle 15-3
np_header 15-3
np_host_endian() 15-11
np_item 15-4
np_open() 15-6
np_process 15-4
np_read() 15-8
np_trigger() 15-22
np_trigger_close() 15-23
np_trigger_error() 15-23
np_trigger_handle 15-20
np_trigger_open() 15-21
np_type 15-5
nprobe 2-1
Nprobe file F-1
nprobe option

--help (help) 2-1, 2-3
--input (input recorded data) 2-2
--list (use list viewer) 2-2
--program (program) 2-1
--record (output recorded data) 2-1
--sheet (use spreadsheet viewer) 2-2
--trace (output tracing data) 2-2
--version (version) 2-1
-Xoption (use X(7x) options) 2-2

nslm_admin A-1, A-3
NSLM_SERVER A-2

O

On Context menu option 3-8
On Demand timing source 3-13
On Help menu option 3-8, 3-9
On Window menu option 3-8
Open Config File menu option 3-3
Open Data File menu option 6-11
Open Layout File menu option 14-3
Open Session menu option 3-10
Output list 6-12, 14-3
Output menu 3-4, 6-11
outputBackground resource F-4
outputForeground resource F-4
Index-4

Index
P

Package
Ada C-4

Page Down key D-1
Page Up key D-1
Paste menu option 14-9
PCI Device Window 8-1
Place Variables menu option 14-4, 14-7, 14-12
Pragma SHARED_PACKAGE C-4
Program

C C-1
compilation C-4
Fortran C-1

Program Output dialog 6-14
Program Output menu option 6-14
Program Window 7-1, 7-3

R

Record C-2
Record type C-5
Recording (see Data recording)
Refresh button 6-12, 14-12
Resource

background F-4
distinctBackground F-4
distinctForeground F-4
fixedFontList F-4
fontList F-4
foreground F-4
geometry F-2
highCautionColor F-3
highDangerColor F-3
infoFontList F-4
inputBackground F-4
inputForeground F-4
lowCautionColor F-3
lowDangerColor F-3
outputBackground F-4
outputForeground F-4
smallFixedFontList F-4
smallFontList F-4
text.maxArrayExpansion F-3

Resources
application F-2
color F-4
NightProbe F-3
NightStar F-2
X F-1

S

Sampling (see Data sampling)
Save As menu option 6-11
Save as Text menu option 14-5
Save Config File As menu option 3-3
Save Config File menu option 3-3
Save Layout File As menu option 14-3
Save Layout File menu option 14-3
save variable C-4
Select All menu option 14-9
Select Process ID dialog 7-3
Selected menu 14-4, 14-7, 14-12
Shared Memory Window 9-1
SHARED_PACKAGE pragma C-4
Sheet Size menu option 14-10
Shift Tab key D-1
smallFixedFontList resource F-4
smallFontList resource F-4
Spreadsheet configuration 14-3
Spreadsheet Output menu option 6-13
Spreadsheet tutorial E-5
Spreadsheet Variables window 14-4
Spreadsheet Viewer window 6-13, 14-1, 14-12
Static variable C-4
Structure C-2
Symbol table C-4

T

Tab key D-1
Target Server dialog 4-1
Task type C-5
Text fonts F-3, F-4
Text input area

editing D-1
text.maxArrayExpansion resource F-3
Timer menu 3-4
Timing source

On Demand 3-13
Tool set

NightStar F-2
Tutorial

spreadsheet E-5
Type

access C-4
array C-5
Boolean C-4
character C-4
enumeration C-4
fixed-point C-4
Index-5

NightProbe RT User’s Guide
floating-point C-4
integer C-4
record C-5

U

Union C-2
User interface

graphical F-1

V

Variable
global C-4
static C-4

Variable field 14-7
Variable limits 14-8
Variable name C-1, C-4
Variable Placement window 14-6
Viewer

list 2-2
spreadsheet 2-2

W

Window
Cell Attributes 14-4
Item Definition 12-1
Item Properties 13-1
List Viewer 6-10, 6-12
Mapped Memory 10-1
PCI Device 8-1
Program 7-1, 7-3
Shared Memory 9-1
Spreadsheet Variables 14-4
Spreadsheet Viewer 6-13, 14-1, 14-12
Variable Placement 14-6

Window help 3-8

X

X resource F-1
background F-4
fontList F-4
foreground F-4
geometry F-2

X Window System F-1
X(7x) 2-2, D-2, F-1, F-2
xfontsel(1) F-3
xlsfonts(1) F-3
xrdb(1) F-1
Index-6

	NightProbe RT User’s Guide
	Preface
	Contents
	Overview
	Recording and Monitoring
	Eligible Variables
	Sampling

	Using NightProbe

	Invoking NightProbe
	Getting Help

	NightProbe Main Window
	Menu Bar
	NightProbe
	Timer
	Output
	Resource
	Control
	Tools
	Help

	Session Configuration Status Area
	Sampler Control Area
	Session Overview Area
	Target System Selection
	Timer Selection
	Outputs
	Resources
	Probe Items

	Target Server Selection
	User Authentication
	Run Time Settings

	Timing Source Configuration
	Set System Timer
	Set FBS Timer
	Select Frequency Based Scheduler

	Set Trigger Timer

	Output Configuration
	File Output
	NightTrace Output
	List Viewer
	Menu Bar
	File
	Help

	Control Area

	Spreadsheet Viewer
	Program Output

	Program Window
	PCI Device Window
	Shared Memory Window
	Mapped Memory Window
	Item Browser
	Interactive Variable Browser

	Item Definition Window
	Interactive Type Browser

	Item Properties Window
	Spreadsheet Viewer
	Menu Bar
	File
	Selected
	Spreadsheet Variables
	Cell Attributes

	Edit
	Layout
	Help

	Layout Configuration Status Area
	Spreadsheet Viewing Area
	Control Area
	Cell Color Legend

	NightProbe API
	NightProbe Datastream API
	NightProbe Data Format
	Data Structures
	np_endian_type
	np_handle
	np_header
	np_item
	np_process
	np_type

	Functions
	np_open()
	np_avail()
	np_read()
	np_close()
	np_format()
	np_host_endian()
	np_error()

	Sample Programs
	program_output_test.c
	program_output_fbs_test.c

	NightProbe Trigger API
	Data Structures
	np_trigger_handle

	Functions
	np_trigger_open()
	np_trigger()
	np_trigger_close()
	np_trigger_error()

	Sample Program
	nprobe_trigger_test.c

	NightStar Licensing
	License Keys
	License Requests
	License Server
	License Reports
	Firewall Configuration for Floating Licenses
	License Support

	Kernel Dependencies
	Advantages for NightView
	Advantages for NightTrace
	Advantages for NightProbe
	Advantages for NightTune
	Advantages for NightSim

	Variables
	Variable Name Notation
	Composite Types
	Array Slices

	Variable Eligibility for Program Resources

	Keyboard Traversal
	Tutorials
	Probing Programs Tutorial
	Creating and Selecting a Program
	Variable Browsing
	Using the Spreadsheet
	Quickly Adding Multiple Variables
	Selecting a Timing Source
	Start Data Sampling
	Modifying the Value of Variables

	Ada Sample - ada_sample.a
	C++ Sample - cpp_sample.cpp
	C Sample - c_sample.c

	Probing Devices Tutorial
	Selecting the RCIM
	Creating a View into the Device
	Selecting the List Viewer
	Probing the RCIM
	C Source -- rcim.c

	Conclusion

	GUI Customization
	X Window System Resources
	Command-Line Options
	Application Resources
	NightStar Resources
	NightProbe Resources
	Font Resources
	Color Resources

	Target System Requirements
	Capabilities

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

