
MAXAda for Linux Reference Manual

0898537-140
March 2006



Copyright 2006 by Concurrent Computer Corporation.  All rights reserved.  This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users.  It may not be reproduced in any form without the written permission of the publisher. 

The information contained in this document is believed to be correct at the time of publication.  It is subject to change
without notice.  Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document. 

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy.  Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL  33069-4324. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

MAXAda, NightBench, NightView, iHawk, and RedHawk are trademarks of Concurrent Computer Corporation.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark of Red Hat, Inc.

SUSE is a registerd trademark of Novell, Inc.

AMD is a trademark of Advanced Micro Devices, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

AXI is a trademark of Sente Corporation

OSF/Motif is a registered trademark of The Open Group.

X Window System and X are trademarks of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- March 1997 000 MAXAda 1.0
Previous Release -- December 2004 120 MAXAda 3.5-beta
Current Release -- March 2006 130 MAXAda 3.5



Preface

General Information

MAXAdaTM is a tool set for the development of Ada programs selected Linux distribu-
tions. MAXAda processes the Ada language as specified by the Reference Manual for the
Ada Programming Language, ANSI/ISO/IEC-8652:1995, referred to in this document as
the Ada 95 Reference Manual or the RM. The Ada 95 Reference Manual may be obtained
through the Superintendent of Documents, U.S. Government Printing Office, Washington,
D.C. 20402.

The MAXAda documentation describes the operation of the Ada Programming Support
Environment. It does not attempt to teach Ada or UNIX®.

The Ada 95 Reference Manual specifies all compiler-independent information about the
Ada language. This document specifies all MAXAda-specific compiler-dependent infor-
mation about the Ada language.

Scope of Manual

This manual is a reference document and user guide for MAXAda.

Structure of Manual

This manual consists of 12 chapters, four appendixes, a glossary, and an index. A brief
description of the contents of each of the chapters of the manual is described as follows.

• Part 1 is Operations which contains Chapter 1 through Chapter 4. These
chapters are the Introduction to MAXAda, Using MAXAda, MAXAda
Concepts, and MAXAda Utilities.

• Part 2 is Run-Time which contains Chapter 5 through Chapter 7. These
chapters are Run-Time Concepts, Run-Time Configuration, and Interrupt
Handling.

• Part 3 is General Features which contains Chapter 8 through Chapter 9.
These chapters are Shared Memory and Process Communication and Sup-
port Packages.

• Part 4 is Real-Time Features which contains Chapter 10 through
Chapter 12. These chapters are Real-Time Extensions, Real-Time Event
Tracing, and Real-Time Monitoring.

• Part 5 is Appendixes and Index which contains Appendix A (Troubleshoot-
ing), Appendix B (MAXAda Configuration), Appendix C (Ada Night-
View), Appendix M (Implementation-Defined Characteristics), a glossary,
and an index.
3



MAXAda for Linux Reference Manual
Syntax Notation

The following notation is used throughout this guide: 

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window
type.

[  ] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{  } Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0898395/0896395 NightViewTM RT User’s Guide
0898398/0896398 NightTraceTM RT User’s Guide
0898458/0896458 NightSimTM RT User’s Guide
0898465/0896465 NightProbeTM RT User’s Guide
0898493 Data Monitoring Reference Manual
0890514 NightBenchTM User’s Guide
4



Contents
Contents

Chapter 1   Introduction to MAXAda

MAXAda Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
MAXAda Core Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Run-Time Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Supplied Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Ada Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Complementary MAXAda Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

Chapter 2   Using MAXAda

Hello World - An Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Creating an environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Introducing units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Defining a partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Building a partition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Success!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Let’s look around... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Listing the units in your environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Viewing the source for a particular unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Listing the partitions defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Looking at the Environment Search Path . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
What are my options? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Hello Galaxy - The Example Continues... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Setting up another environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Modifying an existing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Building a unit with references outside the local environment  . . . . . . . . . . . . . 2-13
Adding an environment to the Environment Search Path . . . . . . . . . . . . . . . . . 2-13
Making contact!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Who resides here now?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

Hello Again... Ambiguous Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Resolving the ambiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
No more ambiguities!!!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Chapter 3   MAXAda Concepts

Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Local Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Foreign Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Environment Search Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Naturalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Fetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Supplied Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

NFS Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Freezing Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
5



MAXAda for Linux Reference Manual
Restoring Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Relocating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Environment-wide Compile Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Unit Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Configuration Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Nationalities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Local Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Foreign Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Ambiguous Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Artificial Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Unit Compile Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Types of Partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Active Partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Archives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Shared Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

Lazy Versus Immediate Binding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Position Independent Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Share Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Shared Objects and Special MAXAda Packages . . . . . . . . . . . . . . . . . 3-14
Issues to consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15

Elaboration and Finalization Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Elaboration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Finalization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

Main Subprogram Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Exit Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Compilation and Program Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Compilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Automatic Compilation Utility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Compile Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Environment-wide Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Permanent Unit Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Temporary Unit Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Effective Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

Compilation States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Interoptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
Programming Hints and Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

Compiler Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Lexical Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Syntax Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
Semantic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29
General Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Informational Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
Warnings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Fatal Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
Internal Errors and Panics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

Link Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34
Linking Executable Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

Linking Ada Programs with Shared Objects . . . . . . . . . . . . . . . . . . . . . . . . 3-36
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38

Real-Time Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
6



Contents
Selecting a Debug Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
Degree of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40

Interface to Other Languages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
Linking Ada Partitions into Applications with non-Ada Main Subprograms . . 3-41

C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44
Concurrent Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
GNU Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46
GNU Java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47

Linking non-Ada Objects into MAXAda Partitions. . . . . . . . . . . . . . . . . . . . . . 3-48
Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
GNU Java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49

Ada Tagged Types and C++ Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51
Ada Tagged Types and Java Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51

Chapter 4   MAXAda Utilities

Common Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
a.build  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Parallel Compilations and Dependency Analyses . . . . . . . . . . . . . . . . . . . . . . . 4-5
Inline Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Forcing Attempts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Why  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

a.cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
a.chmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
a.compile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
a.demangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
a.deps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
a.edit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
a.error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
a.expel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
a.fetch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
a.freeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
a.help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
a.hide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
a.install. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
a.intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30
a.invalid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
a.link  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
a.ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35

Formatting the listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
Dependent units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
Parts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
Sorting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
Filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41

a.lssrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
a.man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44

References to the Ada 95 Reference Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45
References to the MAXAda for Linux Reference Manual  . . . . . . . . . . . . . . . . 4-45
Access to Support Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46

a.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47
7



MAXAda for Linux Reference Manual
a.mkenv  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53
a.monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55
a.nfs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-56
a.options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58

Option Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
Listing options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
Setting options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60
Modifying options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60
Clearing options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60
Deleting options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60
Keeping temporary options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61
Setting options on foreign units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61

a.partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
Main Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-64
Elaboration and Finalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Case Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Link Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Link Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-67
Implicitly-Included Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-72

a.path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-74
a.pclookup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76
a.pp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-77

Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-80
Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-81
Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-81

a.release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-83
a.resolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-85
a.restore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-86
a.rmenv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87
a.rmsrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-88
a.script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-89

Generated Script - Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-91
a.syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-92
a.tags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94
a.touch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-97
a.trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98
Compile Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-99

Negation (!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-99
Debug Level (-g[level]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-100
Opportunism (-opp)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101
Share Mode (-sm)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101
Not Shared (-N)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101
Optimization Level (-O[level]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101
Qualifier Keyword (-Qkeyword[=value]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-104
Suppress Checks (-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-104

Qualifier Keywords (-Q options). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105
Link Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-109

Fortran Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-110
Share Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-110
Incrementally Updateable Partition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-111
ld Argument  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-111
Tracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-113
8



Contents
Task Weight  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-114
Shared Object Transitive Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-114
Obscurity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-115

Chapter 5   Run-Time Concepts

Tasking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Task Weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Bound Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Multiplexed Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Task Time Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Utilization of Multiple CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Ghost Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

ADMIN Ghost Task  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
TIMER Ghost Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
OS Scheduling Policies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Policy Selection by the Non-Tasking Run-Time. . . . . . . . . . . . . . . . . . . . . 5-8
Policy Selection by the Tasking Run-Time. . . . . . . . . . . . . . . . . . . . . . . . . 5-8

Restrictions for Priorities in the System.Interrupt_Priority Range  . . . 5-9
Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Text Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Collection Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Stack Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Other Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Visibility of Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

Chapter 6   Run-Time Configuration

General Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Pragma RUNTIME_DIAGNOSTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Pragma MAP_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Pragma QUEUING_POLICY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Pragma TASK_DISPATCHING_POLICY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Pragma LOCKING_POLICY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Pragma SERVER_CACHE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Task and Group Configuration Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Task Names and Default Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Task Specifiers in Task Pragmas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
 Group Names and Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Group Specifiers in Group Pragmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8

Task Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Pragma TASK_WEIGHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Pragma TASK_PRIORITY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Pragma TASK_CPU_BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Pragma TASK_QUANTUM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14
Pragma TASK_HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15

Group Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
Pragma GROUP_PRIORITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
9



MAXAda for Linux Reference Manual
Pragma GROUP_CPU_BIAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
Pragma GROUP_SERVERS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19

Memory Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
Pool Specifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Pragma MEMORY_POOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Pragma POOL_CACHE_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25
Pragma POOL_LOCK_STATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25
Pragma POOL_SIZE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26
Pragma POOL_PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28

Protected Object Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28
Pragma PROTECTED_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28

Chapter 7   Interrupt Handling

Software Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
COURIER Ghost Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
SHADOW Ghost Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4

Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
INTR_COURIER and COURIER Ghost Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
SHADOW Ghost Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

Privileges for Unrestricted Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . 7-6
Interrupt Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

Package Ada.Interrupts.Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Package Ada.Interrupts.Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Task Executives via Protected Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Description of Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

Chapter 8   Shared Memory and Process Communication

Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Shared Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

Pragma SHARED_PACKAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Restrictions on Contents of Shared Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Characteristics of Shared Packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Shared Package Semaphores  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

Chapter 9   Support Packages

Supplied Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
predefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
vendorlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8

ccur.bit_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
ccur.bit_ops.long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
ada.exceptions.addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
ada.numerics.constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
ada.real_time.local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
ccur.runtime_configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
ccur.shared_memory_support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
system.addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
system.information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
system.storage_pools.standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11
system.storage_pools.standard.objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
10



Contents
publiclib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
ccur.c_to_ada_types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
ccur.character_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
ccur.curses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
ccur.qsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

rtdm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
ccur.rtdm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13

deprecated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
obsolescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
posix_1003.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14

ccur.posix_1003_1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
posix_1003.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
sockets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

ccur.sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
general  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

ccur.night_trace_bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
ccur.timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

Chapter 10   Real-Time Extensions

Mutual Exclusion Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Spin Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Binary Semaphores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Tasking Semaphores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

Task Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
Cyclic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
User Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
Low-Level Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

Indivisible Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
Rescheduling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
Client-Server Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
Usermap Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
Byte Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12

Chapter 11   Real-Time Event Tracing

Specifying Trace Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Predefined Trace Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

Library Unit Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
User-Defined Trace Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

ccur.user_trace package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6

ccur.user_trace.raw package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

NightTrace Binding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11

NightView Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13
Tracing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14

Tracing Options - Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Logging Trace Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19

Logging Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19
11



MAXAda for Linux Reference Manual
Ada Executive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19
Trace Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20

Forcing a Trace Buffer Flush  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20
Timing Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-21

NightTrace Daemon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-21
Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23

Viewing Trace Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24
User Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24
Viewing Trace Events with a.trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25
Viewing Trace Events with NightTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26

Creating the NightTrace Configuration File . . . . . . . . . . . . . . . . . . . . . . . . 11-26
Modifying the NightTrace Configuration File. . . . . . . . . . . . . . . . . . . . . . . 11-27

Chapter 12   Real-Time Monitoring

Data Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Eligible Data Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Eligible Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
ccur.rtdm Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

Task Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
a.monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8

Task Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11
Display Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14

Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14
Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-18
System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-21

Appendix A   Troubleshooting

Configuration Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Application Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Using Tasks to Multithread Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
User Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Concurrent Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Hung Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Client/Server Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Run-Time Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Run-Time Diagnostic Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

Compiler Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6

Appendix B   MAXAda Configuration

Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
12



Contents
Appendix C   Ada NightView

Hints for Debugging Ada Programs with NightView . . . . . . . . . . . . . . . . . . . . . . . . C-1
Tasking Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

Debugging Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Exception Handling and Interception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3
Generics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4
General NightView Operational Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4

Listing Source, Packages, and Subprograms  . . . . . . . . . . . . . . . . . . . . . . . C-4
Disassembly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5
Interest Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5
Expression Evaluation Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5

Appendix M   Implementation-Defined Characteristics

RM Chapter 1: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-2
RM 1.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-2
RM 1.1.3 Conformity of an Implementation with the Standard. . . . . . . . . . . . . M-2
RM 1.1.4 Method of Description and Syntax Notation . . . . . . . . . . . . . . . . . . . M-4

RM Chapter 2: Lexical Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-5
RM 2.1 Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-5
RM 2.2 Lexical Elements, Separators, and Delimiters  . . . . . . . . . . . . . . . . . . . M-5
RM 2.8 Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-6

RM Chapter 3: Declarations and Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-9
RM 3.5 Scalar Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-9
RM 3.5.2 Character Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-9
RM 3.5.4 Integer Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-9
RM 3.5.5 Operations of Discrete Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-10
RM 3.5.6 Real Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-11
RM 3.5.7 Floating Point Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-11
RM 3.5.9 Fixed Point Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-12
RM 3.6.2 Operations of Array Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-12
RM 3.9 Tagged Types and Type Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . M-12

RM Chapter 4: Names and Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-14
RM 4.1.4 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-14
RM 4.3.1 Record Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-17

RM Chapter 5: Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-18
RM Chapter 6: Subprograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-19
RM Chapter 7: Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-20
RM Chapter 8: Visibility Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-21
RM Chapter 9: Tasks and Synchronizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-22

RM 9.6 Delay Statements, Duration, and Time . . . . . . . . . . . . . . . . . . . . . . . . . M-22
RM 9.10 Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-23

RM Chapter 10: Program Structure and Compilation Issues  . . . . . . . . . . . . . . . . . . M-24
RM 10.1 Separate Compilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-24
RM 10.1.4 The Compilation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-24
RM 10.1.5 Pragmas and Program Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-25
RM 10.2 Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-26
RM 10.2.1 Elaboration Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-30

RM Chapter 11: Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-31
RM 11.4.1 The Package Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-31
RM 11.5 Suppressing Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-32

RM Chapter 12: Generic Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-33
RM Chapter 13: Representation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-34
13



MAXAda for Linux Reference Manual
RM 13.1 Representation Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-34
RM 13.2 Pragma Pack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-35
RM 13.3 Representation Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-36

Address Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-36
Alignment Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-37
Size Attributes for Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-41
Size Attributes for Subtypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-41
Component_Size Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-43
External_Tag Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-44

RM 13.4 Enumeration Representation Clauses  . . . . . . . . . . . . . . . . . . . . . . . . . M-45
RM 13.5.1 Record Representation Clauses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-45
RM 13.5.2 Storage Place Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-48
RM 13.5.3 Bit Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-48
RM 13.7 The Package System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-48
RM 13.7.1 The Package System.Storage_Elements. . . . . . . . . . . . . . . . . . . . . . M-49
RM 13.8 Machine Code Insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-49

Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-51
Pentium Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-52

RM 13.9 Unchecked Type Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-52
RM 13.11 Storage Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-56
RM 13.11.2 Unchecked Storage Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . M-59
RM 13.12 Pragma Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-59
RM 13.13.2 Stream-Oriented Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-60

RM Annex A: Predefined Language Environment . . . . . . . . . . . . . . . . . . . . . . . . . . M-61
RM A.1 The Package Standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-61
RM A.3.2 The Package Characters.Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . M-62
RM A.4.4 Bounded-Length String Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . M-62
RM A.5.1 Elementary Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-62
RM A.5.2 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-63
RM A.5.3 Attributes of Floating Point Types. . . . . . . . . . . . . . . . . . . . . . . . . . . M-65
RM A.7 External Files and File Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-65
RM A.9 The Generic Package Storage_IO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-68
RM A.10 Text Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-68
RM A.10.7 Input-Output of Characters and Strings . . . . . . . . . . . . . . . . . . . . . . M-69
RM A.10.9 Input-Output for Real Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-69
RM A.13 Exceptions in Input-Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-69
RM A.15 The Package Command_Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-70

RM Annex B: Interface to Other Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-71
RM B.1 Interfacing Pragmas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-71
RM B.2 The Package Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-76
RM B.3 Interfacing with C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-77
RM B.4 Interfacing with COBOL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-79
RM B.5 Interfacing with Fortran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-79

RM Annex C: Systems Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-81
RM C.1 Access to Machine Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-81
RM C.3 The Package Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-82
RM C.3.1 Protected Procedure Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-85
RM C.3.2 The Package Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-85
RM C.4 Preelaboration Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-85
RM C.5 Pragma Discard_Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-86
RM C.7.1 The Package Task_Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-86
RM C.7.2 The Package Task_Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-87

RM Annex D: Real-Time Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-89
RM D.1 Task Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-89
14



Contents
RM D.2.1 The Task Dispatching Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-89
RM D.2.2 The Standard Task Dispatching Policy . . . . . . . . . . . . . . . . . . . . . . . M-89
RM D.3 Priority Ceiling Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-90
RM D.4 Entry Queuing Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-91
RM D.6 Preemptive Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-91
RM D.7 Tasking Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-92
RM D.8 Monotonic Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-93
RM D.9 Delay Accuracy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-95
RM D.12 Other Optimizations and Determinism Rules  . . . . . . . . . . . . . . . . . . M-95

RM Annex G: Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-96
RM G.1 Complex Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-96
RM G.1.1 Complex Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-96
RM G.1.2 Complex Elementary Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-97
RM G.2 Numeric Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . M-97
RM G.2.1 Model of Floating Point Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . M-98
RM G.2.3 Model of Fixed Point Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . M-98
RM G.2.4 Accuracy Requirements for the Elementary Functions . . . . . . . . . . . M-98
RM G.2.6 Accuracy Requirements for Complex Arithmetic . . . . . . . . . . . . . . . M-99

RM Annex J: Obsolescent Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-100
RM J.7.1 Interrupt Entries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-100

RM Annex K: Language-Defined Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-101
RM Annex L: Pragmas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-102

Pragma ALL_CALLS_REMOTE - (not yet supported)  . . . . . . . . . . . . . . . . . . M-104
Pragma ASSIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-104
Pragma ASYNCHRONOUS - (not yet supported)  . . . . . . . . . . . . . . . . . . . . . . M-104
Pragma ATOMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-104
Pragma ATOMIC_COMPONENTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-105
Pragma ATTACH_HANDLER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-105
Pragma CONTROLLED  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-105
Pragma CONVENTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-106
Pragma DATA_RECORD - (obsolete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-107
Pragma DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-107
Pragma DEPRECATED_FEATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-108
Pragma DISCARD_NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-108
Pragma DONT_ELABORATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-108
Pragma ELABORATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-109
Pragma ELABORATE_ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-109
Pragma ELABORATE_BODY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-109
Pragma EXPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-109
Pragma EXTERNAL_NAME - (obsolete). . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-111
Pragma FAST_INTERRUPT_TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-111
Pragma GROUP_CPU_BIAS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-111
Pragma GROUP_PRIORITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-111
Pragma GROUP_SERVERS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-112
Pragma IMPLICIT_CODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-112
Pragma IMPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-112
Pragma IMPORT_AUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-114
Pragma INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-114
Pragma INSPECTION_POINT - (not yet supported)  . . . . . . . . . . . . . . . . . . . . M-115
Pragma INTERESTING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-115
Pragma INTERFACE - (obsolete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-116
Pragma INTERFACE_NAME - (obsolete)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-116
Pragma INTERFACE_OBJECT - (obsolete) . . . . . . . . . . . . . . . . . . . . . . . . . . . M-117
Pragma INTERFACE_SHARED - (obsolete) . . . . . . . . . . . . . . . . . . . . . . . . . . M-117
15



MAXAda for Linux Reference Manual
Pragma INTERRUPT_HANDLER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-117
Pragma INTERRUPT_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-117
Pragma LINK_OPTION - (obsolete)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-118
Pragma LINKER_OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-118
Pragma LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-118
Pragma LOCKING_POLICY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-118
Pragma MAP_FILE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-119
Pragma MEMORY_POOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-119
Pragma NORMALIZE_SCALARS - (not yet supported)  . . . . . . . . . . . . . . . . . M-119
Pragma OPT_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-120
Pragma OPT_LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-121
Pragma OPTIMIZE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-121
Pragma PACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-122
Pragma PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-122
Pragma PASSIVE_TASK - (obsolete)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-122
Pragma POOL_CACHE_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-122
Pragma POOL_LOCK_STATE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-123
Pragma POOL_PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-123
Pragma POOL_SIZE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-123
Pragma PREELABORATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-123
Pragma PRIORITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-124
Pragma PROTECTED_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-124
Pragma PURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-125
Pragma QUEUING_POLICY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-125
Pragma REMOTE_CALL_INTERFACE - (not yet supported). . . . . . . . . . . . . M-125
Pragma REMOTE_TYPES - (not yet supported). . . . . . . . . . . . . . . . . . . . . . . . M-125
Pragma RESTRICTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-126
Pragma RETURN_CONVENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-126
Pragma REVIEWABLE - (not yet supported)  . . . . . . . . . . . . . . . . . . . . . . . . . . M-127
Pragma RUNTIME_DIAGNOSTICS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-127
Pragma SERVER_CACHE_SIZE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-127
Pragma SHARE_BODY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-127
Pragma SHARE_MODE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-128
Pragma SHARED - (obsolete)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-129
Pragma SHARED_PACKAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-129
Pragma SHARED_PASSIVE - (not yet supported) . . . . . . . . . . . . . . . . . . . . . . M-129
Pragma SPECIAL_FEATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-129
Pragma STORAGE_SIZE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-130
Pragma SUPPRESS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-130
Pragma SUPPRESS_ALL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-131
Pragma TASK_CPU_BIAS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-131
Pragma TASK_DISPATCHING_POLICY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-131
Pragma TASK_HANDLER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-132
Pragma TASK_PRIORITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-132
Pragma TASK_QUANTUM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-132
Pragma TASK_WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-133
Pragma TDESC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-133
Pragma TRAMPOLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-133
Pragma VOLATILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-133
Pragma VOLATILE_COMPONENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-134
16



Contents
Illustrations

Figure 3-1.  Package specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Figure 4-1.  Environment scenario containing obscurities . . . . . . . . . . . . . . . . . . . . 4-22
Figure 4-2.  Example of using a.fetch to resolve obscurities  . . . . . . . . . . . . . . . 4-23
Figure 4-3.  Link Rule Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-69
Figure 5-1.  Mapping of Various Priority Interpretations on Linux  . . . . . . . . . . . . . 5-6
Figure 11-1.  Viewing Trace Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24
Figure 12-1.  a.monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Figure 12-2.  a.monitor - File menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Figure 12-3.  Program Selection dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7
Figure 12-4.  a.monitor - View menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8
Figure 12-5.  a.monitor - Options menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9
Figure 12-6.  a.monitor - View Tasks (text)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Figure 12-7.  a.monitor - View Tasks (tree)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Figure 12-8.  a.monitor Task Bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11
Figure 12-9.  a.monitor - Tasks view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14
Figure 12-10.  a.monitor - Memory view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-18
Figure 12-11.  a.monitor - System view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-21
Figure C-1.  NightView Data Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2

Tables

Table 1-1.  MAXAda Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Table 1-2.  MAXAda Core Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Table 1-3.  Recommended /etc/pam.d Configuration . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Table 2-1.  Effective options for hello unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Table 2-2.  Effective options for hello unit (after -keeptemp) . . . . . . . . . . . . . . 2-11
Table 3-1.  Effective options based on hierarchical relationship. . . . . . . . . . . . . . . . 3-22
Table 3-2.  Relevance of Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Table 3-3.  MAXAda-supplied Shared Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
Table 4-1.  Number of Parallel Dependency Analyses . . . . . . . . . . . . . . . . . . . . . . . 4-5
Table 4-2.  a.ls -format — Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Table 4-3.  a.ls -format — Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
Table 4-4.  Levels of Optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-102
Table 6-1.  Stack Pool Sizes for Ghost Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27
Table 7-1.  Erroneous Behavior Due to User-Defined Signal Handlers . . . . . . . . . . 7-3
Table 9-1.  Support environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Table 9-2.  Support packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Table 9-3.  predefined environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
Table 9-4.  vendorlib environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8
Table 9-5.  publiclib environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Table 9-6.  rtdm environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Table 9-7.  obsolescent environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
Table 9-8.  posix_1003.1 environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Table 9-9.  posix_1003.5 environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Table 9-10.  sockets environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table 9-11.  general environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table B-1.  Required Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Table M-1.  Alignment Restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M-39
17



MAXAda for Linux Reference Manual
18



Part 1 - Operations
Part 1  - Operations

Part 1   Operations

Chapter 1   Introduction to MAXAda................................................................ 1-1

Chapter 2   Using MAXAda .............................................................................. 2-1

Chapter 3   MAXAda Concepts......................................................................... 3-1

Chapter 4   MAXAda Utilities........................................................................... 4-1



MAXAda for Linux Reference Manual



1
Chapter 1Introduction to MAXAda

1
1
1

MAXAda is a high-performance system intended for the large-scale development of Ada
application, real-time, and systems software.  MAXAda supports the Ada language speci-
fication as defined in the Ada 95 Reference Manual.

The run-time system provides a complete real-time implementation of all language-
defined features.  It can be configured to satisfy the demands of the most stringent real-
time Ada applications as well as those of less critical, time-sharing applications.

MAXAda Utilities 1

MAXAda consists of a number of utilities that provide support for library management,
compilation and program generation, and debugging.  Table 1-1 lists these tools and gives
a brief description of each one.

Table 1-1.  MAXAda Utilities 

Environment Utilities
a.mkenv Create an environment which is required for compilation, linking, etc.

a.path Display or change the Environment Search Path for an environment

a.options Set compilation options for the environment (or for units)

a.rmenv Destroy an environment; compilation, linking, etc. no longer possible

a.script Create script that will reproduce environment or part thereof

a.nfs Display or change NFS aspects of an environment

a.chmod Modify the UNIX file system permissions of an environment

a.release Display release installation information

a.restore Restore a damaged environment

a.freeze Disallow changes to, and optimize uses of an environment

Unit Utilities
a.ls List units in the environment (state, source file, dependencies, etc.)

a.options Set compilation options for units (or the environment)

a.edit Edit the source of a unit, then update the environment

a.cat Output the source of a unit
1-1



MAXAda for Linux Reference Manual
a.touch Make the environment consider a unit consistent with its source file's
timestamp

a.invalid Force a unit to be inconsistent thus requiring it to be recompiled

a.resolve Resolve ambiguities created when a unit exists in multiple source files

a.hide Mark units as being persistently hidden in the environment

a.fetch Fetch the compiled form of a unit from another environment

a.expel Expel fetched or naturalized units from the environment

Source File Utilities
a.intro Introduce source files (and units therein) to the environment

a.rmsrc Remove knowledge of source files (and units therein) from the environ-
ment

a.syntax Check the syntax of source files

a.tags Generate a cross reference file

Debug Utilities
a.trace Format and display raw trace records

a.map Display or edit the run-time configuration of an executable

a.monitor Monitor tasking in real-time for debugging

a.pclookup Filter standard input adding symbolic descriptions for pc values

Compilation Utilities
a.build Compile and link as necessary to build a unit, partition or environment

a.partition Define or display a partition for the linker

Internal Utilities
a.install Install, remove, or modify a release installation

a.pp Preprocess a source file

a.deps Update environment with information about units within source files

a.compile Compile the specification and/or body of one or more units

a.error Process diagnostic messages generated by the compiler and other tools

a.link Link a partition (an executable, archive or shared object file)

Help Utilities
a.help List usage and summary of each MAXAda utility

a.man Invoke/position interactive help system (requires an X terminal)

Table 1-1.  MAXAda Utilities  (Cont.)
1-2



Introduction to MAXAda
MAXAda Core Utilities 1

Of the MAXAda Utilities listed in Table 1-1, there are four tools that form the “core” of
the MAXAda system.  These tools will most likely be used quite heavily and therefore are
given special attention here.

Capabilities 1

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
tain privileged operations.  pam_capability(8), the Pluggable Authentication Mod-
ule, is used to manage sets of capabilities, called roles, required for various activities.

Linux systems should be configured with an adauser role which provides the capabili-
ties required by MAXAda.  In order to run MAXAda tasking programs on a target, each
MAXAda user must be configured to use (at a minimum) the capabilities specified below.  

Edit /etc/security/capability.conf and define the adauser role (if it is not
already defined) in the “ROLES” section:

role adauser cap_sys_admin cap_sys_nice cap_sys_rawio cap_ipc_lock

Additionally, for each MAXAda user on the target system, add the following line at the
end of the file:

user  username    adauser

where username is the login name of the user.

If the user requires capabilities not defined in the adauser role, add a new role which
contains adauser and the additional capabilities needed, and substitute the new role
name for adauser in the text above.

In addition to registering your login name in /etc/security/capability.conf,
files under the /etc/pam.d directory must also be configured to allow capabilities to be
activated.

To activate capabilities, add the following line to the end of selected files in /etc/pam.d
if it is not already present:

Table 1-2.  MAXAda Core Utilities

Core Utilities
a.mkenv Create an environment which is required for compilation, linking, etc.

a.intro Introduce source files (and units therein) to the environment

a.partition Define or display a partition for the linker

a.build Compile and link as necessary to build a unit, partition or environment
1-3



MAXAda for Linux Reference Manual
session required pam_capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system.  The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

If you modify /etc/pam.d/sshd or /etc/sshd/sshd_config, you must resetart
the sshd service for the changes to take effect:

On RedHawk systems: service sshd restart
On SUSE systems: bash /etc/init.d/sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.

NOTE

To verify that you have been granted capabilities, issue the
following command:

   /usr/sbin/getpcaps $$ 

The output from that command will list the roles currently
assigned to you.

See “Capabilities” on page B-1 for more detailed information.

Table 1-3.  Recommended /etc/pam.d Configuration

/etc/pam.d File Affected Services Comment

remote telnet
rlogin
rsh (when used w/o a command)

Depending on your system, the remote file may
not exist.
Do not create the remote file, but edit it if it is
present.

login local login (e.g. console)
telnet*
rlogin*
rsh* (when used w/o a command)

*On some versions of Linux, the presence of the
remote file limits the scope of the login file to
local logins.  In such cases, the other services listed
here with login are then affected solely by the
remote configuration file.

rsh rsh (when used with a command) e.g. rsh system_name a.out

sshd ssh You must also edit /etc/sshd/sshd_config
and ensure that the following line is present:
UsePrivilegeSeparation no

gdm gnome sessions

kde kde sessions
1-4



Introduction to MAXAda
Run-Time Systems 1

The Ada Real-Time Multiprocessor System (ARMS) is broken into two libraries:

• The tasking run-time           (libruntime.arms)

• The non-tasking run-time    (libruntime.bart)

The a.link tool will link an application with the smaller, simpler non-tasking run-time
whenever possible (see “a.link” on page 4-33).  However, certain features require the use
of the tasking run-time, including certain cases that do not require tasking.  

The full set of features that require the tasking run-time is summarized here:

• Presence of any tasks or task types

• Presence of any protected units or protected types

• Delay until statements with a delay_expression of type Ada.Cal-
endar.Time

• Use of any of the following pragmas:

- pragma TASK_PRIORITY 

- pragma TASK_CPU_BIAS 

- pragma TASK_QUANTUM       

- pragma GROUP_SERVERS 

- pragma GROUP_CPU_BIAS 

- pragma GROUP_PRIORITY 

- pragma MEMORY_POOL 

- pragma POOL_CACHE_MODE 

- pragma POOL_LOCK_STATE 

- pragma POOL_SIZE 

- pragma SHARED_PACKAGE 

• Semantic dependence on any of the following packages:

- Ada.Interrupts.Names.Services 

- Ada.Interrupts.Services 

- Ada.Synchronous_Task_Control 

- Ada.Task_Identification 

- Ada.Task_Attributes 

- ccur.runtime_configuration 

- ccur.tasking_semaphores 
1-5



MAXAda for Linux Reference Manual
• Use of the -trace link option (see “Link Options” on page 4-109)

The run-time system implements Ada tasks as states of execution that are served by one or
more operating system clones. For critical real-time performance and predictability, the
run-time system may be configured such that a single clone is dedicated to serve each Ada
task. For applications with less stringent scheduling demands, it may be configured such
that one or more clones serve all Ada tasks. (This is the default behavior). See “Task
Weights” on page 5-3 for details.

See Chapter 5 - “Run-Time Concepts” for further information.

Supplied Environments 1

MAXAda supplies a number of environments containing various packages that can be
used for program development.

The Predefined Language Environment (predefined) contains packages as defined in
Annex A of the Ada 95 Reference Manual.  According to the Reference Manual, the
library units listed in this Annex “shall be provided by every implementation”.  

The vendorlib environment contains a variety of extensions to MAXAda that can be
utilized with Concurrent real-time services (see “Ada Bindings” below).  It also provides
shared memory support, run-time interfaces, and interfaces to system services.

The publiclib environment contains general-purpose, public-domain Ada packages.
Concurrent neither owns nor supports any of the packages in publiclib; these packages
are provided as a courtesy to users.

An interface is provided within the rtdm environment that allows for viewing and modi-
fying data objects without prior knowledge of the objects themselves or their data types.
More information about real-time data-monitoring is provided in Chapter 12, “Real-Time
Monitoring”.

The obsolescent environment corresponds to packages found within Annex J of the
Ada 95 Reference Manual.  These packages are designated by Annex J as having “func-
tionality which is largely redundant with other features defined by this International Stan-
dard”.  Use of these features is not recommended in newly written programs.

And lastly, the deprecated environment is supplied for compatibility purposes with
previous versions only.  It will be removed in a future release of MAXAda.

Each of these environments and the packages contained within them are described in more
detail in Chapter 9, “Support Packages”.  
1-6



Introduction to MAXAda
Ada Bindings 1

MAXAda provides several environments of Ada “bindings” to various libraries and ser-
vices.  Ada bindings furnish a pure Ada interface to libraries of routines and services
which have been originally developed in another programming language. 

MAXAda supplies Ada bindings to most Concurrent real-time features available with
Linux as well as interfaces to the run-time system.  These bindings are available in the
vendorlib environment of Ada packages.  Within this environment, there is also an
Ada binding to high-resolution timing devices which can be used to obtain high-resolution
timings above and beyond the accuracy of the clock function provided in the pre-
defined environment.

MAXAda also provides Ada bindings to other libraries and services in the MAXAda
bindings directory.  This directory holds several subdirectories, each containing an
environment of Ada bindings to a specific library, service, or set of services. 

Currently, the bindings directory contains the following environments:

general general-purpose Ada bindings

sockets bindings to sockets

posix_1003.1 thin Ada bindings to IEEE-Std-1003.1
(POSIX 1003.1) and IEEE-Std-1003.1b
(POSIX 1003.1b)

posix_1003.5 abstract Ada bindings to the IEEE-Std-
1003.5-1992 standard (POSIX 1003.5).  

All of these are provided with MAXAda and are shipped with the MAXAda product. 

Each of these environments and the packages contained within them are described in more
detail in Chapter 9, “Support Packages”.  

Complementary MAXAda Products 1

In addition to the Ada bindings supplied with MAXAda, several other Ada bindings and
complementary utilities are available as stand-alone products.  If they are desired, they
must be purchased separately from MAXAda. 

NightBench is a graphical user interface that organizes all of the information required for
the development of MAXAda applications, ensures consistent, repeatable builds, and pro-
vides an efficient interface for editing, browsing, building, and debugging.  For more
information on NightBench, see the NightBench User’s Guide.

NightTrace is a graphical debugging and performance-analysis tool that works with single
and multi-process programs running on one or more CPUs. It may be used with Ada, C,
and Fortran programs. For more information on NightTrace, see Chapter 11 and the Night-
Trace User’s Guide. 
1-7



MAXAda for Linux Reference Manual
NightSim is a graphical, non-intrusive tool for scheduling and monitoring real-time appli-
cations.  It allows interactive control of the high-resolution Frequency-Based Scheduler
(FBS) and interactive or deferred performance monitoring.  It may be used with single and
multi-process Ada, C, and Fortran programs running on one or more CPUs.  For more
information about NightSim, see the NightSim User’s Guide.

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications.  NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minimal intrusion.  For more
information on NightView, see the NightView User’s Guide.

NightProbe is a real-time graphical tool for monitoring, recording, and altering program
data within one or more executing programs without intrusion. It can be used in a develop-
ment environment as a tool for debugging, or in a production environment to create a
“control panel” for program input and output.  For more information on NightProbe, see
the NightProbe User’s Guide.

Understand for Ada is an optional interactive development environment that provides for
reverse engineering, automatic documentation, code navigation and comprehension, met-
rics, maintenance and cross-referencing.  While it is designed to assist engineers who have
inherited large amounts of Ada legacy code or whose Ada projects have grown to
immense size or complexity, it is extremely useful for small projects as well.
1-8



2
Chapter 2Using MAXAda

2
2
2

To demonstrate the ease of use of MAXAda, a simple example will be given.  This exam-
ple will traverse through the core functions needed to build an executable under the MAX-
Ada system.

Hello World - An Example 2

Building an executable under MAXAda can be broken down into as few as four steps:

• Creating an environment

• Introducing units

• Defining a partition

• Building the partition

This section will demonstrate each of these steps on a simple, but well-known example -
Hello World.

Before we begin...

You must make sure that the path /usr/ada/bin is added to
your PATH environment variable.  This is the only path necessary
to access the MAXAda utilities, regardless of the number of
releases of MAXAda installed on the system.

Also, check to make sure you have the correct capabilities set (see
“Capabilities” on page 1-3).

Creating an environment 2

One of the first steps you must take in order to use MAXAda is to create an environment.
MAXAda uses environments as its basic structure of organization.  Environments contain
all the information relevant to a particular project.  All of the MAXAda utilities work
within the context of a particular environment.

The MAXAda tool used to create an environment is a.mkenv.  It requires a directory
where this environment will reside.
2-1



MAXAda for Linux Reference Manual
For our example, we will create a new directory on our system and run a.mkenv from
within that directory.

Screen 2-1.  Creating an environment

This creates the MAXAda internal directory structure that comprises the environment and
that is essential before any other MAXAda tools can be utilized.  This environment has the
same name as the directory in which it was created.  Our environment in this example,
therefore, is /pathname/earth.

Introducing units 2

Compilation units (henceforth referred to simply as units) are the basic building blocks of
MAXAda environments.  It is through units that MAXAda performs most all its library
management and compilation activities.  These units are, however, introduced into the sys-
tem in the form of source files.  

In our example, we have one unit, hello, that resides in a source file, world.a.  This
source file is just an ordinary text file.

Screen 2-2.  Source file world.a  containing hello unit

Create this source file within the directory in which you created your environment.  (It is
not necessary for the source file to reside in the same directory as the environment.  You
may specify a relative or absolute path name of the source file.)

We introduce this unit to the environment by using the a.intro utility.  a.intro intro-
duces each unit contained in the source file into the current environment by default. 

$ mkdir /pathname/earth
$ cd /pathname/earth
$ a.mkenv

with ada.text_io ;
procedure hello is
begin
     ada.text_io.put_line (“Hello World!!!”) ;
end hello ;
2-2



Using MAXAda
Screen 2-3.  Introducing units from a source file

The unit hello that was contained in the source file world.a is now a part of the envi-
ronment earth.

From this point on, the unit hello is considered to be owned by the environment earth.
Any functions performed on this unit must be managed by the environment through the
MAXAda utilities.

Defining a partition 2

If we want to create an executable program to use our unit, we must define a partition.  We
will be creating an active partition which is the type that corresponds to executable pro-
grams.

We must also name the partition.  You can name your partition anything you want and then
add units to it, but since this is a simple example, we are taking the most direct route.

Hence, our partition will be named hello, the same as the unit which will also function
as our main subprogram (which is the only unit in our example).  We will use the MAX-
Ada utility a.partition to do this. 

Screen 2-4.  Defining a partition

Because it has the same name as the active partition being created, the unit hello is auto-
matically added to this partition and designated the main subprogram .

NOTE

In the case where the partition has the same name as a library sub-
program in the environment, that subprogram is assumed to be the
main subprogram.  Otherwise, no main subprogram is assumed.

The command in Screen 2-4 could have been explicitly specified
as:

$ a.intro world.a

$  a.partition -create active hello
2-3



MAXAda for Linux Reference Manual
$  a.partition -create active -add hello! -main hello hello

This command creates an active partition named hello, contain-
ing the main unit, hello and all units on which it depends.  (The
! of the hello! argument to the -add parameter signifies that
all units on which the hello unit depends should also be added
to the partition definition - e.g. ada.text_io).  In addition, this
command designates the unit hello to be the main subprogram
as specified by the -main option.

Building a partition 2

The last step now is to build the executable.  All the necessary steps have been done.  Just
issue a.build.  This will build an executable file that you can run.  (See “Compile
Options” on page 4-99)

Screen 2-5.  Building a partition

Because no arguments were specified, a.build tries to build everything it can within
this environment.  Since we’ve only defined one unit, hello, contained in one partition,
hello, it will only build that.

Success!!! 2

Now all that’s left is to run the program as you would any other executable program.
Enter the name of the executable, in this case hello.

Screen 2-6.  Executing the program

And there you have it!  Your program has successfully been built and run.  

$  a.build

$  hello
Hello World!!!
$

2-4



Using MAXAda
Let’s look around... 2

Now that we have some substance to our environment, let’s take a look around and see
what things look like.  We can use some of the MAXAda utilities to investigate the state of
our environment and what’s in it.

Listing the units in your environment 2

Something you might want to do is to see what units are contained within this environ-
ment. a.ls provides this list for you. a.ls provides many different options, allowing
you to sort the list by some attribute or filter the units based on certain criteria.  We’ll just
take a look at a basic list of the units in the environment.  This is done by issuing the a.ls
command with no options from within your current environment.

Screen 2-7.  Listing the units in an environment

You may want to see more information.  You can do this by specifying the -l option to the
a.ls command which will give you a long listing including the unit’s date, type, compi-
lation state, part, and name.  (Even more information can be seen by specifying the -v
option.)

Screen 2-8.  Listing the units in an environment (-l option)

Viewing the source for a particular unit 2

Once you know what units are in your environment, you may want to see the source for a
particular unit.  The MAXAda utility a.cat outputs the source of a given program unit.
It outputs a filename header for the source file by default, but this can be suppressed by
specifying the option -h.  

The following figure shows how to view the source for the unit hello using a.cat. 

$  a.ls
hello
$

$  a.ls -l
    Unit_Date        Item       State    Part  Name  
03/05/97’10:04:26  subprogram  compiled  body  hello 
$

2-5



MAXAda for Linux Reference Manual
Screen 2-9.  Viewing the source for a particular unit

Listing the partitions defined 2

You may also want to see what partitions have been defined for an environment.  You may
do this by using the a.partition command with either the -list or -List option.

Screen 2-10.  Listing the partitions in an environment (-list option)

The -List option gives you more detailed information for each partition, including what
kind it is and which unit is designated as the main subprogram.

In the following figure, you can see that we have created hello to be an active parti-
tion with hello designated as its main subprogram.

Screen 2-11.  Listing the partitions in an environment (-List option)

$  a.cat hello
*********** /pathname/earth/world.a *****************
with ada.text_io ;
procedure hello is
begin
     ada.text_io.put_line (“Hello World!!!”) ;
end hello ;
$

$  a.partition -list
hello
$

$  a.partition -List
PARTITION: hello
   kind                 : active
   output file          : hello
   link options         :
   dependent partitions :
   link rule            : object,archive,shared_object
   main subprogram      : hello
   included units (+)   :
     hello!
   excluded units (-)   :

$

2-6



Using MAXAda
Looking at the Environment Search Path 2

Each MAXAda environment has an Environment Search Path associated with it.  The
Environment Search Path is your gateway to other environments.  Upon creation of your
environment, MAXAda defines the Environment Search Path so that you have access to
the Predefined Language Environment, as specified in Annex A of the Ada 95 Reference
Manual.

If you take a look at your Environment Search Path, you will see the path to the pre-
defined environment.  You can list your Environment Search Path by using the a.path
utility.

Screen 2-12.  Viewing your Environment Search Path

As you can see, the only environment in your Environment Search Path is that of the pre-
defined functions.  

NOTE

The Environment Search Path was the mechanism that made
ada.text_io visible to the unit hello.

Using the Environment Search Path, you can use units that exist in foreign environments.
All you need to do is add the environment’s path to your Environment Search Path.  It’s as
simple as that!

What are my options? 2

MAXAda uses the concept of persistent compile options.  These options are specified
through a.options and are “remembered” at compilation time.  They can apply to any
of three areas: environment-wide compile options (which apply to all units within the
environment), permanent unit options and temporary unit options (both of which apply
and are unique to specific units).

Let’s manipulate the options in our example to give an idea of how it all works.

First, we will consider the environment-wide compile options.  These apply to all the units
within the environment.  Since we only have one unit right now, it will apply to that.
However, if we add any others later, they will “inherit” these options automatically.  

The environment-wide compile options are referenced by the -default flag to
a.options.  We’ll use the -list flag to display what they’re set to now:

$  a.path
Environment search path:
       /usr/ada/rel_name/predefined
$

2-7



MAXAda for Linux Reference Manual
Screen 2-13.  Listing the environment-wide compile options

You’ll see that nothing is listed.  That’s because we haven’t set anything yet.  So let’s set
them to something and see what happens. 

a.options provides the -set option to initialize or reset an option group.  Let’s set our
environment-wide compile option set to contain the options -g and -O2.  (These set the
debug level to full and set the optimization level to GLOBAL, respectively.  You can find
out all about these options in “Compile Options” on page 4-99.)

Screen 2-14.  Setting the environment-wide compile options

Now let’s list them again to see if they’ve taken effect:

Screen 2-15.  Listing the environment-wide compile options (after -set)

We can see that the environment-wide compile option set now consists of -O and -g.
(Note that -O and -O2 are equivalent.)

Remember, these options apply to all units in the environment and will be “inherited” by
any units we add to this environment.  

If we’d like to set particular options for a specific unit, we can use the permanent unit
compile options for that unit.  They’re set in much the same way as environment-wide
options, except that we need to specify the units to which they apply.

Let’s set the permanent options for the unit hello so it is compiled at a MAXIMAL optimi-
zation level (-O3).  This is done with the following command:

$  a.options -list -default
default options: /pathname/earth
       
$

$  a.options -set -default -g -O2

$  a.options -list -default
default options: /pathname/earth
   -O -g       
$

2-8



Using MAXAda
Screen 2-16.  Setting the permanent unit options for hello unit

We may decide that in addition to the specified options, we may want to “try out” some
options or change particular options for a specific compilation but only “temporarily”.
The temporary unit compile options are for this purpose.

Say we want to produce no debug information for our hello unit for this particular com-
pilation.  We can set a temporary compile option for that.

Screen 2-17.  Setting the temporary unit options for hello unit

In addition, we remember that we also want to open the source file in the vi editor if any
errors occur.  We can “add” this to the temporary option set by using the -mod flag to
a.options.

Screen 2-18.  Modifying the temporary unit options for hello unit

If we list the temporary options for the unit hello, we will see that we now have -!g and
-ev in the temporary option set:

Screen 2-19.  Listing the temporary options for hello unit

These three option sets have a hierarchical relationship to one another which means that
the environment-wide compile options are overridden by the permanent unit options
which are, in turn, overridden by the temporary unit options.  This relationship forms the

$  a.options -set -perm -O3 hello

$  a.options -set -temp -!g hello

$  a.options -mod -temp -ev hello

$  a.options -list -temp hello
Unit                    Temporary
 
subprogram body hello   -ev -!g
$

2-9



MAXAda for Linux Reference Manual
effective compile options for the unit, which the compiler will use during compilation.  We
can see these in Table 2-1.

If we list the effective options for the hello unit, we will see similar results:

Screen 2-20.  Listing the effective options for hello unit

If, after we compile with these options, we find any particular option that we would like to
delete, we can do so by using the -del flag.  For example, let’s delete the error emmision
option from the temporary options.

Screen 2-21.  Deleting from the temporary options set for hello unit

And if we like the other temporary options so much that we’d like to make them perma-
nent, MAXAda provides the -keeptemp flag to propagate all the temporary options for a
particular unit to the permanent option set for that same unit.  If we do this,

Screen 2-22.  Propagating the temporary options to the permanent set

the temporary option -!g will become a permanent unit option for the unit hello.

Table 2-1.  Effective options for hello unit

Environment-wide options -g -O2

Permanent unit options -O3

Temporary unit options -!g -ev

EFFECTIVE OPTIONS -!g -O3 -ev

$  a.options -eff hello
Unit                    Effective
 
subprogram body hello   -O3 -ev -!g
$

$  a.options -del -temp -ev hello

$  a.options -keeptemp hello
2-10



Using MAXAda
The effective options will now resemble that of Table 2-2:

If we list the effective options for the hello unit, we will see similar results:

Screen 2-23.  Listing the effective options for hello unit (after -keeptemp)

See “a.options” on page 4-58 for a complete description of the functionality of this MAX-
Ada utility. 

Hello Galaxy - The Example Continues... 2

Setting up another environment 2

Let’s set up another environment with a function that our hello unit can contact.

Let’s set up a new environment, galaxy, and introduce a source file very similar to
world.a.  We’ll call this file planet.a and it will contain the following unit, alien.
The file is shown in Screen 2-24.

Screen 2-24.  Source file planet.a  containing alien unit

Table 2-2.  Effective options for hello unit (after -keeptemp)

Environment-wide options -g -O2

Permanent unit options -!g -O3

Temporary unit options

EFFECTIVE OPTIONS -!g -O3

$  a.options -eff hello
Unit                    Effective

subprogram body hello   -O3 -!g
$

with ada.text_io;
procedure alien is
begin
  ada.text_io.put_line(“Greetings from Outer Space!!!”);
end alien;
2-11



MAXAda for Linux Reference Manual
Create a different directory /pathname/galaxy to contain our new environment and
place the source file, planet.a in it.  From within that directory, the following com-
mands will create our environment and introduce the source file into it.

Screen 2-25.  Setting up another environment

NOTE

We have not compiled this unit nor have we created a partition
and included the unit in the partition to be built.  This was inten-
tional to demonstrate a point later in the example.

Modifying an existing unit 2

Now we must go back to our original environment earth that contains our original unit
hello.

We will update the unit hello so that it references the new alien unit.  We do this by
using the a.edit utility.  a.edit edits the source file that contains the unit specified.  It
does this by using the editor referenced in the EDITOR environment variable.  It then
updates the environment so that the automatic compilation utility, a.build, knows that
this unit needs to be rebuilt.

NOTE

a.edit is the supported method for modifying units that have
been introduced into the environment.  Any modifications to the
units other than through the tools provided is discouraged,
although the tools support it as well as possible.

Specify the unit name to the a.edit command.

Screen 2-26.  Editing a unit

Add the following lines to the hello unit.

$  a.mkenv
$  a.intro planet.a

$  a.edit hello
2-12



Using MAXAda
Screen 2-27.  Reference the alien unit within the hello unit

Save the changes to the file.

Building a unit with references outside the local environment 2

Now let’s try to build it.

Issue the a.build command as before.

Screen 2-28.  Building the partition with reference to alien unit

Because the alien unit does not exist in the current environment AND because we have
not manually added it to our Environment Search Path, a.build cannot find it and there-
fore complains.

Adding an environment to the Environment Search Path 2

This is easily remedied by adding the new environment’s path to the Environment Search
Path for the earth environment using the a.path utility.

with ada.text_io ;
with alien;
procedure hello is
begin
     ada.text_io.put_line ("Hello World!!!") ;
     alien;
end hello ;

$  a.build
a.build: error: required spec of alien does not exist in
   the environment
a.build: warning: subprogram body hello will not be 
   built because required spec of alien does not exist
   in the environment
a.build: info: partition hello will not be built 
   because required spec of alien does not exist in the
   environment
a.build: error: errors encountered during build

$

2-13



MAXAda for Linux Reference Manual
Screen 2-29.  Adding an environment to the Environment Search Path

You can see that it has been added to your Environment Search Path by issuing the
a.path command with no parameters again.  

Screen 2-30.  Viewing the updated Environment Search Path

Making contact!!! 2

Now try to issue a.build again.  This time it will be successful.  

After it is successfully built, run the hello executable again.

Screen 2-31.  Executing the new hello - contact is made!

Who resides here now? 2

Let’s take a look at who inhabits our environment earth now.  Remember before when
we issued the a.ls command, we saw that our environment contained the lone unit
hello.  Let’s issue the command again and see what has happened since we made contact
with the alien.

$  a.path -a /pathname/galaxy

$  a.path
Environment search path:
       /usr/ada/rel_name/predefined
       /pathname/galaxy
$

$  a.build
$  hello
Hello World!!!
Greetings from Outer Space!!!
$

2-14



Using MAXAda
Screen 2-32.  Listing the units

 You can now see that the unit alien has been added to the list of units in this environ-
ment.

Although they are both listed local to this environment, they each have a different means
of citizenship.  

- The unit hello was introduced directly into this environment.  Therefore,
it is regarded as a native unit.

- The alien unit, however, was never formally introduced into the local
environment.  It was found on the Environment Search Path.  

Now, remember that the alien unit was not compiled in its original for-
eign environment.  The a.build command, when run in this local envi-
ronment, could not find a compiled form of the alien unit on the Envi-
ronment Search Path and had to do something in order to build the
partition.  It therefore compiled the alien unit in the local environment.  

This compiled form of a foreign unit within the local environment is con-
sidered naturalized by the system.

NOTE

If the alien unit had been compiled in its own foreign environ-
ment, a.build would have found that compiled form on the
Environment Search Path and would have used that when linking
the hello executable together.  In that case, an a.ls would have
only shown the local unit hello as before.

FURTHER NOTE

The -noimport option will inhibit the automatic naturalization
behavior of a.build.  If it had been used in this example,
a.build would have reported an error.

Hello Again... Ambiguous Units 2

Let’s see what happens when we introduce a unit having the same name as one already
introduced into our environment.

$  a.ls
alien hello
$

2-15



MAXAda for Linux Reference Manual
We’ll create a source file, newunit.a, in our earth environment containing a unit
named hello:

Screen 2-33.  Source file newunit.a  containing different hello unit

Now, when we try to introduce the source file containing this unit into our environment,
we will see an error message:

Screen 2-34.  Introducing a unit that already exists in the environment

This is because MAXAda provides a mechanism that detects the case where two versions
of the same unit appear among all the source files owned by the environment.

Upon introducing a unit having the same name as a previously introduced unit, MAXAda
labels both units as ambiguous.  It will then refuse to perform any operations on either of
the two versions, or on any units depending on the ambiguous unit.  

For example, you will not be able to build the partition that contains this unit.  If you try,
you will get the following warning:

Screen 2-35.  Building a unit that already exists in the environment

The user will be forced to choose which of the two units should actually exist in the envi-
ronment by “removing” the other.

with ada.text_io ;
procedure hello is
begin
     ada.text_io.put_line (“I am a new unit - Hello!!!”) ;
end hello ;

$  a.intro newunit.a
a.intro: error: body of unit “hello” already exists in
     another source file
$

$  a.build
a.build: warning: subprogram body hello will not be
     built because it is ambiguous
$

2-16



Using MAXAda
Resolving the ambiguity 2

The only option at this point is to remove the unit which doesn’t belong.  MAXAda pro-
vides the a.resolve tool specifically for this case.

a.resolve provides an option that allows you to list out the multiple sources of the
ambiguous unit.  Screen 2-36 shows this feature:

Screen 2-36.  Listing the multiple source files for an ambiguous unit

a.resolve allows you to “choose” which of the units you would like to remain in the
environment.  Let’s choose the newer unit, hello, from the source file newunit.a.

Screen 2-37.  Resolving the ambiguity

No more ambiguities!!! 2

Let’s build again now that the ambiguities are resolved... and execute the file to see our
results:

Screen 2-38.  No more ambiguities!!!

$  a.resolve -l hello
subprogram body hello is in:
        newunit.a    
        world.a 
$

$  a.resolve -r newunit.a hello

$  a.build
$  hello
I am a new unit - Hello!!!
$

2-17



MAXAda for Linux Reference Manual
NOTE

While MAXAda is refusing to perform any operations on the
ambiguous units, the compilation state of the original unit remains
intact in the environment.  This is useful in case the original unit is
selected instead of the newly added one.  If this is the case, the
original unit (and all units dependent on it) would not have to be
recompiled.  

In our example, however, we have chosen the newly added unit,
so the unit must be compiled in order for the partition to be built.
2-18



3
Chapter 3MAXAda Concepts

3
3
3

MAXAda uses the concept of environments as its basic structure of organization.  These
environments take advantage of various utilities provided by MAXAda to manipulate
compilation units (referred to simply as units) that may form partitions.  

Utilities for library management, compilation and program generation, and debugging are
provided by MAXAda.

This chapter will discuss in further detail the concepts of environments, units and parti-
tions and their relationship to library management, program generation, and debugging.  

Environments 3

MAXAda uses the concept of environments as its basic structure of organization.  These
environments are very closely related to environments as defined in the Ada 95 Reference
Manual.  

Environments may include:

• units that have been introduced 

• partitions that have been defined

• Environment Search Paths

• references to source files (which generally contain units)

• other information used internally by MAXAda

Environments maintain separate compilation information collected from previous compi-
lations.

There are different types of environments:

• local environments - see (“Local Environments” on page 3-2)

• foreign environments - see (“Foreign Environments” on page 3-2)

• NFS environments - see (“NFS Environments” on page 3-3)

MAXAda permits local environments to reference foreign environments thus providing
visibility to the units and partitions therein.  This feature allows programmers to work on
local versions of individual program units while retrieving the remainder of the program
from previously-developed environments.

A MAXAda environment may be initialized or created in any desired location in a filesys-
tem using the a.mkenv utility which is discussed in “a.mkenv” on page 4-53.
3-1



MAXAda for Linux Reference Manual
MAXAda provides several other utilities to maintain, modify and report on the contents of
environments.  See “MAXAda Utilities” on page 1-1 to see a list of these tools.

NOTE

Any modifications to the environment other than through the tools
provided by MAXAda is discouraged, although the tools support
it as well as possible.

An environment may be frozen, making it unalterable (see “Freezing Environments” on
page 3-4).

If an environment becomes damaged, MAXAda provides tools to help to correct the prob-
lem (see “Restoring Environments” on page 3-4).

MAXAda supports the relocation of environments to other locations in the filesystem
hierarchy or even to other systems.  Some advance planning may be required, however.
See “Relocating Environments” on page 3-4 for some considerations to keep in mind.

Local Environments 3

By default, MAXAda uses the current working directory as its local environment.  All
MAXAda utilities perform their actions within this local environment unless the -env
option is explicitly specified.

For example, if no environment is specified with the a.mkenv tool, MAXAda will set up
its internal directory structure for that environment within the current working directory.

When used with any of the MAXAda utilities, however, the -env option allows the user
to specify a target environment other than the current working directory.  The actions of
the MAXAda utility using this option will be performed in the environment specified and
not in the local environment.  (See Chapter 4, “MAXAda Utilities” for more details on
using this parameter with each of the tools.)

Foreign Environments 3

MAXAda uses the Environment Search Path to reference units within foreign environ-
ments.  These units can be used as foreign units or can be brought into the  local environ-
ment through naturalization or fetching.  MAXAda also provides a number of supplied
environments.

Environment Search Path 3

MAXAda uses the concept of an Environment Search Path to allow users to specify that
units from environments other than the current environment should be made available in
the current environment.  This Environment Search Path relates only to each particular
environment and each environment has its own Environment Search Path.  
3-2



MAXAda Concepts
By placing the location of another environment on the Environment Search Path for a
given environment, all the units from the other environment are conceptually added to the
given environment, unless that would involve replacing a unit which was either introduced
manually into the environment by a user, or would replace a unit which was introduced
from yet a third environment which precedes the other environment in the Environment
Search Path.  In order to add or delete environments on your Environment Search Path,
you may use the a.path tool.  See “a.path” on page 4-74.

Naturalization 3

At times, it is necessary for the compilation system to make local copies of units that exist
in foreign environments.  For example, if a foreign unit is referenced within a local unit
and no compilation has been done on that foreign unit in that foreign environment, a local
copy of the foreign unit will be compiled within the current environment, using any
options that would apply to the foreign unit.  These naturalized units take precedence over
units that are in the Environment Search Path.

Fetching 3

It may be desirable for users to force copies of specified units from other environments
into the current environment.  This eliminates any requirement that the unit be compiled in
the foreign environment, so long as it is compiled locally.  The a.fetch tool is provided
for that purpose.  Units that are fetched also take precedence over units that are in the
Environment Search Path.  See “a.fetch” on page 4-22.

Supplied Environments 3

The Ada 95 Reference Manual states that certain units must exist in an environment.
These units are shipped with MAXAda and the environment in which they exist (pre-
defined) is automatically added to the Environment Search Path for the local environ-
ment when it is first created.

A number of other environments are supplied with MAXAda.  See Chapter 9, “Support
Packages” for a complete discussion of these environments.

NFS Environments 3

MAXAda supports the creation and use of environments on NFS-mounted filesystems
only to a limited extent.  This is because NFS caches make it difficult to guarantee file
consistency when an environment is being modified by two or more systems nearly simul-
taneously.  The limitations are designed to avoid problems caused by those deficiencies in
the NFS model.  They are:

• Modification operations (e.g. a.compile) can only be performed on an
environment from the system that is that environment's "owner".

- If an environment is created on a local (non-NFS) filesystem, then
the environment's owner is its local system.  If the environment is
3-3



MAXAda for Linux Reference Manual
moved to another filesystem on a different system, the environment's
owner is its new local system.

- If an environment is created on an NFS-mounted filesystem, then the
environment's owner is the system which created the environment.
Note that this means that the environment cannot be modified even
on the system on which it is local.  If the environment is moved to
another filesystem on a different system, then its owner is still the
system which created the environment.

• Read-only operations (e.g. a.ls) can always be performed from any sys-
tem.

In addition, MAXAda provides a new utility to display or change the NFS aspects of an
environment.  See “a.nfs” on page 4-56 for more information.

Freezing Environments 3

An environment may be frozen using the a.freeze utility.  This changes an environ-
ment so that it is unalterable.  

A frozen environment is able to provide more information about its contents than one that
is not frozen.  Therefore, accesses to frozen environments from other environments func-
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and which
will be used by other environments is a good candidate to be frozen to improve compila-
tion performance.

See “a.freeze” on page 4-25 for information on this utility.

Restoring Environments 3

In rare instances, an environment may become damaged (e.g. through a system crash or
power failure).  In these cases, a.restore may be used to correct problems with the
environment as much as possible.  

MAXAda stores “backup” information about the environment internally which can be
used to restore a damaged environment.

See “a.restore” on page 4-86 for information on this utility.

Relocating Environments 3

Although there is no MAXAda-defined mechanism for physically moving an environ-
ment, MAXAda supports the relocation of environments to other locations in the filesys-
tem hierarchy or even to other systems.  This may be done using commands similar to the
following:
3-4



MAXAda Concepts
      cd old-location
      find . -depth -print | cpio -pdmu new-location

where old-location is the directory of the original environment and new-location
is the directory where the environment is to be relocated.

Some advance planning may be required, however.

MAXAda preserves pathnames as specified by the user.  If a relative pathname is speci-
fied, MAXAda stores it as that relative pathname.  Likewise, if an absolute pathname is
specified, MAXAda stores it as that absolute pathname.  

NOTE

If the -env option is used to specify an environment other than
the current directory, MAXAda must alter any relative pathnames
to be relative to the environment so that future MAXAda tool
invocations from different current working directories function
properly.  Still, MAXAda will attempt to keep the relative path-
name relative.

The basic rule for environment relocation is that all pathnames specified to the environ-
ment must make sense in both the original and relocated locations.  If not, then the tools
will most likely issue fatal errors because they will be unable to find source files or envi-
ronments.  (See “Fatal Errors” on page 3-33 for more information.)

The MAXAda utilities which specify pathnames to the environment are:

a.path
a.fetch -from ... 

Both tool invocations provide the locations of foreign environments.

If planning to move a group of environments en masse, it would be appropriate to
specify those foreign environments with relative pathnames, assuming that the rela-
tive pathnames would remain meaningful in the relocated locations.  Any other
required environments that would not be moved probably should be specified with
absolute pathnames (or keywords in the case of the MAXAda-supplied environ-
ments - see Chapter 9 for a list of these keywords).

(See “a.path” on page 4-74 and “a.fetch” on page 4-22 for more information.)

a.intro

If planning to move the source files along with the environment, then they should be
specified with relative pathnames (or simple file names if they are in the same direc-
tory as the environment), assuming that those relative pathnames would remain
meaningful in the relocated locations.  If the source files are located in a fixed posi-
tion without regard to the location, though, they probably should be specified with
absolute pathnames.

(See “a.intro” on page 4-30 for more information.)

a.partition -o ...
3-5



MAXAda for Linux Reference Manual
This pathname is less likely to cause a tool to fail, because it designates the location
at which the output file will be created, as opposed to a location where some
pre-existing file must be found.  So, the only failure that could occur in a relocated
environment would be if the output file specified a directory which did not exist, or
was otherwise unwritable.

Regardless, the same care should be taken so that the output file will be created
where it is expected.  Use relative pathnames if the partition’s output file location
should be relocated along with the environment.  Use absolute pathnames if the out-
put file location should be at a fixed location regardless of the location of the envi-
ronment.

(See “a.partition” on page 4-62 for more information.)

MAXAda does provide the a.script tool to achieve something like an environment
relocation.  The major difference is that in the new version, nothing is built.  The same
considerations with regard to absolute/relative pathnames that straightforward cpio(1)
copies have must be taken into account when using a.script: all the foreign environ-
ment, source file, and partition output file paths have to be meaningful both in the original
environment (the one on which a.script was run) and in the new one (the one created
by the script generated by a.script).  (See “a.script” on page 4-89 for more informa-
tion.)

Environment-wide Compile Options 3

Environment-wide compile options apply to all units within an environment.  They are
described in detail on page 3-21.
3-6



MAXAda Concepts
Units 3

Compilation units (or simply units) are the basic building blocks of MAXAda environ-
ments.  Instead of dealing with source files for library management and compilation activ-
ities, MAXAda focuses on the concept of units from the Ada 95 Reference Manual (10.1).
According to the Reference Manual, a compilation unit can be a 

• Subprogram declaration

• Package declaration

• Generic declaration

• Generic instantiation

• Library unit body

- subprogram body or package body

• Subunit 

- subprogram body, package body, task body, or protected unit body

• Configuration pragma

Unit Identification 3

For many of the MAXAda utilities in Chapter 4, the following definition is given:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

Units are identified by their name and by their part.  The part can be specified as:

• specification

• body

• all

NOTE

Abbreviations are most commonly used when specifying the part.
For instance, instead of writing out the full unit-id:

foo/specification

it is much simpler to use the abbreviated form:

foo/s
3-7



MAXAda for Linux Reference Manual
Specifications can be 

- subprogram declarations (including renaming declarations)

- package declarations (including renaming declarations)

- generic declarations (including renaming declarations)

- generic instantiations

Bodies can be

- subprogram bodies

- package bodies

- subunits

When all is specified as the part, it refers to the specification and the body.

For most MAXAda utilities, part, if unspecified, defaults to body.

Consider the following specification:

Figure 3-1.  Package specification

After this unit has been introduced, the /specification (or /s) suffix must be speci-
fied in order to edit it:

$  a.edit tax_options/s

If nothing is specified, part defaults to body and the following error message is issued:

$ a.edit tax_options
a.edit: fatal: Body of unit “tax_options” could not be 
located
$  

A keyword that can be used in place of a unit name is all.  When used alone as the unit-id
for most MAXAda utilities, all implies all units within the environment.  all takes the
same part options as any other unit-id.  For example, 

$  a.ls all/s

lists the specifications of all of the units within the current environment.

However, in the absence of a part, all indicates all units in the environment, not just bod-
ies.  That is, all is equivalent to all/all.

package tax_options is
   itemize : boolean := FALSE;
end tax_options;
3-8



MAXAda Concepts
Configuration Pragmas 3

Configuration pragmas are syntactical entities that are not part of a unit.  Configuration
pragmas can appear either at the beginning of a source file containing library units or inde-
pendently in a source file with no units.  

If the configuration pragmas appear independently in a source file with no units, they are
considered to be independent configuration pragmas.  When independent configuration
pragmas are first compiled, they must be remembered and are applied to any future compi-
lations in the environment.  These are handled automatically by the a.build tool, but
there are restrictions.  Independent configuration pragmas may only be compiled when all
units local to the environment are either uncompiled or inconsistent.  (See “Consis-
tency” on page 3-23)  If independent configuration pragmas are added to an environment
with compiled units, a.build will generate error messages.  The user may ignore
them or may invalidate all the units in the environment to force the independent configura-
tion pragmas to take effect.  See “a.invalid” on page 4-32 for more information on invali-
dating units.

If the configuration pragma is in a source file with library units, the configuration pragmas
must precede those units in the file.  They then apply only to those units sharing the same
source file.  This is handled automatically by a.build, and there are no particular
restrictions.

See “RM Annex L: Pragmas” on page M-102 for a complete listing of pragmas supported
by MAXAda.

Nationalities 3

Compilation units in MAXAda have a nationality associated with them.  Units can be
either local or foreign.

Local Units 3

Compilation units that are local to a system can be one of three types:

native

Native compilation units are introduced into an environment by using the
a.intro function.

Once a unit is introduced into an environment, it is considered to be owned by
that environment and any functions performed on that unit should be managed
by the environment through the MAXAda utilities.  

naturalized

Sometimes, the compiled form of a foreign unit is not available when it is
needed locally for a build.  In this case, the system automatically makes a
local compilation.  This local compiled form is considered to be naturalized.
3-9



MAXAda for Linux Reference Manual
A naturalized unit retains the compile options from its original environment.
These options can only be altered by changing them in the original environ-
ment.

fetched

In some cases, it may be desirable for users to manually fetch the compiled
form of a unit from another environment into the local environment.  This
may be necessary to avoid obscurities, but this is rarely required.  (See
“a.fetch” on page 4-22 for an example of fetching a unit to avoid obscurities.)

A fetched unit retains the unit-specific options from the original unit but these
options may be changed in the local environment.  However, it does not retain
the environment-wide options of its original environment.  It uses those of the
current environment instead.

Naturalized or fetched units must be expelled from the environment by using a.expel if
they are no longer desired. 

Foreign Units 3

Foreign units are those units that exist in other environments which are on the Environ-
ment Search Path.  The user is not required to do anything special in order to use these
units.  They become automatically available once their environment is added to the Envi-
ronment Search Path.

Ambiguous Units 3

MAXAda provides a mechanism that detects the case where two versions of the same unit
appear among all the source files introduced to the environment.  

Upon introducing a unit having the same name as a previously introduced unit, MAXAda
labels both units as ambiguous.  It will then refuse to perform any operations on either of
the two versions, or on any units depending on the ambiguous unit.  The user will be
forced to choose which of the two units should actually exist in the environment by
“removing” the other.

MAXAda provides the a.resolve tool to select the desired unit.  See “Hello Again...
Ambiguous Units” on page 2-15 for an example of this situation.

NOTE

The a.hide utility (see page 4-27) may also be used to remove
the ambiguous unit  but i t  is  usually simpler to use the
a.resolve tool.
3-10



MAXAda Concepts
Another way of possibly removing an ambiguity is to use
a.rmsrc (see page 4-88).  However, this will also remove other
units contained in that source file from the environment, which
may not be what the user intended.

While MAXAda is refusing to perform any operations on the ambiguous units, the compi-
lation state of the original unit remains intact in the environment.  This is useful in case the
original unit is selected instead of the newly added one.  If this is the case, the original unit
(and all units dependent on it) would not have to be recompiled.

Artificial Units 3

At times, the implementation may create units to fill internal roles such as bodies of
instances.  These units are created, utilized, and sometimes discarded during the compila-
tion phase.  The user may use the -art option to a.ls to display the artifical units in the
environment.  See “a.ls” on page 4-35 for more information.

Unit Compile Options 3

Each unit has a set of permanent and temporary compile options associated with it.  These
compile options are described in detail on page 3-21.
3-11



MAXAda for Linux Reference Manual
Partitions 3

A partition is an executable, archive, or shared object that can be invoked outside of
MAXAda.  Partitions consist of one or more units that have been introduced into the envi-
ronment.  The units included in a partition are those that the user explictly assigns and
units which they require.  MAXAda manages these units and their dependencies, as well
as link options and configuration information for each partition within the context of an
environment.  A partition definition must include one or more units in order to be built.

A more complete definition of partition can be found in 10.2(2) of the Ada 95 Reference
Manual.

A partition within MAXAda is created and maintained by using the a.partition func-
tion.  This function provides tools to create a partition, add or delete units from a partition,
designate a main unit for the partition, and various other utilities.

In much the same way that options and configuration information concerning compilation
are associated with units, linker options and configuration information for linking are
associated with partitions.  Partitions are basically recipes to the linker which indicate how
to build a target file from units.

Types of Partitions 3

MAXAda defines three types of partitions:

• Active Partitions

• Archives

• Shared Objects 

Active Partitions 3

The simplest form of partition is the active partition which describes how to build an exe-
cutable program.  This corresponds to the active partition defined in Section 10.2 of the
Ada 95 Reference Manual.

Archives 3

An archive is a collection of routines and data that is associated with an application during
the link phase.  Archives are useful for linking into other, potentially non-Ada, applica-
tions (see “Linking Ada Partitions into Applications with non-Ada Main Subprograms” on
page 3-41).  Archives are usually designated with a .a suffix.  

Archives differ from shared objects by the form of the object contained within it.
Archives contain statically-built (i.e. non-shared) objects within them.  (See “Position
Independent Code” on page 3-14 for more details)
3-12



MAXAda Concepts
Because archives are non-active partitions, they may set elaboration and finalization meth-
ods using the -elab and -final options to a.partition.  (See “Elaboration and
Finalization Methods” on page 3-16 for more details.)  For the same reasons, they may not
set a main subprogram using the -main option to a.partition.

Shared Objects 3

NOTE

Currently MAXAda for Linux only supports statically linked Ada
code; however, you can link with system shared libraries.  Support
for Ada shared objects is anticipated in a future release.

A shared object is a collection of routines and data that is associated with an application
during the link and execution phases.  Shared objects are useful for linking into other Ada
or non-Ada applications (see “Linking Ada Partitions into Applications with non-Ada
Main Subprograms” on page 3-41).  Shared objects are usually designated with a .so suf-
fix.  

Shared objects differ from archives by the form of the object contained within it.  Shared
objects are dynamically built (i.e. shared) objects that contain position independent code.
(See “Position Independent Code” on page 3-14 for more details)

At link time, routines and data objects from a shared object may satisfy unresolved refer-
ences from an application, but they are not copied into the resultant application’s execut-
able image.  The actual associations and memory allocations occur during the initial phase
of the application’s execution; this is termed the dynamic linking phase.  Because of this, it
is possible for shared objects to be changed and these changes to affect the application that
has linked with them.  However, due to this dynamic linking property of shared objects, it
is often not necessary to rebuild the calling application after the shared object has
changed.

During dynamic linking, all shared objects that the application requires are allocated and
linked into the application’s address space, sharing as many physical memory pages with
other concurrently executing applications as possible.  Therefore, totally dissimilar appli-
cations may share the same physical pages for the same shared object.  This applies to the
memory for the actual code or machine instructions in the shared object.  The memory for
the data segments in a shared object is usually replicated for each application using that
shared object.

Because shared objects are non-active partitions, they may set elaboration and finalization
methods using the -elab and -final options to a.partition.  (See “Elaboration
and Finalization Methods” on page 3-16 for more details.)  For the same reasons, they
may not set a main subprogram using the -main option to a.partition.

Lazy Versus Immediate Binding 3

After the dynamic linker successfully locates all of the shared objects required for the
application program, it maps their memory segments into the application program’s
address space. 
3-13



MAXAda for Linux Reference Manual
The dynamic linker uses internal symbol tables to satisfy symbol references in the applica-
tion program. Entries in these tables describe the final location of symbols found in the
shared objects; this is termed relocation.  All data references are immediately relocated. 

By default, the dynamic linker does not fully relocate all subprogram references in the
application program (or the shared objects themselves, because they can reference other
shared objects or routines in the application program). If an as-yet unrelocated reference
occurs, control passes once again to the dynamic linker which then relocates the reference.
This is termed lazy binding. 

To force immediate binding of all references, the user may invoke the program with the
LD_BIND_NOW environment variable set. See Compilation Systems Volume 1 (Tools) for
more information. 

Position Independent Code 3

In order to create a shared object, the compiler must generate code in a position-indepen-
dent manner.  Position independence refers to the fact that the generated code cannot rely
on labels, data, or routines being in known locations; these locations are not known until
dynamic linking occurs.  Position independent code (PIC) requires additional indirections
at run-time; therefore, routines within shared objects are inherently slightly slower than
non-shared versions of those routines.

You control whether a unit is compiled as position independent code via a compilation set-
ting called share mode.  When the share mode is set to shared or both, compilations are
performed generating position independent code.  Units with this share mode must be
included in a shared object to be used .  They cannot be statically linked.  

See “Share Mode (-sm)” on page 4-101 for more details on share modes.

Share Path 3

Because the actual association of a shared object with a user application does not occur
until execution time, the shared object must exist on the target system in a specific loca-
tion, configurable by the user.  By default, the path name of the shared object is that
defined by the target of the partition.

When creating a partition, you may specify an alternative path name (or share path) for
the shared object.  The shared object will still be built at the pathname specified for the tar-
get, but it must be placed at the share path before any executables using it can be run.
Alternatively, a soft link can be created by using the -sl option to the a.partition
command when defining the shared object.

See “Share Path” on page 4-110 for more details.

Shared Objects and Special MAXAda Packages 3

When linking with MAXAda shared objects, it is possible that certain packages specially
recognized by the MAXAda run-time library may be quietly linked with user programs,
even if not specified in a with clause in the user’s source code. 

MAXAda associates the specification and bodies of a package using externally visible
symbol names, instead of strictly using the dependency information as calculated by the
with clauses starting at the main unit of the user program. 
3-14



MAXAda Concepts
This package is: 

• Package default_handler in vendorlib 

If the user were to supply his own copy of this package and compile it in shared mode, all
programs that use that shared object would use the new version, even if the main unit (or
any of the main unit’s dependents) do not specify the package in a with clause. 

For example, if the user supplied a body to default_handler that printed the associ-
ated program counter register value with an otherwise unhandled exception, all programs
using the shared object that contained the user’s copy of the default_handler pack-
age body would exhibit the same behavior. 

Issues to consider 3

While the use of shared objects almost always reduces disk space utilization on the target
architecture and often improves development productivity by minimizing application link
time, it may or may not actually improve run-time memory utilization.  The following
issues should be considered.

1. Are the shared objects configured with an appropriate granularity (i.e. the
number of Ada units located in each shared object) with respect to the par-
ticular client application programs that will be concurrently executing?

For example, it is possible that if only two application programs concurrently exe-
cute and use large granular shared objects, more memory may potentially be used
than in a non-shared object scenario.  There is a trade-off between small granularity
and manageability.

2. Will the application make use of local memory, and if so, how many appli-
cations will be executing out of the same local memory pools using the
same shared object?

3. What disk storage capacity does the system have?  The difference in size
between ordinary objects and PIC objects is negligible.  However, note that
when choosing share mode both, the disk storage requirement for the
object files in the environment is approximately doubled.

4. What time constraints are there?  The share mode both effectively doubles
the amount of time required for the code generation phase of compilation
because it is executed twice: one time to generate the code for the ordinary
object, and one time for the PIC object.
3-15



MAXAda for Linux Reference Manual
Elaboration and Finalization Methods 3

Elaboration and finalization are taken care of in active Ada partitions for all archive and
shared object partitions included via the link rule (see “Link Rule” on page 4-67) or
dependent partitions list (see the -add option to a.partition on page 4-62).  In all
other cases, (for example, calling an Ada subprogram from within C++ code, or using a
routine that exists in an archive that hasn’t been included in the active partition), this must
be done explicitly.

The elaboration and finalization routines do have an effect the second and subsequent
times they are called.  This is contrary to the advice in RM B.1(39) (see page M-73), but
permits the Ada code to be elaborated and finalized multiple times.  This is useful if used
in a foreign language subsystem where the designers of that subsystem do not know how
many times the subsystem will be initialized and finalized.  In such a case, Ada elabora-
tion and finalization can be performed multiple times without worry.

Multiple Ada partitions can be elaborated, used, and finalized within a foreign language
program so long as the user is careful to ensure that no two partitions ever contain the
same unit.  In such a case, link errors of the following form could occur:

ld: .../partition1(ELAB_partition1): fatal error: symbol 
`symbol_name` multiply-defined, also in file .../
partition2(ELAB_partition2)

Even though link errors of this form may not always occur, the use of two partitions which
contain the same unit could result in the unit being elaborated or finalized twice, which
could produce unpredictable results.

Elaboration and finalization methods are specified by using the -elab and -final
options, respectively, to a.partition.  (See “a.partition” on page 4-62.)

NOTE to Fortran Users

For active Ada partitions that make interface calls to Fortran, calls
to the f_init and f_exit routines in the Fortran library are
made automatically to ensure that Fortran I/O works correctly.
For archive or shared object Ada partitions that make interface
calls to Fortran, neither f_init nor f_exit is called.  This is so
that they will not interfere with the calls automatically made to
those routines when the main program of an executable is Fortran.
However, this means that when Fortran code is called from an
archive or shared object Ada partition which is, in turn, called
from a non-Ada, non-Fortran main program, the user must arrange
to call f_init before using the Ada partition and f_exit after-
ward.

Elaboration Methods 3

Elaboration methods are specified by using the -elab option to a.partition.  (See
“a.partition” on page 4-62.)

MAXAda provides three methods for elaboration:
3-16



MAXAda Concepts
• none

This is the default.  Nothing will be done for elaboration.  This is generally not rec-
ommended for partitions used outside the Ada development environment, but may
be useful for partitions containing only pure and preelaborated units.  

• auto

An elaboration routine is generated at link time and is called before the main sub-
program even runs.  The user does not need to be concerned about the routine itself
or calling it.  Elaboration is handled automatically when this option is specified.  

This option is not available for archives.

NOTE

This option should not be used for partitions that will be included
via the link rule (see “Link Rule” on page 4-67) or dependent par-
titions list (see the -add option to a.partition on page 4-62)
in active Ada partitions because the automatic elaboration will
interfere with the elaboration for the active Ada partition.

• user,routine_name

An elaboration routine named routine_name is generated at link time.  The user
specifies the actual name for routine_name and makes a call to this routine at some
point in the foreign language source.  The actual call to this elaboration routine
should be made before any Ada code is called.

This option may be used for partitions that will be included both via the link rule
(see “Link Rule” on page 4-67) or dependent partitions list (see the -add option to
a.partition on page 4-62) in active Ada partitions and in foreign language par-
titions.

NOTE

If this option is used, routine_name should not be called for parti-
tions that will be included via the link rule (see “Link Rule” on
page 4-67) or dependent partitions list (see the -add option to
a.partition on page 4-62) in active Ada partitions because
the elaboration performed by routine_name will interfere with the
elaboration for the active Ada partition.

See “Elaboration and Finalization Methods” on page 3-16 for more information.

Finalization Methods 3

Finalization methods are specified by using the -final option to a.partition.  (See
“a.partition” on page 4-62.)
3-17



MAXAda for Linux Reference Manual
MAXAda provides the same three methods for finalization:

• none

This is the default.  Nothing will be done for finalization.  This is generally not rec-
ommended for partitions used outside the Ada development environment, but may
be useful for partitions containing only pure and preelaborated units. 

• auto

A finalization routine is generated at link time and is called after the main subpro-
gram runs.  The user does not need to be concerned about the routine itself or calling
it.  Finalization is handled automatically when this option is specified.  

This option is not available for archives.

NOTE

This option should not be used for partitions that will be included
via the link rule (see “Link Rule” on page 4-67) or dependent par-
titions list (see the -add option to a.partition on page 4-62)
in active Ada partitions because the automatic finalization will
interfere with the finalization for the active Ada partition.

• user,routine_name

A finalization routine named routine_name is generated at link time.  The user spec-
ifies the actual name for routine_name and makes a call to this routine at some point
in the foreign language source.  The actual call to this finalization routine should be
made after all Ada code is called.

This option may be used for partitions that will be included both via the link rule
(see “Link Rule” on page 4-67) or dependent partitions list (see the -add option to
a.partition on page 4-62) in active Ada partitions and in foreign language par-
titions.

NOTE

If this option is used, routine_name should not be called for parti-
tions that will be included via the link rule (see “Link Rule” on
page 4-67) or dependent partitions list (see the -add option to
a.partition on page 4-62) in active Ada partitions because
the finalization performed by routine_name will interfere with the
finalization for the active Ada partition.

See “Elaboration and Finalization Methods” on page 3-16 for more information.
3-18



MAXAda Concepts
Main Subprogram Requirements 3

A main subprogram must be a non-generic library subprogram without parameters that is
either a procedure or a function returning STANDARD.INTEGER (predefined type).  

Exit Status 3

Upon program termination, the exit status is determined by the first applicable fol-
lowing rule:

- If the Ada.Command_Line.Set_Exit_Status procedure was
called, the program's exit status is the last value used in a call to this
procedure.

- If the main subprogram propagated an (unhandled) exception to the
environment task, the exit status is the value 42, as required by the
POSIX 1003.5 standard.

- If the main subprogram was a procedure which returned normally,
the exit status is Ada.Command_Line.Success, which is the
value 0.

- If the main subprogram was a function which returned normally, the
exit status is the result of the call to that main subprogram.
3-19



MAXAda for Linux Reference Manual
Compilation and Program Generation 3

The compiler operates in several distinct phases, designed to satisfy the needs of the entire
software development process.  These phases include:

• Determination of compilation unit dependencies

• Syntax checking

• Semantic checking

• Code generation and optimization

• Instruction scheduling

• Machine-code assembly

Various options can be specified with the a.options command in order to control com-
pilation phases.  For example, during preliminary software development, it is often useful
to limit the compilation phases to syntax and semantic checking.  Errors from these phases
can be brought up into a text editor automatically for fast, iterative editing and compiling.

Compilation 3

MAXAda uses an Ada compiler that partially supports the Ada language specification as
defined in the Ada 95 Reference Manual.

Automatic Compilation Utility 3

MAXAda provides a.build for automatic compilation and program generation.
a.build calls various internal tools to create an executable image of the program.  See
“a.build” on page 4-3 for more information.  

Compile Options 3

Unlike most compilation systems, MAXAda uses the concept of persistent options.  These
options do not need to be specified on the command line for each compilation.  Rather,
they are stored as part of the environment or as part of an individual unit’s information.
These options are “remembered” when the MAXAda compilation tools are used.

There are three “levels” of compilation options:

• Environment-wide options

• Permanent unit options 

• Temporary unit options

These levels have a hierarchical relationship to one another.  Environment-wide options
can be overridden by permanent unit options which can be overridden by temporary unit
options.  The set of effective options for a unit are that unit’s sum total of these three option
3-20



MAXAda Concepts
sets, with respect to this hierarchical relationship.  See “Effective Options” on page 3-22
for more information.

See “Compile Options” on page 4-99 for a list of options that may be specified.

Environment-wide Options 3

Environment-wide options apply to all units within that environment.  All compilations
within this environment then observe these environment-wide options unless overridden.

Environment-wide options can be overridden by

• individual unit compile options (permanent or temporary - see below)

• command-line options (which change temporary options on a unit)

• pragmas in the source of the units themselves

See “Compile Options” on page 3-20 for more information.

Permanent Unit Options 3

Each unit has its own set of options permanently associated with it that override those
specified for the environment.  They may be specified and later modified via the
a.options utility.

See “Compile Options” on page 3-20 for more information.

See the description of “a.options” on page 4-58 for more details.

Temporary Unit Options 3

Each unit also has a set of options that may be temporarily associated with it that override
those that are permanently associated with it.

- If a unit is manually compiled (using a.compile - see page 4-9) with any
specified options, these are added to its set of temporary options.

- The temporary options may also be set using the a.options tool.

Temporary options allow users to “try out” options under consideration.  By designating
these options as “temporary”, the user can first see the effect these options have and then
decide if this is what is desired.  If so, MAXAda provides a way to add these temporary
options to the set of permanent options for that unit using a.options.  If these options
are not what the user desires, a.options also provides a way to eliminate all temporary
options from a unit (or from all units in the environment).

Another case in which temporary options might also prove useful is one in which a unit
needs to be compiled with debug information.  If this is not the manner in which the unit is
normally compiled, a temporary option can be set for that unit to be compiled with debug
information.  When the debug information is no longer needed, the temporary option can
be removed and the unit can be recompiled in its usual manner.

See “Compile Options” on page 3-20 for more information.

See the description of “a.options” on page 4-58 for more details.
3-21



MAXAda for Linux Reference Manual
Effective Options 3

These levels have a hierarchical relationship to one another.  Environment-wide options
can be overridden by permanent unit options which can be overridden by temporary unit
options.  The set of effective options for a unit are that unit’s sum total of these three option
sets, with respect to this hierarchical relationship.  Table 3-1 shows an example of a unit’s
effective options based on the relationship between its environment-wide options, perma-
nent unit options, and temporary unit options.

As shown in this example, compilation options can be negated by preceding the option
with the “!” symbol.  Therefore, the option “-!g” means no debug information should be
generated for this unit.  Because it is a temporary option for only this particular unit, all
other units in the environment will be compiled with debug information (due to the “-g”
environment-wide option listed in the example).

See “Compile Options” on page 3-20 for more information.

In addition, see “Compile Options” on page 4-99 and “Qualifier Keywords (-Q options)”
on page 4-105 for a list of available compilation options.

Compilation States 3

Units in the environment can be in any of several different compilation states:

• uncompiled

The state of a newly-introduced unit, or one that has been invalidated.  The environ-
ment is aware of the unit and some basic dependency information but very little else.

• parsed

In this state, some semantic information about the unit has been generated.  There is
a complete picture of the meaning of the unit, but none of the actual implementation.

• drafted

All semantic information has been produced, but no actual object files have been
created.

• compiled

Object files have been generated for the unit 

The benefit of having this information generated at each of these states for each unit in the
environment is that it allows the compilation utility to use this information to produce bet-

Table 3-1.  Effective options based on hierarchical relationship

Environment-wide options -g -O2 -ee

Permanent unit options -!S -O3

Temporary unit options -S -!g

EFFECTIVE OPTIONS -S -!g -O3 -ee
3-22



MAXAda Concepts
ter code in the unit currently being compiled.  (See “Interoptimization” on page 3-24 for
more information.)

a.build allows the user to compile units to a specified state using the -state option,
however, compiled is the only valid state allowed for this option in the current release.
See “a.build” on page 4-3 for more information.

NOTE

Only the uncompiled and compiled states are available at
this time.  These states are documented because they are visible in
such utilities as a.build, a.compile, and a.ls.

Consistency 3

Along with compilation states comes the idea of consistency.  Each unit is considered con-
sistent up to a particular state.  This means that it is valid up to that state of compilation.
Any recompilation of the unit can start from that state.  It does not need to go through the
earlier stages of recompilation.

Modification of a unit may possibly change its consistency.  Modifications include:

• changes to the source file itself

• changes to any of the options

• changes to any required units upon which this unit depends

For example, if the source of a unit has been modified since it was last compiled, the
semantics of the unit are potentially changed.  New semantic information about the unit
must be generated.  Therefore, it is considered “consistent up to the uncompiled state”.
This means that when it is recompiled, it must start at the inconsistent state, uncom-
piled.

Not all changes to a unit make it “consistent up to the uncompiled state”.  Changing the
options on a unit may not affect the syntax or semantics of a unit and therefore do not
require a total recompilation.  

Each option, in fact, has relevance, that is, how “inconsistent” a unit becomes if this
option is changed.  Table 3-2 lists the relevance for each option.

Table 3-2.  Relevance of Options

Option Relevance

-e compiled

-g drafted

-N uncompiled

-opp parsed

-O parsed
3-23



MAXAda for Linux Reference Manual
For example, if only the debug_level option on a unit is changed, the syntax and
semantics of the unit will not be affected.  Therefore, it is not necessary to go through the
parsed or drafted states again since nothing will change.  However, the object files
that will be generated for this unit will change so the unit is considered “consistent up to
the drafted state”.

For example, if only the -e option on a unit is changed, the syntax, semantics, and result-
ant object file of the unit will not be affected.  In this case, it is not necessary to recompile
the unit at all.  Therefore, the unit is considered “consistent up to the compiled state”.

Interoptimization 3

MAXAda provides a method of optimization that controls the compilation order such that
all language-dependence rules are obeyed.

-i compiled

-w compiled

-sm drafted

-S drafted

-Qinline_line_count parsed

-Qinline_nesting_depth parsed

-Qinlines_per_compilation parsed

-Qinline_statement_limit parsed

-Qinteresting drafted

-Qopt_class drafted

-Qoptimize_for_space drafted

-Qoptimization_size_limit drafted

-Qobjects drafted

-Qloops drafted

-Qunroll_limit drafted

-Qgrowth_limit drafted

-Qwiden_trees drafted

-Qtarget drafted

-Qdb_basic_block compiled

-Qdb_region compiled

-Qdb_routine compiled

-Q drafted

Table 3-2.  Relevance of Options

Option Relevance
3-24



MAXAda Concepts
There are currently two levels of interoptimization available:

0 (none) no effort to attain interoptimization

1 (inlining) better ordering of compilation of units such that inlined sub-
program calls will be performed whenever possible

See the -IO option of “a.build” on page 4-3 for using this option with the compilation
utility.  Further information can be found by referring to “Inline Dependencies” on page
4-6.

Programming Hints and Caveats 3

In general, programs that are to be debugged with NightView should not be optimized,
although they may be interoptimized.  Optimization levels GLOBAL and MAXIMAL should
be reserved for thoroughly tested code. 

Further optimizations for speed can often be accomplished by combining the use of
OPT_LEVEL (MAXIMAL) with other pragmas. In some applications, judicious use of
pragma SUPPRESS and pragma INLINE will contribute to even faster execution speeds;
however, excessive use of pragma INLINE in large applications is not recommended.
(See “Pragma SUPPRESS” on page M-130 and “Pragma INLINE” on page M-114.) 

The higher levels of optimization are also subject to compiler configuration parameters.
Refer to “Compile Options” on page 4-99 for more information about these parameters. 

Optimization parameters can also be manipulated by using the implementation-defined
pragma OPT_FLAGS. Refer to “Pragma OPT_FLAGS” on page M-120. 

All optimizations performed at the various levels of optimization are done in compliance
with the Ada 95 Reference Manual.  At some levels, some operations may not be invoked
if their only possible effect is to propagate a predefined exception. These optimizations are
permitted under RM 11.6. 

Components in records may be misaligned because of the following practices: 

• Using representation clauses 

• Using the predefined pragma PACK. (See “Pragma PACK” on page
M-122.) 

• Doing unchecked conversions to access types 

There is no misaligned handler.  The hardware allows misaligned integer (fixed-point)
data accesses, but floats and long floats must be 4-byte aligned.  There is a performance
penalty for misaligned accesses.
3-25



MAXAda for Linux Reference Manual
Compiler Error Messages 3

This section describes the different types of compilation errors that can occur and illus-
trates the procedures MAXAda uses to handle error messages. It also shows the ways in
which the a.error utility can be used to examine error messages produced by the com-
piler. (See “a.error” on page 4-16 for details.) The compiler writes all error messages to
the standard error stream, stderr.

A list of the several categories of error messages appears next, followed by descriptions
with examples of each category. 

• Lexical Errors 

• Syntax Errors 

• Semantic Errors 

• General Errors 

• Informational Messages 

• Warnings 

• Alerts

• Fatal Errors 

• Internal Errors 

NOTE

Many diagnostics contain references to the MAXAda Reference
Manual which can be used by the a.man utility to provide further
assistance in determining the cause and/or solution for the error.
See “References to the MAXAda for Linux Reference Manual”
on page 4-45 for more information about how to use these refer-
ences with the a.man tool.
3-26



MAXAda Concepts
Lexical Errors 3

Lexical errors are errors in the formation of literals, identifiers, and delimiters. The com-
piler performs no semantic analysis on a unit containing lexical errors, but attempts to cor-
rect the error to minimize its impact on the discovery of further lexical and syntax errors.
Screen 3-1 illustrates:

Screen 3-1.  Lexical Errors with -e Option

Each line that contains an error is listed, prefixed with a line number, and followed with a
description of the errors that were found. This description includes one or more lines that
begin with a capital letter and point to the place in the program where the error was
detected. Subsequent lines beginning with corresponding letters provide brief synopses of
the errors encountered. Screen 3-2 illustrates:

Screen 3-2.  Lexical Errors with -e Option

   1:   procedure MY_ _PROGRAM is
A -------------------^
B --------------------^
C ---------------------^
A:lexical error: trailing '_' not allowed
B:lexical error: token starts badly:  "_"
C:syntax error: "program" deleted
   2:   end MY_PROGRAM;
A ------^
B --------------------^
A:syntax error: "end" replaced by "begin"
B:syntax error: "null ; end ;" appended

   1:   procedure MY_PROGRAM? iz
A --------------------------^
B ----------------------------^
A:lexical error: illegal character "?"
B:syntax error: "iz" deleted
   2:   end MY_PROGRAM?;
A ------^
B --------------------^
A:syntax error: "end" replaced by "is new"
B:lexical error: illegal character "?"
3-27



MAXAda for Linux Reference Manual
Syntax Errors 3

Syntax errors are errors in the form of grammatical constructs. The compiler performs no
semantic analysis on a unit containing syntax errors, but attempts to correct an error to
minimize its impact on the discovery of further lexical and syntax errors. Screen 3-3 illus-
trates:

Screen 3-3.  Example of Syntax Errors with -e Option

   4:   end OLD_PROGRAM;
A ----------^
A:syntax error: RM 6.3(4): subprogram was given a different name
   7:      for X = 1..10 do
A ---------------^
B -----------------------^
A:syntax error: "=" replaced by "in"
B:syntax error: "do" replaced by "loop"
  11:   end A_PROGRAM;
A ----------^
B -------------------^
A:syntax error: "a_program" replaced by "loop"
B:syntax error: "null ; end ;" appended
3-28



MAXAda Concepts
Semantic Errors 3

Semantic errors are those made in the semantic usage of language constructs. The com-
piler generates no code for units with semantic errors. It generates code for a unit that is
error-free, even if other units in the file have semantic errors. All semantic error messages
refer to the specific section, subsection, or paragraph within the Ada 95 Reference Man-
ual. Screen 3-4, Screen 3-5, and Screen 3-6 illustrate:

Screen 3-4.  Semantic Errors with -e Option

Screen 3-5.  Semantic Errors with -el Option

Screen 3-6.  Semantic Errors with -e Option

   3:         subtype WORK_DAY is WEEK_DAY range 1..5; 
A ------------------------------------------------^
A:error: RM 3.5(4): range constraint has wrong type

   1:package NEW_PACKAGE is 
   2:   type SUN_GLASSES is (grey, green, blue); 
   3:   type MY_GLASSES is access SUN_GLASSES; 
   4:   type SCREEN is (green, black); 
   5:   type MY_SCREEN is access SCREEN; 
   6:end NEW_PACKAGE; 
   7: 
   8:package body NEW_PACKAGE is 
   9:   function MY_FUNCTION return MY_GLASSES is 
  10:      I: MY_GLASSES := null; 
  11:   begin 
  12:      return I; 
  13:   end MY_FUNCTION; 
  14: 
  15:   function MY_FUNCTION return MY_SCREEN is 
  16:      I: MY_SCREEN := null; 
  17:   begin 
  18:      return I; 
  19:   end MY_FUNCTION; 
  20: 
  21:   procedure ASSIGN is 
  22:   begin 
  23:      MY_FUNCTION.all := green; 
A --------------------^
A:error: RM 5.2(9): assignment statement is ambiguous. Could be:
A:error:        my_function, line 9 of new_package
A:error:        my_function, line 15 of new_package
  24:     end ASSIGN; 
  25: 
  26:end NEW_PACKAGE;

   2:         type INT1 is range 1..UPPER; 
A --------------------------------^
A:error: RM 3.5.4(3): bounds must be static simple expressions
3-29



MAXAda for Linux Reference Manual
General Errors 3

Errors that are semantic in nature but do not fall within a specific Ada 95 Reference Man-
ual reference are called general errors. The compiler does not generate code for units with
general errors. However, it generates code for a unit that is error-free, even if other units in
the file have errors. Screen 3-7 illustrates:

Screen 3-7.  Example of General Errors

a.build: error: required spec of FACTORIAL does not exist
               in the environment
3-30



MAXAda Concepts
Informational Messages 3

The MAXAda compiler may generate an informational message to a user if an internal
compiler limit has been exceeded. Most of these internal limits deal with optimization in
the compiler’s back end. (See “Compile Options” on page 4-99.) 

Because most optimization parameters can be manipulated by users via the a.options
tool, informational messages are helpful because they may indicate that certain optimiza-
tions are not being performed due to the values of these constraints.  This information is
helpful to users because it may point out areas where optimizations are being missed, and
that in order to perform the maximum amount of optimization possible, the limits should
be raised.  Limits can be raised: 

• By changing the default values with a.options for all compilations (See
“a.options” on page 4-58.) 

• By inserting the appropriate optimization values through the use of the
OPT_FLAGS pragma for compilation units where optimizations are being
missed (See “Pragma OPT_FLAGS” on page M-120.) 

• By using an appropriate qualifier flag (-Qparameter) for the optimizer
parameter that is being exceeded. (See “Qualifier Keywords (-Q options)”
on page 4-105.) 

For example, if the environment’s configuration has a value of 128 for the parameter
OBJECTS, then only 128 variables in a given subprogram will be considered as candidates
for optimization in the back end of the MAXAda compiler.  If a subprogram contains
more than 128 objects, the compiler will inform the user that opportunities for optimiza-
tion may be missed.  The informational message will identify which parameter(s) have
been exceeded, and will also suggest what an appropriate value for the offending parame-
ter(s) should be in order to take advantage of the maximum amount of optimization possi-
ble.  For instance, if more than 128 objects exist within a compilation and the default
parameter is set to 128, then the following message will appear: 

Screen 3-8.  Example of Warnings

This informs the user that there were actually 200 objects in the given compilation, and
that in order to achieve maximum optimization, the configuration value for OBJECTS
should be raised to 200 for this compilation.  If the suggested value(s) for a compilation
are not reasonable values to set as configuration parameters, then the implementa-
tion-defined pragma OPT_FLAGS can be used to modify the values of optimization
parameters for individual compilation units. 

Informational messages may be suppressed by specifying the -i compile option.  The -w
compile option also suppresses informational messages. 

  info: Only first 128 most frequently occurring variables
out of 200 total variables were optimized.  Check
configuration parameters. 
3-31



MAXAda for Linux Reference Manual
Warnings 3

An error that is not sufficiently serious to prevent code generation or that indicates ques-
tionable use of a construct generates a warning message. Warning messages may be sup-
pressed by specifying the -w compile option. Screen 3-9 illustrates:

Screen 3-9.  Example of Informational Messages

Alerts 3

An alert is a diagnostic message that conveys information to the user about packages,
pragmas, or options that are obsolete in this release.  Support for such features will nor-
mally be removed in the next production release of MAXAda.  Alerts typically refer to the
correct method for achieving the desired effect (if such behavior is still meaningful).
Alerts do not prevent code generation.  Alerts cannot be suppressed through command line
options; the only method of preventing alerts is to refrain from using features which are
obsolete.

In many cases, the alert indicates that the compilation system is automatically taking the
appropriate action for the user. Screen 3-10 illustrates:

Screen 3-10.  Example of Alerts

   6:      for i in 1..10 loop
A -------------^
A:warning: id hides outer definition

   2:   pragma memory_pool (lock_pages) ;
A --------------------------^
A:alert: RM Appendix F: This form of pragma memory_pool is obsolete
A:alert: RM Appendix F: it is supported in this release only for 

A:alert: RM Appendix F: use pragma pool_lock_state instead (it is 
being activated now)

backward compatibility 
3-32



MAXAda Concepts
Fatal Errors 3

Fatal errors are those of such severity that meaningful recovery is impossible and compi-
lation of the file stops. A fatal error can occur if a MAXAda environment is not created
with a.mkenv before compilation. Screen 3-11 illustrates:

Screen 3-11.  Example of Fatal Errors

Internal Errors and Panics 3

Internal errors and panics are those due to faults within the compiler. All internal errors
and panics should be reported to the Concurrent Customer Support Center. 

Internal errors and panics may indicate that a program is erroneous, and they occur
because the compiler is unable to process the erroneous program. The following example
does not generate an internal error in the current release; it is provided to show an example
of the error message. Screen 3-12 illustrates:

Screen 3-12.  Example of Internal Errors

a.compile: fatal: invalid environment: /pathname/noenv

   -- 
   begin 
        declare 
             X : ADDRESS; 
             Z : BOOLEAN := X = test’ADDRESS; 
A -------------^
A:internal: assertion error at file type_util.c, line 184 
        begin 
            null; 
        end; 
   end test;
3-33



MAXAda for Linux Reference Manual
Link Options 3

MAXAda supports a set of link options for each partition.  These link options are persis-
tent and may be specified using any of the following methods:

• a.link command line

Options specified directly to a.link (see “a.link” on page 4-33 for details) may be
useful for experimental links, but should not be used during the normal course of
development, because specifications made in this manner are not persistent.

• partition definition

Link options are specified for a particular partition by using the following options to
a.partition:

-oset opts Set the link option list to opts

-oappend opts Append opts to the link option list 

-oprepend opts Prepend opts to the link option list

-oclear Clear the link options list

where:

opts is a single parameter containing one or more link options; note that opts
may need to be quoted.

For example:

a.partition -oset -c partition_name

A list of available link options (opts) may be found under “Link Options” on page
4-109.

For more information about setting link options with a.partition, see “Link
Options” on page 4-65.

• environment-wide link options

Link options that affect all the partitions in the entire environment may be specified
using the -default option to a.partition in combination with the
-ocommands listed above.

For example:

a.partition -default -oset -c 

sets the environment-wide link options to -c.

To list the environment-wide link options, issue:

a.partition -default

by itself.
3-34



MAXAda Concepts
In addition, the environment may be created with a set of environment-wide link
options using the -oset opts option to a.mkenv (see “a.mkenv” on page 4-53 for
details).

For example:

a.mkenv -oset -c

sets the environment-wide link options to -c when the environment is created.

• source code 

Link options may also be specified within the source code itself using pragma
LINKER_OPTIONS (see “Pragma LINKER_OPTIONS” on page M-118).

For example:

pragma Linker_Options("-c");

Link options are interpreted in the order specified above and in the order specified by the
user when using a.link or a.partition.  The order of link options specified in the
source code is arbitrary among various units, but is in the order specified by the user
within any single unit.

In the event of a conflict between two link options, an earlier one will override a later one,
generally.  The exceptions are benign.  For instance, if two contradictory -trace:buff-
ersize options are specified, the larger of the two values is selected regardless of the
order.
3-35



MAXAda for Linux Reference Manual
Linking Executable Programs 3

MAXAda provides a linker that verifies and creates an ELF executable image of all com-
ponent units required for a given main unit.  The linker can be invoked directly but should
be called from the compilation utility a.build.

Linking Ada Programs with Shared Objects 3

The following table lists the MAXAda-supplied shared object partitions and their corre-
sponding environments.

These partitions are expected to be installed in /usr/ada/release/lib (where release is
the name of the MAXAda release).

If a user application requires the MAXAda shared libraries but the application will run on
a target system without the MAXAda product, then those libraries must be installed inde-
pendently on the target system.

Users are granted limited rights to copy the required shared libraries from a development
system to a licensed run-time system.  Contact Concurent Customer Support for details on
these rights.

Table 3-3.  MAXAda-supplied Shared Objects

SHARED OBJECT ENVIRONMENT

libdeprecated.so deprecated

libgeneral.so bindings/general

libobsolete.so obsolescent

libposix1.so bindings/posix_1003.1

libposix5.so bindings/posix_1003.5

libpredefined.so predefined

libpublic.so publiclib

librtdm.so rtdm

libsockets.so bindings/sockets

libvendor.so vendorlib
3-36



MAXAda Concepts
IMPORTANT

Users cannot copy shared libraries from the AXI for MAXAda
product.  If these libraries are required for the run-time system, a
copy of the AXI for MAXAda product must be purchased and
installed on the target machine.  These libraries include:

/usr/ada/release/lib/libX.so
/usr/ada/release/lib/libmotif.so
/usr/ada/release/lib/libstars.so
3-37



MAXAda for Linux Reference Manual
Debugging 3

Real-Time Debugging 3

In addition to the symbolic debugging capabilities provided by nview, and the post-anal-
ysis debugging capabilities provided by the tracing mechanism, MAXAda also provides
several ways to debug programs in real-time. The a.monitor utility may be used to
monitor an Ada program while it is running; the utility displays Ada task state informa-
tion, CPU, stack, and memory usage. See “a.monitor” on page 4-55 as well as Chapter 12
- Real-Time Monitoring for more information.

NOTE

NightView (nview) requires a non-zero debug level and level
simple (2) for reasonable support, and level full (3) for full
support.  See “Debug Level (-g[level])” on page 4-100.

Selecting a Debug Level 3

There are trade-offs to be considered when selecting the debug level with which to com-
pile a single unit or application. While the full level of debug information provides more
information for such programs as the nview debugger, it does so at the cost of additional
disk space in object files and the final executable. Note, however, that there is no addi-
tional space required in memory as an application is executing. Note also that nview
debugging requires only the program image. 

If users intend to use other programs, such as nview, then careful debug-level selection
must be made.  Good candidates for compiling at full debug level are units that:

• Are few in number

• Are reasonably self-contained

• Contain frequently used type information

• Need to be debugged

If users expect to debug only certain portions of an application, it is possible to compile
only those certain units with the full level of debug information and to compile the
remainder of the application with the none or lines level.  Thus, only a portion of the appli-
cation requires additional disk space.

This technique is very useful.  However, the user must be careful because it can actually
be counterproductive and produce object files requiring more disk space than would be
required otherwise.  This is because the compiler attempts not to duplicate debug informa-
tion whenever possible.
3-38



MAXAda Concepts
Example Scenario:

Assume the following code fragment:

package types is
   type rec is record
      ...
   end record;
end types;

with types;
procedure user1 is
   var : types.rec;
   ...
begin
   ...
end user1;

with types;
procedure user2 is
   var : types.rec;
   ...
begin
   ...
end user2;

Example 1:

Assume that all of these units are compiled with the full level of debug information.
The debug information for unit types includes a description of the type rec.The
debug information for each of the units user1 and user2 includes descriptions of
their respective variables, var; however, the descriptions of those variables need
not fully describe the type rec. Their debug information just refers to the debug
information already described in unit types. 

Example 2:

Assume that the unit types was compiled with the none level of debug informa-
tion. Further assume that the units user1 and user2 are compiled with the full
level of debug information. The debug information for the unit types does not
include a description of the type rec. The debug information for each of the units
user1 and user2 includes descriptions of their respective variables, var. Unlike
the previous example, though, these descriptions cannot simply reference the debug
information for rec in the unit types because it does not exist there. So, they must
each include the debug information for rec locally. Unfortunately, because neither
references the other on any with clause and because language rules prohibit any
dependency from one to the other in the absence of such a with clause, they cannot
share the debug information, and it is duplicated in each of them. This was not the
case in the first example.
3-39



MAXAda for Linux Reference Manual
Degree of Interest 3

Pragma INTERESTING indicates in the debug information the degree of interest of a
named unit, object, component or exception (see “Pragma INTERESTING” on page
M-115).  This information is only useful if full debug information is enabled (see “Pragma
DEBUG” on page M-107 or “Debug Level (-g[level])” on page 4-100).

This information is useful in conjunction with the ccur.rtdm package.  A minimum
interest "threshold" may be specified to restrict the set of objects or components to be
monitored using the interest_threshold parameter (see “rtdm” on page 9-13).

This information is also useful in conjunction with the NightView debugger.  A minimum
interest threshold may be specified via the interest command to restrict the set of rou-
tines to be displayed in various circumstances.

In addition, the -Qinteresting compile option may be used to indicate the default
degree of interest for every entity in the compilation.  See “Qualifier Keywords (-Q
options)” on page 4-105 for more information.
3-40



MAXAda Concepts
Interface to Other Languages 3

This section contains information related to interfacing to other languages.  The following
topics are discussed:

- “Linking Ada Partitions into Applications with non-Ada Main Subpro-
grams” on page 3-41 

- “Linking non-Ada Objects into MAXAda Partitions” on page 3-48 

- “Ada Tagged Types and C++ Classes” on page 3-51

- “Ada Tagged Types and Java Classes” on page 3-51

- “Fortran Libraries” on page 4-110

Examples of the various interface combinations can be found in the directories under:

/usr/ada/rel/sup/examples

These directories are:

ada-c MAXAda program which interfaces to GNU C code

ada-c++ MAXAda program which interfaces to GNU C++ code

ada-f77 MAXAda program which interfaces to Concurrent Fortran 77
code

ada-g77 MAXAda program which interfaces to GNU Fortran code

ada-java MAXAda program which interfaces to GNU Java code

c-ada GNU C program which interfaces to MAXAda code

c++-ada GNU C++ program which interfaces to MAXAda code

f77-ada Concurrent Fortran 77 program which interfaces to MAXAda
code

g77-ada GNU Fortran program which interfaces to MAXAda code

java-ada GNU Java  program which interfaces to MAXAda code

Linking Ada Partitions into Applications with non-Ada Main 
Subprograms 3

When linking non-trivial Ada code into an application with a non-Ada main program, one
must create an archive or shared object partition containing the Ada code.  See “Types of
3-41



MAXAda for Linux Reference Manual
Partitions” on page 3-12 and “Elaboration and Finalization Methods” on page 3-16 for
details.  See “RM Annex B: Interface to Other Languages” on page M-71 for details on
pragmas and other features for interfacing to other languages.

The archive or shared object partition file must be included on the command line which
links the application.  But it also is necessary to add archives or shared objects from pre-
defined MAXAda environments.  Following are example invocations for several scenar-
ios.  In each, there is an example user environment in /home/adauser/env with a partition
named libadapart.a (or libadapart.so).

Refer to the appropriate section below for examples of linking Ada partitions into applica-
tions with main subprograms written in that particular language:

• “C” on page 3-43 

• “C++” on page 3-44 

• “Concurrent Fortran 77” on page 3-45 

• “GNU Fortran” on page 3-46 

• “GNU Java” on page 3-47 

NOTE

The -(, -), -Wl,-(, and -Wl,-) options may need to be
quoted.  In that case,  use '-(',  '-)',  -Wl,'-(' ,  or
-Wl,'-)'.

NOTE

The COMPILER_PATH environment variable is set for each invo-
cation of gcc or g77 to force the GNU compiler toolset to use an
updated system linker in /usr/ada/release/bin that can inter-
pret Dwarf 3.  If that environment variable is omitted, the default
system linker will be used; it will work on correct programs, but
error diagnostics may be inaccurate.

NOTE

The -lpthread library must be linked as a shared object.  In
particular, the GNU compilers' -static option should not be
used.  To make some system libraries link as archives while still
allowing -lpthread to be linked as a shared object, use the
GNU compilers' -Wl,-Bstatic and -Wl,-Bdynamic
options (see ld(1) for details listed under -Bstatic and
-Bdynamic).
3-42



MAXAda Concepts
C 3

C main program with Ada code that requires no tasking or other real-time features:

COMPILER_PATH=/usr/ada/release/bin \
gcc ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.bart \
  -lruntime.stubs \
  -lsemaf \
  -Wl,'-)'

C main program with Ada code that requires tasking or other real-time features:

COMPILER_PATH=/usr/ada/release/bin \
gcc ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.arms \
  -lpthread \ 
  -lruntime.stubs \
  -lccur_rt \
  -lsemat \
  -Wl,'-)'

See the sample code in /usr/ada/rel/sup/examples/c-ada for an example of a
GNU C program which interfaces to MAXAda code.
3-43



MAXAda for Linux Reference Manual
C++ 3

C++ main program with Ada code that requires no tasking or other real-time features:

COMPILER_PATH=/usr/ada/release/bin \
g++ ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.bart \
  -lruntime.stubs \
  -lsemaf \
  -Wl,'-)'

C++ main program with Ada code that requires tasking or other real-time features:

COMPILER_PATH=/usr/ada/release/bin \
g++ ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.arms \
  -lpthread \ 
  -lruntime.stubs \
  -lccur_rt \
  -lsemat \
  -Wl,'-)'

See the sample code in /usr/ada/rel/sup/examples/c++-ada for an example of a
GNU C++ program which interfaces to MAXAda code.
3-44



MAXAda Concepts
Concurrent Fortran 77 3

Concurrent Fortran 77 main program with Ada code that requires no tasking or other
real-time features:

cf77 ... \
  -L/home/adauser/env
  -ladapart
  '-('
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.bart \
  -lruntime.stubs \
  -lsemaf
  '-)'

Concurrent Fortran 77 main program with Ada code that requires tasking or other
real-time features:

  cf77 ... \
  -L/home/adauser/env
  -ladapart
  '-('
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.arms \
  -lpthread \ 
  -lruntime.stubs \
  -lccur_rt \
  -lsemat
  '-)'

See the sample code in /usr/ada/rel/sup/examples/f77-ada for an example of a
Concurrent Fortran 77 program which interfaces to MAXAda code.
3-45



MAXAda for Linux Reference Manual
GNU Fortran 3

GNU Fortran main program with Ada code that requires no tasking or other real-time fea-
tures:

COMPILER_PATH=/usr/ada/release/bin \
g77 ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-('
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.bart \
  -lruntime.stubs \
  -lsemaf 
  -Wl,'-)'

GNU Fortran main program with Ada code that requires tasking or other real-time fea-
tures:

COMPILER_PATH=/usr/ada/release/bin \
g77 ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-('
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.arms \
  -lpthread \ 
  -lruntime.stubs \
  -lccur_rt \
  -lsemat
  -Wl,'-)'

See the sample code in /usr/ada/rel/sup/examples/g77-ada for an example of a
GNU Fortran program which interfaces to MAXAda code.
3-46



MAXAda Concepts
GNU Java 3

GNU Java main program with Ada code that requires no tasking or other real-time fea-
tures:

COMPILER_PATH=/usr/ada/release/bin \
gcj ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.bart \
  -lpthread \
  -lruntime.stubs \
  -lsemaf \
  -Wl,'-)'

GNU Java main program with Ada code that requires tasking or other real-time features:

COMPILER_PATH=/usr/ada/release/bin \
gcj ... \
  -L/home/adauser/env
  -ladapart
  -Wl,'-(' \
  -L/usr/ada/release/lib \
  -lpredefined \
  -lvendor \
  -lposix1 \
  -lruntime.arms \
  -lpthread \ 
  -lruntime.stubs \
  -lccur_rt \
  -lsemat \
  -Wl,'-)'

See the sample code in /usr/ada/rel/sup/examples/java-ada for an example of
a GNU Java  program which interfaces to MAXAda code.
3-47



MAXAda for Linux Reference Manual
Linking non-Ada Objects into MAXAda Partitions 3

The object files, archives or shared objects containing non-Ada code should be specified
as link options, either:

- with pragma LINKER_OPTIONS("object_archive_or_shared_object) in
the source, or

- specified as a link option using either the -oset or -oappend option to
a.partition

Information related to the following languages is provided:

• “Fortran” on page 3-48 

• “C” on page 3-48 

• “C++” on page 3-48 

• “GNU Java” on page 3-49 

Fortran 3

For programs using interfacing pragmas which mention a Fortran convention, MAXAda
will include any necessary Fortran libraries automatically.  If interfacing with Concurrent
Fortran, and multiple Concurrent Fortran versions are installed, the -f77version
option (see “Fortran Libraries” on page 4-110) can be used to specify the version.

See the sample code in /usr/ada/rel/sup/examples/ada-f77 for an example of a
MAXAda program which interfaces to Concurrent Fortran 77 code.

See the sample code in /usr/ada/rel/sup/examples/ada-g77 for an example of a
MAXAda program which interfaces to GNU Fortran code

C 3

For programs which interface with C, the C or Unchecked_C convention should be used
(see “RM B.1 Interfacing Pragmas” on page M-71).

See the sample code in /usr/ada/rel/sup/examples/ada-c for an example of a
MAXAda program which interfaces to C code.

C++ 3

For programs which interface with C++, the C or Unchecked_C convention should be
used, and it will be necessary to specify mangled symbol names for most entities.  To
determine mangled names, readelf -s object_file.o will list symbols in the C++ object
file.  In addition, it is necessary to specify the C++ libraries manually, as MAXAda cannot
differentiate C objects from C++ objects.  The user should include the following options in
pragma LINKER_OPTIONS or in the MAXAda partition definition using either the
-oset or -oappend option to a.partition:
3-48



MAXAda Concepts
RedHawk 4.1 -L/usr/lib/gcc/i386-redhat-linux/3.4.4 -lstdc++
-L/usr/lib/gcc/x86_64-redhat-linux/3.4.4 -lstdc++

RedHawk 2.x -L/usr/lib/gcc-lib/i386-redhat-linux/3.2.3 -lstdc++
-L/usr/lib/gcc-lib/x86_64-redhat-linux/3.2.3
-lstdc++

RedHawk 1.x -L/usr/lib/gcc-lib/i386-redhat-linux/3.2 -lstdc++

SUSE 10.0 -L/usr/lib64/gcc/i586-redhat-linux/4.0.2 -lstdc++
-L/usr/lib64/gcc/x86_64-redhat-linux/4.0.2 -lstdc++

See the sample code in /usr/ada/rel/sup/examples/ada-c++ for an example of a
MAXAda program which interfaces to GNU C++ code.

GNU Java 3

For programs which interface with GNU Java, the C or Unchecked_C convention should
be used, and it will be necessary to specify mangled symbol names for most entities.  To
determine mangled names, readelf -s object_file.o will list symbols in the Java object
file.  In addition, it is necessary to specify the Java libraries manually, as MAXAda cannot
differentiate C objects from Java objects.  The user should include the following options in
pragma LINKER_OPTIONS or in the MAXAda partition definition using either the
-oset or -oappend option to a.partition:

RedHawk 4.1 -L/usr/lib/gcc/i386-redhat-linux/3.4.4 -lgcj
-L/usr/lib/gcc/x86_64-redhat-linux/3.4.4 -lgcj

RedHawk 2.x: -L/usr/lib/gcc-lib/i386-redhat-linux/3.2.3 -lgcj

RedHawk 1.x: -L/usr/lib/gcc-lib/i386-redhat-linux/3.2 -lgcj

SUSE 10.0 -L/usr/lib64/gcc/i586-redhat-linux/4.0.2 -lgcj
-L/usr/lib64/gcc/x86_64-redhat-linux/4.0.2 -lgcj

The GNU Java runtime does not automatically initialize its runtime when linked into Ada
programs, so this must be done manually.  An easy way to do this is to include the follow-
ing package in the Ada application, and mention it in a with clause:
3-49



MAXAda for Linux Reference Manual
with system;
package java is
--
   pragma elaborate_body;

   subtype jboolean   is boolean;
   subtype jbyte      is tiny_integer;
   subtype jshort     is short_integer;
   subtype jint       is integer;
   subtype jlong      is long_integer;
   subtype jfloat     is float;
   subtype jdouble    is long_float;
   subtype jchar      is wide_character;
   subtype jobject    is system.address;
   subtype jclass     is system.address;
   subtype jthrowable is system.address;
   subtype jstring    is system.address;

   function  JvCreateJavaVM
      (vm_args : system.address := system.null_address)
      return jint;

   function  JvAttachCurrentThread
      (name  : jstring        := system.null_address;
       group : system.address := system.null_address)
      return system.address;

   function  JvDetachCurrentThread
      return jint;

   procedure JvInitClass
      (cls : system.address);
--
private
--
   pragma import(Unchecked_C, JvCreateJavaVM,
                 "", "_Z16_Jv_CreateJavaVMPv");
   pragma import(Unchecked_C, JvAttachCurrentThread,
                 "", "_Jv_AttachCurrentThread");
   pragma import(Unchecked_C, JvDetachCurrentThread,
                 "", "_Jv_DetachCurrentThread");
   pragma import(Unchecked_C, JvInitClass,
                 "", "_Jv_InitClass");
--
end java;

package body java is
--
   status : jint;
   thread : system.address;
--
begin
--
   status := java.JvCreateJavaVM;
   thread := java.JvAttachCurrentThread;
--
end java;
3-50



MAXAda Concepts
Also, GNU Java requires that each Java class be initialized manually before its use.  If a
Java object will be used directly from MAXAda, then it is the responsibility of the user to
initialize the class.  This can be done using the above Java package with code like the fol-
lowing for an example class AnInt:

AnInt_cls : java.jclass;
pragma import(Unchecked_C, AnInt_cls, "", "_ZN5AnInt6class$E");
...
java.JvInitClass(AnInt_cls'address);

See the sample code in /usr/ada/rel/sup/examples/ada-java for an example of
a MAXAda program which interfaces to GNU Java code.

Ada Tagged Types and C++ Classes 3

Interfacing between Ada tagged and controlled types, and C++ class types is problematic,
because the two implementations do not share the same dispatching table / vtable layout.
Problems can arise if a type is declared both as a C++ class with virtual functions, and as
an Ada tagged or controlled type.  So, caution must be exercised. 

A C++ virtual function can be used so long as C++ both creates the object and calls the
virtual function, or Ada calls the Ada counterpart of the virtual function and the call is
statically dispatching (e.g. with a controlling actual not of classwide types).

An Ada dispatching subprogram can be used so long as Ada both creates the object and
calls the subprogram, or C++ calls the C++ counterpart of the dispatching subprogram and
that counterpart is not declared virtual.

In particular, the following scenarios are not guaranteed to work:

• Ada dispatching call (e.g. with classwide controlling actual) to object cre-
ated by C++

• C++ virtual call to object created by Ada

Ada Tagged Types and Java Classes 3

Interfacing between Ada tagged and controlled types, and Java class types is problematic,
because the two implementations do not share the same dispatching table / vtable layout.
Problems can arise if a type is declared both as a Java class with non-static functions, and
as an Ada tagged or controlled type.  So, caution must be exercised.

A Java non-static function can be used only so long as Java both creates the object and
calls the virtual function.  Similarly, an Ada dispatching subprogram can be used only so
long as Ada both creates the object and calls the subprogram.

For cross-language calls, Ada may only call Java static functions, and Java may only call
Ada non-dispatching subprograms.
3-51



MAXAda for Linux Reference Manual
3-52



4
Chapter 4MAXAda Utilities

4
4
4

MAXAda consists of a number of utilities that provide support for library management,
compilation and program generation, and debugging.  This section will go through these
tools and give an overview of their uses.  The utilities appear in alphabetical order.  For
easy reference, the command syntax and options available for each utility are provided in
tabular format.  Available options for each tool are also provided by specifying the -H
(Help) command-line option when invoking the utility.  

Each section describes a command, shows the command’s syntax and discusses the
options that can be specified. For each option flag listed in the “Option” column, a mne-
monic and a short description are provided in the columns labeled “Meaning” and “Func-
tion,” respectively.

See “MAXAda Utilities” on page 1-1 for a complete listing of these utilities.  In addition,
refer to “Common Options” on page 4-2 for those options relative to all utilities.
4-1



MAXAda for Linux Reference Manual
Common Options 4

There are a number of options that are the same for each utility.  They are listed for each
tool but are also listed below.

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

See “Unit Identification” on page 3-7 for more information about the unit-id.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-H help Display syntax and options for that particular function
4-2



MAXAda Utilities
a.build 4

Compile and link as necessary to build a unit, partition or environ-
ment

The syntax of the a.build command is:

a.build [options] [partition ...]

The following represents the a.build options:

Option Meaning Function

-allparts all partitions Build all partitions in the environment.  This option is not allowed if the 
-o option is specified.

-attempt force attempts Attempt those compilations and links that will fail, but skip subsequent
dependent compilations and links

-Attempt force attempts! Attempt those compilations and links that will fail, including subsequent
dependent compilations and links

-bypass b y p a s s
optional

Bypasses optional dependencies if they cannot be satisfied by the build

-C  “compiler” compiler Use compiler to compile units (may be used to pass options to the com-
piler, e.g. a.build -C “a.compile -b”)

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i infos Suppress a.build information messages

See “Informational Messages” on page 3-31 for more details.

-IO[level] inter
optimization

Set level of interoptimization (0-1)

See “Interoptimization” on page 3-24 and “Inline Dependencies” on page
4-6 for more details.

-L “linker” linker Use “linker” to link partitions (may be used to pass options to the linker)

-noimport no import Forestall automatic recompilation of out-of-date units from other environ-
ments in the current environment

-nosource no source Skip checks of the source timestamps for out-of-date units (should only be
used if no source files have changed)

-o file output Override the output file for the partition being built.  Only a single parti-
tion file name is allowed with this option.

-part partition partition Build the given partition, all included units and all units upon which they
directly or indirectly depend

-p[n] parallel Perform up to n parallel compilations (n defaults to number of CPUs)
4-3



MAXAda for Linux Reference Manual
NOTE

Specified partitions are equivalent to partitions passed as argu-
ments to the -part option.  If no options are specified, then all
units and partitions in the environment are built.

MAXAda provides the a.build utility to build partitions and units in an environment.
a.build determines which units must be compiled to build the given target, preprocess-
ing those units marked for preprocessing, and calls the linker to produce the desired parti-
tion.  a.build examines the current environment (and the environments on the Environ-
ment Search Path), determines and automatically executes the proper sequence of
compilations and links necessary to build the given partition.

Targets to a.build can be:

-pd[n] parallel depen-
dencies

Perform up to n parallel dependency analyses; (n defaults to number of
CPUs * 2)

-r unit require Build the given unit, all units upon which it directly or indirectly depends,
and all units which directly or indirectly depend upon it.  This option is
not allowed if the -o option is specified.

-rel release release Specify a MAXAda release (other than the default release)

-rfile file requi re  f rom
file

Build the units in file, all units upon which they directly or indirectly
depend, and all units which directly or indirectly depend upon them

-source file source file Build all units defined in the given source file and all units upon which
they directly or indirectly depend

-state s state Build all specified units to compilation state s (compiled is the only
valid state allowed for this option in the current release)  

-stop stop on errors If an error is encountered, stop building (normally, any units not depen-
dent upon the erroneous units would be built)

-u unit unit Compile the specified part(s) of the specified unit; if no part is specified,
both specification and body are built. The unit parameter can be
“all”.  This option is not allowed if the -o option is specified.

-ufile file units from file Build the units in file and all units upon which they directly or indirectly
depend

-V verify List compilations that would occur, but do not actually perform them

-v verbose Display compilations as they are done

-vv very verbose Display commands as they are done

-w warnings Suppress a.build warnings

See “Warnings” on page 3-32 for more details.

-Why why List reasons for compilations that would occur, and the compilations
themselves, but do not actually perform them

Option Meaning Function
4-4



MAXAda Utilities
partitions which can be specified directly, with the -part option, or
with the -allparts option

units which can be specified with the -r or -u option, depending
upon the desired result

If the -u option is specified, a.build ensures the named unit is up-to-date, recompiling
any dependencies if necessary.

Parallel Compilations and Dependency Analyses 4

If the -p option is used, then a.build attempts to build as much as it can in parallel,
making use of the available resources.  If an integer parameter, n, is supplied, then n paral-
lel compilations are distributed across the CPUs on the system.  If no integer parameter is
given, then a.build attempts to distribute a number of parallel compilations that is con-
sistent with the number of CPUs on the system.  Using the -p option can greatly enhance
compilation speed if used to compile a large MAXAda library and system resources are
available. 

The a.build tool not only does its compilations in parallel when the -p option is active,
but it also does its dependency analysis in parallel.  By default, twice the number of paral-
lel dependency analyses are used as are specified with -p.  However, the -pd option can
be used to control the number of parallel dependency analyses independently.  If an inte-
ger parameter, n, is supplied with -pd, then n parallel dependency analyses are used. If no
integer parameter is given, then a.build attempts to use twice the number of CPUs on
the system. Finally, the -pd option can be used without the -p option, if that is desired. In
that case, compilations will be single-stream, while dependency analyses will be in paral-
lel.  

See the following matrix for a complete description of the interaction of the -p and -pd
options. 

Normally, a.build attempts to build all units in the current MAXAda environment and
all units on the Environment Search Path that are required.  The -noimport option can
be used to prevent automatic recompilation of out-of-date units from other environments. 

See “Compile Options” on page 3-20 and “Link Options” on page 3-34 for more informa-
tion.

Table 4-1.  Number of Parallel Dependency Analyses

-p -p n’ No -p

-pd Tw i c e  n u m b er  o f
CPUs on system

Twice  num ber  o f
CPUs on system

Twice  number  o f
CPUs on system

-pd n n n n 

No -pd Tw i c e  n u m b er  o f
CPUs on system

Twice n’ 1 
4-5



MAXAda for Linux Reference Manual
Inline Dependencies 4

With the interoptimization level set to “inlining” (e.g. -IO1), the a.build utility detects
inline dependencies and attempts to honor them.  To honor them, a.build must deter-
mine a valid compilation order that permits all requested inline calls to actually be per-
formed inline. 

Sometimes an inline dependency creates a dependency loop.  In such instances, particular
inline dependencies may have to be broken in order to break dependency loops.  The
a.build utility notifies users of dependency loops and issues a message when inline
dependency loops must be broken in order to proceed with dependency analysis.  If such
loops exist, then it is possible that some requested inline calls may not actually be per-
formed inline. 

Forcing Attempts 4

In situations where a.build has already tried to compile a unit but has encountered
errors, it will not attempt to compile the unit again if it has not been modified.  On subse-
quent compilations, a.build will report to the user a message similar to:

a.build: error: MAX(060) 3-23: subprogram body 
sem_errors will not be built because it contains 
semantic errors

However, the user may wish to see the specific errors that were reported on the first
attempt.  The -attempt and -Attempt options are for this purpose.  When a.build
is run with these either of these options, it will try to recompile units that have encountered
errors in previous compilation attempts.

NOTE

Similar functionality exists in the NightBench Program Develop-
ment Environment using the Attempt compiles and links
that will fail checkbox under the Settings page of the Builder
window.  See the NightBench User’s Guide (0890514) for more
details.

See “Compiler Error Messages” on page 3-26 for more information about the types of
errors you may encounter in this situation, especially “Syntax Errors” on page 3-28 and
“Semantic Errors” on page 3-29.

Why 4

The -Why option lists reasons why all the entities that would be built are inconsistent, and
then shows the commands that would be executed to make things consistent.  (This latter
part is like a.build -V).
4-6



MAXAda Utilities
a.cat 4

Output the source of a unit

The syntax of the a.cat command is:

a.cat [options] unit-id

The following represents the a.cat options:

unit-id is defined by the following syntax:

unit[/part]

where part is the specification or body; abbreviations are accepted.

The a.cat command is similar to the UNIX cat(1) command in functionality.  It
accepts as its argument a unit_id and prints to stdout the source file in which this unit is
found.

By default, it outputs a header containing the full path name of the source file.  This can be
suppressed by specifying the -h option.

Also, line numbers can be prepended to each line of source by using the -l option.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-h no header Does not output filename header

-l line numbers Prepend each line of source with its line number

-rel release release Specify a MAXAda release (other than the default release)
4-7



MAXAda for Linux Reference Manual
a.chmod 4

Modify the UNIX file system permissions of an environment

The syntax of the a.chmod command is:

a.chmod [options] access_mode

The following represents the a.chmod options:

access_mode is a symbolic or octal digit parameter indicating the desired file system per-
mission.  For example,

777 all permissions (read, write, execute) for all users

u-x removes execute permission from the file’s owner

+x gives execute privileges to user, group, and others

For details, see the chmod(1) manual page.

Option Meaning Function

-a all In addition to internal environment files, change the permissions of all
files associated with the environment, including source files and partition
targets

-env env environment Specify an environment pathname

-f force Force, if some environment components are missing

-H help Display syntax and options for this function

-i ignore Quietly ignore all non-fatal errors

-q query Display the permissions on the current environment

-rel release release Specify a MAXAda release (other than the default release)

-s source only Only change the permissions of the source files associated with the envi-
ronment; no other files are affected
4-8



MAXAda Utilities
a.compile 4

Compile the specification and/or body of one or more units

The syntax of the a.compile command is:

a.compile [options] [compile_options] [unit-id ...]

The following represents the a.compile options: 

Option Meaning Function

-b object Send symbol object listing to stdout

-env env environment Specify an environment pathname

-fetch fetch For specified units from other environments, fetch them first

-H help Display syntax and options for this function

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-105 for more details.

-inter fd1 fd2 interactive Execute in interactive mode control file descriptor 1 (fd1) and response
file descriptor 2 (fd2)

-noimport no imports Prevent the automatic local recompilation of out-of-date foreign instantia-
tions

-pipeline pipeline Perform optimization and code generation in parallel with subsequent
compilations for limited parallelism; requires -inter option; primarily
for use with a.build -p

-pragma file config pragmas Compile independent configuration pragmas from the given file

See “Configuration Pragmas” on page 3-9 for more information.

-quiet quiet options Suppress display of effective options

-R r e c o m p i l e
instantiations

Recompile out-of-date instantiations

-rel release release Specify a MAXAda release (other than the default release)

INTERNAL UTILITY
 

This tool is used internally by a.build which is the recommended 
utility for compilation and program generation.  

a.compile is not intended for general usage.
4-9



MAXAda for Linux Reference Manual
unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

If compile_options are specified to this command, they are added to the set of temporary
unit options.  For instance, if the temporary compile options for the unit hello consist of
-S and the following command is issued

$ a.compile -g hello

the temporary unit options will now consist of -S and -g.

The file specified by the -pragma option may only contain independent configuration
pragmas.  See “Configuration Pragmas” on page 3-9 for more information. 

See “Compile Options” on page 4-99 for list of compile options.

-state s state Compile the specified unit to compilation state s (compiled is the only
valid state allowed for this option in the current release)

-V very verbose Print subordinate tool command lines

-v verbose Print header for each compilation

-vv very verbose Print results of each compilation

Option Meaning Function
4-10



MAXAda Utilities
a.demangle 4

Output the source of a unit

The syntax of the a.demangle command is:

a.demangle [options]

The following represents the a.demangle options:

The a.demangle utility is a filter that accepts MAXAda symbol names, such as those
found in a MAXAda object file, and returns Ada unit names in expanded form.

To recognize symbol names, a.demangle requires the location of the MAXAda envi-
ronment in which those symbols exist. For instance, if the symbol names are taken from
an executable, then a.demangle requires the location of the environment in which that
executable was linked. If a -env option is specified, a.demangle uses the given envi-
ronment. Otherwise, a.demangle assumes that the current working directory is the loca-
tion of the environment. 

By default, a.demangle expects symbol names to be the first word on each line of
stdin, optionally followed by whitespace and any additional text. The a.demangle
utility returns the corresponding Ada unit name on stdout, followed by the unaltered
optional whitespace and text. 

For example, the command: 

$ a.demangle

if given a line such as: 

A_foo.5S13.bar..BODY some additional text

would return, assuming the symbol was recognized: 

bar.foo (body) some additional text

If either the -f or -r option is present, a.demangle no longer expects symbol names at
the beginning of each line of stdin. Instead, if the -r option is present and followed
immediately with no intervening whitespace by a character, that character will serve as a

Option Meaning Function

-env env environment Specify an environment pathname

-fc file name File name quote character c

-H help Display syntax and options for this function

-k keep Keep quote characters for unknown names

-rc routine Routine name quote character c

-rel release release Specify a MAXAda release (other than the default release)
4-11



MAXAda for Linux Reference Manual
quote character for MAXAda symbols (routines). Similarly, if the -f option is present and
followed by a character, that character will serve as a quote character for source file
names. 

The quote characters specified by -f and -r must not be identical. 

If a.demangle locates two (or more) matching quote characters on a line, it interprets
the text between them to be a MAXAda symbol name or source file name, depending on
the quote character. These lines are returned on stdout with all recognized symbols
replaced by their corresponding Ada unit names and all source file names left unchanged.
All other lines and all unrecognized names are returned unchanged. The command: 

$ a.demangle -f@ -r#

if given a line such as: 

Routine #A_foo.5S13.bar..BODY# is located in file
@bar_b.a@

might return, assuming everything was recognized: 

Routine bar.foo (body) is located in file bar_b.a

Normally, when the -f or -r option is present, quote characters are removed regardless of
whether or not the symbol or source file name is recognized. If the -k option is specified,
however, quote characters remain if they enclose text which is unrecognized. 

NOTE

The -f option is supported only for backward-compatibility.
4-12



MAXAda Utilities
a.deps 4

Update environment with information about units within source files

The syntax of the a.deps command is:

a.deps [options] [source_file ...]

The following represents the a.deps options:

Option Meaning Function

-e[e | l | L | v] errors Control error emission style:

-e list syntax errors for files a.deps is unable to parse to stdout
with related source lines

-ee embed syntax errors in files that a.deps is unable to parse and
invoke $EDITOR 

-el list source files to stdout, interspersed with any syntax errors —
only source files that a.deps is unable to parse

-eL list source files to stdout, interspersed with any syntax errors —
even source files that a.deps is able to parse

-ev embed syntax errors in files that a.deps is unable to parse and
invoke vi

The default behavior is to list syntax errors to stderr with file name,
and line and column number.

-env env environment Specify an environment pathname

-p[n] parallel Use n parallel introductions (n defaults to the number of CPUs)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Read file_list for a list of files to process

If - is specified for file_list, read file list from stdin

-v verbose Echo files as they are processed

-H help Display syntax and options for this function

INTERNAL UTILITY
 

This tool is used internally by MAXAda.  

a.deps is not intended for general usage.
4-13



MAXAda for Linux Reference Manual
This tool behaves exactly as the a.intro utility.  See page 4-30 for more information.

-P preprocess Inform the environment that preprocessing is always required for all
source files included in this invocation of a.deps

-!P no preprocess Inform the environment that preprocessing should never be performed for
any source file included in this invocation of a.deps 

-V very verbose Echo units encountered for each file

Option Meaning Function
4-14



MAXAda Utilities
a.edit 4

Edit the source of a unit, then update the environment

The syntax of the a.edit command is:

a.edit [options] unit-id

The following represents the a.edit options:

unit-id is defined by the following syntax:

unit[/part]

where part is the specification or body; abbreviations are accepted.

Option Meaning Function

-e editor editor Use editor instead of $EDITOR

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i inhibit Do not immediately notify the environment that the unit has changed

-rel release release Specify a MAXAda release (other than the default release)

-s syntax Check the syntax of the unit’s source file after editing

-v verbose Display invocations of the editor, a.syntax, and a.deps as they occur
4-15



MAXAda for Linux Reference Manual
a.error 4

Process diagnostic messages generated by the compiler and other tools

The syntax of the a.error command is:

a.error [options]

The following represents the a.error options:

Compiler output may be redirected into a file and examined with the aid of the a.error
command or can be piped directly into a.error via the -e compile option.

a.error reads the specified file or the standard input, determining the source file(s) con-
taining errors and processing the errors according to the options given. 

Option Meaning Function

-e editor editor Embed error messages in the source file and invoke the specified editor

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l listing Produce listing to stdout

-N no line #’s Do not display line numbers

-o order Do not sort the order of the diagnostics by file and line number; process
each diagnostic in the order given

-rel release release Specify a MAXAda release (other than the default release)

-s suppress Suppress non-error lines

-tnumber tabs Change the default tab settings; the default is 8. (there is no space between
t and number)

-v vi Embed error messages in the source file and invoke the vi editor

-W warnings Ignore warnings

INTERNAL UTILITY
 

This tool is used internally by a.build which is the recommended 
utility for compilation and program generation.  

a.error is not intended for general usage.
4-16



MAXAda Utilities
NOTE

Perhaps more generally useful are the -e compile options (-e,
-ee, -el, -eL, -ev), which automatically call a.error to pro-
cess any compiler error messages resulting from the current com-
pilation.  See “Compile Options” on page 4-99 for a complete list
of compile options.

Screen 4-1 shows the file badtry.a. This file containing errors is used to illustrate vari-
ous ways MAXAda tools can use a.error to process error messages. 

Screen 4-1.  File badtry.a

Before it can be compiled, the file must be introduced into a MAXAda environment, and a
partition must be created for it:

$ a.mkenv
$ a.intro badtry.a
$ a.partition -create active badtry

The file can be compiled and the output directed as follows (stdout is redirected to the
file badtry.errors): 

$ a.build 2> badtry.errors

Screen 4-2 shows the contents of file badtry.errors. 

Screen 4-2.  File badtry.errors

  -- file is badtry.a -- 

  with ADA.TEXT_IO; 
  procedure BADTRY is 
      subtype T is range 1..1f; 
      COUNT : T; 
      SUM : INTEGER; 
      type REAL is digits 6; 
      AVG : REAL 
    begin 
      for COUNT in T loop 
      SUM := SUM + I; 
      end loop; 
      AVG := SUM / COUNT; 
      ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM)); 
      ADA.TEXT_IO.PUT(REAL’IMAGE(AVG)); 
    end MAIN;

/badenv/badtry.a, line 5, char 29: lexical error: deleted “f”
/badenv/badtry.a, line 5, char 19: syntax error: “ identifier” 
inserted
/badenv/badtry.a, line 10, char 4: syntax error: “;” inserted
/badenv/badtry.a, line 17, char 8: syntax error: RM95 6.3(3): 
subprogram was given a different name:
a.build: error: errors encountered during build
4-17



MAXAda for Linux Reference Manual
This file can simply be listed, if desired, but it is more useful to use a.error as follows.

$ a.error  -l  badtry.errors

outputs the listing that appears in Screen 4-3. 

 

Screen 4-3.  a.error -l Output Listing

The preceding file contains four lexical and syntax errors. First, an identifier naming a
type was omitted before the keyword RANGE. The compiler continues as though this iden-
tifier were inserted, but does not, of course, edit the original source file. The next error is a
lexical error, resulting from 1f being a malformed integer literal. The compiler continues
as though the f were deleted. The remaining error messages show that a semicolon should
have preceded BEGIN, and that the designator after END has a different name than was
given to the subprogram. 

With the -v option, a.error writes the error messages directly into the original source
file and calls the vi text editor.  Line numbers are suppressed, error messages marked
with the pattern ###, and the editor positioned in the file with the cursor at the point of the
first error. 

After the compilation, 

$ a.error  -v  <  badtry.errors 

calls vi. Screen 4-4 shows the screen output.

Non-specific diagnostics:

a.build: error: errors encountered during build

***********************  /badenv/badtry.a  ************************

   1:-- file is badtry.a --
   2:
   3:with ADA.TEXT_IO;
   4:procedure BADTRY is 
   5:     subtype T is range 1..1f;
A ---------------------^
B -------------------------------^
A:syntax error: “ identifier” inserted
B:lexical error: deleted “f”
   6:     COUNT : T;
   7:     SUM : INTEGER;
   8:     type REAL is digits 6;
   9:     AVG : REAL
  10:   begin
A ------^
A:syntax error: “;” inserted
  11:     for COUNT in T loop
  12:     SUM := SUM + I;
  13:     end loop;
  14:     AVG := SUM / COUNT;
  15:     ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM));
  16:     ADA.TEXT_IO.PUT(REAL’IMAGE(AVG));
  17:   end MAIN;
A ----------^
A:syntax error: RM95 6.3(3): subprogram was given a different name:
  18:
4-18



MAXAda Utilities
 

Screen 4-4.  a.error -v Output Listing

The ### is provided so that error messages can be easily found and subsequently deleted.
For example, if invoked with the -v (vi) option, a.error embeds error text in the
source file and then invokes the vi editor. All error text can easily be found and removed
with simple editor commands by searching for the ### pattern and deleting. In vi, for
instance, the sequence “:g/###/d” deletes all lines matching the ### pattern. 

NOTE

The -o option to a.error displays each diagnostic in the order
in which it was encountered without sorting the diagnostics by file
and line number.  This option has no effect when used in conjunc-
tion with the -e, -v, or -l options to a.error (or the associated
-e,  -ee, -el, -eL, -ev compile options.  See “Compile
Options” on page 4-99 for a complete list of compile options.)

It should also be noted that all error message lines are prefixed with --, which denotes an
Ada comment. Thus, even if a.error -v has been used to intersperse error messages
into a file, the compiler can still process that file without deleting the error messages.
Since -v places the error messages directly in the source file, if a.error -v is called
again before the messages are deleted and the error corrected, a second copy of the same
messages appears. 

The file badtry.a can now be edited to repair the lexical and syntax errors and resub-
mitted to the compiler. If those errors are fixed correctly, semantic analysis can proceed.

The preferred method for achieving the same results is to modify  the default options for
the environment so that the vi editor is invoked whenever errors are encountered during

-- file is badtry.a --

with ADA.TEXT_IO;
procedure BADTRY is
     subtype T is range 1..1f;
------------------^A                                             ###
----------------------------^B                                   ###
--### A:syntax error: “ identifier” inserted
--### B:lexical error: deleted “f”
     COUNT : T;
     SUM : INTEGER;
     type REAL is digits 6;
     AVG : REAL
   begin
---^A                                                            ###
--### A:syntax error: “;” inserted
     for COUNT in T loop
     SUM := SUM + I;
     end loop;
     AVG := SUM / COUNT;
     ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM));
     ADA.TEXT_IO.PUT(REAL’IMAGE(AVG));
   end MAIN;
-------^A                                                        ###
--### A:syntax error: RM95 6.3(3): subprogram was given 

~
~
~
~
“/badenv/badtry.a” 26 lines, 877 characters

                                   a different name:
4-19



MAXAda for Linux Reference Manual
compilation.  The following command sets this as a default option for the entire environ-
ment: 

$ a.options -default -mod -ev 

To compile the unit, simply issue a.build:

$ a.build 

Now, when errors are encountered during compilation, the vi editor will be automatically
opened to the source file with the error messages embedded in it.  Also, upon leaving the
editor, the compiler offers to recompile the file.

This method is generally faster for rapid interactive program development because it does
not require any intermediate files.  Also, because the environment-wide options are persis-
tent, whenever a.build is called, these options are “remembered” and do not need to be
specified again.

For more information about compiler error messages, see “Compiler Error Messages” on
page 3-26.
4-20



MAXAda Utilities
a.expel 4

Expel fetched or naturalized units from the environment

The syntax of the a.expel command is:

a.expel [options] unit-id ...

The following represents the a.expel options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

Local versions of foreign units may be created via the a.fetch tool (see “a.fetch” on
page 4-22) and the a.build tool (see “a.build” on page 4-3 for details and “Hello
Again... Ambiguous Units” on page 2-15 for an example).  These versions are called
fetched and naturalized, respectively. (See “Nationalities” on page 3-9 for a more detailed
discussion.)

It may be desirable to later remove these local versions, thus making the foreign versions
once again visible.  The a.expel tool is provided for this purpose.

NOTE

Other methods exist for removing native units.  See “a.rmsrc” on
page 4-88 and “a.hide” on page 4-27 for more information.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Print message for each expelled unit

-H help Display syntax and options for this function
4-21



MAXAda for Linux Reference Manual
a.fetch 4

Fetch the compiled form of a unit from another environment

The syntax of the a.fetch command is:

a.fetch [options] unit-id ...

The following represents the a.fetch options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

At times, it may be desirable for users to be able to force copies of specified units from
other environments into the current environment.  This may be necessary to avoid obscuri-
ties.

Obscurities occur when the natural behavior of MAXAda and the Environment Search
Path mechanism prevent an intended file from being used for a particular compilation. 

For example, consider the following environment dependency scenario:

Figure 4-1.  Environment scenario containing obscurities

Option Meaning Function

-d default Use default supplied libraries with -from

-env env environment Specify an environment pathname

-from env from env Specify an environment pathname from which to fetch the unit(s)

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each fetched unit

unit a

unit c

ESP
ENV2

with b;

 

unit d

unit c

ENV1

with b;

 
unit b

 with c;
4-22



MAXAda Utilities
In Figure 4-1:

- unit c exists in both ENV1 and ENV2 but may have completely different
functionalities

- unit d has a with b statement inside it in ENV1

- unit b does not exist in ENV1

- unit b exists in ENV2 on the Environment Search Path (ESP) for ENV1

- unit b has a with c statement inside it in ENV2

When unit d is compiled, the following obscurity arises: Because unit d  requires
unit b and unit b does not exist in ENV1, the Environment Search Path will be
searched.  unit b is found in ENV2 but has a “with c” statement inside it.  Since unit
c exists in ENV1, the compilation utility will use the local unit c contained in ENV1,
instead of the foreign unit c in ENV2 which is required by unit b.

In order for unit d to use the foreign unit b and the local copy of unit c, and for
everything to be consistent, you may “fetch” a copy of unit b to your local environ-
ment. 

Figure 4-2.  Example of using a.fetch to resolve obscurities

When using the a.build compilation utility, however, this obscurity is automatically
taken care of by creating a naturalized copy of unit b in ENV1.  The options that existed
in the original copy are persistent in a naturalized copy.  They can only be altered in the
original environment.  If you wish to change the options on a foreign unit in the local envi-
ronment, you must fetch it. 

The -from option allows the user to specify an environment pathname from which to
fetch the unit(s).  In addition, you may specify certain environments using their “key-
words”.  See Chapter 9 for a list of these keywords.

NOTE

If the -from option is not specified, a.fetch will try to “find”
the specified unit by searching the Environment Search Path.

unit a

unit b (fetched) 

unit c

ESP
ENV2

with b;

 with c;

unit d

unit c

ENV1

with b;

unit b
 with c;
4-23



MAXAda for Linux Reference Manual
The -d option can be used for ambiguity resolution for those environments specified with
the -from option.  If no -from option is specified, the -d option has no effect.

For example, if the user says:

a.fetch -from publiclib ccur.curses

the package ccur.curses would be fetched from the /usr/ada/release_name/pub-
liclib environment due to the use of the publiclib keyword.  However, if there
exists a directory named publiclib in the current working directory, that directory
takes precedence.  The -d option may be used to override this behavior if, in fact, the user
desires to use /usr/ada/release_name/publiclib.

For example:

a.fetch -d -from publiclib ccur.curses

always uses the /usr/ada/... version, whereas:

a.fetch    -from publiclib ccur.curses

fetches from the local directory if it exists or from /usr/ada/... otherwise.

The a.expel tool is provided to allow a fetched unit to be removed from the local envi-
ronment, thus restoring visibility to the foreign version.  See “a.expel” on page 4-21 for
details.
4-24



MAXAda Utilities
a.freeze 4

Freeze an environment, preventing changes

The syntax of the a.freeze command is:

a.freeze [options] 

The following represents the a.freeze options:

An environment may be frozen using the a.freeze utility.  This changes an environ-
ment so that it is unalterable.  

A frozen environment is able to provide more information about its contents than one that
is not frozen.  Therefore, accesses to frozen environments from other environments func-
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and which
will be used by other environments is a good candidate to be frozen to improve compila-
tion performance.

Option Meaning Function

-env env environment Specify an environment pathname

-q query Displays an environment’s frozen status and its environmental consis-
tency

-t transitive Freeze specified environment and required environments

-rel release release Specify a MAXAda release (other than the default release)

-u unfreeze Thaw the environment, allowing changes

-v verbose Displays the environment(s) being frozen (or thawed)

-H help Display syntax and options for this function
4-25



MAXAda for Linux Reference Manual
a.help 4

List usage and summary of each MAXAda utility

The syntax of the a.help command is:

a.help 
4-26



MAXAda Utilities
a.hide 4

Mark units as being persistently hidden in the environment

The syntax of the a.hide command is:

a.hide [options] unit-id ...

The following represents the a.hide options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

There are times when a source file may contain units other than those the user would like
introduced into the environment.  a.intro introduces all units contained within a partic-
ular source file into the environment (unless they have previously been hidden).  In order
to “remove” any unwanted units from the environment, the a.hide tool is provided.
Using a.hide, the units specified are no longer visible to the environment.

This is also a way to resolve ambiguities.  Upon introducing a unit having the same name
as a previously introduced unit, MAXAda labels both units as ambiguous.  It will then
refuse to perform any operations on either of the two versions, or on any units depending
on the ambiguous unit.  The user will be forced to choose which of the two units should
actually exist in the environment by “removing” the other.  Normally, this is done with the
a.resolve tool.  However, the a.hide utility, in combination with the -s option to
specify which source_file the unit belongs, can be applied to one of the units to resolve the
ambiguity.  See “Ambiguous Units” on page 3-10 for more information.

In order to reveal the unit so that it is no longer hidden, the -u option is provided.  Also,
the -l option is provided to list the hidden units and their corresponding source files.

These operations can also be modified with the -s option to operate on only those hidden
units from a particular source file.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-l list List hidden units and their corresponding source files

-s file source file Restrict operations to the source file

-u undo Make the specified hidden units visible

-v verbose Print message for each removed unit

-H help Display syntax and options for this function
4-27



MAXAda for Linux Reference Manual
a.install 4

Install, remove, or modify a release installation 

The syntax of the a.install command is:

a.install -rel release [options]

The following options are available with the a.install command:

NOTE

Only the System Administrator (or a super user) can invoke
a.install with the -a, -d, -i,-m, or -r options.

The -i, -m, and -r options may never be used together.

The a.install utility is the tool that allows users to register installations with the sys-
tem’s MAXAda database.  It may be used to install, move, remove, and set attributes to
installations.

When the -i option is given, then the MAXAda structure located at the specified path
name is registered with the database as a valid installation.  The name of the installation is
registered as the release given by the -rel option.  Therefore, the -rel option is
required when using the -i option to install a MAXAda installation.

For example, the following command:

$ a.install -rel newada -d -i /somedir/ada_dir

Option Meaning Function

-a attr attribute Set the attribute list for the selected release installation to attr

-d default Mark the selected release installation as the system-wide default

-env env environment Specify an environment pathname

-f force Permit the removal of the last release on the system without confirmation

-H help Display syntax and options for this function

-i path install Install the release located at path in the release database (the name is
determined from the -rel option)

-m path move Move the selected release installation to path

-r remove Remove the specified release installation from the release database

-rel release release Specify a MAXAda release (REQUIRED)

-v verbose Report changes as they are made
4-28



MAXAda Utilities
assumes that /somedir/ada_dir contains a valid MAXAda directory structure and
“installs” this version of MAXAda in the database as newada.

When the -d option is used, then a.install registers the installation with the database,
and also marks the installation as the system-wide default installation (as in the above
example).

After MAXAda is installed, it may need to be configured.  See Appendix B for more
information on “MAXAda Configuration”.
4-29



MAXAda for Linux Reference Manual
a.intro 4

Introduce source files (and units therein) to the environment

The syntax of the a.intro command is:

a.intro [options] [source_file ...]

The following represents the a.intro options:

The -P option allows the user to specify that every source_file listed in this invocation of
a.intro should be preprocessed.  By default, only files with a .pp extension are prepro-
cessed.  This option allows files with other extensions to be preprocessed.

The -!P option allows the user to specify that preprocessing should not be performed for
any source_file listed in this invocation of a.intro.  Files with a .pp extension listed in

Option Meaning Function

-e[e | l | L | v] errors Control error emission style:

-e list syntax errors for files a.intro is unable to parse to stdout
with related source lines

-ee embed syntax errors in files that a.intro is unable to parse and
invoke $EDITOR 

-el list source files to stdout, interspersed with any syntax errors —
only source files that a.intro is unable to parse

-eL list source files to stdout, interspersed with any syntax errors —
even source files that a.intro is able to parse

-ev embed syntax errors in files that a.intro is unable to parse and
invoke vi

The default behavior is to list syntax errors to stderr with file name,
and line and column number

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-P preprocess Inform the environment that preprocessing is always required for all
source files introduced with this option

-!P no preprocess Inform the environment that preprocessing should never be performed for
any source file introduced with this option

-p[n] parallel Use n parallel introductions (n defaults to the number of CPUs)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Read file_list for a list of files to process

If - is specified for file_list, read file list from stdin

-V very verbose Echo units encountered for each file

-v verbose Echo files as they are processed
4-30



MAXAda Utilities
combination with this option will never be preprocessed, thereby overriding the default
functionality.

The error emission options allow you to process error messages in a number of ways.
Syntactic errors in the file that a.intro is parsing are listed to stdout when the -e
option is specified.  This lists only the erroneous lines with an explanation for each error.

More useful perhaps is the -el option which lists entire source files with errors to stdout
with error messages interspersed at the positions where they occur.  This option also lists
the line number for each line in the source file and displays a banner with the source file’s
name at the top of the listing.  The -eL option provides the same functionality but will list
the source file even if no errors have occurred.

The -ev option embeds the errors directly into the source file, and then opens the source
file with the vi editor.  Error messages are marked with the pattern ###, and the editor is
positioned in the file with the cursor at the point of the first error.  Each error is marked
where it is found in the file and an explanation is given.  Each error line is prefixed with
--, which denotes an Ada comment so that the compiler can still process that file if the
error messages have not been deleted.  MAXAda prompts to recheck syntax when editing
is completed.  The -ee option provides the same functionality but opens the source file
with the editor designated by the EDITOR environment variable.

The -s option takes as its argument a file_list containing the names of all the files to be
processed by a.intro.  This is useful in order to introduce many files at once.  Each file
must be on a separate line in the file_list.  

If - is specified for file_list, a.intro uses input from stdin.  This is provided
mainly so that users can pipe output from another UNIX command to a.intro.

a.rmsrc can be used to eliminate the association of source files with the environment.
a.rmsrc  removes all knowledge of source files (and units therein) from the environ-
ment.  See “a.rmsrc” on page 4-88 for more information.
4-31



MAXAda for Linux Reference Manual
a.invalid 4

Force a unit to be inconsistent thus requiring it to be recompiled

The syntax of the a.invalid command is:

a.invalid [options] [unit-id ...]

The following represents the a.invalid options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

The a.invalid tool is used to force a unit and any units that depend on it to be consid-
ered inconsistent, usually to force them to be rebuilt by a.build.

The a.touch tool is provided to allow the opposite functionality.  See “a.touch” on page
4-97 for more information.

NOTE

The file specified by the -pragma option may only contain inde-
pendent configuration pragmas.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-pragma file config pragmas Invalidate independent configuration pragmas from the given file

-rel release release Specify a MAXAda release (other than the default release)

-source file source file Invalidate all units in the specified file

-v verbose Display a message for each invalidated unit
4-32



MAXAda Utilities
a.link 4

Link a partition (an executable, archive or shared object file)

The syntax of the a.link command is:

a.link [options] [link-options] partitions ...

The following represents the a.link options:

See “Link Options” on page 4-109 for list of link options.

Option Meaning Function

-E elaboration List dependent units in elaboration order, suppressing execution

-env env environment Specify an environment pathname

-F files List dependent files, suppressing execution

-H help Display syntax and options for this function

-HA help arch Display architectures and descriptions

-HL help link Display link options

-i information Suppress informational messages

-map map Display a map created by a.map

-meth methods Display the link method for each unit

-o file output Override the default output for the partition and place the output in file

-rel release release Specify a MAXAda release (other than the default release)

-U units List dependent units, suppressing execution

-V verify Display the link commands, suppressing execution

-v verbose Display links as they are done

-vv very verbose Display the link commands before execution

-w warnings Suppress warning messages

INTERNAL UTILITY
 

This tool is used internally by a.build which is the recommended 
utility for compilation and program generation.  

a.link is not intended for general usage.
4-33



MAXAda for Linux Reference Manual
 NOTE

Intermediate files are created during the linking process. If
temporary file space (/tmp) is limited, a.link recognizes the
TMPDIR environment variable and utilizes that location, if it is
defined. This may be useful for large programs or programs with
many units when /tmp is small or limited. 
4-34



MAXAda Utilities
a.ls 4

List units in the environment (state, source file, dependencies, etc.)

The syntax of the a.ls command is:

a.ls [options] [unit-id ...]

The following represents the a.ls options:

Option Meaning Function

-all all Include units from all environments on the Environment Search Path

-all is automatically assumed if unit-id is specified without the -local
option (see below)

-art artificial Include artificial units (those created by the implementation to support
generic instantiations)

-b body Filter candidate units to include only bodies

-Cstate compiled Filter candidates by compilation state. state may be one of the following:
uncompiled, compiled, !uncompiled,  or !compiled

If state is omitted, compiled is used

If multiple -C options are specified, they are ORed together. If a not
option (e.g., !uncompiled) is used, only one -C option is allowed

NOTE: There is no space between the -C option and state.

-D depend! Include all units on which the specified unit(s) directly or indirectly
depend (the transitive closure)

Filtration has no effect on such inclusions

-d depend Include all units upon which the specified unit-id(s) directly depends

Filtration has no effect on such inclusions (for example, those units men-
tioned in a “with” statement for the specified unit-id(s))

-e everything Provide an all-encompassing listing; add the following information to the
verbose listing: temporary, permanent, and effective option sets, national-
ity (visa), home and originating environments, consistency

-env env environment Specify an environment pathname

-F flag Append annotations to units as follows: 
     bodies are appended with “/b”
     specifications are appended with “/s”

-f file file Filter candidate units to include those found in the Ada source file

-format fmt format The information supplied for each unit is selected and formatted based on
the format descriptor fmt
4-35



MAXAda for Linux Reference Manual
unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

Units may be specified as regular expressions as accepted by compile(3G).

The behavior of a.ls with no options or unit-id specified is to list the names of all the
units within the local environment (if no options are specified, -local is assumed).  The

-format help format help Display list of format descriptors

-H help Display syntax and options for this function

-h headers Suppress headers on long and verbose listings

-i inconsistent Mark units that are inconsistent with their source files or are inconsistent
with units on which they depend with a trailing asterisk (*) character

-l long Provide a long listing including: unit’s date, type, compilation state, part,
and name

-local local Filter candidate units to include only those found in the local environment
(default)

-m main Filter the candidate units to those which may be main subprograms

-N name Sort units by name in ascending order

-n number Include a total count of the number of units, categorized by compilation
state

-R require Include all units that depend on the specified unit(s). Filtration has no
effect on such inclusions

-r reverse Reverse the sorting order

-rel release release Specify a MAXAda release (other than the default release)

-S source List the source file instead of each unit

-s specification Filter the candidate units to include only specifications

-t time Sort the units by compilation time, i.e., most recently compiled units to
least recently compiled units

-u unit Include all parts of the specified unit-id(s); include specification, body,
and subunits

Filtration has no effect on such inclusions

-ufile file units file Obtain the list of unit-id(s) from the specified file; the unit-id(s) in file may
include regular expressions

-v verbose Provide a verbose listing; add the following information to the long list-
ing: source file, date, scope, source file name, options, etc.

-1 one, single Display output in a single column

Option Meaning Function
4-36



MAXAda Utilities
information is displayed in multiple columns.  This can be overridden with the -1 (sin-
gle) option. 

If unit-id is specified, the -all option is assumed.  That is, a.ls will search the local
environment and those on the Environment Search Path to find the given unit-id.  How-
ever, if the -local option is used with a specified unit-id, a.ls will search for the
unit-id in the local environment only.

The -S option lists the source file names instead of the unit names.

The -n option lists the units in the environment, providing a total count of the number of
units and giving subtotals for uncompiled, parsed, drafted, and compiled units.

To see more information than is provided in a default listing, a.ls provides a number of
options:

The options -l, -v, -e, -format, and -1 options are mutually exclusive.  

Formatting the listing 4

The -format option to a.ls allows you to format the information listed for each unit
based on a format descriptor, fmt, which takes the form:

“%[Modifier]Descriptor random_text %[Modifier]Descriptor...” 
...

Characters encountered in the quoted format string which are not part of a descriptor are
echoed in the output.  Any character other than ‘a’..’z’ and ‘_’ serve to terminate the cur-
rent descriptor; any such characters are echoed.

-l Provides a long listing consisting of the unit’s name,
date, type, compilation state, and part

-v Provides a verbose listing consisting of the source
file’s name, source file’s date, class, and any generic
information in addition to the information provided
by the -l option   

-e Provides an all-encompassing listing consisting of the
temporary, permanent and effective compile option
sets, the unit’s nationality (visa), it’s home environ-
ment, originating environment, and consistency state
in addition to the information provided by the -v
option

-format Provides a method to display only the fields that are
desired
4-37



MAXAda for Linux Reference Manual
The descriptors and their potential modifiers are listed in Table 4-2: 

Table 4-2.  a.ls -format — Descriptors 

Descriptor Modifier Meaning

ambiguous C Is the unit ambiguous:
ambiguous or unambiguous

artificial C Is the unit real or artificial?
(artificial units are created by the com-
piler for some generic instantiations)

class C Description of unit’s library class:
library, subunit, or nested

consistent CL Description of the unit’s consistency:
consistent or inconsistent 
(the reason is included with the L modifier)

date CL The date and time the unit last changed compi-
lation state

dependency_kind C The kind of dependency another unit has on
this unit: semantic, opt_subp_spec,
inline ,  optimization ,  o r
compiler_decision

environment CLHOFN The pathname to the environment associated
with the unit; as modified by H(ome), O(rigin),
F(rom), or N(ative)

generic_info CQ Description of the unit’s genericity: 
generic, instance-of..., or null

item C package, subprogram, task or pro-
tected

main C Indicates whether the unit can be a main sub-
program:
yes, no, or maybe
(maybe indicates determination incomplete
until unit is compiled)

missing C missing or present

name C The name of the unit

options CEPT The unit’s effective, permanent, or temporary
option set as selected by the E, P, or T modifier

part C The unit’s part: spec or body

srcdate CL The date and time of the source file associated
with the unit
4-38



MAXAda Utilities
Descriptors may be abbreviated to any unique shortened form.

The modifiers have the following meanings:

For example, in an environment that contains the unit hello, the following -format
option to a.ls produces the following output:

$ a.ls -format “%name was introduced on %srcdate”
hello was introduced on 05/01/97’15:11:25 

Dependent units 4

a.ls allows you to list those units upon which specified units depend

srcfile CL The name of the source file associated with the
unit

state C Unit’s compilation state: 
uncompiled, parsed drafted, or compiled 
missing if the unit cannot be found

visa CL Description of the unit’s passport: 
native,  fetched,  naturalized,  or
foreign

The L modifier appends information about the
visa of a foreign unit (i.e. was it natural-
ized or fetched in the foreign environ-
ment)

Table 4-3.  a.ls -format — Modifiers

Modifier Meaning Description

C column Causes the current item to be padded with sufficient
trailing blanks to form a column; this modifier is
allowed for any descriptor

L long Causes the long-form of the item to be output: date
descriptors will include microseconds; path descriptors
will be forced into fully-rooted filename notation

Q quiet Curtails output of the current item if it is not applicable
or has null text; otherwise [] would be output

E, P, T options Selects between the effective, permanent, or temporary
option sets; only legal for the option descriptor

Table 4-2.  a.ls -format — Descriptors  (Cont.)

Descriptor Modifier Meaning
4-39



MAXAda for Linux Reference Manual
Consider an environment which solely contains the following source file: 

with bar ;
package foo is
end foo ;

Note that the unit foo depends upon bar but unit bar cannot be located. 

Issuing the command

$ a.ls -d foo

 would result in the following output:

bar~   foo

NOTE

The “~” is appended to the unit name when the unit itself cannot
be located and a short listing has been specified.

To see a long listing of the same:

$ a.ls -l -d foo

 results in the following output:

Unit_Date          Item        State       Part  Name
n/a                n/a         missing     spec  bar
04/21/97’15:59:24  package     uncompiled  spec  foo

The -R option includes all units that depend on the specified units.

Parts 4

The -F option to a.ls designates the parts of a unit by appending “/s” to unit specifica-
tion names and “/b” to unit body names.

Using the above example, the following command

$ a.ls -F -d foo

would result in the following output:

bar/s~ foo/s

(Note the “~” which appears because this is a short listing and bar cannot be located.)

The -u option includes all parts of the specified unit-id(s).  This includes the specifica-
tions, bodies, and subunits.  
4-40



MAXAda Utilities
There are also a number of options available to filter the listing for with respect to parts:

Sorting 4

There are a few options to a.ls with which to sort the output.  They are:

Filtering 4

There are a few options to a.ls with which to filter the output.  They are:

The -i flag also helps to determine which units are inconsistent with their source files or
are inconsistent with units on which they depend by appending a trailing “*” after the unit
name.

-s Only list unit specifications 

-b Only list unit bodies

-N Sort units by name in ascending order

-t Sort units by compilation time - most recently com-
piled units to least recently compiled units

-r Reverse the sorting order

-Cstate Filter units by compilation state - compiled,
uncompiled, !compiled, and !uncompiled

-f  file Filter units to include only those found in the file

-m Filter units to include only main subprograms
4-41



MAXAda for Linux Reference Manual
a.lssrc 4

List source files associated with the environment

The syntax of the a.lssrc command is:

a.lssrc [options] [source-file]

The following represents the a.lssrc options:

a.lssrc provides information about source files introduced to the environment.  The
information available via this tool is specific only to the source file.  For information about
units contained within the source file, the a.ls tool should be used.  See “a.ls” on page
4-35 for more information.

With no options, a.lssrc provides a list of the names of all source files introduced to the
environment.  This includes source files that contain no units, and source files that contain
only independent configuration pragmas (see “Configuration Pragmas” on page 3-9).  In
this respect, it differs from a.ls -S.

If a source-file name is specified on the command line or the -s option is used with a file
containing a list of source file names, only the mentioned source files will be listed.

If the -l option is specified, a.lssrc provides additional information directly associ-
ated with the source file.  This information appears enclosed in square brackets on the
same line following each listed source file.  The two pieces of information that can be pro-
vided are:

• pre-processed

• configuration pragmas

If the pre-processed indication appears, it means that the file will always be filtered
by the a.pp tool before being compiled (see “a.pp” on page 4-77). Files introduced with
the .pp suffix will be marked as pre-processed by default.  Other files will not.  This
indication can be set or changed by the -P and -!P options to the a.intro tool (see
“a.intro” on page 4-30).

If the configuration pragmas indication appears, it means that the file contains
only independent configuration pragmas (see “Configuration Pragmas” on page 3-9).

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l long Display pre-processing/configuration pragma information

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file_list Read file_list for a list of files
4-42



MAXAda Utilities
This command may be useful if you wanted to completely remove your environment and
later reproduce it.  You might want to do:

a.lssrc > .source_files

before you remove the environment and subsequently,

a.intro -s .source_files

intro a newly-created environment.
4-43



MAXAda for Linux Reference Manual
a.man 4

Invoke/position interactive help system (requires an X terminal)

The syntax of the a.man command is:

a.man [options] [manual [topic]]

The following represents the a.man options:

a.man invokes the interactive HyperHelp system as directed by options and arguments.
If a HyperHelp session for the user is already active, a.man will position the existing ses-
sion to the specified topic or manual.

To see a list of the names of each online manual available for viewing with HyperHelp,
issue:

$ a.man -l

To open a specific manual, issue a.man with the name of that manual:

$ a.man maxada

If the manual is not recognized (and is not interpreted as a topic), then HyperHelp is
opened to the Bookshelf.

To view a particular topic within a specific manual, issue either that topic along with the
manual in which it is contained, or the topic alone.

$ a.man maxada a.build

or

$ a.man a.build

will position the HyperHelp system to the description of the a.build command.

Option Meaning Function

-display disp X display Select an X terminal

-env env environment Specify an environment pathname

-l list Lists available online manuals

-man manpage man page Display man page for specified manpage

-x exact Requires an exact match on specified manual or topic arguments; without
this option, the help system is activated at the appropriate “bookshelf” or
“find” section

-rel release release Specify a MAXAda release (other than the default release)

-H help Display syntax and options for this function
4-44



MAXAda Utilities
Topics for the MAXAda for Linux Reference Manual include the names of all
MAXAda utilities, all pragmas recognized by MAXAda, all MAXAda-supplied
environments, and various Ada bindings.

NOTE

The topic argument is meant as a shortcut for positioning the
HyperHelp session.  The list of topics recognized by a.man is
short and obviously not meant to be comprehensive.  Direct use of
HyperHelp is intended for general manual browsing and selection.

If a topic is not recognized, but the manual is, HyperHelp will be positioned at the
“Find” window for that manual.

References to the Ada 95 Reference Manual 4

In addition to the MAXAda topics mentioned above, a.man can also position the user
within a specified section of the Ada 95 Reference Manual.  For instance:

$ a.man 1.1.5

will position the user at that section in the RM.

This is short for:

$ a.man rm 1.1.5

Furthermore, a.man can position to the exact paragraph within the RM:

$ a.man “1.1.5(10)”

NOTE

Due to the shell’s parsing of the command line, the double-quotes
may be necessary so that the topic passed includes the paragraph
number between the parentheses.

This is helpful when MAXAda issues error messages with references to the Ada 95 Refer-
ence Manual.  The user may enter the reference as an argument to a.man and view the
related section.

References to the MAXAda for Linux Reference Manual 4

MAXAda also issues error messages that reference the MAXAda Reference Manual
(0890516).  These references can also be used with a.man.  For instance, if a user
encounters the following message:
4-45



MAXAda for Linux Reference Manual
MAX(060) 6-27: too few pragma arguments

this message can be issued to a.man:

$ a.man “MAX(060) 6-27: too few pragma arguments”

to bring up the related online help topic.

The text of the error message is not necessary, however.  The user may also issue the fol-
lowing command:

$ a.man “MAX(060) 6-27”

or

$ a.man 6-27

to bring up the same online topic.

Access to Support Packages 4

a.man can also be used to view the source of the packages contained in the various envi-
ronments shipped with MAXAda (see Chapter 9 - “Support Packages” for more informa-
tion).

The user may enter the fully-expanded name of a package and MAXAda will bring up a
hyperlink to the actual source of the package.  For example:

$ a.man ada.task_identification

opens HyperHelp to the position of ada.task_identification in the list of MAX-
Ada-supplied packages.   The entry in this l ist  is  a hyperl ink to the actual
ada.task_identification package in the default release installed on the system
(see “a.release” on page 4-83 to find out more information about the releases installed on
your system).  The user may then follow this link to bring up the source in the HyperHelp
viewer.

In addition, a.man provides shortcuts to many of these packages.  In many cases, the
leading “ada.” may be omitted for the same functionality.  For example:

$ a.man task_identification

brings up the ada.task_identification package in the same manner as the previ-
ous command.
4-46



MAXAda Utilities
a.map 4

Display or edit the run-time configuration of an executable

The syntax of the a.map command is:

a.map [options] executable_file

The following represents the a.map options:

Option Meaning Function

-assoc associative Use alternate associative list for output

-bound bound Change the default weight to bound

-c check Check executable for possible inconsistencies

-E edit Edit configuration with the editor designated by the shell environment
variable $EDITOR

-e[e | l | L | v] errors Control error emission style:

-e list errors in configuration file to stdout with related source lines
-ee embed errors in configuration file and invoke $EDITOR
-el list configuration file to stdout, interspersed with any  errors —

only if there are errors
-eL list configuration file to stdout, interspersed with any  errors —

even if there are no errors
-ev embed errors in configuration file and invoke vi

The default behavior is to list errors to stderr with file name, and line
and column number

-env env environment Specify an environment pathname

-g ghosts Include ghost task information

-H help Display syntax and options for this function

-i information Suppress information messages

-l file listing List configuration to the specified file

If - is specified for file, list configuration to stdout

-lock lock Change the default lock_state to locked

-rel release release Specify a MAXAda release (other than the default release)

-m file modify Modify configuration from the specified file

If - is specified for file, read configuration from stdin

-multiplexed multiplexed Change the default weight to multiplexed (multiplexed tasks are not sup-
ported in this release)

-p pragmas Write example pragmas in configuration output
4-47



MAXAda for Linux Reference Manual
There are five basic areas of run-time configuration: General, Memory, Tasks,  Groups,
and Protected.

General area

contains configuration parameters that affect the entire run-time system,
including: 

• RUNTIME_DIAGNOSTICS

see “Pragma RUNTIME_DIAGNOSTICS” on page 6-1

• QUEUING_POLICY

see “Pragma QUEUING_POLICY” on page 6-2

• DISPATCHING_POLICY

see “Pragma TASK_DISPATCHING_POLICY” on page 6-2

• LOCKING_POLICY

see “Pragma LOCKING_POLICY” on page 6-3

• SERVER_CACHE_SIZE

see “Pragma SERVER_CACHE_SIZE” on page 6-4

• TRACING_ENABLED

see “Tracing Options” on page 11-14

• TRACING_MECHANISM

see “Tracing Options” on page 11-14

• TRACING_BUFFERSIZE

see “Tracing Options” on page 11-14

Memory area

-r resolve Resolve DEFAULT values in configuration output (such output cannot be
used to modify)

-s stacks Associate stacks with their tasks rather than with other memory specifica-
tions

-V file verify Verify configuration from the specified file (this does not modify the pro-
gram)

If - is specified for file, read configuration from stdin

-v verbose Emit verbose information about changes

-w warnings Suppress warning messages

Option Meaning Function
4-48



MAXAda Utilities
contains configuration parameters for regions of memory, including:

• pool

see “Pragma MEMORY_POOL” on page 6-23

• cache_mode

see “Pragma POOL_CACHE_MODE” on page 6-25

• lock_state

see “Pragma POOL_LOCK_STATE” on page 6-25

• size

see “Pragma POOL_SIZE” on page 6-26, “Pragma STORAGE_SIZE”
on page M-130, and “RM 13.11 Storage Management” on page M-56

• pad

see “Pragma POOL_PAD” on page 6-28

Task area

contains configuration parameters for tasks, task types, and named task
objects, including: 

• weight

see “Pragma TASK_WEIGHT” on page 6-9

• priority

see “Pragma TASK_PRIORITY” on page 6-11

• quantum

see “Pragma TASK_QUANTUM” on page 6-14

• cpu_bias

see “Pragma TASK_CPU_BIAS” on page 6-12

Group area

contains configuration parameters for task groups, including:

• servers

see “Pragma GROUP_SERVERS” on page 6-19

• priority

see “Pragma GROUP_PRIORITY” on page 6-18

• cpu_bias
4-49



MAXAda for Linux Reference Manual
see “Pragma GROUP_CPU_BIAS” on page 6-19

Protected area

contains configuration parameters for protected objects, including: priorities,
interrupt handlers, and attached interrupts.

• priority

see “Pragma PROTECTED_PRIORITY” on page 6-28

Options are provided to:

• Produce a listing of a program's current run-time configuration, in either of
two formats

• Modify a program’s run-time configuration based on a configuration file,
in either of the same two formats

• Modify some aspects of the run-time configuration, without need of a con-
figuration file

NOTE

One of the following options is required by a.map:  
-c, -l, -m, -E, -V, -bound, -multiplexed, -lock

The -l option causes a configuration listing based on the specified program to be output
to the specified file name. If - is specified for the file name, output is directed to standard
output.

By default, the format of the output is in a tabular format.  The tabular format lists, for
each area, the appropriate program entities, one per line.  Each configuration parameter
associated with the program entities is listed in a particular column on that line.

If desired, an alternate format can be specified using the -assoc option.  This associative
format lists, for each area, all the configuration parameters for the appropriate kind of pro-
gram entity together, one configuration parameter per line.  This format can be slightly
amended by the -s option.  With the -s option, stack memory pools are listed in the Tasks
area near their corresponding tasks, instead of in the Memory area.

The -g option allows ghost tasks, overhead tasks defined internally by the run-time sys-
tem in certain circumstances, to be output along with user-defined tasks. See “Ghost
Tasks” on page 5-5 for a description of ghost tasks.

In addition to the aforementioned formats, the -p option causes example pragmas to be
emitted as comments so they do not interfere with the normal format. These pragmas cor-
respond to the run-time configuration as detected in the program. 

The -r option performs a subtle change on configuration listings. It resolves any configu-
ration values which would be listed as DEFAULT, by using the values of the appropriate
pseudo-entities. For instance, assume that in some hypothetical program, the lock_state
for the DEFAULT memory region was specified as LOCKED, with the -r option. The
lock_state value for every memory region which had not specified any lock_state value
4-50



MAXAda Utilities
would be listed as LOCKED instead of DEFAULT. Because an application of such output
back into a program would cause drastic changes in the program, and because these drastic
changes would most likely not be desired, configuration output produced with the -r
option is marked in such a way that it will not be accepted by the -m or -V options.  In
addition, the -r option cannot be specified with the -E option.

The -m option causes a configuration file to be read and applied to the specified program.
Either format emitted by the -l option is accepted as input.  If - is specified as the file
name for the -m option, input is read from standard input.  (Neither the -ee nor the -ev
options are allowed in this case because both of these options modify the configuration
file and the - indicates that the configuration file be read from standard input.)  The input
need not be complete; only the particular parameters to be changed are required.  In fact,
entire areas can be omitted if no changes in those areas are required.  Furthermore, within
each area, the order of program entities is irrelevant.

The -V option performs the same actions as the -m option, except that it does not apply
the actual specified changes to the program. Its purpose is to verify the contents of an
input file before actually applying that input file to a program.  It performs all syntactic
and semantic analysis and emits the same diagnostic messages as would the -m option.

The -E option allows users to edit the run-time configuration of a program with the editor
specified by the environment variable, $EDITOR. It performs a listing based on a particu-
lar program to a temporary file, invokes $EDITOR on that file, and then applies the edited
temporary file to the same program.  The format of the output is controlled in the same
way as it is via the -l option, except that the -l is replaced by the -E option.  Note also
that no file name is required with the -E option.

The -e option invokes the a.error tool on any diagnostic messages emitted. This
causes diagnostic messages to be emitted along with the offending line from the configu-
ration file. This is useful for easily relating line and column information in a diagnostic
message directly to the corresponding text in the configuration file.

The -el option is the same as the -e option, except that upon any error, it produces a full
listing of the configuration file, instead of just the offending lines.  When the -eL option
is used, the source file is listed even if no errors have occurred.

The -ee and -ev options invoke the a.error tool in such a way as to cause it to insert
any error messages back into the configuration file, and then invoke $EDITOR on that
configuration file, allowing the error to be corrected. The user then has the option of
applying the corrected file to the program. This can be done with the -m, -V, and -E
options, and can be done iteratively.

The -bound and -multiplexed options set the task weight for the partitions to which
they are applied, however multiplexed tasks are not supported in this release.  For more
information, see “Task Weights” on page 5-3 and “Pragma TASK_WEIGHT” on page 6-9.

The -lock option causes the lock_state for the DEFAULT memory region to become
LOCKED. The result is that any memory region which has not specified its own
lock_state becomes LOCKED.

The -c option neither performs a configuration listing nor modifies the configuration in
any way.  It merely performs a few sanity checks on the specified program and produces
diagnostics if there are any dubious configuration values.  These same checks are per-
formed with the -m, -V, and -E options, but the -c option provides a way to perform the
checks without changing the program configuration.
4-51



MAXAda for Linux Reference Manual
The -v option produces verbose output which details every configuration parameter that
is changed via the -m, -V, or -E option.

The -w option suppresses all warning diagnostics produced by a.map. The -i option
suppresses all information diagnostics produced by a.map.
4-52



MAXAda Utilities
a.mkenv 4

Create an environment which is required for compilation, linking, etc.

The syntax of the a.mkenv command is:

a.mkenv [options] [compile_options] [environment_pathname]

The following represents the a.mkenv options:

a.mkenv takes an optional environment_pathname.  If issued with no parameters:

a.mkenv

then a.mkenv will attempt to create an environment in the current directory based on the
default release.  (See “a.release” on page 4-83 for more information regarding MAXAda
releases.)

If an environment_pathname is given:

a.mkenv dir

then a.mkenv will attempt to make the directory specified by environment_pathname
(dir) and, if successful, will create an environment in that directory based on the default
release or the release specified by the -rel option.

The -env option is used only when an environment_pathname IS NOT specified:

a.mkenv -env dir

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force environment creation, even if it or some portion of it already exists

-H help Display syntax and options for this function

-HA help arch Display list of supported target architectures and descriptions

-HC help compile Display list of compile options

-HL help link Display list of link options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-105 for more details.

-oset opts link options Set the default link options list for the environment to opts

Note that opts may need to be quoted

-rel release release Specify a MAXAda release (other than the default release)
4-53



MAXAda for Linux Reference Manual
In this case, a.mkenv will attempt to create an environment in the directory specified by
the env parameter (dir) based on the default release or the release specified by the -rel
option.  If an environment_pathname is specified, the -env option is ignored.

NOTE

If the directory specified by the env parameter does not exist,
a.mkenv will fail.

The -rel option specifies which release of a.mkenv to use in creating this environment.
(See “a.release” on page 4-83 for more information regarding MAXAda releases.)

The -f option forces creation of an environment even if one has already been created or if
only a portion of it already exists.  (If the a.mkenv tool is interrupted or fails for some
reason such as not enough disk space, power failure, etc., the creation of the environment
may not have completed.)  Trying to recover from this failure by running the a.mkenv
tool again may result in a message similar to the following:

a.mkenv: fatal: environment already exists

The -f option will force this environment to be created, thereby overriding such error
messages.

The compile_options specified with this command become the environment-wide compile
options and apply to all units introduced into this environment.  (See “Environment-wide
Options” on page 3-21 for more information).  They may be changed by using
a.options.  They may also be overridden for particular units by permanent or tempo-
rary unit options or pragmas.  See “Compile Options” on page 3-20 for a more detailed
explanation of this relationship.

Use a.mkenv -HC for a list of compile_options.  Also, “Compile Options” on page 4-99
provides a similar list.

Default link options for the environment are specified using the -oset opts option.  Use
a.mkenv -HL for a list of opts.  Also, “Link Options” on page 4-109 provides a similar
list.  

An environment can be removed with a.rmenv.  See “a.rmenv” on page 4-87 for details.
4-54



MAXAda Utilities
a.monitor 4

Monitor tasking in real-time for debugging

The syntax of the a.monitor command is:

a.monitor [options] [executable_file [pid]]

The following represents the a.monitor options:

The MAXAda a.monitor utility provides users with a full-screen real-time program
monitor. It provides an interactive menu interface that allows users to cyclically monitor
task and memory information  Currently, a.monitor can only monitor Ada tasking pro-
grams.

See “a.monitor” on page 12-4 for more details on the use of this utility.

Option Meaning Function

-a
--ascii

ascii Print to stdout instead of invoking X client

-env env environment Specify an environment pathname

-g
--ghosts

ghosts Include implementation (ghost) tasks

--master master task Display master task as opposed to creator task

-rel release release Specify a MAXAda release (other than the default release)

-r s
--rate=s

refresh Set the refresh rate to s seconds

-s
--short

short Provide short description of task status

-h
--help

help Display syntax and options for this function

-x
--snapshot

snapshot Implies --ascii, print snapshot and exit.

--sort=key sort key is one of: name, taskid, creator, master.  (By default, the
ASCII output is sorted by taskid.)
4-55



MAXAda for Linux Reference Manual
a.nfs 4

Display or change NFS aspects of an environment

The syntax of the a.nfs command is:

a.nfs [options]

The following represents the a.nfs options:

MAXAda supports the creation and use of environments on NFS-mounted filesystems
only to a limited extent.  (See “NFS Environments” on page 3-3.)

The a.nfs tool provides a means for determining from what system an environment can
be modified, and a means for changing that system.

a.nfs -q displays whether or not the environment is on an NFS filesystem and what sys-
tem is capable of modifying it.  It responds with the output:

status: either NFS or local 

owner: local, indicating the local system, or

its local system, indicating the system on which the
environment's filesystem is local, or

a system name

Option Meaning Function

-env env environment Specify an environment pathname

-f force Use with -take to take an environment that was not previously given;
beware that this may expose problems caused by NFS caches if the envi-
ronment was used recently from its original owner system

-give give away Prepare environment currently modifiable from the local system to be
modifiable from another system

-rel release release Specify a MAXAda release (other than the default release)

-q query Query environment NFS status and owner

-take take Make environment modifiable from local system

-write write Query ability to modify environment from local system

-H help Display syntax and options for this function
4-56



MAXAda Utilities
a.nfs -write is a simple query to determine if the environment is writable from the
current system.  It will respond either with the string:

writable

or

not writable because ... 

and the reason.

a.nfs -give and a.nfs -take are designed to work together to provide a means of
changing the owner of an environment safely with respect to NFS caches.  On the system
that is the current owner, the command a.nfs -give should be executed.  After that is
done, the environment effectively is owned by no system at all.  Any system can then exe-
cute a.nfs -take and become the new owner of that environment.  By doing this in two
steps it is possible to ensure that any caches with pending modifications are synchronized
with the real environment file, and that any caches which might be stale are invalidated
and reloaded from the real environment file.

a.nfs -take -f is designed to work with an environment that is owned by another sys-
tem which no longer exists, is down, or is otherwise unable to modify the environment and
therefore cannot execute the a.nfs -give command.  In this case, because the current
owner is unable to modify the environment, there is no possibility for the NFS caches to
create problems.  In that case, a.nfs -take -f will forcibly take an environment on
which a.nfs -give was never run.

CAUTION

Never execute a.nfs -take -f on an environment where the
current owner has modified the environment recently.  Instead
execute a.nfs -give on the current owner and then a.nfs
-take on the new owner.
4-57



MAXAda for Linux Reference Manual
a.options 4

Set compilation options for units or the environment

The syntax of the a.options command is:

a.options [options] [compile_options] [unit-id ...]

The following represents the a.options options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

Option Meaning Function

-clear clear Clear all designated options for the specified entities

-default default Operate on the default options for the entire environment

-del delete Delete the designated options from the specified entities

-eff effective Display the effective options (based on temporary, permanent, environ-
ment defaults)

-env env environment Specify an environment pathname

-fetch fetch Apply the options to fetched copies (for specified units from other envi-
ronments)

-H help Display syntax and options for this function

-h header Remove the header from the option list output

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-105 for more details.

-keeptemp keep temporar-
ies

Propagate the temporary options for the units into the set of permanent
options

-list list List the option sets for the specified entities

-mod modify Modify the designated options for the specified entities

-perm permanent Operate on the permanent options (this is the default)

-rel release release Specify a MAXAda release (other than the default release)

-set set Set the designated options for the specified entities

-temp temporary Operate on the temporary options

-v verbose Display a message for each change
4-58



MAXAda Utilities
Option Sets 4

As discussed in “Compile Options” on page 3-20, there are three different levels of
options in MAXAda.  These three option sets are designated by the following flags to
a.options: 

In addition, the effective options are derived from these three and their hierarchical rela-
tionship to one another.  This set is discussed in greater detail in “Effective Options” on
page 3-22.

Listing options 4

The option sets may be viewed using the -list option to a.options.  When issued
alone, -list shows the permanent, temporary, and effective option sets for the units
specified.  For example, the following command lists those option sets for the unit hello,

$ a.options -list hello

By combining the -list option and the desired option set’s flag, only that option set is
displayed for the specified units.  For instance, to view the permanent options for the unit
hello, 

$ a.options -list -perm hello

This only lists the permanent options for the units specified.  You may specify multiple
unit names, or you may use the keyword all to specify all units in the environment.

To list the effective options for all units in the environment,

$ a.options -list -eff all

However, this particular option does the same thing when issued alone,

$ a.options -eff all

Note that since the -default flag operates on all the units in the environment by defini-
tion, there is no need to specify any unit names.  To list the default options,

$ a.options -list -default

Flag Designation Operates on

-default environment-wide compile options all units

-perm permanent unit compile options specified units

-temp temporary unit compile options specified units
4-59



MAXAda for Linux Reference Manual
Setting options 4

The option sets may be initialized or reset by using the -set flag to a.options.  This
sets the specified options for the units designated.  Any previous options for the set desig-
nated are replaced.  For example,

$ a.options -set -perm -g hello

sets the debug level to full in the permanent option set for the unit hello.

If the following command is issued,

$ a.options -set -perm -ee hello

the permanent option set will only contain the -ee option (the previous -g option will
have been replaced).  

Modifying options 4

In order to modify an option set, the -mod flag to a.options is used.  This flag adds the
specified options to the designated set, while retaining any other options that existed in
this grouping.  For instance, after the following command,

$ a.options -set -temp -g hello

the temporary option set for the unit hello consists of -g.

To add an error emission compile option to this set,

$ a.options -mod -temp -ev hello

The temporary option set for hello now consists of -g and -ev.

Clearing options 4

All of the options may be cleared from a designated option set by using the -clear
option to a.options.  To clear all of the temporary options from all units in the environ-
ment,

$ a.options -clear -temp all

Deleting options 4

The -del flag to a.optionsis more specific than the -clear option and allows speci-
fied options to be deleted from a particular option set.

For example, if the environment-wide compile option set (-default) contains -ee, 
-!g and -S, the following command,
4-60



MAXAda Utilities
$ a.options -del -!g -default

will remove the -!g option from the set and leave -ee and -S to remain as the environ-
ment-wide compile options.

Keeping temporary options 4

Temporary options may be propagated into the permanent set by using the -keeptemp
option to a.options.  This moves the temporary options into the permanent option set
and clears the temporary set.  The following command does this for all units in the envi-
ronment,

$ a.options -keeptemp all

See “Compile Options” on page 4-99 for more information.

Also, see the example of this in “What are my options?” on page 2-7.

Setting options on foreign units 4

Options for units in foreign environments cannot be changed using a.options in the
local environment.  In order to change the options on a foreign unit, it must first be
fetched.  This can be done automatically by specifying the -fetch option in addition to
the options to be applied to the foreign unit.

A fetched copy of the unit will be created in the local environment and those options spec-
ified will be applied.
4-61



MAXAda for Linux Reference Manual
a.partition 4

Define or display a partition for the linker

The syntax of the a.partition command is:

a.partition [options] [partitions ...]

The following represents the a.partition options:

Option Meaning Function

-a all Display all partitions in the environment

(Normally, only those originating in the environment are displayed)

-add "units" add Add units to the partitions while retaining previously added units 

units is a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes

-addfile file add from file As -add, but reads units from file

-case case-sensitive If specified, unit names will be interpreted in a case-sensitive manner

-cons show consis-
tency

Display consistency of each partition, with a reason if inconsistent

-create kind create Create the new named partitions as kind where kind could be active,
shared_object (so), or archive (ar)

-default default Operate on the default link options list for the entire environment

-del "units" delete Delete units from the partitions

units is a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes

-delfile file delete from file As -del, but reads units from file

-elab method e l a b o r a t i o n
method

Set the elaboration method for non-active partitions used from programs
other than the active partitions

where method can be:
    none 
    auto
    user,routine_name
                    (routine_name is a name of the user’s choice)

-env env environment Specify an environment pathname

-f force Force creation of existing partitions and removal of nonexistent partitions
4-62



MAXAda Utilities
units is defined by the following syntax:

[[unit_name[!][,[+-]unit_name[!]]... (comma-separated list)
+ indicates an included unit (the default)

-final method f i n a l i z a t i o n
method

Set the finalization method for non-active partitions used from programs
other than the active partitions

where method can be:
    none 
    auto
    user,routine_name
                    (routine_name is a name of the user’s choice)

-file name file Create partitions corresponding to the descriptions provided in file name

The syntax of the file name is identical to the output of the -List option

-H help Display syntax and options for this function

-HA help arch Display architectures and descriptions

-HL help link Display link options

-List list all Display all partitions and information about them

-list list List all partition names

-main name main Set the main unit for the specified active partition to name

-o file output Set the name of the corresponding partition output file to be created

-oappend opts append options Append opts to the link option list

Note that opts may need to be quoted

-oclear clear options Clear the link options list

-oprepend opts pr ep end
options

Prepend opts to the link option list

Note that opts may need to be quoted

-oset opts set link options Set the link option list to opts

Note that opts may need to be quoted

-parts list partition list Set the dependent (comma-separated) partition list for each partition

-rel release release Specify a MAXAda release (other than the default release)

-remove remove Remove the specified partitions

-rule rule link rule Set the link rule for the partitions  (see below for syntax)

-set "units" set Add units to the partitions, and remove all others

units is a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes (see below)

-setfile file set from file As -set, but reads units from file

Option Meaning Function
4-63



MAXAda for Linux Reference Manual
- indicates an excluded unit
! indicates all units directly or indirectly required by the given unit

NOTE

You may specify multiple partitions to a.partition and all
options specified will apply to every one of those partitions.  Each
option, however, may only be specified once.  If a particular
option is repeated on the command line, the last occurrence of that
option overrides all others. 

Issuing a.partition with only a partition name and no options provides detailed infor-
mation about that partition.  This same information is provided for all partitions in the
environment by specifying the -List option.  This information includes:

• the kind of partition (object, archive, or shared_object)

• its resultant output file

• the link options associated with this partition

• partitions upon which this partition depends

• the link rule for this partition

• the unit designated as the main subprogram

• all included and excluded units

NOTE

The link options listed in this manner are those link options asso-
ciated directly with the listed partitions, not their effective set.  To
see the environment-wide link options, use a.partition
-default.  See “Link Options” on page 3-34 for more informa-
tion.

Main Subprogram 4

The -main option to a.partition specifies a unit that will act as the main subprogram
for an active partition.  In the case where the partition has the same name as a library sub-
program in the environment, that subprogram is assumed to be the main subprogram.
Otherwise, no main subprogram is assumed and one must be explicitly specified using this
option, if desired.
4-64



MAXAda Utilities
Elaboration and Finalization 4

a.partition uses the -elab option to set the elaboration method for non-active parti-
tions and the -final option to set the finalization method for non-active partitions.

See “Elaboration and Finalization Methods” on page 3-16 for more information.

Case Sensitivity 4

The -case option ensures that unit names specified to a.partition (with the -add,
-addfile, -del, -delfile, -set, -setfile, and -main options) will be inter-
preted in a case-sensitive manner.  Usually, unit names are interpreted in a case-insensitive
manner because Ada identifiers are case-insensitive.  But some artificial units contain
upper-case letters (precisely because they cannot conflict with user-specified names), so it
is occasionally useful to be able to indicate those units.  (See “Artificial Units” on page
3-11 for more information.)

Consistency 4

The -cons option displays the consistencies of any partitions mentioned.  If no partitions
are mentioned, it displays the consistencies of all local partitions.  In addition, you can dis-
play the consistencies of foreign partitions using the -cons option in combination with
the -a option.

Link Options 4

Link options are specified for a particular partition using the following options to a.par-
tition:

-oset opts Set the link option list to opts

-oappend opts Append opts to the link option list 

-oprepend opts Prepend opts to the link option list

-oclear Clear the link options list

where:

opts is a single parameter containing one or more link options; note that opts may
need to be quoted.
4-65



MAXAda for Linux Reference Manual
NOTE

Be sure to specify the link options within the double quotes and
ensure that they are specified as listed on page 4-109.  For exam-
ple, if the link option -bound is desired, the leading “-” must be
specified as well.

For example, to set the link options for the partition hello to include the link options
-skipobscurity and -forgive:

$  a.partition -oset “-skipobscurity -forgive” hello

Issuing a.partition with the partition name will show the link options for this parti-
tion:

$  a.partition hello
PARTITION: hello
   kind                 : active
   output file          : hello
   link options         : -skipobscurity -forgive
   dependent partitions : 
   link rule            : object,archive,shared_object
   main subprogram      : hello
   included units (+)   : 
      hello!
   excluded units (-)   : 

To append a link option to this set, use the -oappend option:

$  a.partition -oappend “-trace” hello

The link options now will be:

$  a.partition hello
PARTITION: hello
   kind                 : active
   output file          : hello
   link options         : -skipobscurity -forgive -trace
   dependent partitions : 
   link rule            : object,archive,shared_object
   main subprogram      : hello
   included units (+)   : 
      hello!
   excluded units (-)   : 

To clear all link options for this partition, use the -oclear option:

$  a.partition -oclear hello

The user may also specify link options that affect all partitions within the environment
using the -default option in combination with those listed above.

For instance, to set the environment-wide set of link options to include the link option
-skipobscurity:
4-66



MAXAda Utilities
$  a.partition -default -oset -skipobscurity

NOTE

The environment-wide set of link options may be set when creat-
ing the environment by using the -oset opts option to a.mkenv
(see “a.mkenv” on page 4-53).

You may list the environment-wide set of link options by specifying:

$  a.partition -default
default link options: .
   -skipobscurity

Use a.partition -HL for a list of opts.  Also, “Link Options” on page 4-109 provides
a similar list.

In addition, “Link Options” on page 3-34 provides further discussion of this topic.

Link Rule 4

The -rule option to a.partition sets the link rule for a given partition.  The link rule
is an ordering of the link methods which instructs the linker how to acquire each unit or
system library during the linking process.  

A link method specifies the manner in which a unit is included in the linking process.  It
can instruct the linker to 

- use the object of a unit directly (object method) 

- utilize the unit contained in an archive (archive method)

- include the unit found within a shared object (shared_object method)

NOTE

Using the object directly (the object method) is the most com-
mon method of utilizing units.

The link rule is defined by the following syntax:

method[-part]...[,method[-part]...][,method[-part]...]

where method is one of the following: object, archive, or shared_object (or their
respective abbreviations: obj, ar, so)

and part is the name of any partition, system library, or class of partitions/libraries that is
4-67



MAXAda for Linux Reference Manual
to be excluded by the linker for that particular method.  Note that for each method, multi-
ple partitions can be specified, separated by dashes (with no spaces between).

A l is t  of  part  i tems to  be  excluded can be specif ied for  the  archive  or
shared_object methods.  No such list can be specified for the object method.

To indicate that a partition name is to be excluded for a particular method, its name should
be specified.

To indicate that a system library is to be excluded for a particular method, it must be spec-
ified in the form: 

-lname

which is the standard shorthand notation for libname.a or libname.so.

NOTE

The libraries listed as exceptions here will only affect libraries
that would be included in the link implicitly.  See “Implic-
itly-Included Libraries” on page 4-72 for more information.

To indicate that a class of partitions or libraries is to be excluded for a particular method,
one of three keywords should be specified:

• ada

• system

• user

The ada keyword indicates all partitions and libraries that are part of MAXAda (those
located within /usr/ada/release_name/lib).  The system keyword indicates all
libraries that are part of the Linux operating system (those located within /lib, /usr/
lib, or /usr/ccs/lib).  The user keyword indicates all other libraries.

The default link rule differs for each type of partition:

The default link rule for active partitions is:

object,archive-system,shared_object

which directs the linker to:

Partition Default Link Rule

active object,archive-system,shared_object

archive object

shared_object object
4-68



MAXAda Utilities
- use user-compiled objects first, when available

- use archives next for user-compiled and MAXAda-supplied code

- use shared objects for user-compiled and MAXAda-supplied code if no
other option exists (although archives always are available for MAX-
Ada-supplied code), and for all system libraries

In the case of system libraries, the linker will attempt to use either the shared object or
archive of a system library based on the ordering of the link methods in the link rule.

The link rule is specified by the user and can combine any number of methods in any
order.

In addition, the link rule can also specify certain partitions or system libraries to be passed
over by the linker when searching for each unit.  This allows the user greater control as to
how units are included in the linking process.  Specifying the -part modifier after the
appropriate method in the link rule instructs the linker to exclude a particular partition or
system library.

To exclude the archive partition notme and the system library libux.so from the parti-
tion rulexamp, you would issue the following command:

 a.partition -rule object,archive-notme,shared_object--lux ruleexamp

Note that the notation to exclude a system library is slightly different (the -lname follows
the -, appearing in the link rule as two dashes in a row).

Consider a more complicated example:

Figure 4-3.  Link Rule Example

In Figure 4-3, the following is given:

  a, c, e

  

 a, b, c,
 d, e, f, 
     g

Partition foo Partition bar Partition qux

Partition snert

 (archive)  (shared object)  (archive)

 (active)

  b, c, d  a, b, f
4-69



MAXAda for Linux Reference Manual
- partition foo is an archive partition and contains units a, b, and f

- partition bar is a shared object partition and contains units b, c, and d

- partition qux is an archive partition and contains units a, c, and e

- partition snert is an active partition and contains units a, b, c, d, e, f,
and g

If the following link rule is specified for partition snert

-rule archive,shared_object,object

the units will be used from the following partitions:

The linker tries to use the appropriate method for each unit.  For example, when searching
for unit d, the linker first looks in all archive partitions in the current environment and on
the Environment Search Path.  Since none of the archive partitions on the Environment
Search Path contain unit d, the linker then searches all shared objects on the Environment
Search Path.  It finds unit d in shared object partition bar and uses it.

Note that the linker will decide arbitrarily which of the two partitions will be used for unit
a.

Also note that since no archives or shared objects on the Environment Search Path con-
tained unit g, the linker will use the object file for this unit.

By using the -part option with -rule, the determination of which methods to use for each
unit can be more precise.

If the following link rule is specified for partition snert

-rule archive-foo,shared_object,object

Unit Partition 

a foo (ar), qux (ar)

b foo (ar)

c qux (ar)

d bar (so)

e qux (ar)

f foo (ar)

g (obj)
4-70



MAXAda Utilities
the units will be used from the following partitions:

Since foo was excluded as a potential archive partition, the ambiguity of which partition
is to be used for unit a no longer exists.  Also, shared object partition bar is used for unit
b because there were no archive partitions that contained that unit.  And lastly, since foo
was the only partition that contained unit f, the linker will not be able to find this unit in
any of the partitions on the Environment Search Path and therefore will use the object for
unit f.

See also “Partitions” on page 3-12 for more information.

Unit Partition 

a qux (ar)

b bar (so)

c qux (ar)

d bar (so)

e qux (ar)

f (obj)

g (obj)
4-71



MAXAda for Linux Reference Manual
Implicitly-Included Libraries 4

The following are libraries which may be included implicitly during the linking phase:

-lc required for all programs

-lccur_rt required for tasking program or programs that use
other real-time features

-ldl required for AXI

-lfrtbegin required for interfacing to GNU Fortran

-lg2c required for interfacing to GNU Fortran

-lgcc required for all programs

-lgcc_eh required for all programs

-lgen required for AXI

-lhF77 required for interfacing to Concurrent Fortran 77

-lhI77 required for interfacing to Concurrent Fortran 77

-lhU77 required for interfacing to Concurrent Fortran 77

-lICE required for Xt via AXI

-lm required for interfacing to Fortran

-lMrm required for Motif 2.1 via AXI

-lntrace required for programs that use NightTrace bindings
or -trace:mechanism=ntraceud

-lpthread required for tasking programs

-lPW required for Motif 2.1 via AXI

-lruntime* required for all programs

-lsemaf required for non-tasking programs

-lsemat required for tasking programs

-lSM required for Xt via AXI

-lX11 required for X11R6 via AXI

-lXAda required for AXI

-lXext required for X11R6 via AXI

-lXm required for Motif 2.1 via AXI

-lXmAda required for AXI

-lXmu required for X11R6 via AXI

-lXp required for Motif 2.1 via AXI

-lXt required for Xt via AXI
4-72



MAXAda Utilities
NOTE

The -lpthread library must be linked as a shared object.  If the
link rule is changed to use archives even for system libraries, this
mus t  no t  be  done  fo r  -lpthread .   A  l ink  ru le  l ike
object,archive--lpthread,shared_object can be
used to indicate that archives are preferred for every system
library except -lpthread.

In addition, on Linux, the following object files are included in the link phase:

/usr/lib/crt1.o
/usr/lib/crti.o
/usr/lib/crtbeginT.o
/usr/lib/crtend.o
/usr/lib/crtn.o
4-73



MAXAda for Linux Reference Manual
a.path 4

Display or change the Environment Search Path for an environment

The syntax of the a.path command is:

a.path [options]

The following represents the a.path options:

MAXAda uses the concept of an Environment Search Path to allow users to specify that
units from environments other than the current environment should be made available in
the current environment.  See “Environment Search Path” on page 3-2 for a more com-
plete discussion.

MAXAda supplies a number of environments with the product.  These environments are
listed in Chapter 9, “Support Packages”.  

The predefined environment is automatically added to the path when a.mkenv is
used to create an environment.  Any of the other environments may be added to the path, if

Option Meaning Function

-A path append Append path to the end of the Environment Search Path

-a path1 [path2] append Append path1 after path2.  If path2 is not specified, this option is identical
to the -A option

-d default Use the default supplied libraries

-env env environment Specify an environment pathname

-f full path Display full environment pathnames

-H help Display syntax and options for this function

-I path insert Insert path at the beginning of the Environment Search Path

-i path1 [path2] insert Insert path1 before path2.  If path2 is not specified, this option is identical
to the -I option

-P purge Remove all paths in the Environment Search Path

-R path1 path2 replace Replace path1 with path2

-r path remove Remove path from the Environment Search Path

-rel release release Specify a MAXAda release (other than the default release)

-t transitive Display transitive closure of environments in the Environment Search
Path

-v verbose If combined with any other a.path option, display the Environment
Search Path after the operation is complete

-w warnings Suppress warning messages

-x path exclude Remove all but path from the Environment Search Path
4-74



MAXAda Utilities
desired.   They can be specified by their full pathnames or by their “keywords”.  See
Chapter 9 for a list of these keywords.
4-75



MAXAda for Linux Reference Manual
a.pclookup 4

Filter standard input adding symbolic descriptions for pc values

The syntax of the a.pclookup command is:

a.pclookup [options] executable-file

The following represents the a.pclookup options:

Option Meaning Function

-c code code Do not read stdin or process the executable file, rather immediately
print symbolic description of the specified exception code

-e [options] a.error Pass appropriately filtered lines through a.error

If options is supplied, it is passed to a.error

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i insert Insert symbolic information immediately after the program counter; nor-
mally, symbolic information is appended to the line

-l loadmap load map The file loadmap is expected to contain the output of ldd(1) and is used
for executable files that use shared libraries

If not specified but needed, a.pclookup automatically invokes
ldd(1) 

-p pc_value p r o g r a m
counter

Print the symbolic description of the specified program counter (pc_value)
immediately  

Do not read stdin

-r rooted Show fully rooted pathnames to source

Implied by -e option

-rel release release Specify a MAXAda release (other than the default release)

-s symbol Always list the raw symbol name associated with the function containing
it

-t tag tag Change the tag; used to identify all program counters to translate from the
default value of pc= to tag

tags are case-insensitive
4-76



MAXAda Utilities
a.pp 4

Preprocess a source file

The syntax of the a.pp command is:

a.pp [options] [in_source_file [out_source_file]] 

The following represents the a.pp options:

Option Meaning Function

-a allow Allow blanks between prefix and directive

By default, blanks are not allowed between the prefix and the command,
except those specifically placed in the prefix (e.g. “pragma ”)

-b blank Blank out uncompiled lines

-ca string comment after Comment uncompiled lines; end uncompiled lines with string

null is the default “comment after” string

-cb string comment begin Comment uncompiled lines; start uncompiled lines with string

“--” is the default “comment begin” string

-D name define Define name before line 1; that is, set name=TRUE

-E name val equivalence Define name as val before line 1; that is, set name=val

-e eliminate Eliminate uncompiled lines

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-I file include Include directives file before line 1

file is assumed to contain a.pp commands and source lines. If file does
not specify a complete path name, it is searched for under the directory
containing the file in which the include command is found

INTERNAL UTILITY
 

This tool is used internally by a.build which is the recommended 
utility for compilation and program generation.  

a.pp is not intended for general usage.
4-77



MAXAda for Linux Reference Manual
NOTE

If a.pp is invoked automatically by MAXAda, it is treated essen-
tially as a pass of the compiler for the given source. Output from
a.pp goes to a temporary file which is destroyed after the compi-
lation like any other intermediate file in the compilation.

a.pp automatically includes the command file .pprc from the source file directory
before any options are processed, if it exists. If file names are not given on the command
line it reads from stdin and writes to stdout. 

a.pp is not case sensitive. Any directive or argument (except file names) may be given in
upper case or lower case. 

Users may explicitly invoke a.pp to produce a preprocessed, pure Ada, .a source file.
However, several of the MAXAda tools will automatically invoke a.pp on a unit if its
corresponding source file name has a .pp suffix.  

Also, if a unit is introduced with the -P option to a.intro, it will be preprocessed by
a.pp automatically, regardless of the extension of its corresponding source file.  Con-
versely, if a unit is introduced with the -!P option, it will not be preprocessed, regardless
of its source file extension.  (See “a.intro” on page 4-30 for more information.)

The input to the a.pp preprocessor consists of command lines and source lines. Com-
mand lines begin with a specific prefix, which can be set by the -p option. Source lines
are written to the output file unchanged. 

It's handy when you need the character positions within the resultant file to be the same as
the character positions in the original.  

The default behavior of a.pp (or when using the -b option) results in a line-to-line corre-
spondence with the original file.  The -s option is provided when a full character-to-char-
acter correspondence is needed.

-llang language Use the default options for language lang (ada, c)

a.pp defaults to Ada-mode preprocessing; however, on option it can be
made to perform preprocessing using a cpp(1)-like syntax

-m minimize Eliminate blank lines

-p prefix prefix Use prefix as the directive prefix

“pragma ” is the default prefix (upper or lower case - with a space after)

-rel release release Specify a MAXAda release (other than the default release)

-s spaces Replace uncompiled characters with spaces

-U name undefine Undefine name

-u unknown Comment unknown directives

By default, unknown directives are left without comments

Option Meaning Function
4-78



MAXAda Utilities
See “Defaults” on page 4-81 for information on the default behavior of a.pp and the
default values of its options.

See “Examples” on page 4-81 for some examples of using a.pp.

Commands 4

Command lines begin with a specific prefix, which can be set by the -p option.

Commands must appear on the same line as the prefix, and there may be intervening
whitespace only between the command and the prefix if the -a option is specified. 

The following commands are available: 

Command Description

include filename The file filename is assumed to contain a.pp
commands and source lines. If filename does
not specify a complete path name it  is
searched for under the directory containing
the file in which the include command is
found. 

define name [value] Define the symbol name and optionally give it
value. 

undefine name Remove the definition of the symbol name. 

undef name Remove the definition of the symbol name. 

ifdef name If the symbol name is presently defined, the
following lines up to the next a.pp else,
elsifdef or endif command line are writ-
ten to the output file. 

ifndef name If the symbol name is not presently defined,
the following lines up to the next a.pp
else, elsifndef or endif command
line are written to the output file. 

if expression If the expression evaluates as TRUE, the fol-
lowing lines are written to the output file. See
the following section on expression syntax for
the format of a.pp expressions. 

else
elsif expression
elsifdef name.
elsifndef name

These various forms of an else clause spec-
ify conditional compilation boundaries. The
form of the else clause used must match the
form of its associated if clause.  See the fol-
lowing section on expression syntax for the
format of a.pp expressions.

endif This command marks the end of a conditional
compilation clause. 
4-79



MAXAda for Linux Reference Manual
Commands to a.pp can be embedded in the actual source file; however, this is not recom-
mended for commands that define or undefine names, or control global behavior of a.pp.
An appropriate place for such commands is the .pprc file, or in separate command files
that may be included using the -I option of a.pp.

See the following section on expression syntax for the format of a.pp expressions.

Expressions 4

The expression syntax of a.pp is similar to that of the C preprocessor. The arguments to
the equality operators may be performed as character string arguments (either with or

substitute name This command will result in the value of the
symbol name being written to the output file. 

blanks_after_prefix Allow blanks between the prefix and the com-
mand. 

no_blanks_after_prefix Do not allow blanks between the prefix and
the command.

prefix string The string will become the command prefix
for subsequent commands. String must be
enclosed in quotes if it contains spaces. 

blank_lines Lines that are conditionally removed from the
input file will be blanked out in the output
file. 

comment_before string Lines that are conditionally removed from the
input file will be written to the output file pre-
ceded by string, (usually the characters for the
beginning of a comment in the source lan-
guage). 

comment_after string Lines that are conditionally removed from the
input file will be written to the output file fol-
lowed by string, (usually the comment termi-
nator for the source language). 

eliminate_lines Lines that are conditionally removed from the
input file will not be written to the output file. 

comment_unknown Lines from the input file which contain the
prefix string, but are not recognized as valid
a.pp commands, will be written to the output
file as comments. 

no_comment_unknown Unrecognized command lines will be written
as is to the output file. 

Command Description
4-80



MAXAda Utilities
without quotes) and with names defined through the use of other commands. Expressions
and sub-expressions can be placed within parentheses as desired.

The following operators are available in a.pp: 

not 
and, && 
or, || 
=, == 
/=, != 

defined(name) gives the functionality of ifdef and ifndef in an if directive. 

Defaults 4

By default, 

• The command prefix is “pragma ” (in upper or lower case) 

• Unknown directives are left without comments 

• Comment_before is set to “--” 

• Comment_after is set to null 

• Blanks are not allowed between the prefix and the command, except for the
one blank already in the prefix 

NOTE

This default mode differs slightly from the mode a.pp enters
when the -lada option is given. Under that option, the prefix is
set to “pragma”, comment_before to “--”, comment_after
to null, and one or more spaces are allowed between the prefix
and the command. 

Examples 4

Screen 4-5 and Screen 4-6 show possible contents of the .pprc and test.pp files,
respectively. 

Screen 4-5.  File .pprc

pragma define long_form 1 
pragma define short_form 2 
pragma define ez_form 3 
pragma define form short_form
4-81



MAXAda for Linux Reference Manual
Screen 4-6.  File test.pp

If the compilation utility encounters a file that needs to be preprocessed, it automatically
invokes a.pp with the following command line:

$ a.pp -lada test.pp test.a

and then compiles the file test.a.  Screen 4-7 shows the contents of test.a. 

Screen 4-7.  File test.a

Details on the interaction of MAXAda with a.pp are as follows. 

• Invocations of a.build with a unit_name cause a.build to check all
units required to make unit_name. If any out-of-date unit has a correspond-
ing source file that ends with .pp, or the -P option was specified for that
unit when it was introduced, it is preprocessed with a.pp prior to recompi-
lation. The preprocessed source is sent to a temporary file which is
removed after the recompilation. Any error messages refer to the .pp
source file. 

• The -ev compile option causes source errors (if any) to be embedded into
the corresponding source file automatically. a.build will reprocess the
source file if the user selects recompilation after entering the editor. 

• Any MAXAda unit that was produced by a compilation involving a.pp
will be preprocessed automatically if recompiled by a.build.

     package tax_options is 
pragma if form = short_form || form = ez_form
     itemize : boolean := FALSE; 
pragma elsif form = long_form
     itemize : boolean := TRUE; 
pragma else 
     null; 
pragma endif 
     end tax_options;

       package tax_options is 
-- pragma if form = short_form || form = ez_form
          itemize : boolean := FALSE; 
-- pragma elsif form = long_form
--        itemize : boolean := TRUE; 
-- pragma else
--        null; 
-- pragma endif 
       end tax_options;
4-82



MAXAda Utilities
a.release 4

Display release installation information

The syntax of the a.release command is:

a.release [options]

The following represents the a.release options:

If invoked without options, a.release lists all available release installations on the cur-
rent host.  For example,

$  a.release

provides output similar to the following:

Screen 4-8.  a.release output

The -q option displays the release for the specified environment (or the local environment
if no environment is specified).  For example,

Option Meaning Function

-e env Display the path of the selected environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-n name Display the name of the selected release

-p path Display the path to the selected release

-q query Display the selected environment and release

-r remove Remove the default release currently set for the invoking user

-u user Set the default release for the invoking user

-rel release release Specify a MAXAda release (other than the default release)

The following releases are available on machine_name:
   Name              Path
   ----              ----
   ada95             /usr/ada/ada95
 * phase1            /usr/ada/phase1
   power_3.1         /usr/ada/power_3.1
   preval            /usr/ada/preval

(*) Designates the system default release

The predefined release installation, “default”, is also available, 
and refers to the system default release , phase1.
4-83



MAXAda for Linux Reference Manual
$  a.release -q

in a MAXAda environment named earth provides the following output:

Screen 4-9.  a.release -q output

a.release may be invoked with any combination of -rel and/or -env options. All
remaining options are mutually exclusive, and may not be combined in a single invocation
of a.release.

Release name   : phase1
Release path   : /usr/ada/phase1
Environment    : /env_name/earth
4-84



MAXAda Utilities
a.resolve 4

Resolve ambiguities created when a unit exists in multiple source files

The syntax of the a.resolve command is:

a.resolve [options] unit-id

The following represents the a.resolve options:

unit-id is defined by the following syntax:

unit[/part] 

where part is the specification or body; abbreviations are accepted.

Upon introducing a unit having the same name as a previously introduced unit, MAXAda
labels both units as ambiguous.  It will then refuse to perform any operations on either of
the two versions, or on any units depending on the ambiguous unit.  The user will be
forced to choose which of the two units should actually exist in the environment by
“removing” the other.  This can be done using the a.resolve tool.

The -r option essentially “hides” the other units involved in the ambiguity. 

See “a.hide” on page 4-27 for another way to resolve ambiguities and also “Hello Again...
Ambiguous Units” on page 2-15 for an example of this type of scenario and its resolution. 

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l list List the multiple source files in which unit is defined

-r source_file file list Resolve the ambiguity by selecting the unit from the source_file; other
definitions are hidden

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each selected or hidden definition
4-85



MAXAda for Linux Reference Manual
a.restore 4

Restore a damaged environment

The syntax of the a.restore command is:

a.restore [options]

The following represents the a.restore options:

In rare circumstances, an environment may become damaged.  This is usually caused by a
system crash or power failure that leaves files in an inconsistent state.  MAXAda is unable
to detect such situations, because its internal files may be corrupted in various ways.  If
tools consistently fail with unusual non-transient errors, and no other cause can be found
for them (such as a full disk), it is possible that the environment was damaged.  In that
case, a.restore is able to recover the environment using backup information that is
part of every environment.  If possible, a.restore will restore the environment com-
pletely intact.  However, if some of the backup information was damaged also, then some
recompilation may be necessary for the units or partitions whose backup files were dam-
aged and any other units or partitions that depend upon them.  Cases where the backup
information was damaged will be reported as warnings.

If executed when the current working directory is that of an environment, then it can be
executed simply as:

a.restore

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display each item restored
4-86



MAXAda Utilities
a.rmenv 4

Destroy an environment; compilation, linking, etc. no longer possible  

The syntax of the a.rmenv command is:

a.rmenv [options] environment_pathname

The following represents the a.rmenv options:

Removes an environment, including all units, their state information, and any partition
definitions.  The source files and any built partitions are left intact after this operation.

The -f option can be used to force an environment’s destruction, even if some portion of
it does not exist.  For example, if the a.mkenv utility was interrupted during its execution
(due to not enough disk space, power failure, etc.), the environment may not have been
successfully created.  If the environment cannot be recognized as valid, MAXAda will fail
with a message similar to the following:

a.rmenv: fatal: invalid environment: /env_path/env_name

The -f option will force this environment to be removed, thereby overriding such error
messages.

The environment can be re-created with a.mkenv (see page 4-53), but it will be empty
and any state will have to be reconstructed by the user.

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force an environment destruction, even if it or some portion of it does not
exist

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)
4-87



MAXAda for Linux Reference Manual
a.rmsrc 4

Remove knowledge of source files (and units therein) from the environ-
ment

The syntax of the a.rmsrc command is:

a.rmsrc [options] [source_file ...]

The following represents the a.rmsrc options:

The a.intro tool can be used to re-associate the source files (and units therein) with the
environment, but those units will be re-created in the uncompiled state.

Option Meaning Function

-all remove all Remove all units in the current environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-r remove Remove the actual source files

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list file_list is assumed to be a list of files. When this option is given,
a.rmsrc reads file_list and removes each file in the list

If - is given, a.rmsrc reads stdin instead

-V very verbose Echo removed units to stdout

-v verbose Display a message for each removed source file
4-88



MAXAda Utilities
a.script 4

Create script that will reproduce environment or part thereof

The syntax of the a.script command is:

a.script [options] [partition ...]

The following represents the a.script options:

a.script generates a sh(1) script that can be used to re-create the current environ-
ment (or an environment specified with the -env option).  The sh script, when executed,
will create the environment, set up all the environment-wide options, set up the Environ-
ment Search Path, introduce all the same files as in the original environment, fetch all the
same units, resolve all the same ambiguities, define all the same partitions, set the environ-
ment permissions, etc.  The only difference between the environment created by the script
and the one on which a.script was run is that nothing will be built in the one created
by the script.

Normally, the generated script is written to standard output.  The output can be redirected
to a file or the -o option may be used to specify a filename.  The specified file will be cre-
ated with execute permissions.

Normally, the generated script creates the environment using the same release as the envi-
ronment on which you ran a.script.  The -rel option will override that and make the
script create an environment using the release specified.  This is quite useful for re-creat-
ing an existing environment after installing a new release of MAXAda.

Normally, the generated script ensures that the created environment has the same permis-
sions as the one in which a.script was run.  If a.script is run on a read-only envi-
ronment, this could prove troublesome when a build is attempted in the created environ-

Option Meaning Function

-active active Script reproduces only active partitions

-allparts all parts Script reproduces all partitions

-echo echo Script echos additional progress information

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-no_chmod no a.chmod Script doesn't set environment permissions

-no_mkenv no a.mkenv Script doesn't reproduce environment or environment-wide options

-o file output file Create script in file file instead of standard output

-pfile file parts file Script reproduces only partitions listed in file file

-rel release release Specify a MAXAda release (other than the default release)

-simple simple Script issues one a.intro command per source file; script is slower but
is easier to edit
4-89



MAXAda for Linux Reference Manual
ment since the permissions on the created environment will be read-only as well.  The
-no_chmod option prevents the generated script from setting the environment permis-
sions when creating the new environment so that a build may be performed in the created
environment immediately.

The -no_mkenv skips creation of the environment.  This allows the user to create the
environment and set up the environment-wide options manually, only using the script to
populate the environment.

Normally, the generated script issues only a small number of a.intro commands, speci-
fying large numbers of source files to those few invocations.  (In fact, most of the time,
only a single a.intro command is necessary.)  The -simple option issues one
a.intro command per source file in the generated sh script.  This allows the user to
easily understand and modify the script after it has been generated.  However, using this
option results in a much slower-executing script.

The environment is created as an exact replica of the one on which a.script was run.
If the source files were introduced with relative pathnames in the original environment,
either the generated script should be executed in the same directory where a.script
was originally run, or all the source files in the original environment should be copied to
the directory where the sh script will be executed so that it has access to them.  (Note that
the source files are mentioned in the script relative to the location where the command was
run, not relative to the environment.)

If partition names are passed on the command line to a.script or if any of the follow-
ing options are specified, 

• -active - to reproduce only active partitions

• -allparts - to reproduce all partitions

• -pfile file - to reproduce those partitions listed in file file

the generated script will avoid introducing, fetching or hiding any units in the generated
environment, and will define only those partitions indicated by the above options and/or
arguments.  This is primarily useful for creating a new environment with all the same par-
tition definitions as an earlier one if planning to add the original environment to the gener-
ated environment's path.

The -echo option makes the generated script emit more verbose information with respect
to its progress when it is run.

In addition, the generated script may be executed with certain options.  (See “Generated
Script - Options” on page 4-91).
4-90



MAXAda Utilities
Generated Script - Options 4

Reproduce environment on which a.script was executed

The syntax for the script generated by a.script is:

generated-script [options]

where generated-script is the name of the script generated by a.script.

The following represents the generated-script options:

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force environment creation, even if it or some portion of it already exists
(similar to the -f option to a.mkenv)

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release for environment creation
4-91



MAXAda for Linux Reference Manual
a.syntax 4

Check the syntax of source files

The syntax of the a.syntax command is:

a.syntax [options] [source_file ...]

The following represents the a.syntax options:

a.syntax automatically preprocesses files with a .pp extension, unless the -!P option
is given.  The -P option must be specified for files with an extension other than .pp that
require preprocessing.

The error emission options allow you to process error messages in a number of ways.
Syntactic errors in the file that a.syntax is parsing are listed to stdout when the -e
option is specified.  This lists only the erroneous lines with an explanation for each error.

More useful perhaps is the -el option which lists entire source files with errors to stdout
with error messages interspersed at the positions where they occur.  This option also lists

Option Meaning Function

-e[e | l | L | v] errors Control error emission style:

-e list syntax errors for files a.syntax is unable to parse to stdout
with related source lines

-ee embed syntax errors in files that a.syntax is unable to parse and
invoke $EDITOR 

-el list source files to stdout, interspersed with any syntax errors —
only source files that a.syntax is unable to parse

-eL list source files to stdout, interspersed with any syntax errors —
even source files that a.syntax is able to parse

-ev embed syntax errors in files that a.syntax is unable to parse and
invoke vi

The default behavior is to list syntax errors to stderr with file name,
and line and column number

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-P preprocess Preprocess source files before checking syntax

-!P no preprocess Do not preprocess source files (regardless of source_file extension)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list file_list is assumed to be a list of files. When this option is given, a.syn-
tax reads file_list and processes each file in the list

If - is given, a.syntax reads stdin instead

-v verbose Echo files as they are processed
4-92



MAXAda Utilities
the line number for each line in the source file and displays a banner with the source file’s
name at the top of the listing.  The -eL option provides the same functionality but will list
the source file even if no errors have occurred.

The -ev option embeds the errors directly into the source file, and then opens the source
file with the vi editor.  Error messages are marked with the pattern ###, and the editor is
positioned in the file with the cursor at the point of the first error.  Each error is marked
where it is found in the file and an explanation is given.  Each error line is prefixed with
--, which denotes an Ada comment so that the compiler can still process that file if the
error messages have not been deleted.  MAXAda prompts to recheck syntax when editing
is completed.  The -ee option provides the same functionality but opens the source file
with the editor designated by the EDITOR environment variable.

The -s option takes as its argument a file_list containing the names of all the files to be
processed by a.syntax.  This is useful in order to check the syntax of many files at
once.  Each file must be on a separate line in the file_list.  

If - is specified for file_list, a.syntax uses input from stdin.  This is provided
mainly so that users can pipe output from another UNIX command to a.syntax.
4-93



MAXAda for Linux Reference Manual
a.tags 4

Generate a cross reference file

The syntax of the a.tags command is:

a.tags [options] source_file ...

The following represents the a.tags options:

The a.tags command is analogous to the ctags(1) or etags(1) commands, pro-
viding cross referencing of Ada units and, optionally, of types as well. a.tags can be
used to prepare an index of where and in which file a particular unit is defined. It also can
be used to create a file usable by several editors (including vi(1) and emacs(1)) that
allows a unit to be directly edited without knowing the file in which it is defined. 

Option Meaning Function

-a append Append to cross reference file

-c ctags Generate ctags(1) tags file (default behavior)

-e emacs Generate etags(1) TAGS file

-env env environment Specify an environment pathname

If the “-env” option is specified, the cross reference file is created in the
environment specified by env

-i infos Suppress info messages

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Read file_list for a list of files to process

If - is specified for file_list, read file list from stdin

-t types Create cross reference information for types also
(default behavior with -e)

-v vgrind Generate vgrind index tags file

-w warnings Suppress warning messages

-x cxref Generate cxref(1) index to stdout

-B backward Record backward search patterns (ctags only)

-F forward Record forward search patterns (ctags only)

-H help Display syntax and options for this function

-P preprocess Preprocess source files

-!P no preprocess Do not preprocess source files (regardless of source_file extension)

-V verbose Mention source files as they are processed
4-94



MAXAda Utilities
In Screen 4-10, the user is positioned in a MAXAda environment containing Ada source
code and gets an indexed listing because of the -x option.

Screen 4-10.  a.tags -x Example

The output gives the locations of packages, subprograms, tasks, protected units, entries,
and generic units. The -t option adds types to the preceding list. Each line contains the
name of the construct, line number, file in which it is defined, and the program text at that
line. 

The command 

$ a.tags  -t  *.a

executed in the same MAXAda environment as the previous example creates a file named
tags containing the same type of information, but in a form readable by the vi editor.
The tags file contains entries for types as well as units. 

The command 

$ a.tags  -t  -e  *.a

executed in the same MAXAda environment as the previous example creates a file named
TAGS containing the same type of information, but in a form readable by the emacs edi-
tor. The TAGS file contains entries for types as well as units. 

The command 

$ vi  -t  HANOI.SOLVE

then calls the vi text editor, locates the proper file, and places the cursor at the definition
of the named type or unit ready for editing. While in vi, the command 

:ta  TERMINAL

searches for the file in which TERMINAL is defined, enters the file, and again places the
cursor at the named type or unit. Alternately, you may achieve the same effect by placing
the cursor on the first character of a unit and then pressing the <CONTROL> key and the
<]> key simultaneously. 

The emacs command find-tag, normally bound to M-., will prompt for a unit name,
and the location of a TAGS file the first time it is used.  When they are entered, it will load
the file containing the unit, and position the cursor on the line containing the declaration of
the named unit or type.

$ a.tags  -x  *.a
HANOI10 hanoi.aprocedure HANOI is
HANOI.DRAW_RING38 hanoi.aprocedure DRAW_RING
HANOI.DRAW_START72 hanoi.aprocedure DRAW_START is
HANOI.SOLVE93 hanoi.aprocedure SOLVE
TERMINAL2 termbody.apackage body TERMINAL is
s#TERMINAL2 termspec.package TERMINAL is
4-95



MAXAda for Linux Reference Manual
Both Ada specifications and incomplete types are named by adding the prefix s# to the
Ada name, bodies are named with the unmodified Ada name, and stubs for separates are
named by adding the prefix stub# to the Ada name. These constructs are listed with their
simple name (including the s# or stub# if present) only if that simple name is unique
across all other tags. The fully expanded name is always given so that the user may search
for either the simple name (if unique) or the fully expanded name.

Overloaded subprograms are not differentiated when generating ctags(1) tags out-
put, or either vgrind or cxref(1) output. However, the tag can identify the correct
file, and repeated application of the search pattern will find the desired subprogram.  The
search pattern is generalized to match all versions of the overloaded subprogram. This
generalization can cause the pattern to match things other than the desired unit.  Over-
loaded subprograms are differentiated when generating etags(1) TAGS output.

NOTE

When using vi -t, the desired unit or type must be in the same
case (upper case or lower case) as it appeared in the source file,
unless the vi ignorecase option is used. See the vi(1) man
page. 
4-96



MAXAda Utilities
a.touch 4

Make the environment consider a unit consistent with its source file's
timestamp

The syntax of the a.touch command is:

a.touch [options] [unit-id ...]

The following represents the a.touch options:

unit-id is defined by the following syntax:

unit[/part] | all[/part]

where part is the specification, body, or all; abbreviations are accepted.

The a.touch tool is used to force a unit to be considered consistent with its source file,
usually to keep it from being rebuilt by a.build.  Note that it may still be considered
inconsistent for other reasons, such as a required unit being changed.

The a.invalid tool is provided to allow the opposite functionality.  See “a.invalid” on
page 4-32 for details.

NOTE

The file specified by the -pragma option may only contain inde-
pendent configuration pragmas.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each invalidated unit

-H help Display syntax and options for this function

-pragma file config pragmas Touch independent configuration pragmas from the given source file

-source file source file Touch all units in the specified file
4-97



MAXAda for Linux Reference Manual
a.trace 4

Format and display raw trace records

The syntax of the a.trace command is:

a.trace [options] executable_file | trace_data_file [task ...]

The following represents the a.trace options:

When “-u file” is used, event lookups will occur for all Ada events logged with the
ccur.user_trace package using the sub_id as the table key.  The format_table
specified must be named “ada_user_trace”.

See “Viewing Trace Events with a.trace” on page 11-25 for more details.

Option Meaning Function

-a ASCII Dump ASCII trace records (read-only)

-c file config Use alternative trace config template

-e events Include symbolic event name with -a listing

-env env environment Specify an environment pathname

-g ghost Include ghost tasks (RTS internal tasks)

-l list List tasks found in data file

-not_rts not_rts The datafile was created by ntraceud without the Ada tracing runtime
library (-trace or -ntrace options in the partition).  Implies the -r
option and precludes the -a option

-r raw Dump raw trace records (read-only)

-rel release release Specify a MAXAda release (other than the default release)

-s stamp Include timestamp in ASCII (-a) listing

-sx stamp Include raw interval_timer (hexadecimal) timestamp in ASCII (-a) listing

-t file tasks Only include tasks found in file

-u file user Include user table in file

-v verbose Include task control block addresses

-w warning Suppress warning messages

-E file eventfile Use alternative event map file

-H help Display syntax and options for this function

-T file table Use alternative trace table

no options Produce <prog>.ntrace.* files for ntrace(1)
4-98



MAXAda Utilities
Compile Options 4

The following options may be issued to a.mkenv and a.options (as well as a.com-
pile).

See “Compile Options” on page 3-20 for a conceptual discussion of compile options
within an environment.

Negation (!) 4

Compile options may be preceded by ! to negate them (e.g. -!S).  This is useful for over-
riding a more general option that enabled them.  See “Compile Options” on page 3-20.

Option Meaning Function

-e[e | l | L | v] errors Control error emission style:

-e list errors to stdout, with related source lines
-ee embed errors in source files and invoke $EDITOR 
-el list source files to stdout, interspersed with any errors — only

source files with errors
-eL list source files to stdout, interspersed with any errors — even

source files with no errors
-ev embed errors in source files and invoke vi

The default behavior is to list errors to stderr with file name, and line
and column number

-g[level] debug level Select debug level: 0 (none), 1 (lines) or 2 (full)

-g is equivalent to -g2

-i info Suppress information only messages

-opp opportunism Make opportunistic use of unit bodies to improve code optimization
(beyond inlining)  (Not supported in current release of MAXAda product)

-sm share_mode share mode Apply pragma SHARE_MODE(share_mode)

-w warnings Suppress warning and info messages

-N not shared Set default of pragma SHARE_BODY to FALSE

-O[level] optimize Select level of code optimization (1-3)

-O is equivalent to -O2

-Qkeyword[=value] qualifier Specify a qualifier keyword

-S suppress Suppress checks (same as pragma SUPPRESS_ALL)
4-99



MAXAda for Linux Reference Manual
Options which disallow arguments behave as though they were never specified when they
are negated.

Options which allow arguments take on values that effectively disable them when
negated:

Negating a -Q option sets it to its default value.  See “Qualifier Keywords (-Q options)”
on page 4-105.

See “Compile Options” on page 4-99 for a complete list of compile options.

Debug Level (-g[level]) 4

This parameter controls the level of debug information generated for compilations in a
given environment.  This parameter can apply to a single unit or to an entire environment.   

none    (0) No debug information.  Debugging tools requiring line num-
bers or symbolic information will not fully function on mod-
ules compiled at this debug level.

lines   (1) Minimal level of debug information which provides line num-
ber information only.  Debugging tools requiring symbolic
information will not fully function on modules compiled at this
debug level.

simple  (2) Simple symbolic debug information: variables are described in
only the most common location, and the boundaries of lexical
blocks which have become discontiguous via optimization are
approximated as if contiguous; this is similar to debug infor-
mation produced by most competitor's compilers.  This is
required for most debugging tools and packages to function
with reasonable accuracy on code compiled with minimal opti-
mization.

full    (3) Full symbolic debug information.  This is required for most
debugging tools and packages to function fully, especially with
optimized code.

When new environments are created, the value of this parameter is set at the default value,
none (0).

If specified as a command-line parameter without a value (-g), the debug level is set to
full (3).

Negation Equivalent to:

-!g -g0

-!O -O1

-!sm -sm non_shared
4-100



MAXAda Utilities
 See “Debugging” on page 3-38 for more information.

See “Compile Options” on page 4-99 for a complete list of compile options.

Opportunism (-opp) 4

Make opportunistic use of unit bodies to improve code optimization (beyond inlining).
This option is not supported in the current release of MAXAda.

See “Compile Options” on page 4-99 for a complete list of compile options.

Share Mode (-sm) 4

You control whether units are compiled for ordinary static linking (for use directly or in an
archive) or as position independent code (for inclusion in a shared object).  Since position
independent code is not yet supported on Linux, the only possible value for this option is:

non_shared Compilations generate code that will be statically linked.  Units with
this share mode cannot be included in a shared object partition, but
may be included in an archive or used directly in an active partition.

See “Compile Options” on page 4-99 for a complete list of compile options.

Not Shared (-N) 4

The implementation-defined pragma SHARE_BODY indicates whether or not an instantia-
tion is to be shared.  For this release, the default for pragma SHARE_BODY is not to share
any generics.

This option sets the default to not share any generics, but since this is already the default,
it has no effect.  The default is to share all generics that can be shared.  This option negates
this and sets the default to FALSE.

See “Pragma SHARE_BODY” on page M-127 for more information.

See “Compile Options” on page 4-99 for a complete list of compile options.

Optimization Level (-O[level]) 4

The MAXAda compiler is capable of performing various levels of program object code
optimization.  There are three levels of optimization available: MINIMAL (-O1), GLO-
BAL (-O2), and MAXIMAL (-O3).  Each higher level of optimization is a superset of the
level of optimization which precedes it.  

The quality of code produced by the compiler is representative of the level of optimization
at which it was compiled.  
4-101



MAXAda for Linux Reference Manual
- Optimization level MINIMAL produces less efficient code, but allows
for faster compilation times and easier debugging.  

- Level GLOBAL produces highly optimized code at the expense of
greater compilation times.  

- MAXIMAL is an extension of GLOBAL that is capable of producing
even better code, but may change the behavior of the program in
some cases.  MAXIMAL attempts strength reduction operations that
may raise OVERFLOW_ERROR exceptions when dealing with values
that approach the limits of the architecture of the machine.

The default for the optimization level is MINIMAL.

If specified as a command-line parameter without a value (-O), the optimization level is
set to GLOBAL (-O2).

Table 4-4 shows these optimizations:

.

Table 4-4.  Levels of Optimization 

OPTIMIZATIONS
MINIMAL

(-O1)

GLOBAL

(-O2)

MAXIMAL

(-O3)

Short circuit boolean tests * * *

Use of machine idioms * * *

Literal pooling * * *

Trivial constant folding * * *

Binding of intermediate results to registers * * *

Determination of optimal execution order * * *

Simplification of algebraic expressions * * *

Re-association of expressions to collect constants * * *

Detections of unreachable instructions * * *

Elimination of jumps to adjacent labels * * *

Elimination of jumps over jumps * * *

Replacement of a series of simple adjacent instructions by a single 
faster complex instruction

* * *

Constant folding * * *

Elimination of unreachable code * *

Insertion of zero trip tests * *
4-102



MAXAda Utilities
NOTE

Additional optimizations are performed when given the -O3
opt ion tha t  do not  ge t  performed when the  MAXIMAL
OPT_LEVEL pragma is applied alone.  This is also true with
respect to the relationship between the -O2 option and the GLO-
BAL OPT_LEVEL pragma.  In order to take full advantage of
optimization at a given level, it is recommended that the -O
option be used instead of the pragmas.

Elimination of dead code * *

Constant propagation * *

Variable propagation * *

Constraint propagation * *

Folding of control flow constructs with constant tests * *

Elimination of local and global common sub-expressions * *

Move loop invariant code out of loops * *

Reordering of blocks to minimize branching * *

Binding variables to registers * *

Detection of uninitialized uses of variables * *

Partial folding of Boolean expressions * *

Direct branching to exception handlers * *

Loop unrolling * *

Register reallocation and redundant move elimination * *

Instruction scheduling and reordering * *

Comprehensive strength reduction *

Test replacement *

Induction variable elimination *

Elimination of dead regions *

Table 4-4.  Levels of Optimization  (Cont.)

OPTIMIZATIONS
MINIMAL

(-O1)

GLOBAL

(-O2)

MAXIMAL

(-O3)
4-103



MAXAda for Linux Reference Manual
Also, if pragma  OPT_LEVEL is used to optimize code, only code
within the scope of the pragma is optimized.  See “Pragma
OPT_LEVEL” on page M-121 for more information.

See “Compile Options” on page 4-99 for a complete list of compile options.

Qualifier Keyword (-Qkeyword[=value]) 4

Qualifier keywords (or -Q options as they are more widely known) can be specified by
using this option.  See “Qualifier Keywords (-Q options)” on page 4-105 for a list of these
options.  Also, a.options -HQ provides this list.

See “Compile Options” on page 4-99 for a complete list of compile options.

Suppress Checks (-S) 4

Suppresses all language-defined checks.  Equivalent to pragma SUPPRESS_ALL.

See “Pragma SUPPRESS_ALL” on page M-131 for more information.

See “Compile Options” on page 4-99 for a complete list of compile options.
4-104



MAXAda Utilities
Qualifier Keywords (-Q options) 4

inline_line_count 

The maximum number of statements allowed within an inline expanded subpro-
gram. The default value is 25 lines. In other words, if the default is used, then only
those subprograms which contain 25 or fewer lines will be expanded inline. 

inline_nesting_depth

The maximum depth level of inline expanded subprograms. For example, if this
value is 3, the compiler will perform nested inlines up to and including three levels
deep. Any nested inline calls greater than three levels deep will not be expanded
inline. The default value for this parameter is 3. 

Keyword Possible values Default value

inline_line_count (0 ..       4096) 25

inline_nesting_depth (0 ..         50) 3

inlines_per_compilation (0 ..       4096) 75

inline_statement_limit (0 ..      16384) 1000

opt_class (safe, unsafe, standard) safe

optimize_for_space (false, true) false

optimization_size_limit (0 ..    1000000) 50000

objects (0 ..      10000) 128

loops (0 ..        100) 20

unroll_limit_const (0 ..        100) 10

unroll_limit_var (0 ..        100) 2

unroll_limit (0 ..        100) 4

growth_limit (0 ..      10000) 25

interesting (-2**31 ..   (2**31)-1) 0

target (ppc604) ppc604

benchmark

invert_divides

no_component_reorder

no_multiply_add

noreorder

sync_volatile

warn_component_reorder
4-105



MAXAda for Linux Reference Manual
inlines_per_compilation

The maximum number of inline expansions that will be performed in a single com-
pilation. Once this number of inline expansions has been performed for a given
compilation, no other inline expansions will be performed by the compiler. The
default value for this parameter is 75. 

inline_statement_limit

The maximum number of Ada statements that will be inlined. When the running
total of statements included within inline-expanded subprograms exceeds this limit,
then all subsequent inline expansions will not be performed. The default value for
this parameter is 1,000. 

opt_class

Acceptable values for this parameter are safe, unsafe, and standard.  Cur-
rently, safe and standard have the same effect.  safe is the default value.  If set
to unsafe, additional optimizations will be performed that do not ensure that a pro-
gram will perform correctly.  (For instance, if set to unsafe, a loop test replace-
ment may cause a program to loop infinitely). 

optimize_for_space

A boolean value that determines whether all routines in a compilation will be opti-
mized for space regardless of the values of other compiler directives. By default,
this parameter is false. 

optimization_size_limit

The maximum number of “expressions” that will be processed at the GLOBAL or
MAXIMAL level of optimization. If this number of expressions is reached, the com-
piler performs all remaining optimization at level MINIMAL. The default value for
this parameter is set at a relatively high number because the number of “expres-
sions” processed during a compilation are not easily identified by inspection of the
Ada source code. This parameter is best used as a ceiling to prevent the compiler
from growing dangerously large (resulting in excessive swapping or perhaps the
exhaustion of available system memory). The default value for this parameter is
50,000. 

objects

The maximum number of objects (per routine) that will be optimized. An object is
any scalar program variable or compiler-generated temporary variable that is a
unique object in the eyes of the compiler. For example, if this number is set to 100,
then only the 100 most-used objects in a given routine will be considered as “real”
objects by the compiler. Real objects are the only objects taken into consideration by
the optimizer when it comes time to perform optimizations such as copy propaga-
tion and dead-code elimination. By default, only the 128 most often used objects
will be considered for optimizations. 

loops

The maximum number of loops (per routine) that will be considered for optimiza-
tion. Loop optimizations that occur at the higher levels of optimization are loop
4-106



MAXAda Utilities
unrolling, test replacement, strength reduction, and code motion. By default, only
the 20 most deeply nested loops in a given routine will be optimized. 

unroll_limit_const=N

Limit the number of times a loop with a number of iterations known at compile time
may be unrolled. For more information see the "Program Optimization" chapter of
the Compilation Systems Volume 2 (Concepts) (0890460).  N must be an integer
greater than or equal to 0.  The default on Series 6000 with global or maximal opti-
mization is 10.

Note that while unrolling a loop body, the bounds of a small array may be exceeded
within the copies, though the loop itself is iterated just a very few times.  This will
result in a "possibly exceeded array bounds" message during compilation, which
will not appear if the unroll limit is set to less than the number of elements in the
small array.  This is an unlikely situation, and in any event the code is executed cor-
rectly.

unroll_limit_var=N

Limit the number of times a loop with a number of iterations not known at compile
time may be unrolled. For more information see the "Program Optimization" chap-
ter of the Compilation Systems Volume 2 (Concepts) (0890460).  N must be an inte-
ger greater than or equal to 0. The default on Series 6000 with global or maximal
optimization is 2, as analysis indicates this is most profitable on Series 6000.

unroll_limit

This options determines the unroll limit for both constants and variables in the
absence of either of -Qunroll_limit_var or -Qunroll_limit_const.
Obviously, if either is specified, it overrides -Qunroll_limit.  And if both are
specified, -Qunroll_limit is completely ignored.

growth_limit 

The growth limit parameter is a raw percentage that specifies the percentage
increase allowed in a program’s size due to the optimization performed on the pro-
gram. By default, the combined effect of all optimizations which trade space for
time cannot increase the size of a program by more than 25 percent. The raw per-
centage argument is an integer value that represents the percentage in size above 100
percent that the program may grow to be. 

interesting 

This option indicates that the default degree of interest for every object in the com-
pilation shall be the specified value, unless the degree of interest for that object is
overridden by a pragma INTERESTING in the source (see “Pragma INTEREST-
ING” on page M-115).

no_component_reorder

Normally, the compiler reorders record components without representation clauses
in order to better utilize memory (filling in holes in records caused by alignment,
etc.).  This behavior occurs even for unpacked types.  

The -Qno_component_reorder option prevents such reordering.
4-107



MAXAda for Linux Reference Manual
warn_component_reorder

Normally, the compiler reorders record components without representation clauses
in order to better utilize memory (filling in holes in records caused by alignment,
etc.).  This behavior occurs even for unpacked types.  

The -Qwarn_component_reorder option causes the compiler to issue an info
diagnostic when reordering does occur.  See “Informational Messages” on page
3-31.
4-108



MAXAda Utilities
Link Options 4

MAXAda supports a set of link options for each partition.  These link options are persis-
tent and may be specified using any of the methods discussed in “Link Options” on page
3-34.

Option Meaning Function

-ar=lx archive Pass a -lx option to the system loader (ld), ensuring that it will be
statically linked

-bound bound Set the default task weight to BOUND

-elab_src elab source Create a source file named “.ELAB_main.a” representing the
elaboration of library units and execution of the main subprogram
(where main is the unit designated as the main subprogram)

-f77version ver F77 version Specify which Concurrent Fortran libraries are linked into parti-
tions, if any are applicable.

-forgive forgive Cause a partition to be linked despite the fact that some of its units
are either not compiled or inconsistent

-incr incremental Allow the archive partition to be relinked incrementally

-ld[:order] arg ld argument Pass an argument to the system loader (ld)

-multiplexed multiplexed Set the default task weight to MULTIPLEXED (multiplexed tasks
are not supported in this release)

-nosoclosure no so closure Do not include full transitive closure of shared objects’ units

-skipobscurity skip obscurity Skip obscurity checks

-sl share link Specifies a soft link from the shared object pathname to the output
pathname

-so=lx shared object Pass a -lx option to the system loader (ld), ensuring that it will be
dynamically linked

-sp path share path Set the shared object partition’s pathname on the target system to
path

-trace[:args] trace Activate tracing; args is a comma-separated list of the following
options, abbreviations allowed (defaults in parentheses):

enabled=true | false   (true)
mechanism=internal[/default | rcim_tick] | 
          ntraceud   (internal/default)
buffersize=n   (1000)
rtsinstrumentation=true | false   (true)
elabinstrumentation=true | false   (true)
4-109



MAXAda for Linux Reference Manual
Fortran Libraries 4

The -f77version link option affects which Concurrent Fortran libraries are linked into
partitions, if any are applicable.

If specified for a partition or for an environment which contains a partition (see “a.mkenv”
on page 4-53), the partition is linked with the specified Concurrent Fortran version, and if
using any shared objects, will run properly on a target system with the specified Concur-
rent Fortran version shared objects installed.

If no -f77version link option is specified, the partition is linked with the default Con-
current Fortran release on the system where it is linked.  The default version can be deter-
mined with the c.release tool if Concurrent Fortran version 6.1 or later is installed.  If
no default version can be determined yet only a single Concurrent Fortran version is
installed, it will be used.

The appropriate version(s) of the Concurrent Fortran 77 RPM(s) must be installed.  That
is:

ccur-f77-x.y
ccur-f77-tools-x.y
ccur-f77help-x.y
ccur-f77libs-x.y

where x.y is the Concurrent Fortran 77 version.

Note that the x.y version number is part of the RPM name instead of the RPM version
number. This allows support for building partitions for multiple Concurrent Fortran 77
versions from a single Linux system.

Share Path 4

The -sp option specifies the shared object partition’s pathname on the target system.  It
does not cause the shared object to be created in the specified path; the shared object will
still be built at the pathname specified for the target.  However, all user programs created
that require units from this shared object will expect the shared object to be in that location
when they begin execution.  The shared object must be placed at the path specified by -sp
on the target system before any executables using it can be run.

With the -sl option, a soft link is created from the shared object’s pathname to the output
pathname.  Using this option in conjunction with the -sp option removes the need for the
shared object to be explicitly placed at the path specified by the -sp option.

See “Share Path” on page 3-14 for more information.

See “Link Options” on page 4-109 for a complete list of link options.
4-110



MAXAda Utilities
Incrementally Updateable Partition 4

When -incr is specified on an archive partition, the result is an an incrementally update-
able partition.  If any units contained within this partition are changed, only those units
will be updated when the partition is relinked.  In order to reduce implementation over-
head, the partition will be completely rebuilt if units that could have been included in the
partition are removed from the environment.

The timestamp of the partition is used to determine which object files need to be replaced
within it when the partition is relinked.

WARNING

The user must never change the timestamp of the target file for a
partition configured with this option.  If the target file's timestamp
were changed and then relinked, the target file might contain stale
object files.

See “Link Options” on page 4-109 for a complete list of link options.

ld Argument 4

The -ld[:order] option exists so that the user may specify arbitrary arguments, including
options, object files, libraries, etc. to the system linker (ld), or archiver (ar).  

Frequently, the [:order] suffix is not required.  It is only needed when an argument must
appear at a specific place among the other arguments in the ld command (or ar com-
mand).  In that case, the order determines the place, with -ld options with lower-num-
bered orders appearing before -ld options with higher-numbered orders.  Ordering of
multiple options with the same ordering is determined by certain rules (see “Link
Options” on page 3-34).

The user can determine the place among the options specified by a.link too, because
those options are given predefined orders.

For active and shared object partitions, the predefined orders for options to ld are: 

   Order a.link specified options Example(s) 

100 undefined symbol option
(active only)

-u _start 

200 entry symbol option
(active only)

-e _start 

300 control options -r, -G, -QAda 

400 dynamic control -dn, -dy 
4-111



MAXAda for Linux Reference Manual
500 dynamic linker
(active only)

-dynamic-linker /lib/
ld-linux.so.2 

600 output file -o a.out 

700 share path 
(shared object only)

-h /usr/local/lib/lib-
stuff.so 

800 map file 
(active only)

-M /tmp/map 

900 bind file 
(shared object only)

-Qbind:/usr/ada/rel/bind_file 

1000 crt early files 
(active only)

/usr/lib/crt1.o 

1100 object files -Qload=/tmp/objfiles 

2000 start of libs (active only) -(, -Qmult_archive 

2200 MAXAda -L option 
(active only)

-L/usr/ada/rel/lib/

2300 MAXAda runtime active 
(active only)

-lruntime.active

2500 dependent partitions /usr/ada/rel}/lib/libpre-
defined.a

3000 -ld options without explicit
:order 

3100 F77 libs 
(active only)

-lhU77, -lfrtbegin 

3200 MAXAda ARMS support
(active only)

-lpthread,
-lccur_rt 

3300 MAXAda semaphoes 
(active only)

-lsemaf, -lsemat 

3400 NightTrace support 
(active only)

-lntrace 

3600 MAXAda runtime stubs 
(active only)

-lruntime.stubs 

3700 AXI support 
(active only)

-lXm, -lXt, -lXAda 

3800 target-specific libraries
(active only)

-lud, -lgcc_eh, -lgcc 

3900 C library 
(active only)

-lc 

4000 end of libs 
(active only)

-) 

5000 crt late files 
(active only)

/usr/lib/crtn.o 

   Order a.link specified options Example(s) 
4-112



MAXAda Utilities
For archive partitions, the predefined orders for options to ar are: 

Users should avoid using the order numbers in the above table, because MAXAda does
not guarantee the order of options which share the same order. 

Tracing 4

The -trace option exists so that the linker can select an appropriate runtime library to
link for tracing.  

When linked with this tracing option, the resulting executable will generate tracing output
when executed as specified by the attributes provided to this option.  The syntax of this
option is:

-trace[:args]

where args is a comma-separated list of the following options (defaults in parentheses):

enabled=true | false   (true)
mechanism=internal[/default | rcim_tick] | 
          ntraceud   (internal/default)
buffersize=n   (1000)
rtsinstrumentation=true | false   (true)
elabinstrumentation=true | false   (true)

Each of the above keywords may be abbreviated to any degree so long as its meaning
remains unambiguous.  Also, all the keywords are case-insensitive.

NOTE

The prefix -trace is case-sensitive like the other link options
and so must be in lowercase.

   Order a.link specified options Example(s) 

100 undefined symbol option
(active only)

-u _start 

300 control options -rc, -qc, -Qload=  

600 output file output file

3000 -ld options without explicit
:order
4-113



MAXAda for Linux Reference Manual
The output may be analyzed with the a.trace utility or with the Concurrent NightTrace
utility, ntrace, if it is available on your system.  For more about tracing, see Chapter 11,
specifically “Tracing Options” on page 11-14.

See “Link Options” on page 4-109 for a complete list of link options.

Task Weight 4

The -bound and -multiplexed options set the task weight for the partitions to which
they are applied, however multiplexed tasks are not supported in this release.  These
options override any other specifications such as those obtained from pragmas.  For more
information, see “Task Weights” on page 5-3 and “Pragma TASK_WEIGHT” on page 6-9.

See “Link Options” on page 4-109 for a complete list of link options.

Shared Object Transitive Closure 4

Normally, if a shared object partition is included in another partition, then all units in that
shared object partition are included, including any that might not be required because of
normal Ada semantic dependence (see RM 10.1.4).  As a result, further units may be
included, and even further archive or shared object partitions (and this may propagate to
even further units and partitions as a result of the latter).  This is necessary to ensure that
linker errors do not result because of undefined external symbols.

This behavior can be disabled with the -nosoclosure link option.  If used, units in a
shared object that are not required by Ada semantic dependence rules are not considered,
nor are any units or partitions on which they might depend.

Caution must be exercised when using the -nosoclosure option, or linker errors may
result.  Even though any extra units in a shared object are not being considered, the shared
object is being included, and those units cannot be separated from the shared object.  So
any symbol references from those units must be satisfied with external symbol definitions
or the system linker will produce undefined external symbol reference errors.  The system
linker option -Znodefs may be used to suppress those errors so long as they are never
really used as the program executes.  The link options would then include:

-nosoclosure -ld -Znodefs

NOTE

If -Znodefs was used to link, and any undefined external sym-
bols really are referenced as the program executes, the program
most probably will abort with SIGSEGV, SIGBUS, or SIGILL.

See “Link Options” on page 4-109 for a complete list of link options.
4-114



MAXAda Utilities
Obscurity Checks 4

When a shared object partition is included in a program, it may include units in addition to
those required by Ada semantics dependence (see RM 10.1.4).  Also, because of shared
object transitive closures (see “Shared Object Transitive Closure” on page 4-114), any
units required by those additional units will be included. If the shared object partition is
from a foreign environment, it is possible that the additional units may have been replaced
in the current environment (or any environment nearer than the foreign one) with alternate
versions.  Those local (or nearer) versions are said to obscure the foreign versions.

Because shared objects must be included as a whole, those foreign versions must be
included as well.  a.link makes every possible effort to ensure that programs behave
correctly in these cases, but there are a handful of cases where it is impossible, and
a.link is forced to issue an error.

Please note in the following diagrams:

- The environments are named LOCAL and FOREIGN.

- The arrows a ---> b indicate that a requires b.  

- The shaded areas indicate grouping in shared objects.  

- The units marked with a * are included in the link.  

- The unit named alpha is always the main unit, and is always in the local
environment.  

- The units marked with either info or error indicate that an info or error
diagnostic is emitted for an obscurity associated with that unit.
4-115



MAXAda for Linux Reference Manual
Case 1)

If the obscuring versions are not required by the program and the obscured versions are
required only to satisfy the shared object transitive closure, a.link will include them,
but they will never be used so they are harmless.  

Example:

Because gamma is not required by Ada semantic dependence, the version in LOCAL will
not be included in the link.  The version in FOREIGN is never used but is included in the
link because it is in the same shared object as beta (which is required by alpha).

Case 2)

If the obscuring versions are required and the obscured versions are in required shared
objects, then a.link will ensure via ordering of options to the system linker that the
obscuring versions are used at run-time in preference to the obscured versions, even
though both versions are present in the program.  An informational diagnostic is emitted,
but the program will work properly.  

Example:

In this example, all the units will be included in the link, but MAXAda ensures that the
version of gamma in LOCAL is used in preference to the version in  FOREIGN.

unit gamma

unit alpha *

LOCAL

 

unit gamma *

unit beta *

FOREIGN

 

unit gamma *

unit alpha *

LOCAL

 

unit gamma *

unit beta *

FOREIGN

 

info
4-116



MAXAda Utilities
Case 3)

If the obscuring versions are required and the obscured versions are in non-shared objects,
then a.link is forced to issue an error.  This situation happens as follows:

Example:

In this case, Ada semantic dependence requires the version of epsilon from LOCAL.
The shared object transitive closure (see “Shared Object Transitive Closure” on page
4-114) requires the version of epsilon from FOREIGN.  Because they are both
non-shared objects, it is impossible for them to coexist in the same program.  So, a.link
issues an error.

The -skipobscurity option will override this behavior and force the version of
epsilon from LOCAL to be included in the program, and the version of epsilon from
FOREIGN (and any units it requires that are not required by the version of epsilon in
LOCAL) to be discarded.  If the two versions of epsilon are not substantially different,
such as when the version in LOCAL contains a simple bugfix and adds no new units, this
will work as expected.  If the two versions are substantially different, undefined external
symbol references may result.  In that case, the system linker option -Znodefs may be
used to suppress those errors so long as the references are never really used as the program
executes.  The link options would then include:

-skipobscurity -ld -Znodefs

NOTE

If -Znodefs was used to link, and any undefined external sym-
bols are referenced as the program executes, the program most
probably will abort with SIGSEGV, SIGBUS, or SIGILL.

See “Link Options” on page 4-109 for a complete list of link options.

unit alpha *

LOCAL

 
unit gamma *

unit beta *

FOREIGN

 

error unit epsilon unit epsilon *
4-117



MAXAda for Linux Reference Manual
4-118



Part 2 - Run-Time
Part 2  - Run-Time

Part 2   Run-Time

Chapter 5   Run-Time Concepts ........................................................................ 5-1

Chapter 6   Run-Time Configuration................................................................. 6-1

Chapter 7   Interrupt Handling........................................................................... 7-1



MAXAda for Linux Reference Manual



5
Chapter 5Run-Time Concepts

5
5
5

The MAXAda run-time system, also called the Ada Real-time Multiprocessor System
(ARMS), is a flexible run-time system which has been designed to meet the needs of a
wide range of Ada applications, including: time-sharing, low-priority, single threaded
applications, multi-program shared-memory applications, and the most critical, real-time,
multi-processor, multi-tasking applications.

 It includes the following features: 

• Implementation of all Ada language-defined run-time features

• Memory management

• Automatic distribution of tasks across CPUs

• True parallel task execution

• Predictable task scheduling

• Hardware and software interrupt handling

• Static and dynamic configuration control

Tasking Model 5

The multithreaded, preemptive run-time executive supports standard Ada tasking as
defined by ANSI/ISO/IEC-8652:1995. 

Within this part of this manual, program or application refers to the ENVIRONMENT task
(the main subprogram) and the entire set of Ada tasks that are included in the Ada pro-
gram as defined by its dependencies (e.g., a single executable image on disk, such as
a.out).

On Linux targets, tasks are executed by a clone.  A clone is an operating system process
which shares almost all of its attributes with its parent, including: the address space, file
descriptors, signal actions, etc.  See clone(2) for more information.

The basic execution entity in the tasking model is a server. A server is an anonymous
entity that actually executes on a CPU. Servers are implemented as clones. Servers are
identified by entities called server groups, which are collections of one or more servers.
Server groups are considered the execution resources that are available to Ada tasks.
Server groups can be either named or anonymous, depending on their usage.

Ada tasks are assigned servers based on their task weight, which is either bound or multi-
plexed.
5-1



MAXAda for Linux Reference Manual
By default, all Ada tasks, including the ENVIRONMENT task (main subprogram), have
unique clones dedicated for their execution.  This is termed a completely bound configura-
tion.

NOTE

Technically, the ENVIRONMENT task is not a clone, as it is the
original operating system process that was created to represent the
program (i.e. exec(2)).  This distinction is not important with
respect to this manual.

Alternatively, a completely multiplexed configuration specifies that all Ada tasks, includ-
ing the ENVIRONMENT task (main subprogram), share the resources of a single pool
which is served by a single clone.  The number of clones which serve that pool is config-
urable.

NOTE

Multiplexed task weights are not currently implemented.

Many configuration options exist which provide for a mixture of the multiplexed and
bound configuration models, even within a single application. See “Pragma
TASK_WEIGHT” on page 6-9.

Features 5

Tasking is implemented to meet the following requirements: 

• Compliance with ANSI/ISO/IEC-8652:1995

• Highest possible performance 

• Predictable task scheduling 

• Sensible utilization of multiple CPUs 

• Flexible tasking model configuration

Performance 5

The run-time executive achieves its high performance task rendezvous speeds by mini-
mizing kernel interaction during inter-clone communication and synchronization. Special-
ized kernel-free semaphores combined with low-contention, multithreaded use of system
client/server services provide unequaled task performance. 
5-2



Run-Time Concepts
Task Weights 5

Every task in an Ada program has an attribute called its weight. There are two categories
of weight: bound, and multiplexed. 

Bound Tasks 5

Bound tasks are served by anonymous server groups, each containing exactly one server.
As each bound task is activated, its anonymous server group and server are created, and
begin to execute the task.  The newly created server group exists only to execute the single
task for which it was created. It will never execute any other task.  When the task termi-
nates, its server group is destroyed.  The servers contained in that group may be cached in
the  server  cache for  inclusion in  other  server  groups  la ter  (see  “Pragma
SERVER_CACHE_SIZE” on page M-127) or simply destroyed.  Server groups associ-
ated with bound tasks can be configured only by referencing their tasks.

Multiplexed Tasks 5

Multiplexed task weights are not currently implemented.

Task Scheduling 5

Ada tasks are cooperatively scheduled by the run-time executive and the real-time Linux
kernel. Task activation, rendezvous, and termination are implemented using real-time syn-
chronization services designed for Ada tasking.  Such scheduling adheres to the require-
ments set forth in RM D.2.1 (The Task Dispatching Model).  

When the task dispatching policy is set to FIFO_WITHIN_PRIORITIES, scheduling
occurs as per RM D.2.2.  Other scheduling policies are described in “Pragma
TASK_DISPATCHING_POLICY” on page 6-2. 

Task Time Slices 5

Apart from activation, rendezvous, abort, delay, termination, and priority, task scheduling
is also dependent on its time slice.  A task’s time slice is determined by its quantum
attribute.  A quantum is the length of time an entity actually spends executing on an execu-
tion resource before begin preempted by other entities at the same priority waiting to run.

Under the FIFO_WITHIN_PRIORITES task dispatching policy, tasks quanta are
required to be infinite (i.e. tasks are never preempted by other tasks or programs executing
at the same priority).  

Otherwise, the value of a task’s quantum can be changed via pragmas (see “Pragma
T A S K _ Q U A N T U M ”  o n  p ag e  6 -1 4 )  a n d  r u n - t i m e  c a l l s  ( s e e  t h e
ccur.runtime_configuration package on page 9-11).

The effect of task quanta are dependent on the task dispatching policy in effect, as dis-
cussed in the following sections.
5-3



MAXAda for Linux Reference Manual
Utilization of Multiple CPUs 5

By default, servers are automatically distributed across all available CPUs on the system.
However, applications are also provided precise control over server distribution with the
concept of the CPU bias. 

A CPU bias is a mask in which the relative bit number identifies a CPU number (LSB cor-
responds to CPU #0). For example: 

Note that when more than 1 bit is set in a CPU bias, the kernel continually employs CPU
load-balancing techniques and migrates the server to the least busy CPU specified in the
bias. 

If the application is utilizing physical “local memory” pools, the kernel’s load-balancing
algorithms will not automatically migrate tasks to CPUs without direct access to those
physical pools. However, explicit task CPU bias specifications will allow such migration.
See “Pragma MEMORY_POOL” on page M-119 for information about the implementa-
tion-defined pragma MEMORY_POOL and physical “local memory” utilization. 

NOTE

Specifying a CPU bias of zero causes a run-time diagnostic to be
emitted and preserves the CPU bias inherited from the environ-
ment.

See “Pragma TASK_CPU_BIAS” on page 6-12 and “Pragma GROUP_CPU_BIAS” on
page 6-19 as well as cpu_bias(2) for more information on CPU biases. 

NOTE

Hyper-threading is a feature of the Intel Pentium Xeon processor
that allows for a single physical processor to appear to the operat-
ing system as two logical processors (“sibling CPUs”).  It is
important to note that hyper-threading affects CPU utilization.
For example, if two tasks are scheduled with each one bound to a
specific sibling CPU, each will be affected by the execution of the
other since they share the same physical CPU.

CPU Bias Effect

2#00000100#    Server will be bound to CPU #2 

2#01000010#    Server allowed to execute on CPUs #6 & #1

2#11111111#    Server allowed to execute on all 8 CPUs 
5-4



Run-Time Concepts
Ghost Tasks 5

Ghost tasks are tasks artificially created by the run-time executive for various internal pur-
poses. They are solely for the use of the run-time executive and do not ever execute any
user code. However, it is sometimes useful to know of their existence and to know what
language constructs may cause them to exist. MAXAda also allows certain attributes asso-
ciated with them to be configured as with ordinary tasks. 

MAXAda currently has five kinds of ghost tasks: 

• ADMIN (See “ADMIN Ghost Task” on page 5-5.)

• TIMER (See“TIMER Ghost Task” on page 5-5.)

• SHADOW (See “SHADOW Ghost Tasks” on page 7-4.) 

• COURIER (See “COURIER Ghost Tasks” on page 7-3.)

• INTR_COURIER (See “INTR_COURIER and COURIER Ghost Tasks”
on page 7-5.)

ADMIN Ghost Task 5

The ADMIN ghost task exists only in programs that contain tasking (other than the ENVI-
RONMENT task). If it exists, it is a bound task that is responsible for the creation of all
named server groups and for the creation of the ENVIRONMENT task.  It also detects the
termination of all other tasks and performs cleanup operations on those tasks, including
deallocation of memory associated with those tasks.

TIMER Ghost Task 5

The TIMER ghost task exists only in programs that contain multiplexed tasks (other than
the ENVIRONMENT task). If it exists, it is a bound task that is responsible for all timing
operations associated with multiplexed tasks. These operations include delay statements,
select statements with delay alternatives, timed entry calls, and preemption based on
time-slices. The TIMER task acts as an “alarm clock” that triggers rescheduling events
when certain times have been reached because of these operations.

Priorities 5

The Ada95 language defines priorities in terms of the discrete subtypes defined in the
package System.  The subtype any_priority spans the entire priority range sup-
p o r t ed  b y  t h e  i m p l e m en t a t i o n  w h i l e  t h e  s u b t y p e s  priority  a n d
interrupt_priority divide that range into standard user-level priorities and inter-
rupt priorities (those which require the blocking of one or more interrupts). 

Figure 5-1 is a graphical representation of the various Linux scheduling policies and asso-
ciated priority mappings. (Cross-hatched priority ranges are not available.)
5-5



MAXAda for Linux Reference Manual
Figure 5-1.  Mapping of Various Priority Interpretations on Linux

Linux offers three different POSIX-compliant scheduling policies; one for normal non-
critical processes (SCHED_OTHER), and two fixed-priority policies for real-time applica-
tions (SCHED_RR and SCHED_FIFO).

The kernel internally has a global priority range that includes values from 1..139.  The pri-
ority ranges of each of the POSIX scheduling policies are distributed across the range of
global priorities.  The manner in which they are distributed is dependent on the policy.  

Processes are scheduled by their global priority value, with 1 being the most urgent prior-
ity, and 139 the least urgent.  Priorities within the global priority range 1..99 are reserved
for the SCHED_RR and SCHED_FIFO policies.  Priorities in the range 100..139 are
reserved for the SCHED_OTHER policy.

SCHED_OTHER is the default policy; it employs a universal time-sharing algorithm
designed to favor interactive processes.  The range of SCHED_OTHER priorities is 0..0.  A
SCHED_OTHER process is initially given a global priority midway between the global pri-
ority range 100..139.  The global priority is adjusted by the kernel as the process executes,
but it will remain within the 100..139 range.  The nice(2) value associated with such
processes is related to its position within the 100..139 range.

1

99

99

991

0

98

 

Ada Priorities

OS Global Priorities

SCHED_RR
SCHED_FIFO

100

System.priority

System.any_priority

SCHED_OTHER

1

all
external
maskable
machine
interrupts
masked

System.interrupt_priority

100139
5-6



Run-Time Concepts
SCHED_RR and SCHED_FIFO policies are most appropriate for processes with strict tim-
ing constraints.  Priorities in the SCHED_RR and SCHED_FIFO policies are mapped into
the global priority range 1..99 and remain fixed -- they are not adjusted by the kernel as
the process executes.  The mapping of these priorities is a reverse-linear relationship;
SCHED_FIFO priority 99 is mapped to global priority 1, the most urgent, whereas
SCHED_FIFO priority 1 is mapped to global priority 99, the least urgent in the real-time
range.

The SCHED_RR policy differs from SCHED_FIFO policy only insomuch as SCHED_RR
processes are round-robin scheduled.  They will be preempted by other processes of the
same priority once their quanta (a.k.a. time-slice) has expired.  SCHED_FIFO processes
are never preempted by other processes of the same priority due to time-slicing.  They
continue to execute on the CPU until they yield the CPU, require an unavailable system
resource (e.g. a page needed to fetched from disk), or are preempted by higher priority
processes.

The priority range defined by the Ada package System is 1..100.  The System priorities
in the range 1..99 are mapped to priorities in the POSIX scheduling policies based on the
task dispatching policy (see “Policy Selection by the Tasking Run-Time” on page 5-8).

Use of System.interrupt_priority’last (100) is reserved for protected actions.
All external maskable machine interrupts are masked during such actions.  Programs
which use this priority value must lock their address space in memory (e.g. pragma
Pool_Lock_State(default,locked)) and must exercise exterme care inside pro-
tected actions.  Misuse of this priority value can cause system panics and/or have signifi-
cant effects on system performance and determinism.

By default, as per the Ada95 language standard, in the absence of a Priority pragma,
all Ada tasks execute at priority 49.

Non-tasking Ada programs do not specifically set their priority in any way; they inherit
the priority and scheduling policy of the invoking program, typically the shell.

OS Scheduling Policies 5

The operating system schedules clones based on their scheduling policy and priority.

The selection of the scheduling policy depends upon which run-time executive is used by
the program:

• non-tasking run-time executive - (see “Policy Selection by the Non-Task-
ing Run-Time” on page 5-8)

• tasking run-time executive - (see “Policy Selection by the Tasking Run-
Time” on page 5-8)

Once a task’s priority has been determined, the run-time executive selects the most appro-
priate operating system scheduling policy for its server (clone).   This selection depends
upon the presence or absence of Ada tasking and other real-time Ada features
5-7



MAXAda for Linux Reference Manual
Policy Selection by the Non-Tasking Run-Time 5

For programs that do not utilize any of the features that require the tasking run-time (see
“Run-Time Systems” on page 1-5), the non-tasking run-time is employed.  The non-task-
ing run-time does not alter the operating system scheduling policy or priority of the pro-
gram in any way.

Note that technically, as required by the language, the main subprogram (ENVIRONMENT
task) is still executing at the Ada priority which is midway within the range defined by
System.Priority.  However, with the non-tasking run-time, that priority has no rela-
tion to the operating system priority of the clone serving the main subprogram; it has no
effect on the scheduling of the program with respect to other programs on the system.
Thus for these “non-tasking” programs, the operating system scheduling policy and prior-
ity is determined by the spawning process, normally the shell, which usually selects the
SCHED_OTHER (interactive) POSIX scheduling policy with an initial priority of zero.

Policy Selection by the Tasking Run-Time 5

The tasking run-time assigns an operating system policy and priority to match the Ada pri-
ority of each task and the task dispatching policy in effect.

See “Run-Time Systems” on page 1-5 for the full set of features that require the tasking
run-time.

The assignment of operating system class and priority is done in the following manner.
When the task dispatching policy is:

- FIFO_WITHIN_PRIORITIES 

On Linux systems, the SCHED_FIFO POSIX policy is selected.  The priority of the
task is mapped directly to the SCHED_FIFO priority.

Priorities are not adjusted due to CPU utilization and tasks are never preempted by
other tasks/programs executing at the same (or lower) priority.

- ROUND_ROBIN_PRIORITIES

On Linux systems, the SCHED_RR POSIX policy is selected.  The priority of the
task is mapped directly to the priority of the SCHED_RR policy.

Tasks are time-sliced as per their quantum but their priority is not adjusted due to
CPU utilization.

See “Pragma TASK_QUANTUM” on page 6-14 for more information.

- ROUND_ROBIN_ADJUSTABLE_PRIORITIES

On Linux systems, the SCHED_OTHER (interactive) POSIX policy is selected.

The priority of the task controls the initial nice value for the task.  The full range of
Ada task priorities 1..99 is mapped over the available nice range: -20..19.  Thus
the mapping is not 1:1.
5-8



Run-Time Concepts
The operating system adjusts priorities as the task executes based on CPU utilization
and other factors.

- unspecified

W h e n  t h e  t a s k  d i s p a t c h i n g  p o l i c y  i s  u n s p ec i f i e d ,  i t  d e f a u l t s  t o
FIFO_WITHIN_PRIORITIES.

NOTE

Use of protected objects and the CEILING_LOCKING locking
p o l i c y  ( t h e  d e f a u l t  l o c k i n g  p o l i cy  -  s e e  “ P r a g m a
LOCKING_POLICY” on page 6-3), requires the task dispatching
pol icy  FIFO_WITHIN_PRIORITIES  ( see  “Pragma
TASK_DISPATCHING_POLICY” on page 6-2).  Thus, the use of
protected objects will cause selection of the operating system AD
(Ada) scheduling class for all tasks.

With the tasking run-time, task priorities have a direct correspondence to operating system
priorities (see Figure 5-1).  As such, the process spawning the program has no effect on
the priority of the main subprogram (ENVIRONMENT task), since the language requires it
to execute midway within the range of System.Priority (unless otherwise specified
by the user with a priority pragma).  In other words, the command

nice -4 a.out

does not have an effect on a task’s priority or the priority of the program as a whole.  How-
ever, in anticipation of the need for priorities relative to that of the spawning process, the
implementation-defined package ccur.runtime_configuration (see page 9-11)
includes the constant PRIORITY_OF_ENVIRONMENT.  That constant is elaborated dur-
ing program start-up, before any user packages are elaborated.  It can be used in a priority
pragma to achieve an effect similar to nice -4.  For example:

pragma TASK_PRIORITY (runtime_configuraiton.priority_of_environment-4);

would ensure that the task in question would execute at a operating system priority lower
(by 4) than that of the spawning process.

Restrictions for Priorities in the System.Interrupt_Priority Range 5

MAXAda does not allow application of Pragma Interrupt_Priority to normal
tasks unless the value specified in the pragma is Interrupt_Priority’First.
Tasks which execute at System.Interrupt_Priority’First are unrestricted.

Execution at higher priorities is restricted to:

• Protected subprograms and entries

Code executed at priorities higher than System.Interrupt_Priority’First is
restricted as follows:

• May not enter the operating system kernel
5-9



MAXAda for Linux Reference Manual
• May not perform any tasking actions (other than protected subprogram
calls and Ada.Synchronous_Task_Control calls)

• May not execute delay or asynchronous select statements

• May not cause machine exceptions (page faults, floating point machine
exceptions, etc.  Note that use of such interrupt_priority values
causes the applications pages to be locked in memory by the Ada execu-
tive, thus pages faults would not occur except by unusual user interaction.)

NOTE

Use of restricted priorities should be done only in a controlled
manner by those with an understanding of external interrupts and
their interaction with the operating system kernel.

All maskable external interrupts are masked during execution of
code at these restricted priorities.

Misuse of this capability may have significant impact on the exe-
cution of the system.
5-10



Run-Time Concepts
Memory Management 5

The run-time system segments memory via the following classification:

• Machine instructions (text)

• Library-level variables (data)

• Collections

• Subprogram/task data (stack)

• Other

For each of the various types of memory region discussed here, the following attributes
are configurable:

• Physical location (memory pool)

• Locking behavior (lock state)

• Cache mode

• Size and extensibility

See “Memory Attributes” on page 6-20 for details on configuration.

Text Memory 5

Machine instructions, literals, and some constant data are allocated in statically sized seg-
ments commonly referred to as text.  Text is typically allocated at the low end of the appli-
cation’s virtual address space (e.g., 0x1nnnnnnn). Generally, the size of text is determined
statically by the linker.

Data Memory 5

Library-level variables, such as those in library-level packages, are allocated in statically
sized segments commonly referred to as data.  Data is typically allocated in the middle of
the application’s virtual address space after the ENVIRONMENT task’s stack segment (e.g.,
0x3nnnnnnn). Generally, the size of data is determined statically by the linker.

Collection Memory 5

The default collection, or default heap, is a region of memory used for designated objects
of user-defined access types, dynamically sized objects, internal run-time structures, etc.
The maximum size of the default collection may be virtually unlimited or may be speci-
fied statically. If unlimited, the heap will grow as required by the application. Default col-
lection addresses are assigned dynamically by the operating system and tend to be at the
5-11



MAXAda for Linux Reference Manual
high end of the application’s virtual address space (e.g., 0xbnnnnnn). The default collec-
tion is created by the run-time system. Its extensibility and size are configurable.

Additional collections are allocated to implement user-defined access types that have spe-
cific size requirements (e.g., use of ’STORAGE_SIZE on an access type). Such collec-
tions are allocated dynamically when the corresponding access type is elaborated. If the
access type is defined within a task or subprogram, the collection is allocated out of mem-
ory associated with the task or subprogram’s stack. If the access type is defined in a library
level package, the collection is allocated out of new memory at an address dynamically
assigned by the operating system. Usually, the system automatically reclaims memory
locations associated with collections allocated out of stack frames when those stack
frames are exited. (See “Memory Attributes” on page 6-20). Memory associated with
other heaps is reclaimed only when the application exits.

Stack Memory 5

Subprogram and task data, including temporary variables generated by the compiler, are
allocated and freed in stack frames associated with subprograms and task bodies as they
are executed. Each task has a limit imposed by the run-time system on the total amount of
stack space available for its use (except for the ENVIRONMENT stack, which may be virtu-
ally unlimited in size). All stack size limits are configurable. 

The stack associated with the ENVIRONMENT task is allocated by the operating system at
program start-up time and is the only stack that can grow dynamically.  Hence, it is the
only task that can have an UNLIMITED stack size.  This merely indicates that the size of
the stack is not limited by the MAXAda compilation system.  The stack still obeys the
RLIMIT_STACK limit imposed by the operating system.  See getrlimit(2) and
setrlimit(2), or the shell special command ulimit for details on determining and
affecting this limit.  (Note that not all shells support setting the stack limit.)

It is possible to change the memory aspects of the ENVIRONMENT task stack but only the
amount that is currently allocated by the operating system.  Therefore, the size of the
ENVIRONMENT task stack must be specified by the user before attempting to modify any
of these aspects.  If not specified, the ENVIRONMENT stack size will be set to 1 Mb.

The ENVIRONMENT task's stack is typically allocated in the middle of the application's
virtual address space before the data segment (e.g., 0x2fnnnnnn).

Stacks associated with tasks are allocated and freed dynamically by the run-time system
(during creation and termination) out of the default collection. As such, stack addresses
tend to be at the high end of the application’s virtual address space (e.g., 0xbnnnnnnn).

Other Memory 5

Other memory may be part of the application’s address space, due to the application’s use
of pragmas, packages, or tools.
5-12



Run-Time Concepts
Visibility of Memory 5

All tasks in an application have actual access to all memory locations in the application’s
virtual address space. Visibility to these memory locations is limited programmatically by
the compiler’s enforcement of the Ada language rules. However, through use of
unchecked_conversion, pragma SUPPRESS, erroneous programming, or other
mechanisms outside the scope of the Ada language, every task has the ability to read (and
perhaps modify) any memory location within the application’s virtual address space.
5-13



MAXAda for Linux Reference Manual
5-14



6
Chapter 6Run-Time Configuration

6
6
6

Although Appendix M discusses all pragmas, it focuses on pragmas that influence the
software development environment, compiling, and linking. This chapter discusses prag-
mas that affect configuration of the whole run-time system, task execution, and memory
utilization. It also provides some information about the underlying implementation of
tasking and memory resources.

General Pragmas 6

The following pragmas affect the run-time system as a whole:

• Pragma RUNTIME_DIAGNOSTICS (see page 6-1)

• Pragma MAP_FILE (see page 6-2)

• Pragma QUEUING_POLICY (see page 6-2)

• Pragma TASK_DISPATCHING_POLICY (see page 6-2)

• Pragma LOCKING_POLICY (see page 6-3)

• Pragma SERVER_CACHE_SIZE (see page 6-4)

Pragma RUNTIME_DIAGNOSTICS 6

The implementation-defined pragma RUNTIME_DIAGNOSTICS may occur in any
declarative part. It controls whether or not the run-time emits warning diagnostics.

pragma RUNTIME_DIAGNOSTICS (boolean);

boolean 

A static boolean enumeration literal. TRUE means run-time warning diagnos-
tics will be emitted. FALSE means run-time warning diagnostics will not be
emitted. The default is TRUE. At run-time, you can specify this value via a call
to ccur.runtime_configuration.set_runtime_diagnostics.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.
6-1



MAXAda for Linux Reference Manual
Pragma MAP_FILE 6

The implementation-defined pragma MAP_FILE may occur in any declarative part. It
causes the linker to automatically emit at link time a map file containing an ASCII
description of pragma entries and comments that define the layout of the file. This file is
useful with the a.map tool described in “a.map” on page 4-47.  If this pragma is absent,
then no map file is produced. 

pragma MAP_FILE (file_name); 

file_name 

A static string of non-zero length specifying the name of the map file.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.

Pragma QUEUING_POLICY 6

The implementation-dependent pragma QUEUING_POLICY may occur as a configuration
pragma. It sets the entry queuing policy.

pragma QUEUING_POLICY (policy_identifier);

policy_identifier

The keyword FIFO_QUEUING means the entry queuing policy as defined in
the Ada 95 Reference Manual section D.4.  

PRIORITY_QUEUING means the entry queuing policy as defined in Ada 95
Reference Manual section D.4. 

The default is FIFO_QUEUING.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.

Pragma TASK_DISPATCHING_POLICY 6

This implementation-dependent pragma TASK_DISPATCHING_POLICY may occur as a
configuration pragma. It sets the task dispatching policy.

pragma TASK_DISPATCHING_POLICY (policy_identifier);

policy_identifier

The keyword FIFO_WITHIN_PRIORITIES indicates the task dispatching
policy as defined in the Ada 95 Reference Manual section D.2.2. 
6-2



Run-Time Configuration
In addition, other policies are implemented as defined below:

ROUND_ROBIN_PRIORITIES

This policy is the same as FIFO_WITHIN_PRIORITIES, except that
time-slicing occurs.

ROUND_ROBIN_ADJUSTABLE_PRIORITIES

This policy is similar to ROUND_ROBIN_PRIORITIES, except that
priorities are adjusted by the operating system based on CPU utilization.
This policy has a drastic effect on the relation of Ada priorities to Sys-
tem priorities.  See “Priorities” on page 5-5 for more information.

By default, programs without tasks (other than the ENVIRONMENT task), without pro-
tected objects, and without implementation-defined memory configuration pramgas (e.g.
MEMORY_POOL, POOL_LOCK_STATE, etc.) have a task dispatching policy of
ROUND_ROBIN_ADJUSTABLE_PRIORITIES.  All other programs have a default task
dispatching policy of FIFO_WITHIN_PRIORITIES.

T h e  i m p l em e n t a t i o n  r e q u i r e s  t h a t  t h e  t a s k  d i s p a t c h i n g  p o l i c y  b e
FIFO_WITHIN_PRIORITIES if the program contains any protected objects with a lock-
ing policy of CEILING_LOCKING (which is the only locking policy currently imple-
mented).

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.

Pragma LOCKING_POLICY 6

This implementation-dependent pragma LOCKING_POLICY may occur as a configura-
tion pragma. It sets the protected object locking policy.

pragma LOCKING_POLICY (policy_identifier);

policy_identifier

The keyword CEILING_LOCKING indicates the protected object locking pol-
icy as defined in the Ada 95 Reference Manual section D.3.

The default locking policy is CEILING_LOCKING.  This is currently the only locking pol-
icy that is implemented.

When the CEILING_LOCKING policy is in use and a protected action is underway for a
specific protected object, attempts by other tasks (on other CPUs) to start a protected
action on the same protected object will keep their CPUs busy (i.e. other tasks spin wait-
ing to start the protected action on that protected object).

If the locking policy is explicitly specified or the program contains protected objects, the
i m p l e m e n t a t i o n  r e q u i r e s  t h a t  t h e  t a s k  d i s p a t c h i n g  p o l i c y  b e
FIFO_WITHIN_PRIORITIES.  If the task dispatching policy has not explicitly been set,
the implementation will automatically set it to FIFO_WITHIN_PRIORITIES if the pro-
gram contains protected objects.
6-3



MAXAda for Linux Reference Manual
See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.

Pragma SERVER_CACHE_SIZE 6

The implementation-defined pragma SERVER_CACHE_SIZE may occur in any declara-
tive part. It sets the size of the server cache. The server cache contains execution servers
that are currently unneeded by the application, but which can be placed back into service
when they become necessary. These include the anonymous servers for terminated bound
tasks, as well as servers from server groups which were reduced in size by the run-time.
(For more information about bound tasks, see “Pragma TASK_WEIGHT” on page 6-9.)

pragma SERVER_CACHE_SIZE (cache_size);

cache_size 

A static, non-negative number specifying the maximum number of servers
allowed in the cache (i.e., the server cache size). The default is 8. This value
c a n  a l s o  b e  s e t  a t  r u n - t i m e  v i a  a  c a l l  t o
ccur.runtime_configuration.set_server_cache_size. See
the specification of ccur.runtime_configuration in vendorlib.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time sys-
tem as a whole.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implemen-
tation-dependent and implementation-defined pragmas.

Task and Group Configuration Concepts 6

Task Names and Default Settings 6

To make good use of task pragmas, it is necessary to understand some terminology.

ENVIRONMENT task

At start-up, the run-time creates this one task that performs library-level pack-
age elaboration and executes the main program.

DEFAULT pseudo task

This non-executing pseudo task sometimes provides default task-attribute val-
ues for other tasks. The user may change these default values with task prag-
m a s  o r  w i t h  c a l l s  t o  r o u t i n e s  i n  p a c k a g e
ccur.runtime_configuration .  See  the  spec i f i ca t ion  o f
ccur.runtime_configuration in vendorlib.

ghost task 
6-4



Run-Time Configuration
An automatically generated overhead task. Ghost tasks are described in
“Ghost Tasks” on page 5-5.

For any actual task (excluding objects of task types) or the ADMIN or TIMER ghost task,
if a configuration pragma is omitted for that task, the value specified for the DEFAULT
pseudo task is used instead.

For objects of task types, the following steps indicate the search order for configuration
pragma values. 

1. If the object is a variable and the pragma exists for that variable, that
pragma is used. 

2. If the pragma exists for its task type, that pragma is used. 

3. If the task type is a derived type, the pragma of the nearest ancestor type is
used if found.

4. If no such pragma is found, the DEFAULT pseudo task is checked for the
pragma, and that pragma is used if found. 

5. If no pragma has been found, the default value is used.

The same steps take place simultaneously for any SHADOW, COURIER, and
INTR_COURIER ghost tasks associated with a user’s real task or with a user’s protected
attachments. (See “Ghost Tasks” on page 5-5.)

Task Specifiers in Task Pragmas 6

The following task specifiers appear in task pragmas.

task_specifier

::= {ordinary_task | ghost_task | ENVIRONMENT | SPEC}

ordinary_task

::= {task_type_name | task_variable_name | DEFAULT}

ghost_task

::= {companion_ghost_task | companion_po_ghost_task | ADMIN  | TIMER}

companion_ghost_task

::= {shadow_ghost | courier_ghost | intr_courier_ghost}

companion_po_ghost_task

::= {shadow_po_ghost | courier_po_ghost | intr_courier_po_ghost}

shadow_ghost

::= ordinary_task, SHADOW, task_entry

courier_ghost
6-5



MAXAda for Linux Reference Manual
::= ordinary_task, COURIER, task_entry

intr_courier_ghost

::= ordinary_task, INTR_COURIER, task_entry

shadow_po_ghost

::= protected_procedure_handler, SHADOW [, attachment_index]

courier_po_ghost

::= protected_procedure_handler, COURIER [, attachment_index]

intr_courier_po_ghost

::= protected_procedure_handler, INTR_COURIER [, attachment_index]

task_entry

::= {entry_name | DEFAULT}

ADMIN

The pragma sets the task attribute to the specified value for the ADMIN task.
For more information about the ADMIN task, see “ADMIN Ghost Task” on
page 5-5.

COURIER

The pragma sets the task attribute to the specified value for the COURIER
task.  See also “COURIER Ghost Tasks” on page 7-3 for more information.

DEFAULT

The pragma sets the task attribute to the specified value for the DEFAULT
pseudo task, and therefore for all tasks, unless otherwise specified for a task.

ENVIRONMENT

The pragma sets the task attribute to the specified value for the ENVIRON-
MENT task.

INTR_COURIER

The pragma sets the task attr ibute to the specified value for the
INTR_COURIER task.  See also “INTR_COURIER and COURIER Ghost
Tasks” on page 7-5 for more information.

SHADOW

The pragma sets the task attribute to the specified value for the SHADOW task.
See also “SHADOW Ghost Tasks” on page 7-6 for more information.

SPEC 
6-6



Run-Time Configuration
The pragma must occur in the declarative part of a task specification.  It then
applies to all tasks identified with that specification.

TIMER

The pragma sets the task attribute to the specified value for the TIMER task.
For more information about the TIMER task, see “TIMER Ghost Task” on
page 5-5.

attachment_index

The pragma is associated with the ghost task that corresponds to that particu-
lar attachment numbered in textual order.  If no attachment_index is speci-
fied, the pragma selects all ghost tasks corresponding to all attachments on the
specified handler.

Only positive integer literals or the identifier DYNAMIC is allowed.

If the identifier DYNAMIC is specified as the attachment_index, the pragma
is associated with the ghost task that corresponds to the dynamic attachment
on the protected procedure handler, if it exists.

protected_procedure_handler

A protected procedure to which either pragma INTERRUPT_HANDLER or
ATTACH_HANDLER applies.  See Section C.3.1 of the Ada 95 Reference
Manual.

task_type_name

The pragma applies to all task objects of that task type, regardless of where
the task objects are actually declared, unless overridden for derived types or
task variables.

task_variable_name

The pragma must appear in the same declarative part as the declaration of the
task variable. In this case, the pragma affects the task attribute of the specified
task, regardless of any other task pragmas associated with defaults or task
specifications.

NOTE

Pragmas TASK_WEIGHT, TASK_PRIORITY, TASK_CPU_BIAS,
TASK_QUANTUM,  and TASK_HANDLER let you omit the
task_specifier.  This has the same effect as SPEC.

 Group Names and Default Settings 6

To make good use of group pragmas, it is necessary to understand some terminology.
6-7



MAXAda for Linux Reference Manual
server group

Server groups allow users to restrict the resources their tasks use. These
groups are designated by simple identifiers and are defined when they are
used. However, they are not Ada program entities. They cannot be referenced
anywhere except within the appropriate pragmas. In fact, they exist in a
namespace which is separate from the Ada language’s namespaces. This sepa-
rate namespace is completely flat. That is, there is no hierarchical nesting to
the namespace based on the units in which these pragmas appear. The same
group name can be specified in two separate and unrelated units, and it will
indicate the same group. See “Tasking Model” on page 5-1 for more informa-
tion about server groups.

PREDEFINED group 

At start-up, the run-time creates this one PREDEFINED group that includes
and executes the ENVIRONMENT task. By default, the DEFAULT pseudo task
is also in this group.

DEFAULT pseudo group

This pseudo group provides default group-attribute values for other groups
that omit any group configuration pragmas. The user may change these
default values with group pragmas or with calls to routines in package
ccur.runtime_configuration. 

To add tasks to any group, see “Pragma TASK_WEIGHT” on page 6-9. 

Group Specifiers in Group Pragmas 6

The following server group specifiers appear in group pragmas.

group_spec ::= {DEFAULT | PREDEFINED | group_name}

DEFAULT

The pragma sets the group attribute for the DEFAULT pseudo group, and
therefore for all groups, to the specified value.

PREDEFINED

The pragma sets the group attribute for the PREDEFINED group to the speci-
fied value.

group_name

The pragma applies only to the group specified by group_name.
6-8



Run-Time Configuration
Task Attributes 6

Users can control the execution of tasks: specifically, tasks’ scheduling priority, time-slice
duration, physical CPU binding, and weight. Control may be static through implementa-
tion-defined pragmas, and may be changed dynamically via supplied routines in the
ccur.runtime_configuration  package .  See  t he  spec i f i ca t i on  o f
ccur.runtime_configuration in vendorlib.

In addition, the user may specify a procedure to be called for a task that is terminating
because of an unhandled exception.

The task attribute pragmas can be applied to any user task. There are certain restrictions on
tasks within generic units, however. The task attribute pragmas may be applied to such
tasks, but they cannot be applied to a task in a particular instantiation of the generic. The
pragma must be applied to the task in the generic, and the effect of the pragma will extend
to all instantiations of that generic. Finally, note that task attribute pragmas applied to
tasks in generic units cannot be changed via the a.map tool, as can other task attribute
pragmas. See “a.map” on page 4-47 for more details.

The following pragmas are associated with task attributes:

• Pragma TASK_WEIGHT (see page 6-9)

• Pragma TASK_PRIORITY (see page 6-11)

• Pragma TASK_CPU_BIAS (see page 6-12)

• Pragma TASK_QUANTUM (see page 6-14)

• Pragma TASK_HANDLER (see page 6-15)

Pragma TASK_WEIGHT 6

The implementation-defined pragma TASK_WEIGHT specifies the weight of a task. 

pragma TASK_WEIGHT (weight[, task_specifier ]);

weight

BOUND

Bound tasks are served by an anonymous group, distinct from all other
groups, containing a single server. 

MULTIPLEXED, group_spec

Multiplexed tasks are served by named groups, specified by group_spec,
and are associated with multiple servers.  Multiplexed tasks are not sup-
ported in this release.

group_spec
6-9



MAXAda for Linux Reference Manual
See “Group Specifiers in Group Pragmas” on page 6-8.  These
server groups are configured via other pragmas. (See “Group
Attributes” on page 6-18.) 

For more information about task weights, see “Task Weights” on page 5-3.

task_specifier

If specified, then the pragma must appear in the same declarative part as the
referenced task.

If task_specifier is omitted, then the pragma must occur in the declarative part
of a task specification.  It then applies to all tasks identified with that specifi-
cation.

See “Task Specifiers in Task Pragmas” on page 6-5. 

The weight of default tasks can be overridden by certain link options.

-bound overrides as:

pragma TASK_WEIGHT (BOUND, DEFAULT);

-multiplexed overrides as:

pragma TASK_WEIGHT(MULTIPLEXED, PREDEFINED, DEFAULT);
pragma GROUP_SERVERS(1, PREDEFINED);

In the absence of any such link options, by default, the following pragmas apply:

pragma TASK_WEIGHT (BOUND, DEFAULT);

In other words, by default, the task weight for all tasks, including the ENVIRONMENT
task, is bound.  Of course, these defaults are overridden by user-specified pragmas or link
options.  For more information about link options, see “a.link” on page 4-33 and “Link
Options” on page 4-109.

NOTE

This pragma will not be accepted for any ghost tasks.  SHADOW
ghost tasks have no associated weight.  COURIER and
INTR_COURIER ghost tasks are always bound.  The ADMIN
and TIMER ghost tasks, if they exist, are always bound.

See “Task Attributes” on page 6-9 for a list of other pragmas associated with task
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.
6-10



Run-Time Configuration
Pragma TASK_PRIORITY 6

The implementation-defined pragma TASK_PRIORITY is primarily used to set the task
scheduling priority. For a bound task, it also sets the operating system scheduling priority
of the bound task’s anonymous group. 

pragma TASK_PRIORITY (scheduling_priority [, task_specifier ]);

scheduling_priority

A required integer expression, possibly a program variable, specifying the
scheduling priority. It should be in the range System.Priority’Range.  

Values greater than System.Priority’Last will be truncated to Sys-
tem.Priority’Last by the run-time executive. 

Values less than 0 are considered to be values relative to System.Prior-
ity’Last+1.   The following pragmas are equivalent:

pragma TASK_PRIORITY (System.Priority’Last);
pragma TASK_PRIORITY (-1);

For information about priority values, see “Task Scheduling” on page 5-3.

task_specifier

If specified, then the pragma must appear in the same declarative part as the
referenced task.

If task_specifier is omitted, then the pragma must occur in the declarative part
of a task specification.  It then applies to all tasks identified with that specifi-
cation.

For information about task specifiers, see “Task Specifiers in Task Pragmas”
on page 6-5.

See “Task Names and Default Settings” on page 6-4 to find out how a task without an
explicit pragma TASK_PRIORITY setting gets its scheduling priority.  Specifically, if no
TASK_PRIORITY  or PRIORITY pragma has been applied to a task and no
TASK_PRIORITY pragma has been applied with a task specifier of DEFAULT, then a
task’s priority is inherited from its creator, as per RM D.1(19).

As discussed in “Task Scheduling” on page 5-3, the task scheduling priority of a task
determines how the Ada run-time selects tasks for execution within a group. Similarly, the
operating system scheduling priority determines how the real-time kernel selects task
groups for execution. 

As previously mentioned, for a bound task, this pragma sets the operating system schedul-
ing priority of the bound task’s anonymous group. The sequence:

pragma TASK_WEIGHT (BOUND, t);
pragma TASK_PRIORITY (prio, t);

is equivalent to:
6-11



MAXAda for Linux Reference Manual
pragma GROUP_SERVERS (1, anon_group_spec);
pragma TASK_WEIGHT (MULTIPLEXED, anon_group_spec, t);
pragma GROUP_PRIORITY (prio, anon_group_spec);
pragma TASK_PRIORITY (prio, t);

As specified in the Ada 95 Reference Manual section D.1(19), if a pragma Priority does
not apply to the main subprogram, the initial base priority of the ENVIRONMENT task is
System.Default_Priority.

NOTE

If an application is linked with the tasking run-time, the operating
s y s t e m  p r i o r i t y  a s s o c i a t e d  w i t h  t h a t  t a s k  i s  a l s o
System.Default_Priority.  If the application is not linked
with the tasking run-time, then the operating system priority is
inherited from the environment that invoked the application (usu-
ally the shell).

Unless otherwise specified, the default value of scheduling_priority for the other ghost
tasks is as follows:

pragma TASK_PRIORITY(DEFAULT, SHADOW, DEFAULT, -1);
pragma TASK_PRIORITY(DEFAULT, COURIER, DEFAULT, -1);
pragma TASK_PRIORITY(DEFAULT, INTR_COURIER, DEFAULT, -1);
pragma TASK_PRIORITY(TIMER, -1);

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3). 

Pragma TASK_PRIORITY differs from the language-defined pragma PRIORITY in that
it can be applied to entities that pragma PRIORITY cannot; for example, individual task
objects, implementation-defined tasks, etc.

NOTE

The task scheduling priority can also be set at run-time via a call
to Ada.Dynamic_Priorities.Set_Priority. See the
specification of Ada.Dynamic_Priorities in pre-
defined.

See “Task Attributes” on page 6-9 for a list of other pragmas associated with task
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma TASK_CPU_BIAS 6

The implementation-defined pragma TASK_CPU_BIAS provides for the binding of bound
tasks to individual CPUs or a set of CPUs, associating a CPU bias with one or more bound
6-12



Run-Time Configuration
tasks. This is necessary because pragma GROUP_CPU_BIAS is not available for bound
tasks (see “Pragma GROUP_CPU_BIAS” on page 6-19 for more information). 

pragma TASK_CPU_BIAS (cpu_bias [, task_specifier ]);

cpu_bias 

A required CPU bias, possibly a program variable, specifying CPUs that are
valid for the machine configuration where the application will run. See “Utili-
zation of Multiple CPUs” on page 5-4. 

For information about CPU biases, see “Utilization of Multiple CPUs” on
page 5-4.

task_specifier

If specified, then the pragma must appear in the same declarative part as the
referenced task.

If task_specifier is omitted, then the pragma must occur in the declarative part
of a task specification.  It then applies to all tasks identified with that specifi-
cation.

For information about task specifiers, see “Task Specifiers in Task Pragmas”
on page 6-5. 

See “Task Names and Default Settings” on page 6-4 to find out how a task without an
explicit pragma TASK_CPU_BIAS setting gets its CPU bias.

The sequence:

pragma TASK_WEIGHT (BOUND, t);
pragma TASK_CPU_BIAS (bias, t);

is equivalent to:

pragma GROUP_SERVERS (1, anon_group_spec);
pragma TASK_WEIGHT (MULTIPLEXED, anon_group_spec, t);
pragma GROUP_CPU_BIAS (bias, anon_group_spec);

With the judicious use of pragmas MEMORY_POOL,  TASK_CPU_BIAS ,  and
GROUP_CPU_BIAS, an Ada application can take full advantage of all the CPU and mem-
ory resources of Series 6000 systems.   See “Pragma MEMORY_POOL” on page 6-23
and “Pragma GROUP_CPU_BIAS” on page 6-19 for more information.

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3).

NOTE

The CPU bias can also be set  at  run-t ime via a cal l  to
ccur.runtime_configuration.set_task_cpu_bias.
See the specification of ccur.runtime_configuration in
vendorlib.
6-13



MAXAda for Linux Reference Manual
See “Task Attributes” on page 6-9 for a list of other pragmas associated with task
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

NOTE

Hyper-threading is a feature of the Intel Pentium Xeon processor
that allows for a single physical processor to appear to the operat-
ing system as two logical processors (“sibling CPUs”).  It is
important to note that hyper-threading affects CPU utilization.
For example, if two tasks are scheduled with each one bound to a
specific sibling CPU, each will be affected by the execution of the
other since they share the same physical CPU.

Pragma TASK_QUANTUM 6

The implementation-defined pragma TASK_QUANTUM is used to set the task quantum for
multiplexed tasks, and the operating system quantum for the anonymous server group of
bound tasks. 

pragma TASK_QUANTUM (quantum [, task_specifier ]); 

quantum 

A non-zero number, possibly a program variable, of 100Hz clock ticks. 

task_specifier

If specified, then the pragma must appear in the same declarative part as the
referenced task.

If task_specifier is omitted, then the pragma must occur in the declarative part
of a task specification.  It then applies to all tasks identified with that specifi-
cation.

For information about task specifiers, see “Task Specifiers in Task Pragmas”
on page 6-5. 

See “Task Names and Default Settings” on page 6-4 to find out how a task without an
explicit pragma TASK_QUANTUM setting gets its quantum.

The task quantum of a task determines how often the Ada run-time preempts tasks execut-
ing within a group.  Similarly, the operating system quantum determines how the real-time
kernel preempts task groups executing on a physical CPU. 

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3).
6-14



Run-Time Configuration
NOTE

The following task dispatching policies will cause all task quanta
specified to be ignored:

- FIFO_WITHIN_PRIORITIES 

The FIFO policies require that all task quanta are infinite.  Use
ROUND_ROBIN policies when task time-slicing is desired.  Note
the  use  of  pro tec ted objec ts  wi th  a  locking pol icy of
CEILING_LOCKING (currently the only locking policy imple-
mented) requires the FIFO_WITHIN_PRIORITIES task dispatch-
ing policy.

NOTE

The task quantum can also be set at run time via a call to
ccur.runtime_configuration.set_task_quantum.
See the ccur.runtime_configuration specification in
vendorlib.

NOTE

Tasks quanta values are mapped to step values supported by the
operating system.  Issue the following command:

     run --quantum=list

to see the step values available.

See “Task Attributes” on page 6-9 for a list of other pragmas associated with task
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma TASK_HANDLER 6

The implementation-defined pragma TASK_HANDLER calls the specified procedure when
the task to which it is applied completes because of an unhandled exception. 

pragma TASK_HANDLER ( handler_name [, task_specifier ]); 

handler_name 

The handler must denote a library-level procedure.  It must be either parame-
terless or contain only a single formal parameter of mode in and of type
Ada.Exceptions.Exception_Occurrence.  
6-15



MAXAda for Linux Reference Manual
If the procedure contains a formal parameter of type Ada.Excep-
tions.Exception_Occurrence, then the actual value of this parameter
will be the Exception_Occurrence for the exception that caused the ter-
mination of the task.

task_specifier

If specified, then the pragma must appear in the same declarative part as the
referenced task.

If task_specifier is omitted, then the pragma must occur in the declarative part
of a task specification.  It then applies to all tasks identified with that specifi-
cation.

For information about task specifiers, see “Task Specifiers in Task Pragmas”
on page 6-5. 

If a task to which this pragma is applied is about to complete because of an unhandled
exception, then the denoted procedure will be called by the task before that task com-
pletes.  

This pragma is especially useful when applied to the ENVIRONMENT task.  It will be
called for any unhandled exception that would cause completion of the ENVIRONMENT
task, and thus of the application.

It is also especially useful when applied to the DEFAULT task.  It will be called for any
unhandled exception that would cause completion of any task which otherwise happens
silently without any notification to the user.

C o n s i d e r  t h e  f o l l o w i n g  e x a m p l e .   T h e  t a sk  first_task  w i l l  r a i s e  a
Constraint_Error when it executes its code.  Because there is no exception handler
in the task itself, the procedure handler specified by pragma TASK_HANDLER is called.
(This procedure appears below and also utilizes the formal parameter of type
Ada.Exceptions.Exception_Occurrence.)  Any processing with respect to this
unhandled exception may occur in this procedure before the task completes.

with ada.text_io;
with handler;

procedure test_handler is
--
   task my_task is
      entry start;
   end my_task;

   task body my_task is
      subtype scale is integer range 1..10;
      i : scale;
   begin
      accept start do
         ada.text_io.put_line ("my_task: in rendezvous");
         i := scale'last;
         i := i + 1; -- will raise a constraint error
         ada.text_io.put_line ("This line won't be printed");
      end start;
   end my_task;
--
6-16



Run-Time Configuration
begin
--
   ada.text_io.put_line ("test_handler: starting");
   begin
      my_task.start;
   exception
   when others =>
      null;
   end;
   ada.text_io.put_line ("test_handler: exiting");
--
end test_handler;

pragma task_handler (handler, default);

-- and the handler itself...

with ada.text_io;
with ada.exceptions;
with ada.task_identification;

procedure handler (occurrence : 
ada.exceptions.exception_occurrence) is
begin
   ada.text_io.put_line ("handler: Exception """ &
                       ada.exceptions.exception_name(occurrence) &
                       """ terminated """ &
                       ada.task_identification.image(
                       ada.task_identification.current_task) &
                          """.");
end handler;

The output from running the test_handler procedure is as follows:

test_handler: starting
my_task: in rendezvous
handler: Exception "CONSTRAINT_ERROR" terminated 
"test_handler.my_task".
test_handler: exiting

WARNING

Be cautious when using packages within a handler that may not be
elaborated at the time the handler is called.  For instance, in the
above example, if  procedure handler is  called before
ada.text_io is elaborated, a PROGRAM_ERROR exception
may be raised and handled by this same procedure, resulting in an
infinite loop.  This can be remedied by using the write function
of the ccur.posix_1003_1 binding in the handler instead of
calling ada.text_io.put_line.

See “Task Attributes” on page 6-9 for a list of other pragmas associated with task
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.
6-17



MAXAda for Linux Reference Manual
Group Attributes 6

Users can control the operating system scheduling priority, physical CPU binding, and
number of servers in a group. Control may be static through implementation-defined prag-
mas or through the run-time configuration package, and may be changed dynamically via
supplied routines that interface to the run-time executive.

The following pragmas manage group attributes:

• Pragma GROUP_PRIORITY (see page 6-18)

• Pragma GROUP_CPU_BIAS (see page 6-19)

• Pragma GROUP_SERVERS (see page 6-19) 

Pragma GROUP_PRIORITY 6

The implementation-defined pragma GROUP_PRIORITY may occur in any declarative
part. It specifies the operating-system scheduling priority of all the servers in a given
group. It does not specify the task scheduling priority of particular tasks within the group.
If this pragma is not specified for a particular group, the group acquires the operating-sys-
tem scheduling priority of the environment that spawned it.

pragma GROUP_PRIORITY (scheduling_priority, group_spec);

scheduling_priority

A static integer expression specifying the operating system scheduling prior-
ity. It is in the range 0..Max_Priority, as defined by the package
ccur.runtime_configuration .  A  r u n - t i m e  c a l l  t o
ccur.runtime_configuration.set_group_priority can also be
used to set this value. See the ccur.runtime_configuration specifica-
tion in vendorlib.

Values greater than Max_Priority will be truncated to Max_Priority
by the run-time executive. 

Values less than 0 are considered to be values relative to Max_Priority+1.

For information about priority values, see “Task Scheduling” on page 5-3.

group_spec

For information about group specifiers, see “Group Specifiers in Group Prag-
mas” on page 6-8. 

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3).
6-18



Run-Time Configuration
See “Group Attributes” on page 6-18 for a list of other pragmas that manage group
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma GROUP_CPU_BIAS 6

The implementation-defined pragma GROUP_CPU_BIAS may occur in any declarative
part. It specifies the CPU bias for all the servers in a given group. If this pragma is not
specified for a particular group, the default bias is acquired from the environment, which
indicates any CPUs. 

pragma GROUP_CPU_BIAS (cpu_bias, group_spec);

cpu_bias

A static CPU bias specifying CPUs that are valid for the machine configura-
tion where the application will run. See “Utilization of Multiple CPUs” on
page 5-4 for more information about CPU biases. At run time, this value can
b e  s e t  w i t h  a  c a l l  t o
ccur.runtime_configuration.set_group_cpu_bias. See the
ccur.runtime_configuration specification in vendorlib.

For information about CPU biases, see “Utilization of Multiple CPUs” on
page 5-4.

group_spec

For information about group specifiers, see “Group Specifiers in Group Prag-
mas” on page 6-8. 

With the judicious use of pragmas MEMORY_POOL,  TASK_CPU_BIAS ,  and
GROUP_CPU_BIAS, an Ada application can take full advantage of all the CPU and mem-
ory resources of Series 6000 systems.   See “Pragma MEMORY_POOL” on page 6-23
and “Pragma TASK_CPU_BIAS” on page 6-12 for more information.

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3).

See “Group Attributes” on page 6-18 for a list of other pragmas that manage group
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma GROUP_SERVERS 6

The implementation-defined pragma GROUP_SERVERS may occur in any declarative
part. It controls the number of servers for a particular group, including the PREDEFINED
group.

pragma GROUP_SERVERS (group_size, group_spec);
6-19



MAXAda for Linux Reference Manual
group_size 

A static non-negative number indicating the quantity of servers in a group. If,
for any group, no GROUP_SERVERS pragma is specified, then the default size
f o r  t h a t  g r o u p  i s  1 .  A t  r u n  t i m e ,  a  c a l l  t o
ccur.runtime_configuration.set_group_servers can be used
to set this value. See the ccur.runtime_configuration specification
in vendorlib.

group_spec

For information about group specifiers, see “Group Specifiers in Group Prag-
mas” on page 6-8.

See “Group Attributes” on page 6-18 for a list of other pragmas that manage group
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Memory Attributes 6

Memory attributes can be specified for any of the following classifications of memory:

• Machine instructions (text)

• Library-level variables (data)

• Collections

• Subprogram/task data (stack)

For each of the various types of memory region discussed here, the following attributes
are configurable:

• Physical location (memory pool)

• Locking behavior (lock state)

• Cache mode

• Size and extensibility

The following pragmas modify memory attributes:

• Pragma MEMORY_POOL (see page 6-23)

• Pragma POOL_CACHE_MODE (see page 6-25)

• Pragma POOL_LOCK_STATE (see page 6-25)

• Pragma POOL_SIZE (see page 6-26)

• Pragma POOL_PAD (see page 6-28)
6-20



Run-Time Configuration
NOTE

If any memory attribute is specified for a region of memory that is
normally dynamically allocated (collections and stacks), then
those regions of memory continue to be dynamically allocated.
However, those allocations do not come from the default collec-
tion, as would normally be the case. Furthermore, those regions of
memory cannot ever be deallocated during the lifetime of the pro-
gram.

Pool Specifiers 6

The following memory pool specifiers appear in memory pool pragmas.

pool_spec

::= {text_pool | stack_pool | data_pool | collection_pool | default_pool}

sizeable_spec

::= {stack_pool | collection_pool}

paddable_spec

::= {stack_pool}

default_pool

::= DEFAULT

text_pool

::= TEXT

stack_pool

::= STACK, {task_specifier}

data_pool

::= DATA, {PKG | DEFAULT}

collection_pool

::= COLLECTION, {DEFAULT | access_type}

DEFAULT

This value means the memory_spec is applied to all memory in the program
for which a specific memory pool was not already specified.

TEXT

For the entire text image (machine instructions), specify a value. 
6-21



MAXAda for Linux Reference Manual
STACK

For a specific task, an object of a task type, the ENVIRONMENT task, or the
DEFAULT pseudo task, the stack may be allocated out of dynamic pools
bound to local or global memory. 

In this form, the pragma may occur in any declarative part. If the second
parameter is ENVIRONMENT, then the pragma affects the ENVIRONMENT
task’s stack. If the second parameter is SPEC, then the pragma must be imme-
diately enclosed by a task specification and will affect all associated tasks. If
the second parameter is DEFAULT, the pragma applies to all stack frames for
all tasks not marked with their own explicit pragma MEMORY_POOL specifica-
tion. If the second parameter is not any of these three keywords, then it must
be the name of a task type or a task variable in the same declarative part.

There are certain restrictions on which tasks can be specified by STACK mem-
ory pool specifiers. Tasks within generic units may be specified. However,
tasks in particular instantiations of a generic cannot. If a task in a generic unit
is specified, the effect of the particular pragma in which it is specified will
extend to that task in all instantiations of the generic. Finally, note that prag-
mas applied to tasks in generic units cannot be changed via the a.map tool, as
can other memory pool pragmas. See “a.map” on page 4-47 for more details.

DATA

For the static memory associated with a specific package, or for all other
packages, specify a value. 

In this form the pragma must occur in the immediate declarative part of a
library-level package specification, a library-level package body, or a library-
level subprogram. If the second parameter is PKG, it must occur in the pack-
age specification or body. When in a package specification, the pragma affects
all static data for the package specification and for the package body, unless
another pragma is applied to the body. When in a package body, the pragma
affects all static data for the package body, regardless of any pragmas associ-
ated with the package specification. When the second parameter is DEFAULT,
the pragma affects all static data including memory associated with packages
unless a specific pragma exists for a particular package. 

COLLECTION

For the memory associated with an access type with a ’Storage_Size
clause, specify a value. When a pragma is applied to a COLLECTION, that
collection is allocated from heap memory and can never be deallocated. It is
recommended that this be done only in library-level packages.

In this form the pragma must occur in the same declarative part as the specifi-
cation of the supplied access_type.  The access_type must  have a
’Storage_Size length clause associated with it before the pragma is
encountered. When the second parameter is DEFAULT, the pragma affects all
dynamically allocated data including memory associated with collections
unless a specific pragma exists for a particular collection.
6-22



Run-Time Configuration
Pragma MEMORY_POOL 6

The implementation-defined pragma MEMORY_POOL is used to change physical memory
pool attributes from their default values for a memory pool. The pragma affects the map-
ping of abstract memory to physical memory.

pragma MEMORY_POOL (pool_spec, memory_spec);

pool_spec

See “Pool Specifiers” on page 6-21 for more information.

memory_spec

memory_spec ::= { global_spec | local_spec | physical_spec}

Specifies new values for memory pool attributes. If the MEMORY_POOL
pragma is not specified for a particular pool (or for the DEFAULT pool), the
default value for the memory_spec for that pool is determined from the envi-
ronment (see run(1)).

GLOBAL 

Uses physical global memory.

LOCAL, mp_cpu_bias [, hardness] 

Uses physical local memory.

mp_cpu_bias

cpu_bias

Identifies which physical local memory pool to utilize. Dis-
tinct physical local memory pools are identified by specify-
ing a CPU bias which contains a (partial) list of CPU num-
bers corresponding to a CPU board. A CPU bias is a mask
in which the relative bit number identifies a CPU number
(LSB corresponds to CPU #0). Note that the cpu_bias must
specify at least one CPU (cannot be zero). The cpu_bias is
used to locate a CPU board’s local memory pool. 

The cpu_bias is searched starting with the LSB (least signif-
icant bit) and the first CPU specified by the bias determines
which CPU board is selected. 

For example, assume that a user provides a cpu_bias with
bits that specified CPUs existing on two different CPU
boards. In that case, the CPU board selected would be the
board that holds the lowest numbered CPU. 

HOME 

Allocates the memory pool from the LOCAL memory asso-
ciated with the CPU on which the appropriate task is run-
ning. For TEXT and DATA memory pools, the appropriate
6-23



MAXAda for Linux Reference Manual
task is the ENVIRONMENT task and the allocation occurs
before the ENVIRONMENT task executes any Ada code. For
COLLECTION memory pools, the appropriate task is the
task that elaborates the access type associated with the
memory pool and the allocation occurs at the time of that
elaboration. For STACK memory pools, the appropriate
task is the one that will be using the stack during its execu-
tion, and the allocation occurs when that task is created. In
any of these cases, if a task migrates to another CPU after
the allocation occurs, the memory will not also migrate.

hardness 

Controls usage of physical global memory if insufficient physical
local memory is available.

PHYSICAL, address

Uses a specified physical memory address. (Note that this can only be
used for non-DEFAULT STACK, COLLECTION, or DATA pools.)

address

The physical memory address at which the first storage unit of the
given pool should be located. It is the user’s responsibility to
ensure that actual physical memory of some kind is located at the
given address and is of a sufficient size for the given pool.

On Series 6000 systems, there are two kinds of physical memory pools: 

• Global memory (1 pool) 

• Local memory (up to 4 pools, 1 per CPU board) 

Global memory is available to all CPUs via a system-wide bus. Local memory is available
to CPUs via a local bus physically located on the same CPU board as the local memory.
Accessing local memory from a foreign board CPU is allowed but is extremely costly and
should be prevented in all time-critical areas.

NOTE

MAXAda does not currently support Non Uniform Memory
Architectures (NUMA) under Linux.

Use of this pragma requires the CAP_SYS_NICE capability (see “Capabilities” on page
1-3).
6-24



Run-Time Configuration
See “Memory Attributes” on page 6-20 for a list of other pragmas that modify memory
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma POOL_CACHE_MODE 6

The implementation-defined pragma POOL_CACHE_MODE defines the cache mode for a
memory pool.

pragma POOL_CACHE_MODE (pool_spec, cache_mode);

pool_spec 

See “Pool Specifiers” on page 6-21 for more information.

cache_mode 

The optional cache_mode sets the specified system cache attribute on the asso-
ciated memory pool (see the memadvise(2) service for more information).
This parameter can be either COPYBACK or NCACHE.  

COPYBACK

Use the operating system’s COPYBACK cache mode.  In COPYBACK
cache mode, only a single task is usually modifying a semi-private data
area at any given point in time and other tasks will not read the update
immediately. This mode does not cause a cache flush or memory bus
access until another CPU reads the data

If there is no DEFAULT pool, this parameter value is COPYBACK.

See “Memory Attributes” on page 6-20 for a list of other pragmas that modify memory
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma POOL_LOCK_STATE 6

The implementation-defined pragma POOL_LOCK_STATE defines the lock state of a
memory pool.

pragma POOL_LOCK_STATE (pool_spec, lock_state);

pool_spec 

See “Pool Specifiers” on page 6-21 for more information.

lock_state 

The keyword LOCKED or UNLOCKED. 

LOCKED 
6-25



MAXAda for Linux Reference Manual
means the memory pages are physically locked in memory and cannot
be swapped out by the operating system. 

UNLOCKED 

means the memory pages can be swapped out by the operating system. 

The default is the value specified for the DEFAULT pool.  If there is no
DEFAULT pool, the default is UNLOCKED.

By default, all pages are unlocked. In contrast, if a program specifies

pragma POOL_LOCK_STATE (DEFAULT, LOCKED);

then by default, all pages are locked, even if allocated via user system calls.

If a program specifies that DATA, DEFAULT or COLLECTION, DEFAULT is to be
locked in local memory, then task migrations to foreign CPU boards are inhibited.

Other actions cause memory to be locked as well, including:

• User invocation of system services such as plock(2), mlock(2), etc.

Use of this pragma to request page locking requires the CAP_IPC_LOCK capability (see
“Capabilities” on page 1-3).

See “Memory Attributes” on page 6-20 for a list of other pragmas that modify memory
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma POOL_SIZE 6

The implementation-defined pragma POOL_SIZE permits the setting of the size for a
STACK or COLLECTION memory pool.

pragma POOL_SIZE (sizeable_spec, size_spec);

sizeable_spec 

See “Pool Specifiers” on page 6-21 for more information.

size_spec     ::= {size | UNLIMITED}

size 

A static non-negative number that controls the amount of space allo-
cated for an Ada program’s use.

UNLIMITED

A value that is allowed only for the COLLECTION, DEFAULT and
STACK, ENVIRONMENT memory pools.
6-26



Run-Time Configuration
This pragma, if specified for the STACK, DEFAULT pool, will not affect the size of the
STACK, ENVIRONMENT pool. This is the only pragma where such a statement is true.
The implementation is this way so that the stack size for the ENVIRONMENT task can con-
tinue to be UNLIMITED, which is its default value. This value can always be overridden
explicitly, though.

If this pragma is not specified for the ENVIRONMENT task’s STACK pool, the default
value is UNLIMITED.  If this pragma is not specified for a task type’s STACK pool, the
default value is the task type’s ’Storage_Size value if it exists, and 20,480 other-
wise.  If no POOL_SIZE pragma is valid for a task object or a task other than the ENVI-
RONMENT task, the default value for that real task is 20,480.  The default values for
ghost tasks are as follows:

If this pragma is unspecified for the COLLECTION, DEFAULT pool, its value is
UNLIMITED. If this pragma is unspecified for any other COLLECTION pool, then its
default value is the value of the ’Storage_Size attribute for the collection.

WARNING

A shell’s default stack limit occasionally causes storage problems
for the compiler and other large compiled programs because it
may provide too little stack space for the ENVIRONMENT task
(main program). To resolve these problems, users may need to
alter the shell’s stack limit and recompile. 

Most Bourne shell implementations do not allow stack sizes to be
modified. 

To reset the default stack size in the either the bash or Korn shell,
users execute the following shell command: 

$ ulimit -s kbytes 

Table 6-1.  Stack Pool Sizes for Ghost Tasks

Shadow Type Default 
Stack Size

SHADOW N/A

COURIER 10240

INTR_COURIER 10240

ADMIN 12800

TIMER 12800
6-27



MAXAda for Linux Reference Manual
The C shell allows its default stack size of 512K bytes to be reset
as high as the default process size. To alter the default stack size
for the C shell, users execute the following shell command: 

$ limit stacksize number 

See “Memory Attributes” on page 6-20 for a list of other pragmas that modify memory
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Pragma POOL_PAD 6

The implementation-defined pragma POOL_PAD sets the pad for a STACK memory pool.

pragma POOL_PAD (paddable_spec, size);

paddable_spec ::= {stack_pool}

See “Pool Specifiers” on page 6-21 for more information.

size 

A non-negative number that controls the amount of additional pad after the
stack size. This value has no meaning when the stack size for the same pool is
UNLIMITED.

This additional space is intended only for use by the run-time system or for signal han-
dlers. For ADMIN ghost tasks, the default is 12,800; otherwise, it is 8,192.

See “Memory Attributes” on page 6-20 for a list of other pragmas that modify memory
attributes.  In addition, “RM Annex L: Pragmas” on page M-102 lists all implementation-
dependent and implementation-defined pragmas.

Protected Object Attributes 6

Pragma PROTECTED_PRIORITY 6

The implementation-defined pragma PROTECTED_PRIORITY sets the scheduling prior-
ity for a protected object.  Protected object priority values determine the priorities of tasks
during protected actions as described in sections D.1 and D.3 of the Ada 95 Reference
Manual.

pragma PROTECTED_PRIORITY (scheduling_priority 
                            [,protected_object_specifier ]);

scheduling_priority
6-28



Run-Time Configuration
A required integer expression specifying the scheduling priority. It is in the
range System.Any_Priority’Range as defined in the package Sys-
tem.  See “Task Scheduling” on page 5-3 for more information.

Values that fall within System.Interrupt_Priority’Range will be
truncated to the actual maximum interrupt priority allowed on the target sys-
tem executing the program.

Values less than 0 are considered to be values relative to System.Prior-
ity’Last+1.   The following pragmas are equivalent:

   pragma PROTECTED_PRIORITY
       (System.Priority’Last);

   pragma PROTECTED_PRIORITY (-1); 

protected_object_specifier ::= ordinary_protected_object

The two-parameter form of pragma PROTECTED_PRIORITY must appear in the same
declarative part as the referenced protected object.  

The one-parameter form must appear within the protected object itself.  The protected
object is assumed to be that in whose context the pragma appears.

Priorities in excess of System.Interrupt_Priority’First will cause all code
associated with the protected object to execute with all external maskable machine inter-
rupts masked.  See “Priorities” on page 5-5 for a discussion of interrupt level execution
and associated restrictions.

The PROTECTED_PRIORITY pragma differs from the language-defined pragma PRI-
ORITY in that it can be applied to additional entities that pragma PRIORITY cannot (e.g.
protected objects themselves, implementation-defined tasks associated with protected
object interrupt handlers, etc).

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
6-29



MAXAda for Linux Reference Manual
6-30



7
Chapter 7Interrupt Handling

7
7
7

MAXAda supports both software and hardware interrupt handlers.  Software interrupt
handlers allow applications to recieve and process operating system signals (see sig-
nal(2)) as calls to protected procedures or task entries.  Hardware interrupt handlers
allow applications to receive and process machine-generated interrupts as calls to pro-
tected procedures or task entries.  Hardware interrupts include: real-time clocks (RTC),
edge-triggered interrupts (ETI), and all system, VME, and PCI interrupts. 

A list of software and hardware interrupts are defined in the predefined package
ada.interrupts.names. This package includes predefined values of type
ada.interrupts.interrupt_id which represent the software interrupts (signals)
and all the real-time clock and edge-triggered interrupts.

Additional implementation-defined support packages are provided in vendorlib:

• ada.interrupts.distrib_control

The ada.interrupts.distrib_control package provides services for the
configuration and manipulation of distributed devices associated with closely-cou-
pled systems.  See rcim_distrib_intr(4) for more information.

• ada.interrupts.eti_control

The package ada.interrupts.eti_control provides services for the config-
uration, programming, and manipulation of edge-triggered interrupt devices.  See
rcim_eti(4) for more information.

• ada.interrupts.names.services

The package ada.interrupts.names.services provides textual informa-
tion on device names, CPU biases, and reserved names associated with interrupt
devices and values of ada.interrupts.interrupt_id.

• ada.interrupts.pig_control

The package ada.interrupts.pig_control provides services for the config-
uration and manipulation of programmable interrupt generation devices associated
with closely-coupled systems.  See rcim_pig(4) for more information.

• ada.interrupts.rtc_control

The package ada.interrupts.rtc_control provides services for the config-
uration, programming, and manipulation of real-time clock devices.  See
rcim_rtc(4) for more information.

• ada.interrupts.services

The package ada.interrupts.services provides for the encoding, enabling,
and decoding of values of ada.interrupts.interrupt_id.
7-1



MAXAda for Linux Reference Manual
The recommended mechanism for handling interrupts in Ada programs is to use pragma
INTERRUPT_HANDLER ,  p r a g m a  ATTACH_HANDLER ,  o r  ada.inter-
rupts.attach_handler with protected procedures. However, MAXAda still sup-
ports the obsolescent form of interrupt handling via task entries. An alternative method for
handling interrupts is to bypass the language defined mechanisms completely and inter-
face directly to the operating system. In the case of software interrupts (signals), this is rel-
atively easy and maintainable. However, in the case of hardware interrupts it is complex
and dangerous; utilization of the language-defined and implementation-supported mecha-
nism is highly recommended instead.

The following definitions, paraphrased from RM C.3(2), are presented as they are impor-
tant in subsequent discussions.

Generation of an interrupt is the event in the underlying hardware or system that
makes the interrupt available to the program.

Delivery [of an interrupt] is the action that invokes part of the program as response
to the interrupt.

An occurrence of an interrupt is separable into generation and delivery.

Between generation and delivery, the interrupt is pending.

When an interrupt is blocked, all generated instances of that interrupt are prevented
from being delivered.

MAXAda considers delivery to be the execution of the protected handler associated with
the interrupt (or the rendezvous with the task entry associated with the interrupt).

Unfortunately, the operating system utilities and services use similar terminology in a
slightly different manner. Subsequent discussions within this chapter will use these terms
as defined above (paraphrased from RM C.3(2)), not as they normally appear in system
service descriptions.

Software Interrupts 7

Software interrupts are based on the operating system concept of signals (see sig-
nal(2)).
7-2



Interrupt Handling
The signals SIGFPE, SIGSEGV, and SIGADA are used by the run-time system. Table 7-1
shows the type of erroneous program behavior that can result from intercepting these sig-
nals with user-defined signal handlers.

The following set of software signals are reserved (and therefore not available to be
attached to protected procedures):

• SIGRTMIN+15 (47)

• SIGKILL

• SIGSTOP

• Signal values above 64

• SIGSEGV (if the POSIX package is in use)

• SIGALRM (if the POSIX package is in use)

• SIGFPE

• SIGILL (if the POSIX package is in use)

• 32-35 (depending on the Linux version and use of
tasking features and/or  libpthread)

COURIER Ghost Tasks 7

After a signal is generated, it is scheduled by the operating system for interception by the
MAXAda run-time system which addresses it properly for subsequent delivery. An imple-
mentation-provided ghost task, called a COURIER task, is responsible for delivery of the
addressed signal. If the interrupt is currently blocked, then it is queued internally by the
COURIER task and will be delivered subsequently. An interrupt would be blocked only if
its associated protected object had an ongoing protected action (or if its associated task, in
the obsolescent model, was not suspended at an (open) accept for its entry) or other tasks
executing in the system.interrupt_priority range were using resources which
prevented delivery (e.g. they were executing on the CPU at the time). Once a signal is
intercepted by the run-time system, a subsequent attempt at delivery will be made; such
signals are not lost, they are queued. 

Table 7-1.  Erroneous Behavior Due to User-Defined Signal Handlers

Signal Used Erroneous Behavior

SIGFPE certain types of numeric exceptions may no longer be
detected

SIGSEGV STORAGE_ERROR will no longer be raised when such a sig-
nal occurs

SIGRTMIN+15 (47) task preemption may cease to function, and certain kinds of
task interactions may fail
7-3



MAXAda for Linux Reference Manual
The time taken for addressing an interrupt is extremely short; it is unrelated to the delivery
of the signal or the execution of the associated protected procedure itself. Once intercep-
tion of the signal is scheduled by the operating system, the signal mask of the interceptee
contains the signal number of interest; it is not cleared until interception is complete (see
sigprocmask(2)). If another instance of the same signal is generated while the inter-
ceptee has the signal number set in its signal mask, the operating system will either queue
or discard the new signal. Whether or not such signals are discarded is dependent on how
the signal was initiated (see sigaction(2)).

Therefore, when a protected procedure handler is executed, only signals associated with
that handler are blocked. They are blocked in the RM sense that they cannot be delivered
to the protected handler; they are not necessarily blocked in the operating system sense of
signal blocking (see sigprocmask(2)). Note that the execution of the handler will not
be interrupted by interception of that signal number; task dispatching rules coupled with
the priority of the protected object ensure this.

SHADOW Ghost Tasks 7

There is a ghost task associated with a software interrupt task handler, called a SHADOW
task. It is not a physical task in any real sense. It merely acts as the virtual caller of the
interrupt handler. It does not, however, physically execute on any server or CPU.

Hardware Interrupts 7

Hardware interrupts are machine-generated interrupts. Machine interrupt handling is
based on the specific driver associated with the device generating the interrupt.  The inter-
rupt courier task blocks in an ioctl call waiting for the interrupt to occur. 

Machine interrupts are further divided into two categories: “restricted” and “unrestricted”.
A “restricted” interrupt places restrictions upon the code executed by its handler. An
“unrestricted” interrupt places no such restrictions; the handler may execute any legal Ada
statement.

A handler which handles a “restricted” interrupt will execute at operating system interrupt
priority level (IPL); these priorities correspond to the Ada priorities in the range:

interrupt_priority’first+1 .. interrupt_priority’last

as presented in “Priorities” on page 5-5.  Such a handler must follow the restrictions indi-
cated in “Restrictions for Priorities in the System.Interrupt_Priority Range” on page 5-9.
Violating those restrictions almost always will result in a system hang or panic.
7-4



Interrupt Handling
NOTE

Restricted interrupts are not currently supported on Linux.

However, use of protected action handlers whose ceiling priority
exceeds interrupt_priority'first are supported.  While
such protected actions are executed, all external maskable
machine interrupts are masked.

See “Restrictions for Priorities in the System.Interrupt_Priority
Range” on page 5-9.

INTR_COURIER and COURIER Ghost Tasks 7

An INTR_COURIER ghost task is provided by the implementation for each protected
procedure handler or task which handles a machine interrupt.

When a machine interrupt is generated, the INTR_COURIER for the associated interrupt
returns from its blocking ioctl call.

The INTR_COURIER has the following responsibilities:

1. It addresses the interrupt for subsequent delivery.

2. Depending on circumstances described below, it may deliver the interrupt
itself or notify the COURIER task of the interrupt.

Addressing the interrupt for delivery is a very fast operation; it simply involves determin-
ing which handler is currently attached to the interrupt.

For protected procedure handlers, if the interrupt is designated as “restricted”, then the
INTR_COURIER will deliver the interrupt itself. Delivery for a protected procedure han-
dler involves initiating a protected action which invokes the associated protected proce-
dure. If a protected action cannot be initiated (because a protected action is already under-
way for the associated protected object), the INTR_COURIER will spin on its CPU
waiting for the action to complete. Note that an appropriate choice of the ceiling priority
associated with the protected object, in combination with task dispatching rules, ensures
that the interrupt will not preempt a protected action for that protected object (otherwise
the INTR_COURIER might spin forever). When handling a “restricted” machine inter-
rupt, the user must ensure that the ceiling priority of the associated protected object
matches (or exceeds) the priority of the interrupt; otherwise, when the attempt at delivery
is made, the INTR_COURIER will cause a ceiling violation and the exception
PROGRAM_ERROR will  be raised.  The exception wil l  be handled by the
INTR_COURIER task and the interrupt will be lost (a (suppressible) message is printed
by the MAXAda run-time when this occurs). For “restricted” interrupts, it is important to
understand that the computer system as a whole is prevented from handling machine inter-
rupts of like or lower priority, on the same CPU, while the INTR_COURIER delivers the
interrupt or when protected actions for the associated protected object are executed in gen-
eral.

Alternatively, for protected procedure handlers, if the interrupt is “unrestricted”, the
INTR_COURIER will notify another ghost task, the COURIER task, who will deliver the
interrupt. If another instance of the same interrupt is generated before the COURIER
7-5



MAXAda for Linux Reference Manual
delivers the previous interrupt, it will be queued by the MAXAda run-time system for sub-
sequent delivery. Thus, the computer system as a whole is not prevented from handling
machine interrupts of like or lower priority while the COURIER delivers an interrupt or
during protected actions associated with the protected object.

For task handlers, the INTR_COURIER simply notifies the COURIER task of the inter-
rupt unless the user has specified that the address space of the entire application is to be
locked into memory (see “Pragma POOL_LOCK_STATE” on page 6-25). In this case, the
INTR_COURIER attempts to obtain critical access to the task in a non-blocking manner.
If it is able to obtain access to the task and the task is blocked with an open accept alterna-
tive for the entry, the INTR_COURIER delivers the interrupts; otherwise it notifies the
COURIER task of the interrupt. If the COURIER task is already busy delivering a previ-
ous interrupt, then the interrupt is queued by the MAXAda run-time system for subsequent
delivery. 

SHADOW Ghost Tasks 7

The SHADOW task associated with a hardware interrupt handler for a task entry serves
the same purpose as that for a software interrupt handler. It acts as the virtual caller of the
interrupt handler. It does not physically execute on any server or CPU.

Privileges for Unrestricted Hardware Interrupts 7

The permissions on the associated device files must be readable and writable by the user
process; e.g. /dev/rcim/rtc1.

Interrupt Attachments 7

The language-defined package, ada.interrupts, is the basis for all interrupt attach-
ments. It defines the type interrupt_id, which is an encoded integer which represents
an interrupt. It also includes language-defined procedures for attaching and detaching
interrupts.

MAXAda provides additional child packages to ada.interrupts which aid the user.

Package Ada.Interrupts.Names 7

The package ada.interrupts.names provides predefined interrupt IDs for signals
and commonly handled hardware devices. Note that the constants defined in that package
may not have the same internal encoded value across architectures or systems. The con-
stants are set by the MAXAda run-time system upon program elaboration.

These constants may be specified in ATTACH_HANDLER pragmas or calls to subprograms
in the ada.interrupts package.
7-6



Interrupt Handling
Package Ada.Interrupts.Services 7

Since values of ada.interrupt_id are encoded integers, this package (subsequently
referred to as AIS in this chapter), provides a mechanism for encoding the values based on
the common identifier for the interrupt; either a signal number or a machine interrupt iden-
tifier.

To  o b t a i n  a n  interrupt_id  f o r  a  s i g n a l ,  i n v o k e  t h e  r o u t i n e
ais.encode_signal_interrupt_id and supply the signal number.  To obtain the
signal number associated with a value of interrupt_id, first check that the interrupt
ID is indeed an encoded signal via the function ais.is_signal_interrupt_id and
then invoke ais.decode_signal_interrupt_id.

NOTE

Currently on Linux, the only machine devices for which MAX-
Ada supports interrupt handling are those listed in ada.inter-
rupts.names.

Task Executives via Protected Handlers 7

Protected objects naturally lend themselves to providing efficient task scheduling. The fol-
lowing example utilizes the receipt of an interrupt to begin the execution of a frame in a
cyclic scheduler.

package executive is
protected executive is

procedure interrupt;
entry wait_for_interrupt;

private
execute : boolean := false;

end executive;
end executive;

package body executive is
protected body executive is

procedure interrupt is
begin

execute := true;
end interrupt;
entry wait_for_interrupt when execute is
begin

if wait_for_interrupt’count = 0 then
execute := false;

end if;
end wait_for_interrupt;

end executive;
end executive;

Example 7

A complete example is provided to illustrate this concept:
7-7



MAXAda for Linux Reference Manual
with system ;
generic
   type tasks is (<>) ;
package cyclic_scheduler is
--
   type cycles is mod 2**32 ;
   type cycle_counts is array (tasks) of cycles ;

   protected type scheduler (priority : system.interrupt_priority) is
      entry start_cycle (tasks) (overran, finished : out boolean) ;
      procedure interrupt ;
      procedure shut_down ;
      function current_cycle return cycles ;
   private
      pragma interrupt_handler (interrupt) ;
      pragma interrupt_priority (priority) ;
      cycle  : cycles := 0 ;
      counts : cycle_counts := (others => 0) ;
      stop   : boolean := false ;
   end scheduler ;
--
end cyclic_scheduler ;

package body cyclic_scheduler is
--
   protected body scheduler is
   --
      procedure interrupt is
      begin
         cycle := cycle + 1 ;
      end interrupt ;

      entry start_cycle (for t in tasks) (overran, finished : out boolean)
      when counts(t) /= cycle or stop is
      begin
         if stop then
            finished := true ;
            overran  := false ;
         else
            finished  := false ;
            counts(t) := counts(t) + 1 ;
            overran   := counts(t) /= cycle ;
         end if ;
      end start_cycle ;

      procedure shut_down is
      begin
         stop := true ;
      end shut_down ;

      function current_cycle return cycles is
      begin
         return cycle ;
      end current_cycle ;
   --
   end scheduler ;
--
end cyclic_scheduler ;

with cyclic_scheduler ;
with system ;
package scheduler_example is
--
   type tasks is (cpu_0, cpu_1) ;
7-8



Interrupt Handling
   task type t (id : tasks; priority : system.priority; cpu_bias : integer) 
is
      pragma task_priority (priority) ;
      pragma task_cpu_bias (cpu_bias) ;   
   end t ;

   package sched is new cyclic_scheduler (tasks) ;

   scheduler : sched.scheduler (interrupt.priority’first) ;
   done      : boolean := false ;
--
end scheduler_example ;

with ada.text_io ;
package body scheduler_example is
--
   workload : integer := 10_0000 ;

   procedure work is
       x : long_float := 0.0 ;
   begin
      for i in integer range 1..workload loop
         x := x * x ;
      end loop ;
   end work ;

   task body t is
      overran  : boolean ;
      finished : boolean ;
   begin
      loop
         scheduler.start_cycle(id) (overran, finished) ;
         exit when overran or else finished ;
         work ;
      end loop ;
      if overran then
         ada.text_io.put_line (“Task “ & tasks’image(id) & “ overran”) ;
      end if ;
      ada.text_io.put_line (“Task “ & tasks’image(id) & “ complete.”) ;
   end t ;
--
end scheduler_example ;

with ada.interrupts ;
with ada.interrupts.names ;
with ada.interrupts.rtc_control ;
with ada.interrupts.services ;
with ada.text_io ;
procedure scheduler_example.main is
--
   package ai renames ada.interrupts ;

   cpu0_task   : t (id => cpu_0, priority => -10, cpu_bias => 2#0001#) ;
   cpu1_task   : t (id => cpu_1, priority => -11, cpu_bias => 2#0010#) ;
   rtc         : ai.rtc_control.rtc_id ;
--
begin
--
   ai.attach_handler (scheduler.interrupt’access,
                      ai.names.rtc2c1) ;

   rtc := ai.rtc_control.configure_rtc (cycle_time_msec => 16.6666666,
                                        id              => ai.names.rtc2c1) 
;

7-9



MAXAda for Linux Reference Manual
   ai.rtc_control.start_rtc (rtc) ;
   loop
      exit when done ;
      delay 1.0 ;
      ada.text_io.put_line (“cycles =” & 
                            sched.cycles’image(scheduler.current_cycle));
   end loop ;
   ai.rtc_control.stop_rtc (rtc) ;

   delay 0.020 ;

   scheduler.shut_down ;
--
end scheduler_example.main ;

Description of Example 7

In the example above, a protected object is used to coordinate the cyclic scheduling of
multiple tasks using a real-time clock as an external timing source.

It is handy to run the a.monitor tool to track the execution of the test.  Invoke a.mon-
itor with the name of the program file for the test (e.g. a.monitor a.out).  Select
the Tasks menu item from the View menu to track the number of interrupts delivered
and the status of each task.  

Receipt of the machine interrupt associated with expiration of the clock defines the start of
a cycle.  In the example, all tasks are scheduled to start execution at the beginning of a
cycle.

Each task registers with the protected object when it is ready via a protected entry call to
start_cycle.  The tasks will block on that entry call until the beginning of the next
cycle.

An entry family is used simply to detect cycle overruns for the tasks; otherwise a single
entry might be used.

Under normal operation (i.e. if there are no overruns), all the tasks in the scheduler will be
blocked on their entry call to start_cycle. Upon receipt of an interrupt, a protected
action is started and the protected procedure interrupt is called, incrementing the cur-
rent cycle count cycle by one.  

As part of finishing the protected action (immediately after returning from procedure
interrupt), the entry queues are services (see RM 9.5.3(13)).  All tasks which blocked
on the entry start_cycle before the interrupt occurred are released (since the entry
barrier condition will now evaluate to TRUE (see RM 9.5.3(7)).

Inside the entry body, overruns for each task are detected by comparing the current cycle
number to the cycle number when that task was last released.

Finally, when all tasks have been released, the protected action completes.

Note that if one of the tasks is released, completes its processing, and then makes another
entry call to start_cycle before all the other tasks have been released, it will remain
queued until the next interrupt occurs due to the barrier condition for that entry index (i.e.
counts(id) will equal cycle until the next interrupt occurs).

The priority and cpu_bias of the tasks are set using pragmas and  per-object expressions.
7-10



Interrupt Handling
The priority of the protected object is set similarly.
7-11



MAXAda for Linux Reference Manual
7-12



Part 3 - General Features
Part 3  - General Features

Part 3   General Features

Chapter 8   Shared Memory and Process Communication ................................ 8-1

Chapter 9   Support Packages ............................................................................ 9-1



MAXAda for Linux Reference Manual



8
Chapter 8Shared Memory and Process Communication

8
8
8

This chapter describes how to use MAXAda to communicate between distinct processes.
Through the use of implementation-defined pragmas and attributes, a user can write pro-
grams in the Ada programming language that interface to objects in other programs.
Some of these other programs may even be written in languages other than Ada.  These
communications are provided only through implementation-defined features. 

Shared Memory 8

With the use of pragma SHARED_PACKAGE, Ada programs can interface to separate pro-
grams, possibly running on different CPUs on a multiple-CPU system. 

This communication is achieved internally by utilizing shared memory services, such as,
shmget(2), shmat(2), etc. 

Shared Packages 8

MAXAda has provided an implementation-defined pragma SHARED_PACKAGE. This
provides for the sharing and communication of Ada objects in library-level packages
between distinct Ada programs.  

All variables declared in the specification of a package marked with pragma
SHARED_PACKAGE (henceforth referred to as a shared package) are allocated in shared
memory that is created and maintained by the implementation.  As such, all Ada programs
that reference the shared packages can communicate through variables in the specifica-
tions of those packages.  Note that variables declared in the body of a shared package are
not shared.  Any objects declared in specifications of packages nested within shared pack-
ages are also shared as part of the same shared memory segment.

See also “4.1.4(12) Implementation-defined attributes” on page M-14 for more informa-
tion related to pragma SHARED_PACKAGE.

Pragma SHARED_PACKAGE 8

The implementation-defined pragma SHARED_PACKAGE provides for the sharing and
communication of data declared within the specification of library-level packages. 

Its syntax is:
8-1



MAXAda for Linux Reference Manual
pragma SHARED_PACKAGE[("params")];

params

an optional argument, that, if specified, must be a string constant containing a
comma-separated list of system shared-segment configuration parameters, as
defined below

The SHARED_PACKAGE pragma must appear within the specification of the library-level
package. The pragma may also be repeated in the package body to allow the user to over-
ride the shared memory configuration parameters that were associated with the pragma in
the specification.  However, the pragma still affects only objects declared in the specifica-
tion of the package. 

The following is a list of the shared-segment configuration parameters that pragma
SHARED_PACKAGE may accept:

key=name 

Identifies the system shared-segment key to be used in subsequent shmget(2)
system calls.  These calls are done automatically by the implementation in configur-
ing the shared segment. 

name is considered to be the name of an existing file.  This filename will then be
translated to a shared segment key using the ftok(3C) service. Note that relative
pathnames may be specified but will cause key translation to be dependent on the
user’s current working directory when program execution is initiated. If name is a
numeric literal (a decimal integer or Ada octal- or hexadecimal-based literal),
MAXAda interprets this as the actual system key, and does not translate it using the
ftok service. 

If no key is specified, MAXAda creates an empty file by the name:

{absolute MAXAda environment path}/.ada/shmem/package_name 

and uses that file as the key for the SHARED_PACKAGE pragma. 

ipc=(IPC_CREAT, IPC_EXCL, IPC_PRIVATE) 

Allows the user to specify details about the initialization of the shared segment. By
default, MAXAda applies ipc=(IPC_CREAT) to the shared package, thereby cre-
ating the shared segment if it did not previously exist. If any ipc parameters are
given, they entirely replace the default ipc specification. 

SHM_RDONLY 

Specifies that the segment is available only for READ operations.  MAXAda defaults
shared package segments to READ/WRITE.
8-2



Shared Memory and Process Communication
CAUTION

The current shared memory implementation does not allow the
use of the ’LOCK and ’UNLOCK attributes with a SHM_RDONLY
shared memory segment. Any use of these attributes with a pack-
age marked SHM_RDONLY will raise PROGRAM_ERROR at run
time. See “Shared Package Semaphores” on page 8-5.

mode=n 

Where n is assumed to be an octal number defining the access to the shared segment.
By default, MAXAda applies mode=644 to the shared package, (owner read/write,
group read, other read). The specified value for mode is ORed into the shmflgs
parameter that MAXAda uses for the shmget(2) call. Additional bits can be sup-
plied via mode to control caching, etc. (e.g., “mode = 8#200644#” would spec-
ify SHM_COPYBACK, as well as the 644 mode).

SHM_LOCAL 

Requests that pages for the shared segment be allocated from the local memory
pool. If a program attempts to attach to a segment which has been allocated from
local memory on a different CPU, then the attachment will fail. See shmget(2). 

SHM_LOCK 

Specifies that virtual memory pages be locked into physical memory at program
start-up time.  Doing this makes these pages immune to swapping. 

SHM_HARD 

When used in conjunction with SHM_LOCAL, specifies that pages for the shared
segment must be allocated from the local memory pool. If pages are not available
from local memory then the signal SIGSEGV is delivered to the process. See
shmget(2). 

no_bsem 

Prohibits the use of the shared package lock attributes ’LOCK and ’UNLOCK. In
shared packages marked with this parameter, binary semaphore space is not initial-
ized in the shared memory segment. Any attempt to make use of the lock attributes
in a shared package marked with no_bsem will raise PROGRAM_ERROR at run
time. Unlike RDONLY shared packages, packages marked by no_bsem have READ/
WRITE capability. 

bind=n 

Where n is assumed to be an octal number. The segment will be attached to the
physical  memory address specified by n .  This parameter requires the
CAP_IPC_LOCK capability (see “Capabilities” on page 1-3).

A detailed explanation of the IPC and SHM flags, and access modes may be found in the
following man pages: shmget(2), ipcs(1), ipcrm(1), and chmod(1). 
8-3



MAXAda for Linux Reference Manual
Restrictions on Contents of Shared Packages 8

The implementation restricts the kinds of objects that can be declared in a shared package.
Objects that cannot be declared in a shared package include:

• Unconstrained or dynamically sized objects

• Access type objects

• Generic instantiations

If any of these restrictions are violated, a warning message is issued and the package is not
shared.  These restrictions apply to nested packages as well.  Note that if a nested package
violates one of the preceding restrictions, it prevents the sharing of all enclosing packages
as well. 

Task objects are allowed within shared packages, however, the tasks as well as the data
defined within those tasks are not shared. 

Packages that require initialization should not be marked with the pragma unless the user
is prepared to deal with concurrency issues. The compiler does not reject the pragma in
these cases; however, every program that uses the shared package will initialize it during
program elaboration. Initialization can occur as a result of an explicit initialization by the
user (e.g., a : integer := 54 ;) or implicitly due to an object’s representation (an
array or record with gaps). The compiler issues a warning message in either case. 

Characteristics of Shared Packages 8

With the valid application of pragma SHARED_PACKAGE to a library-level package, the
following assumptions can be made about the objects declared in the specification of the
package: 

• The lifetime of such objects can be greater than the lifetime defined by the
complete execution of a single program. 

• The lifetime of such objects is guaranteed to extend from the elaboration of
the shared package by the first concurrent program until the termination of
execution of the last concurrent program. 

• A program that elaborates a shared package inherits the state of the objects
within it, if their lifetime, as defined before, has not expired. 

In the preceding assumptions, a concurrent program is defined to be any Ada program that
elaborates the body of a shared package, whose span of execution, from elaboration of
such a package to termination, overlaps that of another such program. 

In actuality, the shared memory segments created by these programs remain even after the
last concurrent program has exited. The values of objects within these segments remain
valid until the segment is destroyed, or until the system is rebooted. Segments may be
explicitly destroyed through the shared memory service shmctl(2), to which an inter-
face is provided in the MAXAda package ccur.shared_memory_support.  Alterna-
tively, the user may obtain information about active shared memory segments through the
ipcs(1) utility. These segments may be removed via the ipcrm(1) utility. 
8-4



Shared Memory and Process Communication
Objects declared in shared packages that have not been implicitly or explicitly initialized
may have invalid representations if of a scalar type, or may be abnormal otherwise.  It is a
bounded error for a program to evaluate an object with an invalid representation, and it is
erroneous for a program to evaluate an abnormal object.  This implementation does not
prevent these evaluations.  See RM 13.9.1(9) for more details.

The preceding discussion describes the intent that several Ada programs may begin, con-
tinue and complete their execution simultaneously, with the contents of the variables in the
shared packages consistent with the execution of those programs. 

The association of a system shared memory segment with the shared package occurs dur-
ing the elaboration of the package body.  If this association should fail due to system
shared memory constraints, access, or improper use of shared memory configuration
parameters, an error message is issued and the PROGRAM_ERROR exception is raised. 

WARNING

If the shmbind(2) attempt fails due to EBUSY, the implementa-
tion will ignore the error and continue, assuming that another pro-
gram has already bound the segment to the desired location.
Shared memory segments bound to physical memory should be
freed manually by the user via ipcrm(1). 

CAUTION

By default, every shared package that is available for READ/
WRITE has a binary semaphore initialized which starts 12 bytes
before the end of the segment and extends to the end of the seg-
ment. If a shared package is bound to a device using the bind=
parameter, be aware that the contents of these bytes may change if
the ’LOCK and ’UNLOCK attributes are utilized. The only excep-
t ions  are  those  shared packages which are  def ined as
SHM_RDONLY or those marked by the no_bsem parameter. In
these cases, the semaphore space is not initialized, but it is still
present. 

Shared Package Semaphores 8

Because programs may wish to define critical sections to reference and update variables
within the shared packages, MAXAda has provided semaphore operations, P’LOCK and
P’UNLOCK, with which this can be accomplished. 

The following programs illustrate a use of pragma SHARED_PACKAGE, ’LOCK and
’UNLOCK. 

Example:

--
-- shared_data.a
--
8-5



MAXAda for Linux Reference Manual
package shared_data is
-- 
   -- Data definitions 
   initialization_complete : boolean ; 
   writer_count : integer ; 

   -- Message Buffer Definitions 
   subtype message_range is integer range 0..20 ; 
   message : array (message_range) of string (1..3) ; 
   message_index : integer ; 
   -- 
   pragma shared_package ; 
-- 
end shared_data ; 
package body shared_data is 

begin 
-- 
   -- Every program which uses this shared package 
   -- will execute this code at elaboration time. 
   -- 
   -- This holds all programs (they all wait till this flag is true) 
   initialization_complete := false ; 
-- 
end shared_data ; 

--
-- init.a
--
with shared_data ;

procedure init is 

begin 
-- 
   shared_data.message_index := -1 ; 
   shared_data.writer_count := 0 ; 
-- 
end init ; 

--
-- starter.a
--
with shared_data ;

procedure starter is 

begin 
-- 
   shared_data.initialization_complete := true ; 
-- 
end starter ; 

--
-- writer.a
--
with ada.command_line;
with shared_data ; 

procedure writer is 
   index : integer ; 

begin 
-- 
   -- Increment the writer count 
8-6



Shared Memory and Process Communication
   shared_data’lock ; 
   shared_data.writer_count := shared_data.writer_count - 1 ; 
   shared_data’unlock ; 

   -- Wait for starter program 
   while not shared_data.initialization_complete loop 
      delay 1.0; 
   end loop ; 

   -- Allocate slots in the shared message buffer and fill them in 
   while shared_data.message_index < shared_data.message’last loop 
   -- 
      -- Lock the package 
      shared_data’lock ; 

      -- Reserve this index 
      if shared_data.message_index >= shared_data.message’last then 
         exit ; -- Might have changed already 
      end if ; 
      shared_data.message_index := shared_data.message_index + 1 ; 
      index := shared_data.message_index ; 

      -- Unlock the package 
      shared_data’unlock ; 

      -- Write the argument supplied to this routine to the buffer 
      shared_data.message(index) := ada.command_line.argument(1)(1..3) ; 

      -- Waste some time 
      delay 1.0 ; 
   -- 
   end loop ; 

   -- Tell the reader we are done 
   shared_data’lock ; 
   shared_data.writer_count := shared_data.writer_count + 1 ; 
   shared_data’unlock ; 
-- 
end writer ; 

--
-- reader.a
--
with ada.text_io ;
with shared_data ; 

procedure reader is 

begin 
-- 
   -- Wait for the initialization program to complete 
   while not shared_data.initialization_complete loop 
      delay 1.0 ; 
   end loop ; 

   -- Wait for all writers to finish 
   while shared_data.writer_count < 0 loop 
      delay 1.0 ; 
   end loop ; 

   -- Write out the messages 
   for index in shared_data.message_range loop 
      ada.text_io.put_line (shared_data.message(index)) ; 
8-7



MAXAda for Linux Reference Manual
   end loop ; 
-- 
end reader ; 

Introduce the source files (your environment should already exist - if not, create one with
a.mkenv):

$ a.intro shared_data.a  init.a  starter.a  writer.a
    reader.a

Now create an active partition for each of the units:

$ a.partition -create active init 
$ a.partition -create active writer 
$ a.partition -create active reader 
$ a.partition -create active starter 

Now build all of the partitions:

$ a.build -allparts  

From the shell, invoke the programs in the following order.  Note that the & character
instructs the shell to execute the program in the background. 

$ init 
$ writer one & 
$ writer two & 
$ writer thr & 
$ reader & 
$ starter 

The reader program will wait until all writer programs have finished and then print
the contents of the message buffer.  The message buffer will reflect the fact that all three
writers are writing simultaneously. 
8-8



9
Chapter 9Support Packages

9
9
9

MAXAda supplies a number of environments containing various packages that can be
used for program development.

where rel_name is the name of the MAXAda release.

Table 9-2 lists the MAXAda support packages and the environments in which they are
contained.  

Table 9-1.  Support environments

Keyword Environment

predefined /usr/ada/rel_name/predefined

vendorlib /usr/ada/rel_name/vendorlib

publiclib /usr/ada/rel_name/publiclib

rtdm /usr/ada/rel_name/rtdm

deprecated /usr/ada/rel_name/deprecated

obsolescent /usr/ada/rel_name/obsolescent

posix_1003.1 /usr/ada/rel_name/bindings/posix_1003.1

posix_1003.5 /usr/ada/rel_name/bindings/posix_1003.5

sockets /usr/ada/rel_name/bindings/sockets

general /usr/ada/rel_name/bindings/general

Table 9-2.  Support packages 

package environment

ada predefined

ada.calendar predefined

ada.characters predefined

ada.characters.handling predefined

ada.characters.latin_1 predefined

ada.command_line predefined

ada.direct_io predefined

ada.dynamic_priorities predefined
9-1



MAXAda for Linux Reference Manual
ada.exceptions predefined

ada.exceptions.addresses vendorlib

ada.finalization predefined

ada.float_text_io predefined

ada.float_wide_text_io predefined

ada.integer_text_io predefined

ada.integer_wide_text_io predefined

ada.interrupts predefined

ada.interrupts.distrib_control vendorlib

ada.interrupts.eti_control vendorlib

ada.interrupts.names predefined

ada.interrupts.names.services vendorlib

ada.interrupts.pig_control vendorlib

ada.interrupts.rtc_control vendorlib

ada.interrupts.services vendorlib

ada.io_exceptions predefined

ada.long_float_text_io predefined

ada.long_float_wide_text_io predefined

ada.numerics predefined

ada.numerics.constants vendorlib

ada.numerics.discrete_random predefined

ada.numerics.elementary_functions predefined

ada.numerics.float_random predefined

ada.numerics.generic_elementary_functions predefined

ada.numerics.long_elementary_functions predefined

ada.real_time predefined

ada.real_time.local vendorlib

ada.sequential_io predefined

ada.short_integer_text_io predefined

ada.short_integer_wide_text_io predefined

ada.storage_io predefined

ada.streams predefined

ada.streams.stream_io predefined

ada.strings predefined

ada.strings.bounded predefined

ada.strings.fixed predefined

ada.strings.maps predefined

Table 9-2.  Support packages  (Cont.)

package environment
9-2



Support Packages
ada.strings.maps.constants predefined

ada.strings.unbounded predefined

ada.strings.wide_bounded predefined

ada.strings.wide_fixed predefined

ada.strings.wide_maps predefined

ada.strings.wide_maps.wide_constants predefined

ada.strings.wide_unbounded predefined

ada.synchronous_task_control predefined

ada.tags predefined

ada.task_attributes predefined

ada.task_identification predefined

ada.text_io predefined

ada.text_io.text_streams predefined

ada.tiny_integer_wide_text_io predefined

ada.unchecked_conversion predefined

ada.unchecked_deallocation predefined

ada.wide_text_io predefined

ada.wide_text_io.text_streams predefined

calendar obsolescent

ccur vendorlib

ccur.binary_semaphores vendorlib

ccur.bit_ops vendorlib

ccur.bit_ops.long vendorlib

ccur.c_to_ada_types publiclib

ccur.character_type publiclib

ccur.client_server_services vendorlib

ccur.curses publiclib

ccur.cyclic_scheduler vendorlib

ccur.distrib_services vendorlib

ccur.eti_services vendorlib

ccur.fbsched vendorlib

ccur.indivisible_operations vendorlib

ccur.interval_timer vendorlib

ccur.night_trace_bindings general

ccur.posix_1003_1 posix_1003.1

ccur.qsort publiclib

ccur.rescheduling_control vendorlib

Table 9-2.  Support packages  (Cont.)

package environment
9-3



MAXAda for Linux Reference Manual
ccur.rtc_services vendorlib

ccur.rtdm rtdm

ccur.runtime_configuration vendorlib

ccur.shared_memory_support vendorlib

ccur.sockets sockets

ccur.spin_locks vendorlib

ccur.task_synchronization vendorlib

ccur.tasking_semaphores vendorlib

ccur.timers general

ccur.unchecked_byte_swap vendorlib

ccur.user_trace vendorlib

ccur.user_trace.raw vendorlib

ccur.usermap_support vendorlib

direct_io obsolescent

interfaces predefined

interfaces.c predefined

interfaces.c.pointers predefined

interfaces.c.strings predefined

interfaces.restricted_fortran predefined

interfaces.restricted_gnu_fortran predefined

interfaces.unchecked_c predefined

io_exceptions obsolescent

machine_code obsolescent

posix posix_1003.5

posix.calendar posix_1003.5

posix.configurable_file_limits posix_1003.5

posix.configurable_system_limits posix_1003.5

posix.file_locking posix_1003.5

posix.file_status posix_1003.5

posix.files posix_1003.5

posix.group_database posix_1003.5

posix.io posix_1003.5

posix.local_signals posix_1003.5

posix.permissions posix_1003.5

posix.process_environment posix_1003.5

posix.process_identification posix_1003.5

posix.process_primitives posix_1003.5

Table 9-2.  Support packages  (Cont.)

package environment
9-4



Support Packages
Supplied Environments 9

The following environments are supplied with MAXAda:

• “predefined” on page 9-6

• “vendorlib” on page 9-8

• “publiclib” on page 9-12

• “rtdm” on page 9-13

• “deprecated” on page 9-14

• “obsolescent” on page 9-14

• “posix_1003.1” on page 9-14

• “posix_1003.5” on page 9-15

• “sockets” on page 9-17

posix.process_primitives.local posix_1003.5

posix.process_times posix_1003.5

posix.signals posix_1003.5

posix.supplement_to_ada_io posix_1003.5

posix.terminal_functions posix_1003.5

posix.unsafe_process_primitives posix_1003.5

posix.user_database posix_1003.5

sequential_io obsolescent

system predefined

system.address_to_access_conversions predefined

system.addresses vendorlib

system.information vendorlib

system.machine_code predefined

system.storage_elements predefined

system.storage_pools predefined

system.storage_pools.standard vendorlib

system.storage_pools.standard.objects vendorlib

text_io obsolescent

unchecked_conversion obsolescent

unchecked_deallocation obsolescent

Table 9-2.  Support packages  (Cont.)

package environment
9-5



MAXAda for Linux Reference Manual
• “general” on page 9-17

predefined 9

MAXAda provides the Predefined Language Environment (predefined) which con-
tains packages as defined in Annex A of the Ada 95 Reference Manual.  According to the
Reference Manual, the library units listed in this Annex “shall be provided by every
implementation”.

Table 9-3.  predefined environment  

package

ada

ada.calendar

ada.characters

ada.characters.handling

ada.characters.latin_1

ada.command_line

ada.direct_io

ada.dynamic_priorities

ada.exceptions

ada.finalization

ada.float_text_io

ada.float_wide_text_io

ada.integer_text_io

ada.integer_wide_text_io

ada.interrupts

ada.interrupts.names

ada.io_exceptions

ada.long_float_text_io

ada.long_float_wide_text_io

ada.numerics

ada.numerics.discrete_random

ada.numerics.elementary_functions

ada.numerics.float_random

ada.numerics.generic_elementary_functions
9-6



Support Packages
ada.numerics.long_elementary_functions

ada.real_time

ada.sequential_io

ada.short_integer_text_io

ada.short_integer_wide_text_io

ada.storage_io

ada.streams

ada.streams.stream_io

ada.strings

ada.strings.bounded

ada.strings.fixed

ada.strings.maps

ada.strings.maps.constants

ada.strings.unbounded

ada.strings.wide_bounded

ada.strings.wide_fixed

ada.strings.wide_maps

ada.strings.wide_maps.wide_constants

ada.strings.wide_unbounded

ada.synchronous_task_control

ada.tags

ada.task_attributes

ada.task_identification

ada.text_io

ada.text_io.text_streams

ada.tiny_integer_wide_text_io

ada.unchecked_conversion

ada.unchecked_deallocation

ada.wide_text_io

ada.wide_text_io.text_streams

interfaces

interfaces.c

interfaces.c.pointers

Table 9-3.  predefined environment   (Cont.)

package
9-7



MAXAda for Linux Reference Manual
vendorlib 9

This environment contains packages that do not collectively represent an Ada binding but
serve as a collection of utility packages and thin bindings to Concurrent-specific services.

interfaces.c.strings

interfaces.restricted_fortran

interfaces.restricted_gnu_fortran

interfaces.unchecked_c

system

system.address_to_access_conversions

system.machine_code

system.storage_elements

system.storage_pools

Table 9-4.  vendorlib environment  

package

ccur.bit_ops

ccur.bit_ops.long

ada.exceptions.addresses

ada.numerics.constants

ada.real_time.local

ccur.runtime_configuration

ccur.shared_memory_support

system.addresses

system.information

system.storage_pools.standard

system.storage_pools.standard.objects

The following packages are discussed in Chapter 7, "Interrupt Handling"

ada.interrupts.distrib_control

Table 9-3.  predefined environment   (Cont.)

package
9-8



Support Packages
ccur.bit_ops 9

The ccur.bit_ops package consists of bit-manipulation routines for type integer.

ccur.bit_ops.long 9

The ccur.bit_ops.long package consists of bit-manipulation routines for type
long_integer.

ada.exceptions.addresses 9

The ada.exceptions.addresses package contains two functions that deal with
exceptions:

ada.interrupts.eti_control

ada.interrupts.names.services

ada.interrupts.pig_control

ada.interrupts.rtc_control

ada.interrupts.services

The following packages are discussed in Chapter 10, "Real-Time Extensions"

ccur.binary_semaphores

ccur.client_server_services

ccur.cyclic_scheduler

ccur.distrib_services

ccur.eti_services

ccur.fbsched

ccur.indivisible_operations

ccur.rescheduling_control

ccur.rtc_services

ccur.spin_locks

ccur.task_synchronization

ccur.tasking_semaphores

ccur.user_trace

ccur.user_trace.raw

ccur.usermap_support

Table 9-4.  vendorlib environment   (Cont.)

package
9-9



MAXAda for Linux Reference Manual
- originating_instruction

This function returns the address of the instruction which raised the excep-
tion associated with the supplied exception occurrence.

- propagation_map

This function returns the list of instructions associated with the most
recently raised exception in the calling task.  The first entry in the list cor-
responds to the address of the instruction which raised the exception.  Sub-
sequent entries refer to instruction addresses along which the exception
was propagated (or reraised) before reaching a handler.

This function need not be called directly from the handler; it always reports
on the last exception raised by the calling task.

ada.numerics.constants 9

The ada.numerics.constants package contains constants whose values have been
taken from the following sources:

1. CRC Handbook of Tables for Mathematics, Fourth Ed., Robert C.
Weast (ed.), 1970, The Chemical Rubber Co.

2. Knuth, Donald E., 'Fundamental Algorithms', Vol. 1 of 'The Art of
Computer Programming', 2nd ed., 1973. (Appendix B).

3. Davis, Harold T. and Fisher, Vera J., 'Arithmetical Tables', Vol. III of
'Tables of the Mathematical Functions', The Principia Press, Texas,
1962.

4. Fletcher, A. et al., 'An Index of Mathematical Tables', Scientific
Computing Service Limited, London, 1962.

Where values exist in more than one source, such values have been cross checked.  In all
cases, such values agree except for possibly a value of one in the last digit.  In such cases
of difference, the higher value is used, under the assumption that it is a rounded value and
that the lower value is a truncated value.

ada.real_time.local 9

The ada.real_time.local package contains two convenient functions that convert
values of type Ada.Real_Time.Time_Span to Long_Float.

The values returned are in units of seconds.

function to_seconds (t : time_span) return long_float;
function fast (t : time_span) return long_float;

The fast function utilizes an algorithm that does the conversion more efficiently than the
to_seconds function, but it loses precision for large time spans.
9-10



Support Packages
ccur.runtime_configuration 9

The ccur.runtime_configuration package provides support for the retrieval and
modification of certain run-time attributes.

ccur.shared_memory_support 9

The ccur.shared_memory_support package contains Ada types, subprogram defi-
nitions, and interfaces to aid the user in manually interfacing to the shared memory system
services. 

This includes: 

• System defines and records layouts as defined by the C programming lan-
guage include files <sys/shm.h> and <sys/ipc.h>. 

• Interface specifications to shared memory system calls: shmget(2),
shmat(2), shmctl(2), shmdt(2). 

system.addresses 9

The system.addresses package provides routines to convert between integer types
and system.address, associate a variable with a machine register, and associate a
variable with a location in physical (machine; not virtual!) memory.  It also includes other
conversion, arithmetic, and comparison functions.

system.information 9

The system.information package is a thick/abstract binding to the sysinfo(2)
service. See the specification of system.information for more information.

system.storage_pools.standard 9

The system.storage_pools.standard package contains the standard storage pool
types used by the implementation for access types without ’Storage_Pool clauses.

The Predefined_Storage_Pool type is used for those access types for which no
’Storage_Size clause is present.  There is a single object of this type (sys-
tem.storage_pools.standard.objects.predefined).  It is erroneous to
attempt to create any other object of this type.

The Collection_Storage_Pool type is used for those access types for which a
’Storage_Size clause is present.  The implementation creates a distinct object of this
type for each such access type.  It is illegal to attempt to create any object of this type
directly.  However, it is possible to reference the implementation-created object via the
’Storage_Pool attribute.
9-11



MAXAda for Linux Reference Manual
system.storage_pools.standard.objects 9

The system.storage_pools.standard.objects package contains the pre-
defined storage pool object used by the implementation for access types with neither
’Storage_Pool nor ’Storage_Size clauses.

publiclib 9

The publiclib environment contains general-purpose, public-domain Ada packages.
Note that Concurrent neither owns nor supports any of the packages in publiclib; these
packages are provided as a courtesy to users.

ccur.c_to_ada_types 9

This package provides Ada type definitions for C types (int , char, bool, ...).

ccur.character_type 9

This package contains commonly used routines that test and manipulate characters
(isalpha, isupper, islower, ...).

ccur.curses 9

The ccur.curses package provides an Ada interface to the curses(3X) library con-
taining terminal information and screen-manipulation routines.  

For more information about using routines in the ccur.curses package, refer to the
Character User Interface Programming manual.

ccur.qsort 9

A generic sort.  The generic implements Knuth’s Algorithm Q [Knuth, "Searching and
Sorting", The Art of Computer Programming, Volume 3, Addison-Wesley, ppg 116-7].

Table 9-5.  publiclib environment  

package

ccur.c_to_ada_types

ccur.character_type

ccur.curses

ccur.qsort
9-12



Support Packages
The only parameter to the instantiated procedure is the array to be sorted.

rtdm 9

This environment contains a package which provides a flexible interface to the key fea-
tures of data monitoring.

ccur.rtdm 9

This package contains subprograms that allow you to specify executable programs that
contain Ada, C, or FORTRAN variables to be monitored, obtain and modify the values of
selected variables by specifying their names, and obtain such information about the vari-
ables as their virtual addresses, types, and sizes.

The interface provided allows for viewing and modifying data objects without knowledge
a priori of the set of data objects or their data type.  The current implementation supports a
limited set of data items, including:

• integer objects

• floating point objects

• fixed point objects

• enumeration objects

• array components

• record fields

• pointers

• limited expressions involving pointer indirection

The ccur.rtdm package also makes use of an interest_threshold to filter out
less interesting data items when using get, set or list activities.  If the interest level of
a  da ta  i t em is  lower  than  the  interest_threshold  o f  i t s  assoc ia ted
program_descriptor, it is as if that data item did not exist.

Interest levels for particular data items are set using the implementation-defined pragma
INTERESTING (see “Pragma INTERESTING” on page M-115) or the -Qinterest-
ing compilation option (see “Qualifier Keywords (-Q options)” on page 4-105).  By
default, all data items have an interest level of zero.

Table 9-6.  rtdm environment  

package

ccur.rtdm
9-13



MAXAda for Linux Reference Manual
This information is only useful if full debug information is enabled (see “Pragma
DEBUG” on page M-107 or “Debug Level (-g[level])” on page 4-100.

For more information about using routines in the ccur.rtdm package, see the Data
Monitoring Reference Manual.

deprecated 9

This environment contains packages which are provided for compatibility with previous
releases only.  This environment, and all the packages in it, will be removed in a future
release of MAXAda.

obsolescent 9

The obsolescent environment contains those packages whose functionality is largely
redundant with other features defined in the Ada 95 Reference Manual.  Use of these fea-
tures is not recommended in newly written programs.

Descriptions of these features of the language can be found in Annex J of the Ada 95 Ref-
erence Manual.

posix_1003.1 9

This environment contains a package that provides a thin Ada binding to all header files
and subprograms defined in the IEEE-Std-1003.1 (POSIX 1003.1) and IEEE-Std-1003.1b
(POSIX 1003.1b) standards for UNIX operating systems.

Table 9-7.  obsolescent environment  

package

calendar

direct_io

io_exceptions

machine_code

sequential_io

text_io

unchecked_conversion

unchecked_deallocation
9-14



Support Packages
ccur.posix_1003_1 9

The ccur.posix_1003_1 package provides a thin Ada binding to all header files and
subprograms defined in the IEEE-Std-1003.1 (POSIX 1003.1) and IEEE-Std-1003.1b
(POSIX 1003.1b) standards for UNIX operating systems.

Certain services available in POSIX 1003.1 require use of additional OS support libraries
(e.g. librt.a, libpthread.a). The easiest way to ensure that the required library is
included in the link is to put the following pragma in any Ada unit that uses these services:

pragma linker_options ("-lpthread") ;

It is not included automatically in all programs because it would introduce unnecessary
overhead in applications which do not use such services, tasking, or other real-time fea-
tures.

posix_1003.5 9

This environment contains packages whose specifications were extracted from IEEE Std
1003.5-1992, IEEE Standard for Information Technology--POSIX Ada Language Inter-
faces--Part 1: Binding System Application Program Interface, copyright (c)1992 by the
Institute of Electrical and Electronics Engineers, Inc.  The IEEE Std 1003.5-1992 must be
used in conjunction with these package specifications in order to claim conformance.

The Concurrent implementation of this binding is fully compliant with the standard and
thus allows the user to write fully compliant Ada applications.  

Table 9-8.  posix_1003.1 environment  

package

ccur.posix_1003_1

Table 9-9.  posix_1003.5 environment  

package

posix

posix.calendar

posix.configurable_file_limits

posix.configurable_system_limits

posix.file_locking
9-15



MAXAda for Linux Reference Manual
This environment contains an implementation of POSIX.5.  In addition to the packages
defined in that standard, a child package of posix.process_primitives is pro-
vided:

package posix.process_primitives.local is
--
   type a_procedure is access procedure (void : integer);

   procedure set_child_process_callback (
                       template : in out process_template;
                       routine  : in a_procedure;
                       param    : in integer := 0);
--
end posix.process_primitives.local;

Use of set_child_process_callback will result in the supplied user routine to be
called after the process forks but before it execs.  The value of param is provided on the
call.

This is a convenient way to set process attributes that are not addressed by the POSIX.5
standard.

posix.file_status

posix.files

posix.group_database

posix.io

posix.local_signals

posix.permissions

posix.process_environment

posix.process_identification

posix.process_primitives

posix.process_primitives.local

posix.process_times

posix.signals

posix.supplement_to_ada_io

posix.terminal_functions

posix.unsafe_process_primitives

posix.user_database

Table 9-9.  posix_1003.5 environment   (Cont.)

package
9-16



Support Packages
sockets 9

This environment contains a package that provides a direct thin Ada binding to UNIX
sockets.

ccur.sockets 9

This package provides a direct thin Ada binding to sockets.

general 9

This environment contains Ada bindings to some general purpose services including an
Ada interface to some of the system timing devices and a thin binding to the NightTrace
service routines.

ccur.night_trace_bindings 9

This package contains a "thin/abstract" binding to the Ntrace service routines as described
in ntrace(3x).

ccur.timers 9

This package contains interfaces to various OS timings services.

Table 9-10.  sockets environment  

package

ccur.sockets

Table 9-11.  general environment  

package

ccur.night_trace_bindings

ccur.timers
9-17



MAXAda for Linux Reference Manual
9-18



Part 4 - Real-Time Features
Part 4  - Real-Time Features

Part 4   Real-Time Features

Chapter 10   Real-Time Extensions ................................................................. 10-1

Chapter 11   Real-Time Event Tracing ............................................................ 11-1

Chapter 12   Real-Time Monitoring ................................................................ 12-1



MAXAda for Linux Reference Manual



10
Chapter 10Real-Time Extensions

10
10
10

This chapter describes a variety of Ada extensions to MAXAda that can be utilized with
Concurrent real-time services. Because the majority of the interfaces to real-time services
are C language library routines, MAXAda provides an Ada interface to these services
through packages in the vendorlib environment. These packages provide a complete
Ada binding to the real-time library routines and data structures for the real-time services
mentioned before. This capability provides users with an Ada interface to real-time ser-
vices without having to go outside of the Ada language. 

The following real-time packages are available in vendorlib: 

ccur.binary_semaphores
ccur.client_server_services
ccur.cyclic_scheduler
ccur.distrib_services
ccur.eti_services
ccur.fbsched
ccur.indivisible_operations
ccur.rescheduling_control
ccur.rtc_services
ccur.spin_locks
ccur.task_synchronization
ccur.tasking_semaphores
ccur.user_trace
ccur.user_trace.raw
ccur.usermap_support
ccur.unchecked_byte_swap

Mutual Exclusion Interfaces 10

Spin Locks 10

The ccur.spin_locks package provides an efficient and reliable means of performing
busy-wait mutual exclusion between two or more programs. A spin lock must be allocated
within a shared memory region (a MAXAda shared package, for instance) for it to be visi-
ble to more than one program. See “Shared Memory” on page 8-1.

Spin locks are most efficient when the critical sections they guard are short.  I/O opera-
tions, system calls, and extended computations should be avoided when spin locks are
locked. 
10-1



MAXAda for Linux Reference Manual
Special privileges are needed to use this package because it makes use of the
ccur.rescheduling_control package.  Refer to “Rescheduling Control” on page
10-11 for proper use of the ccur.rescheduling_control package. 

Use of this package requires the CAP_SYS_RAWIO capability (see “Capabilities” on page
1-3).

Binary Semaphores 10

The ccur.binary_semaphores package provides an efficient means of performing
sleepy-wait mutual exclusion between two or more programs using Linux synchronization
services. The “sleep” operation is performed using the priority inheritance protocol which
limits the length of time a high-priority process must wait for a low-priority process to
release the semaphore. 

Once a semaphore is locked, the locking thread may perform any actions desired, includ-
ing I/O and system calls. 

The most common means of using this package is to declare a shared package containing
an object of type ccur.binary_semaphores.semaphore.  For example:

with ccur.binary_semaphores; 
package sync_package is 
-- 
  pragma elaborate_body;
  -- 
  -- A binary semaphore for arbitration of exclusive access to
  -- some_unnamed_shared_resource shared among multiple programs.
  -- 
  sema : ccur.binary_semaphores.semaphore;

  -- 
  -- This flag is set to TRUE when the first program calls 
  -- sema_init to initialize sema. 
  -- 
  initialized : boolean; 

  pragma shared_package;
  pragma pool_lock_state (default, locked);
 -- 
  end sync_package; 

package body sync_package is 
begin 
-- 
    sync_package’lock; 

    if not initialized then 
       ccur.binary_semaphores.sema_init (sema); 
       initialized := True; 
    end if; 

    sync_package’unlock; 
-- 
end sync_package; 

Programs may specify sync_package and ccur.binary_semaphores in with
clauses to obtain mutually exclusive access to any shared resource. 
10-2



Real-Time Extensions
The following operations on binary semaphores are provided: 

-- 
-- Initialize a semaphore. 
-- 
procedure sema_init (sema : in out semaphore); 

-- 
-- Lock a semaphore. If the semaphore is already locked, the 
-- caller blocks until the lock can be gained and the owner of the 
-- lock will inherit its priority. 
-- 
procedure sema_lock (sema : in out semaphore); 

-- 
-- Unlock a semaphore. If the calling process has had its priority 
-- adjusted through priority inheritance this call may result in a 
-- rescheduling operation. 
-- 
procedure sema_unlock (sema : in out semaphore); 

-- 
-- Return true if the semaphore is currently locked. 
-- 
procedure sema_is_locked (sema : in out semaphore; result : out boolean); 
-- 
-- Destroy the semaphore. Any waiting threads will be released 
-- and will have semaphore_error raised within them. This operation 
-- is provided to aid in recovery, and is not needed for deallocation 
-- or other such ”normal” circumstances. 
-- 
procedure sema_destroy (sema : in out semaphore);

The sema_init procedure must be called with any semaphore prior to calling
sema_lock, sema_unlock, or sema_is_locked. In the preceding example, the
package body provides for the initialization of the semaphore at elaboration time. All pro-
grams that specify the shared package containing the binary semaphore in a with clause
will execute this elaboration code, so an “initialized” flag is provided in the package body.
In this way, the first program to elaborate the package will initialize the semaphore, and
others will use its pre-existing state. The shared package ’LOCK and ’UNLOCK attribute
procedures are used to arbitrate access to the initialization flag. This is the recommended
procedure for initializing binary semaphores. 

Once a semaphore has been initialized, sema_lock and sema_unlock may be used to
obtain and release the semaphore. The sema_is_locked procedure is provided as a
means of detecting a locked semaphore without blocking, but it should be noted that
blocking may still  occur if another program obtains the lock after a call to
sema_is_locked, but before a subsequent call to sema_lock. 

The exception, ccur.binary_semaphores.SEMAPHORE_ERROR, may be raised
under the following circumstances: 

• If any one of sema_lock, sema_unlock, sema_is_locked is called
with an uninitialized semaphore. 

• If any one of sema_lock, sema_unlock, sema_is_locked is called
with a destroyed semaphore. 

• The sema_lock procedure is called with a semaphore owned by a thread
that no longer exists. 
10-3



MAXAda for Linux Reference Manual
• The sema_lock procedure is called with a semaphore owned by a thread
with a different real or effective user id. 

• The sema_unlock procedure is called with a semaphore owned by
another thread. 

• The sema_unlock procedure is called and the waking service returns an
error status when attempting to wake waiting threads. 

Use of this package requires the CAP_SYS_RAWIO capability (see “Capabilities” on page
1-3).

NOTE

On Linux, the maximum number of waiting processes is bounded
by a constant in the private part of the package specification.

If this limit is insufficient, copy both the specification and body
source files to another environment, increase the limit, and com-
pile the package locally.

Tasking Semaphores 10

The ccur.tasking_semaphores package provides a simple and fast means of per-
forming sleepy-wait mutual exclusion between two or more Ada tasks within a single Ada
program.

Once a semaphore is locked, the locking task may perform any actions desired, including
I/O and system calls. 

The semaphore defined by this package is valid only within the context of a single Ada
program, and therefore, is meaningless to other processes that might have access to the
semaphore object if it is placed in shared memory. For multi-programming binary sema-
phores, see “Binary Semaphores” on page 10-2. 

The following operations on tasking semaphores are provided: 

 -- 
 -- Initialize a semaphore. 
 -- 
 procedure sema_init (sema : out semaphore); 
 -- 
 -- Lock a semaphore. If the semaphore is already locked, the 
 -- caller blocks until the lock can be gained. 
 -- 
 procedure sema_lock (sema : in semaphore); 

 -- 
 -- Unlock a semaphore. 
 -- 
 procedure sema_unlock (sema : in semaphore); 

 -- 
 -- Return true if the semaphore is currently locked. 
 -- 
10-4



Real-Time Extensions
 function sema_is_locked  (sema : in semaphore) return boolean; 

 -- 
 -- Return true if the semaphore is currently locked. 
 -- 
 procedure sema_is_locked  (sema : in semaphore; result : out boolean); 
 -- 
 -- Destroy the semaphore. Any waiting tasks will be released 
 -- and will have tasking_error raised within them. This operation is 
 -- provided to aid in recovery, and is not needed for deallocation 
 -- or other such "normal" circumstances. 
 -- 
 procedure sema_destroy  (sema : in out semaphore); 

The sema_init procedure should be called once per program. For semaphores defined
in a package, it is recommended that sema_init be called in the elaboration code por-
tion of the package body. If this is done, it is also recommended to include the following
line after the context_clause portion of the package body: 

pragma ELABORATE (ccur.tasking_semaphores) 

For example: 

with ccur.tasking_semaphores ;
package sync_package is
   sema : ccur.tasking_semaphores.semaphore ; 
end sync_package ; 

with ccur.tasking_semaphores ;
pragma elaborate (ccur.tasking_semaphores) ; 
package body sync_package is 
begin
   ccur.tasking_semaphores.sema_init (sema) ; 
end sync_package ; 

Once a semaphore has been initialized, sema_lock and sema_unlock may be used to
obtain and release the semaphore. The sema_is_locked function is provided as a
means of detecting a locked semaphore without blocking, and the sema_is_locked
p r o c e d u r e  i s  p r o v i d e d  t o  r e m a i n  a s  c o m p a t i b l e  a s  p o s s i b l e  w i t h  t h e
ccur.binary_semaphores package. Note that blocking may still occur if another
task obtains the lock after a call to sema_is_locked, but before a subsequent call to
sema_lock. 

The exception, ccur.tasking_semaphores.SEMAPHORE_ERROR, may be raised
under the following circumstances: 

• If any one of sema_lock, sema_unlock, sema_is_locked is called
with an uninitialized semaphore. 

• If any one of sema_lock, sema_unlock, sema_is_locked is called
with a destroyed semaphore. 
10-5



MAXAda for Linux Reference Manual
Task Synchronization 10

The ccur.task_synchronization package provides an extremely efficient mecha-
nism for synchronizing tasks. Synchronization of two tasks is naturally expressed within
the Ada language as task rendezvous. Synchronization of more than two tasks becomes
more complicated. The ccur.task_synchronization package provides a method
for easily synchronizing more than two tasks.

Use of this package requires the CAP_SYS_RAWIO capability (see “Capabilities” on page
1-3).

Cyclic Scheduling 10

The real-time features provided with the run-time executive make cyclic scheduling
designs extremely efficient and easy to implement. 

Using the rtc_control package, cyclic scheduling can be implemented with three Ada
statements: 

1. Configure clock at desired frequency and attach to task entry 

use system; 
clock : address := rtc_control.configure_clock 
(cycle_time_msec => 16.6, 
 device_name => "/dev/rrtc/0c2"); 

for entry_1 use at clock; 

2. Start the clock 

rtc_control.start_clock (clock); 

3. Stop the clock 

rtc_control.stop_clock (clock); 

The generic package ccur.cyclic_scheduler supplied with MAXAda automati-
cally multithreads a set of work loads and schedules them at a specified frequency. Fea-
tures include: 

• Automatic distribution of work loads across CPUs 

• Specification of timing source (RTC) and simulation rate 

• Binding of work loads to CPUs 

• Specification of individual periods for each work load 

• Specification of individual priorities for each work load 

• Overrun detection/handling 

• Start/stop simulation 
10-6



Real-Time Extensions
NOTE

The ccur.cyclic_scheduler included with MAXAda is not
related to the Concurrent frequency-based scheduler (FBS). Any
similarities between the two interfaces is purely coincidental. 

Use of this package requires the following capabilities: CAP_SYS_NICE and
CAP_SYS_RAWIO (see “Capabilities” on page 1-3).

Following is an example program that makes use of the ccur.cyclic_scheduler
package. 

Example:

with ccur.cyclic_scheduler; 

procedure cyclic_example is 
-- 
   procedure foo; 
   procedure bar; 
   procedure print; 

   type workloads is new integer range 1..3; 
   type workload_info is array (workloads) of integer; 

   package simulation is new ccur.cyclic_scheduler ( 
      workload_id    => workloads, 
      workload_info  => workload_info, 
      cycle_duration =>  500.0, 
      first_cycles   => (2, 2, 1), 
      periods        => (2, 2, 2), 
      workload_1     => foo, 
      workload_2     => bar, 
      workload_3     => print 
                                               ); 

   initial_value : constant := 2 ** 9; 
   foo_value     : integer := initial_value; 
   bar_value     : integer := initial_value; 

   procedure foo is separate; 
   procedure bar is separate; 
   procedure print is separate; 
-- 
begin 
-- 
   simulation.executive.enable; 
   delay 10.0; 
   simulation.executive.disable; 
   simulation.executive.termination; 
-- 
end cyclic_example; 

separate (cyclic_example) 
procedure foo is 
begin 
   foo_value := foo_value * 2; 
end foo; 
10-7



MAXAda for Linux Reference Manual
separate (cyclic_example) 
procedure bar is 
begin 
   bar_value := bar_value / 2; 
end bar; 

with ada.text_io; 
separate (cyclic_example) 
procedure print is 
begin 
   ada.text_io.put_line ("foo_value =" & integer’image(foo_value)); 
   ada.text_io.put_line ("bar_value =" & integer’image(bar_value)); 
end print;

User Trace 10

See  “ccur.use r_ t race  package”  on  page  11 -3  fo r  in fo rmat ion  abou t  the
ccur.user_trace tracing package.

See “ccur.user_trace.raw package” on page 11-6 for information about the
ccur.user_trace.raw tracing package.

Low-Level Interfaces 10

The following sections describe the low-level interfaces to various system services:

- “Indivisible Operations” on page 10-8 

- “Rescheduling Control” on page 10-11 

- “Client-Server Services” on page 10-11 

- “Usermap Support” on page 10-12 

- “Byte Swapping” on page 10-12 

Indivisible Operations 10

The ccur.indivisible_operations package provides subprograms that imple-
ment indivisible operation for process synchronization.  For maximum efficiency, they are
implemented as compiler intrinsics, whenever possible. 

The memory location associated with the formal parameter memory in the supplied
test_and_set ,  fetch_and_store ,  fetch_and_add ,
fetch_and_increment, and fetch_and_decrement subprograms, is modified
according to the respective subprogram being invoked.

with system ;
                                                                                                                                             
10-8



Real-Time Extensions
package ccur.indivisible_operations is
--
   pragma preelaborate ;
                                                                                                                                             
   --
   -- The memory location associated with the supplied operand is set to 1
   -- and the previous value is returned as a boolean (TRUE if 1, FALSE if
   -- 0).  Only values of 0 and 1 are expected; other values will yield
   -- erroneous results.
   --
   function test_and_set( memory : boolean )        return boolean ;
   function test_and_set( memory : tiny_integer )   return boolean ;
   function test_and_set( memory : short_integer )  return boolean ;
   function test_and_set( memory : integer )        return boolean ;
   function test_and_set( memory : long_integer )   return boolean ;
   function test_and_set( memory : system.address ) return boolean ;
                                                                                                                                             
                                                                                                                                             
   --
   -- These forms work the same as the function forms above, except that
   -- they return the result of the test in the out parameter "result".
   --
   procedure test_and_set( memory : in out boolean ;
                           result :    out boolean ) ;
   procedure test_and_set( memory : in out tiny_integer ;
                           result :    out boolean ) ;
   procedure test_and_set( memory : in out short_integer ;
                           result :    out boolean ) ;
   procedure test_and_set( memory : in out integer ;
                           result :    out boolean ) ;
   procedure test_and_set( memory : in out long_integer ;
                           result :    out boolean ) ;
   procedure test_and_set( memory : in out system.address ;
                           result :    out boolean ) ;
                                                                                                                                             
                                                                                                                                             
   --
   -- The variable "memory" is set to 1 and the previous value of "memory"
   -- is returned in the out parameter "result".
   --
   procedure fetch_and_store( memory : in out boolean ;
                              result :    out boolean ) ;
   procedure fetch_and_store( memory : in out tiny_integer ;
                              result :    out tiny_integer ) ;
   procedure fetch_and_store( memory : in out short_integer ;
                              result :    out short_integer ) ;
   procedure fetch_and_store( memory : in out integer ;
                              result :    out integer ) ;
   procedure fetch_and_store( memory : in out long_integer ;
                              result :    out long_integer ) ;
   procedure fetch_and_store( memory : in out system.address ;
                              result :    out system.address ) ;
                                                                                                                                             
                                                                                                                                             
   --
   -- The variable "memory" is set to the value in the parameter "value"
   -- and the previous value of "memory" is returned in the out parameter
   -- "result".
   --
   procedure fetch_and_store( memory : in out boolean ;
                              value  : in     boolean ;
                              result :    out boolean ) ;
   procedure fetch_and_store( memory : in out tiny_integer ;
                              value  : in     tiny_integer ;
                              result :    out tiny_integer ) ;
10-9



MAXAda for Linux Reference Manual
   procedure fetch_and_store( memory : in out short_integer ;
                              value  : in     short_integer ;
                              result :    out short_integer ) ;
   procedure fetch_and_store( memory : in out integer ;
                              value  : in     integer ;
                              result :    out integer ) ;
   procedure fetch_and_store( memory : in out long_integer ;
                              value  : in     long_integer ;
                              result :    out long_integer ) ;
   procedure fetch_and_store( memory : in out system.address ;
                              value  : in     system.address ;
                              result :    out system.address ) ;
                                                                                                                                             
   --
   -- The variable "memory" is incremented by the value in the parameter
   -- "value" and the previous value of "memory" is returned in the out
   -- parameter "result".
   --
   procedure fetch_and_add( memory : in out tiny_integer ;
                            value  : in     tiny_integer ;
                            result :    out tiny_integer ) ;
   procedure fetch_and_add( memory : in out short_integer ;
                            value  : in     short_integer ;
                            result :    out short_integer ) ;
   procedure fetch_and_add( memory : in out integer ;
                            value  : in     integer ;
                            result :    out integer ) ;
   procedure fetch_and_add( memory : in out long_integer ;
                            value  : in     long_integer ;
                            result :    out long_integer ) ;
                                                                                                                                             
   --
   -- The variable "memory" is incremented (or decremented) by 1 and the
   -- previous value of "memory" is returned in the out parameter "result".
   --
   procedure fetch_and_increment( memory : in out tiny_integer ;
                                  result :    out tiny_integer ) ;
   procedure fetch_and_decrement( memory : in out tiny_integer ;
                                  result :    out tiny_integer ) ;
   procedure fetch_and_increment( memory : in out short_integer ;
                                  result :    out short_integer ) ;
   procedure fetch_and_decrement( memory : in out short_integer ;
                                  result :    out short_integer ) ;
   procedure fetch_and_increment( memory : in out integer ;
                                  result :    out integer ) ;
   procedure fetch_and_decrement( memory : in out integer ;
                                  result :    out integer ) ;
   procedure fetch_and_increment( memory : in out long_integer ;
                                  result :    out long_integer ) ;
   procedure fetch_and_decrement( memory : in out long_integer ;
                                  result :    out long_integer ) ;
                                                                                                                                             
   --
   -- The variable "memory" is incremented (or decremented) by 1.
   --
   procedure increment( memory : in out tiny_integer ) ;
   procedure increment( memory : in out short_integer ) ;
   procedure increment( memory : in out integer ) ;
   procedure increment( memory : in out long_integer ) ;
                                                                                                                                             
   procedure decrement( memory : in out tiny_integer ) ;
   procedure decrement( memory : in out short_integer ) ;
   procedure decrement( memory : in out integer ) ;
   procedure decrement( memory : in out long_integer ) ;
--
10-10



Real-Time Extensions
private
--
   pragma dont_elaborate ;
                                                                                                                                             
   pragma import (intrinsic, test_and_set) ;
   pragma import (intrinsic, fetch_and_store) ;
   pragma import (intrinsic, fetch_and_add) ;
   pragma import (intrinsic, fetch_and_increment) ;
   pragma import (intrinsic, fetch_and_decrement) ;
   pragma import (intrinsic, increment) ;
   pragma import (intrinsic, decrement) ;
--
end ccur.indivisible_operations ;
                                                                                                                                             
with ccur.indivisible_operations ;
package indivisible_operations renames ccur.indivisible_operations ;

The operations available in the ccur.indivisible_operations package are highly
dependent on the target architecture, and as such, may not be available in the same form
on other architectures.

Rescheduling Control 10

The ccur.rescheduling_control package is an interface to the operating system
rescheduling control services. Control over rescheduling is useful for low-level synchroni-
zation services. For example, a non-priority-inverting and very fast implementation of
busy-wait mutual exclusion may be implemented by combining rescheduling control with
a target machine test_and_set instruction. 

See the vendorlib package ccur.spin_locks for an example. See “Spin Locks” on
page 10-1.

The ccur.rescheduling_control package allows Ada applications to set a flag
which signals the operating system not to perform a context switch.  

Use of this package requires the CAP_SYS_RAWIO capability (see “Capabilities” on page
1-3).

All Ada tasking programs have a rescheduling variable registered with the operating sys-
tem.  (The run-time system creates, registers, and initializes this variable.) This package
provides an interface to the rescheduling services for manipulation of that rescheduling
variable.

Client-Server Services 10

The ccur.client_server_services package provides an interface to the client/
server communication services.  These services use a priority inheritance protocol to
implement efficient and deterministic client and server interactions.  They may be used to
create a variety of “higher-level” inter-process communication protocols. 
10-11



MAXAda for Linux Reference Manual
NOTE

These services should be used only very carefully with the Ada
run - t im e  e x ec u t i ve .  The  server_wake1(2)  and
server_wakevec(2) should not be issued unless the user is
certain that the processes being waked contain absolutely no task-
ing or are already blocked (via the server_block(2) ser-
vice). See “Client/Server Services” on page A-3 for more details.

Use of rescheduling variables in combination with this package requires the
CAP_SYS_RAWIO capability (see “Capabilities” on page 1-3).

Usermap Support 10

The ccur.usermap_support package provides an abstract binding to the user-
map(2) system service (which maps memory pages of an executing program into the
address space of the calling process).

This package automatically tracks calls to usermap(2) in an effort to minimize it's use;
each call to usermap(2) will allocate a new attachment to the calling processes address
space, regardless of whether an attachment to the same target address was made earlier.
(i.e. the OS doesn't do the bookkeeping).

This package deals with unsigned address arithmetic.

This package also allows the user to check-in a range of address that have already been
mapped into the address space by some other means (shmat(2) perhaps), for consider-
ation on subsequent ccur.usermap_support.usermap calls.

Byte Swapping 10

The ccur.unchecked_byte_swap generic function implements byte swapping oper-
ations that are optimized for the target.  Generally, they are used when transforming data
between a Big Endian device or target and a Little Endian device or target.

The declaration of this interface is as follows:

   generic
      type t (<>) is limited private ;
   function ccur.unchecked_byte_swap (s : t) return t ;

To be used, it must be instantiated with a type or subtype.  The type must be an elementary
type (i.e. a scalar type or an access type) with a byte, halfword, word, or doubleword size.

The instantiated function takes an argument of the given subtype and returns an argument
of that subtype.  However, the operation is unchecked, and so there is no guarantee that the
result value is within the range of the given subtype.  Because of this, it is recommended
that the generic be instantiated with a subtype where any pattern of bits constitues a valid
10-12



Real-Time Extensions
value within its range, so that no subsequent constraint checks will fail.  Some predefined
types that meet this criterion are:

   short_integer
   integer
   long_integer
   interfaces.integer_16
   interfaces.integer_32
   interfaces.integer_64
   interfaces.unsigned_16
   interfaces.unsigned_32
   interfaces.unsigned_64
   wide_character
   duration

With scalar subtypes which have ranges or representations for which there are some bit
patterns which are invalid values, it may be necessary to compile with certain checks, such
as range_check, suppressed.  Some predefined types and subtypes for which this is true
are:

   natural
   positive
   float
   long_float
10-13



MAXAda for Linux Reference Manual
10-14



11
Chapter 11Real-Time Event Tracing

11
11
11

Real-time event tracing is one way to debug and analyze the performance of Ada applica-
tions, including multi-tasking applications.  It allows the user to gather information about
important events in an application, such as event occurrences, timings, and data values.

MAXAda has established two types of trace events: predefined trace events and
user-defined trace events.  This chapter will discuss these in further detail, including how
trace events are specified.  In addition, examples of usage are provided.

Tracing behavior is controlled via the -trace link option to a.partition.  Details
about this option and its associated attributes are presented in this chapter.

Also discussed are the available mechanisms used for logging trace events as well as the
utilities used to view the resultant log files, including the MAXAda a.trace utility and
the NightTrace tool.

Specifying Trace Events 11

A trace point is a location within an application at which information is logged.  The
information logged is termed a trace event.  At a minimum, it includes a trace event ID
number and a timestamp; it may be accompanied by additional data as well.

Logging of a trace event is done via a procedure call to one of various tracing mecha-
nisms.  These mechanisms are discussed in “Logging Mechanisms” on page 11-19.

A special version of the Ada runtime executive (see “Ada Executive” on page 11-19) is
provided with a significant number of trace points which log predefined trace events.
These events describe the execution of the user's Ada application in terms of tasking,
interrupt handling, exception occurrence and handling, protected actions, and elaboration
of library units.

The specification of certain attributes to the -trace link option causes the selection of a
version of the Ada runtime executive which contains these trace points.  See “Tracing
Options” on page 11-14 for details.

Additionally, the user may define trace points in his source code.  At each user-defined
trace point, the user must provide an event ID and optional data arguments.  The exact
time that each trace point is encountered is included in the trace event.

A single clock is utilized to timestamp the events so that, regardless of the logging method
chosen, all trace events may be combined and sorted chronologically by analysis tools.

Trace points might be placed at:

• suspected bug locations
11-1



MAXAda for Linux Reference Manual
• process, subprogram, or loop entry and exits

• timing points

• sychronization points/multi-process interaction

• endpoints of atomic operations

• endpoints of shared memory access code

Careful trace point placement may aid you in identifying patterns and anomalies in your
application.

Predefined Trace Events 11

Predefined trace events are generated by tracing versions of the Ada runtime executive
and by library elaboration code generated for the ENVIRONMENT task.  They typically
describe execution in terms of tasking, interrupt handling, exception occurrence and han-
dling, and protected actions. 

Setting the rtsinstrumentation attribute of the -trace link option to true for a
partition generates predefined trace events.  See “Tracing Options” on page 11-14 for
details.

Library Unit Elaboration 11

A pair of trace events (entry and exit) for the elaboration of every library unit in the parti-
tion may be generated by setting the elabinstrumentation attribute of the -trace
link option to true.  See “Tracing Options” on page 11-14 for details.

NOTE

The user may wish to increase the length of the trace buffer used
for logging trace events if there are a large number of library units
to be traced. (See “Trace Buffer” on page 11-20 for more informa-
tion).

User-Defined Trace Events 11

User-defined trace events generate information at specified points within the source code
that are of particular interest to the user.  By placing these trace points strategically, users
can determine locations of suspected bugs, values of certain variables, and errors in timing
or synchronization.  Patterns of irregular or erroneous behavior of an application can be
discovered by careful placement of the trace points.  

Trace points are selected and placed within the source code.  The source code is then
recompiled, the application is relinked and executed, and the resultant trace event file is
analyzed.
11-2



Real-Time Event Tracing
MAXAda supports three methods of establishing user-defined trace points: 

• the MAXAda-supplied ccur.user_trace package

• bindings to the NightTrace services

• support of trace points embedded by the NightView debugger

ccur.user_trace package 11

The ccur.user_trace package consists of all the procedures and functions necessary
for placing user-defined trace points within source code and generating a resultant trace
event file to be later viewed and analyzed.  This package is supplied with MAXAda in the
vendorlib environment in the file user_trace.a.  See Chapter 9, "Support Pack-
ages" for more information about the vendorlib environment.

The ccur.user_trace package can be used independently of any other vendor-sup-
plied tracing mechanism, and the trace events generated by this package can be viewed
and analyzed by tools supplied with MAXAda, specifically the a.trace utility. 

NOTE

The ccur.user_trace.raw package is provided to allow
users to easily switch between the ccur.user_trace and
ccur.night_trace_bindings  p a c k a g e s .   S e e
“ccur.user_trace.raw package” on page 11-6 for more information.
11-3



MAXAda for Linux Reference Manual
Specification 11

The specification of the ccur.user_trace package is:

with ccur.interval_timer ;
with ada.task_identification ;
                                                                                                                                             
package ccur.user_trace is
--
   --
   -- trace_mode
   --
   --    Specifies whether trace points logging is enabled or disabled.
   --
   type trace_mode is (DISABLED, ENABLED) ;
                                                                                                                                             
   --
   -- trace_user_type
   --
   --    Defines a type whose value must be zero.  This distinguishes
   --    user trace points from internal trace points.  Trace log
   --    entries for user trace points are marked with "USER_TRACE".
   --
   type trace_user_type is range 0..0 ;
                                                                                                                                             
   --
   -- user_trace_event_number
   --
   --    Defines the value of all trace events logged via this
   --    package (see ntrace(1)).
   --
   user_trace_event_number : constant := 4402 ;
                                                                                                                                             
   --
   -- trace_sub_id
   --
   --    Defines a broad integer range of values representing
   --    user events / trace_points.  These values are echoed
   --    in the trace log.
   --
   subtype trace_sub_id is natural range 0..2**16-1 ;
                                                                                                                                             
   --
   -- The following package is present only for performance reasons;
   -- do not utilize any portions of this nexted package directly.
   --
   package private_package is
      procedure log0 (sub_id : trace_sub_id) ;
      procedure log1 (sub_id : trace_sub_id ; data1 : integer) ;
      procedure log2 (sub_id : trace_sub_id ; data1, data2 : integer) ;
   end private_package ;
   package pp renames private_package ;
                                                                                                                                             
   --
   -- log
   --
   --    These overloaded procedures cause individual trace points
   --    to be logged (assuming that the current mode is set to enabled).
   --
   procedure log (sub_id : trace_sub_id) renames pp.log0 ;
                                                                                                                                             
   procedure log (sub_id : trace_sub_id ; data1 : integer) renames pp.log1 ;
                                                                                                                                             
   procedure log (sub_id : trace_sub_id ; data1 : integer ;
                                          data2 : integer) renames pp.log2 ;
                                                                                                                                             
   --
   -- buffer_length
   --
   --    The length of the trace buffer for each task (# of entries)
   --    is specified by the following value.  Buffer allocation
   --    occurs during task creation if tracing is ENABLED, or on
   --    the first "set_trace_mode" call that ENABLE tracing for a
   --    task.  Each trace buffer entry consumes approximately 24 bytes.
   --
   --    The default value is 1000 entries.
   --
   trace_buffer_length : integer ;
                                                                                                                                             
11-4



Real-Time Event Tracing
   --
   -- set_trace_mode
   --
   --    By default, the trace mode for the environment task is
   --    DISABLED.  When linking with the tracing runtime system
   --    the trace mode is automatically set to ENABLED.
   --
   --    When a task is created, its trace mode is inherited from
   --    its parent task (or environment task).
   --
   --    In the event that tracing is specified for a particular
   --    task for the first time via "set_trace_mode", the trace
   --    buffer is allocated at that time.  STORAGE_ERROR is raised
   --    if that allocation fails.
   --
   --    The "function" form of this utility returns the previous
   --    trace mode for the specified task.
   --
   procedure set_trace_mode_all (mode : in trace_mode) ;
   procedure set_trace_mode (mode    : in trace_mode ;
                             task_id : in ada.task_identification.task_id :=
                                          ada.task_identification.null_task_id);
   function swap_trace_mode (mode    : in trace_mode ;
                             task_id : in ada.task_identification.task_id :=
                                          ada.task_identification.null_task_id)
                                return trace_mode ;
                                                                                                                                             
   --
   -- dump
   --
   --    This routine can be called from any task and results in the
   --    trace records for ALL tasks (active and terminated) to be
   --    dumped.
   --
   procedure dump ;
                                                                                                                                             
   --
   -- reset
   --
   --    When the tracing mechansim is internal, this procedure immediately
   --    and efficiently empties all trace buffers for all tasks causing
   --    all previously generated trace events (not already dumped to disk
   --    by a previous call to user_trace.dump) to be discarded.
   --
   --    When the tracing mechanism is ntraceud, this procedure has no effect.
   --
   procedure reset ;
                                                                                                                                             
   --
   -- Deprecated interfaces
   --
   --    The following subprograms are provided only for backward compatibility.
   --    Their use should be avoided.
   --
   function clock return interval_timer.time renames interval_timer.clock ;
   procedure trace (id     : in trace_user_type     := 0 ; -- arg MUST be zero
                    sub_id : in trace_sub_id        := 0 ;
                    time   : in interval_timer.time := interval_timer.time_zero;
                    data1  : in integer             := 0 ;
                    data2  : in integer             := 0) ;
                                                                                                                                             
--
private
--
   type task_id_type is new integer ;
   SELF : constant task_id_type := 0 ;
                                                                                                                                             
   pragma import (Ada, trace,               "", "A$rts_trace_user") ;
   pragma import (Ada, swap_trace_mode,     "", "A$rts_trace_set_mode") ;
   pragma import (Ada, trace_buffer_length, "", "A$rts_trace_buffer_length") ;
                                                                                                                                             
   pragma special_feature (trace_dump) ;
--
end ccur.user_trace ;
                                                                                                                                             
with ccur.user_trace ;
package user_trace renames ccur.user_trace ;
11-5



MAXAda for Linux Reference Manual
Usage 11

The call to log a user trace event using the ccur.user_trace package might look like:

ccur.user_trace.log (sub_id => 47, data1 => x, data2 => y) ;

This example uses named notation to specify the parameters in the procedure call.

A NightTrace event with a trace event ID of 4402 is logged for every invocation of
ccur.user_trace.log, with the following correspondence:

NOTE

The NightTrace exrepssion arg(1) will hold the task_id of
the task that issued the trace point.

ccur.user_trace.raw package 11

The ccur.user_trace.raw package is provided to allow users to easily switch
between the ccur.user_trace and ccur.night_trace_bindings packages.
(See “ccur.user_trace package” on page 11-3 and “NightTrace Binding” on page 11-8 for
more information on these packages.)

The ccur.user_trace.raw package differs from the parent ccur.user_trace
package only in that it does absolutely no transformation on the event or arguments passed
to these routines.

C o n s i d e r  a  s c e n a r i o  w h e r e  t h e  u s e r  w a n t s  t o  u se  ntraceud  a n d  t h e
ccur.night_trace_bindings to log and capture data.  If the user then switches to
the internal tracing mechanism (using the -trace link option to a.partition), the
a rg u m en t s  i n  t h e  r e s u l t a n t  t r a c e  e v e n t s  w i l l  d i f f e r  ( s e e  b e l o w ) .   T h e
ccur.user_trace.raw package is supplied to conveniently switch between the bind-
ings; the user only needs to change the with and the use clauses, since trace_event
is defined for both.

ccur.user_trace 
parameter NightTrace Expression

sub_id arg(2)

data1 arg(3)

data2 arg(4)
11-6



Real-Time Event Tracing
The mapping between the parameters to ccur.user_trace.raw.trace_event and
NightTrace expressions is:

whereas the mapping between ccur.user_trace.log parameters and NightTrace
expressions is:

See “ccur.user_trace package” on page 11-3 for more information on the abovementioned
transformations.

Specification 11

The specification of the ccur.user_trace.raw package is:

package ccur.user_trace.raw is
--
   subtype event_type is integer ; -- Must be in range 0..4095
                                                                                                                                             
   procedure trace_event (event  : event_type) ;
                                                                                                                                             
   procedure trace_event (event  : event_type ;
                          arg    : integer) ;
                                                                                                                                             
   procedure trace_event (event  : event_type ;
                          arg    : long_float) ;
                                                                                                                                             
   procedure trace_event (event  : event_type ;
                          arg1   : integer ;
                          arg2   : integer) ;
--
end ccur.user_trace.raw ;

ccur.user_trace.raw parameter NightTrace Expression

event id

arg  (or arg1) arg(1)

arg2 arg(2)

ccur.user_trace parameter NightTrace Expression

implicitly generated event_id of 4402 id

implicitly generated task_id arg(1)

sub_id arg(2)

data1 arg(3)

data2 arg(4)
11-7



MAXAda for Linux Reference Manual
NightTrace Binding 11

NightTrace is an interactive debugging and performance analysis tool that is available sep-
arately from MAXAda.  NightTrace allows users to generate user-defined trace events by
making certain NightTrace procedure and function calls within their source code.  After
the events are generated, NightTrace allows the users to display the trace event informa-
tion as numerical statistics and as graphical images.

The framework of the graphical display can be configured by the user for more meaning-
ful analysis of the information generated by the trace events. 

MAXAda provides a thin binding to the NightTrace services.  This binding can be found
in the MAXAda-supplied general environment in the file night_trace.a.  See
Chapter 9, "Support Packages" for more information about the general environment.

NOTE

Use of the ccur.night_trace_bindings package pre-
cludes the use of any other MAXAda tracing mechanisms.  This
binding can not be used in conjunction with either the -trace or
-ntrace link options, the ccur.user_trace package, or the
a.trace utility.
11-8



Real-Time Event Tracing
Specification 11

The specification of the NightTrace binding is:

package ccur.night_trace_bindings is
--
   type ntrace_error is (
      NTNOERROR,
      NTIO,
      NTNODAEMON,
      NTNOTRACEFILE,
      NTINVALID,
      NTPERMISSION,
      NTALREADY,
      NTNOSHMID,
      NTRESOURCE,
      NTFLUSH,
      NTINIT,
      NTMAPSPLREG,
      NTMAPTIMER,
      NTLOSTDATA,
      NTEXISTS,
      NTBUSY,
      NTPGLOCK,
      NTNOMEM,
      NTMAPCLOCK,
      NTBADVERSION,
      NTFILETRASHED,
      NTLISTEN
                        ) ;
                                                                                                                                             
   type event_type is range 0..4095 ;
                                                                                                                                             
   type ntclock_t is (NT_USE_ARCHITECTURE_CLOCK, NT_USE_RCIM_TICK_CLOCK) ;
   for ntclock_t use (NT_USE_ARCHITECTURE_CLOCK => 0,
                      NT_USE_RCIM_TICK_CLOCK    => 1) ;
   for ntclock_t'size use 32 ;
                                                                                                                                             
                                                                                                                                             
   --
   -- Private Bindings
   --
   --    Do not reference specifications within "private_package".
   --
   package private_bindings is
      function  arg   (e : event_type; arg : integer)      return ntrace_error ;
      function  flt   (e : event_type; arg : float)        return ntrace_error ;
      function  flt2  (e : event_type; a1,a2 : float)      return ntrace_error ;
      function  dbl   (e : event_type; arg : long_float)   return ntrace_error ;
      function  dbl2  (e : event_type; a1,a2 : long_float) return ntrace_error ;
      procedure parg  (e : event_type; arg : integer) ;
      procedure pflt  (e : event_type; arg : float) ;
      procedure pflt2 (e : event_type; a1,a2 : float) ;
      procedure pdbl  (e : event_type; arg : long_float) ;
      procedure pdbl2 (e : event_type; a1,a2 : long_float) ;
      function  arg4  (e : event_type; a1,a2,a3,a4:integer) return ntrace_error;
      procedure parg4 (e : event_type; a1,a2,a3,a4:integer) ;
      function  dis   (e : event_type; f   : event_type)   return ntrace_error ;
      function  ena   (e : event_type; f   : event_type)   return ntrace_error ;
      procedure pdis  (e : event_type; f   : event_type) ;
      procedure pena  (e : event_type; f   : event_type) ;
   private
      pragma import (C, arg,   "", "trace_event_arg") ;
      pragma import (C, flt,   "", "trace_event_flt") ;
      pragma import (C, flt2,  "", "trace_event_two_flt") ;
      pragma import (C, dbl,   "", "trace_event_dbl") ;
      pragma import (C, dbl2,  "", "trace_event_two_dbl") ;
      pragma import (C, parg,  "", "trace_event_arg") ;
      pragma import (C, pflt,  "", "trace_event_flt") ;
      pragma import (C, pflt2, "", "trace_event_flt") ;
      pragma import (C, pdbl,  "", "trace_event_dbl") ;
      pragma import (C, pdbl2, "", "trace_event_two_dbl") ;
      pragma import (C, arg4,  "", "trace_event_four_arg") ;
      pragma import (C, parg4, "", "trace_event_four_arg") ;
      pragma import (C, dis,   "", "trace_disable_range") ;
      pragma import (C, pdis,  "", "trace_disable_range") ;
      pragma import (C, ena,   "", "trace_enable_range") ;
      pragma import (C, pena,  "", "trace_enable_range") ;
   end private_bindings ;
11-9



MAXAda for Linux Reference Manual
                                                                                                                                             
   --
   -- Administrative: start, end, etc
   --
   function  trace_begin       (trace_file   : string ;
                                buffer_size  : integer := 1024 * 16 ;
                                use_spl      : boolean := true ;
                                use_resched  : boolean := false ;
                                lock_pages   : boolean := true ;
                                clock        : ntclock_t :=
                                                  NT_USE_ARCHITECTURE_CLOCK;
                                shmid_perm   : integer := 8#666# ;
                                inherit      : boolean := true)
                                return ntrace_error ;
   procedure trace_begin       (trace_file   : string ;
                                buffer_size  : integer := 1024*16 ;
                                use_spl      : boolean := true ;
                                use_resched  : boolean := false ;
                                lock_pages   : boolean := true ;
                                clock        : ntclock_t :=
                                                  NT_USE_ARCHITECTURE_CLOCK;
                                shmid_perm   : integer := 8#666# ;
                                inherit      : boolean := true) ;
                                                                                                                                             
   function  trace_end                                     return ntrace_error ;
   procedure trace_end ;
                                                                                                                                             
   function  trace_open_thread (threadname   : string)     return ntrace_error ;
   procedure trace_open_thread (threadname   : string) ;
                                                                                                                                             
   function  trace_close_thread                            return ntrace_error ;
   procedure trace_close_thread ;
                                                                                                                                             
   function  trace_flush                                   return ntrace_error ;
   procedure trace_flush ;
                                                                                                                                             
   function  trace_trigger                                 return ntrace_error ;
   procedure trace_trigger ;
                                                                                                                                             
   --
   -- Logging Trace Events
   --
   function  trace_event         (event      : event_type) return ntrace_error ;
   procedure trace_event         (event      : event_type) ;
   pragma import (C, trace_event) ;
                                                                                                                                             
   function  trace_event         (event      : event_type ; arg  : integer)
      return ntrace_error renames private_bindings.arg ;
                                                                                                                                             
   procedure trace_event         (event      : event_type ; arg  : integer)
      renames private_bindings.parg ;
                                                                                                                                             
   function  trace_event         (event      : event_type ; arg  : long_float)
      return ntrace_error renames private_bindings.dbl ;
                                                                                                                                             
   procedure trace_event         (event      : event_type ; arg  : long_float)
      renames private_bindings.pdbl ;
                                                                                                                                             
   function  trace_event         (event      : event_type ;
                                  arg1       : integer ;
                                  arg2       : integer ;
                                  arg3       : integer ;
                                  arg4       : integer)
      return ntrace_error renames private_bindings.arg4 ;
                                                                                                                                             
   procedure trace_event         (event      : event_type ;
                                  arg1       : integer ;
                                  arg2       : integer ;
                                  arg3       : integer ;
                                  arg4       : integer)
      renames private_bindings.parg4 ;
                                                                                                                                             
   --
   -- Enable/Disable Trace Events
   --
   function  trace_enable        (event      : event_type) return ntrace_error ;
   procedure trace_enable        (event      : event_type) ;
      pragma import (C, trace_enable) ;
                                                                                                                                             
   function  trace_enable        (event_low  : event_type ;
                                  event_high : event_type)
11-10



Real-Time Event Tracing
      return ntrace_error renames private_bindings.ena ;
   procedure trace_enable        (event_low  : event_type ;
                                  event_high : event_type)
      renames private_bindings.pena ;
                                                                                                                                             
   function  trace_disable       (event      : event_type) return ntrace_error ;
   procedure trace_disable       (event      : event_type) ;
      pragma import (C, trace_disable) ;
                                                                                                                                             
   function  trace_disable       (event_low  : event_type ;
                                  event_high : event_type)
      return ntrace_error renames private_bindings.dis ;
   procedure trace_disable       (event_low  : event_type ;
                                  event_high : event_type)
      renames private_bindings.pdis ;
                                                                                                                                             
   function  trace_enable_all                              return ntrace_error ;
   procedure trace_enable_all ;
                                                                                                                                             
   function  trace_disable_all                             return ntrace_error ;
   procedure trace_disable_all ;
                                                                                                                                             
   -- Deprecated interfaces
   function  trace_start       (trace_file   : string)     return ntrace_error ;
   procedure trace_start       (trace_file   : string) ;
                                                                                                                                             
--
private
--
   for ntrace_error use (
      NTNOERROR         =>  0,
      NTIO              =>  1,
      NTNODAEMON        =>  2,
      NTNOTRACEFILE     =>  3,
      NTINVALID         =>  4,
      NTPERMISSION      =>  5,
      NTALREADY         =>  6,
      NTNOSHMID         =>  7,
      NTRESOURCE        =>  8,
      NTFLUSH           =>  9,
      NTINIT            => 10,
      NTMAPSPLREG       => 11,
      NTMAPTIMER        => 12,
      NTLOSTDATA        => 13,
      NTEXISTS          => 14,
      NTBUSY            => 15,
      NTPGLOCK          => 16,
      NTNOMEM           => 17,
      NTMAPCLOCK        => 18,
      NTBADVERSION      => 19,
      NTFILETRASHED     => 20,
      NTLISTEN          => 21
                  ) ;
   for ntrace_error'size use 32 ;
                                                                                                                                             
   for event_type'size use 32 ;
                                                                                                                                             
   pragma import (C, trace_enable_all) ;
   pragma import (C, trace_disable_all) ;
   pragma import (C, trace_flush) ;
   pragma import (C, trace_close_thread) ;
   pragma import (C, trace_end) ;
   pragma import (C, trace_trigger) ;
--
end ccur.night_trace_bindings ;
                                                                                                                                             
with ccur.night_trace_bindings ;
package night_trace_bindings renames ccur.night_trace_bindings ;

Usage 11

Follow these steps to use the NightTrace binding: 
11-11



MAXAda for Linux Reference Manual
1. Edit an Ada application and insert calls to the NightTrace services using
the ccur.night_trace_bindings package.  This makes it possible
to log user-defined trace events at user-defined trace points.  (See
ntrace(3X).) Some sample calls might be: 

retval := ccur.night_trace_bindings.trace_begin ("my_trace_file"); 
retval := ccur.night_trace_bindings.trace_open_thread (trace_thread);
retval := ccur.night_trace_bindings.trace_event (event_id, data); 
retval := ccur.night_trace_bindings.trace_close_thread; 
retval := ccur.night_trace_bindings.trace_end; 

Placement of trace_begin and trace_open_thread calls is critical to the
tracing strategy of Ada tasking programs.  Performing these calls before task elabo-
ration causes all tasks to log to the same thread name.  This can be done with the fol-
lowing type of statement:

Trace_begin_stat : ntrace_error := trace_begin("tracefile") ;
Trace_open_thread_stat : ntrace_error := trace_open_thread ("my_prog");

2. Make the bindings visible, compile, and link the application.  For example, 

$ a.path -a general 
$ a.build main 

3. Start ntraceud, the NightTrace user daemon, to capture trace events in a
trace-event log file.   (Note: this file should have the same name as the file
specified in the trace_start call.)  (See ntraceud(1).) For exam-
ple, 

$ ntraceud  my_trace_file 

4. Run the application and simultaneously log trace-event information into a
file.  For example, 

$ a.out 

5. Stop ntraceud, the NightTrace user daemon, when the application com-
pletes.  For example, 

$ ntraceud  --quit  my_trace_file 

6. From an X server, set the DISPLAY environment variable to the server
name. This needs to be done only once per login. An example of setting
this variable in the Bourne shell for a terminal named “eagle” follows: 

$ DISPLAY=eagle:0.0 
$ export DISPLAY 

7. From an X server, view the trace-event information from the trace-event
log file with ntrace, the NightTrace graphical display tool. (See
ntrace(1).)  For example, 

$ ntrace my_trace_file 

See the NightTrace User’s Guide for further information.
11-12



Real-Time Event Tracing
NightView Debugger 11

The NightView Debugger provides a means of modifying an executable program so that it
logs trace events.

See the NightView User’s Guide for details.
11-13



MAXAda for Linux Reference Manual
Tracing Options 11

Tracing behavior is controlled via the -trace link option to a.partition.  See “Link
Options” on page 4-109 for more information.

Examples of usage are provided in “Tracing Options - Examples” on page 11-17.

The format for this option is:

-trace[:attributes]

where attributes is a comma-separated list of the following (the defaults appear in
parentheses):

   enabled=true | false   (true)
   mechanism=internal[/default | rcim_tick] | ntraceud
                              (internal/default)
   buffersize=n   (1000)
   rtsinstrumentation=true | false   (true)
   elabinstrumentation=true | false   (true)

Note that any of the keywords for the above attributes can be abbreviated to their
shortest non-ambiguous form.

The following steps will help determine which attributes are necessary to obtain the
desired tracing behavior.

1. Determine whether tracing should be activated for this executable.

-trace

When this option is specified, tracing support will be included in the output file,
allowing the logging of trace events.

If no attributes are specified, the default values for the attributes are used.  In partic-
ular, tracing is automatically enabled.  To override this default, you may set the
enabled attribute for  the -trace option to false.

NOTE

If the partition is linked with the -trace option, tracing may be
subsequently enabled or disabled at runtime without the need for
relinking by calling ccur.user_trace.set_trace_mode
or ccur.user_trace.set_trace_mode_all.   See
“ccur.user_trace package” on page 11-3 for more information.

In addition, tracing may be enabled or disabled without the need
for relinking by using a.map.  See “a.map” on page 4-47 for
more information.
11-14



Real-Time Event Tracing
If tracing support is not desired, then there is no need to specify the -trace option
to a.partition.  However, if tracing is subsequently desired, the program must
be relinked with this option.

2. Determine whether tracing should be enabled.

enabled=true | false   (true)

This attribute allows the user to control initially whether or not trace events are to be
logged to a trace buffer.  When the -trace option is specified, logging is automat-
ically enabled.

enabled=true

Enables logging of predefined and user-defined trace events to the trace
buffer.  (See “Predefined Trace Events” on page 11-2 and “User-Defined
Trace Events” on page 11-2 for more information.)

enabled=false

Disables logging of predefined and user-defined trace events.

Tr a c i n g  m a y  b e  e n a b l e d  o r  d i s a b l e d  a t  r u n t i m e  b y  c a l l i n g
ccur.user_trace.set_trace_mode  o r
ccur.user_trace.set_trace_mode_all.  (See  “ccur.user_trace package”
on page 11-3 for more information.)

NOTE

If the partition was linked with the -trace option, tracing may
be enabled or disabled without the need for relinking by using
a.map.  (See “a.map” on page 4-47 for more information.)

3. Determine the mechanism used to log trace events.

mechanism=internal[/[default|rcim_tick]]  |  ntraceud  
                      (internal/default)

Real-time event tracing can be performed by either the MAXAda-supplied execu-
tive (internal) or the NightTrace daemon (ntraceud).  See “Logging Mecha-
nisms” on page 11-19 for more information.

NOTE

If the partition was linked with the -trace option, the mecha-
nism may be specified without the need for relinking by using
a.map.  (See “a.map” on page 4-47 for more information.)  This
is only applicable if the executable was originally linked with the
mechanism setting of ntraceud.
11-15



MAXAda for Linux Reference Manual
mechanism=internal

This attribute specifies that logging shall be performed by the Ada executive
independent of the NightTrace product.  See “Ada Executive” on page 11-19
for more information.

The Ada executive logs trace events to wraparound trace buffers in memory
(one buffer per task).  When a trace buffer becomes full, the newest trace
events overwrite the oldest trace events in that buffer.  

When the Ada executive is selected as the mechanism to log trace events, fur-
ther attributes may be specified:

i. Select the mechanism used to determine timestamps for trace
events.  See “Timing Source” on page 11-21 for more informa-
tion.

mechanism=internal/default

By default, when the internal mechanism is chosen, the timing
device used to determine timestamps for trace events is the default
high-precision clock for the architecture where the program runs;
specifically, the  Time Stamp Counter (TSC) for Pentium or
AMD64 systems.

mechanism=internal/rcim_tick

If you are running on a closely-coupled system that has a
Real-Time Clock and Interrupt Module (RCIM) attached, you
may specify the synchronized tick clock on the RCIM as the trace
timing source.

See the Real-Time Clock and Interrupt Module User’s Guide
(0891082) for more information about this device.

ii. Specify the size of the trace buffer that the Ada executive uses
to log trace events.  See “Trace Buffer” on page 11-20 for more
information.

buffersize=n   (1000)

The length specified is the maximum number of trace events for
each task that can be contained within the buffer.  For instance, it
may be desirable to specify a fairly large buffer length if there are
in excess of 500 library units being traced.  In such a case, the
ENVIRONMENT task will have logged a minimum of 1000 trace
events (an entry and exit of each library unit elaboration) before
the main subprogram even executes.

If the partition was linked with the -trace option, the size of the trace
buffer may be specified without the need for relinking by using a.map.
(See “a.map” on page 4-47 for more information.)
11-16



Real-Time Event Tracing
mechanism=ntraceud

This attribute specifies that logging shall be performed via the NightTrace
user daemon, ntraceud.  This method allows greater flexibility, providing a
number of options to tailor the tracing to the needs of the user.  See “Night-
Trace Daemon” on page 11-21 for more information.  Also, see ntra-
ceud(1) and the NightTrace User’s Guide (0890398) for more information
about the NightTrace user daemon.

The NightTrace user daemon has its own option for selecting a timing source.
See the section titled Option to Select Timestamp Source (-clock) in Chap-
ter 4 of the NightTrace User’s Guide (0890398).

In addition, the NightTrace user daemon has its own option for setting the
shared memory buffer size.  See the section titled Option to Define Shared
Memory Buffer Size (-memsize) in Chapter 4 of the NightTrace User’s
Guide (0890398).

4. Determine whether runtime events are desired.

rtsinstrumentation=true | false   (true)

When set to true, this attribute causes the tracing version of the Ada executive to
generate predefined trace events as the application executes.  These trace events
describe execution mostly in terms of tasking, interrupt handling, exception occur-
rence and handling, and protected actions.

See “Predefined Trace Events” on page 11-2 for more information.

5. Determine whether library unit elaboration events are desired.

elabinstrumentation=true | false   (true)

When set to true, this attribute causes the generation of a pair of trace events
(entry and exit) for the elaboration of every library unit in the partition.

NOTE

The user may wish to increase the length of the trace buffer used
for logging trace events if there are a large number of library units
to be traced. This is specified using the buffersize attribute of
the -trace option.

Tracing Options - Examples 11

The following are some examples of using the -trace link option:

-trace:enabled=false

Specifies that tracing is activated but no logging of trace points will occur (unless
the user subsequently modifies the enabled setting via the a.map tool or calls the
11-17



MAXAda for Linux Reference Manual
set_trace_mode subprograms from the ccur.user_trace package at runt-
ime - see  “ccur.user_trace package” on page 11-3 for more information.).

In addition, the default settings for other trace attributes specify that library unit
elaboration and runtime events would be traced, the tracing mechanism would be
the Ada executive (i.e. not ntraceud) using the default timing source, and the size
of the per-task trace buffer is 1000 (events).

-trace:rts=false,elab=true,mech=ntraceud

Specifies that tracing is activated and enabled and that library unit elaboration will
be traced but runtime events will not.

In addition, the default settings for other trace attributes specify that the tracing
mechansim is ntraceud; this requires the user to start the NightTrace user daemon
(ntraceud) before executing the program being traced.

-trace:mech=internal/rcim_tick

Specifies that tracing is activated and enabled and that library unit elaboration and
runtime events will be traced and that the tracing mechanism is the Ada executive
(i.e. not ntraceud) using the RCIM synchronized tick clock as the timing source
and the size of the per-task trace buffer is 1000 (events).  Use of the RCIM
sychronized tick clock as the timing source is required for subsequent trace analysis
if multiple trace files from multiple single board computers are to be combined
(which in turn requires that each of the single board computers have an RCIM all
connected in the same chain).
11-18



Real-Time Event Tracing
Logging Trace Events 11

This section discusses the available mechanisms used to log trace events and the resultant
log files from the tracing activity.

Logging Mechanisms 11

Logging of trace events is done by either the MAXAda-supplied executive or the Night-
Trace daemon.

Ada Executive 11

The Ada executive can log predefined and user-defined trace events.  It does not require
the use of the NightTrace product.  

This mechanism is specified by setting the mechanism attribute of the -trace option to
internal.  See “Tracing Options” on page 11-14 for details.

Because of the -trace link option (and the default values for its associated attributes) in
the following example, predefined trace events will be generated by the Ada executive in
addition to any user-defined ccur.user_trace events  (see “Tracing Options” on page
11-14 for details).  The a.partition command which sets the -trace option is not
required if only user-defined ccur.user_trace events are desired.  However, in such a
case, the enabled attribute defaults to false so no trace events will be generated until
the mode is changed (either via the a.map  tool or at  runtime via a call  to
ccur.user_trace.set_trace_mode  o r
ccur.user_trace.set_trace_mode_all).

Example 

1. Introduce the source file

$ a.intro some_tasking_program.a  

2. Create the partition

$ a.partition -create active some_tasking_program  

3. Select Ada executive logging   

$ a.partition -oset "-trace" some_tasking_program  

4. Build the partition

$ a.build some_tasking_program  
11-19



MAXAda for Linux Reference Manual
5. Invoke the application  

$ some_tasking_program  

 NOTE

The -trace option could be specified at the same time the parti-
tion is created.  The command would look like:

$ a.partition -create active -oset "-trace"
some_tasking_program

Trace Buffer 11

The Ada executive logs trace events to a separate wraparound trace buffer in memory.
When a trace buffer is full, the newest trace events overwrite the oldest trace events in that
buffer.

Each task has its own trace buffer in memory so there is never any buffer contention when
logging trace events.  The default size of these buffers is 1000 entries (approximately 24
bytes per entry) and may be configured by setting the trace_buffer_length variable
in the ccur.user_trace package.  These buffers are allocated during task creation.  A
storage_error exception is raised if the allocation fails.

Additionally, the size of the buffer can be specified using the buffersize attribute to
the -trace option.  See “Tracing Options” on page 11-14 for details.

NOTE

If the partition was linked with the -trace option, the size of the
trace buffer may be specified without the need for relinking by
using a.map.  (See “a.map” on page 4-47 for more information.)

The trace events are dumped only when specified by the user or when the application
exits.  They are then dumped to a trace file.  Because the user controls when the events are
written to the trace file, there is no extraneous disk activity.  See "Log Files" below for
more information about these trace files.

Forcing a Trace Buffer Flush 11

When using the Ada executive mechanism for tracing, trace events remain in trace buffers
until the program is ready to exit, at which point they are written to disk.

In some situations, it is useful to force the buffers to be written to disk before the program
terminates (e.g., if a program aborts abnormally before the runtime system has a chance to
dump the buffers, or if the program hangs).
11-20



Real-Time Event Tracing
Several methods are available:

• Using NightView

If you are debugging the program with NightView, use the following techniques:

- Stop the program and then resume it with the SIGPROF signal; e.g.:

   stop
   resume sigprof

- If your user application includes the user_trace package, then
stop the program and force it to call the user_trace.dump rou-
tine; e.g.

   stop
   set user_trace.dump

Alternatively, you could set a one-shot patchpoint without stopping the pro-
cess which would cause a single call to user_trace.dump; e.g.

   patch file:line /disable eval user_trace.dump
   enable/once .

• Sending a signal

Send the process the SIGPROF signal; e.g.

kill -PROF pid

Timing Source 11

By default, the timing device used to determine timestamps for trace events is the default
high-precision clock for the architecture where the program runs; specifically, the Time
Stamp Counter (TSC) for Pentium or AMD64 systems.

If you are running on a closely-coupled system that has a Real-Time Clock and Interrupt
Module (RCIM) attached, you may specify the synchronized tick clock on the RCIM as
the trace timing source.  See the Real-Time Clock and Interrupt Module User’s Guide
(0891082) for more information about this device.

The timing source can be specified using the mechanism attribute to the -trace option.
See “Tracing Options” on page 11-14 for details.

NightTrace Daemon 11

The NightTrace user daemon, ntraceud, can log predefined and user-defined trace
events.  It is part of the NightTrace product, which is sold separately from MAXAda.

This mechanism is selected by setting the mechanism attribute of the -trace option to
ntraceud (see “Tracing Options” on page 11-14 for details).  All trace events will be
logged to a singular global memory buffer controlled by ntraceud.  It is the ntraceud
tool itself that dumps the actual trace events from the global memory buffer to the actual
trace file.
11-21



MAXAda for Linux Reference Manual
NOTE

The NightTrace daemon, ntraceud, must be invoked before the
Ada application is run.  In addition, ntraceud must be termi-
nated when the application completes.  See the example below.

The NightTrace daemon, ntraceud, allows greater flexibility using the buffers and trace
files by providing a number of options to tailor the tracing to the needs of the user.  See
ntraceud(1) for more information about the NightTrace user daemon

Example

1. Introduce the source file

$ a.intro some_tasking_program.a  

2. Create the partition

$ a.partition -create active some_tasking_program  

3. Select NightTrace user daemon logging   

$ a.partition -oset "-trace:mech=ntraceud" 
some_tasking_program  

4. Build the partition

$ a.build some_tasking_program  

5. Invoke the NightTrace user daemon (note the file specified)   

$ ntraceud some_tasking_program.trace.data  

6. Invoke the application  

$ some_tasking_program  

7. After the application finishes, stop the NightTrace user daemon   

$ ntraceud --quit some_tasking_program.trace.data  

NOTE

The selection of the NightTrace user daemon could be made at the
same time the partition is created.  The command would look like:

$ a.partition -create active -oset
"-trace:mech=ntraceud" some_tasking_program
11-22



Real-Time Event Tracing
Log Files 11

Two files are created with respect to trace event logging, regardless of which method of
logging is chosen:

1. program_name.trace.data

This binary trace event file contains sequences of trace event information that the
application logged.

2. program_name.trace.tables

This ASCII configuration file contains dynamically generated string tables of tex-
tual information about the tasks in the Ada application.
11-23



MAXAda for Linux Reference Manual
Viewing Trace Events 11

Once the trace events have been logged, they must be viewed for analysis.  MAXAda pro-
vides two methods of viewing the trace event log files.  MAXAda supplies a utility,
a.trace, for viewing the trace event logging results.  In addition, the results may be
viewed using the NightTrace product.

Refer to Figure 11-1 to see  how each method is used for viewing trace events.

Figure 11-1.  Viewing Trace Events

User Table 11

A user table contains a format table that associates specific ccur.user_trace trace
events with particular character strings.  The user table can be used: 

- by a.trace when viewing trace events or

- by a.trace when creating the configuration files needed by NightTrace  

The -u option to a.trace is used to specify the name of the file containing the user
table.

The user table uses each trace event sub_id as a table key, associating a particular char-
acter string with each event.  Formatting for these character strings and optional values

Do you wish to 
view trace events 
with NightTrace?

no

yes

Run a.trace to 
create ntrace

configuration file

Run ntrace

Run a.trace

a.trace -s -a main
or
a.trace -s -a -u your_event_table main

a.trace main
or
a.trace -u your_event_table main

ntrace main.ntrace.*
11-24



Real-Time Event Tracing
displayed within the string can be specified for each trace event.  Events not specified in
the user table are displayed using the formatting for the default_item.

See the NightTrace User’s Guide (0890398) for details on format tables and specifying
these values.

NOTE

The format table table_name  specif ied must  be named
ada_user_trace.  

An example of the contents of a simple user table file might look like:

format_table (ada_user_trace) = {
        default_item = "<who knows>" ;
        item = 1 , "Start it: data1=%d, data2=%d", "arg3", "arg4" ;
        item = 2 , "End it: data1=%d, data2=%d", "arg3", "arg4" ;
} ;

When viewed, trace events with a sub_id of 1 will produce a string similar to the follow-
ing:

Start it: data1=2, data2=2

containing the particular runtime values for data1 and data2 at the time the trace event
was logged.

Viewing Trace Events with a.trace 11

MAXAda provides the a.trace utility as a stand-alone method of viewing Ada execu-
tive predefined trace events as well as user-defined ccur.user_trace trace events.
There is no requirement for either NightTrace or for an X server.  The resultant listing of
trace events is displayed in ASCII format in chronological order.  High-level symbolic
information, trace-event time stamps, and raw-trace dumps are also available.

a.trace uses program_name.trace.data and program_name.trace.tables.
See “Log Files” on page 11-23 for more information about these files.

To view trace event information in ASCII:

a.trace -a program_name.trace.data

or optionally,

a.trace -a program_name
11-25



MAXAda for Linux Reference Manual
NOTE

The .trace.data extention is optional when invoking
a.trace.  a.trace will append .trace.data to the
program_name when invoked if it is not specified.

Additionally,  a user table file can be specified by using the -u option to a.trace.  For
example:

a.trace -u user_table_file -a program_name

will display the ccur.user_trace trace events according to the formatting specified in
the format table contained in user_table_file.  See “User Table” on page 11-24 for more
details.

See “a.trace” on page 4-98 for more information about this utility and its options.

Viewing Trace Events with NightTrace 11

In order to view trace events with the NightTrace graphical display utility, ntrace, a con-
figuration file must be created for use with NightTrace.  The MAXAda utility a.trace
creates this NightTrace configuration file for viewing predefined trace events and
user-defined ccur.user_trace trace events with ntrace.

Creating the NightTrace Configuration File 11

The MAXAda-supplied utility, a.trace uses the program_name.trace.data file
from the trace event logging to create the files needed by NightTrace before it can display
graphically the information obtained from the tracing.  See “Log Files” on page 11-23 for
more information about this file.  

a.trace takes the  program_name.trace.data file as its only argument to generate
the necessary files.  (Note: no options should be specified to a.trace when generating
the NightTrace files.)

To create the files needed for NightTrace to view the tracing information, issue the follow-
ing command:

a.trace program_name.trace.data

Optionally, a user table file can be specified by using the -u option to a.trace.  For
example:

a.trace -u user_table_file program_name

will use the formatting specified in the format table contained in user_table_file when cre-
ating the NightTrace configuration file.  See “User Table” on page 11-24 for more details.

Either of these commands creates the following two files:
11-26



Real-Time Event Tracing
1. program_name.ntrace.data

This file is a hard link to program_name.trace.data.  See “Log Files” on page
11-23 for more information about this file.

2. program_name.ntrace.config

This file contains string tables, format tables, and a NightTrace display page, includ-
ing descriptions of NightTrace display objects for this application’s trace events.  It
combines information from the template and table files in the sup/trace
di rec to ry  and  the  f i l e  c rea ted  by  the  execu t ion  o f  the  app l i ca t ion ,
program_name.trace.data.

These two files then are given as input to the NightTrace graphical display tool, ntrace,
to view the trace event information generated by the run of the application.

The tracing information from the application, program_name, can then be viewed using
ntrace by issuing the following command:

ntrace program_name.ntrace.*

Modifying the NightTrace Configuration File 11

The NightTrace configuration file, program_name.ntrace.config, may be modified
and reused on subsequent tracings of program_name.  This holds true only for programs
which create their tasks in a deterministic order.  

NOTE

For programs which do not create their tasks in a deterministic
order, the internal representation of specific Ada tasks may
change with each run, thereby invalidating a previously created
(and perhaps modified) configuration file

I n  c a s e s  s u c h  a s  t h i s ,  t h e  c o n f i g u r a t i o n  f i l e ,
program_name.ntrace.config, must be recreated by execut-
ing a.trace on the latest trace event files.  See “Creating the
NightTrace Configuration File” on page 11-26 for details.

If a.trace is executed on the latest trace event files, modifica-
tions to the previous configuration files will be not be retained.
11-27



MAXAda for Linux Reference Manual
11-28



12
Chapter 12Real-Time Monitoring

12
12
12

Real-time monitoring involves observing and changing the values of program variables
and displaying task states and system utilization.  This chapter describes the a.monitor
real-time monitoring utility. 

Data Monitoring 12

This section describes how to use MAXAda to perform data monitoring for debugging
real-time applications.  Currently, several ways are available in which to use the data mon-
itoring capabilities.  The following sections include information for: 

• Compiling Ada source code for data monitoring 

• Eligibility of data objects for data monitoring 

• Using the rtdm ccur.rtdm package 

In order to monitor programs whose effective user ID differs from the monitoring process,
the CAP_SYS_ADMIN capability is required (see “Capabilities” on page 1-3). 

Compiling 12

Ada source code must be compiled with the -g option or pragma DEBUG to allow the
resulting program to produce symbolic debug information required for data monitoring.  

Eligible Data Objects 12

The implementation of data monitoring supports monitoring and modifying only those
data objects that have static addresses, such as the variables declared in an Ada library-
level package.  Variables declared in Ada procedures or tasks, or objects in an access
type’s collection, are allocated dynamically, and are, therefore, ineligible for data monitor-
ing. 

The following criteria are used to determine if a data object is eligible for data monitoring: 

• The compilation unit containing the object must be a library-level package
specification or body.  Objects declared in nested packages inside a library-
level package are also eligible. 

• The object must not be declared in a generic or in the instantiation of a
generic. 
12-1



MAXAda for Linux Reference Manual
• The object must have a size and representation which is statically deter-
mined at compile time.

• The object may be declared in a library-level package marked with pragma
SHARED_PACKAGE. (See “Pragma SHARED_PACKAGE” on page
M-129.) 

Eligible Data Types 12

The following data types are eligible for data monitoring: 

• Any integer, fixed-point or floating-point type or subtype. 

• Any character, Boolean or enumeration type or subtype. 

• Access types. 

• Array and record types (for records with variant parts, only components
that have a statically determined component offset are eligible). 

• Task types are not eligible types. 

ccur.rtdm Package 12

See “rtdm” on page 9-13 for an overview of this package.

A detailed description of all interfaces and services can be found in the Data Monitoring
Reference Manual (0890493).
12-2



Real-Time Monitoring
Task Monitoring 12

This section describes how to use MAXAda to perform real-time task monitoring for
debugging real-time applications.  No special options or pragmas are required in the pro-
gram to be monitored.  Task monitoring is accomplished through use of the a.monitor
tool.
12-3



MAXAda for Linux Reference Manual
a.monitor 12

The MAXAda a.monitor utility provides users with a full-screen real-time program
monitor. It provides an interactive menu interface that allows users to cyclically monitor
task and memory information  Currently, a.monitor can only monitor Ada tasking pro-
grams.

Figure 12-1.  a.monitor

The a.monitor utility: 

• is non-intrusive.  It operates independently of target applications. 

• can monitor an Ada program in real-time by displaying system utilization
and the activities of individual Ada tasking threads of execution

• is a stand-alone monitor that does not require an entire compilation envi-
ronment

Use of a.monitor requires the CAP_SYS_ADMIN privilege (see “Capabilities” on page
1-3) when monitoring processes whose effective user IDs are other than that of the user
invoking a.monitor. 

a.monitor can also be used in a non-graphical mode in situations where a graphical dis-
play is unavailable or unwanted.  Depending on supplied options, a.monitor will gener-
ated standard ASCII text to stdout.  See  “a.monitor” on page 4-55 for command-line
syntax and a list of options.
12-4



Real-Time Monitoring
The a.monitor graphical user interface consists of the following components:

• Menu Bar (see “Menu Bar” on page 12-6)

• Task Bar (see “Task Bar” on page 12-11)

• Display Area (see “Display Area” on page 12-14)
12-5



MAXAda for Linux Reference Manual
Menu Bar 12

The a.monitor menu bar provides access to the following menus:

• File (see “File” on page 12-6)

• View (see “View” on page 12-8)

• Options (see “Options” on page 12-8)

File 12

The File menu allows the user to specify which program to monitor in the current window
and provides the user with the option to create either a new window in which to monitor a
different program or a clone window in which to monitor a different view of the current
program.  The user may also print a snapshot of the data displayed in the Display Area to a
printer or to a file.

Figure 12-2.  a.monitor - File menu

New Window

The New Window  item creates a new window that initially has all the same
attributes of the window from which New Window is initiated.  However, unlike
Clone Window, changes to the program specification do not affect the parent win-
dow.  Thus, New Window can be used to monitor an additional program simulta-
neously.  Use of Clone Window subsequently from a New Window will create a
new clone window group.

Specify Program...

This menu item launches the Program Selection dialog which instructs a.mon-
itor as to which program should be monitored.  Programs may be specified on the
a.monitor command line or selected via this dialog.
12-6



Real-Time Monitoring
Figure 12-3.  Program Selection dialog

The Program Selection dialog presents a standard file browser for selection of
the executable file representing your program.  The lower portion of the dialog pro-
vides for selection of an operating system process ID (PID).  The Matching PIDs
list is populated with PIDs of currently executing processes which match the execut-
able file selection.  You can select any of the PIDs from that list, type in a specific
PID in the Selected PID field, or check the Any Match checkbox.  When Any
Match is selected, a.monitor will choose one of the existing PIDs or, if no pro-
cesses currently exist that match the executable file name, a.monitor will enter
scan mode.

Scan mode is a state in which a.monitor stops displaying program information
because the program being monitored has exited or does not exist.  In this state,
a.monitor periodically scans the system for a matching PID.  Once a PID is
located, monitoring mode is automatically re-initiated.

In monitoring mode, a.monitor continues to iteratively display information on
the program until the user exits the tool, the program exits, or the user specifies a
new program/process.  Thus a.monitor can be invoked with a program file name
and left running to monitor all subsequent invocations of the program.

Clone Window

The Clone Window item creates a new window with the same attributes of the
window from which Clone Window is initiated.  It retains the program specifica-
tion relationship with its parent window, but all other changes to the window remain
properties of the clone.  Clones of clones are all members of a clone window group -
they all share the same Program Specification. If a new program is selected in
any window of a clone window group, then it instantly applies to all windows in the
clone window group.
12-7



MAXAda for Linux Reference Manual
Print...

Opens the Setup Printer dialog allowing the user to print a snapshot of the data in
the Display Area (see “Display Area” on page 12-14) to a printer or to a file.

Close Window

The Close Window item closes the current window.  It does not affect any other
open windows.  If the current window is the only window open, a.monitor exits.

Exit

Exits the a.monitor tool.

View 12

The View menu allows the user to select the type of information displayed by a.moni-
tor.

Figure 12-4.  a.monitor - View menu

Tasks

Selecting the Tasks view displays information about the state of all active tasks in
the program.  See “Tasks” on page 12-14.

Memory

When the Memory view is selected, a.monitor provides information about the
virtual address space of the program.  See “Memory” on page 12-18.

System

Selecting the System view displays system information such as the TID, PID, CPU
bias, and scheduling priority for all active tasks.  See “System” on page 12-21.

Options 12

The Options menu provides the user with options regarding the amount of information
displayed in the Display Area  (see “Display Area” on page 12-14), whether ghost tasks
are displayed, and whether the information in the Tasks  view (see “Tasks” on page
12-14) should be displayed in columnar format or in a hierarchical manner.
12-8



Real-Time Monitoring
Figure 12-5.  a.monitor - Options menu

Verbose Mode

The Verbose Mode item toggles the amount of infomation displayed in the Dis-
play Area (see “Display Area” on page 12-14).  When Verbose Mode is selected,
the following information is displayed:

- time-out values for delay, timed entry call, and timed accept state-
ments

- open entry names for entry call, accept, and select statements

- interrupt counts for interrupt attachments to tasks or protected
objects

Ghost Mode

Use of the Ghost Mode item toggles whether ghost tasks are displayed in the Dis-
play Area (see “Display Area” on page 12-14).  Ghost tasks are tasks created by the
MAXAda run-time system for interrupt handling and delivery as well as administra-
tive actions.  When Ghost Mode is selected, ghost tasks are included in the Dis-
play Area  When Ghost Mode is not selected, they are omitted from the display.
See “Ghost Tasks” on page 5-5 for more information.

View Tasks (text)

Displays information on the Tasks page of the Display Area (see “Display Area”
on page 12-14) in columnar format as shown in Figure 12-6:
12-9



MAXAda for Linux Reference Manual
Figure 12-6.  a.monitor - View Tasks (text)

View Tasks (tree)

Displays information on the Tasks page of the Display Area (see “Display Area”
on page 12-14) in a hierarchical manner illustrating graphically the relationships
between the tasks.  This is shown in Figure 12-6:

Figure 12-7.  a.monitor - View Tasks (tree)

Refresh

Updates the Display Area (see “Display Area” on page 12-14) with the most recent
information.
12-10



Real-Time Monitoring
Task Bar 12

a.monitor provides a task bar for quick access to some of the more commonly-used
features of this utility.

Figure 12-8.  a.monitor Task Bar

The following describe each item on the task bar:

Specify Program

Launches the Program Selection dialog which instructs a.monitor as to
which program should be monitored.

See “Specify Program...” on page 12-6 for more information.

New Window

The New Window item creates a new window that initially has all the same
attributes of the window from which New Window is initiated.  However,
unlike Clone Window, changes to the program specification do not affect
the parent window.  See “New Window” on page 12-6 for more information.

Clone Window

The Clone Window item creates a new window with the same attributes of
the window from which Clone Window is initiated.  It retains the program
specification relationship with its parent window, but all other changes to the
window remain properties of the clone.  

See “Clone Window” on page 12-7 for more information.

Print

Opens the Setup Printer dialog allowing the user to print a snapshot of the
data in the Display Area (see “Display Area” on page 12-14) to a printer or to
a file.
12-11



MAXAda for Linux Reference Manual
Verbose Mode

The Verbose Mode item toggles the amount of infomation displayed in the
Display Area (see “Display Area” on page 12-14).

See “Verbose Mode” on page 12-9 for more information.

Ghost Mode

Use of the Ghost Mode item toggles whether ghost tasks are displayed in
the Display Area (see “Display Area” on page 12-14).

See “Ghost Mode” on page 12-9 for more information.

View Tasks (text)

Displays information on the Tasks page of the Display Area (see “Display
Area” on page 12-14) in columnar format.

See “View Tasks (text)” on page 12-9 for more information.

View Tasks (tree)

Displays information on the Tasks page of the Display Area (see “Display
Area” on page 12-14) in a hierarchical manner illustrating graphically the
relationships between the tasks.

See “View Tasks (tree)” on page 12-10 for more information.

Refresh

Updates the Display Area (see “Display Area” on page 12-14) with the most-
recent information.

Pause Data

Temporarily halts updating of the information in the Display Area (see “Dis-
play Area” on page 12-14).

Action

Resumes updating of the information in the Display Area (see “Display Area”
on page 12-14).
12-12



Real-Time Monitoring
Refresh Interval

Duration of time (in milliseconds) before updating the information in the Display
Area (see “Display Area” on page 12-14).
12-13



MAXAda for Linux Reference Manual
Display Area 12

The bottom portion of the a.monitor GUI is divided into three pages that show differ-
ent views of the information being monitored.

These views are:

- Tasks (see page 12-14) 

- Memory (see page 12-18) 

- System (see page 12-21) 

Tasks 12

When the Tasks menu item is selected from the View menu of a.monitor (see “View”
on page 12-8), information is provided about the state of all active tasks in the program.

Figure 12-9.  a.monitor - Tasks view

NOTE

The information in the Display Area  (see “Display Area” on page
12-14) can be sorted by clicking on the desired column header.
12-14



Real-Time Monitoring
Three columns of information are presented.

TID

The task identifier (TID) is the process ID (PID) of the displayed task.  Some ghost
tasks do not have processes associated with them; their TID will be zero.  Other-
wise, a TID uniquely identifies a task.

Task Name

The Task Name provides the name of the task using the simple name of the task
object from the user’s source code.  For allocators or components of composite
types, the simple name of the task type is used.

The name <environment> is used to identify the environment task (as per section
10.2 of the Ada Reference Manual).

Ghost tasks also include notations within <angle-brackets> to identify a specific
type of ghost task.

In addition, an icon precedes the task name indicating the state of that particular
task:

executing

calling

rendezvous

ready

timeout

waiting
12-15



MAXAda for Linux Reference Manual
Right-clicking on a particular task name presents the following menu:

These menu items are described below:

Trace System Calls...

Selecting this menu item launches a scrollable text dialog which shows system
call activity (using the strace utility) of an individual task.

Change Scheduling Attributes...

Displays the following dialog, allowing the user to change scheduling
attributes of an individual task including the POSIX scheduling policy, sched-
uling priority, and the CPU affinity.

Debug Program with NightView...

Selecting this menu item launches the NightView debugger which will auto-
matically attach to the process.  NightView fully supports debugging multi-
12-16



Real-Time Monitoring
tasking programs.  NightView attaches to all tasks in the program; therefore,
selecting this menu item for a single task affects the entire program.

Task Status

The Task Status column provides a description of the state of the task in terms
relating to activities defined specifically by the Ada language.  Typically these
includes delay statements, task and protected object entry calls, and accept and
select statements.  When a task is described as executing, it is executing in the Ada
language sense - not blocked on a resource or timing event directly related to an Ada
language statement.  This does not necessarily imply that the task is actually execut-
ing on a CPU.  It may be executing on a CPU, blocked in a system call or may be
available for execution by a CPU which is currently executing another task or pro-
cess.

NOTE

The task information screen is available only for Ada tasking pro-
grams.  It will display:

      Not an Ada program.  No tasks available

if the program is not an Ada tasking program, has not yet been
fully elaborated, or has had all symbolic information stripped
from the executable file.
12-17



MAXAda for Linux Reference Manual
Memory 12

When the Memory menu item is selected from the View menu of a.monitor (see
“View” on page 12-8), information is provided about the virtual address space of the pro-
gram.

Figure 12-10.  a.monitor - Memory view

NOTE

The information in the Display Area  (see “Display Area” on page
12-14) can be sorted by clicking on the desired column header.

For each segment of the virtual address space, the following information is displayed:

Segment Address

The Segment Address column shows the virtual address range of a segment of
memory that shares the set of attributes in the remaining columns.

Perm

The Perm column describes the permissions associated with the address segment,
using the notation rwxp which indicates whether the segment is readable, writable,
executable, private (or shared).  Thus a description of r-xp would indicate that the
12-18



Real-Time Monitoring
segment is readable, not writable, executable (typically containing machine instruc-
tions), and is private (not shared).

Offset

The Offset column indicates the offset, if any, from the base object associated with
the segment.  This is most often a segment of a file which has been memory
mapped.  Examples include the .text and .data segments of an executable file.

Device

The Device column indicates the device major and minor numbers associated with
the file memory mapped to the specified segment.  The major and minor numbers
are displayed in hexadecimal format.

Inode

The Inode column indicates the inode of the corresponding file, if any, which is
memory mapped to the specified segment.

Description

The Description column includes a textual description of the segment, when avail-
able.  Segments for which information is available typically include the pathname of
the executing program, pathnames to any required shared libraries, and names of
Ada packages and collections.  Ada package names are not available unless they
have memory-related pragmas associated with them.

The summary statistics sections of the screen are also dynamically updated.  They include:

Virtual Size

The size in KB of all virtual pages associated with the program.  Pages included in
this statistic may be currently swapped out and therefore not currently allocated to
physical memory.

Resident Size

The size in KB of all pages within the program currently occupying physical mem-
ory.

Locked Size

The size in KB of all pages locked into physical memory.

Data Size

The size in KB of all pages associated with data, collections, stack, as well as anon-
ymous pages mmaped into the address space (e.g. /dev/zero), not including any
static data pages associated with required shared libraries.
12-19



MAXAda for Linux Reference Manual
Stack Size

The size in KB of the environment task stack.  This does not include stacks allocated
for Ada tasks.  If the program includes memory-related pragmas which select a non-
standard set of attributes for the environment task stack, additional space is allocated
for that stack and it is not included in this statistic.

Executable Size

The size in KB of all executable pages associated with the program, not including
executable pages from any required shared libraries.

Library Size

The size in KB of all pages associated with shared libraries required by the program.

Heap Size
Heap Usage

For Ada programs, information on the state of the main collection (often referred to
as a heap), which is used to allocate space for dynamically sized variables, Ada allo-
cators, and Ada task stacks.  It includes the size in KB of the heap and the percent-
age of the heap that has been utilized.  The heap may grow in size as the program
executes, unless the user has put a specific limit on it via memory-related pragmas.
12-20



Real-Time Monitoring
System 12

When the System  menu item is selected from the View  menu of a.monitor (see
“View” on page 12-8), system information such as the TID, PID, CPU bias, and schedul-
ing priority is provided for all active tasks.

Figure 12-11.  a.monitor - System view

NOTE

The information in the Display Area  (see “Display Area” on page
12-14) can be sorted by clicking on the desired column header.
12-21



MAXAda for Linux Reference Manual
Right-clicking on a particular task name presents the following menu:

These menu items are described below:

Trace System Calls...

Selecting this menu item launches a scrollable text dialog which shows system
call activity (using the strace utility) of an individual task.

Change Scheduling Attributes...

Displays the following dialog, allowing the user to change scheduling
attributes of an individual task including the POSIX scheduling policy, sched-
uling priority, and the CPU affinity.

Debug Program with NightView...

Selecting this menu item launches the NightView debugger which will auto-
matically attach to the process.  NightView fully supports debugging multi-
12-22



Real-Time Monitoring
tasking programs.  NightView attaches to all tasks in the program; therefore,
selecting this menu item for a single task affects the entire program.
12-23



MAXAda for Linux Reference Manual
12-24



Part 5 - Appendixes, Glossary, and Index
Part 5  - Appendixes, Glossary, and Index

Part 5   Appendixes and Index

Appendix A    Troubleshooting ........................................................................ A-1

Appendix B    MAXAda Configuration ........................................................... B-1

Appendix C    Ada NightView.......................................................................... C-1

Appendix M   Implementation-Defined Characteristics...................................M-1



MAXAda for Linux Reference Manual



A
Appendix ATroubleshooting

1
1
1

Typically, problems can be categorized into configuration errors and user errors. 

Configuration Errors A

Configuration issues may involve many areas of the computer system depending on the
features that are used.  These areas include: kernel, administrative, hardware, and applica-
tion software. 

System Configuration A

As described in Appendix B, Ada applications require special privileges in order to exe-
cute.    See “MAXAda Configuration” on page B-1 for details on kernel and privilege con-
figuration. 

If an invalid system configuration exists or sufficient privileges cannot be granted, the fol-
lowing scenarios are possible: 

• Program fails to initialize 

- Due to system constraints on number of processes

- Due to system constraints on the amount of real memory or swap
space (see the system administrator).

- Due to insufficient capabilities.  See “Capabilities” on page 1-3.

• Task activation raises TASKING_ERROR 

- Due to system constraints on total number of processes system-wide.

- Due to system constraints on total number of processes per-user.

- Due to invalid hardware interrupt requests (bad device, device busy,
bad vector number, etc.) 

• Task elaboration diagnostics issued 

- Due to insufficient capability (e.g., pragma TASK_PRIORITY
requires CAP_SYS_NICE; pragma TASK_CPU_BIAS requires
CAP_SYS_NICE) 

- Due to invalid hardware configuration (e.g., pragmas
MEMORY_POOL or TASK_CPU_BIAS specifying CPUs which do
not exist) 
A-1



MAXAda for Linux Reference Manual
Application Configuration A

Typical application configuration problems are those associated with the size of the envi-
ronment task stack and default collection.  By default there is no run-time-enforced limit
on the size of the environment task stack or the default collection; however, absolute lim-
its may be specified.  When absolute limits are specified, allocation of the associated
memory pages occurs  at program start-up time.  This is often advantageous for real-time
applications as all pages can be faulted in and locked in memory, if needed. 

For information on how to change these two values, see “Pragma POOL_SIZE” on page
6-26 and the ccur.runtime_configuration specification in vendorlib.

Another typical problem:  a user-defined task may attempt to exceed its statically deter-
mined maximum stack size, resulting in STORAGE_ERROR being raised within the task.
This often results in the task simply completing (assuming the user does not supply a han-
dler for the STORAGE_ERROR exception).  The application may then appear to hang if it
is expecting activity from the task.

Using Tasks to Multithread Algorithms A

With bound tasks (or tasks within a group which contains multiple servers), Ada tasks can
be used as an easy and effective method to multithread parallel algorithms. (E.g., one
might use multiple tasks to implement a quick sort on large amounts of data.) When using
this method, applications should take into account the stack requirements of their algo-
rithms. The maximum size of a task stack frame may be set using the language-defined
method of applying a ’STORAGE_SIZE length clause to the task type specification, or
via pragma POOL_SIZE (See “Pragma POOL_SIZE” on page 6-26).

User Errors A

Other than normal application errors, this chapter attempts to describe typical errors asso-
ciated with utilizing parallel programming language techniques.

Concurrent Access A

In a multi-programmed model, (e.g., multiple non-tasking programs), access to variables
that are shared between multiple processes is usually explicitly defined by the user. When
programming with tasks, the user does not need to take extra steps to share data between
them.  Because the user does not need to explicitly mark items to be shared, it is easier to
overlook concurrency problems. 

Users should take steps to define critical sections where necessary. Critical sections can be
defined with task rendezvous and/or protected types.

Additionally, there may be occasions where tasks poll variables which are being modified
by other tasks. By default, if these variables are in library-level packages, the MAXAda
A-2



Troubleshooting
compiler ensures that all modifications are eventually stored to memory. However, the
compiler is free to keep local copies of the variables in registers for short periods of time.
When dealing with local (stack-based) variables, the compiler has even more freedom for
register allocation. 

In cases where the application needs to ensure that all references and modifications are
applied immediately to memory, the user should apply implementation-defined pragma
VOLATILE. (See “Pragma VOLATILE” on page M-133.) 

Concurrency issues are not isolated to variables, but also apply to Ada I/O operations,
interface routines, and programming on the whole. 

Hung Processes A

In addition to tasking deadlock conditions, applications may hang.

For example, if an Ada task is aborted due to some non-Ada event (e.g., segmentation
fault, abort external from Ada, etc.) then the run-time executive may still consider the task
to be in a runnable state when the actual task is no longer executing.

This situation may be accompanied with an error message from the run-time executive if
tasking operations are requested by some other task.  However, an error message may not
occur if tasking operations are quiescent. 

Client/Server Services A

The run-time executive utilizes the client/server services of the operating system to imple-
ment task activation, rendezvous, and completion. 

The services it uses are: 

• server_block(2) 

• server_wake1(2) 

• server_wakevec(2) 

Users may use these operating services directly; however, care must be taken so as not to
interfere with the run-time executive. 

A simple rule should be followed: 

Only issue a server_wake1(2)or server_wakevec(2) call if the process(es) that
are to wake up contain absolutely no tasking or are  indeed already blocked by a user’s call
to the respective blocking service (server_block(2)). 

If the user were to issue a server_wake1(2) call on a process that was currently
blocked in the run-time executive on a server_block(2) call, it would wake up pre-
maturely and would probably execute erroneously (or abort). 
A-3



MAXAda for Linux Reference Manual
Run-Time Diagnostics A

Run-time diagnostic messages may be issued due to invalid system configuration, invalid
user requests (pragmas, hardware interrupts, etc.), abnormal task termination, and internal
executive failures. 

All diagnostics are accompanied by a severity level, a message type, and a text descrip-
tion. The diagnostic severity level is either: information, warning,  fatal, or panic.

Panic and fatal diagnostics occur when at least one task has terminated abnormally pre-
venting the entire application from normal termination. Panic diagnostics are also used in
cases where the integrity of the run-time system has been violated.  (These are internal
errors.)

Warning diagnostics may or may not prevent the completion of the operation causing
them. If associated with task activation, TASKING_ERROR is raised when appropriate in
the activator. 

Run-time diagnostic messages are written to stderr and may be suppressed via pragma
RUNTIME_DIAGNOSTICS (See “Pragma RUNTIME_DIAGNOSTICS” on page 6-1) or
via calls available in the ccur.runtime_configuration package (See the specifi-
cation for ccur.runtime_configuration).

If internal errors occur, contact Concurrent Customer Support.

Run-Time Diagnostic Messages A

Message: 

configuration: unable to lock pages in memory, memcntl(2) 
failed. 

Cause/Correction: 

Insufficient physical memory. Adjust local/global bindings. Add memory. 

Message: 

configuration: bind of package to memory pool failed, mmap(2). 

Cause/Correction: 

Invalid CPU bias for configuration. Insufficient local memory. Change pragma. 
A-4



Troubleshooting
Message: 

configuration: specified bias applies to multiple local memory 
pools. 

Cause/Correction: 

CPU bias does not identify a single CPU board. Change pragma. 

Message: 

configuration: unable to set task cpu bias (mpadvise(3C)); 

configuration: unable to set task priority; 

configuration: unable to set task quantum; 

Cause/Correction: 

Invalid configuration. Invalid access. errno supplied with message. 

Message: 

configuration: unable to set cpu_bias = 128, mpadvise: errno = 
21

Cause/Correction: 

Specification of inactive CPUs. Insufficient privilege. errno supplied.
Change pragma.

Message: 

panic: ... 

Cause/Correction: 

Abnormal termination of task. Internal errors. 
A-5



MAXAda for Linux Reference Manual
Compiler Errors A

Message(s): 

fatal: unable to open ...; errno = 24 (Too many open files)

fatal: unable to create ...; errno = 24 (Too many open files)

fatal: unable to determine current directory; errno = 24 (Too 
many open files)

fatal: cannot allocate DWARF memory: open() failure; errno = 24 
(Too many open files)

fatal: ...; errno = 24 (Too many open files)

Cause/Correction: 

The tool has exceeeded the maximum allowable number of file descriptors.  That
maximum must be increased.  If the user has sufficient privileges, this can be done
with the ulimit -n command.  To determine the current maximum number of file
descriptors:

# ulimit -n
64

To increase the number to 256 file descriptors:  

# ulimit -n 256

Message(s): 

unit_name is damaged: net (net_name) is older than expected 
(unit_time)

unit_name is damaged: net (net_name) is missing

unit_name is damaged: backup (backup_name) is older than 
expected (unit_time)

unit_name is damaged: backup (backup_name) is missing

unit_name is damaged: nonshared object (object) is older than 
expected (unit_time)

unit_name is damaged: nonshared object (object) is missing

unit_name is damaged: shared object (object) is older than 
expected (unit_time)

unit_name is damaged: shared object (object) is missing

Cause/Correction: 

Something has happened to the internal representation of the unit.  
A-6



Troubleshooting
Run a.build in the home environment for the damaged units, so that it can correct
any such problems.

Message(s): 

TEXT_IO not defined

Cause/Correction: 

This package is now a child of the package Ada and resides in the predefined
environment.  See “predefined” on page 9-6 for more information about this envi-
ronment.  However, MAXAda allows you to continue using the package Text_IO.
You may do so by adding the obsolescent environment to your path.  See
“a.path” on page 4-74 and also “obsolescent” on page 9-14 for more information.
A-7



MAXAda for Linux Reference Manual
A-8



B
Appendix BMAXAda Configuration

2
2
2
3

The MAXAda tools and run-time utilize sensitive real-time system services that require
special capabilities that are not generally available to all users and processes.  The manner
in which privileges are granted to users and processes depends on the specific security
configuration of the system.

Additionally, the operating system kernel may need to be reconfigured to activate features
utilized by the run-time. 

Capabilities B

Table B-1 shows the features, pragmas, and tools that require capabilities. 
B-1



MAXAda for Linux Reference Manual
Table B-1.  Required Capabilities

Capability Feature(s) Requiring Capability

CAP_SYS_NICE Pragmas TASK_CPU_BIAS, GROUP_CPU_BIAS, 
MEMORY_POOL, PRIORITY, TASK_PRIORITY, 
INTERRUPT_PRIORITY; packages 
ccur.cyclic_scheduler, 
ada.dynamic_priorites, 
ccur.runtime_configuration

CAP_SYS_RAWIO All tasking programs, packages 
ccur.rescheduling_control, 
task_sychronization, ccur.spin_locks.

CAP_IPC_LOCK Pragma POOL_LOCK_STATE

CAP_SYS_ADMIN Use of the ccur.rtdm package or the a.monitor tools 
when the effective user ID of the program being monitored 
differs from that of the monitoring program.
B-2



C
Appendix CAda NightView

3
3
4

This appendix discusses debugging Ada programs with the NightView symbolic debug-
ger.  Specific topics include:

• Debugging tasking programs

• Understanding the debugging context, NightView’s select-context
command, and MAXAda-supplied macros

• Debugging with exception handling and interception using NightView’s
handle/exception and x commands

• Debugging generics

• Debugging overloaded subprograms

• Listing source, packages, and subprograms

• Disassembling

• Evaluating expressions

For more information about NightView, see the NightView User’s Guide and NightView’s
on-line help.

Hints for Debugging Ada Programs with NightView C

The “Debugging Ada Programs” section of the NightView User’s Guide provides an over-
view of this topic. The following section contains hints that may also be useful, but they
should not be considered a substitute for the NightView User’s Guide.

Tasking Programs C

First, some review on the implementation of Ada tasks.

Ada tasks are implemented by the run-time system in various manners that are dependent
on pragmas and linker options you specify.

A task has a weight which is one of:

• Bound

• Multiplexed

• Passive
C-1



MAXAda for Linux Reference Manual
A bound task always has a single clone associated with it.  As such, a task's context (regis-
ter set) is always represented by the registers associated with its clone.

A multiplexed task is served by one or more clones.  At any point in time, the task's con-
text may be represented by either:

• A server clone which is actively serving the task

• Its task control block (TCB), if no clone is actively serving the task
(Note that the term actively means that the clone is currently acting on
behalf of the assigned task; it does not necessarily mean that the clone is
actually executing on a CPU.)

A passive task is served by the task it is in rendezvous with.  A passive task's context is
represented either by its TCB or by the clone that is currently serving it.

Consult Chapter 5 for more information on the run-time tasking implementation.

Debugging Context C

When the operating system gives the debugger control of a process due to a debugging
event (e.g., hitting a breakpoint, receiving a signal, etc.), all clones in the process are
stopped by the debugger.  If multiple task processes stop at once, NightView writes mes-
sages for each one, and makes one the current context.

The NightView Data Window allows you to display variables, registers, and tasks.  

Figure C-1.   NightView Data Window

The list of active tasks includes a description of the name of the task, its Task Control
Block (TCB) address, and, optionally, its stack walkback.

You can switch to the context of any task in the list by right-clicking on the "+" or "-" sign
to the left of the task name and choosing Select Frame.

The NightView source display will change to the topmost stack frame for the newly
selected task.  All references to process state are now in the context of the selected task.
C-2



Ada NightView
Alternatively, you can use the select-context command. (The select-context
command may be abbreviated as sel.)

The formats of the command include:

select-context task=expr
select-context pid=pid
select-context default

The first form of the command sets the current context to that associated with the task as
specified by expr. The second form of the command sets the context to that associated
with the process as specified by pid.  The third form of the command sets the context to
that which was presented when the debugger was last given control of the process.

The first form of the command is usually appropriate for tasking programs.  In this form,
expr should be an Ada expression that identifies a task object (task variable, task body
proper, or an expression which evaluates to a task type).  Alternatively, expr can be an
integer literal that identifies the address of the Task Control Block (TCB) for the task of
interest.  The TCB address of a task is available through:

• MAXAda ccur.runtime_configuration.current_task  sub-
program call

• MAXAda tool a.monitor

• the description supplied for each task in the Data Window when threads are
selected to be displayed (by choosing the Threads menu item from the
Display menu)

The MAXAda-supplied tool, a.monitor, provides dynamic snapshots of all the tasks
associated within a single process. Such snapshots include the task ID of each active task.
The task ID is actually the clone's PID.  By running a.monitor in parallel with Night-
View, you can always determine the ${taskid} of any active task in the process as well as
its Ada "task status".

Once the debugging context has been changed, you can peruse stack frames, view vari-
ables, set breakpoints, etc.

For a more complete description, see select-context in the NightView User’s Guide.

Exception Handling and Interception C

Exceptions raised in your program can be intercepted by the debugger before being deliv-
ered to the process.  The NightView handle/exception command is effective in
doing this.

Note that the exception will be delivered to the process regardless of whether it is inter-
cepted by the debugger.  Interception simply delays delivery until the process is resumed
again.

The handle/exception command allows for intercepting all exceptions or specific
exceptions you specified. For more information, see handle and info exception in
the NightView User’s Guide.
C-3



MAXAda for Linux Reference Manual
Generics C

NightView does not currently fully support debugging generic instantiations. For exam-
ple, you cannot set a breakpoint on a routine by specifying the name of a generic subpro-
gram or the file/line-number of a file that contains a generic body. Similarly, you cannot
view variables that are associated with portions of shared generic instantiations.

The debugger does support setting breakpoints on the instantiated unit name of a generic.

Once a breakpoint has been reached inside a generic body, single stepping, advancing, and
setting breakpoints via line number function correctly.

General NightView Operational Hints C

The following is not meant as complete description of NightView commands, rather as
some helpful hints about useful commands for Ada programmers.  Consult the NightView
User’s Guide for more information.

Listing Source, Packages, and Subprograms C

In Ada, more so than in other languages, programmers tend to think of source code via its
corresponding unit name (package, procedure, function) rather than by the name of the
source file containing the source code. 

To list the names of functions, subroutines, or Ada unit names recorded in the debug
tables, use the following NightView command:

info functions regexp

To list the source for a specific unit, simply supply the unit name.

Examples:

To list a file by file name, the file name should be a quoted string. Otherwise, the string
may be ambiguous. For example:

list "myfile.a"

list text_io’spec Lists the specification of text_io

list system Lists the body of system

list calendar.local_time.clock Lists the body of the subprogram
clock inside the package body
local_time inside the package
body calendar

list 45:my_unit_name Lists line 45 of the source file con-
taining the unit my_unit_name
C-4



Ada NightView
Disassembly C

Users can select the Disassembly Preferred menu item from the View menu in the
NightView Debug Window to aid in assembly-level debugging.  In disassembly-preferred
mode, the NightView debug source display shows disassembly when possible.  If the
debugger tries to show a file that does not have any corresponding instructions, then it will
show the file with no disassembly.

NightView also offers a mixed-preferred mode in which the debugger shows a line of
source followed by the instructions that correspond to that line. Source lines that do not
produce code are not shown. Only one source line is shown for each group of instructions,
so statements that span lines are only partially shown.  This mode is selected by choosing
the Mixed Preferred menu item from the View menu in the NightView Debug Win-
dow.

Interest Threshold C

By default, NightView considers locations in the program which don't have debug infor-
mation associated with them to be uninteresting.  As such, it attempts to automatically
back up to a stack frame which is associated with a routine with debug information.  You
can change this behavior by setting the interest threshold to the minimum:

interest threshold min

See information about the interest comand in the "Command-Line Interface" chapter
of the NightView User’s Guide (0890395) for more information.

Expression Evaluation Syntax C

NightView automatically parses commands and expressions you supply based on the
effective language setting. The set-language command allows you to let NightView
automatically determine the language based on the current debugging context (set-
language auto) or allows you to specify a constant value. To specify Ada as the default
language, use the command:

set-language ada

For example, the following command has two drastically different effects based on the
effective language setting:

print variable = 3

If the effective language is Ada, the preceding command prints TRUE or FALSE, depend-
ing on whether variable has the value 3 or not.  However, if the effective language is C,
the preceding command assigns the value 3 to variable!

In many other cases, if you attempt a command using Ada syntax and the effective lan-
guage setting is not Ada, the debugger does not recognize the syntax and issues an error.
C-5



MAXAda for Linux Reference Manual
For example, if the effective language setting is C, the following commands have the fol-
lowing effect:

Ensure that your language setting is as you desire.  You can set the language to auto in
which case the debugger automatically changes the language to that of the routine where
the process is stopped.

print variable’address Illegal syntax

print package_name.variable_name Package_name is not a record
C-6



M
Appendix MImplementation-Defined Characteristics

This appendix describes amendments to the Ada 95 Reference Manual for the Ada Pro-
gramming Language, ANSI/ISO/IEC-8652:1995. 

The appendix is organized parallel to the RM, with one section for each RM chapter.
Headings specify RM subsections and paragraphs where appropriate. 

In the following text, syntactic categories, such as range_constraint and unit, are itali-
cized. 
M-1



MAXAda for Linux Reference Manual
RM Chapter 1: General M

RM 1.1.2 Structure M

Implementation Advice M

1.1.2(37) Whether or not each recommendation given in Implementation Advice is followed

Each recommendation given in Implementation Advice is listed within this appen-
dix parallel to its appropriate section in the RM. Each of these sections contains the
heading IMPLEMENTATION ADVICE under which is listed each specific paragraph
that appears in the RM and whether or not MAXAda has followed the given advice.

RM 1.1.3 Conformity of an Implementation with the Standard M

Implementation Requirements M

1.1.3(3) Capacity limitations of the implementation

• Source files are limited to 4,294,967,295 lines

Excessively long subprogram bodies or declarative areas requiring generation of
code can result in long compiler times or even exhaustion of internal code generator
limits. A practical limit of 100,000 lines per source file is recommended.

• Source lines are limited to 500 characters

• Rooted names are limited in length such that no symbol name may exceed
800 characters in length. Symbols name lengths are usually similar in
length to rooted names, but will include additional characters. They always
include an ’A_’ prefix. If the rooted name contains any overloadable enti-
ties other than a child unit name, then the name will also contain overload
resolution substrings of the form ’llllllSccc’ or ’llllllBccc’ for
each such overloadable entity. The sequence ’llllll’ is the line number
and the sequence ’ccc’ is the column number of the declaration of the
overloadable entity. The line number and column number will not contain
leading zeros and so will be variable length. They will usually be much
shorter than these worst-case examples.

• The number of individual declarative items associated with a single sub-
program body, entry body, or task body (including declarations within
nested packages) is limited by the addressing modes used for the target
machine architecture.

The actual limitation is dependent on the ordering and size of the individ-
ual declarative items in each body; the limitation could be as small as
~3,000 items or as large as ~16,000 items.

• Static data is limited only by any virtual memory limitations enforced by
the operating system, and by limitations of the system linker.
M-2



Implementation-Defined Characteristics
• Subtypes and objects are limited to 2,147,483,520 (256 * 1024 * 1024 * 8 -
128) bits in size. (records, arrays, protected types, and objects)

1.1.3(6) Variations from the standard that are impractical to avoid given the implementa-
tion’s execution environment

MAXAda contains no variations from the standard that are impractical to avoid
given the implementation’s execution environment.

1.1.3(10) Which code_statements cause external interactions

Any code statement containing Pentium instructions which affect memory or the
machine state might cause external interactions.

See the IA-32 Intel Architecture Software Developer's Manual Volume 2 for details.

Documentation Requirements M

1.1.3(18) Certain aspects of the semantics are defined to be either implementation defined or
unspecified. In such cases, the set of possible effects is specified, and the implementa-
tion may choose any effect in the set. Implementations shall document their behavior
in implementation-defined situations, but documentation is not required for unspeci-
fied situations. The implementation-defined characteristics are summarized in
Annex M.

This appendix documents the implementation-defined characteristics addressed in
the Ada 95 Reference Manual as summarized in Annex M as well as items refer-
enced under the headings:

• Implementation Advice

• Implementation Permissions

• Documentation Requirements

Such behavior is documented in subsequent sections of this appendix corresponding
to the appropriate RM section. Further discussion of a particular section can be
found under its corresponding heading NOTES.

1.1.3(19) The implementation may choose to document implementation-defined behavior
either by documenting what happens in general, or by providing some mechanism
for the user to determine what happens in a particular case.

This appendix documents all implementation-defined characteristics addressed in
the Ada 95 Reference Manual, as noted above.

Implementation Advice M

1.1.3(20) If an implementation detects the use of an unsupported Specialized Needs Annex fea-
ture at run time, it should raise Program_Error if feasible.

MAXAda follows this advice.

1.1.3(21) If an implementation wishes to provide implementation-defined extensions to the
functionality of a language-defined library unit, it should normally do so by adding
children to the library unit.
M-3



MAXAda for Linux Reference Manual
MAXAda follows this advice.

RM 1.1.4 Method of Description and Syntax Notation M

Implementation Advice M

1.1.4(12) If an implementation detects a bounded error or erroneous execution, it should raise
Program_Error.

MAXAda follows this advice.
M-4



Implementation-Defined Characteristics
RM Chapter 2: Lexical Elements M

RM 2.1 Character Set M

Static Semantics M

2.1(4) The coded representation for the text of an Ada program.

MAXAda provides the full graphic_character textual representation for programs. 

Any character in row 00 of the ISO 10646-1 BMP except ESC (decimal value 27) is
represented as a single byte whose value is the character's cell-octet within row 00
of the BMP.

Any other character in the ISO 10646-1 BMP is represented as the character ESC
followed by two extended_digit characters which encode the hexadecimal number
representing the character's row-octet within the BMP and two more extended_digit
characters which encode the hexadecimal number representing the character's cell-
octet within that row.

2.1(14) The control functions allowed in comments

The following control characters are allowed in comments:

RM 2.2 Lexical Elements, Separators, and Delimiters M

Static Semantics M

2.2(2) The representation for an end of line.

Each line is terminated by a line feed (LF) or vertical tab (VT) character.

Implementation Requirements M

2.2(15) Maximum supported line length and lexical element length.

Source lines may contain up to 500 characters, including the terminator. All vari-
able-length Ada elements, such as identifiers and literals, may extend up to the full
499-character limit.  The fully expanded symbol name is limited to 800 characters.

Control character Decimal value

HT (horizonal tab) 9

LF (line feed) 10

VT (vertical tab) 11

FF (form feed) 12

CR (carriage return) 13
M-5



MAXAda for Linux Reference Manual
RM 2.8 Pragmas M

Implementation Permissions M

2.8(14) Implementation-defined pragmas.

Implementation-defined pragmas are listed along with Language-Defined Pragmas
in “RM Annex L: Pragmas” on page M-102.

Specifically, they are:

Pragma ASSIGNMENT page M-104

Pragma DATA_RECORD - (obsolete) page M-107

Pragma DEBUG page M-107

Pragma DEPRECATED_FEATURE page M-108

Pragma DONT_ELABORATE page M-108

Pragma EXTERNAL_NAME - (obsolete) page M-111

Pragma FAST_INTERRUPT_TASK page M-111

Pragma GROUP_CPU_BIAS page M-111

Pragma GROUP_PRIORITY page M-111

Pragma GROUP_SERVERS page M-112

Pragma IMPLICIT_CODE page M-112

Pragma IMPORT_AUX page M-114

Pragma INTERESTING page M-115

Pragma INTERFACE - (obsolete) page M-116

Pragma INTERFACE_NAME - (obsolete) page M-116

Pragma INTERFACE_OBJECT - (obsolete) page M-117

Pragma INTERFACE_SHARED - (obsolete) page M-117

Pragma LINK_OPTION - (obsolete) page M-118

Pragma MAP_FILE page M-119

Pragma MEMORY_POOL page M-119

Pragma OPT_FLAGS page M-120

Pragma OPT_LEVEL page M-121

Pragma PASSIVE_TASK - (obsolete) page M-122

Pragma POOL_CACHE_MODE page M-122

Pragma POOL_LOCK_STATE page M-123

Pragma POOL_PAD page M-123

Pragma POOL_SIZE page M-123

Pragma PROTECTED_PRIORITY page M-124

Pragma RETURN_CONVENTION page M-126

Pragma RUNTIME_DIAGNOSTICS page M-127

Pragma SERVER_CACHE_SIZE page M-127

Pragma SHARE_BODY page M-127

Pragma SHARE_MODE page M-128
M-6



Implementation-Defined Characteristics
Implementation Advice M

2.8(16) Normally, implementation-defined pragmas should have no semantic effect for
error-free programs; that is, if the implementation-defined pragmas are removed
from a working program, the program should still be legal, and should still have the
same semantics.

The following implementation-defined pragmas can have a semantic effect on error-
free programs; their removal from a working program could have a semantic effect.

• DONT_ELABORATE 

• GROUP_PRIORITY 

• IMPLICIT_CODE 

• IMPORT_AUX 

• MEMORY_POOL 

• OPT_FLAGS 

• OPT_LEVEL 

• POOL_SIZE 

• PROTECTED_PRIORITY 

• RUNTIME_DIAGNOSTICS 

• SHARED_PACKAGE 

• SPECIAL_FEATURE 

• SUPPRESS_ALL 

• TASK_HANDLER 

• TASK_PRIORITY 

• TASK_WEIGHT 

• TDESC 

Pragma SHARED - (obsolete) page M-129

Pragma SHARED_PACKAGE page M-129

Pragma SPECIAL_FEATURE page M-129

Pragma SUPPRESS_ALL page M-131

Pragma TASK_CPU_BIAS page M-131

Pragma TASK_HANDLER page M-132

Pragma TASK_PRIORITY page M-132

Pragma TASK_QUANTUM page M-132

Pragma TASK_WEIGHT page M-133

Pragma TDESC page M-133

Pragma TRAMPOLINE page M-133
M-7



MAXAda for Linux Reference Manual
2.8(17) Normally, an implementation should not define pragmas that can make an illegal
program legal, except as follows:

2.8(18) A pragma used to complete a declaration, such as a pragma Import;

MAXAda follows this advice.

2.8(19) A pragma used to configure the environment by adding, removing, or replacing
library_items.

MAXAda follows this advice.

Static Semantics M

2.8(27) Effect of pragma Optimize.

The implementation-dependent pragma OPTIMIZE is recognized by the implemen-
tation but does not have an effect in this release.
M-8



Implementation-Defined Characteristics
RM Chapter 3: Declarations and Types M

RM 3.5 Scalar Types M

Dynamic Semantics M

3.5(37) The sequence of characters of the value returned by S’Image when some of the
graphic characters of S’Wide_image are not defined in Character

For S’Image, when some of the characters in S’Wide_Image are not defined in
Character, the sequence of characters returned is the same as that returned by
S’Wide_Image except that each character not defined in Character is replaced
with a space character.

RM 3.5.2 Character Types M

Implementation Advice M

3.5.2(5) If an implementation supports a mode with alternative interpretations for Character
and Wide_Character, the set of graphic characters of Character should nevertheless
remain a proper subset of the set of graphic characters of Wide_Character. Any
character set ``localizations'' should be reflected in the results of the subprograms
defined in the language-defined package Characters.Handling (see A.3) available in
such a mode. In a mode with an alternative interpretation of Character, the imple-
mentation should also support a corresponding change in what is a legal
identifier_letter.

MAXAda does not support a mode with alternative interpretations for Character
and Wide_Character; therefore, this advice is not relevant.

RM 3.5.4 Integer Types M

Implementation Permissions M

3.5.4(25) The predefined integer types declared in Standard

Four predefined integer types are declared in Standard:

type integer is range -2_147_483_648 .. 2_147_483_647;
type short_integer is range -32768 .. 32767;
type tiny_integer is range -128 .. 127;

On Pentium:

type long_integer is range -2_147_483_648 .. 2_147_483_647;

On AMD64:  
M-9



MAXAda for Linux Reference Manual
type long_integer is range -9_223_372_036_854_775_808 ..
                            9_223_372_036_854_775_807

3.5.4(26) Any nonstandard integer types and the operators defined for them

MAXAda does not define any nonstandard integer types.

Implementation Advice M

3.5.4(28) An implementation should support Long_Integer in addition to Integer if the target
machine supports 32-bit (or longer) arithmetic. No other named integer subtypes are
recommended for package Standard. Instead, appropriate named integer subtypes
should be provided in the library package Interfaces (see B.2).

MAXAda partially follows this advice.

On AMD64 targets, long_integer is supported for 64-bit arithmetic.

On Pentium targets, long_integer is supported for 32-bit arithmetic.

MAXAda provides the following predefined integer types in the package Stan-
dard:

      tiny_integer
      short_integer

Removal of these types from the package Standard would put an undue burden on
users which were familiar with legacy Ada products from Concurrent and other
companies which provide these definitions.

Users are advised to remove uses of tiny_integer and short_integer types,
and use the interfaces.integer_8 and interfaces.integer_16 types
instead.

3.5.4(29) An implementation for a two's complement machine should support modular types
with a binary modulus up to System.Max_Int*2+2. An implementation should sup-
port a nonbinary modulus up to Integer'Last.

MAXAda follows this advice.

RM 3.5.5 Operations of Discrete Types M

Implementation Advice M

3.5.5(8) For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the
operand does not correspond to the internal code for any enumeration literal of its
type (perhaps due to an uninitialized variable), then the implementation should raise
Program_Error. This is particularly important for enumeration types with noncon-
tiguous internal codes specified by an enumeration_representation_clause.

MAXAda follows this advice.
M-10



Implementation-Defined Characteristics
RM 3.5.6 Real Types M

Implementation Permissions M

3.5.6(8) Any nonstandard real types and the operators defined for them

There are not any nonstandard real types defined in MAXAda.

RM 3.5.7 Floating Point Types M

Legality Rules M

3.5.7(7) What combinations of requested decimal precision and range are supported for
floating point types

MAXAda provides two floating-point types in addition to universal_real:
FLOAT and LONG_FLOAT.

 

Implementation Permissions M

3.5.7(16) The predefined floating point types declared in Standard

Two predefined floating point types are declared in Standard:

type float is digits 6 ;
type long_float is digits 15 ;

Implementation Advice M

3.5.7(17) An implementation should support Long_Float in addition to Float if the target
machine supports 11 or more digits of precision. No other named floating point sub-
types are recommended for package Standard. Instead, appropriate named floating
point subtypes should be provided in the library package Interfaces (see B.2).

MAXAda follows this advice.

FLOAT is implemented in MAXAda with 6 digits of precision.

LONG_FLOAT is implemented in MAXAda with 15 digits of precision.

There are no other floating point types defined in the package Standard.

Type Precision Range

FLOAT 6 decimal digits -3.40282e+38 .. 3.40282e+38

LONG_FLOAT 15 decimal digits -1.79769313486232e+308 ..
 1.79769313486232e+308
M-11



MAXAda for Linux Reference Manual
RM 3.5.9 Fixed Point Types M

Legality Rules M

3.5.9(8) The small of an ordinary fixed point type

MAXAda defines the small of an ordinary fixed point type to be the largest power of
two less than or equal to the delta.

3.5.9(10) What combinations of small, range, and digits are supported for fixed point types

On Pentium:

MAXAda defines the allowable values for a small to be between 2**-26 and
2**1024.

MAXAda defines the allowable range for a given small to be:

(-2.0**31)*small .. ((2.0**31)+1)*small 

On AMD64:

MAXAda defines the allowable values for a small to be between 2**-58 and
2**1024.

MAXAda defines the allowable range for a given small to be:

(-2.0**63)*small .. ((2.0**63)+1)*small 

MAXAda does not support decimal types; therefore, digits is not supported.

RM 3.6.2 Operations of Array Types M

Implementation Advice M

3.6.2(11) An implementation should normally represent multidimensional arrays in row-
major order, consistent with the notation used for multidimensional array aggregates
(see 4.3.3). However, if a pragma Convention(Fortran, ...) applies to a multidimen-
sional array type, then column-major order should be used instead (see B.5, ``Inter-
facing with Fortran'').

MAXAda follows this advice.

RM 3.9 Tagged Types and Type Extensions M

Static Semantics M

3.9(10) The result of Tags.Expanded_Name for types declared within an unnamed
block_statement
M-12



Implementation-Defined Characteristics
The result is the expanded name of the first subtype of the type of the prefix subtype
with an automatically generated anonymous block id inserted at the place of the
unnamed block statement.
M-13



MAXAda for Linux Reference Manual
RM Chapter 4: Names and Expressions M

RM 4.1.4 Attributes M

Implementation Permissions M

4.1.4(12) Implementation-defined attributes

• MAXAda has defined the following attributes for use in conjunction with
the implementation-defined pragma SHARED_PACKAGE (see “Pragma
SHARED_PACKAGE” on page M-129): 

P’Key 
P’SHM_ID 
P’Lock 
P’Unlock 

where the prefix P denotes a package marked with pragma SHARED_PACKAGE.

The ’Key attribute is an overloaded function without parameters that returns the
key used to identify the system shared segment associated with the package. One
specification of the function returns the predefined type String and returns a value
specifying the file name used in the key translation (ftok(3C)). If an integer lit-
eral key was specified in the pragma SHARED_PACKAGE parameters, this function
returns a null string. The other specification of the function returns the predefined
type universal_integer, and returns a value specifying the translated integer
key.  The la t ter  form of  the funct ion ra ises  the  predefined except ion
Program_Error if the shared package body has not yet been elaborated. 

The ’SHM_ID attribute is a function without parameters that returns the shared
memory segment identifier for the system shared memory segment associated with
the shared package P. This identifier corresponds to the identifier that is returned by
the shared memory service shmget(2) upon creation of the shared package. 

The ’SHM_ID attribute raises Program_Error if the call to shmget failed when
the segment associated with the shared package P was created. 

The ’Lock and ’Unlock attributes are procedures without parameters that manip-
ulate the “state” of a shared package. MAXAda defines all shared packages to have
two states: Locked and Unlocked. Upon return from the ’Lock procedure, the
state of the package will be Locked. If upon invocation, ’Lock finds the state
already Locked, it waits until it becomes Unlocked before altering the state and
returning. ’Unlock sets the state of the package to Unlocked and then returns. At
the point of unlocking the package, if another process waiting in the ’Lock proce-
dure has a more favorable operating system priority, the system immediately sched-
ules its execution. 

Note that if ’Lock is waiting, it may be interrupted by the MAXAda run-time sys-
tem’s time slice for tasks which may cause another task within the process to
become active. Eventually, MAXAda will again transfer control to the ’Lock pro-
cedure in the original task, and it will continue waiting or return to the task. 
M-14



Implementation-Defined Characteristics
The state of the package is meaningful only to the ’Lock and ’Unlock attribute
procedures that set and query the state. A Locked state does not prevent concurrent
access to objects in the shared package. These attributes provide indivisible opera-
tions only for the setting and testing of implicit semaphores that could be used to
control access to shared package objects.

CAUTION

The current shared memory implementation does not allow the
use of the ’Lock and ’Unlock attributes with a SHM_RDONLY
shared memory segment or a shared package marked with the
no_bsem parameter. 

• MAXAda has defined the following attribute for use in machine code
insertions:

X’Ref

where X denotes an object or label.

See “RM 13.8 Machine Code Insertions” on page M-49 for details about this
attribute.

• MAXAda has defined the following attribute:

X'Addr

For a prefix that denotes an object, program unit, or label, it behaves exactly as does
the 'Address attribute defined in RM 13.3(10-11). For a prefix that denotes an
exception, it denotes the first of the storage elements allocated to X. The value is
equivalent to an unchecked conversion to System.Address of X'Identity,
but without the semantic dependence on Ada.Exceptions.

Addr may not be specified via an attribute_definition_clause.

• MAXAda has defined the following attributes:

P'Unrestricted_Access
X'Unrestricted_Access

For a prefix P that denotes a subprogram, all rules and semantics that apply to
P'Access apply also to P'Unrestricted_Access, except that it is as if P
were declared immediately within a library package. In other words, accessibility
checks are not performed, and it is possible to pass a more-nested subprogram as a
parameter to a less-nested subprogram. An attempt to call a dereferenced more-
nested subprogram that is no longer in scope is erroneous, and it is the programmer's
responsibility to ensure that this does not happen.

For a prefix X that denotes an aliased view of an object, all rules and semantics that
apply to X'Unchecked_Access apply also to X'Unrestricted_Access.
M-15



MAXAda for Linux Reference Manual
• MAXAda has defined the following attribute:

S'Has_Tag

For a prefix S that is a formal subtype, it yields True if the actual subtype corre-
sponding to S is a tagged record type or a derivation of a type whose private view is
non-tagged but whose full view is tagged; otherwise it yields False. The value of
this attribute is of the predefined type Boolean.

• MAXAda has defined the following attribute:

S'Tagged

For a prefix S that is a formal subtype, it yields True if the actual subtype corre-
sponding to S is a tagged record type; otherwise it yields False. The value of this
attribute is of the predefined type Boolean.

• MAXAda has defined the following attribute:

S'Has_Discriminants

For a prefix S that is a formal subtype, it yields True if the actual subtype corre-
sponding to S has discriminants; otherwise it yields False. The value of this
attribute is of the predefined type Boolean.

• MAXAda has defined the following attribute:

S'Part_Has_Tag

For a prefix S that is a formal subtype, it yields True if the actual subtype corre-
sponding to S is a composite type with any part which is a tagged record type or a
derivation of a type whose private view is non-tagged but whose full view is tagged;
otherwise it yields False. The value of this attribute is of the predefined type
Boolean.

• MAXAda has defined the following attribute for future use:

S’Internal_Tag

where S denotes a subtype of a tagged type.

Its meaning is currently undefined.

• MAXAda also supports the following attributes for backward compatibil-
ity with Ada 83. A warning will be issued when any of these attributes are
used:

Emax
Epsilon
Large
Mantissa
Safe_Emax
Safe_Large
Safe_Small
M-16



Implementation-Defined Characteristics
RM 4.3.1 Record Aggregates M

Dynamic Semantics M

4.3.1(19) For the evaluation of a record_component_association_list, any per-object con-
straints (see 3.8) for components specified in the association list are elaborated and
any expressions are evaluated and converted to the subtype of the associated compo-
nent. Any constraint elaborations and expression evaluations (and conversions)
occur in an arbitrary order, except that the expression for a discriminant is evaluated
(and converted) prior to the elaboration of any per-object constraint that depends on
it, which in turn occurs prior to the evaluation and conversion of the expression for
the component with the per-object constraint.

In order to support efficient renaming of dynamic non-dependent subcomponents of
record objects, the implementation will reorder subcomponents of record objects
and aggregates in memory such that no data for any dynamic component whose sub-
type does not depend upon a discriminant ever follows data for a subcomponent
whose subtype depends upon a discriminant. In order to also minimize the memory
size and execution time involved in elaborating record objects and aggregates, the
implementation will evaluate record_component_association_lists in
the order in which the component data is physically laid out in memory.

T h e  o r d e r  o f  e v a l u a t i o n  o f  e x p r e s s i o n s  i n v o l v e d  i n  a
record_component_association_list may be different than the textual
order of the expressions in the user’s source code. Source code should not be written
so as to implicitly depend upon the order of evaluation of the expressions in an
aggregate or extension aggregate, or the order of evaluation of component initializa-
tion expressions for a default-initialized record object.
M-17



MAXAda for Linux Reference Manual
RM Chapter 5: Statements M

There are no MAXAda amendments to Chapter 5 of the RM. 
M-18



Implementation-Defined Characteristics
RM Chapter 6: Subprograms M

There are no MAXAda amendments to Chapter 6 of the RM. 
M-19



MAXAda for Linux Reference Manual
RM Chapter 7: Packages M

There are no MAXAda amendments to Chapter 7 of the RM. 
M-20



Implementation-Defined Characteristics
RM Chapter 8: Visibility Rules M

There are no MAXAda amendments to Chapter 8 of the RM. 
M-21



MAXAda for Linux Reference Manual
RM Chapter 9: Tasks and Synchronizations M

RM 9.6 Delay Statements, Duration, and Time M

Legality Rules M

9.6(6) Any implementation-defined time types

There are no implementation-defined time types in MAXAda. MAXAda supports
Ada.Calendar.Time and Ada.Real_Time.Time only.

Dynamic Semantics M

9.6(20) The time base associated with relative delays

The time base associated with relative delay statements is the system’s notion of
GMT at the time the statement is executed. The time base is therefore independent
of local time, inasmuch as the system’s clock can accurately determine GMT. Thus,
a relative delay statement with a value of 3600.0 (seconds) issued just before switch-
ing to or from daylight savings time would indeed delay for (approximately) 3600.0
physical seconds. However, the time base for Ada.Calendar.Time may be
adjusted via user interaction or by system daemons which attempt to synchronize
system time with an external source. The time base for Ada.Real_Time.Time is
not adjusted after system boot time.

9.6(23) The time base of the type Calendar.Time

The time base of the type Calendar.Time is the system’s notion of GMT. The
time base is therefore independent of local time, inasmuch as the system’s clock can
accurately determine GMT. Therefore, values of type Calendar.Time are inter-
changeable across time zones (with other MAXAda Calendar.Time values). Local
time affects only the splitting and forming of values of type Calendar.Time via
the Calendar.Split and Calendar.Time_Of subprograms. The time base
may be adjusted due to user interaction or by system daemons which attempt to syn-
chronize system time with an external source.

9.6(24) The timezone used for package Calendar operations

The package Calendar gets the time zone information from the system configura-
tion (See tzselect(1)) which can be overridden with the TZ environment vari-
able (See environ(5)).

Implementation Permissions M

9.6(28) An implementation may define additional time types (see D.8).

M A X A d a  s u p p o r t s  t w o  t i m e  t y p e s :  Ada.Calendar.Time  a n d
Ada.Real_Time.Time. MAXAda also supports subtypes of the supported time
types, as well as types derived from a supported time type.

9.6(29) Any limit on delay_until_statements of select_statements
M-22



Implementation-Defined Characteristics
The expression in a delay_until_statement of a select_statement may
not specify a time in excess of a value corresponding to approximately 19 Jan 2038.

Implementation Advice M

9.6(30) Whenever possible in an implementation, the value of Duration'Small should be no
greater than 100 microseconds.

MAXAda follows this advice.

On Pentium targets, the value of duration’small is 2**-14 seconds, or approxi-
mately 61.035 microseconds.

On AMD64 targets, the value of duration’small is 2**-30 seconds, or approxi-
mately 931.32 picoseconds.

9.6(31) The time base for delay_relative_statements should be monotonic; it need not be the
same time base as used for Calendar.Clock.

MAXAda follows this advice.

The time base for delay_relative statements is the same time base as used for
Ada.Real_Time.Clock, which is monotonic. As explained above, the time base
for Ada.Real_Time.Clock and Ada.Calendar.Clock are initially the same
(at system boot time) but Ada.Calendar.Clock’s base can be adjusted by user
interaction or system daemons (and therefore may not be monotonic).

RM 9.10 Shared Variables M

Static Semantics M

9.10(1) Whether or not two nonoverlapping parts of a composite object are independently
addressable, in the case where packing, record layout, or Component_Size is speci-
fied for the object

These are not independently addressable in the MAXAda implementation.
M-23



MAXAda for Linux Reference Manual
RM Chapter 10: Program Structure and Compilation Issues M

RM 10.1 Separate Compilation M

10.1(2) The representation for a compilation

A compilation may be:

• The portion of an ASCII source file containing a single compilation
unit together with any preceding configuration pragmas (even con-
figuration pragmas that are not immediately preceding),

OR

• The entire source file for an ASCII source file that contains only con-
figuration pragmas.

Implementation Permissions M

10.1(4) Any restrictions on compilations that contain multiple compilation_units

Compilations may not contain multiple compilation units. This should not pose con-
siderable hardship, however, because multiple compilation units within a particular
source file may be compiled as distinct compilations. See “a.build” on page 4-3 for
more information.

RM 10.1.4 The Compilation Process M

10.1.4(3) The mechanisms for creating an environment and for adding and replacing compila-
tion units

MAXAda uses a.mkenv to create an environment. MAXAda will set up its internal
directory structure for that environment within the current, or a specified, directory.
For more information, see “a.mkenv” on page 4-53.

The tool a.rmenv is provided to remove an existing environment. It removes an
environment, including all units, their state information, and any partition defini-
tions. The source files and any built partitions are left intact after this operation. See
“a.rmenv” on page 4-87 for more details.

This implementation requires that a unit be introduced to an environment before it
can be used in any way. Compilation units are introduced using the a.intro tool.
See “a.intro” on page 4-30. 

After having been introduced, though, a unit is still not visible (i.e. it has still not
been added to the environment) until it has been compiled successfully.

Further, if multiple versions of the same unit are introduced, possibly from different
source files, none are visible (i.e. appropriate removals are performed such that none
M-24



Implementation-Defined Characteristics
exist in the environment) until the user has manually resolved the ambiguity in favor
of one of the versions. 

To be precise, our environment is defined to include those units which are intro-
duced to the environment, which have been compiled, and which are still semanti-
cally consistent, unless those units are obscured by other units. Units can be
obscured in the following cases: 

1. Having been manually hidden. Units can be hidden from the
environment using the a.hide utility. More information
about this tool can be found on page 4-27.          

2. Having been hidden by a resolution in favor of another version
of that unit. MAXAda provides the a.resolve tool as one
way of resolving an ambiguity between units. See “Ambiguous
Units” on page 3-10 for a more detailed discussion. For an
example of this situation and its resolution, see “Hello Again...
Ambiguous Units” on page 2-15. 

3. Being a body for which a specification of the same name is
already introduced to the environment, where the body cannot
possibly be a completion for the specification (e.g. the specifi-
cation is a package, whereas the body is a subprogram).

We consider this functionality desirable because it detects situations which, in real
programs, are most probably user errors. It occasionally happens in large source
trees that the same unit will be declared twice in two different source files. Certain
compilation systems may arbitrarily select one to be compiled, perhaps without any
indication that such an arbitrary choice had been made. Our system detects this case
and forces the user to choose the intended version. 

Further, the accidental introduction of a unit which causes an ambiguity can be
resolved in favor of the original version without damaging the consistency of any
units in the environment which might have depended upon the original version. 

Finally, the accidental introduction of a subprogram body will not affect the consis-
tency of any non-subprogram declaration with the same name unless specifically
desired by the user. Once again, this permits the user to select the non-subprogram
declaration as the correct version, without damaging the consistency of any units in
the environment which might have depended upon it. 

Units can also be removed from the environment completely using the a.rmsrc
tool. This tool removes knowledge of source files (and units therein) from the envi-
ronment. The syntax and usage of this tool can be found on page 4-88.

RM 10.1.5 Pragmas and Program Units M

Implementation Permissions M

10.1.5(9) An implementation may place restrictions on configuration pragmas, so long as it
allows them when the environment contains no library_items other than those of the
predefined environment.
M-25



MAXAda for Linux Reference Manual
C o n f i g u r a t i o n  p r a g m a s  t h a t  a p p e a r  i n  a  c o m p i l a t i o n  w i t h  n o
compilation_units may only be successfully compiled when all units local to
an environment are either uncompiled or inconsistent. See “Configuration Pragmas”
on page 3-9 for more information.

RM 10.2 Program Execution M

Post-Compilation Rules M

10.2(2) The manner of explicitly assigning library units to a partition

Library units are explicitly assigned to a partition using the -set or -add options
to a.partition.

Both options take a parameter which is a list of units that are to be included (or
excluded) from a specified partition. There is also a way to include units that are
directly or indirectly required by a given unit. 

The -set option assigns the units in this list to the partition specified, removing
any other units that may have previously been assigned to the partition.

The -add option assigns the units in this list to the partition, retaining any other
units that may have been previously been assigned to the partition.

In addition, the -del option to a.partition is provided to remove specified
units from a given partition.

A complete description of a.partition can be found on page 4-62.

10.2(2) The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit

There are no implementation-defined means of specifying which compilation units
are needed by a given compilation unit.

However, it is possible for the implementation to require that certain units be consis-
tently compiled even though they will not be elaborated by the ENVIRONMENT task
of an active partition.

If a unit is required by an active partition but the user specifies (via a link rule or
dependent  part i t ion l is t)  that  the l ink method for  that  unit  should be
shared_object, then the unit will be utilized via a shared object partition, rather
than being included directly in the active partition. As a result, for the purposes of
the active partition, any other units included in the shared object partition are
required to be consistently compiled, so that the shared object partition can be con-
sistently linked. However, these other units will not be elaborated by the active par-
tition.
M-26



Implementation-Defined Characteristics
NOTE

The active partition can be defined not to need any otherwise
unneeded units in a required shared object partition by use of the
-nosoclosure link option. However, extreme caution is rec-
ommended so that attempts to link the partition do not result in
undefined symbols.

10.2(7) The manner of designating the main subprogram of a partition

The main subprogram of a partition is specified by using the -main option to
a.partition. In the absence of an explicitly supplied -main option, if the parti-
tion has the same name as a library subprogram in the environment, that subprogram
is assumed to be the main subprogram. Otherwise, no main subprogram is assumed
and one must be explicitly specified using this option, if desired.

See “a.partition” on page 4-62 for details.

10.2(18) The order of elaboration of library_items

The order is determined with respect to the rules specified in Section 10.2 of the Ada
95 Reference Manual.

The order of elaboration of library_items for a particular partition may be
obtained by invoking the a.link tool with the -E option for that partition. See
“a.link” on page 4-33 for details. In addition, the -elab_src link option will pro-
duce similar results when the partition is built. See “Link Options” on page 4-109
for more information. 

MAXAda obeys all the elaboration order requirements specified in RM 10.2.1. In
addition, it attempts to automatically detect cases where elaboration order require-
ments were not specified but probably were desired. These automatically-detected
elaboration order requirements are secondary to those specified by the language. If a
conflict should arise, a.link will issue a warning and will obey the language
requirements. Furthermore, if two automatically detected elaboration order require-
ments conflict, a.link will issue a warning and will select one arbitrarily. Con-
flicts arising solely from automatically-detected elaboration order requirements will
never cause a partition to fail to link.

Whenever MAXAda automatically detects an elaboration order requirement that is
not already specified by a pragma, it will issue an informational diagnostic suggest-
ing that a pragma probably is desired. The insertion of the suggested pragma will
increase the probability that the unit will work successfully with other compilers.
Also, if two automatically-detected elaboration order requirements conflict, but it is
known that an acceptable elaboration order does exist, the elaboration order can be
specified by selecting and following the appropriate suggestion and ignoring the
other.

When the execution for any of the following constructs can occur as part of the elab-
oration of a library unit, MAXAda assumes that an elaboration order requirement
identical to the presence of a pragma Elaborate_All is desired:

• call to a subprogram

• call to a protected operation
M-27



MAXAda for Linux Reference Manual
• creation of a task object

• evaluation of a 'Access attribute whose prefix is a subprogram or pro-
tected operation

• call to a task entry

This first three items correspond to the elaboration checks required by RM 3.11(9-
12). The item related to 'Access is present to provide safety for calls to derefer-
enced access-to-subprogram objects. The item related to task entry calls is present to
provide safety against deadlock or inconsistent rendezvous behavior with a task
whose body has not been elaborated and therefore has not been activated. For calls,
the elaboration order requirement indicates the library unit that contains the callable
entity. For the creation of a task object, it indicates the library unit that contains the
task type. For evaluation of 'Access attributes, it indicates the library unit that
contains the callable entity denoted by the prefix.

When the execution for the following construct can occur as part of the elaboration
of a library unit, MAXAda assumes that an elaboration order requirement identical
to the presence of a pragma Elaborate is desired:

• instantiation of a generic

This corresponds to the elaboration check required by RM 3.11(13). The elaboration
order requirement indicates the library unit that contains the generic. In addition, the
content of an instance of a generic is checked for any of the constructs listed above.

If the elaboration of a library unit includes constructs that are only executed condi-
tionally, MAXAda assumes the worst: that all the constructs present can be exe-
cuted. So, it assumes elaboration order requirements for all the possible executions.

Unfortunately, it is impossible to detect automatically all elaboration order require-
ments. In particular, the execution of the following constructs as part of the elabora-
tion of a library unit probably will require a particular elaboration order, but the
nature of that requirement cannot be determined automatically:

• dispatching call

• a library unit whose elaboration calls one of its own subunits which
calls another of its subunits which executes any of the constructs
listed above.

The execution in a task declared at library level of the any of the constructs listed
earlier also can cause an elaboration order requirement. These are not detected auto-
matically because, in general practice, library level tasks are written to postpone
their execution until after the elaboration of library units.

10.2(21) Parameter passing and function return for the main subprogram

A main subprogram may not have any formal parameters and therefore no actual
parameters are provided.

A main subprogram may be either a procedure or a function returning Stan-
dard.Integer (predefined type). 

Unless overridden, the result of the call to a function main subprogram is used as the
exit status of the program.
M-28



Implementation-Defined Characteristics
Upon program termination, the exit status is determined by the first applicable fol-
lowing rule:

- If the Ada.Command_Line.Set_Exit_Status procedure was
called, the program's exit status is the last value used in a call to this
procedure.

- If the main subprogram propagated an (unhandled) exception to the
environment task, the exit status is the value 42, as required by the
POSIX 1003.5 standard.

- If the main subprogram was a procedure which returned normally,
the exit status is Ada.Command_Line.Success, which is the
value 0.

- If the main subprogram was a function which returned normally, the
exit status is the result of the call to that main subprogram.

10.2(24) The mechanisms for building and running partitions

The a.build utility is provided for building partitions. A single partition may be
built by specifying its name to a.build or all partitions may be built by using the
-allparts option. For more information, see “a.build” on page 4-3.

Active partitions may be run by specifying the executable’s name on the command
line (either the partition name itself or the output file name passed to a.build with
the -o option). Nonactive partitions (archive and shared_object) cannot be
executed independently but rather are utilized by active partitions.

Dynamic Semantics M

10.2(25) The details of program execution, including program termination

The execution of an Ada program (whose main procedure is written in Ada)
includes the following steps:

1. Allocation of resources by the operating system required for execu-
tion, including internal operating system tables, virtual memory for
program instructions and data, etc.

2. Execution is then begun at the start address of the program, or, for
programs which utilize dynamically linked libraries, initially at the
dynamic linker followed by the start address of the program (the start
address is a symbol named __start).

3. Initialization of system libraries and user-defined .init routines
then occurs.

4. Initialization of the run-time system then takes place.

5. The partition is then executed by calling its environment task.

6. After the environment task completes (and assuming it has not been
terminated directly by the operating system or by direct user action
via an operating system service (e.g. exit(2))), the run-time sys-
tem is finalized.
M-29



MAXAda for Linux Reference Manual
7. Finalization of system libraries and (non-Ada) user-defined .fini
routines then occurs.

8. Execution of the program is then completed via the operating system
service exit(2).

Implementation Permissions M

10.2(28) The semantics of any nonactive partitions supported by the implementation

archive and shared_object are two nonactive partitions supported by MAX-
Ada. Neither of these types of partitions can be elaborated or executed indepen-
dently. They are associated with an active partition at static link time (for an
archive partition) or dynamic link time (for a shared_object partition). The
active partition is responsible for elaboration and execution of any units in an
archive or shared_object partition.

RM 10.2.1 Elaboration Control M

Implementation Advice M

10.2.1(12) In an implementation, a type declared in a preelaborated package should have the
same representation in every elaboration of a given version of the package, whether
the elaborations occur in distinct executions of the same program, or in executions of
distinct programs or partitions that include the given version.

MAXAda follows this advice.
M-30



Implementation-Defined Characteristics
RM Chapter 11: Exceptions M

RM 11.4.1 The Package Exceptions M

Static Semantics M

11.4.1(10) The information returned by Exception_Message

The function Exception_Message returns a string containing the reason for the
exception and a reference to the section in the Ada 95 Reference Manual from
which it was derived.

The implementation-defined function Originating_Instruction in the pack-
age Ada.Exceptions.Addresses provides the address of the instruction
which caused the associated exception to be raised. The implementation-defined
function Ada.Exceptions.Addresses.Propagation_Map provides
instruction addresses associated with the propagation of the associated exception.

11.4.1(12) The result of Exceptions.Exception_Name for types declared within an unnamed
block_statement

The unnamed block_statement is given an artificial name of the form:

BLOCK__Mnumber

where number is assigned in an arbitrary order for each declare block in the unit.

Consider the following example,

procedure foo is
procedure bar is
begin

myname:
declare

this_except:exception;
begin

:
:

end
declare

this_except:exception;
begin

:
:

end
end bar;

end foo;

In this example, there is a named block_statement and an unnamed block_statement.
The exception in the named block_statement has a fully expanded name of
foo.bar.myname.this_except .  The except ion in  the  unnamed
b l o c k _ s t a t e m e n t  h as  a  f u l l y  e x p a n d e d  n a m e  o f
M-31



MAXAda for Linux Reference Manual
foo.bar.BLOCK__M1.this_except (where the number 1 has been arbitrarily
assigned).

11.4.1(13) The information returned by Exception_Information

The function Exception_Information returns a string containing the
Exception_Name, Exception_Message, and the value of the program
counter where the exception occurred.

Implementation Advice M

11.4.1(19) Exception_Message (by default) and Exception_Information should produce infor-
mation useful for debugging. Exception_Message should be short (about one line),
whereas Exception_Information can be long. Exception_Message should not include
the Exception_Name.  Exception_Information should include both the
Exception_Name and the Exception_Message.

The function Exception_Message returns a string containing the reason for the
exception and a reference to the section in the Ada 95 Reference Manual from
which it was derived.

The function Exception_Information returns a string containing the
Exception_Name, Exception_Message, and the value of the program
counter where the exception occurred. Additional information can be obtained via
the implementation-defined function Propagation_Map in the package
Ada.Exceptions.Addresses.

RM 11.5 Suppressing Checks M

Implementation Permissions M

11.5(27) Implementation-defined check names

There are no implementation-defined check names in addition to those defined by
the RM.

Implementation Advice M

11.5(28) The implementation should minimize the code executed for checks that have been
suppressed.

MAXAda does not strictly follow this advice. 

In general, MAXAda will minimize code executed for checks that have been sup-
pressed, but not always. Specifically, when a pragma Suppress is applied to a spe-
cific named entity, MAXAda does NOT minimize such code (i.e. the pragma has no
effect in such circumstances).
M-32



Implementation-Defined Characteristics
RM Chapter 12: Generic Units M

There are no MAXAda amendments to Chapter 12 of the RM. 
M-33



MAXAda for Linux Reference Manual
RM Chapter 13: Representation Issues M

RM 13.1 Representation Items M

Implementation Permissions M

13.1(20) The interpretation of each aspect of representation

Any restrictions placed upon representation items

Coding aspect of enumeration literals of an enumeration subtype:

See “RM 13.4 Enumeration Representation Clauses” on page M-45.

Controlled aspect of an access type:

See “RM 13.11 Storage Management” on page M-56.

Convention aspect of an object or subtype:

See “RM B.1 Interfacing Pragmas” on page M-71.

Exported aspect of an object:

See “RM B.1 Interfacing Pragmas” on page M-71.

Imported aspect of an object:

See “RM B.1 Interfacing Pragmas” on page M-71.

Layout aspect of records and record extensions:

See “RM 13.5.1 Record Representation Clauses” on page M-45.

Packing aspect of a type:

See “RM 13.2 Pragma Pack” on page M-35.

Alignment aspect of a subtype:

See “Notes” on page M-38.

Implementation Advice M

13.1(21) The recommended level of support for all representation items is qualified as follows:

13.1(22) An implementation need not support representation items containing nonstatic
expressions, except that an implementation should support a representation
item for a given entity if each nonstatic expression in the representation item is
a name that statically denotes a constant declared before the entity.

MAXAda does not follow this advice in this release for nonstatic expressions
that are names denoting a constant declared before the entity.
M-34



Implementation-Defined Characteristics
13.1(23) An implementation need not support a specification for the Size for a given
composite subtype, nor the size or storage place for an object (including a com-
ponent) of a given composite subtype, unless the constraints on the subtype and
its composite subcomponents (if any) are all static constraints.

MAXAda follows this advice.

13.1(24) An aliased component, or a component whose type is by-reference, should
always be allocated at an addressable location.

MAXAda follows this advice.

RM 13.2 Pragma Pack M

Implementation Advice M

13.2(6) If a type is packed, then the implementation should try to minimize storage allocated
to objects of the type, possibly at the expense of speed of accessing components, sub-
ject to reasonable complexity in addressing calculations.

MAXAda follows this advice.

13.2(7) The recommended level of support for pragma Pack is:

13.2(8) For a packed record type, the components should be packed as tightly as possi-
ble subject to the Sizes of the component subtypes, and subject to any
record_representation_clause that applies to the type; the implementation may,
but need not, reorder components or cross aligned word boundaries to improve
the packing. A component whose Size is greater than the word size may be allo-
cated an integral number of words.

MAXAda follows this advice. In addition, MAXAda may reorder components
if a representation clause does not fully specify the layout of the record.

13.2(9) For a packed array type, if the component subtype's Size is less than or equal to
the word size ,  and Component_Size  is  not  specif ied for the type,
Component_Size should be less than or equal to the Size of the component sub-
type, rounded up to the nearest factor of the word size.

MAXAda follows this advice. The implementation attempts to pack compo-
nents of composite types as tightly as possible, except when alignment restric-
tions apply.
M-35



MAXAda for Linux Reference Manual
RM 13.3 Representation Attributes M

Address Attributes M

Implementation Advice M

13.3(14) For an array X, X'Address should point at the first component of the array, and not
at the array bounds.

MAXAda follows this advice.

13.3(15) The recommended level of support for the Address attribute is:

13.3(16) X'Address should produce a useful result if X is an object that is aliased or of a
by-reference type, or is an entity whose Address has been specified.

MAXAda follows this advice.

13.3(17) An implementation should support Address clauses for imported subprograms.

MAXAda follows this advice.

13.3(18) Objects (including subcomponents) that are aliased or of a by-reference type
should be allocated on storage element boundaries.

MAXAda follows this advice.

13.3(19) If the Address of an object is specified, or it is imported or exported, then the
implementation should not perform optimizations based on assumptions of no
aliases.

MAXAda follows this advice.

Notes M

The implementation supports Address attribute definition clauses for variables, con-
stants, and task entries.

For variables and constants, both logical and machine addresses are supported. A logical
address refers to a virtual memory address in the execution program’s address space. A
machine address refers to a physical memory address. 

Logical Address Clauses 

• The function Virtual_Address is defined in the package Sys-
tem.Addresses to provide conversion from Integer values to
Address values for virtual addresses only. 

• Both static and variable logical addresses are supported. 

• The value supplied to the address clause must be a valid logical address in
the user’s program. 

Machine Address Clauses 
M-36



Implementation-Defined Characteristics
• When a machine address is desired, the expression supplied on the address
clause must be an invocation of the function Machine_Address, found
in the implementation-defined package System.Addresses. Any other
expression supplied to the address clause will cause it to be interpreted as a
virtual address. 

• Both static and variable machine addresses are supported. 

• If the argument to Machine_Address is an integer literal, then static
address translation can occur, thereby removing any additional overhead
involved in accessing the variable at run time. 

• In order to use machine address clauses, you must have permission to read
and write the file /dev/mem.

WARNING

It is the user’s responsibility to ensure that the supplied address is
a valid physical memory address.

Memory copies done through address clauses will require a bus
access for each word. 

Alignment Attributes M

Implementation Advice M

13.3(29) The recommended level of support for the Alignment attribute for subtypes is:

13.3(30) An implementation should support specified Alignments that are factors and multi-
ples of the number of storage elements per word, subject to the following:

13.3(31) An implementation need not support specified Alignments for combinations of
Sizes and Alignments that cannot be easily loaded and stored by available
machine instructions.

MAXAda follows this advice.

Alignments of 0, 1, 2, 4, 8, and 16 bytes are supported. An Alignment of 0
is used for non-aligned (or bit-aligned) subtypes. An Alignment of 0 means
that the object is not necessarily aligned on a storage element boundary (RM
13.3(24)).

On Pentium, for stack objects, 4 is the maximum alignment supported.

MAXAda disallows combinations of Size and Alignment for stand-alone
objects when not permitted by the target architecture. Such restrictions will be
enforced by the compiler.

13.3(32) An implementation need not support specified Alignments that are greater
than the maximum Alignment the implementation ever returns by default.

MAXAda follows this advice.
M-37



MAXAda for Linux Reference Manual
Alignments greater than 16 bytes will not be supported for a subtype.

13.3(33) The recommended level of support for the Alignment attribute for objects is:

13.3(34) Same as above, for subtypes, but in addition:

13.3(35) For stand-alone library-level objects of statically constrained subtypes, the
implementation should support all Alignments supported by the target linker.
For example, page alignment is likely to be supported for such objects, but not
for subtypes.

MAXAda does not follow this advice.

MAXAda provides support for 0, 1, 2, 4, 8, and 16 byte alignments. Page
alignment for objects is not supported.

Notes M

Alignment is a property of a subtype. If a subtype requires alignment, then the address
of any object of the subtype modulo the alignment is required to be zero. This is equiva-
lent to the address being an integer multiple of the Alignment (if non-zero). For exam-
ple, if an object’s subtype has an Alignment of 4 (i.e. it is 4-byte aligned), its address
must be a multiple of 4 bytes. The address 16#7fff439c# is a multiple of 4 bytes, so it
i s  4-byte  a l igned.  However,  the  address  16#7fff439b#  i s  not ,  because
16#7fff439b# mod 4 is 3.

Ideally, computer hardware and compilers would allow the size and alignment of any sub-
type to be any number of bits with any alignment. Unfortunately, allowing this in general
can produce very slow code, so compilers impose some minimal restrictions, and make
additional default choice to produce code with will execute much faster. MAXAda
imposes restrictions on the alignment of several classes of types.

MAXAda defines two distinct alignment concepts for each subtype: optimal alignment,
and minimal alignment. The optimal alignment is the smallest alignment supported by the
underlying hardware efficiently. The minimal alignment is the absolutely smallest align-
ment supported for the subtype. If smaller than the optimal alignment, its use often will
result in inefficient code.

The following table summarizes the optimal and minimal alignments for each class of
types:
M-38



Implementation-Defined Characteristics
NOTE

Notwithstanding the above table, the minimal alignment of an
atomic or by-reference subtype is equal to its optimal alignment.
Furthermore, for an aliased or atomic object, its subtype is treated
as though its minimal alignment was equal to its optimal align-
ment.

When a subtype is packed, its default Alignment is equal to its minimal alignment. Oth-
erwise, its default Alignment is equal to its optimal alignment.

Discrete and fixed point

MAXAda imposes no minimal alignment restrictions on any discrete or fixed point
subtypes. Components of these subtypes may be aligned to any arbitrary bit with
record representation clauses, and arrays of these subtypes can be packed perfectly
with attribute definition clauses or pragma Pack.

Floating point

MAXAda imposes a minimal alignment of 4 bytes for floating point subtypes.

Table M-1.  Alignment Restrictions

Class of type Optimal (default) 
alignment Minimal alignment

discrete and fixed point, repre-
sentable in 1 - 8 bits

1 0

discrete and fixed point, repre-
sentable in 9 - 16 bits

2 0

discrete and fixed point, repre-
sentable in 17 - 32 bits

4 0

discrete and fixed point, repre-
sentable in 33 - 64 bits

8 0

floating point, single precision
(e.g. Float)

4 4

floating point, double precision
(e.g. Long_Float)

4 Pentium 4

8 AMD64 4

access 4 4

class-wide tagged 4 4

other composite see below see below
M-39



MAXAda for Linux Reference Manual
The optimal alignment for single precision (32 bit) floating point subtypes (e.g.
Float) also is 4 bytes.

The optimal alignment for double precision (64 bit) floating point subtypes (e.g.
Long_Float) is 4 bytes.

Access

On Pentium targets, MAXAda imposes a minimal alignment of 4 bytes for access
subtypes, in order to ensure fast dereference operations. The optimal alignment also
is 4 bytes.

On AMD64 targets, MAXAda imposes a minimal alignment of 8 bytes for access
subtypes, in order to ensure fast dereference operations. The optimal alignment also
is 8 bytes.

Composite

Except for class-wide tagged subtypes (see below), the minimal and optimal align-
ments are determined, respectively, by the largest minimal and optimal alignments
of all the component and subcomponent subtypes. For example, if a record subtype
contains an object whose subtype is an array of an access subtype, then the array
subtype has both a minimal and optimal alignment of 4 bytes, and the record sub-
type has both a minimal and optimal alignment of at least 4 bytes (although the
alignments could be larger because of other components).

Composite subtypes may contain implementation-defined components which affect
alignment, also. The following classes of types contain implementation-defined
components with minimal and optimal alignment of 4 bytes, causing a minimal and
optimal alignment of the composite subtype of at least 4 bytes:

• record types with components or subcomponents of dynamic size
(e.g. array components with variable or discriminant bounds)

• task types (contain a pointer to a task control block)

• protected types (contain a pointer to runtime protected information)

• tagged types (contain a tag component)

• controlled types (contain a tag component)

Class-wide tagged

An object nominally of a class-wide tagged subtype may actually denote an object
of the root tagged type of the class, or of any type derived (directly or indirectly)
from the root. Because an extension of the root is capable of adding components of
any subtype, the minimum alignment for any class-wide subtype is the largest
Alignment allowed for any subtype, 4 bytes.
M-40



Implementation-Defined Characteristics
Size Attributes for Objects M

Static Semantics M

13.3(41) Size may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static and its value nonnegative.

The expression of an attribute_definition_clause specifying the Size
of a first subtype or object must have a value in the range 0 .. (2 ** 31) -1 on Pen-
tium, or 0 .. (2 ** 63) - 1 on AMD64.

The Component_Size attribute_definition_clause is restricted simi-
larly.

Implementation Advice M

13.3(42) The recommended level of support for the Size attribute of objects is:

13.3(43) A Size clause should be supported for an object if the specified Size is at least as
large as its subtype's Size, and corresponds to a size in storage elements that is
a multiple of the object's Alignment (if the Alignment is nonzero).

MAXAda does not follow this advice.

A size clause will be supported for an object if all of the following apply:

• The Size is at least as large as the object subtype’s Size

• The Size is a multiple of the object subtype’s minimal align-
ment (if non-zero), which may allow a Size other than a mul-
tiple of the object’s Alignment

• For an aliased or floating point object, the Size is exactly its
subtype’s Size

Size Attributes for Subtypes M

Static Semantics M

13.3(48) The meaning of Size for indefinite subtypes

If the prefix of a Size attribute reference denotes a specific indefinite subtype, then
such a Size attribute reference will return the maximum possible size for an object
of that prefix subtype.

If the prefix of a Size attribute reference denotes a class-wide subtype, then such a
Size attribute reference will return the Size of the subtype at the root of the class.
Note that the Size attribute is not defined for class-wide subtypes of the form
S’Class, so this implementation-defined behavior applies only to named class-
wide subtypes.

If the size of any subtype is not representable because its representation would
exceed the word size of the target machine, then Constraint_Error will be
raised.
M-41



MAXAda for Linux Reference Manual
The expression of an attribute_definition_clause specifying the Size
of a first subtype or object must have a value in the range 0 .. (2 ** 31) -1 on Pen-
tium, or 0 .. (2 ** 63) - 1 on AMD64.

Implementation Advice M

13.3(50) If the Size of a subtype is specified, and allows for efficient independent addressabil-
ity (see 9.10) on the target architecture, then the Size of the following objects of the
subtype should equal the Size of the subtype:

13.3(51) Aliased objects (including components).

MAXAda follows this advice. 

13.3(52) Unaliased components, unless the Size of the component is determined by a
component_clause or Component_Size clause.

MAXAda follows this advice. 

13.3(53) A Size clause on a composite subtype should not affect the internal layout of compo-
nents.

MAXAda follows this advice. 

13.3(54) The recommended level of support for the Size attribute of subtypes is:

13.3(55) The Size (if not specified) of a static discrete or fixed point subtype should be
the number of bits needed to represent each value belonging to the subtype
using an unbiased representation, leaving space for a sign bit only if the sub-
type contains negative values. If such a subtype is a first subtype, then an
implementation should support a specified Size for it that reflects this represen-
tation.

MAXAda follows this advice. 

13.3(56) For a subtype implemented with levels of indirection, the Size should include
the size of the pointers, but not the size of what they point at.

MAXAda follows this advice.

The implementation does not implement any subtypes with implicit levels of
indirection. Therefore no reference to the Size of a subtype will return a
pointer or offset size.

Notes M

MAXAda supports the Size attribute definition clause fully for all discrete, fixed point,
and composite subtypes. For floating point and access subtypes, a Size must conform to
a supported machine representation; alternate or packed representations are not supported.
The following tables shows the required Size for each restricted class of type:
M-42



Implementation-Defined Characteristics
Pentium:

AMD64:

Component_Size Attributes M

Implementation Advice M

13.3(71) The recommended level of support for the Component_Size attribute is:

13.3(72) An implementation need not support specified Component_Sizes that are less
than the Size of the component subtype.

MAXAda does not follow this advice.

MAXAda supports a Component_Size that is less than the Size of the
component subtype’s Size, as long as it is at least as large as the default
Size that MAXAda would choose for the component subtype, and none of
the restrictions in the following section apply.

13.3(73) An implementation should support specified Component_Sizes that are factors
and multiples of the word size. For such Component_Sizes, the array should
contain no gaps between components. For other Component_Sizes (if sup-
ported), the array should contain no gaps between components when packing is
also specified; the implementation should forbid this combination in cases
where it cannot support a no-gaps representation.

MAXAda does not follow this advice.

Class of type Required Size

Floating point, single precision (e.g. Float) 32

Floating point, double precision (e.g. Long_Float) 64

Access-to-object 32

Access-to-subprogram, protected 64

Access-to-subprogram, not protected 96

Class of type Required Size

Floating point, single precision (e.g. Float) 32

Floating point, double precision (e.g. Long_Float) 64

Access-to-object 64

Access-to-subprogram, protected 128

Access-to-subprogram, not protected 192
M-43



MAXAda for Linux Reference Manual
MAXAda supports a Component_Size only if all of the following apply:

• The Component_Size is at least as large as the component
subtype’s Size

• The Component_Size is an integer multiple of the compo-
nent subtype’s minimal alignment (if non-zero), which may
allow a Size other than a multiple of the subtype’s Align-
ment

• For an aliased or floating point component subtype, the
Component_Size is exactly its subtype’s Size

On Pentium targets, for a Component_Size of 1, 2, 4, 8, 16, or integer mul-
tiples of 32 bits, MAXAda will not place gaps between components.

On AMD64 targets, for a Component_Size of 1, 2, 4, 8, 16, 32, or integer
multiples of 64 bits, MAXAda will not place gaps between components.

For any other Component_Size, MAXAda will not place gaps between
components when packing also is specified (e.g. via pragma Pack).

External_Tag Attributes M

Static Semantics M

13.3(75) The default external representation for a type tag

The default external_tag representation of a tagged subtype is the expanded name of
the first subtype of the type of the prefix subtype with the following implementa-
tion-defined names inserted:

• At the place of an unnamed block statement, or package elaboration
block, an automatically generated anonymous block id.

• At the place of an accept statement, an automatically generated
unique accept statement id.

• At the place of an unnamed loop statement, an automatically gener-
ated anonymous loop id.

• At the place of an Others exception handler, an automatically gener-
ated anonymous clause id.

• At the place of an inline expanded subprogram call, an automatically
generated inline label id. 

• At the place of an overloaded subprogram, an automatically gener-
ated overload resolution suffix is appended to the subprogram's
name.

The implementation-defined names allow unique identification of tagged types
defined within the associated language constructs.
M-44



Implementation-Defined Characteristics
Implementation Requirements M

13.3(76) What determines whether a compilation unit is the same in two different partitions

If a compilation unit is not recompiled between building two different partitions that
utilize it, it is considered “the same” compilation unit in both partitions. For pur-
poses relating to the formation of the external tag of tagged types declared in such
compilation units, the restrictions are not as stringent. The user can be assured that
the external tag will be formed in the same manner for compilation units in multiple
partitions if the source text of the compilation unit (and all compilation units upon
which it depends) are identical, the compilation options are identical, the configura-
tion pragmas in effect are identical, the target architectures are identical, and the ver-
sion of the compiler is identical.

RM 13.4 Enumeration Representation Clauses M

Implementation Advice M

13.4(9) The recommended level of support for enumeration_representation_clauses is:

13.4(10) An implementation should support at least the internal codes in the range Sys-
tem.Min_Int..System.Max_Int. An implementation need not support
enumeration_representation_clauses for boolean types.

MAXAda follows this advice.

MAXAda implements  the recommended level  of  support  for  an
enumeration_representation_clause:

• The implementation will support internal codes in the range
System.Min_Int .. System.Max_Int. Internal codes
outside the supported range will be rejected at compile time.

• enumeration_representation_clauses are not sup-
ported for boolean types in this release.

RM 13.5.1 Record Representation Clauses M

The simple expression following the keywords at mod in an alignment clause specifies
the Storage_Unit alignment restrictions for the record and must be one of the follow-
ing values: 0, 1, 2, 4, 8, or 16.

The simple expression following the keyword at in a component clause specifies the
Storage_Unit (relative to the beginning of the record) at which the following range
is applicable. The static range following the keyword range specifies the bit range of the
component. Components may overlap word boundaries (4 Storage_Units on Pentium
or 8 Storage_Units on AMD64). 

A component clause applied to a component that is a composite type does not imply pack-
ing for that component. For such component types, the implementation requires that
pragma PACK or a record representation clause be applied to the subtype of the component
M-45



MAXAda for Linux Reference Manual
if packing beyond the component’s default size is desired. No component may be given a
component clause which specifies a component size smaller than the Size of the compo-
nent’s subtype.

Implementation Permissions M

13.5.1(15) Implementation-defined components

MAXAda generates implementation-defined components for the following classes
of types:

• record types with components or subcomponents of dynamic size
(e.g. array components with variable or discriminant bounds)

• task types (contain a pointer to a task control block)

• protected types (contain a pointer to runtime protected information)

• tagged types (contain a tag component)

• controlled types (contain a tag component)

However, no means of naming implementation-defined components is supported,
and  no  suppor t  i s  p rov ided  fo r  represen t ing  such  component s  in  a
component_clause of a record_representation_clause.

13.5.1(16) If a record_representation_clause is given for an untagged derived type, the storage
place attributes for all of the components of the derived type may differ from those of
the corresponding components of the parent type, even for components whose stor-
age place is not specified explicitly in the record_representation_clause.

MAXAda takes advantage of this permission.

Implementation Advice M

13.5.1(17) The recommended level of support for record_representation_clauses is:

13.5.1(18) An implementation should support storage places that can be extracted with a
load, mask, shift sequence of machine code, and set with a load, shift, mask,
store sequence, given the available machine instructions and run-time model.

MAXAda follows this advice. 

On Pentium, for a component_clause for a component with Size less
than 32 bits, MAXAda will not permit the component to occupy bits from
more than 4 storage units. Specifically, R.C’Last_Bit must be less than 32.

On AMD64, for a component_clause for a component with Size less
than 64 bits, MAXAda will not permit the component to occupy bits from
more than 8 storage units. Specifically, R.C’Last_Bit must be less than 64.

An informational diagnostic is issued if it is determined that a component
clause would force the generation of less that optimal loads or stores for a
component. This is commonly caused by components with alignments which
do not conform to the optimal alignment.
M-46



Implementation-Defined Characteristics
13.5.1(19) A storage place should be supported if its size is equal to the Size of the compo-
nent subtype, and it starts and ends on a boundary that obeys the Alignment of
the component subtype.

MAXAda follows this advice.

MAXAda places no restriction on the end of a storage place.

13.5.1(20) If the default bit ordering applies to the declaration of a given type, then for a
component whose subtype's Size is less than the word size, any storage place
that does not cross an aligned word boundary should be supported.

MAXAda follows this advice.

MAXAda does support storage places that cross word boundaries in some
cases. See 13.5.1(18) on page M-46. 

13.5.1(21) An implementation may reserve a storage place for the tag field of a tagged
type, and disallow other components from overlapping that place.

MAXAda does not follow this advice.

13.5.1(22) An implementation need not support a component_clause for a component of
an extension part if the storage place is not after the storage places of all com-
ponents of the parent type, whether or not those storage places had been speci-
fied.

MAXAda follows this advice.

Notes M

MAXAda supports a storage place only if all of the following apply:

• For a discrete or fixed point component, the size of its storage place is at
least as large as the minimum size required to represent its base range

• For a composite or access component, the size of its storage place is at least
as large as the component subtype’s Size

• On Pentium, for a component with Size less than 32, the storage place
occupies bi ts from no more than 4 storage units (specifically,
R.C’Last_Bit must be less than 32)

• On AMD64, for a component with Size less than 64, the storage place
occupies bi ts from no more than 8 storage units (specifically,
R.C’Last_Bit must be less than 64)

• The Size is a multiple of the component subtype’s minimal alignment (if
non-zero)

• For an aliased or floating point component, the Component_Size is
exactly its subtype’s Size
M-47



MAXAda for Linux Reference Manual
RM 13.5.2 Storage Place Attributes M

Implementation Advice M

13.5.2(5) If a component is represented using some form of pointer (such as an offset) to the
actual data of the component, and this data is contiguous with the rest of the object,
then the storage place attributes should reflect the place of the actual data, not the
pointer. If a component is allocated discontiguously from the rest of the object, then a
warning should be generated upon reference to one of its storage place attributes.

MAXAda follows this advice.

RM 13.5.3 Bit Ordering M

Static Semantics M

13.5.3(5) If Word_Size = Storage_Unit, the default bit ordering is implementation defined. If
Word_Size > Storage_Unit, the default bit ordering is the same as the ordering of
storage elements in a word, when interpreted as an integer.

Storage_Unit    = 8 bits.
Word_Size           = 32 bits       (Pentium)
Word_Size           = 64 bits       (AMD64)

The implementation supports only the default bit ordering.

The default bit ordering is dependent upon the conventions of the target machine
architecture.

MAXAda on the Pentium uses Low_Order_First ("little endian") bit ordering.

Implementation Advice M

13.5.3(7) The recommended level of support for the nondefault bit ordering is:

13.5.3(8) If Word_Size = Storage_Unit, then the implementation should support the non-
default bit ordering in addition to the default bit ordering.

Since Word_Size /= Storage_Unit, this advice is not relevant.

RM 13.7 The Package System M

Static Semantics M

13.7(2) The contents of the visible part of package System and its language-defined children

The following files contain the package System and its language-defined descen-
dants. They can be found in /usr/ada/rel_name/predefined (where rel_name
is the name of the MAXAda release).
M-48



Implementation-Defined Characteristics
• System.a

• System.Storage_Elements.a

• System.Storage_Pools.a

• System.Address_To_Access_Conversions.a

• System.Machine_Code.a

Implementation Advice M

13.7(37) Address should be of a private type.

MAXAda follows this advice.

RM 13.7.1 The Package System.Storage_Elements M

Implementation Advice M

13.7.1(16) Operations in System and its children should reflect the target environment seman-
tics as closely as is reasonable. For example, on most machines, it makes sense for
address arithmetic to “wrap around.” Operations that do not make sense should
raise Program_Error.

MAXAda follows this advice.

In particular, the address arithmetic operations in the System.Addresses pack-
age “wrap around”.

RM 13.8 Machine Code Insertions M

Static Semantics M

13.8(7) The contents of the visible part of package System.Machine_Code, and the meaning
of code_statements

The following file can be found in /usr/ada/rel_name/predefined (where
rel_name is the name of the MAXAda release).

• System.Machine_Code.a

WARNING

Inline expansion of machine-code procedures is supported, but the
user should exercise caution. It is not recommended practice to
inline-expand machine-code procedures, as the compiler does not
track register uses and definitions made by machine-code proce-
dures. 
M-49



MAXAda for Linux Reference Manual
Notes M

The general definition of the package Machine_Code provides an assembly language
interface for the target machine including the record types needed in the code statement,
an enumeration type containing all of the opcode mnemonics, a set of register definitions,
and a set of addressing mode functions.  Also supplied (for use only in units that with
Machine_Code) is the implementation-defined attribute ’Ref. 

The general syntax for a machine-code statement is 

code_n’ (opcode, operand {, operand}); 

In the following example, code_1 is a record ’format' whose first argument is an enumer-
ation value of the type Opcode, followed by a single operand of type Operand:

code_1' (call, disp("some_routine"));

The opcode must be an enumeration literal (i.e., it cannot be an object, an attribute, or a
rename).  

The Machine_Code package supports the opcodes and registers defined in:

/usr/ada/rel/predefined/system.machine_code.a

Machine-code statements accept operands of type Operand, a private type that can
describe every assembler literal or address mode for the target.  An operand only can be
produced by a entity defined in Machine_Code, or the ’Ref attribute.

The ’Ref attribute denotes the effective address of the first of the storage units allocated
to its prefix.  For a label, it refers to the address of the machine code associated with the
corresponding body or statement. The attribute is of type Operand defined in the pack-
age Machine_Code and is allowed only within a machine code procedure.  ’Ref is sup-
ported only for simple objects, formal parameters and labels declared immediately within
the subprogram containing the reference.  Using ’Ref on a formal parameter forces the
formal parameter to be stored in memory and reference via memory.  

NOTE

The most efficient way to access a formal parameter is to refer-
ence its associated register directly, instead of using ’Ref.

The general syntax for a Machine_Code data statement is:

data_aggregate' (format, value {, value});

In the following example, data_n is a record 'format' whose first argument is an enumer-
ation value of the type Data_Format, followed by an array of operands of type
Operand_Seq:

data_n' (short, (+1, +2, +3));

The syntax for a Machine_Code directive statement is:

directive' (string_literal);
M-50



Implementation-Defined Characteristics
The single argument is a string literal which provides for the capability to insert any text
directly into the assembly stream for that routine.

Addressing Modes M

The supported Pentium and AMD64 addressing modes include:

Displacements/Literals:

function immed (value : integer) return operand;
function "+"(value : integer) return operand;
function "-"(value : integer) return operand;

References to symbols/routines:

function disp (name : string) return operand;

The disp function may be used to identify an externally-defined symbol, a location
at a given offset from an externally-defined symbol, or the address of an externally-
defined symbol or offset from an externally-defined symbol, such as:

disp("external_symbol")
disp("external_symbol+4")
disp("$external_symbol")
disp("$external_symbol+4")
M-51



MAXAda for Linux Reference Manual
Effective Address = [reg] and [reg+disp]       (Intel) 
                              = (%reg) and disp(%reg)    (AT&T)

function base (reg : operand) return operand;
function base (disp : integer; 
               reg : operand) return operand;

Effective Address = [reg*s] and [reg*s + disp]      (Intel) 
                              = (%reg,,s) and disp(%reg,,s)     (AT&T)

type scale is (one, two, four, eight);

function index      (reg  : operand; 
                     s    : scale := one) return operand;
function index      (disp : integer;
                     reg  : operand; 
                     s    : scale := one) return operand;

Effective Address = [ reg1 + reg2 * s ] and [ reg1 + reg2 * s + disp]   (Intel)
                              = (%reg1,%reg2,s) and disp(%reg1,%reg2,s)            (AT&T)

function indr_index (reg1 : operand; 
                     reg2 : operand; 
                     s    : scale := one) return operand;
function indr_index (disp : integer;
                     reg1 : operand; 
                     reg2 : operand; 
                     s    : scale := one) return operand;

Pentium Example M
The following example uses machine code to add two numbers and return the result:

function add (x,y : integer) return integer is
pragma implicit_code(off);

begin
-- First argument is at (esp)+4
code_2' (movl, base(4,esp), eax);
code_2' (addl, base(8,esp), eax);
-- Return values for scalars go into eax
code_0' (op => ret);

end add;

RM 13.9 Unchecked Type Conversions M

Dynamic Semantics M

13.9(11) The effect of unchecked conversion

Unchecked Type Conversions are implemented both for cases which do and do not
meet the criteria in RM 13.9(6-10). The behavior for both cases is described here.
This behavior is consistent with the semantics described in RM 13.9(5) for those
cases that do meet the criteria in RM 13.9(6-10), and is a reasonable behavior for
other cases.
M-52



Implementation-Defined Characteristics
The implementation treats an unchecked conversion as if some number of bits
of the representation of the source expression are interpreted as, or moved to a
target object.

The source expression is the actual expression passed to the formal parameter,
S, of the instantiation. The target object is the result returned by an instantia-
tion of the unchecked conversion function.

If the target subtype is an unconstrained composite subtype, then the result
will have the maximum size possible for any object of that type. Otherwise,
the result will have the same size as the size of the target subtype. This is
referred to as the target size.

If the target subtype of an unchecked conversion is indefinite, then the value
of the source expression is interpreted as a value of the target subtype. It is the
user’s responsibility to ensure that the source expression is a valid representa-
tion of a value of the target subtype, and that the Size of the source expres-
sion is sufficient to represent a value of the target subtype. If not,
Storage_Error may be raised when the result of the unchecked conver-
sion is used, or else the value of the result may contain garbage data.

The size of the source expression is simply the size of the value of the actual
expression. This is referred to as the source size.

The representation of the result will be determined by effectively moving N
bits from the actual expression to the result object. The number of bits moved,
N, is the smaller of the source size and the target size.

The implementation will take advantage of permission granted in 13.9(12),
and return the result by reference when appropriate. However, the implemen-
tation currently goes beyond the granted permission and returns the result by
reference even for by-copy types if the result is indistinguishable from return-
ing the result by copy.

Additional explanation is necessary in cases where the source size and target
size are not the same. The meaning of such conversions depends upon the
class of types involved, as well as which of the source or target sizes is larger.

Justification:

The implementation considers all objects of elementary types to be “left-justified”
within the storage allocated, and all objects of composite types to be “left-justified”.
If, for alignment reasons, an object is placed in storage which is larger than the
object's Size, the representation of an object of an elementary type is placed in the
least-significant bits of storage, left-justified, with any padding in the most-signifi-
cant bits.       

Likewise, should an object of a composite type be allocated storage which is larger
than the object's Size, the representation is placed in the most-significant bits of
storage, left-justified, with any padding in the least-significant bit.
M-53



MAXAda for Linux Reference Manual
Elementary Type to Elementary Type Conversions:

For all elementary types, calls to instantiations of unchecked conversions are imple-
mented using the most efficient block move instruction to move a 1, 2, 4, or 8 byte
source expression object to the target object. However, a bit move will be used if the
size aspect of the object's representation has been specified in a size attribute
definition_clause to be a value which is not a power of two.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the bits of the source object's rep-
resentation are moved to the least-significant bits of the target object. If the target
object's subtype is signed, then the most-significant bit of the source object's repre-
sentation is sign-extended through the most-significant bits of the target object's rep-
resentation. Otherwise, the most-significant bits of the target object's representation
are zero-filled.

If the target size is smaller than the source size, then the least-significant bits of the
source object's representation are moved to the target object.

Composite Type to Composite Type Conversions:

All composite-to-composite type conversions occur transferring bits starting with
the lowest addressable bit of the source object to bits starting at the lowest address-
able bit of the target object.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the remaining bits of the target
object's representation are zero-filled.

If the target size is smaller than the source size, the highest addressable bits from the
source object are discarded.

 Elementary Type to Composite Type Conversions:

Conversions from elementary types to composite types are implemented by moving
least-significant bits of the representation of the source object to the lowest address-
able bits of the target object.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the remaining bits of the target
object's representation are zero-filled.

If the target size is smaller than the source size, then the least-significant bits of the
source object's representation are moved to the target object.
M-54



Implementation-Defined Characteristics
Composite Type to Elementary Type Conversions:

Conversions from composite types to elementary types are implemented by moving
the lowest addressable bits of the representation of the source object to the least-sig-
nificant bits of the target object.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the bits of the source object's rep-
resentation are moved to the least-significant bits of the target object. If the target
object's subtype is signed, then the most-significant bit of the source object's repre-
sentation is sign-extended through the most-significant bits of the target object's rep-
resentation. Otherwise, the most-significant bits of the target object's representation
are zero-filled.

If the target size is smaller than the source size, then the lowest addressable bits of
the source object's representation are moved to the target object.

Implementation Advice M

13.9(14) The Size of an array object should not include its bounds; hence, the bounds should
not be part of the converted data.

MAXAda follows this advice.

13.9(15) The implementation should not generate unnecessary run-time checks to ensure that
the representation of S is a representation of the target type. It should take advantage
of the permission to return by reference when possible. Restrictions on unchecked
conversions should be avoided unless required by the target environment.

MAXAda follows this advice.

The implementation will not generate any unnecessary checks to determine if S is a
valid representation of the target type.

The implementation will take advantage of the permission to return by reference
when reasonable. No warnings or info messages will be issued alerting the user,
however, if the implementation is unable to return by reference.

Restrictions on unchecked conversions are avoided by the implementation only
when necessary to determine the size of the target subtype.

13.9(16) The recommended level of support for unchecked conversions is:

13.9(17) Unchecked conversions should be supported and should be reversible in the
cases where this clause defines the result. To enable meaningful use of
unchecked conversion, a contiguous representation should be used for elemen-
tary subtypes, for statically constrained array subtypes whose component sub-
type is one of the subtypes described in this paragraph, and for record subtypes
without discriminants whose component subtypes are described in this para-
graph.

Unchecked conversions will be supported and reversible in the cases where
RM95 13.9 defines the result (with the exception that the implementation
defines S’Size and Target’Size differently from the RM).
M-55



MAXAda for Linux Reference Manual
A contiguous representation will be used for elementary subtypes, for stati-
cally constrained array subtypes whose component subtype is one of the sub-
types described in RM95 13.9(17), and for record subtypes without discrimi-
nants whose component subtypes are described in RM95 13.9(17).

The implementation will additionally support unchecked conversion for
S’Size /= Target’Size. The smaller of the two sizes will be used, and the
excess target space, if any, will be sign extended or zero filled as needed.

RM 13.11 Storage Management M

Static Semantics M

13.11(17) The manner of choosing a storage pool for an access type when Storage_Pool is not
specified for the type

For each access type with a ’Storage_Size clause, a distinct object of type
System.Storage_Pools.Standard.Collection_Storage_Pool is
created with the given size and used.

A l l  t y p e s  w i t h o u t  ’Storage_Size  c l a u s es  u s e  t h e  o b j e c t  Sys-
tem.Storage_Pools.Standard.Objects.Predefined of the type Sys-
tem.Storage_Pools.Standard.Predefined_Storage_Pool.

A variety of aspects of the memory used for these standard storage pools can be con-
figured with following implementation-defined pragmas:

- MEMORY_POOL - (see “Pragma MEMORY_POOL” on page 6-23)

- POOL_CACHE_MODE - (see “Pragma POOL_CACHE_MODE” on
page 6-25)

- POOL_LOCK_STATE - (see “Pragma POOL_LOCK_STATE” on
page 6-25)

- POOL_SIZE - (see “Pragma POOL_SIZE” on page 6-26)

13.11(17) Whether or not the implementation provides user-accessible names for the standard
pool type(s)

MAXAda does provide user-accessible names for the standard pool types. The stor-
age pool type used for types with a ’Storage_Size  clause is Sys-
tem.Storage_Pools.Standard.Collection_Storage_Pool. The stor-
age pool  type used for  types  with  nei ther  a  ’Storage_Pool  nor  a
’Storage_Size  c l a u se  i s  System.Storage_Pools.Stan-
dard.Predefined_Storage_Pool.

There is a single object of type Predefined_Storage_Pool named Sys-
tem.Storage_Pools.Standard.Objects.Predefined. It is erroneous to
create any other object of this type.

13.11(18) The meaning of Storage_Size
M-56



Implementation-Defined Characteristics
If neither 'Storage_Size nor 'Storage_Pool is specified for a particular
access type, Storage_Size for that type is defined to return the value -1. The
Storage_Size does not include the TCB (Task Control Block) for the task.

13.11(20) The effect of calling Allocate and Deallocate for a standard storage pool directly
(rather than implicitly via an allocator or an instance of Unchecked_Deallocation) is
unspecified.

The primitives Allocate and Deallocate operate on memory directly. They
are unaware of the manner in which that memory will be used. As such, it is errone-
ous to attempt to allocate or deallocate a controlled object by directly calling these
r o u t i n e s .  I n s t ea d ,  an  a l l o c a t o r  o r  a n  i n s t a n c e  o f
Ada.Unchecked_Deallocation should be used.

Documentation Requirements M

13.11(22) Implementation-defined aspects of storage pools

The set of values that a user-defined Allocate or Deallocate procedure needs
to accept for Alignment are:

1, 2, 4, 8, 16

13.11(22) Information of how storage is allocated by the standard storage pools

The System.Storage_Pools.Standard.Predefined_Storage_Pool,
the  s torage  pool  used  fo r  types  wi th  ne i ther  ’Storage_Pool  nor
’Storage_Size clauses, allocates memory via the mmap(2) system service. It
a l l oca t e s  an  amoun t  o f  memory  equa l  t o  th a t  sp ec i f i ed  i n  p rag ma
POOL_SIZE(COLLECTION, DEFAULT, size). If the value is the keyword
UNLIMITED or if no such pragma exists, then 512K is allocated initially, although
more may be allocated later, also via mmap(2).

The System.Storage_Pools.Standard.Collection_Storage_Pool,
the storage pool used for types with ’Storage_Size clauses, allocates memory
based on the context in which the access type is declared. If in a context with a stack
frame, memory will generally be allocated inside that stack frame. This is generally
possible if the type is declared within one of the following constructs:

• subprogram

• task body

• protected operation body

• handled_sequence_of_statements in a package body

There are a couple circumstances where, even though a stack frame is present for a
given construct, memory cannot be allocated from it:

• The size of the storage pool cannot be determined when the stack
frame is created. This can occur if the type is declared inside a sepa-
rate package body or inside the body of an instance whose corre-
sponding generic body is not declared within the same compilation
unit as the instance or is separate.
M-57



MAXAda for Linux Reference Manual
• The memory attributes (see “Memory Attributes” on page 6-20) of
the collection differ from those specified for the stack.

In any case where memory cannot be allocated from a stack frame, it is allocated
instead from the System.Storage_Pools.Standard.Object.Pre-
defined storage pool.

Implementation Advice M

13.11(23) An implementation should document any cases in which it dynamically allocates
heap storage for a purpose other than the evaluation of an allocator.

MAXAda performs dynamic implicit heap allocations for the following operations:

• creation of a task, or object of a type with task parts

• creation of a protected object, or object of a type with protected parts

• creation of an object with controlled parts

• creation of a package body stub

• elaboration of a package instance whose corresponding generic is not
declared within the same compilation unit as the instance or is sepa-
rate

• elaboration of an instance of Ada.Task_Attributes

• elaboration of a shared instance whose generic environment (the
memory space containing information required to differentiate a
shared instance from other shared instances of the same generic) is
larger than 51.2 Kb. See “Pragma SHARE_BODY” on page M-127.

• call to the function Ada.Exceptions.Save_Occurrence (but
not the procedure)

• elaboration of a master, other than that associated with the ENVI-
RONMENT task, which contains any of the following declarations:

- access type

- separate body

- instance whose corresponding generic is not declared within
the same compilation unit as the instance or is separate

• any of the following operations performed at library-level (i.e. any
operation not performed within a subprogram or task):

- creation of an object of a dynamically constrained type

- conversion of a value of a dynamically constrained type

- string catenation producing a dynamically constrained result

- non-string catenation

- logical or not operator expression involving dynamically con-
strained arrays of booleans
M-58



Implementation-Defined Characteristics
- copy of a dynamically sized bit-aligned actual used for param-
eter passing

- copy of a dynamically sized atomic actual whose correspond-
ing formal type is not atomic (see RM C.6(19))

- call of an ’Input attribute whose prefix is a composite type

- call of an instance of Ada.Unchecked_Conversion with a
dynamically constrained target type

- elaboration of a ’Storage_Size representation clause

13.11(24) A default (implementation-provided) storage pool for an access-to-constant type
should not have overhead to support deallocation of individual objects.

MAXAda does not follow this advice in this release.

13.11(25) A storage pool for an anonymous access type should be created at the point of an
allocator for the type, and be reclaimed when the designated object becomes inacces-
sible.

MAXAda does not follow this advice in this release.

RM 13.11.2 Unchecked Storage Deallocation M

Implementation Advice M

13.11.2(17) For a standard storage pool, Free should actually reclaim the storage.

MAXAda follows this advice.

Implementation Permissions M

13.11.3(8) An implementation need not support garbage collection, in which case, a pragma
Controlled has no effect.

Pragma CONTROLLED will be accepted, but will have no effect since this implementation
does not perform garbage collection.

RM 13.12 Pragma Restrictions M

13.12(7) The set of restrictions allowed in a pragma Restrictions

MAXAda supports all restrictions defined in Section D.7 of the Ada 95 Reference
Manual and the following implementation-defined restriction:

No_Stream_Attributes

See “Pragma RESTRICTIONS” on page M-126 for more details.

13.12(9) The consequences of violating limitations on Restrictions pragmas
M-59



MAXAda for Linux Reference Manual
An expression in a pragma RESTRICTIONS may contain only static, nonnegative
values whose values are in the range of the type Integer. Any other values will
result in a compilation error.

Because none of the restrictions defined in Section D.7 of the Ada 95 Reference
Manual currently have an actual effect on the run-time, there are no further limita-
tions.

RM 13.13.2 Stream-Oriented Attributes M

13.13.2(9) The representations used by Read and Write attributes of elementary types in terms
of stream elements

A stream element is a value of the type Ada.Streams.Stream_Element. This
is the smallest unit of data that is read from or written to a stream. For this imple-
mentation, a stream element is an 8-bit byte. Its size is the same as that of a storage
element, defined in 13.3(8).

The implementation follows the advice of 13.13.2(9) for the Read and Write
attributes:

• For a scalar type, the implementation will use the smallest number of
stream elements that will represent all the values of the base range of
the type. The normal, in-memory storage element representation will
be used for the stream element representation of the value, with the
stream elements ordered according to the Bit_Order aspect of the
type. For this implementation, highest order first, lowest order last.

If the Size of the type is smaller than the bits of the stream element represen-
tation, signed scalar values will be sign-extended. The extra highest order bits
of a modular value will be zeroed.

• For access-object types, the value will be emitted as four stream ele-
ments, high order first, as for an object of type System.Address.

• For access-subprogram types, the value will be emitted as a sequence
of 2 .. 3 values of access-object format:

• subprogram entry address

• protected object address | static link address

• generic environment address, when necessary.

Implementation Advice M

13.13.2(17) If a stream element is the same size as a storage element, then the normal in-memory
representation should be used by Read and Write for scalar objects. Otherwise, Read
and Write should use the smallest number of stream elements needed to represent all
values in the base range of the scalar type.

MAXAda follows this advice.
M-60



MRM Annex A: Predefined Language Environment M

Implementation Permissions M

A(4) The implementation may restrict the replacement of language-defined compilation
units.  The implementation may restrict the children of language-defined library
units (other than Standard).

MAXAda restricts the replacement of any of the following units or any children of
the following units:

Ada.Asynchronous_Task_Control
Ada.Calendar
Ada.Dynamic_Priorities
Ada.Exceptions
Ada.Finalization
Ada.Interrupts
Ada.Real_Time
Ada.Task_Attributes
Ada.Task_Identification
Ada.Tags
Interfaces.Restricted_Fortran
Interfaces.Restricted_Gnu_Fortran
System
System.Machine_Code
System.Storage_Elements
System.Storage_Pools
System.Storage_Pools.Standard
System.Storage_Pools.Standard.Objects

In addition, MAXAda restricts the replacement of any of the units within the follow-
ing package or any of the units within its children:

Ada.RTS

RM A.1 The Package Standard M

Static Semantics M

A.1(3) The names and characteristics of the numeric subtypes declared in the visible part of
package Standard

subtype natural  is integer range 0 .. integer'last;
subtype positive is integer range 1 .. integer'last;

where, in this implementation, the type Integer is defined as:

type Integer is range -2**31 .. 2**31-1;
M-61



MAXAda for Linux Reference Manual
Implementation Advice M

A.1(52) If an implementation provides additional named predefined integer types, then the
names should end with ``Integer'' as in ``Long_Integer''.  If an implementation pro-
vides additional named predefined floating point types, then the names should end
with ``Float'' as in ``Long_Float''.

MAXAda follows this advice.

MAXAda supplies the following additional named predefined types:

Long_Integer

Short_Integer (for compatibility only; its use is not recommended)

Tiny_Integer (for compatibility only; its use is not recommended)

Long_Float

RM A.3.2 The Package Characters.Handling M

Implementation Advice M

A.3.2(49) If an implementation provides a localized definition of Character or
Wide_Character, then the effects of the subprograms in Characters.Handling should
reflect the localizations. See also 3.5.2.

MAXAda does  not  provide  loca l ized def in i t ions  of  Character  o r
Wide_Character; thus the advice is not relevant.

RM A.4.4 Bounded-Length String Handling M

Implementation Advice M

A.4.4(106) Bounded string objects should not be implemented by implicit pointers and dynamic
allocation.

MAXAda does not follow this advice in this release.

RM A.5.1 Elementary Functions M

A.5.1(1) The accuracy actually achieved by the elementary functions

These functions use the underlying math library, libm.a.  Function results are
expressed in float or long_float, which equate to C float or double.  Ada
float has 6 digits of precision, where long_float has 15 digits of precision.
M-62



Implementation Requirements M

A.5.1(46) The sign of a zero result from some of the operators or functions in Numer-
ics.Generic_Elementary_Functions, when Float_Type’Signed_Zeros is True

The sign of a prescribed zero result in the aforementioned cases would be positive
(+0.0).

RM A.5.2 Random Number Generation M

Static Semantics M

A.5.2(27) The value of Numerics.Float_Random.Max_Image_Width

The following line appears in Numerics.Float_Random:

max_image_width : constant := 12 + 4 ; -- base 16 
integer literal, 12 digits

A.5.2(27) The value of Numerics.Discrete_Random.Max_Image_Width

The following line appears in Numerics.Discrete_Random:

max_image_width : constant := 12 + 4 ; -- base 16 
integer literal, 12 digits

A.5.2(32) The algorithms for random number generation

MAXAda uses the standard C functions, erand48, nrand48, and jrand48 in its
random number generation algorithms.  These functions generate pseudo-random
numbers using the well-known linear congruential algorithm and 48-bit integer
arithmetic.

erand48 returns  non-negative double-precision floating-point
values uniformly distributed over the interval [0.0, 1.0).

nrand48 returns non-negative long integers uniformly distributed
over the interval [0, 2**31).

jrand48 returns signed long integers uniformly distributed over
the interval [-2**31, 2**31).

A.5.2(38) The string representation of a random number generator’s state

The string representation of a random number generator’s state is a 12-digit integer
literal in base 16, such as, 16#123456789abc#.  This 12-digit literal is a 48-bit
number composed of three 16-bit entities which the generator uses.

Documentation Requirements M

A.5.2(44) No one algorithm for random number generation is best for all applications.  To
enable the user to determine the suitability of the random number generators for the
intended application, the implementation shall describe the algorithm used and shall
give its period, if known exactly, or a lower bound on the period, if the exact period is
M-63



MAXAda for Linux Reference Manual
unknown.  Periods that are so long that the periodicity is unobservable in practice
can be described in such terms, without giving a numerical bound.

The base algorithm of erand48, nrand48, and jrand48 for generating 48 bit
random numbers is a linear congruential scheme with the formula:

X(n+1) = (a*X(n)+c)mod(m)  

where the arithmetic is carried out using 48 bit arithmetic.

nrand48 returns the high order 31 bits of X(n+1)

jrand48 returns the high order 32 bits of X(n+1)

erand48 returns all 48 bits of X(n+1) considered as a fraction with the binary
point before the first bit.

a = 0x5deece66d, c=0x0b, and m=2^48.

Knuth - Art of Computer Programming, Seminumerical Algorithms Vol II 3.2.1.1 pg
15 Theorem A states that:

The linear congrential sequence has a period of length m if and only if

i. c is relatively prime to m;

ii. b = a-1 is a multiple of p, for every prime p dividing m;

iii. b is a multiple of 4, if m is a multiple of 4.

In our case:

i. c = 11 which is a prime so it is relatively prime to 2^48

ii. b = 0x5deece66c is divisible by 2, and 2 is the only prime
dividing 2^48

iii. m is divisible by 4 as is b = 0x5deece66c.

Hence the period is 2^48.

A.5.2(45) The minimum time interval between calls to the time-dependent Reset procedure
that are guaranteed to initiate different random number sequences

T h e  t i m e - d e p e n d e n t  Reset  p r o c e d u r e  i s  b a s e d  o n  a  v a l u e  f r o m
ada.real_time.clock.

The actual rate at which the clock ticks is dependent on the specific system type
where the application runs.

Thus, minimum time interval between successive calls to the Reset procedure that
are guaranteed to initiate different random number sequences is zero.
M-64



Implementation Advice M

A.5.2(46) Any storage associated with an object of type Generator should be reclaimed on exit
from the scope of the object.

MAXAda follows this advice.

A.5.2(47) If the generator period is sufficiently long in relation to the number of distinct initia-
tor values, then each possible value of Initiator passed to Reset should initiate a
sequence of random numbers that does not, in a practical sense, overlap the sequence
initiated by any other value. If this is not possible, then the mapping between initia-
tor values and generator states should be a rapidly varying function of the initiator
value.

The number of possible initial values is 2^48 which is the same as the period so this
is not applicable to MAXAda.

RM A.5.3 Attributes of Floating Point Types M

Static Semantics M

A.5.3(72) The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First,
and Safe_Last attributes, if the Numerics Annex is not supported

The Numerics Annex is not supported in this release of MAXAda.

RM A.7 External Files and File Objects M

Static Semantics M

A.7(14) Any implementation-defined characteristics of the input-output packages

Attribute IEEE_Float_32 IEEE_Float_64

’Model_Mantiss
a

24
( s a m e  a s
’Machine_Mantissa)

53
( s a m e  a s
’Machine_Mantissa)

’Model_Emin -125
(same as ’Machine_Emin)

-1021
(same as ’Machine_Emin)

’Model_Epsilon 2.0**(-23) 2.0**(-52)

’Model returns the same value as
the parameter passed in

returns the same value as
the parameter passed in

’Safe_First -2.0**128*(1.0-2.0**(-24)) -2.0**1024*(1.0-2.0**(-
53))

’Safe_Last 2.0**128*(1.0-2.0**(-24)) 2.0**1024*(1.0-2.0**(-
53))
M-65



MAXAda for Linux Reference Manual
The MAXAda implementation of the standard Ada I/O packages support form
parameters of the following syntax and semantics for the Open and Create sub-
programs: 

form_parameters  ::= [ form_specification {, form_specification} ]
form_specification ::= form_name => form_value 

The following list defines the supported form_name and form_values: 

Append => True | False 

When specified to the Open subprogram:

• If the mode is out_file or inout_file, then if the
form_value is True, the file will be opened in append
mode, and if the form_value is False, the file will be trun-
cated.

• If the mode is append_file, then this form parameter is
ignored and the file is opened in append mode.

• If the mode is in_file, then this form parameter is irrelevent
and ignored.

Use_Error is raised if specified to the Create subprogram.

Owner => read | write | execute | read_write | ... 
Group => read | write | execute | read_write | ... 
Other => read | write | execute | read_write | ... 

The file being created will have the permissions as defined by form_name and
form_value.  Note that form_value may be any combination of read, write,
or execute, separated by an underscore (e.g., write_read_execute). 

Use_Error is raised if specified to the Open subprogram. 

File_Descriptor => n 

This specifies that the high-level file_type be associated with an existing
open file descriptor, as specified by n.  n should be of a form consistent with
integer’image.

Use_Error is raised if specified to the Create subprogram. 

Page_Terminators => True | False 

If False, then page terminators are not output to the external file.  If
Ada.Characters.Latin_1.FF is encountered while reading from the
e x t e r n a l  f i l e ,  i t  i s  i n t e r p r e t e d  a s  a  c h a r a c t e r  Ada.Charac-
ters.Latin_1.FF and not as a page terminator.  Use_Error will be
ra ised  upon expl ic i t  ca l l s  to  Ada.Text_IO.New_Page  o r  to
Ada.Text_IO.Set_Line when the current line number exceeds the speci-
fied argument.
M-66



If True,  page termination on output will result in Ada.Charac-
ters.Latin_1.FF being written to the external file.  Encountering
Ada.Characters.Latin_1.FF on input is interpreted as a new page
(e .g .  Ada.Text_IO.Get  would  never  see  an  Ada.Charac-
ters.Latin_1.FF returned to it).  True is the default. 

Terminal_Input => Lines | Characters 

If Lines, terminal input shall be done in canonical mode. This is the default. 

If Characters, terminal input shall be done in non-canonical mode, such
that the minimum input count is 1 character, and the minimum input time is 0
seconds.

This form specification has no effect if the associated file_type is not used
for terminal input. 

Echo => True | False 

If True, echoing of characters is done on input operations to the associated
terminal device.  This is the default.

If False, echoing of characters is not done on input operations to the associ-
ated terminal device for non-canonical processing. Use_Error is raised if
the non-canonical processing has not been specified. 

File_Structure => Regular | Fifo 

If Fifo, then the file being created will be a named FIFO file. Otherwise, the
file being created will be a regular file, which is the default.

Use_Error is raised if specified to the Open subprogram. 

Blocking => Tasks | Program 

If all the tasks in the running program have task_weight bound, then the
form_value must be Tasks; otherwise, Use_Error is raised.

If all the tasks in the running program have task_weight multiplexed, then the
form_value must be Program; otherwise, Use_Error is raised.

If the running program has tasks of both bound and multiplexed task_weight,
then the form_value must be Program; otherwise, Use_Error is raised.
This use of Program blocking behavior is intended to indicate that if a task
blocks while performing I/O on the associated file, other tasks in the program
may be blocked. The actual blocking behavior depends on the task_weight of a
blocked task.

WCEM => n | h
M-67



MAXAda for Linux Reference Manual
If n, wide_characters are not allowed to be written or read.  An attempt
to write a character that is not in type Character will result in Use_Error.
On a read, any encoded wide_character will be interpreted only as the
constituent characters of the encoding.

If h, wide_characters are allowed to be written and read.  Any character
that is in type Character except ESC (decimal value 27) is written and read
normally.  Any other character is written or read in a hex-encoded format: an
ESC character followed by four hexadecimal digits that represents the charac-
ter’s 2 digit row-octet followed by its 2 digit cell-octet.  An attempt to read an
ESC followed by anything other than 4 hexadecimal digits will result in
Data_Error.

T h i s  f o r m  p a r a m e t e r  h a s  n o  e f f e c t  o n  t y p e s  o t h e r  t h a n
Ada.Text_IO.File_Type and Ada.Wide_Text_IO.File_Type.

The default value for Ada.Text_IO.File_Type is ’n’.  The default value
for Ada.Wide_Text_IO.File_Type is ’h’.

Implementation-defined exception propagations in I/O packages are not known at
this time.

RM A.9 The Generic Package Storage_IO M

Static Semantics M

A.9(10) The value of Buffer_Size in Storage_IO

(Element_Type’Size + System.Storage_Unit - 1) / System.Storage_Unit

RM A.10 Text Input-Output M

Static Semantics M

A.10(5) external files for standard input, standard output, and standard error

The following are the external files for standard input, standard output, and standard
error:

• stdin - standard input

• stdout - standard output

• stderr - standard error
M-68



RM A.10.7 Input-Output of Characters and Strings M

Implementation Advice M

A.10.7(23) The Get_Immediate procedures should be implemented with unbuffered input. For a
device such as a keyboard, input should be "available" if a key has already been
typed, whereas for a disk file, input should always be available except at end of file.
For a file associated with a keyboard-like device, any line-editing features of the
underlying operating system should be disabled during the execution of
Get_Immediate.

MAXAda follows this advice.

RM A.10.9 Input-Output for Real Types M

Implementation Permissions M

A.10.9(36) The accuracy of the value produced by Put

Values of type float have 6 digits of precision.

Values of type long_float have 15 digits of precision.

RM A.13 Exceptions in Input-Output M

Documentation Requirements M

A.13(15) The implementation shall document the conditions under which Name_Error,
Use_Error and Device_Error are propagated.

Name_Error

- When a null string is used to create a temporary file

- When mkfifo or open return ENOTDIR or ENOENT (i.e an invalid file-
name is provided to an "open" call)

Use_Error

- When mkfifo or open return an error other than ENOENT or ENOTDIR

- If status for the file cannot be obtained

- If a file is opened for writing but the opener does not have write access

- If a file is opened for reading but the opener does not have read access

- If the file cannot be opened for any reason

- If the supplied file descriptor for an open is invalid

- If a file is already open but the file position is unknown
M-69



MAXAda for Linux Reference Manual
- A semaphore used to control file_locking fails

- An invalid file descriptor is used in an attempt to close a file

- If an attempt is made to "put" a wide character when the
file_encoding mode prohibits it

- If a file name is reused in a form string

- If create and append are used in the same form string

- When one of owner, group or other is not used in association with create
in a form string

- If a null file or file_descriptor is passed to text_support.name

- If the file_structure form parameter is used without the create
parameter

- If the file_descriptor form parameter is used with the create
parameter

Device_Error

- If an error occurs while reading a file (other than EOF)

- If an error occurs opening or reading from a tty device

- If an fstat operation performed by a read, write or open call returns
an error status

RM A.15 The Package Command_Line M

A.15(1) The meaning of Argument_Count, Argument, and Command_Name

These functions are implemented as transformations of the standard C parameters,
argc and argv:

argument_count integer value of argc-1

argument string value of the argument argv[n]

command_name string value of argv[0]
M-70



RM Annex B: Interface to Other Languages M

RM B.1 Interfacing Pragmas M

MAXAda supports the Ada, Assembler,  and C conventions as required by RM B for
use in pragmas IMPORT, EXPORT, and CONVENTION.  MAXAda generally follows the
advice and recommendations of RM B for these conventions, as indicated in the following
sections."

MAXAda also supports the Unchecked_C  and Restricted_Fortran ,
Restricted_Gnu_Fortran conventions, as well as the internal conventions
Intrinsic, Protected, and Entry.

The COBOL and Fortran, and Restricted_Gnu_Fortran conventions are not sup-
ported in this implementation.

The implementation supports elaboration by a foreign language program in a slightly
more versatile manner than that specified in Ada 95 Reference Manual B.1(39).  See
“a.partition” on page 4-62 and “Elaboration and Finalization Methods” on page 3-16 for
more information.  

See also “Interface to Other Languages” on page 3-41.

Legality Rules M

B.1(11) Implementation-defined convention names

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Restricted_Gnu_Fortran

• Intrinsic

• Entry (internal use only)

• Protected (internal use only)

Static Semantics M

B.1(36) The meaning of link names

The link name passed to the system linker is identical to the Link_Name parameter
as specified in a pragma IMPORT or EXPORT.
M-71



MAXAda for Linux Reference Manual
B.1(36) The manner of choosing link names when neither the link name nor the addresses of
an imported or exported entity is specified

If a link name is not specified, then the link name is obtained according to the fol-
lowing rules for the specified conventions:

• Ada, Assembler, Intrinsic:

- If an external_name is specified, then the link name is obtained
by prepending a “A_” prefix to the reversed expanded_name
specified in the external_name string.  For example, an
external_name of “my_package.my_subprogram” will be
t r a n s f o r m e d  t o  a  l i n k  n a m e  o f
“A_my_subprogram.my_package”.

- If no external_name is specified, then the link name is obtained
b y  p r e p e n d i n g  "A_"  p r e f i x  t o  t h e  r e v e r s e d  f u l l y
expanded_name of the entity with implementation-defined
names inserted for unnamed constructs and overload resolu-
tion. 

• C and Unchecked_C:  

- If the external_name is specified, it is used verbatim as the link
name.

- If no external_name is specified, the entity’s simple Ada name
is used as the link name converted to lowercase.

• Restricted_Fortran: 

If the external_name is specified then:

- Any object where the external_name contains a ‘/’ will be
interpreted as a Fortran datapool element.  The link name is
obtained by appending two underscores after the datapool
name and by prepending a ‘$’ to the datapool element; i.e. an
external_name of “/dp/aa”  will be transformed to a link
name of “dp__$aa”.

- For a subprogram, the link name will be obtained by appending
an underscore to the external_name.

- For any other entity, if the external_name is the empty string,
"", the link name will be  _BLNK__.

- For any other entity, the link name will be obtained by append-
ing two underscores to the external_name.

If the external_name is not specified then:

- For a subprogram, the link name will be obtained by appending
an underscore to the entity's simple Ada name.

- For any other entity, the link name will be obtained by append-
ing two underscores to the entity's simple Ada name.

• Restricted_Gnu_Fortran:
M-72



If the external_name is specified then:

- If the external_name is the empty string, "", the link name will
be _BLNK__.

- If the external name contains an underscore, the link name will
be  ob ta ined  by  append ing  two  unde r sco res  t o  t he
external_name.

- For any other entity, the link name will be obtained by append-
ing an underscore to the external_name.

If the external_name is not specified then:

- If the entity's simple Ada name contains an underscore, the link
name will be obtained by appending two underscores to it.

- For any other entity, the link name will be obtained by append-
ing an underscore to the the entity's simple Ada name.

B.1(37) The effect of pragma Linker_Options

Pragma LINKER_OPTIONS has one required parameter, a string within quotes con-
taining the link options to be passed to the linker (a.link).  Multiple link options
within this string can be separated by spaces or tabs.  

Link options specified within a compilation unit via this pragma will be added to the
set of linker options for the resultant partition.  The ordering of link options within a
compilation unit will be preserved.  But the ordering of link options between units is
chosen arbitrarily.  Link options specified by this pragma within mulitiple compila-
tion units are arbitrarily combined and added to the set of link options for the result-
ant partition.  

Any conflicts (such as those between -trace/-notrace) will be resolved as nec-
essary.

Link options -bound, -multiplexed, -skipobscurity, -nosoclosure,
and -forgive are not supported by this pragma in this release of MAXAda.

See “Pragma LINKER_OPTIONS” on page M-118 for more details about this
pragma.

See “Link Options” on page 4-109 for more information about link options.

Implementation Advice M

B.1(39) If an implementation supports pragma Export to a given language, then it should
also allow the main subprogram to be written in that language. It should support
some mechanism for invoking the elaboration of the Ada library units included in
the system, and for invoking the finalization of the environment task. On typical sys-
tems, the recommended mechanism is to provide two subprograms whose link names
are "adainit" and "adafinal". Adainit should contain the elaboration code for
library units. Adafinal should contain the finalization code. These subprograms
should have no effect the second and subsequent time they are called.

MAXAda follows this advice with the following exceptions:
M-73



MAXAda for Linux Reference Manual
- The user is not forced to use the names adainit and adafinal
for the subprograms.  These names are user-configurable and are
specified at the time of partition creation.  The elaboration and final-
ization routines for these units may be called by the user.  Of course,
the user is free to choose the names adainit and adafinal.  

Optionally, the user may specify that these routines are automatically
called.  In this case, MAXAda will create elaboration and finalization
routines with internal names not available to the user.

See “a.partition” on page 4-62 and “Elaboration and Finalization
Methods” on page 3-16 for more information.

- Calling adainit and adafinal more than once is defined differ-
ently than described by the RM.  A second (or subsequent) call to
adainit will not generally cause the elaboration library units to be
elaborated.  It will, however, be remembered that the second (or sub-
sequent) call occurred.  Calls to adafinal will not have an effect
until it has been called an equal number of times as adainit was
called.  Calls to adainit after an effective call to adafinal will
cause re-elaboration to occur.  This results in nested elaboration/
finalization behavior.  For example, if the adainit and adafinal
routines are called as described below, only those marked as effec-
tive will actually elaborate or finalize library units:

         adainit        -- effective
            adainit
               adainit
               adafinal
               adainit
               adafinal
            adafinal
            adainit
               adainit
               adafinal
            adafinal
         adafinal       -- effective
         adainit        -- effective
            adainit
            adafinal
         adafinal       -- effective

See “Elaboration and Finalization Methods” on page 3-16 and “Linking Ada
Partitions into Applications with non-Ada Main Subprograms” on page 3-41
for more information.

B.1(40) Automatic elaboration of preelaborated packages should be provided when pragma
Export is supported.

MAXAda does not follow this advice.

B.1(41) For each supported convention L other than Intrinsic, an implementation should
support Import and Export pragmas for objects of L-compatible types and for sub-
programs, and pragma Convention for L-eligible types and for subprograms, pre-
M-74



suming the other language has corresponding features. Pragma Convention need not
be supported for scalar types.

MAXAda supports the IMPORT, EXPORT, and CONVENTION pragmas for each of
the supported conventions with the following restrictions applicable to all conven-
tions:

- It is illegal to apply more than one of the interfacing pragmas to an
entity.

- The EXPORT pragma cannot be applied to a local_name that  is
ambiguous.

- The IMPORT, EXPORT and CONVENTION pragma cannot be applied
to formal parameters.

- The IMPORT and EXPORT pragma cannot be applied to components.

In addition, the following restrictions apply specifically to each of the conventions
listed below:

• Ada

- The EXPORT and CONVENTION pragmas can only be applied
to subprograms that are declared at the library level.

• Assembler

- The EXPORT and CONVENTION pragmas can only be applied
to subprograms that are declared at the library level.

• C

- The EXPORT and CONVENTION pragma are disallowed for
subprograms containing unconstrained array formals and/or
result types. 

- The IMPORT, EXPORT, and CONVENTION pragmas are disal-
lowed for functions returning an array type.

- The EXPORT and CONVENTION pragma can only be applied
to subprograms that are declared at the library level.

- The IMPORT, EXPORT and CONVENTION pragmas are disal-
lowed for subprograms containing by-refence record formals
of mode in or by-reference record return types.

- Private and incomplete types whose full type is not visible are
not considered C-compatible. 

In addition, only the types listed below are considered to be C-compatible:

- Scalar types with the exception of  fixed-point types.

- System.Address and its derivatives.

- Array types with an unconstrained or a statically-constrained
first subtype,  if its component type is C-compatible.
M-75



MAXAda for Linux Reference Manual
- Non-tagged  record types having components with statically-
constrained subtypes, if each component type is C-compatible.

- Access-to-object type, if its designated type is C-compatible. 

- Access-to-subprogram type, if its designated profile’s parame-
ter and result types are all C-compatible. 

- A type derived from a C-compatible type.

If a C declaration contains an ellipsis, pragma IMPORT_AUX must be speci-
fied with Ellipsis_after to ensure correct operation on all architectures
(see “Pragma IMPORT_AUX” on page M-114).

• Unchecked_C

- No additional restrictions.

If a C declaration contains an ellipsis, pragma IMPORT_AUX must be speci-
fied with Ellipsis_after to ensure correct operation on all architectures
(see “Pragma IMPORT_AUX” on page M-114).

See Notes on page M-79 for more information about Unchecked_C.

• Restricted_Fortran and Restricted_Gnu_Fortran

- Private and incomplete types whose full type is not visible are
not considered Restricted_Fortran-compatible.

- The EXPORT and CONVENTION pragma can only be applied
to subprograms that are declared at the library level.

Only the types listed below are considered Restricted_Fortran compat-
ible:

- Types declared in Interfaces.Restricted_Fortran
and their derivatives.

- System.Address and its derivatives.

- Standard.Integer and its derivatives.

- Standard.Long_Integer and its derivatives. (AMD64
only)

S e e  Notes  o n  p a g e  M -8 0  f o r  m o r e  i n f o r m a t i o n  a b o u t
Restricted_Fortran.

RM B.2 The Package Interfaces M

B.2(1) The contents of the visible part of package Interfaces and its language-defined
descendants

The following files contain the package Interfaces and its language-defined
descendants.  They can be found in /usr/ada/rel_name/predefined (where
rel_name is the name of the MAXAda release).
M-76



• Interfaces.a

• Interfaces.C.a  

• Interfaces.C.Pointers.a  

• Interfaces.C.Strings.a

Implementation Permissions M

B.2(11) Implementation-defined children of package Interfaces.  The contents of the visible
part of package Interfaces

The implementation-defined children of package Interfaces are:

• Interfaces.Restricted_Fortran.a

• Interfaces.Restricted_Gnu_Fortran.a

• Interfaces.Unchecked_C.a

The contents of the visible part of package Interfaces can be found in /usr/
ada/rel_name/predefined/interfaces.a (where rel_name is the name of
the MAXAda release).

Implementation Advice M

B.2(12) For each implementation-defined convention identifier, there should be a child pack-
age of package Interfaces with the corresponding name. This package should contain
any declarations that would be useful for interfacing to the language (implementa-
tion) represented by the convention. Any declarations useful for interfacing to any
language on the given hardware architecture should be provided directly in Inter-
faces.

MAXAda provides the implementation-defined packages:

• Interfaces.Restricted_Fortran

• Interfaces.Restricted_Gnu_Fortran

• Interfaces.Unchecked_C

MAXAda does not provide a child package of package Interfaces for the con-
vention identifier Assembler.

B.2(13) An implementation supporting an interface to C, COBOL, or Fortran should pro-
vide the corresponding package or packages described in the following clauses.

MAXAda follows this advice.

RM B.3 Interfacing with C M

Implementation Advice M

B.3(63) An implementation should support the following interface correspondences between
Ada and C.
M-77



MAXAda for Linux Reference Manual
B.3(64) An Ada procedure corresponds to a void-returning C function.

MAXAda follows this advice.

B.3(65) An Ada function corresponds to a non-void C function.

MAXAda follows this advice.

B.3(66) An Ada in scalar parameter is passed as a scalar argument to a C function.

MAXAda follows this advice.

An Ada in scalar parameter is passed by value. Some types may have to be
promoted when they are passed to a C function. 

Discrete types whose size is smaller than Standard.Integer are pro-
moted to Standard.Integer. For example, Interfaces.C.Short is
promoted to Standard.Integer.

B.3(67) An Ada in parameter of an access-to-object type with designated type T is
passed as a t* argument to a C function, where t is the C type corresponding to
the Ada type T.

MAXAda follows this advice.

B.3(68) An Ada access T parameter, or an Ada out or in out parameter of an elemen-
tary type T, is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T. In the case of an elementary out or in out
parameter, a pointer to a temporary copy is used to preserve by-copy seman-
tics.

MAXAda follows this advice.

B.3(69) An Ada parameter of a record type T, of any mode, is passed as a  t* argument
to a C function, where t is the C struct corresponding to the Ada type T.

MAXAda does not follow this advice.

MAXAda implements this in the following manner:

• An Ada parameter of a record type T, of mode out or in out, is
passed as a t* argument to a C function, where t is the C struct
corresponding to the Ada type T. 

B.3(70) An Ada parameter of an array type with component type T, of any mode, is
passed as a t* argument to a C function, where t is the C type corresponding to
the Ada type T.

MAXAda follows this advice.

B.3(71) An Ada parameter of an access-to-subprogram type is passed as a  pointer to a
C function whose prototype corresponds to the designated subprogram's speci-
fication.

MAXAda follows this advice.
M-78



Notes M

Additional conventions are as follows:

C 

Parameter passing conventions:

• System.Address and its derivatives are passed by value.

Return conventions:

• Elementary types are returned by value.

• Composite types are returned by copying the contents of the compos-
ite object to the address passed in by the caller as the dummy first
argument.

Unchecked_C

Same as the C convention for C-compatible entities.  All other entities are handled as
by the Ada convention.  Exceptions to non C-compatible entities being passed as by
the Ada convention are listed below:

• Records and arrays are passed by reference; however, no additional
information (ie. dope vectors and constraint flags) is passed.

See B(1).41 on page M-74 for more information about Unchecked_C as well as
other conventions.

RM B.4 Interfacing with COBOL M

Static Semantics M

B.4(50) The types Floating, Long_Floating, Binary, Long_Binary, Decimal_Element, and
COBOL_Character; and the initializations of the variables Ada_To_COBOL and
COBOL_To_Ada, in Interfaces.COBOL

Interfaces.COBOL is not supported by MAXAda.

RM B.5 Interfacing with Fortran M

Implementation Advice M

B.5(22) An Ada implementation should support the following interface correspondences
between Ada and Fortran:

B.5(23) An Ada procedure corresponds to a Fortran subroutine.

MAXAda does not support the Fortran convention in the current release.

B.5(24) An Ada function corresponds to a Fortran function.
M-79



MAXAda for Linux Reference Manual
MAXAda does not support the Fortran convention in the current release.

B.5(25) An Ada parameter of an elementary, array, or record type T is passed as a Tf
argument to a Fortran procedure, where Tf  is the Fortran type corresponding
to the Ada type T, and where the INTENT attribute of the corresponding
dummy argument matches the Ada formal parameter mode; the Fortran
implementation's parameter passing conventions are used.  For elementary
types, a local copy is used if necessary to ensure by-copy semantics.

MAXAda does not support the Fortran convention in the current release.

B.5(26) An Ada parameter of an access-to-subprogram type is passed as a reference to
a Fortran procedure whose interface corresponds to the designated subpro-
gram's specification.

MAXAda does not support the Fortran convention in the current release.

Notes M

Additional conventions not listed above are as follows:

Restricted_Fortran

• All Restricted_Fortran compatible entities are passed by
value.

See B(1).41 on page M-74 for more information about Restricted_Fortran as
well as other conventions.

Restricted_Gnu_Fortran

• All Restricted_Gnu_Fortran compatible entities are passed
by value.

S e e  B ( 1 ) . 4 1  o n  p a g e  M -7 4  f o r  m o r e  i n f o r m a t i o n  a b o u t
Restricted_Gnu_Fortran as well as other conventions.
M-80



RM Annex C: Systems Programming M

RM C.1 Access to Machine Operations M

C.1(1) Support for access to machine instructions

Support for access to machine instructions is provided through the Sys-
tem.Machine_Code package in the predefined environment.

Implementation Advice M

C.1(3) The machine code or intrinsics support should allow access to all operations nor-
mally available to assembly language programmers for the target environment,
including privileged instructions, if any.

A list of these instructions may be found in the System.Machine_Code package
defined in:  

/usr/ada/rel/predefined/system.machine_code.a

C.1(4) The interfacing pragmas (see Annex B) should support interface to assembler; the
default assembler should be associated with the convention identifier Assembler.

MAXAda follows this advice.

C.1(5) If an entity is exported to assembly language, then the implementation should allo-
cate it at an addressable location, and should ensure that it is retained by the linking
process, even if not otherwise referenced from the Ada code.  The implementation
should assume that any call to a machine code or assembler subprogram is allowed
to read or update every object that is specified as exported.

MAXAda follows this advice.

Documentation Requirements M

C.1(6) The implementation shall document the overhead associated with calling machine-
code or intrinsic subprograms, as compared to a fully-inlined call, and to a regular
out-of-line call.

This information has not yet been documented.

C.1(7) The implementation shall document the types of the package System.Machine_Code
usable for machine code insertions, and the attributes to be used in machine code
insertions for references to Ada entities.

C.1(8) The implementation shall document the subprogram calling conventions associated
with the convention identifiers available for use with the interfacing pragmas (Ada
and Assembler, at a minimum), including register saving, exception propagation,
parameter passing, and function value returning.

This information has not yet been documented.

C.1(9) Implementation-defined aspects of access to machine operations
M-81



MAXAda for Linux Reference Manual
This information has not yet been documented.

Implementation Advice M

C.1(10) The implementation should ensure that little or no overhead is associated with call-
ing intrinsic and machine-code subprograms.

MAXAda follows this advice.

C.1(11) It is recommended that intrinsic subprograms be provided for convenient access to
any machine operations that provide special capabilities or efficiency and that are
not otherwise available through the language constructs.  Examples of such instruc-
tions include:

C.1(12) Atomic read-modify-write operations -- e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.

MAXAda provides the ccur.indivisible_operations package in the
vendorlib environment which contains the following subprograms:

test_and_set
fetch_and_store
fetch_and_add
fetch_and_increment
increment
decrement

C.1(13) Standard numeric functions -- e.g., sin, log.

MAXAda does not supply any intrinsic subprograms for convenient access to
standard numeric functions.

C.1(14) String manipulation operations -- e.g., translate and test.

MAXAda does not supply any intrinsic subprograms for convenient access to
string manipulation operations.

C.1(15) Vector operations -- e.g., compare vector against thresholds.

MAXAda does not supply any intrinsic subprograms for convenient access to
vector operations.

C.1(16) Direct operations on I/O ports.

MAXAda does not supply any intrinsic subprograms for convenient access to
direct operations on I/O ports.

RM C.3 The Package Interrupts M

Dynamic Semantics M

C.3(2) Implementation-defined aspects of interrupts
M-82



MAXAda supports two forms of interrupts: software and hardware.  Software inter-
rupts are operating system signals (see sigaction(2)).  Hardware interrupts are
machine-generated interrupts from devices such as real-time clocks, edge triggered
devices, etc.  Hardware interrupts are identified by names in the Ada.Inter-
rupts.Names package.

Consult the user-defined package Ada.Interrupts.Services and Chapter 7 -
Interrupt Handling for important information on using interrupts.

Documentation Requirements M

C.3(12) The implementation shall document the following items:

C.3(13) For each interrupt, which interrupts are blocked from delivery when a handler
attached to that interrupt executes (either as a result of an interrupt delivery or
of an ordinary call on a procedure of the corresponding protected object).

See Chapter 7 - Interrupt Handling.

C.3(14) Any interrupts that cannot be blocked, and the effect of attaching handlers to
such interrupts, if this is permitted.

All interrupts that can be attached can be blocked.  See Chapter 7 - Interrupt
Handling.

C.3(15) Which run-time stack an interrupt handler uses when it executes as a result of
an interrupt delivery; if this is configurable, what is the mechanism to do so;
how to specify how much space to reserve on that stack.

The run-time stack for the COURIER or INTR_COURIER task associated
with the attached interrupt.  The size of the stack for such tasks can be
adjusted by the user via application of pragma POOL_SIZE.  See “Pragma
POOL_SIZE” on page 6-26.

C.3(16) Any implementation- or hardware-specific activity that happens before a user-
defined interrupt handler gets control (e.g., reading device registers, acknowl-
edging devices).

See Chapter 7 - Interrupt Handling.

C.3(17) Any timing or other limitations imposed on the execution of  interrupt han-
dlers.

No limitations are imposed for software interrupt handlers.

Severe limitations are imposed for hardware interrupt handlers operating in
restricted mode.  See Chapter 7 - Interrupt Handling.

C.3(18) The state (blocked/unblocked) of the non-reserved interrupts when the pro-
gram starts; if some interrupts are unblocked, what is the mechanism a pro-
gram can use to protect itself before it can attach the corresponding handlers.

For software interrupts, all non-reserved signals are blocked for all tasks
(including the ENVIRONMENT task).
M-83



MAXAda for Linux Reference Manual
For hardware interrupts, no interrupts are blocked, however, no hardware
interrupts are ever delivered to a program unless the program has an attach-
ment to them.  Hardware interrupts can be restricted to specific CPUs in some
machine configurations.  

C.3(19) Whether the interrupted task is allowed to resume execution before the inter-
rupt handler returns.

Tasks which are preempted by an interrupt may resume execution before the
interrupt handler returns if sufficient system resources are available.  Tasks
which are interrupted (in the sense that an interrupt causes them to execute
code they would not otherwise execute) will notify the appropriate implemen-
tation-defined COURIER task and then resume execution based on system
resources and priority.  See Chapter 7 - Interrupt Handling for more informa-
tion.

C.3(20) The treatment of interrupt occurrences that are generated while the interrupt
is blocked; i.e., whether one or more occurrences are held for later delivery, or
all are lost.

See Chapter 7 - Interrupt Handling for more information.

C.3(21) Whether predefined or implementation-defined exceptions are raised as a
result of the occurrence of any interrupt, and the mapping between the
machine interrupts (or traps) and the predefined exceptions.

No exceptions are raised upon occurence of a non-reserved interrupt.  The
reserved interrupts, SIGFPE  and SIGSEGV,  cause the exceptions
Constraint_Error and Storage_Error to be raised, respectively.

C.3(22) On a multi-processor, the rules governing the delivery of an interrupt to a par-
ticular processor.

For software interrupts, the processor affected is the processor which is run-
ning the task to be interrupted.

For hardware interrupts, the system configuration defines which processor is
interrupted.  

Implementation Advice M

C.3(28) If the Ceiling_Locking policy is not in effect, the implementation should provide
means for the application to specify which interrupts are to be blocked during pro-
tected actions, if the underlying system allows for a finer-grain control of interrupt
blocking.

The CEILING_LOCKING policy is the only locking policy currently supported.
M-84



RM C.3.1 Protected Procedure Handlers M

Implementation Advice M

C.3.1(20) Whenever possible, the implementation should allow interrupt handlers to be called
directly by the hardware.

There are no facilities for user programs to directly handle hardware interrupts
under Linux.  The INTR_COURIER tasks block in ioctl calls waiting for the cor-
responding kernel device driver to notify them when an interrupt occurs.

C.3.1(21) Whenever practical, the implementation should detect violations of any implementa-
tion-defined restrictions before run time.

MAXAda generally does not follow this advice.  

RM C.3.2 The Package Interrupts M

Documentation Requirements M

C.3.2(24) If the Ceiling_Locking policy (see D.3) is in effect the implementation shall document
the default ceiling priority assigned to a protected object that contains either the
Attach_Handler or Interrupt_Handler pragmas, but not the Interrupt_Priority
pragma.  This default need not be the same for all interrupts.

The ceil ing priority for protected objects with ATTACH_HANDLER  or
INTERRUPT_HANDLER pragmas but not INTERRUPT_PRIORITY pragma is
System.Interrupt_Priority’First.

Implementation Advice M

C.3.2(25) If implementation-defined forms of interrupt handler procedures are supported,
such as protected procedures with parameters, then for each such form of a handler,
a type analogous to Parameterless_Handler should be specified in a child package of
Interrupts, with the same operations as in the predefined package Interrupts.

MAXAda does not provide implementation-defined forms of protected procedure
handlers.

RM C.4 Preelaboration Requirements M

Documentation Requirements M

C.4(12) The implementation shall document any circumstances under which the elaboration
of a preelaborated package causes code to be executed at run time.

Preelaboration is not fully implemented in this release of MAXAda.  Specific docu-
mentation on when code is generated for Preelaborated packages is not currently
available. Generally, application of pragma Preelaborate does not affect whether
code is generated for the elaboration of such packages.  However, MAXAda adheres
M-85



MAXAda for Linux Reference Manual
to all legality rules for this pragma and elaborates all "preelaborated" packages
before any other packages.

C.4(13) Implementation-defined aspects of preelaboration

Preelaboration is not fully implemented in this release of MAXAda.

Implementation Advice M

C.4(14) It is recommended that preelaborated packages be implemented in such a way that
there should be little or no code executed at run time for the elaboration of entities
not already covered by the Implementation Requirements.

MAXAda does not follow this advice.

RM C.5 Pragma Discard_Names M

Static Semantics M

C.5(7) The semantics of pragma Discard_Names

In the current release of MAXAda, pragma DISCARD_NAMES does not reduce the
storage of entities to which it is applied.  Therefore, the semantics of the various
a t t r i b u t e s  a n d  f u n c t i o n s  (’Wide_Image ,  ’Wide_Value ,
Text_IO.Enumeration_IO,  Tags.Expanded_Name,  and Excep-
tions.Exception_Name) are the same as if the pragma had not been applied.

Implementation Advice M

C.5(8) If the pragma applies to an entity, then the implementation should reduce the
amount of storage used for storing names associated with that entity.

MAXAda does not follow this advice.  In the current release of MAXAda, pragma
DISCARD_NAMES does not reduce the storage of entities to which it is applied.

RM C.7.1 The Package Task_Identification M

Dynamic Semantics M

C.7.1(7) The result of the Task_Identification.Image attribute

For an actual parameter which is a non-null Task_ID obtained from:

• a task object declared by a single_task_declaration:

Image returns the defining_identifier that appears in the corresponding
single_task_declaration.

• a stand-alone variable or constant of a task subtype:
M-86



Image  re turns  the  def in ing_ident i f ie r  f rom the  corresponding
object_declaration.

• any other expression of a task subtype (after any implicit derefer-
ence):

Image  re turns  the  def in ing_ident i f ie r  f rom the  corresponding
task_type_declaration.

A  Task_ID  i s  o b t a i n e d  f r o m  a  t a s k  u s i n g  t h e
Ada.Task_Identification.Current_Task function, or by applying the
'Identity attribute to the task object.

Bounded (Run-Time) Errors M

C.7.1(17) The value of Current_Task when in a protected entry or interrupt handler

Current_Task returns the task ID of whatever task is actually executing the pro-
tected entry at the time of the call (this is not necessarily the task which made the
entry call).

Current_Task returns Null_Task_ID when called from a protected procedure
interrupt handler (during the execution of the interrupt).

Documentation Requirements M

C.7.1(19) The effect of calling Current_Task from an entry body or interrupt handler

Calling Current_Task from an entry body returns the task ID associated with the
task actually executing the entry body (this is not necessarily the task which made
the associated entry call).

Calling Current_Task from a protected procedure interrupt handler results in the
value Null_Task_ID being returned (during the execution of the interrupt).

RM C.7.2 The Package Task_Attributes M

Documentation Requirements M

C.7.2(18) The implementation shall document the limit on the number of attributes per task, if
any, and the limit on the total storage for attribute values per task, if such a limit
exists.

There are no limits on the number of attributes per task or the total storage for
attributes values per task.

C.7.2(19) In addition, if these limits can be configured, the implementation shall document how
to configure them (Implementation-defined aspects of Task_Attributes)

There are no such limits.
M-87



MAXAda for Linux Reference Manual
Implementation Advice M

C.7.2(30) Some implementations are targeted to domains in which memory use at run time
must be completely deterministic.  For such implementations, it is recommended that
the storage for task attributes will be pre-allocated statically and not from the heap.
This can be accomplished by either placing restrictions on the number and the size of
the task's attributes, or by using the pre-allocated storage for the first N attribute
objects, and the heap for the others.  In the latter case, N should be documented.

MAXAda currently uses dynamic heap allocation for the implementation of task
attributes.
M-88



RM Annex D: Real-Time Systems M

Metrics M

D(2) Values of all Metrics

The metrics as required by Annex D are not available at the time of this release of
MAXAda.

RM D.1 Task Priorities M

Static Semantics M

D.1(11) The declarations of Any_Priority and Priority

The following declarations appear in package System:

subtype any_priority is integer      range   0..98 ;
subtype priority     is any_priority range   0..100 ;

Dynamic Semantics M

D.1(15) Implementation-defined execution resources

RM D.2.1 The Task Dispatching Model M

Dynamic Semantics M

D.2.1(3) Whether, on a multiprocessor, a task that is waiting for access to a protected object
keeps its processor busy

This depends on the locking policy in use.  The only available locking policy in this
release is CEILING_LOCKING.  A task with this locking policy that is waiting for
access to a protected object keeps its processor busy. 

Implementation Permissions M

D.2.1(9) The affect of implementation defined execution resources on task dispatching

RM D.2.2 The Standard Task Dispatching Policy M

Legality Rules M

D.2.2(3) Implementation-defined policy_identifiers allowed in a pragma
Task_Dispatching_Policy
M-89



MAXAda for Linux Reference Manual
T h e  f o l l o w i n g  p o l i c y_identifiers  a r e  v a l i d  f o r  p r a g m a
task_dispatching_policy:

• DEFAULT

• FIFO_WITHIN_PRIORITIES

• ROUND_ROBIN_PRIORITIES

• ROUND_ROBIN_ADJUSTABLE_PRIORITIES

See “Pragma TASK_DISPATCHING_POLICY” on page 6-2 for a detailed descrip-
tion of these policy identifiers.

Documentation Requirements M

D.2.2(14) Priority inversion is the duration for which a task remains at the head of the highest
priority ready queue while the processor executes a lower priority task.  The imple-
mentation shall document:

D.2.2(15) The maximum priority inversion a user task can experience due to activity of
the implementation (on behalf of lower priority tasks), and

D.2.2(16) Implementation-defined aspects of priority inversion

Documentation on priority inversion durations is not yet availble.

Implementation Permissions M

D.2.2(18) Implementation defined task dispatching

RM D.3 Priority Ceiling Locking M

Legality Rules M

D.3(4) Implementation-defined policy_identifiers allowed in a pragma Locking_Policy

The following policy_identifiers are valid for pragma LOCKING_POLICY:

• CEILING_LOCKING

• SLEEPY_CEILING_LOCKING - (not yet implemented)

• SLEEPY_INHERITANCE_LOCKING - (not yet implemented)

See “Pragma LOCKING_POLICY” on page 6-3 for a detailed description of these
policy identifiers.

Dynamic Semantics M

D.3(10) Default ceiling priorities

The default ceiling priority is Interrupt_Priority’First.
M-90



Implementation Permissions M

D.3(16) The ceiling of any protected object used internally by the implementation

This is not applicable to MAXAda.

Implementation Advice M

D.3(17) The implementation should use names that end with ``_Locking'' for implementa-
tion-defined locking policies.

The following policy_identifiers are valid for pragma LOCKING_POLICY:

• CEILING_LOCKING

• SLEEPY_CEILING_LOCKING - (not yet implemented)

• SLEEPY_INHERITANCE_LOCKING - (not yet implemented)

RM D.4 Entry Queuing Policies M

D.4(1) Implementation-defined queuing policies

MAXAda supports only those queuing policies as defined by the Ada 95 Reference
Manual.  They are:

• FIFO_QUEUING

• PRIORITY_QUEUING

These are defined in the Ada 95 Reference Manual, Section D.4.  The default is
FIFO_QUEUING.

There are no other implementation-defined queuing policies.

Implementation Advice M

D.4(16) The implementation should use names that end with ``_Queuing'' for implementa-
tion-defined queuing policies.

MAXAda follows this advice.

RM D.6 Preemptive Abort M

Documentation Requirements M

D.6(3) On a multiprocessor, any conditions that cause the completion of an aborted con-
struct to be delayed later than what is specified for a single processor

Documentation on preemptive abort is not yet available.
M-91



MAXAda for Linux Reference Manual
Implementation Advice M

D.6(9) Even though the abort_statement is included in the list of potentially blocking opera-
tions (see 9.5.1), it is recommended that this statement be implemented in a way that
never requires the task executing the abort_ statement to block.

D.6(10) On a multi-processor, the delay associated with aborting a task on another processor
should be bounded; the implementation should use periodic polling, if necessary, to
achieve this.

RM D.7 Tasking Restrictions M

Static Semantics M

D.7(8) Any operations that implicitly require heap storage allocation

MAXAda performs dynamic implicit heap allocations for the following operations:

• creation of a task, or object of a type with task parts

• creation of a protected object, or object of a type with protected parts

• creation of an object with controlled parts

• creation of a package body stub

• elaboration of a package instance whose corresponding generic is not
declared within the same compilation unit as the instance or is sepa-
rate

• elaboration of an instance of Ada.Task_Attributes

• elaboration of a shared instance whose generic environment (the
memory space containing information required to differentiate a
shared instance from other shared instances of the same generic) is
larger than 51.2 Kb.  See “Pragma SHARE_BODY” on page M-127.

• call to the function Ada.Exceptions.Save_Occurrence (but
not the procedure)

• elaboration of a master, other than that associated with the ENVI-
RONMENT task, which contains any of the following declarations:

- access type

- separate body

- instance whose corresponding generic is not declared within
the same compilation unit as the instance or is separate

• any of the following operations performed at library-level (i.e. any
operation not performed within a subprogram or task):

- creation of an object of a dynamically constrained type

- conversion of a value of a dynamically constrained type
M-92



- string catenation producing a dynamically constrained result

- non-string catenation

- logical or "not" operator expression involving dynamically
constrained arrays of booleans

- copy of a dynamically sized bit-aligned actual used for param-
eter passing

- copy of a dynamically sized atomic actual whose correspond-
ing formal type is not atomic (see RM C.6(19))

- call of an ’Input attribute whose prefix is a composite type

- call of an instance of Ada.Unchecked_Conversion with a
dynamically constrained target type

- elaboration of a ’Storage_Size representation clause

Dynamic Semantics M

D.7(20) Implementation-defined aspects of pragma Restrictions

The effects of the use of pragma RESTRICTIONS are described in the section titled
“Pragma RESTRICTIONS” on page M-126.

Implementation Advice M

D.7(21) When feasible, the implementation should take advantage of the specified restric-
tions to produce a more efficient implementation.

The specified restrictions have no effect upon the run-time in this release.  A future
release will optimize the run-time based upon which restrictions are present.  

RM D.8 Monotonic Time M

Static Semantics M

D.8(17) Implementation-defined aspects of package Real_Time

Most of the implementation-defined aspects are dependent on the speed of the spe-
cific system.

The following table provides a representative example of a Pentium system:

Aspect Pentium AMD64

Time_Unit 0.4 ns 0.5 ns

Tick 0.4 ns 0.5 ns

Time_Span_First
Time_First

-3.8E+09 sec -4.6E+09 sec
M-93



MAXAda for Linux Reference Manual
The  above  imp lemen ta t i on -de f ined  i t ems  a r e  dec l a r ed  in  package
Ada.Real_Time.

Documentation Requirements M

D.8(33) The implementation shall document the values of Time_First, Time_Last,
Time_Span_First, Time_Span_Last, Time_Span_Unit, and Tick.

On Pentium, all of the following values are internally represented using a record
which emulates a signed 64-bit integer number of machine clock ticks:

Time_First := (low => 0, high => -2**31)
Time_Last := (low => 2**32-1, high => 2**31-1)
Time_Span_First := (low => 0, high => -2**31)
Time_Span_Last := (low => 2**32-1, high => 2**31-1)
Time_Span_Zero := (low => 0, high => 0)
Time_Span_Unit := (low => 1, high => 0)
Tick := (low => 1, high => 0)

On AMD64, all of the following values are internally represented using a 64-bit
integer number of machine clock ticks:

Time_First      := -2**63
Time_Last       := 2**63-1
Time_Span_First := -2**63
Time_Span_Last  := 2**63-1
Time_Span_Zero  := 0
Time_Span_Unit  := 1
Tick            := 1

D.8(34) The implementation shall document the properties of the underlying time base used
for the clock and for type Time, such as the range of values supported and any rele-
vant aspects of the underlying hardware or operating system facilities used.

Time_Span_Last
Time_Last

3.8E+09 sec 4.6E+09 sec

Clock Jump 46 ns 16.06 ns

Epoch 4/25/2003@00:00:00 4/25/2003@00:00:00

Years Representable 1856 .. 2150 1881 .. 2125

System Type Time Source

iHawk series Time Stamp Counter (TSC)
register

Aspect Pentium AMD64
M-94



D.8(35) The implementation shall document whether or not there is any synchronization
with external time references, and if such synchronization exists, the sources of syn-
chronization information, the frequency of synchronization, and the synchronization
method applied.

The clock base is zeroed upon system power up and is not synchronized subse-
quently.

D.8(36) The implementation shall document any aspects of the the external environment that
could interfere with the clock behavior as defined in this clause.

There are no known aspects of the external environment that could interfere with
clock behavior.

Implementation Advice M

D.8(47) When appropriate, implementations should provide configuration mechanisms to
change the value of Tick.

It is not appropriate to change the value of Tick; as such, no mechanism is pro-
vided to do that.

D.8(48) It is recommended that Calendar.Clock and Real_Time.Clock be implemented as
transformations of the same time base.

Calendar.Clock is implemented as a set of transformations of the underlying
time base for Ada.Real_Time.clock.

D.8(49) It is recommended that the "best" time base which exists in the underlying system be
available to the application through Clock.  "Best" may mean highest accuracy or
largest range.

The time base (as shown in the table under D.8(34)) is the "best" time base which
exists in the underlying hardware.  It has both the highest accuracy and the largest
range of any time base available on the system.

RM D.9 Delay Accuracy M

Documentation Requirements M

D.9(7) The implementation shall document the minimum value of the delay expression of a
delay_relative_statement that causes the task to actually be blocked.

D.9(8) Implementation-defined aspects of delay_statements

RM D.12 Other Optimizations and Determinism Rules M

Documentation Requirements M

D.12(5) The upper bound on the duration of interrupt blocking caused by the implementa-
tion
M-95



MAXAda for Linux Reference Manual
RM Annex G: Numerics M

Implementation Advice M

G(7) If Fortran (respectively, C) is widely supported in the target environment, implemen-
tations supporting the Numerics Annex should provide the child package Inter-
faces.Fortran (respectively, Interfaces.C) specified in Annex B and should support a
convention_identifier of Fortran (respectively, C) in the interfacing pragmas (see
Annex B), thus allowing Ada programs to interface with programs written in that
language.

Interfaces.C is supplied by MAXAda.  Accordingly, the convention_identifier
C is supported by the interfacing pragmas.

RM G.1 Complex Arithmetic M

G.1(1) The accuracy actually achieved by the complex elementary functions and by other
complex arithmetic operations

MAXAda does not provide complex arithmetic packages in this release.

RM G.1.1 Complex Types M

Implementation Requirements M

G.1.1(53) The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

G.1.1(56) Because the usual mathematical meaning of multiplication of a complex operand and
a real operand is that of the scaling of both components of the former by the latter, an
implementation should not perform this operation by first promoting the real oper-
and to complex type and then performing a full complex multiplication.  In systems
that, in the future, support an Ada binding to IEC 559:1989, the latter technique will
not generate the required result when one of the components of the complex operand
is infinite. (Explicit multiplication of the infinite component by the zero component
obtained during promotion yields a NaN that propagates into the final result.)  Anal-
ogous advice applies in the case of multiplication of a complex operand and a pure-
imaginary operand, and in the case of division of a complex operand by a real or
pure-imaginary operand.

MAXAda does not provide complex arithmetic packages in this release.

G.1.1(57) Likewise, because the usual mathematical meaning of addition of a complex operand
and a real operand is that the imaginary operand remains unchanged, an implemen-
tation should not perform this operation by first promoting the real operand to com-
M-96



plex type and then performing a full complex addition.  In implementations in which
the Signed_Zeros attribute of the component type is True (and which therefore con-
form to IEC 559:1989 in regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not generate the required result
when the imaginary component of the complex operand is a negatively signed zero.
(Explicit addition of the negative zero to the zero obtained during promotion yields a
positive zero.)  Analogous advice applies in the case of addition of a complex operand
and a pure-imaginary operand, and in the case of subtraction of a complex operand
and a real or pure-imaginary operand.

MAXAda does not provide complex arithmetic packages in this release.

G.1.1(58) Implementations in which Real'Signed_Zeros is True should attempt to provide a
rational treatment of the signs of zero results and result components.  As one exam-
ple, the result of the Argument function should have the sign of the imaginary com-
ponent of the parameter X when the point represented by that parameter lies on the
positive real axis; as another, the sign of the imaginary component of the
Compose_From_Polar function should be the same as (resp., the opposite of) that of
the Argument parameter when that parameter has a value of zero and the Modulus
parameter has a nonnegative (resp., negative) value.

MAXAda does not provide complex arithmetic packages in this release.

RM G.1.2 Complex Elementary Functions M

Implementation Requirements M

G.1.2(45) The sign of a zero result (or a component thereof) from any operator or function in
N u m e r i c s . G e n e r i c _ C o m p l e x _ El em e n t a ry _ F u n c t i o n s ,  w h e n
Complex_Types.Real’Signed_Zeros is True

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

G.1.2(49) Implementations in which Complex_Types.Real'Signed_Zeros is True should
attempt to provide a rational treatment of the signs of zero results and result compo-
nents.  For example, many of the complex elementary functions have components
that are odd functions of one of the parameter components; in these cases, the result
component should have the sign of the parameter component at the origin.  Other
complex elementary functions have zero components whose sign is opposite that of a
parameter component at the origin, or is always positive or always negative.

MAXAda does not provide complex arithmetic packages in this release.

RM G.2 Numeric Performance Requirements M

Implementation Permissions M

G.2(2) Whether the strict mode or the relaxed mode is the default
M-97



MAXAda for Linux Reference Manual
MAXAda uses the relaxed mode as the default.

RM G.2.1 Model of Floating Point Arithmetic M

Implementation Requirements M

G.2.1(10) The result interval in certain cases of fixed-to-float conversion

MAXAda does not support smalls that are not a power of 2 (T’Machine_Radix)
so there are no implementation-defined result intervals.

G.2.1(13) The result of a floating point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda since Machine_Overflows is always True.

Implementation Permissions M

G.2.1(16) The result interval for division (or exponentiation by a negative exponent), when the
floating point hardware implements division as multiplication by a reciprocal

This is not applicable to MAXAda.  Floating point division is based on exponent
subtraction and division of significands.

RM G.2.3 Model of Fixed Point Arithmetic M

Implementation Requirements M

G.2.3(5) The definition of close result set, which determines the accuracy of certain fixed
point multiplications and divisions

G.2.3(22) Conditions on a universal_real operand of a fixed point multiplication or division for
which the result shall be in the perfect result set

G.2.3(27) The result of a fixed point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda since machine_overflows is always True.

RM G.2.4 Accuracy Requirements for the Elementary Functions M

G.2.4(4) The result of an elementary function reference in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda since machine_overflows is always True.

G.2.4(10) The value of the angle threshold, within which certain elementary functions, complex
arithmetic operations, and complex elementary functions yield results conforming to
a maximum relative error bound
M-98



The accuracy of certain elementary functions for parameters beyond the angle
threshold

Implementation Advice M

G.2.4(19) The versions of the forward trigonometric functions without a Cycle parameter
should not be implemented by calling the corresponding version with a Cycle param-
eter of 2.0*Numerics.Pi, since this will not provide the required accuracy in some
portions of the domain.  For the same reason, the version of Log without a Base
parameter should not be implemented by calling the corresponding version with a
Base parameter of Numerics.e.

MAXAda follows this advice.

RM G.2.6 Accuracy Requirements for Complex Arithmetic M

G.2.6(5) The result of a complex arithmetic operation or complex elementary function refer-
ence in overflow situations, when the Machine_Overflows attribute of the corre-
sponding real type is False

This is not applicable to MAXAda since Machine_Overflows is always True.  

G.2.6(8) The accuracy of certain complex arithmetic operations and certain complex elemen-
tary functions for parameters (or components thereof) beyond the angle threshold

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

G.2.6(15) The version of the Compose_From_Polar function without a Cycle parameter should
not be implemented by calling the corresponding version with a Cycle parameter of
2.0*Numerics.Pi, since this will not provide the required accuracy in some portions
of the domain.

MAXAda does not provide complex arithmetic packages in this release.
M-99



MAXAda for Linux Reference Manual
RM Annex J: Obsolescent Features M

RM J.7.1 Interrupt Entries M

Documentation Requirements M

J.7.1(12) The implementation shall document to which interrupts a task entry may be
attached.

J.7.1(13) The implementation shall document whether the invocation of an interrupt entry has
the effect of an ordinary entry call, conditional call, or a timed call, and whether the
effect varies in the presence of pending interrupts.

Implementation Permissions M

J.7.1(17) The implementation is allowed to impose restrictions on the specifications and bodies
of tasks that have interrupt entries.

A requeue_statement is not allowed within the handled_sequence_of_statements of
an accept_statement if the corresponding entry is an interrupt entry.
M-100



RM Annex K: Language-Defined Attributes M

The implementation-defined attributes of MAXAda are discussed in “4.1.4(12) Imple-
mentation-defined attributes” on page M-14.
M-101



MRM Annex L: Pragmas M

The following lists all implementation-dependent and implementation-defined pragmas.

Pragma ALL_CALLS_REMOTE - (not yet supported) page M-104

Pragma ASSIGNMENT page M-104

Pragma ASYNCHRONOUS - (not yet supported) page M-104

Pragma ATOMIC page M-104

Pragma ATOMIC_COMPONENTS page M-105

Pragma ATTACH_HANDLER page M-105

Pragma CONTROLLED page M-105

Pragma CONVENTION page M-106

Pragma DATA_RECORD - (obsolete) page M-107

Pragma DEBUG page M-107

Pragma DEPRECATED_FEATURE page M-108

Pragma DISCARD_NAMES page M-108

Pragma DONT_ELABORATE page M-108

Pragma ELABORATE page M-109

Pragma ELABORATE_ALL page M-109

Pragma ELABORATE_BODY page M-109

Pragma EXPORT page M-109

Pragma EXTERNAL_NAME - (obsolete) page M-111

Pragma FAST_INTERRUPT_TASK page M-111

Pragma GROUP_CPU_BIAS page M-111

Pragma GROUP_PRIORITY page M-111

Pragma GROUP_SERVERS page M-112

Pragma IMPLICIT_CODE page M-112

Pragma IMPORT page M-112

Pragma IMPORT_AUX page M-114

Pragma INLINE page M-114

Pragma INSPECTION_POINT - (not yet supported) page M-115

Pragma INTERESTING page M-115

Pragma INTERFACE - (obsolete) page M-116

Pragma INTERFACE_NAME - (obsolete) page M-116

Pragma INTERFACE_OBJECT - (obsolete) page M-117

Pragma INTERFACE_SHARED - (obsolete) page M-117

Pragma INTERRUPT_HANDLER page M-117

Pragma INTERRUPT_PRIORITY page M-117

Pragma LINK_OPTION - (obsolete) page M-118

Pragma LINKER_OPTIONS page M-118

Pragma LIST page M-118

Pragma LOCKING_POLICY page M-118
M-102



Pragma MAP_FILE page M-119

Pragma MEMORY_POOL page M-119

Pragma NORMALIZE_SCALARS - (not yet supported) page M-119

Pragma OPT_FLAGS page M-120

Pragma OPT_LEVEL page M-121

Pragma OPTIMIZE page M-121

Pragma PACK page M-122

Pragma PAGE page M-122

Pragma PASSIVE_TASK - (obsolete) page M-122

Pragma POOL_CACHE_MODE page M-122

Pragma POOL_LOCK_STATE page M-123

Pragma POOL_PAD page M-123

Pragma POOL_SIZE page M-123

Pragma PREELABORATE page M-123

Pragma PRIORITY page M-124

Pragma PROTECTED_PRIORITY page M-124

Pragma PURE page M-125

Pragma QUEUING_POLICY page M-125

Pragma REMOTE_CALL_INTERFACE - (not yet supported) page M-125

Pragma REMOTE_TYPES - (not yet supported) page M-125

Pragma RESTRICTIONS page M-126

Pragma RETURN_CONVENTION page M-126

Pragma REVIEWABLE - (not yet supported) page M-127

Pragma RUNTIME_DIAGNOSTICS page M-127

Pragma SERVER_CACHE_SIZE page M-127

Pragma SHARE_BODY page M-127

Pragma SHARE_MODE page M-128

Pragma SHARED - (obsolete) page M-129

Pragma SHARED_PACKAGE page M-129

Pragma SHARED_PASSIVE - (not yet supported) page M-129

Pragma SPECIAL_FEATURE page M-129

Pragma STORAGE_SIZE page M-130

Pragma SUPPRESS page M-130

Pragma SUPPRESS_ALL page M-131

Pragma TASK_CPU_BIAS page M-131

Pragma TASK_DISPATCHING_POLICY page M-131

Pragma TASK_HANDLER page M-132

Pragma TASK_PRIORITY page M-132

Pragma TASK_QUANTUM page M-132

Pragma TASK_WEIGHT page M-133

Pragma TDESC page M-133
M-103



MAXAda for Linux Reference Manual
Pragma ALL_CALLS_REMOTE - (not yet supported) M

Pragma ALL_CALLS_REMOTE is not supported in this release.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ASSIGNMENT M

NOTE

Pragma ASSIGNMENT is reserved for internal MAXAda use only;
it is not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ASYNCHRONOUS - (not yet supported) M

Pragma ASYNCHRONOUS is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ATOMIC M

Pragma ATOMIC is implemented as described in Section C.6 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma ATOMIC(local_name);

This pragma accepts a single variable name which must be of a type which can be atomic
for the pragma to apply.  All reads and updates of an atomic object are indivisible.  An
atomic object is also defined to be volatile (see “Pragma VOLATILE” on page M-133).  

Pragma ATOMIC should be used on any variable that may be modified concurrently by
different threads of a program (e.g. semaphores).  

Pragma TRAMPOLINE page M-133

Pragma VOLATILE page M-133

Pragma VOLATILE_COMPONENTS page M-134
M-104



See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ATOMIC_COMPONENTS M

Pragma ATOMIC_COMPONENTS is implemented as described in Section C.6 of the Ada
95 Reference Manual. 

Its syntax is:

pragma ATOMIC_COMPONENTS(array_local_name);

This pragma accepts an array name, the components of which must be of a type which can
be atomic for the pragma to apply.  All reads and updates of an atomic object are indivisi-
ble.  An atomic object is also defined to be volatile (see “Pragma VOLATILE” on page
M-133). 

Pragma ATOMIC_COMPONENTS should be used on variables that may be modified con-
currently by different threads of a program (e.g. semaphores).  

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ATTACH_HANDLER M

Pragma ATTACH_HANDLER is implemented as described in Section C.3.1 of the Ada 95
Reference Manual. 

Its syntax is:

pragma ATTACH_HANDLER(handler_name,expresion);

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma CONTROLLED M

Pragma CONTROLLED is recognized by the implementation but does not have an effect in
this release. 

Its syntax is:

pragma CONTROLLED(first_subtype_local_name);

Pragma CONTROLLED is used to prevent any automatic reclamation of storage for the
objects created by allocators of a given access type.

This pragma accepts a  single argument which shall be the defining identifier of a non-
derived access type declaration.
M-105



MAXAda for Linux Reference Manual
Pragma CONTROLLED has no effect in this release of MAXAda as garbage collection is
not supported. (Ada 95 Reference Manual 13.11.3(8))

See Section 13.11.3 of the Ada 95 Reference Manual for more information about this
pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma CONVENTION M

Pragma CONVENTION is implemented as described in Section B.1 of the Ada 95 Refer-
ence Manual. 

Its syntax is:

pragma CONVENTION([Convention=>]convention_identifier,
                  [Entity=>]local_name);

This pragma is used to specify that an Ada entity should use the conventions of another
language.  This pragma is referred to in the Ada 95 Reference Manual as an interfacing
pragma.

An interfacing pragma defines the convention of the entity denoted by local_name.
The convention represents the calling convention or representation convention of the
entity.

The convention_identifier is the name of a convention.  The convention names repre-
sent the calling conventions of foreign languages, language implementations, or specific
run-time models.

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Restricted_Gnu_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

See “RM B.1 Interfacing Pragmas” on page M-71 for details on the implementation of this
pragma with respect to the Ada 95 Reference Manual.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-106



Pragma DATA_RECORD - (obsolete) M

The implementation-defined pragma DATA_RECORD is obsolete.  It will be removed in a
future release and should not be used.  Use “Pragma DEBUG” on page M-107 and possi-
bly “Pragma INTERESTING” on page M-115 instead.

In this release, if pragma DATA_RECORD is used, pragma DEBUG will be activated
instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma DEBUG M

The implementation-defined pragma DEBUG specifies the debug level for a compilation
unit from within the Ada source code.  

Its syntax is:

pragma DEBUG([unit_name,] debug_level); 

where unit_name, if specified, is the name of the compilation unit for which the debug
level is being specified, and where debug_level is the debug level which should be used for
that compilation unit. The possible values for debug_level are NONE, LINES, SIMPLE,
and FULL. 

The single-parameter form of this pragma is allowed only immediately within a library
unit or as a configuration pragma.  When specified within a library unit, it applies only to
that library unit.  When specified as a configuration pragma, it applies to all units within
the same compilation, if any, or to all units in the environment, if none.  The two-parame-
ter form of this pragma is allowed only immediately following the unit which is specified
as the unit_name argument.  It applies only to the unit which is specified.  

If applied to a specification, the debug level does not apply to the body or any separate
bodies of the unit.  If applied to a body, the debug level does not apply to any separate
bodies of the unit.  If the debug level is desired for any such units, it must be specified for
them, too.

The pragma is meaningless when applied to a generic unit.  If so applied, it will not be
applied to any instantiations of that generic.  The debug level applied to an instantiation is
the debug level of the unit which contains it, or if the instantiation is library-level, is deter-
mined in the same way as for any other library-level unit.

See “Real-Time Debugging” on page 3-38 for more information.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-107



MAXAda for Linux Reference Manual
Pragma DEPRECATED_FEATURE M

NOTE

Pragma DEPRECATED_FEATURE is reserved for internal MAX-
Ada use only; it is not intended for use in user-defined code.

This pragma marks packages that have been deprecated and may be significantly changed
or completely removed in future releases of MAXAda.  Whenever a compilation unit
requires another unit (via a with clause) that has been marked with this pragma, a com-
piler alert (diagnostic) is issued. The alert consists of a standard MAXAda diagnostic
header followed by the exact text of the string that is the single required argument of the
pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma DISCARD_NAMES M

Pragma DISCARD_NAMES is recognized by the implementation but does not have an
effect in this release. 

Its syntax is:

pragma DISCARD_NAMES[([On=>]local_name)];

See Section C.5 of the Ada 95 Reference Manual for more information about this pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma DONT_ELABORATE M

The implementation-defined pragma DONT_ELABORATE prevents dynamic elaboration
of any library units to which it applies.

Its syntax is:

pragma DONT_ELABORATE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-108



Pragma ELABORATE M

Pragma ELABORATE is implemented as described in Section 10.2.1 of the Ada 95 Refer-
ence Manual. 

Its syntax is:

pragma ELABORATE(library_unit_name{,library_unit_name});

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ELABORATE_ALL M

Pragma ELABORATE_ALL is implemented as described in Section 10.2.1 of the Ada 95
Reference Manual. 

Its syntax is:

pragma ELABORATE_ALL(library_unit_name{,library_unit_name});

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma ELABORATE_BODY M

Pragma ELABORATE_BODY is implemented as described in Section 10.2.1 of the Ada 95
Reference Manual. 

Its syntax is:

pragma ELABORATE_BODY[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma EXPORT M

Pragma EXPORT is implemented as described in Section B.1 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma EXPORT([Convention=>]convention_identifier,
              [Entity=>]local_name 
              [,[External_Name=>]string_expression]
              [,[Link_Name=>]string_expression]);
M-109



MAXAda for Linux Reference Manual
This pragma is used to export an Ada entity to a foreign language, thus allowing an Ada
subprogram to be called from a foreign language, or an Ada object to be accessed from a
foreign language.  This pragma is referred to in the Ada 95 Reference Manual as an inter-
facing pragma.

An interfacing pragma defines the convention of the entity denoted by local_name.
The convention represents the calling convention or representation convention of the
entity.

The convention_identifier is the name of a convention.  The convention names repre-
sent the calling conventions of foreign languages, language implementations, or specific
run-time models.

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Restricted_Gnu_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

Pragma EXPORT optionally specifies an entity’s external name, link name, or both.

An External_Name is a string value for the name used by the foreign language pro-
gram for referring to an entity that an Ada program exports.

A Link_Name is a string value for the name of the exported entity, based on the conven-
tions of the foreign language’s compiler in interfacing with the system’s linker tool.

The meaning of link names is implementation defined.  If neither a link name nor the
Address attribute of an imported entity is specified, then a link name is chosen in an
implementation-defined manner, based on the external name if one is specified.  If both
the external name and the link name are specified, the external name is ignored.

See “RM B.1 Interfacing Pragmas” on page M-71 for details on the implementation of this
pragma with respect to the Ada 95 Reference Manual.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-110



Pragma EXTERNAL_NAME - (obsolete) M

The implementation-defined pragma EXTERNAL_NAME is obsolete.  It will be removed in
a future release and should not be used.  Use “Pragma IMPORT” on page M-112 or
“Pragma EXPORT” on page M-109 instead.

In this release, if pragma EXTERNAL_NAME is used with pragma INTERFACE (see
“Pragma INTERFACE - (obsolete)” on page M-116), pragma IMPORT will be activated
instead.  Otherwise, pragma EXPORT will be activated instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma FAST_INTERRUPT_TASK M

The implementation-defined pragma FAST_INTERRUPT_TASK provides extremely fast
interrupt handling.  

Its syntax is:

pragma FAST_INTERRUPT_TASK;

This pragma has no effect in this release.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma GROUP_CPU_BIAS M

The implementation-defined pragma GROUP_CPU_BIAS specifies the CPU bias for all
the servers in a given group.

Its syntax is:

pragma GROUP_CPU_BIAS(cpu_bias, group_spec) ;

See “Pragma GROUP_CPU_BIAS” on page 6-19 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma GROUP_PRIORITY M

The implementation-defined pragma GROUP_PRIORITY specifies the operating system
scheduling priority of all the servers in a given group. 

Its syntax is:
M-111



MAXAda for Linux Reference Manual
pragma GROUP_PRIORITY(scheduling_priority, group_spec) ;

See “Pragma GROUP_PRIORITY” on page 6-18 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma GROUP_SERVERS M

The implementation-defined pragma GROUP_SERVERS controls the number of servers
for a particular group, including the PREDEFINED group. 

Its syntax is:

pragma GROUP_SERVERS(group_size, group_spec) ;

See “Pragma GROUP_SERVERS” on page 6-19 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma IMPLICIT_CODE M

The implementation-defined pragma IMPLICIT_CODE provides a way to eliminate the
stack frame and the copying of parameters when using the machine_code package.

Its syntax is:

pragma IMPLICIT_CODE(flag) ;

This pragma takes a single argument (ON or OFF). When OFF, it does not generate code
for the argument copies, nor does it generate any return code upon exiting. It can be used
as an optimization for writing Machine_Code routines to eliminate the generation of the
implicit code.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma IMPORT M

Pragma IMPORT is implemented as described in Section B.1 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma IMPORT([Convention=>]convention_identifier,
              [Entity=>]local_name 
              [,[External_Name=>]string_expression]
              [,[Link_Name=>]string_expression]);
M-112



This pragma is used to import an entity defined in a foreign language into an Ada pro-
gram, thus allowing a foreign-language subprogram to be called from Ada, or a foreign-
language variable to be accessed from Ada.  This pragma is referred to in the Ada 95 Ref-
erence Manual as an interfacing pragma.

An interfacing pragma defines the convention of the entity denoted by local_name.
The convention represents the calling convention or representation convention of the
entity.

The convention_identifier is the name of a convention.  The convention names repre-
sent the calling conventions of foreign languages, language implementations, or specific
run-time models.

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Restricted_Gnu_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

Pragma IMPORT optionally specifies an entity’s external name, link name, or both.

An External_Name is a string value for the name used by the foreign language pro-
gram for the entitiy that an Ada program imports.

A Link_Name is a string value for the name of the imported entity, based on the conven-
tions of the foreign language’s compiler in interfacing with the system’s linker tool.

The meaning of link names is implementation defined.  If neither a link name nor the
Address attribute of an imported entity is specified, then a link name is chosen in an
implementation-defined manner, based on the external name if one is specified.  If both
the external name and the link name are specified, the external name is ignored.

See “RM B.1 Interfacing Pragmas” on page M-71 for details on the implementation of this
pragma with respect to the Ada 95 Reference Manual.

See “Pragma IMPORT_AUX” on page M-114 to specify additional information for a C
function with an ellipsis in its declaration.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-113



MAXAda for Linux Reference Manual
Pragma IMPORT_AUX M

The implementation-defined pragma IMPORT_AUX augments pragma IMPORT (see
“Pragma IMPORT” on page M-112) by providing additional information needed for call-
ing conventions on some architectures.

Its syntax is:

pragma IMPORT_AUX(   [Entity         =>] local_name,
                  [, [Ellipsis_after =>] identifier]);

The Ellipsis_after argument is meaningful if the local_name is an imported C sub-
program, and should be used if the C declaration contains an ellipsis.  The identifier
should indicate the formal in the Ada specification which corresponds to the last formal
before the ellipsis in the C declaration.

For example, the C open function has a declaration like this:

extern int open(const char *, int, ...);

It might be imported into Ada as follows:

function open (path  : in system.address;
               oflag : in integer;
               mode  : in mode_t := 0)    return integer;
pragma import (unchecked_c, open);
pragma import_aux (open, ellipsis_after => oflag);

Pragma INLINE M

Pragma INLINE is implemented as described in Section 6.3.2 of the Ada 95 Reference
Manual.

Its syntax is:

pragma INLINE(name{,name});

However, there are a number of restrictions on inline subprogram expansion.  The com-
piler will issue a warning, not perform the inline expansion, and output code for a subpro-
gram call if any of these restrictions are violated or exceeded. 

The restrictions and limitations on inline subprogram expansion include: 

• The body of the subprogram must be compiled before it can be expanded
inline. The a.build utility, when the -IO option is specified with a value
other than 0, attempts to compile bodies that define inline subprograms
before bodies that use inline subprograms, however, if two bodies contain
mutual inline dependencies, a.build chooses, in an arbitrary manner,
which to compile first. 

• There are a number of Ada constructs that prevent inline expansion if they
appear in the declarations of a subprogram marked with pragma INLINE.
M-114



These constructs include tasks, most generic instantiations, and (inner)
subprograms that perform up-level addressing. 

• Direct or indirect recursive calls are never inline-expanded. 

• The actual parameters to the inline expanded subprogram must not contain
task objects, must not contain dependent arrays, and must have complete
type declarations. 

• Subprograms marked with pragma INTERFACE are never inline-
expanded.

The uncontrolled use of inline expansion can adversely affect the performance of the
MAXAda compiler itself. Inline expansion can be controlled by using MAXAda configu-
ration management described in “Qualifier Keywords (-Q options)” on page 4-105. 

Subprograms that contain machine-code insertion statements are always inline expanded
if they are marked with pragma INLINE, regardless of any configuration limits. 

WARNING

Inline expansion of machine-code procedures is supported, but the
user should exercise caution.  It is not recommended practice to
inline-expand machine-code procedures, as the compiler does not
track register uses and definitions made by machine-code proce-
dures.  

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INSPECTION_POINT - (not yet supported) M

Pragma INSPECTION_POINT is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERESTING M

The implementation-defined pragma INTERESTING specifies the degree of interest of a
named entity. 

Its syntax is:

pragma INTERESTING(static_expression[,simple_name]);

The specified static_expression must be a static integer value.  The simple_name is an
optional argument denoting an entity visible at the place of the pragma and declared
M-115



MAXAda for Linux Reference Manual
within the same declarative part as the pragma.  If omitted, the pragma must be in a declar-
ative part and then applies to that declarative part.

This pragma indicates in the debug information the degree of interest of a named entity.
This information is only useful if full debug information is enabled (see “Pragma
DEBUG” on page M-107 or “Debug Level (-g[level])” on page 4-100).

This information is useful in conjunction with the ccur.rtdm package.  A minimum
interest "threshold" may be specified to restrict the set of objects or components to be
monitored using the interest_threshold parameter (see “rtdm” on page 9-13).

This information is also useful in conjunction with the NightView debugger.  A minimum
interest threshold may be specified via the interest command to restrict the set of rou-
tines to be displayed in various circumstances.

In addition, the -Qinteresting compile option may be used to indicate the default
degree of interest for every entity in the compilation.  See “Qualifier Keywords (-Q
options)” on page 4-105 for more information.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERFACE - (obsolete) M

The implementation-defined pragma INTERFACE is obsolete.  It will be removed in a
future release and should not be used.  Use “Pragma IMPORT” on page M-112 instead.

In this release, if pragma INTERFACE is used, pragma IMPORT will be activated instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERFACE_NAME - (obsolete) M

The implementation-defined pragma INTERFACE_NAME is obsolete.  It will be removed
in a future release and should not be used.  Use “Pragma IMPORT” on page M-112
instead.

In this release, if pragma INTERFACE_NAME is used, pragma IMPORT will be activated
instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-116



Pragma INTERFACE_OBJECT - (obsolete) M

The implementation-defined pragma INTERFACE_OBJECT is obsolete.  It will be
removed in a future release and should not be used.  Use “Pragma IMPORT” on page
M-112 instead.

In this release, if pragma INTERFACE_OBJECT is used, pragma IMPORT will be acti-
vated instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERFACE_SHARED - (obsolete) M

The implementation-defined pragma INTERFACE_SHARED is obsolete.  It will be
removed in a future release and should not be used.  Use “Pragma IMPORT” on page
M-112 with “Pragma VOLATILE” on page M-133 instead.

In this release, if pragma INTERFACE_SHARED is used, pragma IMPORT and pragma
VOLATILE will be activated instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERRUPT_HANDLER M

Pragma INTERRUPT_HANDLER is implemented as described in Section C.3.1 of the Ada
95 Reference Manual. 

Its syntax is:

pragma INTERRUPT_HANDLER(handler_name);

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma INTERRUPT_PRIORITY M

Pragma INTERRUPT_PRIORITY is implemented as described in Section D.1 of the Ada
95 Reference Manual. 

Its syntax is:

pragma INTERRUPT_PRIORITY[(expression)];

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-117



MAXAda for Linux Reference Manual
Pragma LINK_OPTION - (obsolete) M

The implementation-defined pragma LINK_OPTION is obsolete.  It will be removed in a
future release and should not be used.  Use “Pragma LINKER_OPTIONS” on page M-118
instead.

In this release, if pragma LINK_OPTION is used, pragma LINKER_OPTIONS will be
activated instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma LINKER_OPTIONS M

Pragma LINKER_OPTIONS is implemented as described in Section B.1 of the Ada 95
Reference Manual. 

Its syntax is:

pragma LINKER_OPTIONS(string_expression);

See also “B.1(37) The effect of pragma Linker_Options” on page M-73 for implementa-
tion-defined aspects of this pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma LIST M

Pragma LIST is implemented as described in Section 2.8 of the Ada 95 Reference Man-
ual. 

Its syntax is:

pragma LIST(identifier);

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma LOCKING_POLICY M

Pragma LOCKING_POLICY is implemented as described in Section D.3 of the Ada 95
Reference Manual. 

Its syntax is:

pragma LOCKING_POLICY(policy_identifier);
M-118



This pragma sets the protected object locking policy.  See “Pragma LOCKING_POLICY”
on page 6-3 for a complete description.

See also “D.3(4) Implementation-defined policy_identifiers allowed in a pragma
Locking_Policy” on page M-90.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma MAP_FILE M

The implementation-defined pragma MAP_FILE causes a map file to be emitted at link
time. 

Its syntax is:

pragma MAP_FILE(file_name) ;

See “Pragma MAP_FILE” on page 6-2 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma MEMORY_POOL M

The implementation-defined pragma MEMORY_POOL changes physical memory pool
attributes from their default values for a memory pool. 

Its syntax is:

pragma MEMORY_POOL(pool_spec, memory_spec) ;

See  “Pragma MEMORY_POOL” on page 6-23 for a complete description. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma NORMALIZE_SCALARS - (not yet supported) M

Pragma NORMALIZE_SCALARS is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-119



MAXAda for Linux Reference Manual
Pragma OPT_FLAGS M

The implementation-defined pragma OPT_FLAGS provides a method for overriding the
optimization parameters defined by a MAXAda environment’s configuration. 

Its syntax is:

pragma OPT_FLAGS(string_expression);

The OPT_FLAGS pragma takes a single string literal as an argument.  This string,
enclosed in quotes, should contain all of the optimizer flags to be overridden for the com-
pilation, along with the value to be observed.  The literal string argument must take the
form: 

"flag = value, flag = value, flag = value ..." 

Nine flags are recognized by the MAXAda compiler. Many of these flags are described in
detail in “Qualifier Keywords (-Q options)” on page 4-105 of this manual and are config-
urable not only via the pragma, but also as parameters to the a.options tool. The opti-
mizer flags are: 

objects 
loops 
unroll_limit_const
unroll_limit_var
unroll_limit 
growth_limit 
optimize_for_space 
opt_class 
noreorder 

By specifying a configuration value for an optimizer parameter using this pragma, the
given value is observed by the MAXAda compiler when the enclosing unit is compiled
(regardless of the value specified for the optimizer parameter(s) in the environment’s con-
figuration).  

For example, the line: 

pragma OPT_FLAGS("growth_limit=200, unroll_limit=5");

optimizes a total of 200 objects and uses a loop unrolling limit of 5 for the compilation
unit whose declarative part contains the preceding pragma. These values override any val-
ues given by a local or system configuration record for the compilation. 

Compilation units that omit any flags from the pragma or that omit the pragma altogether
observe the optimizer flag values specified by corresponding -Q options applied to the
unit or the environment.

See “Compile Options” on page 4-99 for more information.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-120



Pragma OPT_LEVEL M

The implementation-defined pragma OPT_LEVEL controls the level of optimization per-
formed by the compiler. 

Its syntax is:

pragma OPT_LEVEL([unit_name,] level);

where unit_name, if specified, is the name of the compilation unit for which the optimiza-
tion level is being specified, and where the level is one of: MINIMAL, GLOBAL, or MAXI-
MAL.

The single-parameter form of this pragma is allowed only immediately within a library
unit or as a configuration pragma.  When specified within a library unit, it applies only to
that library unit.  When specified as a configuration pragma, it applies to all units within
the same compilation, if any, or to all units in the environment, if none.  The two-parame-
ter form of this pragma is allowed only immediately following the unit which is specified
as the unit_name argument.  It applies only to the unit which is specified.  

If applied to a specification, the optimization level does not apply to the body or any sepa-
rate bodies of the unit.  If applied to a body, the optimization level does not apply to any
separate bodies of the unit.  If the optimization level is desired for any such units, it must
be specified for them, too.

The pragma is meaningless when applied to a generic unit.  If so applied, it will not be
applied to any instantiations of that generic.  The optimization level applied to an instanti-
ation is the optimization level of the unit which contains it, or if the instantiation is library-
level, is determined in the same way as for any other library-level unit.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma OPTIMIZE M

Pragma OPTIMIZE is recognized by the implementation but does not have an effect in
this release. 

Its syntax is:

pragma OPTIMIZE(identifier); 

See the -O compile option for code optimization levels (see page 4-99) or the implementa-
tion-defined pragma OPT_LEVEL.

See Section 2.8 of the Ada 95 Reference Manual for more information about this pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-121



MAXAda for Linux Reference Manual
Pragma PACK M

Pragma PACK is implemented as described in Section 13.2 of the Ada 95 Reference Man-
ual. 

Its syntax is:

pragma PACK(first_subtype_local_name);

This pragma causes the compiler to choose a non-aligned representation for elements of
composite types.  Application of the pragma causes objects to be packed to the bit level. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma PAGE M

Pragma PAGE is implemented as described in Section 2.8 of the Ada 95 Reference Man-
ual. 

Its syntax is:

pragma PAGE;

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma PASSIVE_TASK - (obsolete) M

The implementation-defined pragma PASSIVE_TASK is obsolete.  It will be removed in a
future release and should not be used.  Use protected objects instead.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma POOL_CACHE_MODE M

The implementation-defined pragma POOL_CACHE_MODE defines the cache mode for a
memory pool.

Its syntax is:

pragma POOL_CACHE_MODE(pool_spec, cache_mode) ;

See “Pragma POOL_CACHE_MODE” on page 6-25 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-122



Pragma POOL_LOCK_STATE M

The implementation-defined pragma POOL_LOCK_STATE defines the lock state of a
memory pool.

Its syntax is:

pragma POOL_LOCK_STATE(pool_spec, lock_state);

See “Pragma POOL_LOCK_STATE” on page 6-25 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma POOL_PAD M

The implementation-defined pragma POOL_PAD sets the pad for a STACK memory pool.

Its syntax is:

pragma POOL_PAD(paddable_spec, size);

See “Pragma POOL_PAD” on page 6-28 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma POOL_SIZE M

The implementation-defined pragma POOL_SIZE sets the size for a STACK or COL-
LECTION memory pool. 

Its syntax is:

pragma POOL_SIZE(sizeable_spec, size_spec) ;

See “Pragma POOL_SIZE” on page 6-26 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma PREELABORATE M

Pragma PREELABORATE is implemented as described in Section 10.2.1 of the Ada 95
Reference Manual. 

Its syntax is:
M-123



MAXAda for Linux Reference Manual
pragma PREELABORATE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma PRIORITY M

Pragma PRIORITY is implemented as described in Section D.1 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma PRIORITY(expression);

Priorities range from 0 through 287, with 287 being the most urgent. 

See “Pragma TASK_PRIORITY” on page M-132 for a related pragma. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma PROTECTED_PRIORITY M

The implementation-defined pragma PROTECTED_PRIORITY sets the scheduling prior-
ity for a given protected object. 

Its syntax is:

pragma PROTECTED_PRIORITY(scheduling_priority 
                           [,protected_object_specifier ]); 

See “Pragma PROTECTED_PRIORITY” on page 6-28 for a complete description of pro-
tected priorities. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-124



Pragma PURE M

Pragma PURE is implemented as described in Section 10.2.1 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma PURE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma QUEUING_POLICY M

Pragma QUEUING_POLICY is implemented as described in Section D.4 of the Ada 95
Reference Manual. 

Its syntax is:

pragma QUEUING_POLICY(policy_identifier);

The implementation-defined pragma QUEUING_POLICY sets the entry queuing policy. 

See “Pragma QUEUING_POLICY” on page 6-2 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma REMOTE_CALL_INTERFACE - (not yet supported) M

Pragma REMOTE_CALL_INTERFACE is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma REMOTE_TYPES - (not yet supported) M

Pragma REMOTE_TYPES is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-125



MAXAda for Linux Reference Manual
Pragma RESTRICTIONS M

In this release, pragma RESTRICTIONS is supported only for the tasking restrictions
defined in Section D.7 of the Ada 95 Reference Manual and for the implemenation-
defined restriction No_Stream_Attributes.

Its syntax is:

pragma RESTRICTIONS(restriction{,restriction});

T h e  d y n a m i c  r e s t r i c t i o n s  Max_Storage_At_Blocking ,
Max_Asynchronous_Select_Nesting, and Max_Tasks have no effect in this
release.  A future release will enforce the limits set by these restrictions.

The presence of the restriction No_Stream_Attributes indicates that the ’Read,
’Write, ’Input, and ’Output attributes can never be referenced.  This allows the
implementation to omit routines to implement stream attributes for tagged types in any
units to which this restriction applies.  This results in a space savings.  To achieve best
results with this restriction, it should be applied to all units in a partition.  A stand-alone
configuration pragma (see “Configuration Pragmas” on page 3-9) can be used to guaran-
tee this.

The presence of any restrictions defined in Section D.7 of the Ada 95 Reference Manual
has no effect upon the run-time in this release.  A future release will optimize the compiled
code and the run-time based upon which restrictions are present.  That is, the Implementa-
tion Advice at D.7(22) is ignored in this release.

See Section 13.12 of the Ada 95 Reference Manual for more information about this
pragma.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma RETURN_CONVENTION M

The implementation-defined pragma RETURN_CONVENTION is used to specify that a
composite type should be returned BY_REGISTER rather than BY_COPY.

Its syntax is:

pragma RETURN_CONVENTION(convention, identifier);

where:

convention ::= BY_REGISTER | BY_COPY
identifier ::= subtype_mark | function_identifier

The subtype_mark (or result type of the specified function) must resolve to denote a return-
by-copy type as per Ada 95 Reference Manual 6.5(17).

The current implementation further restricts the application of RETURN_CONVENTION to
record types (or functions returning record types)  whose sizes are 8 bytes or less.  Further,
the BY_REGISTER convention is the only convention currently allowed in the pragma.
M-126



See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma REVIEWABLE - (not yet supported) M

Pragma REVIEWABLE is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma RUNTIME_DIAGNOSTICS M

The implementation-defined pragma RUNTIME_DIAGNOSTICS controls whether or not
the run-time emits warning diagnostics.

Its syntax is:

 pragma RUNTIME_DIAGNOSTICS(boolean);

See “Pragma RUNTIME_DIAGNOSTICS” on page 6-1 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SERVER_CACHE_SIZE M

The implementation-defined pragma SERVER_CACHE_SIZE sets the size of the server
cache. 

Its syntax is:

pragma SERVER_CACHE_SIZE(cache_size);

See “Pragma SERVER_CACHE_SIZE” on page 6-4 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SHARE_BODY M

The implementation-defined pragma SHARE_BODY indicates whether or not an instantia-
tion is to be shared. 

Its syntax is:

pragma SHARE_BODY(generic_name, boolean_literal) 
M-127



MAXAda for Linux Reference Manual
The pragma may reference the generic unit or the instantiated unit. When it references a
generic unit, it sets sharing on/off for all instantiations of the generic, unless overridden by
specific SHARE_BODY pragmas for individual instantiations. When it references an
instantiated unit, sharing is on/off only for that unit. For this release, the default is to not
share any generics. 

Pragma SHARE_BODY is allowed only in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit in a
compilation, but before any subsequent compilation unit.  

Sharing generics causes a slight execution-time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added).  However, it substan-
tially reduces compilation time in most circumstances and reduces program size. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SHARE_MODE M

The implementation-defined pragma SHARE_MODE sets the share_mode for a compilation
unit from within the Ada source code. The format of the pragma is: 

pragma SHARE_MODE([unit_name,] share_mode);

where unit_name, if specified, is the name of the compilation unit for which the
share_mode is being specified, and where the share_mode is one of: SHARED,
NON_SHARED, or BOTH. 

The single-parameter form of this pragma is allowed only immediately within a library
unit or as a configuration pragma.  When specified within a library unit, it applies only to
that library unit.  When specified as a configuration pragma, it applies to all units within
the same compilation, if any, or to all units in the environment, if none.  The two-parame-
ter form of this pragma is allowed only immediately following the unit which is specified
as the unit_name argument.  It applies only to the unit which is specified.  

If applied to a specification, the share mode does not apply to the body or any separate
bodies of the unit.  If applied to a body, the share mode does not apply to any separate bod-
ies of the unit.  If the share mode is desired for any such units, it must be specified for
them, too.

The pragma is meaningless when applied to a generic unit.  If so applied, it will not be
applied to any instantiations of that generic.  The share mode applied to an instantiation is
the share mode of the unit which contains it, or if the instantiation is library-level, is deter-
mined in the same way as for any other library-level unit.

See also “Shared Objects” on page 3-13 for more information.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-128



Pragma SHARED - (obsolete) M

The implementation-defined pragma SHARED is obsolete.  It will be removed in a future
release and should not be used.  Use “Pragma ATOMIC” on page M-104 instead.

In this release, if pragma LINK_OPTION is used, pragma VOLATILE will be activated
instead.  See “Pragma VOLATILE” on page M-133 for more information.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SHARED_PACKAGE M

The implementation-defined pragma SHARED_PACKAGE provides for the sharing and
communication of data declared within the specification of library-level packages. 

Its syntax is:

pragma SHARED_PACKAGE[("params")];

Pragma SHARED_PACKAGE accepts as an optional argument, “params”, that, if specified,
must be a string constant containing a comma-separated list of system shared-segment
configuration parameters.

See “Pragma SHARED_PACKAGE” on page 8-1 for details.

See also “4.1.4(12) Implementation-defined attributes” on page M-14 for more informa-
tion.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SHARED_PASSIVE - (not yet supported) M

Pragma SHARED_PASSIVE is not supported in this release. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SPECIAL_FEATURE M

NOTE

Pragma SPECIAL_FEATURE is reserved for internal MAXAda
use only; it is not intended for use in user-defined code.
M-129



MAXAda for Linux Reference Manual
The implementation-defined pragma SPECIAL_FEATURE forces the compiler to assume
that the specified feature is used by the unit associated with this pragma.

Its syntax is:

pragma SPECIAL_FEATURE(feature);

where feature can be one of the following:

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma STORAGE_SIZE M

Pragma STORAGE_SIZE is implemented as described in Section 13.3 of the Ada 95 Ref-
erence Manual. 

Its syntax is:

pragma STORAGE_SIZE(expression);

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma SUPPRESS M

Pragma SUPPRESS is implemented as described in Section 11.5 of the Ada 95 Reference
Manual. 

Its syntax is:

pragma SUPPRESS(identifier[,[On=>]name]);

The double parameter form of the pragma, with a name of an object, type, or subtype is
recognized, but has no effect.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

hardware_interrupts software_interrupts cpu_biases priorities

rescheduling_variables page_locking quanta data_monitoring

shmbind trace_dump needs_xlib needs_xt

needs_motif tasks protected_objects
M-130



Pragma SUPPRESS_ALL M

The implementation-defined pragma SUPPRESS_ALL gives permission to the implemen-
tation to suppress all run-time checks.  

Its syntax is:

pragma SUPPRESS_ALL;

Pragma SUPPRESS_ALL does not have any parameters.  It may appear immediately
within a declarative part or immediately within a package specification or as a configura-
tion pragma.  Its effects are equivalent to a list of SUPPRESS pragmas, each naming a dif-
ferent check. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TASK_CPU_BIAS M

The implementation-defined pragma TASK_CPU_BIAS sets the CPU assignments for a
given bound task. 

Its syntax is:

pragma TASK_CPU_BIAS(cpu_bias[,task_specifier]);

See “Pragma TASK_CPU_BIAS” on page 6-12 for a complete description of task CPU
assignments. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TASK_DISPATCHING_POLICY M

Pragma TASK_DISPATCHING_POLICY is implemented as described in Section D.2.2 of
the Ada 95 Reference Manual. 

Its syntax is:

pragma TASK_DISPATCHING_POLICY(policy_identifier);

This pragma sets the task dispatching policy.  

See “Pragma TASK_DISPATCHING_POLICY” on page 6-2 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-131



MAXAda for Linux Reference Manual
Pragma TASK_HANDLER M

The implementation-defined pragma TASK_HANDLER calls the specified procedure when
the task to which it is applied completes because of an unhandled exception. 

This pragma is especially useful when applied to the ENVIRONMENT task.  It will be
called for any unhandled exception that would cause completion of the environment task,
and thus of the application.

It is also especially useful when applied to the DEFAULT task.  It will be called for any
unhandled exception that would cause completion of any task which otherwise happens
silently without any notification to the user.

Its syntax is:

pragma TASK_HANDLER(handler_name[, task_specifier]);

See “Pragma TASK_HANDLER” on page 6-15 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TASK_PRIORITY M

The implementation-defined pragma TASK_PRIORITY sets the scheduling priority for a
given task within the server group and for entry queuing. It also sets the operating system
priority for bound tasks. 

Its syntax is:

pragma TASK_PRIORITY(scheduling_priority[, task_specifier]);

See “Pragma TASK_PRIORITY” on page 6-11 for a complete description of task priori-
ties. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TASK_QUANTUM M

The implementation-defined pragma TASK_QUANTUM sets the task time-slice duration for
a given task.

Its syntax is:

pragma TASK_QUANTUM(quantum[, task_specifier]) ; 

See “Pragma TASK_QUANTUM” on page 6-14 for a complete description of task time
slicing. 
M-132



See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TASK_WEIGHT M

The implementation-defined pragma TASK_WEIGHT specifies the weight of a task.

Its syntax is:

pragma TASK_WEIGHT(weight[,task_specifier]); 

See “Pragma TASK_WEIGHT” on page 6-9 for a complete description.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TDESC M

NOTE

Pragma TDESC is reserved for internal MAXAda use only; it is
not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma TRAMPOLINE M

NOTE

Pragma TRAMPOLINE is reserved for internal MAXAda use only;
it is not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma VOLATILE M

Pragma VOLATILE is implemented as described in Section C.6 of the Ada 95 Reference
Manual. 

Its syntax is:
M-133



MAXAda for Linux Reference Manual
pragma VOLATILE(local_name);

This pragma accepts a single variable name which must be of a type which can be volatile
for the pragma to apply.   All accesses to this variable results in memory references.
Pragma VOLATILE should be used on any variable that may be accessed concurrently by
different threads of a program, e.g., a variable shared between tasks. 

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.

Pragma VOLATILE_COMPONENTS M

Pragma VOLATILE_COMPONENTS is implemented as described in Section C.6 of the
Ada 95 Reference Manual. 

Its syntax is:

pragma VOLATILE_COMPONENTS(array_local_name);

This pragma accepts an array name, the components of which must be of a type which can
be volatile for the pragma to apply.  All accesses to these variables result in memory refer-
ences.  Pragma VOLATILE_COMPONENTS should be used on variables that may be
accessed concurrently by different threads of a program (e.g., a variable shared between
tasks).

See “RM Annex L: Pragmas” on page M-102 for a list of all implementation-dependent
and implementation-defined pragmas.
M-134



Glossary

This glossary defines terms used in the documentation.  Terms in italics are defined here. 

active partition

An active partition is the simplest form of partition and it describes how to build an
executable program.

Ada binding

Ada bindings provide a pure Ada interface to libraries of routines and services
which have been originally developed in another programming language.

ADMIN ghost task

A ghost task that exists only in programs that contain tasking (other than the ENVI-
RONMENT task).  If it exists, it is a bound task that is responsible for the creation of
all named server groups and for the creation of the ENVIRONMENT task.  It also
detects the termination of all other tasks and performs cleanup operations on those
tasks, including deallocation of memory associated with those tasks.

alert

A diagnostic message that conveys information to the user about packages, prag-
mas, or options that are considered to be obsolete in this release.

ambiguous unit

Upon introducing a unit having the same name as a previously introduced unit,
MAXAda labels both units as ambiguous.

archive

An archive is a collection of routines and data that is associated with an application
during the link and execution phases.  Archives contain statically-built (i.e. non-
shared) objects within them. 

ARMS

The Ada Real-time Multiprocessor System, also known as the run-time system.

attachment index

Denotes a particular static attachment based on its textual order within a particular
handler.  (e.g. the first attach_handler pragma in a particular handler is “1”, the
second is “2”, etc.  The first attach_handler in a different handler is “1”, etc...)
-1



MAXAda for Linux Reference Manual
AXI

The optional Ada X Interface.  It provides an Ada binding to the full Xlib, Xt, and
Motif libraries.

bound task

A task that is served by an anonymous server group containing exactly one server.
This server group exists only to execute the single task for which it was created,
dedicated for its exclusive use.  See task weight.

cache mode

A system cache memory attribute that is either COPYBACK or NCACHE.

clone

An operating system process which shares almost all of its attributes with its parent,
including: the address space, file descriptors, signal actions, etc.  See clone(2)
for more information.

collection (memory)

A memory region (heap) used for designated objects of user-defined access types,
dynamically sized objects, internal run-time structures, etc.

companion ghost task

A ghost task that is associated with some user-defined real task or a user-defined
entry of a real task.

compilation unit

See unit. 

compile options

Stored as part of the environment or as part of an individual unit’s information, these
options do not need to be specified on the command line for each compilation.
Rather, they are “remembered” when the MAXAda compilation tools are used. 

concurrent program

Any Ada program that elaborates the body of a shared package and whose span of
execution, from elaboration of such a package to termination, overlaps that of
another such program.

configuration pragma

Configuration pragmas are syntactical entities that are not part of a unit.  Configura-
tion pragmas can appear either at the beginning of a source file containing library
units or independently in a source file with no units.  See also pragma.
-2



Glossary
consistency

The compilation of a unit is consistent if its source file has not been modified since
it has been compiled and all of the units on which it depends are still consistently
compiled.  In addition, the unit can only remain consistent if it and the units on
which it depends have not become ambiguous or obscured.  In addition, a unit can
only remain consistent if the compile options for that unit and the units on which it
depends have not changed.

Each unit is considered consistent up to a particular state.  This means that it is valid
up to that state of compilation.  Any recompilation of the unit can start from that
state.  It does not need to go through the earlier stages of recompilation.

COURIER ghost task

A bound task associated with the hardware interrupt entry.  It does not execute at
interrupt level.  It may be involved in forwarding the hardware interrupt from an
INTR_COURIER task to the real task.

CPU bias

A mask in which the relative bit number identifies a CPU number (LSB corresponds
to CPU #0).  It is used to assign a server to a CPU.

data (memory)

Statically sized memory segment used for the allocation of library-level variables,
such as those in library-level packages.

data monitoring

The real-time display and modification of static Ada variables via the ccur.rtdm
package.  This is usually performed during program debugging.

debug level

The setting for the amount of debug information to be generated for a compilation
unit.  Debug level can be established via the -g option to several utilities or  pragma
DEBUG in the source.  Values include:  none, lines, and full.

DEFAULT pseudo group

The non-executing pseudo group that provides default group-attribute values for
any groups that omit any group configuration pragmas.

DEFAULT pseudo task

The non-executing pseudo task that provides default task-attribute values for any
tasks that omit any task configuration pragmas.
-3



MAXAda for Linux Reference Manual
deprecated

A MAXAda environment shipped with this release for compatibility purposes with
previous versions only.  It will be removed in a future release of MAXAda.

deprecated feature

A MAXAda feature considered to be obsolete in this release but which is still sup-
ported for backward compatibility.

distributed application

A program that requires the use of CPUs on more than one CPU board.

DWARF

The debug format that MAXAda supports.  The debug information is stored in the
executable program.

dynamic-linking phase

This phase occurs only for programs that use shared objects.  The initial phase of
execution when actual associations and memory allocations occur.  The dynamic
linker tries to locate each essential shared-object and bind its physical pages into the
application program.

effective options

The resultant set of compile options based on the hierarchical relationship between
the environment-wide compile options, permanent unit options, and temporary unit
options.

elaboration

ELF

The executable and object format that MAXAda supports.

environment

An entity that is associated with an operating system directory and that contains Ada
units.  MAXAda uses the concept of environments as its basic structure of organiza-
tion.  The environments vendorlib, publiclib, and predefined are sup-
plied as part of MAXAda.

Environment Search Path

MAXAda uses the concept of an Environment Search Path to allow users to specify
that units from environments other than the current environment should be made
available in  the current environment.  This Environment Search Path relates only to
-4



Glossary
each particular environment and each environment has its own Environment Search
Path.  

ENVIRONMENT task

The task the run-time creates at start-up to perform library-level package elaboration
and execute the main subprogram.

environment-wide compile options

Environment-wide compile options apply to all units within that environment.  All
compilations within this environment then observe these environment-wide options
unless overridden. 

executive

See ARMS.

fast interrupt task

A task that executes directly at interrupt level to accept hardware interrupts instead
of relying on an INTR_COURIER ghost task to do so.

fatal error

An error of such severity that meaningful recovery is impossible and compilation
stops.

foreign environments

Foreign environments are all environments other than the local (or current) environ-
ment.

foreign units

Foreign units are those units that exist in other environments which are on the Envi-
ronment Search Path.

frozen environment

An environment that is made unalterable by the a.freeze utility.  Since frozen
environments are unalterable, accesses to these environments are much faster than
accesses to environments that are not frozen.

general error

An error that is semantic in nature but does not fall within a specific Ada 95 Refer-
ence Manual reference.

ghost task

A task artificially created by the run-time executive for various internal purposes
(overhead).
-5



MAXAda for Linux Reference Manual
global memory

Physical memory available to all CPUs via a system-wide bus. See local memory
and remote memory.

group

See server group.

HAPSE

Harris Ada Programming Support Environment.  The predecessor to the MAXAda
product.  Based on the Ada 83 Reference Manual.

hardness

An attribute of physical local memory, either SOFT or HARD, that controls whether
physical global memory is used if insufficient physical local memory is available.

hardware interrupt

An interrupt generated by a hardware device.  For example, real-time clock, edge-
triggered interrupt, and all system and VME interrupts.  See software interrupt.

heap

See collection (memory).

immediate binding

During dynamic linking, all shared objects that the application requires are allocated
and linked into the application’s address space before any of them are ever needed.

independent configuration pragmas

Configuration pragmas that appear independently in a source file with no units.

internal error

An error due to faults within the compiler.

interoptimization

MAXAda provides a method of optimization that controls the compilation order
such that inlined subprogram calls will be performed whenever possible.

interrupt

An event external to the currently executing process.  The two types are hardware
interrupt and software interrupt.
-6



Glossary
interrupt handler

A subprogram that is called when an interrupt occurs.

INTR_COURIER ghost task

The real ghost task associated with a hardware interrupt entry.  It has a bound
weight and executes at interrupt level.  It receives the hardware interrupt and for-
wards it to the real task with which it is associated in such a way that the entry call
seems to be coming from the SHADOW task.  A COURIER task may also be
involved in forwarding the hardware interrupt to the real task.

lazy binding

By default, the dynamic linker does not link any shared objects into the applica-
tion’s address space until they are needed.  If, during execution of the application, an
as-yet unrelocated reference occurs, control passes to the dynamic linker which then
relocates the reference.

lexical error

An error in the formation of literals, identifiers, and delimiters.

library unit

A library unit is a separately compiled program unit, and is always a package, sub-
program, or generic unit.  Library units may have other (logically nested) library
units as children, and may have other program units physically nested within them.

link method

The link method specifies the manner in which a unit is included in the linking pro-
cess.  It can instruct the linker to use the object of a unit directly (object method),
utilize the unit found in an archive (archive method), or include the unit con-
tained within a shared object (shared_object method).  These methods are used
in conjunction with the link rule.

link options

Each MAXAda partition has a set of link options associated with it.  These options
are persistent and remain in effect for the life of the partition.  They are normally set
and modified using the -oset, -oappend, -oprepend, and -oclear options to
a.partition.

link rule

The order the linker follows to determine the link method for each required unit.

local environment

The local environment, or the current environment, is the current working directory.
-7



MAXAda for Linux Reference Manual
local-locking

The case when an application has a requirement for pages to be locked into local
memory.

local memory

Physical memory available to CPUs via a local bus physically located on the same
CPU as the local memory. See global memory and remote memory.

lock state

An attribute of memory pools that determines if memory pages are physically locked
in memory and thus cannot be swapped out by the operating system.

logical address

A virtual memory address in an executing program’s address space.  See machine
address.

LSB

Least-significant bit.

machine address

A physical memory address.  See logical address.

machine-code insertion

A MAXAda feature that allows the inclusion of assembly language instructions in
an Ada program.  This is accomplished via the machine_code package.

main subprogram

A non-generic subprogram without parameters that is either a procedure or a func-
tion returning an Ada STANDARD.INTEGER (the predefined type).  It is specified
to a.partition.

map file

A file containing ASCII descriptions of attributes of the run-time configuration of
the generated program, including:  the layout of memory pools; dynamic memory
management parameters; and task attributes, such as, CPU bias, quantum, priority,
weight, and stack usage.

MAPSE

The Minimum Ada Programming Support Environment.
-8



Glossary
MAXAda

MAXAda is a high-performance system intended for the large-scale development of
Ada application, real-time, and systems software.  MAXAda supports the Ada lan-
guage specification as defined in the Ada 95 Reference Manual

MAXAda installation

Any complete MAXAda directory structure that contains a version of MAXAda.

MAXAda release

Any released version of MAXAda or any MAXAda release containing a valid con-
figuration of patches intended for that release.

MCI

See machine code insertion.

memory pool

A physical region of global memory or local memory.

MSB

Most-significant bit.

multiplexed task

A task that shares the resources of a single pool and is served by a named server
group, which may contain one or more servers.  See task weight.

native unit

A native unit is a unit which has been introduced into an environment by using the
a.intro function.

naturalized unit

A naturalized unit is the compiled form of a foreign unit in the local environment
created by the compilation system.  A naturalized unit retains the options from its
original environment.

NightSim

An optional, graphical, non-intrusive tool for scheduling and monitoring real-time
single and multi-process applications running on one or more CPUs.  It allows inter-
active control of the high-resolution Frequency-Based Scheduler (FBS) and interac-
tive or deferred performance monitoring.
-9



MAXAda for Linux Reference Manual
NightTrace

An optional, graphical debugging and performance-analysis tool that works with
single and multi-process programs running on one or more CPUs. 

NightView

An optional symbolic debugger that supports debugging of Ada, C, and Fortran pro-
grams running on one or more CPUs.

NUMA

Non-Uniform Memory Access. An architecture classification with a local/global/
remote memory subclass that underlies Series 6000 computers. 

obscurities

Obscurities occur when the natural behavior of MAXAda and the Environment
Search Path mechanism prevent an intended file from being used for a particular
compilation.

obsolescent

A MAXAda environment containing packages whose functionality is largely redun-
dant with other features defined in the Ada 95 Reference Manual.  Use of these fea-
tures is not recommended in newly written programs.

operating system quantum

A quantum associated with a server group that determines the length of time that its
servers execute on a CPU before being preempted.

operating system scheduling priority

A scheduling priority associated with a server group that determines how the real-
time kernel selects groups for execution on CPUs.

opportunism

Make opportunistic use of unit bodies to improve code optimization (beyond inlin-
ing). 

optimization level

The setting for the amount of compile-time optimization to occur for a compilation
unit.  Optimization level can be established via the -O option to several utilities or
pragma OPT_LEVEL in the source.  Option values include:  1, 2, and 3.  Corre-
sponding pragma values include:  MINIMAL, GLOBAL, and MAXIMAL.

panic

An error due to faults within the compiler.
-10



Glossary
partition

A partition is an executable, archive, or shared object that can be invoked outside of
MAXAda.  The user can explicitly assign units to partitions.  The units included in a
partition are those of the explicitly assigned units, as well as other units needed by
those explicitly assigned.  MAXAda manages these units and their dependencies, as
well as link options and configuration information for each partition within the con-
text of an environment.

permanent unit options

This set of options is associated with a unit and override its environment-wide com-
pile options.  Each unit has its own set of permanent unit options.  They may be
specified and later modified via the a.options utility.

persistent options

Unlike most other compilation systems, MAXAda uses persistent options that need
not be specified on the command line to the compilation system.  These options can
be either associated with an environment or a particular unit and are “remembered”
by the compilation system.

position independent code (PIC)

Position independent code refers to the fact that the generated code does not rely on
labels, data, or routines being in known locations.  This type of code allows for
shared objects to be dynamically linked to an executable.

pragma

A pragma is a compiler directive.  There are language-defined pragmas that give
instructions for optimization, listing control, etc.  An implementation may support
additional (implementation-dependent) pragmas.  See also configuration pragmas.

predefined

The Ada Predefined Language Environment, as specified in Annex A of the Ada 95
Reference Manual.  It contains standard, system, I/O packages, etc.

PREDEFINED group

The predefined group the run-time creates at start-up that usually includes and exe-
cutes the ENVIRONMENT task and the DEFAULT pseudo task.

priority

See scheduling priority.

process

The full-weight operating system entity that is spawned when the executable image
is initiated.
-11



MAXAda for Linux Reference Manual
program

The ENVIRONMENT task and the entire set of Ada tasks that are included in the
Ada program as defined by its dependencies.

protected procedure handler

A protected procedure with a parameterless profile and declared as a handler with an
attach_handler or an interrupt_handler pragma.

publiclib

Environment that contains packages not maintained or guaranteed by Concurrent.

quantum

The length of time an entity spends executing on an execution resource before being
preempted.

queuing policy

The entry queuing policy, either FIFO_QUEUING or PRIORITY_QUEUING.

release

Any released version of MAXAda or any MAXAda release containing a valid con-
figuration of patches intended for that release.

relocation

The dynamic linker’s final address resolution of shared object symbol references in
internal symbol tables.

remote memory

Physical memory on another remote CPU board than the CPU accessing it.

rtdm

A MAXAda environment containing a package which provides a flexible interface
to the key features of data monitoring.

run-time system

See ARMS.

scheduling priority

Used by the real-time kernels and the run-time executive to schedule tasks for exe-
cution within a group.
-12



Glossary
semantic error

An error in the semantic usage of language constructs.

server

The basic execution entity in the tasking mode.  A server is an anonymous entity
that executes on a CPU and is utilized by Ada tasks.  Servers are identified by enti-
ties called server groups. 

server cache

A set of servers that are currently unneeded by the application, but which can be
placed back into service when they become necessary.

server group

A collection of one or more servers.  Server groups are considered the execution
resources that are available to Ada tasks.  Server groups can be either named or
anonymous, depending on their usage.  See task weight.

SHADOW ghost task

A ghost task associated with a software interrupt or hardware interrupt task entry.  It
is not a physical task in any real sense.  It merely acts as the virtual caller of the real
task’s entry.  It does not, however, physically execute on any server or CPU.

share mode

The setting for a compilation unit or library that determines whether shared objects
will be used. Share mode can be established via the -sm option to several utilities or
pragma SHARE_MODE in the source. Values include: shared, non_shared, and
both.

shared object

A shared collection of routines and data associated with a user’s application during
the link and execution phases of program generation.  Shared objects are dynami-
cally built (i.e. shared) objects that contain position independent code. 

shared package

A package with all variables declared in its specification allocated in shared mem-
ory.

software interrupt

An operating system signal.  See interrupt and hardware interrupt.

stack (memory)

A memory region used for subprogram and task data.  Stacks dynamically grow and
shrink during execution.
-13



MAXAda for Linux Reference Manual
syntax error

An error in the form of grammatical constructs.

system bus

A single data path to global memory that all CPUs on Series 6000 systems share.

task monitoring

The real-time display and modification of user-defined tasks, ghost tasks, server
groups, and the display of heap and virtual memory and system information via the
a.monitor utility.  This is usually performed during program debugging.

task quantum

A quantum associated with a task. It determines how long the task executes on a
server group before being preempted by the run-time executive.

task scheduling priority

A scheduling priority associated with a task.  It determines how the run-time execu-
tive schedules tasks for execution on server groups.

task weight

A configuration attribute that is bound, multiplexed, or passive.  It determines
whether a task is to have a specific server (execution resource) dedicated for its
exclusive use, to share servers from a server group, or to borrow another task’s
server when executing.

temporary unit options

This set of options is temporarily associated with a unit and override its permanent
unit options.  The temporary unit options allow the user to “try out” options under
consideration.  These options can then be discarded or, if desired, can be added to
the permanent unit options.

text (memory)

Statically sized memory segment used for the allocation of machine instructions, lit-
erals, and some constant data.

TIMER ghost task

A ghost task that exists only in programs that contain multiplexed tasks (other than
the ENVIRONMENT task).  If it exists, it is a bound task that is responsible for all
timing operations associated with multiplexed tasks.  The TIMER task acts as an
“alarm clock” that triggers rescheduling events when certain times have been
reached because of these operations.
-14



Glossary
tracing

A means of debugging and analyzing the performance of Ada applications, includ-
ing multi-tasking applications via the a.trace and possibly the NightTrace tools.
It involves the logging and display of predefined and user-defined trace events, data
values (arguments), and timings with minimal impact on the application.  

unit

Shorthand for compilation units as defined in the Ada 95 Reference Manual, units
are the basic building blocks of the MAXAda environments.  It is through units that
MAXAda performs most all its library management and compilation activities. 

vendorlib

Environment that contains mathematical functions; real-time, system service, and
operating system bindings; and miscellaneous packages.

warning

An error message about a problem that is not sufficiently serious to prevent code
generation or that indicates questionable use of a construct.

weight

See task weight.
-15



MAXAda for Linux Reference Manual
-16



Index
Symbols

###  4-19
.pprc file  4-78, 4-80, 4-81
/tmp directory  4-34

A

a.build  1-2, 1-3, 2-12, 2-15, 4-3, 4-6, 11-12
automatic compilation  3-20
example  2-4, 2-13, 2-14, 2-17, 4-17
-IO option  3-25
-noimport option  2-15

a.cat  1-1, 4-7
example  2-5
-h option  2-5

a.chmod  1-1, 4-8
a.compile  1-2, 3-21, 4-9
a.demangle  4-11
a.deps  1-2, 4-13
a.edit  1-1, 2-12, 4-15

example  2-12
a.error  1-2, 3-26, 4-16, 4-51

example  4-18
a.expel  1-2, 3-10, 4-21
a.fetch  1-2, 3-3, 3-5, 4-22
a.freeze  1-1, 4-25
a.help  1-2, 4-26
a.hide  1-2, 3-10, 4-27
a.install  1-2, 4-28
a.intro  1-2, 1-3, 2-2, 3-5, 4-27, 4-30

example  2-3, 2-12, 2-16, 4-17
a.invalid  1-2, 4-32
a.link  1-2, 4-33
a.ls  1-1, 4-35

example  2-5, 2-14
-l option  2-5
-v option  2-5

a.lssrc  4-42
a.man  1-2, 4-44
a.map  1-2, 4-47, 6-2, 6-9, 6-22
a.mkenv  1-1, 1-3, 2-1, 2-2, 3-1, 4-53

example  2-2, 2-12, 4-17
a.monitor  1-2, 3-38, 4-55, 7-10, 12-4, B-2
a.monitor 

  C-3
a.nfs  1-1, 4-56
a.options  1-1, 2-7, 3-20, 3-21, 3-31, 4-58, M-120

modifying default options  4-20
a.partition  1-2, 1-3, 3-5, 3-12, 3-13, 3-14, 3-16, 3-17, 

4-62, 11-19
-elab option  3-13, 3-16
example  2-3, 2-6, 4-17
-final option  3-13, 3-16
-list option  2-6
-List option example  2-6
-sl option  3-14

a.path  1-1, 3-3, 3-5, 4-74, 11-12
example  2-7, 2-13, 2-14

a.pclookup  1-2, 4-76
a.pp  1-2, 4-77, 4-82
a.release  1-1, 4-83
a.resolve  1-2, 3-10, 4-85

example  2-17
a.restore  1-1, 4-86
a.rmenv  1-1, 4-87
a.rmsrc  1-2, 3-11, 4-88
a.script  1-1, 3-6, 4-89
a.syntax  1-2, 4-92
a.tags  1-2, 4-94
a.touch  1-2, 4-97
a.trace  1-2, 4-98, 4-114, 11-24, 11-25, 11-26, 11-27

viewing trace events  11-25
Access

Alignment  M-40
Access type  3-25, 6-22, 8-4, 12-1, 12-2
Active partitions  2-3, 3-12, Glossary-1
AD (Ada) scheduling class  5-9
Ada

packages  1-6, 1-7, 3-15, 6-19, 8-3, 8-4, 8-5, 9-11, 
10-1, 10-1, 10-2, 10-4, 10-5, 10-6, 10-8, 
10-11, M-14, M-36, M-37, M-50, M-112

pragmas  3-25, 3-31, 5-4, 8-1, 8-5, 12-2, A-1, A-3, 
B-2

Ada (AD) scheduling class  5-9
Ada 83 Reference Manual  Glossary-6
Ada 95 Reference Manual  1-1, 2-7, 3-1, 3-3, 3-12, 3-20, 
-1



MAXAda for Linux Reference Manual
6-7, M-1, M-104, M-105, M-106, M-109, 
M-112, M-114, M-117, M-118, M-122, M-123, 
M-124, M-125, M-126, M-130, M-131, M-133, 
M-134, Glossary-9, Glossary-10, Glossary-11, 
Glossary-15

Ada bindings  1-7, Glossary-1
Ada Executive  11-19
Ada interfacing pragma convention  M-71, M-72, M-75, 

M-106, M-110, M-113
Ada tagged types

interfacing with C++ classes  3-51
interfacing with Java classes  3-51

ada.dynamic_priorites package  B-2
ada.exceptions.addresses package  9-9
ada.numerics.constants package  9-10
ada.real_time.local package  9-10
ADDR  M-15
Address  M-36

logical  M-36, Glossary-8
machine  M-36, Glossary-8

Address space  3-13
ADMIN ghost task  5-5, 6-5, 6-28, Glossary-1
Alert errors  3-32, M-108, Glossary-1
Alignment  M-37

attribute  M-37
clause  M-45
minimal  M-38
optimal  M-38

ALL_CALLS_REMOTE pragma  M-104
Ambiguous units  2-15, 3-10, 4-27, Glossary-1
AMD64

instruction set  M-50, M-81
machine-code insertions  M-51

ANSI/ISO/IEC-8652
1995  5-1, 5-2, M-1

Application  5-1
Application configuration  A-2
Archives  3-12, Glossary-1
ARMS  5-1, Glossary-1
Array

Alignment  M-40
Assembler interfacing pragma convention  M-71, 

M-72, M-75, M-77, M-106, M-110, M-113
ASSIGNMENT pragma  M-104
ASYNCHRONOUS pragma  M-104
at clause  M-45
at mod  M-45
ATOMIC pragma  M-104
ATOMIC_COMPONENTS pragma  M-105
ATTACH_HANDLER pragma  M-105
Attachment index  Glossary-1
Attribute

’ADDR  M-15
’Address  M-36

’Alignment  M-37
’Component_Size  M-43
’External_Tag  M-44
’HAS_DISCRIMINANTS  M-16
’HAS_TAG  M-16
’INTERNAL_TAG  M-16
’KEY  M-14
’LOCK  8-3, 8-5, 10-3, M-14, M-14
’PART_HAS_TAG  M-16
’REF  M-15, M-50, M-50
’SHM_ID  M-14
’Size

Object  M-41
Subtype  M-41

’STORAGE_SIZE  5-12, 6-22, 6-27, A-2
’TAGGED  M-16
’UNLOCK  8-3, 8-5, 10-3, M-14, M-14

B

Back-end  3-31
Big Endian  10-12
Binary semaphores  8-3, 8-5, 10-2
binary_semaphores package  10-2, 10-2, 10-3, 10-5
Binding  1-7

immediate  3-13, 3-14, Glossary-6
lazy  3-13, 3-14, Glossary-7
NightTrace  11-8
POSIX 1003.5  1-7
sockets  1-7

-bound link option  4-114
Bound task  5-3, A-2, C-1, M-67
Busy wait  10-1, 10-11
Byte swapping  10-12

C

C  3-43, 3-48
C declaration

containing an ellipsis  M-76, M-113, M-114
C interfacing pragma convention  3-48, 3-49, M-71, 

M-72, M-75, M-79, M-96, M-106, M-110, 
M-113

C++  3-44, 3-48, 3-51
C++ classes

interfacing with Ada tagged types  3-51
Cache  8-3

COPYBACK mode  6-25
mode  Glossary-2
-2



Index
NCACHE mode  6-25
server  6-4, Glossary-13

CAP_SYS_ADMIN  12-4
Capability

CAP_SYS_ADMIN  12-4
ccur.binary_semaphores package  10-2, 10-2, 

10-3, 10-5
ccur.bit_ops package  9-9
ccur.bit_ops.long package  9-9
ccur.c_to_ada_types package  9-12
ccur.character_type package  9-12
ccur.curses package  9-12
ccur.cyclic_scheduler package  10-6, B-2
ccur.indivisible_operations package  10-8, 

10-11
ccur.night_trace_bindings package  9-17, 

11-8
ccur.posix_1003_1 package  9-15
ccur.qsort package  9-12
ccur.rescheduling_control package  B-2
ccur.rtdm package  3-40, 9-13, 12-2, B-2, M-116
ccur.runtime_configuration package  6-1, 6-4, 

6-8, 6-9, 6-13, 6-18, 6-19, 6-20, 9-11, A-4, B-2
ccur.shared_memory_support package  8-4, 

9-11
ccur.sockets package  9-17
ccur.spin_locks package  10-1, B-2
ccur.task_synchronization package  10-6, B-2
ccur.tasking_semaphores package  10-4
ccur.timers package  9-17
ccur.unchecked_byte_swap package  10-12
ccur.user_trace package  10-8, 11-3
ccur.user_trace.raw package  10-8
ccur.usermap_support package  10-12
CEILING_LOCKING locking policy  5-9, 6-3
chmod  8-3
Class-wide

Alignment  M-40
Client-server services  10-11, A-3
Cobol interfacing pragma convention  M-71
Collection memory  5-11, 6-22, Glossary-2
Comment  4-19
Communication

inter-process  8-1, 10-11
Companion ghost task  Glossary-2
Compilation

automatic  3-20
separate  3-20

Compilation states  2-18, 3-20
a.build -state  4-4
a.compile -state  4-10
a.ls -C state  4-35
categorized (a.ls -n)  4-36
compiled  3-22

drafted  3-22
listing (a.ls -l)  4-36
parsed  3-22
uncompiled  3-22

Compilation unit  Glossary-2
Compilation Utilities

a.build  4-3
a.partition  4-62

Compile options  2-10, 4-99, Glossary-2
clearing  4-60
deleting  2-10, 4-60
effective  2-10, 3-20, 3-22, 4-59, Glossary-4
environment-wide  2-7, 3-6, 3-21, 4-59, Glossary-4, 

Glossary-5
listing  2-8, 4-59
modifying  2-9, 4-60
propagating temporary to permanent  2-10, 4-61
setting  2-8, 4-60
unit  3-11

permanent  2-8, 3-21, 4-59, Glossary-4, Glos-
sary-11

temporary  2-9, 3-21, 4-59, Glossary-4, Glos-
sary-14

Compiler
error message  3-26
error message processing  3-26

COMPILER_PATH environment variable  3-42
Component

Storage place  M-47
Component_Size  M-43
Components

implementation-defined  M-46
Composite

Alignment  M-40
type  M-122

Concurrent access  A-2
Concurrent Fortran  3-48
Concurrent Fortran 77  3-45
Concurrent program  8-4, Glossary-2
Configuration

application  A-2
errors  A-1
kernel  A-1
stack size  6-27
system  A-1, B-1

Configuration Pragmas  3-9
Independent  3-9

Configuration pragmas  3-7, Glossary-2
independent  Glossary-6

Consistency  3-23, Glossary-3
Context  C-2
Control block

task  C-2, C-3
-3



MAXAda for Linux Reference Manual
Controlled
Alignment  M-40

CONTROLLED pragma  M-105
CONVENTION pragma  M-106
COPYBACK cache mode  6-25
Core Utilities

a.build  4-3
a.intro  4-30
a.mkenv  4-53
a.partition  4-62

COURIER ghost task  6-5, 6-10, Glossary-3
cpp  4-78
CPU bias  5-4, 6-12, 6-23, A-4, Glossary-3
cpu_bias  5-4
Cross referencing  4-94
crossref a-monitor  3-38
Cyclic scheduler  10-6
cyclic_scheduler package  10-6, B-2

D

Data memory  5-11, 6-22, Glossary-3
Data monitoring  12-1, Glossary-3
DATA_RECORD pragma  M-107
Dead-code elimination  4-106
Debug level  4-100, M-107, Glossary-3
DEBUG pragma  12-1, M-107
Debug Utilities

a.man  4-44
a.map  4-47
a.monitor  4-55
a.pclookup  4-76
a.trace  4-98

Debugging
NightView  3-38, C-1, Glossary-10
tools  3-38

DEFAULT pseudo group  6-8, Glossary-3
DEFAULT pseudo task  6-4, 6-6, 6-8, 6-22, Glossary-3
default_handler package  3-15
Defaults  4-81
Dependency

analysis  4-5
loop  4-6

deprecated  1-6, 9-1, 9-14, Glossary-4
Deprecated feature  Glossary-4
DEPRECATED_FEATURE pragma  M-108
Digits of precision  M-11
Directory

/tmp  4-34
DISCARD_NAMES pragma  M-108
Discrete

Alignment  M-39

DISPLAY environment variable  11-12
Distributed application  Glossary-4
DONT_ELABORATE pragma  M-108
DWARF  Glossary-4
Dynamic linker  3-13
Dynamic linking  3-13, Glossary-4

E

Edge-triggered interrupts  7-1
EDITOR environment variable  2-12, 4-13, 4-30, 4-47, 

4-51, 4-92, 4-99
Effective compile options  2-10, 3-20, 3-22, 4-59, 

Glossary-4
ELABORATE pragma  M-109
ELABORATE_ALL pragma  M-109
ELABORATE_BODY pragma  M-109
Elaboration  6-4, 6-24, 8-4, 8-5, 10-3, 10-5, A-1, M-14, 

Glossary-4
archives  3-13
shared objects  3-13

ELF  Glossary-4
Ellipsis

in C declaration  M-76, M-113, M-114
emacs  4-94, 4-95
Endian

Big  10-12
Little  10-12

Entry interfacing pragma convention  M-71, M-106, 
M-110, M-113

Enumeration
Alignment  M-39

Enumeration type  12-2, M-50
Environment Search Path  2-7, 2-13, 2-14, 3-2, 3-10, 

Glossary-4
a.path  3-3
adding environments to  2-13
viewing  2-14

ENVIRONMENT task  5-1, 5-2, 5-5, 5-8, 5-9, 5-11, 
5-12, Glossary-5

Environment task  6-4, 6-6, 6-8, 6-16, 6-24, M-132
Environment variable

COMPILER_PATH  3-42
DISPLAY  11-12
EDITOR  2-12, 4-13, 4-30, 4-47, 4-51, 4-92, 4-99
LD_BIND_NOW  3-14
PATH  2-1
TMPDIR  4-34

Environment/State Utilities
a.chmod  4-8
a.freeze  4-25
a.mkenv  4-53
-4



Index
a.options  4-58
a.path  4-74
a.release  4-83
a.restore  4-86
a.rmenv  4-87

Environments  3-1, Glossary-4
creating  2-1, 2-12
environment-wide compile options  3-6, 3-21
foreign  3-2, Glossary-5
freezing  Glossary-5
local  3-2, Glossary-7
relocating  3-4
restoring  3-4
supplied  1-6, 3-3

deprecated  1-6, 9-1, 9-14, Glossary-4
general  1-7, 9-1, 9-17, 11-8
obsolescent  1-6, 9-1, 9-14, Glossary-10
posix_1003.1  1-7, 9-1, 9-14
posix_1003.5  1-7, 9-1, 9-15
predefined  1-6, 3-3, 9-1, 9-6, Glossary-4, 

Glossary-11
publiclib  1-6, 9-1, 9-12, Glossary-4, Glossa-

ry-12
rtdm  1-6, 9-1, 9-13, Glossary-12
sockets  1-7, 9-1, 9-17
vendorlib  1-6, 3-15, 9-1, 9-8, 10-1, 11-3, 

Glossary-4, Glossary-15
Environment-wide compile options  2-7, 3-6, 3-21, 4-59, 

Glossary-4, Glossary-5
Environment-wide link options  3-34
Errors

alert  3-32, M-108, Glossary-1
configuration  A-1
fatal  3-33, Glossary-5
general  3-30
internal  3-33, Glossary-6
lexical  3-27, 4-18, 4-19, Glossary-7
messages  3-26, 3-31
panics  3-33, Glossary-10
processing  3-26, 3-31
redirecting to a file  4-17
run-time  A-4
semantic  3-29, Glossary-13
syntax  3-28, Glossary-14
user  A-2
warnings  3-32

Exceptions  C-3
addresses  9-10
and optimization  3-25
misaligned access  3-25
originating_instruction  9-10
PROGRAM_ERROR  8-3, 8-5, M-14

propagation_map  9-10
SEMAPHORE_ERROR  10-3, 10-5
STORAGE_ERROR  A-2
TASKING_ERROR  A-1, A-4
unhandled  6-15, M-132
USE_ERROR  M-67

Executive
run-time  5-1, 5-2, 5-3, 5-7, 6-11, 6-18, 10-12, A-2, 

A-3, A-4, Glossary-12
Exit status  3-19
EXPORT pragma  M-109
Expressions  4-80
Extensibility  5-11
EXTERNAL_NAME pragma  M-111
External_Tag  M-44

F

-f77version link option  4-110
Fast interrupt task  Glossary-5
FAST_INTERRUPT_TASK pragma  M-111
Fatal errors  3-33, Glossary-5
Fetched units  3-3, 3-10, 4-61
FIFO_WITHIN_PRIORITIES  5-3, 5-8, 5-9, 6-3
File

.pprc  4-78, 4-80, 4-81
ipc.h  9-11
map  6-2, Glossary-8
shm.h  9-11

Finalization
archives  3-13
shared objects  3-13

Fixed point
Alignment  M-39

Fixed-point type  12-2
FLOAT type  M-11
Floating point

Alignment  M-39
Floating-point type  12-2
Forcing a trace buffer flush  11-20
Foreign environments  3-2, Glossary-5
Foreign units  3-10, Glossary-5
Fortran  3-45, 3-46, 3-48
Fortran interfacing pragma convention  M-79, M-80
Fortran interfacing pragma convention  M-71
ftok  8-2, M-14
Function

UNCHECKED_CONVERSION  5-13
-5



MAXAda for Linux Reference Manual
G

general  1-7, 9-1, 9-17, 11-8
General errors  3-30, Glossary-5
GENERAL passive task  Glossary-5
Generic

debugging  C-4
Ghost Task  12-9, 12-12
Ghost task  4-50, 5-5, 6-4, Glossary-5

ADMIN  5-5, 6-5, 6-28, Glossary-1
companion  Glossary-2
COURIER  6-5, 6-10
INTR_COURIER  6-5, 6-10, Glossary-7
SHADOW  6-5, 6-10, 7-4, 7-6, Glossary-13
TIMER  5-5, 6-5, Glossary-14

Global memory  6-23, 6-24, Glossary-6
GLOBAL optimization  3-25
GNU Fortran  3-46
GNU Java  3-47, 3-49
graphic_character  M-5
Group  Glossary-6

DEFAULT  6-8, Glossary-3
PREDEFINED  6-8, 6-19, 6-19
server  5-1, 6-8

GROUP_CPU_BIAS pragma  5-4, 6-13, 6-19, 6-19, B-2, 
M-111

GROUP_PRIORITY pragma  6-18, M-111
GROUP_SERVERS pragma  6-19, M-112
growth_limit qualifier keyword  4-107, M-120

H

Handler
interrupt  Glossary-7
protected procedure  Glossary-12

HAPSE  Glossary-6
Hardness of memory  Glossary-6
Hardware interrupt  7-6, Glossary-6
HAS_DISCRIMINANTS  M-16
HAS_TAG  M-16
Heap  5-11, Glossary-6
Hung processes  A-3

I

Immediate binding  3-13, 3-14, Glossary-6
Implementation-defined Characteristics  M-1
Implementation-defined components  M-46
IMPLICIT_CODE pragma  M-112

Implicitly-included libraries  4-72
IMPORT pragma  M-112, M-114
IMPORT_AUX pragma  M-76, M-113, M-114
-incr link option  4-111
Incrementally updateable partition  4-111
Independent configuration pragmas  3-9, Glossary-6
Index

attachment  Glossary-1
indivisible_operations package  10-8, 10-11
Informational messages  3-31
INLINE pragma  3-25, M-114
inline_line_count qualifier keyword  4-105
inline_nesting_depth qualifier keyword  4-105
inline_statement_limit qualifier keyword  4-106
inlines_per_compilation qualifier keyword  4-106
Insertion

machine code  M-115, Glossary-8
machine-code  M-49, M-115

INSPECTION_POINT pragma  M-115
Instantiation  C-4
Instruction set

AMD64  M-50, M-51, M-81
Pentium  M-50, M-51, M-81

Integer
Alignment  M-39

Integer type  12-2
Interest levels  9-13
INTERESTING pragma  9-13, M-115
interesting qualifier keyword  4-107
INTERFACE pragma  M-116
Interface to other languages  3-41

Ada tagged types and C++ classes  3-51
Ada tagged types and Java classes  3-51
elaboration and finalization methods  3-16
linking Ada partitions with C main subprograms  

3-43
linking Ada partitions with C++ main subprograms  

3-44
linking Ada partitions with Concurrent Fortran 77 

main subprograms  3-45
linking Ada partitions with GNU Fortran main 

subprograms  3-46
linking Ada partitions with GNU Java main 

subprograms  3-47
linking Ada partitions with non-Ada main 

subprograms  3-41
linking C++ objects into MAXAda partitions  3-48
linking Fortran objects into MAXAda partitions  

3-48
linking GNU Java objects into MAXAda partitions  

3-49
linking non-Ada objects into MAXAda partitions  

3-48
RM Annex B  M-71
-6



Index
types of partitions  3-12
INTERFACE_NAME pragma  M-116
INTERFACE_OBJECT pragma  M-117
INTERFACE_SHARED pragma  M-117
Interfacing pragma conventions

Ada  M-71, M-72, M-75, M-106, M-110, M-113
Assembler  M-71, M-72, M-75, M-77, M-106, 

M-110, M-113
C  3-48, 3-49, M-71, M-72, M-75, M-79, M-96, 

M-106, M-110, M-113
Cobol  M-71
Entry  M-71, M-106, M-110, M-113
Fortran  3-48, M-79, M-80
Fortran  M-71
Intrinsic  M-71, M-72, M-106, M-110, M-113
Protected  M-71, M-106, M-110, M-113
Restricted_Fortran  M-71, M-72, M-76, 

M-77, M-80, M-106, M-110, M-113
Restricted_Gnu_Fortran  M-71, M-72, 

M-76, M-77, M-80, M-106, M-110, M-113
Unchecked_C  3-48, 3-49, M-71, M-72, M-76, 

M-77, M-79, M-106, M-110, M-113
Internal errors  3-33, Glossary-6
Internal Utilities

a.compile  4-9
a.deps  4-13
a.error  4-16
a.install  4-28
a.link  4-33
a.pp  4-77

INTERNAL_TAG  M-16
Interoptimization  3-24, 4-3, Glossary-6
Inter-process communication  8-1, 10-11
Interrupt  Glossary-6

handler  Glossary-7
hardware  7-6, Glossary-6
software  Glossary-13
task  Glossary-5

INTERRUPT_HANDLER pragma  M-117
INTERRUPT_PRIORITY pragma  B-2, M-117
INTR_COURIER ghost task  6-5, 6-10, Glossary-7
Intrinsic interfacing pragma convention  M-71, 

M-72, M-106, M-110, M-113
IPC  8-1, 10-11
IPC flags  8-3
ipc.h file  9-11
ipcrm  8-3, 8-4, 8-5
ipcs  8-3, 8-4

J

Java  3-47, 3-49, 3-51

Java classes
interfacing with Ada tagged types  3-51

K

Kernel configuration  A-1
KEY  M-14

L

Lazy binding  3-13, 3-14, Glossary-7
-ld link option  4-111
LD_BIND_NOW environment variable  3-14
Level

debug  Glossary-3
optimization  Glossary-10

Lexical
errors  4-18, 4-19

Lexical errors  3-27, Glossary-7
Libraries

implicitly-included  4-72
Library

supplied  1-6
Library unit  Glossary-7
Limits

shell  6-27
Link method  4-67, Glossary-7
Link options  3-34, 4-65, 4-109, Glossary-7

-bound  4-114
environment-wide  3-34
-f77version  4-110
in source code  3-35
-incr  4-111
incrementally updateable partition  4-111
-ld  4-111
-multiplexed  4-114
-nosoclosure  4-114
obscurity checks  4-115
share path  4-110
shared object transitive closure  4-114
-skipobscurity  4-115
-sl  4-110
-sp  4-110
specifying  3-34
task weight  4-114
-trace  4-113
tracing  4-113

Link rule  4-67, Glossary-7
LINK_OPTION pragma  M-118
Linker
-7



MAXAda for Linux Reference Manual
dynamic  3-13
LINKER_OPTIONS pragma  3-35, 3-48, 3-49, M-118
Linking

Ada partitions with C main subprograms  3-43
Ada partitions with C++ main subprograms  3-44
Ada partitions with Concurrent Fortran 77 main 

subprograms  3-45
Ada partitions with GNU Fortran main subprograms  

3-46
Ada partitions with GNU Java main subprograms  

3-47
Ada partitions with non-Ada main subprograms  

3-41
C++ objects into MAXAda partitions  3-48
dynamic  Glossary-4
Fortran objects into MAXAda partitions  3-48
GNU Java objects into MAXAda partitions  3-49
non-Ada objects into MAXAda partitions  3-48
static  Glossary-14

list  C-4
LIST pragma  M-118
Listing

partitions  2-6
units  2-5

listing effective options  2-10
Little Endian  10-12
Local environments  3-2, Glossary-7
Local memory  6-23, 6-24, 8-3, Glossary-8
Local units  3-9
LOCK  M-14, M-14
Lock

memory pages  8-3, A-4
spin  10-1
state  6-25, Glossary-8

Locking policy
CEILING_LOCKING  5-9, 6-3
default  5-9, 6-3
protected object  6-3

LOCKING_POLICY pragma  5-9, 6-3, M-118
Logical address  M-36, Glossary-8
LONG_FLOAT type  M-11
Loops in dependencies  4-6
loops qualifier keyword  4-106, M-120
LSB  Glossary-8

M

Machine address  M-36, Glossary-8
machine_code package  M-50, M-112
Machine-code insertion  M-49, M-115, Glossary-8

AMD64  M-51
Pentium  M-51

Main subprogram  2-3, 4-36, 4-64, 5-1, Glossary-8
C++, linking with Ada partitions  3-44
C, linking with Ada partitions  3-43
Concurrent Fortran 77, linking with Ada partitions  

3-45
exit status  3-19
GNU Fortran, linking with Ada partitions  3-46
GNU Java, linking with Ada partitions  3-47
linking C++ objects into  3-48
linking Fortran objects into  3-48
linking GNU Java objects into  3-49
linking non-Ada objects into  3-48
non-Ada, linking with Ada partitions  3-41
requirements  3-19

Map file  6-2, Glossary-8
MAP_FILE pragma  6-2, M-119
MAPSE  Glossary-8
MAX_PRIORITY  6-18
MAXAda  Glossary-9
MAXAda installation  Glossary-9
MAXAda release  Glossary-9
MAXIMAL optimization  3-25
MCI  M-49, M-115, Glossary-8, Glossary-9
memadvise  6-25
memcntl  A-4
Memory

attributes  6-24
collection  5-11, 6-22, Glossary-2
data  5-11, 6-22, Glossary-3
global  6-23, 6-24, Glossary-6
heap  5-11
local  6-23, 6-24
management  5-11
page locking  8-3, A-4
pool  6-23
remote  Glossary-12
segment  3-13
shared  8-1
stack  5-12, 6-22, Glossary-13
text  5-11, 6-21, Glossary-14

Memory pool  6-21, 6-25, 6-26, A-4, Glossary-9
lock state  6-25, Glossary-8
pad  6-28
size  6-26

MEMORY_POOL pragma  5-4, 6-23, A-1, B-2, M-119
Minimal alignment  M-38
Misaligned access  3-25
mlock  6-26
mmap  A-4
Monitoring  3-38

data  12-1, Glossary-3
task  12-3, Glossary-14

mpadvise  A-5
MSB  Glossary-9
-8



Index
Multiple process communication  8-1
-multiplexed link option  4-114
Multiplexed task  C-1, M-67
Multithreading  A-2
Mutual exclusion  10-1, 10-2, 10-4, 10-11

N

Nationalities  3-9
Native units  3-9, Glossary-9
Naturalization  2-15, 3-3

inhibiting  2-15
Naturalized units  3-3, 3-9, Glossary-9
NCACHE cache mode  6-25
night_trace_bindings package  11-8
NightBench  1-7
NightProbe  1-8
NightSim  1-8, Glossary-9
NightTrace  1-7, 4-114, 11-8, 11-11, 11-24, Glossary-10

binding  11-8
configuration file

creating  11-26
modifying  11-27

display utility  11-12
ntrace  11-12, 11-26
ntraceud  11-12, 11-21
user daemon  11-15, 11-17, 11-19, 11-21
viewing trace events  11-26

NightView  1-8, 3-38, 11-13, C-1, Glossary-10
NightView debugger command

handle  C-3
info exception  C-3
list  C-4
print  C-5
select-context  C-3
set-language  C-5

no_bsem parameter  8-5, M-15
Non-tasking

run-time  5-7, 5-8
noreorder qualifier keyword  M-120
NORMALIZE_SCALARS pragma  M-119
-nosoclosure link option  4-114
ntrace  4-114, 11-12, 11-26
ntraceud  11-12, 11-21
NUMA  Glossary-10
nview  3-38

O

Objects
protected  5-9, 6-3, M-119
shared  3-13, Glossary-13

objects qualifier keyword  3-31, 4-106, M-120
Obscurities  Glossary-10
Obscurity checks  4-115
obsolescent  1-6, 9-1, 9-14, Glossary-10
Operating system quantum  6-14, Glossary-10
Operating system scheduling priority  6-11, Glossary-10
Opportunism  4-101, Glossary-10
opt_class qualifier keyword  4-106, M-120
OPT_FLAGS pragma  3-25, 3-31, M-120
OPT_LEVEL pragma  M-121
Optimal alignment  M-38
Optimization  3-31

levels  4-101, M-121, Glossary-10
optimization_size_limit qualifier keyword  4-106
OPTIMIZE pragma  M-121
optimize_for_space qualifier keyword  4-106, M-120
Options

compile  4-99, Glossary-2
See also Compile options

effective (compile)  3-20, 3-22, Glossary-4
hierarchical relationship  3-20, 3-22, Glossary-4
link  4-109
negating  3-22
permanent unit (compile)  2-8, 3-21, 4-59, 

Glossary-4, Glossary-11
persistent  3-20, Glossary-11
-Q  4-104, 4-105
temporary unit (compile)  2-9, 3-21, 4-59, 

Glossary-4, Glossary-14
OS scheduling classes  5-7, 5-8

Ada (AD)  5-9

P

P_CPUBIAS  A-1
P_TSHAR  A-1
PACK pragma  3-25, M-122
Package

ada.dynamic_priorites  B-2
ada.exceptions.addresses  9-9
ada.numerics.constants  9-10
ada.real_time.local  9-10
binary_semaphores  10-2, 10-2, 10-3, 10-5
ccur.binary_semaphores  10-2, 10-2, 10-3, 

10-5
ccur.bit_ops  9-9
-9



MAXAda for Linux Reference Manual
ccur.bit_ops.long  9-9
ccur.c_to_ada_types  9-12
ccur.character_type  9-12
ccur.curses  9-12
ccur.cyclic_scheduler  10-6, B-2
ccur.indivisible_operations  10-8, 

10-11
ccur.night_trace_bindings  9-17, 11-8
ccur.posix_1003_1  9-15
ccur.qsort  9-12
ccur.rescheduling_control  B-2
ccur.rtdm  3-40, 9-13, 12-2, B-2, M-116
ccur.runtime_configuration  6-1, 6-4, 6-8, 

6-9, 6-13, 6-18, 6-19, 6-20, 9-11, A-4, B-2
ccur.shared_memory_support  8-4, 9-11
ccur.sockets  9-17
ccur.spin_locks  10-1, B-2
ccur.task_synchronization  10-6, B-2
ccur.tasking_semaphores  10-4
ccur.timers  9-17
ccur.unchecked_byte_swap  10-12
ccur.user_trace  10-8, 11-3
ccur.user_trace.raw  10-8
ccur.usermap_support  10-12
cyclic_scheduler  10-6, B-2
default_handler  3-15
indivisible_operations  10-8, 10-11
machine_code  M-50, M-112
night_trace_bindings  11-8
real_time_data_monitoring  3-40, 9-13, 

12-2, B-2, M-116
rescheduling_control  B-2
rtc_control  10-6
runtime_configuration  6-1, 6-4, 6-8, 6-9, 

6-13, 6-18, 6-19, 6-20, A-4, B-2
shared_memory_support  8-4
spin_locks  10-1, B-2
sync_package  10-2
system.addresses  9-11
system.information  9-11
system.storage_pools  9-11
system.storage_pools.standard.objec

ts  9-12
task_synchronization  10-6, B-2
tasking_semaphores  10-4
user_trace  10-8, 11-3, 11-21
user_trace.raw  10-8

Packages
shared  8-4, 8-5, Glossary-13

PAGE pragma  M-122
Panics  3-33, Glossary-10
Parallel

compilation  4-5
dependency analysis  4-5

PART_HAS_TAG  M-16
Partition  Glossary-11
Partitions

active  2-3, 3-12, Glossary-1
archives  3-12
building  2-4
defining  2-3
elaboration - archives  3-13
elaboration - shared objects  3-13
finalization - archives  3-13
finalization - shared objects  3-13
incrementally updateable  4-111
linking Ada partitions with C subprograms  3-43
linking Ada partitions with C++ subprograms  3-44
linking Ada partitions with Concurrent Fortran 77 

subprograms  3-45
linking Ada partitions with GNU Fortran 

subprograms  3-46
linking Ada partitions with GNU Java subprograms  

3-47
linking Ada partitions with non-Ada subprograms  

3-41
linking C++ objects into MAXAda partitions  3-48
linking Fortran objects into MAXAda partitions  

3-48
linking GNU Java objects into MAXAda partitions  

3-49
linking non-Ada objects into MAXAda partitions  

3-48
listing  2-6
obscurity checks  4-115
shared objects  3-13, Glossary-13
types  3-12

Passive task  C-1
GENERAL  Glossary-5
SERVER  Glossary-13

PASSIVE_TASK pragma  M-122
PATH environment variable  2-1
Pentium

instruction set  M-50, M-81
machine-code insertions  M-51

Performance  5-2
Permanent unit compile options  2-8, 3-21, 4-59, 

Glossary-4, Glossary-11
Persistent options  Glossary-11
plock  6-26
Pool

lock state  6-25, Glossary-8
memory  6-21, 6-23, 6-25, 6-26, Glossary-9
pad  6-28
size  6-26

POOL_CACHE_MODE pragma  6-25, M-122
POOL_LOCK_STATE pragma  6-25, B-2, M-123
POOL_PAD pragma  6-28, M-123
-10



Index
POOL_SIZE pragma  6-26, A-2, M-123
Position independent code (PIC)  3-14, Glossary-11
POSIX  1-7
posix_1003.1  1-7, 9-1, 9-14
posix_1003.5  1-7, 9-1, 9-15
Pragma  4-81

ALL_CALLS_REMOTE  M-104
ASSIGNMENT  M-104
ASYNCHRONOUS  M-104
ATOMIC  M-104
ATOMIC_COMPONENTS  M-105
ATTACH_HANDLER  M-105
CONTROLLED  M-105
CONVENTION  M-106
DATA_RECORD  M-107
DEBUG  12-1, M-107
DEPRECATED_FEATURE  M-108
DISCARD_NAMES  M-108
DONT_ELABORATE  M-108
ELABORATE  M-109
ELABORATE_ALL  M-109
ELABORATE_BODY  M-109
EXPORT  M-109
EXTERNAL_NAME  M-111
FAST_INTERRUPT_TASK  M-111
GROUP_CPU_BIAS  5-4, 6-13, 6-19, 6-19, B-2, 

M-111
GROUP_PRIORITY  6-18, M-111
GROUP_SERVERS  6-19, M-112
IMPLICIT_CODE  M-112
IMPORT  M-112, M-114
IMPORT_AUX  M-76, M-113, M-114
INLINE  3-25, M-114
INSPECTION_POINT  M-115
INTERESTING  9-13, M-115
INTERFACE  M-116
INTERFACE_NAME  M-116
INTERFACE_OBJECT  M-117
INTERFACE_SHARED  M-117
INTERRUPT_HANDLER  M-117
INTERRUPT_PRIORITY  B-2, M-117
LINK_OPTION  M-118
LINKER_OPTIONS  3-35, 3-48, 3-49, M-118
LIST  M-118
LOCKING_POLICY  5-9, 6-3, M-118
MAP_FILE  6-2, M-119
MEMORY_POOL  5-4, 6-23, A-1, B-2, M-119
NORMALIZE_SCALARS  M-119
OPT_FLAGS  3-25, 3-31, M-120
OPT_LEVEL  M-121
OPTIMIZE  M-121
PACK  3-25, M-122
PAGE  M-122
PASSIVE_TASK  M-122

POOL_CACHE_MODE  6-25, M-122
POOL_LOCK_STATE  6-25, B-2, M-123
POOL_PAD  6-28, M-123
POOL_SIZE  6-26, A-2, M-123
PREELABORATE  M-123
PRIORITY  B-2, M-124
PROTECTED_PRIORITY  6-28, M-124
PURE  M-125
QUEUING_POLICY  6-2, M-125
REMOTE_CALL_INTERFACE  M-125
REMOTE_TYPES  M-125
RESTRICTIONS  M-126
RETURN_CONVENTION  M-126
REVIEWABLE  M-127
RUNTIME_DIAGNOSTICS  6-1, A-4, M-127
SERVER_CACHE_SIZE  6-4, M-127
SHARE_BODY  M-127
SHARE_MODE  M-128
SHARED  M-129
SHARED_PACKAGE  8-1, 8-2, 8-4, 8-5, 12-2, 

M-14, M-129
SHARED_PASSIVE  M-129
SPECIAL_FEATURE  M-129
STORAGE_SIZE  M-130
SUPPRESS  3-25, 5-13, M-130
SUPPRESS_ALL  M-131
TASK_CPU_BIAS  5-4, 6-12, 6-13, 6-19, A-1, B-2, 

M-131
TASK_DISPATCHING_POLICY  5-9, M-131
TASK_HANDLER  6-15, M-132
TASK_PRIORITY  6-11, A-1, B-2, M-132
TASK_QUANTUM  5-8, 6-14, M-132
TASK_WEIGHT  6-9, M-133
TDESC  M-133
TRAMPOLINE  M-133
VOLATILE  A-3, M-133
VOLATILE_COMPONENTS  M-134

Pragmas  Glossary-11
Precision  M-11
predefined  1-6, 3-3, 9-1, 9-6, Glossary-4, Glossary-11
PREDEFINED group  6-8, 6-19, 6-19
Predefined Language Environment  2-7
Predefined trace events  11-1, 11-19, 11-21, 11-25
predefined trace events  11-2
PREELABORATE pragma  M-123
print  C-5
Priorities  5-9
Priority  6-11, 10-6, M-14, M-132

inheritance  10-2, 10-11
operating system  6-11, Glossary-10
scheduling  Glossary-12
task scheduling  6-11, Glossary-14

PRIORITY pragma  B-2, M-124
PRIORITY_OF_ENVIRONMENT  5-9
-11



MAXAda for Linux Reference Manual
Privilege
P_CPUBIAS  A-1
P_TSHAR  A-1

Process  Glossary-11
communication  8-1, 10-11
hung  A-3

Program  5-1, Glossary-12
concurrent  8-4

PROGRAM_ERROR exception  8-3, M-14
Programming

caveats  3-25
hints  3-25

Protected
Alignment  M-40

Protected interfacing pragma convention  M-71, 
M-106, M-110, M-113

Protected objects  5-9, 6-3, M-119
protected procedure handler  Glossary-12
PROTECTED_PRIORITY pragma  6-28, M-124
Pseudo group

DEFAULT  6-8, Glossary-3
Pseudo task

DEFAULT  6-4, 6-6, 6-8, 6-22, Glossary-3
publiclib  1-6, 9-1, 9-12, Glossary-4, Glossary-12
PURE pragma  M-125

Q

-Q options  4-104, 4-105
growth_limit  4-107, M-120
inline_line_count  4-105
inline_nesting_depth  4-105
inline_statement_limit  4-106
inlines_per_compilation  4-106
interesting  4-107, 9-13
loops  4-106, M-120
noreorder  M-120
objects  3-31, 4-106, M-120
opt_class  4-106, M-120
optimization_size_limit  4-106
optimize_for_space  4-106, M-120
unroll_limit  M-120
unroll_limit_const  M-120
unroll_limit_var  M-120

Qualifier keyword. See -Q options
Quantum  5-3, Glossary-12

operating system  6-14, Glossary-10
task  6-14, Glossary-14

Queuing policy  6-2, Glossary-12
QUEUING_POLICY pragma  6-2, M-125

R

real_time_data_monitoring package  3-40, 
9-13, 12-2, B-2, M-116

Real-time
Ada tasking  5-2, 5-7
clocks  7-1
data monitoring  12-1, Glossary-3
debugging  3-38
extensions  10-1
task monitoring  12-3, Glossary-14
vendorlib packages  10-1

Record
Alignment  M-40
representation clauses  M-45
type  M-50

REF  M-15
Ref  M-50
release  Glossary-12
Relevance  3-23
Relocation  3-14, Glossary-12
Remote memory  Glossary-12
REMOTE_CALL_INTERFACE pragma  M-125
REMOTE_TYPES pragma  M-125
rescheduling_control package  B-2
Restricted_Fortran interfacing pragma 

convention  M-71, M-72, M-76, M-77, M-80, 
M-106, M-110, M-113

Restricted_Gnu_Fortran interfacing pragma 
convention  M-71, M-72, M-76, M-77, M-80, 
M-106, M-110, M-113

RESTRICTIONS pragma  M-126
RETURN_CONVENTION pragma  M-126
REVIEWABLE pragma  M-127
ROUND_ROBIN_ADJUSTABLE_PRIORITIES  5-8
ROUND_ROBIN_PRIORITIES  5-8
rtc_control package  10-6
rtdm  1-6, 9-1, 9-13, Glossary-12
Run-time errors  A-4
Run-time executive  5-1, 5-2, 5-3, 5-7, 6-11, 6-18, 10-12, 

A-2, A-3, A-4, Glossary-12
runtime_configuration package  6-1, 6-4, 6-8, 

6-9, 6-13, 6-18, 6-19, 6-20, A-4, B-2
RUNTIME_DIAGNOSTICS pragma  6-1, A-4, M-127

S

s#  4-96
Scheduling

classes  5-7, 5-8
priority  Glossary-12
-12



Index
task  5-3
Scheduling classes  5-7, 5-8

Ada (AD)  5-9
Scheduling priority

operating system  6-11, Glossary-10
task  6-11, Glossary-14

select-context  C-3
Semantic errors  3-29, Glossary-13
SEMAPHORE_ERROR exception  10-3, 10-5
Semaphores

binary  8-3, 8-5, 10-2
Server  5-1, Glossary-13
Server cache  6-4, Glossary-13
Server group  5-1, 6-8, Glossary-13
SERVER passive task  Glossary-13
server_block  10-12, A-3
SERVER_CACHE_SIZE pragma  6-4, M-127
server_wake1  10-12, A-3
server_wakevec  10-12, A-3
set-language  C-5
SHADOW ghost task  6-5, 6-10, 7-4, 7-6, Glossary-13
Share mode  3-14, 4-101, Glossary-13
Share path  3-14, 4-110
SHARE_BODY pragma  M-127
SHARE_MODE pragma  M-128
Shared

memory  8-1
Shared memory segment  8-3, 8-5, M-14, M-15
Shared objects  3-13, Glossary-13

issues to consider  3-15
share mode  3-14, 4-101, Glossary-13
share path  3-14
transitive closure  4-114

Shared packages  8-4, 8-5, Glossary-13
SHARED pragma  M-129
shared_memory_support package  8-4
SHARED_PACKAGE pragma  8-1, 8-2, 8-4, 8-5, 12-2, 

M-14, M-129
bind parameter  8-3
ipc parameter  8-2
key parameter  8-2
mode parameter  8-3
no_bsem parameter  8-3
SHM_HARD parameter  8-3
SHM_LOCAL parameter  8-3
SHM_LOCK parameter  8-3
SHM_RDONLY parameter  8-2

SHARED_PASSIVE pragma  M-129
Shell limits  6-27
SHM flags  8-3
shm.h file  9-11
SHM_COPYBACK parameter  8-3
SHM_ID  M-14
SHM_RDONLY parameter  8-5, M-15

shmat  8-1, 9-11
shmbind  8-5
shmctl  8-4, 9-11
shmdt  9-11
shmget  8-1, 8-2, 8-3, M-14
SIGADA signal  7-3
SIGALRM signal  7-3
SIGBUG signal  4-114, 4-117
SIGFPE signal  7-3
SIGILL signal  4-114, 4-117, 7-3
SIGKILL signal  7-3
Signals  7-1

SIGADA  7-3
SIGALRM  7-3
SIGBUS  4-114, 4-117
SIGFPE  7-3
SIGILL  4-114, 4-117, 7-3
SIGKILL  7-3
SIGPROF  11-21
SIGRTMIN  7-3
SIGSEGV  4-114, 4-117, 7-3, 8-3
SIGSTOP  7-3

SIGPROF signal  11-21
SIGRTMIN signal  7-3
SIGSEGV signal  4-114, 4-117, 7-3, 8-3
SIGSTOP signal  7-3
sinfo  9-11
Size

Object  M-41
Subtype  M-41

-skipobscurity link option  4-115
-sl link option  4-110
Sleepy wait  10-2, 10-4
Sockets  1-7
sockets  1-7, 9-1, 9-17
Soft links  3-14, 4-110
Software interrupt  Glossary-13
Source File Utilities

a.intro  4-30
a.rmsrc  4-88
a.syntax  4-92
a.tags  4-94

-sp link option  4-110
SPECIAL_FEATURE pragma  M-129
spin_locks package  10-1, B-2
Stack memory  5-12, 6-22, Glossary-13
Static linking  Glossary-14
stderr  3-26, 4-30, 4-47, 4-92, 4-99
stdin  4-11, 4-13, 4-30, 4-47, 4-48, 4-76, 4-78, 4-88, 

4-92, 4-94
stdout  4-9, 4-11, 4-13, 4-16, 4-17, 4-30, 4-47, 4-78, 

4-88, 4-92, 4-94, 4-99
Storage place

component  M-47
-13



MAXAda for Linux Reference Manual
STORAGE_ERROR exception  A-2
STORAGE_SIZE pragma  M-130
stub#  4-96
Subprogram

main  2-3, 5-1, Glossary-8
main (C), linking with Ada partitions  3-43
main (C++), linking with Ada partitions  3-44
main (Concurrent Fortran 77), linking with Ada 

partitions  3-45
main (GNU Fortran), linking with Ada partitions  

3-46
main (GNU Java), linking with Ada partitions  3-47
main (non-Ada), linking with Ada partitions  3-41
main, linking C++ objects into  3-48
main, linking Fortran objects into  3-48
main, linking GNU Java objects into  3-49
main, linking non-Ada objects into  3-48
TEST_AND_SET  10-8

SUPPRESS pragma  3-25, 5-13, M-130
SUPPRESS_ALL pragma  M-131
sync_package package  10-2
Syntax errors  3-28, Glossary-14
System bus  Glossary-14
System configuration  A-1, B-1
system.addresses package  9-11
system.information package  9-11
System.Priority  5-8
system.storage_pools package  9-11
system.storage_pools.standard.objects 

package  9-12

T

TAGGED  M-16
Tagged

Alignment  M-40
Task

ADMIN  5-5, 6-5, 6-28
Alignment  M-40
attributes  6-9
bound  5-3, A-2, C-1, M-67
control block  C-2, C-3
COURIER  6-5, 6-10
CPU binding  5-4
DEFAULT  6-4, 6-6, 6-8, 6-22, Glossary-3
dispatching policy  5-3, 5-8, 5-9, 6-3, M-131
ENVIRONMENT  5-1, 5-2, 5-5, 5-8, 5-9, 5-11, 5-12
environment  6-4, 6-6, 6-8, 6-16, 6-24, M-132
fast interrupt  Glossary-5
GENERAL  Glossary-5
ghost  5-5, 6-4, Glossary-1, Glossary-5, Glossary-7
interrupt entries  7-1

INTR_COURIER  6-5, 6-10
monitoring  12-3, Glossary-14
multiplexed  C-1, M-67
multithreading  A-2
passive  C-1
priority  6-11
quantum  6-14, Glossary-14
scheduling  5-3
scheduling priority  6-11, Glossary-14
SERVER  Glossary-13
SHADOW  6-5, 6-10, 7-4, 7-6, Glossary-13
time slicing  5-3, 6-14
TIMER  5-5, 6-5, Glossary-14
type  6-5, 6-7, 6-22, 12-2
weight  4-114, 5-1, 5-3, 6-9, Glossary-14

Task dispatching policy  5-3, 5-8, 5-9, 6-3, M-131
FIFO_WITHIN_PRIORITIES  5-3, 5-8, 5-9, 

6-3
ROUND_ROBIN_ADJUSTABLE_PRIORITIES  

5-8
ROUND_ROBIN_PRIORITIES  5-8

Task weight  4-114
TASK_CPU_BIAS pragma  5-4, 6-12, 6-13, 6-19, A-1, 

B-2, M-131
TASK_DISPATCHING_POLICY pragma  5-9, M-131
TASK_HANDLER pragma  6-15, M-132
TASK_PRIORITY pragma  6-11, A-1, B-2, M-132
TASK_QUANTUM pragma  5-8, 6-14, M-132
task_synchronization package  10-6, B-2
TASK_WEIGHT pragma  6-9, M-133
Tasking

model  5-1
real-time Ada  5-2
run-time  5-7, 5-8
semaphores  10-4

TASKING_ERROR exception  A-1, A-4
tasking_semaphores package  10-4
TCB  C-2, C-3
TDESC pragma  M-133
Temporary unit compile options  2-9, 3-21, 4-59, 

Glossary-4, Glossary-14
TEST_AND_SET subprogram  10-8
Text memory  5-11, 6-21, Glossary-14
TIMER ghost task  5-5, 6-5, Glossary-14
TMPDIR environment variable  4-34
Trace buffer  11-20

forcing a flush  11-20
Trace events  11-1

predefined  11-1, 11-2, 11-19, 11-21, 11-25
user-defined  11-2, 11-19, 11-21, 11-25
viewing  11-24, 11-25, 11-26

-trace link option  4-113
Trace points  11-1
Tracing  4-113, Glossary-15
-14



Index
log files  11-23
trace events  11-1
trace points  11-1
user table  11-24, 11-26

TRAMPOLINE pragma  M-133
Transitive closure  4-114
Troubleshooting  A-1
Type

access  3-25, 6-22, 8-4, 12-1, 12-2
access Alignment  M-40
array Alignment  M-40
class-wide Alignment  M-40
composite  M-122
composite Alignment  M-40
controlled Alignment  M-40
discrete Alignment  M-39
enumeration  12-2, M-50
enumeration Alignment  M-39
fixed point Alignment  M-39
fixed-point  12-2
FLOAT  M-11
floating point Alignment  M-39
floating-point  12-2
integer  12-2
integer Alignment  M-39
LONG_FLOAT  M-11
protected Alignment  M-40
record  M-50
record Alignment  M-40
tagged Alignment  M-40
task  6-5, 6-7, 6-22, 12-2
task Alignment  M-40
universal_real  M-11

U

Unchecked_C interfacing pragma convention  3-48, 
3-49, M-71, M-72, M-76, M-77, M-79, M-106, 
M-110, M-113

UNCHECKED_CONVERSION function  5-13
Understand for Ada  1-8
Unhandled exceptions. See Exceptions - unhandled.
Unit compile options  3-11
Unit Utilities

a.cat  4-7
a.demangle  4-11
a.edit  4-15
a.expel  4-21
a.fetch  4-22
a.hide  4-27
a.invalid  4-32
a.ls  4-35

a.lssrc  4-42
a.resolve  4-85
a.touch  4-97

Units  Glossary-15
ambiguous  2-15, 3-10, 4-27, Glossary-1
compile options  3-11
configuration pragmas  3-7, Glossary-2
consistency  3-23, Glossary-3
fetched  3-3, 3-10, 4-61
foreign  3-10, Glossary-5
introducing  2-2
library  Glossary-7
listing  2-5
local  3-9
modifying  2-12
nationalities  3-9
native  3-9, Glossary-9
naturalized  3-3, 3-9, Glossary-9
viewing source  2-5

universal_real type  M-11
UNLOCK  M-14, M-14
unroll_limit qualifier keyword  M-120
unroll_limit_const qualifier keyword  M-120
unroll_limit_var qualifier keyword  M-120
USE_ERROR exception  M-67
User errors  A-2
User table  11-24, 11-26
user_trace package  10-8, 11-3, 11-21
user_trace.raw package  10-8
User-defined trace events  11-2, 11-19, 11-21, 11-25
usermap  10-12
Utilities

a.build  4-3, 4-6, 11-12
a.cat  4-7
a.chmod  4-8
a.compile  4-9
a.demangle  4-11
a.deps  4-13
a.edit  4-15
a.error  3-26, 4-16, 4-51
a.expel  4-21
a.fetch  3-5, 4-22
a.freeze  4-25
a.help  4-26
a.hide  4-27
a.install  4-28
a.intro  3-5, 4-27, 4-30
a.invalid  4-32
a.link  4-33
a.ls  4-35
a.lssrc  4-42
a.man  4-44
a.map  4-47, 6-2, 6-9, 6-22
a.mkenv  4-53
-15



MAXAda for Linux Reference Manual
a.monitor  3-38, 4-55, 7-10, 12-4, B-2, C-3
a.nfs  4-56
a.options  2-7, 3-31, 4-58, M-120
a.partition  3-5, 4-62, 11-19
a.path  3-5, 4-74, 11-12
a.pclookup  4-76
a.pp  4-77, 4-82
a.release  4-83
a.resolve  4-85
a.restore  4-86
a.rmenv  4-87
a.rmsrc  4-88
a.script  3-6, 4-89
a.syntax  4-92
a.tags  4-94
a.touch  4-97
a.trace  4-98, 4-114, 11-24, 11-25, 11-26, 11-27
NightSim  Glossary-9
NightTrace  4-114, Glossary-10
NightTrace display  11-12
NightView  C-1, Glossary-10
nview  3-38

Utility
a.demangle  4-11

V

vendorlib  1-6, 3-15, 9-1, 9-8, 10-1, 11-3, Glossary-4, 
Glossary-15

vi  4-16, 4-18, 4-19, 4-20, 4-94, 4-95, 4-96
VOLATILE pragma  A-3, M-133
VOLATILE_COMPONENTS pragma  M-134

W

Wait
busy  10-1, 10-11
sleepy  10-2, 10-4

Warnings  3-32
Weight

task  5-1, 5-3, 6-9, Glossary-14

X

X server  11-12
-16


	MAXAda for Linux Reference Manual
	Preface
	Contents
	Part 1 - Operations
	Introduction to MAXAda
	MAXAda Utilities
	MAXAda Core Utilities

	Capabilities
	Run-Time Systems
	Supplied Environments
	Ada Bindings
	Complementary MAXAda Products

	Using MAXAda
	Hello World - An Example
	Creating an environment
	Introducing units
	Defining a partition
	Building a partition
	Success!!!
	Let’s look around...
	Listing the units in your environment
	Viewing the source for a particular unit
	Listing the partitions defined
	Looking at the Environment Search Path
	What are my options?


	Hello Galaxy - The Example Continues...
	Setting up another environment
	Modifying an existing unit
	Building a unit with references outside the local environment
	Adding an environment to the Environment Search Path
	Making contact!!!
	Who resides here now?

	Hello Again... Ambiguous Units
	Resolving the ambiguity
	No more ambiguities!!!


	MAXAda Concepts
	Environments
	Local Environments
	Foreign Environments
	Environment Search Path
	Naturalization
	Fetching
	Supplied Environments

	NFS Environments
	Freezing Environments
	Restoring Environments
	Relocating Environments
	Environment-wide Compile Options

	Units
	Unit Identification
	Configuration Pragmas
	Nationalities
	Local Units
	Foreign Units

	Ambiguous Units
	Artificial Units
	Unit Compile Options

	Partitions
	Types of Partitions
	Active Partitions
	Archives
	Shared Objects
	Lazy Versus Immediate Binding
	Position Independent Code
	Share Path
	Shared Objects and Special MAXAda Packages
	Issues to consider


	Elaboration and Finalization Methods
	Elaboration Methods
	Finalization Methods

	Main Subprogram Requirements
	Exit Status


	Compilation and Program Generation
	Compilation
	Automatic Compilation Utility
	Compile Options
	Environment-wide Options
	Permanent Unit Options
	Temporary Unit Options
	Effective Options

	Compilation States
	Consistency
	Interoptimization
	Programming Hints and Caveats

	Compiler Error Messages
	Lexical Errors
	Syntax Errors
	Semantic Errors
	General Errors
	Informational Messages
	Warnings
	Alerts
	Fatal Errors
	Internal Errors and Panics

	Link Options
	Linking Executable Programs
	Linking Ada Programs with Shared Objects


	Debugging
	Real-Time Debugging
	Selecting a Debug Level
	Degree of Interest

	Interface to Other Languages
	Linking Ada Partitions into Applications with non-Ada Main Subprograms
	C
	C++
	Concurrent Fortran 77
	GNU Fortran
	GNU Java

	Linking non-Ada Objects into MAXAda Partitions
	Fortran
	C
	C++
	GNU Java

	Ada Tagged Types and C++ Classes
	Ada Tagged Types and Java Classes


	MAXAda Utilities
	Common Options
	a.build
	Parallel Compilations and Dependency Analyses
	Inline Dependencies
	Forcing Attempts
	Why

	a.cat
	a.chmod
	a.compile
	a.demangle
	a.deps
	a.edit
	a.error
	a.expel
	a.fetch
	a.freeze
	a.help
	a.hide
	a.install
	a.intro
	a.invalid
	a.link
	a.ls
	Formatting the listing
	Dependent units
	Parts
	Sorting
	Filtering

	a.lssrc
	a.man
	References to the Ada 95 Reference Manual
	References to the MAXAda for Linux Reference Manual
	Access to Support Packages

	a.map
	a.mkenv
	a.monitor
	a.nfs
	a.options
	Option Sets
	Listing options
	Setting options
	Modifying options
	Clearing options
	Deleting options
	Keeping temporary options
	Setting options on foreign units

	a.partition
	Main Subprogram
	Elaboration and Finalization
	Case Sensitivity
	Consistency
	Link Options
	Link Rule
	Implicitly-Included Libraries

	a.path
	a.pclookup
	a.pp
	Commands
	Expressions
	Defaults
	Examples

	a.release
	a.resolve
	a.restore
	a.rmenv
	a.rmsrc
	a.script
	Generated Script - Options

	a.syntax
	a.tags
	a.touch
	a.trace
	Compile Options
	Negation (!)
	Debug Level (-g[level])
	Opportunism (-opp)
	Share Mode (-sm)
	Not Shared (-N)
	Optimization Level (-O[level])
	Qualifier Keyword (-Qkeyword[=value])
	Suppress Checks (-S)

	Qualifier Keywords (-Q options)
	Link Options
	Fortran Libraries
	Share Path
	Incrementally Updateable Partition
	ld Argument
	Tracing
	Task Weight
	Shared Object Transitive Closure
	Obscurity Checks



	Part 2 - Run-Time
	Run-Time Concepts
	Tasking Model
	Features
	Performance
	Task Weights
	Bound Tasks
	Multiplexed Tasks

	Task Scheduling
	Task Time Slices

	Utilization of Multiple CPUs
	Ghost Tasks
	ADMIN Ghost Task
	TIMER Ghost Task

	Priorities
	OS Scheduling Policies
	Policy Selection by the Non-Tasking Run-Time
	Policy Selection by the Tasking Run-Time
	Restrictions for Priorities in the System.Interrupt_Priority Range



	Memory Management
	Text Memory
	Data Memory
	Collection Memory
	Stack Memory
	Other Memory
	Visibility of Memory


	Run-Time Configuration
	General Pragmas
	Pragma RUNTIME_DIAGNOSTICS
	Pragma MAP_FILE
	Pragma QUEUING_POLICY
	Pragma TASK_DISPATCHING_POLICY
	Pragma LOCKING_POLICY
	Pragma SERVER_CACHE_SIZE

	Task and Group Configuration Concepts
	Task Names and Default Settings
	Task Specifiers in Task Pragmas
	Group Names and Default Settings
	Group Specifiers in Group Pragmas

	Task Attributes
	Pragma TASK_WEIGHT
	Pragma TASK_PRIORITY
	Pragma TASK_CPU_BIAS
	Pragma TASK_QUANTUM
	Pragma TASK_HANDLER

	Group Attributes
	Pragma GROUP_PRIORITY
	Pragma GROUP_CPU_BIAS
	Pragma GROUP_SERVERS

	Memory Attributes
	Pool Specifiers
	Pragma MEMORY_POOL
	Pragma POOL_CACHE_MODE
	Pragma POOL_LOCK_STATE
	Pragma POOL_SIZE
	Pragma POOL_PAD

	Protected Object Attributes
	Pragma PROTECTED_PRIORITY


	Interrupt Handling
	Software Interrupts
	COURIER Ghost Tasks
	SHADOW Ghost Tasks

	Hardware Interrupts
	INTR_COURIER and COURIER Ghost Tasks
	SHADOW Ghost Tasks
	Privileges for Unrestricted Hardware Interrupts

	Interrupt Attachments
	Package Ada.Interrupts.Names
	Package Ada.Interrupts.Services

	Task Executives via Protected Handlers
	Example
	Description of Example





	Part 3 - General Features
	Shared Memory and Process Communication
	Shared Memory
	Shared Packages
	Pragma SHARED_PACKAGE
	Restrictions on Contents of Shared Packages
	Characteristics of Shared Packages
	Shared Package Semaphores


	Support Packages
	Supplied Environments
	predefined
	vendorlib
	ccur.bit_ops
	ccur.bit_ops.long
	ada.exceptions.addresses
	ada.numerics.constants
	ada.real_time.local
	ccur.runtime_configuration
	ccur.shared_memory_support
	system.addresses
	system.information
	system.storage_pools.standard
	system.storage_pools.standard.objects

	publiclib
	ccur.c_to_ada_types
	ccur.character_type
	ccur.curses
	ccur.qsort

	rtdm
	ccur.rtdm

	deprecated
	obsolescent
	posix_1003.1
	ccur.posix_1003_1

	posix_1003.5
	sockets
	ccur.sockets

	general
	ccur.night_trace_bindings
	ccur.timers




	Part 4 - Real-Time Features
	Real-Time Extensions
	Mutual Exclusion Interfaces
	Spin Locks
	Binary Semaphores
	Tasking Semaphores

	Task Synchronization
	Cyclic Scheduling
	User Trace
	Low-Level Interfaces
	Indivisible Operations
	Rescheduling Control
	Client-Server Services
	Usermap Support
	Byte Swapping


	Real-Time Event Tracing
	Specifying Trace Events
	Predefined Trace Events
	Library Unit Elaboration

	User-Defined Trace Events
	ccur.user_trace package
	Specification
	Usage

	ccur.user_trace.raw package
	Specification

	NightTrace Binding
	Specification
	Usage

	NightView Debugger


	Tracing Options
	Tracing Options - Examples

	Logging Trace Events
	Logging Mechanisms
	Ada Executive
	Trace Buffer
	Forcing a Trace Buffer Flush

	Timing Source

	NightTrace Daemon

	Log Files

	Viewing Trace Events
	User Table
	Viewing Trace Events with a.trace
	Viewing Trace Events with NightTrace
	Creating the NightTrace Configuration File
	Modifying the NightTrace Configuration File



	Real-Time Monitoring
	Data Monitoring
	Compiling
	Eligible Data Objects
	Eligible Data Types
	ccur.rtdm Package

	Task Monitoring
	a.monitor
	Menu Bar
	File
	View
	Options

	Task Bar
	Display Area
	Tasks
	Memory
	System





	Part 5 - Appendixes, Glossary, and Index
	Troubleshooting
	Configuration Errors
	System Configuration
	Application Configuration
	Using Tasks to Multithread Algorithms


	User Errors
	Concurrent Access
	Hung Processes
	Client/Server Services

	Run-Time Diagnostics
	Run-Time Diagnostic Messages

	Compiler Errors

	MAXAda Configuration
	Capabilities

	Ada NightView
	Hints for Debugging Ada Programs with NightView
	Tasking Programs
	Debugging Context

	Exception Handling and Interception
	Generics
	General NightView Operational Hints
	Listing Source, Packages, and Subprograms
	Disassembly
	Interest Threshold
	Expression Evaluation Syntax



	Implementation-Defined Characteristics
	RM Chapter 1: General
	RM 1.1.2 Structure
	Implementation Advice

	RM 1.1.3 Conformity of an Implementation with the Standard
	Implementation Requirements
	Documentation Requirements
	Implementation Advice

	RM 1.1.4 Method of Description and Syntax Notation
	Implementation Advice


	RM Chapter 2: Lexical Elements
	RM 2.1 Character Set
	Static Semantics

	RM 2.2 Lexical Elements, Separators, and Delimiters
	Static Semantics
	Implementation Requirements

	RM 2.8 Pragmas
	Implementation Permissions
	Implementation Advice
	Static Semantics


	RM Chapter 3: Declarations and Types
	RM 3.5 Scalar Types
	Dynamic Semantics

	RM 3.5.2 Character Types
	Implementation Advice

	RM 3.5.4 Integer Types
	Implementation Permissions
	Implementation Advice

	RM 3.5.5 Operations of Discrete Types
	Implementation Advice

	RM 3.5.6 Real Types
	Implementation Permissions

	RM 3.5.7 Floating Point Types
	Legality Rules
	Implementation Permissions
	Implementation Advice

	RM 3.5.9 Fixed Point Types
	Legality Rules

	RM 3.6.2 Operations of Array Types
	Implementation Advice

	RM 3.9 Tagged Types and Type Extensions
	Static Semantics


	RM Chapter 4: Names and Expressions
	RM 4.1.4 Attributes
	Implementation Permissions

	RM 4.3.1 Record Aggregates
	Dynamic Semantics


	RM Chapter 5: Statements
	RM Chapter 6: Subprograms
	RM Chapter 7: Packages
	RM Chapter 8: Visibility Rules
	RM Chapter 9: Tasks and Synchronizations
	RM 9.6 Delay Statements, Duration, and Time
	Legality Rules
	Dynamic Semantics
	Implementation Permissions
	Implementation Advice

	RM 9.10 Shared Variables
	Static Semantics


	RM Chapter 10: Program Structure and Compilation Issues
	RM 10.1 Separate Compilation
	Implementation Permissions

	RM 10.1.4 The Compilation Process
	RM 10.1.5 Pragmas and Program Units
	Implementation Permissions

	RM 10.2 Program Execution
	Post-Compilation Rules
	Dynamic Semantics
	Implementation Permissions

	RM 10.2.1 Elaboration Control
	Implementation Advice


	RM Chapter 11: Exceptions
	RM 11.4.1 The Package Exceptions
	Static Semantics
	Implementation Advice

	RM 11.5 Suppressing Checks
	Implementation Permissions
	Implementation Advice


	RM Chapter 12: Generic Units
	RM Chapter 13: Representation Issues
	RM 13.1 Representation Items
	Implementation Permissions
	Implementation Advice

	RM 13.2 Pragma Pack
	Implementation Advice

	RM 13.3 Representation Attributes
	Address Attributes
	Implementation Advice
	Notes

	Alignment Attributes
	Implementation Advice
	Notes

	Size Attributes for Objects
	Static Semantics
	Implementation Advice

	Size Attributes for Subtypes
	Static Semantics
	Implementation Advice
	Notes

	Component_Size Attributes
	Implementation Advice

	External_Tag Attributes
	Static Semantics
	Implementation Requirements


	RM 13.4 Enumeration Representation Clauses
	Implementation Advice

	RM 13.5.1 Record Representation Clauses
	Implementation Permissions
	Implementation Advice
	Notes

	RM 13.5.2 Storage Place Attributes
	Implementation Advice

	RM 13.5.3 Bit Ordering
	Static Semantics
	Implementation Advice

	RM 13.7 The Package System
	Static Semantics
	Implementation Advice

	RM 13.7.1 The Package System.Storage_Elements
	Implementation Advice

	RM 13.8 Machine Code Insertions
	Static Semantics
	Notes
	Addressing Modes
	Pentium Example


	RM 13.9 Unchecked Type Conversions
	Dynamic Semantics
	Implementation Advice

	RM 13.11 Storage Management
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM 13.11.2 Unchecked Storage Deallocation
	Implementation Advice
	Implementation Permissions

	RM 13.12 Pragma Restrictions
	RM 13.13.2 Stream-Oriented Attributes
	Implementation Advice


	RM Annex A: Predefined Language Environment
	Implementation Permissions
	RM A.1 The Package Standard
	Static Semantics
	Implementation Advice

	RM A.3.2 The Package Characters.Handling
	Implementation Advice

	RM A.4.4 Bounded-Length String Handling
	Implementation Advice

	RM A.5.1 Elementary Functions
	Implementation Requirements

	RM A.5.2 Random Number Generation
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM A.5.3 Attributes of Floating Point Types
	Static Semantics

	RM A.7 External Files and File Objects
	Static Semantics

	RM A.9 The Generic Package Storage_IO
	Static Semantics

	RM A.10 Text Input-Output
	Static Semantics

	RM A.10.7 Input-Output of Characters and Strings
	Implementation Advice

	RM A.10.9 Input-Output for Real Types
	Implementation Permissions

	RM A.13 Exceptions in Input-Output
	Documentation Requirements

	RM A.15 The Package Command_Line

	RM Annex B: Interface to Other Languages
	RM B.1 Interfacing Pragmas
	Legality Rules
	Static Semantics
	Implementation Advice

	RM B.2 The Package Interfaces
	Implementation Permissions
	Implementation Advice

	RM B.3 Interfacing with C
	Implementation Advice
	Notes

	RM B.4 Interfacing with COBOL
	Static Semantics

	RM B.5 Interfacing with Fortran
	Implementation Advice
	Notes


	RM Annex C: Systems Programming
	RM C.1 Access to Machine Operations
	Implementation Advice
	Documentation Requirements
	Implementation Advice

	RM C.3 The Package Interrupts
	Dynamic Semantics
	Documentation Requirements
	Implementation Advice

	RM C.3.1 Protected Procedure Handlers
	Implementation Advice

	RM C.3.2 The Package Interrupts
	Documentation Requirements
	Implementation Advice

	RM C.4 Preelaboration Requirements
	Documentation Requirements
	Implementation Advice

	RM C.5 Pragma Discard_Names
	Static Semantics
	Implementation Advice

	RM C.7.1 The Package Task_Identification
	Dynamic Semantics
	Bounded (Run-Time) Errors
	Documentation Requirements

	RM C.7.2 The Package Task_Attributes
	Documentation Requirements
	Implementation Advice


	RM Annex D: Real-Time Systems
	Metrics
	RM D.1 Task Priorities
	Static Semantics
	Dynamic Semantics

	RM D.2.1 The Task Dispatching Model
	Dynamic Semantics
	Implementation Permissions

	RM D.2.2 The Standard Task Dispatching Policy
	Legality Rules
	Documentation Requirements
	Implementation Permissions

	RM D.3 Priority Ceiling Locking
	Legality Rules
	Dynamic Semantics
	Implementation Permissions
	Implementation Advice

	RM D.4 Entry Queuing Policies
	Implementation Advice

	RM D.6 Preemptive Abort
	Documentation Requirements
	Implementation Advice

	RM D.7 Tasking Restrictions
	Static Semantics
	Dynamic Semantics
	Implementation Advice

	RM D.8 Monotonic Time
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM D.9 Delay Accuracy
	Documentation Requirements

	RM D.12 Other Optimizations and Determinism Rules
	Documentation Requirements


	RM Annex G: Numerics
	Implementation Advice
	RM G.1 Complex Arithmetic
	RM G.1.1 Complex Types
	Implementation Requirements
	Implementation Advice

	RM G.1.2 Complex Elementary Functions
	Implementation Requirements
	Implementation Advice

	RM G.2 Numeric Performance Requirements
	Implementation Permissions

	RM G.2.1 Model of Floating Point Arithmetic
	Implementation Requirements
	Implementation Permissions

	RM G.2.3 Model of Fixed Point Arithmetic
	Implementation Requirements

	RM G.2.4 Accuracy Requirements for the Elementary Functions
	Implementation Advice

	RM G.2.6 Accuracy Requirements for Complex Arithmetic
	Implementation Advice


	RM Annex J: Obsolescent Features
	RM J.7.1 Interrupt Entries
	Documentation Requirements
	Implementation Permissions


	RM Annex K: Language-Defined Attributes
	RM Annex L: Pragmas
	Pragma ALL_CALLS_REMOTE - (not yet supported)
	Pragma ASSIGNMENT
	Pragma ASYNCHRONOUS - (not yet supported)
	Pragma ATOMIC
	Pragma ATOMIC_COMPONENTS
	Pragma ATTACH_HANDLER
	Pragma CONTROLLED
	Pragma CONVENTION
	Pragma DATA_RECORD - (obsolete)
	Pragma DEBUG
	Pragma DEPRECATED_FEATURE
	Pragma DISCARD_NAMES
	Pragma DONT_ELABORATE
	Pragma ELABORATE
	Pragma ELABORATE_ALL
	Pragma ELABORATE_BODY
	Pragma EXPORT
	Pragma EXTERNAL_NAME - (obsolete)
	Pragma FAST_INTERRUPT_TASK
	Pragma GROUP_CPU_BIAS
	Pragma GROUP_PRIORITY
	Pragma GROUP_SERVERS
	Pragma IMPLICIT_CODE
	Pragma IMPORT
	Pragma IMPORT_AUX
	Pragma INLINE
	Pragma INSPECTION_POINT - (not yet supported)
	Pragma INTERESTING
	Pragma INTERFACE - (obsolete)
	Pragma INTERFACE_NAME - (obsolete)
	Pragma INTERFACE_OBJECT - (obsolete)
	Pragma INTERFACE_SHARED - (obsolete)
	Pragma INTERRUPT_HANDLER
	Pragma INTERRUPT_PRIORITY
	Pragma LINK_OPTION - (obsolete)
	Pragma LINKER_OPTIONS
	Pragma LIST
	Pragma LOCKING_POLICY
	Pragma MAP_FILE
	Pragma MEMORY_POOL
	Pragma NORMALIZE_SCALARS - (not yet supported)
	Pragma OPT_FLAGS
	Pragma OPT_LEVEL
	Pragma OPTIMIZE
	Pragma PACK
	Pragma PAGE
	Pragma PASSIVE_TASK - (obsolete)
	Pragma POOL_CACHE_MODE
	Pragma POOL_LOCK_STATE
	Pragma POOL_PAD
	Pragma POOL_SIZE
	Pragma PREELABORATE
	Pragma PRIORITY
	Pragma PROTECTED_PRIORITY
	Pragma PURE
	Pragma QUEUING_POLICY
	Pragma REMOTE_CALL_INTERFACE - (not yet supported)
	Pragma REMOTE_TYPES - (not yet supported)
	Pragma RESTRICTIONS
	Pragma RETURN_CONVENTION
	Pragma REVIEWABLE - (not yet supported)
	Pragma RUNTIME_DIAGNOSTICS
	Pragma SERVER_CACHE_SIZE
	Pragma SHARE_BODY
	Pragma SHARE_MODE
	Pragma SHARED - (obsolete)
	Pragma SHARED_PACKAGE
	Pragma SHARED_PASSIVE - (not yet supported)
	Pragma SPECIAL_FEATURE
	Pragma STORAGE_SIZE
	Pragma SUPPRESS
	Pragma SUPPRESS_ALL
	Pragma TASK_CPU_BIAS
	Pragma TASK_DISPATCHING_POLICY
	Pragma TASK_HANDLER
	Pragma TASK_PRIORITY
	Pragma TASK_QUANTUM
	Pragma TASK_WEIGHT
	Pragma TDESC
	Pragma TRAMPOLINE
	Pragma VOLATILE
	Pragma VOLATILE_COMPONENTS



	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


