

Release Notes
CCRTAICC (WC-ADS6418)

Driver CCRTAICC (WC-ADS6418)

Platform RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu), Native

Ubuntu® and Native Red Hat Enterprise Linux®1

Vendor Concurrent Real-Time

Hardware PCIe 64-Channel Analog Input Converter Card (CP-ADS6418)

Author Darius Dubash

Date August 27th, 2024 Rev 2024.1

1 All trademarks are the property of their respective owners

This page intentionally left blank

Table of Contents

1. INTRODUCTION .. 1

2. REQUIREMENTS ... 1

3. DOCUMENTATION ... 2

4. RUNNING ON NATIVE RED HAT .. 2

4.1. Support to build 3rd party modules .. 2

4.2. Support for MSI interrupts.. 2

4.3. BIOS and Kernel Level Tuning .. 3

5. RUNNING ON NATIVE UBUNTU .. 3

5.1. Support to build 3rd party modules .. 3

5.2. Support for MSI interrupts.. 4

5.3. Compiling the driver with installed gcc .. 4

5.4. BIOS and Kernel Level Tuning .. 5

6. INSTALLATION AND REMOVAL .. 5

6.1. Hardware Installation ... 5

6.2. Software Installation ... 6

6.3. Software Removal .. 8

7. AUTO-LOADING THE DRIVER .. 9

8. TESTING AND USAGE .. 9

9. RE-BUILDING THE DRIVER, LIBRARY AND TESTS .. 10

10. SOFTWARE SUPPORT ... 11

10.1. Device Configuration .. 11

10.2. Library Interface ... 11

10.3. Debugging... 11

11. NOTES AND ERRATA ... 14

APPENDIX A: EXTERNAL CONNECTIONS AND PIN-OUTS .. 16

APPENDIX B: THE 64-CHANNEL ANALOG INPUT FPGA BOARD ... 17

 This page intentionally left blank

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 1 -

1. Introduction

This document assists the user in installing the CCRT-PCIe-AICC Linux ccrtaicc driver and related
software on the RedHawk OS, Native Ubuntu and Native Red Hat for use with the CCRT-PCIe
Analog Input I/O Card (AICC). The directions in this document supersede all others – they are
specific to installing the software on Concurrent Real-Time’s RedHawk and Native Ubuntu and Native
Red Hat systems. Other information provided as part of this release, when it may contradict these
directions, should be ignored and these directions should prevail.

Current versions of Native Operating Systems that are supported are:

1) Ubuntu 22.04, kernel 6.5, gcc11 & gcc12
2) Red Hat RHEL 9.4, kernel 5.14

This release provides the optional support for the new Cloning of data among peripheral components
and main system (CCRT US Patent US 11.281.584 B1, Inventor Darius Dubash).

For additional information on the driver and its usage, refer to the ccrtaicc man page.

The AICC is a 64-Channel 18-bit Analog Input card with a PCI express interface.

Features and Characteristics of the AICC are:

▪ Cyclone V series FPGA control

▪ 64-channel 18-bit Analog-to-Digital Conversion

▪ Differential or Single-ended Input

▪ 0-5.12V, 0-10V, +/-5V ,+/-10V Input Range

▪ 1 Meg ohm Input Impedance

▪ +/-50V Input Over Voltage Protection

▪ 500Khz Maximum Sampling Rate (maximum 64-channels – see notes)

▪ 700Khz Maximum Sampling Rate (maximum 32-channels – High Speed Mode: see Notes)

▪ 1000Khz Maximum Sampling Rate (maximum 32-channels – Multiplexed Mode: see Notes)

▪ Dual DMA Engines

▪ Programmable Clock Generator

▪ Temperature Compensated Oscillator (TCXO)

▪ Multi-board Synchronization

▪ In System Firmware Update

▪ PCI Express Gen 1 x4 Lane

▪ MSI Interrupts

▪ Low Noise Analog Power Generation

▪ In System Calibration

▪ NIST Traceable Calibration Standard

▪ Directly Addressable Conversion Data Registers

▪ 128K Word Conversion Data FIFO’s with DMA

▪ Industry Standard Very High Density SCSI 68-pin Connectors

▪ RJ-45 Synchronization Connectors

2. Requirements

• CP-ADS6418 PCIe board physically installed in the system.

• This driver supports various versions of RedHawk and a selected set of Native Ubuntu and Native
Red Hat. Actual supported versions depend on the driver being installed.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 2 -

3. Documentation

• PCIe 64-Channel Analog Input I/O Card (AICC) Software Interface by Concurrent Real-Time.

4. Running on Native Red Hat

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver
will also be able to run on some selected versions of Red Hat with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccrtaicc/driver/ccrtaicc.ko due to unavailability of
vmlinux

4.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

yum install ncurses-devel (to run curses)
yum install gnuplot (to run plots for various tests)
yum install <any other package you want to install>

4.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccrtaicc_nomsi parameter located in the …/driver/ccrtaicc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

o ccrtaicc_nomsi=0 enable MSI support (default for RedHawk systems)
o ccrtaicc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on
a per board basis for cards using a PLX chip for generating interrupts. This is specially true for
the later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to
use MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

o Reload the kernel with the grub option “iommu=pt”
o Disable IOMMU in the BIOS
o Reload the kernel with the grub option “intremap=nosid”
o Reload the kernel with the grub option “intremap=off”
o Disable VT-d in the BIOS
o Disable VT-d MSI Interrupt Remapping in the BIOS
o Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

o # grubby --update-kernel=ALL --args=intremap=nosid (add the parameter)
o # grubby --update-kernel=ALL --remove-args=intremap=nosid (remove the parameter)
o # grubby --info=ALL (display parameters)
o # reboot

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 3 -

o After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is
present.

4.3. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high
sample rate transfers. You may need to lower the sample rates for these tests to run successfully if
BIOS and kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
varions BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable HyperThread in BIOS.
To check for number of hyperthreads in system:
 lscpu | grep "Thread(s)"

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 Sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

5. Running on Native Ubuntu

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver
will also be able to run on some selected versions of Ubuntu with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccrtaicc/driver/ccrtaicc.ko due to unavailability of
vmlinux

5.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

apt install build-essential
apt install libssl-dev
apt install nfs-common (to mount nfs file systems)
apt install libncurses-dev (to run curses)
apt install gnuplot (to run plots for various tests)

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 4 -

apt install chrony (for more accurate clock time)
apt install <any other package you want to install>

5.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccrtaicc_nomsi parameter located in the …/driver/ccrtaicc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

o ccrtaicc_nomsi=0 enable MSI support (default for RedHawk systems)
o ccrtaicc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on
a per board basis for cards using a PLX chip for generating interrupts. This is specially true for
the later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to
use MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

o Reload the kernel with the grub option “iommu=pt”
o Disable IOMMU in the BIOS
o Reload the kernel with the grub option “intremap=nosid”
o Reload the kernel with the grub option “intremap=off”
o Disable VT-d in the BIOS
o Disable VT-d MSI Interrupt Remapping in the BIOS
o Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

o Edit /etc/default/grub and add "intremap=nosid" to “GRUB_CMDLINE_LINUX=” entry
o # update-grub
o # reboot
o After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

5.3. Compiling the driver with installed gcc
Depending on the Ubuntu kernel version supported, you will need to make sure that the driver is
compiled with the same gcc as the kernel.

Currently, for Ubuntu release 22.04, the kernel 5.15 uses gcc-11 while kernel 6.4 uses gcc-12

If gcc-12 is not installed, you can do the following:

apt install gcc-12

Then create alternate entries for each available version:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc

/usr/bin/x86_64-linux-gnu-gcc-11 11

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-12 12

You can select the appropriate gcc with the following commands:

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 5 -

sudo update-alternatives --config gcc
sudo update-alternatvies --config x86_64-linux-gnu-gcc

All of this will ensure you have the compiler versions that match what the kernel was compiled with.

5.4. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high
sample rate transfers. You may need to lower the sample rates for these tests to run successfully if
BIOS and kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
varions BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable HyperThread in BIOS.
To check for number of hyperthreads in system:
 lscpu | grep "Thread(s)"

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 Sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

6. Installation and Removal

6.1. Hardware Installation

The CP-ADS6418 card is a Gen 1 PCI Express product and is compatible with any PCI Express slot.
The board must be installed in the system before attempting to use the driver.

Caution: when installing the card insure the computer is powered off and the
machine’s power cord is disconnected. Please observe electrostatic discharge
precautions such as the use of a grounding strap.

The ccrtaicc driver is designed to support IRQ sharing. If this device’s IRQ is being shared by
another device then this driver’s performance could be compromised. Hence, as far as possible,
move this board into a PCI slot who’s IRQ is not being shared with other devices. The default driver
configuration uses MSI interrupts. If the kernel supports MSI interrupts, then sharing of interrupts will
not occur, in which case the board placement will not be an issue.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 6 -

An ‘lspci -v’ or the ‘lsirq’ command can be used to determine the IRQs of various devices in the
system.

lspci -v -d 1542:9350

03:00.0 System peripheral: Concurrent Real-Time Device 9350 (rev 01)
 Subsystem: Concurrent Real-Time Device 0100
 Physical Slot: 5
 Flags: bus master, fast devsel, latency 0, IRQ 59
 Memory at bd520000 (32-bit, non-prefetchable) [size=32K]
 Memory at bd500000 (32-bit, non-prefetchable) [size=128K]
 Capabilities: [50] MSI: Enable+ Count=1/4 Maskable- 64bit+
 Capabilities: [78] Power Management version 3
 Capabilities: [80] Express Endpoint, MSI 00
 Capabilities: [100] Virtual Channel
 Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?>
 Capabilities: [800] Advanced Error Reporting

lsirq

 59 03:00.0 Concurrent Real-Time Unknown device (rev 01)

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

lspci -d 1542:9350

For each CP-ADS6418 PCIe board installed, a line like one of the following will be printed, depending
on the revision of the system’s /usr/share/hwdata/pci.ids file:

03:00.0 System peripheral: Concurrent Real-Time Device 9350 (rev 01)

If a line like the one above is not displayed by the lspci command, the board has not been properly
installed in the system. Make sure that the device has been correctly installed prior to attempting to
use the software. One similar line should be found for each installed card.

6.2. Software Installation

Concurrent Real-Time™ port of the ccrtaicc software is distributed in RPM format for CentOS/Rocky
and DEB format for Ubuntu OS on a DVD. Source for the API library and kernel loadable driver are
not included, however, source for example test programs as well as documentation is provided in
PDF format.

The software is installed in the /usr/local/CCRT/drivers/ccrtaicc directory. This directory will be
referred to as the “top-level” directory by this document.

Warning: Before installing the software, for RedHawk kernel, the build environment
must be set up and match the current OS kernel you are using. If you are running one of
the preconfigured kernels supplied by Concurrent and have not previously done so, run
the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname –r`/build
./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 7 -

Warning: RedHawk kernel release 8.2.1 onwards has enabled Supervisor Mode Access
Protection (SMAP), which is incompatible with driver releases 24.1.0 or earlier. It is
possible that even though the kernel has SMAP enabled, some platforms may not
support it. If you issue the command ‘lspcu | grep smap’ and it shows ‘smap’ as enabled,
then you will need to add the ‘nosmap’ argument to the grub entry and reboot the kernel.

To install the ccrtaicc package, load the DVD installation media and issue the following commands
as the root user. The system should auto-mount the DVD to a mount point in the /media or
/run/media directory based on the DVD’s volume label – in this case ccrtaicc_driver. The example’s
[user_name] may be root, or the logged-in user. Then enter the following commands from a shell
window:

== as root ==
 --- on RedHawk 6.5 and below ---

cd /media/ccrtaicc_driver
 --- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/ccrtaicc_driver

rpm –ivh ccrtaicc_RedHawk_driver*.rpm (on a RedHawk CentOS/Rocky based system)
 --or--

dpkg –i ccrtaicc_RedHawk_driver*.deb (on a RedHawk Ubuntu based system)
 --or—

rpm –ivh ccrtaicc_RedHat_driver*.rpm (on a Native RedHat based system)
 --or--

dpkg –i ccrtaicc_Ubuntu_driver*.deb (on a Native Ubuntu based system)

cd /
eject

On successful installation the source tree for the ccrtaicc package, including the loadable kernel
module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccrtaicc
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/`uname –r`/misc directory.

Once the package is installed, the driver needs to be loaded with one of the following commands:

== as root ==
cd /usr/local/CCRT/drivers/ccrtaicc
make load

 --- or on RedHawk 6.5 and below ---
/sbin/service ccrtaicc start

 --- or on RedHawk 7.0 and above ---
/usr/bin/systemctl start ccrtaicc

Issue the command below to view the boards found by the driver:

cat /proc/ccrtaicc

Version : 2022.1.0
Built : Thu Jan 20 08:44:36 EST 2022
Boards : 1
 card=0: [03:00.0] bus=3, slot=0, func=0, irq=59, msi=1, BInfo=9350.01.01
 FM=04/03/2019 (2.0) FLV=00000000 FWB=00000000 ID=687377 MC=C7 RLS=150
(AICC)

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 8 -

Note: With RedHawk 7.5 you may see a cautionary message similar to the following when the
ccrtaicc driver is loaded on the system console or via dmesg command:

CHRDEV "ccrtaicc" major number 233 goes below the dynamic allocation range

As documented in the kernel driver Documentation/devices.txt file a range of character device
numbers from 234 to 254 are officially available for dynamic assignment. Dynamic assignments start
at 254 and grow downward. This range is sometimes exceeded as additional kernel drivers are
loaded. Note that this was also the case with earlier kernels – the newer 7.5 kernel has added a
runtime check to produce this warning message that the lower bound has been exceeded, not
reduced the range of numbers officially available for dynamic assignment. If you see this message
please verify the assigned number(s) isn’t being used by a device installed on your system.

In addition to the above message, on some systems you may also see messages from APEI (ACPI
Platform Error Interface) or AER (Advanced Error Reporting) which have these error reporting
capabilities. These messages will be of the form of unrecoverable hardware errors or some other
form of hardware errors for the board when the driver/firmware is loaded and started. This is because
during the driver load operation, a fresh copy of the firmware is installed and started. This process of
starting is equivalent to issuing a power shutdown and restart of the card. Some operating systems
see the device as being no longer present, and generate the message.

On RedHawk 8.x kernels, you may see cautionary messages on the system console or via dmesg
command similar to the following when the ccrtaicc driver is loaded, as this is a proprietary driver:

ccrtaicc: module verification failed: signature and/or required key missing - tainting kernel

6.3. Software Removal

The ccrtaicc driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm or deb from the installation
DVD:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccrtaicc directory, they need to be backed up prior to invoking
the removal; otherwise, all changes will be lost.

== as root ==
rpm –e ccrtaicc (driver unloaded, uninstalled, and deleted – on an RPM
 based system)

 --or--
dpkg –P ccrtaicc (driver unloaded, uninstalled, and deleted – on an Debian
 based system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can
perform the following:

== as root ==
cd /usr/local/CCRT/drivers/ccrtaicc
make unload (unload the driver from the kernel)

 --- or on RedHawk 6.5 and below ---
/sbin/service ccrtaicc stop

 --- or on RedHawk 7.0 and above ---
/usr/bin/systemctl stop ccrtaicc

To uninstall the ccrtaicc driver, do the following after it has been unloaded:

=== as root ===

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 9 -

cd /usr/local/CCRT/drivers/ccrtaicc
make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccrtaicc directory at a later date to re-install and re-load the driver.

On some Debian RedHawk systems, the following message may appear and can be
ignored when the package is removed. “dpkg: warning: while removing ccrtaicc, directory
'/usr/local' not empty so not removed”.

7. Auto-loading the Driver

The ccrtaicc driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directories so that the driver is automatically loaded and unloaded when Linux is booted and
shutdown. If, for any reason, you do not wish to automatically load and unload the driver when Linux
is booted or shutdown, you will need to manually issue the following command to enable/disable the
automatic loading of the driver:

 === as root ===
 --- on RedHawk 6.5 and below ---
 # /sbin/chkconfig –-add ccrtaicc (enable auto-loading of the driver)
 # /sbin/chkconfig –-del ccrtaicc (disable auto-loading of the driver)
 --- or on RedHawk 7.0 and above ---
 # /usr/bin/systemctl enable ccrtaicc (enable auto-loading of the driver)
 # /usr/bin/systemctl disable ccrtaicc (disable auto-loading of the driver)

8. Testing and Usage

Build and run the driver test programs, if you have not already done so:

 # cd /usr/local/CCRT/drivers/ccrtaicc
 # make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccrtaicc/test directory and can
be run to test the driver and board.

 === as root ===
 # cd /usr/local/CCRT/drivers/ccrtaicc
 # make test (build the test programs)

./test/ccrtaicc_disp (display board registers)
./test/ccrtaicc_dump (dump all board resisters)
./test/ccrtaicc_rdreg (display board resisters)
./test/ccrtaicc_reg (Display board resisters)
./test/ccrtaicc_regedit (Interactive board register editor test)
./test/ccrtaicc_tst (Interactive test to test driver and
 board)
./test/ccrtaicc_wreg (edit board resisters)

./test/Flash/ccrtaicc_flash (Flash: Flash FPGA)
./test/Flash/ccrtaicc_label (Flash: Label FPGA)
./test/Flash/ccrtaicc_dump_license (Flash: Dump License)

./test/lib/ccrtaicc_adc (library: test ADC channel registers)
./test/lib/ccrtaicc_adc_calibrate (library: test ADC calibrate)
./test/lib/ccrtaicc_adc_fifo (library: test ADC FIFO channels)

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 10 -

./test/lib/ccrtaicc_adc_sps (library: test ADC SPS for channels)
./test/lib/ccrtaicc_check_bus (library: test system jitter)
./test/lib/ccrtaicc_clock (library: test clock)
./test/lib/ccrtaicc_disp (library: display board registers)
./test/lib/ccrtaicc_dma (library: run dma test)
./test/lib/ccrtaicc_example (library: run example test)
./test/lib/ccrtaicc_expires (library: run expires information test)
./test/lib/ccrtaicc_identify (library: identify cards in the system)
./test/lib/ccrtaicc_info (library: provide information of all boards)
./test/lib/ccrtaicc_msgdma (library: modular scatter-gather DMA test)
./test/lib/ccrtaicc_msgdma_clone (library: modular scatter-gather DMA cloning
 test)
./test/lib/ccrtaicc_msgdma_info (library: modular scatter-gather DMA info)
./test/lib/ccrtaicc_msgdma_multi_clone
 (library: modular scatter-gather DMA
 multi-cloning test)
./test/lib/ccrtaicc_smp_affinity (library: display/set IRQ CPU affinity)
./test/lib/ccrtaicc_transfer (library: run DMA and PIO transfer test)
./test/lib/ccrtaicc_tst_lib (library: Interactive test to test driver
 and board)

9. Re-building the Driver, Library and Tests

If for any reason the user needs to manually rebuild and load an installed rpm or deb package, they
can go to the installed directory and perform the necessary build.

Warning: Before installing the software, for Redhawk kernels, the build environment
must be set up and match the current OS kernel you are using. If you are running one of
the preconfigured kernels supplied by Concurrent and have not previously done so, run
the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname -r`/build
./ccur-config -c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To build the driver and tests:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccrtaicc
 # make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)

After the driver is built, you will need to install the driver. This install process should only be
necessary if the driver is re-built with changes.

=== as root ===
cd /usr/local/CCRT/drivers/ccrtaicc
make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel
prior to any access to the CCRT AICC board.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 11 -

=== as root ===
cd /usr/local/CCRT/drivers/ccrtaicc
make load (load the driver)

10. Software Support

This driver package includes extensive software support and test programs to assist the user in
communicating with the board. Refer to the CONCURRENT PCIe 64-Channel Analog Input I/O Card
(AICC) Software Interface document for more information on the product.

10.1. Device Configuration

After the driver is successfully loaded, the device to card association file ccrtaicc_devs will be
created in the /usr/local/CCRT/drivers/ccrtaicc/driver directory, if it did not exist. Additionally, there
is a symbolic link to this file in the /usr/lib/config/ccrtaicc directory as well. If the user wishes to keep
the default one-to-one device to card association, no further action is required. If the device to card
association needs to be changed, this file can be edited by the user to associate a particular device
number with a card number that was found by the driver. The commented portion on the top of the
ccrtaicc_devs file is automatically generated every time the user issues the ‘make load’ or
‘/sbin/service ccrtaicc start’ (on RedHawk 6.5 and below) or ‘/usr/bin/systemctl start ccrtaicc’
(on RedHawk 7.0 and above) command with the current detected cards, information. Any device to
card association edited and placed in this file by the user is retained and used during the next ‘make
load’ or ‘/sbin/service ccrtaicc load’ or ‘/usr/bin/systemctl start ccrtaicc’ process.

If the user deletes the ccrtaicc_devs file and recreates it as an empty file and performs a ‘make
load’ or if the user does not associate any device number with card number, the driver will provide a
one to one association of device number and card number. For more information on available
commands, view the commented section of the ccrtaicc_devs configuration file.

Warning: If you edit the ccrtaicc_devs file to associate a device to a card, you will need
to re-issue the ‘make load’ or ‘/sbin/service ccrtaicc start’ or ‘/usr/bin/systemctl start
ccrtaicc’ command to generate the necessary device to card association. This device to
card association will be retained until the user changes or deletes the association. If any
invalid association is detected, the loading of the driver will fail.

10.2. Library Interface

There is an extensive software library that is provided with this package. For more information on the
library interface, please refer to the PCIe 64-Channel Analog Input I/O Card (AICC) Software
Interface by Concurrent Real-Time document.

10.3. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccrtaicc/driver should be edited
to un-comment the statement (remove the preceding ‘#’):

 # EXTRA_CFLAGS += -DCCRTAICC_DEBUG

Next, compile and install the driver

 # cd /usr/local/CCRT/drivers/ccrtaicc/driver

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 12 -

 # make
 # make install

Next, edit the ccrtaicc_config file in /usr/local/CCRT/drivers/ccrtaicc/driver to un-comment the
statement (remove the preceding ‘#’):

 # ccrtaicc_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

 # cd /usr/local/CCRT/drivers/ccrtaicc/driver
 # make load

The user can also change the debug flags after the driver is loaded by passing the above debug
statement directly to the driver as follows:

 # echo “ccrtaicc_debug_mask=0x00082047” > /proc/ccrtaicc

Following are the supported flags for the debug mask as shown in the ccrtaicc_config file.

D_ENTER 0x00000001 /* enter routine */ #
D_EXIT 0x00000002 /* exit routine */ #

D_L1 0x00000004 /* level 1 */ #
D_L2 0x00000008 /* level 2 */ #
D_L3 0x00000010 /* level 3 */ #
D_L4 0x00000020 /* level 4 */ #

D_ERR 0x00000040 /* level error */ #
D_WAIT 0x00000080 /* level wait */ #

D_INT0 0x00000100 /* interrupt level 0 */ #
D_INT1 0x00000200 /* interrupt level 1 */ #
D_INT2 0x00000400 /* interrupt level 2 */ #
D_INT3 0x00000800 /* interrupt level 3 */ #
D_INTW 0x00001000 /* interrupt wakeup level */ #
D_INTE 0x00002000 /* interrupt error */ #

D_RTIME 0x00010000 /* display read times */ #
D_WTIME 0x00020000 /* display write times */ #
D_REGS 0x00040000 /* dump registers */ #
D_IOCTL 0x00080000 /* ioctl call */ #

D_DATA 0x00100000 /* data level */ #
D_DMA 0x00200000 /* DMA level */ #
D_DBUFF 0x00800000 /* DMA buffer allocation */ #

D_NEVER 0x00000000 /* never print this debug message */ #
D_ALWAYS 0xffffffff /* always print this debug message */ #
D_TEMP D_ALWAYS /* Only use for temporary debug code */ #

Another variable ccrtaicc_debug_ctrl is also supplied in the ccrtaicc_config that the

driver developer can use to control the behavior of the driver. The user can also change the debug
flags after the driver is loaded by passing the above debug statement directly to the driver as follows:

 # echo “ccrtaicc_debug_ctrl=0x00001234” > /proc/ccrtaicc

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 13 -

In order to make use of this variable, the driver must be coded to interrogate the bits in the
ccrtaicc_debug_ctrl variable and alter its behavior accordingly.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 14 -

11. Notes and Errata

• In some kernel releases, when a package is installed or uninstalled, you may see a warning
message on the system console similar to “systemd-rc-local-generator[22094]:
/etc/rc.d/rc.local is not marked executable, skipping.”. This is for informational purpose only
and can be ignored.

• This driver provides support for the new MsgDma Cloning (Patent-Pending) feature and enabled
after purchase of the appropriate licenses.

• An additional feature of the Cloning support is Region Addressing. The user needs to clear the
Physical Memory structure when calling ccrtAICC_MMap_Physical_Memory() as it is looking at
the address being passed. The call will fail if the address supplied is invalid.

• Region Addressing allows a user to supply a physical address to access memory beyond its
domain. Care should be taken in supplying a valid physical address, otherwise results can be
unpredictable including kernel crash or system hang. On RH6.0 through RH7.2 kernels, a
dmesg ‘ioremap’ kernel-warning message may be generated when kernel I/O mapping is
performed on a user supplied physical memory address that is allocated and reserved by
someone other than the user. If this is exactly what the user is intending to do, the
message can be ignored as this warning should have no effect on the driver operation or
the system. It may appear only once since a system reboot.

• Only one Cloning or MsgDma operation can be active at a given time. Additionally, it is
meaningless to perform Cloning on a FIFO region for two reasons. Firstly, each data in a FIFO is
synchronous, however, the Cloned region is accessed asynchronously. Secondly, when the FIFO
runs empty (underflow) or cannot accept more data (overflow) the results are unpredictable as
there is no flow control in the Cloning operation.

• If a kernel is configured with the CONFIG_DEBUG_LOCK_ALLOC define, the driver will fail to
compile due to mutex_lock_nested() call being included with GPL requirement. If you want to
successfully compile the driver, you will need to remove the CONFIG_DEBUG_LOCK_ALLOC
define and rebuild the kernel.

• RedHawk kernel release 8.2.1 onwards has enabled Supervisor Mode Access Protection
(SMAP), which is incompatible with driver releases 24.1.0 or earlier. It is possible that even
though the kernel has SMAP enabled, some platforms may not support it. If you issue the
command ‘lscpu | grep smap’ and it shows ‘smap’ as enabled, then you will need to add the
‘nosmap’ argument to the grub entry and reboot the kernel.

• Ubuntu kernels RH8.0 onwards may have the default systemd-timesyncd daemon installed
which does not accurately adjust the system clock causing the Sample/Second test to fall out of
tolerance and fail. You may want to replace the default with the chrony package for a more
accurate time asjustment.

• On some Debian systems, the following message can be ignored when the package is removed.
“dpkg: warning: while removing ccrtaicc, directory '/usr/local' not empty so not removed”

• Driver and board support MSI interrupts. It can also be configured for wired interrupts. MSI
support is the default.

• On certain systems, the current DMA engine is not fast enough to sustain the maximum
throughput of the card when using the internal FIFO. In that case, FIFO overflow will occur. If that
happens, you will need to reduce the number of selected FIFO channels and/or reduce the clock
speed of the converters until the FIFO overflow condition is resolved.

• Though there are two DMA engines, only DMA0 has full access of the entire board. DMA1 for old
firmware is restricted to the section of the board that is above the Diagnostic Ram area. If you use
DMA1 engine below that location, the results are unpredictable including but not limited to
crashing the kernel. If the API is used, the user will get an error when accessing incorrect regions
using the DMA1 engine.

• For new firmware, DMA0 and DMA1 engines are identical.

• The old firmware does not support modular scatter-gather DMA (MsgDma). The new firmware
does support MsgDma.

• This card does not support Serial Prom.

• This card does not support SDRAM.

• In the old firmware, the ADC_FifoData is the location pointed to the FIFO Data area. However, for
new firmware onwards, the ADC_NextGen_FifoData location holds the new FIFO location. The
ADC_FifoData is no longer available and is unused.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 15 -

• 500KSPS capture for all 64 channels, or 700KSPS for 32 channels is only possible using the
modular scatter-gather DMA.

• To achieve 1000KSPS, the card will need to have one ADC set to 500KSPS and another to the
inverted 500KSPS clock. In this way, when the same input is connected to two channels on the
two different ADC, the sampling will occur at twice the speed for the input signal. With proper
merging of the paired channels, 1000KSPS capture will be achieved. A maximum of 32 channels
can therefore be setup to capture at 1000KSPS.

• If the two ADCs are configured for high-speed selection, then each ADC can sample at a rate up
to 700KSPS for a total of 32 channels. 1400KSPS can be achieved by setting one ADC at the
maximum 700KSPS and the other with an inverted clock of 700KSPS. Once agin, when the same
input is connected to two channels on the two different ADc, the sampling will occur at twice the
speed for the input signal. With proper merging of the paired channels, 1400KSPS capture will be
achieved. A maximum of 16 channels can therefore be setup to capture at 1400KSPS.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 16 -

Appendix A: External Connections and Pin-outs

The front panel I/O connectors are industry standard 68-pin VHD SCSI type connectors with the following
pin-out when looking at the board:

External Connector Notes
1. An analog ground connection is required for the ESD and over/under voltage protection circuits to function

correctly for the analog signals.

2. Connector J1 located at the top of the front panel is used for multi-board synchronization. CAT5 capable or

greater shielded cable should be used. The top position of J1 is the output from the Master board. The

bottom position of J1 is the input to the Slave board.

3. All other connectors on the board are used for manufacturing test and should not have anything attached to

them.

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 17 -

Appendix B: The 64-Channel Analog Input FPGA Board

Concurrent Real-Time™ ccrtaicc Driver for RedHawk Linux™ – Release Notes - 18 -

This page intentionally left blank

