Software Interface
CCURAOCC (WC-DA3218)

PCle 32-Channel Digital to Analog

Output Converter
Card (AOCC)

Driver | ccuraocc (WC-DA3218) Rev 6.3
OS | RedHawk Rev 6.3
Vendor | Concurrent Computer Corporation

Hardware | PCle 32-Channel Digital to Analog Output Converter Card
(CP-DA3218)
Date | May 7", 2014

< rrent
=

V REAL-TINVME

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 1 of 98

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 2 of 98

Table of Contents

1. INTRODUCTION ..ottt b et s bbbt st 7
11 Related DOCUMENTSccuiiiieiieieeie ettt st sb et e et e b sresaesne e 7
2. SOFTWARE SUPPORT ..ottt bttt bbbt 7
21 DIFECE DIIVET ACCESS. .. cteiueetieeeieste st ste et e ee et ste st e te st ese et e besbesbesbeebeeseenseneeseesbeseesaesrens 7
211 OPEN(2) SYSTEM CAll ..o 7
212 10CEI(2) SYSLEM Call....ocveivieiiie e s 8
2.1.3 MMAP(2) SYSEM CAll.....ecuriiiiiii e s 10
214 read(2) SYStEM Callccooveiiii e s 11
215 WIIE(2) SYSLEM Call....cuviuiiiiie e ene s 11
2.2 Application Program Interface (API) ACCESScccviivireiierieieresesesreeeeseeseeseeseessessessens 12
221 CCUTAOCC_ADOIM._ DIMAL) «veviieieiinieieii sttt 15
222 CCUTAOCC_ATU_ITG() «-vvevereererreieiinieeeiisieteie sttt 15
223 CCUrAOCC_Clear_Driver _ErrOr() ..oooeeeeeresieeeieie et 15
224 CCUrAOCC_Clear_Lib _Error()oooee e 16
225 CCUPAOCC_CIOSE() +vveverrereeierieietesteieete sttt sttt 16
226 ccurAOCC_Compute_PLL_CIOCK().....vcerveeiiriiiiiriiieirieesee s 16
227 ccurAOCC_Create_Factory_Calibration()ccoceevverriniininineineeseesies 17
2.2.8 ccurAOCC_Create_User_CheCKpoint().......cccuiueriueiieeiieeieesie e se s e sie e 19
2.2.9 CCUFAQCC_DataTOVOIS() .ocvveiereieieiieeiiieieeie et se et ee e 21
2.2.10 ccurAOCC_DataToVoItSChanCal()cccveeververieriieie e 21
2.2.11 ccurAOCC_Disable PCi_INterruptS() ..ocoveevereerierieeiesie e seeseesieesee e see s 22
2.2.12 ccurAOCC_Enable PCi_INterruptS() ..c.ocoveevereereerireie e se e 22
2.2.13 ccUrAOCC_Fraction_TO_HEX() «..coveerreerririeiiierieise sttt 22
2.2.14 ccUrAOCC_Get_BO0ard_CSR()civrverreierierieiesierieesiesieeste st eere e sne e 22
2.2.15 ccurAOCC_Get_Board_INfO()......couuereiiiniiiiienieisie st 23
2.2.16 ccurAOCC_Get_Calibrator_ ADC_Control()ccccovereiirereiinireiseneeseseesienes 24
2.2.17 ccurAOCC_Get_Calibrator_ ADC_Data()cccoerveerrereenririeenienieiesiesieesie e 24
2.2.18 ccurAOCC_Get_Calibrator_ ADC_NegativeGainCal()cccooererrererinicneiinennns 25
2.2.19 ccurAOCC_Get_Calibrator ADC_OffSetCal()ccvevvvrvereeiieiieevee e e 25
2.2.20 ccurAOCC_Get_Calibrator ADC_PositiveGainCal().......ccccoerveervervevrrciesiesine 25
2.2.21 ccurAOCC_Get_Calibrator_Bus_Control().......cccecvevieeiiesiieiieiee e 26
2.2.22 ccurAOCC_Get_Calibration_ChannelGain()cccoccvvvevieiiieiieesiese e 27
2.2.23 ccurAOCC_Get_Calibration_ChannelOffset()ccccvvevieiiniiieieeve e 28
2.2.24 ccurAOCC_Get_Channel_Selection()cccccvevveiveresie s 28
2.2.25 ccurAOCC_Get_Converter_CIlock_Divider()........ccocoreiviereiineneiieneiese e 28
2.2.26 cCUrAOCC_Get_COoNVErter_CSR()....c veerrerieriiierieisiesieesie sttt 29
2.2.27 ccurAOCC_Get_Converter_Update_Selection()ccovvereieneneieneneineneesiens 30
2.2.28 CCUTAOCC_GEt_DIIVEr_EFTOr() «.eeeevereeieiierieiesie ettt 31
2.2.29 ccUrAOCC_Get_Driver_INFO()ooviereeiiriiieieese e 31
2.2.30 ccurAOCC_Get_Driver_Read_Mode()ccocevrereiieriiie e 33
2.2.31 ccurAOCC_Get_Driver Write_IMOde()ccvevvverrieiiieiisie e 34
2.2.32 ccurAOCC_Get_Fifo_Driver_Threshold()ccccovvevieiiiiieiieiee s 34
2.2.33 cCUrAOCC_Get_Fifo _INFO()..ciiveieiiieiiciisie st 34
2.2.34 ccurAOCC_Get_Fifo_Threshold()ccecoveevereeiieiieiecie e 36
2.2.35 ccurAOCC_Get_Interrupt_CoNtrol()ocoeererireiieie e e 36
2.2.36 ccUrAOCC_Get_INterrupt_StAtUS() «..eoveeererreerrerieiserieesie st 36
2.2.37 ccurAOCC_Get_Interrupt_Timeout_Seconds()ccocervrerererereienereresenieresieneas 37
2.2.38 CCUrAOCC_Get_Lib_Error() .ccccoeeiereeeiesieisie et 37
2.2.39 ccurAOCC_Get_Mapped_Config_PLr() ...coceoviereiiireineneiese e 38
2.2.40 ccurAOCC_Get_Mapped_Driver_Library Pr() ...ccccoeoiiriinieieiieneisc e 39
2.2.41 ccurAOCC_Get_Mapped_Local_Ptr()coceviereiieieieie e 39
2.242 ccurAOCC_Get_Open_File_DeSCriptor()cooeeeeeerenenesiesieseeeeienie e 39
2.243 ccurAOCC_Get_Physical_MemOIY()cocooereririiieieniesie e 40

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 3 of 98

2,244 cCUrAOCC_Get PLL _INFO() ciivireieeriere i se e se sttt enes 40

2,245 CCUrAOCC_Get PLL_StatUS() voverveveeereisiesiesreseaiesiesiestessessessessseseessesseseessessessens 42
2246 CCUTAOCC_GEt PLL _SYNC() tereveeerierieriisiesiestesesieseeseestessessesseesseseessesseseessnssensens 42
2.2.47 ccUrAOCC_Get_Sample_RaAtE()......coereerereiierieisiesieesie st 43
2.248 ccurAOCC_Get_TestBUS_CONLIOI() . .cveieereirieieieieeieie et 43
2.2.49 CCUTAOCC_GEE_ValUB() .vevereireieiiiienieiesie sttt 43
2.250 cCUrAOCC_HeX_TO_FraCtion()cceoererereiesiieeeieiee et s 46
2.2.51 ccurAOCC_Initialize_Board()........ccoerreerrerreinierieisienieiesie st 46
2.2.52 ccurAOCC Initialize_ PLL_INPUE_STIUCE() ..cvvvveereeieieieesie e 46
2.253 ccurAOCC_MMap_Physical_ Memory()cccceevveieevierieiesieseseseesiesieseesesessesenanens 47
2.254 ccurAOCC_Munmap_Physical _MemOory() ...cccovevveveieieseiesesieeieesiesese e e seeneas 47
2,255 CCUTAOCC _OPEN() 1orverviiiiteitisieaeeeeiesiestestestestessaasesseseestessessessesssessessessessessessensens 48
2.256 CCUTAOCC_OPEN_WAVE() .veivrireirierieieiesiesiestesteseeeeeeseestessessessasssessessessessessessensens 48
2.257 ccurAOCC_Perform_ADC_Calibration()cccceeveererenesienesieeieieesesesesesnannas 49
2.258 ccurAOCC_Perform_Channel_Gain_Calibration()c.ccoovvvvivevveieresiesinsnnnnnnns 49
2.259 ccurAOCC_Perform_Channel_Offset_Calibration()........ccccceevrvviiiiinniciieniieanns 49
2.2.60 ccurAOCC_Perform_Auto_Calibration()......c.ceveevieirneneieniieeieiesese e 50
2.2.61 ccurAOCC_Program_PLL_AdVANCEA() . ..covevrrerieiirerieiiienieiesie et 50
2.2.62 ccurAOCC_Program_PLL_CIOCK() .coveviverieiiirieiienieisie e 52
2.2.63 ccurAOCC_Program_Sample_Rate()ccoerurereiinerieininieiesie e 52
2.2.64 CCUTADCC_REAA().. vt eereererieieiterieiiste sttt sttt eb e sr e b sr e ane e 53
2.2.65 ccurAOCC_Read_Channels()......ccooveveiieiieiiese et 53
2.2.66 ccurAOCC_Read_Channels_Calibration()cccccovevviieviniiniiee e 54
2.2.67 ccurAOCC_Read_Serial_Prom().....ccccceceeiieiieiieiieie e sieeseeseesteesee e snee e 55
2.2.68 ccurAOCC_Read_Serial Prom_Item() ..c.ccccovvevieiieiesie e 55
2.2.69 ccurAOCC_Read_Single_Channel()cccooverieiieiieiesie e 56
2270 CCUTAOCC_REMOVE_ITT() . vererrerererrerieienierieieste ettt see st sre e sbe e sne e sne e 57
2.2.71 ccurAOCC_Reset ADC_Calibrator()ccoceovrereineneienenieieseseesie e 57
2.2.72 CCUTAOCC_RESEt BOAIU() ...evvevevererrerieiinierieieste sttt sne e 58
2.2.73 ccurAOCC_Reset_Channel_Calibration().........ccceovvereieneneienineiieneese e 58
2.2.74 CCUAOCC_RESEL FITO() .vevereirerieiiiiirieisie ettt 58
2.2.75 ccurAOCC_Restore_Factory_Calibration().........ccocovereiiieneinineiienecc e 58
2.2.76 ccurAOCC_Restore_User_Checkpoint()......c.ccoevvevveiviieiiniiee e 59
2.2.77 ccurAOCC_Select_Driver_Read_Mode()ccovevvverirerieiieiie e sie e 59
2.2.78 ccurAOCC_Select_Driver Write_MOde()cvevvvervreiiiiecie e 60
2.2.79 ccurAOCC_Serial_Prom_Write_OVErride()......cocevveruerieeriiesieseeseese e eve e 60
2.2.80 ccUrAOCC_Set_ BOArd_CSR() ..ecvvevveeieiiiitieitieiti e estesciesee e e sre e sre e e 61
2.2.81 ccurAOCC_Set_Calibrator ADC_Control()ccccovevieiieiieiie e 62
2.2.82 ccurAOCC_Set_Calibrator_ ADC_NegativeGainCal().........ccceverervrerereniererinennns 62
2.2.83 ccurAOCC_Set_Calibrator_ ADC_OFfSEtCal()ccoerveerereieiinieiseneese e 63
2.2.84 ccurAOCC_Set_Calibrator_ ADC_PositiveGainCal()ccovverererereienineinennns 63
2.2.85 ccurAOCC_Set_Calibrator_Bus_Control()coceoeiereieneneieieneise e 63
2.2.86 ccurAOCC_Set_Calibration_ChannelGain()........cccooereierereieneneieieneese e 64
2.2.87 ccurAOCC_Set_Calibration_ChannelOffset().......cccevvvrierieiieiiieieese e 65
2.2.88 ccurAOCC_Set_Channel_Selection().......ccevvevveieeriicie e 66
2.2.89 ccurAOCC_Set_Converter_Clock _Divider()ccccoveverieiiieiiiniie e 66
2.2.90 ccurAOCC_Set_Converter CSR() ...ccovviveiieiieiriesieeieecie s e sre e ssee s 67
2291 ccurAOCC_Set_Converter_Update_Selection()........cccccevveerieeiieeieene e 68
2.2.92 ccurAOCC_Set_Fifo_Driver_Threshold()........ccooereienineiieniiiiicieree e 69
2.2.93 ccurAOCC_Set Fifo_Threshold().......cooveereiiiniiiiieise e 69
2.2.94 ccurAOCC_Set_Interrupt_Control().......ccooeerereinineise e 69
2.2.95 ccUrAOCC_Set_INterrupt_STAtUS() . ..coveeererreererieisie et 70
2.2.96 ccurAOCC_Set_Interrupt_Timeout_Seconds()ccocererereienereieseneresereresieneas 71
2.2.97 CCUFAOCC_Set PLL_SYNC() . tittrrererririereiiiiieisie ettt 71
2.2.98 ccurAOCC_Set_TestBUS_CONIOI() ..cveviververiiieiiiie et 72
2.2.99 CCUTAOCC_SEt VAIUB() vevevereriieieeieie sttt sttt ettt eneas 72

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 4 of 98

2.2.100 ccUrAOCC_Shutdown_PLL_CIOCK() «.vevveverirreeieieriere e se e 74

2.2.101 CCUrAOCC_Start PLL_CIOCK() ..vevveeereiresesirseeieie e e s 74
2.2.102 CCUrAOCC_Stop _PLL_CIOCK() .vvevvereeeeieriesiesiesseeiesiesiesie st se s eeeseese e e sneenens 75
2.2.103 ccurAOCC_View_Factory_Calibration()ccoveereieieneienineieie e 75
2.2.104 ccUrAOCC_View_User_Checkpoint()ccoeveerereienineieseneese e 76
2.2.105 CCUTAOCC_VOISTODALA() -..venveverereereaterieieste ettt 76
2.2.106 ccurAOCC_VoltsToDataChanCal()ccovvereiniriiieieicencese e 77
2.2.107 ccurAOCC_Wait_For_Channel_Idle()cooovrerieienie e 77
2.2.108 cCUrAOCC_Wait_For_INterrupt().......cccooeverereeiineise e 77
2.2.109 (ool AN @ L O OV €1 (- SR 78
2.2.110 CCUrAOCC_Write_ChannelS()cvevverreiereiiseceee e 78
22111 ccurAOCC_Write_Channels_Calibration()c..ccoecevevienviinsiieieneceseseseannns 79
2.2.112 cCUrAOCC_Write_Serial_Prom().....ccccccieveiiiieeieiese s e sve e 80
2.2.113 ccurAOCC_Write_Serial_Prom_Item()......ccccoeveieiieiiieiese e sen e 80
2.2.114 ccurAOCC_Write_Single_Channel()cccoovvviieieieie e 82

3. TEST PROGRADMS ...ttt bbb bbbtttk et 83
3.1 Direct Driver ACCesS EXamMPIE TESISccueiviiriiieirieieisiesie e 83
311 (o0 = To Lol (o [T TS OPTTPTU P TTOTUP TP PR 83
312 o010] roTo ol o (=T o TP T TP T TP PR PR PRRPRPTN 83
3.13 CCUFAOCC_FEYRAIT ...ttt 86
3.14 CCUTAOCC_TSE ...ttt 86
3.1.5 (ool 0 o Lol oY =T o [P TPPUPRPP 87
3.2 Application Program Interface (AP1) Access Example TeStS.......cccovvevvereniveiivesieeseeenne. 88
3.2.1 lib/cCUrancC_Calibrateccoevvveiiieceee e s 88
3.2.2 lib/ccuraocc_compute _pll_ClOCKcvveiiii e 89
3.2.3 1 ool W = To Tt o oL SO 89
3.24 [ib/CCUranCC_TAENLITY ..o 91
3.25 [ID/CCUrA0CC_SELCRANcviitiiciiiie et 91
3.2.6 [ID/CCUIA0CC_SSNOL.......iiiiiitiiiciecie e 93
3.2.7 [ID/CCUrA0CC_ESE T ...iviiciicicice e 93
3.28 [iD/SPrOM/CCUFA0CC_SPIOM ... vttt sttt 95
APPENDIX A: CALIBRATION ...ttt st nne e 96
APPENDIX B: IMPORTANT CONSIDERATIONS ...ttt 97

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 5 of 98

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 6 of 98

1. Introduction

This document provides the software interface to the ccuraocc driver which communicates with the
Concurrent Computer Corporation PCI Express 32-Channel Digital to Analog Output Converter Card
(AOCC). For additional information on programming, please refer to the Concurrent Computer Corporation
PCle 32-Channel Digital to Analog Output Converter Cards (AOCC) Design Specification (No. 0610102)
document.

The software package that accompanies this board provides the ability for advanced users to communicate
directly with the board via the driver ioctl(2) and mmap(2) system calls. When programming in this mode, the
user needs to be intimately familiar with both the hardware and the register programming interface to the
board. Failure to adhere to correct programming will result in unpredictable results.

Additionally, the software package is accompanied by an extensive set of application programming interface
(API) calls that allow the user to access all capabilities of the board. The API also allows the user the ability to
communicate directly with the board through the ioctl(2) and mmap(2) system calls. In this case, there is a risk
of conflicting with API calls and therefore should only be used by advanced users who are intimately familiar
with, the hardware, board registers and the driver code.

Various example tests have been provided in the test and test/lib directories to assist the user in writing their
applications.

1.1 Related Documents

e Analog Output Driver Installation on RedHawk Release Notes by Concurrent Computer Corporation.
e PCle 32-Channel Digital to Analog Output Converter Card (AOCC) Design Specification (No. 0610102)
by Concurrent Computer Corporation.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel system calls (Direct
Driver Access) or the supplied API. Both approaches are identified below to assist the user in software development.

2.1 Direct Driver Access

2.1.1 open(2) system call
In order to access the board, the user first needs to open the device using the standard system call open(2).

int fp;

fp = open(“/dev/ccuraocc0”, O RDWR);
The file pointer ‘fp’ is then used as an argument to other system calls. The user can also supply the
O_NONBLOCK flag if the user does not wish to block waiting for writes to complete. In that case, if the
write is not satisfied, only partial write will occur. The device name specified is of the format
“/dev/ccuraocc<num>" where num is a digit 0..9 which represents the board number that is to be accessed.
Basically, the driver only allows one application to open a board at a time. The reason for this is that the
application can have full access to the card, even at the board and API level. If another application were to
communicate with the same card concurrently, the results would be unpredictable unless proper
synchronization is performed. This synchronization would be external to the driver, between the two
applications so as not to affect each other. This driver allows multiple applications to open the same board by
specifying the additional oflag O_APPEND. It is then the responsibility of the user to ensure that the various
applications communicating with the same cards are properly synchronized. Various tests supplied in this
package has the O_APPEND flags enabled, however, it is strongly recommended that only one application be
used with a single card at a time, unless the user is well aware of how the applications are going to interact
with each other and accept any unpredictable results.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 7 of 98

The driver creates a duplicate set of device names in the following format: “/dev/ccuraocc wave<num>".
The optional wave generation API uses this name when opening this device.

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the
control/response will depend on the specific ioctl command.

int status;
int arg;
status = ioctl (fp, <IOCTL_COMMAND>, &arg):;

where, ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND=> is one of
the ioctl commands below and arg is a pointer to an argument that could be anything and is dependent on the
command being invoked. If no argument is required for a specific command, then set to NULL.

Driver IOCTL command:

IOCTL_CCURAOCC_ABORT DMA
IOCTL_CCURAOCC ADD IRQ

IOCTL CCURAOCC DISABLE PCI INTERRUPTS
IOCTL_CCURAOCC ENABLE PCI_ INTERRUPTS
IOCTL_CCURAOCC GET DRIVER ERROR
IOCTL_CCURAOCC GET DRIVER INFO

IOCTL _CCURAOCC GET PHYSICAL MEMORY
IOCTL_CCURAOCC GET READ MODE
IOCTL_CCURAOCC_GET WRITE MODE
IOCTL_CCURAOCC INIT BOARD
IOCTL_CCURAOCC INTERRUPT TIMEOUT SECONDS
IOCTL_CCURAOCC MMAP SELECT
IOCTL_CCURAOCC NO COMMAND
IOCTL_CCURAOCC_READ EEPROM
IOCTL_CCURAOCC REMOVE IRQ

IOCTL CCURAOCC RESET BOARD
IOCTL_CCURAOCC SELECT READ MODE
IOCTL_CCURAOCC SELECT WRITE MODE
IOCTL_CCURAOCC WAIT FOR_INTERRUPT
IOCTL_CCURAOCC WRITE EEPROM

IOCTL_CCURAOCC ABORT_DMA: This ioctl does not have any arguments. Its purpose is to abort any
DMA already in progress. It will also reset the FIFO.

IOCTL_CCURAOCC _ADD_IRQ: This ioctl does not have any arguments. It sets up the driver interrupt
handler to handle interrupts. If MSI interrupts are possible, then they will be enabled. Normally, there is no
need to call this ioctl as the interrupt handler is already added when the driver is loaded. This ioctl is only
invoked if the user has issued the IOCTL_CCURAOCC_REMOVE_IRQ call earlier to remove the interrupt
handler.

IOCTL_CCURAOCC DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is
to disable PCI interrupts. This call shouldn’t be used during normal reads as calls could time out. The driver
handles enabling and disabling interrupts during its normal course of operation.

IOCTL_CCURAOCC ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is
to enable PCI interrupts. This call shouldn’t be used during normal reads as calls could time out. The driver
handles enabling and disabling interrupts during its normal course of operation.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 8 of 98

IOCTL_CCURAOCC GET DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the
ccuraocc_user_error_t structure. Information on the structure is located in the ccuraocc_user.h include file.
The error returned is the last reported error by the driver. If the argument pointer is NULL, the current error is
reset to CCURAOCC_SUCCESS.

IOCTL_CCURAOCC_GET DRIVER_INFO: The argument supplied to this ioctl is a pointer to the
ccuraocc_driver_info_t structure. Information on the structure is located in the ccuraocc_user.h include file.
This ioctl provides useful driver information.

IOCTL_CCURAOCC _GET_PHYSICAL_MEMORY: The argument supplied to this ioctl is a pointer to the
ccuraocc_phys_mem_t structure. Information on the structure is located in the ccuraocc_user.h include file. If
physical memory is not allocated, the call will fail; otherwise the call will return the physical memory address
and size in bytes. The only reason to request and get physical memory from the driver is to allow the user to
perform DMA operations and bypass the driver and library. Care must be taken when performing user level
DMA, as incorrect programming could lead to unpredictable results, including but not limited to corrupting
the kernel and any device connected to the system.

IOCTL_CCURAOCC_GET READ MODE: The argument supplied to this ioctl is a pointer an unsigned long
int. The value returned will be one of the read modes as defined by the enum _ccuraocc_driver_rw_mode_t
located in the ccuraocc_user.h include file. Though this is an analog output card, the user can read last values
of the channel registers that were written to. If user is writing data to the board using the on-board FIFO, then
the channel registers would reflect the most recent FIFO data that was output by the board. FIFO operation is
not supported by the read mode as the FIFO is a write only register.

IOCTL_CCURAOCC _GET WRITE_MODE: The argument supplied to this ioctl is a pointer an unsigned long
int. The value returned will be one of the write modes as defined by the enum _ccuraocc_driver_rw_mode_t
located in the ccuraocc_user.h include file.

IOCTL_CCURAOCC_INIT_BOARD: This ioctl does not have any arguments. This call resets the board to a
known initial default state. This call is currently identical to the IOCTL_CCURAOCC_RESET_BOARD call.

IOCTL_CCURAQOCC_INTERRUPT TIMEOUT_SECONDS: The argument supplied to this ioctl is a pointer
to an int. It allows the user to change the default time out from 30 seconds to user supplied time out. This is
the time that the FIFO write call will wait before it times out. The call could time out if either the FIFO fails to
drain or a DMA fails to complete. The device should have been opened in the block mode (O_NONBLOCK
not set) for writes to wait for an operation to complete.

IOCTL_CCURAOCC MMAP _SELECT: The argument to this ioctl is a pointer to the
ccuraocc_mmap_select_t structure. Information on the structure is located in the ccuraocc_user.h include file.
This call needs to be made prior to the mmap(2) system call so as to direct the following mmap(2) call to
perform the requested mapping specified by this ioctl. The four possible mappings that are performed by the
driver are to mmap the local register space (CCURAOCC_SELECT LOCAL_MMAP), the configuration
register space (CCURAOCC_SELECT_CONFIG_MMAP), the physical memory
(CCURAOCC_SELECT_PHYS_MEM_MMAP) and the (CCURAOCC_SELECT_DRIVER_LIBRARY_MMAP)
that is created by the mmap(2) system call.

IOCTL_CCURAOCC NO_COMMAND: This ioctl does not have any arguments. It is only provided for
debugging purpose and should not be used as it serves no purpose for the application.

IOCTL_CCURAQOCC READ_EEPROM: The argument to this ioctl is a pointer to the ccuraocc_eeprom_t
structure. Information on the structure is located in the ccuraocc_user.h include file. This call is specifically
used by the supplied eeprom application and should not be used by the user.

IOCTL_CCURAOCC REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to remove the
interrupt handler that was previously setup. The interrupt handler is managed internally by the driver and the
library. The user should not issue this call, otherwise reads will time out.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 9 of 98

IOCTL_CCURAOCC RESET_BOARD: This ioctl does not have any arguments. The call resets the board to a
known initial default state. Additionally, the Converters, Clocks, FIFO and interrupts are reset along with
internal pointers. This call is currently identical to the IOCTL_CCURAOCC_INIT_BOARD call.

IOCTL_CCURAOCC_SELECT READ_MODE: The argument supplied to this ioctl is a pointer an unsigned
long int. The value set will be one of the read modes as defined by the enum _ccuraocc_driver_rw_mode_t
located in the ccuraocc_user.h include file. FIFO operation is not supported by the read mode as the FIFO is a
write only register.

IOCTL_CCURAOCC SELECT WRITE_MODE: The argument supplied to this ioctl is a pointer an unsigned
long int. The value set will be one of the write modes as defined by the enum _ccuraocc_driver_rw_mode_t
located in the ccuraocc_user.h include file.

IOCTL_CCURAOCC WAIT_FOR_INTERRUPT: The argument to this ioctl is a pointer to the
ccuraocc_driver_int_t structure. Information on the structure is located in the ccuraocc_user.h include file.
The user can wait for either a FIFO low to high transition interrupt or a DMA complete interrupt. If a time out
value greater than zero is specified, the call will time out after the specified seconds, otherwise it will not.

IOCTL_CCURAOCC WRITE_EEPROM: The argument to this ioctl is a pointer to the ccuraocc_eeprom_t
structure. Information on the structure is located in the ccuraocc_user.h include file. This call is specifically
used by the supplied eeprom application and should not be used by the user.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board registers
or create and map a physical memory that can be used for user DMA. Prior to making this system call, the
user needs to issue the ioctl(2) system call with the IOCTL_CCURAOCC_MMAP_SELECT command. When
mapping either the local board registers or the configuration board registers, the ioctl call returns the size of
the register mapping which needs to be specified in the mmap(2) call. In the case of mapping a physical
memory, the size of physical memory to be created is supplied to the mmap(2) call.

int *munmap local ptr;
ccuraocc_local ctrl data t *local ptr;
ccuraocc_mmap select t mmap select;
unsigned long mmap local size;

mmap select.select = CCURAOCC SELECT LOCAL MMAP;
mmap select.offset=0;
mmap_select.size=0;

ioctl (fp, IOCTL CCURAOCC MMAP SELECT, (void *)&mmap_ select);
mmap_ local size = mmap select.size;

munmap_local ptr = (int *) mmap((caddr t)0, map local size,
(PROT READ|PROT WRITE), MAP SHARED, fp, 0);

local ptr = (ccuraocc_local ctrl data t *)munmap local ptr;
local ptr = (ccuraocc local ctrl data t *) ((char *)local ptr +
mmap select.offset);

if (munmap local ptr != NULL)
munmap ((void *)munmap local ptr, mmap local size);

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 10 of 98

2.1.4 read(2) system call

Prior to issuing this call to read, the user needs to select the type of read operation they would like to perform.
The only reason for providing various read modes is because the board allows it and that it gives the user the
ability to choose the optimal mode for their particular application. The read mode is specified by the ioctl call
with the I0CTL_CCURAOCC_SELECT _READ _MODE command. The following are the possible read
modes:

CCURAOCC _PIO_CHANNEL: This mode returns the data that was last written to the FIFO or the channel
registers 1 to 32. The relative offset within the returned buffer determines the channel number. The data
content is an 18-bit analog input raw value. The driver uses Programmed 1/O to perform this operation. In
this mode, samples read are the latest samples that are being output by the hardware.

CCURAOCC_DMA CHANNEL: This mode of operation is identical to the CCURAOCC_PIO_CHANNEL
mode with the exception that the driver performs a DMA operation instead of Programmed 1/0O to complete
the operation.

2.1.5 write(2) system call

Prior to issuing this call to write, the user needs to select the type of write operation they would like to
perform. The only reason for providing various write modes is because the board allows it and that it gives
the user the ability to choose the optimal mode for their particular application. The write mode is specified by
the ioctl call with the IOCTL_CCURAOCC_SELECT_WRITE_MODE command. The following are the
possible write modes:

CCURAOCC_PIO_CHANNEL: This mode writes from 1 to 32 channels raw data to the channel registers..
The relative offset within the write buffer determines the channel number. The data content is an 18-bit
analog output raw value. The driver uses Programmed 1/O to perform this operation. In this mode, samples
written are immediately sent out to the channels by the hardware based on the setting of the synchronization
flags.

CCURAOCC_DMA CHANNEL: This mode of operation is identical to the CCURAOCC_PIO_CHANNEL
mode with the exception that the driver performs a DMA operation instead of Programmed 1/0 to complete
the operation.

CCURAOCC_PIO_FIFO: This mode writes selected channels raw data to the channel registers. The
channels to be written are first selected by the channel_select register mask. The data content is an 18-bit
analog output raw value. The driver uses Programmed I/O to perform this operation. In this mode, samples
written to the hardware FIFO register, which are in turn clocked out to the channels by either internal or
external clocking.

CCURAOCC_DMA _FIFO: This mode is identical to the CCURAOCC_PIO_FIFO mode with the exception
that writes are performed using DMA operation.

For both of the above FIFO operations, the following operation is common:

— In order to synchronize channels, the channel converter_csr needs to set the synchronized mode,
otherwise, the channels will be updated immediately when the data is read from the FIFO.

— The channel_select register determines which set of registers are being placed in the FIFO.

— When the user requests a write of sample size, the routine checks to see if there is sufficient room
available in the FIFO to perform the complete write. If true, then the write operation is carried out
and completed immediately. If there are insufficient open space in the FIFO to completely satisfy
the write operation, the write routine then checks whether the user has selected the O_NONBLOCK
flag during opening the device, then a partial write will take place filling the current available space
in the FIFO and returning. If the O_NONBLOCK flag is not set during opening the device, the driver
will block waiting for enough samples to be available to complete the write. The duration of
blocking is a direct function of the number of channels in the FIFO and the sample rate.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 11 of 98

2.2 Application Program Interface (API) Access

The API is the recommended method of communicating with the board for most users. The following are a list of
calls that are available.

ccurAOCC_Abort DMA()
ccurAOCC_Add_Irq()
ccurAOCC_Clear_Driver_Error()
ccurAOCC_Clear_Lib_Error()
ccurAOCC_Close()

ccurAOCC_Compute PLL_Clock()
ccurAOCC_Create_Factory_Calibration()
ccurAOCC_Create_User_Checkpoint()
ccurAOCC_DataToVolts()
ccurAOCC_DataToVoltsChanCal()
ccurAOCC_Disable_Pci_Interrupts()
ccurAOCC_Enable_Pci_Interrupts()
ccurAOCC_Fraction_To_Hex()
ccurAOCC_Get_Board_CSR()
ccurAOCC_Get_Board_Info()
ccurAOCC_Get_Calibrator_ ADC_Control()
ccurAOCC_Get_Calibrator ADC_Data()
ccurAOCC_Get_Calibrator_ ADC_NegativeGainCal()
ccurAOCC_Get_Calibrator_ ADC_OffsetCal()
ccurAOCC_Get_Calibrator_ADC_PositiveGainCal()
ccurAOCC_Get_Calibrator_Bus_Control()
ccurAOCC_Get_Calibration_ChannelGain()
ccurAOCC_Get_Calibration_ChannelOffset()
ccurAOCC_Get_Channel_Selection()
ccurAOCC_Get_Converter_Clock_Divider()
ccurAOCC_Get_Converter_CSR()
ccurAOCC_Get_Converter_Update_Selection()
ccurAOCC_Get_Driver_Error()
ccurAOCC_Get_Driver_Info()
ccurAOCC_Get_Driver_Read_Mode()
ccurAOCC_Get_Driver_Write_Mode()
ccurAOCC_Get_Fifo_Driver_Threshold()
ccurAOCC_Get_Fifo_Info()
ccurAOCC_Get_Fifo_Threshold()
ccurAOCC_Get_Interrupt_Control()
ccurAOCC_Get_Interrupt_Status()
ccurAOCC_Get_Interrupt_Timeout_Seconds()
ccurAOCC_Get_Lib_Error()
ccurAOCC_Get_Mapped_Config_Ptr()
ccurAOCC_Get_Mapped_Driver_Library Ptr()
ccurAOCC_Get_Mapped_Local_Ptr()
ccurAOCC_Get_Open_File_Descriptor()
ccurAOCC_Get_Physical_Memory()
ccurAOCC_Get_PLL_Info()
ccurAOCC_Get_PLL_Status()
ccurAOCC_Get_PLL_Sync()
ccurAOCC_Get_Sample_Rate()
ccurAOCC_Get_TestBus_Control()
ccurAOCC_Get_Value()
ccurAOCC_Hex_To_Fraction()

ccurAOCC _Initialize_Board()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 12 of 98

ccurAOCC _Initialize PLL_Input_Struct()
ccurAOCC_MMap_Physical_Memory()
ccurAOCC_Munmap_Physical_Memory()
ccurAOCC_Open()

ccurAOCC_Open_Wave()
ccurAOCC_Perform_ADC_Calibration()
ccurAOCC_Perform_Channel_Gain_Calibration()
ccurAOCC_Perform_Channel_Offset_Calibration()
ccurAOCC_Perform_Auto_Calibration()
ccurAOCC_Program_PLL_Advanced()
ccurAOCC_Program_PLL_Clock()
ccurAOCC_Program_Sample_Rate()
ccurAOCC_Read()
ccurAOCC_Read_Channels()
ccurAOCC_Read_Channels_Calibration()
ccurAOCC_Read_Serial_Prom()
ccurAOCC_Read_Serial_Prom_ltem()
ccurAOCC_Read_Single_Channel()
ccurAOCC_Remove_Irq()

ccurAOCC_Reset. ADC_Calibrator()
ccurAOCC_Reset_Board()
ccurAOCC_Reset_Channel_Calibration()
ccurAOCC_Reset_Fifo()
ccurAOCC_Restore_Factory_Calibration()
ccurAOCC_Restore_User_Checkpoint()
ccurAOCC_Select_Driver_Read_Mode()
ccurAOCC_Select_Driver_Write_Mode()
ccurAOCC_Serial_Prom_Write_Override()
ccurAOCC_Set_Board_CSR()
ccurAOCC_Set_Calibrator_ ADC_Control()
ccurAOCC_Set_Calibrator_ADC_NegativeGainCal()
ccurAOCC_Set_Calibrator_ADC_OffsetCal()
ccurAOCC_Set_Calibrator_ ADC_PositiveGainCal()
ccurAOCC_Set_Calibrator_Bus_Control()
ccurAOCC_Set_Calibration_ChannelGain()
ccurAOCC_Set_Calibration_ChannelOffset()
ccurAOCC_Set_Channel_Selection()
ccurAOCC_Set_Converter_Clock_Divider()
ccurAOCC_Set_Converter_CSR()
ccurAOCC_Set_Converter_Update_Selection()
ccurAOCC_Set_Fifo_Driver_Threshold()
ccurAOCC_Set_Fifo_Threshold()
ccurAOCC_Set_Interrupt_Control()
ccurAOCC_Set_Interrupt_Status()
ccurAOCC_Set_Interrupt_Timeout_Seconds()
ccurAOCC_Set PLL_Sync()
ccurAOCC_Set_TestBus_Control()
ccurAOCC_Set Value()
ccurAOCC_Shutdown_PLL_Clock()
ccurAOCC_Start_PLL_Clock()
ccurAOCC_Stop_PLL_Clock()
ccurAOCC_View_Factory_Calibration()
ccurAOCC_View_User_Checkpoint()
ccurAOCC_VoltsToData()
ccurAOCC_VoltsToDataChanCal()
ccurAOCC_Wait_For_Channel_ldle()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 13 of 98

ccurAOCC_Wait_For_Interrupt()
ccurAOCC_Write()
ccurAOCC_Write_Channels()
ccurAOCC_Write_Channels_Calibration()
ccurAOCC_Write_Serial_Prom()
ccurAOCC_Write_Serial_Prom_Item()
ccurAOCC_Write_Single_Channel()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 14 of 98

2.2.1 ccurAOCC_Abort DMA()

This call will abort any DMA operation that is in progress. Normally, the user should not use this call unless
they are providing their own DMA handling.

/*k**k**k**k**k**k**k**k******k**k**k**k**k**k**k**k**k**k**k*************************************

int ccurAOCC Abort DMA (void *Handle)

Description: Abort any DMA in progress

Input: volid *Handle (handle pointer)

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC LIB NO LOCAL REGION (error)
CCURAOCC_LIB IOCTL_ FAILED (error)

***/

2.2.2 ccurAOCC_Add_Irq()

This call will add the driver interrupt handler if it has not been added. Normally, the user should not use this
call unless they want to disable the interrupt handler and then re-enable it.

/**
int ccurAOCC Add Irqg(void *Handle)
Description: By default, the driver assigns an interrupt handler to handle

device interrupts. If the interrupt handler was removed using
the ccurAOCC Remove Irqg(), then this call adds it back.

Input: void *Handle (handle pointer)

Output: None

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

CCURAOCC_ LIB IOCTL FAILED (driver ioctl call failed)

***/

2.2.3 ccurAOCC_Clear_Driver_Error()

This call resets the last driver error that was maintained internally by the driver to CCURAOCC_SUCCESS
status.

/**

int ccurAOCC Clear Driver Error(void *Handle)

Description: Clear any previously generated driver related error.

Input: void *Handle (handle pointer)

Output: None

Return: CCURAOCC_LIB NO_ ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC_LIB IOCTL FAILED (driver ioctl call failed)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 15 of 98

2.2.4 ccurAOCC _Clear_Lib _Error()
This call resets the last library error that is maintained internally by the API.

/***************

int ccurAOCC |

Description:

Input:
Output:
Return:

KA AR AR A A A A A A AR AR A AR A A A AR A A A A A A AR A A A A A A IR AR AR A A A A A A A A A A A Ak h Ak kK

Clear Lib Error (void *Handle)

Clear any previously generated library related error.

voilid *Handle (handle pointer)

None

CCURAOCC LIB NO ERROR (successful)

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC _LIB NOT OPEN (device not open)

Ak kA hk kA hkhkhk kA hkhk Ak hkhhkhkhhkhkhkh Ak kA hhk bk hhkhhkhkhkhhkhk kA hdkhkhhkhhkhkhkhkrhkhkrhkhkhkhhkrhkdkhkhkdkhkkrxkkxkk*x

2.2.5 ccurAOCC_Close()
This call is used to close an already opened device using the ccurAOCC_Open() call.

/**

int ccurAOCC Close (void *Handle)

Description:

Input:
Output:
Return:

Close a previously opened device.

void *Handle (handle pointer)

None

CCURAOCC LIB NO ERROR (successful)

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC LIB NOT OPEN (device not open)

**/

2.2.6 ccurAOCC_Compute PLL_Clock()

This call is supplied

for advanced users who wish to understand the parameters involved in programming a

PLL clock based on a set of requirements. No actual board programming is performed with this call. The call
simply accepts a set of inputs and computes the parameters needed to program a particular PLL for the given
inputs. Refer to the ccuraocc_pll.c file located in the .../zes#/lib directory for usage of this call. Refer to the

.../lib/ccuraocc_lib.h

include file for structure definitions.

/**

int ccurAOCC Compute PLL Clock(void *Handle, ccuraocc PLL setting t *input,

Description:
Input:

Output:
Return:

ccuraocc_solution t *solution)

Return the value of the specified PLL information.

void *Handle handle pointer)
ccuraocc PLL setting t *input pll input setting)

CCURAOCC_LIB_NO_ERROR successful)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

(
(
ccuraocc_solution t *solution; (pointer to solution struct)
(
(
(

KA A A AR A AR A A A AR A A A A A A AR AR A AR A AR AR A AR A A A AR A A A A AR A A Ak A kA A A A Ak Ak kA Ak kA kA Ak khkrkhAk Ak h k)%

Following is the information supplied to the call:

typedef struct {

double fDesired; /* MHz - Desired Output Clock Frequency */
int max_tol; /* ppm - parts/million - Maximum tolerance */
int maximizeVCOspeed; /* Maximize VCO Speed flag */

double fRef; /* MHz - Reference Input PLL Oscillator

Frequency */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form,

without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 16 of 98

double fPFDmin; /* MHz - Minimum allowable Freq at phase-
detector */

double kfVCO; /* MHz/Volts - VCO gain to be used */
double fVcoMin; /* MHz - Minimum VCO frequency */
double fVcoMax; /* MHz - Maximum VCO frequency */
double nRefMin; /* minimum reference divider */
double nRefMax; /* maximum reference divider */
double nFbkMin; /* minimum feedback divider */

double nFbkMax; /* maximum feedback divider */

} ccuraocc PLL setting t;

Refer to the ccurAOCC_Get_PLL _Info() call for information on the ccuraocc_PLL_struct_t structure.
Returned solution for the input is under:

typedef struct {
int product;
int post dividerl;
int post divider2;
int post divider3;
} ccuraocc postDividerData t;

typedef struct {

int NREF;

int NEBK;

ccuraocc _postDividerData t NPOST;

double synthErr;
double fVvCO;

double ClkFreq;

int tol found;
double gain margin;
uint charge pump current;
uint loop resistor;
uint loop capacitor;
ccuraocc_ PLL struct t setup;

} ccuraocc_solution t;

2.2.7 ccurAOCC_Create_Factory_Calibration()

This routine is used by Concurrent Computer Corporation to program factory calibration into the serial prom
for each voltage range. These settings are non-volatile and preserved through a power cycle. Users should
refrain from using this API, as it will no longer reflect the factory calibration shipped with the card.

Prior to using this call, the user will need to issue the ccurAOCC_Serial_Prom_Write_Override() to allowing
writing to the serial prom. The supporting calls for this API are ccurAOCC_View_Factory_Calibration() and
ccurAOCC_Restore_Factory_Calibration().

/**

int ccurAOCC Create Factory Calibration (void *Handle,
_ccuraocc_sprom_access_t item,
char *filename, int force)

Description: Create a Factory Calibration from user specified file

Input: void *Handle (handle pointer)

_ccuraocc_sprom_access_t item (select item)

-— CCURAOCC SPROM_FACTORY UNIPOLAR 5V

-— CCURAOCC SPROM FACTORY UNIPOLAR 10V

-— CCURAOCC SPROM FACTORY BIPOLAR 5V

-— CCURAOCC SPROM FACTORY BIPOLAR 10V

-— CCURAOCC SPROM FACTORY BIPOLAR 2 5V
char *filename (pointer to filename)
ccuraocc_bool force (force programming)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 17 of 98

Output:
Return:

-- CCURAOCC_TRUE
-- CCURAOCC_FALSE

none

CCURAOCC_LIB _NO_ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB CANNOT OPEN FILE
CCURAOCC_LIB NO_LOCAL REGION
CCURAOCC_LIB SERIAL PROM BUSY
CCURAOCC_LIB_ SERIAL PROM FAILURE
CCURAOCC_LIB INVALID CRC
CCURAOCC_LIB_ INVALID ARG

*********************k**************************k*******************************/

The item can be one of the following factory voltage ranges:

typedef enum {

CCURAOCC_SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 5V,
CCURAOCC_SPROM FACTORY BIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 2 5V,

} _ccuraocc_sprom_access_t;

error)

(
(
(
(
(
(
(
(

successful)
no/bad handler supplied)
device not open)

file not readable)

serial prom busy)
serial prom failure)
invalid CRC)
(invalid argument)

The filename contains the offset and gain in floating point for each channel. This file can be created with the
ccurAOCC_Write_Channels_Calibration() API, once the card has been calibrated for all channels with a
specific voltage range. The ccuraocc_calibrate utility can be used to create this file (./ccuraocc_calibrate

-Vbl10 -oCalOut _b10). The third argument Range

in the calibration file

ignored

in this

ccurAOCC_Create_Factory_Calibration() routine. It is up to the user to ensure that the correct file is supplied
for the selected voltage range.

Sample file for all channels configured for bipolar 10 volts:

#Date Tue Mar 25 12:45:24 2014

#Board Serial No: 12345678 (0x00bc6l4e)

#Chan Offset Gain Range

#

ch00: -0.0213623046875000 -0.0119018554687500 BiPolar 10v
ch0l: -0.0503540039062500 -0.0396728515625000 BiPolar 10v
ch02: 0.2633666992187500 0.5798339843750000 BiPolar 10v
ch03: -0.0027465820312500 0.0497436523437500 BiPolar 10v
ch04: -0.1342773437500000 -0.2017211914062500 BiPolar 10v
ch05: -0.1959228515625000 -0.3466796875000000 BiPolar 10v
ch06: -0.0250244140625000 0.0170898437500000 BiPolar 10v
ch07: 0.1223754882812500 0.3179931640625000 BiPolar 10v
ch08: 0.1010131835937500 0.2215576171875000 BiPolar 10v
ch09: -0.0607299804687500 -0.0958251953125000 BiPolar 10v
chl0: 0.0299072265625000 0.0997924804687500 BiPolar 10v
chll: 0.0881958007812500 0.2145385742187500 BiPolar 10v
chl2: -0.0018310546875000 0.0003051757812500 BiPolar 10v
chl3: 0.0851440429687500 0.2136230468750000 BiPolar 10v
chl4: 0.0775146484375000 0.1760864257812500 BiPolar 10v
chl5: 0.0289916992187500 0.0781250000000000 BiPolar 10v
chlé6: 0.0024414062500000 -0.0180053710937500 BiPolar 10v
chl7: 0.3225708007812500 0.7015991210937500 BiPolar 10v
chl8: 0.1724243164062500 0.3021240234375000 BiPolar 10v
chl9: 0.0872802734375000 0.1937866210937500 BiPolar 10v
ch20: 0.0973510742187500 0.2261352539062500 BiPolar 10v

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 18 of 98

ch2l: -0.0057983398437500 0.0051879882812500 BiPolar 10v
ch22: -0.0097656250000000 -0.0253295898437500 BiPolar 10v
ch23: 0.2059936523437500 0.4101562500000000 BiPolar 10v
ch24: 0.0607299804687500 0.1651000976562500 BiPolar 10v
ch25: 0.1062011718750000 0.2593994140625000 BiPolar 10v
ch26: -0.1159667968750000 -0.1934814453125000 BiPolar 10v
ch27: 0.0329589843750000 0.1181030273437500 BiPolar 10v
ch28: -0.0424194335937500 -0.0390625000000000 BiPolar 10v
ch29: -0.1092529296875000 -0.1565551757812500 BiPolar 10v
ch30: -0.0247192382812500 0.0076293945312500 BiPolar 10v
ch3l: -0.0567626953125000 -0.0656127929687500 BiPolar 10v

The force variable can be set to either CCURAOCC_TRUE or CCURAOCC_FALSE. This API validates the
CRC read from the serial prom against what it was expecting and if there is a mismatch and the force variable
is set to CCURAOCC_FALSE, the call will fail.

2.2.8 ccurAOCC _Create_User_Checkpoint()

This routine allows the user to program channel configuration and calibration information into the serial prom
for all the channels. These settings are non-volatile and preserved through a power cycle.

The user supplied input can be in the form of an input calibration file previously created with the
ccurAOCC_View_User_Checkpoint() API that contains offset, gain and channel configuration for each
channel to be programmed, or alternately, if the input file is NULL, capture a snapshot of the current board
settings. Normally, the user could, prior to specific test runs, disconnect the outputs to the test equipment so as
not to cause any damage to it, configure the individual channels for appropriate voltage ranges, ensure that the
surrounding environment (e.g. temperature) represents the same as the environment during the actual run, and
then perform an auto-calibration of all the channels. Once the calibration is complete, this API can store the
current settings in the serial prom for later restore with the ccurAOCC_Restore_User_Checkpoint() API.

Prior to using this call, the user will need to issue the ccurAOCC_Serial_Prom_Write_Override() to allowing
writing to the serial prom. The supporting calls for this API are ccurAOCC_View_User_Checkpoint() and
ccurAOCC_Restore_User_Checkpoint().

/**
(void *Handle,

_ccuraocc_sprom_access_t item,

char *filename, ccuraocc bool force)

int ccurAOCC Create User Checkpoint

Description: Create a User Checkpoint from user specified file
Input: void *Handle (handle pointer)
_ccuraocc_sprom_access_t item (select item)
-- CCURAOCC_SPROM USER CHECKPOINT 1
—-—- CCURAOCC_SPROM USER CHECKPOINT 2
char *filename (pointer to filename or NULL)
ccuraocc_bool force (force programming)
—-- CCURAOCC_TRUE
—-—- CCURAOCC_FALSE
Output: none
Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB CANNOT OPEN FILE
CCURAOCC_ LIB NO LOCAL REGION
CCURAOCC LIB SERIAL PROM BUSY
CCURAOCC_LIB SERIAL PROM FAILURE
CCURAOCC_LIB INVALID CRC invalid CRC)
CCURAOCC_LIB INVALID ARG (invalid argument)

**/

no/bad handler supplied)
device not open)

file not readable)
error)

serial prom busy)

serial prom failure)

(
(
(
(
(
(
(
(

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 19 of 98

typedef enum {
CCURAOCC SPROM HEADER=1,
CCURAOCC SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 5V,
CCURAOCC_SPROM FACTORY BIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 2 5V,
CCURAOCC_SPROM USER CHECKPOINT 1,
CCURAOCC_SPROM USER CHECKPOINT 2,

} _ccuraocc_sprom_access_t;

The filename contains the converter CSR, offset and gain in floating point for each channel. This file can be
created with the ccurAOCC_View_User_Checkpoint() API, once the card has been calibrated and information
stored in the serial PROM with this ccurAOCC_Create_User_Checkpoint() and filename set to NULL.

Below is a sample file for all channels configured for varying voltage ranges. User needs to refer to the
hardware programming manual to get information on the converter CSR register.

User Checkpoint

from serial prom

Date: Tue Mar 25 13:46:02 EDT 2014

Checkpoint: User Checkpoint 1

Board Serial No: 12345678 (0x00bc6lde)

CRC: 1A64

#

#Chan Offset Gain Converter Csr
ch00 -0.0247192382812500 -0.0198364257812500 0x00000003
ch01 0.0198364257812500 0.0057983398437500 0x00000001
ch02 0.2603149414062500 0.5737304687500000 0x00000003
ch03 0.0234985351562500 0.0814819335937500 0x00000001
ch04 -0.1391601562500000 -0.2117919921875000 0x00000003
ch05 0.0100708007812500 -0.3005981445312500 0x00000001
ch06 -0.0302124023437500 0.0051879882812500 0x00000003
chQ7 0.0167846679687500 0.3506469726562500 0x00000001
ch08 0.1013183593750000 0.2279663085937500 0x00000003
ch09 -0.0665283203125000 -0.1065063476562500 0x00000003
chl0 0.0112915039062500 0.0625610351562500 0x00000003
chll 0.0903320312500000 0.2209472656250000 0x00000003
chl2 0.0057983398437500 0.0015258789062500 0x00000002
chl3 0.0775146484375000 0.1983642578125000 0x00000002
chl4 0.0833129882812500 0.1864624023437500 0x00000002
chl5 0.0292968750000000 0.0659179687500000 0x00000002
chlo -0.0042724609375000 -0.0311279296875000 0x00000003
chl7 0.3076171875000000 0.6713867187500000 0x00000003
chl8 0.1687622070312500 0.2954101562500000 0x00000003
chl9 0.0747680664062500 0.1699829101562500 0x00000003
ch20 0.0820922851562500 0.1928710937500000 0x00000003
ch21 -0.0198364257812500 -0.0231933593750000 0x00000003
ch22 -0.0238037109375000 -0.0509643554687500 0x00000003
ch23 0.1971435546875000 0.3942871093750000 0x00000003
ch24 0.0732421875000000 0.1361083984375000 0x00000004
ch25 0.1171875000000000 0.2380371093750000 0x00000004
ch26 -0.1086425781250000 -0.2108764648437500 0x00000004
ch27 0.0552368164062500 0.1199340820312500 0x00000004
ch28 -0.0314331054687500 -0.0656127929687500 0x00000004
ch29 -0.0958251953125000 -0.1699829101562500 0x00000004
ch30 -0.0079345703125000 0.0036621093750000 0x00000004
ch31 -0.0323486328125000 -0.0527954101562500 0x00000004

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 20 of 98

The force variable can be set to either CCURAOCC_TRUE or CCURAOCC_FALSE. This API validates the
CRC read from the serial prom against what it was expecting and if there is a mismatch and the force variable
is set to CCURAOCC_FALSE, the call will fail.

2.2.9 ccurAOCC _DataToVolts()

This routine takes a raw analog input data value and converts it to a floating point voltage based on the
supplied format and voltage range.

/**

double ccurAOCC DataToVolts (int us data, int format,
int select voltage range) ()

Description: Convert Data to volts

Input: int us_data (data to convert)
int format (conversion format)
int select voltage range (select voltage range)
Output: none
Return: double volts (returned volts)

**/

The format can be: CCURAOCC_CONVERTER_OFFSET_BINARY
CCURAOCC_CONVERTER_TWOS_COMPLEMENT

If an invalid format is supplied, the call defaults to CCURAOCC_CONVERTER_OFFSET_BINARY.

The select_voltage _range can be: CCURAOCC_CONVERTER_UNIPOLAR_5V
CCURAOCC_CONVERTER_UNIPOLAR_10V
CCURAOCC_CONVERTER_BIPOLAR_5V
CCURAOCC_CONVERTER_BIPOLAR_10V
CCURAOCC_CONVERTER_BIPOLAR_2 5V

If the data to volts conversion is for the on-board Analog to Digital Converter (ADC), nicknamed
“Calibrator”, then the following parameters to be supplied to the select_voltage_range.

CCURAOCC_CALADC_RANGE_BIPOLAR_5V
CCURAOCC_CALADC_RANGE_BIPOLAR_10V
CCURAOCC_CALADC_RANGE_BIPOLAR 20V

If an invalid voltage range is selected, the call defaults to CCURAOCC_CONVERTER_UNIPOLAR _5V.

2.2.10 ccurAOCC_DataToVoltsChanCal()
This call converts raw data to volts for calibration registers.

/**

double ccurAOCC DataToVoltsChanCal (int us data)

Description: Convert Data to Volts (for Channel Calibration Registers)

Input: int us_data (data to convert)
Output: none
Return: double volts (returned volts)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 21 of 98

2.2.11 ccurAOCC Disable Pci_Interrupts()

This call disables PCI interrupts. This call shouldn’t be used during normal reads as writes could time out. The
driver handles enabling and disabling interrupts during its normal course of operation.

/**

int ccurAOCC Disable Pci Interrupts(void *Handle)

Description:

Input:
Output:
Return:

Disable interrupts being generated by the board.

void *Handle

None

CCURAOCC LIB NO ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC LIB NOT OPEN
CCURAOCC LIB IOCTL FAILED

(handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(driver ioctl call failed)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

2.2.12 ccurAOCC_Enable_Pci_Interrupts()

This call enables PCI interrupts. This call shouldn’t be used during normal reads as calls could time out. The
driver handles enabling and disabling interrupts during its normal course of operation.

/**

int ccurAOCC Enable Pci Interrupts(void *Handle)

Description:

Input:
Output:
Return:

Enable interrupts being generated by the board.

void *Handle

None
CCURAOCC LIB NO ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC LIB IOCTL FAILED

(handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(driver ioctl call failed)

**/

2.2.13 ccurAOCC_Fraction_To_Hex()

This call simply converts a floating point decimal fraction to a hexadecimal value. It is used internally by the
library for setting negative and positive calibration.

/**

int ccurAOCC Fraction To Hex (double Fraction, uint *value)

Description:

Input:
Output:
Return:

Convert Fractional Decimal to Hexadecimal

double Fraction
uint *value;
1

0 (good return)

(fraction to convert)
(converted hexadecimal wvalue)
(call failed)

KA Ak A A A A AR A A A A A A A AR A A A A AR AR A A A A A A AR AR A AR A AR AR A A AR A A AR AR A AR A AR AR A A A A A A AR A Ak kA kA Kk

2.2.14 ccurAOCC_Get_Board _CSR()
This call can be used to get the data and the external clock output settings.

/**

int ccurAOCC_Get Board CSR(void *Handle,

Description:

Input:
Output:

ccuraocc_board csr t *bcsr)

Get Board Control and Status information

void *Handle
*bcsr

ccuraocc _board csr_t

(handle pointer)
(pointer to board csr)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 22 of 98

Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

Ak kA hkhk A hkhkhkh Ak kA hhkhhhkrhhkhkhk Ak kA hhkhhkhkrhkhkhkhhkhkhkrhkhkrhkhkrhkhkhkhhkhkhkrhkhkrhkhkrhkkhkhdkhkkxkkxkkx*x

typedef struct
{

int external clock detected; /* external clock detected */
int all converter reset; /* all converter reset */

int external clock output; /* external clock selection */
int identify board; /* identify board */

} ccuraocc board csr t;

I/l external_clock_detected
- CCURAOCC_BCSR_EXTCLK_NOT_DETECTED
- CCURAOCC_BCSR_EXTCLK_DETECTED

[/ all_converter_reset
- CCURAOCC_BCSR_ALL_CONVERTER_ACTIVE
- CCURAOCC_BCSR_ALL_CONVERTER_RESET

/I external_clock_output

- CCURAOCC_BCSR_EXTCLK_OUTPUT_SOFTWARE_FLAG

- CCURAOCC_BCSR_EXTCLK_OUTPUT_PLL_CLOCK

- CCURAOCC_BCSR_EXTCLK_OUTPUT_EXTERNAL_CLOCK

/I identify_board
- CCURAOCC_BCSR_IDENTIFY_BOARD_DISABLE
- CCURAOCC_BCSR_IDENTIFY_BOARD_ENABLE

2.2.15 ccurAOCC_Get_Board_Info()

This call returns the board id, the board type and the firmware revision level for the selected board. This board
id is 0x9287 and board type is Ox1=Differential, 0x2=Single-Ended.

/**

int ccurAOCC Get Board Info(void *Handle, ccuraocc board info t *binfo)

Description: Get Board Information

Input: void *Handle (handle pointer)
Output: ccuraocc_board info t *binfo pointer to board info)

CCURAOCC _LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT_ OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

KA AR A AR AR A A A A A A AR A A A A AR AR A A A A A A AR AR A AR A AR AR AR A A A A AR AR A AR A AR AR A A A A A A AR A Ak kA kK k

(
_ (
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

typedef struct
{

int board id; /* board id */
int board type; /* board type */
int firmware rev; /* firmware revision */

ccuraocc_sprom header t sprom header;
/* serial prom header information */

int board wiring; /* single-ended or differential */
int number of channels; /* number of hardware channels */
int number of converters; /* number of converters */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 23 of 98

int all channels mask; /* all channels mask */

int all converters mask; /* all converters mask */

double cal ref voltage; /* calibration reference voltage */
double voltage range; /* maximum voltage range */

double MinSampleFreq; /* minimum sample frequency */
double MaxSampleFreq; /* maximum sample frequency */
double MasterClock; /* master clock */

} ccuraocc _board info t;

2.2.16 ccurAOCC_Get_Calibrator ADC_Control()

The board has an on-board Analog to Digital Converter (ADC) that is used during calibration of the channels.
This call returns the ADC control and range information. Normally, the user does not need this API. It is used

internally by the API to calibrate the channels.

/**

int ccurAOCC Get Calibrator ADC Control (void *Handle,

Description:

Input:
Output:

Return:

**/

typedef enum
{

CCURAOCC_CALADC_CONTROL BIPOLAR 0 5V
CCURAOCC_CALADC_CONTROL BIPOLAR 0 10V
CCURAOCC_CALADC_CONTROL BIPOLAR 5 5V
CCURAOCC_CALADC_CONTROL BIPOLAR 10 10V

_ccuraocc_calib adc _control t *adc control,

_ccuraocc_calib adc_range t *adc range)
Get Calibrator ADC Control Information

void *Handle (handle pointer)
_ccuraocc_calib adc control t

*adc_control (pointer to cal ADC control)
_ccuraocc _calib adc range t

*adc_ range (pointer to cal ADC range)
CCURAOCC LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (local region error)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

CCURAOCC LIB CALIBRATION RANGE ERROR (calibration range error)

), /* 0V to 45V (10V p-p
), /* 0OV to +10V (20V p-p
)
)

, /* =5V to +5V (20V p-p
, /* -10V to +10V (40V p-p

} _ccuraocc_calib adc_control t;

typedef enum
{

CCURAOCC CALADC_ RANGE BIPOLAR 5V
CCURAOCC_CALADC RANGE BIPOLAR 10V
CCURAOCC CALADC RANGE BIPOLAR 20V = (99), /* any number not in range 0.

(CCURAOCC CONVERTER BIPOLAR 5V),
(CCURAOCC CONVERTER BIPOLAR 10V),

*/
*/
*/
*/

.3 %/

/* for Cal ADC Control Only */

} _ccuraocc calib adc range t;

2.2.17 ccurAOCC_Get_Calibrator ADC_Data()
The call returns to the user the current ADC data register, both in raw value and floating point volts.

/**

int ccurAOCC _Get Calibrator ADC Data (void *Handle, uint *raw data,

Description:

Input:
Output:

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

double *volts)
Get Calibrator ADC Date Information

void *Handle (handle pointer)
uint *raw data (pointer to cal ADC data)

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 24 of 98

Return:

double *volts
CCURAOCC LIB NO ERROR
CCURAOCC LIB NO LOCAL REGION
CCURAOCC LIB BAD HANDLE
CCURAOCC LIB NOT OPEN
CCURAOCC LIB INVALID ARG

(pointer to cal ADC data)
(successful)

(local region error)
(no/bad handler supplied)
(device not open)
(invalid argument)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k***************************************/

2.2.18 ccurAOCC_Get_Calibrator ADC_NegativeGainCal()
The call returns to the user the current ADC negative gain calibration register, both in raw value and floating

point volts.

/*k**k**k**k**k**k**k**k******k**k**k**k**k**k**k**k**k**k**k*************************************

int ccurAOCC Get Calibrator ADC NegativeGainCal

Description:

Input:
Output:

Return:

(void *Handle,
double *Float)

uint *Raw,

Get Calibrator ADC Negative Gain Data

void *Handle
uint *Raw
double *Float

CCURAOCC_LIB NO ERROR
CCURAOCC_LIB NO LOCAL REGION
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

(handle pointer)

(pointer to Raw ADC Cal)
(pointer to Float ADC Cal)
(successful)

(local region not present)
(no/bad handler supplied)
(device not open)

(invalid argument)

**/

2.2.19 ccurAOCC_Get_Calibrator ADC_OffsetCal()
The call returns to the user the current ADC offset calibration register, both in raw value and floating point

volts.

/**

int ccurAOCC Get Calibrator ADC OffsetCal

Description:

Input:
Output:

Return:

Get Calibrator ADC Offset Data

void *Handle
uint *Raw
double *Float

CCURAOCC_LIB NO ERROR
CCURAOCC_LIB NO LOCAL_ REGION
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

(void *Handle,
double *Float)

uint *Raw,

(handle pointer)

(pointer to Raw ADC Cal)
(pointer to Float ADC Cal)
(successful)

(local region not present)
(no/bad handler supplied)
(device not open)

(invalid argument)

**/

2.2.20 ccurAOCC_Get_Calibrator_ ADC_PositiveGainCal()
The call returns to the user the current ADC positive gain calibration register, both in raw value and floating

point volts.

/**

int ccurAOCC Get Calibrator ADC PositiveGainCal

Description:

Input:
Output:

(void *Handle,
double *Float)

uint *Raw,

Get Calibrator ADC Positive Gain Data

*Handle
*Raw

void
uint

(handle pointer)
(pointer to Raw ADC Cal)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 25 of 98

double *Float (pointer to Float ADC Cal)
Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC LIB NO LOCAL REGION (local region not present)

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)

CCURAOCC_LIB NOT OPEN (device not open)

CCURAOCC_LIB INVALID ARG (invalid argument)

*********************k**************************k*******************************/

2.2.21 ccurAOCC_Get_Calibrator_Bus_Control()

The ADC (calibrator) can only return information for one element at a time. Prior to reading the ADC data,
the user needs to select the element whose information is to be returned. This call returns to the user the
current connection to the calibrator bus.

/*********k**************************k***

int ccurAOCC_Get Calibrator Bus Control (void *Handle,
ccuraocc_calib bus control t *adc bus control)

Description: Get Calibration Bus Control Information

Input: void *Handle (handle pointer)
Output: _ccuraocc_calib bus control t

*adc _bus control (pointer to cal Bus control)
Return: CCURAOCC LIB NO ERROR successful)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC LIB NOT OPEN device not open)

CCURAOCC LIB INVALID ARG (invalid argument)
‘k‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**********************/

(
(
CCURAOCC LIB NO LOCAL REGION (local region error)
(
(

typedef enum
{

CCURAOCC_CALBUS_CONTROL_GROUND (0),
CCURAOCC_CALBUS_CONTROL_POSITIVE REF = (1),
CCURAOCC_CALBUS_CONTROL_NEGATIVE REF = (2),
CCURAOCC_CALBUS CONTROL_OPEN = (3),
CCURAOCC_CALBUS_ CONTROL_CHAN 0 = (0x20),
CCURAOCC_CALBUS_CONTROL CHAN 1 = (0x21),
CCURAOCC_CALBUS CONTROL_CHAN 2 = (0x22),
CCURAOCC_CALBUS_CONTROL CHAN 3 0x23

()
()
()
=)
CCURAOCC CALBUS CONTROL CHAN 4 = (0x24),
()
()
()
()
()

CCURAOCC_CALBUS_CONTROL_CHAN 5 = (0x25),
CCURAOCC CALBUS_CONTROL_CHAN 6 = (0x26),
CCURAOCC_CALBUS_CONTROL_CHAN 7 = (0x27),
CCURAOCC_CALBUS_CONTROL CHAN 8 = (0x28),
CCURAOCC_CALBUS_ CONTROL_CHAN 9 = (0x29),
CCURAOCC_CALBUS_ CONTROL_CHAN 10 = (0x2R),
CCURAOCC_CALBUS_CONTROL_CHAN 11 = (0x2B),
CCURAOCC_CALBUS_CONTROL_CHAN 12 = (0x2C),
CCURAOCC_CALBUS_CONTROL_CHAN 13 = (0x2D),
CCURAOCC_CALBUS_CONTROL_CHAN 14 = (0x2E),
CCURAOCC_CALBUS_CONTROL CHAN 15 = (0x2F),
CCURAOCC_CALBUS_CONTROL_CHAN 16 = (0x30),
CCURAOCC_CALBUS_CONTROL_CHAN 17 = (0x31),
CCURAOCC CALBUS_CONTROL_CHAN 18 = (0x32),
CCURAOCC_CALBUS_CONTROL CHAN 19 = (0x33),
CCURAOCC_CALBUS_CONTROL_CHAN 20 = (0x34),
CCURAOCC_CALBUS_CONTROL_CHAN 21 = (0x35),
CCURAOCC_CALBUS_CONTROL_CHAN 22 = (0x36),
CCURAOCC CALBUS CONTROL_CHAN 23 = (0x37)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 26 of 98

CCURAOCC_CALBUS_CONTROL CHAN 24 = (0x38),
CCURAOCC_CALBUS CONTROL_CHAN 25 = (0x39),
CCURAOCC_CALBUS_CONTROL CHAN 26 = (0x3a),
CCURAOCC_CALBUS_CONTROL_CHAN 27 = (0x3B),
CCURAOCC_CALBUS_CONTROL CHAN 28 = (0x3C),
CCURAOCC_CALBUS CONTROL CHAN 29 (0x3D),
CCURAOCC_CALBUS CONTROL CHAN 30 = (0x3E),
CCURAOCC_CALBUS_CONTROL CHAN 31 = (0x3F),

} _ccuraocc calib bus control t;

2.2.22 ccurAOCC_Get_Calibration_ChannelGain()

This single call can be used to read back the selected channel gain raw hardware registers. Additionally, the
call returns the floating point value of the register as well.

/*********k**************************k***

int ccurAOCC Get Calibration ChannelGain (void *Handle,
_ccuraocc_channel mask t chan mask,
ccuraocc_converter cal t *gain)

Description: Get Calibration Channel Gain

Input: void *Handle (handle pointer)
_ccuraocc_channel mask t chan mask (selected channel mask)
Output: ccuraocc converter cal t *gain (gain value)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

typedef enum
{

CCURAOCC CHANNEL MASK 0 = 0x00000001, /* chan 0 */
CCURAOCC CHANNEL MASK 1 = 0x00000002, /* chan 1 */
CCURAOCC CHANNEL MASK 2 = 0x00000004, /* chan 2 */
CCURAOCC CHANNEL MASK 3 = 0x00000008, /* chan 3 */
CCURAOCC CHANNEL MASK 4 = 0x00000010, /* chan 4 */
CCURAOCC CHANNEL MASK 5 = 0x00000020, /* chan 5 */
CCURAOCC_CHANNEL MASK 6 = 0x00000040, /* chan 6 */
CCURAOCC CHANNEL MASK 7 = 0x00000080, /* chan 7 */
CCURAOCC_CHANNEL MASK 8 = 0x00000100, /* chan 8 */
CCURAOCC CHANNEL MASK 9 = 0x00000200, /* chan 9 */
CCURAOCC_CHANNEL MASK 10 = 0x00000400, /* chan 0 */
CCURAOCC CHANNEL MASK 11 = 0x00000800, /* chan 11 */
CCURAOCC_CHANNEL MASK 12 = 0x00001000, /* chan 12 */
CCURAOCC CHANNEL MASK 13 = 0x00002000, /* chan 13 */
CCURAOCC_CHANNEL MASK 14 = 0x00004000, /* chan 14 */
CCURAOCC CHANNEL MASK 15 = 0x00008000, /* chan 15 */
CCURAOCC_CHANNEL MASK 16 = 0x00010000, /* chan 16 */
CCURAOCC CHANNEL MASK 17 = 0x00020000, /* chan 17 */
CCURAOCC_CHANNEL MASK 18 = 0x00040000, /* chan 18 */
CCURAOCC CHANNEL MASK 19 = 0x00080000, /* chan 19 */
CCURAOCC_CHANNEL MASK 20 = 0x00100000, /* chan 20 */
CCURAOCC CHANNEL MASK 21 = 0x00200000, /* chan 21 */
CCURAOCC_CHANNEL MASK 22 = 0x00400000, /* chan 22 */
CCURAOCC_CHANNEL MASK 23 = 0x00800000, /* chan 23 */
CCURAOCC CHANNEL MASK 24 = 0x01000000, /* chan 24 */
CCURAOCC_CHANNEL MASK 25 = 0x02000000, /* chan 25 */
CCURAOCC_CHANNEL MASK 26 = 0x04000000, /* chan 26 */
CCURAOCC_CHANNEL MASK 37 = 0x08000000, /* chan 27 */
CCURAOCC CHANNEL MASK 28 = 0x10000000, /* chan 28 */
CCURAOCC_CHANNEL MASK 29 = 0x20000000, /* chan 30 */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 27 of 98

CCURAOCC_CHANNEL MASK 30 = 0x40000000, /* chan 31 */
CCURAOCC_CHANNEL_MASK 31 = 0x80000000, /* chan 32 */

/* End Channel */
CCURAOCC ALL CHANNEL MASK = OxXFFFFFFFF,
} _ccuraocc_channel mask t;

typedef struct

{
uint Raw[CCURAOCC MAX CHANNELS];
double Float[CCURAOCC MAX CHANNELS];
} ccuraocc converter cal t;

2.2.23 ccurAOCC_Get_Calibration_ChannelOffset()

This single call can be used to read back the selected channel offset raw hardware registers. Additionally, the
call returns the floating point value of the register as well.

/**

int ccurAOCC Get Calibration ChannelOffset (void *Handle,
_ccuraocc channel mask t chan mask,
ccuraocc_converter cal t *offset)

Description: Get Calibration Channel Offset

Input: void *Handle (handle pointer)

_ccuraocc channel mask t chan mask (selected channel mask)
Output: ccuraocc_converter cal t *offset (offset value)
Return: CCURAOCC LIB NO ERROR (successful)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

Information on structures are described in the above API ccurAOCC_Get_Calibration_ChannelGain().
2.2.24 ccurAOCC_Get_Channel_Selection()

This API returns the current channel selection mask that is used during FIFO write operations.

/**

int ccurAOCC Get Channel Selection (void *Handle, ccuraocc channel mask t
*chan mask)

Description: Get Channel Selection

Input: void *Handle (handle pointer)
Output: _ccuraocc_channel mask t *chan mask (channel selection mask)
Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

Information on structure is described in the above APl ccurAOCC_Get_Calibration_ChannelGain().

2.2.25 ccurAOCC_Get_Converter_Clock_Divider()
This API returns the current clock divider register information.

/**

int ccurAOCC Get Converter Clock Divider (void *Handle, uint *divider)
Description: Get Converter Clock Divider

Input: void *Handle (handle pointer)
Output: uint *divider (pointer to clock divider)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 28 of 98

CCURAOCC_LIB_NO_ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB_NOT_OPEN
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

successful)
no/bad handler supplied)
device not open)

Return:

(
(
(
(

2.2.26 ccurAOCC_Get_Converter CSR()

This call returns control information on the selected converter. The converter cannot be written to while the
CCURAOCC_CONVERTER_BUSY flag is set in the converter_interface_busy field.

/**

int ccurAOCC Get Converter CSR (void *Handle,

__ccuraocc_converter mask t conv mask,
ccuraocc _converter csr_ t ccsr)

Description: Get Converter Control and Status information

Input: void *Handle handle pointer)
_ccuraocc_converter mask t conv mask (selected converter)

Output: ccuraocc_converter csr t ccsr converter csr)

Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN

CCURAOCC_LIB INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

typedef enum

{

no/bad handler supplied)
device not open)

invalid argument)

(local region not present)

(
(
(
(successful)
(
(
(

**/

CCURAOCC_CONVERTER MASK 0 = 0x00000001, /* chan 0 */
CCURAOCC_CONVERTER MASK 1 = 0x00000002, /* chan 1 */
CCURAOCC_CONVERTER | MASK 2 = 0x00000004, /* chan 2 */
CCURAOCC_CONVERTER MASK 3 = 0x00000008, /* chan 3 */
CCURAOCC_CONVERTER MASK 4 = 0x00000010, /* chan 4 */
CCURAOCC_CONVERTER MASK 5 = 0x00000020, /* chan 5 */
CCURAOCC_CONVERTER | MASK 6 = 0x00000040, /* chan 6 */
CCURAOCC_CONVERTER MASK 7 = 0x00000080, /* chan 7 */
CCURAOCC_CONVERTER | MASK 8 = 0x00000100, /* chan 8 */
CCURAOCC_CONVERTER MASK 9 = 0x00000200, /* chan 9 */
CCURAOCC_CONVERTER MASK 10 = 0x00000400, /* chan 0 */
CCURAOCC_CONVERTER MASK 11 = 0x00000800, /* chan 11 */
CCURAOCC_CONVERTER MASK 12 = 0x00001000, /* chan 12 */
CCURAOCC_CONVERTER MASK 13 = 0x00002000, /* chan 13 */
CCURAOCC_CONVERTER MASK 14 = 0x00004000, /* chan 14 */
CCURAOCC_CONVERTER MASK 15 = 0x00008000, /* chan 15 */
CCURAOCC_CONVERTER MASK 16 = 0x00010000, /* chan 16 */
CCURAOCC_CONVERTER MASK 17 = 0x00020000, /* chan 17 */
CCURAOCC_CONVERTER | MASK 18 = 0x00040000, /* chan 18 */
CCURAOCC_CONVERTER MASK 19 = 0x00080000, /* chan 19 *x/
CCURAOCC_CONVERTER | MASK 20 = 0x00100000, /* chan 20 */
CCURAOCC_CONVERTER MASK 21 = 0x00200000, /* chan 21 */
CCURAOCC_CONVERTER MASK 22 = 0x00400000, /* chan 22 */
CCURAOCC_CONVERTER MASK 23 = 0x00800000, /* chan 23 */
CCURAOCC_CONVERTER MASK 24 = 0x01000000, /* chan 24 */
CCURAOCC_CONVERTER MASK 25 = 0x02000000, /* chan 25 */
CCURAOCC CONVERTER MASK 26 = 0x04000000, /* chan 26 */
CCURAOCC_CONVERTER MASK 37 = 0x08000000, /* chan 27 */
CCURAOCC_CONVERTER MASK 28 = 0x10000000, /* chan 28 */
CCURAOCC_CONVERTER MASK 29 = 0x20000000, /* chan 30 */
CCURAOCC_ CONVERTER MASK 30 = 0x40000000, /* chan 31 */
CCURAOCC_CONVERTER MASK 31 = 0x80000000, /* chan 32 */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 29 of 98

2.2.27

/* End Converter */
CCURAOCC _ALL CONVERTER MASK = OxXFFFFFFFF,
} _ccuraocc_converter mask t;

typedef struct

{
int converter interface busy;
int converter update mode;
int converter data format;
int converter output range;

} _ccuraocc_converter csr t;

typedef ccuraocc converter csr t
ccuraocc_converter csr t[CCURAOCC MAX CONVERTERS];

Il converter_interface_busy
- CCURAOCC_CONVERTER_IDLE
- CCURAOCC_CONVERTER_BUSY

/I converter_update_mode

- CCURAOCC_CONVERTER_MODE_IMMEDIATE

- CCURAOCC_CONVERTER_MODE_SYNCHRONIZED
- CCURAOCC_DO_NOT_CHANGE

/I converter_data_format

- CCURAOCC_CONVERTER_OFFSET_BINARY

- CCURAOCC_CONVERTER_TWOS_COMPLEMENT
- CCURAOCC_DO_NOT_CHANGE

/l converter_output_range

- CCURAOCC_CONVERTER_UNIPOLAR_5V
- CCURAOCC_CONVERTER_UNIPOLAR_10V
- CCURAOCC_CONVERTER_BIPOLAR_5V

- CCURAOCC_CONVERTER_BIPOLAR_10V

- CCURAOCC_CONVERTER_BIPOLAR_2_5V
- CCURAOCC_DO_NOT_CHANGE

ccurAOCC_Get_Converter_Update_Selection()
This API provides user with the converter update selection information.

/**

int ccurAOCC _Get Converter Update Selection (void *Handle,
_ccuraocc_converter update select t

*select)

Description: Get Converter Update Selection Information

Input: void *Handle
Output: _ccuraocc_converter update select t *select
Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE

CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

(handle pointer)
(pointer to converter
update info)
(successful)

(no/bad handler
supplied)

(device not open)
(invalid argument)
(local region not
present)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 30 of 98

typedef enum

{
CCURAOCC_CONVERTER UPDATE SELECT SOFTWARE = (0),
CCURAOCC_CONVERTER UPDATE SELECT PLL CLOCK = (1),
CCURAOCC_CONVERTER UPDATE SELECT EXTERNAL CLOCK =

} _ccuraocc_converter update select t;

(4),

2.2.28 ccurAOCC_Get_Driver_Error()
This call returns the last error generated by the driver.

/**

int ccurAOCC Get Driver Error(void *Handle, ccuraocc user error t *ret err)

Description: Get the last error generated by the driver.

Input: void *Handle handle pointer)
Output: ccuraocc_user error t *ret err error struct pointer)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC LIB INVALID ARG invalid argument)

CCURAOCC LIB IOCTL FAILED (driver ioctl call failed)
K KKK KKK KKK KK KKK KKK KKK KKK KK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK K/

(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

#define CCURAOCC ERROR NAME SIZE 64
#define CCURAOCC ERROR DESC SIZE 128

typedef struct ccuraocc user error t

{

uint error; /* error number */
char name[CCURAOCC ERROR NAME SIZE]; /* error name used in driver */
char desc[CCURAOCC ERROR DESC_SIZE]; /* error description */

} ccuraocc_user_error_t;

enum

{
CCURAOCC_SUCCESS = 0,
CCURAOCC INVALID PARAMETER,
CCURAOCC_FIFO THRESHOLD TIMEOUT,
CCURAOCC DMA TIMEOUT,
CCURAOCC_OPERATION CANCELLED,
CCURAOCC RESOURCE ALLOCATION ERROR,
CCURAOCC_INVALID REQUEST,
CCURAOCC FAULT ERROR,
CCURAOCC_BUSY,
CCURAOCC ADDRESS IN USE,
CCURAOCC_USER_INTERRUPT TIMEOUT,
CCURAOCC DMA INCOMPLETE,
CCURAOCC_DATA UNDERFLOW,
CCURAOCC DATA OVERFLOW,
CCURAOCC IO FAILURE,
CCURAOCC PCI ABORT INTERRUPT ACTIVE,

i

2.2.29 ccurAOCC_Get_Driver_Info()

This call returns internal information that is maintained by the driver.

/**

int ccurAOCC Get Driver Info(void *Handle, ccuraocc driver info t *info)

Description: Get device information from driver.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 31 of 98

Input: void *Handle (handle pointer)

Output: ccuraocc driver info t *info (info struct pointer)
-- char version[12]
-- char built[32]
-- char module name[16]
-— int board index
-- char board desc[32]
-— int bus
-- int slot
-— int func
-- int vendor id
-— int sub vendor id
-— int board id
-- int board type
-— int sub device id
-- int board info
-- int msi support
-- int irglevel
-— int firmware
-- int board wiring
-— int number of channels
-- int number of converters
-— int all channels mask
-- int all converters mask
-— int max_ fifo samples
-- int max fifo data
-— int max_ fifo threshold
-- int max dma samples
-— int dma size
—-— double cal ref voltage
-—- double voltage range
-- ccuraocc_driver int t interrupt
-— int Ccuraocc Max Region

-- ccuraocc_dev region t mem region[CCURAOCC MAX REGION];
—-— ccuraocc_sprom header t sprom header;

Return: CCURAOCC LIB NO ERROR (successful)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)
CCURAOCC_LIB IOCTL_FAILED (driver ioctl call failed

**/

typedef struct {
unsigned long long count;

u_int status;
u_int mask;
int timeout seconds;

} ccuraocc driver int t;

typedef struct
{

uint physical address;

uint size;
uint flags;
uint *virtual address;

} ccuraocc _dev region t;

typedef struct {

u_int board serial number; /* 0x000 - 0x003 - serial number */
u_short sprom revision; /* 0x004 - 0x005 - serial prom revision */
u_short spare 006 O03F[0x3A/2]; /* 0x006 - OxO03F - spare */

} ccuraocc_sprom header t;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 32 of 98

#define CCURAOCC MAX REGION 32

typedef struct {
char version[12];
char built[32];
char module name[16];
int board index;

char board desc[32]; /*
int bus; /*
int slot; /*
int func; /*
int vendor id; /*
int sub_vendor id; /*
int board id; /*
int board type; /*
int sub_device id; /*
int board info; /*

int
int
int
int
int

msi_ support;
irglevel;

firmware;

board wiring;
number of channels;

int number of converters; /*
int all channels mask; /*
int all converters mask; /*
int max_fifo samples; /*
int max fifo data; /*
int max_fifo threshold; /*
int max_dma samples; /*
int dma_size; /*

double cal ref voltage;
double voltage range;

/*

ccuraocc_driver int t interrupt;/*

int Ccuraocc_Max Region;

/*k

driver version */

driver date built */

driver name */

board index */

board description */

bus number */

slot number */

function number */

vendor id */

sub-vendor id */

board id */

board type */

sub device id */

board info if applicable */

msi flag 1=MSI support, 0=NO MSI */
IRQ level */

firmware number if applicable */
single ended, differential */
number of channels in this board */
number of converters in this board */
all channels mask */

all converters mask */

maximum fifo samples */

maximum fifo data */

maximum fifo threshold */
maximum DMA samples */

DMA size in bytes */

calibration ref voltage */

board voltage range */

interrupt information */

ernel DEVICE COUNT RESOURCE */

ccuraocc_dev region t mem region[CCURAOCC MAX REGION];

/*

memory region */

ccuraocc sprom header t sprom header;

/*

} ccuraocc driver info t;

2.2.30 ccurAOCC_Get_Driver_Read_Mode()

This call returns the current driver read mode. When a read(2) system call is issued, it is this mode that
determines the type of read being performed by the driver.

serial prom header */

/**

ccurAOCC_Get Driver Read Mode ()

Description:

Input:
Output:
Return:

Get current read mode t

void

_ccuraocc_driver rw mode t *mode

CCURAOCC_LIB NO ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN

CCURAOCC_LIB_INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

CCURAOCC_LIB IOCTL FAIL

hat will be selected by the 'read()' call

*Handle (handle pointer)

(pointer to read mode)
(successful)

no/bad handler supplied)
device not open)

invalid argument)

local region error)
(ioctl error)

(
(
(
(

ED

**/

typedef enum
{

CCURAOCC_PIO CHANNEL,
CCURAOCC DMA CHANNEL,

/* read/write mode */
/* read/write mode */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 33 of 98

CCURAOCC PIO FIFO, /* write mode */
CCURAOCC DMA FIFO, /* write mode */
} _ccuraocc driver rw mode t;

R
R

2.2.31 ccurAOCC_Get_Driver_Write_Mode()

This call returns the current driver write mode. When a write(2) system call is issued, it is this mode that
determines the type of write being performed by the driver.

/*k**k**k**k**k**k**k**k******k**k**k**k**k**k**k***

int ccurAOCC Get Driver Write Mode (void *Handle,
_ccuraocc_driver rw mode t *mode)

Description: Get current write mode that will be selected by the 'write()'

call
Input: void *Handle handle pointer)
Output: _ccuraocc_driver rw mode t *mode pointer to write mode)
Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC _LIB NO LOCAL REGION local region error)

CCURAOCC_LIB IOCTL FAILED (ioctl error)
Kok kK kK K kK K kK kK ok ko ok K ok K ok ok kK ok K ok ok ok ok K ok K ok ok ok ok K ok X ok ok ok ok K ok K ok Kk ok Kk K ok kR ok Kk K kK kR Kk X kK kK Kk ok /

(
(
(
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
(
(
(

typedef enum
{

CCURAOCC_PIO CHANNEL, /* read/write mode */
CCURAOCC DMA CHANNEL, /* read/write mode */
CCURAOCC_PIO FIFO, /* write mode */
CCURAOCC DMA FIFO, /* write mode */

} _ccuraocc driver rw mode t;

2.2.32 ccurAOCC_Get_Fifo_Driver_Threshold()
This API returns to the user the FIFO threshold that was previously set by the user.

/**

int ccurAOCC Get Fifo Driver Threshold (void *Handle, uint *threshold)

Description: Get FIFO Driver Threshold

Input: void *Handle handle pointer)
Output: uint *threshold pointer to driver threshold)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_ LIB INVALID ARG (invalid argument)

**/

(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(

2.2.33 ccurAOCC_Get_Fifo_Info()

This call provides additional information about the FIFO. The FIFO needs to be in the active state and at least
one active channel to be selected before converted data can be placed in the FIFO.

/**

int ccurAOCC Get Fifo Info (void *Handle, ccuraocc fifo info t *fifo)
Description: Get FIFO Control and Status information

Input: void *Handle (handle pointer)
Output: ccuraocc_fifo info t *fifo (pointer to board fifo)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 34 of 98

Return: CCURAOCC_LIB NO_ ERROR

B successful)
CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)

CCURAOCC LIB NO LOCAL REGION (local region error)

(
(
(
(

**/

typedef struct

{
uint
uint
uint
uint
uint
uint
uint
uint
uint

reset;

overflow;
underflow;

full;

threshold exceeded;
empty;

data counter;
threshold;

driver threshold;

} ccuraocc_fifo info t

/I reset

- CCURAOCC_FIFO_ACTIVE
- CCURAOCC_FIFO_ACTIVATE (same as CCURAOCC_FIFO_ACTIVE)
- CCURAOCC_FIFO_RESET

/I overflow

- CCURAOCC_FIFO_NO_OVERFLOW
- CCURAOCC_FIFO_OVERFLOW

/I underflow
- CCURAOCC_FIFO_NO_UNDERFLOW
- CCURAOCC_FIFO_UNDERFLOW

{1 full

- CCURAOCC_FIFO_NOT_FULL
- CCURAOCC_FIFO_FULL

/I threshold_exceeded
- CCURAOCC_FIFO_THRESHOLD_NOT_EXCEEDED
- CCURAOCC_FIFO_THRESHOLD_EXCEEDED

/I empty

- CCURAOCC_FIFO_NOT_EMPTY
- CCURAOCC_FIFO_EMPTY

/l data_counter
- this field ranges from 0 to Ox3FFFF entries representing the number of samples currently present in the

FIFO.

/I threshold

- this field ranges from 0 to Ox3FFFF entries representing the number of samples in the FIFO where the
threshold interrupt should occur. This is the current threshold that is read from the board.

/I driver_threshold

- this field ranges from 0 to Ox3FFFF entries representing the number of samples in the FIFO that was last set
by the user. This value is used by the driver during FIFO write operations so that if the FIFO has samples that
exceed the threshold value, the write will block until the threshold is reached before commencing the write.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 35 of 98

2.2.34 ccurAOCC_Get_Fifo_Threshold()
This call simply returns the current hardware FIFO threshold register value.

/*k**k**k**k**k**k**k**k******k**k**k**k**k**k**k**k**k**k**k******k****k***************************

int ccurAOCC Get Fifo Threshold (void *Handle, uint *threshold)

Description: Get FIFO Threshold

Input: void *Handle handle pointer)
Output: uint *threshold (pointer to fifo threshold)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(

2.2.35 ccurAOCC_Get_Interrupt_Control()
This call displays the current state of the Interrupt Control Register.

/**

int ccurAOCC Get Interrupt Control(void *Handle, ccuraocc interrupt t *intr)

Description: Get Interrupt Control information

CCURAOCC LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

Input: void *Handle (handle pointer)
Output: ccuraocc_interrupt t *intr (pointer to interrupt control)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
(
(

typedef struct {

int global int;
int fifo buffer hi lo int;
int plx local int;

} ccuraocc_interrupt t;

/I global_int
- CCURAOCC_ICSR_GLOBAL_DISABLE
- CCURAOCC_ICSR_GLOBAL_ENABLE

/I fifo_buffer_hi_lo_int
- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_DISABLE
- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_ ENABLE

/I pIx_local_int
- CCURAOCC_ICSR_LOCAL_PLX_DISABLE
- CCURAOCC_ICSR_LOCAL_PLX_ENABLE

2.2.36 ccurAOCC_Get_Interrupt_Status()
This call displays the current state of the Interrupt Status Register.

/**

int ccurAOCC Get Interrupt Status(void *Handle, ccuraocc_ interrupt t *intr)

Description: Get Interrupt Status information

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 36 of 98

Input: void *Handle
Output: ccuraocc_interrupt t *intr
Return: CCURAOCC_LIB_NO_ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB_INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

(handle pointer)

(pointer to interrupt status)
(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region not present)

**/

typedef struct {

int global int;
int fifo buffer hi lo int;
int plx local int;

} ccuraocc_interrupt t;

/I global_int
- not used

/I fifo_buffer_hi_lo_int
- CCURAOCC_ISR_FIFO_HILO_THRESHOLD_NONE

- CCURAOCC_ISR_FIFO_HILO_THRESHOLD_OCCURRED

/I pIx_local_int
- CCURAOCC_ISR_LOCAL_PLX_NONE
- CCURAOCC_ISR_LOCAL_PLX_OCCURRED

2.2.37 ccurAOCC_Get_Interrupt_Timeout_Seconds()

This call returns the read time out maintained by the driver. It is the time that the FIFO read call will wait
before it times out. The call could time out if either the FIFO fails to fill or a DMA fails to complete. The
device should have been opened in the block mode (O_NONBLOCK not set) for reads to wait for the
operation to complete.

/**

int ccurAOCC Get Interrupt Timeout Seconds(void *Handle,
int *int timeout secs)

Description: Get Interrupt Timeout Seconds

Input: void *Handle handle pointer)

Output: int *int timeout secs pointer to int tout secs)
Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC LIB BAD HANDLE
CCURAOCC LIB NOT OPEN
CCURAOCC LIB INVALID ARG
CCURAOCC_LIB NO LOCAL REGION
CCURAOCC LIB IOCTL FAILED

device not open)

invalid argument)

local region not present)
(ioctl error)

(
(
(
(no/bad handler supplied)
(
(
(

**/

2.2.38 ccurAOCC_Get_Lib_Error()

This call provides detailed information about the last library error that was maintained by the API.

/**

int ccurAOCC Get Lib Error (void *Handle,

ccuraocc lib error t *1lib error)

(handle pointer)

Description: Get last error generated by the library.
Input: void *Handle
Output: ccuraocc_lib error t *1lib error

-— uint error

-- char name[CCURAOCC LIB ERROR NAME SIZE]
-— char desc[CCURAOCC LIB ERROR DESC SIZE]

(error struct pointer)

(error number)

(error name)

(error description)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 37 of 98

-— int line number (e

rror line number in 1lib)

-- char function[CCURAOCC LIB ERROR FUNC SIZE]

(1
Return: CCURAOCC_LIB_BAD HANDLE
CCURAOCC_LIB NOT OPEN

Last Library Error
khkkhkkhkhkhkhkkhkkhkhkhkhhkhkhkhhkkhkhkhhhhkhkhhrhkkhkhkhkhkhhkhhkhrhkkhkkhkhkhrhhkkhhkhkhkh*k

typedef struct ccuraocc lib error t {

uint error; /*
char name [CCURAOCC LIB ERROR NAME SIZE]; /*
char desc[CCURAOCC_LIB ERROR DESC SIZE]; /*
int line number; /*
char function[CCURAOCC LIB_ERROR _FUNC SIZE]

/* 1
} ccuraocc_lib error t;

// error

- CCURAOCC_LIB NO ERROR 0 /*
- CCURAOCC LIB INVALID ARG -1 /*
- CCURAOCC LIB ALREADY OPEN -2 /*
- CCURAOCC LIB OPEN FAILED -3 /*
- CCURAOCC LIB BAD HANDLE -4 /*
- CCURAOCC LIB NOT OPEN -5 /*
- CCURAOCC LIB MMAP SELECT FAILED -6 /*
- CCURAOCC LIB MMAP FAILED =7 /*
- CCURAOCC LIB MUNMAP FAILED -8 /*
- CCURAOCC LIB NOT MAPPED -9 /*
- CCURAOCC LIB ALREADY MAPPED -10 /%
- CCURAOCC LIB IOCTL FAILED -11 /=
- CCURAOCC LIB IO ERROR -12 /=
- CCURAOCC LIB INTERNAL ERROR -13 /*
- CCURAOCC LIB NOT IMPLEMENTED -14 /=
- CCURAOCC LIB LOCK FAILED -15 /*
- CCURAOCC_LIB NO_LOCAL REGION -l6 /%
- CCURAOCC LIB NO CONFIG REGION =17 /*
- CCURAOCC_LIB NO SOLUTION FOUND -18 /*
- CCURAOCC LIB CONVERTER RESET -19 /*
- CCURAOCC_LIB NO_RESOURCE -20 /*
- CCURAOCC_LIB CALIBRATION RANGE ERROR -21 /*
- CCURAOCC LIB FIFO OVERFLOW -22 /*
- CCURAOCC LIB CANNOT OPEN FILE -23 /*
- CCURAOCC LIB BAD DATA IN CAL FILE -24 /%
- CCURAOCC LIB CHANNEL BUSY -25 /%

2.2.39 ccurAOCC_Get_Mapped_Config_Ptr()

ibrary function in error)

(no/bad handler supplied)
(device not open)

****k*************************/

lib error number */

error name used in lib */
error description */

line number in library */
;

ibrary function */

successful */

invalid argument */

already open */

open failed */

bad handle */

device not opened */

mmap selection failed */
mmap failed */

munmap failed */

not mapped */

already mapped */

driver ioctl failed */

i/o error */

internal library error */
call not implemented */
failed to get 1lib lock */
local region not present */
config region not present */
no solution found */
converter not active */
resource not available */
calibration voltage out of
range */

fifo overflow */

cannot open file */

bad date in calibration file */
channel busy */

If the user wishes to bypass the API and communicate directly with the board configuration registers, then

they can use this call to acquire a pointer to these registers. Please

note that any type of access (read or write)

by bypassing the APl could compromise the APl and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care
programming registers before attempting to access these registers
the ccuraocc_user.h include file that is supplied with the driver.

/***

int ccurAOCC Get Mapped Config Ptr(void *Handle

and intimate knowledge of the hardware

. For information on the registers, refer to

R R I b I S b I b S b b Sb S b b S b S Sb S b I 2

’

ccuraocc_config local data t **config ptr)

Description: Get mapped configuration pointer.
Input: void *Handle
Output: ccuraocc_config local data t **config ptr

-— structure in ccuraocc user.h

(handle pointer)
(config struct ptr)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Com
under any patent, copyright or trade secret right is granted or implied by the conveyance of this

puter Corporation. No license, expressed or implied,
document.

Page 38 of 98

2.2.40

2.241

2.2.42

Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCCALIBiBAgiHANDLE (no/bad handler
supplied)

CCURAOCC_LIB NOT OPEN (device not open)

CCURAOCC_LIB INVALID ARG (invalid argument)

CCURAOCC LIB NO CONFIG REGION (config region not
present)

**/

ccurAOCC_Get_Mapped_Driver_Library Ptr()

This API provides a pointer to a shared driver/library structure. This is used internally between the driver and
the library.

/**

int ccurAOCC Get Mapped Driver Library Ptr (void *Handle,
ccuraocc driver library common t
**driver 1lib ptr)

Description: Get mapped Driver/Library structure pointer.

Input: void *Handle (handle pointer)
Output: ccuraocc _driver library common t **driver lib ptr
(driver 1lib struct ptr)
-- structure in ccuraocc user.h
Return: CCURAOCC_LIB NO ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC _LIB NOT OPEN device not open)
CCURAOCC LIB INVALID ARG invalid argument)

CCURAOCC LIB NO LOCAL REGION (local region not present)
**/

successful)

(
(no/bad handler supplied)
(
(

ccurAOCC_Get_Mapped_Local _Ptr()

If the user wishes to bypass the APl and communicate directly with the board control and data registers, then
they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)
by bypassing the API could compromise the API and results could be unpredictable. It is recommended that
only advanced users should use this call and with extreme care and intimate knowledge of the hardware
programming registers before attempting to access these registers. For information on the registers, refer to
the ccuraocc_user.h include file that is supplied with the driver.

/**

int ccurAOCC Get Mapped Local Ptr(void *Handle,
ccuraocc_local ctrl data t **local ptr)

Description: Get mapped local pointer.

Input: void *Handle (handle pointer)

Output: ccuraocc local ctrl data t **local ptr (local struct ptr)
-— structure in ccuraocc _user.h

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT_ OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

ccurAOCC_Get_Open_File_Descriptor()

When the library ccurAOCC_Open() call is successfully invoked, the board is opened using the system call
open(2). The file descriptor associated with this board is returned to the user with this call. This call allows
advanced users to bypass the library and communicate directly with the driver with calls like read(2), ioctl(2),

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 39 of 98

2.2.43

etc. Normally, this is not recommended as internal checking and locking is bypassed and the library calls can
no longer maintain integrity of the functions. This is only provided for advanced users who want more control
and are aware of the implications.

/**

int ccurAOCC Get Open File Descriptor(void *Handle, int *fd)

Description: Get Open File Descriptor

Input: void *Handle handle pointer)
Output: int *fd open file descriptor)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(

ccurAOCC_Get_Physical_Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by the
ccurAOCC_Mmap_Physical_Memory() call. The physical memory is allocated by the user when they wish to
perform their own DMA and bypass the API. Once again, this call is only useful for advanced users.

/**

int ccurAOCC Get Physical Memory(void *Handle,
ccuraocc_phys mem t *phys mem)

Description: Get previously mmapped() physical memory address and size

Input: void *Handle (handle pointer)

Output: ccuraocc phys mem t *phys mem (mem struct pointer)
-— void *phys mem
-- u_int phys mem size

Return: CCURAOCC_LIB NO_ ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC_LIB IOCTL_FAILED (driver ioctl call failed)

**/

successful)

(
(no/bad handler supplied)
(
(

typedef struct {
void *phys _mem; /* physical memory: physical address */
unsigned int phys mem size; /* physical memory: memory size - bytes */
} ccuraocc phys mem t;

2.2.44 ccurAOCC_Get_PLL _Info()

This call returns the programmed information for the PLL.

/**

int ccurAOCC Get PLL Info(void *Handle, ccuraocc PLL struct t *info)

Description: Return the value of the PLL information.

Input: void *Handle (handle pointer)

Output: ccuraocc PLL struct t *info; (pointer to pll info struct)

Return: CCURAOCC_LIB NO_ ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

**/

typedef struct {

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 40 of 98

uint ref freq divider; /* [11:00] */

uint ref freq divider src; /* CCURAOCC_REF DIVIDER SRC_OSCILLATOR */
/* CCURAOCC REF DIVIDER SRC PIN */

uint shutdown 1; /* CCURAOCC_RUNNING */
/* CCURAOCC_SHUTDOWN */

uint post dividerl; /* CCURAOCC POST DIVIDERL 1 */
/* CCURAOCC_ POST DIVIDERl 2 */
/* CCURAOCC POST DIVIDERl 3 */
/* CCURAOCC_ POST DIVIDER1 4 */
/* CCURAOCC POST DIVIDERLl 5 */
/* CCURAOCC_ POST DIVIDERl 6 */
/* CCURAOCC_POST DIVIDERl 7 */
/* CCURAOCC POST DIVIDER1 8 */
/* CCURAOCC POST DIVIDER1 9 */
/* CCURAOCC POST DIVIDER1 10%*/
/* CCURAOCC_POST DIVIDERl 11 */
/* CCURAOCC POST DIVIDERL 12 */

uint post_divider2; /* CCURAOCC POST DIVIDER2 1 */
/* CCURAOCC POST DIVIDER2 2 */
/* CCURAOCC_POST_DIVIDER2 3 */
/* CCURAOCC POST DIVIDER2 4 */
/* CCURAOCC_POST_DIVIDER2 5 */
/* CCURAOCC_POST DIVIDER2 6 */
/* CCURAOCC_POST_DIVIDER2_ 7 */
/* CCURAOCC_POST DIVIDER2 8 */
/* CCURAOCC_POST_DIVIDER2_ 9 */
/* CCURAOCC_POST DIVIDER2 10%*/
/* CCURAOCC_POST_DIVIDER2_ 11 */
/* CCURAOCC POST DIVIDER2 12 */

uint post_divider3; /* CCURAOCC_POST DIVIDER3 1 */
/* CCURAOCC_POST_DIVIDER3_ 2 */
/* CCURAOCC_POST DIVIDER3 4 */
/* CCURAOCC_POST_DIVIDER3_ 8 */

uint feedback divider; /* [13:00] */

uint feedback divider src; /* CCURAOCC_FEEDBACK DIVIDER SRC VCO */
/* CCURAOCC_FEEDBACK DIVIDER SRC POST */

uint clock output; /* CCURAOCC_CLOCK OUTPUT PECL */
/* CCURAOCC CLOCK_OUTPUT CMOS */

uint charge pump current; /* CCURAOCC CHARGE PUMP CURRENT 2UA */
/* CCURAOCC_CHARGE PUMP_CURRENT 4 5UA */
/* CCURAOCC CHARGE PUMP CURRENT 11UA */
/* CCURAOCC_CHARGE PUMP_CURRENT 22 5UA */

uint loop resistor; /* CCURAOCC_LOOP RESISTOR 400K */
/* CCURAOCC LOOP_RESISTOR 133K */
/* CCURAOCC_LOOP_RESISTOR 30K */
/* CCURAOCC_LOOP RESISTOR 12K */

uint loop capacitor; /* CCURAOCC_LOOP_CAPACITOR 185PF */
/* CCURAOCC_LOOP CAPACITOR 500PF */

uint sync_enable; /* CCURAOCC_SYNC DISABLE */
/* CCURAOCC_SYNC_ENABLE */
uint sync_polarity; /* CCURAOCC_SYNC_ POLARITY NEGATIVE */

/* CCURAOCC SYNC_POLARITY POSITIVE */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 41 of 98

2.2.45

2.2.46

uint shutdown_ 2; /* CCURAOCC_RUNNING */
/* CCURAOCC_SHUTDOWN */

/* below should not be supplied by user */

double last specified fRef; /* Last Specified Reference Frequency */
double fActual; /* Computed PLL Clock Frequency */
uint post divider product; /* post divider product */

} ccuraocc PLL struct t;

ccurAOCC_Get PLL_Status()
This call returns the status of the PLL.

/*********k**************************k***

int ccurAOCC_Get PLL Status(void *Handle, ccuraocc PLL status t *status)

Description: Return the status of the PLL

Input: void *Handle handle pointer)
Output: ccuraocc PLL status t *status; pointer to status struct)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

(
(
Return: CCURAOCC LIB NO ERROR (successful)
(
(
(

typedef struct {
uint busy;
ulint error;
} ccuraocc PLL status t;

/I PLL Interface Busy
- CCURAOCC _PLL_IDLE
- CCURAOCC_PLL_BUSY

/l PLL Interface Error
- CCURAOCC PLL_NO _ERROR
- CCURAOCC _PLL_ERROR

ccurAOCC_Get _PLL_Sync()
This call returns the PLL Synchronization information maintained by the hardware.

/**

int ccurAOCC_Get PLL Sync(void *Handle, ccuraocc PLL sync t *sync)

Description: Return the value of the PLL Sync information.

Input: void *Handle handle pointer)
Output: ccuraocc PLL sync t “*sync; pointer to pll sync struct)

CCURAOCC_LIB_BAD HANDLE no/bad handler supplied)
CCURAOCC LIB NOT OPEN device not open)
CCURAOCC_LIB_INVALID ARG invalid argument)
CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

typedef struct {

uint sync_start;
uint external go;
uint external sync;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 42 of 98

} ccuraocc PLL sync_t;

/I PLL Sync Start
- CCURAOCC_PLL_START
- CCURAOCC_PLL_STOP

/I External Go
- CCURAOCC_EXTERNAL_GO OUT _ENABLE
- CCURAOCC_EXTERNAL_GO OUT DISABLE

/I External Sync
- CCURAOCC_EXTERNAL_SYNC_OUT_ENABLE
- CCURAOCC_EXTERNAL_SYNC_OUT_DISABLE

2.2.47 ccurAOCC_Get_Sample_Rate()
With this API, the user will be able to obtain the current sample rate, clock frequency and clock divider.

/**

ccurAOCC Get Sample Rate()

Description: Get Sample Rate

Input: void *Handle (handle pointer)

Output: double *sample rate (pointer to sample rate SPS)
double *clock freq (pointer to clock freqg MHz)
uint *divider (pointer to divider)

Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

2.2.48 ccurAOCC_Get_TestBus_Control()
This call is provided for internal use in testing the hardware.

/**

ccurAOCC _Get TestBus Control ()

Description: Return the value of the Test Bus control information

Input: void *Handle (handle pointer)
Output: _ccuraocc_testbus control t *test control (pointer to pll sync
struct)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC _LIB NO LOCAL REGION (local region error)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)

CCURAOCC_LIB NOT_ OPEN (device not open)

**/

typedef enum
{

CCURAOCC TBUS_CONTROL OPEN = (0),
CCURAOCC TBUS_CONTROL_CAL BUS = (1),
CCURAOCC_TBUS_CONTROL 5V REF = (2),

} _ccuraocc testbus control t;

2.2.49 ccurAOCC_Get_Value()

This call allows the user to read the board registers. The actual data returned will depend on the command
register information that is requested. Refer to the hardware manual for more information on what is being
returned. Most commands return a pointer to an unsigned integer. The CCURAOCC_CHANNEL_DATA,
CCURAOCC_GAIN_CALIBRATION and, CCURAOCC_OFFSET_CALIBRATION return

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 43 of 98

CCURAOCC_MAX_CHANNELS unsigned integers. The CCURAOCC_SPI_RAM command returns

CCURAOCC_SPI_RAM_SIZE unsigned integers.

/**

int ccurAOCC Get Value (void *Handle, CCURAOCC CONTROL cmd, void *value)

Description: Return the value of the specified board register.

Input: void *Handle
CCURAOCC_CONTROL cmd

Output: void *value;

Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB_NOT OPEN
CCURAOCC_LIB INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

typedef enum

{
CCURAOCC_BOARD INFORMATION,
CCURAOCC BOARD CSR,

CCURAOCC_ INTERRUPT CONTROL,
CCURAOCC_INTERRUPT STATUS,

CCURAOCC CONVERTER CSR 0,
CCURAOCC CONVERTER CSR 1,
CCURAOCC CONVERTER CSR 2,
CCURAOCC CONVERTER CSR 3,
CCURAOCC CONVERTER CSR 4,
CCURAOCC CONVERTER CSR 5,
CCURAOCC CONVERTER CSR 6,
CCURAOCC CONVERTER CSR 7,
CCURAOCC CONVERTER CSR 8,
CCURAOCC CONVERTER CSR 9,
CCURAOCC CONVERTER CSR 10,
CCURAOCC CONVERTER CSR 11,
CCURAOCC_CONVERTER CSR 12,
CCURAOCC CONVERTER CSR 13,
CCURAOCC_CONVERTER CSR 14,
CCURAOCC CONVERTER CSR 15,
CCURAOCC_CONVERTER CSR 16,
CCURAOCC CONVERTER CSR 17,
CCURAOCC_CONVERTER CSR 18,
CCURAOCC CONVERTER CSR 19,
CCURAOCC_CONVERTER CSR 20,
CCURAOCC CONVERTER CSR 21,
CCURAOCC_CONVERTER CSR 22,
CCURAOCC CONVERTER CSR 23,
CCURAOCC_CONVERTER CSR 24,
CCURAOCC CONVERTER CSR 25,
CCURAOCC_CONVERTER CSR 26,
CCURAOCC_CONVERTER CSR 27,
CCURAOCC_CONVERTER CSR 28,
CCURAOCC CONVERTER CSR 29,
CCURAOCC_CONVERTER CSR 30,
CCURAOCC CONVERTER CSR 31,

CCURAOCC PLL_SYNC,

CCURAOCC_CONVERTER UPDATE SELECTION,
CCURAOCC_CHANNEL SELECT,

/*

/*
/*

handle pointer)
register definition)
pointer to value)

no/bad handler supplied)

device not open)

(
(
(
(successful)
(
(
(invalid argument)

(local region not present)
**/

R Only */

R/W

R/W
R/W

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

R/W

R/W
R/W

*/

*/

*/
*/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 44 of 98

CCURAOCC CALIBRATOR BUS CONTROL, /* R/W */

CCURAOCC TEST BUS CONTROL, /* R/W */
CCURAOCC CALIBRATOR ADC CONTROL, /* R/W */
CCURAOCC _FIFO CSR, /* R/W */
CCURAOCC FIFO THRESHOLD, /* R/W */
CCURAOCC CALIBRATOR ADC DATA, /* R only */
CCURAOCC_ FIRMWARE SPI COUNTER STATUS, /* R/W */
CCURAOCC CHANNEL DATA, /* R/W */
CCURAOCC CHANNEL DATA O, /* R/W */
CCURAOCC CHANNEL DATA 1, /* R/W */
CCURAOCC CHANNEL DATA 2, /* R/W */
CCURAOCC_CHANNEL DATA 3, /* R/W */
CCURAOCC CHANNEL DATA 4, /* R/W */
CCURAOCC CHANNEL DATA 5, /* R/W */
CCURAOCC CHANNEL DATA 6, /* R/W */
CCURAOCC CHANNEL DATA 7, /* R/W */
CCURAOCC CHANNEL DATA 8, /* R/W */
CCURAOCC_CHANNEL DATA 9, /* R/W */
CCURAOCC CHANNEL DATA 10, /* R/W */
CCURAOCC_CHANNEL DATA 11, /* R/W */
CCURAOCC CHANNEL DATA 12, /* R/W */
CCURAOCC_CHANNEL DATA 13, /* R/W */
CCURAOCC CHANNEL DATA 14, /* R/W */
CCURAOCC_CHANNEL DATA 15, /* R/W */
CCURAOCC CHANNEL DATA 16, /* R/W */
CCURAOCC_CHANNEL DATA 17, /* R/W */
CCURAOCC CHANNEL DATA 18, /* R/W */
CCURAOCC_CHANNEL DATA 19, /* R/W */
CCURAOCC CHANNEL DATA 20, /* R/W */
CCURAOCC_CHANNEL DATA 21, /* R/W */
CCURAOCC CHANNEL DATA 22, /* R/W */
CCURAOCC_CHANNEL DATA 23, /* R/W */
CCURAOCC CHANNEL DATA 24, /* R/W */
CCURAOCC_CHANNEL DATA 25, /* R/W */
CCURAOCC CHANNEL DATA 26, /* R/W */
CCURAOCC CHANNEL DATA 27, /* R/W */
CCURAOCC_CHANNEL DATA 28, /* R/W */
CCURAOCC CHANNEL DATA 29, /* R/W */
CCURAOCC_CHANNEL DATA 30, /* R/W */
CCURAOCC CHANNEL DATA 31, /* R/W */
CCURAOCC_FIFO DATA, /* W Only */
CCURAOCC_PLL 0 STATUS, /* R Only */
CCURAOCC_PLL 0 ACCESS, /* R/W */
CCURAOCC PLL 0 READ 1, /* R/W */
CCURAOCC _PLL 0 READ 2, /* R/W */
CCURAOCC GAIN CALIBRATION, /* R/W */
CCURAOCC OFFSET CALIBRATION, /* R/W */

CCURAOCC_CALIBRATOR ADC POSITIVE GAIN, /* R/W */
CCURAOCC CALIBRATOR ADC NEGATIVE GAIN, /* R/W */
CCURAOCC CALIBRATOR ADC OFFSET, /* R/W */

CCURAOCC_SPI RAM, /* R/W */

} CCURAOCC CONTROL;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 45 of 98

2.2.50 ccurAOCC _Hex_To_Fraction()

This call converts a hexadecimal value to a fractional decimal value. This conversion is used internally by the

API to get the positive and negative calibration information.

/**

double ccurAOCC Hex To Fraction (uint value)

Description:

Input: uint value
Output: none

Return: double Fraction

Convert Hexadecimal to Fractional Decimal

(hexadecimal to convert)

(converted fractional value)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

2.2.51 ccurAOCC Initialize_Board()
This call resets the board to a default initial state.

/**

int ccurAOCC Initialize Board(void *Handle)

Description: Initialize the board.
Input: void *Handle

Output: None

Return: CCURAOCC_LIB NO_ ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB IOCTL FAILED
CCURAOCC_LIB NO LOCAL REGION

(handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(driver ioctl call failed)
(local region not present)

**/

2.2.52 ccurAOCC Initialize_ PLL_Input_Struct()

This call simply initializes the user supplied ccuraocc_PLL_setting_t clock structure to default values so that
it can be used as input to the ccurAOCC_Compute_PLL_Clock() API call. This call is again only supplied for

advanced users.

/**

int ccurAOCC Initialize PLL Input Struct(void *Handle,
ccuraocc PLL setting t *input)

Description: Initialize the clock structure.

Input: void *Handle (handle pointer)
ccuraocc PLL setting t *input (pointer to input clock struct)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB BAD HANDLE
CCURAOCC LIB NOT OPEN
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

no/bad handler supplied)
device not open)

typedef struct {

double fDesired; /* MHz - Desired Output Clock Frequency */

int max_tol; /* ppm - parts/million - Maximum tolerance */

int maximizeVCOspeed;/* Maximize VCO Speed flag */

double fRef; /* MHz - Reference Input PLL Oscillator Frequency */
double fPFDmin; /* MHz - Minimum allowable Freq at phase-detector */
double kfVCO; /* MHz/Volts - VCO gain to be used */

double fVcoMin; /* MHz - Minimum VCO frequency */

double fVcoMax; /* MHz - Maximum VCO frequency */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 46 of 98

2.2.53

2.2.54

double nRefMin; /* minimum reference divider */

double nRefMax; /* maximum reference divider */
double nFbkMin; /* minimum feedback divider */
double nFbkMax; /* maximum feedback divider */

} ccuraocc PLL setting t;

1) /* Set defaults */
65.536) /* MHz */
1000) /* ppm (parts per million) */

- CCURAOCC_DEFAULT (-

- CCURAOCC_DEFAULT REFERENCE FREQ (

- CCURAOCC_DEFAULT TOLERANCE (

- CCURAOCC DEFAULT MIN ALLOWABLE FREQ (1.0) /* MHz */

- CCURAOCC_DEFAULT VCO GAIN (520) /* MHz/volts */

- CCURAOCC_DEFAULT MIN VCO FREQ (100) /* MHz */
(400)
(1)
(
(1
(

- CCURAOCC_DEFAULT MAX VCO_FREQ /* MHz */
- CCURAOCC DEFAULT MIN REF DIVIDER /* minimum reference divider */
- CCURAOCCiDEFAULTiMAxiREFiDIVIDER 4095) /* maximum reference divider */

- CCURAOCC _DEFAULT MIN FEEDBK DIVIDER
- CCURAOCC DEFAULT MAX FEEDBK DIVIDER

2) /* minimum feedback divider */
16383) /* maximum feedback divider */

fRef = CCURAOCC DEFAULT REFERENCE FREQ;
maximizeVCOspeed = CCURAOCC_DEFAULT VCO_ SPEED;

fPFDmin = CCURAOCC DEFAULT MIN ALLOWABLE FREQ;
max_tol = CCURAOCC DEFAULT TOLERANCE;

kEVCO = CCURAOCC DEFAULT VCO_GAIN;

fVcoMin = CCURAOCC_DEFAULT MIN_VCO_FREQ;
fVcoMax = CCURAOCC DEFAULT MAX VCO_ FREQ;
nRefMin = CCURAOCC_DEFAULT MIN REF DIVIDER;
nRefMax = CCURAOCC DEFAULT MAX REF DIVIDER;
nFbkMin = CCURAOCC_DEFAULT MIN FEEDBK DIVIDER;
nFbkMax = CCURAOCC DEFAULT MAX FEEDBK DIVIDER;
fDesired = CCURAOCC_DEFAULT;

ccurAOCC_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be used for
DMA. The allocated DMA memory is rounded to a page size. If a physical memory has been previously
allocated, this call will fail, at which point the user will need to issue the
ccurAOCC_Munmap_Physical_Memory() API call to remove the previously allocated physical memory.

/**

int ccurAOCC MMap Physical Memory(void *Handle, int size, void **mem ptr)

Description: Allocate a physical DMA memory for size bytes.

CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB MMAP SELECT FAILED (mmap selection failed)
CCURAOCC_LIB MMAP FAILED (mmap failed)

**/

device not open)

Input: void *Handle (handle pointer)
int size (size in bytes)
Output: void **mem ptr (mapped memory pointer)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
(
(
(

ccurAOCC_Munmap_Physical_Memory()

This call simply removes a physical memory that was previously allocated by the
ccurAOCC_MMap_Physical_Memory() API call.

/**

int ccurAOCC Munmap Physical Memory(void *Handle)

Description: Unmap a previously mapped physical DMA memory.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 47 of 98

Input: void *Handle (handle pointer)

Output: None

Return: CCURAOCC_LIB NO ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_ LIB MUNMAP FAILED failed to un-map memory)
CCURAOCC_LIB NOT MAPPED (memory not mapped)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

successful)
no/bad handler supplied)

2.2.55 ccurAOCC_Open()

This is the first call that needs to be issued by a user to open a device and access the board through the rest of
the API calls. What is returned is a handle to a void pointer that is supplied as an argument to the other API
calls. The Board Number is a valid board number [0..9] that is associated with a physical card. A character
special file /dev/ccuraocc<Board_Number> must exist for the call to be successful. One character special file
is created for each board found when the driver is successfully loaded.

The oflag is the flag supplied to the open(2) system call by this API. It is normally a 0, however the user may
use the O_NONBLOCK option for write(2) calls which will change the default writing in block mode.

Additionally, this library provides the user with an O_APPEND flag. The purpose of this flag is to request the
driver to open an already opened board. Though the driver allows multiple open calls to the same board with
the use of this flag, it becomes the responsibility of the user to ensure that no two applications or threads are
communicating with the board at the same time; otherwise, results will be unpredictable. Several tests
supplied with the driver have the O_APPEND flag enabled. This is only for convenience during testing and
debugging and is not intended for the applications to be invoked or running while the user applications are
accessing the board.

/**

int ccurAOCC Open(void **My Handle, int Board Number, int oflag)

Description: Open a device.

Input: void **Handle (handle pointer to pointer)
int Board Number (0-9 board number)
int oflag (open flags)

Output: None

Return: CCURAOCC_LIB NO ERROR successful)

(
CCURAOCC_LIB INVALID ARG (invalid argument)
CCURAOCC LIB ALREADY OPEN (device already opened)
CCURAOCC_LIB OPEN FAILED (device open failed)
CCURAOCC LIB ALREADY MAPPED (memory already mmapped)
CCURAOCC LIB MMAP SELECT FAILED (mmap selection failed)

CCURAOCC_LIB MMAP FAILED (mmap failed)
R R

2.2.56 ccurAOCC_Open_Wave()

This call is identical to the ccurAOCC_Open() call with the exception, that the character special file
/dev/ccuraocc_wave<Board Number> is opened and must exist for the call to be successful. One character
special file is created for each board found when the driver is successfully loaded. When the driver is loaded,
two character special files /dev/ccuraocc<Board Number> and /dev/ccuraocc_wave<Board Number> are
created for each board found. Currently the optional Concurrent Computer Corporation Wave Generation
Program WC-DA3218-WAVE opens the board with the /dev/ccuraocc_wave<Board Number> naming
convention. The user can edit the ccuraocc_config file and reload the driver in order to direct wave generation
application to specific boards.

/**

ccurAOCC Open Wave () (INTERNAL CALL)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 48 of 98

Description: Open a Wave device.

Input: void **Handle (handle pointer to pointer)
int Board Number (0-9 board number)
int oflag (open flags)

Output: None

Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC_LIB INVALID ARG (invalid argument)
CCURAOCC LIB ALREADY OPEN (device already opened)
CCURAOCC_LIB OPEN FAILED (device open failed)
CCURAOCC LIB ALREADY MAPPED (memory already mmapped)
CCURAOCC LIB MMAP SELECT FAILED (mmap selection failed)
CCURAOCC_LIB MMAP FAILED (mmap failed)

**/

2.2.57 ccurAOCC_Perform_ADC_Calibration()

This board has an on-board Analog to Digital Converter (ADC) which is used to calibrate the analog output
channels. Prior to calibration the output channels this ADC needs to calibrated first. This calibration is
performed using the on-board calibration voltage source. Once ADC calibration is complete, appropriate
values are set in the positive gain, negative gain and offset.

/**

int ccurAOCC Perform ADC Calibration (void *Handle)

Description: Perform ADC Calibration

Input: void *Handle (handle pointer)
Output: none
Return: CCURAOCC LIB NO ERROR (successful)
CCURAOCC LIB NO LOCAL REGION (local region not present)
(

CCURAOCC LIB BAD HANDLE no/bad handler supplied)

CCURAOCC LIB NOT OPEN (device not open)
***/

2.2.58 ccurAOCC_Perform_Channel_Gain_Calibration()
The user can perform a gain calibration for a selected set of channels with this API. They need to make sure
that the ADC has been calibrated first.

/**

Description: Perform Selected Channels Gain Calibration

Input: void *Handle (handle pointer)
_ccuraocc_channel mask t chan mask (selected channel mask)
Output: none
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (local region not present)
(

CCURAOCC_LIB_BAB_HANDLE no/bad handler supplied)

CCURAOCC_LIB NOT OPEN (device not open)
***/

2.2.59 ccurAOCC_Perform_Channel_Offset_Calibration()

The user can perform an offset calibration for a selected set of channels with this API. They need to make sure
that the ADC has been calibrated first.

/**

Description: Perform Selected Channels Offset Calibration

Input: void *Handle (handle pointer)
_ccuraocc_channel mask t chan mask (selected channel mask)
Output: none

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 49 of 98

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (local region not present)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

*k**k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k****************************/

2.2.60 ccurAOCC_Perform_Auto_Calibration()

This call is used to create the offset and gain values for a selected set of channels. Prior to performing channel
calibration, the ADC is first calibrated to ensure accurate results. This offset and gain is then applied to each
channel by the hardware when setting analog output values.

This call takes approximately two seconds to run and is normally issued after the system is rebooted and
whenever the channel configuration is changed. If the board has not been calibrated after a system reboot,
then voltages returned will be unpredictable.

/**

Int ccurAOCC Perform Auto Calibration (void *Handle,
_ccuraocc_channel mask t chan mask)

Description: Perform Auto Calibration

Input: void *Handle (handle pointer)
_ccuraocc channel mask t chan mask (selected channel mask)
Output: none
Return: CCURAOCC LIB NO ERROR successful)
CCURAOCC LIB BAD HANDLE no/bad handler supplied)

CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION local region not present)
CCURAOCC_LIB NO_ RESOURCE no free PLL available)
CCURAOCC_LIB IO ERROR (read error)

**/

(
(
CCURAOCC LIB NOT OPEN (device not open)
(
(
(

2.2.61 ccurAOCC_Program_PLL_Advanced()

This call is available for use by advanced users to setup a specified clock. This call requires an intimate
knowledge of the boards programming registers. The user can always issue the ccurAOCC_Get PLL_Info()
call to retrieve the current clock settings, and then edit specific options with this call. The user can also use the
CCURAOCC_DO_NOT_CHANGE parameter for any argument value in the ccuraocc_PLL_struct_t structure
if they wish to preserve the current values. Upon successful completion of the call, the board will be
programmed to the new settings, and will return both the current settings and the new settings of all the PLL
registers in the ccuraocc_PLL_encode_t structure.

/**

int ccurAOCC_Program PLL Advanced(void *Handle, CCURAOCC PLL pll,
int Program,
ccuraocc_ PLL struct t *input,
ccuraocc PLL encode t *current encoded,
ccuraocc PLL encode t *new encoded)

Description: Program PLL Access values for the specified PLL.

Input: void *Handle (handle pointer)
CCURAOCC_PLL pll (pll selection)
ccuraocc PLL struct t *input (pointer to pll input struct)
Output: int Program (decide to program board)

ccuraocc PLL encode t *current encoded (pointer to current
encoded PLL
ccuraocc PLL encode t *new encoded (pointer to new encoded PLL
Return: CCURAOCC_LIB NO_ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 50 of 98

CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

**/

typedef struct {
uint ref freq divider; /* [11:00] */

uint ref freq divider src; /* CCURAOCC REF DIVIDER SRC OSCILLATOR */
/* CCURAOCC_REF DIVIDER SRC_PIN */

uint shutdown_1; /* CCURAOCC_RUNNING */
/* CCURAOCC_SHUTDOWN */

uint post_dividerl; /* CCURAOCC_POST_DIVIDER1_1 */
/* CCURAOCC_POST DIVIDERL 2 */
/* CCURAOCC_POST_DIVIDER1_3 */
/* CCURAOCC_POST DIVIDER1 4 */
/* CCURAOCC_POST_DIVIDER1_5 */
/* CCURAOCC POST DIVIDERL 6 */
/* CCURAOCC_POST_DIVIDER1_7 */
/* CCURAOCC_POST DIVIDER1 8 */
/* CCURAOCC_POST_DIVIDER1_9 */
/* CCURAOCC_POST DIVIDER1 10%*/
/* CCURAOCC_POST_DIVIDER1_ 11 */
/* CCURAOCC POST DIVIDER1 12 */

uint post_divider2; /* CCURAOCC_POST DIVIDER2 1 */
/* CCURAOCC_POST_DIVIDER2 2 */
/* CCURAOCC_POST DIVIDER2 3 */
/* CCURAOCC_POST_DIVIDER2 4 */
/* CCURAOCC_POST DIVIDER2 5 */
/* CCURAOCC_POST_DIVIDER2 6 */
/* CCURAOCC POST DIVIDER2 7 */
/* CCURAOCC_POST_DIVIDER2 8 */
/* CCURAOCC_POST DIVIDER2 9 */
/* CCURAOCC_POST_DIVIDER2_10*/
/* CCURAOCC POST DIVIDER2 11 */
/* CCURAOCC_POST_DIVIDER2_ 12 */

uint post_divider3; /* CCURAOCC_POST DIVIDER3 1 */
/* CCURAOCC_POST_DIVIDER3_ 2 */
/* CCURAOCC_POST DIVIDER3 4 */
/* CCURAOCC_POST_DIVIDER3_ 8 */

uint feedback divider; /* [13:00] */
uint feedback divider src; /* CCURAOCC_FEEDBACK DIVIDER SRC VCO */
/* CCURAOCC_FEEDBACK DIVIDER SRC POST */

uint clock output; /* CCURAOCC CLOCK OUTPUT PECL */
/* CCURAOCC CLOCK_OUTPUT CMOS */

uint charge pump current; /* CCURAOCC CHARGE PUMP CURRENT 2UA */
/* CCURAOCC_CHARGE PUMP_CURRENT 4 5UA */
/* CCURAOCC CHARGE PUMP CURRENT 11UA */
/* CCURAOCC_CHARGE_ PUMP_CURRENT 22 SUA */

uint loop_resistor; /* CCURAOCC_LOOP_RESISTOR 400K */
/* CCURAOCC LOOP_RESISTOR 133K */
/* CCURAOCC_LOOP_RESISTOR 30K */
/* CCURAOCC_LOOP RESISTOR 12K */

uint loop capacitor; /* CCURAOCC_LOOP_CAPACITOR 185PF */
/* CCURAOCC_LOOP_CAPACITOR 500PF */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 51 of 98

2.2.62

2.2.63

uint sync_enable; /* CCURAOCC_SYNC_DISABLE */
/* CCURAOCC SYNC ENABLE */

uint sync_polarity; /* CCURAOCC SYNC POLARITY NEGATIVE */
/* CCURAOCC SYNC POLARITY POSITIVE */

uint shutdown_2; /* CCURAOCC_RUNNING */
/* CCURAOCC_SHUTDOWN */

/* below should not be supplied by user */

double last specified fRef; /* Last Specified Reference Frequency */
double fActual; /* Computed PLL Clock Frequency */
uint post divider product; /* post divider product */

} ccuraocc PLL struct t;

typedef struct {
uint reg[CCURAOCC PLL AR REGISTER ADDRESS MAX];
} ccuraocc PLL encode t;

ccurAOCC_Program_PLL_Clock()

This call is available for use by advanced users to program a specified clock. This
ccurAOCC_Program_PLL_Clock() call is a higher level call than the above
ccurAOCC_Program_PLL_Advanced() call. In this case, the user only needs to supply the desired clock
frequency (that ranges from 200 KHz to 13.824 MHz) and the maximum allowed tolerance in ppm. If the call
is successful, it returns the actual clock frequency and the clock frequency error in ppm. If the Program flag is
set to CCURAOCC_TRUE, the board is programmed with the new clock frequency at the completion of the
call, otherwise only information on the actual frequency and the frequency error are returned to the user.

/**

int ccurAOCC Program PLL Clock(void *Handle, int Program,
ccuraocc PLL clock t *clock)

Description: Program PLL Clock for give maximum tolerance

Input: void *Handle (handle pointer)
int Program (decide to program board)
ccuraocc PLL clock t *clock (pointer to user clock struct)
Output: ccuraocc_ PLL clock t *clock pointer to user clock struct)

Return: CCURAOCC_LIB NO ERROR successful)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO SOLUTION FOUND no solution found)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

typedef struct {

double fDesired; /* MHz - Desired Output Clock Frequency */
int max_tol; /* ppm - parts/million - Maximum tolerance */
double fActual; /* MHz - Actual Output Clock Frequency */
double synthErr; /* clock frequency error - ppm */

} ccuraocc PLL clock t;

ccurAOCC_Program_Sample_Rate()

This is the basic call that is used to select a sampling rate for the board. The current range is from 0.2 SPS to
400,000 SPS. The call returns useful clock information and the actual sample rate the board was able to be
programmed with.

/**

ccurAOCC Program Sample Rate()

Description: Program Sample Rate

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 52 of 98

Input:

Output:

Return:

void *Handle
double sample rate
double *actual sample rate

ccuraocc PLL clock t *pll clock

uint *divider
CCURAOCC_LIB NO ERROR
CCURAOCC_LIB_INVALID ARG
CCURAOCC_LTB NO LOCAL REGION
CCURAOCC_LIB NO_RESOURCE

handle pointer)

sample rate to program)
pointer to actual sample rate)
pointer to programmed

pll clock)

(pointer converter divider)
(successful)

(invalid argument)

(local region not present)

(PLL in use)

*k**k**k**k**k**k**k**k**k**k**k**k**/

typedef struct
{

double fDesired;

int max tol;

double fActual;
double synthErr;

/*
/*
/*

MHz - Desired

} ccuraocc PLL clock t;

2.2.64

ccurAOCC_Read()

Output Clock Frequency */

ppm - parts/million - Maximum tolerance */
MHz - Actual Output Clock Frequency */
clock frequency error - ppm */

This call is provided for users to read the channels registers that were previously written to. It basically calls
the read(2) system call with the exception that it performs necessary locking and returns the errno returned
from the system call in the pointer to the error variable.

For specific information about the data being returned for the various read modes, refer to the read(2) system
call description the Driver Direct Access section.

/**

int ccurAOCC Read(void *Handle, void *buf,

Description:
Input:

Output:

Return:

int *error)

Perform a read operation.

void *Handle

int size

void *buf

int *bytes read
int *error

CCURAOCC_LIB NO ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB IO ERROR
CCURAOCC_LIB FIFO OVERFLOW

int size,

int *bytes read,

(handle pointer)

(size of buffer in bytes)
(pointer to buffer)
(bytes read)

(returned errno)
(successful)

(no/bad handler supplied)
(device not open)

(read failed)

(FIFO overflow)

**/

2.2.65 ccurAOCC_Read_Channels()

This call performs a programmed 1/O read of all the selected channels and returns various channel information
in the ccuraocc_read_channels_t structure.

/**

ccurAOCC_Read Channels ()

Description:
Input:

Output:
Return:

Read Channels and return channel

void *Handle
ccuraocc_read channels t *rdc
ccuraocc_read channels t *rdc
CCURAOCC LIB NO ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC LIB NOT OPEN

specific information

handle pointer)
perform_convertion)
pointer to rdc struct)
successful)

no/bad handler supplied)
device not open)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 53 of 98

2.2.66

**/

typedef struct
{
char select channel;
union
{
char convert rawdata to volts; /* for reading from channel registers */
char convert volts to rawdata; /* for writing to channel registers */
b
char channel synchronized update flag;
char converter data format;
char converter output range;
int channel data raw;
double channel data volts;
} ccuraocc_single channel data t;

typedef struct

{
ccuraocc_single channel data t rchan[CCURAOCC MAX CHANNELS];

} ccuraocc read channels t;

The user needs to set the select channel and the convert_rawdata to volts fields in the
ccuraocc_single_channel_data_t structure for information on each channel they need to acquire. To select a
channel, the select_channel field needs to be set to CCURAOCC_TRUE. If the convert_rawdata _to_volts
field is set to CCURAOCC_TRUE, the call will also convert the raw data read from the registers to voltages
by applying the correct data format and voltage range.

ccurAOCC_Read_Channels_Calibration()

This call reads the on-board channel calibration information and writes it out to a user specified output file.
This file is created if it does not exist and must be writeable. If the output file argument is NULL, the
calibration information is written to stdout. Entries in this file can be edited and use as input to the
ccurAOCC_Write_Channels_Calibration() routine. Any blank lines or entries starting with “#’ or “*’ are
ignored during parsing.

/**

int ccurAOCC_Read Channels Calibration(void *Handle, char *filename)

Description: Read Channels Calibration information

Input: void *Handle (handle pointer)
Output: char *filename (pointer to filename)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC LIB NO LOCAL REGION (local region not present)
CCURAOCC_LIB CANNOT OPEN FILE (file not readable)

**/

Format:

#Chan Offset Gain

ch00: 0.1983642578125000 0.3991699218750000
chO1: 0.0860595703125000 0.2078247070312500
ch02: 0.1992797851562500 0.4129028320312500
ch03: 0.0830078125000000 0.1345825195312500
ch28: 0.1766967773437500 0.3732299804687500
ch29: 0.1361083984375000 0.2694702148437500
ch30: 0.1257324218750000 0.2728271484375000

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 54 of 98

2.2.67

2.2.68

ch31: 0.0469970703125000 0.0830078125000000

ccurAOCC_Read_Serial_Prom()

This is a basic call to read short word entries from the serial prom. The user specifies a word offset within the
serial prom and a word count, and the call returns the data read in a pointer to short words.

/*********k**************************k***

int ccurAOCC_Read Serial Prom(void *Handle, ccuraocc_sprom rw t *spr)

Description: Read Serial Prom for specified number of words
Input: void *Handle (handle pointer)
ccuraocc_sprom rw_t *spr (pointer to struct)
-- u_short word offset
-— u_short num words
Output: ccuraocc_sprom rw_t *spr (pointer to struct)
-— u_short *data ptr
Return: CCURAOCC_LIB NO ERROR successful)
CCURAOCC LIB NO LOCAL REGION error)

CCURAOCC LIB INVALID ARG invalid argument)
CCURAOCC_LIB_SERTIAL PROM BUSY serial prom busy)

CCURAOCC LIB SERIAL PROM FAILURE (serial prom failure)

**/

typedef struct

{

/* word offset */

/* number of words */
/* data pointer */

u_short word offset;
u short num words;
u_short *data ptr;

} ccuraocc sprom rw t;

ccurAOCC_Read_Serial_Prom_Item()

This call is used to read well defined sections in the serial prom. The user supplies the serial prom section that
needs to be read and the data is returned in a section specific structure.

/**

int ccurAOCC_Read Serial Prom Item(void *Handle,
_ccuraocc_sprom_access_t item, void *item ptr)

Description: Read Serial Prom for specified item
void *Handle
_ccuraocc_sprom_access_t item
CCURAOCC_ SPROM HEADER
CCURAOCC_SPROM FACTORY UNIPOLAR 5V
CCURAOCC SPROM FACTORY UNIPOLAR 10V
CCURAOCC_SPROM FACTORY BIPOLAR 5V
CCURAOCC_SPROM FACTORY BIPOLAR 10V
CCURAOCC SPROM FACTORY BIPOLAR 2 5V
CCURAOCC_SPROM USER CHECKPOINT 1
CCURAOCC_SPROM USER_CHECKPOINT 2

*item ptr (pointer to item struct)
*ccuraocc_sprom header t
*ccuraocc_sprom factory t
*ccuraocc sprom user checkpoint t
CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (error)

Input: (handle pointer)

(select item)

Output:

Return:

CCURAOCC_LIB INVALID ARG
CCURAOCC_LIB SERIAL PROM BUSY
CCURAOCC_LIB SERIAL PROM FAILURE

(invalid argument)
(serial prom busy)
(serial prom failure)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 55 of 98

typedef enum {
CCURAOCC_SPROM HEADER=1,
CCURAOCC_SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 5V,
CCURAOCC_SPROM FACTORY BIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 2 5V,
CCURAOCC_SPROM USER CHECKPOINT 1,
CCURAOCC_SPROM USER CHECKPOINT 2,

} _ccuraocc_sprom_access_t;

The void pointer *item_ptr points to one of the following structures depending on the selected item that needs
to be returned.

typedef struct {

u_int board serial number; /* 0x000 - 0x003 - serial number */
u_short sprom revision; /* 0x004 - 0x005 - serial prom

revision */
u_short spare 006 O03F[0x3A/2]; /* 0x006 - O0x03F - spare */

} ccuraocc sprom header t;

typedef struct {

u_short crc; /* 0x000 - 0x001 - CRC */
u_short spare 002 007[0x6/2]; /* 0x002 - 0x007 - spare */
union {
time t date; /* 0x008 - O0xO00F - date */

u_int32 t date storage[2];/*for 32/64 m/c*/ /* 0x008 - OxO0F - date */
b
u_short offset [CCURAOCC_MAX CHANNELS]; /* 0x010 - O0x04F - offset */
u_short gain[CCURAOCC MAX CHANNELS]; /* 0x050 - 0x08F - gain */
} ccuraocc_sprom factory t;

typedef struct {

u_short crc; /* 0x000 - 0x001 - CRC */
u_short spare 002 007[0x6/2]; /* 0x002 - 0x007 - spare */
union {
time t date; /* 0x008 - O0xO00F - date */

u_int32 t date storage[2];/*for 32/64 m/c*/ /* 0x008 - OxO0F - date */
bi
u_short offset [CCURAOCC MAX CHANNELS]; /* 0x010 - 0x04F - offset */
u_short gain[CCURAOCC MAX CHANNELS]; /* 0x050 - 0x08F - gain */
u_int converter csr[CCURAOCC MAX CONVERTERS];
/* 0x090 - 0x10F - channel config */
} ccuraocc_sprom user checkpoint t;

2.2.69 ccurAOCC_Read_Single_Channel()

This call is similar to the ccurAOCC_Read_Channels(), except, information is returned for a single channel.
Once again useful information on the selected channel is provided to the user.

/**

int ccurAOCC Read Single Channel (void *Handle, int chan,
ccuraocc_single channel data t *rdc)

Description: Read Single Channel

Input: void *Handle (handle pointer)
int chan (channel to read)
ccuraocc_single channel data t *rdc (perform convertion)
Output: ccuraocc_single channel data t *rdc (pointer to rdc struct)
Return: CCURAOCC_LIB NO_ ERROR (successful)
(

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 56 of 98

2.2.70

CCURAOCC_LIB NOT OPEN (device not open)

**/

typedef struct

{
char select channel;
union

{
char convert rawdata to volts; /* for reading from channel registers */
char convert volts to rawdata; /* for writing to channel registers */

bi

char channel synchronized update flag;

char converter data format;

char converter output range;

int channel data raw;

double channel data volts;

} ccuraocc_single channel data t;

The user needs to set the channel number in chan and the convert rawdata_to volts field in the
ccuraocc_single_channel_data_t structure for information on the channel they need to acquire. The
select_channel field is ignored. If the convert_rawdata_to_volts field is set to CCURAOCC_TRUE, the call
will also convert the raw data read from the registers to voltages by applying the correct data format and
voltage range.

ccurAOCC_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt handler is
managed internally by the driver and the library. The user should not issue this call, otherwise reads will time
out.

/**

int ccurAOCC Remove Irqg(void *Handle)

Description: By default, the driver sets up a shared IRQ interrupt handler
when the device is opened. Now if for any reason, another
device is sharing the same IRQ as this driver, the interrupt
handler will also be entered every time the other shared
device generates an interrupt. There are times that a user,
for performance reasons may wish to run the board without
interrupts enabled. In that case, they can issue this ioctl
to remove the interrupt handling capability from the driver.

Input: void *Handle (handle pointer)

Output: None

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT_ OPEN (device not open)

CCURAOCC LIB IOCTL FAILED (driver ioctl call failed)
B R R R S R

2.2.71 ccurAOCC_Reset ADC_Calibrator()

This call performs a reset of the offset, positive gain and negative gain registers default state. Basically, at this
point, the Calibrator will be un-calibrated.

/**

int ccurAOCC_Reset ADC Calibrator (void *Handle)
Description: Reset ADC Calibrator

Input: void *Handle (handle pointer)
Output: None

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 57 of 98

Return: CCURAOCC_LIB NO_ERROR
CCURAOCC_LIB BAD HANDLE

CCURAOCC_LIB NO LOCAL REGION

(successful)
(no/bad handler supplied)
(local region not present)

**/

2.2.72 ccurAOCC_Reset _Board()

This call resets the board to a known initial default state. Additionally, the Converters, Clocks and FIFO are

reset along with internal pointers and clearing of interrupts.

/**

int ccurAOCC Reset Board(void *Handle)
Description: Reset the board.

Input: void *Handle
Output: None
Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB IOCTL_FAILED
CCURAOCC_LIB NO LOCAL REGION

(handle pointer)

successful)

no/bad handler supplied)

device not open)

driver ioctl call failed)
(local region not present)

**/

2.2.73 ccurAOCC_Reset_Channel_Calibration()

This call resets the offset and gain registers for the selected channels.

/**

int ccurAOCC Reset Channel Calibration (void *Handle,
_ccuraocc_channel mask t chan mask)

Description: Reset Selected Channel Calibration

Input: void

_ccuraocc channel mask t
Output: None
Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NO LOCAL REGION

*Handle
chan mask (selected channel mask)

(handle pointer)

(successful)
(no/bad handler supplied)
(local region not present)

**/

2.2.74 ccurAOCC_Reset Fifo()

This call performs a FIFO reset. All data held in the FIFO is cleared and the FIFO is rendered empty.

/**

int ccurAOCC Reset Fifo(void *Handle)

Description: Reset Fifo

Input: void *Handle
Output: none
Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB_NOT OPEN
CCURAROCC_LIB NO LOCAL REGION

(handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(local region not present)

**/

2.2.75 ccurAOCC_Restore_Factory Calibration()

This API allows the user to reset the board to factory calibration values, located in the serial prom, for all the
channels. The API selects the corresponding factory calibration based on the channel voltage range that was

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 58 of 98

previously configured by the user. It provides a useful way to make sure that each channel is working with the
factory calibration without the need to perform an auto-calibration.

/**

int ccurAOCC Restore Factory Calibration (void *Handle)

Description:

Input:
Output:
Return:

Restore Factory board calibration from serial prom

volid *Handle (handle pointer)
none
CCURAOCC _LIB NO ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB NO LOCAL REGION local region not present)
CCURAOCC_LIB INVALID CRC (invalid CRC)

successful)

(
(no/bad handler supplied)
(
(

**/

2.2.76 ccurAOCC_Restore_User_Checkpoint()

This API allows the user to reset the board to previously created checkpoint values, located in the serial prom,
for all the channels. The API sets the channel configuration and calibration information for all the channels
that were previously created by the user. It provides a useful way to make sure that each channel is working
with user defined channel configuration and calibration without the need to perform an auto-calibration. The
user can select any of two checkpoints to create and restore.

/**

int ccurAOCC Restore User Checkpoint (void *Handle,

Description:

Input:

Output:
Return:

_ccuraocc_sprom access_t item)
Restore User Checkpoint from serial prom

void *Handle (handle pointer)
_ccuraocc_sprom_access_t item (select item)

—-- CCURAOCC SPROM USER CHECKPOINT 1

—-- CCURAOCC_SPROM_USER_CHECKPOINT_ 2

none
CCURAOCC_LIB NO ERROR successful)
CCURAOCC LIB NO LOCAL REGION error)

CCURAOCC_ LIB SERIAL PROM BUSY serial prom busy)
CCURAOCC_LIB SERIAL PROM FAILURE (serial prom failure)
CCURAOCC_LIB INVALID CRC (invalid CRC)

(
(
(
(

**/

typedef enum {

CCURAOCC SPROM HEADER=1,
CCURAOCC SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 5V,
CCURAOCC SPROM FACTORY BIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 2 5V,
CCURAOCC SPROM USER CHECKPOINT 1,
CCURAROCC_SPROM USER_CHECKPOINT 2,

} _ccuraocc_sprom access_t;

2.2.77 ccurAOCC_Select_Driver_Read_Mode()

This call sets the current driver read mode. When a read(2) system call is issued, it is this mode that
determines the type of read being performed by the driver. Refer to the read(2) system call under Direct
Driver Access section for more information on the various modes.

/**

int ccurAOCC_Select Driver Read Mode (void *Handle,

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 59 of 98

2.2.78

2.2.79

_ccuraocc_driver rw mode t mode)

Description: Select Driver Read Mode

Input: void *Handle (handle pointer)
_ccuraocc_driver rw mode t mode (select read mode)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)

CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

typedef enum
{

CCURAOCC_ PIO CHANNEL, /* read/write mode */
CCURAOCC_DMA CHANNEL, /* read/write mode */
CCURAOCC_ PIO FIFO, /* write mode */
CCURAOCC DMA FIFO, /* write mode */

} _ccuraocc driver rw mode t;

ccurAOCC_Select_Driver_Write_Mode()

This call sets the current driver write mode. When a write(2) system call is issued, it is this mode that
determines the type of write being performed by the driver. Refer to the write(2) system call under Direct
Driver Access section for more information on the various modes.

/**

Int ccurAOCC Select Driver Write Mode (void *Handle,
_ccuraocc _driver rw mode t mode)

Description: Select Driver Write Mode

Input: void *Handle (handle pointer)
_ccuraocc_driver rw mode t mode (select write mode)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)

CCURAOCC LIB NO LOCAL REGION (local region not present)
**/

(
(
(
(

typedef enum
{

CCURAOCC_PIO CHANNEL, /* read/write mode */
CCURAOCC_DMA CHANNEL, /* read/write mode */
CCURAOCC_PIO_FIFO, /* write mode */
CCURAOCC_DMA FIFO, /* write mode */

} _ccuraocc driver rw mode t;

ccurAOCC_Serial_Prom_Write_Override()

The serial prom is non-volatile and its information is preserved during a power cycle. It contains useful
information and settings that the customer could lose if they were to inadvertently overwrite. For this reason,
all calls that write to the serial proms will fail with a write protect error, unless this write protect override API
is invoked prior to writing to the serial proms. Once the Write Override is enabled, it will stay in effect until
the user closes the device or re-issues this call to disable writes to the serial prom.

The calls that will fail unless the write protect is disabled are:

- ccurAOCC_Create_Factory_Calibration()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 60 of 98

- ccurAOCC_Create_User_Checkpoint()
- ccurAOCC_Write_Serial_Prom()
- ccurAOCC_Write_Serial_Prom_Item()

/**

int ccurAOCC Serial Prom Write Override (void *Handle, int action)
Description: Set Serial Prom Write Override

Input: void *Handle (handle pointer)
int action; (override action)
—-- CCURAOCC_TRUE
—-- CCURAOCC_ FALSE
Output: none
Return: CCURAOCC_LIB NO ERROR
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

successful)

(
(no/bad handler supplied)
(
(

When action is set to CCURAOCC_TRUE, the serial prom write protecting is disabled, otherwise, it is
enabled.

2.2.80 ccurAOCC_Set Board_CSR()

This call is used to activate or reset the channel converters and to select an output clock that is fed to another
card. Until the board converters are active, no data can be written to the channel registers.

/**

int ccurAOCC Set Board CSR(void *Handle, ccuraocc board csr t *bcsr)

Description: Set Board Control and Status information

Input: void *Handle (handle pointer)
ccuraocc board csr t *besr (pointer to board csr)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT_ OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

no/bad handler supplied)

typedef struct
{

int external clock detected; /* external clock detected */
int all converter reset; /* all converter reset */

int external clock output; /* external clock selection */
int identify board; /* identify board */

} ccuraocc board csr t;

/l all_converter_reset

- CCURAOCC _BCSR_ALL_CONVERTER_ACTIVE
- CCURAOCC BCSR_ALL_CONVERTER_RESET

- CCURAOCC_DO_NOT_CHANGE

/Il external_clock_output

- CCURAOCC_BCSR_EXTCLK_OUTPUT_SOFTWARE_FLAG:

- CCURAOCC_BCSR_EXTCLK OUTPUT_PLL_CLOCK:

- CCURAOCC_BCSR_EXTCLK OUTPUT_EXTERNAL_CLOCK:

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 61 of 98

- CCURAOCC_DO_NOT_CHANGE:

/I identify_board

- CCURAOCC_BCSR_IDENTIFY_BOARD_DISABLE
- CCURAOCC _BCSR_IDENTIFY_BOARD_ENABLE
- CCURAOCC_DO_NOT_CHANGE:

2.2.81 ccurAOCC_Set_Calibrator ADC_Control()

The board has an on-board Analog to Digital Converter (ADC) that is used during calibration of the channels.
This call returns the ADC control and range information. Normally, the user does not need this API. It is used

internally by the API to calibrate the channels.

/**

int ccurAOCC Set Calibrator ADC Control (void *Handle,
_ccuraocc_calib adc control t

Description: Set Calibrator ADC Control Information

Input: void *Handle
_ccuraocc_calib adc_control t adc control

Output: none

Return: CCURAOCC_LIB_NO_ERROR

CCURAOCC_LIB NO LOCAL REGION
CCURAOCC_LIB BAD HANDLE

CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

typedef enum
{

CCURAOCC_CALADC CONTROL BIPOLAR 0 5V = (0), /*
CCURAOCC CALADC CONTROL BIPOLAR 0 10V = (1), /*
CCURAOCC_CALADC CONTROL BIPOLAR 5 5V = (2), /*
CCURAOCC CALADC CONTROL BIPOLAR 10 10V = (3), /*

} _ccuraocc _calib adc control t;

2.2.82 ccurAOCC_Set_Calibrator ADC_NegativeGainCal()

ov

ov
-5V
-10Vv

adc_control)

(handle pointer)
(ADC control)

(successful)
(local region error)
(no/bad handler

supplied)

(device not open)

(invalid argument)
**/

to
to
to
to

+5V
+10V
+5V
+10V

(10V p-p) */
(20v p-p) */
(20V p-p) */
(40V p-p) */

The call converts the user supplied floating point value Float to raw value and writes it to the ADC Negative

Gain Calibration register.

/**

int ccurAOCC Set Calibrator ADC NegativeGainCal (void *Handle,

Description: Set Calibrator ADC Negative Gain Data

Input: void *Handle (handle pointer)
double Float (Float ADC Cal)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB_BAD HANDLE

double Float)

no/bad handler supplied)

(

CCURAOCC_LIB NO LOCAL REGION (local region not present)
(
(

CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

device not open)
(invalid argument)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 62 of 98

2.2.83 ccurAOCC _Set_Calibrator ADC_OffsetCal()

The call converts the user supplied floating point value Float to raw value and writes it to the ADC Offset

Calibration register.

/**

int ccurAOCC Set Calibrator ADC OffsetCal

(void *Handle, double Float)

(handle pointer)
(Float ADC Cal)

Description: Set Calibrator ADC Offset Data
Input: void *Handle
double Float
Output: none
Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB NO LOCAL REGION
CCURAOCC_LIB_ BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB_ INVALID ARG

(successful)

(local region not present)
(no/bad handler supplied)
(device not open)

(invalid argument)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

2.2.84 ccurAOCC_Set_Calibrator ADC_PositiveGainCal()
The call converts the user supplied floating point value Float to raw value and writes it to the ADC Positive

Gain Calibration register.

/**

int ccurAOCC Set Calibrator ADC PositiveGainCal

(void *Handle, double Float)

(handle pointer)
(Float ADC Cal)

Description: Set Calibrator ADC Positive Gain Data
Input: void *Handle
double Float
Output: none
Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB NO LOCAL REGION
CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

(
(local region not present)
(no/bad handler supplied)
(device not open)

(invalid argument)

**/

2.2.85 ccurAOCC_Set_Calibrator_Bus_Control()

The ADC (calibrator) can only return information for one element at a time. Prior to reading the ADC data,
the user needs to select the element whose information is to be returned. This call provides the ability to
connect one of the following elements to the ADC in order to return its value.

/**

int ccurAOCC_Set Calibrator Bus_Control

(void *Handle,
_ccuraocc_calib bus control t

adc_bus control)

(handle pointer)
(cal Bus control)

successful)

Description: Set Calibration Bus Control Information

Input: void *Handle
_ccuraocc_calib bus control t adc bus control

Output: none

Return: CCURAOCC_LIB NO ERROR

CCURAOCC_LIB NO LOCAL REGION

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG

local region error)
no/bad handler supplied)
device not open)
(invalid argument)

**/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 63 of 98

typedef enum
{

CCURAOCC_CALBUS_CONTROL_ GROUND = (0),
CCURAOCC_CALBUS_CONTROL_POSITIVE REF = (1),
CCURAOCC_CALBUS_CONTROL_NEGATIVE REF = (2),
CCURAOCC_CALBUS_CONTROL_OPEN = (3),
CCURAOCC_CALBUS_CONTROL CHAN 0 = (0x20),
CCURAOCC_CALBUS_CONTROL CHAN 1 = (0x21),
CCURAOCC_CALBUS_CONTROL CHAN 2 = (0x22),
CCURAOCC_CALBUS_CONTROL CHAN 3 = (0x23

()
()
()
()
CCURAOCC_CALBUS_ CONTROL CHAN 4 = (0x24),
=)
()
()
()
()

CCURAOCC_CALBUS_CONTROL CHAN 5 0x25),
CCURAOCC_CALBUS_CONTROL_CHAN 6 = (0x26),
CCURAOCC_CALBUS CONTROL_CHAN 7 = (0x27),
CCURAOCC_CALBUS_CONTROL CHAN 8 = (0x28),
CCURAOCC_CALBUS CONTROL CHAN 9 = (0x29),
CCURAOCC_CALBUS CONTROL CHAN 10 = (0x23),
CCURAOCC_CALBUS_CONTROL CHAN 11 = (0x2B),
CCURAOCC_CALBUS CONTROL_CHAN 12 = (0x2C),
CCURAOCC_CALBUS_CONTROL CHAN 13 = (0x2D),
CCURAOCC_CALBUS CONTROL CHAN 14 = (0x2E

()
()
()
()
()
CCURAOCC CALBUS CONTROL CHAN 15 = (0x2F),
=)
()
()
()

CCURAOCC_CALBUS CONTROL CHAN 16 0x30),
CCURAOCC_CALBUS CONTROL_CHAN 17 = (0x31),
CCURAOCC_CALBUS CONTROL CHAN 18 = (0x32),
CCURAOCC_CALBUS_CONTROL_CHAN 19 0x33),
CCURAOCC_CALBUS CONTROL_CHAN 20 = (0x34),
CCURAOCC_CALBUS CONTROL CHAN 21 = (0x35),
CCURAOCC_CALBUS CONTROL_CHAN 22 = (0x36),
CCURAOCC_CALBUS CONTROL CHAN 23 = (0x37),
CCURAOCC_CALBUS CONTROL_CHAN 24 = (0x38

()
()
()
()
()
CCURAOCC_CALBUS CONTROL_CHAN 25 = (0x39),
()
()
()
()

CCURAOCC CALBUS CONTROL CHAN 26 = (0x3n),
CCURAOCC CALBUS CONTROL CHAN 27 = (0x3B),
CCURAOCC CALBUS CONTROL CHAN 28 = (0x3C),
CCURAOCC CALBUS CONTROL CHAN 29 = (0x3D),
CCURAOCC_CALBUS CONTROL_ CHAN 30 = (0x3E),
CCURAOCC_CALBUS CONTROL CHAN 31 = (0x3F),

} _ccuraocc _calib bus control t;

2.2.86 ccurAOCC_Set_Calibration_ChannelGain()

This single call can be used to set a user supplied floating point gain. Float value for a selected set of channel
calibration registers. The call returns the raw value written to the register in gain.Raw.

/**

int ccurAOCC_Set Calibration ChannelGain (void *Handle,
_ccuraocc_channel mask t chan mask,
ccuraocc_converter cal t *gain)

Description: Set Calibration Channel Gain

Input: void *Handle (handle pointer)
_ccuraocc_channel mask t chan mask (selected channel mask)
ccuraocc_converter cal t *gain (Float gain value)

Output: ccuraocc_converter cal t *gain (Raw gain value)

Return: CCURAOCC_LIB NO_ ERROR (successful)

(

CCURAOCC LIB NO LOCAL REGION local region not present)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 64 of 98

*********************************‘k*‘k*‘k***‘k***‘k*‘k***‘k**************************/

typedef enum
{

CCURAOCC CHANNEL MASK 0 = 0x00000001, /* chan 0 */
CCURAOCC_CHANNEL MASK 1 = 0x00000002, /* chan 1 */
CCURAOCC CHANNEL MASK 2 = 0x00000004, /* chan 2 */
CCURAOCC CHANNEL MASK 3 = 0x00000008, /* chan 3 */
CCURAOCC CHANNEL MASK 4 = 0x00000010, /* chan 4 */
CCURAOCC CHANNEL MASK 5 = 0x00000020, /* chan 5 */
CCURAOCC CHANNEL MASK 6 = 0x00000040, /* chan 6 */
CCURAOCC CHANNEL MASK 7 = 0x00000080, /* chan 7 */
CCURAOCC CHANNEL MASK 8 = 0x00000100, /* chan 8 */
CCURAOCC CHANNEL MASK 9 = 0x00000200, /* chan 9 */
CCURAOCC CHANNEL MASK 10 = 0x00000400, /* chan 0 */
CCURAOCC CHANNEL MASK 11 = 0x00000800, /* chan 11 */
CCURAOCC_ CHANNEL MASK 12 = 0x00001000, /* chan 12 */
CCURAOCC CHANNEL MASK 13 = 0x00002000, /* chan 13 */
CCURAOCC CHANNEL MASK 14 = 0x00004000, /* chan 14 */
CCURAOCC CHANNEL MASK 15 = 0x00008000, /* chan 15 */
CCURAOCC_CHANNEL MASK 16 = 0x00010000, /* chan 16 */
CCURAOCC CHANNEL MASK 17 = 0x00020000, /* chan 17 */
CCURAOCC_CHANNEL MASK 18 = 0x00040000, /* chan 18 */
CCURAOCC CHANNEL MASK 19 = 0x00080000, /* chan 19 */
CCURAOCC_CHANNEL MASK 20 = 0x00100000, /* chan 20 */
CCURAOCC CHANNEL MASK 21 = 0x00200000, /* chan 21 */
CCURAOCC_CHANNEL MASK 22 = 0x00400000, /* chan 22 */
CCURAOCC CHANNEL MASK 23 = 0x00800000, /* chan 23 */
CCURAOCC_CHANNEL MASK 24 = 0x01000000, /* chan 24 */
CCURAOCC CHANNEL MASK 25 = 0x02000000, /* chan 25 */
CCURAOCC_CHANNEL MASK 26 = 0x04000000, /* chan 26 */
CCURAOCC CHANNEL MASK 37 = 0x08000000, /* chan 27 */
CCURAOCC_CHANNEL MASK 28 = 0x10000000, /* chan 28 */
CCURAOCC CHANNEL MASK 29 = 0x20000000, /* chan 30 */
CCURAOCC_CHANNEL MASK 30 = 0x40000000, /* chan 31 */
CCURAOCC CHANNEL MASK 31 = 0x80000000, /* chan 32 */

/* End Channel */
CCURAOCC ALL CHANNEL MASK = OxXFFFFFFFF,
} _ccuraocc channel mask t;

typedef struct
{
uint Raw[CCURAOCC MAX CHANNELS];
double Float[CCURAOCC MAX CHANNELS];
} ccuraocc converter cal t;

2.2.87 ccurAOCC_Set_Calibration_ChannelOffset()

This single call can be used to set a user supplied floating point offset. Float value for a selected set of
channel calibration registers. The call returns the raw value written to the register in offset.Raw.

/**

int ccurAOCC_Set Calibration ChannelOffset (void *Handle,
_ccuraocc_channel mask t chan mask,
ccuraocc _converter cal t *offset)

Description: Set Calibration Channel Offset

Input: void *Handle (handle pointer)
_ccuraocc_channel mask t chan mask (selected channel mask)
ccuraocc_converter cal t *offset (Float offset value)

Output: ccuraocc _converter cal t *offset (Raw offset value)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 65 of 98

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

Information on structures are described in the above APl ccurAOCC_Set_Calibration_ChannelGain().

2.2.88 ccurAOCC_Set_Channel_Selection()

This API is only applicable when performing FIFO write() operations. With this API, the user can select the
specific channels that are going to be placed in the FIFO. For proper synchronization with the hardware, the
user needs to ensure that the FIFO is empty before placing the first sample in the FIFO. The first sample
represents the lowest channel number data. The next data in the FIFO belongs to the next higher channel
number in the channel selection mask, respectively, until all samples for all channels in the channel selection
mask are placed in the FIFO. The process is then repeated for the first channel. If at any point, an under-run is
detected, the user will need to ensure that the FIFO is empty before placing new samples in the FIFO in order
to be once again synchronized with the hardware.

It is not advisable to change the channel selection when there are samples in the FIFO that are destined to go
to the output, as the change will take effect immediately and data destined for a specific channel could end up
on another channel.

/**

int ccurAOCC_Set Channel Selection (void *Handle, uint channel select)

Description: Set Channel Selection

Input: void *Handle (handle pointer)

uint channel select (channel selection mask)
Output: none
Return: CCURAOCC LIB NO ERROR (successful)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

Information on structure is described in the above API ccurAOCC_Get_Calibration_ChannelGain().

2.2.89 ccurAOCC_Set_Converter_Clock_Divider()

This API sets the clock divider register. This divider is applied to the board PLL clock to determine the
sample rate. A value of ‘0’ or ‘1’ does not change the sample rate.

/**

int ccurAOCC Set Converter Clock Divider (void *Handle, uint divider)

Description: Set Converter Clock Divider

Input: void *Handle (handle pointer)
uint divider (clock divider)

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

/I divider range
- CCURAOCC_CONVERTER_CLOCK_DIVIDER_MIN
- CCURAOCC_CONVERTER_CLOCK_DIVIDER_MAX

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 66 of 98

2.2.90 ccurAOCC_Set_Converter_CSR()

This sets the control information for the selected converters. The converter cannot be written too while the
CCURAOCC_CONVERTER_BUSY flag is set in the converter_interface_busy field. When a converter is set
for CCURAOCC_CONVERTER_MODE_IMMEDIATE mode, data written for that channel is output
immediately, whether it is written to the channel registers or the FIFO. If the converters are in
CCURAOCC_CONVERTER_MODE_SYNCHRONIZED mode, no data is written to any channels until at least
one channel has its channel data registers synchronized update flag set as well.

Normal operation is for users to set the converter configuration for all channels prior to starting the output
transfer. Data is always present in the channel registers, however, the output to the lines only takes place when
a physical write to the registers occur. If data was written to the output registers with one channel
configuration, the physical output lines would reflect that voltage. Now, if the user decides to change the
converter configuration, e.g. the voltage range to a different value, the outputs will not reflect the change until
the next data is written to the channel registers. This is also true for FIFO transfers. If the boards is actively
sending out data at a given channel configuration, changing the channel configuration will not have any effect
on the sample that is already out, however, the next sample going out to the line will reflect the changed
configuration.

/**

int ccurAOCC_Set Converter CSR (void *Handle,
_ccuraocc converter mask t conv mask,
ccuraocc_converter csr_ t ccsr)

Description: Set Converter Control and Status information

Input: void *Handle (handle pointer)
_ccuraocc_converter mask t conv mask (selected converter)
ccuraocc_converter csr t ccsr (converter csr)

Output: none

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC _LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

(

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
(
(

typedef enum
{

CCURAOCC CONVERTER MASK 0 = 0x00000001, /* chan 0 */
CCURAOCC_CONVERTER MASK 1 = 0x00000002, /* chan 1 */
CCURAOCC CONVERTER MASK 2 = 0x00000004, /* chan 2 */
CCURAOCC_CONVERTER MASK 3 = 0x00000008, /* chan 3 */
CCURAOCC CONVERTER MASK 4 = 0x00000010, /* chan 4 */
CCURAOCC_CONVERTER MASK 5 = 0x00000020, /* chan 5 */
CCURAOCC CONVERTER MASK 6 = 0x00000040, /* chan 6 */
CCURAOCC_CONVERTER MASK 7 = 0x00000080, /* chan 7 */
CCURAOCC CONVERTER MASK 8 = 0x00000100, /* chan 8 */
CCURAOCC_CONVERTER MASK 9 = 0x00000200, /* chan 9 */
CCURAOCC CONVERTER MASK 10 = 0x00000400, /* chan 0 */
CCURAOCC_CONVERTER MASK 11 = 0x00000800, /* chan 11 */
CCURAOCC CONVERTER MASK 12 = 0x00001000, /* chan 12 */
CCURAOCC_CONVERTER MASK 13 = 0x00002000, /* chan 13 */
CCURAOCC_CONVERTER MASK 14 = 0x00004000, /* chan 14 */
CCURAOCC_CONVERTER MASK 15 = 0x00008000, /* chan 15 */
CCURAOCC_CONVERTER MASK 16 = 0x00010000, /* chan 16 */
CCURAOCC_CONVERTER MASK 17 = 0x00020000, /* chan 17 */
CCURAOCC_CONVERTER MASK 18 = 0x00040000, /* chan 18 */
CCURAOCC_CONVERTER MASK 19 = 0x00080000, /* chan 19 */
CCURAOCC_CONVERTER MASK 20 = 0x00100000, /* chan 20 */
CCURAOCC_CONVERTER MASK 21 = 0x00200000, /* chan 21 */
CCURAOCC_CONVERTER MASK 22 = 0x00400000, /* chan 22 */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 67 of 98

CCURAOCC_CONVERTER MASK 23 = 0x00800000, /* chan 23 */

CCURAOCC CONVERTER MASK 24 = 0x01000000, /* chan 24 */
CCURAOCC_CONVERTER MASK 25 = 0x02000000, /* chan 25 */
CCURAOCC CONVERTER MASK 26 = 0x04000000, /* chan 26 */
CCURAOCC_CONVERTER MASK 37 = 0x08000000, /* chan 27 */
CCURAOCC CONVERTER MASK 28 = 0x10000000, /* chan 28 */
CCURAOCC_CONVERTER MASK 29 = 0x20000000, /* chan 30 */
CCURAOCC CONVERTER MASK 30 = 0x40000000, /* chan 31 */
CCURAOCC_CONVERTER MASK 31 = 0x80000000, /* chan 32 */

/* End Converter */
CCURAOCC_ALL CONVERTER MASK = OxXFFFFFFFF,
} _ccuraocc converter mask t;

typedef struct

{
int converter interface busy;
int converter update mode;
int converter data format;
int converter output range;

} _ccuraocc converter csr t;

typedef ccuraocc converter csr t
ccuraocc_converter csr t[CCURAOCC MAX CONVERTERS];

/I converter_interface_busy
- CCURAOCC_CONVERTER_IDLE
- CCURAOCC_CONVERTER_BUSY

/I converter_update_mode

- CCURAOCC_CONVERTER_MODE_IMMEDIATE

- CCURAOCC_CONVERTER_MODE_SYNCHRONIZED
- CCURAOCC_DO_NOT_CHANGE

/I converter_data_format

- CCURAOCC_CONVERTER_OFFSET_BINARY

- CCURAOCC_CONVERTER_TWOS_COMPLEMENT
- CCURAOCC_DO_NOT_CHANGE

/I converter_output_range

- CCURAOCC_CONVERTER_UNIPOLAR_5V
- CCURAOCC_CONVERTER_UNIPOLAR_10V
- CCURAOCC_CONVERTER_BIPOLAR_5V

- CCURAOCC_CONVERTER_BIPOLAR_10V

- CCURAOCC_CONVERTER_BIPOLAR_2 5V
- CCURAOCC_DO_NOT_CHANGE

2.2.91 ccurAOCC_Set_Converter_Update_Selection()

This sets the converter update selection to software control or clock control. Clock control is required for
FIFO operation.

/**

int ccurAOCC Set Converter Update Selection (void *Handle,
_ccuraocc_converter update select t
select)

Description: Set Converter Update Selection

Input: void *Handle (handle pointer)
_ccuraocc_converter update select t select
(pointer to converter update selection)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 68 of 98

2.2.92

2.2.93

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

typedef enum

{
CCURAOCC_CONVERTER UPDATE SELECT SOFTWARE = (0),
CCURAOCC_CONVERTER UPDATE_SELECT_ PLL CLOCK = (1),
CCURAOCC_CONVERTER UPDATE SELECT EXTERNAL CLOCK =

} _ccuraocc converter update select t;

(4),

ccurAOCC_Set_Fifo_Driver_Threshold()

The threshold field ranges from 0 to OX3FFFF entries representing the number of samples in the FIFO that
was last set by the user. This value is used by the driver during FIFO write operations so that if the FIFO has
samples that exceed the threshold value, the write will block until the threshold is reached before commencing
the write.

/**

int ccurAOCC Set Fifo Driver Threshold (void *Handle, uint threshold)

Description: Set the threshold value in the driver

Input: void *Handle (handle pointer)
uint threshold (threshold to set)

Output: None

Return: CCURAOCC LIB NO ERROR successful)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)

CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

ccurAOCC_Set_Fifo_Threshold()

This call directly updates the hardware FIFO threshold register. In some cases, during FIFO write operations,
the driver adjusts this threshold based on user supplied threshold ccurAOCC_Set_Fifo_Driver_Threshold(),
hence, changes to this register may be lost. The user can opt to perform their own FIFO drain management, in
which case, this call will be useful.

/**

int ccurAOCC Set Fifo Threshold (void *Handle, uint threshold)

Description: Set the value of the specified board register.

Input: void *Handle (handle pointer)
uint threshold (threshold to set)

Output: None

Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC_LIB NO LOCAL REGION (local region not present)

**/

(

CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
(
(

2.2.94 ccurAOCC_Set_Interrupt_Control()

This call is used to enable or disable interrupt handling.

/**

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 69 of 98

int ccurAOCC Set Interrupt Control(void *Handle, ccuraocc interrupt t *intr)

Description: Set Interrupt Control information

CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB INVALID ARG invalid argument)

CCURAOCC LIB NO LOCAL REGION (local region not present)
**/

Input: void *Handle (handle pointer)
Output: ccuraocc_interrupt t *intr (pointer to interrupt control)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
(
(

typedef struct {

int global int;
int fifo buffer hi lo int;
int plx local int;

} ccuraocc_interrupt t;

/I global_int

- CCURAOCC_ICSR_GLOBAL_DISABLE
- CCURAOCC_ICSR_GLOBAL_ENABLE
- CCURAOCC_DO_NOT_CHANGE

/I fifo_buffer_hi_lo_int

- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_DISABLE
- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_ ENABLE
- CCURAOCC_DO_NOT_CHANGE

/I pIx_local_int

- CCURAOCC_ICSR_LOCAL_PLX_DISABLE
- CCURAOCC_ICSR_LOCAL_PLX_ENABLE
- CCURAOCC_DO_NOT_CHANGE

2.2.95 ccurAOCC_Set_Interrupt_Status()
This call is used to clear the interrupt condition.

/**

int ccurAOCC_Set Interrupt Status (void *Handle, ccuraocc interrupt t *intr)

Description: Set Interrupt Status information

Input: void *Handle (handle pointer)
ccuraocc_interrupt t *intr (pointer to interrupt status)

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)

**/

typedef struct {

int global int;
int fifo buffer hi lo int;
int plx local int;

} ccuraocc_interrupt t;

/I global_int
- not used

/I fifo_buffer_hi_lo_int
- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_DISABLE

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 70 of 98

2.2.96

2.2.97

- CCURAOCC_ICSR_FIFO_HILO_THRESHOLD_ENABLE
- CCURAOCC_DO_NOT_CHANGE

/I plx_local_int

- CCURAOCC_ICSR_LOCAL_PLX DISABLE
- CCURAOCC_ICSR_LOCAL_PLX ENABLE
- CCURAOCC_DO_NOT_CHANGE

ccurAOCC_Set_Interrupt_Timeout_Seconds()

This call sets the write timeout maintained by the driver. It allows the user to change the default time out from
30 seconds to a user specified value. It is the time that the FIFO write call will wait before it times out. The
call could time out if either the FIFO fails to drain or a DMA fails to complete. The device should have been
opened in the blocking mode (O_NONBLOCK not set) for writes to wait for the operation to complete.

/***k**k**k**k**k**k**k**k**k**k**k**k**k***
int ccurAOCC_Set Interrupt Timeout Seconds (void *Handle,
int *int timeout secs)
Description: Set Interrupt Timeout Seconds

Input: void *Handle (handle pointer)
Output: int *int timeout secs (pointer to int tout secs)
Return: CCURAOCC LIB NO ERROR (successful)

**/

ccurAOCC_Set PLL_Sync()

This call is used to synchronize the starting of the clocks by selecting the sync_start argument. The
external_go and external_sync arguments are not used at this time.

/**

int ccurAOCC Set PLL Sync(void *Handle, ccuraocc PLL sync_t *sync)

Description: Set the value of the PLL Synchronization Register

Input: void *Handle (handle pointer)
ccuraocc PLL sync t *sync; (pointer to sync struct)

Output: none

Return: CCURAOCC_LIB INVALID ARG (invalid argument)
CCURAOCC LIB NO LOCAL REGION (local region not present)

**/

typedef struct {
uint sync_start;
uint external go;
uint external sync;

} ccuraocc PLL sync t;

/I PLL Sync Start

- CCURAOCC_PLL_START

- CCURAOCC_PLL_STOP

- CCURAOCC_DO_NOT_CHANGE

/I External Go

- CCURAOCC_EXTERNAL_GO_OUT_ENABLE
- CCURAOCC_EXTERNAL_GO_OUT_DISABLE
- CCURAOCC _DO_NOT_CHANGE

/l External Sync
- CCURAOCC_EXTERNAL_SYNC_OUT_ENABLE
- CCURAOCC_EXTERNAL_SYNC_OUT_DISABLE

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 71 of 98

- CCURAOCC_DO_NOT_CHANGE

2.2.98 ccurAOCC _Set_TestBus_Control()
This call is provided for internal use in testing the hardware.

/**

int ccurAOCC_Set TestBus Control (void *Handle,
_ccuraocc_testbus control t test control)

Description: Set Test Bus Control Selection
Input: void *Handle (handle pointer)

_ccuraocc_testbus control t test control
(pointer to test bus control)

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)
CCURAOCC_LIB INVALID ARG (invalid argument)

**/

typedef enum
{

CCURAOCC_TBUS_CONTROL_OPEN = (0),
CCURAOCC_TBUS_ CONTROL CAL BUS = (1),
CCURAOCC_TBUS_ CONTROL 5V REF = (2),

} _ccuraocc testbus control t;

2.2.99 ccurAOCC_Set Value()

This call allows the advanced user to set the writable board registers. The actual data written will depend on
the command register information that is requested. Refer to the hardware manual for more information on
what can be written to. The CCURAOCC_CHANNEL_DATA, CCURAOCC_GAIN_CALIBRATION and,
CCURAOCC_OFFSET_CALIBRATION expect CCURAOCC_MAX_CHANNELS unsigned integers. The
CCURAOCC_SPI_RAM command expect CCURAOCC_SPI_RAM_SIZE unsigned integers.

Normally, users should not be changing these registers as it will bypass the API integrity and could result in
an unpredictable outcome.

/**

ccurAOCC Set Value ()

Description: Set the value of the specified board register.

Input: void *Handle (handle pointer)
CCURAOCC_CONTROL cmd (register definition)
void *value (pointer to value to be set)
Output: None
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

CCURAOCC_LIB INVALID ARG (invalid argument)

**/

typedef enum
{

CCURAOCC_BOARD INFORMATION, /* R Only */
CCURAOCC_BOARD CSR, /* R/W */
CCURAOCC_INTERRUPT CONTROL, /* R/W */
CCURAOCC_INTERRUPT STATUS, /* R/W */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 72 of 98

CCURAOCC_CONVERTER CSR 0, /* R/W */

CCURAOCC CONVERTER CSR 1, /* R/W */
CCURAOCC CONVERTER CSR 2, /* R/W */
CCURAOCC CONVERTER CSR 3, /* R/W */
CCURAOCC CONVERTER CSR 4, /* R/W */
CCURAOCC CONVERTER CSR 5, /* R/W */
CCURAOCC CONVERTER CSR 6, /* R/W */
CCURAOCC CONVERTER CSR 7, /* R/W */
CCURAOCC CONVERTER CSR 8, /* R/W */
CCURAOCC_CONVERTER_CSR 9, /* R/W */
CCURAOCC CONVERTER CSR 10, /* R/W */
CCURAOCC CONVERTER CSR 11, /* R/W */
CCURAOCC CONVERTER CSR 12, /* R/W */
CCURAOCC CONVERTER CSR 13, /* R/W */
CCURAOCC CONVERTER CSR 14, /* R/W */
CCURAOCC CONVERTER CSR 15, /* R/W */
CCURAOCC CONVERTER CSR 16, /* R/W */
CCURAOCC CONVERTER CSR 17, /* R/W */
CCURAOCC CONVERTER CSR 18, /* R/W */
CCURAOCC_CONVERTER CSR 19, /* R/W */
CCURAOCC_CONVERTER CSR 20, /* R/W */
CCURAOCC_CONVERTER CSR 21, /* R/W */
CCURAOCC_CONVERTER CSR 22, /* R/W */
CCURAOCC_CONVERTER CSR 23, /* R/W */
CCURAOCC_CONVERTER CSR 24, /* R/W */
CCURAOCC_CONVERTER CSR 25, /* R/W */
CCURAOCC_CONVERTER CSR 26, /* R/W */
CCURAOCC_CONVERTER CSR 27, /* R/W */
CCURAOCC_CONVERTER CSR 28, /* R/W */
CCURAOCC_CONVERTER CSR 29, /* R/W */
CCURAOCC_CONVERTER_CSR 30, /* R/W */
CCURAOCC_CONVERTER CSR 31, /* R/W */
CCURAOCC_PLL SYNC, /* R/W */
CCURAOCC_CONVERTER UPDATE SELECTION, /* R/W */
CCURAOCC_CHANNEL SELECT, /* R/W */
CCURAOCC_CALIBRATOR BUS_ CONTROL, /* R/W */
CCURAOCC_TEST BUS_CONTROL, /* R/W */
CCURAOCC_CALIBRATOR ADC CONTROL, /* R/W */
CCURAOCC_FIFO CSR, /* R/W */
CCURAOCC_FIFO_ THRESHOLD, /* R/W */
CCURAOCC CALIBRATOR ADC DATA, /* R only */
CCURAOCC FIRMWARE SPI COUNTER STATUS, /* R/W */
CCURAOCC CHANNEL DATA, /* R/W */
CCURAOCC CHANNEL DATA O, /* R/W */
CCURAOCC_CHANNEL DATA 1, /* R/W */
CCURAOCC CHANNEL DATA 2, /* R/W */
CCURAOCC_CHANNEL DATA 3, /* R/W */
CCURAOCC CHANNEL DATA 4, /* R/W */
CCURAOCC_CHANNEL DATA 5, /* R/W */
CCURAOCC CHANNEL DATA 6, /* R/W */
CCURAOCC_CHANNEL DATA 7, /* R/W */
CCURAOCC CHANNEL DATA 8, /* R/W */
CCURAOCC_CHANNEL DATA 9, /* R/W */
CCURAOCC CHANNEL DATA 10, /* R/W */
CCURAOCC CHANNEL DATA 11, /* R/W */
CCURAOCC CHANNEL DATA 12, /* R/W */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 73 of 98

CCURAOCC_CHANNEL DATA 13, /* R/W */

CCURAOCC CHANNEL DATA 14, /* R/W */
CCURAOCC CHANNEL DATA 15, /* R/W */
CCURAOCC CHANNEL DATA 16, /* R/W */
CCURAOCC CHANNEL DATA 17, /* R/W */
CCURAOCC CHANNEL DATA 18, /* R/W */
CCURAOCC CHANNEL DATA 19, /* R/W */
CCURAOCC CHANNEL DATA 20, /* R/W */
CCURAOCC CHANNEL DATA 21, /* R/W */
CCURAOCC CHANNEL DATA 22, /* R/W */
CCURAOCC CHANNEL DATA 23, /* R/W */
CCURAOCC CHANNEL DATA 24, /* R/W */
CCURAOCC CHANNEL DATA 25, /* R/W */
CCURAOCC CHANNEL DATA 26, /* R/W */
CCURAOCC CHANNEL DATA 27, /* R/W */
CCURAOCC CHANNEL DATA 28, /* R/W */
CCURAOCC CHANNEL DATA 29, /* R/W */
CCURAOCC CHANNEL DATA 30, /* R/W */
CCURAOCC CHANNEL DATA 31, /* R/W */
CCURAOCC FIFO DATA, /* W Only */
CCURAOCC PLL 0 STATUS, /* R Only */
CCURAOCC PLL 0 ACCESS, /* R/W */
CCURAOCC _PLL 0 READ 1, /* R/W */
CCURAOCC PLL 0 READ 2, /* R/W */
CCURAOCC GAIN CALIBRATION, /* R/W */
CCURAOCC OFFSET CALIBRATION, /* R/W */

CCURAOCC _CALIBRATOR ADC POSITIVE GAIN, /* R/W */

CCURAOCC CALIBRATOR ADC NEGATIVE GAIN, /* R/W */

CCURAOCC_CALIBRATOR ADC OFFSET, /* R/W */

CCURAOCC_SPI RAM, /* R/W */
} CCURAOCC_CONTROL;

2.2.100 ccurAOCC_Shutdown_PLL_Clock()

This board has a single programmable clock that supplies clocking to all the converters. This call shuts down
the PLL Clock.

/**

int ccurAOCC_Shutdown PLL Clock (void *Handle)

Description: Shutdown PLL Clock

Input: void *Handle (handle pointer)

Output: none

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC _LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT_ OPEN (device not open)

CCURAOCC_LIB INVALID ARG (invalid argument)
Kok kK kK K kKK KK kK kK kK ok K ok ok kK kK ok ok ok K ok K ok ko ok K ok K ok Rk kK ok Kk kR R Kk Kk kR ok Kk Kk ok Rk Kk X kK kK Kk ok /

2.2.101 ccurAOCC_Start_PLL_Clock()

This call is used to resume a PLL Clock. No FIFO conversion will take place if the clock is stopped.

/**

int ccurAOCC_Start PLL Clock (void *Handle)
Description: Start PLL Clock

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 74 of 98

Input: void *Handle (handle pointer)
Output: none
Return: CCURAOCC_LIB NO ERROR (successful)

CCURAOCC_LIB_ BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB_ INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

(device not open)
(invalid argument)

(no/bad handler supplied)

(local region not present)

**/

2.2.102 ccurAOCC_Stop_PLL_Clock()

This call is stops an already running PLL Clock..

/**

int ccurAOCC Stop PLL Clock (void *Handle)

Description: Stop PLL Clock

Input: void *Handle (handle pointer)
Output: none
Return: CCURAOCC_LIB NO ERROR successful)

CCURAOCC_LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN
CCURAOCC_LIB INVALID ARG
CCURAOCC_LIB NO LOCAL REGION

device not open)
invalid argument)

(
(
(
(

no/bad handler supplied)

(local region not present)

**/

2.2.103 ccurAOCC _View_Factory_Calibration()

This API extracts the factory serial prom calibration information for the selected voltage range and writes it to

a user specified file.

/**

int ccurAOCC View Factory Calibration (void *Handle,

_ccuraocc_sprom access t item, char *filename)

Description: Read Factory calibration from serial prom and write to user

output file

Input: void *Handle (handle pointer)
_ccuraocc_sprom_access_t item (select item)
—-— CCURAOCC_SPROM FACTORY UNIPOLAR 5V
-— CCURAOCC SPROM FACTORY UNIPOLAR 10V
—-— CCURAOCC_ SPROM FACTORY BIPOLAR 5V
-- CCURAOCC SPROM FACTORY BIPOLAR 10V
-— CCURAOCC SPROM_FACTORY BIPOLAR 2 5V
Output: char *filename
Return: CCURAOCC_LIB NO_ ERROR
CCURAOCC LIB BAD HANDLE
CCURAOCC LIB NOT OPEN

successful)
device not open)

CCURAOCC_LIB NO LOCAL_ REGION
CCURAOCC_LIB SERIAL PROM BUSY
CCURAOCC_LIB SERIAL PROM FAILURE
CCURAOCC_LIB INVALID ARG

error)
serial prom busy)

(invalid argument)

(pointer to filename)

(
(
(
CCURAOCC_LIB CANNOT OPEN FILE (file not readable)
(
(
(

serial prom failure)

no/bad handler supplied)

**/

typedef enum {
CCURAOCC SPROM HEADER
CCURAOCC SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 5V,
CCURAOCC_SPROM FACTORY BIPOLAR 10V,

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 75 of 98

CCURAOCC_SPROM_FACTORY BIPOLAR 2 5V,
CCURAOCC SPROM USER_CHECKPOINT 1,
CCURAOCC SPROM USER_CHECKPOINT 2,

} _ccuraocc sprom access t;

2.2.104 ccurAOCC_View_User_Checkpoint()

This API extracts the user serial prom configuration and calibration information for the selected user
checkpoint and writes it to a user specified file.

/**

int ccurAOCC View User Checkpoint (void *Handle,
__ccuraocc_sprom_access_t item, char *filename)

Description: Read User Checkpoint from serial prom and write to user output

file
Input: void *Handle (handle pointer)
ccuraocc_sprom access _t item (select item)

-= CCURAOCC_SPROM_USER_CHECKPOINT_l
-- CCURAOCC_SPROM USER CHECKPOINT 2
Output: char *filename (pointer to filename)
Return: CCURAOCC LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC LIB NOT OPEN (device not open)
CCURAOCC_LIB CANNOT OPEN FILE (file not readable)
CCURAOCC _LIB NO LOCAL REGION (error)
CCURAOCC LIB SERIAL PROM BUSY (serial prom busy)
CCURAOCC LIB SERIAL PROM FAILURE (serial prom failure)

CCURAOCC_LIB INVALID ARG (invalid argument)
Kok kK kK K ok K K kK kK ok K ok K ok K ok ok ok kK ok K ok ok ok ok K ok K ok ok ok ok K ok X ok ok ok ok K ok K ok Rk ok Kk K ok k ok kK ok K kK Rk kX ok ok kK Kk k

typedef enum {
CCURAOCC_SPROM HEADER=1,
CCURAOCC SPROM FACTORY UNIPOLAR 5V,
CCURAOCC_SPROM FACTORY UNIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 5V,
CCURAOCC_SPROM FACTORY BIPOLAR 10V,
CCURAOCC SPROM FACTORY BIPOLAR 2 5V,
CCURAOCC SPROM USER CHECKPOINT 1,
CCURAOCC_SPROM USER CHECKPOINT 2,

} _ccuraocc sprom access t;

2.2.105 ccurAOCC_VoltsToData()

This call returns to the user the raw converted value for the requested voltage in the specified format and
voltage range. Voltage supplied must be within the input range of the selected board type. If the voltage is out
of range, the call sets the voltage to the appropriate limit value.

/**

uint ccurAOCC VoltsToData (double volts, int format, int select voltage range)

Description: Convert Volts to data

Input: double volts (volts to convert)
int format (conversion format)
int select voltage range (select voltage range)
Output: none
Return: uint data (returned data)

**/

The format can be: CCURAOCC_CONVERTER_OFFSET_BINARY
CCURAOCC_CONVERTER_TWOS_COMPLEMENT

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 76 of 98

If an invalid format is supplied, the call defaults to CCURAOCC_CONVERTER_OFFSET_BINARY.

The select_voltage_range can be;: CCURAOCC_CONVERTER_UNIPOLAR_5V
CCURAOCC_CONVERTER_UNIPOLAR_10V
CCURAOCC_CONVERTER_BIPOLAR 5V
CCURAOCC_CONVERTER_BIPOLAR_10V
CCURAOCC_CONVERTER_BIPOLAR_2 5V

If the data to volts conversion is for the on-board Analog to Digital Converter (ADC), nicknamed
“Calibrator”, then the following parameters to be supplied to the select_voltage range.

CCURAOCC_CALADC_RANGE_BIPOLAR_5V
CCURAOCC_CALADC_RANGE_BIPOLAR_10V
CCURAOCC_CALADC_RANGE_BIPOLAR_20V

If an invalid voltage range is selected, the call defaults to CCURAOCC_CONVERTER_UNIPOLAR_5V.

2.2.106 ccurAOCC _VoltsToDataChanCal()
This call converts user supplied volts to raw data for calibration registers.

/**
uint ccurAOCC VoltsToDataChanCal (double volts)

Description: Convert Volts to Data (for Channel Calibration)

Input: double volts (volts to convert)
Output: none
Return: uint data (returned data)

**/

2.2.107 ccurAOCC_Wait_For_Channel_Idle()

The write to a channel register takes a finite time to complete. A channel busy indicator is set in the
corresponding channel converter. If the busy flag is set and the user attempts to issue another write to the
same channel, then data could get lost. For this reason, users must make sure that the channel converter is not
busy before performing a write. This call basically waits for a channels converter busy bit to go idle before
returning.

/**

int ccurAOCC Wait For Channel Idle (void *Handle, int chan)

Description: Wait for Channel to go idle

Input: void *Handle handle pointer)
int chan channel to test)
Output: none return busy status)

CCURAOCC_LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC LIB NO LOCAL REGION local region not present)
CCURAOCC_LIB CHANNEL BUSY (channel is busy)

**/

(
(
(
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

2.2.108 ccurAOCC_Wait_For_Interrupt()

This call is made available to advanced users to bypass the API and perform their own data operation. The
user can wait for either a FIFO high to low transition interrupt or a DMA completion interrupt. If a time out
value greater than zero is specified, the call will time out after the specified seconds, otherwise a value of zero
will not cause the call to timeout.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 77 of 98

/**

int ccurAOCC Wait For Interrupt(void *Handle, ccuraocc_driver int t *drv_int)

Description: Wait For Interrupt

Input: void *Handle handle pointer)
Output: ccuraocc driver int t *drv_int (pointer to drv_int struct)

CCURAOCC LIB BAD HANDLE no/bad handler supplied)
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB NO LOCAL REGION local region not present)

CCURAOCC_LIB INVALID ARG (invalid argument)
Kok ok ok K ok K ok Kk kK kK ok ok o ok K ok K ok ok ok ok K ok K ok ok ok ok K ok K ok ok ok ok K ok X ok ok ok ok K ok K ok ok ok ok K ok X ok ok ok ok K ok K ok ok kR Kk X ok k kK Kk k

(
_ (
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

typedef struct {
unsigned long long count;

u_int status;
u int mask;
int timeout seconds;

} ccuraocc_driver int t;

/I mask
- CCURAOCC_INTSTAT_LOCAL_PLX MASK
- CCURAOCC_INTSTAT_FIFO_HILO_THRESHOLD_ MASK

2.2.109 ccurAOCC_Write()

This call basically invokes the write(2) system call. The actual write operation performed will depend on the
write mode selected via the ccurAOCC_Select Driver_Write_Mode() call prior to invoking this call. For
channel write operations, the driver expects any number of samples from 1 to 32. These samples are directly
written to the channel registers via Programmed 1/O or DMA depending on the write mode. If the user has
requested one of the FIFO write modes, then they need to ensure that the channel selection is first set and that
the samples written should correspond to the active channels. Additionally, prior to starting the clocks, the
user will need to “prime” the FIFO, otherwise, they could probably get an under-run and would require
resetting of the FIFO to get back in sync with the hardware.

Refer to the write(2) system call under Direct Driver Access section for more information on the various
modes.

/**
int ccurAOCC Write (void *Handle, void *buf, int size, int *bytes written,
int *error)

Description: Perform a write operation.

CCURAOCC LIB BAD HANDLE
CCURAOCC_LIB NOT OPEN device not open)
CCURAOCC_LIB IO ERROR write failed)
CCURAOCC_LIB NOT IMPLEMENTED (call not implemented)

**/

no/bad handler supplied)

Input: void *Handle (handle pointer)
int size (number of bytes to write)
Output: void *buf (pointer to buffer)
int “*bytes written (bytes written)
int “*error (returned errno)
Return: CCURAOCC_LIB NO ERROR (successful)
(
(
(

2.2.110 ccurAOCC_Write_Channels()

This call performs a programmed 1/O writes to selected channels as specified by information in the
ccuraocc_write_channels_t structure.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 78 of 98

/**

int ccurAOCC Write Channels (void *Handle, ccuraocc write channels t *wdc)

Description: Write Channels

Input: void *Handle (handle pointer)
ccuraocc write channels t *wdc (perform convertion)
Output: ccuraocc _write channels t *wdc (pointer to rdc struct)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

typedef struct
{
char select channel;
union
{
char convert rawdata to volts; /* for reading from channel registers */
char convert volts to rawdata; /* for writing to channel registers */
i
char channel synchronized update flag;
char converter data format;
char converter output range;
int channel data raw;
double channel data volts;
} ccuraocc_single channel data t;

typedef struct

{
ccuraocc_single channel data t wchan[CCURAOCC MAX CHANNELS];
} ccuraocc write channels t;

The user needs to set the select channel and the convert_volts to_rawdata fields in the
ccuraocc_single_channel_data_t structure for information on each channel they need to write. To select a
channel, the select channel field needs to be set to CCURAOCC_TRUE. The call will write the
channel_data_raw content in the structure to the channel register, unless, the convert_volts_to_rawdata field
is set to CCURAOCC_TRUE. In that case, the call will convert the floating point voltage in the
channel_data_volts to raw and write that to the channel register. Additionally, this raw information will also
be stored in the channel_data_raw field of the structure.

2.2.111 ccurAOCC_Write_Channels_Calibration()

This call writes the user supplied calibration information to the on-board channel memory. This file must exist
and be readable. This file could have been created by the ccurAOCC_Read_Channels_Calibration() call.
Those channels that are not specified in the file are not altered on the board. Any blank lines or entries starting
with ‘#” or “*’ are ignored during parsing.

/**

int ccurAOCC Write Channels Calibration(void *Handle, char *filename)

Description: Write Channels Calibration information

Input: void *Handle (handle pointer)
char *filename (pointer to filename)
Output: none
Return: CCURAOCC_LIB NO_ ERROR successful)
CCURAOCC_LIB_BAD HANDLE no/bad handler supplied)

CCURAOCC_LIB INVALID ARG invalid argument)
CCURAOCC_LIB NO LOCAL REGION local region not present)

(
(
CCURAOCC_LIB NOT OPEN (device not open)
(
(
CCURAOCC_LIB IO ERROR (read error)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 79 of 98

CCURAOCC_LIB CANNOT OPEN FILE
CCURAOCC LIB CALIBRATION RANGE ERROR (range error)

**/

(file not writeable)

Format:

#Chan Offset Gain

ch00: 0.1983642578125000 0.3991699218750000
ch01: 0.0860595703125000 0.2078247070312500
ch02: 0.1992797851562500 0.4129028320312500
ch03: 0.0830078125000000 0.1345825195312500
ch28: 0.1766967773437500 0.3732299804687500
ch29: 0.1361083984375000 0.2694702148437500
ch30: 0.1257324218750000 0.2728271484375000
ch31: 0.0469970703125000 0.0830078125000000

2.2.112 ccurAOCC_Write_Serial_Prom()

This is a basic call to write short word entries to the serial prom. The user specifies a word offset within the
serial prom and a word count, and the call writes the data pointed to by the spw pointer, in short words.

Prior to using this call, the user will need to issue the ccurAOCC_Serial_Prom_Write_Override() to allowing
writing to the serial prom.

/**

int ccurAOCC Write Serial Prom(void *Handle, ccuraocc sprom rw t *spw)

Description: Write data to Serial Prom for specified number of words
Input: void *Handle (handle pointer)
ccuraocc sprom rw t *spw (pointer to struct)
-— u_short word offset
-- u_ short num words
-—- u_short *data ptr
Output: none
Return: CCURAOCC_LIB NO ERROR successful)
CCURAOCC LIB NO LOCAL REGION error)

CCURAOCC_ LIB INVALID ARG invalid argument)
CCURAOCC_LTIB_SERTIAL PROM BUSY serial prom busy)

CCURAOCC_LIB SERIAL PROM FAILURE (serial prom failure)

**/

typedef struct

{

/* word offset */

/* number of words */
/* data pointer */

u_short word offset;
u_short num words;
u_short *data ptr;

} ccuraocc sprom rw t;

2.2.113 ccurAOCC_Write_Serial_Prom_Item()

This call is used to write well defined sections in the serial prom. The user supplies the serial prom section
that needs to be written and the data points to the section specific structure. In the case of factory calibration
or user checkpoint writes, the user needs to make sure that the time stamp and crc are setup correctly,
otherwise, there will be problems in viewing the section. This call should normally not be used by the user.

Prior to using this call, the user will need to issue the ccurAOCC_Serial_Prom_Write_Override() to allowing
writing to the serial prom.

/**

int ccurAOCC Write Serial Prom Item(void *Handle,

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 80 of 98

_ccuraocc_sprom_access_t item, void *item ptr)
Description: Write Serial Prom with specified item

Input: void *Handle (handle pointer)
__ccuraocc_sprom_access_t item (select item)
—-— CCURAOCC_SPROM HEADER
-— CCURAOCC_SPROM FACTORY UNIPOLAR 5V
—-- CCURAOCC SPROM FACTORY UNIPOLAR 10V
-—- CCURAOCC_SPROM FACTORY BIPOLAR 5V
—-- CCURAOCC_ SPROM FACTORY BIPOLAR 10V
-— CCURAOCC_SPROM FACTORY BIPOLAR 2 5V
—-- CCURAOCC_ SPROM USER CHECKPOINT 1
—-- CCURAOCC_ SPROM USER CHECKPOINT 2
Output: void *item ptr (pointer to item struct)
—-— *ccuraocc_sprom header t
-— *ccuraocc_sprom factory t
—-- *ccuraocc_sprom user checkpoint t

Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC_LIB NO LOCAL REGION (error)
CCURAOCC LIB INVALID ARG (invalid argument)
CCURAOCC LIB SERIAL PROM BUSY (serial prom busy)

CCURAOCC LIB SERIAL PROM FAILURE (serial prom failure)

**/

typedef enum {
CCURAOCC_SPROM HEADER=1,
CCURAOCC_SPROM FACTORY UNIPOLAR 5V,
CCURAOCC SPROM FACTORY UNIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 5V,
CCURAOCC SPROM FACTORY BIPOLAR 10V,
CCURAOCC_SPROM FACTORY BIPOLAR 2 5V,
CCURAOCC SPROM USER CHECKPOINT 1,
CCURAOCC SPROM USER CHECKPOINT 2,

} _ccuraocc sprom access t;

The void pointer *item_ptr points to one of the following structures depending on the selected item that needs
to be written.

typedef struct {

u_int board serial number; /* 0x000 - 0x003 - serial number */
u_short sprom revision; /* 0x004 - 0x005 - serial prom

revision */
u_short spare 006 O03F[0x3A/2]; /* 0x006 - O0xO3F - spare */

} ccuraocc_sprom header t;

typedef struct {

u_short crc; /* 0x000 - 0x001 - CRC */
u_short spare 002 007[0x6/2]; /* 0x002 - 0x007 - spare */
time t date; /* 0x008 - 0xO0F - date */
u_short offset [CCURAOCC MAX CHANNELS]; /* 0x010 - Ox04F - offset */
u_short gain[CCURAOCC MAX CHANNELS]; /* 0x050 - 0x08F - gain */

} ccuraocc_sprom factory t;

typedef struct {

u_short crc; /* 0x000 - 0x001 - CRC */
u_short spare 002 007[0x6/2]; /* 0x002 - 0x007 - spare */
time t date; /* 0x008 - Ox00F - date */

u short offset [CCURAOCC MAX CHANNELS]; /* 0x010 - Ox04F - offset */
u_short gain[CCURAOCC MAX CHANNELS]; /* 0x050 - 0x08F - gain */

u_int converter csr[CCURAOCC MAX CONVERTERS];
/* 0x090 - 0x10F - channel config */
} ccuraocc sprom user checkpoint t;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 81 of 98

2.2.114 ccurAOCC_Write_Single_Channel()
This call is similar to the ccurAOCC_Write_Channels(), except, information is written for a single channel.

B R R R R e I R R R S R I R R I R R S R R R R I I R R S e S R I I I e I S R I I e S S]
/
int ccurAOCC Write Single Channel (void *Handle, int chan,
ccuraocc_single channel data t *wdc)
Description: Write Single Channel

Input: void *Handle (handle pointer)
int chan (channel to write)
ccuraocc_single channel data t *wdc (perform convertion)
Output: ccuraocc_single channel data t *wdc (pointer to wdc struct)
Return: CCURAOCC_LIB NO ERROR (successful)
CCURAOCC LIB BAD HANDLE (no/bad handler supplied)
CCURAOCC_LIB NOT OPEN (device not open)

*k******k**k**k**k**k**k**k**k**k**k**k******k**k**k**k**k**k****k**k**k**k*************************/

typedef struct
{

char select channel;
union

{

char convert rawdata to volts; /* for reading from channel registers */
char convert volts to rawdata; /* for writing to channel registers */

b

char channel synchronized update flag;

char converter data format;

char converter output range;

int channel data raw;

double channel data volts;

} ccuraocc single channel data t;

The user needs to set the channel number in chan. If the convert volts to rawdata flag is set to
CCURAOCC_TRUE, the call takes the user supplied voltage in the channel_data_volts and converts it to raw
data based on the customer supplied data format and voltage range. Additionally, the converted raw value will
also be placed in the channel_data_raw field.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 82 of 98

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the Direct
Driver Access do not use the API, while those under Application Program Interface Access use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the .../test directory and do not use the API. They communicate directly with
the driver. Users should be extremely familiar with both the driver and the hardware registers if they wish to
communicate directly with the hardware.

3.1.1 ccuraocc_rdreg

This is a simple program that returns the local register value for a given offset.

Usage: ./ccuraocc_rdreg [-b board] [-o offset]
-b board: board number -- default board is 0
-0 offset: hex offset to read from -- default offset is 0x0

Example display:

Device Name /dev/ccuraoccO

Board Serial No: 12345678 (0x00bcolde)

Read at offset 0x0000: 0x92870123

3.1.2 ccuraocc_reg

This test dumps the board registers.

Usage: ccuraocc_reg [-b board]

Example display:

Device Name /dev/ccuraoccO

Board Serial No: 12345678 (0x00bc6lde)

LOCAL Register 0x7ffff7ffc000 Offset=0x0

LOCAL REGS

+LCL+ 0
+LCL+ 0x10
+LCL+ 0x20
+LCL+ 0x30
+LCL+ 0x40
+LCL+ 0x50
+LCL+ 0x60
+LCL+ 0x70
+LCL+ 0x80
+LCL+ 0x90
+LCL+ 0xal
+LCL+ 0x7b0
+LCL+ 0x7c0
+LCL+ 0x7d0
+LCL+ 0x7e0
+LCL+ 0x7f£0

92870121
00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

(length=2048)

00000301
00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
fEfEFEEF

00000000
00000000
00000000
00000000
00000000

CONFIG Register Ox7ffff7ffb800 Offset=0x800

CONFIG REGS

+CFG+ 0

f££££800

(length=252)

00000001

00200000

00000000
00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001

00000000
00000000
00000000
00000000
00000000

00300400

5k X o o ok ok X X X o

* % X % ot

%% ok X > ok o o X X o

* % X X o

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 83 of 98

+CFG+ 0x10 00000000 00000000 42430343 00000000 *........ BC.C Lx
+CFG+ 0x20 00000000 00000000 00000000 00000000 *. . eeeeeeeennn *
+CFG+ 0x30 00000000 00000008 00000000 00000000 *..i'i'vvwuiueeeuennn *
+CFG+ 0x40 00000000 00000000 00000000 00000000 *. . veweuwueeennn *
+CFG+ 0x50 00000000 00000000 00000000 00000000 *. . wiiueuuennn *
+CFG+ 0x60 00000000 00000000 0f000080 100f767C *.viieereennnn. v|*
+CFG+ 0x70 905610b5 000000ba 00000000 00000000 *.V....'e'eueeeuenunn *
+CFG+ 0x80 00000043 79f00000 00000100 00000080 *...CYuevvueuueunenenn *
+CFG+ 0x90 0000000a 00000003 00000000 00000000 *..'i'iiiiieueunennn *
+CFG+ 0xa0 00000000 00000000 00001011 00200000 *...uveerunnnn. Lx
+CFG+ 0xb0 00000000 00000000 00000000 00000000 *. . wiueeeeennn *
+CFG+ 0xcO 00000002 00000000 00000000 00000000 *..vvveeweueeenennn *
+CFG+ 0xdo0 00000000 00000000 00000000 00000000 *. . iiuiueueuennn *
+CFG+ 0xe0 00000000 00000000 00000050 00000000 *........... P....*
+CFG+ 0xf0 00000000 00000000 00000043 e e e C *
======= CONFIG REGISTERS =========

lasOrr =0xfff££800 @0x00000000

lasOba =0x00000001 @0x00000004

marbr =0x00200000 @0x00000008

bigend =0x00300400 @0x0000000c

eromrr =0x00000000 @0x00000010

eromba =0x00000000 @0x00000014

1brd0 =0x42430343 @0x00000018

dmrr =0x00000000 @0x0000001c

dmlbam =0x00000000 @0x00000020

dmlbai =0x00000000 @0x00000024

dmpbam =0x00000000 @0x00000028

dmcfga =0x00000000 @0x0000002c

oplfis =0x00000000 @0x00000030

oplfim =0x00000008 @0x00000034

mbox0 =0x00000000 @0x00000040

mbox1 =0x00000000 @0x00000044

mbox2 =0x00000000 @0x00000048

mbox3 =0x00000000 @0x0000004c

mbox4 =0x00000000 @0x00000050

mbox5 =0x00000000 @0x00000054

mbox6 =0x00000000 @0x00000058

mbox7 =0x00000000 @0x0000005¢c

p2ldbell =0x00000000 @0x00000060

12pdbell =0x00000000 @0x00000064

intcsr =0x0£000080 @0x00000068

cntrl =0x100f767c @0x0000006¢C

pcihidr =0x905610b5 @0x00000070

pcihrev =0x000000ba @0x00000074

dmamode0 =0x00000043 @0x00000080

dmapadr0 =0x79£00000 @0x00000084

dmaladr0 =0x00000100 @0x00000088

dmasiz0 =0x00000080 @0x0000008c

dmadpr0 =0x0000000a @0x00000090

dmamodel =0x00000003 @0x00000094

dmapadrl =0x00000000 @0x00000098

dmaladrl =0x00000000 @0x0000009c

dmasizl =0x00000000 @0x000000a0

dmadprl =0x00000000 @0x000000a4

dmacsr0 =0x00001011 @0x000000a8

dmacsrl =0x00200000 @0x000000ac

laslrr =0x00000000 @0x000000£0

laslba =0x00000000 @0x000000f4

lbrdl =0x00000043 @0x000000£8

dmdac =0x00000000 @0x000000fc

pciarb =0x00000000 @0x00000100

pabtadr =0x1cc8ffcO @0x00000104

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 84 of 98

LOCAL REGISTERS

board info =0x92870201
board csr =0x00000301
interrupt control =0x00000000
interrupt status =0x00000000
converter csr[0] =0x00000000
converter csr[l] =0x00000000
converter csr[2] =0x00000000
converter csr[3] =0x00000000
converter csr[4] =0x00000000
converter csr[5] =0x00000000
converter csr[6] =0x00000000
converter csr[7] =0x00000000
converter csr[8] =0x00000000
converter csr[9] =0x00000000
converter csr[10] =0x00000000
converter csr[11] =0x00000000
converter csr[12] =0x00000000
converter csr[13] =0x00000000
converter csr[14] =0x00000000
converter csr[15] =0x00000000
converter csr[16] =0x00000000
converter csr[17] =0x00000000
converter csr[18] =0x00000000
converter csr[19] =0x00000000
converter csr[20] =0x00000000
converter csr[21] =0x00000000
converter csr[22] =0x00000000
converter csr[23] =0x00000000
converter csr([24] =0x00000000
converter csr[25] =0x00000000
converter csr[26] =0x00000000
converter csr[27] =0x00000000
converter csr[28] =0x00000000
converter csr[29] =0x00000000
converter csr[30] =0x00000000
converter csr[31] =0x00000000
PLL sync =0x00000000
converter update select =0x00000000
channel select =0xffffffff
calib bus control =0x00000000
test bus_ control =0x00000000
calib adc control =0x00000003
fifo csr =0x85000000
fifo threshold =0x0001£fc00
WriteSampleCount =0x00004000
ScopeTrigger =0x00000002
calib adc_data =0x00000002
spl counter status =0x00000000
channel dataf[0..31]
@0x0100 00000000 00000000 00000000 00000000
@0x0120 00000000 00000000 00000000 00000000
@0x0140 00000000 00000000 00000000 00000000
@0x0160 00000000 00000000 00000000 00000000
fifo data =0x00000001
pll[PO].PLL status =0x00000000
pll[PO].PLL access =0x00000600
pll[PO].PLL read 1 =0x00000000
pll[PO].PLL read 2 =0x00000000

gain calibration[0..31]

@0x00000000
@0x00000004
@0x00000008
@0x0000000c
@0x00000020
@0x00000024
@0x00000028
@0x0000002c
@0x00000030
@0x00000034
@0x00000038
@0x0000003c
@0x00000040
@0x00000044
@0x00000048
@0x0000004c
@0x00000050
@0x00000054
@0x00000058
@0x0000005¢c
@0x00000060
@0x00000064
@0x00000068
@0x0000006¢c
@0x00000070
@0x00000074
@0x00000078
@0x0000007¢c
@0x00000080
@0x00000084
@0x00000088
@0x0000008c
@0x00000090
@0x00000094
@0x00000098
@0x0000009c
@0x000000a0
@0x000000a4
@0x000000a8
@0x000000b0O
@Q0x000000b4
@0x000000b8
@0x000000cO
@0x000000c4
@0x000000c8
@0x000000cc
@0x000000d0
@0x000000f0

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

@0x00000190
@0x000001a0
@0x000001a4
@0x000001a8
@0x000001lac

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 85 of 98

@0x0200 0000051c 000002a9 00000549 000001b9 000002fe 000004ec 00000526 0000051c
@0x0220 000002£9 0000027b 0000054c 0000058e 0000014c 00000280 00000625 00000687
@0x0240 00000394 0000069d 00000604 00000256 000000ee 00000226 0000039c 00000822
@0x0260 00000450 0000020f 0000023b 00000672 000004c7 00000373 0000037e 00000110

offset calibration[0..31]
@0x0280 0000028a 0000011a 0000028d 00000110 00000184 000002a2 000002b7 000002b9
@0x02a0 0000013b 0000012e 00000290 00000291 000000a6 00000119 00000308 00000313
@0x02c0 000001c3 0000033f 00000320 000000fb 0000009d 0000012f 000001cO 0000042b
@0x02e0 0000020c 00000117 00000125 0000036c 00000243 000001be 0000019c 0000009a

calib adc positive gain =0x8006c6f0 @0x00000400
calib adc _negative gain =0x8008759d @0x00000404
calib_adc_offset =0x00000002 @0x00000408
sprom stat addr write data =0x03££0000 @0x00000500
sprom read data =0x03££0000 @0x00000504

spi ram[0..63]
@0x0700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0720 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0740 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0760 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0780 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x07a0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x07c0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00OCOO0OOO
@0x07e0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3.1.3 ccuraocc_regedit
This is an interactive test to display and write to local, configuration and physical memory.

Usage: ccuraocc_tst [-b board]

Example display:

Device Name : /dev/ccuraocc0
Board Serial No : 12345678 (0x00bco6lde)
Initialize Board: Firmware Rev. 0x0l successful

Virtual Address: Ox7ffff7ffc000

1 = Create Physical Memory 2 = Destroy Physical memory

3 = Display Channel Data 4 = Display Driver Information

5 = Display Firmware RAM 6 = Display Physical Memory Info
7 = Display Registers (CONFIG) 8 = Display Registers (LOCAL)

9 = Dump Physical Memory 10 = Reset Board
11 = Write Register (LOCAL) 12 = Write Register (CONFIG)
13 = Write Physical Memory

Main Selection ('h'=display menu, 'g'=quit)->

3.1.4 ccuraocc_tst
This is an interactive test to exercise some of the driver features.

Usage: ccuraocc_tst [-b board]

Example display:

Device Name : /dev/ccuraocc0
Board Serial No : 12345678 (0x00bcolde)
Initialize Board: Firmware Rev. 0x0l1 successful

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 86 of 98

01 = add irg 02 = disable pci interrupts

03 = enable pci interrupts 04 = get device error

05 = get driver info 06 = get physical mem

07 = init board 08 = mmap select

09 = mmap (CONFIG registers) 10 = mmap (LOCAL registers)
11 = mmap (physical memory) 12 = munmap (physical memory)
13 = no command 14 = read operation

15 = remove irqg 16 = reset board

17 = write operation

Main Selection ('h'=display menu, 'g'=quit)->

3.1.5 ccuraocc_wreg
This is a simple test to write to the local registers at the user specified offset.

Usage: ./ccuraocc_wreg [-b board] [-o offset] [-v value]

-b board : board selection -- default board is 0

-0 offset: hex offset to write to -- default offset is 0x0

-v value: hex value to write at offset -- default value is 0x0
Example display:

Device Name : /dev/ccuraocc0

Board Serial No: 12345678 (0x00bc6lde)

Writing 0x00000000 to offset 0x0000
Read at offset 0x0000: 0x92870123

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 87 of 98

3.2 Application Program Interface (API) Access Example Tests

These set of tests are located in the .../zest/lib directory and use the API.

3.2.1 lib/ccuraocc_calibrate

This program provides an easy mechanism for users to save a calibration currently programmed in the card to
an external file (-0 option). The user can use this file as an input (-i option) to restore the board to a known
calibration setting. When a system is booted the first time, the cards are not calibrated. The user can at this
point decide to either run the board auto calibration (-A option) which takes approximately two seconds or
restore a previously calibrated setting.

Usage: ./ccuraocc calibrate [-A] [-b board] [-C ChanMask] [-f format]
[-1 inCalFile] [-o outCalFile] [-p] [-T TestBus]
[-V VoltageRange] [-X ExtClock] [-Z CalBusCtrl]
-A perform Auto Calibration)
-b <board> board #, default = 0)

(
(
-C <ChanMask> (channel selection mask, default = all channels)
-f <format 'b', '2'> (default = 'b' Offset Binary)
-1 <In Cal File> (input calibration file [input->board reg])
(
(
(

-0 <Out Cal File> output calibration file [board reg->output])

-p program board converters)
-T <TestBus> default = No Change
'b! - Calibration Bus Control
'o! - Open
'r!' - 5 Volt Reference
-V <VoltageRange> (default = 'bl0' Bipolar 10 volts)
'ub! - Unipolar 5 volts (+0 --> +5)
'ul0' - Unipolar 10 volts (+0 --> +10)
'b5'! - Bipolar 5 volts (-5 -=->+5)
'p10' - Bipolar 10 volts (-10 --> +10)
'b2.5"'" - Bipolar 2.5 volts (-2.5 --> +2.5)
-X [s,p,e] (Board External Clock Output Selection)
's' - software clock output
'p!' - PLL clock output
's' - External clock output
-7 <CalBusCtrl> (default = No Change
'g' - Ground
'n' - Negative
'o! - Open
'p!' - Positive
'0..31"- Channel Number
Example display:
Device Name /dev/ccuraoccO
Board Serial No: 12345678 (0x00bc6lde)
===> Dump to 'stdout'
#Date Wed Mar 26 12:12:32 2014
#Board Serial No: 12345678 (0x00bcb6l4e)
#Chan Offset Gain Range
#
ch00: -0.0247192382812500 -0.0198364257812500 UniPolar 5v
ch01: 0.0198364257812500 0.0057983398437500 UniPolar 5v
ch02: 0.2603149414062500 0.5737304687500000 UniPolar 5v
ch03: 0.0234985351562500 0.0814819335937500 UniPolar 5v
ch04: -0.1391601562500000 -0.2117919921875000 UniPolar 5v
ch05: 0.0100708007812500 -0.3005981445312500 UniPolar 5v
ch06: -0.0302124023437500 0.0051879882812500 UniPolar 5v
ch25: 0.1171875000000000 0.2380371093750000 UniPolar 5v

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 88 of 98

ch26: -0.1086425781250000 -0.2108764648437500 UniPolar 5v
ch27: 0.0552368164062500 0.1199340820312500 UniPolar 5v

ch28: -0.0314331054687500 -0.0656127929687500 UniPolar 5v
ch29: -0.0958251953125000 -0.1699829101562500 UniPolar 5v
ch30: -0.0079345703125000 0.0036621093750000 UniPolar 5v
ch31l: -0.0323486328125000 -0.0527954101562500 UniPolar 5v

3.2.2 lib/ccuraocc_compute_pll_clock

This test does not program the board. It simply returns to the user useful clock settings for a given frequency
as computed by the software using vendor supplied algorithms. Advanced users who have intimate knowledge
of the hardware can choose to change these settings, however results will be unpredictable.

Usage: ./ccuraocc_compute pll clock -[bfstv]
-b <board> (board #, default = 0)
-f <desired freg> (default = 13.824000 MHz)
-f <freq_ start, freq end, freq inc>
-s (Minimize VCO Speed)
-t <max error tolerance> (default = 1000 ppm)
-v (enable verbose)

Example display:

Reference Frequency (fRef - MHz) = 65.536000
Desired Frequency (fDesired - MHz) = 13.824000,13.824000,1.000000
VCO Speed Mode = Maximize
Minimum Phase Detect Freq (fPFDmin - MHz)= 1.000000

Max Error Tolerance (tol - ppm) = 100

VCO gain (kfVvCO - MHz/volt) = 520.000000
Minimum VCO Frequency (fVcoMin - MHz) = 100.000000
Maximum VCO Frequency (fVcoMax - MHz) = 400.000000
Minimum Ref Frequency (nRefMin - MHz) = 1.000000
Maximum Ref Frequency (nRefMax - MHz) = 4095.000000
Minimum FeedBk Frequency (nFbkMin - MHz) = 12.000000
Maximum FeedBk Frequency (nFbkMax - MHz) = 16383.000000

Requested Clock Freqg : 13.8240000000 MHz
Actual Clock Freqg : 13.8240000000 MHz
Frequency Delta : 0.000000 Hz
Reference Frequency Divider: 32

Feedback Frequency Divider : 189

Post Divider Product : 28 (D1=6 D2=3 D3=0)
fvCo : 387.072000 MHz
synthErr : 0.0000000000 ppm
Gain Margin : 9.367013

Tolerance Found : 0

Charge Pump : 22.5 uAmp

Loop Resistance : 12 Kohm

Loop Capacitance : 185 pF

3.2.3 lib/ccuraocc_disp

Useful program to display all the analog input channels using various read modes. This program uses the
curses library.

Usage: ./ccuraocc_disp [-A] [-a#] [-b board] [-C] [-d delay] [-D debugfile]
[-E ExpInp] [-f format] [-1 loopcnt] [-m mode]
[-n numchans] [-o outfile] [-p] [-v OutputVolts]
[-V OutputRange] [-X ExtClock]
-A (perform Auto Calibration)
-a <#> (display rolling average of # values.)
-b <board> (default = 0)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 89 of 98

Display Calibration Gain and Offset)
delay between screen refresh)

write to debug file)

Expected Input Volts@Tolerance)
default = 'b' Offset Binary)

-d <delay - msec)

-D <Debug File>

-E <ExpInpVolts>@<Tol>
-f <format 'b', '2'>

-1 <#> specify loop count)
-ma ADC Channel Readback mode [CHANNEL])
-md User DMA read mode [CHANNEL])

(
(
(
(
(
(
(
(
-mD (Driver DMA read mode [CHANNEL])
(
(
(
(
(
(
(

-mp User PIO read mode [CHANNEL])
-mP Driver PIO read mode [CHANNEL])
-n <#> number of channels to display)
-0 <#>@<Output File> average # count, write to output file)
-p program board to max clock first)
-v <output volts> default = '"10.000000")
-V <OutputRange> default = 'bl0' Bipolar 10 volts)
'ub! - Unipolar 5 volts (+0 --> +5)
'ulo' - Unipolar 10 volts (+0 --> +10)
'p5! - Bipolar 5 volts (-5 -—> +5)
'b10" - Bipolar 10 volts (-10 --> +10)
'b2.5' - Bipolar 2.5 volts (-2.5 --> +2.5)
-X [s,p,e] (Board External Clock Output Selection)
's' - software clock output
'p!' - PLL clock output
's'! - External clock output
Example display:
Board Number [-b]: 0 ==> '"/dev/ccuraoccO' (32-Channel, 10-Volt, Differential Card)
Board Serial Number : 12345678 (0x00bco6lde)
Delay [-d]: 0 milli-seconds
Expected Input Volts [-E]: === Not Specified ===
Data Format [-f]: Offset Binary
Loop Count [-1] ***Forever*x*
Read Mode [-m]: Driver DMA (Channel Data)
Write Mode : Driver PIO (Channel Data)
Program Board [-p]: No
Output Range [-V]: Bipolar 10 volts
All Converters State 1 **KkKX Reset *xxx
External Clock : **%% Not Detected ***x*
External Clock Output [-X]: External Clock
Read Error? : ===== pno ====
Calibrator ADC Data : Raw=00002 Volts= 0.00030518 [Bipolar -10V to +10V (40V p-p)]
ADC Positive : Raw=800ce828 Volts= 1.00039389
ADC Negative : Raw=80106a7c Volts= 1.00050098
ADC Offset : Raw=00005 Volts= 0.00076294
Test Bus Ctrl : Open (0x00)
Bus Control : Ground (0x00)
Scan count: 55895, Total Delta: 12.2 usec (min= 10.4,max=108.6,av= 11.6)
Raw Data
[0] [1] [2] [3] [4] [5] [6] [71]
[00-07] 00000 00000 00000 00000 00000 00000 00000 00000
[08-15] 00000 00000 00000 00000 00000 00000 00000 00000
[16-23] 00000 00000 00000 00000 00000 00000 00000 00000
[24-31] 00000 00000 00000 00000 00000 00000 00000 00000
#H### Volts #####
[0] [1] [2] [3] [4] [5] [6] [71]
00-07 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000
08-15 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000

[]
[1
[16-23] +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000
[] +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 90 of 98

Board Number [-b]: O ==> '/dev/ccuraoccO' (32-Channel, 10-Volt, Differential Card)
Board Serial Number : 12345678 (0x00bco6lde)

Delay [-d]: 0 milli-seconds
Expected Input Volts [-E]: === Not Specified ===
Data Format [-f]: Offset Binary
Loop Count [-1]: ***Forever***
Read Mode [-m]: ADC Channel Readback (Channel Data)
Write Mode : Driver PIO (Channel Data)
Program Board [-p]: No
Output Range [-V]: Bipolar 10 volts
All Converters State 1 ***X Reset *xxx
External Clock : *x*%% Not Detected ****
External Clock Output [-X]: External Clock
Read Error? : ===== no ====
Calibrator ADC Data : Raw=00000 Volts= 0.00000000 [Bipolar -10V to +10V (40V p-p)]
ADC Positive : Raw=800ce828 Volts= 1.00039389
ADC Negative : Raw=80106a7c Volts= 1.00050098
ADC Offset : Raw=00005 Volts= 0.00076294
Test Bus Ctrl : Open (0x00)
Bus Control : Channel 31 (0x3f)
Scan count: 27708, Total Delta: 2357.5 usec (min=2262.6,max=3178.1,av=2348.0)
<<<<=== [ADC Readback] Raw Data ===>>>>
[0] [1] [2] [3] [4] [5] [6] [7]
[00-07] 00002 00001 00001 00002 00000 00001 00002 00002
[08-15] 00001 00001 00001 00000 00000 00002 00001 00002
[16-23] 00002 00000 00003 00002 00001 00001 00002 00002
[24-31] 00001 00001 00001 00001 00002 00001 00003 00000
<<<<=== [ADC Readback] Volts ===>>>>
[0] [1] [2] [3] [4] [5] [6] [7]
00-07 +0.00031 +0.00015 +0.00015 +40.00031 +0.00000 +0.00015 +4+0.00031 +0.00031

[1

[] +0.00015 +0.00015 +0.00015 +0.00000 +0.00000 +0.00031 +0.00015 +0.00031
[16-23] +0.00031 +0.00000 +0.00046 +0.00031 +0.00015 +0.00015 +0.00031 +0.00031
[] +0.00015 +0.00015 +0.00015 +0.00015 +0.00031 +0.00015 +0.00046 +0.00000

3.2.4 lib/ccuraocc_identify

This test is useful in identifying a particular board from a number of installed boards, by flashing the LED for
a period of time.

Usage: ./ccuraocc_identify -[bsx]
-b <board> (board #, default = 0)
-s <seconds) (seconds to sleep, default = 10)
-5 0 (Identify Board: DISABLE)
(
(

-s <negative value> Identify Board: ENABLE forever)
-x silent)
Example display:

Jccuraocc_identify

Device Name : /dev/ccuraoccO
Board Serial No: 12345678 (0x00bco6lde)

Identify ENABLED on board 0 (LED should start flashing)
Sleeping for 10 seconds...done
Identify DISABLED on board O (LED should stop flashing)

3.2.5 lib/ccuraocc_setchan
This is a powerful test program that exercises the FIFO capabilities of the board under various write modes.

Usage: ./ccuraocc_setchan [-A] [-b board] [-C ChanMask] [-e ExtOutClk]
[-f format] [-F SampleRate] [-1 LoopCnt] [-m WriteMode]

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 91 of 98

[-n NumSamples] [-p] [-R] [-S] [-t Timeout]
[-T TestBus] [-v OutputVolts] [-V OutputRange]
[-w WaveType] [-Z CalBusCtrl]

perform Auto Calibration)

board #, default = 0)

channel selection mask, default

-b <board>
-C <ChanMask>

all channels)

(
(
(
(

-e <ExtOutClk> external output clock, default = no change)
's'! - Software Flag
'p!' - PLL Clock
'e! - External Clock

-f <format 'b', '2'> (default = 'b' Offset Binary)

-F <Sample Rate> (default = '400000.000000")

-1 <LoopCnt> (default = 0)

-m <WriteMode> (default = 'c' Channels Routine)
'c! - Write Channels Routine
'a’ - DMA (Channel)
D! - DMA (FIFO)
'p!' - PIO (Channel)
'p! - PIO (FIFO)

-n <NumSamples> Number of Samples, default = 512)

(
-p (program board converters)
-R (Reset board and exit)
-S (Synchronize Channels, default = Immediate)
-t <Timeout> (default = 30)
-T <TestBus> (default = No Change
'b!' - Calibration Bus Control
'o! - Open
'r! - 5 Volt Reference
-v <output volts> (default = '10.000000")
-V <OutputRange> (default = 'bl0' Bipolar 10 volts)
'ub! - Unipolar 5 volts (+0 --> +5)
'ulo" - Unipolar 10 volts (+0 --> +10)
'p5! - Bipolar 5 volts (=5 -—=> +5)
'b10" - Bipolar 10 volts (-10 -==-> +10)
'b2.5'" - Bipolar 2.5 volts (-2.5 --> +2.5)
-w <WaveType> (default = 'c' Constant Voltage)
'c! - Constant Voltage
'u' - Saw Wave (up)
rar’ - Saw Wave (down)
's'! - Sine Wave
'x! - Square Wave
'y! - Step Wave (down)
'z! - Step Wave (up)
't - Triangle Wave
"w' - All Wave
(Sine/Square/StepUp/Triangle/StepDown)
-X [s,p,e] (Board External Clock Output Selection)
's' - software clock output
'p!' - PLL clock output
's' - External clock output
-7 <CalBusCtrl> (default = No Change
'g' - Ground
'n' - Negative
'o! - Open
'p!' - Positive
'0..31"- Channel Number
Example display:
Device Name : /dev/ccuraoccO

Board Serial No: 12345678 (0x00bcolde)

Board Converters are Reset: Programming card

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 92 of 98

Programming Board

Programmed PLL Info...

Desired Clock Frequency = 0.4000000000 MHz

Programmed Clock Frequency = 0.4000000000 MHz

Frequency Delta = -0.0000000001 Hz

Synth Error = 0.0000000000 ppm

Requested Sample Rate = 400000.0000000000 SPS

Actual Sample Rate = 399999.9999999999 sSPS

Sample Rate Delta = -0.0000000001 SPS (-0.000000% error)

Clock Divider 1 (0x00001)

Write Mode: Programmed I/0 - Library Channel Routine

Generating a continuous Sine Wave on selected channels: <CTRL-C> to abort
Voltage Selection: 10.000000, Channel Mask Selection: Oxffffffff

8.930 usec/write: 5.09 msec period, 196.46 Hz

3.2.6 lib/ccuraocc_sshot
This is a simple program that performs immediate writes to channels in various modes.

Usage: ./ccuraocc_sshot [-A] [-b board] [-1 loopcnt] [-m mode] [-v volts]
-A (autocal - def=no autocal)
-b <board> default = 0)
-1 <#> specify loop count - def=1000000)
-md User DMA write mode [CHANNEL])

(
(
(
-mD (Driver DMA write mode [CHANNEL])
(
(
(

-mp User PIO write mode [CHANNEL])
-mP Driver PIO write mode [CHANNEL])
-v <volts> default = '10.000000")

Example display:

Device Name : /dev/ccuraoccO

Board Serial No: 12345678 (0x00bc6l4e)

local ptr : Ox7f£££7££c000

config ptr : Ox7f£f££7££fb80O0

Write Mode: Driver DMA Channel
0: delta: 10.992000 (min/max/av 10.770000/14.722000/10.963127

0: Offff 9.999847 1: Offfd 9.999542 2: 10002 10.000305 3: 10003 10.000458
4: Offff 9.999847 5: 0Offfd 9.999542 6: 10001 10.000153 7: 10006 10.000916
8: Offff 9.999847 9: 0fffd 9.999542 10: Offff 9.999847 11: 10004 10.000610
12: Offff 9.999847 13: 10002 10.000305 14: 10002 10.000305 15: 10004 10.000610

16: Offff 9.999847 17: 10006 10.000916 18: 10003 10.000458 19: 10003 10.000458
20: 10002 10.000305 21: 10003 10.000458 22: Offff 9.999847 23: 10005 10.000763
24: 10002 10.000305 25: 10005 10.000763 26: Offff 9.999847 27: 10003 10.000458
28: 10001 10.000153 29: 10001 10.000153 30: 10002 10.000305 31: 10003 10.000458

3.2.7 lib/ccuraocc_tst_lib
This is an interactive test that accesses the various supported API calls.

Usage: ccuraocc tst lib [-b board]

Example display:

Device Name: /dev/ccuraoccO
01 = Abort DMA 02 = Clear Driver Error
03 = Clear Library Error 04 = Display BOARD Registers
05 = Display CONFIG Registers 06 = Get Board CSR

07 = Get Board Information 08 = Get Channel Selection

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 93 of 98

09 = Get Driver Error 10 = Get Driver Information

11 = Get Driver Read Mode 12 = Get Driver Write Mode

13 = Get Fifo Driver Threshold 14 = Get Fifo Information

15 = Get Library Error 16 = Get Mapped Config Pointer
17 = Get Mapped Driver/Library Pointer 18 = Get Mapped Local Pointer
19 = Get Physical Memory 20 = Get Sample Rate

21 = Get Test Bus Control 22 = Get Value

23 = Initialize Board 24 = MMap Physical Memory

25 = Munmap Physical Memory 26 = Program Sample Rate

27 = Read Operation 28 = Read Channels

29 = Read Single Channel 30 = Reset Board

31 = Reset Fifo 32 = Select Driver Read Mode
33 = Select Driver Write Mode 34 = Set Channel Selection Mask
35 = Set Board CSR 36 = Set Fifo Driver Threshold
37 = Set Fifo Threshold 38 = Set Test Bus Control

39 = Set Value 40 = Stop PLL Clock

41 = Write Operation 42 = Write Single Channel

43 = Write Channels 44 = ### CALIBRATION MENU ###
45 = ### CONVERTER MENU ### 46 = ### INTERRUPT MENU ###

47 = ### PLL MENU ### 48 = ### SERIAL PROM MENU ###

Main Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 44
Command: calibration menu()

01 = Dump: Calibration Regs --> File 02 = Dump: File --> Calibration Regs

03 = Get Calibrator ADC Control 04 = Get Calibrator ADC Data

05 = Get Calibrator ADC (ALL) 06 = Get Calibrator BUS Control

07 = Get Calibration Channel Gain 08 = Get Calibration Channel Offset

09 = Perform ADC Calibration 10 = Perform Auto Calibration

11 = Perform Channel Gain Calibration 12 = Perform Channel Offset Calibration
13 = Reset ADC Calibrator 14 = Reset Selected Channel Calibration
15 = Set Calibrator ADC Control 16 = Set Calibrator ADC Negative Gain
17 = Set Calibrator ADC Offset 18 = Set Calibrator ADC Positive Gain
19 = Set Calibrator BUS Control 20 = Set Calibration Channel Gain

21 = Set Calibration Channel Offset

Calibration Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 45
Command: converter menu ()
01 = Get Converter Clock Divider 02 = Get Converter CSR
03 Get Converter Update Selection 04 Set Converter Clock Divider
05 Set Converter CSR (Config Channels)06 = Set Converter Update Selection

Converter Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 46
Command: interrupt menu ()

01 = Add Irg 02 = Disable Pci Interrupts
03 = Enable Pci Interrupts 04 = Get Interrupt Control
05 = Get Interrupt Status 06 = Get Interrupt Timeout
07 = Remove Irqg 08 = Set Interrupt Control
09 = Set Interrupt Status 10 = Set Interrupt Timeout

Interrupt Selection ('h'=display menu, 'gq'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 47
Command: pll menu ()

01 = Get PLL Information 02 = Get PLL Status

03 = Get PLL Synchronization 04 = Program PLL (Advanced)
05 = Program PLL Clock 06 = Set PLL Synchronization
07 = Shutdown PLL Clock 08 = Start PLL Clock

PLL Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 48
Command: serial prom menu()
01 = Clear Serial Prom 02 = Create Factory Calibration
03 = Create User Checkpoint 04 Read Serial PROM
05 Read Serial PROM Item 06 Restore Factory Calibration
07 = Restore User Checkpoint 08 = Serial PROM Write Override

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 94 of 98

09 = View Factory Calibration 10 = View User Checkpoint
11 = Write Serial PROM 12 = Write Serial PROM Item

Serial PROM Selection ('h'=display menu, 'q'=quit)->

3.2.8 lib/sprom/ccuraocc_sprom

This utility is available to the user to control the viewing and editing of the non-volatile serial prom
information on the board. Once again, this utility should only be used by users that are aware that incorrect
usage could result in useful information being permanently lost.

Usage: ./ccuraocc_sprom [-b board] [-C] [-D] [-F] [-i inCalFile] [-o outCalFile]
[-R] [-S serialNo] [-U num] [-V VoltageRange]
-b <board> Board #, default = 0)
-C Clear ENTIRE serial PROM first)
-D Dump entire serial prom)
-F Select factory calibration)

(
(
(
(
-1 <inCalFile> (Input calibration file [input->factoryl])
([input->user checkpoint])
-1i. (Create user checkpoint using board reg as input)
-0 <outCalFile> (Output calibration file [factory->output])
(
(
(
(
(

[user checkpoint->output])

-R Perform Factory or User Checkpoint restore)

-S <serialNo> Program board serial number)

-U <num> Select user checkpoint. <num> is 1 or 2)

-V <VoltageRange> Default = 'b10' Bipolar 10 volts)
'us' - Unipolar 5 volts (+0 --> +5)
'ulo" - Unipolar 10 volts (+0 --> +10)
'p5! - Bipolar 5 volts (=5 —-=> +5)
'b10" - Bipolar 10 volts (-10 -=-> +10)
'b2.5' - Bipolar 2.5 volts (-2.5 --> +2.5)

Cannot use '-F' and '-U#' in same command line
e.g. ./ccuraocc _sprom -F -V ul0 -o CalOut -> Dump Factory ul0 to CalOut

./ccuraocc_sprom -F -V b2.5 -i CalIn -> Program Factory b2.5 sprom using
CalIn file

./ccuraocc_sprom -Ul -i Calln -> Create user checkpoint 1 using
CallIn file

./ccuraocc_sprom -U 2 -i. -> Create user checkpoint 2 using
memory register

./ccuraocc_sprom -U2 -o CalOut -> Dump user checkpoint 2 to CalOut

./ccuraocc_sprom -F -R -> Restore memory registers using
factory settings

./ccuraocc_sprom -U 1 -R -> Restore memory registers using

user checkpoint 1

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 95 of 98

Appendix A: Calibration

that prior to calibration, any sensitive equipment be disconnected; otherwise it could result in damage

i Warning: Whenever auto-calibration is performed, the channel outputs will be affected. It is important
to the equipment.

Several library calls are provided to assist the user in calibrating the board. Additionally, the board contains
factory calibration information for each of the output voltage ranges. Users can view this information using the
supplied API or the serial prom test utility ccuraocc_sprom. Though the API and test utility provides capability to
edit and change the factory calibration, users should refrain from making any changes to it, as it will no longer
reflect the factory calibration shipped with the card. Users can use the factory calibration to restore the calibration
information stored for each configured channel prior to commencing a test run. The restore API will update the
calibration information for all the channels based on their current voltage range. Note that the factory calibration
values were obtained under specific conditions, such as temperature, that may not be the same as the user
application. In most cases it will always be better to perform auto-calibration after the board is stabilized in the
user environment.

Additionally, the users can perform up to two independent user controlled checkpoints where the active channel
configuration and calibration information is stored in the serial prom for all the channels. At any time, the user can
restore either of the two checkpoints with an API call or the serial prom test utility prior to a test run. These
checkpoints will allow the user to store specific values pertaining to their calibration conditions.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 96 of 98

Appendix B: Important Considerations

This section tries to highlight cause and effect on the behavior of the hardware and software which can assist the user
in developing their applications:

e The driver allows multiple applications to open the same card concurrently, however, this is not a
recommended procedure and should only be considered during debugging and testing otherwise unpredictable
results can be observed.

e When the board CSR has all the converters in the reset state, changing the channel configurations or writing to
the channel registers will have no effect. The user must first activate the converters prior to issuing any
changes to the channel configuration or channel data registers.

e Changing the channel configuration information will have no effect on the output until data is either written to
the channel registers or the samples in the FIFO are actually being output.

e Changing the channel selection mask will have immediate affect and therefore any data already in the FIFO
will cause different association of samples to channels. In short, if the FIFO is outputting samples, the data
appearing on the output lines could possibly belong to the wrong channel. The channel selection mask has no
effect when writing to channel registers.

e If an underflow or overflow condition is detected (FIFO empty), the user must reset the FIFO to clear the
status and ensure that the FIFO is empty before adding samples to the FIFO so that the hardware and software
are synchronized.

e While samples are being output via the FIFO, it is possible that the users may attempt to change the sample
rate. Though this may be possible, there may be an abrupt change in the samples with possibly a short period
of steady samples when the clock is stopped and restarted.

o If the user changes the clock divider while the FIFO is sending data out, the output frequency will be reflected
immediately on all active channels.

e In order to synchronize channels, the channel configuration registers need to have their synchronization flags
set and additionally, for any data to be output, at least one of the active channels need to have the synchronize
update flag set. The moment the hardware sees a channel data (either in FIFO outputting or channel register
writes) with the synchronize update flag set, all channels with the synchronization flags in their channel
configuration will be output simultaneously.

o It takes a finite time to write samples to the channel registers and be output to the hardware. Writing too fast
to the same channel register could cause loss of samples. Users need to monitor the channel busy flag in the
channel configuration register, prior to writing to the channel registers.

e This card has a channel configuration on a per channel basis, unlike other vendor cards which have a single
channel configuration for all channels. This means that writing the same raw channel could have possibly
different output results as determined by the individual channel configuration.

e The API allows the user to write to any part of the serial prom. Normally, the user should not touch the header
information and the factory settings, otherwise, vital board information could be lost. They only writes to the
serial prom by the user should be related to the user checkpoints.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 97 of 98

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 98 of 98

