

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 1 of 74

Software Interface
CCURDSCC (WC-AD3224-DS)

PCIe 32-Channel Delta Sigma

Converter

Card (DSCC)

Driver ccurdscc (WC-AD3224-DS) Rev 6.3

OS RedHawk Rev 6.3

Vendor Concurrent Computer Corporation

Hardware PCIe 32-Channel Delta Sigma Converter Card (CP-AD3224-DS)

Date August 2
nd

, 2013

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 2 of 74

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 3 of 74

Table of Contents

1. INTRODUCTION .. 6

1.1 Related Documents ... 6

2. SOFTWARE SUPPORT .. 6

2.1 Direct Driver Access ... 6
2.1.1 open(2) system call ... 6
2.1.2 ioctl(2) system call .. 6
2.1.3 mmap(2) system call ... 9
2.1.4 read(2) system call .. 10

2.2 Application Program Interface (API) Access ... 11
2.2.1 ccurDSCC_Abort_DMA() .. 13
2.2.2 ccurDSCC_Add_Irq() ... 13
2.2.3 ccurDSCC_Allocate_DMA_Continuous_Buffers() ... 13
2.2.4 ccurDSCC_Clear_Driver_Error() ... 14
2.2.5 ccurDSCC_Clear_Lib_Error() .. 14
2.2.6 ccurDSCC_Close() ... 14
2.2.7 ccurDSCC_Compute_PLL_Clock() ... 15
2.2.8 ccurDSCC_Configure_Channels() ... 16
2.2.9 ccurDSCC_Configure_Channels_Info() ... 17
2.2.10 ccurDSCC_Data_To_Volts() .. 18
2.2.11 ccurDSCC_Disable_Pci_Interrupts() .. 18
2.2.12 ccurDSCC_Enable_Pci_Interrupts() ... 19
2.2.13 ccurDSCC_Fraction_To_Hex() .. 19
2.2.14 ccurDSCC_Get_Board_CSR() ... 19
2.2.15 ccurDSCC_Get_Board_Info() .. 20
2.2.16 ccurDSCC_Get_Converter_Cal_CSR() .. 20
2.2.17 ccurDSCC_Get_Converter_CSR() ... 21
2.2.18 ccurDSCC_Get_Converter_Info() .. 22
2.2.19 ccurDSCC_Get_Converter_Negative_Cal() ... 23
2.2.20 ccurDSCC_Get_Converter_Offset_Cal() ... 24
2.2.21 ccurDSCC_Get_Converter_Positive_Cal() .. 24
2.2.22 ccurDSCC_Get_Driver_Error() .. 25
2.2.23 ccurDSCC_Get_Driver_Info() .. 26
2.2.24 ccurDSCC_Get_Driver_Read_Mode() ... 27
2.2.25 ccurDSCC_Get_Fifo_Channel_Select() ... 27
2.2.26 ccurDSCC_Get_Fifo_Info() ... 28
2.2.27 ccurDSCC_Get_Interrupt_Control() ... 29
2.2.28 ccurDSCC_Get_Interrupt_Status() ... 30
2.2.29 ccurDSCC_Get_Interrupt_Timeout_Seconds() .. 30
2.2.30 ccurDSCC_Get_Lib_Error() ... 31
2.2.31 ccurDSCC_Get_Mapped_Config_Ptr() .. 31
2.2.32 ccurDSCC_Get_Mapped_Local_Ptr() .. 32
2.2.33 ccurDSCC_Get_Num_DMA_Continuous_Buffers() ... 32
2.2.34 ccurDSCC_Get_Open_File_Descriptor() ... 32
2.2.35 ccurDSCC_Get_Physical_Memory().. 33
2.2.36 ccurDSCC_Get_PLL_Info() ... 33
2.2.37 ccurDSCC_Get_PLL_Status() .. 35
2.2.38 ccurDSCC_Get_PLL_Sync() .. 35
2.2.39 ccurDSCC_Get_Value() ... 36
2.2.40 ccurDSCC_Hex_To_Fraction() .. 38
2.2.41 ccurDSCC_Initialize_Board()... 38
2.2.42 ccurDSCC_Initialize_PLL_Input_Struct() ... 38
2.2.43 ccurDSCC_MMap_Physical_Memory() .. 39

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 4 of 74

2.2.44 ccurDSCC_Munmap_Physical_Memory() ... 40
2.2.45 ccurDSCC_Open() .. 40
2.2.46 ccurDSCC_Perform_Auto_Calibration() .. 41
2.2.47 ccurDSCC_Perform_External_Input_Negative_Calibration() 41
2.2.48 ccurDSCC_Perform_External_Input_Offset_Calibration() 42
2.2.49 ccurDSCC_Perform_External_Input_Positive_Calibration() 42
2.2.50 ccurDSCC_Perform_Negative_Calibration() ... 43
2.2.51 ccurDSCC_Perform_Offset_Calibration() .. 43
2.2.52 ccurDSCC_Perform_Positive_Calibration() ... 44
2.2.53 ccurDSCC_Program_CPM_Advanced() .. 44
2.2.54 ccurDSCC_Program_PLL_Advanced() .. 46
2.2.55 ccurDSCC_Program_PLL_Clock() .. 48
2.2.56 ccurDSCC_Read() .. 49
2.2.57 ccurDSCC_Read_Channels() ... 49
2.2.58 ccurDSCC_Read_Channels_Calibration() .. 50
2.2.59 ccurDSCC_Remove_DMA_Continuous_Buffers() .. 51
2.2.60 ccurDSCC_Remove_Irq() .. 51
2.2.61 ccurDSCC_Reset_Board() .. 51
2.2.62 ccurDSCC_Reset_Converter() .. 52
2.2.63 ccurDSCC_Reset_DMA_Continuous_Buffers() .. 52
2.2.64 ccurDSCC_Reset_Fifo() ... 52
2.2.65 ccurDSCC_Select_Driver_Read_Mode() ... 53
2.2.66 ccurDSCC_Set_Board_CSR() .. 53
2.2.67 ccurDSCC_Set_Converter_Cal_CSR() .. 54
2.2.68 ccurDSCC_Set_Converter_Clock_Source() ... 55
2.2.69 ccurDSCC_Set_Converter_Negative_Cal() .. 55
2.2.70 ccurDSCC_Set_Converter_Offset_Cal() .. 56
2.2.71 ccurDSCC_Set_Converter_Positive_Cal() ... 56
2.2.72 ccurDSCC_Set_Fifo_Channel_Select() .. 57
2.2.73 ccurDSCC_Set_Fifo_Threshold() ... 57
2.2.74 ccurDSCC_Set_Interrupt_Control() ... 57
2.2.75 ccurDSCC_Set_Interrupt_Status() .. 58
2.2.76 ccurDSCC_Set_Interrupt_Timeout_Seconds() ... 59
2.2.77 ccurDSCC_Set_PLL_Sync() .. 59
2.2.78 ccurDSCC_Set_Value() .. 60
2.2.79 ccurDSCC_Shutdown_PLL_Clock() .. 61
2.2.80 ccurDSCC_Start_PLL_Clock() .. 61
2.2.81 ccurDSCC_Stop_PLL_Clock()... 62
2.2.82 ccurDSCC_Volts_To_Data() .. 62
2.2.83 ccurDSCC_Wait_For_Interrupt() ... 63
2.2.84 ccurDSCC_Write() ... 63
2.2.85 ccurDSCC_Write_Channels_Calibration() ... 64

3. TEST PROGRAMS .. 65

3.1 Direct Driver Access Example Tests .. 65
3.1.1 ccurdscc_disp .. 65
3.1.2 ccurdscc_get_sps .. 66
3.1.3 ccurdscc_rdreg .. 66
3.1.4 ccurdscc_regedit ... 66
3.1.5 ccurdscc_tst... 67
3.1.6 ccurdscc_wreg .. 67

3.2 Application Program Interface (API) Access Example Tests ... 67
3.2.1 ccurdscc_calibrate ... 67
3.2.2 ccurdscc_compute_pll_clock .. 69
3.2.3 ccurdscc_disp .. 69
3.2.4 ccurdscc_fifo ... 72

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 5 of 74

3.2.5 ccurdscc_tst_lib .. 73

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 6 of 74

1. Introduction

This document provides the software interface to the ccurdscc driver which communicates with the

Concurrent Computer Corporation PCI Express 32-Channel Delta Sigma Converter Card (DSCC). For

additional information on programming, please refer to the Concurrent Computer Corporation PCIe 32-

Channel Delta Sigma Converter Cards (DSCC) Design Specification (No. 0610099) document.

The software package that accompanies this board provides the ability for advanced users to communicate

directly with the board via the driver ioctl(2) and mmap(2) system calls. When programming in this mode, the

user needs to be intimately familiar with both the hardware and the register programming interface to the

board. Failure to adhere to correct programming will result in unpredictable results.

Additionally, the software package is accompanied with an extensive set of application programming interface

(API) calls that allow the user to access all capabilities of the board. The API allows the user the ability to

communicate directly with the board through the ioctl(2) and mmap(2) system calls. In this case, there is a risk

of conflicting with API calls and therefore should only be used by advanced users who are intimately familiar

with, the hardware, board registers and the driver code.

Various example tests have been provided in the test and test/lib directories to assist the user in writing their

applications.

1.1 Related Documents

 Analog Input Driver Installation on RedHawk Release Notes by Concurrent Computer Corporation.

 PCIe 32-Channel Delta Sigma Converter Card (DSCC) Design Specification (No. 0610099) by

Concurrent Computer Corporation.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel system calls (Direct

Driver Access) or the supplied API. Both approaches are identified below to assist the user in software development.

2.1 Direct Driver Access

2.1.1 open(2) system call

In order to access the board, the user first needs to open the device using the standard system call

open(2).

 int fp;

 fp = open(“/dev/ccurdscc0”, O_RDWR);

 The file pointer ‘fp’ is then used as an argument to other system calls. The user can also supply the

O_NONBLOCK flag if the user does not wish to block waiting for reads to complete. In that case, if the read

is not satisfied, the call will fail. The device name specified is of the format “/dev/ccurdscc<num>” where

num is a digit 0..9 which represents the board number that is to be accessed.

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the

control/response will depend on the specific ioctl command.

int status;

int arg;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 7 of 74

status = ioctl(fp, <IOCTL_COMMAND>, &arg);

where, ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND> is one of

the ioctl commands below and arg is a pointer to an argument that could be anything and is dependent on the

command being invoked. If no argument is required for a specific command, then set to NULL.

Driver IOCTL command:

IOCTL_CCURDSCC_ABORT_DMA

IOCTL_CCURDSCC_ADD_IRQ

IOCTL_CCURDSCC_ALLOCATE_DMA_BUFFERS

IOCTL_CCURDSCC_DISABLE_PCI_INTERRUPTS

IOCTL_CCURDSCC_ENABLE_PCI_INTERRUPTS

IOCTL_CCURDSCC_GET_DRIVER_ERROR

IOCTL_CCURDSCC_GET_DRIVER_INFO

IOCTL_CCURDSCC_GET_NUM_DMA_BUFFERS

IOCTL_CCURDSCC_GET_PHYSICAL_MEMORY

IOCTL_CCURDSCC_GET_READ_MODE

IOCTL_CCURDSCC_INIT_BOARD

IOCTL_CCURDSCC_INTERRUPT_TIMEOUT_SECONDS

IOCTL_CCURDSCC_MMAP_SELECT

IOCTL_CCURDSCC_NO_COMMAND

IOCTL_CCURDSCC_PRESERVE_LIB_INFO

IOCTL_CCURDSCC_READ_EEPROM

IOCTL_CCURDSCC_REMOVE_DMA_BUFFERS

IOCTL_CCURDSCC_REMOVE_IRQ

IOCTL_CCURDSCC_RESET_BOARD

IOCTL_CCURDSCC_RESET_DMA_CONTINUOUS_BUFFERS

IOCTL_CCURDSCC_SELECT_READ_MODE

IOCTL_CCURDSCC_WAIT_FOR_INTERRUPT

IOCTL_CCURDSCC_WRITE_EEPROM

IOCTL_CCURDSCC_ABORT_DMA: This ioctl does not have any arguments. Its purpose is to abort any

DMA already in progress. It will also reset the FIFO and the DMA continuous buffers.

IOCTL_CCURDSCC_ADD_IRQ: This ioctl does not have any arguments. Its purpose is to setup the driver

interrupt handler to handle interrupts. If MSI interrupts are possible, then they will be enabled. Normally,

there is no need to call this ioctl as the interrupt handler is already added when the driver is loaded. This ioctl

is only invoked if the user has issued the IOCTL_CCURDSCC_REMOVE_IRQ call earlier to remove the

interrupt handler.

IOCTL_CCURDSCC_ALLOCATE_DMA_BUFFERS: This ioctl creates DMA buffers that are to be used

during reads, when operating in the CCURDSCC_DMA_CONTINUOUS mode. The argument is a pointer to

an unsigned short that specifies the number of buffers to be allocated. If the buffer count is 0, no buffers are

allocated and the user will be unable to perform reads using the CCURDSCC_DMA_CONTINUOUS mode.

Each DMA buffer allocated is 48K 32-bit samples (¾ the FIFO size of 64K samples) or 192K bytes. By

default, when the driver is loaded, 10 DMA buffers are allocated for each board that is present in the system.

This number can be changed at driver load time by editing the ccurdscc_config file located in the driver

installation directory and re-installing the driver (make load). The driver may fail to allocate buffers if the

count is very large and DMA buffers are not available in the system. Basically, the only reason to increase this

number is if the application has periods during a run where it takes time to read the next buffer. In that case,

the driver is queuing data into the allocated buffers to be used by the application at a later time. If the

application fails to read the data prior to the driver exhausting the allocated buffers, then an overflow

condition will be reported.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 8 of 74

IOCTL_CCURDSCC_DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is

to disable PCI interrupts. This call shouldn’t be used during normal reads as calls could time out. The driver

handles enabling and disabling interrupts during its normal course of operation.

IOCTL_CCURDSCC_ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is to

enable PCI interrupts. This call shouldn’t be used during normal reads as calls could time out. The driver

handles enabling and disabling interrupts during its normal course of operation.

IOCTL_CCURDSCC_GET_DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the

ccurdscc_user_error_t structure. Information on the structure is located in the ccurdscc_user.h include file.

The error returned is the last reported error by the driver. If the argument pointer is NULL, the current error is

reset to CCURDSCC_SUCCESS.

IOCTL_CCURDSCC_GET_DRIVER_INFO: The argument supplied to this ioctl is a pointer to the ccurdscc_

ccurdscc_driver_info_t structure. Information on the structure is located in the ccurdscc_user.h include file.

This ioctl provides useful driver information.

IOCTL_CCURDSCC_GET_NUM_DMA_BUFFERS: The argument is a pointer to an unsigned short. This

call returns the number of DMA buffers that have been allocated by the driver.

IOCTL_CCURDSCC_GET_PHYSICAL_MEMORY: The argument supplied to this ioctl is a pointer to the

ccurdscc_phys_mem_t structure. Information on the structure is located in the ccurdscc_user.h include file. If

physical memory is not allocated, the call will fail, otherwise the call will return the physical memory address

and size in bytes. The only reason to request and get physical memory from the driver is to allow the user to

perform DMA operations and by-pass the driver and library. Care must be taken when performing user level

DMA as incorrect programming could lead to unpredictable results including but not limited to corrupting the

kernel and any device connected to the system.

IOCTL_CCURDSCC_GET_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned long

int. The value returned will be one of the read modes as defined by the enum

CCURDSCC_DRIVER_READ_MODE located in the ccurdscc_user.h include file.

IOCTL_CCURDSCC_INIT_BOARD: This ioctl does not have any arguments. This call resets the board to a

known initial default state. This call is currently identical to the IOCTL_CCURDSCC_RESET_BOARD call.

IOCTL_CCURDSCC_INTERRUPT_TIMEOUT_SECONDS: The argument supplied to this ioctl is a pointer

to an int. It allows the user to change the default time out from 30 seconds to user supplied time out. This is

the time that the FIFO read call will wait before it times out. The call could time out if either the FIFO fails to

fill or a DMA fails to complete. The device should have been opened in the block mode (O_NONBLOCK not

set) for reads to wait for an operation to complete.

IOCTL_CCURDSCC_MMAP_SELECT: The argument to this ioctl is a pointer to the

ccurdscc_mmap_select_t structure. Information on the structure is located in the ccurdscc_user.h include file.

This call needs to be made prior to the mmap(2) system call so as to direct the mmap(2) call to perform the

requested mapping specified by this ioctl. The three possible mappings that are performed by the driver are to

mmap the local register space (CCURDSCC_SELECT_LOCAL_MMAP), the configuration register space

(CCURDSCC_SELECT_CONFIG_MMAP) and a physical memory

(CCURDSCC_SELECT_PHYS_MEM_MMAP) that is created by the the mmap(2) system call.

IOCTL_CCURDSCC_NO_COMMAND: This ioctl does not have any arguments. It is only provided for

debugging purpose and should not be used as it serves no purpose for the user.

IOCTL_CCURDSCC_PRESERVE_LIB_INFO: The argument to this ioctl is a pointer to the

_ccurdscc_preserve_t structure. Information on the structure is located in the ccurdscc_user.h include file.

This call is specifically used by the API to control its initialization and should not be used by the user.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 9 of 74

IOCTL_CCURDSCC_READ_EEPROM: The argument to this ioctl is a pointer to the ccurdscc_eeprom_t

structure. Information on the structure is located in the ccurdscc_user.h include file. This call is specifically

used by the supplied eeprom application and should not be used by the user.

IOCTL_CCURDSCC_REMOVE_DMA_BUFFERS: This ioctl does not have any arguments. The purpose of

this call is to remove the previously allocated DMA buffers. Once the DMA buffers are freed, the user will be

unable to perform reads in the CCURDSCC_DMA_CONTINUOUS mode until DMA buffers have been

reallocated with the IOCTL_CCURDSCC_ALLOCATE_DMA_BUFFERS call.

IOCTL_CCURDSCC_REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to remove the

interrupt handler that was previously setup. The interrupt handler is managed internally by the driver and the

library. The user should not issue this call, otherwise reads will time out.

IOCTL_CCURDSCC_RESET_BOARD: This ioctl does not have any arguments. This call resets the board to a

known initial default state. Additionally, the Converters, Clocks and FIFO are reset along with internal

pointers and clearing of interrupts. This call is currently identical to the IOCTL_CCURDSCC_INIT_BOARD

call.

IOCTL_CCURDSCC_RESET_DMA_CONTINUOUS_BUFFERS: This ioctl does not have any arguments.

The DMA pointers are managed internally by the driver and the library. This call resets the pointers and

should not normally be called by the user.

IOCTL_CCURDSCC_SELECT_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned

long int. The value set will be one of the read modes as defined by the enum

CCURDSCC_DRIVER_READ_MODE located in the ccurdscc_user.h include file.

IOCTL_CCURDSCC_WAIT_FOR_INTERRUPT: The argument to this ioctl is a pointer to the

ccurdscc_driver_int_t structure. Information on the structure is located in the ccurdscc_user.h include file.

The user can wait for either a FIFO low to high transition interrupt or a DMA complete interrupt. If a time out

value greater than zero is specified, the call will time out after the specified seconds, otherwise it will not time

out.

IOCTL_CCURDSCC_WRITE_EEPROM: The argument to this ioctl is a pointer to the ccurdscc_eeprom_t

structure. Information on the structure is located in the ccurdscc_user.h include file. This call is specifically

used by the supplied eeprom application and should not be used by the user.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board registers

or create and map a physical memory that can be used for user DMA. Prior to making this system call, the

user needs to issue the ioctl(2) system call with the IOCTL_CCURDSCC_MMAP_SELECT command. When

mapping either the local board registers or the configuration board registers, the ioctl call returns the size of

the register mapping which needs to be specified in the mmap(2) call. In the case of mapping a physical

memory, the size of physical memory to be created is supplied to the mmap(2) call.

int *munmap_local_ptr;

ccurdscc_local_ctrl_data_t *local_ptr;

ccurdscc_mmap_select_t mmap_select;

unsigned long mmap_local_size;

mmap_select.select = CCURDSCC_SELECT_LOCAL_MMAP;

mmap_select.offset=0;

mmap_select.size=0;

 ioctl(fp, IOCTL_CCURDSCC_MMAP_SELECT,(void *)&mmap_select);

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 10 of 74

 mmap_local_size = mmap_select.size;

 munmap_local_ptr = (int *) mmap((caddr_t)0, map_local_size,

 (PROT_READ|PROT_WRITE), MAP_SHARED, fp, 0);

 local_ptr = (ccurdscc_local_ctrl_data_t *)munmap_local_ptr;

 local_ptr = (ccurdscc_local_ctrl_data_t *)((char *)local_ptr +

 mmap_select.offset);

.

.

.

if(munmap_local_ptr != NULL)

 munmap((void *)munmap_local_ptr, mmap_local_size);

2.1.4 read(2) system call

Prior to issuing this call to read the FIFO, the user needs to select the type of read operation they would like

to perform. The only reason for providing various read modes is because the board allows it and that it gives

the user the ability to choose the optimal mode for their particular application. The read mode is specified by

the ioctl call with the IOCTL_CCURDSCC_SELECT_READ_MODE command. The following are the

possible read modes:

CCURDSCC_PIO_CHANNEL: This mode returns the data from the latest converted channels from 1 to 32

channels. The relative offset within the returned buffer determines the channel number. The data content is a

24-bit analog input raw value. The driver uses Programmed I/O to perform this operation. In this mode,

samples read are the latest samples that are being continuously converted by the hardware.

CCURDSCC_PIO_FIFO: This mode returns 32-bit data values from FIFO using Programmed I/O operation.

Each 32-bit data value read contains a 24-bit channel data in the low three bytes of the word, while the most

significant byte contains the channel number. The FIFO can contain any channels in any order. This is

dependent on the channel mask used and the clock speed specified for the particular converter. If the user

stops issuing reads and causes the FIFO to fill, a FIFO overflow error would result.

CCURDSCC_DMA_CHANNEL: This mode of operation is identical to the CCURDSCC_PIO_CHANNEL

mode with the exception that the driver performs a DMA operation instead of Programmed I/O to complete

the operation. In this mode, samples read are the latest samples that are being continuously converted by the

hardware. Normally, this is the preferred of the two modes as it takes less processing time and is faster.

CCURDSCC_DMA_FIFO: This mode is identical to the CCURDSCC_PIO_FIFO mode with the exception

that the driver performs a DMA operation instead of Programmed I/O to complete the operation. Normally,

this is the preferred of the two modes as it takes less processing time and is faster.

CCURDSCC_DMA_CONTINUOUS: This mode is similar to the CCURDSCC_DMA_FIFO with the

exception that when the first read is issued, the driver will automatically fill internal DMA buffers with data

as long as DMA buffers are available. This allows applications that have delays between reads to buffer the

data without any loss, until of course the system runs out of allocated buffers at which point, a FIFO

overflow error would result.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 11 of 74

2.2 Application Program Interface (API) Access

The API is the recommended method of communicating with the board for most users. The following are a list of

calls that are available.

 ccurDSCC_Abort_DMA()

 ccurDSCC_Add_Irq()

 ccurDSCC_Allocate_DMA_Continuous_Buffers()

 ccurDSCC_Clear_Driver_Error()

 ccurDSCC_Clear_Lib_Error()

 ccurDSCC_Close()

 ccurDSCC_Compute_PLL_Clock()

 ccurDSCC_Configure_Channels()

 ccurDSCC_Configure_Channels_Info()

 ccurDSCC_Data_To_Volts()

 ccurDSCC_Disable_Pci_Interrupts()

 ccurDSCC_Enable_Pci_Interrupts()

 ccurDSCC_Fraction_To_Hex()

 ccurDSCC_Get_Board_CSR()

 ccurDSCC_Get_Board_Info()

 ccurDSCC_Get_Converter_Cal_CSR()

 ccurDSCC_Get_Converter_CSR()

 ccurDSCC_Get_Converter_Info()

 ccurDSCC_Get_Converter_Negative_Cal()

 ccurDSCC_Get_Converter_Offset_Cal()

 ccurDSCC_Get_Converter_Positive_Cal()

 ccurDSCC_Get_Driver_Error()

 ccurDSCC_Get_Driver_Info()

 ccurDSCC_Get_Driver_Read_Mode()

 ccurDSCC_Get_Fifo_Channel_Select()

 ccurDSCC_Get_Fifo_Info()

 ccurDSCC_Get_Interrupt_Control()

 ccurDSCC_Get_Interrupt_Status()

 ccurDSCC_Get_Interrupt_Timeout_Seconds()

 ccurDSCC_Get_Lib_Error()

 ccurDSCC_Get_Mapped_Config_Ptr()

 ccurDSCC_Get_Mapped_Local_Ptr()

 ccurDSCC_Get_Num_DMA_Continuous_Buffers()

 ccurDSCC_Get_Open_File_Descriptor()

 ccurDSCC_Get_Physical_Memory()

 ccurDSCC_Get_PLL_Info()

 ccurDSCC_Get_PLL_Status()

 ccurDSCC_Get_PLL_Sync()

 ccurDSCC_Get_Value()

 ccurDSCC_Hex_To_Fraction()

 ccurDSCC_Initialize_Board()

 ccurDSCC_Initialize_PLL_Input_Struct()

 ccurDSCC_MMap_Physical_Memory()

 ccurDSCC_Munmap_Physical_Memory()

 ccurDSCC_Open()

 ccurDSCC_Perform_Auto_Calibration()

 ccurDSCC_Perform_External_Input_Negative_Calibration()

 ccurDSCC_Perform_External_Input_Offset_Calibration()

 ccurDSCC_Perform_External_Input_Positive_Calibration()

 ccurDSCC_Perform_Negative_Calibration()

 ccurDSCC_Perform_Offset_Calibration()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 12 of 74

 ccurDSCC_Perform_Positive_Calibration()

 ccurDSCC_Program_CPM_Advanced()

 ccurDSCC_Program_PLL_Advanced()

 ccurDSCC_Program_PLL_Clock()

 ccurDSCC_Read()

 ccurDSCC_Read_Channels()

 ccurDSCC_Read_Channels_Calibration()

 ccurDSCC_Remove_DMA_Continuous_Buffers()

 ccurDSCC_Remove_Irq()

 ccurDSCC_Reset_Board()

 ccurDSCC_Reset_Converter()

 ccurDSCC_Reset_DMA_Continuous_Buffers()

 ccurDSCC_Reset_Fifo()

 ccurDSCC_Select_Driver_Read_Mode()

 ccurDSCC_Set_Board_CSR()

 ccurDSCC_Set_Converter_Cal_CSR()

 ccurDSCC_Set_Converter_Clock_Source()

 ccurDSCC_Set_Converter_Negative_Cal()

 ccurDSCC_Set_Converter_Offset_Cal()

 ccurDSCC_Set_Converter_Positive_Cal()

 ccurDSCC_Set_Fifo_Channel_Select()

 ccurDSCC_Set_Fifo_Threshold()

 ccurDSCC_Set_Interrupt_Control()

 ccurDSCC_Set_Interrupt_Status()

 ccurDSCC_Set_Interrupt_Timeout_Seconds()

 ccurDSCC_Set_PLL_Sync()

 ccurDSCC_Set_Value()

 ccurDSCC_Shutdown_PLL_Clock()

 ccurDSCC_Start_PLL_Clock()

 ccurDSCC_Stop_PLL_Clock()

 ccurDSCC_Volts_To_Data()

 ccurDSCC_Wait_For_Interrupt()

 ccurDSCC_Write()

 ccurDSCC_Write_Channels_Calibration()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 13 of 74

2.2.1 ccurDSCC_Abort_DMA()

 This call will abort any DMA operation that is in progress. On-board input FIFO is reset and so are DMA

CONTINUOUS mode pointers. Normally, the user should not use this call unless they are providing their

own DMA handling.

/**

 int ccurDSCC_Abort_DMA(void *Handle)

 Description: Abort any DMA in progress

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_LOCAL_REGION (error)

 CCURDSCC_LIB_IOCTL_FAILED (error)

 ***/

2.2.2 ccurDSCC_Add_Irq()

This call will add the driver interrupt handler if it has not been added. Normally, the user should not use this

call unless they want to disable the interrupt handler and then re-enable it.

/**

 int ccurDSCC_Add_Irq(void *Handle)

 Description: By default, the driver assigns an interrupt handler to handle

 device interrupts. If the interrupt handler was removed using

 the ccurDSCC_Remove_Irq(), then this call adds it back.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 ***/

2.2.3 ccurDSCC_Allocate_DMA_Continuous_Buffers()

This call creates DMA buffers that are to be used during reads, when operating in the

CCURDSCC_DMA_CONTINUOUS mode. If the buffer count is 0, no buffers are allocated and the user will

be unable to perform reads using the CCURDSCC_DMA_CONTINUOUS mode. Each DMA buffer allocated

is 48K 32-bit samples (¾ the FIFO size of 64K samples) or 192K bytes. By default, when the driver is loaded,

10 DMA buffers are allocated for each board that is present in the system. This number can be changed at

driver load time by editing the ccurdscc_config file located in the driver installation directory and re-installing

the driver (make load). The driver may fail to allocate buffers if the count is very large and DMA buffers are

not available in the system. Basically, the only reason to increase this number is if the application has periods

during a run where it takes time to read the next buffer. In that case, the driver is queuing data into the

allocated buffers to be used by the application at a later time. If the application fails to read the data prior to

the driver exhausting the allocated buffers, then an overflow condition will be reported.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 14 of 74

/**

 int ccurDSCC_Allocate_DMA_Continuous_Buffers(void *Handle, ushort nbufs)

 Description: Allocate DMA Continuous Buffers

 Input: void *Handle (handle pointer)

 ushort nbufs (number of buffers)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **

2.2.4 ccurDSCC_Clear_Driver_Error()

This call resets the last driver error that was maintained internally by the driver to CCURDSCC_SUCCESS.

 /**

 int ccurDSCC_Clear_Driver_Error(void *Handle)

 Description: Clear any previously generated driver related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.5 ccurDSCC_Clear_Lib_Error()

 This call resets the last library error that was maintained internally by the API.

/**

 int ccurDSCC_Clear_Lib_Error(void *Handle)

 Description: Clear any previously generated library related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 **

2.2.6 ccurDSCC_Close()

 This call is used to close an already opened device using the ccurDSCC_Open() call.

/**

 int ccurDSCC_Close(void *Handle)

 Description: Close a previously opened device.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 15 of 74

 CCURDSCC_LIB_NOT_OPEN (device not open)

 **/

2.2.7 ccurDSCC_Compute_PLL_Clock()

This call is supplied for advanced users who wish to understand the parameters involved in programming a

PLL clock based on a set of requirements. No actual board programming is performed with this call. The call

simply accepts a set of inputs and computes the parameters needed to program a particular PLL for the given

inputs. Refer to the ccurdscc_pll.c file located in the …/test/lib directory for usage of this call. Refer to the

…/lib/ccurdscc_lib.h include file for structure definitions.

/**

 int ccurDSCC_Compute_PLL_Clock(void *Handle, ccurdscc_PLL_setting_t *input,

 ccurdscc_solution_t *solution)

 Description: Return the value of the specified PLL information.

 Input: void *Handle (handle pointer)

 ccurdscc_PLL_setting_t *input (pll input setting)

 Output: ccurdscc_solution_t *solution; (pointer to solution struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

**

Following is the information supplied to the call:

typedef struct {

 double fDesired; /* MHz - Desired Output Clock Frequency */

 int max_tol; /* ppm - parts/million - Maximum tolerance */

 int maximizeVCOspeed; /* Maximize VCO Speed flag */

 double fRef; /* MHz - Reference Input PLL Oscillator

 Frequency */

 double fPFDmin; /* MHz - Minimum allowable Freq at phase-

 detector */

 double kfVCO; /* MHz/Volts - VCO gain to be used */

 double fVcoMin; /* MHz - Minimum VCO frequency */

 double fVcoMax; /* MHz - Maximum VCO frequency */

 double nRefMin; /* minimum reference divider */

 double nRefMax; /* maximum reference divider */

 double nFbkMin; /* minimum feedback divider */

 double nFbkMax; /* maximum feedback divider */

} ccurdscc_PLL_setting_t;

Refer to the ccurDSCC_Get_PLL_Info() call for information on the ccurdscc_PLL_struct_t structure.

Returned solution for the input is under:

typedef struct {

 int product;

 int post_divider1;

 int post_divider2;

 int post_divider3;

} ccurdscc_postDividerData_t;

typedef struct {

 int NREF;

 int NFBK;

 ccurdscc_postDividerData_t NPOST;

 double synthErr;

 double fVCO;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 16 of 74

 double ClkFreq;

 int tol_found;

 double gain_margin;

 uint charge_pump_current;

 uint loop_resistor;

 uint loop_capacitor;

 ccurdscc_PLL_struct_t setup;

} ccurdscc_solution_t;

2.2.8 ccurDSCC_Configure_Channels()

This board is divided into four channel groups. Each channel group can be associated with an individual PLL

clock. There are four independent PLL clocks available in this board. The user can program all four channel

groups to be driven by a single PLL clock or conversely, have each channel group connected to its own PLL

clock operating at different sampling rates. This is the main API that allows a user to program a channel group

and associate with a PLL clock. The API internals takes care of determining the closest clock frequency and

programming the PLL and associating with a PLL based on user request. Prior to completion, this call checks

to see if there are any active PLLs that are no longer being used by any converters and if so, it shuts them

down to reduce any noise.

/**

 int ccurDSCC_Configure_Channels(void *Handle,

 ccurdscc_configure_channels_t *cc)

 Description: Configure Channels

 Input: void *Handle (handle pointer)

 ccurdscc_configure_channels_t *cc (pointer to config struct)

 Output: ccurdscc_configure_channels_t *cc (pointer to config struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 ***/

The ccurdscc_configure_channels_t struct is used both as input and output arguments to this call.

typedef struct {

 uint clock_select; /* user supplied - clock selection */

 uint channel_group; /* user supplied - converter selection */

 double sample_rate; /* user supplied - samples/second */

 uint high_pass_filter; /* user supplied - high pass filter mask */

 double actual_sample_rate; /* returned - samples/second */

 uint assigned_clock; /* returned - selected clock */

 double actual_clock_freq; /* returned - actual clock frequency */

} ccurdscc_configure_channels_t;

clock_select: This argument requests a particular clock for the channel group. If a particular clock is already

assigned with a different channel group, the call will fail if programming the clock is going to be different

from its current programming. In short, the sample rate selected by the shared channel groups must be such

that re-programming of the common PLL is not necessary. The user can always let this API select the clock

by using the CCURDSCC_CLOCK_AUTO_SELECT argument instead of specifying the clock. In that case,

this call will associate the requested channel group with either a PLL that is in use if no PLL programming is

required or it will select a new PLL and dedicate to the selected channel group. Options to this argument are:

 CCURDSCC_CLOCK_PLL_0

 CCURDSCC_CLOCK_PLL_1

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 17 of 74

 CCURDSCC_CLOCK_PLL_2

 CCURDSCC_CLOCK_PLL_3

 CCURDSCC_CLOCK_EXTERNAL

 CCURDSCC_CLOCK_AUTO_SELECT

 channel_group: This argument selects one of the following channel groups:

 CCURDSCC_CHANNELS_0_7

 CCURDSCC_CHANNELS_8_15

 CCURDSCC_CHANNELS_16_23

 CCURDSCC_CHANNELS_24_31

sample_rate: This argument selects the samples/second (SPS) programming for the channel group. The range

of sample_rate is 2000 SPS to 216000 SPS. The call will make the best effort to program the board as close to

this rate as possible. The actual sample rate that the board was programmed to will be returned in the

actual_sample_rate.

high_pass_filter: This argument is used to enable or disable a high pass filter that exists for each channel.

When a particular bit is set LOW in the filter register, the corresponding high pass filter is enabled. Mask

values can be:

 CCURDSCC_CONVERTER_MASK_CH0

 CCURDSCC_CONVERTER_MASK_CH1

 CCURDSCC_CONVERTER_MASK_CH2

 CCURDSCC_CONVERTER_MASK_CH3

 CCURDSCC_CONVERTER_MASK_CH4

 CCURDSCC_CONVERTER_MASK_CH5

 CCURDSCC_CONVERTER_MASK_CH6

 CCURDSCC_CONVERTER_MASK_CH7

 CCURDSCC_CONVERTER_MASK_ALL

actual_sample_rate: This argument returns to the user the actual sample rate that the call was able to

program the board to. This may be different from the requested sample rate and is restricted by the hardware.

In most cases, the actual sample rate will be very close to the requested sample rate.

assigned_clock: This argument returns to the user the actual clock that has been assigned to the converter. It

can be one of the following:

 CCURDSCC_CLOCK_PLL_0

 CCURDSCC_CLOCK_PLL_1

 CCURDSCC_CLOCK_PLL_2

 CCURDSCC_CLOCK_PLL_3

 CCURDSCC_CLOCK_EXTERNAL

actual_clock_frequency: This argument returns to the user the actual clock frequency that the board PLL

was programmed to. The clock frequency can range from 512 KHz to 13.824 MHz.

2.2.9 ccurDSCC_Configure_Channels_Info()

This call provides some useful information about actual PLL frequency and which converters are connected to

which PLL. If the print argument is set to CCURDSCC_TRUE, the information will be printed.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 18 of 74

/**

 int ccurDSCC_Configure_Channels_Info(void *Handle,

 _ccurdscc_preserve_t *info, int print)

 Description: Return Configured Channel Info in preserved structure

 Input: void *Handle (handle pointer)

 int print (print flag)

 Output: _ccurdscc_preserve_t *info (pointer to preserve struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 **

typedef struct {

 double actual_freq;

 uint converter_multiplier[CCURDSCC_MAX_CONVERTERS];

} _programmed_pll_t;

typedef struct {

 int action; /* read(0)/write(1) preserve action */

 double last_specified_fRef;

 _programmed_pll_t programmed_PLL[CCURDSCC_PLL_MAX_WITH_EXTERNAL];

 /* +1 for external clock */

} _ccurdscc_preserve_t;

2.2.10 ccurDSCC_Data_To_Volts()

This routine takes a raw analog input data value and converts it to a floating point voltage based on the

supplied format. Format can be CCURDSCC_TWOS_COMPLEMENT or CCURDSCC_OFFSET_BINARY.

/**

 double ccurDSCC_Data_To_Volts(void *Handle, int us_data, int format)

 Description: Convert Data to volts

 Input: void *Handle (handle pointer)

 int us_data (data to convert)

 int format (conversion format)

 Output: none

 Return: double volts (returned volts)

 **/

2.2.11 ccurDSCC_Disable_Pci_Interrupts()

The purpose of this call is to disable PCI interrupts. This call shouldn’t be used during normal reads as calls

could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

 int ccurDSCC_Disable_Pci_Interrupts(void *Handle)

 Description: Disable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 19 of 74

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.12 ccurDSCC_Enable_Pci_Interrupts()

The purpose of this call is to enable PCI interrupts. This call shouldn’t be used during normal reads as calls

could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

 int ccurDSCC_Enable_Pci_Interrupts(void *Handle)

 Description: Enable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.13 ccurDSCC_Fraction_To_Hex()

This call simply converts a floating point decimal fraction to a hexadecimal value. It is used internally by the

library for setting negative and positive calibration.

/**

 int ccurDSCC_Fraction_To_Hex(double Fraction, uint *value)

 Description: Convert Fractional Decimal to Hexadecimal

 Input: double Fraction (fraction to convert)

 Output: uint *value; (converted hexadecimal value)

 Return: 1 (call failed)

 0 (good return)

 **

2.2.14 ccurDSCC_Get_Board_CSR()

This call can be used to get the data and the external clock output settings.

/**

 int ccurDSCC_Get_Board_CSR(void *Handle, ccurdscc_board_csr_t *bcsr)

 Description: Get Board Control and Status information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_board_csr_t *bcsr (pointer to board csr)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **

typedef struct {

 int data_format; /* data format selection */

 int external_clock_output; /* external clock selection */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 20 of 74

} ccurdscc_board_csr_t;

// data_format

- CCURDSCC_OFFSET_BINARY

- CCURDSCC_TWOS_COMPLEMENT

//external_clock_output

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_0

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_1

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_2

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_3

- CCURDSCC_EXT_CLOCK_OUTPUT_INPUT_LINE

2.2.15 ccurDSCC_Get_Board_Info()

This call returns the board id, the board type and the firmware revision level for the selected board. This board

id is 0x9277 and board type is 0x1.

/**

 int ccurDSCC_Get_Board_Info(void *Handle, ccurdscc_board_info_t *binfo)

 Description: Get Board Information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_board_info_t *binfo (pointer to board info)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **

typedef struct {

 uint board_id;

 uint board_type;

 uint firmware_rev;

 double input_voltage_range;

 double cal_ref_voltage;

} ccurdscc_board_info_t;

2.2.16 ccurDSCC_Get_Converter_Cal_CSR()

This call returns the current calibration voltage control register setting.

/**

 int ccurDSCC_Get_Converter_Cal_CSR(void *Handle,

 ccurdscc_converter_cal_csr_t *cal)

 Description: Get the Converter Calibration Voltage

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_csr_t *cal; (pointer to cal csr struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 ***/

typedef struct {

 uint voltage_select;

} ccurdscc_converter_cal_csr_t;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 21 of 74

Voltage Select is one of the following:

- CCURDSCC_CAL_VOLT_SEL_INPUT_SIGNAL : Input Signal

- CCURDSCC_CAL_VOLT_SEL_GROUND : Ground (All Converters)

- CCURDSCC_CAL_VOLT_SEL_PLUS_REFERENCE : +Ref (All Converters) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_MINUS_REFERENCE : -Ref (All Converters) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_00_07_GROUND : Ground (Converter 0)

- CCURDSCC_CAL_VOLT_SEL_00_07_PLUS_REFERENCE : +Ref (Converter 0) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_00_07_MINUS_REFERENCE: -Ref (Converter 0) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_08_15_GROUND : Ground (Converter 1)

- CCURDSCC_CAL_VOLT_SEL_08_15_PLUS_REFERENCE : +Ref (Converter 1) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_08_15_MINUS_REFERENCE: -Ref (Converter 1) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_16_23_GROUND : Ground (Converter 2)

- CCURDSCC_CAL_VOLT_SEL_16_23_PLUS_REFERENCE : +Ref (Converter 2) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_16_23_MINUS_REFERENCE: -Ref (Converter 2) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_24_31_GROUND : Ground (Converter 3)

- CCURDSCC_CAL_VOLT_SEL_24_31_PLUS_REFERENCE : +Ref (Converter 3) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_24_31_MINUS_REFERENCE: -Ref (Converter 3) (-<ref> Volts)

2.2.17 ccurDSCC_Get_Converter_CSR()

This call returns control information on the selected converter.

/**

 int ccurDSCC_Get_Converter_CSR(void *Handle, CCURDSCC_CONVERTER conv,

 ccurdscc_converter_csr_t *ccsr)

 Description: Get Converter Control and Status information

 Input: void *Handle (handle pointer)

 CCURDSCC_CONVERTER conv (selected converter)

 Output: ccurdscc_board_csr_t *ccsr (pointer to converter csr)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

// CCURDSCC_CONVERTER

- CCURDSCC_CONVERTER_0

- CCURDSCC_CONVERTER_1

- CCURDSCC_CONVERTER_2

- CCURDSCC_CONVERTER_3

typedef struct {

 uint clock_source;

 uint converter_reset;

 uint converter_overflow;

 uint converter_interface_busy;

} ccurdscc_converter_csr_t;

// clock_source

- CCURDSCC_CLOCK_PLL_0

- CCURDSCC_CLOCK_PLL_1

- CCURDSCC_CLOCK_PLL_2

- CCURDSCC_CLOCK_PLL_3

- CCURDSCC_CLOCK_EXTERNAL

// converter_reset

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 22 of 74

- CCURDSCC_CONVERTER_ACTIVE

- CCURDSCC_CONVERTER_ACTIVATE (same as CCURDSCC_CONVERTER_ACTIVE)

- CCURDSCC_CONVERTER_RESET

// converter_overflow

- CCURDSCC_CONVERTER_NO_OVERFLOW

- CCURDSCC_CONVERTER_OVERFLOW

// converter_interface_busy

- CCURDSCC_CONVERTER_IDLE

- CCURDSCC_CONVERTER_BUSY

2.2.18 ccurDSCC_Get_Converter_Info()

This call returns the programmed information for the selected converter. If an error code of

CCURDSCC_LIB_CONVERTER_RESET is returned, no converter information can be returned.

/**

 int ccurDSCC_Get_Converter_Info(void *Handle, CCURDSCC_CONVERTER conv,

 ccurdscc_CPM_struct_t *info)

 Description: Return the value of the specified Converter information.

 Input: void *Handle (handle pointer)

 CCURDSCC_CONVERTER conv (converter selection)

 Output: ccurdscc_CPM_struct_t *info; (pointer to converter info struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_CONVERTER_RESET (converter in reset state)

 **/

typedef struct {

 uint chip_revision; /* [3:0] */

 uint chip_id; /* [3:0] */

 uint mode_select; /* CCURDSCC_MODE_SELECT_SSM */

 /* CCURDSCC_MODE_SELECT_DSM */

 /* CCURDSCC_MODE_SELECT_QSM */

 uint serial_format; /* CCURDSCC_SERIAL_FORMAT_LEFT_JUSTIFIED */

 /* CCURDSCC_SERIAL_FORMAT_12S */

 /* CCURDSCC_SERIAL_FORMAT_TDM */

 uint clock_divider; /* CCURDSCC_CLOCK_DIVIDER_1 */

 /* CCURDSCC_CLOCK_DIVIDER_2 */

 /* CCURDSCC_CLOCK_DIVIDER_2a */

 /* CCURDSCC_CLOCK_DIVIDER_4 */

 /* CCURDSCC_CLOCK_DIVIDER_1_5 */

 /* CCURDSCC_CLOCK_DIVIDER_3 */

 /* CCURDSCC_CLOCK_DIVIDER_3a */

 uint control_port_enable; /* CCURDSCC_CONTROL_PORT_DISABLE */

 /* CCURDSCC_CONTROL_PORT_ENABLE */

 uint overflow_status; /* CCURDSCC_CONVERTER_MASK_CH0 */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 23 of 74

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint overflow_mask; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint high_pass_filter; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint power_down; /* CCURDSCC_POWER_DOWN_MASK_CH0_1 */

 /* CCURDSCC_POWER_DOWN_MASK_CH2_3 */

 /* CCURDSCC_POWER_DOWN_MASK_CH4_5 */

 /* CCURDSCC_POWER_DOWN_MASK_CH6_7 */

 uint power_down_oscillator; /* CCURDSCC_POWER_DOWN_OSCILLATOR_ENABLE */

 /* CCURDSCC_POWER_DOWN_OSCILLATOR_DISABLE */

 uint power_down_bandgap; /* CCURDSCC_POWER_DOWN_BANDGAP_ENABLE */

 /* CCURDSCC_POWER_DOWN_BANDGAP_DISABLE */

 uint mute_control; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint serial_data; /* CCURDSCC_SERIAL_DATA_MASK_CH0_1 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH2_3 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH4_5 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH6_7 */

} ccurdscc_CPM_struct_t;

2.2.19 ccurDSCC_Get_Converter_Negative_Cal()

This call returns the raw and floating point value of the negative calibration for each of the channels that is

maintained by the card. This negative gain is automatically applied to the analog input data that is returned for

each channel by the hardware. This calibration information is set using the

ccurDSCC_Set_Converter_Negative_Cal() call.

/**

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 24 of 74

 int ccurDSCC_Get_Converter_Negative_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Return the Converter Negative Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.20 ccurDSCC_Get_Converter_Offset_Cal()

This call returns the raw and floating point value of the offset calibration for each of the channels that is

maintained by the card. This zero offset is automatically applied to the analog input data that is returned for

each channel by the hardware. This calibration information is set using the

ccurDSCC_Set_Converter_Offset_Cal() call.

/**

 int ccurDSCC_Get_Converter_Offset_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Return the Converter Positive Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.21 ccurDSCC_Get_Converter_Positive_Cal()

This call returns the raw and floating point value of the positive calibration for each of the channels that is

maintained by the card. This positive gain is automatically applied to the analog input data that is returned for

each channel by the hardware. This calibration information is set using the

ccurDSCC_Set_Converter_Positive_Cal() call.

/**

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 25 of 74

 int ccurDSCC_Get_Converter_Positive_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Return the Converter Positive Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.22 ccurDSCC_Get_Driver_Error()

This call returns the last error generated by the driver.

/**

 int ccurDSCC_Get_Driver_Error(void *Handle, ccurdscc_user_error_t *ret_err)

 Description: Get the last error generated by the driver.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_user_error_t *ret_err (error struct pointer)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

#define CCURDSCC_ERROR_NAME_SIZE 64

#define CCURDSCC_ERROR_DESC_SIZE 128

typedef struct _ccurdscc_user_error_t {

 uint error; /* error number */

 char name[CCURDSCC_ERROR_NAME_SIZE]; /* error name used in driver */

 char desc[CCURDSCC_ERROR_DESC_SIZE]; /* error description */

} ccurdscc_user_error_t;

enum {

 CCURDSCC_SUCCESS = 0,

 CCURDSCC_INVALID_PARAMETER,

 CCURDSCC_FIFO_THRESHOLD_TIMEOUT,

 CCURDSCC_DMA_TIMEOUT,

 CCURDSCC_OPERATION_CANCELLED,

 CCURDSCC_RESOURCE_ALLOCATION_ERROR,

 CCURDSCC_INVALID_REQUEST,

 CCURDSCC_FAULT_ERROR,

 CCURDSCC_BUSY,

 CCURDSCC_ADDRESS_IN_USE,

 CCURDSCC_USER_INTERRUPT_TIMEOUT,

 CCURDSCC_DMA_INCOMPLETE,

};

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 26 of 74

2.2.23 ccurDSCC_Get_Driver_Info()

This call returns internal information that is maintained by the driver.

/**

 int ccurDSCC_Get_Driver_Info(void *Handle, ccurdscc_driver_info_t *info)

 Description: Get device information from driver.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_driver_info_t *info (info struct pointer)

 -- char version[12]

 -- char built[32]

 -- char module_name[16]

 -- int board_index

 -- char board_desc[32]

 -- int bus

 -- int slot

 -- int func

 -- int vendor_id

 -- int sub_vendor_id

 -- int board_id

 -- int board_type

 -- int sub_device_id

 -- int board_info

 -- int msi_support

 -- int irqlevel

 -- int firmware

 -- double input_voltage_range

 -- double cal_ref_voltage;

 -- ccurdscc_driver_int_t interrupt

 -- int Ccurdscc_Max_Region

 -- ccurdscc_dev_region_t mem_region[CCURDSCC_MAX_REGION]

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

typedef struct {

 unsigned long long count;

 u_int status;

 u_int mask;

 int timeout_seconds;

} ccurdscc_driver_int_t;

typedef struct

{

 uint physical_address;

 uint size;

 uint flags;

 uint *virtual_address;

} ccurdscc_dev_region_t;

#define CCURDSCC_MAX_REGION 32

typedef struct

{

 char version[12]; /* driver version */

 char built[32]; /* driver date built */

 char module_name[16]; /* driver name */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 27 of 74

 int board_index; /* board index */

 char board_desc[32]; /* board description */

 int bus; /* bus number */

 int slot; /* slot number */

 int func; /* function number */

 int vendor_id; /* vendor id */

 int sub_vendor_id; /* sub-vendor id */

 int board_id; /* board id */

 int board_type; /* board type */

 int sub_device_id; /* sub device id */

 int board_info; /* board_info if applicable */

 int msi_support; /* msi flag 1=MSI support, 0=NO MSI */

 int irqlevel; /* IRQ level */

 int firmware; /* firmware number if applicable */

 double input_voltage_range;/* board input voltage range */

 double cal_ref_voltage; /* calibration reference voltage */

 ccurdscc_driver_int_t interrupt; /* interrupt information */

 int Ccurdscc_Max_Region; /*kernel DEVICE_COUNT_RESOURCE*/

 ccurdscc_dev_region_t mem_region[CCURDSCC_MAX_REGION];

} ccurdscc_driver_info_t;

2.2.24 ccurDSCC_Get_Driver_Read_Mode()

This call returns the current driver read mode. When a read(2) system call is issued, it is this mode that

determines the type of read being performed by the driver.

/**

 int ccurDSCC_Get_Driver_Read_Mode(void *Handle,

 CCURDSCC_DRIVER_READ_MODE *mode)

 Description: Get current read mode that will be selected by the 'read()' call

 Input: void *Handle (handle pointer)

 Output: CCURDSCC_DRIVER_READ_MODE *mode (pointer to read mode)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region error)

 CCURDSCC_LIB_IOCTL_FAILED (ioctl error)

 **/

typedef enum {

 CCURDSCC_PIO_CHANNEL,

 CCURDSCC_PIO_FIFO,

 CCURDSCC_DMA_CHANNEL,

 CCURDSCC_DMA_FIFO,

 CCURDSCC_DMA_CONTINUOUS,

} CCURDSCC_DRIVER_READ_MODE;

2.2.25 ccurDSCC_Get_Fifo_Channel_Select()

The hardware is capable of selecting which active channels are to be monitored and converted data placed in

the FIFO. This call returns the current channel selection mask. By default, all active channels are selected for

storage into the FIFO. The mask has channel 0 as the least significant bit and channel 31 as the most

significant bit.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 28 of 74

/**

 int ccurDSCC_Get_Fifo_Channel_Select(void *Handle, uint *fifo_chan_sel)

 Description: Get FIFO Channel Select Mask

 Input: void *Handle (handle pointer)

 Output: uint *fifo_chan_sel (pointer to fifo chan select)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.26 ccurDSCC_Get_Fifo_Info()

This call provides additional information about the FIFO. The FIFO needs to be in the active state and at least

one active channel to be selected before converted data can be placed in the FIFO.

/**

 int ccurDSCC_Get_Fifo_Info(void *Handle, ccurdscc_fifo_info_t *fifo)

 Description: Get FIFO Control and Status information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_board_csr_t *fifo (pointer to board csr)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region error)

 **/

typedef struct {

 uint reset;

 uint overflow;

 uint underflow;

 uint full;

 uint threshold_exceeded;

 uint empty;

 uint data_counter;

 uint threshold;

} ccurdscc_fifo_info_t;

// reset

- CCURDSCC_FIFO_ACTIVE

- CCURDSCC_FIFO_ACTIVATE (same as CCURDSCC_FIFO_ACTIVE)

- CCURDSCC_FIFO_RESET

// overflow

- CCURDSCC_FIFO_NO_OVERFLOW

- CCURDSCC_FIFO_OVERFLOW

// underflow

- CCURDSCC_FIFO_NO_UNDERFLOW

- CCURDSCC_FIFO_UNDERFLOW

// full

- CCURDSCC_FIFO_NOT_FULL

- CCURDSCC_FIFO_FULL

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 29 of 74

// threshold_exceeded

- CCURDSCC_FIFO_THRESHOLD_NOT_EXCEEDED

- CCURDSCC_FIFO_THRESHOLD_EXCEEDED

// empty

- CCURDSCC_FIFO_NOT_EMPTY

- CCURDSCC_FIFO_EMPTY

// data_counter

- this field ranges from 0 to 65536 entries representing the number of samples currently present in the FIFO.

// threshold

- this field ranges from 0 to 65536 entries representing the number of samples in the FIFO where the threshold interrupt

should occur.

2.2.27 ccurDSCC_Get_Interrupt_Control()

This call displays the current state of the Interrupt Control Register.

/**

 int ccurDSCC_Get_Interrupt_Control(void *Handle, ccurdscc_interrupt_t *intr)

 Description: Get Interrupt Control information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_interrupt_t *intr (pointer to interrupt control)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 int global_int;

 int fifo_buffer_lo_hi_int;

 int plx_local_int;

} ccurdscc_interrupt_t;

// global_int

- CCURDSCC_GLOBAL_INT_DISABLE

- CCURDSCC_GLOBAL_INT_ENABLE

// fifo_buffer_lo_hi_int

- CCURDSCC_FIFO_INT_LO_HI_DISABLE

- CCURDSCC_FIFO_INT_LO_HI_ENABLE

// plx_local_int

- CCURDSCC_PLX_LOCAL_INT_DISABLE

- CCURDSCC_PLX_LOCAL_INT_ENABLE

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 30 of 74

2.2.28 ccurDSCC_Get_Interrupt_Status()

This call displays the current state of the Interrupt Status Register.

/**

 int ccurDSCC_Get_Interrupt_Status(void *Handle, ccurdscc_interrupt_t *intr)

 Description: Get Interrupt Status information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_interrupt_t *intr (pointer to interrupt status)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 int global_int;

 int fifo_buffer_lo_hi_int;

 int plx_local_int;

} ccurdscc_interrupt_t;

// global_int

- not used

// fifo_buffer_lo_hi_int

- CCURDSCC_FIFO_INT_LO_HI_IGNORE

- CCURDSCC_FIFO_INT_LO_HI_RESET

// plx_local_int

- CCURDSCC_PLX_LOCAL_INT_IGNORE

- CCURDSCC_PLX_LOCAL_INT_RESET

2.2.29 ccurDSCC_Get_Interrupt_Timeout_Seconds()

This call returns the read time out maintained by the driver. It is the time that the FIFO read call will wait

before it times out. The call could time out if either the FIFO fails to fill or a DMA fails to complete. The

device should have been opened in the block mode (O_NONBLOCK not set) for reads to wait for the

operation to complete.

/**

 int ccurDSCC_Get_Interrupt_Timeout_Seconds(void *Handle,

 int *int_timeout_secs)

 Description: Get Interrupt Timeout Seconds

 Input: void *Handle (handle pointer)

 Output: int *int_timeout_secs (pointer to int tout secs)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_IOCTL_FAILED (ioctl error)

 **/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 31 of 74

2.2.30 ccurDSCC_Get_Lib_Error()

This call provides detailed information about the last library error that was maintained by the API.

/**

 int ccurDSCC_Get_Lib_Error(void *Handle, ccurdscc_lib_error_t *lib_error)

 Description: Get last error generated by the library.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_lib_error_t *lib_error (error struct pointer)

 -- uint error (error number)

 -- char name[CCURDSCC_LIB_ERROR_NAME_SIZE] (error name)

 -- char desc[CCURDSCC_LIB_ERROR_DESC_SIZE] (error description)

 -- int line_number (error line number in lib)

 -- char function[CCURDSCC_LIB_ERROR_FUNC_SIZE]

 (library function in error)

 Return: CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 Last Library Error

 **/

typedef struct _ccurdscc_lib_error_t {

 uint error; /* lib error number */

 char name[CCURDSCC_LIB_ERROR_NAME_SIZE]; /* error name used in lib */

 char desc[CCURDSCC_LIB_ERROR_DESC_SIZE]; /* error description */

 int line_number; /* line number in library */

 char function[CCURDSCC_LIB_ERROR_FUNC_SIZE];

 /* library function */

} ccurdscc_lib_error_t;

2.2.31 ccurDSCC_Get_Mapped_Config_Ptr()

If the user wishes to bypass the API and communicate directly with the board configuration registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurdscc_user.h include file that is supplied with the driver.

/**

 int ccurDSCC_Get_Mapped_Config_Ptr(void *Handle,

 ccurdscc_config_local_data_t **config_ptr)

 Description: Get mapped configuration pointer.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_config_local_data_t **config_ptr (config struct ptr)

 -- structure in ccurdscc_user.h

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_CONFIG_REGION (config region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 32 of 74

2.2.32 ccurDSCC_Get_Mapped_Local_Ptr()

If the user wishes to bypass the API and communicate directly with the board control and data registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurdscc_user.h include file that is supplied with the driver.

/**

 int ccurDSCC_Get_Mapped_Local_Ptr(void *Handle,

 ccurdscc_local_ctrl_data_t **local_ptr)

 Description: Get mapped local pointer.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_local_ctrl_data_t **local_ptr (local struct ptr)

 -- structure in ccurdscc_user.h

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.33 ccurDSCC_Get_Num_DMA_Continuous_Buffers()

This call returns the number of DMA buffers that are being used by the driver when operating in the

CCURDSCC_DMA_CONTINUOUS read mode.

/**

 int ccurDSCC_Get_Num_DMA_Continuous_Buffers(void *Handle, ushort *nbufs)

 Description: Get Number of DMA Continuous Buffers

 Input: void *Handle (handle pointer)

 ushort *nbufs (pointer to number of buffers)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

2.2.34 ccurDSCC_Get_Open_File_Descriptor()

When the library ccurDSCC_Open() call is successfully invoked, the board is opened using the system call

open(2). The file descriptor associated with this board is returned to the user with this call. This call allows

advanced users to bypass the library and communicate directly with the driver with calls like read(2), ioctl(2),

etc. Normally, this is not recommended as internal checking and locking is bypassed and the library calls can

no longer maintain integrity of the functions. This is only provided for advanced users who want more control

and are aware of the implications.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 33 of 74

/**

 int ccurDSCC_Get_Open_File_Descriptor(void *Handle, int *fd)

 Description: Get Open File Descriptor

 Input: void *Handle (handle pointer)

 Output: int *fd (open file descriptor)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

2.2.35 ccurDSCC_Get_Physical_Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by the

ccurDSCC_Mmap_Physical_Memory() call. The physical memory is allocated by the user when they wish to

perform their own DMA and bypass the API. Once again, this call is only useful for advanced users.

/**

 int ccurDSCC_Get_Physical_Memory(void *Handle,

 ccurdscc_phys_mem_t *phys_mem)

 Description: Get previously mmapped() physical memory address and size

 Input: void *Handle (handle pointer)

 Output: ccurdscc_phys_mem_t *phys_mem (mem struct pointer)

 -- void *phys_mem

 -- u_int phys_mem_size

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

typedef struct {

 void *phys_mem; /* physical memory: physical address */

 unsigned int phys_mem_size; /* physical memory: memory size - bytes */

} ccurdscc_phys_mem_t;

2.2.36 ccurDSCC_Get_PLL_Info()

This call returns the programmed information for the selected PLL.

/**

 int ccurDSCC_Get_PLL_Info(void *Handle, CCURDSCC_PLL pll,

 ccurdscc_PLL_struct_t *info)

 Description: Return the value of the specified PLL information.

 Input: void *Handle (handle pointer)

 CCURDSCC_PLL pll (pll selection)

 Output: ccurdscc_PLL_struct_t *info; (pointer to pll info struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 34 of 74

typedef struct {

 uint ref_freq_divider; /* [11:00] */

 uint ref_freq_divider_src; /* CCURDSCC_REF_DIVIDER_SRC_OSCILLATOR */

 /* CCURDSCC_REF_DIVIDER_SRC_PIN */

 uint shutdown_1; /* CCURDSCC_RUNNING */

 /* CCURDSCC_SHUTDOWN */

 uint post_divider1; /* CCURDSCC_POST_DIVIDER1_1 */

 /* CCURDSCC_POST_DIVIDER1_2 */

 /* CCURDSCC_POST_DIVIDER1_3 */

 /* CCURDSCC_POST_DIVIDER1_4 */

 /* CCURDSCC_POST_DIVIDER1_5 */

 /* CCURDSCC_POST_DIVIDER1_6 */

 /* CCURDSCC_POST_DIVIDER1_7 */

 /* CCURDSCC_POST_DIVIDER1_8 */

 /* CCURDSCC_POST_DIVIDER1_9 */

 /* CCURDSCC_POST_DIVIDER1_10*/

 /* CCURDSCC_POST_DIVIDER1_11 */

 /* CCURDSCC_POST_DIVIDER1_12 */

 uint post_divider2; /* CCURDSCC_POST_DIVIDER2_1 */

 /* CCURDSCC_POST_DIVIDER2_2 */

 /* CCURDSCC_POST_DIVIDER2_3 */

 /* CCURDSCC_POST_DIVIDER2_4 */

 /* CCURDSCC_POST_DIVIDER2_5 */

 /* CCURDSCC_POST_DIVIDER2_6 */

 /* CCURDSCC_POST_DIVIDER2_7 */

 /* CCURDSCC_POST_DIVIDER2_8 */

 /* CCURDSCC_POST_DIVIDER2_9 */

 /* CCURDSCC_POST_DIVIDER2_10*/

 /* CCURDSCC_POST_DIVIDER2_11 */

 /* CCURDSCC_POST_DIVIDER2_12 */

 uint post_divider3; /* CCURDSCC_POST_DIVIDER3_1 */

 /* CCURDSCC_POST_DIVIDER3_2 */

 /* CCURDSCC_POST_DIVIDER3_4 */

 /* CCURDSCC_POST_DIVIDER3_8 */

 uint feedback_divider; /* [13:00] */

 uint feedback_divider_src; /* CCURDSCC_FEEDBACK_DIVIDER_SRC_VCO */

 /* CCURDSCC_FEEDBACK_DIVIDER_SRC_POST */

 uint clock_output; /* CCURDSCC_CLOCK_OUTPUT_PECL */

 /* CCURDSCC_CLOCK_OUTPUT_CMOS */

 uint charge_pump_current; /* CCURDSCC_CHARGE_PUMP_CURRENT_2UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_4_5UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_11UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_22_5UA */

 uint loop_resistor; /* CCURDSCC_LOOP_RESISTOR_400K */

 /* CCURDSCC_LOOP_RESISTOR_133K */

 /* CCURDSCC_LOOP_RESISTOR_30K */

 /* CCURDSCC_LOOP_RESISTOR_12K */

 uint loop_capacitor; /* CCURDSCC_LOOP_CAPACITOR_185PF */

 /* CCURDSCC_LOOP_CAPACITOR_500PF */

 uint sync_enable; /* CCURDSCC_SYNC_DISABLE */

 /* CCURDSCC_SYNC_ENABLE */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 35 of 74

 uint sync_polarity; /* CCURDSCC_SYNC_POLARITY_NEGATIVE */

 /* CCURDSCC_SYNC_POLARITY_POSITIVE */

 uint shutdown_2; /* CCURDSCC_RUNNING */

 /* CCURDSCC_SHUTDOWN */

 /* below should not be supplied by user */

 double last_specified_fRef; /* Last Specified Reference Frequency */

 double fActual; /* Computed PLL Clock Frequency */

 uint post_divider_product; /* post divider product */

} ccurdscc_PLL_struct_t;

2.2.37 ccurDSCC_Get_PLL_Status()

This call returns the status of the selected PLL.

/**

 int ccurDSCC_Get_PLL_Status(void *Handle, CCURDSCC_PLL pll,

 ccurdscc_PLL_status_t *status)

 Description: Return the status of the PLL

 Input: void *Handle (handle pointer)

 CCURDSCC pll (select pll)

 Output: ccurdscc_PLL_status_t *status; (pointer to status struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint busy;

 uint error;

} ccurdscc_PLL_status_t;

// PLL Interface Busy

- CCURDSCC_PLL_IDLE

- CCURDSCC_PLL_BUSY

// PLL Interface Error

- CCURDSCC_PLL_NO_ERROR

- CCURDSCC_PLL_ERROR

2.2.38 ccurDSCC_Get_PLL_Sync()

This call returns the PLL Synchronization information maintained by the hardware.

/**

 int ccurDSCC_Get_PLL_Sync(void *Handle, ccurdscc_PLL_sync_t *sync)

 Description: Return the value of the PLL Sync information.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_PLL_sync_t *sync; (pointer to pll sync struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 36 of 74

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint sync_start[CCURDSCC_MAX_PLLS];

 uint external_go;

 uint external_sync;

} ccurdscc_PLL_sync_t;

// PLL Sync Start

- CCURDSCC_PLL_START

- CCURDSCC_PLL_STOP

// External Go

- CCURDSCC_EXTERNAL_GO_ENABLE

- CCURDSCC_EXTERNAL_GO_DISABLE

// External Sync

- CCURDSCC_EXTERNAL_SYNC_ENABLE

- CCURDSCC_EXTERNAL_SYNC_DISABLE

2.2.39 ccurDSCC_Get_Value()

This call allows the user to read the board registers. The actual data returned will depend on the command

register information that is requested. Refer to the hardware manual for more information on what is being

returned. Most commands return a pointer to an unsigned integer. The CCURDSCC_CHANNEL_DATA,

CCURDSCC_POSITIVE_CALIBRATION, CCURDSCC_NEGATIVE_CALIBRATION and the

CCURDSCC_OFFSET_CALIBRATION return CCURDSCC_MAX_CHANNELS unsigned integers. The

CCURDSCC_SPI_RAM command returns CCURDSCC_SPI_RAM_SIZE unsigned integers.

/**

 int ccurDSCC_Get_Value(void *Handle, CCURDSCC_CONTROL cmd, void *value)

 Description: Return the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURDSCC_CONTROL cmd (register definition)

 Output: void *value; (pointer to value)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef enum {

 CCURDSCC_BOARD_INFORMATION, /* R Only */

 CCURDSCC_BOARD_CSR, /* R/W */

 CCURDSCC_INTERRUPT_CONTROL, /* R/W */

 CCURDSCC_INTERRUPT_STATUS, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_READ_2, /* R Only */

 CCURDSCC_CONVERTER_1_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_READ_2, /* R Only */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 37 of 74

 CCURDSCC_CONVERTER_2_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_READ_2, /* R Only */

 CCURDSCC_CONVERTER_3_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_READ_2, /* R Only */

 CCURDSCC_PLL_SYNC, /* R/W */

 CCURDSCC_CALIBRATION_VOLTAGE_CONTROL, /* R/W */

 CCURDSCC_FIFO_CSR, /* R/W */

 CCURDSCC_FIFO_THRESHOLD, /* R/W */

 CCURDSCC_FIFO_CHANNEL_SELECT, /* R/W */

 CCURDSCC_PLL_0_STATUS, /* R Only */

 CCURDSCC_PLL_0_ACCESS, /* R/W */

 CCURDSCC_PLL_0_READ_1, /* R/W */

 CCURDSCC_PLL_0_READ_2, /* R Only */

 CCURDSCC_PLL_1_STATUS, /* R Only */

 CCURDSCC_PLL_1_ACCESS, /* R/W */

 CCURDSCC_PLL_1_READ_1, /* R/W */

 CCURDSCC_PLL_1_READ_2, /* R Only */

 CCURDSCC_PLL_2_STATUS, /* R Only */

 CCURDSCC_PLL_2_ACCESS, /* R/W */

 CCURDSCC_PLL_2_READ_1, /* R/W */

 CCURDSCC_PLL_2_READ_2, /* R Only */

 CCURDSCC_PLL_3_STATUS, /* R Only */

 CCURDSCC_PLL_3_ACCESS, /* R/W */

 CCURDSCC_PLL_3_READ_1, /* R/W */

 CCURDSCC_PLL_3_READ_2, /* R Only */

 CCURDSCC_FIRMWARE_SPI_COUNTER_STATUS, /* R/W */

 CCURDSCC_CHANNEL_DATA, /* R Only */

 CCURDSCC_FIFO_DATA, /* R Only */

 CCURDSCC_POSITIVE_CALIBRATION, /* R/W */

 CCURDSCC_NEGATIVE_CALIBRATION, /* R/W */

 CCURDSCC_SPI_RAM, /* R/W */

 CCURDSCC_OFFSET_CALIBRATION, /* R/W */

} CCURDSCC_CONTROL;

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 38 of 74

2.2.40 ccurDSCC_Hex_To_Fraction()

This call converts a hexadecimal value to a fractional decimal value. This conversion is used internally by the

API to get the positive and negative calibration information.

/**

 double ccurDSCC_Hex_To_Fraction(uint value)

 Description: Convert Hexadecimal to Fractional Decimal

 Input: uint value (hexadecimal to convert)

 Output: none

 Return: double Fraction (converted fractional value)

 **/

2.2.41 ccurDSCC_Initialize_Board()

This call resets the board to a default initial state. This call is currently identical to the

ccurDSCC_Reset_Board() call.

/**

 int ccurDSCC_Initialize_Board(void *Handle)

 Description: Initialize the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.42 ccurDSCC_Initialize_PLL_Input_Struct()

This call simply initializes the user supplied ccurdscc_PLL_setting_t clock structure to default values so that

it can be used as input to the ccurDSCC_Compute_PLL_Clock() API call. This call is again only supplied for

advanced users.

/**

 int ccurDSCC_Initialize_PLL_Input_Struct(void *Handle,

 ccurdscc_PLL_setting_t *input)

 Description: Initialize the clock structure.

 Input: void *Handle (handle pointer)

 ccurdscc_PLL_setting_t *input (pointer to input clock struct)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 39 of 74

typedef struct {

 double fDesired; /* MHz - Desired Output Clock Frequency */

 int max_tol; /* ppm - parts/million - Maximum tolerance */

 int maximizeVCOspeed;/* Maximize VCO Speed flag */

 double fRef; /* MHz - Reference Input PLL Oscillator Frequency */

 double fPFDmin; /* MHz - Minimum allowable Freq at phase-detector */

 double kfVCO; /* MHz/Volts - VCO gain to be used */

 double fVcoMin; /* MHz - Minimum VCO frequency */

 double fVcoMax; /* MHz - Maximum VCO frequency */

 double nRefMin; /* minimum reference divider */

 double nRefMax; /* maximum reference divider */

 double nFbkMin; /* minimum feedback divider */

 double nFbkMax; /* maximum feedback divider */

} ccurdscc_PLL_setting_t;

- CCURDSCC_DEFAULT (-1) /* Set defaults */

- CCURDSCC_DEFAULT_REFERENCE_FREQ (65.536)/* MHz */

- CCURDSCC_DEFAULT_TOLERANCE (1000) /* ppm (parts per million) */

- CCURDSCC_DEFAULT_MIN_ALLOWABLE_FREQ (1.0) /* MHz */

- CCURDSCC_DEFAULT_VCO_GAIN (520) /* MHz/volts */

- CCURDSCC_DEFAULT_MIN_VCO_FREQ (100) /* MHz */

- CCURDSCC_DEFAULT_MAX_VCO_FREQ (400) /* MHz */

- CCURDSCC_DEFAULT_MIN_REF_DIVIDER (1) /* minimum reference divider */

- CCURDSCC_DEFAULT_MAX_REF_DIVIDER (4095) /* maximum reference divider */

- CCURDSCC_DEFAULT_MIN_FEEDBK_DIVIDER (12) /* minimum feedback divider */

- CCURDSCC_DEFAULT_MAX_FEEDBK_DIVIDER (16383) /* maximum feedback divider */

fRef = CCURDSCC_DEFAULT_REFERENCE_FREQ;

maximizeVCOspeed = CCURDSCC_DEFAULT_VCO_SPEED;

fPFDmin = CCURDSCC_DEFAULT_MIN_ALLOWABLE_FREQ;

max_tol = CCURDSCC_DEFAULT_TOLERANCE;

kfVCO = CCURDSCC_DEFAULT_VCO_GAIN;

fVcoMin = CCURDSCC_DEFAULT_MIN_VCO_FREQ;

fVcoMax = CCURDSCC_DEFAULT_MAX_VCO_FREQ;

nRefMin = CCURDSCC_DEFAULT_MIN_REF_DIVIDER;

nRefMax = CCURDSCC_DEFAULT_MAX_REF_DIVIDER;

nFbkMin = CCURDSCC_DEFAULT_MIN_FEEDBK_DIVIDER;

nFbkMax = CCURDSCC_DEFAULT_MAX_FEEDBK_DIVIDER;

fDesired = CCURDSCC_DEFAULT;

2.2.43 ccurDSCC_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be used for

DMA. The allocated DMA memory is rounded to a page size. If a physical memory has been previously

allocated, this call will fail, at which point the user will need to issue the

ccurDSCC_Munmap_Physical_Memory() API call to remove the previously allocated physical memory.

Please note that this physical memory is not the same as that used internally by the driver during the

CCURDSCC_DMA_CONTINUOUS read mode.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 40 of 74

/**

 int ccurDSCC_MMap_Physical_Memory(void *Handle, int size, void **mem_ptr)

 Description: Allocate a physical DMA memory for size bytes.

 Input: void *Handle (handle pointer)

 int size (size in bytes)

 Output: void **mem_ptr (mapped memory pointer)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 CCURDSCC_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.44 ccurDSCC_Munmap_Physical_Memory()

This call simply removes a physical memory that was previously allocated by the

ccurDSCC_MMap_Physical_Memory() API call.

/**

 int ccurDSCC_Munmap_Physical_Memory(void *Handle)

 Description: Unmap a previously mapped physical DMA memory.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_MUNMAP_FAILED (failed to un-map memory)

 CCURDSCC_LIB_NOT_MAPPED (memory not mapped)

 **/

2.2.45 ccurDSCC_Open()

This is the first call that needs to be issued by a user to open a device and access the board through the rest of

the API calls. What is returned is a handle to a void pointer that is supplied as an argument to the other API

calls. The Board_Number is a valid board number [0..9] that is associated with a physical card. There must

exist a character special file /dev/ccurdscc<Board_Number> for the call to be successful. One character

special file is created for each board found when the driver is successfully loaded.

The oflag is the flag supplied to the open(2) system call by this API. It is normally a 0, however the user may

use the O_NONBLOCK option for read(2) calls which will change the default reading in block mode.

/**

 int ccurDSCC_Open(void **My_Handle, int Board_Number, int oflag)

 Description: Open a device.

 Input: void **Handle (handle pointer to pointer)

 int Board_Number (0-9 board number)

 int oflag (open flags)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_ALREADY_OPEN (device already opened)

 CCURDSCC_LIB_OPEN_FAILED (device open failed)

 CCURDSCC_LIB_ALREADY_MAPPED (memory already mmapped)

 CCURDSCC_LIB_MMAP_SELECT_FAILED (mmap selection failed)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 41 of 74

 CCURDSCC_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.46 ccurDSCC_Perform_Auto_Calibration()

This call is used to create the offset, positive and negative gain values for all 32 channels. This offset and gain

is then applied to each channel by the hardware when returning analog input values. Prior to issuing this call,

the board must be initialized and clocks enabled and running, otherwise the call will fail as no analog input

data is collected. The call performs calibration using an internal reference voltage whose value is determined

by the board type selected.

This call takes approximately one minute to run and is normally issued after the system is rebooted and

whenever the clocks are re-programmed to a different value. If the board has not been calibrated after a

system reboot, then voltages returned will be unpredictable.

/**

 int ccurDSCC_Perform_Auto_Calibration(void *Handle)

 Description: Perform Auto Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.47 ccurDSCC_Perform_External_Input_Negative_Calibration()

This call is used to create the negative gain values for the user specified channels that have been connected to

a precise voltage source. This gain is then applied to each channel by the hardware when returning analog

input values. Prior to issuing this call, the board must be initialized and clocks enabled and running,

otherwise the call will fail as no analog input data is collected. The external voltage supplied to the channels

must be as close to the negative voltage whose value is defined by the board calibration reference voltage

(when external_ref_voltage == 0) or specified by the user in external_ref_voltage (non-zero negative value).

This call is used when the user wishes to bypass the internal reference voltage for calibration and instead use

their voltage source supplied to the external input.

It is important to note that prior to this call, the user must first perform the external offset calibration using the

ccurDSCC_Perform_External_Input_Offset_Calibration() call, otherwise the calibrated values will be

incorrect.

/**

 int ccurDSCC_Perform_External_Input_Negative_Calibration(void *Handle,

 int chan_start, int chan_end,

 double external_ref_voltage)

 Description: Perform External Input Negative Calibration

 Input: void *Handle (handle pointer)

 int chan_start (channel start number)

 int chan_end (channel end number)

 double external_ref_voltage (external reference voltage)

 Output: none

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 42 of 74

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.48 ccurDSCC_Perform_External_Input_Offset_Calibration()

This call is used to create the offset values for the user specified channels that have been connected to a

precise voltage source. This offset is then applied to each channel by the hardware when returning analog

input values. Prior to issuing this call, the board must be initialized and clocks enabled and running,

otherwise the call will fail as no analog input data is collected. The external voltage supplied to the channels

must be close to zero volts.

This call is used when the user wishes to bypass the internal reference voltage for calibration and instead use

their voltage source supplied to the external input.

/**

 int ccurDSCC_Perform_External_Input_Offset_Calibration(void *Handle,

 int chan_start, int chan_end)

 Description: Perform External Input Offset Calibration

 Input: void *Handle (handle pointer)

 int chan_start (channel start number)

 int chan_end (channel end number)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.49 ccurDSCC_Perform_External_Input_Positive_Calibration()

This call is used to create the positive gain values for the user specified channels that have been connected to a

precise voltage source. This gain is then applied to each channel by the hardware when returning analog input

values. Prior to issuing this call, the board must be initialized and clocks enabled and running, otherwise the

call will fail as no analog input data is collected. The external voltage supplied to the channels must be as

close to the positive voltage whose value is defined by the board calibration reference voltage (when

external_ref_voltage == 0) or specified by the user in external_ref_voltage (non-zero positive value).

This call is used when the user wishes to bypass the internal reference voltage for calibration and instead use

their voltage source supplied to the external input.

It is important to note that prior to this call, the user must first perform the external offset calibration using the

ccurDSCC_Perform_External_Input_Offset_Calibration() call, otherwise the calibrated values will be

incorrect.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 43 of 74

/**

 int ccurDSCC_Perform_External_Input_Positive_Calibration(void *Handle,

 int chan_start, int chan_end,

 double external_ref_voltage)

 Description: Perform External Input Positive Calibration

 Input: void *Handle (handle pointer)

 int chan_start (channel start number)

 int chan_end (channel end number)

 double external_ref_voltage (external reference voltage)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.50 ccurDSCC_Perform_Negative_Calibration()

This call is used to create the negative gain values for all 32 channels. This gain is then applied to each

channel by the hardware when returning analog input values. Prior to issuing this call, the board must be

initialized and clocks enabled and running, otherwise the call will fail as no analog input data is collected. The

call performs calibration using an internal reference voltage whose value is determined by the board type

selected.

It is important to note that prior to this call, the user must first perform the offset calibration using the

ccurDSCC_Perform_ Offset_Calibration() call, otherwise the calibrated values will be incorrect.

/**

 int ccurDSCC_Perform_Negative_Calibration(void *Handle)

 Description: Perform Negative Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.51 ccurDSCC_Perform_Offset_Calibration()

This call is used to create the offset values for all 32 channels. This offset is then applied to each channel by

the hardware when returning analog input values. Prior to issuing this call, the board must be initialized and

clocks enabled and running, otherwise the call will fail as no analog input data is collected. The call performs

calibration using a zero internal voltage.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 44 of 74

/**

 int ccurDSCC_Perform_Offset_Calibration(void *Handle)

 Description: Perform Offset Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.52 ccurDSCC_Perform_Positive_Calibration()

This call is used to create the positive gain values for all 32 channels. This gain is then applied to each channel

by the hardware when returning analog input values. Prior to issuing this call, the board must be initialized

and clocks enabled and running, otherwise the call will fail as no analog input data is collected. The call

performs calibration using an internal reference voltage whose value is determined by the board type selected.

It is important to note that prior to this call, the user must first perform the offset calibration using the

ccurDSCC_Perform_ Offset_Calibration() call, otherwise the calibrated values will be incorrect.

/**

 int ccurDSCC_Perform_Positive_Calibration(void *Handle)

 Description: Perform Positive Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_NO_RESOURCE (no free PLL available)

 CCURDSCC_LIB_IO_ERROR (read error)

 **/

2.2.53 ccurDSCC_Program_CPM_Advanced()

This call is available for use by advanced users to setup a specified converter. This call requires an intimate

knowledge of the boards programming registers. Normally, the ccurDSCC_Configure_Channels() API call

will be sufficient to program the board. If the converter is not in a reset state, the user can always issue the

ccurDSCC_Get_Converter_Info() call to retrieve the current converter settings, and then edit specific options

with this call. The user can also use the CCURDSCC_DO_NOT_CHANGE parameter for any argument value

in the ccurdscc_CPM_struct_t structure if they wish to preserve the current values. Upon successful

completion of the call, the board will be programmed to the new settings, and will return both the current

settings and the new settings of all the CPM registers in the ccurdscc_CPM_encode_t structure.

/**

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 45 of 74

 int ccurDSCC_Program_CPM_Advanced(void *Handle, CCURDSCC_CONVERTER conv,

 int Program,

 ccurdscc_CPM_struct_t *input,

 ccurdscc_CPM_encode_t *current_encoded,

 ccurdscc_CPM_encode_t *new_encoded)

 Description: Program CPM Access values for the specified CPM.

 Input: void *Handle (handle pointer)

 CCURDSCC_CPM conv (converter selection)

 ccurdscc_CPM_struct_t *input (pointer to CPM input struct)

 Output: int Program (decide to program board)

 ccurdscc_CPM_encode_t *current_encoded (pointer to current

 encoded CPM

 ccurdscc_CPM_encode_t *new_encoded (pointer to new encoded CPM

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

// CCURDSCC_CONVERTER

- CCURDSCC_CONVERTER_0

- CCURDSCC_CONVERTER_1

- CCURDSCC_CONVERTER_2

- CCURDSCC_CONVERTER_3

typedef struct {

 uint chip_revision; /* [3:0] */

 uint chip_id; /* [3:0] */

 uint mode_select; /* CCURDSCC_MODE_SELECT_SSM */

 /* CCURDSCC_MODE_SELECT_DSM */

 /* CCURDSCC_MODE_SELECT_QSM */

 uint serial_format; /* CCURDSCC_SERIAL_FORMAT_LEFT_JUSTIFIED */

 /* CCURDSCC_SERIAL_FORMAT_12S */

 /* CCURDSCC_SERIAL_FORMAT_TDM */

 uint clock_divider; /* CCURDSCC_CLOCK_DIVIDER_1 */

 /* CCURDSCC_CLOCK_DIVIDER_2 */

 /* CCURDSCC_CLOCK_DIVIDER_2a */

 /* CCURDSCC_CLOCK_DIVIDER_4 */

 /* CCURDSCC_CLOCK_DIVIDER_1_5 */

 /* CCURDSCC_CLOCK_DIVIDER_3 */

 /* CCURDSCC_CLOCK_DIVIDER_3a */

 uint control_port_enable; /* CCURDSCC_CONTROL_PORT_DISABLE */

 /* CCURDSCC_CONTROL_PORT_ENABLE */

 uint overflow_status; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint overflow_mask; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 46 of 74

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint high_pass_filter; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint power_down; /* CCURDSCC_POWER_DOWN_MASK_CH0_1 */

 /* CCURDSCC_POWER_DOWN_MASK_CH2_3 */

 /* CCURDSCC_POWER_DOWN_MASK_CH4_5 */

 /* CCURDSCC_POWER_DOWN_MASK_CH6_7 */

 uint power_down_oscillator; /* CCURDSCC_POWER_DOWN_OSCILLATOR_ENABLE */

 /* CCURDSCC_POWER_DOWN_OSCILLATOR_DISABLE */

 uint power_down_bandgap; /* CCURDSCC_POWER_DOWN_BANDGAP_ENABLE */

 /* CCURDSCC_POWER_DOWN_BANDGAP_DISABLE */

 uint mute_control; /* CCURDSCC_CONVERTER_MASK_CH0 */

 /* CCURDSCC_CONVERTER_MASK_CH1 */

 /* CCURDSCC_CONVERTER_MASK_CH2 */

 /* CCURDSCC_CONVERTER_MASK_CH3 */

 /* CCURDSCC_CONVERTER_MASK_CH4 */

 /* CCURDSCC_CONVERTER_MASK_CH5 */

 /* CCURDSCC_CONVERTER_MASK_CH6 */

 /* CCURDSCC_CONVERTER_MASK_CH7 */

 uint serial_data; /* CCURDSCC_SERIAL_DATA_MASK_CH0_1 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH2_3 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH4_5 */

 /* CCURDSCC_SERIAL_DATA_MASK_CH6_7 */

} ccurdscc_CPM_struct_t;

typedef struct {

 uint reg[CCURDSCC_CPM_AR_REGISTER_ADDRESS_MAX];

} ccurdscc_CPM_encode_t;

2.2.54 ccurDSCC_Program_PLL_Advanced()

This call is available for use by advanced users to setup a specified clock. This call requires an intimate

knowledge of the boards programming registers. Normally, the ccurDSCC_Configure_Channels() API call

will be sufficient to program the board. The user can always issue the ccurDSCC_Get_PLL_Info() call to

retrieve the current clock settings, and then edit specific options with this call. The user can also use the

CCURDSCC_DO_NOT_CHANGE parameter for any argument value in the ccurdscc_PLL_struct_t structure

if they wish to preserve the current values. Upon successful completion of the call, the board will be

programmed to the new settings, and will return both the current settings and the new settings of all the PLL

registers in the ccurdscc_PLL_encode_t structure.

/**

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 47 of 74

 int ccurDSCC_Program_PLL_Advanced(void *Handle, CCURDSCC_PLL pll,

 int Program,

 ccurdscc_PLL_struct_t *input,

 ccurdscc_PLL_encode_t *current_encoded,

 ccurdscc_PLL_encode_t *new_encoded)

 Description: Program PLL Access values for the specified PLL.

 Input: void *Handle (handle pointer)

 CCURDSCC_PLL pll (pll selection)

 ccurdscc_PLL_struct_t *input (pointer to pll input struct)

 Output: int Program (decide to program board)

 ccurdscc_PLL_encode_t *current_encoded (pointer to current

 encoded PLL

 ccurdscc_PLL_encode_t *new_encoded (pointer to new encoded PLL

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

typedef struct {

 uint ref_freq_divider; /* [11:00] */

 uint ref_freq_divider_src; /* CCURDSCC_REF_DIVIDER_SRC_OSCILLATOR */

 /* CCURDSCC_REF_DIVIDER_SRC_PIN */

 uint shutdown_1; /* CCURDSCC_RUNNING */

 /* CCURDSCC_SHUTDOWN */

 uint post_divider1; /* CCURDSCC_POST_DIVIDER1_1 */

 /* CCURDSCC_POST_DIVIDER1_2 */

 /* CCURDSCC_POST_DIVIDER1_3 */

 /* CCURDSCC_POST_DIVIDER1_4 */

 /* CCURDSCC_POST_DIVIDER1_5 */

 /* CCURDSCC_POST_DIVIDER1_6 */

 /* CCURDSCC_POST_DIVIDER1_7 */

 /* CCURDSCC_POST_DIVIDER1_8 */

 /* CCURDSCC_POST_DIVIDER1_9 */

 /* CCURDSCC_POST_DIVIDER1_10*/

 /* CCURDSCC_POST_DIVIDER1_11 */

 /* CCURDSCC_POST_DIVIDER1_12 */

 uint post_divider2; /* CCURDSCC_POST_DIVIDER2_1 */

 /* CCURDSCC_POST_DIVIDER2_2 */

 /* CCURDSCC_POST_DIVIDER2_3 */

 /* CCURDSCC_POST_DIVIDER2_4 */

 /* CCURDSCC_POST_DIVIDER2_5 */

 /* CCURDSCC_POST_DIVIDER2_6 */

 /* CCURDSCC_POST_DIVIDER2_7 */

 /* CCURDSCC_POST_DIVIDER2_8 */

 /* CCURDSCC_POST_DIVIDER2_9 */

 /* CCURDSCC_POST_DIVIDER2_10*/

 /* CCURDSCC_POST_DIVIDER2_11 */

 /* CCURDSCC_POST_DIVIDER2_12 */

 uint post_divider3; /* CCURDSCC_POST_DIVIDER3_1 */

 /* CCURDSCC_POST_DIVIDER3_2 */

 /* CCURDSCC_POST_DIVIDER3_4 */

 /* CCURDSCC_POST_DIVIDER3_8 */

 uint feedback_divider; /* [13:00] */
 uint feedback_divider_src; /* CCURDSCC_FEEDBACK_DIVIDER_SRC_VCO */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 48 of 74

 /* CCURDSCC_FEEDBACK_DIVIDER_SRC_POST */

 uint clock_output; /* CCURDSCC_CLOCK_OUTPUT_PECL */

 /* CCURDSCC_CLOCK_OUTPUT_CMOS */

 uint charge_pump_current; /* CCURDSCC_CHARGE_PUMP_CURRENT_2UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_4_5UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_11UA */

 /* CCURDSCC_CHARGE_PUMP_CURRENT_22_5UA */

 uint loop_resistor; /* CCURDSCC_LOOP_RESISTOR_400K */

 /* CCURDSCC_LOOP_RESISTOR_133K */

 /* CCURDSCC_LOOP_RESISTOR_30K */

 /* CCURDSCC_LOOP_RESISTOR_12K */

 uint loop_capacitor; /* CCURDSCC_LOOP_CAPACITOR_185PF */

 /* CCURDSCC_LOOP_CAPACITOR_500PF */

 uint sync_enable; /* CCURDSCC_SYNC_DISABLE */

 /* CCURDSCC_SYNC_ENABLE */

 uint sync_polarity; /* CCURDSCC_SYNC_POLARITY_NEGATIVE */

 /* CCURDSCC_SYNC_POLARITY_POSITIVE */

 uint shutdown_2; /* CCURDSCC_RUNNING */

 /* CCURDSCC_SHUTDOWN */

 /* below should not be supplied by user */

 double last_specified_fRef; /* Last Specified Reference Frequency */

 double fActual; /* Computed PLL Clock Frequency */

 uint post_divider_product; /* post divider product */

} ccurdscc_PLL_struct_t;

typedef struct {

 uint reg[CCURDSCC_PLL_AR_REGISTER_ADDRESS_MAX];

} ccurdscc_PLL_encode_t;

2.2.55 ccurDSCC_Program_PLL_Clock()

This call is available for use by advanced users to program a specified clock. This

ccurDSCC_Program_PLL_Clock() call is a higher level call than the above

ccurDSCC_Program_PLL_Advanced() call. In this case, the user only needs to supply the desired clock

frequency (that ranges from 512 KHz to 13.824 MHz) and the maximum allowed tolerance in ppm. If the call

is successful, it returns the actual clock frequency and the clock frequency error in ppm. If the Program flag is

set to CCURDSCC_TRUE, the board is programmed with the new clock frequency at the completion of the

call, otherwise only information on the actual frequency and the frequency error are returned to the user.

Normally, the advanced user needs to start with a sample rate and then determine the actual clock frequency

that satisfies the sample rate. They then need to associate the clock with a selected channel group prior to

starting data collection. All this is accomplished with the single API call ccurDSCC_Configure_Channels().

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 49 of 74

/**

 int ccurDSCC_Program_PLL_Clock(void *Handle, CCURDSCC_PLL pll, int Program,

 ccurdscc_PLL_clock_t *clock)

 Description: Program PLL Clock for give maximum tolerance

 Input: void *Handle (handle pointer)

 CCURDSCC_PLL pll (selected PLL)

 int Program (decide to program board)

 ccurdscc_PLL_clock_t *clock (pointer to user clock struct)

 Output: ccurdscc_PLL_clock_t *clock (pointer to user clock struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_SOLUTION_FOUND (no solution found)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 double fDesired; /* MHz - Desired Output Clock Frequency */

 int max_tol; /* ppm - parts/million - Maximum tolerance */

 double fActual; /* MHz - Actual Output Clock Frequency */

 double synthErr; /* clock frequency error - ppm */

} ccurdscc_PLL_clock_t;

2.2.56 ccurDSCC_Read()

This call is provided for users to receive converted sample data from the channels. It basically calls the

read(2) system call with the exception that it performs necessary locking and returns the errno returned from

the system call in the pointer to the error variable.

For specific information about the data being returned for the various read modes, refer to the read(2) system

call description the Driver Direct Access section.

/**

 int ccurDSCC_Read(void *Handle, void *buf, int size, int *bytes_read,

 int *error)

 Description: Perform a read operation.

 Input: void *Handle (handle pointer)

 int size (size of buffer in bytes)

 Output: void *buf (pointer to buffer)

 int *bytes_read (bytes read)

 int *error (returned errno)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IO_ERROR (read failed)

 CCURDSCC_LIB_FIFO_OVERFLOW (FIFO overflow)

 **/

2.2.57 ccurDSCC_Read_Channels()

This call performs a programmed I/O read of all the channels and returns the raw data in the channel_data

field. Additionally, the user can request the corresponding voltage for each channel by setting the

convert_data_to_volts to CCURDSCC_TRUE. In this case, the variable volts in the ccrdscc_read_channels_t

structure will contain the floating point voltage of each channel.

This call is similar to the standard read(2) system call while operating in the CCURDSCC_PIO_CHANNEL

mode with the exception that only raw data is returned.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 50 of 74

/**

 int ccurDSCC_Read_Channels(void *Handle, ccurdscc_read_channels_t *rdc)

 Description: Read Channel

 Input: void *Handle (handle pointer)

 ccurdscc_read_channels_t *rdc (perform_convertion)

 Output: ccurdscc_read_channels_t *rdc (pointer to rdc struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 **/

typedef struct {

 uint convert_data_to_volts;

 uint channel_data[CCURDSCC_MAX_CHANNELS];

 double volts[CCURDSCC_MAX_CHANNELS];

} ccurdscc_read_channels_t;

2.2.58 ccurDSCC_Read_Channels_Calibration()

This call reads the on-board channel calibration information and writes it out to a user specified output file.

This file is created if it does not exist and must be writeable. If the output file argument is NULL, the

calibration information is written to stdout. Entries in this file can be edited and use as input to the

ccurDSCC_Write_Channels_Calibration() routine. Any blank lines or entries starting with ‘#’ or ‘*’ are

ignored during parsing.

/**

 int ccurDSCC_Read_Channels_Calibration(void *Handle, char *filename)

 Description: Read Channels Calibration information

 Input: void *Handle (handle pointer)

 Output: char *filename (pointer to filename)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_CANNOT_OPEN_FILE (file not readable)

 **/

Format:

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 1.130771 -0.003152 1.130929

 ch01: 1.130661 -0.000795 1.130785

 ch02: 1.130400 0.001271 1.130840

 ch30: 1.130196 0.001695 1.130285

 ch31: 1.130440 0.001074 1.130285

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 51 of 74

2.2.59 ccurDSCC_Remove_DMA_Continuous_Buffers()

The purpose of this call is to remove the previously allocated DMA buffers. Once the DMA buffers are freed,

the user will be unable to perform reads in the CCURDSCC_DMA_CONTINUOUS mode until DMA buffers

have been reallocated with the ccurDSCC_Allocate_DMA_Continuous_Buffers() call.

/**

 int ccurDSCC_Remove_DMA_Continuous_Buffers(void *Handle)

 Description: Remove DMA Continuous Buffers

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 **/

2.2.60 ccurDSCC_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt handler is

managed internally by the driver and the library. The user should not issue this call, otherwise reads will time

out.

/**

 int ccurDSCC_Remove_Irq(void *Handle)

 Description: By default, the driver sets up a shared IRQ interrupt handler

 when the device is opened. Now if for any reason, another

 device is sharing the same IRQ as this driver, the interrupt

 handler will also be entered every time the other shared

 device generates an interrupt. There are times that a user,

 for performance reasons may wish to run the board without

 interrupts enabled. In that case, they can issue this ioctl

 to remove the interrupt handling capability from the driver.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.61 ccurDSCC_Reset_Board()

This call resets the board to a known initial default state. Additionally, the Converters, Clocks and FIFO are

reset along with internal pointers and clearing of interrupts. This call is currently identical to the

ccurDSCC_Initialize_Board() call.

/**

 int ccurDSCC_Reset_Board(void *Handle)

 Description: Reset the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 52 of 74

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.62 ccurDSCC_Reset_Converter()

This call performs a converter reset to the specified converter. No converter programming can be performed

until the converter is activated. To activate the converter after a reset, set the activate argument to

CCURDSCC_CONVERTER_ACTIVATE.

/**

 int ccurDSCC_Reset_Converter(void *Handle, CCURDSCC_CONVERTER conv,

 int activate)

 Description: Reset Specified Converter

 Input: void *Handle (handle pointer)

 CCURDSCC_CONVERTER conv (selected converter)

 int activate (activate converter)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

// CCURDSCC_CONVERTER

- CCURDSCC_CONVERTER_0

- CCURDSCC_CONVERTER_1

- CCURDSCC_CONVERTER_2

- CCURDSCC_CONVERTER_3

2.2.63 ccurDSCC_Reset_DMA_Continuous_Buffers()

The DMA pointers are managed internally by the driver and the library. This call resets the pointers and

should not normally be called by the user.

/**

 int ccurDSCC_Reset_DMA_Continuous_Buffers(void *Handle)

 Description: Reset DMA Continuous Buffers

 Input: void *Handle (handle pointer)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_NO_LOCAL_REGION (error)

 CCURDSCC_LIB_IOCTL_FAILED (error)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.64 ccurDSCC_Reset_Fifo()

This call performs a FIFO reset. All data held in the FIFO is cleared and the FIFO is rendered empty.

Additionally, internal pointers maintained for DMA CONTINUOUS mode are reset. No new data can be

collected until the FIFO is activated. To activate the FIFO, set the activate argument to

CCURDSCC_FIFO_ACTIVATE.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 53 of 74

/**

 int ccurDSCC_Reset_Fifo(void *Handle, int activate)

 Description: Reset Fifo

 Input: void *Handle (handle pointer)

 int activate (activate FIFO)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.65 ccurDSCC_Select_Driver_Read_Mode()

This call sets the current driver read mode. When a read(2) system call is issued, it is this mode that

determines the type of read being performed by the driver. Refer to the read(2) system call under Direct

Driver Access section for more information on the various modes.

/**

 int ccurDSCC_Select_Driver_Read_Mode(void *Handle,

 CCURDSCC_DRIVER_READ_MODE mode)

 Description: Reset Fifo

 Input: void *Handle (handle pointer)

 CCURDSCC_DRIVER_READ_MODE mode (select read mode)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef enum {

 CCURDSCC_PIO_CHANNEL,

 CCURDSCC_PIO_FIFO,

 CCURDSCC_DMA_CHANNEL,

 CCURDSCC_DMA_FIFO,

 CCURDSCC_DMA_CONTINUOUS,

} CCURDSCC_DRIVER_READ_MODE;

2.2.66 ccurDSCC_Set_Board_CSR()

This call can be used to set the data format to CCURDSCC_OFFSET_BINARY or

CCURDSCC_TWOS_COMPLEMENT. Additionally, this call can also be used to set the external clock output

to one of the four PLL’s or the Input Line (pass-through). This is useful when you are trying to connect

multiple cards to a single clock source. Users can supply the CCURDSCC_DO_NOT_CHANGE parameter if

they do not wish to alter the existing state of the card for a particular field.

/**

 int ccurDSCC_Set_Board_CSR(void *Handle, ccurdscc_board_csr_t *bcsr)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 54 of 74

 Description: Set Board Control and Status information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_board_csr_t *bcsr (pointer to board csr)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 int data_format; /* data format selection */

 int external_clock_output; /* external clock selection */

} ccurdscc_board_csr_t;

// data_format

- CCURDSCC_OFFSET_BINARY

- CCURDSCC_TWOS_COMPLEMENT

- CCURDSCC_DO_NOT_CHANGE

//external_clock_output

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_0

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_1

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_2

- CCURDSCC_EXT_CLOCK_OUTPUT_PLL_3

- CCURDSCC_EXT_CLOCK_OUTPUT_INPUT_LINE

- CCURDSCC_DO_NOT_CHANGE

2.2.67 ccurDSCC_Set_Converter_Cal_CSR()

This call sets the calibration voltage control register.

/**

 int ccurDSCC_Set_Converter_Cal_CSR(void *Handle,

 ccurdscc_converter_cal_csr_t *cal)

 Description: Set the Converter Calibration Voltage

 Input: void *Handle (handle pointer)

 ccurdscc_converter_cal_csr_t *cal; (pointer to cal struct)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint voltage_select;

} ccurdscc_converter_cal_csr_t;

Voltage Select is one of the following:

- CCURDSCC_CAL_VOLT_SEL_INPUT_SIGNAL : Input Signal

- CCURDSCC_CAL_VOLT_SEL_GROUND : Ground (All Converters)

- CCURDSCC_CAL_VOLT_SEL_PLUS_REFERENCE : +Ref (All Converters) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_MINUS_REFERENCE : -Ref (All Converters) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_00_07_GROUND : Ground (Converter 0)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 55 of 74

- CCURDSCC_CAL_VOLT_SEL_00_07_PLUS_REFERENCE : +Ref (Converter 0) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_00_07_MINUS_REFERENCE: -Ref (Converter 0) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_08_15_GROUND : Ground (Converter 1)

- CCURDSCC_CAL_VOLT_SEL_08_15_PLUS_REFERENCE : +Ref (Converter 1) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_08_15_MINUS_REFERENCE: -Ref (Converter 1) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_16_23_GROUND : Ground (Converter 2)

- CCURDSCC_CAL_VOLT_SEL_16_23_PLUS_REFERENCE : +Ref (Converter 2) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_16_23_MINUS_REFERENCE: -Ref (Converter 2) (-<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_24_31_GROUND : Ground (Converter 3)

- CCURDSCC_CAL_VOLT_SEL_24_31_PLUS_REFERENCE : +Ref (Converter 3) (+<ref> Volts)

- CCURDSCC_CAL_VOLT_SEL_24_31_MINUS_REFERENCE: -Ref (Converter 3) (-<ref> Volts)
- CCURDSCC_DO_NOT_CHANGE

2.2.68 ccurDSCC_Set_Converter_Clock_Source()

The purpose of this call is to associate the given converter with a clock source.

/**

 Int ccurDSCC_Set_Converter_Clock_Source(void *Handle,

 CCURDSCC_CONVERTER conv, uint clock)

 Description: Set Converter Control and Status information

 Input: void *Handle (handle pointer)

 CCURDSCC_CONVERTER conv (selected converter)

 uint clock (clock source)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

// CCURDSCC_CONVERTER

- CCURDSCC_CONVERTER_0

- CCURDSCC_CONVERTER_1

- CCURDSCC_CONVERTER_2

- CCURDSCC_CONVERTER_3

// clock

- CCURDSCC_CLOCK_PLL_0

- CCURDSCC_CLOCK_PLL_1

- CCURDSCC_CLOCK_PLL_2

- CCURDSCC_CLOCK_PLL_3

- CCURDSCC_CLOCK_EXTERNAL

2.2.69 ccurDSCC_Set_Converter_Negative_Cal()

This call sets the floating point value of the negative calibration for each of the channels that is maintained by

the card. This negative gain is applied to the analog input data returned for each channel automatically by the

hardware. The raw value set by this call is returned in the ccurdscc_converter_cal_t structure. The user can

specify a floating point value of CCURDSCC_DO_NOT_CHANGE for channels that you do not want to alter.

/**

 int ccurDSCC_Set_Converter_Negative_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Set the Converter Negative Calibration data.

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 56 of 74

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_CALIBRATION_RANGE_ERROR (range error)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.70 ccurDSCC_Set_Converter_Offset_Cal()

This call sets the floating point value of the offset calibration for each of the channels that is maintained by the

card. This zero offset is applied to the analog input data returned for each channel automatically by the

hardware. The raw value set by this call is returned in the ccurdscc_converter_cal_t structure. The user can

specify a floating point value of CCURDSCC_DO_NOT_CHANGE for channels that you do not want to alter.

/**

 int ccurDSCC_Set_Converter_Offset_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Set the Converter Offset Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.71 ccurDSCC_Set_Converter_Positive_Cal()

This call sets the floating point value of the positive calibration for each of the channels that is maintained by

the card. This positive gain is applied to the analog input data returned for each channel automatically by the

hardware. The raw value set by this call is returned in the ccurdscc_converter_cal_t structure. The user can

specify a floating point value of CCURDSCC_DO_NOT_CHANGE for channels that you do not want to alter.

/**

 int ccurDSCC_Set_Converter_Positive_Cal(void *Handle,

 ccurdscc_converter_cal_t *cal)

 Description: Set the Converter Positive Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdscc_converter_cal_t *cal (pointer to board cal)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 57 of 74

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint Raw[CCURDSCC_MAX_CHANNELS];

 double Float[CCURDSCC_MAX_CHANNELS];

} ccurdscc_converter_cal_t;

2.2.72 ccurDSCC_Set_Fifo_Channel_Select()

The hardware is capable of letting the user select which active channels they wish to monitor and place its

converted data into the FIFO. This call sets the current channel selection mask. By default, all active channels

are selected for storage into the FIFO. The mask has channel 0 as the least significant bit and channel 31 as

the most significant bit. The advantage of this feature is to allow the user to ignore channels they do not wish

to monitor resulting in performance improvement.

/**

 int ccurDSCC_Set_Fifo_Channel_Select(void *Handle, uint fifo_chan_sel)

 Description: Set the Fifo Channel Selection Mask

 Input: void *Handle (handle pointer)

 uint fifo_chan_sel (fifo channels to select)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.73 ccurDSCC_Set_Fifo_Threshold()

This call is used to set the FIFO threshold register. When samples are collected in the FIFO, an interrupt is

generated (if enabled) once the FIFO threshold is reached. This register is set internally by the library during

read operations. If the user wishes to bypass the API and driver reads, then they can use this register to control

their data requests; for example, they can wait until a certain number of samples have been collected in the

FIFO and then perform a user level DMA or programmed I/O to read the FIFO. The threshold maximum is

defined by CCURDSCC_FIFO_THRESHOLD_MAX.

/**

 int ccurDSCC_Set_Fifo_Threshold(void *Handle, uint threshold)

 Description: Set the value of the specified board register.

 Input: void *Handle (handle pointer)

 uint threshold (threshold to set)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.74 ccurDSCC_Set_Interrupt_Control()

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 58 of 74

This call is used to enable or disable interrupt handling.

/**

 int ccurDSCC_Set_Interrupt_Control(void *Handle, ccurdscc_interrupt_t *intr)

 Description: Set Interrupt Control information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_interrupt_t *intr (pointer to interrupt control)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 int global_int;

 int fifo_buffer_lo_hi_int;

 int plx_local_int;

} ccurdscc_interrupt_t;

// global_int

- CCURDSCC_GLOBAL_INT_DISABLE

- CCURDSCC_GLOBAL_INT_ENABLE

- CCURDSCC_DO_NOT_CHANGE

// fifo_buffer_lo_hi_int

- CCURDSCC_FIFO_INT_LO_HI_DISABLE

- CCURDSCC_FIFO_INT_LO_HI_ENABLE

- CCURDSCC_DO_NOT_CHANGE

// plx_local_int

- CCURDSCC_PLX_LOCAL_INT_DISABLE

- CCURDSCC_PLX_LOCAL_INT_ENABLE

- CCURDSCC_DO_NOT_CHANGE

2.2.75 ccurDSCC_Set_Interrupt_Status()

 This call is used to clear the interrupt condition.

/**

 int ccurDSCC_Set_Interrupt_Status(void *Handle, ccurdscc_interrupt_t *intr)

 Description: Set Interrupt Status information

 Input: void *Handle (handle pointer)

 Output: ccurdscc_interrupt_t *intr (pointer to interrupt status)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 **/

typedef struct {

 int global_int;

 int fifo_buffer_lo_hi_int;

 int plx_local_int;

} ccurdscc_interrupt_t;

// global_int

- not used

// fifo_buffer_lo_hi_int

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 59 of 74

- CCURDSCC_FIFO_INT_LO_HI_IGNORE

- CCURDSCC_FIFO_INT_LO_HI_RESET

- CCURDSCC_DO_NOT_CHANGE

// plx_local_int

- CCURDSCC_PLX_LOCAL_INT_IGNORE

- CCURDSCC_PLX_LOCAL_INT_RESET

- CCURDSCC_DO_NOT_CHANGE

2.2.76 ccurDSCC_Set_Interrupt_Timeout_Seconds()

This call sets the read timeout maintained by the driver. It allows the user to change the default time out from

30 seconds to a user specified value. It is the time that the FIFO read call will wait before it times out. The call

could time out if either the FIFO fails to fill or a DMA fails to complete. The device should have been opened

in the blocking mode (O_NONBLOCK not set) for reads to wait for the operation to complete.
/**

 int ccurDSCC_Set_Interrupt_Timeout_Seconds(void *Handle,

 int *int_timeout_secs)

 Description: Set Interrupt Timeout Seconds

 Input: void *Handle (handle pointer)

 Output: int *int_timeout_secs (pointer to int tout secs)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 **/

2.2.77 ccurDSCC_Set_PLL_Sync()

This call is used to synchronize the starting of the clocks by selecting the sync_start argument. The

external_go and external_sync arguments are not used at this time.

/**

 int ccurDSCC_Set_PLL_Sync(void *Handle, ccurdscc_PLL_sync_t *sync)

 Description: Set the value of the PLL Synchronization Register

 Input: void *Handle (handle pointer)

 ccurdscc_PLL_sync_t *sync; (pointer to sync struct)

 Output: none

 Return: CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef struct {

 uint sync_start[CCURDSCC_MAX_PLLS];

 uint external_go;

 uint external_sync;

} ccurdscc_PLL_sync_t;

// PLL Sync Start

- CCURDSCC_PLL_START

- CCURDSCC_PLL_STOP

- CCURDSCC_DO_NOT_CHANGE

// External Go

- CCURDSCC_EXTERNAL_GO_ENABLE

- CCURDSCC_EXTERNAL_GO_DISABLE

- CCURDSCC_DO_NOT_CHANGE

// External Sync

- CCURDSCC_EXTERNAL_SYNC_ENABLE

- CCURDSCC_EXTERNAL_SYNC_DISABLE

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 60 of 74

- CCURDSCC_DO_NOT_CHANGE

2.2.78 ccurDSCC_Set_Value()

This call allows the advanced user to set the writable board registers. The actual data written will depend on

the command register information that is requested. Refer to the hardware manual for more information on

what can be written to. The input argument value is an int and therefore, this call does not support the

CCURDSCC_POSITIVE_CALIBRATION, CCURDSCC_NEGATIVE_CALIBRATION,

CCURDSCC_SPI_RAM and CCURDSCC_OFFSET_CALIBRATION commands as these expect array inputs.

Normally, users should not be changing these registers as it will bypass the API integrity and could result in

an unpredictable outcome.

/**

 int ccurDSCC_Set_Value(void *Handle, CCURDSCC_CONTROL cmd, int value)

 Description: Set the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURDSCC_CONTROL cmd (register definition)

 int value (value to be set)

 Output: None

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

typedef enum {

 CCURDSCC_BOARD_INFORMATION, /* R Only */

 CCURDSCC_BOARD_CSR, /* R/W */

 CCURDSCC_INTERRUPT_CONTROL, /* R/W */

 CCURDSCC_INTERRUPT_STATUS, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_0_CPM_READ_2, /* R Only */

 CCURDSCC_CONVERTER_1_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_1_CPM_READ_2, /* R Only */

 CCURDSCC_CONVERTER_2_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_2_CPM_READ_2, /* R Only */

 CCURDSCC_CONVERTER_3_CPM_CSR, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_ACCESS, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_READ_1, /* R/W */

 CCURDSCC_CONVERTER_3_CPM_READ_2, /* R Only */

 CCURDSCC_PLL_SYNC, /* R/W */

 CCURDSCC_CALIBRATION_VOLTAGE_CONTROL, /* R/W */

 CCURDSCC_FIFO_CSR, /* R/W */

 CCURDSCC_FIFO_THRESHOLD, /* R/W */

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 61 of 74

 CCURDSCC_FIFO_CHANNEL_SELECT, /* R/W */

 CCURDSCC_PLL_0_STATUS, /* R Only */

 CCURDSCC_PLL_0_ACCESS, /* R/W */

 CCURDSCC_PLL_0_READ_1, /* R/W */

 CCURDSCC_PLL_0_READ_2, /* R Only */

 CCURDSCC_PLL_1_STATUS, /* R Only */

 CCURDSCC_PLL_1_ACCESS, /* R/W */

 CCURDSCC_PLL_1_READ_1, /* R/W */

 CCURDSCC_PLL_1_READ_2, /* R Only */

 CCURDSCC_PLL_2_STATUS, /* R Only */

 CCURDSCC_PLL_2_ACCESS, /* R/W */

 CCURDSCC_PLL_2_READ_1, /* R/W */

 CCURDSCC_PLL_2_READ_2, /* R Only */

 CCURDSCC_PLL_3_STATUS, /* R Only */

 CCURDSCC_PLL_3_ACCESS, /* R/W */

 CCURDSCC_PLL_3_READ_1, /* R/W */

 CCURDSCC_PLL_3_READ_2, /* R Only */

 CCURDSCC_FIRMWARE_SPI_COUNTER_STATUS, /* R/W */

 CCURDSCC_CHANNEL_DATA, /* R Only */

 CCURDSCC_FIFO_DATA, /* R Only */

 CCURDSCC_POSITIVE_CALIBRATION, /* R/W */

 CCURDSCC_NEGATIVE_CALIBRATION, /* R/W */

 CCURDSCC_SPI_RAM, /* R/W */

 CCURDSCC_OFFSET_CALIBRATION, /* R/W */

} CCURDSCC_CONTROL;

2.2.79 ccurDSCC_Shutdown_PLL_Clock()

This board has up to four programmable clocks that can be assigned in any combination to digital converters.

If a clock is programmed but has not been assigned to any converter, it is preferable to shut down the

particular clock so as to reduce noise.

/**

 int ccurDSCC_Shutdown_PLL_Clock(void *Handle, CCURDSCC_PLL pll)

 Description: Shutdown_PLL_Clock

 Input: void *Handle (handle pointer)

 CCURDSCC_PLL pll (pll selection)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

2.2.80 ccurDSCC_Start_PLL_Clock()

This call is similar to the ccurDSCC_Set_PLL_Sync() which provides the ability to synchronize the starting of

the selected clocks.

/**

 int ccurDSCC_Start_PLL_Clock(void *Handle, uint clock_mask)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 62 of 74

 Description: Start PLL Clock

 Input: void *Handle (handle pointer)

 uint clock_mask (selected clock mask)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

// clock mask

- CCURDSCC_CLOCK_MASK_PLL_0

- CCURDSCC_CLOCK_MASK_PLL_1

- CCURDSCC_CLOCK_MASK_PLL_2

- CCURDSCC_CLOCK_MASK_PLL_3

2.2.81 ccurDSCC_Stop_PLL_Clock()

This call is similar to the ccurDSCC_Set_PLL_Sync() which provides the ability to stop the running clocks.

/**

 int ccurDSCC_Stop_PLL_Clock(void *Handle, uint clock_mask)

 Description: Stop PLL Clock

 Input: void *Handle (handle pointer)

 uint clock_mask (selected clock mask)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.82 ccurDSCC_Volts_To_Data()

This call returns to the user the raw converted value for the requested voltage in the specified format. Voltage

supplied must be within the input range of the selected board type. If the voltage is out of range, the call sets

the voltage to the appropriate limit value.

/**

 int ccurDSCC_Volts_To_Data(void *Handle, double volts, int format)

 Description: Convert Volts to Data

 Input: void *Handle (handle pointer)

 double volts (volts to convert)

 int format (conversion format)

 Output: none

 Return: int data (returned data)

 **/

// format

- CCURDSCC_TWOS_COMPLEMENT

- CCURDSCC_OFFSET_BINARY

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 63 of 74

2.2.83 ccurDSCC_Wait_For_Interrupt()

This call is made available to advanced users to bypass the API and perform their own data collection. The

user can wait for either a FIFO low to high transition interrupt or a DMA complete interrupt. If a time out

value greater than zero is specified, the call will time out after the specified seconds, otherwise it will not time

out.

/**

 int ccurDSCC_Wait_For_Interrupt(void *Handle, ccurdscc_driver_int_t *drv_int)

 Description: Wait For Interrupt

 Input: void *Handle (handle pointer)

 Output: ccurdscc_driver_int_t *drv_int (pointer to drv_int struct)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 **/

typedef struct {

 unsigned long long count;

 u_int status;

 u_int mask;

 int timeout_seconds;

} ccurdscc_driver_int_t;

// mask

- CCURDSCC_INTSTAT_LOCAL_PLX_MASK

- CCURDSCC_INTSTAT_FIFO_LOHI_THRESHOLD_MASK

2.2.84 ccurDSCC_Write()

This call is not supported for this Analog Input card.

/**

 int ccurDSCC_Write(void *Handle, void *buf, int size, int *bytes_written,

 int *error)

 Description: Perform a write operation.

 Input: void *Handle (handle pointer)

 int size (number of bytes to write)

 Output: void *buf (pointer to buffer)

 int *bytes_written (bytes written)

 int *error (returned errno)

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_IO_ERROR (write failed)

 CCURDSCC_LIB_NOT_IMPLEMENTED (call not implemented)

 **/

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 64 of 74

2.2.85 ccurDSCC_Write_Channels_Calibration()

This call writes the user supplied calibration information to the on-board channel memory. This file must exist

and be readable. This file could have been created by the ccurDSCC_Read_Channels_Calibration() call.

Those channels that are not specified in the file are not altered on the board. Any blank lines or entries starting

with ‘#’ or ‘*’ are ignored during parsing.

/**

 int ccurDSCC_Write_Channels_Calibration(void *Handle, char *filename)

 Description: Write Channels Calibration information

 Input: void *Handle (handle pointer)

 char *filename (pointer to filename)

 Output: none

 Return: CCURDSCC_LIB_NO_ERROR (successful)

 CCURDSCC_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURDSCC_LIB_NOT_OPEN (device not open)

 CCURDSCC_LIB_INVALID_ARG (invalid argument)

 CCURDSCC_LIB_NO_LOCAL_REGION (local region not present)

 CCURDSCC_LIB_IO_ERROR (read error)

 CCURDSCC_LIB_CANNOT_OPEN_FILE (file not writeable)

 CCURDSCC_LIB_CALIBRATION_RANGE_ERROR (range error)

 **/

Format:

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 1.130771 -0.003152 1.130929

 ch01: 1.130661 -0.000795 1.130785

 ch02: 1.130400 0.001271 1.130840

 ch30: 1.130196 0.001695 1.130285

 ch31: 1.130440 0.001074 1.130285

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 65 of 74

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the Direct

Driver Access do not use the API, while those under Application Program Interface Access use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the …/test directory and do not use the API. They communicate directly with

the driver. Users should be extremely familiar with both the driver and the hardware registers if they wish to

communicate directly with the hardware.

3.1.1 ccurdscc_disp

Useful program to display all the analog input channels using various read modes. This program uses the

curses library.

Usage: ./ccurdscc_disp [-b board] [-d delay] [-f format] [-m mode] [-p] [

 -b <board> (default = 0)

 -d <delay - msec) (delay between screen refresh)

 -f <format 'b', '2'> (default = 'b' Offset Binary)

 -md (user DMA read mode [FIFO])

 -mD (driver DMA read mode [FIFO])

 -mf (user PIO read mode [FIFO])

 -mF (driver PIO read mode [FIFO])

 -mp (user PIO read mode [CHANNEL])

 -mP (driver PIO read mode [CHANNEL])

 -N (open device with O_NONBLOCK flag)

 -p (program board to max clock first)

Example display:

Board Number [-b]: 0 ==> '/dev/ccurdscc0'

Delay [-d]: 0 milli-seconds

Data Format [-f]: 'Offset Binary'

Read Mode [-m]: 'Driver DMA (FIFO Data) [BLOCK mode]'

Program Board [-p]: 'No'

Input Voltage Range : +/-5.0 Volts

Calibration Ref Voltage: 4.955 Volts

Read Error? : '=== no ==='

Scan count: 7332, Delta: 19.2 usec (min= 17.4,max=122.2,av= 19.7)

 ##### Raw Data #####

 [0] [1] [2] [3] [4] [5] [6] [7]

 ====== ====== ====== ====== ====== ====== ====== ======

Conv[0] 8000aa 7ffb02 800039 800685 7fff45 800dc3 8005a1 7fff55

Conv[1] 800a6f 7ffad8 7ff92b 7fee4d 800e9a 8000da 8000d1 7ffbc2

Conv[2] 80059d 801cef 800c9c 800319 7ff7c7 8004f9 8008ac 7fed14

Conv[3] 8009e6 7ff770 800145 8003f1 7ffd88 8004c4 800931 7ffb51

 ##### Volts #####

 [0] [1] [2] [3] [4] [5] [6] [7]

 ======= ======= ======= ======= ======= ======= ======= =======

Conv[0] +0.00010 -0.00076 +0.00003 +0.00099 -0.00011 +0.00210 +0.00086 -0.00010

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 66 of 74

Conv[1] +0.00159 -0.00079 -0.00104 -0.00270 +0.00223 +0.00013 +0.00012 -0.00065

Conv[2] +0.00086 +0.00441 +0.00192 +0.00047 -0.00125 +0.00076 +0.00132 -0.00289

Conv[3] +0.00151 -0.00131 +0.00019 +0.00060 -0.00038 +0.00073 +0.00140 -0.00071

3.1.2 ccurdscc_get_sps

This program is useful in calculating the actual sampling rate of a running clock. It basically determines the

rate at which samples are being placed in the FIFO and computes the rate, either for all channels or a specific

channel. Hence, if you are running the board with clocks running at different rates for a set of channel groups,

then you can determine the approximate rate at which samples are being collected in the FIFO. Additionally,

it displays the minimum, maximum and average of the rate. This program uses the curses library.

Usage: ./ccurdscc_get_sps [-b board]

 -b <board> (default = 0)

 -c <channel number> (default = all channels)

Example display:

Device Name: /dev/ccurdscc0

Active Channel Found: 32 #### (Channel Mask: 0xffffffff)

All channels tracked ####

delta= 9463.627 usec, samples=65408 rate=215.9849 Ksps (215.901/216.020/215.958)

Device Name: /dev/ccurdscc0

Active Channel Found: 32 #### (Channel Mask: 0xffffffff)

Only Channel 12 tracked ####

delta= 9465.700 usec, samples= 2044 rate=215.9375 Ksps (215.934/216.011/215.974)

3.1.3 ccurdscc_rdreg

This is a simple program that returns the local register value for a given offset.

Usage: ./ccurdscc_rdreg [-b board] [-o offset]

 -b board: board number -- default board is 0

 -o offset: hex offset to read from -- default offset is 0x0

Example display:

Read at offset 0x0000: 0x92770102

3.1.4 ccurdscc_regedit

This is an interactive test to display and write to local, configuration and physical memory.

Usage: ccurdscc_tst <device number>

Example display:

Device Name: /dev/ccurdscc0

Initialize_Board: Firmware Rev. 0x2 successful

Virtual Address: 0x7ffff7ffc000

 1 = Create Physical Memory 2 = Destroy Physical memory

 3 = Display Channel Data 4 = Display Driver Information

 5 = Display Firmware RAM 6 = Display Physical Memory Info

 7 = Display Registers (CONFIG) 8 = Display Registers (LOCAL)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 67 of 74

 9 = Dump Physical Memory 10 = Reset Board

 11 = Write Register (LOCAL) 12 = Write Register (CONFIG)

 13 = Write Physical Memory

Main Selection ('h'=display menu, 'q'=quit)->

3.1.5 ccurdscc_tst

This is an interactive test to exercise some of the driver features.

Usage: ccurdscc_tst <device number>

Example display:

Device Name: /dev/ccurdscc0

Initialize_Board: Firmware Rev. 0x2 successful

 01 = add irq 02 = disable pci interrupts

 03 = enable pci interrupts 04 = get device error

 05 = get driver info 06 = get physical mem

 07 = init board 08 = mmap select

 09 = mmap(CONFIG registers) 10 = mmap(LOCAL registers)

 11 = mmap(physical memory) 12 = munmap(physical memory)

 13 = no command 14 = read operation

 15 = remove irq 16 = reset board

 17 = write operation

Main Selection ('h'=display menu, 'q'=quit)->

3.1.6 ccurdscc_wreg

This is a simple test to write to the local registers at the user specified offset.

Usage: ./ccurdscc_wreg [-b board] [-o offset] [-v value]

 -b board : board selection -- default board is 0

 -o offset: hex offset to write to -- default offset is 0x0

 -v value: hex value to write at offset -- default value is 0x0

Example display:

Writing 0x00000000 to offset 0x0000

Read at offset 0x0000: 0x92770102

3.2 Application Program Interface (API) Access Example Tests

These set of tests are located in the …/test/lib directory and use the API.

3.2.1 ccurdscc_calibrate

This program provides an easy mechanism for users to save a calibration currently programmed in the card to

an external file (-o option). The user can use this file as an input (-i option) to restore the board to a known

calibration setting. When a system is booted the first time, the cards are not calibrated. The user can at this

point decide to either run the board auto calibration (-A option) which takes approximately a minute or restore

a previously calibrated setting.

Usage: ./ccurdscc_calibrate [-A] [-b board] [-c] [-f format] [-F] [-i inCalFile]

[-o outCalFile] [-p] [-s sample_rate] [-v] [-X clock]

 -A (perform Auto Calibration and exit)

 -b <board> (board #, default = 0)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 68 of 74

 -c <C#P#> (Assign PLL clock to Converter: C#=0..3,a P#=0..3,e)

 -C <chan sel mask> (channel selection mask)

 -f <format 'b', '2'> (default = 'b' Offset Binary)

 -F (Enable High-Pass Filter)

 -i <In Cal File> (input calibration file)

 -o <Out Cal File> (output calibration file)

 -p (program board to max clock first)

 -s <sample rate> (sample rate: 2000 - 216000 sps)

 -vi (enable input signal)

 -vg (enable [All Converters] ground calibration)

 -v+ (enable [All Converters] +Ref Volt calibration 0.000)

 -v- (enable [All Converters] -Ref Volt calibration 0.000)

 -vg[0..3] (enable [Converter 0..3] ground calibration)

 -v+[0..3] (enable [Converter 0..3] +Ref Volt calibration 0.000)

 -v-[0..3] (enable [Converter 0..3] -Ref Volt calibration 0.000)

 -X[0..3,e] (Board External Clock Output Selection)

 -Z (do not display channel mismatch message)

Example display:

Device Name: /dev/ccurdscc0

Clock Used [-c]: P0->C0, P0->C1, P0->C2, P0->C3

Channels Selected Mask [-C]: 0xffffffff (Number of Channels: 32)

===> Dump to 'stdout'

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 1.130771 -0.003152 1.130929

 ch01: 1.130661 -0.000795 1.130785

 ch02: 1.130400 0.001271 1.130840

 ch03: 1.130533 -0.000376 1.130493

 ch04: 1.130892 -0.002595 1.131122

 ch05: 1.130679 0.004905 1.130052

 ch06: 1.130594 0.001187 1.130434

 ch07: 1.130858 -0.003906 1.130828

 ch08: 1.130163 -0.001864 1.130473

 ch09: 1.129886 0.000182 1.130112

 ch10: 1.130696 0.001528 1.130695

 ch11: 1.130563 0.002583 1.130792

 ch12: 1.130038 0.001292 1.130218

 ch13: 1.130138 0.004800 1.130193

 ch14: 1.130033 0.000365 1.130079

 ch15: 1.130020 0.000823 1.130043

 ch16: 1.131290 -0.000225 1.131115

 ch17: 1.131321 0.002701 1.131271

 ch18: 1.131366 0.000433 1.130900

 ch19: 1.130888 -0.001283 1.130872

 ch20: 1.131421 0.003538 1.131319

 ch21: 1.131316 -0.002158 1.131280

 ch22: 1.130463 -0.000131 1.130433

 ch23: 1.130485 -0.000681 1.130507

 ch24: 1.130377 -0.000809 1.130356

 ch25: 1.130297 0.001249 1.130281

 ch26: 1.130479 0.001277 1.130448

 ch27: 1.130490 0.003979 1.130407

 ch28: 1.130967 0.002018 1.131076

 ch29: 1.130365 0.002326 1.130266

 ch30: 1.130196 0.001695 1.130285

 ch31: 1.130440 0.001074 1.130285

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 69 of 74

3.2.2 ccurdscc_compute_pll_clock

This test does not program the board. It simply returns to the user useful clock settings for a given frequency

as computed by the software using vendor supplied algorithms. Advanced users who have intimate knowledge

of the hardware can choose to change these settings, however results will be unpredictable.

Usage: ./ccurdscc_compute_pll_clock -[ft]

 -f <desired freq> (default = 13.824000 MHz)

 -f <freq_start,freq_end,freq_inc>

 -t <max error tolerance> (default = 1000 ppm)

 -v (enable verbose)

 -s (Minimize VCO Speed)

Example display:

Reference Frequency (fRef - MHz) = 65.536000

Desired Frequency (fDesired - MHz) = 13.824000,13.824000,1.000000

VCO Speed Mode = Maximize

Minimum Phase Detect Freq (fPFDmin - MHz)= 1.000000

Max Error Tolerance (tol - ppm) = 1000

VCO gain (kfVCO - MHz/volt) = 520.000000

Minimum VCO Frequency (fVcoMin - MHz) = 100.000000

Maximum VCO Frequency (fVcoMax - MHz) = 400.000000

Minimum Ref Frequency (nRefMin - MHz) = 1.000000

Maximum Ref Frequency (nRefMax - MHz) = 4095.000000

Minimum FeedBk Frequency (nFbkMin - MHz) = 12.000000

Maximum FeedBk Frequency (nFbkMax - MHz) = 16383.000000

 Requested Clock Freq : 13.8240000000 MHz

 Actual Clock Freq : 13.8240000000 MHz

 Frequency Delta : 0.000000 Hz

 Reference Frequency Divider: 32

 Feedback Frequency Divider : 189

 Post Divider Product : 28 (D1=6 D2=3 D3=0)

 fVCO : 387.072000 MHz

 synthErr : 0.0000000000 ppm

 Gain Margin : 9.367013

 Tolerance Found : 0

 Charge Pump : 22.5 uAmp

 Loop Resistance : 12 Kohm

 Loop Capacitance : 185 pF

3.2.3 ccurdscc_disp

Useful program to display all the analog input channels using various read modes. This program uses the

curses library.

Usage: ./ccurdscc_disp [-A#] [-b board] [-c] [-d delay] [-D debugfile] [-E

ExpInpVolt] [-f format] [-F] [-m mode] [-N] [-o outfile] [-p] [-s sample_rate] [-

v] [-X clock]

 -A <#> (display rolling average of # values.)

 -b <board> (default = 0)

 -c <C#P#> (Assign PLL clock to Converter: C#=0..3,a P#=0..3,e)

 -C <chan sel mask> (channel selection mask)

 -d <delay - msec) (delay between screen refresh)

 -D <Debug File> (write to debug file)

 -E <ExpInpVolts>@<Tol> (Expected Input Volts@Tolerance)

 -f <format 'b', '2'> (default = 'b' Offset Binary)

 -F (Enable High-Pass Filter)

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 70 of 74

 -l <#> (specify loop count)

 -md (User DMA read mode [FIFO])

 -mD (Driver DMA read mode [FIFO])

 -mf (User PIO read mode [FIFO])

 -mF (Driver PIO read mode [FIFO])

 -mp (User PIO read mode [CHANNEL])

 -mP (Driver PIO read mode [CHANNEL])

 -mx (User DMA read mode [CHANNEL])

 -mX (Driver DMA read mode [CHANNEL])

 -N (open device with O_NONBLOCK flag)

 -o <#>@<Output File> (average # count, write to output file)

 -p (program board to max clock first)

 -s <sample rate> (sample rate: 2000 - 216000 sps)

 -vi (enable input signal)

 -vg (enable [All Converters] ground calibration)

 -v+ (enable [All Converters] +Ref Volt calibration)

 -v- (enable [All Converters] -Ref Volt calibration)

 -vg[0..3] (enable [Converter 0..3] ground calibration)

 -v+[0..3] (enable [Converter 0..3] +Ref Volt calibration)

 -v-[0..3] (enable [Converter 0..3] -Ref Volt calibration)

 -X[0..3,e] (Board External Clock Output Selection)

Example display:

Rolling Average Count [-A]: 10000

Board Number [-b]: 0 ==> '/dev/ccurdscc0'

Clock Used [-c]: P0->C0, P0->C1, P0->C2, P0->C3

Channel Sel Mask [-C]: 0xffffffff

Delay [-d]: 0 milli-seconds

Expected Input Volts [-E]: 0.000000 volts (Tolerance 0.005000 volts)

Data Format [-f]: Offset Binary

High Pass Filter [-F]: 'Last set state'

Loop Count [-l]: ***Forever***

Read Mode [-m]: Driver DMA (Channel Data)

Output File (Calib) [-o]: 'outfile' (Rolling Average Count = 10000/10000)

Program Board [-p]: No

Calibration Sel [-v]: Ground (All Converters)

External Clock Output [-X]: PLL 0

Input Voltage Range : +/-5.0 Volts

Calibration Ref Voltage : 4.955 Volts

Read Error? : ===== no ====

Tolerance Exceeded Count : 0

Scan count: 27217, Total Delta: 10.4 usec (min= 10.0,max= 34.1,av= 10.3)

 ##### Raw Data (Rolling Average Count [10000/10000]) #####

 [0] [1] [2] [3] [4] [5] [6] [7]

 ====== ====== ====== ====== ====== ====== ====== ======

Conv[0] 80005e 800096 80000e 80001b 7fff68 800092 7fffed 800057

Conv[1] 7ffdd4 800091 7fff6f 7fffc4 800027 7fffe1 7fffe5 7fffa5

Conv[2] 8000cc 7ffe2d 7ffd15 80009e 800232 7fff5b 800015 7fffd7

Conv[3] 80001b 8000c2 7fff3b 8002ea 800079 8000e5 7ffefa 8001b0

 ##### Volts (Rolling Average Count [10000/10000]) #####

 [0] [1] [2] [3] [4] [5] [6] [7]

 ======= ======= ======= ======= ======= ======= ======= =======

Conv[0] +0.00006 +0.00009 +0.00001 +0.00002 -0.00009 +0.00009 -0.00001 +0.00005

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 71 of 74

Conv[1] -0.00033 +0.00009 -0.00009 -0.00004 +0.00002 -0.00002 -0.00002 -0.00005

Conv[2] +0.00012 -0.00028 -0.00045 +0.00009 +0.00033 -0.00010 +0.00001 -0.00002

Conv[3] +0.00002 +0.00012 -0.00012 +0.00044 +0.00007 +0.00014 -0.00016 +0.00026

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 72 of 74

3.2.4 ccurdscc_fifo

This is a powerful test program that exercises the FIFO capabilities of the board under various reading modes.

Usage: ./ccurdscc_fifo [-A] [-b board] [-B DMA bufs] [-c] [-d debugfile] [-E

ExpInpVolt] [-f format] [-F] [-l count] [-m mode] [-N] [-p] [-r size] [-s

sample_rate] [-v] [-X clock]

 -A (perform Auto Calibration and exit)

 -b <board> (board #, default = 0)

 -B <DMA Cont Bufs> (DMA Continuous Buffers)

 -c <C#P#> (Assign PLL clock to Converter: C#=0..3,a P#=0..3,e)

 -C <chan sel mask> (channel selection mask)

 -d <Debug File> (write to debug file - standard format)

 -d +<Debug File> (write to debug file - for gunzip plot format)

 -E <ExpInpVolts>@<Tol> (Expected Input Volts@Tolerance)

 -f <format 'b', '2'> (default = 'b' Offset Binary)

 -F (Enable High-Pass Filter)

 -l <loop count> (Loop count (def=1000))

 -mC (Driver DMA read mode [CONTINUOUS FIFO])

 -md (User DMA read mode [FIFO])

 -mD (Driver DMA read mode [FIFO])

 -mf (User PIO read mode [FIFO])

 -mF (Driver PIO read mode [FIFO])

 -N (open device with O_NONBLOCK flag)

 -p (program board to max clock first)

 -r <read size> (sample to read: 1 - 65535)

 -s <sample rate> (sample rate: 2000 - 216000 sps)

 -vi (enable input signal)

 -vg (enable [All Converters] ground calibration)

 -v+ (enable [All Converters] +Ref Volt calibration 0.000)

 -v- (enable [All Converters] -Ref Volt calibration 0.000)

 -vg[0..3] (enable [Converter 0..3] ground calibration)

 -v+[0..3] (enable [Converter 0..3] +Ref Volt calibration 0.000)

 -v-[0..3] (enable [Converter 0..3] -Ref Volt calibration 0.000)

 -X[0..3,e] (Board External Clock Output Selection)

 -Z (do not display channel mismatch message)

Example display:

./ccurdscc_fifo -vg -E0@0.025

Read Mode: 'Driver DMA (FIFO Data)'

Device Name: /dev/ccurdscc0

Clock Used [-c]: P0->C0, P0->C1, P0->C2, P0->C3

External Clock Output [-X]: PLL 0

Channels Selected Mask [-C]: 0xffffffff (Number of Channels: 32)

Expected Input Volts [-E]: 0.000000 volts (Tolerance 0.025000 volts)

Channel Mismatch Messages [-Z]: ENABLED

Driver Interrupt Timeout=30 seconds

Clock settling delay (2 seconds)...done

Read Issued In BLOCK mode.

Waiting for 49152 FIFO samples: Num. active channels=32, sample_rate=216000.00

SPS...done

001000: Samples Read=49152 Remaining=31904 t=6.26ms (6.15/10.95/6.30) 31.39MB/s

tol=0 overflow=0

Total Tolerance Exceed Count=0

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 73 of 74

3.2.5 ccurdscc_tst_lib

This is an interactive test that accesses the various supported API calls.

Usage: ccurdscc_tst_lib <device number>

Example display:

Configured Channels Information...

 Last Action : Restore Library Variables

 Last Specified Reference Frequency: 65.536000 MHz

 PLL_0: Actual Freq= 0.00000000, C0= 0 C1= 0 C2= 0 C3= 0

 PLL_1: Actual Freq= 0.00000000, C0= 0 C1= 0 C2= 0 C3= 0

 PLL_2: Actual Freq= 0.00000000, C0= 0 C1= 0 C2= 0 C3= 0

 PLL_3: Actual Freq= 0.00000000, C0= 0 C1= 0 C2= 0 C3= 0

 Ext Clk: Clock Freq= 0.00000000, C0= 0 C1= 0 C2= 0 C3= 0

 01 = Abort DMA 02 = Add Irq

 03 = Allocate DMA Cont. Bufs 04 = Clear Driver Error

 05 = Clear Library Error 06 = Configure Channels

 07 = Configure Channels Info 08 = Disable Pci Interrupts

 09 = Display BOARD Registers 10 = Display CONFIG Registers

 11 = Enable Pci Interrupts 12 = Get Board CSR

 13 = Get Board Information 14 = Get Converter Cal CSR

 15 = Get Converter CSR 16 = Get Converter Information

 17 = Get Converter Calibration 18 = Get Driver Error

 19 = Get Driver Information 20 = Get Driver Read Mode

 21 = Get Fifo Channel Select 22 = Get Fifo Information

 23 = Get Interrupt Control 24 = Get Interrupt Status

 25 = Get Library Error 26 = Get Mapped Config Pointer

 27 = Get Mapped Local Pointer 28 = Get Number of DMA Cont. Buffers

 29 = Get Physical Memory 30 = Get PLL Information

 31 = Get PLL Status 32 = Get PLL Synchronization

 33 = Get Value 34 = Initialize Board

 35 = MMap Physical Memory 36 = Munmap Physical Memory

 37 = One Shot Test 38 = Perform Auto Calibration

 39 = Perform Neg Calib (External) 40 = Perform Offset Calib (External)

 41 = Perform Pos Calib (External) 42 = Perform Negative Calibration

 43 = Perform Offset Calibration 44 = Perform Positive Calibration

 45 = Program CPM (Advanced) 46 = Program PLL (Advanced)

 47 = Program PLL Clock 48 = Read Operation

 49 = Read Channels 50 = Read Channels Calibration

 51 = Remove Irq 52 = Remove DMA Cont. Buffers

 53 = Reset Board 54 = Reset Calibration

 55 = Reset Converter 56 = Reset DMA Continuous Buffers

 57 = Reset Fifo 58 = Select Driver Read Mode

 59 = Set Converter Cal CSR 60 = Set Converter Clock Source

 61 = Set Converter Negative Cal 62 = Set Converter Offset Cal

 63 = Set Converter Positive Cal 64 = Set Board CSR

 65 = Set Fifo Channel Select 66 = Set Fifo Threshold

 67 = Set Interrupt Control 68 = Set Interrupt Status

 69 = Set PLL Synchronization 70 = Set Value

 71 = Shutdown PLL Clock 72 = Start PLL Clock

 73 = Stop PLL Clock 74 = Write Operation

 75 = Write Channels Calibration

Main Selection ('h'=display menu, 'q'=quit)->

All information contained in this document is confidential and proprietary to Concurrent Computer Corporation. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Computer Corporation. No license, expressed or implied,

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 74 of 74

This page intentionally left blank

