
MAXAda Reference Manual

0890516-100

April 2001

Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope“Attention: Publications Department .”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

MAXAda, NightBench, NightView, PowerMAX OS, TurboHawk, PowerMAXION, and Power Hawk are trademarks of Concurrent Computer
Corporation.

Night Hawk is a registered trademark of Concurrent Computer Corporation

PowerStack is a trademark of Motorola, Inc.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Linux is a registered trademark of Linus Torvalds.

POSIX is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Élan License Manager is a trademark of Élan Computer Group, Inc.

AXI is a trademark of Sente Corporation

OSF/Motif is a registered trademark of The Open Group.

X Window System and X are trademarks of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- March 1997 000 MAXAda 1.0

Previous Release -- October 2000 090 MAXAda 3.3.1

Current Release -- April 2001 100 MAXAda 3.3.1-001

ters
peci-
C-

. The
ents,

port

t the
for-

brief
ws.
Preface

General Information

MAXAdaTM is a tool set for the development of Ada programs on Concurrent compu
under the PowerMAX OS environments. MAXAda processes the Ada language as s
fied by the Reference Manual for the Ada Programming Language, ANSI/ISO/IE
8652:1995, referred to in this document as the Ada 95 Reference Manual or the RM
Ada 95 Reference Manual may be obtained through the Superintendent of Docum
U.S. Government Printing Office, Washington, D.C. 20402.

The MAXAda documentation describes the operation of the Ada Programming Sup
Environment. It does not attempt to teach Ada or UNIX®.

The Ada 95 Reference Manual specifies all compiler-independent information abou
Ada language. This document specifies all MAXAda-specific compiler-dependent in
mation about the Ada language.

Scope of Manual

This manual is a reference document and user guide for MAXAda.

Structure of Manual

This manual consists of 12 chapters, four appendixes, a glossary, and an index. A
description of the contents of each of the chapters of the manual is described as follo

• Part 1 is Operations which contains Chapter 1 through Chapter 4. These
chapters are the Introduction to MAXAda, Using MAXAda, MAXAda
Concepts, and MAXAda Utilities.

• Part 2 is Run-Time which contains Chapter 5 through Chapter 7. These
chapters are Run-Time Concepts, Run-Time Configuration, and Interrupt
Handling.

• Part 3 is General Features which contains Chapter 8 through Chapter 9.
These chapters are Shared Memory and Process Communication and Sup-
port Packages.

• Part 4 is Real-Time Features which contains Chapter 10 through
Chapter 12. These chapters are Real-Time Extensions, Real-Time Event
Tracing, and Real-Time Monitoring.

• Part 5 is Appendixes and Index which contains Appendix A (Troubleshoot-
ing), Appendix B (MAXAda Configuration), Appendix C (Ada Night-
View), Appendix M (Implementation-Defined Characteristics), a glossary,
and an index.
iii

MAXAda Reference Manual

cify
y

ns

es-

ons,

are
ify

ipe
ype
Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms and comments in code ma
also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, optio
and man page references also appear inlist bold type.

list Operating system and program output such as prompts and m
sages and listings of files and programs appears inlist type.
Keywords also appear inlist type.

emphasis Words or phrases that require extra emphasis use emphasistype.

window Keyboard sequences and window features such as push butt
radio buttons, menu items, labels, and titles appear inwindow
type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{ } Braces enclose mutually exclusive choices separated by the p
(|) character, where one choice must be selected. You do not t
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol meansis defined asin Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0830045 HN6800 Console Reference Manual

0830047 HN6200 Console Reference Manual

0890240 Hf77 Fortran Reference Manual

0890395 NightViewTM User’s Guide

0890398 NightTraceTM Manual

0890423 PowerMAX OS Programming Guide

0890424 Character User Interface Programming

0890429 System Administration Volume 1

0890430 System Administration Volume 2

0890458 NightSimTM Quick Reference

0890459 Compilation Systems Volume 1 (Tools)

0890460 Compilation Systems Volume 2 (Concepts)
iv

Preface
0890465 NightProbeTM Quick Reference

0890466 PowerMAX OS Real-Time Guide

0890479 PowerMAX OS Guide to Real-Time Services

0890493 Data Monitoring Reference Manual

0890514 NightBench User’s Guide

0891019 Concurrent C Reference Manual

0891055 Élan License Manager Release Notes
v

MAXAda Reference Manual
vi

Contents

-4
-6

7
8
-8
-8
9
9
10
11
2

1
-1

-2
-3
4
-4

-5
-5
-6

-7
-11
-11
2
-13
-13
4
-14
5

17
7

-1
Contents

Chapter 1 Introduction to MAXAda

MAXAda Utilities . 1-1
MAXAda Core Utilities .. 1-3

Privileges . 1
License Management (PowerMAX OS only) . 1

Activating MAXAda Licenses (PowerMAX OS only). 1-6
POWERWORKS_ELMHOST (PowerMAX OS only) 1-
Access Limits (PowerMAX OS only) . 1-
Resource File (PowerMAX OS only) . 1
Error Messages (PowerMAX OS only) . 1
Further Information (PowerMAX OS only) . 1-

Activation (Linux only) . 1-
Run-Time Systems. 1-
Supplied Environments . 1-
Ada Bindings . 1-1
Complementary MAXAda Products .. 1-12

Chapter 2 Using MAXAda

Hello World - An Example . 2-
Creating an environment . 2
Introducing units. 2
Defining a partition. 2
Building a partition . 2-
Success!!! . 2
Let’s look around.... 2-5

Listing the units in your environment . 2
Viewing the source for a particular unit . 2
Listing the partitions defined. 2
Looking at the Environment Search Path .. 2-7
What are my options? . 2

Hello Galaxy - The Example Continues... 2
Setting up another environment . 2
Modifying an existing unit . 2-1
Building a unit with references outside the local environment 2
Adding an environment to the Environment Search Path 2
Making contact!!! . 2-1
Who resides here now?. 2

Hello Again... Ambiguous Units . 2-1
Resolving the ambiguity. 2-
No more ambiguities!!! . 2-1

Chapter 3 MAXAda Concepts

Environments. 3
vii

MAXAda Reference Manual

-2
-2
-2

-3
-3
-3
-3
-4
-4
-4
-6
-7
7
-9

-9
9
0

1
1

12
12
2
2
13
3
14
14

15
16
17

9
-20
0

0
1

21
1
2
22
23
4

-25
26
7
8

29
30
31
2

Local Environments . 3
Foreign Environments. 3

Environment Search Path . 3
Naturalization . 3
Fetching . 3
Supplied Environments . 3

NFS Environments . 3
Freezing Environments . 3
Restoring Environments . 3
Relocating Environments . 3
Environment-wide Compile Options . 3

Units . 3
Unit Identification. 3-
Configuration Pragmas . 3
Nationalities . 3

Local Units . 3-
Foreign Units . 3-1

Ambiguous Units . .. 3-10
Artificial Units . 3-1
Unit Compile Options. 3-1

Partitions . 3-
Types of Partitions . 3-

Active Partitions . 3-1
Archives . 3-1
Shared Objects . 3-

Lazy Versus Immediate Binding . 3-1
Position Independent Code. 3-
Share Path. 3-
Shared Objects and Special MAXAda Packages. 3-14
Issues to consider . 3-

Elaboration and Finalization Methods . 3-
Elaboration Methods . 3-
Finalization Methods .. 3-18

Main Subprogram Requirements .. 3-19
Exit Status . 3-1

Compilation and Program Generation . 3
Compilation . 3-2

Automatic Compilation Utility . 3-20
Compile Options . 3-2

Environment-wide Options . 3-2
Permanent Unit Options . 3-
Temporary Unit Options. 3-2
Effective Options . 3-2

Compilation States. 3-
Consistency . 3-
Interoptimization . 3-2
Programming Hints and Caveats . 3

Compiler Error Messages . 3-
Lexical Errors . 3-2
Syntax Errors . 3-2
Semantic Errors . 3-
General Errors . 3-
Informational Messages. 3-
Warnings . 3-3
viii

Contents

2
3

33
4
36
36
8

38
40
40

-2
-3

-5
-6
-8
-10
11
1
1
12
13
14
16
18
20
21
26
27
30
31
32
33
35

7
8

40
2

44
45
6
6
47
49
-50

-50

52
58
61
Alerts . 3-3
Fatal Errors . 3-3
Internal Errors and Panics . 3-

Link Options. 3-3
Linking Executable Programs . 3-

Linking Ada Programs with Shared Objects. 3-
Debugging. 3-3

Real-Time Debugging . .. 3-38
Selecting a Debug Level . 3-
Degree of Interest . 3-
Debug Information and cprs . 3-

Chapter 4 MAXAda Utilities

Common Options . 4
a.analyze . 4

Link-Time Optimizations with a.analyze . 4
Profiling with a.analyze . 4

a.build . 4
Parallel Compilations and Dependency Analyses . 4
Inline Dependencies . 4-
Forcing Attempts . 4-1
Why . 4-1

a.cat . 4-
a.chmod . 4-
a.compile . 4-
a.demangle . 4-
a.deps . 4-
a.edit . 4-
a.error. 4-
a.expel . 4-
a.fetch . 4-
a.freeze. 4-
a.help . 4-
a.hide . 4-
a.install. 4-
a.intro . 4-
a.invalid . 4-3
a.link . 4-3
a.ls . 4-

Formatting the listing . 4-4
Dependent units . 4-
Parts . 4-
Sorting . 4-4
Filtering . 4-4

a.lssrc . 4-
a.man . 4-

References to the Ada 95 Reference Manual . 4
References to the MAXAda Reference Manual . 4
Access to Support Packages. 4-51

a.map . 4-
a.mkenv . 4-
a.monitor . 4-
ix

MAXAda Reference Manual

62
64
65
5

66
6

66
6

67
67
68

71
71
71
1
3
8
79
1
82
84
85
6

86
-88
90
92
93
94
95
96
97
99
00
02
04
07
08
09
9

1
1

5
9
0

20
22
22
a.nfs . 4-
a.options . 4-

Option Sets . 4-
Listing options . 4-6
Setting options . 4-
Modifying options. 4-6
Clearing options . 4-
Deleting options . 4-6
Keeping temporary options. 4-
Setting options on foreign units . 4-

a.partition . 4-
Main Subprogram . .. 4-70
Elaboration and Finalization. 4-
Case Sensitivity. 4-
Consistency . 4-
Link Options . 4-7
Link Rule . 4-7
Implicitly-Included Libraries . 4-7

a.path . 4-
a.pclookup. 4-8
a.pp. 4-

Commands . 4-
Expressions . 4-
Defaults. 4-8
Examples. 4-

a.release . 4
a.report . 4-
a.resolve . 4-
a.restore . 4-
a.rmenv. 4-
a.rmsrc . 4-
a.rtm . 4-
a.script . 4-

Generated Script - Options . 4-
a.slinker . 4-1
a.syntax . 4-1
a.tags . 4-1
a.touch . 4-1
a.trace . 4-1
Compile Options . 4-1

Negation (!) . 4-10
Debug Level (-g[level]) . 4-110
Opportunism (-opp) . 4-110
Share Mode (-sm) . 4-11
Not Shared (-N) . 4-11
Optimization Level (-O[level]) . 4-112
Qualifier Keyword (-Qkeyword[=value]) . 4-114
Suppress Checks (-S) . 4-114

Qualifier Keywords (-Q options). 4-11
Link Options . 4-11

Selective Linking . 4-12
Target Architecture . 4-1
OS Version . 4-1
Share Path . 4-1
x

Contents

22
3

23
24

24

-1
-2
-2
-2
-3
-3
-3
-3
3
-4
5
-5
-5
5-8
-8
-8
10
11
1
1
1
2
2

13
4

6
7
7

6-1

-2
-2
2
3
-4

-4

6-5
6-5
6-6
Incrementally Updateable Partition . 4-1
Tracing . 4-12
Task Weight . 4-1
Shared Object Transitive Closure . 4-1
Obscurity Checks . 4-1

Chapter 5 Run-Time Concepts

Tasking Model . 5
Features. 5
Performance . 5
Task Weights. 5

Bound Tasks . 5
Multiplexed Tasks . 5

Task Scheduling . 5
Task Time Slices . 5

Utilization of Multiple CPUs . 5-
Ghost Tasks . 5

ADMIN Ghost Task . 5-
TIMER Ghost Task . 5

Priorities . 5
OS Scheduling Classes .

Class Selection by the Non-Tasking Run-Time 5
Class Selection by the Tasking Run-Time . 5

Restrictions for Priorities in the System.Interrupt_Priority Range 5-
Memory Management . 5-

Text Memory . 5-1
Data Memory . 5-1
Collection Memory. 5-1
Stack Memory . 5-1
Other Memory . 5-1
Visibility of Memory . 5-13
Local Memory Management . 5-

NUMA Policies . 5-1
MAXAda Local Memory Management . .. 5-15

Distribution Requirement. 5-1
Local Memory Locking Requirement . 5-1
Example . 5-1

Chapter 6 Run-Time Configuration

General Pragmas .
Pragma RUNTIME_DIAGNOSTICS .. 6-1
Pragma MAP_FILE . 6
Pragma QUEUING_POLICY . 6
Pragma TASK_DISPATCHING_POLICY . 6-
Pragma LOCKING_POLICY . 6-
Pragma SERVER_CACHE_SIZE . 6
Pragma DEFAULT_HARDNESS . 6
Pragma DISTRIBUTED_LOCAL_LOCKING . 6-5

Task and Group Configuration Concepts .
Task Names and Default Settings. .
Task Specifiers in Task Pragmas .
xi

MAXAda Reference Manual

6-9
6-9
10
0
2
4

5

18
19
19
-20
1

21
3

29
9

30
32
33
33

-2
-3

-4
-5

7-6
-7
7-7
7-7
7-8
-9
1
3
4

15
6
7

-1
8-1
-1
8-4
8-4
8-5
Group Names and Default Settings .
Group Specifiers in Group Pragmas .

Task Attributes . 6-
Pragma TASK_WEIGHT . 6-1
Pragma TASK_PRIORITY. 6-1
Pragma TASK_CPU_BIAS . 6-1
Pragma TASK_QUANTUM. 6-1
Pragma TASK_HANDLER. 6-16

Group Attributes. 6-
Pragma GROUP_PRIORITY . 6-
Pragma GROUP_CPU_BIAS. 6-
Pragma GROUP_SERVERS. 6

Memory Attributes . 6-2
Pool Specifiers . 6-
Pragma MEMORY_POOL . 6-2
Pragma POOL_CACHE_MODE . 6-
Pragma POOL_LOCK_STATE . 6-2
Pragma POOL_SIZE . 6-
Pragma POOL_PAD . 6-

Protected Object Attributes . 6-
Pragma PROTECTED_PRIORITY . 6-

Chapter 7 Interrupt Handling

Software Interrupts. 7
COURIER Ghost Tasks . 7
SHADOW Ghost Tasks . .. 7-4

Hardware Interrupts . 7
INTR_COURIER and COURIER Ghost Tasks . 7
SHADOW Ghost Tasks . .. 7-6

Required Privileges for Unrestricted Hardware Interrupts
Interrupt Attachments . 7

Package Ada.Interrupts.Names .
Package Ada.Interrupts.Services .

Task Executives via Protected Handlers .
Example . 7

Description of Example . 7-1
Pragma FAST_INTERRUPT_TASK . 7-1

FAST_INTERRUPT_TASK Performance . 7-1
Fast Interrupt Executives . 7-
Termination. 7-1
Conditional Task Entry Calls . 7-1

Chapter 8 Shared Memory and Process Communication

Shared Memory . 8
Shared Packages. .

Pragma SHARED_PACKAGE . 8
Restrictions on Contents of Shared Packages. .
Characteristics of Shared Packages .
Shared Package Semaphores. .

Additional Ada Shared Memory Support. 8-8
xii

Contents

-5
-6
8
9
10
10
0

11
1
-11
-11
1
1
2
2

12
2
2
2
3
14
14
4

5
16
6

16
7
7

7
8
8

-1
-1
-2
-2

0-5
-6
-7
-9
-9
-9
11
11
12
Chapter 9 Support Packages

Supplied Environments . 9
predefined . 9
vendorlib. .. 9-

Bit_Ops . 9-
Ada.Exceptions.Addresses. 9-
Ada.Numerics.Constants . 9-
Runtime_Configuration . 9-1
Shared_Memory_Support 9-10
System.Addresses . 9-
System.Information . 9-1
System.Storage_Pools.Standard. 9
System.Storage_Pools.Standard.Objects . 9
Walkbacks . 9-1
Walkbacks_Display . 9-1

publiclib . 9-1
C_To_Ada_Types. 9-1
Character_Type . 9-
Curses. 9-1
Qsort. 9-1

rtdm . 9-1
Real_Time_Data_Monitoring . 9-1

deprecated. 9-
obsolescent . 9-
posix_1003.1 9-1

Posix_1003_1. .. 9-15
posix_1003.5 9-1
sockets . 9-

Sockets . 9-1
general . 9-

Night_Trace_Bindings . 9-1
Timers . 9-1

AXI Supplied Environments .. 9-17
Xlibxt . 9-1
Stars-Xlibxt . 9-1
Motif . 9-1

Chapter 10 Real-Time Extensions

High-Resolution Timing Interfaces . 10
Interval Timer Interface . 10

Mutual Exclusion Interfaces . 10
Spin Locks . 10
Binary Semaphores. 10-3
Tasking Semaphores . 1

Task Synchronization. 10
Cyclic Scheduling . 10
User Trace . 10
Low-Level Interfaces . 10

Indivisible Operations . 10
Rescheduling Control . 10-
Client-Server Services . 10-
User-Level Interrupts . 10-
xiii

MAXAda Reference Manual

12
12

-1
1-2
2
-2

1-3
4
-5
6
7
-8

10
13
5

5
6
6

17
8

19
19
20
21
21
2

-1
-1
-1
-2
2-2
-2
-5
-6
-6
-8
10
1
3

-1
-1
2

Direct Memory Access . 10-
Usermap Support . 10-

Chapter 11 Real-Time Event Tracing

Specifying Trace Events. 11
Predefined Trace Events . 1

Library Unit Elaboration . 11-
User-Defined Trace Events . 11

user_trace package. 1
Specification. 11-
Usage . 11

NightTrace Binding . 11-
Specification. 11-
Usage . 11

NightView Debugger .. 11-9
Tracing Options . 11-

Tracing Options - Examples . 11-
Logging Trace Events . .. 11-1

Logging Mechanisms. 11-15
Ada Executive . 11-1

Trace Buffer . 11-1
Timing Source . 11-1

NightTrace Daemon. 11-
Log Files . 11-1

Viewing Trace Events . 11-
User Table . 11-
Viewing Trace Events with a.trace . 11-
Viewing Trace Events with NightTrace . 11-

Creating the NightTrace Configuration File . 11-
Modifying the NightTrace Configuration File. 11-2

Chapter 12 Real-Time Monitoring

Data Monitoring. 12
Compiling . 12
Eligible Data Objects . 12
Eligible Data Types. 12
real_time_data_monitoring Package. 1
a.rtm . 12

File Operations . 12
Task Monitoring . 12

a.monitor . 12
Task Display . 12
System Display . 12-
Memory Display . 12-1
LWP Display . 12-1

Appendix A Troubleshooting

Configuration Errors . A
System Configuration . A
Application Configuration . A-
xiv

Contents

2
-2
-2
-3

-3
-3

-8

-1
-3

-4

-3
-3

-6
-6
-7

-7
C-7
-8
-8

-2
-2
-2
-4
-5
-5
-5

-6
-9

-9
-9
-9
10
10

1
1

12
-12
-13
3
16
Using Tasks to Multithread Algorithms . A-
User Errors. A

Concurrent Access . A
Hung Processes. A
Referencing errno . A
Client/Server Services . A

Run-Time Diagnostics. A-5
Run-Time Diagnostic Messages.. A-5

Compiler Errors . A

Appendix B MAXAda Configuration

Privileges . B
Basic System Configurations . B

Kernel Configuration . B

Appendix C Ada NightView

Debugger Command Comparison C-1
Hints for Debugging Ada Programs with NightView . C

Tasking Programs . C
Debugging Context .. C-4

Exception Handling and Interception. C
Generics . C
Overloaded Subprograms . C
General NightView Operational Hints . C

Listing Source, Packages, and Subprograms .
Disassembly . C
Expression Evaluation Syntax. C

Appendix M Implementation-Defined Characteristics

RM Chapter 1: General . M
RM 1.1.2 Structure . M
RM 1.1.3 Conformity of an Implementation with the Standard. M
RM 1.1.4 Method of Description and Syntax Notation M

RM Chapter 2: Lexical Elements . M
RM 2.1 Character Set . M
RM 2.2 Lexical Elements, Separators, and Delimiters M
RM 2.8 Pragmas . M

RM Chapter 3: Declarations and Types. M
RM 3.5 Scalar Types . M
RM 3.5.2 Character Types . M
RM 3.5.4 Integer Types . M
RM 3.5.5 Operations of Discrete Types . M-
RM 3.5.6 Real Types . M-
RM 3.5.7 Floating Point Types. M-1
RM 3.5.9 Fixed Point Types. M-1
RM 3.6.2 Operations of Array Types . M-
RM 3.9 Tagged Types and Type Extensions . M

RM Chapter 4: Names and Expressions . M
RM 4.1.4 Attributes . M-1
RM 4.3.1 Record Aggregates . M-
xv

MAXAda Reference Manual

-17

-19
0
-21
21
22
-23

23
23
-24
25
9

30
-30

32
-33
33
34
34
4

6
9
0

41
2
-43
-43
46
6
-46

-47
47
8

48
2
3
3
54
60

-63
63
64
65
65
-66
6
6

9
0

-72
2

RM Chapter 5: Statements . M
RM Chapter 6: Subprograms . .. M-18
RM Chapter 7: Packages . M
RM Chapter 8: Visibility Rules . M-2
RM Chapter 9: Tasks and Synchronizations . M

RM 9.6 Delay Statements, Duration, and Time . M-
RM 9.10 Shared Variables . M-

RM Chapter 10: Program Structure and Compilation Issues. M
RM 10.1 Separate Compilation . M-
RM 10.1.4 The Compilation Process . M-
RM 10.1.5 Pragmas and Program Units . M
RM 10.2 Program Execution . M-
RM 10.2.1 Elaboration Control . M-2

RM Chapter 11: Exceptions. M-
RM 11.4.1 The Package Exceptions . M
RM 11.5 Suppressing Checks. M-31

RM Chapter 12: Generic Units . M-
RM Chapter 13: Representation Issues . M

RM 13.1 Representation Items . M-
RM 13.2 Pragma Pack . M-
RM 13.3 Representation Attributes . M-

Address Attributes . M-3
Alignment Attributes . M-3
Size Attributes for Objects. M-3
Size Attributes for Subtypes . M-4
Component_Size Attributes. M-
External_Tag Attributes. M-4

RM 13.4 Enumeration Representation Clauses . M
RM 13.5.1 Record Representation Clauses . M
RM 13.5.2 Storage Place Attributes . M-
RM 13.5.3 Bit Ordering . M-4
RM 13.7 The Package System . M
RM 13.7.1 The Package System.Storage_Elements. M
RM 13.8 Machine Code Insertions . M-

PowerPC-604. M-4
PowerPC-604 Instruction Set . M-
Register Set. M-5
Addressing Modes . M-5
Usage . M-5

RM 13.9 Unchecked Type Conversions . M-
RM 13.11 Storage Management . M-
RM 13.11.2 Unchecked Storage Deallocation . M
RM 13.12 Pragma Restrictions. M-
RM 13.13.2 Stream-Oriented Attributes. M-

RM Annex A: Predefined Language Environment . M-
RM A.1 The Package Standard. M-
RM A.3.2 The Package Characters.Handling. M
RM A.4.4 Bounded-Length String Handling . M-6
RM A.5.1 Elementary Functions . M-6
RM A.5.2 Random Number Generation. .. M-67
RM A.5.3 Attributes of Floating Point Types. M-6
RM A.7 External Files and File Objects. M-7
RM A.9 The Generic Package Storage_IO. M
RM A.10 Text Input-Output . M-7
xvi

Contents

73
3
3

75
75
79
0
2
2
84
84
85
-87
87
-88
88
89
90
91
1
1

91

3
3
3

5
6
96
7
7
7

98
-98
9
9
-99
00
101
01
02
03
5
5

5
6

6

08
08
9

RM A.10.7 Input-Output of Characters and Strings. M-
RM A.10.9 Input-Output for Real Types . M-7
RM A.13 Exceptions in Input-Output . M-7
RM A.15 The Package Command_Line. M-74

RM Annex B: Interface to Other Languages . M-
RM B.1 Interfacing Pragmas . M-
RM B.2 The Package Interfaces . M-
RM B.3 Interfacing with C. M-8
RM B.4 Interfacing with COBOL . M-8
RM B.5 Interfacing with Fortran . M-8

RM Annex C: Systems Programming . M-
RM C.1 Access to Machine Operations . M-
RM C.3 The Package Interrupts . M-
RM C.3.1 Protected Procedure Handlers . M
RM C.3.2 The Package Interrupts . M-
RM C.4 Preelaboration Requirements . M
RM C.5 Pragma Discard_Names . M-
RM C.7.1 The Package Task_Identification. M-
RM C.7.2 The Package Task_Attributes . M-

RM Annex D: Real-Time Systems . M-
RM D.1 Task Priorities. M-9
RM D.2.1 The Task Dispatching Model . M-9
RM D.2.2 The Standard Task Dispatching Policy . M-
RM D.3 Priority Ceiling Locking. M-92
RM D.4 Entry Queuing Policies. M-9
RM D.6 Preemptive Abort . M-9
RM D.7 Tasking Restrictions . M-9
RM D.8 Monotonic Time . M-9
RM D.9 Delay Accuracy . M-9
RM D.12 Other Optimizations and Determinism Rules M-

RM Annex G: Numerics . M-9
RM G.1 Complex Arithmetic . M-9
RM G.1.1 Complex Types . M-9
RM G.1.2 Complex Elementary Functions . M-
RM G.2 Numeric Performance Requirements . M
RM G.2.1 Model of Floating Point Arithmetic . M-9
RM G.2.3 Model of Fixed Point Arithmetic . M-9
RM G.2.4 Accuracy Requirements for the Elementary Functions. M
RM G.2.6 Accuracy Requirements for Complex Arithmetic M-1

RM Annex J: Obsolescent Features. M-
RM J.7.1 Interrupt Entries . M-1

RM Annex K: Language-Defined Attributes. M-1
RM Annex L: Pragmas . M-1

Pragma ALL_CALLS_REMOTE - (not yet supported) M-10
Pragma ASSIGNMENT . M-10
Pragma ASYNCHRONOUS - (not yet supported) M-105
Pragma ATOMIC . M-10
Pragma ATOMIC_COMPONENTS . M-10
Pragma ATTACH_HANDLER .. M-106
Pragma CONTROLLED . M-10
Pragma CONVENTION.. M-107
Pragma DATA_RECORD - (obsolete) . M-1
Pragma DEBUG . M-1
Pragma DEFAULT_HARDNESS . M-10
xvii

MAXAda Reference Manual

09
9

0
0
0
1
11
2
2

13
13
13
4
4
5

6
17
7

18
18

8
9
9
9
9
0
0

21
2
2

23
23
23
3
4

24
24
4
5

25
26
6
6

27

8

28
8

Pragma DEPRECATED_FEATURE . M-1
Pragma DISCARD_NAMES . M-10
Pragma DISTRIBUTED_LOCAL_LOCKING . M-110
Pragma DONT_ELABORATE. M-11
Pragma ELABORATE . M-11
Pragma ELABORATE_ALL . M-11
Pragma ELABORATE_BODY. M-11
Pragma EXPORT . M-1
Pragma EXTERNAL_NAME - (obsolete) . M-11
Pragma FAST_INTERRUPT_TASK . M-11
Pragma GROUP_CPU_BIAS. M-1
Pragma GROUP_PRIORITY . M-1
Pragma GROUP_SERVERS. M-1
Pragma IMPLICIT_CODE . M-11
Pragma IMPORT . M-11
Pragma INLINE . M-11
Pragma INSPECTION_POINT - (not yet supported) M-116
Pragma INTERESTING . M-11
Pragma INTERFACE - (obsolete) . M-1
Pragma INTERFACE_NAME - (obsolete). M-11
Pragma INTERFACE_OBJECT - (obsolete) . M-1
Pragma INTERFACE_SHARED - (obsolete) . M-1
Pragma INTERRUPT_HANDLER. M-118
Pragma INTERRUPT_PRIORITY . M-11
Pragma LINK_OPTION - (obsolete) . M-11
Pragma LINKER_OPTIONS . M-11
Pragma LIST. M-11
Pragma LOCKING_POLICY. M-11
Pragma MAP_FILE . M-12
Pragma MEMORY_POOL . M-12
Pragma NORMALIZE_SCALARS - (not yet supported). M-120
Pragma OPT_FLAGS . M-1
Pragma OPT_LEVEL. M-12
Pragma OPTIMIZE. M-12
Pragma PACK . M-1
Pragma PAGE . M-1
Pragma PASSIVE_TASK - (obsolete) . M-1
Pragma POOL_CACHE_MODE . M-12
Pragma POOL_LOCK_STATE . M-12
Pragma POOL_PAD . M-1
Pragma POOL_SIZE . M-1
Pragma PREELABORATE. M-12
Pragma PRIORITY. M-12
Pragma PROTECTED_PRIORITY . M-1
Pragma PURE. M-1
Pragma QUEUING_POLICY. M-12
Pragma REMOTE_CALL_INTERFACE - (not yet supported) M-12
Pragma REMOTE_TYPES - (not yet supported). M-126
Pragma RESTRICTIONS . M-1
Pragma RETURN_CONVENTION. M-127
Pragma REVIEWABLE - (not yet supported) . M-12
Pragma RUNTIME_DIAGNOSTICS. M-128
Pragma SERVER_CACHE_SIZE . M-1
Pragma SHARE_BODY . M-12
xviii

Contents

9
30
0

0
31
31
32
2

2

3
3
4

34
4
4
5

3-8
-7
-27

75
-6

19
55
56
-56
-56
-57
-57
-58
-58
-58
-59

1
3

-22
-23

-10
Pragma SHARE_MODE . M-12
Pragma SHARED - (obsolete) . M-1
Pragma SHARED_PACKAGE. M-13
Pragma SHARED_PASSIVE - (not yet supported) M-130
Pragma SPECIAL_FEATURE . M-13
Pragma STORAGE_SIZE . M-1
Pragma SUPPRESS . M-1
Pragma SUPPRESS_ALL . M-1
Pragma TASK_CPU_BIAS . M-13
Pragma TASK_DISPATCHING_POLICY . M-13
Pragma TASK_HANDLER. M-133
Pragma TASK_PRIORITY . M-13
Pragma TASK_QUANTUM. M-13
Pragma TASK_WEIGHT. M-13
Pragma TDESC . M-1
Pragma TRAMPOLINE . M-13
Pragma VOLATILE . M-13
Pragma VOLATILE_COMPONENTS. M-13

Illustrations

Figure 3-1. Package specification .
Figure 4-1. Profiling a Program . 4
Figure 4-2. Environment scenario containing obscurities . 4
Figure 4-3. Example of usinga.fetch to resolve obscurities 4-28
Figure 4-4. Link Rule Example . 4-
Figure 5-1. Mapping of Various Priority Interpretations . 5
Figure 6-1. Example Configuration for 6-Processor Series 6000 System. 6-26
Figure 6-2. Memory Usage on a 6-Processor Series 6000 System. 6-27
Figure 11-1. Viewing Trace Events . 11-
Figure M-1. An object of an elementary type . M-
Figure M-2. An object of a composite type . M-
Figure M-3. Convert small elementary object to large elementary object M
Figure M-4. Convert large elementary object to small elementary object M
Figure M-5. Convert small composite object to large composite object M
Figure M-6. Convert large composite object to small composite object M
Figure M-7. Convert small elementary object to large composite object M
Figure M-8. Convert large elementary object to small composite object M
Figure M-9. Convert small composite object to large elementary object M
Figure M-10. Convert large composite object to small elementary object M

Tables

Table 1-1. MAXAda Utilities . 1-
Table 1-2. MAXAda Core Utilities . 1-
Table 2-1. Effective options forhello unit . 2-10
Table 2-2. Effective options forhello unit (after-keeptemp) 2-11
Table 3-1. Effective options based on hierarchical relationship 3
Table 3-2. Relevance of Options. 3
Table 3-3. MAXAda-supplied Shared Objects. 3-36
Table 4-1. Number of Parallel Dependency Analyses . 4
Table 4-2. a.ls -format — Descriptors . 4-43
Table 4-3. a.ls -format — Modifiers . 4-44
xix

MAXAda Reference Manual

12
21
21
-31
7-3

-6

13
-14

-16
-17
-2
-5

B-5
-1
7

Table 4-4. Levels of Optimization . 4-1
Table 4-5. Linux PLDE Cross Development Libraries . 4-1
Table 4-6. Target Architectures . 4-1
Table 6-1. Stack Pool Sizes for Ghost Tasks . 6
Table 7-1. Erroneous Behavior Due to User-Defined Signal Handlers
Table 9-1. Support environments. 9-1
Table 9-2. Support packages .. 9-2
Table 9-3. predefined environment . 9
Table 9-4. vendorlib environment . .. 9-8
Table 9-5. publiclib environment 9-12
Table 9-6. rtdm environment . 9-
Table 9-7. obsolescent environment . 9
Table 9-8. posix_1003.1 environment. 9-14
Table 9-9. posix_1003.5 environment. 9-15
Table 9-10. sockets environment . 9
Table 9-11. general environment . 9
Table B-1. Required Privileges . B
Table B-2. Required Kernel Options . B
Table B-3. Significant Kernel Tunable Parameters .
Table C-1. Mappings of a.db and NightView Commands . C
Table M-1. Alignment Restrictions. M-3
xx

1
Part 1Operations

Replace with Part 1 tab

MAXAda Reference Manual

Part 1 - Operations
Part 1 - Operations

Part 1 Operations

Chapter 1 Introduction to MAXAda.. 1-1

Chapter 2 Using MAXAda .. 2-1

Chapter 3 MAXAda Concepts... 3-1

Chapter 4 MAXAda Utilities... 4-1

MAXAda Reference Manual

-4
-6

7
8
-8
-8
9
9
10
11
2

1
Introduction to MAXAda

MAXAda Utilities . 1-1
MAXAda Core Utilities .. 1-3

Privileges . 1
License Management (PowerMAX OS only) . 1

Activating MAXAda Licenses (PowerMAX OS only). 1-6
POWERWORKS_ELMHOST (PowerMAX OS only) 1-
Access Limits (PowerMAX OS only) . 1-
Resource File (PowerMAX OS only) . 1
Error Messages (PowerMAX OS only) . 1
Further Information (PowerMAX OS only) . 1-

Activation (Linux only) . 1-
Run-Time Systems. 1-
Supplied Environments . 1-
Ada Bindings . 1-1
Complementary MAXAda Products .. 1-12

MAXAda Reference Manual

Ada
peci-

ge-
real-

nt,
gives
1
Chapter 1Introduction to MAXAda

1
1
1

MAXAda is a high-performance system intended for the large-scale development of
application, real-time, and systems software. MAXAda supports the Ada language s
fication as defined in the Ada 95 Reference Manual.

The run-time system provides a complete real-time implementation of all langua
defined features. It can be configured to satisfy the demands of the most stringent
time Ada applications as well as those of less critical, time-sharing applications.

MAXAda Utilities 1

MAXAda consists of a number of utilities that provide support for library manageme
compilation and program generation, and debugging. Table 1-1 lists these tools and
a brief description of each one.

Table 1-1. MAXAda Utilities

E
n

vi
ro

nm
en

t/
S

ta
te

U
til

iti
es

a.mkenv Create an environment which is required for compilation, linking, etc.

a.path Display or change the Environment Search Path for an environment

a.options Set compilation options for the environment (or for units)

a.rmenv Destroy an environment; compilation, linking, etc. no longer possible

a.script Create script that will reproduce environment or part thereof

a.nfs Display or change NFS aspects of an environment

a.chmod Modify the UNIX file system permissions of an environment

a.release Display release installation information

a.restore Restore a damaged environment

a.freeze Disallow changes to, and optimize uses of an environment
1-1

MAXAda Reference Manual

's

n-

t

U
n

it

U
til

iti
e

s

a.ls List units in the environment (state, source file, dependencies, etc.)

a.options Set compilation options for units (or the environment)

a.edit Edit the source of a unit, then update the environment

a.cat Output the source of a unit

a.touch Make the environment consider a unit consistent with its source file
timestamp

a.invalid Force a unit to be inconsistent thus requiring it to be recompiled

a.resolve Resolve ambiguities created when a unit exists in multiple source files

a.hide Mark units as being persistently hidden in the environment

a.fetch Fetch the compiled form of a unit from another environment

a.expel Expel fetched or naturalized units from the environment

S
o

u
rc

e
F

ile

U
til

iti
e

s

a.intro Introduce source files (and units therein) to the environment

a.rmsrc Remove knowledge of source files (and units therein) from the enviro
ment

a.syntax Check the syntax of source files

a.tags Generate a cross reference file

D
eb

u
g

U
til

iti
e

s

a.analyze Optimize or analyze performance of fully-linked executables

a.report Generate profile reports in conjunction with a.analyze -P

a.trace Format and display raw trace records

a.map Display or edit the run-time configuration of an executable

a.rtm Monitor or modify a running executable's data values in real-time

a.monitor Monitor tasking in real-time for debugging

a.pclookup Filter standard input adding symbolic descriptions for pc values

C
om

p
ila

tio
n

U
til

iti
e

s

a.build Compile and link as necessary to build a unit, partition or environmen

a.partition Define or display a partition for the linker

Table 1-1. MAXAda Utilities (Cont.)
1-2

Introduction to MAXAda

f
are

ols

t

MAXAda Core Utilities 1

Of the MAXAda Utilities listed in Table 1-1, there are four tools that form the “core” o
the MAXAda system. These tools will most likely be used quite heavily and therefore
given special attention here.

Table 1-2. MAXAda Core Utilities

In
te

rn
a

l

U
til

iti
e

s

a.install Install, remove, or modify a release installation

a.pp Preprocess a source file

a.deps Update environment with information about units within source files

a.compile Compile the specification and/or body of one or more units

a.error Process diagnostic messages generated by the compiler and other to

a.link Link a partition (an executable, archive or shared object file)

a.slinker Selectively link (via a.link) or find reference path to a symbol

H
el

p

U
til

iti
e

s a.help List usage and summary of each MAXAda utility

a.man Invoke/position interactive help system (requires an X terminal)

C
or

e

U
til

iti
e

s

a.mkenv Create an environment which is required for compilation, linking, etc.

a.intro Introduce source files (and units therein) to the environment

a.partition Define or display a partition for the linker

a.build Compile and link as necessary to build a unit, partition or environmen

Table 1-1. MAXAda Utilities (Cont.)
1-3

MAXAda Reference Manual

es
OS

le is
exe-

sers to
ileges

ently

pro-

RS

shell
shell

ges
the
m-
Privileges 1

Ada programs typically require at least one privilege, P_RTIME, to run. This includ
some of the tools that comprise the MAXAda product itself when run on PowerMAX
systems. The following privileges are generally recommended for Ada users:

• P_CPUBIAS

• P_FPRI

• P_OWNER

• P_PLOCK

• P_RTIME

• P_SETSPRIV

• P_SETUPRIV

• P_SHMBIND

• P_SYSOPS

• P_TSHAR

• P_USERINT

A convenient way to associate privileges with users is through the use of roles. A ro
simply a named description of a set of privileges that have been registered for certain
cutable files, such as the shell. The system administrator creates roles and assigns u
them. During the login process, users can request that their shell be granted the priv
associated with their role. Such a request takes the form of an invocation of thetfad-
min(1M) command. Once privileges have been granted to the user’s shell, subsequ
spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by Ada
grams to three commonly used shells (sh , ksh , andcsh). The system administrator
should issue the following commands once.

/usr/bin/adminrole -n ADA_USERS
/usr/bin/adminrole -a sh:/usr/bin/sh:cpubias:fpri:owner:\

plock:setspriv:setupriv:shmbind:tshar:userint:sysops ADA_USERS
/usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:fpri:owner:\

plock:setspriv:setupriv:shmbind:tshar:userint:sysops ADA_USERS
/usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:fpri:owner:\

plock:setspriv:setupriv:shmbind:tshar:userint:sysops ADA_USERS

The following command assigns an example user (Ada_Lovelace) to the ADA_USE
role. The system administrator should issue the following command once.

/usr/bin/adminuser -n -o ADA_USERS Ada_Lovelace

Ada_Lovelace is now allowed to request that the above privileges be granted to her
(assuming Ada_Lovelace utilizes either the sh, ksh, or csh shell, as these are the only
commands registered in the ADA_USERS role). However, by default, these privile
are not granted. She must explicitly make the request by initiating a new shell with
tfadmin(1M) command. For convenience, it is recommended that the following co
1-4

Introduction to MAXAda
mand be added to the end of her.profile (or .login for csh users) file. (This file is
executed during initialization of the login shell).

exec /sbin/tfadmin ADA_USERS:$SHELL

See “Privileges” on page B-1 for more detailed information.
1-5

MAXAda Reference Manual

ible
ork.
with

rifies
n the
art-up.
e

lled

nses
to
mber
as

the

ore

e is:
License Management (PowerMAX OS only) 1

On PowerMAX OS systems, MAXAda uses the Élan License Manager to provide flex
distribution of MAXAda user licenses on a single machine or across a local area netw
The Élan License Manager alleviates the need for the customer to be concerned
license management issues, providing a transparent and versatile solution.

The Élan License Manager maintains a central database of licenses and activity. It ve
valid clients, grants licenses to valid client applications, and collects the licenses whe
application terminates. The license manager runs as a daemon invoked at system st
See theÉlan License Manager Release Notes(0891055) for assistance in starting th
license manager daemon,elmd , if it is not already running.

The Élan License Manager product is a prerequisite for MAXAda and should be insta
and running before MAXAda can be used.

Once MAXAda has been installed and the Élan License Manager is running, the lice
must be activated. Akey, obtained from Concurrent, is required for MAXAda licenses
be granted. This key is generated for a specific CPU or network and encodes the nu
of licenses and their expiration date. MAXAda will not run until an appropriate key h
been obtained.

Activating MAXAda Licenses (PowerMAX OS only) 1

The following steps should be performed by the system administrator to activate
licenses for MAXAda:

1. On a machine running the license server (elmd), runelmadmin :

$ elmadmin -c -n maxada

You will be asked for the number of managers (servers) you wish to run and, if m
than one, the host names for each.

When you have answered all questions,elmadmin displays aserver codefor each
server where you run a license manager. An example of this numeric server cod

V5-194/8720 1204 2535 695

The program then prompts you for akey that you must now obtain from Concur-
rent.1

2. Contact Concurrent Software Distribution to obtain yourkey. Contact
Concurrent Software Distribution by calling 1-800-666-5405 or by faxing
1-800-666-5404. Customers outside the continental United States can con-
tact Concurrent Software Distribution by calling 1-954-283-1836 or by
faxing 1-954-283-1835. Concurrent Software Distribution may also be
reached by email at softdist@ccur.com.

1. If you cannot contact Concurrent immediately, it is safe to interrupt theelmadmin program at any time. Rerunning it again after
contacting Concurrent and entering the same responses generates the same server codes.
1-6

Introduction to MAXAda

aster
may

et-
lons.
reply
ndling

the

pon-
You need to provide thefeature alias(maxada) and eachserver codegenerated by
elmadmin .

Given this information, Concurrent Software Distribution will provide akey, con-
sisting of a string of numbers. An example of this numeric key is:

1763 0272 5157 0245 5103 0315 7265 7200 2980 5312 5

3. Enter this key intoelmadmin . The licenses are now activated and you
should be able to run MAXAda.

NOTE

In addition to thefeature alias(maxada), MAXAda has afeature
nameassociated with it. This five-digit number (31000) is also
used by the license manager.

POWERWORKS_ELMHOST (PowerMAX OS only) 1

Usually an application must send a broadcast request on the network to locate the m
license server. If you know the hostname that the license server is running on, you
set thePOWERWORKS_ELMHOSTenvironment variable to the hostname and avoid the n
work broadcast. This variable may also contain a list of hostnames separated by co
In this case, parallel connections are attempted to all the listed hosts and the first to
handles the license management. For example, to restrict the license manager ha
your applications to a manager on only one of the systemsgrumpy , sneezy , or doc ,
use:

POWERWORKS_ELMHOST=grumpy:sneezy:doc
export POWERWORKS_ELMHOST

Usually, the application broadcasts to all the specified hosts in parallel. To serialize
attempts, preface the host list with an “@” sign. For example:

POWERWORKS_ELMHOST=@grumpy:sneezy:doc
export POWERWORKS_ELMHOST

This tries each host until it times out and then tries the next, stopping with the first res
sive host.

NOTE

To force the license manager to use a single, specific server, use
the @ command. For example,

POWERWORKS_ELMHOST=@dopey
export POWERWORKS_ELMHOST

will force the license manager to use thedopey server, regardless
of whether any other license manager servers are running on the
network.
1-7

MAXAda Reference Manual

time.
oduct
nels.
tlined

the

y the

sed.
t

-

-

Access Limits (PowerMAX OS only) 1

The Élan License Manager keeps track of the number of licenses in use at any given
Any requests to acquire a license over and above the number purchased for this pr
will be denied. Additional licenses may be obtained through normal purchasing chan
These licenses can then be activated on a particular server by following the steps ou
in “Activating MAXAda Licenses (PowerMAX OS only)” on page 1-6.

Resource File (PowerMAX OS only) 1

The Élan License Manager uses aresource fileto allow the user flexibility in configuring
license usage on particular systems. This file may be used to specify:

• Reserved licenses - licenses that are reserved for individuals, groups, or
even machines.

• Held license periods - the minimum period for which a license is held for a
user, group, or machine. MAXAda defines a minimum hold period of 10
minutes for each license. A hold period greater than the minimum may be
designated by the user or by the system administrator via the resource file.

• The list of redundant servers, when backup servers are desired.

• An address mask to filter out requests from foreign systems.

For more informat ion on the Élan License Manager resource f i le, see
elm_resource(5) man page.

Error Messages (PowerMAX OS only) 1

The following are some of the most common error messages that may be issued b
Élan License Manager:

fatal: license failure: “maxada” not licensed: NOKEY

A key for the Élan License Manager must be obtained before MAXAda can be u
See “Activating MAXAda Licenses (PowerMAX OS only)” on page 1-6 abou
obtaining a key.

fatal: license failure: license server is down: SRV_DOWN

No operational license server could be found running on the network.

Check the value of thePOWERWORKS_ELMHOSTenvironment variable, if set. See
“POWERWORKS_ELMHOST (PowerMAX OS only)” on page 1-7 for more infor
mation about this variable.

Also, see theÉlan License Manager Release Notes(0891055) for assistance in start
ing the license manager daemon,elmd , if it is not running.

fatal: license failure: “maxada” licenses unavailable: NO_LICENSES
1-8

Introduction to MAXAda

ses
rent
ted in
vat-

ctive.
the

er to

i-
his
Soft-

ent

on
ing
nent

are
by
Con-

35.
.

.

your
The number of users concurrently using MAXAda is equal to the number of licen
purchased for this product. Additional licenses may be obtained from Concur
through the normal purchasing channels. These new licenses must be activa
much the same way as the original licenses. Follow the steps outlined in “Acti
ing MAXAda Licenses (PowerMAX OS only)” on page 1-6.

fatal: license failure: too many servers down: INSUFFICIENT_SERVERS

The client is running with redundant servers but there are not enough servers a
For license validation purposes, a majority of servers must remain active in
redundant mode.

fatal: license failure: server init... (wait ~3 min....): WAIT

The license server has just started and the application must wait for the serv
complete its initialization.

Further Information (PowerMAX OS only) 1

Further information about the Élan License Manager can be found in the publicationÉlan
License Manager Release Notes(0891055). You may contact Concurrent Software Distr
bution by calling 1-800-666-5405 or by faxing 1-800-666-5404 to obtain a copy of t
publication. Customers outside the continental United States can contact Concurrent
ware Distribution by calling 1-954-283-1836 or by faxing 1-954-283-1835. Concurr
Software Distribution may also be reached by email at softdist@ccur.com.

Activation (Linux only) 1

On Linux®, the MAXAda product requires activation before it can be utilized. Installati
of MAXAda automatically activates the product for a 30-day evaluation period. Dur
that time period, you can utilize the product for purposes of evaluation only. Perma
activation requires an activation code which may be obtained from Concurrent Softw
Distribution. Contact Concurrent Software Distribution by calling 1-800-666-5405 or
faxing 1-800-666-5404. Customers outside the continental United States can contact
current Software Distribution by calling 1-954-283-1836 or by faxing 1-954-283-18
Concurrent Software Distribution may also be reached by email at softdist@ccur.com

If you purchased MAXAda, the activation code is provided on the Installation CD case

Issue the following command as the root user to permanently activate the product on
system:

/usr/ada/bin/a.install -rel phase3.3.1 -activate code

wherecodeis the code provided on the Installation CD case.
1-9

MAXAda Reference Manual

e
e use
Run-Time Systems 1

The Ada Real-Time Multiprocessor System (ARMS) is broken into two libraries:

• The tasking run-time (libruntime.arms)

• The non-tasking run-time (libruntime.bart)

The a.link tool will link an application with the smaller, simpler non-tasking run-tim
whenever possible (see “a.link” on page 4-38). However, certain features require th
of the tasking run-time, including certain cases that do not require tasking.

The full set of features that require the tasking run-time is summarized here:

• Presence of any tasks or task types

• Presence of any protected units or protected types

• Delay until statements with adelay_expression of type Ada.Cal-
endar.Time

• Use of any of the following pragmas:

- pragma DEFAULT_HARDNESS

- pragma TASK_PRIORITY

- pragma TASK_CPU_BIAS

- pragma TASK_QUANTUM

- pragma GROUP_SERVERS

- pragma GROUP_CPU_BIAS

- pragma GROUP_PRIORITY

- pragma MEMORY_POOL

- pragma POOL_CACHE_MODE

- pragma POOL_LOCK_STATE

- pragma POOL_SIZE

- pragma SHARED_PACKAGE

• Semantic dependence on any of the following packages:

- Ada.Interrupts.Names.Services

- Ada.Interrupts.Services

- Ada.Synchronous_Task_Control

- Ada.Task_Identification

- Ada.Task_Attributes

- Runtime_Configuration
1-10

Introduction to MAXAda

one or
ance
edi-
ds, it
fault

n be

n
the

be
es

es.

pes.
me

the
“func-
tan-

h

more
- Tasking_Semaphores

• Use of the-trace link option (see “Link Options” on page 4-119)

The run-time system implements Ada tasks as states of execution that are served by
more operating system Lightweight Processes (LWPs). For critical real-time perform
and predictability, the run-time system may be configured such that a single LWP is d
cated to serve each Ada task. For applications with less stringent scheduling deman
may be configured such that one or more LWPs serve all Ada tasks. (This is the de
behavior). See “Task Weights” on page 5-2 for details.

See Chapter 5 - “Run-Time Concepts” for further information.

Supplied Environments 1

MAXAda supplies a number of environments containing various packages that ca
used for program development.

The Predefined Language Environment (predefined) contains packages as defined i
Annex A of the Ada 95 Reference Manual. According to the Reference Manual,
library units listed in this Annex “shall be provided by every implementation”.

Thevendorlib environment contains a variety of extensions to MAXAda that can
utilized with Concurrent real-time services (see “Ada Bindings” below). It also provid
shared memory support, run-time interfaces, and interfaces to system services.

The publiclib environment contains general-purpose, public-domain Ada packag
Concurrent neither owns nor supports any of the packages inpubliclib ; these packages
are provided as a courtesy to users.

An interface is provided within thertdm environment that allows for viewing and modi-
fying data objects without prior knowledge of the objects themselves or their data ty
More information about real-time data-monitoring is provided in Chapter 12, “Real-Ti
Monitoring”.

The obsolescent environment corresponds to packages found within Annex J of
Ada 95 Reference Manual. These packages are designated by Annex J as having
tionality which is largely redundant with other features defined by this International S
dard”. Use of these features is not recommended in newly written programs.

And lastly, thedeprecated environment is supplied for compatibility purposes wit
previous versions only. It will be removed in a future release of MAXAda.

Each of these environments and the packages contained within them are described in
detail in Chapter 9, “Support Packages”.
1-11

MAXAda Reference Manual

er-
ices

ith
lable
lso
olu-

da
an

more

nd
they
Ada Bindings 1

MAXAda provides several environments of Ada “bindings” to various libraries and s
vices. Ada bindings furnish a pure Ada interface to libraries of routines and serv
which have been originally developed in another programming language.

MAXAda supplies Ada bindings to most Concurrent real-time features available w
PowerMAX OS as well as interfaces to the run-time system. These bindings are avai
in thevendorlib environment of Ada packages. Within this environment, there is a
an Ada binding to high-resolution timing devices which can be used to obtain high-res
tion timings above and beyond the accuracy of the clock function provided in thepre-
defined environment.

MAXAda also provides Ada bindings to other libraries and services in the MAXA
bindings directory. This directory holds several subdirectories, each containing
environment of Ada bindings to a specific library, service, or set of services.

Currently, thebindings directory contains the following environments:

general general-purpose Ada bindings

sockets bindings to sockets

posix_1003.1 thin Ada bindings to IEEE-Std-1003.1
(POSIX 1003.1) and IEEE-Std-1003.1b
(POSIX 1003.1b)

posix_1003.5 abstract Ada bindings to the IEEE-Std-
1003.5-1992 standard (POSIX 1003.5).

All of these are provided with MAXAda and are shipped with the MAXAda product.

Each of these environments and the packages contained within them are described in
detail in Chapter 9, “Support Packages”.

NOTE

Additional Ada bindings are available for use with the MAXAda
environment; however, they are nota part of the standard MAX-
Ada product and must be purchased separately. Currently, Ada
bindings to the X Window System (calledAXI) are available for
installation on top of any Series 6000 system running.

Complementary MAXAda Products 1

In addition to the Ada bindings supplied with MAXAda, several other Ada bindings a
complementary utilities are available as stand-alone products. If they are desired,
must be purchased separately from MAXAda.
1-12

Introduction to MAXAda

orks
used
r 11

al-
sed
with

PUs.

tible
tif
ons
gh
The NightTrace utility is a graphical debugging and performance-analysis tool that w
with single and multi-process programs running on one or more CPUs. It may be
with Ada, C, and Fortran programs. For more information on NightTrace, see Chapte
and theNightTrace Manual.

The NightSim utility is a graphical, non-intrusive tool for scheduling and monitoring re
time applications. It allows interactive control of the high-resolution Frequency-Ba
Scheduler (FBS) and interactive or deferred performance monitoring. It may be used
single and multi-process Ada, C, and Fortran programs running on one or more C
For more information about NightSim, see theNightSim Quick Reference.

The AXI for MAXAdaTM X/Xt/Motif Window System bindings are installed in the
bindings directory and may be purchased for any system that is running a compa
release of MAXAda. This product provides an Ada binding to the full Xlib, Xt and Mo
libraries. All predefined Motif and Xt widget sets are provided as are over 500 functi
and procedures from the Xlib, Xt, and Motif libraries. This product is available throu
Concurrent Software Distribution asAXI . For more information about AXI, see theAXI
Reference Manual.
1-13

MAXAda Reference Manual
1-14

1
-1

-2
-3
4
-4

-5
-5
-6

-7
-11
-11
2
-13
-13
4
-14
5

17
7

2
Using MAXAda

Hello World - An Example . 2-
Creating an environment . 2
Introducing units. 2
Defining a partition. 2
Building a partition . 2-
Success!!! . 2
Let’s look around.... 2-5

Listing the units in your environment . 2
Viewing the source for a particular unit . 2
Listing the partitions defined. 2
Looking at the Environment Search Path .. 2-7
What are my options? . 2

Hello Galaxy - The Example Continues... 2
Setting up another environment . 2
Modifying an existing unit . 2-1
Building a unit with references outside the local environment 2
Adding an environment to the Environment Search Path 2
Making contact!!! . 2-1
Who resides here now?. 2

Hello Again... Ambiguous Units . 2-1
Resolving the ambiguity. 2-
No more ambiguities!!! . 2-1

MAXAda Reference Manual

am-
AX-

:

ple -

tain
k

2
Chapter 2Using MAXAda

2
2
2

Hello World - An Example 2

To demonstrate the ease of use of MAXAda, a simple example will be given. This ex
ple will traverse through the core functions needed to build an executable under the M
Ada system.

Building an executable under MAXAda can be broken down into as few as four steps

• Creating an environment

• Introducing units

• Defining a partition

• Building the partition

This section will demonstrate each of these steps on a simple, but well-known exam
Hello World.

Before we begin...

You must make sure that the path/usr/ada/bin is added to
your PATHenvironment variable. This is the only path necessary
to access the MAXAda utilities, regardless of the number of
releases of MAXAda installed on the system.

Also, check to make sure you have the correct privileges set (see
“Privileges” on page 1-4) and that the license manager is working
properly (see “License Management (PowerMAX OS only)” on
page 1-6).

Creating an environment 2

One of the first steps you must take in order to use MAXAda is to create anenvironment.
MAXAda uses environments as its basic structure of organization. Environments con
all the information relevant to a particular project. All of the MAXAda utilities wor
within the context of a particular environment.

The MAXAda tool used to create an environment isa.mkenv . It requires a Unix direc-
tory where this environment will reside.
2-1

MAXAda Reference Manual

and
the
ple,

y
sys-

t is
You
For our example, we will create a new directory on our system and runa.mkenv from
within that directory.

Screen 2-1. Creating an environment

This creates the MAXAda internal directory structure that comprises the environment
that is essential before any other MAXAda tools can be utilized. This environment has
same name as the directory in which it was created. Our environment in this exam
therefore, is/pathname/earth .

Introducing units 2

Compilation units(henceforth referred to simply asunits) are the basic building blocks of
MAXAda environments. It is through units that MAXAda performs most all its librar
management and compilation activities. These units are, however, introduced into the
tem in the form ofsource files.

In our example, we have one unit,hello , that resides in a source file,world.a . This
source file is just an ordinary text file.

Screen 2-2. Source file world.a containing hello unit

Create this source file within the directory in which you created your environment. (I
not necessary for the source file to reside in the same directory as the environment.
may specify a relative or absolute path name of the source file.)

We introduce this unit to the environment by using thea.intro utility. a.intro intro-
duces each unit contained in the source file into the current environment by default.

$ mkdir /pathname/earth
$ cd /pathname/earth
$ a.mkenv

with ada.text_io ;
procedure hello is
begin

ada.text_io.put_line (“Hello World!!!”) ;
end hello ;
2-2

Using MAXAda

the

o-

then
Screen 2-3. Introducing units from a source file

The unithello that was contained in the source fileworld.a is now a part of the envi-
ronmentearth .

From this point on, the unithello is considered to beownedby the environmentearth .
Any functions performed on this unit must be managed by the environment through
MAXAda utilities.

Defining a partition 2

If we want to create an executable program to use our unit, we must define apartition. We
will be creating anactive partitionwhich is the type that corresponds to executable pr
grams.

We must also name the partition. You can name your partition anything you want and
add units to it, but since this is a simple example, we are taking the most direct route.

Hence, our partition will be namedhello , the same as the unit which will also function
as ourmain subprogram(which is the only unit in our example). We will use the MAX-
Ada utility a.partition to do this.

Screen 2-4. Defining a partition

Because it has the same name as the active partition being created, the unithello is auto-
matically added to this partition and designated the main subprogram .

NOTE

In the case where the partition has the same name as a library sub-
program in the environment, that subprogram is assumed to be the
main subprogram. Otherwise, no main subprogram is assumed.

The command in Screen 2-4 could have been explicitly specified
as:

$ a.intro world.a

$ a.partition -create active hello
2-3

MAXAda Reference Manual

. Just
e

am.
$ a.partition -create active -add hello! -main hello hello

This command creates an active partition namedhello , contain-
ing the main unit,hello and all units on which it depends. (The
! of the hello! argument to the-add parameter signifies that
all units on which thehello unit depends should also be added
to the partition definition - e.g.ada.text_io). In addition, this
command designates the unithello to be the main subprogram
as specified by the-main option.

Building a partition 2

The last step now is to build the executable. All the necessary steps have been done
issuea.build . This will build an executable file that you can run. (See “Compil
Options” on page 4-109)

Screen 2-5. Building a partition

Because no arguments were specified,a.build tries to build everything it can within
this environment. Since we’ve only defined one unit,hello , contained in one partition,
hello , it will only build that.

Success!!! 2

Now all that’s left is to run the program as you would any other executable progr
Enter the name of the executable, in this casehello .

Screen 2-6. Executing the program

And there you have it! Your program has successfully been built and run.

$ a.build

$ hello
Hello World!!!
$

2-4

Using MAXAda

d see
e of

ron-

just

i-
e

for a
t.
d by
Let’s look around... 2

Now that we have some substance to our environment, let’s take a look around an
what things look like. We can use some of the MAXAda utilities to investigate the stat
our environment and what’s in it.

Listing the units in your environment 2

Something you might want to do is to see what units are contained within this envi
ment.a.ls provides this list for you.a.ls provides many different options, allowing
you to sort the list by some attribute or filter the units based on certain criteria. We’ll
take a look at a basic list of the units in the environment. This is done by issuing thea.ls
command with no options from within your current environment.

Screen 2-7. Listing the units in an environment

You may want to see more information. You can do this by specifying the-l option to the
a.ls command which will give you a long listing including the unit’s date, type, comp
lation state, part, and name. (Even more information can be seen by specifying th-v
option.)

Screen 2-8. Listing the units in an environment (-l option)

Viewing the source for a particular unit 2

Once you know what units are in your environment, you may want to see the source
particular unit. The MAXAda utilitya.cat outputs the source of a given program uni
It outputs a filename header for the source file by default, but this can be suppresse
specifying the option-h .

The following figure shows how to view the source for the unithello usinga.cat .

$ a.ls
hello
$

$ a.ls -l
Unit_Date Item State Part Name

03/05/97’10:04:26 subprogram compiled body hello
$

2-5

MAXAda Reference Manual

may

at
Screen 2-9. Viewing the source for a particular unit

Listing the partitions defined 2

You may also want to see what partitions have been defined for an environment. You
do this by using thea.partition command with either the-list or -List option.

Screen 2-10. Listing the partitions in an environment (-list option)

The-List option gives you more detailed information for each partition, including wh
kind it is and which unit is designated as the main subprogram.

In the following figure, you can see that we have createdhello to be anactive parti-
tion with hello designated as its main subprogram.

Screen 2-11. Listing the partitions in an environment (-List option)

$ a.cat hello
*********** /pathname/earth/world.a *****************
with ada.text_io ;
procedure hello is
begin

ada.text_io.put_line (“Hello World!!!”) ;
end hello ;
$

$ a.partition -list
hello
$

$ a.partition -List
PARTITION: hello

kind : active
output file : hello
link options :
dependent partitions :
link rule : object,archive,shared_object
main subprogram : hello
included units (+) :

hello!
excluded units (-) :

$

2-6

Using MAXAda

The
your
ss to
ence

pre-

ents.
’s as

ified
ny
the
ply

nits
t.
Looking at the Environment Search Path 2

Each MAXAda environment has an Environment Search Path associated with it.
Environment Search Path is your gateway to other environments. Upon creation of
environment, MAXAda defines the Environment Search Path so that you have acce
the Predefined Language Environment, as specified in Annex A of the Ada 95 Refer
Manual.

If you take a look at your Environment Search Path, you will see the path to thepre-
defined environment. You can list your Environment Search Path by using thea.path
utility.

Screen 2-12. Viewing your Environment Search Path

As you can see, the only environment in your Environment Search Path is that of the
defined functions.

NOTE

The Environment Search Path was the mechanism that made
ada.text_io visible to the unithello .

Using the Environment Search Path, you can use units that exist in foreign environm
All you need to do is add the environment’s path to your Environment Search Path. It
simple as that!

What are my options? 2

MAXAda uses the concept of persistent compile options. These options are spec
througha.options and are “remembered” at compilation time. They can apply to a
of three areas: environment-wide compile options (which apply to all units within
environment), permanent unit options and temporary unit options (both of which ap
and are unique to specific units).

Let’s manipulate the options in our example to give an idea of how it all works.

First, we will consider the environment-wide compile options. These apply to all the u
within the environment. Since we only have one unit right now, it will apply to tha
However, if we add any others later, they will “inherit” these options automatically.

The environment-wide compile optionsare referenced by the-default flag to
a.options . We’ll use the-list flag to display what they’re set to now:

$ a.path
Environment search path:

/usr/ada/rel_name/predefined
$

2-7

MAXAda Reference Manual

set

r

by

ide
Screen 2-13. Listing the environment-wide compile options

You’ll see that nothing is listed. That’s because we haven’t set anything yet. So let’s
them to something and see what happens.

a.options provides the-set option to initialize or reset an option group. Let’s set ou
environment-wide compile option set to contain the options-g and-O2 . (These set the
debug level tofull and set the optimization level toGLOBAL, respectively. You can find
out all about these options in “Compile Options” on page 4-109.)

Screen 2-14. Setting the environment-wide compile options

Now let’s list them again to see if they’ve taken effect:

Screen 2-15. Listing the environment-wide compile options (after -set)

We can see that the environment-wide compile option set now consists of-O and -g .
(Note that-O and-O2 are equivalent.)

Remember, these options apply to all units in the environment and will be “inherited”
any units we add to this environment.

If we’d like to set particular options for a specific unit, we can use thepermanent unit
compile optionsfor that unit. They’re set in much the same way as environment-w
options, except that we need to specify the units to which they apply.

Let’s set the permanent options for the unithello so it is compiled at aMAXIMALoptimi-
zation level (-O3). This is done with the following command:

$ a.options -list -default
default options: /pathname/earth

$

$ a.options -set -default -g -O2

$ a.options -list -default
default options: /pathname/earth

-O -g
$

2-8

Using MAXAda

me
y”.

s that
ions
the
Screen 2-16. Setting the permanent unit options for hello unit

We may decide that in addition to the specified options, we may want to “try out” so
options or change particular options for a specific compilation but only “temporaril
The temporary unit compile optionsare for this purpose.

Say we want to produce no debug information for ourhello unit for this particular com-
pilation. We can set a temporary compile option for that.

Screen 2-17. Setting the temporary unit options for hello unit

In addition, we remember that we also want to open the source file in thevi editor if any
errors occur. We can “add” this to the temporary option set by using the-mod flag to
a.options .

Screen 2-18. Modifying the temporary unit options for hello unit

If we list the temporary options for the unithello , we will see that we now have-!g and
-ev in the temporary option set:

Screen 2-19. Listing the temporary options for hello unit

These three option sets have a hierarchical relationship to one another which mean
the environment-wide compile options are overridden by the permanent unit opt
which are, in turn, overridden by the temporary unit options. This relationship forms

$ a.options -set -perm -O3 hello

$ a.options -set -temp -!g hello

$ a.options -mod -temp -ev hello

$ a.options -list -temp hello
Unit Temporary

subprogram body hello -ev -!g
$

2-9

MAXAda Reference Manual

to
n

a-
a

effective compile optionsfor the unit, which the compiler will use during compilation. We
can see these in Table 2-1.

If we list the effective options for thehello unit, we will see similar results:

Screen 2-20. Listing the effective options for hello unit

If, after we compile with these options, we find any particular option that we would like
delete, we can do so by using the-del flag. For example, let’s delete the error emmisio
option from the temporary options.

Screen 2-21. Deleting from the temporary options set for hello unit

And if we like the other temporary options so much that we’d like to make them perm
nent, MAXAda provides the-keeptemp flag to propagate all the temporary options for
particular unit to the permanent option set for that same unit. If we do this,

Screen 2-22. Propagating the temporary options to the permanent set

the temporary option-!g will become a permanent unit option for the unithello .

Table 2-1. Effective options for hello unit

Environment-wide options -g -O2

Permanent unit options -O3

Temporary unit options -!g -ev

EFFECTIVE OPTIONS -!g -O3 -ev

$ a.options -eff hello
Unit Effective

subprogram body hello -O3 -ev -!g
$

$ a.options -del -temp -ev hello

$ a.options -keeptemp hello
2-10

Using MAXAda

X-
The effective options will now resemble that of Table 2-2:

If we list the effective options for thehello unit, we will see similar results:

Screen 2-23. Listing the effective options for hello unit (after -keeptemp)

See “a.options” on page 4-64 for a complete description of the functionality of this MA
Ada utility.

Hello Galaxy - The Example Continues... 2

Setting up another environment 2

Let’s set up another environment with a function that ourhello unit can contact.

Let’s set up a new environment,galaxy , and introduce a source file very similar to
world.a . We’ll call this file planet.a and it will contain the following unit,alien .
The file is shown in Screen 2-24.

Screen 2-24. Source file planet.a containing alien unit

Table 2-2. Effective options for hello unit (after -keeptemp)

Environment-wide options -g -O2

Permanent unit options -!g -O3

Temporary unit options

EFFECTIVE OPTIONS -!g -O3

$ a.options -eff hello
Unit Effective

subprogram body hello -O3 -!g
$

with ada.text_io;
procedure alien is
begin

ada.text_io.put_line(“Greetings from Outer Space!!!”);
end alien;
2-11

MAXAda Reference Manual

It
Create a different directory/pathname/galaxy to contain our new environment and
place the source file,planet.a in it. From within that directory, the following com-
mands will create our environment and introduce the source file into it.

Screen 2-25. Setting up another environment

NOTE

We have not compiled this unit nor have we created a partition
and included the unit in the partition to be built. This was inten-
tional to demonstrate a point later in the example.

Modifying an existing unit 2

Now we must go back to our original environmentearth that contains our original unit
hello .

We will update the unithello so that it references the newalien unit. We do this by
using thea.edit utility. a.edit edits the source file that contains the unit specified.
does this by using the editor referenced in theEDITOR environment variable. It then
updates the environment so that the automatic compilation utility,a.build , knows that
this unit needs to be rebuilt.

NOTE

a.edit is the supported method for modifying units that have
been introduced into the environment. Any modifications to the
units other than through the tools provided is discouraged,
although the tools support it as well as possible.

Specify the unit name to thea.edit command.

Screen 2-26. Editing a unit

Add the following lines to thehello unit.

$ a.mkenv
$ a.intro planet.a

$ a.edit hello
2-12

Using MAXAda

ve

arch
Screen 2-27. Reference the alien unit within the hello unit

Save the changes to the file.

Building a unit with references outside the local environment 2

Now let’s try to build it.

Issue thea.build command as before.

Screen 2-28. Building the partition with reference to alien unit

Because thealien unit does not exist in the current environment AND because we ha
not manually added it to our Environment Search Path,a.build cannot find it and there-
fore complains.

Adding an environment to the Environment Search Path 2

This is easily remedied by adding the new environment’s path to the Environment Se
Path for theearth environment using thea.path utility.

with ada.text_io ;
with alien;
procedure hello is
begin

ada.text_io.put_line ("Hello World!!!") ;
alien;

end hello ;

$ a.build
a.build: error: required spec of alien does not exist in

the environment
a.build: warning: subprogram body hello will not be

built because required spec of alien does not exist
in the environment

a.build: info: partition hello will not be built
because required spec of alien does not exist in the
environment

a.build: error: errors encountered during build

$

2-13

MAXAda Reference Manual

g the

nit
ontact
Screen 2-29. Adding an environment to the Environment Search Path

You can see that it has been added to your Environment Search Path by issuin
a.path command with no parameters again.

Screen 2-30. Viewing the updated Environment Search Path

Making contact!!! 2

Now try to issuea.build again. This time it will be successful.

After it is successfully built, run thehello executable again.

Screen 2-31. Executing the new hello - contact is made!

Who resides here now? 2

Let’s take a look at who inhabits our environmentearth now. Remember before when
we issued thea.ls command, we saw that our environment contained the lone u
hello . Let’s issue the command again and see what has happened since we made c
with thealien.

$ a.path -a /pathname/galaxy

$ a.path
Environment search path:

/usr/ada/rel_name/predefined
/pathname/galaxy

$

$ a.build
$ hello
Hello World!!!
Greetings from Outer Space!!!
$

2-14

Using MAXAda

-

ns

lready
Screen 2-32. Listing the units

You can now see that the unitalien has been added to the list of units in this environ
ment.

Although they are both listedlocal to this environment, they each have a different mea
of citizenship.

- The unithello was introduced directly into this environment. Therefore,
it is regarded as anativeunit.

- The alien unit, however, was never formally introduced into the local
environment. It was found on the Environment Search Path.

Now, remember that thealien unit was not compiled in its original for-
eign environment. Thea.build command, when run in this local envi-
ronment, could not find a compiled form of thealien unit on the Envi-
ronment Search Path and had to do something in order to build the
partition. It therefore compiled thealien unit in the local environment.

This compiled form of a foreign unit within the local environment is con-
siderednaturalizedby the system.

NOTE

If the alien unit had been compiled in its own foreign environ-
ment,a.build would have found that compiled form on the
Environment Search Path and would have used that when linking
thehello executable together. In that case, ana.ls would have
only shown the local unithello as before.

FURTHER NOTE

The -noimport option will inhibit the automatic naturalization
behavior ofa.build . If it had been used in this example,
a.build would have reported an error.

Hello Again... Ambiguous Units 2

Let’s see what happens when we introduce a unit having the same name as one a
introduced into our environment.

$ a.ls
alien hello
$

2-15

MAXAda Reference Manual

nt,

rsions

Ada
f

ry,

nvi-
We’ll create a source file,newunit.a , in our earth environment containing a unit
namedhello :

Screen 2-33. Source file newunit.a containing different hello unit

Now, when we try to introduce the source file containing this unit into our environme
we will see an error message:

Screen 2-34. Introducing a unit that already exists in the environment

This is because MAXAda provides a mechanism that detects the case where two ve
of the same unit appear among all the source files owned by the environment.

Upon introducing a unit having the same name as a previously introduced unit, MAX
labels both units asambiguous. It will then refuse to perform any operations on either o
the two versions, or on any units depending on the ambiguous unit.

For example, you will not be able to build the partition that contains this unit. If you t
you will get the following warning:

Screen 2-35. Building a unit that already exists in the environment

The user will be forced to choose which of the two units should actually exist in the e
ronment by “removing” the other.

with ada.text_io ;
procedure hello is
begin

ada.text_io.put_line (“I am a new unit - Hello!!!”) ;
end hello ;

$ a.intro newunit.a
a.intro: error: body of unit “hello” already exists in

another source file
$

$ a.build
a.build: warning: subprogram body hello will not be

built because it is ambiguous
$

2-16

Using MAXAda

o-

he

e

our
Resolving the ambiguity 2

The only option at this point is to remove the unit which doesn’t belong. MAXAda pr
vides thea.resolve tool specifically for this case.

a.resolve provides an option that allows you to list out the multiple sources of t
ambiguous unit. Screen 2-36 shows this feature:

Screen 2-36. Listing the multiple source files for an ambiguous unit

a.resolve allows you to “choose” which of the units you would like to remain in th
environment. Let’s choose the newer unit,hello , from the source filenewunit.a .

Screen 2-37. Resolving the ambiguity

No more ambiguities!!! 2

Let’s build again now that the ambiguities are resolved... and execute the file to see
results:

Screen 2-38. No more ambiguities!!!

$ a.resolve -l hello
subprogram body hello is in:

newunit.a
world.a

$

$ a.resolve -r newunit.a hello

$ a.build
$ hello
I am a new unit - Hello!!!
$

2-17

MAXAda Reference Manual
NOTE

While MAXAda is refusing to perform any operations on the
ambiguous units, the compilation state of the original unit remains
intact in the environment. This is useful in case the original unit is
selected instead of the newly added one. If this is the case, the
original unit (and all units dependent on it) would not have to be
recompiled.

In our example, however, we have chosen the newly added unit,
so the unit must be compiled in order for the partition to be built.
2-18

-1
-2
-2
-2

-3
-3
-3
-3
-4
-4
-4
-6
-7
7
-9

-9
9
0

0
1
1

12
12
2
2
13
3
14
14

15
16
17

9
-20
0

0
1

21
1
2
22
23
4

3
MAXAda Concepts

Environments. 3
Local Environments . 3
Foreign Environments . 3

Environment Search Path . 3
Naturalization . 3
Fetching. 3
Supplied Environments . 3

NFS Environments . 3
Freezing Environments. 3
Restoring Environments . 3
Relocating Environments . 3
Environment-wide Compile Options . 3

Units. 3
Unit Identification . 3-
Configuration Pragmas. 3
Nationalities . 3

Local Units . 3-
Foreign Units. 3-1

Ambiguous Units. 3-1
Artificial Units . 3-1
Unit Compile Options . 3-1

Partitions . 3-
Types of Partitions . 3-

Active Partitions . 3-1
Archives. 3-1
Shared Objects. 3-

Lazy Versus Immediate Binding . 3-1
Position Independent Code . 3-
Share Path . 3-
Shared Objects and Special MAXAda Packages 3-14
Issues to consider . 3-

Elaboration and Finalization Methods . 3-
Elaboration Methods . 3-
Finalization Methods. 3-18

Main Subprogram Requirements. 3-19
Exit Status . 3-1

Compilation and Program Generation . 3
Compilation . 3-2

Automatic Compilation Utility . 3-20
Compile Options . 3-2

Environment-wide Options . 3-2
Permanent Unit Options. 3-
Temporary Unit Options . 3-2
Effective Options . 3-2

Compilation States . 3-
Consistency . 3-
Interoptimization . 3-2

MAXAda Reference Manual

-25
26
7
8

29
30
31
2
2
3

33
4
36
36
8

38
40
40
Programming Hints and Caveats . 3
Compiler Error Messages . 3-

Lexical Errors . 3-2
Syntax Errors . 3-2
Semantic Errors . 3-
General Errors . 3-
Informational Messages. 3-
Warnings . 3-3
Alerts . 3-3
Fatal Errors . 3-3
Internal Errors and Panics . 3-

Link Options . 3-3
Linking Executable Programs. 3-

Linking Ada Programs with Shared Objects . 3-
Debugging. 3-3

Real-Time Debugging. 3-38
Selecting a Debug Level . 3-
Degree of Interest . 3-
Debug Information and cprs . 3-

e
ate

are

arti-
g.

hese

on
am

ys-
3
Chapter 3MAXAda Concepts

3
3
3

MAXAda uses the concept ofenvironmentsas its basic structure of organization. Thes
environments take advantage of various utilities provided by MAXAda to manipul
compilation units(referred to simply asunits) that may formpartitions.

Utilities for library management, compilation and program generation, and debugging
provided by MAXAda.

This chapter will discuss in further detail the concepts of environments, units and p
tions and their relationship to library management, program generation, and debuggin

Environments 3

MAXAda uses the concept of environments as its basic structure of organization. T
environments are very closely related toenvironmentsas defined in theAda 95 Reference
Manual.

Environments may include:

• units that have been introduced

• partitions that have been defined

• Environment Search Paths

• references to source files (which generally contain units)

• other information used internally by MAXAda

Environments maintainseparate compilation informationcollected from previous compi-
lations.

There are different types of environments:

• local environments- see (“Local Environments” on page 3-2)

• foreign environments- see (“Foreign Environments” on page 3-2)

• NFS environments- see (“NFS Environments” on page 3-3)

MAXAda permits local environments to referenceforeign environments thus providing
visibility to the units and partitions therein. This feature allows programmers to work
local versions of individual program units while retrieving the remainder of the progr
from previously-developed environments.

A MAXAda environment may be initialized or created in any desired location in a files
tem using thea.mkenv utility which is discussed in “a.mkenv” on page 4-58.
3-1

MAXAda Reference Manual

s of

” on

rob-

em
ever.

.

.

s of
nd
n

on-
viron-
lied

le in
cular
MAXAda provides several other utilities to maintain, modify and report on the content
environments. See “MAXAda Utilities” on page 1-1 to see a list of these tools.

NOTE

Any modifications to the environment other than through the tools
provided by MAXAda is discouraged, although the tools support
it as well as possible.

An environment may be frozen, making it unalterable (see “Freezing Environments
page 3-4).

If an environment becomes damaged, MAXAda provides tools to help to correct the p
lem (see “Restoring Environments” on page 3-4).

MAXAda supports the relocation of environments to other locations in the filesyst
hierarchy or even to other systems. Some advance planning may be required, how
See “Relocating Environments” on page 3-4 for some considerations to keep in mind

Local Environments 3

By default, MAXAda uses the current working directory as itslocal environment. All
MAXAda utilities perform their actions within this local environment unless the-env
option is explicitly specified.

For example, if no environment is specified with thea.mkenv tool, MAXAda will set up
its internal directory structure for that environment within the current working directory

When used with any of the MAXAda utilities, however, the-env option allows the user
to specify a target environment other than the current working directory. The action
the MAXAda utility using this option will be performed in the environment specified a
not in the local environment. (See Chapter 4, “MAXAda Utilities” for more details o
using this parameter with each of the tools.)

Foreign Environments 3

MAXAda uses the Environment Search Path to reference units within foreign envir
ments. These units can be used as foreign units or can be brought into the local en
ment through naturalization or fetching. MAXAda also provides a number of supp
environments.

Environment Search Path 3

MAXAda uses the concept of anEnvironment Search Pathto allow users to specify that
units from environments other than the current environment should be made availab
the current environment. This Environment Search Path relates only to each parti
environment and each environment has its own Environment Search Path.
3-2

MAXAda Concepts

the
ced
ced
ent

Path,

xist
nit

local
ny
r

ents
d in

in the

ort

ems
file

mul-
ies in
By placing the location of another environment on theEnvironment Search Pathfor a
given environment, all the units from the other environment are conceptually added to
given environment, unless that would involve replacing a unit which was either introdu
manually into the environment by a user, or would replace a unit which was introdu
from yet a third environment which precedes the other environment in the Environm
Search Path. In order to add or delete environments on your Environment Search
you may use thea.path tool. See “a.path” on page 4-79.

Naturalization 3

At times, it is necessary for the compilation system to make local copies of units that e
in foreign environments. For example, if a foreign unit is referenced within a local u
and no compilation has been done on that foreign unit in that foreign environment, a
copy of the foreign unit will be compiled within the current environment, using a
options that would apply to the foreign unit. Thesenaturalizedunits take precedence ove
units that are in the Environment Search Path.

Fetching 3

It may be desirable for users to force copies of specified units from other environm
into the current environment. This eliminates any requirement that the unit be compile
the foreign environment, so long as it is compiled locally. Thea.fetch tool is provided
for that purpose. Units that are fetched also take precedence over units that are
Environment Search Path. See “a.fetch” on page 4-27.

Supplied Environments 3

The Ada 95 Reference Manualstates that certain unitsmustexist in an environment.
These units are shipped with MAXAda and the environment in which they exist (pre-
defined) is automatically added to theEnvironment Search Pathfor the local environ-
ment when it is first created.

A number of other environments are supplied with MAXAda. See Chapter 9, “Supp
Packages” for a complete discussion of these environments.

NFS Environments 3

MAXAda supports the creation and use of environments on NFS-mounted filesyst
only to a limited extent. This is because NFS caches make it difficult to guarantee
consistency when an environment is being modified by two or more systems nearly si
taneously. The limitations are designed to avoid problems caused by those deficienc
the NFS model. They are:

• Modification operations (e.g.a.compile) can only be performed on an
environment from the system that is that environment's "owner".

- If an environment is created on a local (non-NFS) filesystem, then
the environment's owner is its local system. If the environment is
3-3

MAXAda Reference Manual

an

that
func-

ch
pila-

ash or
e

be

n-
ys-

to the
moved to another filesystem on a different system, the environment's
owner is its new local system.

- If an environment is created on an NFS-mounted filesystem, then the
environment's owner is the system which created the environment.
Note that this means that the environment cannot be modified even
on the system on which it is local. If the environment is moved to
another filesystem on a different system, then its owner is still the
system which created the environment.

• Read-only operations (e.g.a.ls) can always be performed from any sys-
tem.

In addition, MAXAda provides a new utility to display or change the NFS aspects of
environment. See “a.nfs” on page 4-62 for more information.

Freezing Environments 3

An environment may be frozen using thea.freeze utility. This changes an environ-
ment so that it is unalterable.

A frozen environment is able to provide more information about its contents than one
is not frozen. Therefore, accesses to frozen environments from other environments
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and whi
will be used by other environments is a good candidate to be frozen to improve com
tion performance.

See “a.freeze” on page 4-30 for information on this utility.

Restoring Environments 3

In rare instances, an environment may become damaged (e.g. through a system cr
power failure). In these cases,a.restore may be used to correct problems with th
environment as much as possible.

MAXAda stores “backup” information about the environment internally which can
used to restore a damaged environment.

See “a.restore” on page 4-93 for information on this utility.

Relocating Environments 3

Although there is no MAXAda-defined mechanism for physically moving an enviro
ment, MAXAda supports the relocation of environments to other locations in the files
tem hierarchy or even to other systems. This may be done using commands similar
following:
3-4

MAXAda Concepts

peci-
e is

iron-
tools
vi-

e to
rela-
her
with
on-

be
irec-
main
osi-
ith
cd old-location
find . -depth -print | cpio -pdmu new-location

whereold-location is the directory of the original environment andnew-location
is the directory where the environment is to be relocated.

Some advance planning may be required, however.

MAXAda preserves pathnames as specified by the user. If a relative pathname is s
fied, MAXAda stores it as that relative pathname. Likewise, if an absolute pathnam
specified, MAXAda stores it as that absolute pathname.

NOTE

If the -env option is used to specify an environment other than
the current directory, MAXAda must alter any relative pathnames
to be relative to the environment so that future MAXAda tool
invocations from different current working directories function
properly. Still, MAXAda will attempt to keep the relative path-
name relative.

The basic rule for environment relocation is that all pathnames specified to the env
ment must make sense in both the original and relocated locations. If not, then the
will most likely issue fatal errors because they will be unable to find source files or en
ronments. (See “Fatal Errors” on page 3-33 for more information.)

The MAXAda utilities which specify pathnames to the environment are:

a.path
a.fetch -from ...

Both tool invocations provide the locations of foreign environments.

If planning to move a group of environments en masse, it would be appropriat
specify those foreign environments with relative pathnames, assuming that the
tive pathnames would remain meaningful in the relocated locations. Any ot
required environments that would not be moved probably should be specified
absolute pathnames (or keywords in the case of the MAXAda-supplied envir
ments - see Chapter 9 for a list of these keywords).

(See “a.path” on page 4-79 and “a.fetch” on page 4-27 for more information.)

a.intro

If planning to move the source files along with the environment, then they should
specified with relative pathnames (or simple file names if they are in the same d
tory as the environment), assuming that those relative pathnames would re
meaningful in the relocated locations. If the source files are located in a fixed p
tion without regard to the location, though, they probably should be specified w
absolute pathnames.

(See “a.intro” on page 4-35 for more information.)

a.partition -o ...
3-5

MAXAda Reference Manual

ation
me
ted
or

ated
ion
out-
vi-

t
me

inal
d

-

are
This pathname is less likely to cause a tool to fail, because it designates the loc
at which the output file will be created, as opposed to a location where so
pre-existing file must be found. So, the only failure that could occur in a reloca
environment would be if the output file specified a directory which did not exist,
was otherwise unwritable.

Regardless, the same care should be taken so that the output file will be cre
where it is expected. Use relative pathnames if the partition’s output file locat
should be relocated along with the environment. Use absolute pathnames if the
put file location should be at a fixed location regardless of the location of the en
ronment.

(See “a.partition” on page 4-68 for more information.)

MAXAda does provide thea.script tool to achieve something like an environmen
relocation. The major difference is that in the new version, nothing is built. The sa
considerations with regard to absolute/relative pathnames that straightforwardcpio(1)
copies have must be taken into account when usinga.script : all the foreign environ-
ment, source file, and partition output file paths have to be meaningful both in the orig
environment (the one on whicha.script was run) and in the new one (the one create
by the script generated bya.script). (See “a.script” on page 4-97 for more informa
tion.)

Environment-wide Compile Options 3

Environment-wide compile options apply to all units within an environment. They
described in detail on page 3-21.
3-6

MAXAda Concepts

n-
ctiv-
.1).
Units 3

Compilation units (or simply units) are the basic building blocks of MAXAda enviro
ments. Instead of dealing with source files for library management and compilation a
ities, MAXAda focuses on the concept of units from the Ada 95 Reference Manual (10
According to the Reference Manual, acompilation unitcan be a

• Subprogram declaration

• Package declaration

• Generic declaration

• Generic instantiation

• Library unit body

- subprogram body or package body

• Subunit

- subprogram body, package body, task body, or protected unit body

• Configuration pragma

Unit Identification 3

For many of the MAXAda utilities in Chapter 4, the following definition is given:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Units are identified by their name and by theirpart. The part can be specified as:

• specification

• body

• all

NOTE

Abbreviations are most commonly used when specifying the part.
For instance, instead of writing out the full unit-id:

foo/specification

it is much simpler to use the abbreviated form:

foo/s
3-7

MAXAda Reference Manual

-

Specificationscan be

- subprogram declarations (including renaming declarations)

- package declarations (including renaming declarations)

- generic declarations (including renaming declarations)

- generic instantiations

Bodiescan be

- subprogram bodies

- package bodies

- subunits

Whenall is specified as thepart, it refers to the specification and the body.

For most MAXAda utilities, part, if unspecified, defaults tobody .

Consider the following specification:

Figure 3-1. Package specification

After this unit has been introduced, the/specification (or /s) suffix must be speci-
fied in order to edit it:

$ a.edit tax_options/s

If nothing is specified,part defaults tobody and the following error message is issued:

$ a.edit tax_options
a.edit: fatal: Body of unit “tax_options” could not be
located
$

A keyword that can be used in place of aunit name isall . When used alone as the unit-id
for most MAXAda utilities,all implies all units within the environment.all takes the
same part options as any other unit-id. For example,

$ a.ls all/s

lists the specifications of all of the units within the current environment.

However, in the absence of a part,all indicates all units in the environment, not just bod
ies. That is,all is equivalent toall/all .

package tax_options is
itemize : boolean := FALSE;

end tax_options;
3-8

MAXAda Concepts

tion
inde-

are

ompi-

n all

ment
re
ura-
ali-

as
same

rted

he

by
ged

is
s a
.

Configuration Pragmas 3

Configuration pragmas are syntactical entities that are not part of a unit. Configura
pragmas can appear either at the beginning of a source file containing library units or
pendently in a source file with no units.

If the configuration pragmas appear independently in a source file with no units, they
considered to beindependent configuration pragmas. When independent configuration
pragmas are first compiled, they must be remembered and are applied to any future c
lations in the environment. These are handled automatically by thea.build tool, but
there are restrictions. Independent configuration pragmas may only be compiled whe
units local to the environment are eitheruncompiled or inconsistent. (See “Consis-
tency” on page 3-23) If independent configuration pragmas are added to an environ
with compiled units, a.build will generate error messages. The user may igno
them or may invalidate all the units in the environment to force the independent config
tion pragmas to take effect. See “a.invalid” on page 4-37 for more information on inv
dating units.

If the configuration pragma is in a source file with library units, the configuration pragm
must precede those units in the file. They then apply only to those units sharing the
source file. This is handled automatically bya.build , and there are no particular
restrictions.

See “RM Annex L: Pragmas” on page M-103 for a complete listing of pragmas suppo
by MAXAda.

Nationalities 3

Compilation units in MAXAda have a nationality associated with them. Units can be
eitherlocal or foreign.

Local Units 3

Compilation units that arelocal to a system can be one of three types:

native

Native compilation units are introduced into an environment by using t
a.intro function.

Once a unit is introduced into an environment, it is considered to be owned
that environment and any functions performed on that unit should be mana
by the environment through the MAXAda utilities.

naturalized

Sometimes, the compiled form of a foreign unit is not available when it
needed locally for a build. In this case, the system automatically make
local compilation. This local compiled form is considered to be naturalized
3-9

MAXAda Reference Manual

nt.
on-

iled
is

s.)

se
tain
the

on-
these
nvi-

e unit

Ada
f

ll be
by

..
A naturalized unit retains the compile options from its original environme
These options can only be altered by changing them in the original envir
ment.

fetched

In some cases, it may be desirable for users to manually fetch the comp
form of a unit from another environment into the local environment. Th
may be necessary to avoidobscurities, but this is rarely required. (See
“a.fetch” on page 4-27 for an example of fetching a unit to avoid obscuritie

A fetched unit retains the unit-specific options from the original unit but the
options may be changed in the local environment. However, it does not re
the environment-wide options of its original environment. It uses those of
current environment instead.

Naturalized or fetched units must beexpelledfrom the environment by usinga.expel if
they are no longer desired.

Foreign Units 3

Foreign unitsare those units that exist in other environments which are on the Envir
ment Search Path. The user is not required to do anything special in order to use
units. They become automatically available once their environment is added to the E
ronment Search Path.

Ambiguous Units 3

MAXAda provides a mechanism that detects the case where two versions of the sam
appear among all the source files introduced to the environment.

Upon introducing a unit having the same name as a previously introduced unit, MAX
labels both units asambiguous. It will then refuse to perform any operations on either o
the two versions, or on any units depending on the ambiguous unit. The user wi
forced to choose which of the two units should actually exist in the environment
“removing” the other.

MAXAda provides thea.resolve tool to select the desired unit. See “Hello Again.
Ambiguous Units” on page 2-15 for an example of this situation.

NOTE

Thea.hide utility (see page 4-32) may also be used to remove
the ambiguous unit but i t is usually simpler to use the
a.resolve tool.
3-10

MAXAda Concepts

pi-
the

l unit

s of
mpila-

hese
Another way of possibly removing an ambiguity is to use
a.rmsrc (see page 4-95). However, this will also remove other
units contained in that source file from the environment, which
may not be what the user intended.

While MAXAda is refusing to perform any operations on the ambiguous units, the com
lation state of the original unit remains intact in the environment. This is useful in case
original unit is selected instead of the newly added one. If this is the case, the origina
(and all units dependent on it) would not have to be recompiled.

Artificial Units 3

At times, the implementation may create units to fill internal roles such as bodie
instances. These units are created, utilized, and sometimes discarded during the co
tion phase. The user may use the-art option toa.ls to display the artifical units in the
environment. See “a.ls” on page 4-40 for more information.

Unit Compile Options 3

Each unit has a set of permanent and temporary compile options associated with it. T
compile options are described in detail on page 3-21.
3-11

MAXAda Reference Manual

e of
nvi-
and
well

an

ion,

tion
are
how

xe-

ring
ca-

it.
ion

eth-
Partitions 3

A partition is an executable, archive, or shared object that can be invoked outsid
MAXAda. Partitions consist of one or more units that have been introduced into the e
ronment. The units included in a partition are those that the user explictly assigns
units which they require. MAXAda manages these units and their dependencies, as
as link options and configuration information for each partition within the context of
environment. A partition definition must include one or more units in order to be built.

A more complete definition ofpartition can be found in 10.2(2) of theAda 95 Reference
Manual.

A partition within MAXAda is created and maintained by using thea.partition func-
tion. This function provides tools to create a partition, add or delete units from a partit
designate a main unit for the partition, and various other utilities.

In much the same way that options and configuration information concerning compila
are associated with units, linker options and configuration information for linking
associated with partitions. Partitions are basically recipes to the linker which indicate
to build a target file from units.

Types of Partitions 3

MAXAda defines three types of partitions:

• Active Partitions

• Archives

• Shared Objects

Active Partitions 3

The simplest form of partition is the active partition which describes how to build an e
cutable program. This corresponds to theactive partitiondefined in Section 10.2 of the
Ada 95 Reference Manual.

Archives 3

An archiveis a collection of routines and data that is associated with an application du
the link phase. Archives are useful for linking into other, potentially non-Ada, appli
tions. Archives are usually designated with a.a suffix.

Archives differ from shared objects by the form of the object contained within
Archives contain statically-built (i.e. non-shared) objects within them. (See “Posit
Independent Code” on page 3-14 for more details)

Because archives are non-active partitions, they may set elaboration and finalization m
ods using the-elab and -final options toa.partition . (See “Elaboration and
3-12

MAXAda Concepts

y not

tion
Ada

red
ode.

efer-
ecut-
hase

on that
s, it
has

and
with

ppli-
to the

ry for
g that

zation

they

the
m’s

lica-
the

the
other

rence
rence.
Finalization Methods” on page 3-16 for more details.) For the same reasons, they ma
set a main subprogram using the-main option toa.partition .

Shared Objects 3

A shared objectis a collection of routines and data that is associated with an applica
during the link and execution phases. Shared objects are useful for linking into other
or non-Ada applications. Shared objects are usually designated with a.so suffix.

Shared objects differ from archives by the form of the object contained within it. Sha
objects are dynamically built (i.e. shared) objects that contain position independent c
(See “Position Independent Code” on page 3-14 for more details)

At link time, routines and data objects from a shared object may satisfy unresolved r
ences from an application, but they are not copied into the resultant application’s ex
able image. The actual associations and memory allocations occur during the initial p
of the application’s execution; this is termed thedynamic linkingphase. Because of this, it
is possible for shared objects to be changed and these changes to affect the applicati
has linked with them. However, due to this dynamic linking property of shared object
is often not necessary to rebuild the calling application after the shared object
changed.

During dynamic linking, all shared objects that the application requires are allocated
linked into the application’s address space, sharing as many physical memory pages
other concurrently executing applications as possible. Therefore, totally dissimilar a
cations may share the same physical pages for the same shared object. This applies
memory for the actual code or machine instructions in the shared object. The memo
the data segments in a shared object is usually replicated for each application usin
shared object.

Because shared objects are non-active partitions, they may set elaboration and finali
methods using the-elab and-final options toa.partition . (See “Elaboration
and Finalization Methods” on page 3-16 for more details.) For the same reasons,
may not set a main subprogram using the-main option toa.partition .

Lazy Versus Immediate Binding 3

After the dynamic linker successfully locates all of the shared objects required for
application program, it maps their memory segments into the application progra
address space.

The dynamic linker uses internal symbol tables to satisfy symbol references in the app
tion program. Entries in these tables describe the final location of symbols found in
shared objects; this is termedrelocation. All data references are immediately relocated.

By default, the dynamic linker does not fully relocate all subprogram references in
application program (or the shared objects themselves, because they can reference
shared objects or routines in the application program). If an as-yet unrelocated refe
occurs, control passes once again to the dynamic linker which then relocates the refe
This is termedlazy binding.
3-13

MAXAda Reference Manual

the

epen-
ely
until

han

set-

st be

occur
loca-
that

tar-
e run.

ially
s,

ible
y the

, all
it (or
To force immediate binding of all references, the user may invoke the program with
LD_BIND_NOWenvironment variable set. SeeCompilation Systems Volume 1 (Tools)for
more information.

Position Independent Code 3

In order to create a shared object, the compiler must generate code in a position-ind
dent manner.Position independencerefers to the fact that the generated code cannot r
on labels, data, or routines being in known locations; these locations are not known
dynamic linking occurs.Position independent code(PIC) requires additional indirections
at run-time; therefore, routines within shared objects are inherently slightly slower t
non-shared versions of those routines.

You control whether a unit is compiled as position independent code via a compilation
ting calledshare mode. When the share mode is set toshared or both , compilations are
performed generating position independent code. Units with this share mode mu
included in a shared object to be used . They cannot be statically linked.

See “Share Mode (-sm)” on page 4-111 for more details on share modes.

Share Path 3

Because the actual association of a shared object with a user application does not
until execution time, the shared object must exist on the target system in a specific
tion, configurable by the user. By default, the path name of the shared object is
defined by the target of the partition.

When creating a partition, you may specify an alternative path name (orshare path) for
the shared object. The shared object will still be built at the pathname specified for the
get, but it must be placed at the share path before any executables using it can b
Alternatively, a soft link can be created by using the-sl option to thea.partition
command when defining the shared object.

See “Share Path” on page 4-122 for more details.

Shared Objects and Special MAXAda Packages 3

When linking with MAXAda shared objects, it is possible that certain packages spec
recognized by the MAXAda run-time library may be quietly linked with user program
even if not specified in awith clause in the user’s source code.

MAXAda associates the specification and bodies of a package using externally vis
symbol names, instead of strictly using the dependency information as calculated b
with clauses starting at the main unit of the user program.

This package is:

• Packagedefault_handler in vendorlib

If the user were to supply his own copy of this package and compile it in shared mode
programs that use that shared object would use the new version, even if the main un
any of the main unit’s dependents) do not specify the package in awith clause.
3-14

MAXAda Concepts

rams

target
ink
g

xe-
used
larity
For example, if the user supplied a body todefault_handler that printed the associ-
ated program counter register value with an otherwise unhandled exception, all prog
using the shared object that contained the user’s copy of thedefault_handler pack-
age body would exhibit the same behavior.

Issues to consider 3

While the use of shared objects almost always reduces disk space utilization on the
architecture and often improves development productivity by minimizing application l
time, it may or may not actually improve run-time memory utilization. The followin
issues should be considered.

1. Are the shared objects configured with an appropriategranularity (i.e. the
number of Ada units located in each shared object) with respect to the par-
ticular client application programs that will be concurrently executing?

For example, it is possible that if only two application programs concurrently e
cute and use large granular shared objects, more memory may potentially be
than in a non-shared object scenario. There is a trade-off between small granu
and manageability.

2. Will the application make use of local memory, and if so, how many appli-
cations will be executing out of the same local memory pools using the
same shared object?

3. What disk storage capacity does the system have? The difference in size
between ordinary objects and PIC objects is negligible. However, note that
when choosing share modeboth , the disk storage requirement for the
object files in the environment is approximately doubled.

4. What time constraints are there? The share modeboth effectively doubles
the amount of time required for the code generation phase of compilation
because it is executed twice: one time to generate the code for the ordinary
object, and one time for the PIC object.
3-15

MAXAda Reference Manual

and
or

ng a
ust

quent
but
sed
how

ora-

call

lan-
ntain

ich
ich
Elaboration and Finalization Methods 3

Elaboration and finalization are taken care of in active Ada partitions for all archive
shared object partitions included via the link rule (see “Link Rule” on page 4-73)
dependent partitions list (see the-add option toa.partition on page 4-68). In all
other cases, (for example, calling an Ada subprogram from within C++ code, or usi
routine that exists in an archive that hasn’t been included in the active partition), this m
be done explicitly.

The elaboration and finalization routines do have an effect the second and subse
times they are called. This is contrary to the advice in RM B.1(39) (see page M-77),
permits the Ada code to be elaborated and finalized multiple times. This is useful if u
in a foreign language subsystem where the designers of that subsystem do not know
many times the subsystem will be initialized and finalized. In such a case, Ada elab
tion and finalization can be performed multiple times without worry.

The elaboration routine should never be called multiple times without an intervening
to the finalization routine. The results from such actions would be unpredictable.

Also, multiple Ada partitions can be elaborated, used, and finalized within a foreign
guage program so long as the user is careful to ensure that no two partitions ever co
the same unit. In such a case, link errors of the following form could occur:

ld: .../ partition1(ELAB_ partition1): fatal error: symbol
` symbol_namè multiply-defined, also in file .../
partition2(ELAB_ partition2)

Even though link errors of this form may not always occur, the use of two partitions wh
contain the same unit could result in the unit being elaborated or finalized twice, wh
could produce unpredictable results.

Elaboration and finalization methods are specified by using the-elab and -final
options, respectively, toa.partition . (See “a.partition” on page 4-68.)

NOTE to Fortran Users

For active Ada partitions that make interface calls to Fortran, calls
to the f_init and f_exit routines in the Fortran library are
made automatically to ensure that Fortran I/O works correctly.
For archive or shared object Ada partitions that make interface
calls to Fortran, neitherf_init nor f_exit is called. This is so
that they will not interfere with the calls automatically made to
those routines when the main program of an executable is Fortran.
However, this means that when Fortran code is called from an
archive or shared object Ada partition which is, in turn, called
from a non-Ada, non-Fortran main program, the user must arrange
to call f_init before using the Ada partition andf_exit after-
ward.
3-16

MAXAda Concepts

c-
may

ub-
itself

r
e
tine

le

ar-
Elaboration Methods 3

Elaboration methods are specified by using the-elab option toa.partition . (See
“a.partition” on page 4-68.)

MAXAda provides three methods forelaboration:

• none

This is the default. Nothing will be done for elaboration. This is generally not re
ommended for partitions used outside the Ada development environment, but
be useful for partitions containing only pure and preelaborated units.

• auto

An elaboration routine is generated at link time and is called before the main s
program even runs. The user does not need to be concerned about the routine
or calling it. Elaboration is handled automatically when this option is specified.

This option is not available for archives.

NOTE

This option should not be used for partitions that will be included
via the link rule (see “Link Rule” on page 4-73) or dependent par-
titions list (see the-add option toa.partition on page 4-68)
in active Ada partitions because the automatic elaboration will
interfere with the elaboration for the active Ada partition.

• user, routine_name

An elaboration routine namedroutine_nameis generated at link time. The use
specifies the actual name forroutine_nameand makes a call to this routine at som
point in the foreign language source. The actual call to this elaboration rou
should be made before any Ada code is called.

This option may be used for partitions that will be included both via the link ru
(see “Link Rule” on page 4-73) or dependent partitions list (see the-add option to
a.partition on page 4-68) in active Ada partitions and in foreign language p
titions.

NOTE

If this option is used,routine_nameshould not be calledfor parti-
tions that will be included via the link rule (see “Link Rule” on
page 4-73) or dependent partitions list (see the-add option to
a.partition on page 4-68) in active Ada partitionsbecause
the elaboration performed byroutine_namewill interfere with the
elaboration for the active Ada partition.

See “Elaboration and Finalization Methods” on page 3-16 for more information.
3-17

MAXAda Reference Manual

c-
may

ro-
alling

-
t
be

le

ar-
Finalization Methods 3

Finalization methods are specified by using the-final option toa.partition . (See
“a.partition” on page 4-68.)

MAXAda provides the same three methods forfinalization:

• none

This is the default. Nothing will be done for finalization. This is generally not re
ommended for partitions used outside the Ada development environment, but
be useful for partitions containing only pure and preelaborated units.

• auto

A finalization routine is generated at link time and is called after the main subp
gram runs. The user does not need to be concerned about the routine itself or c
it. Finalization is handled automatically when this option is specified.

This option is not available for archives.

NOTE

This option should not be used for partitions that will be included
via the link rule (see “Link Rule” on page 4-73) or dependent par-
titions list (see the-add option toa.partition on page 4-68)
in active Ada partitions because the automatic finalization will
interfere with the finalization for the active Ada partition.

• user, routine_name

A finalization routine namedroutine_nameis generated at link time. The user spec
ifies the actual name forroutine_nameand makes a call to this routine at some poin
in the foreign language source. The actual call to this finalization routine should
made after all Ada code is called.

This option may be used for partitions that will be included both via the link ru
(see “Link Rule” on page 4-73) or dependent partitions list (see the-add option to
a.partition on page 4-68) in active Ada partitions and in foreign language p
titions.

NOTE

If this option is used,routine_nameshould not be calledfor parti-
tions that will be included via the link rule (see “Link Rule” on
page 4-73) or dependent partitions list (see the-add option to
a.partition on page 4-68) in active Ada partitionsbecause
the finalization performed byroutine_namewill interfere with the
finalization for the active Ada partition.

See “Elaboration and Finalization Methods” on page 3-16 for more information.
3-18

MAXAda Concepts

at is

fol-
Main Subprogram Requirements 3

A main subprogram must be a non-generic library subprogram without parameters th
either a procedure or a function returningSTANDARD.INTEGER(predefined type).

Exit Status 3

Upon program termination, the exit status is determined by the first applicable
lowing rule:

- If the Ada.Command_Line.Set_Exit_Status procedure was
called, the program's exit status is the last value used in a call to this
procedure.

- If the main subprogram propagated an (unhandled) exception to the
environment task, the exit status is the value 42, as required by the
POSIX 1003.5 standard.

- If the main subprogram was a procedure which returned normally,
the exit status isAda.Command_Line.Success , which is the
value 0.

- If the main subprogram was a function which returned normally, the
exit status is the result of the call to that main subprogram.
3-19

MAXAda Reference Manual

entire

eful
ases

ng.

n as

.
See

ther,
ion.

tions
unit

n

Compilation and Program Generation 3

The compiler operates in several distinct phases, designed to satisfy the needs of the
software development process. These phases include:

• Determination of compilation unit dependencies

• Syntax checking

• Semantic checking

• Code generation and optimization

• Instruction scheduling

• Machine-code assembly

Various options can be specified with thea.options command in order to control com-
pilation phases. For example, during preliminary software development, it is often us
to limit the compilation phases to syntax and semantic checking. Errors from these ph
can be brought up into a text editor automatically for fast, iterative editing and compili

Compilation 3

MAXAda uses an Ada compiler that partially supports the Ada language specificatio
defined in the Ada 95 Reference Manual.

Automatic Compilation Utility 3

MAXAda providesa.build for automatic compilation and program generation
a.build calls various internal tools to create an executable image of the program.
“a.build” on page 4-8 for more information.

Compile Options 3

Unlike most compilation systems, MAXAda uses the concept ofpersistent options. These
options do not need to be specified on the command line for each compilation. Ra
they are stored as part of the environment or as part of an individual unit’s informat
These options are “remembered” when the MAXAda compilation tools are used.

There are three “levels” of compilation options:

• Environment-wide options

• Permanent unit options

• Temporary unit options

These levels have a hierarchical relationship to one another. Environment-wide op
can be overridden by permanent unit options which can be overridden by temporary
options. The set ofeffective optionsfor a unit are that unit’s sum total of these three optio
3-20

MAXAda Concepts

3-22

en.

hose
the

rride

ting
d then
rary

y

unit
it is
bug
can
sets, with respect to this hierarchical relationship. See “Effective Options” on page
for more information.

See “Compile Options” on page 4-109 for a list of options that may be specified.

Environment-wide Options 3

Environment-wide optionsapply to all units within that environment. All compilations
within this environment then observe these environment-wide options unless overridd

Environment-wide options can be overridden by

• individual unit compile options (permanent or temporary - see below)

• command-line options (which change temporary options on a unit)

• pragmas in the source of the units themselves

See “Compile Options” on page 3-20 for more information.

Permanent Unit Options 3

Each unit has its own set of options permanently associated with it that override t
specified for the environment. They may be specified and later modified via
a.options utility.

See “Compile Options” on page 3-20 for more information.

See the description of “a.options” on page 4-64 for more details.

Temporary Unit Options 3

Each unit also has a set of options that may be temporarily associated with it that ove
those that are permanently associated with it.

- If a unit is manually compiled (usinga.compile - see page 4-14) with
any specified options, these are added to its set of temporary options.

- The temporary options may also be set using thea.options tool.

Temporary options allow users to “try out” options under consideration. By designa
these options as “temporary”, the user can first see the effect these options have an
decide if this is what is desired. If so, MAXAda provides a way to add these tempo
options to the set of permanent options for that unit usinga.options . If these options
are not what the user desires,a.options also provides a way to eliminate all temporar
options from a unit (or from all units in the environment).

Another case in which temporary options might also prove useful is one in which a
needs to be compiled with debug information. If this is not the manner in which the un
normally compiled, a temporary option can be set for that unit to be compiled with de
information. When the debug information is no longer needed, the temporary option
be removed and the unit can be recompiled in its usual manner.

See “Compile Options” on page 3-20 for more information.

See the description of “a.options” on page 4-64 for more details.
3-21

MAXAda Reference Manual

tions
unit

n
nit’s
rma-

tion

, all

s)”

iron-
else.

ere is
tion.

een

in the
et-
Effective Options 3

These levels have a hierarchical relationship to one another. Environment-wide op
can be overridden by permanent unit options which can be overridden by temporary
options. The set ofeffective optionsfor a unit are that unit’s sum total of these three optio
sets, with respect to this hierarchical relationship. Table 3-1 shows an example of a u
effective options based on the relationship between its environment-wide options, pe
nent unit options, and temporary unit options.

As shown in this example, compilation options can be negated by preceding the op
with the “! ” symbol. Therefore, the option “-!g ” means no debug information should be
generated for this unit. Because it is a temporary option for only this particular unit
other units in the environment will be compiled with debug information (due to the “-g ”
environment-wide option listed in the example).

See “Compile Options” on page 3-20 for more information.

In addition, see “Compile Options” on page 4-109 and “Qualifier Keywords (-Q option
on page 4-115 for a list of available compilation options.

Compilation States 3

Units in the environment can be in any of several different compilation states:

• uncompiled

The state of a newly-introduced unit, or one that has been invalidated. The env
ment is aware of the unit and some basic dependency information but very little

• parsed

In this state, some semantic information about the unit has been generated. Th
a complete picture of the meaning of the unit, but none of the actual implementa

• drafted

All semantic information has been produced, but no actual object files have b
created.

• compiled

Object files have been generated for the unit

The benefit of having this information generated at each of these states for each unit
environment is that it allows the compilation utility to use this information to produce b

Table 3-1. Effective options based on hierarchical relationship

Environment-wide options -g -O2 -ee

Permanent unit options -!S -O3

Temporary unit options -S -!g

EFFECTIVE OPTIONS -S -!g -O3 -ee
3-22

MAXAda Concepts

for

e.

the

, the
unit

not
ter code in the unit currently being compiled. (See “Interoptimization” on page 3-24
more information.)

a.build allows the user to compile units to a specified state using the-state option,
however,compiled is the only valid state allowed for this option in the current releas
See “a.build” on page 4-8 for more information.

NOTE

Only theuncompiled andcompiled states are available at
this time. These states are documented because they are visible in
such utilities asa.build , a.compile , anda.ls .

Consistency 3

Along with compilation states comes the idea ofconsistency. Each unit is considered con-
sistent up to a particular state. This means that it is validup to that state of compilation.
Any recompilation of the unit can start from that state. It does not need to go through
earlier stages of recompilation.

Modification of a unit may possibly change its consistency. Modifications include:

• changes to the source file itself

• changes to any of the options

• changes to any required units upon which this unit depends

For example, if the source of a unit has been modified since it was last compiled
semantics of the unit are potentially changed. New semantic information about the
must be generated. Therefore, it is considered “consistent up to theuncompiled state”.
This means that when it is recompiled, it must start at the inconsistent state,uncom-
piled .

Not all changes to a unit make it “consistent up to theuncompiled state”. Changing the
options on a unit may not affect the syntax or semantics of a unit and therefore do
require a total recompilation.

Each option, in fact, hasrelevance, that is, how “inconsistent” a unit becomes if this
option is changed. Table 3-2 lists the relevance for each option.

Table 3-2. Relevance of Options

Option Relevance

-e compiled

-g drafted

-N uncompiled

-opp parsed

-O parsed
3-23

MAXAda Reference Manual

d
the

les
p to

ult-
pile

hat
For example, if only thedebug_level option on a unit is changed, the syntax an
semantics of the unit will not be affected. Therefore, it is not necessary to go through
parsed or drafted states again since nothing will change. However, the object fi
that will be generated for this unit will change so the unit is considered “consistent u
thedrafted state”.

For example, if only the-e option on a unit is changed, the syntax, semantics, and res
ant object file of the unit will not be affected. In this case, it is not necessary to recom
the unit at all. Therefore, the unit is considered “consistent up to thecompiled state”.

Interoptimization 3

MAXAda provides a method of optimization that controls the compilation order such t
all language-dependence rules are obeyed.

-i compiled

-w compiled

-sm drafted

-S drafted

-Qinline_line_count parsed

-Qinline_nesting_depth parsed

-Qinlines_per_compilation parsed

-Qinline_statement_limit parsed

-Qinteresting drafted

-Qopt_class drafted

-Qoptimize_for_space drafted

-Qoptimization_size_limit drafted

-Qobjects drafted

-Qloops drafted

-Qunroll_limit drafted

-Qgrowth_limit drafted

-Qwiden_trees drafted

-Qtarget drafted

-Qdb_basic_block compiled

-Qdb_region compiled

-Qdb_routine compiled

-Q drafted

Table 3-2. Relevance of Options

Option Relevance
3-24

MAXAda Concepts

-

n
ge

zed,

e of
of

s;
.

ters.
rs.

fined

nce
oked
s are

int)
ance
There are currently two levels of interoptimization available:

0 (none) no effort to attain interoptimization

1 (inlining) better ordering of compilation of units such that inlined sub
program calls will be performed whenever possible

See the-IO option of “a.build” on page 4-8 for using this option with the compilatio
utility. Further information can be found by referring to “Inline Dependencies” on pa
4-11.

Programming Hints and Caveats 3

In general, programs that are to be debugged with NightView should not be optimi
although they may be interoptimized. Optimization levelsGLOBALandMAXIMALshould
be reserved for thoroughly tested code.

Further optimizations for speed can often be accomplished by combining the us
OPT_LEVEL (MAXIMAL) with other pragmas. In some applications, judicious use
pragmaSUPPRESSand pragmaINLINE will contribute to even faster execution speed
however, excessive use of pragmaINLINE in large applications is not recommended
(See “Pragma SUPPRESS” on page M-131 and “Pragma INLINE” on page M-115.)

The higher levels of optimization are also subject to compiler configuration parame
Refer to “Compile Options” on page 4-109 for more information about these paramete

Optimization parameters can also be manipulated by using the implementation-de
pragmaOPT_FLAGS. Refer to “Pragma OPT_FLAGS” on page M-121.

All optimizations performed at the various levels of optimization are done in complia
with the Ada 95 Reference Manual. At some levels, some operations may not be inv
if their only possible effect is to propagate a predefined exception. These optimization
permitted under RM 11.6.

Components in records may be misaligned because of the following practices:

• Using representation clauses

• Using the predefined pragmaPACK. (See “Pragma PACK” on page
M-123.)

• Doing unchecked conversions to access types

There is no misaligned handler. The hardware allows misaligned integer (fixed-po
data accesses, but floats and long floats must be word-aligned. There is a perform
penalty for misaligned accesses.
3-25

MAXAda Reference Manual

llus-
ays in
om-
s to

tions
Compiler Error Messages 3

This section describes the different types of compilation errors that can occur and i
trates the procedures MAXAda uses to handle error messages. It also shows the w
which thea.error utility can be used to examine error messages produced by the c
piler. (See “a.error” on page 4-21 for details.) The compiler writes all error message
the standard error stream,stderr .

A list of the several categories of error messages appears next, followed by descrip
with examples of each category.

• Lexical Errors

• Syntax Errors

• Semantic Errors

• General Errors

• Informational Messages

• Warnings

• Alerts

• Fatal Errors

• Internal Errors

NOTE

Many diagnostics contain references to theMAXAda Reference
Manualwhich can be used by thea.man utility to provide further
assistance in determining the cause and/or solution for the error.
See “References to the MAXAda Reference Manual” on page
4-50 for more information about how to use these references with
thea.man tool.
3-26

MAXAda Concepts

m-
cor-

ors.

th a
that

was
es of
Lexical Errors 3

Lexical errorsare errors in the formation of literals, identifiers, and delimiters. The co
piler performs no semantic analysis on a unit containing lexical errors, but attempts to
rect the error to minimize its impact on the discovery of further lexical and syntax err
Screen 3-1 illustrates:

Screen 3-1. Lexical Errors with -e Option

Each line that contains an error is listed, prefixed with a line number, and followed wi
description of the errors that were found. This description includes one or more lines
begin with a capital letter and point to the place in the program where the error
detected. Subsequent lines beginning with corresponding letters provide brief synops
the errors encountered. Screen 3-2 illustrates:

Screen 3-2. Lexical Errors with -e Option

1: procedure MY_ _PROGRAM is
A -------------------^
B --------------------^
C ---------------------^
A:lexical error: trailing '_' not allowed
B:lexical error: token starts badly: "_"
C:syntax error: "program" deleted

2: end MY_PROGRAM;
A ------^
B --------------------^
A:syntax error: "end" replaced by "begin"
B:syntax error: "null ; end ;" appended

1: procedure MY_PROGRAM? iz
A --------------------------^
B ----------------------------^
A:lexical error: illegal character "?"
B:syntax error: "iz" deleted

2: end MY_PROGRAM?;
A ------^
B --------------------^
A:syntax error: "end" replaced by "is new"
B:lexical error: illegal character "?"
3-27

MAXAda Reference Manual

no
or to
lus-
Syntax Errors 3

Syntax errorsare errors in the form of grammatical constructs. The compiler performs
semantic analysis on a unit containing syntax errors, but attempts to correct an err
minimize its impact on the discovery of further lexical and syntax errors. Screen 3-3 il
trates:

Screen 3-3. Example of Syntax Errors with -e Option

4: end OLD_PROGRAM;
A ----------^
A:syntax error: RM 6.3(4): subprogram was given a different name

7: for X = 1..10 do
A ---------------^
B -----------------------^
A:syntax error: "=" replaced by "in"
B:syntax error: "do" replaced by "loop"

11: end A_PROGRAM;
A ----------^
B -------------------^
A:syntax error: "a_program" replaced by "loop"
B:syntax error: "null ; end ;" appended
3-28

MAXAda Concepts

com-
at is

ages
Man-
Semantic Errors 3

Semantic errors are those made in the semantic usage of language constructs. The
piler generates no code for units with semantic errors. It generates code for a unit th
error-free, even if other units in the file have semantic errors. All semantic error mess
refer to the specific section, subsection, or paragraph within the Ada 95 Reference
ual. Screen 3-4, Screen 3-5, and Screen 3-6 illustrate:

Screen 3-4. Semantic Errors with -e Option

Screen 3-5. Semantic Errors with -el Option

Screen 3-6. Semantic Errors with -e Option

3: subtype WORK_DAY is WEEK_DAY range 1..5;
A --^
A:error: RM 3.5(4): range constraint has wrong type

1:package NEW_PACKAGE is
2: type SUN_GLASSES is (grey, green, blue);
3: type MY_GLASSES is access SUN_GLASSES;
4: type SCREEN is (green, black);
5: type MY_SCREEN is access SCREEN;
6:end NEW_PACKAGE;
7:
8:package body NEW_PACKAGE is
9: function MY_FUNCTION return MY_GLASSES is

10: I: MY_GLASSES := null;
11: begin
12: return I;
13: end MY_FUNCTION;
14:
15: function MY_FUNCTION return MY_SCREEN is
16: I: MY_SCREEN := null;
17: begin
18: return I;
19: end MY_FUNCTION;
20:
21: procedure ASSIGN is
22: begin
23: MY_FUNCTION.all := green;

A --------------------^
A:error: RM 5.2(9): assignment statement is ambiguous. Could be:
A:error: my_function, line 9 of new_package
A:error: my_function, line 15 of new_package

24: end ASSIGN;
25:
26:end NEW_PACKAGE;

2: type INT1 is range 1..UPPER;
A --------------------------------^
A:error: RM 3.5.4(3): bounds must be static simple expressions
3-29

MAXAda Reference Manual

an-
th
its in
General Errors 3

Errors that are semantic in nature but do not fall within a specific Ada 95 Reference M
ual reference are calledgeneral errors. The compiler does not generate code for units wi
general errors. However, it generates code for a unit that is error-free, even if other un
the file have errors. Screen 3-7 illustrates:

Screen 3-7. Example of General Errors

a.build: error: required spec of FACTORIAL does not exist
in the environment
3-30

MAXAda Concepts

rnal
n in

iza-
on is
, and
uld

eter
ates
ns
za-
ave
rame-
ossi-
ault

and

tion
enta-

n

Informational Messages 3

The MAXAda compiler may generate an informational message to a user if an inte
compiler limit has been exceeded. Most of these internal limits deal with optimizatio
the compiler’s back end. (See “Compile Options” on page 4-109.)

Because most optimization parameters can be manipulated by users via thea.options
tool, informational messages are helpful because they may indicate that certain optim
tions are not being performed due to the values of these constraints. This informati
helpful to users because it may point out areas where optimizations are being missed
that in order to perform the maximum amount of optimization possible, the limits sho
be raised. Limits can be raised:

• By changing the default values witha.options for all compilations (See
“a.options” on page 4-64.)

• By inserting the appropriate optimization values through the use of the
OPT_FLAGSpragma for compilation units where optimizations are being
missed (See “Pragma OPT_FLAGS” on page M-121.)

• By using an appropriate qualifier flag (-Qparameter) for the optimizer
parameter that is being exceeded. (See “Qualifier Keywords (-Q options)”
on page 4-115.)

For example, if the environment’s configuration has a value of 128 for the param
OBJECTS, then only 128 variables in a given subprogram will be considered as candid
for optimization in the back end of the MAXAda compiler. If a subprogram contai
more than 128 objects, the compiler will inform the user that opportunities for optimi
tion may be missed. The informational message will identify which parameter(s) h
been exceeded, and will also suggest what an appropriate value for the offending pa
ter(s) should be in order to take advantage of the maximum amount of optimization p
ble. For instance, if more than 128 objects exist within a compilation and the def
parameter is set to 128, then the following message will appear:

Screen 3-8. Example of Warnings

This informs the user that there were actually 200 objects in the given compilation,
that in order to achieve maximum optimization, the configuration value forOBJECTS
should be raised to 200 for this compilation. If the suggested value(s) for a compila
are not reasonable values to set as configuration parameters, then the implem
tion-defined pragmaOPT_FLAGScan be used to modify the values of optimizatio
parameters for individual compilation units.

Informational messages may be suppressed by specifying the-i compile option. The-w
compile option also suppresses informational messages.

info: Only first 128 most frequently occurring variables
out of 200 total variables were optimized. Check
configuration parameters.
3-31

MAXAda Reference Manual

ues-
p-

ges,
l nor-
the
ul).
d line
are

g the
Warnings 3

An error that is not sufficiently serious to prevent code generation or that indicates q
tionable use of a construct generates awarning message. Warning messages may be su
pressed by specifying the-w compile option. Screen 3-9 illustrates:

Screen 3-9. Example of Informational Messages

Alerts 3

An alert is a diagnostic message that conveys information to the user about packa
pragmas, or options that are obsolete in this release. Support for such features wil
mally be removed in the next production release of MAXAda. Alerts typically refer to
correct method for achieving the desired effect (if such behavior is still meaningf
Alerts do not prevent code generation. Alerts cannot be suppressed through comman
options; the only method of preventing alerts is to refrain from using features which
obsolete.

In many cases, the alert indicates that the compilation system is automatically takin
appropriate action for the user. Screen 3-10 illustrates:

Screen 3-10. Example of Alerts

6: for i in 1..10 loop
A -------------^
A:warning: id hides outer definition

2: pragma memory_pool (lock_pages) ;
A --------------------------^
A:alert: RM Appendix F: This form of pragma memory_pool is obsolete
A:alert: RM Appendix F: it is supported in this release only for

A:alert: RM Appendix F: use pragma pool_lock_state instead (it is
being activated now)

backward compatibility
3-32

MAXAda Concepts

pi-
ed

s

ccur
mple
mple
Fatal Errors 3

Fatal errors are those of such severity that meaningful recovery is impossible and com
lation of the file stops. A fatal error can occur if a MAXAda environment is not creat
with a.mkenv before compilation. Screen 3-11 illustrates:

Screen 3-11. Example of Fatal Errors

Internal Errors and Panics 3

Internal errorsandpanicsare those due to faults within the compiler. All internal error
and panics should be reported to the Concurrent Customer Support Center.

Internal errors and panics may indicate that a program is erroneous, and they o
because the compiler is unable to process the erroneous program. The following exa
does not generate an internal error in the current release; it is provided to show an exa
of the error message. Screen 3-12 illustrates:

Screen 3-12. Example of Internal Errors

a.compile: fatal: invalid environment: /pathname/noenv

--
begin

declare
X : ADDRESS;
Z : BOOLEAN := X = test’ADDRESS;

A -------------^
A:internal: assertion error at file type_util.c, line 184

begin
null;

end;
end test;
3-33

MAXAda Reference Manual

sis-

e of

to

ied
Link Options 3

MAXAda supports a set of link options for each partition. These link options are per
tent and may be specified using any of the following methods:

• a.link command line

Options specified directly toa.link (see “a.link” on page 4-38 for details) may be
useful for experimental links, but should not be used during the normal cours
development, because specifications made in this manner arenot persistent.

• partition definition

Link options are specified for a particular partition by using the following options
a.partition :

-oset opts Set the link option list toopts

-oappend opts Appendoptsto the link option list

-oprepend opts Prependoptsto the link option list

-oclear Clear the link options list

where:

optsis a single parameter containing one or more link options; note thatopts
may need to be quoted.

For example:

a.partition -oset -c partition_name

A list of available link options (opts) may be found under “Link Options” on page
4-119.

For more information about setting link options witha.partition , see “Link
Options” on page 4-71.

• environment-wide link options

Link options that affect all the partitions in the entire environment may be specif
using the-default option to a.partit ion in combination with the
-o commandslisted above.

For example:

a.partition -default -oset -c

sets the environment-wide link options to-c .

To list the environment-wide link options, issue:

a.partition -default

by itself.
3-34

MAXAda Concepts

ink

ma

y the

user

ne,

f the
In addition, the environment may be created with a set of environment-wide l
options using the-oset optsoption toa.mkenv (see “a.mkenv” on page 4-58 for
details).

For example:

a.mkenv -oset -c

sets the environment-wide link options to-c when the environment is created.

• source code

Link options may also be specified within the source code itself using prag
LINKER_OPTIONS (see “Pragma LINKER_OPTIONS” on page M-119).

For example:

pragma Linker_Options("-c");

Link options are interpreted in the order specified above and in the order specified b
user when usinga.link or a.partition . The order of link options specified in the
source code is arbitrary among various units, but is in the order specified by the
within any single unit.

In the event of a conflict between two link options, an earlier one will override a later o
generally. The exceptions are benign. For instance, if two contradictory-trace:buff-
ersize options are specified, the larger of the two values is selected regardless o
order.
3-35

MAXAda Reference Manual

om-
uld

re-

on
de-

ment
ils on
Linking Executable Programs 3

MAXAda provides a linker that verifies and creates an ELF executable image of all c
ponent units required for a given main unit. The linker can be invoked directly but sho
be called from the compilation utilitya.build .

Linking Ada Programs with Shared Objects 3

The following table lists the MAXAda-supplied shared object partitions and their cor
sponding environments.

These partitions are expected to be installed in/usr/ada/ release/lib (wherereleaseis
the name of the MAXAda release).

If a user application requires the MAXAda shared libraries but the application will run
a target system without the MAXAda product, then those libraries must be installed in
pendently on the target system.

Users are granted limited rights to copy the required shared libraries from a develop
system to a licensed run-time system. Contact Concurent Customer Support for deta
these rights.

Table 3-3. MAXAda-supplied Shared Objects

SHARED OBJECT ENVIRONMENT

libdeprecated.so deprecated

libgeneral.so bindings/general

libobsolete.so obsolescent

libposix1.so bindings/posix_1003.1

libposix5.so bindings/posix_1003.5

libpredefined.so predefined

libpublic.so publiclib

librtdm.so rtdm

libsockets.so bindings/sockets

libvendor.so vendorlib
3-36

MAXAda Concepts
IMPORTANT

Users cannot copy shared libraries from the AXI for MAXAda
product. If these libraries are required for the run-time system, a
copy of the AXI for MAXAda product must be purchased and
installed on the target machine. These libraries include:

/usr/ada/ release/lib/libX.so
/usr/ada/ release/lib/libmotif.so
/usr/ada/ release/lib/libstars.so
3-37

MAXAda Reference Manual

des

a-
ter 12

a
oni-

Values
m”

com-
re

al
ddi-

pile
he
pli-
Debugging 3

Real-Time Debugging 3

In addition to the symbolic debugging capabilities provided bynview , and the post-anal-
ysis debugging capabilities provided by the tracing mechanism, MAXAda also provi
several ways to debug programs in real-time. Thea.monitor utility may be used to
monitor an Ada program while it is running; the utility displays Ada task state inform
tion, CPU, stack, and memory usage. See “a.monitor” on page 4-61 as well as Chap
- Real-Time Monitoring for more information.

The MAXAda tool a.rtm can be used to monitor or modify data in an executing Ad
program in real-time. Values for any number of Ada objects can be retrieved and m
tored, and these values may be refreshed at a display rate determined by the user.
of objects may also be modified “on-the-fly” while a program is executing. See “a.rt
on page 4-96 as well as Chapter 12 - Real-Time Monitoring for more information.

NOTE

NightView (nview) requires a non-zero debug level and level
full (2) for full support. a.rtm requires levelfull (2). See
“Debug Level (-g[level])” on page 4-110.

Selecting a Debug Level 3

There are trade-offs to be considered when selecting the debug level with which to
pile a single unit or application. While the full level of debug information provides mo
information for such programs as thenview debugger, it does so at the cost of addition
disk space in object files and the final executable. Note, however, that there is no a
tional space required in memory as an application is executing. Note also thatnview
debugging requires only the program image.

If users intend to use other programs, such asnview , then careful debug-level selection
must be made. Good candidates for compiling at full debug level are units that:

• Are few in number

• Are reasonably self-contained

• Contain frequently used type information

• Need to be debugged

If users expect to debug only certain portions of an application, it is possible to com
only those certain units with the full level of debug information and to compile t
remainder of the application with the none or lines level. Thus, only a portion of the ap
cation requires additional disk space.
3-38

MAXAda Concepts

tually
ld be
rma-

on.

ed
g

-

s

ebug
st
r
ny
This technique is very useful. However, the user must be careful because it can ac
be counterproductive and produce object files requiring more disk space than wou
required otherwise. This is because the compiler attempts not to duplicate debug info
tion whenever possible.

Example Scenario:

Assume the following code fragment:

package types is
type rec is record

...
end record;

end types;

with types;
procedure user1 is

var : types.rec;
...

begin
...

end user1;

with types;
procedure user2 is

var : types.rec;
...

begin
...

end user2;

Example 1:

Assume that all of these units are compiled with the full level of debug informati
The debug information for unittypes includes a description of the typerec .The
debug information for each of the unitsuser1 anduser2 includes descriptions of
their respective variables,var ; however, the descriptions of those variables ne
not fully describe the typerec . Their debug information just refers to the debu
information already described in unittypes .

Example 2:

Assume that the unittypes was compiled with the none level of debug informa
tion. Further assume that the unitsuser1 anduser2 are compiled with the full
level of debug information. The debug information for the unittypes does not
include a description of the typerec . The debug information for each of the unit
user1 anduser2 includes descriptions of their respective variables,var . Unlike
the previous example, though, these descriptions cannot simply reference the d
information forrec in the unittypes because it does not exist there. So, they mu
each include the debug information forrec locally. Unfortunately, because neithe
references the other on anywith clause and because language rules prohibit a
dependency from one to the other in the absence of such awith clause, they cannot
3-39

MAXAda Reference Manual

t the

of a
age
ma

ts or

m

lt
-Q

n
lue

nits

ce
tion

in
share the debug information, and it is duplicated in each of them. This was no
case in the first example.

Degree of Interest 3

Pragma INTERESTING indicates in the debug information the degree of interest
named unit, object, component or exception (see “Pragma INTERESTING” on p
M-116). This information is only useful if full debug information is enabled (see “Prag
DEBUG” on page M-108 or “Debug Level (-g[level])” on page 4-110).

This information is useful in conjunction with theReal_Time_Data_Monitoring
package. A minimum interest "threshold" may be specified to restrict the set of objec
components to be monitored using theinterest_threshold parameter (see “rtdm”
on page 9-12).

This information is also useful in conjunction with the NightView debugger. A minimu
interest threshold may be specified via theinterest command to restrict the set of rou-
tines to be displayed in various circumstances.

In addition, the-Qinteresting compile option may be used to indicate the defau
degree of interest for every entity in the compilation. See “Qualifier Keywords (
options)” on page 4-115 for more information.

Debug Information and cprs 3

Thecprs utility (seecprs(1)), supplied with PowerMAX OS, reduces the size of a
application by removing duplicate type information. The Ada compiler reduces the va
of this tool by already referencing the debug information for types defined in other u
from those other units. However, thecprs utility can still reduce the size of Ada applica-
tions. Also, if debug code from other languages is included in an application, thencprs
can significantly reduce the size of those portions as well.

If users compile only certain units with full debug information, it is possible to produ
duplicate debug information for types in several units. Also, even if an entire applica
is compiled with full debug information, anonymous types are frequently duplicated
several units, as are types for certain compiler-generated constructs.
3-40

-2
-3

-5
-6
-8
-10
11
1
1
12
13
14
16
18
20
21
26
27
30
31
32
33
35

7
8

40
2

44
45
6
6
47
49
-50

-50

52
58
61
62
64
65
5

66
6
66

6

4
MAXAda Utilities

Common Options . 4
a.analyze . 4

Link-Time Optimizations with a.analyze . 4
Profiling with a.analyze . 4

a.build . 4
Parallel Compilations and Dependency Analyses . 4
Inline Dependencies . 4-
Forcing Attempts . 4-1
Why . 4-1

a.cat . 4-
a.chmod . 4-
a.compile . 4-
a.demangle . 4-
a.deps . 4-
a.edit . 4-
a.error. 4-
a.expel . 4-
a.fetch . 4-
a.freeze. 4-
a.help . 4-
a.hide . 4-
a.install. 4-
a.intro . 4-
a.invalid . 4-3
a.link . 4-3
a.ls . 4-

Formatting the listing . 4-4
Dependent units . 4-
Parts . 4-
Sorting . 4-4
Filtering . 4-4

a.lssrc . 4-
a.man . 4-

References to the Ada 95 Reference Manual . 4
References to the MAXAda Reference Manual . 4
Access to Support Packages. 4-51

a.map . 4-
a.mkenv . 4-
a.monitor . 4-
a.nfs . 4-
a.options. 4-

Option Sets . 4-
Listing options . 4-6
Setting options . 4-
Modifying options . 4-6
Clearing options . 4-
Deleting options . 4-6

MAXAda Reference Manual

67
67
68

71
71
71
1
3
8
79
1
82
84
85
6

86
-88
90
92
93
94
95
96
97
99
00
02
04
07
08
09
9

1
1

5
9
0

20
22
22
22
3

23
24

24
Keeping temporary options. 4-
Setting options on foreign units . 4-

a.partition . 4-
Main Subprogram . .. 4-70
Elaboration and Finalization. 4-
Case Sensitivity. 4-
Consistency . 4-
Link Options . 4-7
Link Rule . 4-7
Implicitly-Included Libraries . 4-7

a.path . 4-
a.pclookup. 4-8
a.pp. 4-

Commands . 4-
Expressions . 4-
Defaults. 4-8
Examples. 4-

a.release . 4
a.report . 4-
a.resolve . 4-
a.restore . 4-
a.rmenv. 4-
a.rmsrc . 4-
a.rtm . 4-
a.script . 4-

Generated Script - Options . 4-
a.slinker . 4-1
a.syntax . 4-1
a.tags . 4-1
a.touch . 4-1
a.trace . 4-1
Compile Options . 4-1

Negation (!) . 4-10
Debug Level (-g[level]) . 4-110
Opportunism (-opp) . 4-110
Share Mode (-sm) . 4-11
Not Shared (-N) . 4-11
Optimization Level (-O[level]) . 4-112
Qualifier Keyword (-Qkeyword[=value]) . 4-114
Suppress Checks (-S) . 4-114

Qualifier Keywords (-Q options). 4-11
Link Options . 4-11

Selective Linking . 4-12
Target Architecture . 4-1
OS Version . 4-1
Share Path . 4-1
Incrementally Updateable Partition . 4-1
Tracing . 4-12
Task Weight. 4-1
Shared Object Transitive Closure . 4-1
Obscurity Checks . 4-1

nt,
hese
For

ed in

es the
ne-
nc-

n,
4
Chapter 4MAXAda Utilities

4
4
4

MAXAda consists of a number of utilities that provide support for library manageme
compilation and program generation, and debugging. This section will go through t
tools and give an overview of their uses. The utilities appear in alphabetical order.
easy reference, the command syntax and options available for each utility are provid
tabular format. Available options for each tool are also provided by specifying the-H
(Help) command-line option when invoking the utility.

Each section describes a command, shows the command’s syntax and discuss
options that can be specified. For each option flag listed in the “Option” column, a m
monic and a short description are provided in the columns labeled “Meaning” and “Fu
tion,” respectively.

See “MAXAda Utilities” on page 1-1 for a complete listing of these utilities. In additio
refer to “Common Options” on page 4-2 for those options relative to all utilities.
4-1

MAXAda Reference Manual

each
Common Options 4

There are a number of options that are the same for each utility. They are listed for
tool but are also listed below.

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

See “Unit Identification” on page 3-7 for more information about theunit-id.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-H help Display syntax and options for that particular function
4-2

MAXAda Utilities

he
is
xe-
ny
a.analyze 4

Optimize or analyze performance of fully-linked executables

The syntax of thea.analyze command is:

a.analyze [options] executable-file

The following represents thea.analyze options:

Option Meaning Function

-A all Include all the routines in the analysis (initial default)

-a routine add Add the specific namedroutineto the list of routines to analyze

-C cache Output the cache analysis profiling object file

-D flag debug Turn on the specified debug flag

Use-Dhelp for list of options

-Dhelp debug help List of debug options

-d file disassemble Output disassembly listing tofile

Generate a detailed disassembly listing of each routine included in t
analysis. The listing is done on a per basic block basis. By default th
only generates the assembler listing, the clock cycle each instruction e
cutes at (relative to the beginning of each basic block), and the reason a
instruction is delayed. Use the-v option for more detail.

Use- for stdout

-env env environment Specify an environment pathname

-g file global Generate global program statistics tofile

Use- for stdout

-H help Display syntax and options for this function

-i information Display information only messages

-N null Set the list of routines to be analyzed to the empty set (no routines)
4-3

MAXAda Reference Manual

ce
d
ost

re

er

ts

m

-O file optimize Output optimized object file tofile

Generate a new program file infile which has been optimized by replacing
many of the two-instruction sequences (which are required to referen
global memory locations) with single instructions which use the reserve
linker registers as base registers. This allows faster access to the four m
commonly referenced 64K data blocks. Certain library routines that a
known to access the linker registers (e.g.,setjmp and longjmp) are
automatically excluded from the optimization process. The-X option may
be used to specifically exclude others. (Normally any reference to a link
register will cause an error)

See “Link-Time Optimizations with a.analyze” on page 4-5 for more
details.

-P file profile Output profiling object file tofile

Generate a new program file infile which has been patched to gather pro-
filing statistics on each basic block and dump them tofile . prof on
exit. Thea.report program can be used to generate various repor
from this information. The-X option may be useful with this option. See
also thereport(1) manual page

See “Profiling with a.analyze” on page 4-6 for more details.

-r file routine Print summary statistics for each routine tofile

Use - forstdout

-rel release release Specify a MAXAda release (other than the default release)

-S section section Analyze the specifiedsectionof the object file, rather than the default
.text section

-s routine subtract This subtracts theroutine from the list to be analyzed

-V very verbose Print invocations of sub-processes

-v verbose Show verbose timing info in disassembly listing

-w warnings Suppress the output of warning messages

-X routine exclude Declareroutine to be the name of a subroutine which causes the progra
to exit. When the-P option is used, this routine, when called, will append
the accumulated statistics to the.prof file. After writing the statistics
data set to the.prof file, the statistics are reset to zero. When the-O
option is used, the-X option will exclude the named routine from the
optimization

-Zraw_names raw Print routine and source file names in raw form (i.e. do not filter)

-Z misc keyword Set various obscure keyword flags (use-Zhelp for list)

-Zhelp keyword help Displays list of obscure keyword flags

Option Meaning Function
4-4

MAXAda Utilities

a
ou-

hole
con-

u-
ters.

o-
with
n

t the

fer-

to

ted
NOTE

The a.analyze command is not normally invoked by the user;
it is most often called bya.link (which is called in turn by
a.build).

NOTE

The -a , -s , and -X options toa.analyze take a routine
name as a parameter. Thea.analyze processor recognizes Ada
routines only by their link names. These names may not be intui-
tive. Using thenm(1) utility may be helpful in order to determine
Ada routine names.

The a.analyze tool is available for performing static performance analysis of Ad
object files.a.analyze reads the object, finds the routine entry points, breaks the r
tines into basic blocks, and analyzes each basic block for instruction times.a.analyze
can generate detailed basic block information or a flow graph picture showing the w
program. By default, all routines are analyzed, but the above options can be used to
trol which routines are included or excluded.

With the -O option,a.analyze generates a new program file that optimizes many do
ble word memory reference instructions into single words by use of the linker regis
See “Link-Time Optimizations with a.analyze” on page 4-5 for more details.

With the -P option,a.analyze generates a new program file that will accumulate pr
filing statistics. Running this program file generates profiling data that can be used
thea.report command to provide profiling statistics. See “Profiling with a.analyze” o
page 4-6 for more details.

Link-Time Optimizations with a.analyze 4

To enhance the optimization of Ada source, in addition to compiling the source code a
MAXIMALlevel (-O3), you can elect to invokea.analyze when linking your Ada pro-
grams in order to perform additional optimizations at link time. For example, the-O
option toa.analyze replaces many of the two-instruction sequences required for re
encing global memory locations with a single instruction.

You can invokea.analyze in two ways: either directly on executables or as an option
the linker (a.link).

To invoke thea.analyze optimizer directly on an executable file (a.out), simply type
the following:

$ a.analyze -O na.out a.out

The original executable,a.out , remains the same and the resulting executable genera
by a.analyze is contained in a file calledna.out .

Alternatively, you can invokea.analyze at link time by specifying the-O link option
for a given partition:
4-5

MAXAda Reference Manual

mory

K data

ge

hed
the

ble
ing

the
s

$ a.partition -oappend -O main
$ a.build main

See “Link Options” on page 3-34 for more information.

What results from this sequence of commands is that a single executable file (a.out) is
optimized at levelMAXIMALfollowed by an additional link-time optimization performed
by thea.analyze optimizer.

Because of the-O option, a.analyze performs the following link optimization. It
replaces the two-instruction sequences (which are required to reference global me
locations) with single instructions which use the reserved linker registers (r28 andr30)
as base registers. This allows faster access to the two most commonly referenced 64
blocks.

(Certain library routines that are known to access the linker registers (e.g.,setjmp and
longjmp) are automatically excluded from the optimization process.)

Additional a.analyze options may be specified directly on thea.analyze command
line or indirectly by supplying an option string via the-A link option for a given partition.

Profiling with a.analyze 4

In addition to performing link-time optimizations,a.analyze can be used in tandem
with the a.report tool in order to generate profiling statistics. See “a.report” on pa
4-90.

To profile an executable Ada program witha.analyze , the -P (profiling) option must
be specified. With the-P option set, a new executable file is created that has been patc
to gather profiling statistics. The original executable file remains intact. For example,
following command line:

$ a.analyze -P profiled_a.out a.out

takes the executablea.out as input, profiles it, and then produces the patched executa
file profiled_a.out . The original executable remains unchanged; however, invok
the patched executable gathers profiling information and dumps this information to
file profiled_a.out.prof . The .prof file can then be displayed in various format
with the help of thea.report program.

Many other options are available for profiling executables usinga.analyze . Refer to
the online man pages for more information abouta.analyze anda.report .
4-6

MAXAda Utilities
Figure 4-1. Profiling a Program

Invoke a.analyze -P

a.out
(executable)

profiled_a.out
(patched executable)

a.out
(original executable)

Invoke profiled_a.out

Invoke a.report

profiled_a.out.prof
4-7

MAXAda Reference Manual

t

t

-

e

-

be
a.build 4

Compile and link as necessary to build a unit, partition or environ-
ment

The syntax of thea.build command is:

a.build [options] [partition ...]

The following represents thea.build options:

Option Meaning Function

-allparts all partitions Build all partitions in the environment. This option is not allowed if the
-o option is specified.

-attempt force attempts Attempt those compilations and links that will fail, but skip subsequen
dependent compilations and links

-Attempt force attempts! Attempt those compilations and links that will fail, including subsequen
dependent compilations and links

-bypass b y p as s
optional

Bypasses optional dependencies if they cannot be satisfied by the build

-C “compiler” compiler Usecompilerto compile units (may be used to pass options to the com
piler, e.g.a.build -C “a.compile -b”)

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i infos Suppressa.build information messages

See “Informational Messages” on page 3-31 for more details.

-IO [level] inter
optimization

Set level of interoptimization (0-1)

See “Interoptimization” on page 3-24 and “Inline Dependencies” on pag
4-11 for more details.

-L “ linker” linker Use “linker” to link partitions (may be used to pass options to the linker)

-noimport no import Forestall automatic recompilation of out-of-date units from other environ
ments in the current environment

-nosource no source Skip checks of the source timestamps for out-of-date units (should only
used if no source files have changed)

-o file output Override the output file for the partition being built. Only a single parti-
tion file name is allowed with this option.

-part partition partition Build the givenpartition, all included units and all units upon which they
directly or indirectly depend

-p [n] parallel Perform up ton parallel compilations (n defaults to number of CPUs)
4-8

MAXAda Utilities

.
ess-
parti-
ron-
ce of

n-

s

NOTE

Specified partitions are equivalent to partitions passed as argu-
ments to the-part option. If no options are specified, then all
units and partitions in the environment are built.

MAXAda provides thea.build utility to build partitions and units in an environment
a.build determines which units must be compiled to build the given target, preproc
ing those units marked for preprocessing, and calls the linker to produce the desired
tion. a.build examines the current environment (and the environments on the Envi
ment Search Path), determines and automatically executes the proper sequen
compilations and links necessary to build the given partition.

Targets toa.build can be:

-pd [n] parallel depen-
dencies

Perform up ton parallel dependency analyses; (n defaults to number of
CPUs * 2)

-r unit require Build the givenunit, all units upon which it directly or indirectly depends,
and all units which directly or indirectly depend upon it. This option is
not allowed if the-o option is specified.

-rel release release Specify a MAXAda release (other than the default release)

-rfile file requi re f ro m
file

Build the units infile, all units upon which they directly or indirectly
depend, and all units which directly or indirectly depend upon them

-source file source file Build all units defined in the given sourcefile and all units upon which
they directly or indirectly depend

-state s state Build all specified units to compilation states (compiled is the only
valid state allowed for this option in the current release)

-stop stop on errors If an error is encountered, stop building (normally, any units not depe
dent upon the erroneous units would be built)

-u unit unit Compile the specifiedpart(s) of the specified unit; if no part is specified,
both specification andbody are built. Theunit parameter can be
“all ”. This option is not allowed if the-o option is specified.

-ufile file units from file Build the units infile and all units upon which they directly or indirectly
depend

-V verify List compilations that would occur, but do not actually perform them

-v verbose Display compilations as they are done

-vv very verbose Display commands as they are done

-w warnings Suppressa.build warnings

See “Warnings” on page 3-32 for more details.

-Why why List reasons for compilations that would occur, and the compilation
themselves, but do not actually perform them

Option Meaning Function
4-9

MAXAda Reference Manual

l,

ter is
n-

are

aral-

inte-
no
n

aral-

d

nts.

a-
partitions which can be specified directly, with the-part option, or
with the-allparts option

units which can be specified with the-r or -u option, depending
upon the desired result

If the -u option is specified,a.build ensures the namedunit is up-to-date, recompiling
any dependencies if necessary.

Parallel Compilations and Dependency Analyses 4

If the -p option is used, thena.build attempts to build as much as it can in paralle
making use of the available resources. If an integer parameter,n, is supplied, thenn paral-
lel compilations are distributed across the CPUs on the system. If no integer parame
given, thena.build attempts to distribute a number of parallel compilations that is co
sistent with the number of CPUs on the system. Using the-p option can greatly enhance
compilation speed if used to compile a large MAXAda library and system resources
available.

Thea.build tool not only does its compilations in parallel when the-p option is active,
but it also does its dependency analysis in parallel. By default, twice the number of p
lel dependency analyses are used as are specified with-p . However, the-pd option can
be used to control the number of parallel dependency analyses independently. If an
ger parameter,n, is supplied with-pd , thenn parallel dependency analyses are used. If
integer parameter is given, thena.build attempts to use twice the number of CPUs o
the system. Finally, the-pd option can be used without the-p option, if that is desired. In
that case, compilations will be single-stream, while dependency analyses will be in p
lel.

See the following matrix for a complete description of the interaction of the-p and-pd
options.

Normally, a.build attempts to build all units in the current MAXAda environment an
all units on the Environment Search Path that are required. The-noimport option can
be used to prevent automatic recompilation of out-of-date units from other environme

See “Compile Options” on page 3-20 and “Link Options” on page 3-34 for more inform
tion.

Table 4-1. Number of Parallel Dependency Analyses

-p -p n’ No -p

-pd Tw i ce n u m b er o f
CPUs on system

Tw ic e nu m be r o f
CPUs on system

Tw ice nu mbe r o f
CPUs on system

-pd n n n n

No -pd Tw i ce n u m b er o f
CPUs on system

Twice n’ 1
4-10

MAXAda Utilities

per-

rticular
The

line
such
per-

ed
se-

first

red

s of
and

and
latter
Inline Dependencies 4

With the interoptimization level set to “inlining” (e.g.-IO1), thea.build utility detects
inline dependencies and attempts to honor them. To honor them,a.build must deter-
mine a valid compilation order that permits all requested inline calls to actually be
formed inline.

Sometimes an inline dependency creates a dependency loop. In such instances, pa
inline dependencies may have to be broken in order to break dependency loops.
a.build utility notifies users of dependency loops and issues a message when in
dependency loops must be broken in order to proceed with dependency analysis. If
loops exist, then it is possible that some requested inline calls may not actually be
formed inline.

Forcing Attempts 4

In situations wherea.build has already tried to compile a unit but has encounter
errors, it will not attempt to compile the unit again if it has not been modified. On sub
quent compilations,a.build will report to the user a message similar to:

a.build: error: MAX(060) 3-23: subprogram body
sem_errors will not be built because it contains
semantic errors

However, the user may wish to see the specific errors that were reported on the
attempt. The-attempt and-Attempt options are for this purpose. Whena.build
is run with these either of these options, it will try to recompile units that have encounte
errors in previous compilation attempts.

NOTE

Similar functionality exists in the NightBench Program Develop-
ment Environment using theAttempt compiles and links
that will fail checkbox under theSettings page of theBuilder
window. See theNightBench User’s Guide(0890514) for more
details.

See “Compiler Error Messages” on page 3-26 for more information about the type
errors you may encounter in this situation, especially “Syntax Errors” on page 3-28
“Semantic Errors” on page 3-29.

Why 4

The-Why option lists reasons why all the entities that would be built are inconsistent,
then shows the commands that would be executed to make things consistent. (This
part is likea.build -V).
4-11

MAXAda Reference Manual

n be
a.cat 4

Output the source of a unit

The syntax of thea.cat command is:

a.cat [options] unit-id

The following represents thea.cat options:

unit-id is defined by the following syntax:

unit[/ part]

wherepart is thespecification or body ; abbreviations are accepted.

The a.cat command is similar to the UNIXcat(1) command in functionality. It
accepts as its argument aunit_idand prints tostdout the source file in which this unit is
found.

By default, it outputs a header containing the full path name of the source file. This ca
suppressed by specifying the-h option.

Also, line numbers can be prepended to each line of source by using the-l option.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-h no header Does not output filename header

-l line numbers Prepend each line of source with its line number

-rel release release Specify a MAXAda release (other than the default release)
4-12

MAXAda Utilities

er-

ll
n

vi-
a.chmod 4

Modify the UNIX file system permissions of an environment

The syntax of thea.chmod command is:

a.chmod [options] access_mode

The following represents thea.chmod options:

access_modeis a symbolic or octal digit parameter indicating the desired file system p
mission. For example,

777 all permissions (read, write, execute) for all users

u-x removes execute permission from the file’s owner

+x gives execute privileges to user, group, and others

For details, see thechmod(1) manual page.

Option Meaning Function

-a all In addition to internal environment files, change the permissions of a
files associated with the environment, including source files and partitio
targets

-env env environment Specify an environment pathname

-f force Force, if some environment components are missing

-H help Display syntax and options for this function

-i ignore Quietly ignore all non-fatal errors

-q query Display the permissions on the current environment

-rel release release Specify a MAXAda release (other than the default release)

-s source only Only change the permissions of the source files associated with the en
ronment; no other files are affected
4-13

MAXAda Reference Manual

a-

nt
a.compile 4

Compile the specification and/or body of one or more units

The syntax of thea.compile command is:

a.compile [options] [compile_options] [unit-id ...]

The following represents thea.compile options:

Option Meaning Function

-b object Send symbol object listing tostdout

-env env environment Specify an environment pathname

-fetch fetch For specified units from other environments, fetch them first

-H help Display syntax and options for this function

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-115 for more details.

-inter fd1 fd2 interactive Execute in interactive mode control file descriptor 1 (fd1) and response
file descriptor 2 (fd2)

-noimport no imports Prevent the automatic local recompilation of out-of-date foreign instanti
tions

-pipeline pipeline Perform optimization and code generation in parallel with subseque
compilations for limited parallelism; requires-inter option; primarily
for use witha.build -p

-pragma file config pragmas Compileindependent configuration pragmasfrom the givenfile

See “Configuration Pragmas” on page 3-9 for more information.

-quiet quiet options Suppress display of effective options

-R r ec o m p i le
instantiations

Recompile out-of-date instantiations

-rel release release Specify a MAXAda release (other than the default release)

INTERNAL UTILITY

This tool is used internally bya.build which is the recommended
utility for compilation and program generation.

a.compile is not intended for general usage.
4-14

MAXAda Utilities

rary

n

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

If compile_optionsare specified to this command, they are added to the set of tempo
unit options. For instance, if the temporary compile options for the unithello consist of
-S and the following command is issued

$ a.compile -g hello

the temporary unit options will now consist of-S and-g .

The file specified by the-pragma option may only contain independent configuratio
pragmas. See “Configuration Pragmas” on page 3-9 for more information.

See “Compile Options” on page 4-109 for list of compile options.

-state s state Compile the specified unit to compilation states (compiled is the only
valid state allowed for this option in the current release)

-V very verbose Print subordinate tool command lines

-v verbose Print header for each compilation

-vv very verbose Print results of each compilation

Option Meaning Function
4-15

MAXAda Reference Manual

se

from
t

a-

of

t

as a
a.demangle 4

Output the source of a unit

The syntax of thea.demangle command is:

a.demangle [options]

The following represents thea.demangle options:

Thea.demangle utility is a filter that accepts MAXAda symbol names, such as tho
found in a MAXAda object file, and returns Ada unit names in expanded form.

To recognize symbol names,a.demangle requires the location of the MAXAda envi-
ronment in which those symbols exist. For instance, if the symbol names are taken
an executable, thena.demangle requires the location of the environment in which tha
executable was linked. If a-env option is specified,a.demangle uses the given envi-
ronment. Otherwise,a.demangle assumes that the current working directory is the loc
tion of the environment.

By default,a.demangle expects symbol names to be the first word on each line
stdin , optionally followed by whitespace and any additional text. Thea.demangle
utility returns the corresponding Ada unit name onstdout , followed by the unaltered
optional whitespace and text.

For example, the command:

$ a.demangle

if given a line such as:

A_foo.5S13.bar..BODY some additional text

would return, assuming the symbol was recognized:

bar.foo (body) some additional text

If either the-f or -r option is present,a.demangle no longer expects symbol names a
the beginning of each line ofstdin . Instead, if the-r option is present and followed
immediately with no intervening whitespace by a character, that character will serve

Option Meaning Function

-env env environment Specify an environment pathname

-f c file name File name quote characterc

-H help Display syntax and options for this function

-k keep Keep quote characters for unknown names

-r c routine Routine name quote characterc

-rel release release Specify a MAXAda release (other than the default release)
4-16

MAXAda Utilities

file

ets
g on

nged.

s of
quote character for MAXAda symbols (routines). Similarly, if the-f option is present and
followed by a character, that character will serve as a quote character for source
names.

The quote characters specified by-f and-r must not be identical.

If a.demangle locates two (or more) matching quote characters on a line, it interpr
the text between them to be a MAXAda symbol name or source file name, dependin
the quote character. These lines are returned onstdout with all recognized symbols
replaced by their corresponding Ada unit names and all source file names left uncha
All other lines and all unrecognized names are returned unchanged. The command:

$ a.demangle -f@ -r#

if given a line such as:

Routine #A_foo.5S13.bar..BODY# is located in file
@bar_b.a@

might return, assuming everything was recognized:

Routine bar.foo (body) is located in file bar_b.a

Normally, when the-f or -r option is present, quote characters are removed regardles
whether or not the symbol or source file name is recognized. If the-k option is specified,
however, quote characters remain if they enclose text which is unrecognized.

NOTE

The-f option is supported only for backward-compatibility.
4-17

MAXAda Reference Manual
a.deps 4

Update environment with information about units within source files

The syntax of thea.deps command is:

a.deps [options] [source_file ...]

The following represents thea.deps options:

Option Meaning Function

-e [e | l | L | v] errors Control error emission style:

-e list syntax errors for filesa.deps is unable to parse tostdout
with related source lines

-ee embed syntax errors in files thata.deps is unable to parse and
invoke $EDITOR

-el list source files tostdout , interspersed with any syntax errors —
only source files thata.deps is unable to parse

-eL list source files tostdout , interspersed with any syntax errors —
even source files thata.deps is able to parse

-ev embed syntax errors in files thata.deps is unable to parse and
invokevi

The default behavior is to list syntax errors tostderr with file name,
and line and column number.

-env env environment Specify an environment pathname

-p [n] parallel Usen parallel introductions (n defaults to the number of CPUs)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Readfile_list for a list of files to process

If - is specified forfile_list, read file list fromstdin

-v verbose Echo files as they are processed

-H help Display syntax and options for this function

INTERNAL UTILITY

This tool is used internally by MAXAda.

a.deps is not intended for general usage.
4-18

MAXAda Utilities

ll

for
This tool behaves exactly as thea.intro utility. See page 4-35 for more information.

-P preprocess Inform the environment that preprocessing is always required for a
source files included in this invocation ofa.deps

-!P no preprocess Inform the environment that preprocessing should never be performed
any source file included in this invocation ofa.deps

-V very verbose Echo units encountered for each file

Option Meaning Function
4-19

MAXAda Reference Manual
a.edit 4

Edit the source of a unit, then update the environment

The syntax of thea.edit command is:

a.edit [options] unit-id

The following represents thea.edit options:

unit-id is defined by the following syntax:

unit[/ part]

wherepart is thespecification or body ; abbreviations are accepted.

Option Meaning Function

-e editor editor Useeditor instead of$EDITOR

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i inhibit Do not immediately notify the environment that the unit has changed

-rel release release Specify a MAXAda release (other than the default release)

-s syntax Check the syntax of the unit’s source file after editing

-v verbose Display invocations of the editor,a.syntax , anda.deps as they occur
4-20

MAXAda Utilities

ls

con-

ss

een
a.error 4

Process diagnostic messages generated by the compiler and other too

The syntax of thea.error command is:

a.error [options]

The following represents thea.error options:

Compiler output may be redirected into a file and examined with the aid of thea.error
command or can be piped directly intoa.error via the-e compile option.

a.error reads the specified file or the standard input, determining the source file(s)
taining errors and processing the errors according to the options given.

Option Meaning Function

-e editor editor Embed error messages in the source file and invoke the specifiededitor

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l listing Produce listing tostdout

-N no line #’s Do not display line numbers

-o order Do not sort the order of the diagnostics by file and line number; proce
each diagnostic in the order given

-rel release release Specify a MAXAda release (other than the default release)

-s suppress Suppress non-error lines

-t number tabs Change the default tab settings; the default is 8. (there is no space betw
t andnumber)

-v vi Embed error messages in the source file and invoke thevi editor

-W warnings Ignore warnings

INTERNAL UTILITY

This tool is used internally bya.build which is the recommended
utility for compilation and program generation.

a.error is not intended for general usage.
4-21

MAXAda Reference Manual

-

d a
NOTE

Perhaps more generally useful are the-e compile options (-e ,
-ee , -el , -eL , -ev), which automatically calla.error to pro-
cess any compiler error messages resulting from the current com-
pilation. See “Compile Options” on page 4-109 for a complete
list of compile options.

Screen 4-1 shows the filebadtry.a . This file containing errors is used to illustrate vari
ous ways MAXAda tools can usea.error to process error messages.

Screen 4-1. File badtry.a

Before it can be compiled, the file must be introduced into a MAXAda environment, an
partition must be created for it:

$ a.mkenv
$ a.intro badtry.a
$ a.partition -create active badtry

The file can be compiled and the output directed as follows (stdout is redirected to the
file badtry.errors):

$ a.build 2> badtry.errors

Screen 4-2 shows the contents of filebadtry.errors .

Screen 4-2. File badtry.errors

-- file is badtry.a --

with ADA.TEXT_IO;
procedure BADTRY is

subtype T is range 1..1f;
COUNT : T;
SUM : INTEGER;
type REAL is digits 6;
AVG : REAL

begin
for COUNT in T loop
SUM := SUM + I;
end loop;
AVG := SUM / COUNT;
ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM));
ADA.TEXT_IO.PUT(REAL’IMAGE(AVG));

end MAIN;

/badenv/badtry.a, line 5, char 29: lexical error: deleted “f”
/badenv/badtry.a, line 5, char 19: syntax error: “ identifier”
inserted
/badenv/badtry.a, line 10, char 4: syntax error: “;” inserted
/badenv/badtry.a, line 17, char 8: syntax error: RM95 6.3(3):
subprogram was given a different name:
a.build: error: errors encountered during build
4-22

MAXAda Utilities

g a
-
is a
s
ould

ce
rked
he
This file can simply be listed, if desired, but it is more useful to usea.error as follows.

$ a.error -l badtry.errors

outputs the listing that appears in Screen 4-3.

Screen 4-3. a.error -l Output Listing

The preceding file contains four lexical and syntax errors. First, an identifier namin
type was omitted before the keywordRANGE. The compiler continues as though this iden
tifier were inserted, but does not, of course, edit the original source file. The next error
lexical error, resulting from1f being a malformed integer literal. The compiler continue
as though thef were deleted. The remaining error messages show that a semicolon sh
have precededBEGIN, and that the designator afterENDhas a different name than was
given to the subprogram.

With the -v option,a.error writes the error messages directly into the original sour
file and calls thevi text editor. Line numbers are suppressed, error messages ma
with the pattern### , and the editor positioned in the file with the cursor at the point of t
first error.

After the compilation,

$ a.error -v < badtry.errors

callsvi . Screen 4-4 shows the screen output.

Non-specific diagnostics:

a.build: error: errors encountered during build

*********************** /badenv/badtry.a ************************

1:-- file is badtry.a --
2:
3:with ADA.TEXT_IO;
4:procedure BADTRY is
5: subtype T is range 1..1f;

A ---------------------^
B -------------------------------^
A:syntax error: “ identifier” inserted
B:lexical error: deleted “f”

6: COUNT : T;
7: SUM : INTEGER;
8: type REAL is digits 6;
9: AVG : REAL

10: begin
A ------^
A:syntax error: “;” inserted

11: for COUNT in T loop
12: SUM := SUM + I;
13: end loop;
14: AVG := SUM / COUNT;
15: ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM));
16: ADA.TEXT_IO.PUT(REAL’IMAGE(AVG));
17: end MAIN;

A ----------^
A:syntax error: RM95 6.3(3): subprogram was given a different name:

18:
4-23

MAXAda Reference Manual

leted.

d

ges
es.

e same

ub-
ed.

s for
ng
Screen 4-4. a.error -v Output Listing

The### is provided so that error messages can be easily found and subsequently de
For example, if invoked with the-v (vi) option,a.error embeds error text in the
source file and then invokes thevi editor. All error text can easily be found and remove
with simple editor commands by searching for the### pattern and deleting. Invi , for
instance, the sequence “:g/###/d ” deletes all lines matching the### pattern.

NOTE

The -o option toa.error displays each diagnostic in the order
in which it was encountered without sorting the diagnostics by file
and line number. This option has no effect when used in conjunc-
tion with the-e , -v , or -l options toa.error (or the associated
-e , -ee , -el , -eL , -ev compile options. See “Compile
Options” on page 4-109 for a complete list of compile options.)

It should also be noted that all error message lines are prefixed with-- , which denotes an
Ada comment. Thus, even ifa.error -v has been used to intersperse error messa
into a file, the compiler can still process that file without deleting the error messag
Since-v places the error messages directly in the source file, ifa.error -v is called
again before the messages are deleted and the error corrected, a second copy of th
messages appears.

The file badtry.a can now be edited to repair the lexical and syntax errors and res
mitted to the compiler. If those errors are fixed correctly, semantic analysis can proce

The preferred method for achieving the same results is to modify the default option
the environment so that thevi editor is invoked whenever errors are encountered duri

-- file is badtry.a --

with ADA.TEXT_IO;
procedure BADTRY is

subtype T is range 1..1f;
------------------^A ###
----------------------------^B ###
--### A:syntax error: “ identifier” inserted
--### B:lexical error: deleted “f”

COUNT : T;
SUM : INTEGER;
type REAL is digits 6;
AVG : REAL

begin
---^A ###
--### A:syntax error: “;” inserted

for COUNT in T loop
SUM := SUM + I;
end loop;
AVG := SUM / COUNT;
ADA.TEXT_IO.PUT(INTEGER’IMAGE(SUM));
ADA.TEXT_IO.PUT(REAL’IMAGE(AVG));

end MAIN;
-------^A ###
--### A:syntax error: RM95 6.3(3): subprogram was given

~
~
~
~
“/badenv/badtry.a” 26 lines, 877 characters

a different name:
4-24

MAXAda Utilities

on-

g the

does
ersis-

be

s” on
compilation. The following command sets this as a default option for the entire envir
ment:

$ a.options -default -mod -ev

To compile the unit, simply issuea.build :

$ a.build

Now, when errors are encountered during compilation, thevi editor will be automatically
opened to the source file with the error messages embedded in it. Also, upon leavin
editor, the compiler offers to recompile the file.

This method is generally faster for rapid interactive program development because it
not require any intermediate files. Also, because the environment-wide options are p
tent, whenevera.build is called, these options are “remembered” and do not need to
specified again.

For more information about compiler error messages, see “Compiler Error Message
page 3-26.
4-25

MAXAda Reference Manual

lled
ed

sions
a.expel 4

Expel fetched or naturalized units from the environment

The syntax of thea.expel command is:

a.expel [options] unit-id ...

The following represents thea.expel options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Local versions of foreign units may be created via thea.fetch tool (see “a.fetch” on
page 4-27) and thea.build tool (see “a.build” on page 4-8 for details and “Hello
Again... Ambiguous Units” on page 2-15 for an example). These versions are ca
fetchedandnaturalized, respectively. (See “Nationalities” on page 3-9 for a more detail
discussion.)

It may be desirable to later remove these local versions, thus making the foreign ver
once again visible. Thea.expel tool is provided for this purpose.

NOTE

Other methods exist for removing native units. See “a.rmsrc” on
page 4-95 and “a.hide” on page 4-32 for more information.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Print message for each expelled unit

-H help Display syntax and options for this function
4-26

MAXAda Utilities

rom

rch
.

a.fetch 4

Fetch the compiled form of a unit from another environment

The syntax of thea.fetch command is:

a.fetch [options] unit-id ...

The following represents thea.fetch options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

At times, it may be desirable for users to be able to force copies of specified units f
other environments into the current environment. This may be necessary to avoidobscuri-
ties.

Obscurities occur when the natural behavior of MAXAda and the Environment Sea
Path mechanism prevent an intended file from being used for a particular compilation

For example, consider the following environment dependency scenario:

Figure 4-2. Environment scenario containing obscurities

Option Meaning Function

-d default Use default supplied libraries with-from

-env env environment Specify an environment pathname

-from env from env Specify an environment pathname from which to fetch the unit(s)

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each fetched unit

unit a

unit c

ESP
ENV2

with b;
unit d

unit c

ENV1

with b;

unit b
with c;
4-27

MAXAda Reference Manual

the
vi-

to
ey-
In Figure 4-2:

- unit c exists in bothENV1andENV2but may have completely different
functionalities

- unit d has awith b statement inside it inENV1

- unit b does not exist inENV1

- unit b exists inENV2on the Environment Search Path (ESP) for ENV1

- unit b has awith c statement inside it inENV2

Whenunit d is compiled, the following obscurity arises: Becauseunit d requires
unit b and unit b does not exist inENV1, the Environment Search Path will be
searched.unit b is found inENV2but has a “with c ” statement inside it. Sinceunit
c exists inENV1, the compilation utility will use the localunit c contained inENV1,
instead of the foreignunit c in ENV2which is required byunit b .

In order forunit d to use the foreignunit b and the local copy ofunit c , and for
everything to be consistent, you may “fetch” a copy ofunit b to your local environ-
ment.

Figure 4-3. Example of using a.fetch to resolve obscurities

When using thea.build compilation utility, however, this obscurity is automatically
taken care of by creating anaturalizedcopy ofunit b in ENV1. The options that existed
in the original copy are persistent in a naturalized copy. They can only be altered in
original environment. If you wish to change the options on a foreign unit in the local en
ronment, you must fetch it.

The -from option allows the user to specify an environment pathname from which
fetch the unit(s). In addition, you may specify certain environments using their “k
words”. See Chapter 9 for a list of these keywords.

NOTE

If the -from option is not specified,a.fetch will try to “find”
the specified unit by searching the Environment Search Path.

unit a

unit b (fetched)

unit c

ESP
ENV2

with b;

with c;

unit d

unit c

ENV1

with b;

unit b
with c;
4-28

MAXAda Utilities

ith

-
ce.
se

vi-
for
The-d option can be used for ambiguity resolution for those environments specified w
the-from option. If no-from option is specified, the-d option has no effect.

For example, if the user says:

a.fetch -from publiclib curses

the packagecurses would be fetched from the/usr/ada/ release_name/publiclib
environment due to the use of thepubliclib keyword. However, if there exists a direc
tory namedpubliclib in the current working directory, that directory takes preceden
The -d option may be used to override this behavior if, in fact, the user desires to u/
usr/ada/ release_name/publiclib .

For example:

a.fetch -d -from publiclib curses

always uses the/usr/ada/... version, whereas:

a.fetch -from publiclib curses

fetches from the local directory if it exists or from/usr/ada/... otherwise.

Thea.expel tool is provided to allow a fetched unit to be removed from the local en
ronment, thus restoring visibility to the foreign version. See “a.expel” on page 4-26
details.
4-29

MAXAda Reference Manual

that
func-

ch
pila-

is-
a.freeze 4

Freeze an environment, preventing changes

The syntax of thea.freeze command is:

a.freeze [options]

The following represents thea.freeze options:

An environment may be frozen using thea.freeze utility. This changes an environ-
ment so that it is unalterable.

A frozen environment is able to provide more information about its contents than one
is not frozen. Therefore, accesses to frozen environments from other environments
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and whi
will be used by other environments is a good candidate to be frozen to improve com
tion performance.

Option Meaning Function

-env env environment Specify an environment pathname

-q query Displays an environment’s frozen status and its environmental cons
tency

-t transitive Freeze specified environment and required environments

-rel release release Specify a MAXAda release (other than the default release)

-u unfreeze Thaw the environment, allowing changes

-v verbose Displays the environment(s) being frozen (or thawed)

-H help Display syntax and options for this function
4-30

MAXAda Utilities
a.help 4

List usage and summary of each MAXAda utility

The syntax of thea.help command is:

a.help
4-31

MAXAda Reference Manual

d like
-
rder

ame

ding
uld

he

the
a.hide 4

Mark units as being persistently hidden in the environment

The syntax of thea.hide command is:

a.hide [options] unit-id ...

The following represents thea.hide options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

There are times when a source file may contain units other than those the user woul
introduced into the environment.a.intro introduces all units contained within a partic
ular source file into the environment (unless they have previously been hidden). In o
to “remove” any unwanted units from the environment, thea.hide tool is provided.
Usinga.hide , the units specified are no longer visible to the environment.

This is also a way to resolve ambiguities. Upon introducing a unit having the same n
as a previously introduced unit, MAXAda labels both units asambiguous. It will then
refuse to perform any operations on either of the two versions, or on any units depen
on the ambiguous unit. The user will be forced to choose which of the two units sho
actually exist in the environment by “removing” the other. Normally, this is done with t
a.resolve tool. However, thea.hide utility, in combination with the-s option to
specify whichsource_filethe unit belongs, can be applied to one of the units to resolve
ambiguity. See “Ambiguous Units” on page 3-10 for more information.

In order to reveal the unit so that it is no longer hidden, the-u option is provided. Also,
the-l option is provided to list the hidden units and their corresponding source files.

These operations can also be modified with the-s option to operate on only those hidden
units from a particular sourcefile.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-l list List hidden units and their corresponding source files

-s file source file Restrict operations to the sourcefile

-u undo Make the specified hidden units visible

-v verbose Print message for each removed unit

-H help Display syntax and options for this function
4-32

MAXAda Utilities

s-
s to

th
ion is

n

a.install 4

Install, remove, or modify a release installation

The syntax of thea.install command is:

a.install -rel release[options]

The following options are available with thea.install command:

NOTE

Only the System Administrator (or a super user) can invoke
a.install with the -a , -d , -i ,-m, or -r options.

The-i , -m, and-r options may never be used together.

Thea.install utility is the tool that allows users to register installations with the sy
tem’s MAXAda database. It may be used to install, move, remove, and set attribute
installations.

When the-i option is given, then the MAXAda structure located at the specified pa
name is registered with the database as a valid installation. The name of the installat
registered as the release given by the-rel option. Therefore, the-rel option is
required when using the-i option to install a MAXAda installation.

For example, the following command:

$ a.install -rel newada -d -i /somedir/ada_dir

Option Meaning Function

-a attr attribute Set the attribute list for the selected release installation toattr

-d default Mark the selected release installation as the system-wide default

-env env environment Specify an environment pathname

-f force Permit the removal of the last release on the system without confirmatio

-H help Display syntax and options for this function

-i path install Install the release located atpath in the release database (the name is
determined from the-rel option)

-m path move Move the selected release installation topath

-r remove Remove the specified release installation from the release database

-rel release release Specify a MAXAda release (REQUIRED)

-v verbose Report changes as they are made
4-33

MAXAda Reference Manual

,
bove

re
assumes that/somedir/ada_dir contains a valid MAXAda directory structure and
“installs” this version of MAXAda in the database asnewada.

When the-d option is used, thena.install registers the installation with the database
and also marks the installation as the system-wide default installation (as in the a
example).

After MAXAda is installed, it may need to be configured. See Appendix B for mo
information on “MAXAda Configuration”.
4-34

MAXAda Utilities

for

ll

for
a.intro 4

Introduce source files (and units therein) to the environment

The syntax of thea.intro command is:

a.intro [options] [source_file ...]

The following represents thea.intro options:

The -P option allows the user to specify that everysource_filelisted in this invocation of
a.intro should be preprocessed. By default, only files with a.pp extension are prepro-
cessed. This option allows files with other extensions to be preprocessed.

The -!P option allows the user to specify that preprocessing should not be performed
anysource_filelisted in this invocation ofa.intro . Files with a.pp extension listed in

Option Meaning Function

-e [e | l | L | v] errors Control error emission style:

-e list syntax errors for filesa.intro is unable to parse tostdout
with related source lines

-ee embed syntax errors in files thata.intro is unable to parse and
invoke $EDITOR

-el list source files tostdout , interspersed with any syntax errors —
only source files thata.intro is unable to parse

-eL list source files tostdout , interspersed with any syntax errors —
even source files thata.intro is able to parse

-ev embed syntax errors in files thata.intro is unable to parse and
invokevi

The default behavior is to list syntax errors tostderr with file name,
and line and column number

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-P preprocess Inform the environment that preprocessing is always required for a
source files introduced with this option

-!P no preprocess Inform the environment that preprocessing should never be performed
any source file introduced with this option

-p [n] parallel Usen parallel introductions (n defaults to the number of CPUs)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Readfile_list for a list of files to process

If - is specified forfile_list, read file list fromstdin

-V very verbose Echo units encountered for each file

-v verbose Echo files as they are processed
4-35

MAXAda Reference Manual

ault

ays.

ror.

t
o lists
file’s

urce

ed
ith
the

diting
file

ile

ent.
n-
combination with this option will never be preprocessed, thereby overriding the def
functionality.

The error emission options allow you to process error messages in a number of w
Syntactic errors in the file thata.intro is parsing are listed tostdout when the-e
option is specified. This lists only the erroneous lines with an explanation for each er

More useful perhaps is the-el option which lists entire source files with errors to stdou
with error messages interspersed at the positions where they occur. This option als
the line number for each line in the source file and displays a banner with the source
name at the top of the listing. The-eL option provides the same functionality but will list
the source file even if no errors have occurred.

The -ev option embeds the errors directly into the source file, and then opens the so
file with the vi editor. Error messages are marked with the pattern### , and the editor is
positioned in the file with the cursor at the point of the first error. Each error is mark
where it is found in the file and an explanation is given. Each error line is prefixed w
-- , which denotes an Ada comment so that the compiler can still process that file if
error messages have not been deleted. MAXAda prompts to recheck syntax when e
is completed. The-ee option provides the same functionality but opens the source
with the editor designated by theEDITORenvironment variable.

The -s option takes as its argument afile_list containing the names of all the files to be
processed bya.intro . This is useful in order to introduce many files at once. Each f
must be on a separate line in thefile_list.

If - is specified forfile_list, a.intro uses input fromstdin . This is provided
mainly so that users can pipe output from another UNIX command toa.intro .

a.rmsrc can be used to eliminate the association of source files with the environm
a.rmsrc removes all knowledge of source files (and units therein) from the enviro
ment. See “a.rmsrc” on page 4-95 for more information.
4-36

MAXAda Utilities

id-

ge
a.invalid 4

Force a unit to be inconsistent thus requiring it to be recompiled

The syntax of thea.invalid command is:

a.invalid [options] [unit-id ...]

The following represents thea.invalid options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Thea.invalid tool is used to force a unit and any units that depend on it to be cons
ered inconsistent, usually to force them to be rebuilt bya.build .

Thea.touch tool is provided to allow the opposite functionality. See “a.touch” on pa
4-107 for more information.

NOTE

The file specified by the-pragma option may only contain inde-
pendent configuration pragmas.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-pragma file config pragmas Invalidate independent configuration pragmas from the givenfile

-rel release release Specify a MAXAda release (other than the default release)

-source file source file Invalidate all units in the specified file

-v verbose Display a message for each invalidated unit
4-37

MAXAda Reference Manual
a.link 4

Link a partition (an executable, archive or shared object file)

The syntax of thea.link command is:

a.link [options] [link-options] partitions ...

The following represents thea.link options:

Option Meaning Function

-E elaboration List dependent units in elaboration order, suppressing execution

-env env environment Specify an environment pathname

-F files List dependent files, suppressing execution

-H help Display syntax and options for this function

-HA help arch Display architectures and descriptions

-HL help link Display link options

-i information Suppress informational messages

-map map Display a map created bya.map

-meth methods Display the link method for each unit

-o file output Override the default output for the partition and place the output infile

-P privileges List the privileges required by the partition

-rel release release Specify a MAXAda release (other than the default release)

-U units List dependent units, suppressing execution

-V verify Display the link commands, suppressing execution

-v verbose Display links as they are done

-vv very verbose Display the link commands before execution

-w warnings Suppress warning messages

INTERNAL UTILITY

This tool is used internally bya.build which is the recommended
utility for compilation and program generation.

a.link is not intended for general usage.
4-38

MAXAda Utilities
See “Link Options” on page 4-119 for list of link options.

NOTE

Intermediate files are created during the linking process. If tempo-
rary file space (/tmp) is limited,a.link recognizes the
TMPDIRenvironment variable and utilizes that location, if it is
defined. This may be useful for large programs or programs with
many units when/tmp is small or limited.
4-39

MAXAda Reference Manual

rt

t

n-

e
al-

on
a.ls 4

List units in the environment (state, source file, dependencies, etc.)

The syntax of thea.ls command is:

a.ls [options] [unit-id ...]

The following represents thea.ls options:

Option Meaning Function

-all all Include units from all environments on the Environment Search Path

-all is automatically assumed ifunit-id is specified without the-local
option (see below)

-art artificial Include artificial units (those created by the implementation to suppo
generic instantiations)

-b body Filter candidate units to include only bodies

-C state compiled Filter candidates by compilation state.statemay be one of the following:
uncompiled , compiled , !uncompiled , or !compiled

If stateis omitted,compiled is used

If multiple -C options are specified, they are ORed together. If a no
option (e.g.,!uncompiled) is used, only one-C option is allowed

NOTE: There is no space between the-C option andstate.

-D depend! Include all units on which the specified unit(s) directly or indirectly
depend (the transitive closure)

Filtration has no effect on such inclusions

-d depend Include all units upon which the specifiedunit-id(s) directly depends

Filtration has no effect on such inclusions (for example, those units me
tioned in a “with ” statement for the specifiedunit-id(s))

-e everything Provide an all-encompassing listing; add the following information to th
verbose listing: temporary, permanent, and effective option sets, nation
ity (visa), home and originating environments, consistency

-env env environment Specify an environment pathname

-F flag Append annotations to units as follows:
bodies are appended with “/b ”
specifications are appended with “/s ”

-f file file Filter candidate units to include those found in the Ada sourcefile

-format fmt format The information supplied for each unit is selected and formatted based
the format descriptorfmt
4-40

MAXAda Utilities

nt

t,

nt

n

o

o

-

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Units may be specified as regular expressions as accepted bycompile(3G) .

The behavior ofa.ls with no options orunit-id specified is to list the names of all the
units within the local environment (if no options are specified,-local is assumed). The

-format help format help Display list of format descriptors

-H help Display syntax and options for this function

-h headers Suppress headers on long and verbose listings

-i inconsistent Mark units that are inconsistent with their source files or are inconsiste
with units on which they depend with a trailing asterisk (*) character

-l long Provide a long listing including: unit’s date, type, compilation state, par
and name

-local local Filter candidate units to include only those found in the local environme
(default)

-m main Filter the candidate units to those which may be main subprograms

-N name Sort units by name in ascending order

-n number Include a total count of the number of units, categorized by compilatio
state

-R require Include all units that depend on the specified unit(s). Filtration has n
effect on such inclusions

-r reverse Reverse the sorting order

-rel release release Specify a MAXAda release (other than the default release)

-S source List the source file instead of each unit

-s specification Filter the candidate units to include only specifications

-t time Sort the units by compilation time, i.e., most recently compiled units t
least recently compiled units

-u unit Include all parts of the specifiedunit-id(s); include specification, body,
and subunits

Filtration has no effect on such inclusions

-ufile file units file Obtain the list ofunit-id(s) from the specifiedfile; theunit-id(s) in file may
include regular expressions

-v verbose Provide a verbose listing; add the following information to the long list
ing: source file, date, scope, source file name, options, etc.

-1 one, single Display output in a single column

Option Meaning Function
4-41

MAXAda Reference Manual

r of

it

r are
cur-
information is displayed in multiple columns. This can be overridden with the-1 (sin-
gle) option.

If unit-id is specified, the-all option is assumed. That is,a.ls will search the local
environment and those on the Environment Search Path to find the givenunit-id. How-
ever, if the-local option is used with a specifiedunit-id, a.ls will search for the
unit-id in the local environment only.

The-S option lists the source file names instead of the unit names.

The -n option lists the units in the environment, providing a total count of the numbe
units and giving subtotals foruncompiled , parsed , drafted , andcompiled units.

To see more information than is provided in a default listing,a.ls provides a number of
options:

The options-l , -v , -e , -format , and-1 options are mutually exclusive.

Formatting the listing 4

The -format option toa.ls allows you to format the information listed for each un
based on a format descriptor,fmt, which takes the form:

“%[Modifier]Descriptor random_text %[Modifier]Descriptor...”
...

Characters encountered in the quoted format string which are not part of a descripto
echoed in the output. Any character other than ‘a’..’z’ and ‘_’ serve to terminate the
rent descriptor; any such characters are echoed.

-l Provides a long listing consisting of the unit’s name,
date, type, compilation state, and part

-v Provides a verbose listing consisting of the source
file’s name, source file’s date, class, and any generic
information in addition to the information provided
by the-l option

-e Provides an all-encompassing listing consisting of the
temporary, permanent and effective compile option
sets, the unit’s nationality (visa), it’s home environ-
ment, originating environment, and consistency state
in addition to the information provided by the-v
option

-format Provides a method to display only the fields that are
desired
4-42

MAXAda Utilities

-

d

-

The descriptors and their potential modifiers are listed in Table 4-2:

Table 4-2. a.ls -format — Descriptors

Descriptor Modifier Meaning

ambiguous C Is the unit ambiguous:
ambiguous or unambiguous

artificial C Is the unitreal or artificial ?
(artificial units are created by the com-
piler for some generic instantiations)

class C Description of unit’s library class:
library , subunit , or nested

consistent CL Description of the unit’s consistency:
consistent or inconsistent
(the reason is included with theL modifier)

date CL The date and time the unit last changed compi
lation state

dependency_kind C The kind of dependency another unit has on
this unit: semantic , opt_subp_spec ,
in l i ne , op t i m iz at io n , o r
compiler_decision

environment CLHOFN The pathname to the environment associate
with the unit; as modified byH(ome),O(rigin),
F(rom), orN(ative)

generic_info CQ Description of the unit’s genericity:
generic , instance-of... , or null

item C package , subprogram , task or pro-
tected

main C Indicates whether the unit can be a main sub
program:
yes , no, or maybe
(maybe indicates determination incomplete
until unit is compiled)

missing C missing or present

name C The name of the unit

options CEPT The unit’s effective, permanent, or temporary
option set as selected by theE, P, or T modifier

part C The unit’s part:spec or body

srcdate CL The date and time of the source file associated
with the unit
4-43

MAXAda Reference Manual

t

s

ry
Descriptors may be abbreviated to any unique shortened form.

The modifiers have the following meanings:

For example, in an environment that contains the unithello , the following -format
option toa.ls produces the following output:

$ a.ls -format “%name was introduced on %srcdate”
hello was introduced on 05/01/97’15:11:25

Dependent units 4

a.ls allows you to list those units upon which specified units depend

srcfile CL The name of the source file associated with the
unit

state C Unit’s compilation state:
uncompiled , parsed drafted, orcompiled
missing if the unit cannot be found

visa CL Description of the unit’s passport:
native , fetched , naturalized , or
foreign

The L modifier appends information about the
visa of aforeign unit (i.e. was itnatural-
ized or fetched in the foreign environ-
ment)

Table 4-3. a.ls -format — Modifiers

Modifier Meaning Description

C column Causes the current item to be padded with sufficien
trailing blanks to form a column; this modifier is
allowed for any descriptor

L long Causes the long-form of the item to be output: date
descriptors will include microseconds; path descriptor
will be forced into fully-rooted filename notation

Q quiet Curtails output of the current item if it is not applicable
or has null text; otherwise[] would be output

E, P, T options Selects between the effective, permanent, or tempora
option sets; only legal for the option descriptor

Table 4-2. a.ls -format — Descriptors (Cont.)

Descriptor Modifier Meaning
4-44

MAXAda Utilities

ica-
Consider an environment which solely contains the following source file:

with bar ;
package foo is
end foo ;

Note that the unitfoo depends uponbar but unitbar cannot be located.

Issuing the command

$ a.ls -d foo

would result in the following output:

bar~ foo

NOTE

The “~” is appended to the unit name when the unit itself cannot
be located and a short listing has been specified.

To see a long listing of the same:

$ a.ls -l -d foo

results in the following output:

Unit_Date Item State Part Name
n/a n/a missing spec bar
04/21/97’15:59:24 package uncompiled spec foo

The-R option includes all units thatdepend onthe specified units.

Parts 4

The-F option toa.ls designates the parts of a unit by appending “/s ” to unit specifica-
tion names and “/b ” to unit body names.

Using the above example, the following command

$ a.ls -F -d foo

would result in the following output:

bar/s~ foo/s

(Note the “~” which appears because this is a short listing andbar cannot be located.)

The -u option includes all parts of the specified unit-id(s). This includes the specif
tions, bodies, and subunits.
4-45

MAXAda Reference Manual

ts:

s or
There are also a number of options available to filter the listing for with respect to par

Sorting 4

There are a few options toa.ls with which to sort the output. They are:

Filtering 4

There are a few options toa.ls with which to filter the output. They are:

The -i flag also helps to determine which units are inconsistent with their source file
are inconsistent with units on which they depend by appending a trailing “* ” after the unit
name.

-s Only list unit specifications

-b Only list unit bodies

-N Sort units by name in ascending order

-t Sort units by compilation time - most recently com-
piled units to least recently compiled units

-r Reverse the sorting order

-C state Filter units by compilationstate - compiled ,
uncompiled , !compiled , and!uncompiled

-f file Filter units to include only those found in thefile

-m Filter units to include only main subprograms
4-46

MAXAda Utilities

he
ut

e

he
ntain
). In

-
n the
pro-

d
ith

s

a.lssrc 4

List source files associated with the environment

The syntax of thea.lssrc command is:

a.lssrc [options] [source-file]

The following represents thea.lssrc options:

a.lssrc provides information about source files introduced to the environment. T
information available via this tool is specific only to the source file. For information abo
units contained within the source file, thea.ls tool should be used. See “a.ls” on pag
4-40 for more information.

With no options,a.lssrc provides a list of the names of all source files introduced to t
environment. This includes source files that contain no units, and source files that co
only independent configuration pragmas (see “Configuration Pragmas” on page 3-9
this respect, it differs froma.ls -S .

If a source-filename is specified on the command line or the-s option is used with a file
containing a list of source file names, only the mentioned source files will be listed.

If the -l option is specified,a.lssrc provides additional information directly associ
ated with the source file. This information appears enclosed in square brackets o
same line following each listed source file. The two pieces of information that can be
vided are:

• pre-processed

• configuration pragmas

If the pre-processed indication appears, it means that the file will always be filtere
by thea.pp tool before being compiled (see “a.pp” on page 4-82). Files introduced w
the .pp suffix will be marked aspre-processed by default. Other files will not. This
indication can be set or changed by the-P and -!P options to thea.intro tool (see
“a.intro” on page 4-35).

If the configuration pragmas indication appears, it means that the file contain
only independent configuration pragmas (see “Configuration Pragmas” on page 3-9).

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l long Display pre-processing/configuration pragma information

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file_list Readfile_list for a list of files
4-47

MAXAda Reference Manual

and
This command may be useful if you wanted to completely remove your environment
later reproduce it. You might want to do:

a.lssrc > .source_files

before you remove the environment and subsequently,

a.intro -s .source_files

intro a newly-created environment.
4-48

MAXAda Utilities

nts.

ut
or
a.man 4

Invoke/position interactive help system (requires an X terminal)

The syntax of thea.man command is:

a.man [options] [manual [topic]]

The following represents thea.man options:

a.man invokes the interactive HyperHelp system as directed by options and argume
If a HyperHelp session for the user is already active,a.man will position the existing ses-
sion to the specified topic or manual.

To see a list of the names of each onlinemanualavailable for viewing with HyperHelp,
issue:

$ a.man -l

To open a specificmanual, issuea.man with the name of thatmanual:

$ a.man maxada

If the manual is not recognized (and is not interpreted as atopic), then HyperHelp is
opened to the Bookshelf.

To view a particulartopic within a specificmanual, issue either thattopic along with the
manualin which it is contained, or thetopic alone.

$ a.man maxada a.build

or

$ a.man a.build

will position the HyperHelp system to the description of thea.build command.

Option Meaning Function

-display disp X display Select an X terminal

-env env environment Specify an environment pathname

-l list Lists available online manuals

-man manpage man page Displaymanpage for specifiedmanpage

-x exact Requires an exact match on specified manual or topic arguments; witho
this option, the help system is activated at the appropriate “bookshelf”
“find” section

-rel release release Specify a MAXAda release (other than the default release)

-H help Display syntax and options for this function
4-49

MAXAda Reference Manual

li-
nd

efer-
Topics for the MAXAda Reference Manual include the names of all MAXAda uti
ties, all pragmas recognized by MAXAda, all MAXAda-supplied environments, a
various Ada bindings.

NOTE

The topic argument is meant as a shortcut for positioning the
HyperHelp session. The list of topics recognized bya.man is
short and obviously not meant to be comprehensive. Direct use of
HyperHelp is intended for general manual browsing and selection.

If a topic is not recognized, but themanualis, HyperHelp will be positioned at the
“Find” window for thatmanual.

References to the Ada 95 Reference Manual 4

In addition to the MAXAda topics mentioned above,a.man can also position the user
within a specified section of the Ada 95 Reference Manual. For instance:

$ a.man 1.1.5

will position the user at that section in the RM.

This is short for:

$ a.man rm 1.1.5

Furthermore,a.man can position to the exact paragraph within the RM:

$ a.man “1.1.5(10)”

NOTE

Due to the shell’s parsing of the command line, the double-quotes
may be necessary so that the topic passed includes the paragraph
number between the parentheses.

This is helpful when MAXAda issues error messages with references to the Ada 95 R
ence Manual. The user may enter the reference as an argument toa.man and view the
related section.

References to the MAXAda Reference Manual 4

MAXAda also issues error messages that reference theMAXAda Reference Manual
(0890516). These references can also be used witha.man . For instance, if a user
encounters the following message:
4-50

MAXAda Utilities

he fol-

envi-
ma-

p a

a l

d on
elp

, the

i-
MAX(060) 6-27: too few pragma arguments

this message can be issued toa.man :

$ a.man “MAX(060) 6-27: too few pragma arguments”

to bring up the related online help topic.

The text of the error message is not necessary, however. The user may also issue t
lowing command:

$ a.man “MAX(060) 6-27”

or

$ a.man 6-27

to bring up the same online topic.

Access to Support Packages 4

a.man can also be used to view the source of the packages contained in the various
ronments shipped with MAXAda (see Chapter 9 - “Support Packages” for more infor
tion).

The user may enter the fully-expanded name of a package and MAXAda will bring u
hyperlink to the actual source of the package. For example:

$ a.man ada.task_identification

opens HyperHelp to the position ofada.task_identification in the list of MAX-
Ada-suppl ied packages. The entry in this l ist is a hyperl ink to the actu
ada.task_identification package in thedefault release installed on the system
(see “a.release” on page 4-88 to find out more information about the releases installe
your system). The user may then follow this link to bring up the source in the HyperH
viewer.

In addition,a.man provides shortcuts to many of these packages. In many cases
leading “ada. ” may be omitted for the same functionality. For example:

$ a.man task_identification

brings up theada.task_identification package in the same manner as the prev
ous command.
4-51

MAXAda Reference Manual

t

p-
a.map 4

Display or edit the run-time configuration of an executable

The syntax of thea.map command is:

a.map [options] executable_file

The following represents thea.map options:

Option Meaning Function

-assoc associative Use alternate associative list for output

-bound bound Change the default weight to bound

-c check Check executable for possible inconsistencies

-E edit Edit configuration with the editor designated by the shell environmen
variable$EDITOR

-e [e | l | L | v] errors Control error emission style:

-e list errors in configuration file tostdout with related source lines
-ee embed errors in configuration file and invoke $EDITOR
-el list configuration file tostdout , interspersed with any errors —

only if there are errors
-eL list configuration file tostdout , interspersed with any errors —

even if there are no errors
-ev embed errors in configuration file and invokevi

The default behavior is to list errors tostderr with file name, and line
and column number

-env env environment Specify an environment pathname

-g ghosts Include ghost task information

-H help Display syntax and options for this function

-i information Suppress information messages

-l file listing List configuration to the specifiedfile

If - is specified forfile, list configuration tostdout

-lock lock Change the defaultlock_state to locked

-rel release release Specify a MAXAda release (other than the default release)

-m file modify Modify configuration from the specifiedfile

If - is specified forfile, read configuration fromstdin

-multiplexed multiplexed Change the default weight to multiplexed (multiplexed tasks are not su
ported in this release)

-p pragmas Write example pragmas in configuration output
4-52

MAXAda Utilities

ups,

em,

a-
There are five basic areas of run-time configuration: General, Memory, Tasks, Gro
and Protected.

General area

contains configuration parameters that affect the entire run-time syst
including:

• RUNTIME_DIAGNOSTICS

see “Pragma RUNTIME_DIAGNOSTICS” on page 6-1

• QUEUING_POLICY

see “Pragma QUEUING_POLICY” on page 6-2

• DISPATCHING_POLICY

see “Pragma TASK_DISPATCHING_POLICY” on page 6-2

• LOCKING_POLICY

see “Pragma LOCKING_POLICY” on page 6-3

• SERVER_CACHE_SIZE

see “Pragma SERVER_CACHE_SIZE” on page 6-4

• DEFAULT_HARDNESS

see “Pragma DEFAULT_HARDNESS” on page 6-4

• DISTRIBUTED_LOCAL_LOCKING

see “Pragma DISTRIBUTED_LOCAL_LOCKING” on page 6-5

• TRACING_ENABLED

see “Tracing Options” on page 11-10

• TRACING_MECHANISM

-r resolve ResolveDEFAULTvalues in configuration output (such output cannot be
used to modify)

-s stacks Associate stacks with their tasks rather than with other memory specific
tions

-V file verify Verify configuration from the specifiedfile (this does not modify the pro-
gram)

If - is specified forfile, read configuration fromstdin

-v verbose Emit verbose information about changes

-w warnings Suppress warning messages

Option Meaning Function
4-53

MAXAda Reference Manual

E”

task
see “Tracing Options” on page 11-10

• TRACING_BUFFERSIZE

see “Tracing Options” on page 11-10

Memory area

contains configuration parameters for regions of memory, including:

• pool

see “Pragma MEMORY_POOL” on page 6-23

• cache_mode

see “Pragma POOL_CACHE_MODE” on page 6-29

• lock_state

see “Pragma POOL_LOCK_STATE” on page 6-29

• size

see “Pragma POOL_SIZE” on page 6-30, “Pragma STORAGE_SIZ
on page M-131, and “RM 13.11 Storage Management” on page M-60

• pad

see “Pragma POOL_PAD” on page 6-32

Task area

contains configuration parameters for tasks, task types, and named
objects, including:

• weight

see “Pragma TASK_WEIGHT” on page 6-10

• priority

see “Pragma TASK_PRIORITY” on page 6-12

• quantum

see “Pragma TASK_QUANTUM” on page 6-15

• cpu_bias

see “Pragma TASK_CPU_BIAS” on page 6-14

Group area

contains configuration parameters for task groups, including:

• servers
4-54

MAXAda Utilities

ies,

tput
rd

for
meter

pro-
htly
s

sys-
host
see “Pragma GROUP_SERVERS” on page 6-20

• priority

see “Pragma GROUP_PRIORITY” on page 6-19

• cpu_bias

see “Pragma GROUP_CPU_BIAS” on page 6-19

Protected area

contains configuration parameters for protected objects, including: priorit
interrupt handlers, and attached interrupts.

• priority

see “Pragma PROTECTED_PRIORITY” on page 6-33

Options are provided to:

• Produce a listing of a program's current run-time configuration, in either of
two formats

• Modify a program’s run-time configuration based on a configuration file,
in either of the same two formats

• Modify some aspects of the run-time configuration, without need of a con-
figuration file

NOTE

One of the following options is required bya.map :
-c , -l , -m, -E , -V , -bound , -multiplexed , -lock

The -l option causes a configuration listing based on the specified program to be ou
to the specified file name. If- is specified for the file name, output is directed to standa
output.

By default, the format of the output is in a tabular format. The tabular format lists,
each area, the appropriate program entities, one per line. Each configuration para
associated with the program entities is listed in a particular column on that line.

If desired, an alternate format can be specified using the-assoc option. This associative
format lists, for each area, all the configuration parameters for the appropriate kind of
gram entity together, one configuration parameter per line. This format can be slig
amended by the-s option. With the-s option, stack memory pools are listed in the Task
area near their corresponding tasks, instead of in the Memory area.

The -g option allows ghost tasks, overhead tasks defined internally by the run-time
tem in certain circumstances, to be output along with user-defined tasks. See “G
Tasks” on page 5-4 for a description of ghost tasks.
4-55

MAXAda Reference Manual

e
cor-

igu-
iate
_state

alue
tput
drastic

ram.

ation
put

fact,
within

of an
tic

itor
-
d
ame

is
figu-
tic

ll

t

n of

h
more
ge
In addition to the aforementioned formats, the-p option causes example pragmas to b
emitted as comments so they do not interfere with the normal format. These pragmas
respond to the run-time configuration as detected in the program.

The-r option performs a subtle change on configuration listings. It resolves any conf
ration values which would be listed as DEFAULT, by using the values of the appropr
pseudo-entities. For instance, assume that in some hypothetical program, the lock
for the DEFAULT memory region was specified as LOCKED, with the-r option. The
lock_state value for every memory region which had not specified any lock_state v
would be listed as LOCKED instead of DEFAULT. Because an application of such ou
back into a program would cause drastic changes in the program, and because these
changes would most likely not be desired, configuration output produced with the-r
option is marked in such a way that it will not be accepted by the-m or -V options. In
addition, the-r option cannot be specified with the-E option.

The -m option causes a configuration file to be read and applied to the specified prog
Either format emitted by the-l option is accepted as input. If- is specified as the file
name for the-m option, input is read from standard input. (Neither the-ee nor the-ev
options are allowed in this case because both of these options modify the configur
file and the- indicates that the configuration file be read from standard input.) The in
need not be complete; only the particular parameters to be changed are required. In
entire areas can be omitted if no changes in those areas are required. Furthermore,
each area, the order of program entities is irrelevant.

The -V option performs the same actions as the-m option, except that it does not apply
the actual specified changes to the program. Its purpose is to verify the contents
input file before actually applying that input file to a program. It performs all syntac
and semantic analysis and emits the same diagnostic messages as would the-m option.

The-E option allows users to edit the run-time configuration of a program with the ed
specified by the environment variable,$EDITOR. It performs a listing based on a particu
lar program to a temporary file, invokes$EDITORon that file, and then applies the edite
temporary file to the same program. The format of the output is controlled in the s
way as it is via the-l option, except that the-l is replaced by the-E option. Note also
that no file name is required with the-E option.

The -e option invokes thea.error tool on any diagnostic messages emitted. Th
causes diagnostic messages to be emitted along with the offending line from the con
ration file. This is useful for easily relating line and column information in a diagnos
message directly to the corresponding text in the configuration file.

The-el option is the same as the-e option, except that upon any error, it produces a fu
listing of the configuration file, instead of just the offending lines. When the-eL option
is used, the source file is listed even if no errors have occurred.

The -ee and-ev options invoke thea.error tool in such a way as to cause it to inser
any error messages back into the configuration file, and then invoke$EDITOR on that
configuration file, allowing the error to be corrected. The user then has the optio
applying the corrected file to the program. This can be done with the-m, -V , and-E
options, and can be done iteratively.

The -bound and-multiplexed options set the task weight for the partitions to whic
they are applied, however multiplexed tasks are not supported in this release. For
information, see “Task Weights” on page 5-2 and “Pragma TASK_WEIGHT” on pa
6-10.
4-56

MAXAda Utilities

me
wn

in
uces
e per-

that
The -lock option causes the lock_state for the DEFAULT memory region to beco
LOCKED. The result is that any memory region which has not specified its o
lock_state becomes LOCKED.

The -c option neither performs a configuration listing nor modifies the configuration
any way. It merely performs a few sanity checks on the specified program and prod
diagnostics if there are any dubious configuration values. These same checks ar
formed with the-m, -V, and-E options, but the-c option provides a way to perform the
checks without changing the program configuration.

The -v option produces verbose output which details every configuration parameter
is changed via the-m, -V, or -E option.

The -w option suppresses all warning diagnostics produced bya.map . The-i option
suppresses all information diagnostics produced bya.map .
4-57

MAXAda Reference Manual

the
Ada

s

a.mkenv 4

Create an environment which is required for compilation, linking, etc.

The syntax of thea.mkenv command is:

a.mkenv [options] [compile_options] [environment_pathname]

The following represents thea.mkenv options:

a.mkenv takes an optionalenvironment_pathname. If issued with no parameters:

a.mkenv

thena.mkenv will attempt to create an environment in the current directory based on
default release. (See “a.release” on page 4-88 for more information regarding MAX
releases.)

Option Meaning Function

-arch architecture architecture Specify a target architecture (nh, moto , synergy);

shorthand for-oset "-arch architecture"

-env env environment Specify an environment pathname

-f force Force environment creation, even if it or some portion of it already exist

-H help Display syntax and options for this function

-HA help arch Display list of supported target architectures and descriptions

-HC help compile Display list of compile options

-HL help link Display list of link options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-115 for more details.

-oset opts link options Set the default link options list for the environment toopts

Note thatoptsmay need to be quoted

-osversion OS version Specify a target PowerMAX OS library version;

shorthand for-oset "-osversion version"

-rel release release Specify a MAXAda release (other than the default release)
4-58

MAXAda Utilities

fault

by

.

or if

nment

ror

ile
ide

ing
po-
iled

r

If an environment_pathnameis given:

a.mkenv dir

thena.mkenv will attempt to make the directory specified byenvironment_pathname
(dir) and, if successful, will create an environment in that directory based on the de
release or the release specified by the-rel option.

The-env option is used only when anenvironment_pathnameIS NOT specified:

a.mkenv -env dir

In this case,a.mkenv will attempt to create an environment in the directory specified
theenvparameter (dir) based on the default release or the release specified by the-rel
option. If anenvironment_pathnameis specified, the-env option is ignored.

NOTE

If the directory specified by theenvparameter does not exist,
a.mkenv will fail.

The-rel option specifies which release ofa.mkenv to use in creating this environment
(See “a.release” on page 4-88 for more information regarding MAXAda releases.)

The-f option forces creation of an environment even if one has already been created
only a portion of it already exists. (If thea.mkenv tool is interrupted or fails for some
reason such as not enough disk space, power failure, etc., the creation of the enviro
may not have completed.) Trying to recover from this failure by running thea.mkenv
tool again may result in a message similar to the following:

a.mkenv: fatal: environment already exists

The -f option will force this environment to be created, thereby overriding such er
messages.

Thecompile_optionsspecified with this command become the environment-wide comp
options and apply to all units introduced into this environment. (See “Environment-w
Options” on page 3-21 for more information). They may be changed by us
a.options . They may also be overridden for particular units by permanent or tem
rary unit options or pragmas. See “Compile Options” on page 3-20 for a more deta
explanation of this relationship.

Usea.mkenv -HC for a list of compile_options. Also, “Compile Options” on page 4-109
provides a similar list.

Default link options for the environment are specified using the-oset optsoption. Use
a.mkenv -HL for a list of opts. Also, “Link Options” on page 4-119 provides a simila
list.
4-59

MAXAda Reference Manual

.

NOTE

The -arch option to a.mkenv is a shortcut for setting the
-arch link option (see “Target Architecture” on page 4-120 for
more information on the-arch link option).

NOTE

The -osversion option toa.mkenv is a shortcut for setting
the -osversion link option (see “OS Version” on page 4-122
for more information on the-osversion link option).

An environment can be removed witha.rmenv . See “a.rmenv” on page 4-94 for details
4-60

MAXAda Utilities

ace
ma-
a.monitor 4

Monitor tasking in real-time for debugging

The syntax of thea.monitor command is:

a.monitor [options] executable_file

The following represents thea.monitor options:

Th e M A X A d a a. mo ni t or u t i l i t y p r o v id e s u s er s w i t h a f u l l - sc r e en
(curses(3X) -based) real-time program monitor. There is an interactive menu interf
that allows users to cyclically monitor task and system information. The system infor
tion is a subset of information presented bytop(1) .

See “a.monitor” on page 12-6 for more details on the use of this utility.

Option Meaning Function

-env env environment Specify an environment pathname

-g ghosts Include ghost/shadow tasks in display

-l lwp Choose “lwp” information screen

-m memory Choose “memory” information screen

-p pid pid Usepid instead of searching process list for a matchingexecutable_file

-rel release release Specify a MAXAda release (other than the default release)

-r rate refresh Userate as a refresh rate (in seconds)

-s system Choose “system” information screen

-t device terminal Usedeviceas terminal

-v verbose Include verbose information in display

-H help Display syntax and options for this function
4-61

MAXAda Reference Manual

ems

can

sys-

;
nvi-

e

a.nfs 4

Display or change NFS aspects of an environment

The syntax of thea.nfs command is:

a.nfs [options]

The following represents thea.nfs options:

MAXAda supports the creation and use of environments on NFS-mounted filesyst
only to a limited extent. (See “NFS Environments” on page 3-3.)

Thea.nfs tool provides a means for determining from what system an environment
be modified, and a means for changing that system.

a.nfs -q displays whether or not the environment is on an NFS filesystem and what
tem is capable of modifying it. It responds with the output:

status: eitherNFSor local

owner: local , indicating the local system, or

its local system , indicating the system on which the
environment's filesystem is local, or

a system name

Option Meaning Function

-env env environment Specify an environment pathname

-f force Use with-take to take an environment that was not previously given
beware that this may expose problems caused by NFS caches if the e
ronment was used recently from its original owner system

-give give away Prepare environment currently modifiable from the local system to b
modifiable from another system

-rel release release Specify a MAXAda release (other than the default release)

-q query Query environment NFS status and owner

-take take Make environment modifiable from local system

-write write Query ability to modify environment from local system

-H help Display syntax and options for this function
4-62

MAXAda Utilities

he

of
stem

exe-
wo
nized
ated

ys-
and
nt
s to
a.nfs -write is a simple query to determine if the environment is writable from t
current system. It will respond either with the string:

writable

or

not writable because ...

and the reason.

a.nfs -give anda.nfs -take are designed to work together to provide a means
changing the owner of an environment safely with respect to NFS caches. On the sy
that is the current owner, the commanda.nfs -give should be executed. After that is
done, the environment effectively is owned by no system at all. Any system can then
cutea.nfs -take and become the new owner of that environment. By doing this in t
steps it is possible to ensure that any caches with pending modifications are synchro
with the real environment file, and that any caches which might be stale are invalid
and reloaded from the real environment file.

a.nfs -take -f is designed to work with an environment that is owned by another s
tem which no longer exists, is down, or is otherwise unable to modify the environment
therefore cannot execute thea.nfs -give command. In this case, because the curre
owner is unable to modify the environment, there is no possibility for the NFS cache
create problems. In that case,a.nfs -take -f will forcibly take an environment on
which a.nfs -give was never run.

CAUTION

Never executea.nfs -take -f on an environment where the
current owner has modified the environment recently. Instead
executea.nfs -give on the current owner and thena.nfs
-take on the new owner.
4-63

MAXAda Reference Manual

n-

i-

nt
a.options 4

Set compilation options for units or the environment

The syntax of thea.options command is:

a.options [options] [compile_options] [unit-id ...]

The following represents thea.options options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Option Meaning Function

-clear clear Clear all designated options for the specified entities

-default default Operate on the default options for the entire environment

-del delete Delete the designated options from the specified entities

-eff effective Display the effective options (based on temporary, permanent, enviro
ment defaults)

-env env environment Specify an environment pathname

-fetch fetch Apply the options to fetched copies (for specified units from other env
ronments)

-H help Display syntax and options for this function

-h header Remove the header from the option list output

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

See “Qualifier Keywords (-Q options)” on page 4-115 for more details.

-keeptemp keep temporar-
ies

Propagate the temporary options for the units into the set of permane
options

-list list List the option sets for the specified entities

-mod modify Modify the designated options for the specified entities

-perm permanent Operate on the permanent options (this is the default)

-rel release release Specify a MAXAda release (other than the default release)

-set set Set the designated options for the specified entities

-temp temporary Operate on the temporary options

-v verbose Display a message for each change
4-64

MAXAda Utilities

s of
s to

la-
” on

nits

is
unit

iple

i-
Option Sets 4

As discussed in “Compile Options” on page 3-20, there are three different level
options in MAXAda. These three option sets are designated by the following flag
a.options :

In addition, theeffective optionsare derived from these three and their hierarchical re
tionship to one another. This set is discussed in greater detail in “Effective Options
page 3-22.

Listing options 4

The option sets may be viewed using the-list option toa.options . When issued
alone,-list shows the permanent, temporary, and effective option sets for the u
specified. For example, the following command lists those option sets for the unithello ,

$ a.options -list hello

By combining the-list option and the desired option set’s flag, only that option set
displayed for the specified units. For instance, to view the permanent options for the
hello ,

$ a.options -list -perm hello

This only lists the permanent options for the units specified. You may specify mult
unit names, or you may use the keywordall to specify all units in the environment.

To list the effective options for all units in the environment,

$ a.options -list -eff all

However, this particular option does the same thing when issued alone,

$ a.options -eff all

Note that since the-default flag operates on all the units in the environment by defin
tion, there is no need to specify any unit names. To list the default options,

$ a.options -list -default

Flag Designation Operates on

-default environment-wide compile optionsall units

-perm permanent unit compile options specified units

-temp temporary unit compile options specified units
4-65

MAXAda Reference Manual

esig-

ed in

-

Setting options 4

The option sets may be initialized or reset by using the-set flag to a.options . This
sets the specified options for the units designated. Any previous options for the set d
nated are replaced. For example,

$ a.options -set -perm -g hello

sets the debug level tofull in the permanent option set for the unithello .

If the following command is issued,

$ a.options -set -perm -ee hello

the permanent option set will only contain the-ee option (the previous-g option will
have been replaced).

Modifying options 4

In order to modify an option set, the-mod flag toa.options is used. This flag adds the
specified options to the designated set, while retaining any other options that exist
this grouping. For instance, after the following command,

$ a.options -set -temp -g hello

the temporary option set for the unithello consists of-g .

To add an error emission compile option to this set,

$ a.options -mod -temp -ev hello

The temporary option set forhello now consists of-g and-ev .

Clearing options 4

All of the options may be cleared from a designated option set by using the-clear
option toa.options . To clear all of the temporary options from all units in the environ
ment,

$ a.options -clear -temp all

Deleting options 4

The-del flag to a.options is more specific than the-clear option and allows speci-
fied options to be deleted from a particular option set.

For example, if the environment-wide compile option set (-default) contains-ee ,
-!g and-S , the following command,
4-66

MAXAda Utilities

set
nvi-

be

pec-
$ a.options -del -!g -default

will remove the-!g option from the set and leave-ee and-S to remain as the environ-
ment-wide compile options.

Keeping temporary options 4

Temporary options may be propagated into the permanent set by using the-keeptemp
option toa.options . This moves the temporary options into the permanent option
and clears the temporary set. The following command does this for all units in the e
ronment,

$ a.options -keeptemp all

See “Compile Options” on page 4-109 for more information.

Also, see the example of this in “What are my options?” on page 2-7.

Setting options on foreign units 4

Options for units in foreign environments cannot be changed usinga.options in the
local environment. In order to change the options on a foreign unit, it must first
fetched. This can be done automatically by specifying the-fetch option in addition to
the options to be applied to the foreign unit.

A fetched copy of the unit will be created in the local environment and those options s
ified will be applied.
4-67

MAXAda Reference Manual

e

e

s

s

a.partition 4

Define or display a partition for the linker

The syntax of thea.partition command is:

a.partition [options] [partitions ...]

The following represents thea.partition options:

Option Meaning Function

-a all Display all partitions in the environment

(Normally, only those originating in the environment are displayed)

-add "units" add Add unitsto the partitions while retaining previously added units

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes

-addfile file add from file As -add , but reads units fromfile

-case case-sensitive If specified, unit names will be interpreted in a case-sensitive manner

-cons show consis-
tency

Display consistency of each partition, with a reason if inconsistent

-create kind create Create the new named partitions askind wherekind could beactive ,
shared_object (so), or archive (ar)

-default default Operate on the default link options list for the entire environment

-del "units" delete Deleteunitsfrom the partitions

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes

-delfile file delete from file As -del , but reads units fromfile

-elab method e l a b o r a t i o n
method

Set the elaboration method for non-active partitions used from program
other than the active partitions

wheremethodcan be:
none
auto
user ,routine_name

(routine_nameis a name of the user’s choice)

-env env environment Specify an environment pathname

-f force Force creation of existing partitions and removal of nonexistent partition
4-68

MAXAda Utilities

s

e

units is defined by the following syntax:

[[unit_name[!][,[+-] unit_name[!]]... (comma-separated list)
+ indicates an included unit (the default)

-final method f in a l i za t i o n
method

Set the finalization method for non-active partitions used from program
other than the active partitions

wheremethodcan be:
none
auto
user ,routine_name

(routine_nameis a name of the user’s choice)

-file name file Create partitions corresponding to the descriptions provided in filename

The syntax of the filenameis identical to the output of the-List option

-H help Display syntax and options for this function

-HA help arch Display architectures and descriptions

-HL help link Display link options

-List list all Display all partitions and information about them

-list list List all partition names

-main name main Set the main unit for the specified active partition toname

-o file output Set the name of the corresponding partition output file to be created

-oappend opts append options Appendoptsto the link option list

Note thatoptsmay need to be quoted

-oclear clear options Clear the link options list

-oprepend opts p r ep e n d
options

Prependoptsto the link option list

Note thatoptsmay need to be quoted

-oset opts set link options Set the link option list toopts

Note thatoptsmay need to be quoted

-parts list partition list Set the dependent (comma-separated) partition list for each partition

-rel release release Specify a MAXAda release (other than the default release)

-remove remove Remove the specified partitions

-rule rule link rule Set the link rule for the partitions (see below for syntax)

-set "units" set Add unitsto the partitions, and remove all others

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes (see below)

-setfile file set from file As -set , but reads units fromfile

Option Meaning Function
4-69

MAXAda Reference Manual

r-

m
sub-
ram.

g this
- indicates an excluded unit
! indicates all units directly or indirectly required by the given unit

NOTE

You may specify multiplepartitions to a.partition and all
optionsspecified will apply to every one of thosepartitions. Each
option, however, may only be specified once. If a particular
option is repeated on the command line, the last occurrence of that
optionoverrides all others.

Issuinga.partition with only a partition name and no options provides detailed info
mation about that partition. This same information is provided forall partitions in the
environment by specifying the-List option. This information includes:

• the kind of partition (object , archive , or shared_object)

• its resultant output file

• the link options associated with this partition

• partitions upon which this partition depends

• the link rule for this partition

• the unit designated as the main subprogram

• all included and excluded units

NOTE

The link options listed in this manner are those link options asso-
ciated directly with the listed partitions, not their effective set. To
see the environment-wide link options, usea.partition
-default . See “Link Options” on page 3-34 for more informa-
tion.

Main Subprogram 4

The-main option toa.partition specifies a unit that will act as the main subprogra
for an active partition. In the case where the partition has the same name as a library
program in the environment, that subprogram is assumed to be the main subprog
Otherwise, no main subprogram is assumed and one must be explicitly specified usin
option, if desired.
4-70

MAXAda Utilities

ti-

nsitive
ntain
), so it
ge

dis-
Elaboration and Finalization 4

a.partition uses the-elab option to set the elaboration method for non-active par
tions and the-final option to set the finalization method for non-active partitions.

See “Elaboration and Finalization Methods” on page 3-16 for more information.

Case Sensitivity 4

The -case option ensures that unit names specified toa.partition (with the -add ,
-addfile , -del , -delfile , -set , -setfile , and-main options) will be inter-
preted in a case-sensitive manner. Usually, unit names are interpreted in a case-inse
manner because Ada identifiers are case-insensitive. But some artificial units co
upper-case letters (precisely because they cannot conflict with user-specified names
is occasionally useful to be able to indicate those units. (See “Artificial Units” on pa
3-11 for more information.)

Consistency 4

The-cons option displays theconsistenciesof any partitions mentioned. If no partitions
are mentioned, it displays the consistencies of all local partitions. In addition, you can
play the consistencies of foreign partitions using the-cons option in combination with
the-a option.

Link Options 4

Link options are specified for a particular partition using the following options toa.par-
tition :

-oset opts Set the link option list toopts

-oappend opts Appendoptsto the link option list

-oprepend opts Prependoptsto the link option list

-oclear Clear the link options list

where:

opts is a single parameter containing one or more link options; note thatoptsmay
need to be quoted.
4-71

MAXAda Reference Manual

-

ent

tion
NOTE

Be sure to specify the link options within the double quotes and
ensure that they are specified as listed on page 4-119. For exam-
ple, if the link option-bound is desired, the leading “- ” must be
specified as well.

For example, to set the link options for the partitionhello to include the link options
-skipobscurity and-forgive :

$ a.partition -oset “-skipobscurity -forgive” hello

Issuinga.partition with the partition name will show the link options for this parti
tion:

$ a.partition hello
PARTITION: hello

kind : active
output file : hello
link options : -skipobscurity -forgive
dependent partitions :
link rule : object,archive,shared_object
main subprogram : hello
included units (+) :

hello!
excluded units (-) :

To append a link option to this set, use the-oappend option:

$ a.partition -oappend “-trace” hello

The link options now will be:

$ a.partition hello
PARTITION: hello

kind : active
output file : hello
link options : -skipobscurity -forgive -trace
dependent partitions :
link rule : object,archive,shared_object
main subprogram : hello
included units (+) :

hello!
excluded units (-) :

To clear all link options for this partition, use the-oclear option:

$ a.partition -oclear hello

The user may also specify link options that affect all partitions within the environm
using the-default option in combination with those listed above.

For instance, to set the environment-wide set of link options to include the link op
-skipobscurity :
4-72

MAXAda Utilities

it or

It

t is
$ a.partition -default -oset -skipobscurity

NOTE

The environment-wide set of link options may be set when creat-
ing the environment by using the-oset optsoption toa.mkenv
(see “a.mkenv” on page 4-58).

You may list the environment-wide set of link options by specifying:

$ a.partition -default
default link options: .

-skipobscurity

Usea.partition -HL for a list of opts. Also, “Link Options” on page 4-119 provides
a similar list.

In addition, “Link Options” on page 3-34 provides further discussion of this topic.

Link Rule 4

The-rule option toa.partition sets thelink rule for a given partition. The link rule
is an ordering of the link methods which instructs the linker how to acquire each un
system library during the linking process.

A link methodspecifies the manner in which a unit is included in the linking process.
can instruct the linker to

- use the object of a unit directly (object method)

- utilize the unit contained in an archive (archive method)

- include the unit found within a shared object (shared_object method)

NOTE

Using the object directly (theobject method) is the most com-
mon method of utilizing units.

The link rule is defined by the following syntax:

method[- part]...[, method[- part]...][, method[- part]...]

wheremethodis one of the following:object , archive , or shared_object (or their
respective abbreviations:obj , ar , so)

andpart is the name of any partition, system library, or class of partitions/libraries tha
4-73

MAXAda Reference Manual

ulti-

ould

pec-

hod,

se

re-
to be excluded by the linker for that particular method. Note that for each method, m
ple partitions can be specified, separated by dashes (with no spaces between).

A lis t o f part i tems to be exc luded can be spec i f ied for thearchive or
shared_object methods. No such list can be specified for theobject method.

To indicate that a partition name is to be excluded for a particular method, its name sh
be specified.

To indicate that a system library is to be excluded for a particular method, it must be s
ified in the form:

-l name

which is the standard shorthand notation forlib name.a or lib name.so .

NOTE

The libraries listed as exceptions here will only affect libraries
that would be included in the link implicitly. See “Implic-
itly-Included Libraries” on page 4-78 for more information.

To indicate that a class of partitions or libraries is to be excluded for a particular met
one of three keywords should be specified:

• ada

• system

• user

The ada keyword indicates all partitions and libraries that are part of MAXAda (tho
located within/usr/ada/ release_name/lib). The system keyword indicates all
libraries that are part of the PowerMAX OS operating system (those located within/lib ,
/usr/lib , or /usr/ccs/lib). Theuser keyword indicates all other libraries.

The default link rule differs for each type of partition:

The ordering of these methods within the link rule tell the linker which link method is p
ferred for each unit. For example, the following link rule:

-rule shared_object, archive, object

Partition Default Link Rule

active object, archive, shared_object

archive object

shared_object object
4-74

MAXAda Utilities

the
nvi-
ects
the

the

ct or

any

ssed
as to

or
directs the linker to search first for each unit within shared object partitions visible in
current environment. It will continue to search for the unit in shared objects on the E
ronment Search Path until one is found. If the unit is not found within any shared obj
along the Environment Search Path, the linker will search in any archive partitions in
current environment or on the Environment Search Path. Finally, if still not found,
linker will attempt to use the actual object for the unit.

In the case of system libraries, the linker will attempt to use either the shared obje
archive of a system library based on the ordering of the link methods in the link rule.

The link rule is specified by the user and can combine any number of methods in
order.

In addition, the link rule can also specify certain partitions or system libraries to be pa
over by the linker when searching for each unit. This allows the user greater control
how units are included in the linking process. Specifying the- part modifier after the
appropriate method in the link rule instructs the linker to exclude a particular partition
system library.

To exclude the archive partitionnotme and the system librarylibux.so from the parti-
tion rulexamp , you would issue the following command:

a.partition -rule object,archive-notme,shared_object--lux ruleexamp

Note that the notation to exclude a system library is slightly different (the-l namefollows
the- , appearing in the link rule as two dashes in a row).

Consider a more complicated example:

Figure 4-4. Link Rule Example

In Figure 4-4, the following is given:

a, c , e

a, b, c ,
d, e, f ,

g

Partitionfoo Partitionbar Partitionqux

Partitionsnert

(archive) (shared object) (archive)

(active)

b, c , da, b, f
4-75

MAXAda Reference Manual

ching
on
ment
ent

it

con-

h

- partition foo is an archive partition and contains unitsa, b, andf

- partitionbar is a shared object partition and contains unitsb, c , andd

- partitionqux is an archive partition and contains unitsa, c , ande

- partition snert is an active partition and contains unitsa, b, c , d, e, f ,
andg

If the following link rule is specified for partitionsnert

-rule archive, shared_object, object

the units will be used from the following partitions:

The linker tries to use the appropriate method for each unit. For example, when sear
for unit d, the linker first looks in all archive partitions in the current environment and
the Environment Search Path. Since none of the archive partitions on the Environ
Search Path contain unitd, the linker then searches all shared objects on the Environm
Search Path. It finds unitd in shared object partitionbar and uses it.

Note that the linker will decide arbitrarily which of the two partitions will be used for un
a.

Also note that since no archives or shared objects on the Environment Search Path
tained unitg, the linker will use the object file for this unit.

By using the -part option with-rule , the determination of which methods to use for eac
unit can be more precise.

If the following link rule is specified for partitionsnert

-rule archive-foo, shared_object, object

Unit Partition

a foo (ar), qux (ar)

b foo (ar)

c qux (ar)

d bar (so)

e qux (ar)

f foo (ar)

g (obj)
4-76

MAXAda Utilities

ion

t for
the units will be used from the following partitions:

Sincefoo was excluded as a potential archive partition, the ambiguity of which partit
is to be used for unita no longer exists. Also, shared object partitionbar is used for unit
b because there were no archive partitions that contained that unit. And lastly, sincefoo
was the only partition that contained unitf , the linker will not be able to find this unit in
any of the partitions on the Environment Search Path and therefore will use the objec
unit f .

See also “Partitions” on page 3-12 for more information.

Unit Partition

a qux (ar)

b bar (so)

c qux (ar)

d bar (so)

e qux (ar)

f (obj)

g (obj)
4-77

MAXAda Reference Manual
Implicitly-Included Libraries 4

The following are libraries which may be included implicitly during the linking phase:

-lc required for all programs

-lgen required for AXI

-lhF77 required for interfacing to Fortran

-lhI77 required for interfacing to Fortran

-lhU77 required for interfacing to Fortran

-lICE required for Xt via AXI

-lm required for interfacing to Fortran

-lMrm required for Motif 2.1 via AXI

-lnsl required for AXI

-lntrace required for programs that use NightTrace bindings
or -trace:mechanism=ntraceud

-lPW required for Motif 2.1 via AXI

-lresolv required for AXI

-lruntime* required for all programs

-lsemaf required for tasking programs

-lsemat required for tasking programs

-lSM required for Xt via AXI

-lsocket required for AXI

-lthread required for interfacing to Fortran or programs that
use staticlibnsl

-lud required for all programs

-lX11 required for X11R6 via AXI

-lXAda required for AXI

-lXext required for X11R6 via AXI

-lXm required for Motif 2.1 via AXI

-lXmAda required for AXI

-lXmu required for X11R6 via AXI

-lXp required for Motif 2.1 via AXI

-lXt required for Xt via AXI
4-78

MAXAda Utilities

that
le in
om-

are

ath, if

h

a.path 4

Display or change the Environment Search Path for an environment

The syntax of thea.path command is:

a.path [options]

The following represents thea.path options:

MAXAda uses the concept of an Environment Search Path to allow users to specify
units from environments other than the current environment should be made availab
the current environment. See “Environment Search Path” on page 3-2 for a more c
plete discussion.

MAXAda supplies a number of environments with the product. These environments
listed in Chapter 9, “Support Packages”.

The predefined environment is automatically added to the path whena.mkenv is
used to create an environment. Any of the other environments may be added to the p

Option Meaning Function

-A path append Appendpath to the end of the Environment Search Path

-a path1[path2] append Appendpath1afterpath2. If path2is not specified, this option is identical
to the-A option

-d default Use the default supplied libraries

-env env environment Specify an environment pathname

-f full path Display full environment pathnames

-H help Display syntax and options for this function

-I path insert Insertpathat the beginning of the Environment Search Path

-i path1[path2] insert Insertpath1beforepath2. If path2is not specified, this option is identical
to the-I option

-P purge Remove all paths in the Environment Search Path

-R path1 path2 replace Replacepath1with path2

-r path remove Removepath from the Environment Search Path

-rel release release Specify a MAXAda release (other than the default release)

-t transitive Display transitive closure of environments in the Environment Searc
Path

-v verbose If combined with any othera.path option, display the Environment
Search Path after the operation is complete

-w warnings Suppress warning messages

-x path exclude Remove all butpathfrom the Environment Search Path
4-79

MAXAda Reference Manual

ee
desired. They can be specified by their full pathnames or by their “keywords”. S
Chapter 9 for a list of these keywords.
4-80

MAXAda Utilities

r-

g

he
a.pclookup 4

Filter standard input adding symbolic descriptions for pc values

The syntax of thea.pclookup command is:

a.pclookup [options] executable-file

The following represents thea.pclookup options:

Option Meaning Function

-c code code Do not readstdin or process the executable file, rather immediately
print symbolic description of the specified exception code

-e [options] a.error Pass appropriately filtered lines througha.error

If optionsis supplied, it is passed toa.error

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i insert Insert symbolic information immediately after the program counter; no
mally, symbolic information is appended to the line

-l loadmap load map The file loadmapis expected to contain the output ofldd(1) and is used
for executable files that use shared libraries

If not specified but needed,a.pclookup automatically invokes
ldd(1)

-p pc_value p r o g r a m
counter

Print the symbolic description of the specified program counter (pc_value)
immediately

Do not readstdin

-r rooted Show fully rooted pathnames to source

Implied by -e option

-rel release release Specify a MAXAda release (other than the default release)

-s symbol Always list the raw symbol name associated with the function containin
it

-t tag tag Change the tag; used to identify all program counters to translate from t
default value ofpc= to tag

tags are case-insensitive
4-81

MAXAda Reference Manual

d,

ry
a.pp 4

Preprocess a source file

The syntax of thea.pp command is:

a.pp [options] [in_source_file [out_source_file]]

The following represents thea.pp options:

Option Meaning Function

-a allow Allow blanks between prefix and directive

By default, blanks are not allowed between the prefix and the comman
except those specifically placed in the prefix (e.g. “pragma ”)

-b blank Blank out uncompiled lines

-ca string comment after Comment uncompiled lines; end uncompiled lines withstring

null is the default “comment after” string

-cb string comment begin Comment uncompiled lines; start uncompiled lines withstring

“ -- ” is the default “comment begin” string

-D name define Definenamebefore line 1; that is, setname=TRUE

-E name val equivalence Definenameasval before line 1; that is, setname=val

-e eliminate Eliminate uncompiled lines

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-I file include Include directivesfile before line 1

file is assumed to containa.pp commands and source lines. Iffile does
not specify a complete path name, it is searched for under the directo
containing the file in which theinclude command is found

INTERNAL UTILITY

This tool is used internally bya.build which is the recommended
utility for compilation and program generation.

a.pp is not intended for general usage.
4-82

MAXAda Utilities

and

n in

on-
s

om-

e as

-

e

NOTE

If a.pp is invoked automatically by MAXAda, it is treated essen-
tially as a pass of the compiler for the given source. Output from
a.pp goes to a temporary file which is destroyed after the compi-
lation like any other intermediate file in the compilation.

a.pp automatically includes the command file.pprc from the source file directory
before any options are processed, if it exists. If file names are not given on the comm
line it reads fromstdin and writes tostdout .

a.pp is not case sensitive. Any directive or argument (except file names) may be give
upper case or lower case.

Users may explicitly invokea.pp to produce a preprocessed, pure Ada,.a source file.
However, several of the MAXAda tools will automatically invokea.pp on a unit if its
corresponding source file name has a.pp suffix.

Also, if a unit is introduced with the-P option toa.intro , it will be preprocessed by
a.pp automatically, regardless of the extension of its corresponding source file. C
versely, if a unit is introduced with the-!P option, it will not be preprocessed, regardles
of its source file extension. (See “a.intro” on page 4-35 for more information.)

The input to thea.pp preprocessor consists of command lines and source lines. C
mand lines begin with a specific prefix, which can be set by the-p option. Source lines
are written to the output file unchanged.

It's handy when you need the character positions within the resultant file to be the sam
the character positions in the original.

The default behavior ofa.pp (or when using the-b option) results in a line-to-line corre-
spondence with the original file. The-s option is provided when a full character-to-char
acter correspondence is needed.

-l lang language Use the default options for languagelang (ada , c)

a.pp defaults to Ada-mode preprocessing; however, on option it can b
made to perform preprocessing using acpp(1) -like syntax

-m minimize Eliminate blank lines

-p prefix prefix Useprefix as the directive prefix

“pragma ” is the default prefix (upper or lower case - with a space after)

-rel release release Specify a MAXAda release (other than the default release)

-s spaces Replace uncompiled characters with spaces

-U name undefine Undefinename

-u unknown Comment unknown directives

By default, unknown directives are left without comments

Option Meaning Function
4-83

MAXAda Reference Manual

ening

l

See “Defaults” on page 4-86 for information on the default behavior ofa.pp and the
default values of its options.

See “Examples” on page 4-86 for some examples of usinga.pp .

Commands 4

Command lines begin with a specific prefix, which can be set by the-p option.

Commands must appear on the same line as the prefix, and there may be interv
whitespace only between the command and the prefix if the-a option is specified.

The following commands are available:

Command Description

include filename The file filenameis assumed to containa.pp
commands and source lines. Iffilenamedoes
not specify a complete path name it is
searched for under the directory containing
the file in which the include command is
found.

define name[value] Define the symbolnameand optionally give it
value.

undefine name Remove the definition of the symbolname.

undef name Remove the definition of the symbolname.

ifdef name If the symbolnameis presently defined, the
following lines up to the nexta.pp else ,
elsifdef or endif command line are writ-
ten to the output file.

ifndef name If the symbolnameis not presently defined,
the following lines up to the nexta.pp
else , elsifndef or endif command
line are written to the output file.

if expression If the expressionevaluates as TRUE, the fol-
lowing lines are written to the output file. See
the following section on expression syntax for
the format ofa.pp expressions.

else
elsif expression
elsifdef name.
elsifndef name

These various forms of anelse clause spec-
ify conditional compilation boundaries. The
form of theelse clause used must match the
form of its associatedif clause. See the fol-
lowing section on expression syntax for the
format ofa.pp expressions.

endif This command marks the end of a conditiona
compilation clause.
4-84

MAXAda Utilities

om-

to
ith or
ns
Commands toa.pp can be embedded in the actual source file, however, this is not rec
mended. An appropriate place for commands is the.pprc file, or in separate command
files that may be included using the-I option ofa.pp .

See the following section on expression syntax for the format ofa.pp expressions.

Expressions 4

The expression syntax ofa.pp is similar to that of the C preprocessor. The arguments
the equality operators may be performed as character string arguments (either w
without quotes) and withnamesdefined through the use of other commands. Expressio
and sub-expressions can be placed within parentheses as desired.

The following operators are available ina.pp :

substitute name This command will result in the value of the
symbolnamebeing written to the output file.

blanks_after_prefix Allow blanks between the prefix and the com-
mand.

no_blanks_after_prefix Do not allow blanks between the prefix and
the command.

prefix string The string will become the command prefix
for subsequent commands.String must be
enclosed in quotes if it contains spaces.

blank_lines Lines that are conditionally removed from the
input file will be blanked out in the output
file.

comment_before string Lines that are conditionally removed from the
input file will be written to the output file pre-
ceded bystring, (usually the characters for the
beginning of a comment in the source lan-
guage).

comment_after string Lines that are conditionally removed from the
input file will be written to the output file fol-
lowed bystring, (usually the comment termi-
nator for the source language).

eliminate_lines Lines that are conditionally removed from the
input file will not be written to the output file.

comment_unknown Lines from the input file which contain the
prefix string, but are not recognized as valid
a.pp commands, will be written to the output
file as comments.

no_comment_unknown Unrecognized command lines will be written
as is to the output file.

Command Description
4-85

MAXAda Reference Manual
not
and, &&
or, ||
=, ==
/=, !=

defined(name) gives the functionality ofifdef andifndef in an if directive.

Defaults 4

By default,

• The command prefix is“ pragma ” (in upper or lower case)

• Unknown directives are left without comments

• Comment_before is set to “--”

• Comment_after is set to null

• Blanks are not allowed between the prefix and the command, except for the
one blank already in the prefix

NOTE

This default mode differs slightly from the modea.pp enters
when the-lada option is given. Under that option, the prefix is
set to “pragma ”, comment_before to “--”, comment_after
to null, and one or more spaces are allowed between the prefix
and the command.

Examples 4

Screen 4-5 and Screen 4-6 show possible contents of the.pprc andtest.pp files,
respectively.

Screen 4-5. File .pprc

pragma define long_form 1
pragma define short_form 2
pragma define ez_form 3
pragma define form short_form
4-86

MAXAda Utilities

ally
Screen 4-6. File test.pp

If the compilation utility encounters a file that needs to be preprocessed, it automatic
invokesa.pp with the following command line:

$ a.pp -lada test.pp test.a

and then compiles the filetest.a . Screen 4-7 shows the contents oftest.a .

Screen 4-7. File test.a

Details on the interaction of MAXAda witha.pp are as follows.

• Invocations ofa.build with a unit_namecausea.build to check all
units required to makeunit_name. If any out-of-date unit has a correspond-
ing source file that ends with.pp , or the-P option was specified for that
unit when it was introduced, it is preprocessed witha.pp prior to recompi-
lation. The preprocessed source is sent to a temporary file which is
removed after the recompilation. Any error messages refer to the.pp
source file.

• The -ev compile option causes source errors (if any) to be embedded into
the corresponding source file automatically.a.build will reprocess the
source file if the user selects recompilation after entering the editor.

• Any MAXAda unit that was produced by a compilation involvinga.pp
will be preprocessed automatically if recompiled bya.build .

package tax_options is
pragma if form = short_form || form = ez_form

itemize : boolean := FALSE;
pragma elsif form = long_form

itemize : boolean := TRUE;
pragma else

null;
pragma endif

end tax_options;

package tax_options is
-- pragma if form = short_form || form = ez_form

itemize : boolean := FALSE;
-- pragma elsif form = long_form
-- itemize : boolean := TRUE;
-- pragma else
-- null;
-- pragma endif

end tax_options;
4-87

MAXAda Reference Manual

r-

ent
a.release 4

Display release installation information

The syntax of thea.release command is:

a.release [options]

The following represents thea.release options:

If invoked without options,a.release lists all available release installations on the cu
rent host. For example,

$ a.release

provides output similar to the following:

Screen 4-8. a.release output

The-q option displays the release for the specified environment (or the local environm
if no environment is specified). For example,

Option Meaning Function

-e env Display the path of the selected environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-n name Display the name of the selected release

-p path Display the path to the selected release

-q query Display the selected environment and release

-r remove Remove the default release currently set for the invoking user

-u user Set the default release for the invoking user

-rel release release Specify a MAXAda release (other than the default release)

The following releases are available on machine_name:

Name Path
---- ----
ada95 /usr/ada/ada95

* phase1 /usr/ada/phase1
power_3.1 /usr/ada/power_3.1
preval /usr/ada/preval

(*) Designates the system default release

The predefined release installation, “default”, is also available,
and refers to the system default release , phase1.
4-88

MAXAda Utilities

tion
$ a.release -q

in a MAXAda environment namedearth provides the following output:

Screen 4-9. a.release -q output

a.release may be invoked with any combination of-rel and/or-env options. All
remaining options are mutually exclusive, and may not be combined in a single invoca
of a.release .

Release name : phase1
Release path : /usr/ada/phase1
Environment : /env_name/earth
4-89

MAXAda Reference Manual
a.report 4

Generate profile reports in conjunction with a.analyze -P

The syntax of thea.report command is:

a.report [options] executable_file[executable_file.prof]

The following represents thea.report options:

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Print invocations of subprocesses

-Z raw_names raw Print routine and source file names in raw form (i.e. do not filter)

-H help Display syntax and options for this function

-a all List information from all individual runs even if-t option is on

-b basic List basic block statistics

-B num expensive
basic

List only thenummost expensive basic blocks

-B num% % time basic List only the basic blocks where the firstnum%of time was spent

-c calls For each routine, list calls it makes

-d rng data range Restrict range of data sets examined

-f for each For each routine, list who calls it

-i info List summary information for the whole run

-l max Use max time instead of min time of basic block

-M hz Mhz Specify assumed megahertz clock rate for computing wall time

-m milliseconds Print milliseconds rather than cycles for most reports

-n miss List data access cache miss statistics

-N num data acc miss List only thenummost numerous data access secondary cache misses

-o cache miss List instruction cache miss statistics

-O num secondary miss List only thenummost numerous instruction secondary cache misses

-r routine List routine statistics

-R num expensive
routine

List only thenummost expensive routines

-R num% % time routine List only the routines that use the firstnum%of time

-s summary List header summarizing data set from each run

-t total Total all data sets and list cumulative times
4-90

MAXAda Utilities

m.
executable_file.prof is the name of the profile data file generated by running the progra
The default is the program name with the suffix.prof .

See “a.analyze” on page 4-3 for more information.

-T file dump Dump sum of all data sets into specifiedfile

-w readable Just dump the raw profile data in human readable form

-z zero List routines and basic blocks with zero time

Option Meaning Function
4-91

MAXAda Reference Manual

Ada
f

ll be
by

in...
ion.
a.resolve 4

Resolve ambiguities created when a unit exists in multiple source files

The syntax of thea.resolve command is:

a.resolve [options] unit-id

The following represents thea.resolve options:

unit-id is defined by the following syntax:

unit[/ part]

wherepart is thespecification or body ; abbreviations are accepted.

Upon introducing a unit having the same name as a previously introduced unit, MAX
labels both units asambiguous. It will then refuse to perform any operations on either o
the two versions, or on any units depending on the ambiguous unit. The user wi
forced to choose which of the two units should actually exist in the environment
“removing” the other. This can be done using thea.resolve tool.

The-r option essentially “hides” the other units involved in the ambiguity.

See “a.hide” on page 4-32 for another way to resolve ambiguities and also “Hello Aga
Ambiguous Units” on page 2-15 for an example of this type of scenario and its resolut

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-l list List the multiple source files in which unit is defined

-r source_file file list Resolve the ambiguity by selecting the unit from thesource_file; other
definitions are hidden

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each selected or hidden definition
4-92

MAXAda Utilities

d by a
able
s. If
ound
that

t is

ome
am-

ackup

be
a.restore 4

Restore a damaged environment

The syntax of thea.restore command is:

a.restore [options]

The following represents thea.restore options:

In rare circumstances, an environment may become damaged. This is usually cause
system crash or power failure that leaves files in an inconsistent state. MAXAda is un
to detect such situations, because its internal files may be corrupted in various way
tools consistently fail with unusual non-transient errors, and no other cause can be f
for them (such as a full disk), it is possible that the environment was damaged. In
case,a.restore is able to recover the environment using backup information tha
part of every environment. If possible,a.restore will restore the environment com-
pletely intact. However, if some of the backup information was damaged also, then s
recompilation may be necessary for the units or partitions whose backup files were d
aged and any other units or partitions that depend upon them. Cases where the b
information was damaged will be reported as warnings.

If executed when the current working directory is that of an environment, then it can
executed simply as:

a.restore

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display each item restored
4-93

MAXAda Reference Manual

tion

n of

been
fail

ror

ot
a.rmenv 4

Destroy an environment; compilation, linking, etc. no longer possible

The syntax of thea.rmenv command is:

a.rmenv [options] environment_pathname

The following represents thea.rmenv options:

Removes an environment, including all units, their state information, and any parti
definitions. The source files and any built partitions are left intact after this operation.

The -f option can be used to force an environment’s destruction, even if some portio
it does not exist. For example, if thea.mkenv utility was interrupted during its execution
(due to not enough disk space, power failure, etc.), the environment may not have
successfully created. If the environment cannot be recognized as valid, MAXAda will
with a message similar to the following:

a.rmenv: fatal: invalid environment: /env_path/env_name

The -f option will force this environment to be removed, thereby overriding such er
messages.

The environment can be re-created witha.mkenv (see page 4-58), but it will be empty
and any state will have to be reconstructed by the user.

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force an environment destruction, even if it or some portion of it does n
exist

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)
4-94

MAXAda Utilities

the

,

a.rmsrc 4

Remove knowledge of source files (and units therein) from the environ-
ment

The syntax of thea.rmsrc command is:

a.rmsrc [options] [source_file ...]

The following represents thea.rmsrc options:

Thea.intro tool can be used to re-associate the source files (and units therein) with
environment, but those units will be re-created in theuncompiled state.

Option Meaning Function

-all remove all Remove all units in the current environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-r remove Remove the actual source files

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list file_list is assumed to be a list of files. When this option is given
a.rmsrc readsfile_list and removes each file in the list

If - is given,a.rmsrc readsstdin instead

-V very verbose Echo removed units tostdout

-v verbose Display a message for each removed source file
4-95

MAXAda Reference Manual

ul-

rs to
a.rtm 4

Monitor or modify a running executable's data values in real-time

The syntax of thea.rtm command is:

a.rtm [options]

The following represents thea.rtm options:

The MAXAda a.rtm utility provides users with a full-screen (curses(3X) -based)
real-time data-monitoring interface for viewing and/or modifying data, possibly from m
tiple programs, in real-time. Thea.rtm utility provides for the symbolic display and
modification of Ada variables. There is an interactive menu interface that allows use
establish the cyclic monitoring of Ada variables.

NOTE

Programs that are to be monitored bya.rtm must have been
compiled with the-g (debug) option or must use pragmaDEBUG
with a debug level offull (2) .

See “a.rtm” on page 12-2 for more details on the use of this utility.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release (other than the default release)

-t device terminal Usedeviceas a terminal
4-96

MAXAda Utilities

n-

he
viron-
script
d

cted
re-

reat-

ermis-

iron-
a.script 4

Create script that will reproduce environment or part thereof

The syntax of thea.script command is:

a.script [options] [partition ...]

The following represents thea.script options:

a.script generates ash(1) script that can be used to re-create the current enviro
ment (or an environment specified with the-env option). Thesh script, when executed,
will create the environment, set up all the environment-wide options, set up theEnviron-
ment Search Path, introduce all the same files as in the original environment, fetch all t
same units, resolve all the same ambiguities, define all the same partitions, set the en
ment permissions, etc. The only difference between the environment created by the
and the one on whicha.script was run is that nothing will be built in the one create
by the script.

Normally, the generated script is written to standard output. The output can be redire
to a file or the-o option may be used to specify a filename. The specified file will be c
ated with execute permissions.

Normally, the generated script creates the environment using thesamerelease as the envi-
ronment on which you rana.script . The-rel option will override that and make the
script create an environment using the release specified. This is quite useful for re-c
ing an existing environment after installing a new release of MAXAda.

Normally, the generated script ensures that the created environment has the same p
sions as the one in whicha.script was run. Ifa.script is run on a read-only envi-
ronment, this could prove troublesome when a build is attempted in the created env

Option Meaning Function

-active active Script reproduces only active partitions

-allparts all parts Script reproduces all partitions

-echo echo Script echos additional progress information

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-no_chmod no a.chmod Script doesn't set environment permissions

-no_mkenv no a.mkenv Script doesn't reproduce environment or environment-wide options

-o file output file Create script in filefile instead of standard output

-pfile file parts file Script reproduces only partitions listed in filefile

-rel release release Specify a MAXAda release (other than the default release)

-simple simple Script issues onea.intro command per source file; script is slower but
is easier to edit
4-97

MAXAda Reference Manual

The
is-

eated

the
pt to

me,

g this

ent,

to
hat

was

ted
d/or
par-
er-

pect

rated
ment since the permissions on the created environment will be read-only as well.
-no_chmod option prevents the generated script from setting the environment perm
sions when creating the new environment so that a build may be performed in the cr
environment immediately.

The -no_mkenv skips creation of the environment. This allows the user to create
environment and set up the environment-wide options manually, only using the scri
populate the environment.

Normally, the generated script issues only a small number ofa.intro commands, speci-
fying large numbers of source files to those few invocations. (In fact, most of the ti
only a singlea.intro command is necessary.) The-simple option issues one
a.intro command per source file in the generatedsh script. This allows the user to
easily understand and modify the script after it has been generated. However, usin
option results in a much slower-executing script.

The environment is created as an exact replica of the one on whicha.script was run.
If the source files were introduced with relative pathnames in the original environm
either the generated script should be executed in the same directory wherea.script
was originally run, or all the source files in the original environment should be copied
the directory where thesh script will be executed so that it has access to them. (Note t
the source files are mentioned in the script relative to the location where the command
run, not relative to the environment.)

If partition names are passed on the command line toa.script or if any of the follow-
ing options are specified,

• -active - to reproduce only active partitions

• -allparts - to reproduce all partitions

• -pfile file - to reproduce those partitions listed in filefile

the generated script will avoid introducing, fetching or hiding any units in the genera
environment, and will define only those partitions indicated by the above options an
arguments. This is primarily useful for creating a new environment with all the same
tition definitions as an earlier one if planning to add the original environment to the gen
ated environment's path.

The-echo option makes the generated script emit more verbose information with res
to its progress when it is run.

In addition, the generated script may be executed with certain options. (See “Gene
Script - Options” on page 4-99).
4-98

MAXAda Utilities

ts
Generated Script - Options 4

Reproduce environment on which a.script was executed

The syntax for the script generated bya.script is:

generated-script [options]

wheregenerated-script is the name of the script generated bya.script .

The following represents thegenerated-script options:

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force environment creation, even if it or some portion of it already exis
(similar to the-f option toa.mkenv)

-H help Display syntax and options for this function

-rel release release Specify a MAXAda release for environment creation
4-99

MAXAda Reference Manual

a
and

elec-

n its
that

e

a.slinker 4

Selectively link (via a.link) or find reference path to a symbol

The syntax of thea.slinker command is:

a.slinker [options] partially_linked_program

The following represents thea.slinker options:

By default,a.slinker analyzes a partially linked program file looking for "dead" Ad
routines (routines that cannot be called by legal Ada means from the program)
removes all such routines. To generate a partially linked program, specify the-r link
option toa.partition using -oset (see “Link Options” on page 4-71). Only the
machine instructions associated with Ada routines are available for removal by the s
tive linker; data is never removed.

For example, if the main procedure specifies a package in awith clause but only calls a
single routine within the package, normally, all routines in that package are included i
disk and memory space. In contrast, the selective linker determines which routines in
package cannot be referenced and removes them.

Option Meaning Function

-d debug Print reams of debugging information

-H help Display syntax and options for this function

-q quiet Execute quietly, that is, without statistics

-r read Perform the analysis, but do not change the file

-rel release release Specify a MAXAda release (other than the default release)

-s symbol symbol Find the path tosymbolbut do not change the file

symbolmust be the exact symbol of an Ada routine as reported by th
dump(1) utility; you can run “dump -vt ” on the program to find the
symbol name

-v verbose List the dead routine link names

INTERNAL UTILITY

This tool is used internally bya.build which is the recommended
utility for compilation and program generation.

a.slinker is not intended for general usage.
4-100

MAXAda Utilities

f the

hine
The selective linker assumes that all Ada routines are referenced by name in one o
following manners:

• In any Ada statement defined by the Ada language

• By indirecting through a pointer that was obtained previously by taking the
address of a routine using its name

Specifically, the selective linker may produce an erroneous executable file if mac
code insertions are used to call a routine either by

• Specifying its virtual address directly (without referencing the routine by
its Ada or external name)

• Offsetting a known virtual address

Whena.slinker is invoked with both the-s and-v options, all paths are shown.
4-101

MAXAda Reference Manual

ays.

ror.

t
o lists
a.syntax 4

Check the syntax of source files

The syntax of thea.syntax command is:

a.syntax [options] [source_file ...]

The following represents thea.syntax options:

a.syntax automatically preprocesses files with a.pp extension, unless the-!P option
is given. The-P option must be specified for files with an extension other than.pp that
require preprocessing.

The error emission options allow you to process error messages in a number of w
Syntactic errors in the file thata.syntax is parsing are listed tostdout when the-e
option is specified. This lists only the erroneous lines with an explanation for each er

More useful perhaps is the-el option which lists entire source files with errors to stdou
with error messages interspersed at the positions where they occur. This option als

Option Meaning Function

-e [e | l | L | v] errors Control error emission style:

-e list syntax errors for filesa.syntax is unable to parse tostdout
with related source lines

-ee embed syntax errors in files thata.syntax is unable to parse and
invoke $EDITOR

-el list source files tostdout , interspersed with any syntax errors —
only source files thata.syntax is unable to parse

-eL list source files tostdout , interspersed with any syntax errors —
even source files thata.syntax is able to parse

-ev embed syntax errors in files thata.syntax is unable to parse and
invokevi

The default behavior is to list syntax errors tostderr with file name,
and line and column number

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-P preprocess Preprocess source files before checking syntax

-!P no preprocess Do not preprocess source files (regardless ofsource_fileextension)

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list file_list is assumed to be a list of files. When this option is given,a.syn-
tax readsfile_list and processes each file in the list

If - is given,a.syntax readsstdin instead

-v verbose Echo files as they are processed
4-102

MAXAda Utilities

file’s

urce

ed
ith
the

diting
ile

at
the line number for each line in the source file and displays a banner with the source
name at the top of the listing. The-eL option provides the same functionality but will list
the source file even if no errors have occurred.

The -ev option embeds the errors directly into the source file, and then opens the so
file with the vi editor. Error messages are marked with the pattern### , and the editor is
positioned in the file with the cursor at the point of the first error. Each error is mark
where it is found in the file and an explanation is given. Each error line is prefixed w
-- , which denotes an Ada comment so that the compiler can still process that file if
error messages have not been deleted. MAXAda prompts to recheck syntax when e
is completed. The-ee option provides the same functionality but opens the source f
with the editor designated by theEDITORenvironment variable.

The -s option takes as its argument afile_list containing the names of all the files to be
processed bya.syntax . This is useful in order to check the syntax of many files
once. Each file must be on a separate line in thefile_list.

If - is specified forfile_list, a.syntax uses input fromstdin . This is provided
mainly so that users can pipe output from another UNIX command toa.syntax .
4-103

MAXAda Reference Manual

can

e

a.tags 4

Generate a cross reference file

The syntax of thea.tags command is:

a.tags [options] source_file ...

The following represents thea.tags options:

Thea.tags command is analogous to thectags(1) or etags(1) commands, pro-
viding cross referencing of Ada units and, optionally, of types as well.a.tags can be
used to prepare an index of where and in which file a particular unit is defined. It also
be used to create a file usable by several editors (includingvi(1) andemacs(1)) that
allows a unit to be directly edited without knowing the file in which it is defined.

Option Meaning Function

-a append Append to cross reference file

-c ctags Generatectags(1) tags file (default behavior)

-e emacs Generateetags(1) TAGS file

-env env environment Specify an environment pathname

If the “-env ” option is specified, the cross reference file is created in th
environment specified byenv

-i infos Suppress info messages

-rel release release Specify a MAXAda release (other than the default release)

-s file_list file list Readfile_list for a list of files to process

If - is specified forfile_list, read file list fromstdin

-t types Create cross reference information for types also
(default behavior with-e)

-v vgrind Generatevgrind index tags file

-w warnings Suppress warning messages

-x cxref Generatecxref(1) index tostdout

-B backward Record backward search patterns (ctags only)

-F forward Record forward search patterns (ctags only)

-H help Display syntax and options for this function

-P preprocess Preprocess source files

-!P no preprocess Do not preprocess source files (regardless ofsource_fileextension)

-V verbose Mention source files as they are processed
4-104

MAXAda Utilities

rce

ntries,
the
that

amed

amed

tion

e
cing

d
n of
In Screen 4-10, the user is positioned in a MAXAda environment containing Ada sou
code and gets an indexed listing because of the-x option.

Screen 4-10. a.tags -x Example

The output gives the locations of packages, subprograms, tasks, protected units, e
and generic units. The-t option adds types to the preceding list. Each line contains
name of the construct, line number, file in which it is defined, and the program text at
line.

The command

$ a.tags -t *.a

executed in the same MAXAda environment as the previous example creates a file n
tags containing the same type of information, but in a form readable by thevi editor.
The tags file contains entries for types as well as units.

The command

$ a.tags -t -e *.a

executed in the same MAXAda environment as the previous example creates a file n
TAGScontaining the same type of information, but in a form readable by theemacs edi-
tor. TheTAGSfile contains entries for types as well as units.

The command

$ vi -t HANOI.SOLVE

then calls thevi text editor, locates the proper file, and places the cursor at the defini
of the named type or unit ready for editing. While invi , the command

:ta TERMINAL

searches for the file in whichTERMINALis defined, enters the file, and again places th
cursor at the named type or unit. Alternately, you may achieve the same effect by pla
the cursor on the first character of a unit and then pressing the<CONTROL> key and the
<]> key simultaneously.

The emacs commandfind-tag , normally bound toM-., will prompt for a unit name,
and the location of aTAGSfile the first time it is used. When they are entered, it will loa
the file containing the unit, and position the cursor on the line containing the declaratio
the named unit or type.

$ a.tags -x *.a
HANOI10 hanoi.aprocedure HANOI is
HANOI.DRAW_RING38 hanoi.aprocedure DRAW_RING
HANOI.DRAW_START72 hanoi.aprocedure DRAW_START is
HANOI.SOLVE93 hanoi.aprocedure SOLVE
TERMINAL2 termbody.apackage body TERMINAL is
s#TERMINAL2 termspec.package TERMINAL is
4-105

MAXAda Reference Manual

es are
eir

earch

t
The

. This
Over-
Both Ada specifications and incomplete types are named by adding the prefixs# to the
Ada name, bodies are named with the unmodified Ada name, and stubs for separat
named by adding the prefixstub# to the Ada name. These constructs are listed with th
simple name (including thes# or stub# if present) only if that simple name is unique
across all other tags. The fully expanded name is always given so that the user may s
for either the simple name (if unique) or the fully expanded name.

Overloaded subprograms arenot differentiated when generatingctags(1) tags out-
put, or eithervgrind or cxref(1) output. However, the tag can identify the correc
file, and repeated application of the search pattern will find the desired subprogram.
search pattern is generalized to match all versions of the overloaded subprogram
generalization can cause the pattern to match things other than the desired unit.
loaded subprograms are differentiated when generatingetags(1) TAGS output.

NOTE

When usingvi -t , the desired unit or type must be in the same
case (upper case or lower case) as it appeared in the source file,
unless thevi ignorecase option is used. See thevi(1) man
page.
4-106

MAXAda Utilities

file,

n

a.touch 4

Make the environment consider a unit consistent with its source file's
timestamp

The syntax of thea.touch command is:

a.touch [options] [unit-id ...]

The following represents thea.touch options:

unit-id is defined by the following syntax:

unit[/ part] | all[/ part]

wherepart is thespecification , body , or all ; abbreviations are accepted.

Thea.touch tool is used to force a unit to be considered consistent with its source
usually to keep it from being rebuilt bya.build . Note that it may still be considered
inconsistent for other reasons, such as a required unit being changed.

Thea.invalid tool is provided to allow the opposite functionality. See “a.invalid” o
page 4-37 for details.

NOTE

The file specified by the-pragma option may only contain inde-
pendent configuration pragmas.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a MAXAda release (other than the default release)

-v verbose Display a message for each invalidated unit

-H help Display syntax and options for this function

-pragma file config pragmas Touch independent configuration pragmas from the given sourcefile

-source file source file Touch all units in the specified file
4-107

MAXAda Reference Manual

e
must
a.trace 4

Format and display raw trace records

The syntax of thea.trace command is:

a.trace [options] executable_file| trace_data_file[task ...]

The following represents thea.trace options:

When “-u file” is used, event lookups will occur for all Ada events logged with th
user_trace package using the “sub_id” as the table key. The format_table specified
be named “ada_user_trace”.

See “Viewing Trace Events with a.trace” on page 11-20 for more details.

Option Meaning Function

-a ASCII Dump ASCII trace records (read-only)

-c file config Use alternative trace config template

-e events Include symbolic event name with-a listing

-env env environment Specify an environment pathname

-g ghost Include ghost tasks (RTS internal tasks)

-l list List tasks found in data file

-not_rts not_rts The datafile was created byntraceud without the Ada tracing runtime
library (-trace or -ntrace options in the partition). Implies the-r
option and precludes the-a option

-r raw Dump raw trace records (read-only)

-rel release release Specify a MAXAda release (other than the default release)

-s stamp Include timestamp in ASCII (-a) listing

-sx stamp Include raw interval_timer (hexadecimal) timestamp in ASCII (-a) listing

-t file tasks Only include tasks found infile

-u file user Include user table infile

-v verbose Include task control block addresses

-w warning Suppress warning messages

-E file eventfile Use alternative event map file

-H help Display syntax and options for this function

-T file table Use alternative trace table

no options Produce <prog>.ntrace.* files forntrace(1)
4-108

MAXAda Utilities

ons

.

n
)

Compile Options 4

The following options may be issued toa.mkenv anda.options (as well asa.com-
pile).

See “Compile Options” on page 3-20 for a conceptual discussion of compile opti
within an environment.

Negation (!) 4

Compile options may be preceded by! to negate them (e.g.-!S). This is useful for over-
riding a more general option that enabled them. See “Compile Options” on page 3-20

Option Meaning Function

-e [e | l | L | v] errors Control error emission style:

-e list errors tostdout , with related source lines
-ee embed errors in source files and invoke $EDITOR
-el list source files tostdout , interspersed with any errors — only

source files with errors
-eL list source files tostdout , interspersed with any errors — even

source files with no errors
-ev embed errors in source files and invokevi

The default behavior is to list errors tostderr with file name, and line
and column number

-g [level] debug level Select debug level:0 (none), 1 (lines) or 2 (full)

-g is equivalent to-g2

-i info Suppress information only messages

-opp opportunism Make opportunistic use of unit bodies to improve code optimizatio
(beyond inlining) (Not supported in current release of MAXAda product

-sm share_mode share mode Apply pragmaSHARE_MODE(share_mode)

-w warnings Suppress warning and info messages

-N not shared Set default of pragmaSHARE_BODYto FALSE

-O [level] optimize Select level of code optimization (1-3)

-O is equivalent to-O2

-Qkeyword[=value] qualifier Specify a qualifier keyword

-S suppress Suppress checks (same as pragmaSUPPRESS_ALL)
4-109

MAXAda Reference Manual

they

hen

)”

in a
nt.

-

-
c

t

value,

g).
Options which disallow arguments behave as though they were never specified when
are negated.

Options which allow arguments take on values that effectively disable them w
negated:

Negating a-Q option sets it to its default value. See “Qualifier Keywords (-Q options
on page 4-115.

See “Compile Options” on page 4-109 for a complete list of compile options.

Debug Level (-g[level]) 4

This parameter controls the level of debug information generated for compilations
given environment. This parameter can apply to a single unit or to an entire environme

none (0) No debug information. Debugging tools requiring line num
bers or symbolic information will not fully function on mod-
ules compiled at this debug level.

lines (1) Minimal level of debug information which provides line num
ber information only. Debugging tools requiring symboli
information will not fully function on modules compiled at this
debug level.

full (2) Full level of debug information. This is required for mos
debugging tools and packages to fully function.

When new environments are created, the value of this parameter is set at the default
none (0) .

If specified as a command-line parameter without a value (-g), the debug level is set to
full (2) .

See “Debugging” on page 3-38 for more information.

See “Compile Options” on page 4-109 for a complete list of compile options.

Opportunism (-opp) 4

Make opportunistic use of unit bodies to improve code optimization (beyond inlinin
This option is not supported in the current release of MAXAda.

Negation Equivalent to:

-!g -g0

-!O -O1

-!sm -sm non_shared
4-110

MAXAda Utilities

an
three

th
but

n.

his
ey

in

and
be
an

t

-

fault,
gates
See “Compile Options” on page 4-109 for a complete list of compile options.

Share Mode (-sm) 4

You control whether units are compiled for ordinary static linking (for use directly or in
archive) or as position independent code (for inclusion in a shared object). There are
possible values of share mode:

non_shared Compilations generate code that will be statically linked. Units wi
this share mode cannot be included in a shared object partition,
may be included in an archive or used directly in an active partitio

shared Compilations generate position independent code. Units with t
share mode may be included only in a shared object partition. Th
cannot be statically linked either directly in an active partition or
an archive.

both Compilations generate both code that is position independent
code that can be statically linked. Units with this share mode may
included in a shared object or archive partition, or used directly in
active partition.

The default value of share mode isnon_shared .

You must specify a value for the share mode when using this option.

A unit that is compiled with the share mode option set toshared must be placed in a
shared object to be used. Units with share modeboth may be put in a shared object, bu
only if the shared version is to be used.

See “Compile Options” on page 4-109 for a complete list of compile options.

Not Shared (-N) 4

The implementation-defined pragmaSHARE_BODYindicates whether or not an instantia
tion is to be shared. For this release, the default for pragmaSHARE_BODYis not to share
any generics.

This option sets the default to not share any generics, but since this is already the de
it has no effect. The default is to share all generics that can be shared. This option ne
this and sets the default toFALSE.

See “Pragma SHARE_BODY” on page M-128 for more information.

See “Compile Options” on page 4-109 for a complete list of compile options.
4-111

MAXAda Reference Manual

de

e

tion
Optimization Level (-O[level]) 4

The MAXAda compiler is capable of performing various levels of program object co
optimization. There are three levels of optimization available:MINIMAL (-O1), GLO-
BAL (-O2), andMAXIMAL(-O3). Each higher level of optimization is a superset of th
level of optimization which precedes it.

The quality of code produced by the compiler is representative of the level of optimiza
at which it was compiled.

- Optimization levelMINIMAL produces less efficient code, but allows
for faster compilation times and easier debugging.

- Level GLOBALproduces highly optimized code at the expense of
greater compilation times.

- MAXIMAL is an extension ofGLOBALthat is capable of producing
even better code, but may change the behavior of the program in
some cases.MAXIMALattempts strength reduction operations that
may raiseOVERFLOW_ERRORexceptions when dealing with values
that approach the limits of the architecture of the machine.

The default for the optimization level isMINIMAL.

If specified as a command-line parameter without a value (-O), the optimization level is
set toGLOBAL(-O2).

Table 4-4 shows these optimizations:

.

Table 4-4. Levels of Optimization

OPTIMIZATIONS
MINIMAL

(-O1)

GLOBAL

(-O2)

MAXIMAL

(-O3)

Short circuit boolean tests * * *

Use of machine idioms * * *

Literal pooling * * *

Trivial constant folding * * *

Binding of intermediate results to registers * * *

Determination of optimal execution order * * *

Simplification of algebraic expressions * * *

Re-association of expressions to collect constants * * *

Detections of unreachable instructions * * *

Elimination of jumps to adjacent labels * * *
4-112

MAXAda Utilities
Elimination of jumps over jumps * * *

Replacement of a series of simple adjacent instructions by a single
faster complex instruction

* * *

Constant folding * * *

Elimination of unreachable code * *

Insertion of zero trip tests * *

Elimination of dead code * *

Constant propagation * *

Variable propagation * *

Constraint propagation * *

Folding of control flow constructs with constant tests * *

Elimination of local and global common sub-expressions * *

Move loop invariant code out of loops * *

Reordering of blocks to minimize branching * *

Binding variables to registers * *

Detection of uninitialized uses of variables * *

Partial folding of Boolean expressions * *

Direct branching to exception handlers * *

Loop unrolling * *

Register reallocation and redundant move elimination * *

Instruction scheduling and reordering * *

Comprehensive strength reduction *

Test replacement *

Induction variable elimination *

Elimination of dead regions *

Table 4-4. Levels of Optimization (Cont.)

OPTIMIZATIONS
MINIMAL

(-O1)

GLOBAL

(-O2)

MAXIMAL

(-O3)
4-113

MAXAda Reference Manual

by
ese
NOTE

Additional optimizations are performed when given the-O3
opt ion that do not get per for med wh en th eMAXIMAL
OPT_LEVELpragma is applied alone. This is also true with
respect to the relationship between the-O2 option and theGLO-
BAL OPT_LEVELpragma. In order to take full advantage of
optimization at a given level, it is recommended that the-O
option be used instead of the pragmas.

Also, if pragma OPT_LEVELis used to optimize code, only code
within the scope of the pragma is optimized. See “Pragma
OPT_LEVEL” on page M-122 for more information.

See “Compile Options” on page 4-109 for a complete list of compile options.

Qualifier Keyword (-Qkeyword[=value]) 4

Qualifier keywords (or-Q options as they are more widely known) can be specified
using this option. See “Qualifier Keywords (-Q options)” on page 4-115 for a list of th
options. Also,a.options -HQ provides this list.

See “Compile Options” on page 4-109 for a complete list of compile options.

Suppress Checks (-S) 4

Suppresses all language-defined checks. Equivalent to pragma SUPPRESS_ALL.

See “Pragma SUPPRESS_ALL” on page M-132 for more information.

See “Compile Options” on page 4-109 for a complete list of compile options.
4-114

MAXAda Utilities

pro-
nly

this
els
ded
Qualifier Keywords (-Q options) 4

inline_line_count

The maximum number of statements allowed within an inline expanded sub
gram. The default value is 25 lines. In other words, if the default is used, then o
those subprograms which contain 25 or fewer lines will be expanded inline.

inline_nesting_depth

The maximum depth level of inline expanded subprograms. For example, if
value is 3, the compiler will perform nested inlines up to and including three lev
deep. Any nested inline calls greater than three levels deep will not be expan
inline. The default value for this parameter is 3.

Keyword Possible values Default value

inline_line_count (0 .. 4096) 25

inline_nesting_depth (0 .. 50) 3

inlines_per_compilation (0 .. 4096) 75

inline_statement_limit (0 .. 16384) 1000

opt_class (safe, unsafe, standard) safe

optimize_for_space (false, true) false

optimization_size_limit (0 .. 1000000) 50000

objects (0 .. 10000) 128

loops (0 .. 100) 20

unroll_limit_const (0 .. 100) 10

unroll_limit_var (0 .. 100) 2

unroll_limit (0 .. 100) 4

growth_limit (0 .. 10000) 25

interesting (-2**31 .. (2**31)-1) 0

target (ppc604) ppc604

benchmark

invert_divides

no_component_reorder

no_multiply_add

noreorder

sync_volatile

warn_component_reorder
4-115

MAXAda Reference Manual

m-
ven
he

ing
imit,

for

ro-

ult,

m-

res-
the
piler
the
r is

is a
00,

eal”
y
ga-

ects

za-
op
inlines_per_compilation

The maximum number of inline expansions that will be performed in a single co
pilation. Once this number of inline expansions has been performed for a gi
compilation, no other inline expansions will be performed by the compiler. T
default value for this parameter is 75.

inline_statement_limit

The maximum number of Ada statements that will be inlined. When the runn
total of statements included within inline-expanded subprograms exceeds this l
then all subsequent inline expansions will not be performed. The default value
this parameter is 1,000.

opt_class

Acceptable values for this parameter aresafe , unsafe , andstandard . Cur-
rently,safe andstandard have the same effect.safe is the default value. If set
to unsafe , additional optimizations will be performed that do not ensure that a p
gram will perform correctly. (For instance, if set tounsafe , a loop test replace-
ment may cause a program to loop infinitely).

optimize_for_space

A boolean value that determines whetherall routines in a compilation will be opti-
mized for space regardless of the values of other compiler directives. By defa
this parameter isfalse .

optimization_size_limit

The maximum number of “expressions” that will be processed at theGLOBALor
MAXIMALlevel of optimization. If this number of expressions is reached, the co
piler performs all remaining optimization at levelMINIMAL. The default value for
this parameter is set at a relatively high number because the number of “exp
sions” processed during a compilation are not easily identified by inspection of
Ada source code. This parameter is best used as a ceiling to prevent the com
from growing dangerously large (resulting in excessive swapping or perhaps
exhaustion of available system memory). The default value for this paramete
50,000.

objects

The maximum number of objects (per routine) that will be optimized. Anobjectis
any scalar program variable or compiler-generated temporary variable that
unique object in the eyes of the compiler. For example, if this number is set to 1
then only the 100 most-used objects in a given routine will be considered as “r
objects by the compiler.Real objectsare the only objects taken into consideration b
the optimizer when it comes time to perform optimizations such as copy propa
tion and dead-code elimination. By default, only the 128 most often used obj
will be considered for optimizations.

loops

The maximum number of loops (per routine) that will be considered for optimi
tion. Loop optimizations that occur at the higher levels of optimization are lo
4-116

MAXAda Utilities

nly

e
r of

pti-

ded
ill

hich
the
cor-

ile
ap-

imal

the

tage
pro-
for
per-

ve 100

om-
ct is
ST-

uses
nt,
unrolling, test replacement, strength reduction, and code motion. By default, o
the 20 most deeply nested loops in a given routine will be optimized.

unroll_limit_const= N

Limit the number of times a loop with a number of iterations known at compile tim
may be unrolled. For more information see the "Program Optimization" chapte
the Compilation Systems Volume 2 (Concepts)(0890460). N must be an integer
greater than or equal to 0. The default on Series 6000 with global or maximal o
mization is 10.

Note that while unrolling a loop body, the bounds of a small array may be excee
within the copies, though the loop itself is iterated just a very few times. This w
result in a "possibly exceeded array bounds" message during compilation, w
will not appear if the unroll limit is set to less than the number of elements in
small array. This is an unlikely situation, and in any event the code is executed
rectly.

unroll_limit_var= N

Limit the number of times a loop with a number of iterations not known at comp
time may be unrolled. For more information see the "Program Optimization" ch
ter of theCompilation Systems Volume 2 (Concepts)(0890460). N must be an inte-
ger greater than or equal to 0. The default on Series 6000 with global or max
optimization is 2, as analysis indicates this is most profitable on Series 6000.

unroll_limit

This options determines the unroll limit for both constants and variables in
absence of either of-Qunroll_limit_var or -Qunroll_limit_const .
Obviously, if either is specified, it overrides-Qunroll_limit . And if both are
specified,-Qunroll_limit is completely ignored.

growth_limit

The growth limit parameter is a raw percentage that specifies the percen
increase allowed in a program’s size due to the optimization performed on the
gram. By default, the combined effect of all optimizations which trade space
time cannot increase the size of a program by more than 25 percent. The raw
centage argument is an integer value that represents the percentage in size abo
percent that the program may grow to be.

interesting

This option indicates that the default degree of interest for every object in the c
pilation shall be the specified value, unless the degree of interest for that obje
overridden by a pragma INTERESTING in the source (see “Pragma INTERE
ING” on page M-116).

no_component_reorder

Normally, the compiler reorders record components without representation cla
in order to better utilize memory (filling in holes in records caused by alignme
etc.). This behavior occurs even for unpacked types.

The-Qno_component_reorder option prevents such reordering.
4-117

MAXAda Reference Manual

uses
nt,

o
age
warn_component_reorder

Normally, the compiler reorders record components without representation cla
in order to better utilize memory (filling in holes in records caused by alignme
etc.). This behavior occurs even for unpacked types.

The -Qwarn_component_reorder option causes the compiler to issue an inf
diagnostic when reordering does occur. See “Informational Messages” on p
3-31.
4-118

MAXAda Utilities

sis-
age

d”

its

ut

to
Link Options 4

MAXAda supports a set of link options for each partition. These link options are per
tent and may be specified using any of the methods discussed in “Link Options” on p
3-34.

Option Meaning Function

-ar=l x archive Pass a-l x option to the system loader (ld), ensuring that it will be
statically linked

-arch architecture architecture Specify a target architecture (nh , moto , synergy)

-bound bound Set the default task weight to BOUND

-c [v | V] compress Compress generated program via selective linking; remove “dea
routines

-elab_src elab source Create a source file named “.ELAB_ main.a ” representing the
elaboration of library units and execution of the main subprogram
(wheremainis the unit designated as the main subprogram)

-forgive forgive Cause a partition to be linked despite the fact that some of its un
are either not compiled or inconsistent

-incr incremental Allow the archive partition to be relinked incrementally

-ld file ld file Pass an object file to the system loader (ld)

-multiplexed multiplexed Set the default task weight to MULTIPLEXED (multiplexed tasks
are not supported in this release)

-nosoclosure no so closure Do not include full transitive closure of shared objects’ units

-osversion version OS version Specify a target PowerMAX OS library version

-skipobscurity skip obscurity Skip obscurity checks

-sl share link Specifies a soft link from the shared object pathname to the outp
pathname

-so=l x shared object Pass a-l x option to the system loader (ld), ensuring that it will be
dynamically linked

-sp path share path Set the shared object partition’s pathname on the target system
path
4-119

MAXAda Reference Manual

ions
ta is

d by
,

t are

nv”
chi-
X

it is
x
inux

than
ries
Selective Linking 4

The-c option invokes the Ada selective linker (a.slinker) prior to issuing the final
/bin/ld command that produces an executable file.a.slinker removes routines that
cannot be called by legal Ada means from the program. Only the machine instruct
associated with Ada routines are available for removal by the selective linker; da
never removed.

Specifying-cv produces statistics on the amount of memory and disk space remove
the selective linker. Note that these statistics arenot based on the final executable image
rather on an intermediate image in the link process.

Specifying-cV produces a list of the routine names (the actual external names) tha
removed as well as the statistics available with-cv .

See “a.slinker” on page 4-100 for more information on the selective linker.

See “Link Options” on page 4-119 for a complete list of link options.

Target Architecture 4

The-arch link option affects which libraries are linked into partitions.

If specified for a partition or for an environment which contains a partition (see “a.mke
on page 4-58), the partition is linked so that it will execute properly on the specified ar
tecture. If no-arch link option is specified for environments created with PowerMA
OS systems, the partition is linked so that it will execute properly on the system where
linked. The-arch link option must be specified for environments created with Linu
systems, unless only a single architecture is supported by the installed PowerWorks L
Development Environment’s PowerMAX OS Cross Development rpm’s.

For environments created on PowerMAX OS systems, to support architectures other
that of the system where the link occurs, the PowerMAX OS Cross Compiling Libra

-trace[: args] trace Activate tracing;args is a comma-separated list of the following
options, abbreviations allowed (defaults in parentheses):

enabled= true | false (true)
mechanism= internal [/ default | rcim_tick] |

ntraceud (internal/default)
buffersize= n (1000)
rtsinstrumentation= true | false (true)
elabinstrumentation= true | false (true)

-A args a.analyze Use args as list of arguments toa.analyze (spaces must be
quoted with “\”)

-O optimize Perform optimizations at link time by invoking thea.analyze
optimizer

Option Meaning Function
4-120

MAXAda Utilities

nux
rts
le,

sed.
package (crosslibs) or PowerMAX OS Cross Development package (crossdev)
must be installed.

For environments created on Linux systems, a version of the PowerWorks Li
Development Environment’s PowerMAX OS Cross Development rpm which suppo
that architecture must be installed. Currently, the following rpm’s are availab
supporting the specified target PowerMAX OS version and architectures:

If uncertain about the architecture of the target system, the following table can be u
This table also is available via the-HA option to thea.mkenv , a.partition , and
a.link commands. TheSystem typecan be determined for any system by executing

uname -A

on that system.

See “Link Options” on page 4-119 for a complete list of link options.

Table 4-5. Linux PLDE Cross Development Libraries

rpm name PowerMAX OS version architectures

plde–pmax–crossdev–4.3 4.3 nh, moto

plde–pmax–crossdev–5.0 5.0 synergy

Table 4-6. Target Architectures

System type architecture

PowerMAXION-4 nh

PowerMAXION nh

Night Hawk 6800 nh

Night Hawk 6800 Plus nh

TurboHawk nh

Power Hawk 610 moto

Power Hawk 620 moto

Power Hawk 640 moto

PowerStack moto

PowerStack II moto

Power Hawk 710 synergy

Power Hawk 720 synergy

Power Hawk 740 synergy
4-121

MAXAda Reference Manual

nv”
ow-
d
the

op-

orks
m
n
port
.

. It
ct will
ated
tion

tput

ate-
nits
er-
the

aced
OS Version 4

The-osversion link option affects which libraries are linked into partitions.

If specified for a partition or for an environment which contains a partition (see “a.mke
on page 4-58), the partition is linked so that it will execute properly on the specified P
erMAX OS version. If no-osversion link option is specified for environments create
with PowerMAX OS systems, the partition is linked so that it will execute properly on
system where it is linked. The-osversion link option must be specified for environ-
ments created with Linux systems if multiple versions of the PowerWorks Linux Devel
ment Environment’s PowerMAX OS Cross Development rpm’s are installed.

For environments created on Linux systems, the appropriate version of the PowerW
Linux Development Environment’s PowerMAX OS Cross Development rp
(plde-pmax-crossdev- x. y) must be installed. Note that the PowerMAX OS versio
number is part of the rpm name instead of the rpm version number. This allows sup
for building partitions for multiple PowerMAX OS versions from a single Linux system

Share Path 4

The -sp option specifies the shared object partition’s pathname on the target system
does not cause the shared object to be created in the specified path; the shared obje
still be built at the pathname specified for the target. However, all user programs cre
that require units from this shared object will expect the shared object to be in that loca
when they begin execution. The shared object must be placed at thepathspecified by-sp
on the target system before any executables using it can be run.

With the-sl option, a soft link is created from the shared object’s pathname to the ou
pathname. Using this option in conjunction with the-sp option removes the need for the
shared object to be explicitly placed at thepathspecified by the-sp option.

See “Share Path” on page 3-14 for more information.

See “Link Options” on page 4-119 for a complete list of link options.

Incrementally Updateable Partition 4

When-incr is specified on an archive partition, the result is an an incrementally upd
able partition. If any units contained within this partition are changed, only those u
will be updated when the partition is relinked. In order to reduce implementation ov
head, the partition will be completely rebuilt if units that could have been included in
partition are removed from the environment.

The timestamp of the partition is used to determine which object files need to be repl
within it when the partition is relinked.
4-122

MAXAda Utilities

to

tput
f this

):

aning

11,

h
hese
WARNING

The user must never change the timestamp of the target file for a
partition configured with this option. If the target file's timestamp
were changed and then relinked, the target file might contain stale
object files.

See “Link Options” on page 4-119 for a complete list of link options.

Tracing 4

The -trace option exists so that the linker can select an appropriate runtime library
link for tracing.

When linked with this tracing option, the resulting executable will generate tracing ou
when executed as specified by the attributes provided to this option. The syntax o
option is:

-trace[: args]

whereargs is a comma-separated list of the following options (defaults in parentheses

enabled= true | false (true)
mechanism= internal [/ default | rcim_tick] |

ntraceud (internal/default)
buffersize= n (1000)
rtsinstrumentation= true | false (true)
elabinstrumentation= true | false (true)

Each of the above keywords may be abbreviated to any degree so long as its me
remains unambiguous. Also, all the keywords are case-insensitive.

NOTE

The prefix-trace is case-sensitive like the other link options
and so must be in lowercase.

The output may be analyzed with thea.trace utility or with the Concurrent NightTrace
utility, ntrace , if it is available on your system. For more about tracing, see Chapter
specifically “Tracing Options” on page 11-10.

See “Link Options” on page 4-119 for a complete list of link options.

Task Weight 4

The -bound and-multiplexed options set the task weight for the partitions to whic
they are applied, however multiplexed tasks are not supported in this release. T
4-123

MAXAda Reference Manual

more
ge

hat
se of
y be
te to

e that

idered,

hared
t. So
ions
stem
ever

n to
hared

, any
n is
ed
nate
options override any other specifications such as those obtained from pragmas. For
information, see “Task Weights” on page 5-2 and “Pragma TASK_WEIGHT” on pa
6-10.

See “Link Options” on page 4-119 for a complete list of link options.

Shared Object Transitive Closure 4

Normally, if a shared object partition is included in another partition, then all units in t
shared object partition are included, including any that might not be required becau
normal Ada semantic dependence (see RM 10.1.4). As a result, further units ma
included, and even further archive or shared object partitions (and this may propaga
even further units and partitions as a result of the latter). This is necessary to ensur
linker errors do not result because of undefined external symbols.

This behavior can be disabled with the-nosoclosure link option. If used, units in a
shared object that are not required by Ada semantic dependence rules are not cons
nor are any units or partitions on which they might depend.

Caution must be exercised when using the-nosoclosure option, or linker errors may
result. Even though any extra units in a shared object are not being considered, the s
object is being included, and those units cannot be separated from the shared objec
any symbol references from those units must be satisfied with external symbol definit
or the system linker will produce undefined external symbol reference errors. The sy
linker option-Znodefs may be used to suppress those errors so long as they are n
really used as the program executes. The link options would then include:

-nosoclosure -ld -Znodefs

NOTE

If -Znodefs was used to link, and any undefined external sym-
bols really are referenced as the program executes, the program
most probably will abort withSIGSEGV, SIGBUS, or SIGILL .

See “Link Options” on page 4-119 for a complete list of link options.

Obscurity Checks 4

When a shared object partition is included in a program, it may include units in additio
those required by Ada semantics dependence (see RM 10.1.4). Also, because of s
object transitive closures (see “Shared Object Transitive Closure” on page 4-124)
units required by those additional units will be included. If the shared object partitio
from a foreign environment, it is possible that the additional units may have been replac
in the current environment (or any environment nearer than the foreign one) with alter
versions. Those local (or nearer) versions are said toobscurethe foreign versions.
4-124

MAXAda Utilities

ust be
ave
, and
Because shared objects must be included as a whole, those foreign versions m
included as well.a.link makes every possible effort to ensure that programs beh
correctly in these cases, but there are a handful of cases where it is impossible
a.link is forced to issue an error.

Please note in the following diagrams:

- The environments are namedLOCALandFOREIGN.

- The arrows a ---> b indicate that a requires b.

- The shaded areas indicate grouping in shared objects.

- The units marked with a* are included in the link.

- The unit namedalpha is always the main unit, and is always in thelocal
environment.

- The units marked with eitherinfo or error indicate that an info or error
diagnostic is emitted for an obscurity associated with that unit.
4-125

MAXAda Reference Manual

s are

hared
e
even

tted,

he
Case 1)

If the obscuring versions are not required by the program and the obscured version
required only to satisfy the shared object transitive closure,a.link will include them,
but they will never be used so they are harmless.

Example:

Becausegammais not required by Ada semantic dependence, the version inLOCALwill
not be included in the link. The version inFOREIGNis never used but is included in the
link because it is in the same shared object asbeta (which is required byalpha).

Case 2)

If the obscuring versions are required and the obscured versions are in required s
objects, thena.link will ensure via ordering of options to the system linker that th
obscuring versions are used at run-time in preference to the obscured versions,
though both versions are present in the program. An informational diagnostic is emi
but the program will work properly.

Example:

In this example, all the units will be included in the link, but MAXAda ensures that t
version ofgammain LOCALis used in preference to the version inFOREIGN.

unit gamma

unit alpha *

LOCAL

unit gamma *

unit beta *

FOREIGN

unit gamma *

unit alpha *

LOCAL

unit gamma *

unit beta *

FOREIGN

info
4-126

MAXAda Utilities

bjects,

page

f

is
rnal

rogram
Case 3)

If the obscuring versions are required and the obscured versions are in non-shared o
thena.link is forced to issue an error. This situation happens as follows:

Example:

In this case, Ada semantic dependence requires the version ofepsilon from LOCAL.
The shared object transitive closure (see “Shared Object Transitive Closure” on
4-124) requires the version ofepsilon from FOREIGN. Because they are both
non-shared objects, it is impossible for them to coexist in the same program. So,a.link
issues an error.

The -skipobscurity option will override this behavior and force the version o
epsilon from LOCALto be included in the program, and the version ofepsilon from
FOREIGN(and any units it requires that are not required by the version ofepsilon in
LOCAL) to be discarded. If the two versions ofepsilon are not substantially different,
such as when the version inLOCALcontains a simple bugfix and adds no new units, th
will work as expected. If the two versions are substantially different, undefined exte
symbol references may result. In that case, the system linker option-Znodefs may be
used to suppress those errors so long as the references are never really used as the p
executes. The link options would then include:

-skipobscurity -ld -Znodefs

NOTE

If -Znodefs was used to link, and any undefined external sym-
bols are referenced as the program executes, the program most
probably will abort withSIGSEGV, SIGBUS, or SIGILL .

See “Link Options” on page 4-119 for a complete list of link options.

unit alpha *

LOCAL

unit gamma *

unit beta *

FOREIGN

error unit epsilon unit epsilon *
4-127

MAXAda Reference Manual
4-128

2
Part 2Run-Time

Replace with Part 2 tab

MAXAda Reference Manual

Part 2 - Run-Time
Part 2 - Run-Time

Part 2 Run-Time

Chapter 5 Run-Time Concepts .. 5-1

Chapter 6 Run-Time Configuration... 6-1

Chapter 7 Interrupt Handling... 7-1

MAXAda Reference Manual

-1
-2
-2
-2
-3
-3
-3
-3
3
-4
5
-5
-5
5-8
-8
-8
10
11
1
1
1
2
2

13
4

6
7
7

5
Run-Time Concepts

Tasking Model . 5
Features. 5
Performance . 5
Task Weights. 5

Bound Tasks . 5
Multiplexed Tasks . 5

Task Scheduling . 5
Task Time Slices . 5

Utilization of Multiple CPUs . 5-
Ghost Tasks . 5

ADMIN Ghost Task . 5-
TIMER Ghost Task . 5

Priorities . 5
OS Scheduling Classes .

Class Selection by the Non-Tasking Run-Time 5
Class Selection by the Tasking Run-Time . 5

Restrictions for Priorities in the System.Interrupt_Priority Range 5-
Memory Management . 5-

Text Memory . 5-1
Data Memory . 5-1
Collection Memory. 5-1
Stack Memory . 5-1
Other Memory . 5-1
Visibility of Memory . 5-13
Local Memory Management . 5-

NUMA Policies . 5-1
MAXAda Local Memory Management . .. 5-15

Distribution Requirement. 5-1
Local Memory Locking Requirement . 5-1
Example . 5-1

MAXAda Reference Manual

em
of a
ed
ime,

g as

pro-
ch as
en

l;

file

rs are
.
tasks.
5
Chapter 5Run-Time Concepts

5
5
5

The MAXAda run-time system, also called the Ada Real-time Multiprocessor Syst
(ARMS), is a flexible run-time system which has been designed to meet the needs
wide range of Ada applications, including: time-sharing, low-priority, single thread
applications, multi-program shared-memory applications, and the most critical, real-t
multi-processor, multi-tasking applications.

It includes the following features:

• Implementation of all Ada language-defined run-time features

• Memory management

• Automatic distribution of tasks across CPUs

• True parallel task execution

• Predictable task scheduling

• Hardware and software interrupt handling

• Static and dynamic configuration control

Tasking Model 5

The multithreaded, preemptive run-time executive supports standard Ada taskin
defined by ANSI/ISO/IEC-8652:1995.

Within this part of this manual,programor applicationrefers to theENVIRONMENTtask
(the main subprogram) and the entire set of Ada tasks that are included in the Ada
gram as defined by its dependencies (e.g., a single executable image on disk, su
a.out). A processrefers to the full-weight operating system entity that is spawned wh
the executable image is initiated.

A lightweight process, (LWP), refers to a lightweight operating system thread of contro
one or more of which is contained within every process. AnLWP is the basic entity sched-
ulable by the operating system. All LWPs within a process share the memory and
resources of that process.

The basic execution entity in the tasking model is aserver. A server is an anonymous
entity that actually executes on a CPU. Servers are implemented as LWPs. Serve
identified by entities calledserver groups, which are collections of one or more servers
Server groups are considered the execution resources that are available to Ada
Server groups can be either named or anonymous, depending on their usage.

Ada tasks are assigned servers based on their taskweight, which is eitherboundor multi-
plexed.
5-1

MAXAda Reference Manual

-
ool
fig-

nd
ma

mini-
ial-
stem
By default, all Ada tasks, including theENVIRONMENTtask (main subprogram), have
unique LWPs dedicated for their execution. This is termed a completelyboundconfigura-
tion.

Alternatively, a completelymultiplexedconfiguration specifies that all Ada tasks, includ
ing theENVIRONMENTtask (main subprogram), share the resources of a single p
which is served by a single LWP. The number of LWPs which serve that pool is con
urable.

NOTE

Multiplexed task weights are not currently implemented.

Many configuration options exist which provide for a mixture of the multiplexed a
bound configuration models, even within a single application. See “Prag
TASK_WEIGHT” on page 6-10.

Features 5

Tasking is implemented to meet the following requirements:

• Compliance with ANSI/ISO/IEC-8652:1995

• Highest possible performance

• Predictable task scheduling

• Sensible utilization of multiple CPUs

• Flexible tasking model configuration

Performance 5

The run-time executive achieves its high performance task rendezvous speeds by
mizing kernel interaction during inter-LWP communication and synchronization. Spec
ized kernel-free semaphores combined with low-contention, multithreaded use of sy
client/server services provide unequaled task performance.

Task Weights 5

Every task in an Ada program has an attribute called itsweight. There are two categories
of weight: bound, and multiplexed.
5-2

Run-Time Concepts

erver.
d, and
single
rmi-
hed in
ma
oci-

ower-
sing
res to

ma

ling
tum
cu-
run.

e
cuting

agma

stem.
the
Bound Tasks 5

Boundtasks are served by anonymous server groups, each containing exactly one s
As each bound task is activated, its anonymous server group and server are create
begin to execute the task. The newly created server group exists only to execute the
task for which it was created. It will never execute any other task. When the task te
nates, its server group is destroyed. The servers contained in that group may be cac
the server cache for inclus io n in other server gro ups later (see “P rag
SERVER_CACHE_SIZE” on page M-128) or simply destroyed. Server groups ass
ated with bound tasks can be configured only by referencing their tasks.

Multiplexed Tasks 5

Multiplexed task weights are not currently implemented.

Task Scheduling 5

Ada tasks are cooperatively scheduled by the run-time executive and the real-time P
MAX OS kernel. Task activation, rendezvous, and termination are implemented u
real-time synchronization services designed for Ada tasking. Such scheduling adhe
the requirements set forth in RM D.2.1 (The Task Dispatching Model).

When the task dispatching policy is set toFIFO_WITHIN_PRIORITIES , scheduling
occurs as per RM D.2.2. Other scheduling policies are described in “Prag
TASK_DISPATCHING_POLICY” on page 6-2.

Task Time Slices 5

Apart from activation, rendezvous, abort, delay, termination, and priority, task schedu
is also dependent on its time slice. A task’s time slice is determined by its quan
attribute. Aquantumis the length of time an entity actually spends executing on an exe
tion resource before begin preempted by other entities at the same priority waiting to

Under theFIFO_WITHIN_PRIORITES task dispatching policy, tasks quanta ar
required to be infinte (i.e. tasks are never preempted by other tasks or programs exe
at the same priority).

Otherwise, the value of a task’s quantum can be changed via pragmas (see “Pr
TA S K _ Q U A N T U M ” o n p a g e 6 -1 5) a n d r u n - t i m e c a l ls (se e t h e
RUNTIME_CONFIGURATIONpackage in “vendorlib” on page 9-8).

Utilization of Multiple CPUs 5

By default, servers are automatically distributed across all available CPUs on the sy
However, applications are also provided precise control over server distribution with
concept of the CPU bias.
5-3

MAXAda Reference Manual

or-

PU
in the

ng
ose
on.
ta-

on

ur-
e any

hat
asso-
A CPU biasis a mask in which the relative bit number identifies a CPU number (LSB c
responds to CPU #0). For example:

Note that when more than 1 bit is set in a CPU bias, the kernel continually employs C
load-balancing techniques and migrates the server to the least busy CPU specified
bias.

If the application is utilizing physical “local memory” pools, the kernel’s load-balanci
algorithms will not automatically migrate tasks to CPUs without direct access to th
physical pools. However, explicit task CPU bias specifications will allow such migrati
See “Pragma MEMORY_POOL” on page M-120 for information about the implemen
tion-defined pragmaMEMORY_POOLand physical “local memory” utilization.

NOTE

Specifying a CPU bias of zero causes a run-time diagnostic to be
emitted and preserves the CPU bias inherited from the environ-
ment.

See “Pragma TASK_CPU_BIAS” on page 6-14 and “Pragma GROUP_CPU_BIAS”
page 6-19 as well ascpu_bias(2) for more information on CPU biases.

Ghost Tasks 5

Ghost tasksare tasks artificially created by the run-time executive for various internal p
poses. They are solely for the use of the run-time executive and do not ever execut
user code. However, it is sometimes useful to know of their existence and to know w
language constructs may cause them to exist. MAXAda also allows certain attributes
ciated with them to be configured as with ordinary tasks.

MAXAda currently has five kinds of ghost tasks:

• ADMIN (See “ADMIN Ghost Task” on page 5-5.)

• TIMER (See“TIMER Ghost Task” on page 5-5.)

• SHADOW (See “SHADOW Ghost Tasks” on page 7-4.)

• COURIER (See “COURIER Ghost Tasks” on page 7-3.)

• INTR_COURIER (See “INTR_COURIER and COURIER Ghost Tasks”
on page 7-5.)

CPU Bias Effect

2#00000100# Server will be bound to CPU #2

2#01000010# Server allowed to execute on CPUs #6 & #1

2#11111111# Server allowed to execute on all 8 CPUs
5-4

Run-Time Concepts

all

ding

an
g

on
ents

the
-

r-

oper-
es are
ADMIN Ghost Task 5

TheADMIN ghost taskexists only in programs that contain tasking (other than theENVI-
RONMENTtask). If it exists, it is a bound task that is responsible for the creation of
named server groups and for the creation of theENVIRONMENTtask. It also detects the
termination of all other tasks and performs cleanup operations on those tasks, inclu
deallocation of memory associated with those tasks.

TIMER Ghost Task 5

The TIMER ghost taskexists only in programs that contain multiplexed tasks (other th
the ENVIRONMENTtask). If it exists, it is a bound task that is responsible for all timin
operations associated with multiplexed tasks. These operations includedelay statements,
select statements withdelay alternatives, timed entry calls, and preemption based
time-slices. The TIMER task acts as an “alarm clock” that triggers rescheduling ev
when certain times have been reached because of these operations.

Priorities 5

The Ada95 language defines priorities in terms of the discrete subtypes defined in
packageSystem . The subtypeAny_Priority spans the entire priority range sup
p o r t ed b y th e i m p le m en t a t i o n w h i l e t h e su b t y p e sP r io r i ty a n d
Interrupt_Priority divide that range into standard user-level priorities and inte
rupt priorities (those which require the blocking of one or more interrupts).

See Figure 5-1 for a graphical representation of these subtypes as well as the various
ating system classes and associated priority mappings. (Cross-hatched priority rang
not available.)
5-5

MAXAda Reference Manual

e

00
ore
Figure 5-1. Mapping of Various Priority Interpretations

Values withinSystem.Priority’Range , when applied to servers (and therefor
bound tasks), map directly to the operating systemglobal priority classification. Thus a
System.Priority value of 100 represents an operating system global priority of 1
when applied to a bound task (see “Pragma TASK_WEIGHT” on page 6-10 for m
information on bound tasks).

Values withinSystem.Interrupt_Priority’Range map to the operating system
IPL classification. The IPL classification is defined in/usr/include/sys/ipl.h as
the C-language typepl_t .

159

Ada Class (AD)

Ada Priorities

OS Global Priorities

Fixed Priority Class (FP)
SCHED_RR

SCHED_FIFO

0 160

0 59 60 99 100

287

0 59

system.priority system.interrupt_priority

system.any_priority

System Class (SYS)

60 99

Time Sharing Class (TS)
SCHED_OTHER

-20 +20

Fixed Class (FC)

0

160

1

-20 +20

127

161

OS Interrupt Priority
Level (IPL) 0
5-6

Run-Time Concepts

any
eeds
at

d a

d a
- An IPL value of zero indicates the task is operating at normal user level; its
global priority determines its scheduling.

MAXAda mapsSystem.Interrupt_Priority’First to IPL value
zero with a global priority of 160 (which is higher than any other global
pr ior i ty normally avai lab le to users) . The remainder ofSys-
tem.Interrupt_Priority values map to non-zero IPL values (thus a
corresponding global priority is irrelevant).

- An operating system IPL value greater than zero indicates that the task is
executing at operating system interrupt level (and thus its actions are
severely restricted). See “Restrictions for Priori ties in the Sys-
tem.Interrupt_Priority Range” on page 5-10.

Thus, a task executing atSystem.Interrupt_Priority’First executes at user
level, because its IPL is zero, with a global priority of 160; such tasks execute as
normal user process would execute except that they enjoy a global priority which exc
t h at o f a n y o t h e r n o r m al p r o c e ss . A ta s k ex e c u t in g
System.Interrupt_Priority’First+1 or higher is executing at operating
system interrupt level and its actions are severely restricted.

From the packageSystem :

subtype Any_Priority is integer range 0..287 ;
subtype Priority is Any_Priority range 0..159 ;
subtype Interrupt_Priority is Any_Priority range 160..287 ;

The formula for translating between an operating system global priority an
System.Priority value is:

Global Priority value =System.Priority value

The formula for t ranslat ing between an operat ing system IPL value an
System.Interrupt_Priority value is:

IPL value =System.Interrupt_Priority value -
System.Interrupt_Priority’First
5-7

MAXAda Reference Manual

ed by

ppro-
ends
of the

map-

(see
ask-
pro-

by
a-

no
tem.
iority
e TS

a pri-

king

ner.

set-
ing

exe-
OS Scheduling Classes 5

The operating system schedulesLWPsbased on their scheduling class and priority.

The selection of the scheduling class depends upon which run-time executive is us
the program:

• non-tasking run-time executive - (see “Class Selection by the Non-Tasking
Run-Time” on page 5-8)

• tasking run-time executive - (see “Class Selection by the Tasking Run-
Time” on page 5-8)

Once a task’s priority has been determined, the run-time executive selects the most a
priate operating system scheduling class for its server (LWP). This selection dep
upon the presence or absence of Ada tasking and other real-time Ada features, one
following run-time executives may be used:

Figure 5-1 depicts the various operating system classes and the associated priority
pings.

Class Selection by the Non-Tasking Run-Time 5

For programs that do not utilize any of the features that require the tasking run-time
“Run-Time Systems” on page 1-10), the non-tasking run-time is employed. The non-t
ing run-time does not alter the operating system scheduling class or priority of the
gram in any way.

Note that technically, as required by the language, the main subprogram (ENVIRONMENT
task) is still executing at the Ada priority which is midway within the range defined
System.Priority . However, with the non-tasking run-time, that priority has no rel
tion to the operating system priority of the LWP serving the main subprogram; it has
effect on the scheduling of the program with respect to other programs on the sys
Thus for these “non-tasking” programs, the operating system scheduling class and pr
is determined by the spawning process, normally the shell, which usually selects th
(Time Sharing) operating system class with an initial global priority of 29.

Class Selection by the Tasking Run-Time 5

The tasking run-time assigns an operating system class and priority to match the Ad
ority of each task and the task dispatching policy in effect.

See “Run-Time Systems” on page 1-10 for the full set of features that require the tas
run-time.

The assignment of operating system class and priority is done in the following man
When the task dispatching policy is:

- FIFO_WITHIN_PRIORITIES

The AD (Ada) operating system class is selected with an infinte task quantum
ting. The AD scheduling class is essentially like the FP (Fixed Priority) operat
system class, except that it has a wider range of priorities. Priorities are notadjusted
due to CPU utilization and tasks are never preempted by other tasks/programs
cuting at the same (or lower) priority.
5-8

Run-Time Concepts

their
ot

t of
me-
ing

lass
fol-
heir
heir

stem
s no

ow-
the

a pri-

iority
- ROUND_ROBIN_PRIORITIES

The AD (Ada) operating system class is selected. Tasks are time-sliced as per
quantum (See “Pragma TASK_QUANTUM” on page 6-15) but their priority is n
adjusted due to CPU utilization.

- ROUND_ROBIN_ADJUSTABLE_PRIORITIES

The first operating system class which provides a global priority that matches tha
the task is selected (in the following order of preference): TS, AD. Tasks are ti
sliced as per their quantum and, if their priority allows them to be scheduled us
the TS class, their priorities are adjusted based on their CPU utilization.

- unspecified

When the task dispatching policy is unspecified, the first operating system c
which provides a global priority that matches that of the task is selected (in the
lowing order of preference): TS, FC, FP, or AD. Tasks are time-sliced as per t
quantum and, if their priority allows them to be scheduled using the TS class, t
priorities are adjusted based on their CPU utilization.

NOTE

Use of protected objects and theCEILING_LOCKING locking
p o l i cy (th e d ef a u l t l o c k in g p o l ic y - se e “ P r a g m a
LOCKING_POLICY” on page 6-3), requires the task dispatching
po l i cy FIFO_WITHIN_ PRIORITIES (see “P ra gma
TASK_DISPATCHING_POLICY” on page 6-2). Thus, the use of
protected objects will cause selection of the operating system AD
(Ada) scheduling class for all tasks.

With the tasking run-time, task priorities have a direct correspondence to operating sy
global priorities (see Figure 5-1). As such, the process spawning the program ha
effect on the priority of the main subprogram (ENVIRONMENTtask), since the language
requires it to execute midway within the range ofSystem.Priority (unless otherwise
specified by the user with a priority pragma). In other words, the command

nice -4 a.out

does not have an effect on a task’s priority or the priority of the program as a whole. H
ever, in anticipation of the need for priorities relative to that of the spawning process,
implementation-defined packageRUNTIME_CONFIGURATION(see “vendorlib” on page
9-8) includes the constantPRIORITY_OF_ENVIRONMENT. That constant is elaborated
during program start-up, before any user packages are elaborated. It can be used in
ority pragma to achieve an effect similar tonice -4 . For example:

pragma TASK_PRIORITY (runtime_configuraiton.priority_of_environment-4);

would ensure that the task in question would execute at a operating system global pr
lower (by 4) than that of the spawning process.
5-9

MAXAda Reference Manual
Restrictions for Priorities in the System.Interrupt_Priority Range 5

MAXAda does not allow application of PragmaInterrupt_Priority to normal
tasks unless the value specified in the pragma isInterrupt_Priority’First .
Tasks which execute atSystem.Interrupt_Priority’First are unrestricted.

Execution at higher priorities is restricted to:

• Protected subprograms and entries

• Tasks marked with PragmaFAST_INTERRUPT_TASK

Code executed at priorities higher thanSystem.Interrupt_Priority’First is
restricted as follows:

• May not enter the operating system kernel (except for the system call
server_wake1(2))

• May not perform any tasking actions (other than protected subprogram
calls andAda.Synchronous_Task_Control calls)

• May not execute delay or asynchronous select statements

• May not cause machine exceptions (page faults, floating point machine
exceptions, etc. Note that use of suchinterrupt_priority values
causes the applications pages to be locked in memory by the Ada execu-
tive, thus pages faults would not occur except by unusual user interaction)
5-10

Run-Time Concepts

utes

seg-
-
ined

cally

,

jects
, etc.
ci-

ol-
at the
Memory Management 5

The run-time system segments memory via the following classification:

• Machine instructions (text)

• Library-level variables (data)

• Collections

• Subprogram/task data (stack)

• Other

For each of the various types of memory region discussed here, the following attrib
are configurable:

• Physical location (memory pool)

• Locking behavior (lock state)

• Cache mode

• Size and extensibility

See “Memory Attributes” on page 6-21 for details on configuration.

Text Memory 5

Machine instructions, literals, and some constant data are allocated in statically sized
ments commonly referred to astext. Text is typically allocated at the low end of the appli
cation’s virtual address space (e.g., 0x1nnnnnnn). Generally, the size of text is determ
statically by the linker.

Data Memory 5

Library-level variables, such as those in library-level packages, are allocated in stati
sized segments commonly referred to asdata. Data is typically allocated in the middle of
the application’s virtual address space after theENVIRONMENTtask’s stack segment (e.g.
0x3nnnnnnn). Generally, the size of data is determined statically by the linker.

Collection Memory 5

The default collection, or default heap, is a region of memory used for designated ob
of user-defined access types, dynamically sized objects, internal run-time structures
The maximum size of the default collection may be virtually unlimited or may be spe
fied statically. If unlimited, the heap will grow as required by the application. Default c
lection addresses are assigned dynamically by the operating system and tend to be
5-11

MAXAda Reference Manual

llec-

spe-
-
If the
em-

brary
cally
mory
tack
ith

r, are
s they

unt of

at
the

of
the

its

f the
any

's

stem
sses
).

’s use
high end of the application’s virtual address space (e.g., 0xbnnnnnn). The default co
tion is created by the run-time system. Its extensibility and size are configurable.

Additional collections are allocated to implement user-defined access types that have
cific size requirements (e.g., use of’STORAGE_SIZE on an access type). Such collec
tions are allocated dynamically when the corresponding access type is elaborated.
access type is defined within a task or subprogram, the collection is allocated out of m
ory associated with the task or subprogram’s stack. If the access type is defined in a li
level package, the collection is allocated out of new memory at an address dynami
assigned by the operating system. Usually, the system automatically reclaims me
locations associated with collections allocated out of stack frames when those s
frames are exited. (See “Memory Attributes” on page 6-21). Memory associated w
other heaps is reclaimed only when the application exits.

Stack Memory 5

Subprogram and task data, including temporary variables generated by the compile
allocated and freed in stack frames associated with subprograms and task bodies a
are executed. Each task has a limit imposed by the run-time system on the total amo
stack space available for its use (except for theENVIRONMENTstack, which may be virtu-
ally unlimited in size). All stack size limits are configurable.

The stack associated with theENVIRONMENTtask is allocated by the operating system
program start-up time and is the only stack that can grow dynamically. Hence, it is
only task that can have anUNLIMITED stack size. This merely indicates that the size
the stack is not limited by the MAXAda compilation system. The stack still obeys
RLIMIT_STACK limit imposed by the operating system. Seegetrlimit(2) and
setrlimit(2) , or theksh(1) special commandulimit for details on determining
and affecting this limit. The system defaults for the hard and soft RLIMIT_STACK lim
are determined by theHSTKLIM andSSTKLIM kernel tunable parameters. Seecon-
fig(1M) . By default, these limits are 32Mb.

It is possible to change the memory aspects of theENVIRONMENTtask stack but only the
amount that is currently allocated by the operating system. Therefore, the size o
ENVIRONMENTtask stack must be specified by the user before attempting to modify
of these aspects. If not specified, theENVIRONMENTstack size will be set to 1 Mb.

The ENVIRONMENTtask's stack is typically allocated in the middle of the application
virtual address space before the data segment (e.g., 0x2fnnnnnn).

Stacks associated with tasks are allocated and freed dynamically by the run-time sy
(during creation and termination) out of the default collection. As such, stack addre
tend to be at the high end of the application’s virtual address space (e.g., 0xbnnnnnnn

Other Memory 5

Other memory may be part of the application’s address space, due to the application
of pragmas, packages, or tools.
5-12

Run-Time Concepts

ion’s
by

e of
r
d (and

mory
n an

ess
to

e-

co-
not

f the

e
mory
omic
oper-

k is
rn-
ma
e

sks
tion
da
Visibility of Memory 5

All tasks in an application have actual access to all memory locations in the applicat
virtual address space. Visibility to these memory locations is limited programmatically
the compiler ’s enforcement of the Ada language rules. However, through us
unchecked_conversion , pragmaSUPPRESS, erroneous programming, or othe
mechanisms outside the scope of the Ada language, every task has the ability to rea
perhaps modify) any memory location within the application’s virtual address space.

Local Memory Management 5

Series 6000 systems belong to the local/global/remote subclass of non-uniform me
access (NUMA) architectures. In this subclass, primary memory (physical memory o
integrated circuit board) is divided into global and local memories.

global memory

is located on a memory board where it is equally distant, in terms of acc
time, from all the CPUs in the system. All CPUs share a single data path
global memory known as thesystem bus. Global memory accesses are cach
able.

local memory

is located on a CPU board where it is closer, in terms of access time, to the
resident CPUs. The path between a CPU and its local memory does
include the system bus. Local memory usage improves the throughput o
system in two ways:

• It cuts access times for the co-resident CPUs

• It decreases system bus contention for the remaining CPUs

Local memory accesses are cacheable.

remote memory

resides on another (remote) CPU board than the CPU accessing it. Thes
remote memory accesses are the slowest in the hierarchy. Remote me
accesses are not cacheable, and synchronizing instructions are not at
when they operate on remote memory locations. For these reasons, the
ating system kernel puts restrictions on the use of remote memory.

If a task is bound to a particular CPU and the stack memory for that tas
bound to local memory on a different CPU board, the user will receive a wa
ing about the slowness of this memory arrangement. See “Prag
TASK_CPU_BIAS” on page 6-14 and “Pragma MEMORY_POOL” on pag
6-23 to change this configuration.

If an application is using local memory, the kernel restricts the CPUs on which its ta
will execute to the CPU board that contains the local primary memory. The applica
may explicitly distribute its tasks to other CPU boards via system calls and MAXA
5-13

MAXAda Reference Manual

fur-
ry.

the

cting
re

rchy.
pro-

ame

ted

cal
ge
bal

ain
d
not

-local
nce

in
from
glo-

cked
es, it

to a
local

s,
ccess
pragmas. Such distributions are restricted by the application’s use of local memory;
ther, such distributions may affect the application’s later use of local and global memo

See “MAXAda Local Memory Management” on page 5-15 for further information.

NUMA Policies 5

Understanding the restrictions and effects of task distribution requires categorizing
memory policies used by the operating system kernel.

Applications can influence the page-placement decisions made by the kernel by sele
NUMA policies for different parts of their address space. NUMA policies specify whe
data and machine instructions (text) should reside in the local/global/remote hiera
NUMA policies are associated with a range of virtual addresses and are attributes of
cesses, notattributes of tasks. (Therefore, all tasks in an application share the s
NUMA policies with all other tasks within that application.)

The NUMA policies include:

Global This policy places pages in global memory. Pages associa
with a global NUMA policy never migrate to local memory.

Floating-local This policy places pages in local memory; the physical lo
memory pool used depends on the locations of the pa
accesses. Additionally, these pages may migrate to glo
memory based on the application’s activities.

Anchored-local This policy places pages in local memory; these pages rem
in the physical local memory pool of the CPU board identifie
when the policy is defined. (i.e., generally, these pages do
migrate.)

Read-only pages, such as those associated with machine instructions, with floating
NUMA policies are replicated in local memory pools automatically as tasks refere
such pages from different CPU boards.

Writable pages associated with a floating-local NUMA policies will, in general, remain
local memory as long as the application does not attempt to reference those pages
multiple remote boards. If such references occur, the pages migrate automatically to
bal memory.

Page locking complicates the situation. The operating system kernel never moves lo
pages. Although this assures real-time applications of predictable memory access tim
requires restricted distribution of tasks across CPU boards.

If an application has floating-local pages locked in memory, no task can migrate
remote CPU board. Therefore, if an application wishes to use multiple CPU boards,
memory, and page locking, it must use anchored-local NUMA policies.

Anchored-local NUMA policies allow explicit migration of tasks to remote CPU board
even if the pages associated with those policies are locked in memory. Subsequent a
from the remote CPU board do not cause memory migrations.
5-14

Run-Time Concepts

cal
oci-
d (if
uted

ent

ca-
iques

MA

rted.
-resi-

g is

fine
cific
WARNING

Remote memory accesses are not cached, and synchronizing
instructions associated with those addresses are not atomic.

Use of anchored-local NUMA policies can affect pages associated with floating-lo
NUMA policies in the same application. If the user attempts to lock down pages ass
ated with a floating-local policy, those pages migrate to global memory and are locke
an anchored-local policy already exists and the application already has tasks distrib
over more than one CPU board).

Seememory(7) for a more complete discussion on the operating system’s managem
of primary memory.

MAXAda Local Memory Management 5

The run-time system has two goals concerning local memory management:

• Provide the greatest flexibility for the user

• Allow for comprehensive use of the local memory and CPU resources of
the system

By default, the run-time system does not explicitly set the NUMA policies for an appli
tion. This hands-off approach allows the user to take advantage of common techn
that control usage of local memory and CPUs (e.g., seerun(1)). If the run-time system
receives no memory-related pragmas or instructions, the application inherits the NU
policies of the spawning process (usually the shell).

For example, if a multi-task application is invoked with arun(1) command such as:

run -mlocal ./a.out

the operating system attempts to put alla.out ’s pages into local memory, and all
a.out ’s tasks run on the CPUs co-resident on the board where the process first sta
Operating system load balancing is employed on behalf of the process among the co
dent CPUs but not among CPUs on remote CPU boards.

Alternatively, if a multi-task application is invoked with arun(1) command such as:

run -mglobal ./a.out

the operating system puts alla.out ’s pages into global memory, and alla.out ’s tasks
are distributed across all available CPU boards on the system. Load balancin
employed on behalf of the process among all CPUs on the system.

If the application has used specific MAXAda features that require local memory or de
CPU usage, then the run-time system takes steps to fully implement those spe
requests. The run-time system attempts to determine:

• If the application has a requirement fordistribution. An application is dis-
tributed if it requires the use of CPUs on more than one CPU board. See
“Distribution Requirement” on page 5-16.
5-15

MAXAda Reference Manual

stem
al
hysi-

s.

also
sk
eign
n the

ols
m

PU
ulti-

es
icitly

fail
orst-

run-
• If the application has a requirement for pages to be locked into local mem-
ory. This is calledlocal-locking. See “Local Memory Locking Require-
ment” on page 5-17.

If the process has both a distribution and a local-locking requirement, the run-time sy
employs anchored-local NUMA policies for all memory pools explicitly requiring loc
memory. This ensures that the specified memory pools are mapped to the specified p
cal local memory pools without restricting the application’s use of multiple CPU board

Although the use of anchored-local NUMA policies provides the stated advantages, it
removes some of the protection inherent in floating-local NUMA policies. If a ta
explicitly migrates to a foreign CPU board, then references to pages in the now-for
local memory do not cause them to migrate to global memory. The pages remain i
anchored-local memory pool, and references to them are slow.

Anchored-local NUMA policies are never used by the run-time system for memory po
with ultimate-defaultmemory configurations. (Ultimate-default implies inheritance fro
the spawning environment’s NUMA policy). (See the example below.)

Distribution Requirement 5

CPU requirements may take one of the following forms:

a. Use of an implementation-defined pragma that specifies a CPU bias (e.g.,
pragmaTASK_CPU_BIAS).

b. Use of an implementation-defined pragma that specifies usage of local
memory on a specific CPU (e.g., pragmaMEMORY_POOL).

c. Use of hardware interrupt entries (such interrupt entries require specifica-
tion of specific CPUs for interrupt handling).

d. Use of library and system calls that control CPU utilization (e.g.,
mpadvise(3C)).

e. Other mechanisms that require CPU distribution.

A distribution requirement exists if one or more instances of any of the preceding C
requirement forms is used, and the union of all specified CPUs includes CPUs from m
ple CPU boards.

The run-time system can detect requirements of forma, b, andc. It does not detect
requirements of formd or e. If no other CPU requirements exist (i.e., the run-time do
not detect that the process has a distribution requirement), the run-time may not expl
use anchored-local policies; this may cause migration attempts by the application to
depending on the application’s use of local memory. The run-time system makes w
case assumptions about the CPUs specified in formsa andb if the CPU biases associated
with those requirements are not static in nature (or cannot be readily evaluated by the
time system at program start-up time).
5-16

Run-Time Concepts

f
tect
use
fail
NOTE

PragmaDISTRIBUTED_LOCAL_LOCKINGis provided as a
means of informing the run-time system that an application has
both distribution and local-lockingrequirements. Therefore, in
cases such asd ande above, in which the runtime cannot detect
these requirements, this pragma may be useful. See “Pragma
DISTRIBUTED_LOCAL_LOCKING” on page 6-5 and “Local
Memory Locking Requirement” below for more information.

Local Memory Locking Requirement 5

A local memory locking requirement may take one of the following forms:

a. Use of an implementation-defined pragma which specifies that memory
should be locked into local memory (e.g., pragmasPOOL_LOCK_STATE
and MEMORY_POOL). Note that one or both pragmas may apply to a
DEFAULT pool.

b. Use of library and system calls that control NUMA policies and page lock-
ing (e.g.,memcntl(2)).

c. Other mechanisms that cause pages to be locked into local memory.

The run-time system can detect requirements of forma. It cannot detect requirements o
form b or c. If no other local-locking requirements exist (i.e., the run-time does not de
that the process has a local-locking requirement), the run-time may not explicitly
anchored-local policies; this may cause migration attempts by the application to
depending on the application’s use of local memory.

NOTE

PragmaDISTRIBUTED_LOCAL_LOCKINGis provided as a
means of informing the run-time system that an application has
both distribution and local-lockingrequirements. Therefore, in
cases such asb andc above, in which the runtime cannot detect
these requirements, this pragma may be useful. See “Pragma
DISTRIBUTED_LOCAL_LOCKING” on page 6-5 and “Distri-
bution Requirement” above for more information.

Example 5

Consider the following example:

a. An application has a distribution requirement because two tasks have CPU
utilization requirements specifying CPUs on different CPU boards.

b. The application requires that a specific package be in local memory.

c. The application also requires that all pages be locked in memory.

d. The default NUMA policy for data as inherited by the spawning environ-
ment is floating-local (e.g.,run -mprdata_local a.out).
5-17

MAXAda Reference Manual

ored-
also
into

obal
in a
mul-

ppro-
teps

lica-
ced
To bind the tasks to the proper CPUs (to satisfy a), the run-time system uses anch
local policies (where required by b) and distributes the tasks to the specified CPUs. It
locks the entire address space into memory (to satisfy c). The act of locking pages
memory forces the default data pages from local memory (as specified by d) to gl
memory, because they had a floating-local policy and were not explicitly mentioned
MAXAda pragma (and the application uses anchored-local policies and has tasks on
tiple CPUs).

If the user requires that default data pages are to remain in local memory, then the a
priate MAXAda pragma should be used. This allows the run-time to take appropriate s
to ensure proper page locking.

Had the application in the example not required page locking, then most of the app
tion’s default data pages would remain in the initial local memory pool; those referen
by the tasks from remote CPUs would be migrated to global.

WARNING

Because remote memory references are very expensive, an appli-
cation with tasks distributed to multiple CPU boards would gener-
ally not want to explicitly bind default data to local memory.
Instead, it would bind tasks’ stacks and specific sections of mem-
ory, those referenced mainly from the tasks on co-resident CPUs,
to local memory on the appropriate CPU boards.
5-18

6-1

-2
-2
2
3
-4

-4

6-5
6-5
6-6
6-9
6-9
10
0
2
4

5

18
19
19
-20
1

21
3

29
9

30
32
33
33
6
Run-Time Configuration

General Pragmas .
Pragma RUNTIME_DIAGNOSTICS .. 6-1
Pragma MAP_FILE . 6
Pragma QUEUING_POLICY . 6
Pragma TASK_DISPATCHING_POLICY . 6-
Pragma LOCKING_POLICY . 6-
Pragma SERVER_CACHE_SIZE . 6
Pragma DEFAULT_HARDNESS . 6
Pragma DISTRIBUTED_LOCAL_LOCKING . 6-5

Task and Group Configuration Concepts .
Task Names and Default Settings. .
Task Specifiers in Task Pragmas .
Group Names and Default Settings .
Group Specifiers in Group Pragmas. .

Task Attributes . 6-
Pragma TASK_WEIGHT. 6-1
Pragma TASK_PRIORITY . 6-1
Pragma TASK_CPU_BIAS . 6-1
Pragma TASK_QUANTUM. 6-1
Pragma TASK_HANDLER. 6-16

Group Attributes . 6-
Pragma GROUP_PRIORITY. 6-
Pragma GROUP_CPU_BIAS. 6-
Pragma GROUP_SERVERS . 6

Memory Attributes. 6-2
Pool Specifiers . 6-
Pragma MEMORY_POOL. 6-2
Pragma POOL_CACHE_MODE . 6-
Pragma POOL_LOCK_STATE . 6-2
Pragma POOL_SIZE . 6-
Pragma POOL_PAD. 6-

Protected Object Attributes . 6-
Pragma PROTECTED_PRIORITY . 6-

MAXAda Reference Manual

the
rag-
ory
of

-
e
l

sys-
en-
6
Chapter 6Run-Time Configuration

6
6
6

Although Appendix M discusses all pragmas, it focuses on pragmas that influence
software development environment, compiling, and linking. This chapter discusses p
mas that affect configuration of the whole run-time system, task execution, and mem
utilization. It also provides some information about the underlying implementation
tasking and memory resources.

General Pragmas 6

The following pragmas affect the run-time system as a whole:

• Pragma RUNTIME_DIAGNOSTICS (see page 6-1)

• Pragma MAP_FILE (see page 6-2)

• Pragma QUEUING_POLICY (see page 6-2)

• Pragma TASK_DISPATCHING_POLICY (see page 6-2)

• Pragma LOCKING_POLICY (see page 6-3)

• Pragma SERVER_CACHE_SIZE (see page 6-4)

• Pragma DEFAULT_HARDNESS (see page 6-4)

• Pragma DISTRIBUTED_LOCAL_LOCKING (see page 6-5)

Pragma RUNTIME_DIAGNOSTICS 6

The implementation-defined pragmaRUNTIME_DIAGNOSTICSmay occur in any
declarative part. It controls whether or not the run-time emits warning diagnostics.

pragma RUNTIME_DIAGNOSTICS (boolean);

boolean

A static boolean enumeration literal.TRUEmeans run-time warning diagnos
tics will be emitted.FALSEmeans run-time warning diagnostics will not b
emitted. The default isTRUE. At run-time, you can specify this value via a cal
to Runtime_Configuration.Set_Runtime_Diagnostics .

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.
6-1

MAXAda Reference Manual

II
le is
nt,

sys-
en-

n

5

sys-
en-
Pragma MAP_FILE 6

The implementation-defined pragmaMAP_FILE may occur in any declarative part. It
causes the linker to automatically emit at link time a map file containing an ASC
description of pragma entries and comments that define the layout of the file. This fi
useful with thea.map tool described in “a.map” on page 4-52. If this pragma is abse
then no map file is produced.

pragma MAP_FILE (file_name);

file_name

A static string of non-zero length specifying the name of the map file.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Pragma QUEUING_POLICY 6

The implementation-dependent pragmaQUEUING_POLICYmay occur as a configuration
pragma. It sets the entry queuing policy.

pragma QUEUING_POLICY (policy_identifier);

policy_identifier

The keywordFIFO_QUEUINGmeans the entry queuing policy as defined i
the Ada 95 Reference Manual section D.4.

PRIORITY_QUEUINGmeans the entry queuing policy as defined in Ada 9
Reference Manual section D.4.

The default isFIFO_QUEUING.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Pragma TASK_DISPATCHING_POLICY 6

This implementation-dependent pragmaTASK_DISPATCHING_POLICYmay occur as a
configuration pragma. It sets the task dispatching policy.

pragma TASK_DISPATCHING_POLICY (policy_identifier);

policy_identifier

The keywordFIFO_WITHIN_PRIORITIES indicates the task dispatching
policy as defined in the Ada 95 Reference Manual section D.2.2.
6-2

Run-Time Configuration

(e.g.
f

b e
k-

sys-
en-

-

a
cted

wait-

the
e
t,
In addition, other policies are implemented as defined below:

ROUND_ROBIN_PRIORITIES

This policy is the same asFIFO_WITHIN_PRIORITIES , except that
time-slicing occurs.

ROUND_ROBIN_ADJUSTABLE_PRIORITIES

Th i s p o l i c y is th e sa me a s
ROUND_ROBIN_PRIORITIES_INHERITANCE, except that priorities
are adjusted by the operating system based on CPU utilization.

By default, programs without tasks (other than theENVIRONMENTtask), without pro-
tected objects, and without implementation-defined memory configuration pramgas
MEMORY_POOL, POOL_LOCK_STATE, etc.) have a task dispatching policy o
ROUND_ROBIN_ADJUSTABLE_PRIORITIES. All other programs have a default task
dispatching policy ofFIFO_WITHIN_PRIORITIES .

Th e i m p l em e n t a t i o n r e q u i r e s t h a t t h e t as k d i sp a t ch i n g p o l i c y
FIFO_WITHIN_PRIORITIES if the program contains any protected objects with a loc
ing policy of CEILING_LOCKING (which is the only locking policy currently imple-
mented).

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Pragma LOCKING_POLICY 6

This implementation-dependent pragmaLOCKING_POLICYmay occur as a configura-
tion pragma. It sets the protected object locking policy.

pragma LOCKING_POLICY (policy_identifier);

policy_identifier

The keywordCEILING_LOCKING indicates the protected object locking pol
icy as defined in the Ada 95 Reference Manual section D.3.

The default locking policy isCEILING_LOCKING. This is currently the only locking
policy that is implemented.

When theCEILING_LOCKING policy is in use and a protected action is underway for
specific protected object, attempts by other tasks (on other CPUs) to start a prote
action on the same protected object will keep their CPUs busy (i.e. other tasks spin
ing to start the protected action on that protected object).

If the locking policy is explicitly specified or the program contains protected objects,
i mp l e me n t a t i o n r e q u i r e s t h a t t h e t a sk d i sp a t ch i n g p o l i cy b
FIFO_WITHIN_PRIORITIES . If the task dispatching policy has not explicitly been se
the implementation will automatically set it toFIFO_WITHIN_PRIORITIES if the pro-
gram contains protected objects.
6-3

MAXAda Reference Manual

sys-
en-

ervers
rvice
bound
time.
0.)

ers
alue

sys-
en-

ma

e

sys-
en-
See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Pragma SERVER_CACHE_SIZE 6

The implementation-defined pragmaSERVER_CACHE_SIZEmay occur in any declara-
tive part. It sets the size of the server cache. The server cache contains execution s
that are currently unneeded by the application, but which can be placed back into se
when they become necessary. These include the anonymous servers for terminated
tasks, as well as servers from server groups which were reduced in size by the run-
(For more information about bound tasks, see “Pragma TASK_WEIGHT” on page 6-1

pragma SERVER_CACHE_SIZE (cache_size);

cache_size

A static, non-negative number specifying the maximum number of serv
allowed in the cache (i.e., the server cache size). The default is 8. This v
c an a l so b e se t a t r u n - t im e v ia a c a l l t o
Runtime_Configuration.Set_Server_Cache_Size . See the speci-
fication of Runtime_Configuration in vendorlib .

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Pragma DEFAULT_HARDNESS 6

The implementation-defined pragmaDEFAULT_HARDNESSmay occur in any declarative
part. It sets the default hardness for any memory bound to LOCAL via a prag
MEMORY_POOL. It can be overridden by individualMEMORY_POOLpragmas. See
“Pragma MEMORY_POOL” on page 6-23.

pragma DEFAULT_HARDNESS (hardness);

hardness

The keywordHARDor SOFTspecifying the default hardness for memory. Th
default is acquired from the environment at program start-up time.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.
6-4

Run-Time Configuration

on

ation
mas
ful in
ck-

tem
ubse-
lves
ese

PUs is

em-

nt”

sys-
en-

ck-

val-
prag-
Pragma DISTRIBUTED_LOCAL_LOCKING 6

The implementation-defined pragmaDISTRIBUTED_LOCAL_LOCKINGindicates that
any partition linked with the library units to which it applies has both a distributi
requirement and a local-locking requirement.

Its syntax is:

pragma DISTRIBUTED_LOCAL_LOCKING;

In the absence of this pragma, the run-time system attempts to determine if an applic
has a distribution requirement or local-locking requirement by examining other prag
and features in use by the application. The run-time system is only partially success
such determination; use of library or system calls which cause distribution or local-lo
ing requirements are not detected.

If an application has both distribution and local-locking requirements, the run-time sys
must take actions during the early stages of application elaboration to ensure that s
quent task distributions are honored by the operating system. Specifically, this invo
utilizing anchored local memory pages from all physical local memory pools. Once th
anchored local memory pages are created, subsequent task distribution between C
unrestricted.

Use of this pragma will also have an effect on the application's general use of local m
ory.

See “Distribution Requirement” on page 5-16 and “Local Memory Locking Requireme
on page 5-17 for more information.

See “General Pragmas” on page 6-1 for a list of other pragmas that affect the run-time
tem as a whole. In addition, “RM Annex L: Pragmas” on page M-103 lists all implem
tation-dependent and implementation-defined pragmas.

Task and Group Configuration Concepts 6

Task Names and Default Settings 6

To make good use of task pragmas, it is necessary to understand some terminology.

ENVIRONMENTtask

At start-up, the run-time creates this one task that performs library-level pa
age elaboration and executes the main program.

DEFAULTpseudo task

This non-executing pseudo task sometimes provides default task-attribute
ues for other tasks. The user may change these default values with task
mas or with calls to routines in packageRuntime_Configuration . See
the specification ofRuntime_Configuration in vendorlib .
6-5

MAXAda Reference Manual

d in

sk,

tion

nd
cted
ghost task

An automatically generated overhead task. Ghost tasks are describe
“Ghost Tasks” on page 5-4.

For any actual task (excluding objects of task types) or the ADMIN or TIMER ghost ta
if a configuration pragma is omitted for that task, the value specified for theDEFAULT
pseudo task is used instead.

For objects of task types, the following steps indicate the search order for configura
pragma values.

1. If the object is a variable and the pragma exists for that variable, that
pragma is used.

2. If the pragma exists for its task type, that pragma is used.

3. If the task type is a derived type, the pragma of the nearest ancestor type is
used if found.

4. If no such pragma is found, theDEFAULTpseudo task is checked for the
pragma, and that pragma is used if found.

5. If no pragma has been found, the default value is used.

The same steps take place simultaneously for any SHADOW, COURIER, a
INTR_COURIER ghost tasks associated with a user’s real task or with a user’s prote
attachments. (See “Ghost Tasks” on page 5-4.)

Task Specifiers in Task Pragmas 6

The following task specifiers appear in task pragmas.

task_specifier

::= { ordinary_task| ghost_task| ENVIRONMENT| SPEC}

ordinary_task

::= { task_type_name | task_variable_name | DEFAULT}

ghost_task

::= { companion_ghost_task | companion_po_ghost_task| ADMIN | TIMER}

companion_ghost_task

::= { shadow_ghost| courier_ghost| intr_courier_ghost}

companion_po_ghost_task

::= { shadow_po_ghost| courier_po_ghost| intr_courier_po_ghost}

shadow_ghost

::= ordinary_task, SHADOW, task_entry
6-6

Run-Time Configuration

sk.
n

.

sk.

the
t

courier_ghost

::= ordinary_task, COURIER, task_entry

intr_courier_ghost

::= ordinary_task, INTR_COURIER, task_entry

shadow_po_ghost

::= protected_procedure_handler , SHADOW[, attachment_index]

courier_po_ghost

::= protected_procedure_handler , COURIER[, attachment_index]

intr_courier_po_ghost

::= protected_procedure_handler , INTR_COURIER[, attachment_index]

task_entry

::= { entry_name| DEFAULT}

ADMIN

The pragma sets the task attribute to the specified value for the ADMIN ta
For more information about the ADMIN task, see “ADMIN Ghost Task” o
page 5-5.

COURIER

The pragma sets the task attribute to the specified value for theCOURIER
task. See also “COURIER Ghost Tasks” on page 7-3 for more information

DEFAULT

The pragma sets the task attribute to the specified value for theDEFAULT
pseudo task, and therefore for all tasks, unless otherwise specified for a ta

ENVIRONMENT

The pragma sets the task attribute to the specified value for theENVIRON-
MENTtask.

INTR_COURIER

The pragma sets the task att ribute to the speci fied value for
INTR_COURIERtask. See also “INTR_COURIER and COURIER Ghos
Tasks” on page 7-5 for more information.

SHADOW

The pragma sets the task attribute to the specified value for theSHADOWtask.
See also “SHADOW Ghost Tasks” on page 7-6 for more information.
6-7

MAXAda Reference Manual

hen

sk.
n

rticu-

n the

ment

or
ce

ere
s or

f the
ified
task
SPEC

The pragma must occur in the declarative part of a task specification. It t
applies to all tasks identified with that specification.

TIMER

The pragma sets the task attribute to the specified value for the TIMER ta
For more information about the TIMER task, see “TIMER Ghost Task” o
page 5-5.

attachment_index

The pragma is associated with the ghost task that corresponds to that pa
lar attachment numbered in textual order. If noattachment_index is speci-
fied, the pragma selects all ghost tasks corresponding to all attachments o
specified handler.

Only positive integer literals or the identifierDYNAMICis allowed.

If the identifier DYNAMICis specified as theattachment_index , the pragma
is associated with the ghost task that corresponds to the dynamic attach
on the protected procedure handler, if it exists.

protected_procedure_handler

A protected procedure to which either pragma INTERRUPT_HANDLER
ATTACH_HANDLER applies. See Section C.3.1 of the Ada 95 Referen
Manual.

task_type_name

The pragma applies to all task objects of that task type, regardless of wh
the task objects are actually declared, unless overridden for derived type
task variables.

task_variable_name

The pragma must appear in the same declarative part as the declaration o
task variable. In this case, the pragma affects the task attribute of the spec
task, regardless of any other task pragmas associated with defaults or
specifications.

NOTE

P r a g m as T AS K_ W EI GH T, T AS K _P RI OR I TY,
TASK_CPU_BIAS, TASK_QUANTUM, andTASK_HANDLERlet
you omit thetask_specifier. This has the same effect asSPEC.
6-8

Run-Time Configuration

.

hese
are

nced
n a
sepa-
g to
same
will
a-

ups
ese
ge

y” on
Group Names and Default Settings 6

To make good use of group pragmas, it is necessary to understand some terminology

server group

Server groups allow users to restrict the resources their tasks use. T
groups are designated by simple identifiers and are defined when they
used. However, they are not Ada program entities. They cannot be refere
anywhere except within the appropriate pragmas. In fact, they exist i
namespace which is separate from the Ada language’s namespaces. This
rate namespace is completely flat. That is, there is no hierarchical nestin
the namespace based on the units in which these pragmas appear. The
group name can be specified in two separate and unrelated units, and it
indicate the same group. See “Tasking Model” on page 5-1 for more inform
tion about server groups.

PREDEFINEDgroup

At start-up, the run-time creates this onePREDEFINEDgroup that includes
and executes theENVIRONMENTtask. By default, theDEFAULTpseudo task
is also in this group.

DEFAULTpseudo group

This pseudo group provides default group-attribute values for other gro
that omit any group configuration pragmas. The user may change th
default values with group pragmas or with calls to routines in packa
Runtime_Configuration .

To add tasks to any group, see “Pragma TASK_WEIGHT” on page 6-10.

To see groups on the system, see “Task Display” on page 12-8 and “System Displa
page 12-10.

Group Specifiers in Group Pragmas 6

The following server group specifiers appear in group pragmas.

group_spec::= {DEFAULT | PREDEFINED | group_name}

DEFAULT

The pragma sets the group attribute for theDEFAULTpseudo group, and
therefore for all groups, to the specified value.

PREDEFINED

The pragma sets the group attribute for thePREDEFINEDgroup to the speci-
fied value.
6-9

MAXAda Reference Manual

lice
nta-

the
f

ting

ns on
such
. The
tend
d to

er
group_name

The pragma applies only to the group specified bygroup_name.

Task Attributes 6

Users can control the execution of tasks: specifically, tasks’ scheduling priority, time-s
duration, physical CPU binding, and weight. Control may be static through impleme
tion-defined pragmas, and may be changed dynamically via supplied routines in
Ru nt i me _C on f ig ur at i on p a c k ag e . S ee th e sp e c i f i c a t i o n o
Runtime_Configuration in vendorlib .

In addition, the user may specify a procedure to be called for a task that is termina
because of an unhandled exception.

The task attribute pragmas can be applied to any user task. There are certain restrictio
tasks within generic units, however. The task attribute pragmas may be applied to
tasks, but they cannot be applied to a task in a particular instantiation of the generic
pragma must be applied to the task in the generic, and the effect of the pragma will ex
to all instantiations of that generic. Finally, note that task attribute pragmas applie
tasks in generic units cannot be changed via thea.map tool, as can other task attribute
pragmas. See “a.map” on page 4-52 for more details.

The following pragmas are associated with task attributes:

• Pragma TASK_WEIGHT (see page 6-10)

• Pragma TASK_PRIORITY (see page 6-12)

• Pragma TASK_CPU_BIAS (see page 6-14)

• Pragma TASK_QUANTUM (see page 6-15)

• Pragma TASK_HANDLER (see page 6-16)

Pragma TASK_WEIGHT 6

The implementation-defined pragmaTASK_WEIGHTspecifies the weight of a task.

pragma TASK_WEIGHT (weight[, task_specifier]);

weight

BOUND

Bound tasksare served by an anonymous group, distinct from all oth
groups, containing a single server.

MULTIPLEXED, group_spec
6-10

Run-Time Configuration

up-

se
up

.

s the

art
ifi-

:

r link
nk
Multiplexed tasksare served by named groups, specified bygroup_spec,
and are associated with multiple servers. Multiplexed tasks are not s
ported in this release.

group_spec

See “Group Specifiers in Group Pragmas” on page 6-9. The
server groups are configured via other pragmas. (See “Gro
Attributes” on page 6-18.)

For more information about task weights, see “Task Weights” on page 5-2

task_specifier

If specified, then the pragma must appear in the same declarative part a
referenced task.

If task_specifieris omitted, then the pragma must occur in the declarative p
of a task specification. It then applies to all tasks identified with that spec
cation.

See “Task Specifiers in Task Pragmas” on page 6-6.

The weight of default tasks can be overridden by certain link options.

-bound overrides as:

pragma TASK_WEIGHT (BOUND, DEFAULT);

-multiplexed overrides as:

pragma TASK_WEIGHT(MULTIPLEXED, PREDEFINED, DEFAULT);
pragma GROUP_SERVERS(1, PREDEFINED);

In the absence of any such link options, by default, the following pragmas apply

pragma TASK_WEIGHT (BOUND, DEFAULT);

In other words, by default, the task weight for all tasks, including theENVIRONMENT
task, is bound. Of course, these defaults are overridden by user-specified pragmas o
options. For more information about link options, see “a.link” on page 4-38 and “Li
Options” on page 4-119.

NOTE

This pragma will not be accepted for any ghost tasks. SHADOW
ghost tasks have no associated weight. COURIER and
INTR_COURIER ghost tasks are always bound. The ADMIN
and TIMER ghost tasks, if they exist, are always bound.
6-11

MAXAda Reference Manual

ask
n-

iority

the

s the

art
ifi-

as”

t an

o

, the
sk
See “Task Attributes” on page 6-10 for a list of other pragmas associated with t
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma TASK_PRIORITY 6

The implementation-defined pragmaTASK_PRIORITY is primarily used to set the task
scheduling priority. For a bound task, it also sets the operating system scheduling pr
of the bound task’s anonymous group.

pragma TASK_PRIORITY (scheduling_priority [, task_specifier]);

scheduling_priority

A required integer expression, possibly a program variable, specifying
scheduling priority. It should be in the rangeSystem.Priority’Range .

Values greater thanSystem.Priority’Last will be truncated toSys-
tem.Priority’Last by the run-time executive.

Values less than0 are considered to be values relative toSystem.Prior-
ity’Last +1. The following pragmas are equivalent:

pragma TASK_PRIORITY (System.Priority’Last);
pragma TASK_PRIORITY (-1);

For information about priority values, see “Task Scheduling” on page 5-3.

task_specifier

If specified, then the pragma must appear in the same declarative part a
referenced task.

If task_specifieris omitted, then the pragma must occur in the declarative p
of a task specification. It then applies to all tasks identified with that spec
cation.

For information about task specifiers, see “Task Specifiers in Task Pragm
on page 6-6.

See “Task Names and Default Settings” on page 6-5 to find out how a task withou
explicit pragmaTASK_PRIORITY setting gets its scheduling priority. Specifically, if no
TASK_PRIORITY or PRIORITY pragma has been appl ied to a task and n
TASK_PRIORITY pragma has been applied with a task specifier ofDEFAULT, then a
task’s priority is inherited from its creator, as per RM D.1(19).

As discussed in “Task Scheduling” on page 5-3, thetask scheduling priorityof a task
determines how the Ada run-time selects tasks for execution within a group. Similarly
operating system scheduling prioritydetermines how the real-time kernel selects ta
groups for execution.
6-12

Run-Time Configuration

edul-

oes

ask
n-
As previously mentioned, for a bound task, this pragma sets the operating system sch
ing priority of the bound task’s anonymous group. The sequence:

pragma TASK_WEIGHT (BOUND, t);
pragma TASK_PRIORITY (prio, t);

is equivalent to:

pragma GROUP_SERVERS (1, anon_group_spec);
pragma TASK_WEIGHT (MULTIPLEXED, anon_group_spec, t);
pragma GROUP_PRIORITY (prio, anon_group_spec);
pragma TASK_PRIORITY (prio, t);

As specified in the Ada 95 Reference Manual section D.1(19), if a pragma Priority d
not apply to the main subprogram, the initial base priority of theENVIRONMENTtask is
System.Default_Priority .

NOTE

If an application is linked with the tasking run-time, the operating
sy s t em p r i o r i t y as so c i a t e d w i t h t h a t ta sk is a l so
System.Default_Priority . If the application is not linked
with the tasking run-time, then the operating system priority is
inherited from the environment that invoked the application (usu-
ally the shell).

Unless otherwise specified, the default value ofscheduling_priorityfor the other ghost
tasks is as follows:

pragma TASK_PRIORITY(DEFAULT, SHADOW, DEFAULT, -1);
pragma TASK_PRIORITY(DEFAULT, COURIER, DEFAULT, -1);
pragma TASK_PRIORITY(DEFAULT, INTR_COURIER, DEFAULT, -1);
pragma TASK_PRIORITY(TIMER, -1);

Use of this pragma requires theP_TSHARandP_RTIMEprivileges (seeintro(2)).

PragmaTASK_PRIORITY differs from the language-defined pragmaPRIORITY in that
it can be applied to entities that pragmaPRIORITY cannot; for example, individual task
objects, implementation-defined tasks, etc.

NOTE

The task scheduling priority can also be set at run-time via a call
to Ada.Dynamic_Priorities.Set_Priority . See the
specificat ion ofAda.Dynamic_Priorit ies in pre-
defined .

See “Task Attributes” on page 6-10 for a list of other pragmas associated with t
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.
6-13

MAXAda Reference Manual

ound

are
li-

n

s the

art
ifi-

as”

t an

m-
6-23
Pragma TASK_CPU_BIAS 6

The implementation-defined pragmaTASK_CPU_BIASprovides for the binding of bound
tasks to individual CPUs or a set of CPUs, associating a CPU bias with one or more b
tasks. This is necessary because pragmaGROUP_CPU_BIASis not available for bound
tasks (see “Pragma GROUP_CPU_BIAS” on page 6-19 for more information).

pragma TASK_CPU_BIAS (cpu_bias [, task_specifier]);

cpu_bias

A required CPU bias, possibly a program variable, specifying CPUs that
valid for the machine configuration where the application will run. See “Uti
zation of Multiple CPUs” on page 5-3.

For information about CPU biases, see “Utilization of Multiple CPUs” o
page 5-3.

task_specifier

If specified, then the pragma must appear in the same declarative part a
referenced task.

If task_specifieris omitted, then the pragma must occur in the declarative p
of a task specification. It then applies to all tasks identified with that spec
cation.

For information about task specifiers, see “Task Specifiers in Task Pragm
on page 6-6.

See “Task Names and Default Settings” on page 6-5 to find out how a task withou
explicit pragmaTASK_CPU_BIASsetting gets its CPU bias.

The sequence:

pragma TASK_WEIGHT (BOUND, t);
pragma TASK_CPU_BIAS (bias, t);

is equivalent to:

pragma GROUP_SERVERS (1, anon_group_spec);
pragma TASK_WEIGHT (MULTIPLEXED, anon_group_spec, t);
pragma GROUP_CPU_BIAS (bias, anon_group_spec);

With the judicious use of pragmasMEMORY_POOL, TASK_CPU_BIAS, and
GROUP_CPU_BIAS, an Ada application can take full advantage of all the CPU and me
ory resources of Series 6000 systems. See “Pragma MEMORY_POOL” on page
and “Pragma GROUP_CPU_BIAS” on page 6-19 for more information.

Use of this pragma requires theP_CPUBIASprivilege (seeintro(2)).
6-14

Run-Time Configuration

ask
n-

r
up of

s the

art
ifi-

as”

t an

cut-
NOTE

The CPU bias can also be set at run- t ime via a cal l to
Runtime_Configuration.Set_Task_CPU_Bias . See the
specification ofRuntime_Configuration in vendorlib .

See “Task Attributes” on page 6-10 for a list of other pragmas associated with t
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma TASK_QUANTUM 6

The implementation-defined pragmaTASK_QUANTUMis used to set the task quantum fo
multiplexed tasks, and the operating system quantum for the anonymous server gro
bound tasks.

pragma TASK_QUANTUM (quantum [, task_specifier]);

quantum

A non-zero number, possibly a program variable, of 60Hz clock ticks.

task_specifier

If specified, then the pragma must appear in the same declarative part a
referenced task.

If task_specifieris omitted, then the pragma must occur in the declarative p
of a task specification. It then applies to all tasks identified with that spec
cation.

For information about task specifiers, see “Task Specifiers in Task Pragm
on page 6-6.

See “Task Names and Default Settings” on page 6-5 to find out how a task withou
explicit pragmaTASK_QUANTUMsetting gets its quantum.

The task quantumof a task determines how often the Ada run-time preempts tasks exe
ing within a group. Similarly, theoperating system quantumdetermines how the real-time
kernel preempts task groups executing on a physical CPU.

Use of this pragma requires theP_TSHARandP_RTIMEprivileges (seeintro(2)).

NOTE

The following task dispatching policies will cause all task quanta
specified to be ignored:
6-15

MAXAda Reference Manual

ask
n-

me-

r
-

s the

art
ifi-

as”
- FIFO_WITHIN_PRIORITIES

The FIFO policies require that all task quanta are infinite. Use
ROUND_ROBIN policies when task time-slicing is desired. Note
the use of pr otected ob jects w i th a lo ck in g pol icy of
CEILING_LOCKING (currently the only locking policy imple-
mented) requires the FIFO_WITHIN_PRIORITIES task dispatch-
ing policy.

NOTE

The task quantum can also be set at run time via a call to
Runtime_Configuration.Set_Task_Quantum . See the
Runtime_Configuration specification invendorlib .

See “Task Attributes” on page 6-10 for a list of other pragmas associated with t
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma TASK_HANDLER 6

The implementation-defined pragmaTASK_HANDLERcalls the specified procedure when
the task to which it is applied completes because of an unhandled exception.

pragma TASK_HANDLER (handler_name [, task_specifier]);

handler_name

The handler must denote a library-level procedure. It must be either para
terless or contain only a single formal parameter of modein and of type
Ada.Exceptions.Exception_Occurrence .

If the procedure contains a formal parameter of typeAda.Excep-
tions.Exception_Occurrence , then the actual value of this paramete
will be theException_Occurrence for the exception that caused the ter
mination of the task.

task_specifier

If specified, then the pragma must appear in the same declarative part a
referenced task.

If task_specifieris omitted, then the pragma must occur in the declarative p
of a task specification. It then applies to all tasks identified with that spec
cation.

For information about task specifiers, see “Task Specifiers in Task Pragm
on page 6-6.
6-16

Run-Time Configuration

dled
com-

NT

pens

dler

ype
If a task to which this pragma is applied is about to complete because of an unhan
exception, then the denoted procedure will be called by the task before that task
pletes.

This pragma is especially useful when applied to theENVIRONMENTtask. It will be
called for any unhandled exception that would cause completion of the ENVIRONME
task, and thus of the application.

It is also especially useful when applied to theDEFAULTtask. It will be called for any
unhandled exception that would cause completion of any task which otherwise hap
silently without any notification to the user.

C o n s i d e r th e f o l lo w in g e x a mp l e . Th e t as kf i r s t_ ta sk w i l l r a i se a
Constraint_Error when it executes its code. Because there is no exception han
in the task itself, the procedurehandler specified by pragmaTASK_HANDLERis called.
(This procedure appears below and also uti lizes the formal parameter of t
Ada.Exceptions.Exception_Occurrence .) Any processing with respect to this
unhandled exception may occur in this procedure before the task completes.

with ada.text_io;
with handler;

procedure test_handler is
--

task my_task is
entry start;

end my_task;

task body my_task is
subtype scale is integer range 1..10;
i : scale;

begin
accept start do

ada.text_io.put_line ("my_task: in rendezvous");
i := scale'last;
i := i + 1; -- will raise a constraint error
ada.text_io.put_line ("This line won't be printed");

end start;
end my_task;

--
begin
--

ada.text_io.put_line ("test_handler: starting");
begin

my_task.start;
exception
when others =>

null;
end;
ada.text_io.put_line ("test_handler: exiting");

--
end test_handler;

pragma task_handler (handler, default);

-- and the handler itself...

with ada.text_io;
with ada.exceptions;
with ada.task_identification;
6-17

MAXAda Reference Manual

ask
n-

and
rag-

ly via
procedure handler (occurrence :
ada.exceptions.exception_occurrence) is
begin

ada.text_io.put_line ("handler: Exception """ &
ada.exceptions.exception_name(occurrence) &
""" terminated """ &
ada.task_identification.image(
ada.task_identification.current_task) &

""".");
end handler;

The output from running thetest_handler procedure is as follows:

test_handler: starting
my_task: in rendezvous
handler: Exception "CONSTRAINT_ERROR" terminated
"test_handler.my_task".
test_handler: exiting

WARNING

Be cautious when using packages within a handler that may not be
elaborated at the time the handler is called. For instance, in the
above example, if procedurehandler is cal led before
Ada.Text_IO is elaborated, aPROGRAM_ERRORexception
may be raised and handled by this same procedure, resulting in an
infinite loop. This can be remedied by using thewrite function
of the POSIX_1003_1 binding in the handler instead of calling
Ada.Text_IO.put_line .

See “Task Attributes” on page 6-10 for a list of other pragmas associated with t
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Group Attributes 6

Users can control the operating system scheduling priority, physical CPU binding,
number of servers in a group. Control may be static through implementation-defined p
mas or through the run-time configuration package, and may be changed dynamical
supplied routines that interface to the run-time executive.

The following pragmas manage group attributes:

• Pragma GROUP_PRIORITY (see page 6-19)

• Pragma GROUP_CPU_BIAS (see page 6-19)

• Pragma GROUP_SERVERS (see page 6-20)
6-18

Run-Time Configuration

ven
up.

-sys-

ior-

ag-

oup
n-

not
hich

ra-

can
Pragma GROUP_PRIORITY 6

The implementation-defined pragmaGROUP_PRIORITYmay occur in any declarative
part. It specifies the operating-system scheduling priority of all the servers in a gi
group. It does not specify the task scheduling priority of particular tasks within the gro
If this pragma is not specified for a particular group, the group acquires the operating
tem scheduling priority of the environment that spawned it.

pragma GROUP_PRIORITY (scheduling_priority, group_spec);

scheduling_priority

A static integer expression specifying the operating system scheduling pr
ity. It is in the range0..Max_Priority , as defined by the package
Ru n t i me _C o nf ig ur a t i on . A r u n - t i me c a l l t o
Runtime_Configuration.Set_Group_Priority can also be used to
set this value. See theRuntime_Configuration specification inven-
dorlib .

Values greater thanMax_Priority will be truncated toMax_Priority
by the run-time executive.

Values less than 0 are considered to be values relative toMax_Priority +1.

For information about priority values, see “Task Scheduling” on page 5-3.

group_spec

For information about group specifiers, see “Group Specifiers in Group Pr
mas” on page 6-9.

Use of this pragma requires theP_TSHARandP_RTIMEprivileges (seeintro(2)).

See “Group Attributes” on page 6-18 for a list of other pragmas that manage gr
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma GROUP_CPU_BIAS 6

The implementation-defined pragmaGROUP_CPU_BIASmay occur in any declarative
part. It specifies the CPU bias for all the servers in a given group. If this pragma is
specified for a particular group, the default bias is acquired from the environment, w
indicates any CPUs.

pragma GROUP_CPU_BIAS (cpu_bias, group_spec);

cpu_bias

A static CPU bias specifying CPUs that are valid for the machine configu
tion where the application will run. See “Utilization of Multiple CPUs” on
page 5-3 for more information about CPU biases. At run time, this value
6-19

MAXAda Reference Manual

n

ag-

m-
6-23

oup
n-

. If,
e

ag-

oup
n-
b e se t w i t h a c a l l t o
Runtime_Configuration.Set_Group_CPU_Bias . See the
Runtime_Configuration specification invendorlib .

For information about CPU biases, see “Utilization of Multiple CPUs” o
page 5-3.

group_spec

For information about group specifiers, see “Group Specifiers in Group Pr
mas” on page 6-9.

With the judicious use of pragmasMEMORY_POOL, TASK_CPU_BIAS, and
GROUP_CPU_BIAS, an Ada application can take full advantage of all the CPU and me
ory resources of Series 6000 systems. See “Pragma MEMORY_POOL” on page
and “Pragma TASK_CPU_BIAS” on page 6-14 for more information.

Use of this pragma requires theP_CPUBIASprivilege (seeintro(2)).

See “Group Attributes” on page 6-18 for a list of other pragmas that manage gr
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma GROUP_SERVERS 6

The implementation-defined pragmaGROUP_SERVERSmay occur in any declarative
part. It controls the number of servers for a particular group, including thePREDEFINED
group.

pragma GROUP_SERVERS (group_size, group_spec);

group_size

A static non-negative number indicating the quantity of servers in a group
for anygroup, noGROUP_SERVERSpragma is specified, then the default siz
f o r t h a t g r o u p is 1 . A t r u n t i me , a c a l l t o
Runtime_Configuration.Set_Group_Servers can be used to set
this value. See theRuntime_Configuration specification invendor-
lib .

group_spec

For information about group specifiers, see “Group Specifiers in Group Pr
mas” on page 6-9.

See “Group Attributes” on page 6-18 for a list of other pragmas that manage gr
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.
6-20

Run-Time Configuration

utes
Memory Attributes 6

Memory attributes can be specified for any of the following classifications of memory:

• Machine instructions (text)

• Library-level variables (data)

• Collections

• Subprogram/task data (stack)

For each of the various types of memory region discussed here, the following attrib
are configurable:

• Physical location (memory pool)

• Locking behavior (lock state)

• Cache mode

• Size and extensibility

The following pragmas modify memory attributes:

• Pragma MEMORY_POOL (see page 6-23)

• Pragma POOL_CACHE_MODE (see page 6-29)

• Pragma POOL_LOCK_STATE (see page 6-29)

• Pragma POOL_SIZE (see page 6-30)

• Pragma POOL_PAD (see page 6-32)

NOTE

If any memory attribute is specified for a region of memory that is
normally dynamically allocated (collections and stacks), then
those regions of memory continue to be dynamically allocated.
However, those allocations do not come from the default collec-
tion, as would normally be the case. Furthermore, those regions of
memory cannot ever be deallocated during the lifetime of the pro-
gram.

Pool Specifiers 6

The following memory pool specifiers appear in memory pool pragmas.

pool_spec

::= { text_pool| stack_pool| data_pool| collection_pool| default_pool}
6-21

MAXAda Reference Manual

ols

nd

-
s. If
r

ust

er,
unit
ill
-

sizeable_spec

::= { stack_pool| collection_pool}

paddable_spec

::= { stack_pool}

default_pool

::= DEFAULT

text_pool

::= TEXT

stack_pool

::= STACK, { task_specifier}

data_pool

::= DATA, {PKG| DEFAULT}

collection_pool

::= COLLECTION, { DEFAULT| access_type}

DEFAULT

This value means thememory_specis applied to all memory in the program
for which a specific memory pool was not already specified.

TEXT

For the entire text image (machine instructions), specify a value.

STACK

For a specific task, an object of a task type, theENVIRONMENTtask, or the
DEFAULTpseudo task, the stack may be allocated out of dynamic po
bound to local or global memory.

In this form, the pragma may occur in any declarative part. If the seco
parameter isENVIRONMENT, then the pragma affects theENVIRONMENT
task’s stack. If the second parameter isSPEC, then the pragma must be imme
diately enclosed by a task specification and will affect all associated task
the second parameter isDEFAULT, the pragma applies to all stack frames fo
all tasks not marked with their own explicit pragmaMEMORY_POOLspecifica-
tion. If the second parameter is not any of these three keywords, then it m
be the name of a task type or a task variable in the same declarative part.

There are certain restrictions on which tasks can be specified bySTACKmem-
ory pool specifiers. Tasks within generic units may be specified. Howev
tasks in particular instantiations of a generic cannot. If a task in a generic
is specified, the effect of the particular pragma in which it is specified w
extend to that task in allinstantiations of the generic. Finally, note that prag
6-22

Run-Time Configuration

ils.

her

f a
ry-

ects
less
gma
soci-

ges

hat
It is

cifi-

is
ts all
ns

y
ap-

e

mas applied to tasks in generic units cannot be changed via thea.map tool, as
can other memory pool pragmas. See “a.map” on page 4-52 for more deta

DATA

For the static memory associated with a specific package, or for all ot
packages, specify a value.

In this form the pragma must occur in the immediate declarative part o
library-level package specification, a library-level package body, or a libra
level subprogram. If the second parameter isPKG, it must occur in the pack-
age specification or body. When in a package specification, the pragma aff
all static data for the package specification and for the package body, un
another pragma is applied to the body. When in a package body, the pra
affects all static data for the package body, regardless of any pragmas as
ated with the package specification. When the second parameter isDEFAULT,
the pragma affects all static data including memory associated with packa
unless a specific pragma exists for a particular package.

COLLECTION

For the memory associated with an access type with a’Storage_Size
clause, specify a value. When a pragma is applied to a COLLECTION, t
collection is allocated from heap memory and can never be deallocated.
recommended that this be done only in library-level packages.

In this form the pragma must occur in the same declarative part as the spe
cat ion of the suppl iedaccess_type. The access_typemust have a
’Storage_Size length clause associated with it before the pragma
encountered. When the second parameter is DEFAULT, the pragma affec
dynamically allocated data including memory associated with collectio
unless a specific pragma exists for a particular collection.

Pragma MEMORY_POOL 6

The implementation-defined pragmaMEMORY_POOLis used to change physical memor
pool attributes from their default values for a memory pool. The pragma affects the m
ping of abstract memory to physical memory.

pragma MEMORY_POOL (pool_spec, memory_spec);

pool_spec

See “Pool Specifiers” on page 6-21 for more information.

memory_spec

memory_spec::= { global_spec| local_spec| physical_spec}

Specifies new values for memory pool attributes. If theMEMORY_POOL
pragma is not specified for a particular pool (or for the DEFAULT pool), th
default value for thememory_specfor that pool is determined from the envi-
ronment (seerun(1)).
6-23

MAXAda Reference Manual

-
-
-
sk
r

te
e
l

-
es

the

-
n-
e

r
e
the
at
te
u-
In

fter

al
d

GLOBAL

Uses physical global memory.

LOCAL, mp_cpu_bias[, hardness]

Uses physical local memory.

mp_cpu_bias

cpu_bias

Identifies which physical local memory pool to utilize. Dis
tinct physical local memory pools are identified by specify
ing a CPU bias which contains a (partial) list of CPU num
bers corresponding to a CPU board. A CPU bias is a ma
in which the relative bit number identifies a CPU numbe
(LSB corresponds to CPU #0). Refer to Figure 6-2. No
that thecpu_biasmust specify at least one CPU (cannot b
zero). Thecpu_biasis used to locate a CPU board’s loca
memory pool.

Thecpu_biasis searched starting with the LSB (least signif
icant bit) and the first CPU specified by the bias determin
which CPU board is selected.

For example, assume that a user provides acpu_biaswith
bits that specified CPUs existing on two different CPU
boards. In that case, the CPU board selected would be
board that holds the lowest numbered CPU.

HOME

Allocates the memory pool from the LOCAL memory asso
ciated with the CPU on which the appropriate task is ru
ning. For TEXT and DATA memory pools, the appropriat
task is theENVIRONMENTtask and the allocation occurs
before theENVIRONMENTtask executes any Ada code. Fo
COLLECTION memory pools, the appropriate task is th
task that elaborates the access type associated with
memory pool and the allocation occurs at the time of th
elaboration. For STACK memory pools, the appropria
task is the one that will be using the stack during its exec
tion, and the allocation occurs when that task is created.
any of these cases, if a task migrates to another CPU a
the allocation occurs, the memory will notalso migrate.

hardness

Controls usage of physical global memory if insufficient physic
local memory is available. The default value for an unspecifie
hardness is defined by theDEFAULT_HARDNESSpragma. (See
“Pragma DEFAULT_HARDNESS” on page 6-4.)

PHYSICAL, address
6-24

Run-Time Configuration

be

the
to
the

ory.
and
age

m-
6-14
Uses a specified physical memory address. (Note that this can only
used for non-DEFAULT STACK, COLLECTION, or DATA pools.)

address

The physical memory address at which the first storage unit of
given pool should be located. It is the user’s responsibility
ensure that actual physical memory of some kind is located at
given address and is of a sufficient size for the given pool.

On Series 6000 systems, there are two kinds of physical memory pools:

• Global memory (1 pool)

• Local memory (up to 4 pools, 1 per CPU board)

Global memoryis available to all CPUs via a system-wide bus.Local memoryis available
to CPUs via a local bus physically located on the same CPU board as the local mem
Accessing local memory from a foreign board CPU is allowed but is extremely costly
should be prevented in all time-critical areas. See “Local Memory Management” on p
5-13 for a discussion of each of these types of memory in more detail.

With the judicious use of pragmasMEMORY_POOL, TASK_CPU_BIAS, and
GROUP_CPU_BIAS, an Ada application can take full advantage of all the CPU and me
ory resources of Series 6000 systems. See “Pragma TASK_CPU_BIAS” on page
and “Pragma GROUP_CPU_BIAS” on page 6-19 for more information.

WARNING

The lwarx andstwcx. instructions do not guarantee indivisi-
bility of operations when foreign local memory is involved; do
not attempt such operations with data structures bound to foreign
local memory.

NOTE

The MAXAda packageIndivisible_Operations in ven-
dorlib (see “Indivisible Operations” on page 10-9) utilizes the
lwarx andstwcx. instructions. Do not attempt such operations
with data structures bound to foreign local memory.

Combining local memory usage with hardware interrupt handling
can cause erroneous program behavior in isolated cases. All such
cases are outlined in “Hardware Interrupts” on page 7-4 dealing
with hardware interrupt entries.

An example configuration of a 6-processor Series 6000 is shown in Figure 6-1:
6-25

MAXAda Reference Manual

and
Figure 6-1. Example Configuration for 6-Processor Series 6000 System

Figure 6-2 depicts how memory mapping might occur given a specific configuration
applications of pragmaMEMORY_POOL.

CPU #0

CPU
BOARD A

CPU
BOARD B

CPU
BOARD C

CPU
BOARD D

CPU #1

CPU #2 CPU #4

SYSTEM BUS

CPU #5 32MB
GLOBAL
MEMORY

CPU #3

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY
6-26

Run-Time Configuration

the
sup-

redict
Figure 6-2. Memory Usage on a 6-Processor Series 6000 System

For memory pools associated with physical local memory, the pool will be bound to
physical local memory associated with the highest logical CPU number found in the
plied cpu_bias. Since it is possible to specify acpu_biasreferencing multiple CPUs not
sharing the same physical local memory, the preceding algorithm can be used to p
the results. Consider the following example:

1 package defaults is
2 pragma memory_pool (data, default, global);
3 pragma memory_pool (stack, environment, global);
4 pragma pool_size (stack, environment, 1024*1024);
5 pragma pool_size (stack, default, 2048);
6 pragma pool_size (collection, default, 20*1024*1024);
7 pragma memory_pool (collection, default, global);
8 end defaults;
9

CPU #0

CPU
BOARD A

DYNAMIC
POOL

DYNAMIC
POOL

DEFAULT
DYNAMIC

COLLECT

COLLECT

COLLECT

PACKAGE

PACKAGE

PACKAGE

TASK

TASK

MAIN

TASK

DYNAMIC
STATIC

STATIC
DATA

STATIC
DATA

CPU
BOARD B

CPU
BOARD C

CPU
BOARD D

CPU #1

CPU #2 CPU #4

SYSTEM BUS

CPU #5 32MB
GLOBAL
MEMORY

CPU #3

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY

LOCAL
MEMORY
6-27

MAXAda Reference Manual

hese

ory
n-
10 package aero is
11 ...
12 pragma memory_pool (data, pkg, local, 2#010000#, hard, ncache);
13
14 task type aeronautics is
15 pragma task_weight (bound, spec);
16 pragma task_cpu_bias (2#010000#);
17 pragma memory_pool (stack, spec, local, 2#010000#);
18 end aeronautics;
19 for aeronautics’storage_size use 4096*8;
20 end aero;
21
22 package eom is
23 task equations is
24 ...
25 pragma task_weight (bound, spec);
26 pragma task_cpu_bias (2#000001#);
27 end equations;
28 end eom;

In the preceding example, a program including all three packages would have t
attributes, assuming the machine configuration shown in Figure 6-2:

• Static data is allocated out of global memory (line 2)

• The ENVIRONMENTtask’s stack frame allocated out of global memory
(line 3)

• The size of theENVIRONMENTtask’s stack frame is 1 MB (line 4)

• The default task stack frame size is 2 KB (line 5)

• The size of the default heap is 20 MB (line 6)

• The default heap is allocated as global memory (line 7)

• Static data for packageaero (both for specification and body) is allocated
to local memory on CPU board C (line 12) (configuration-dependent)

• The weight of tasks of type aeronautics is bound (line 15)

• Tasks of type aeronautics execute on CPU #4 (line 16)

• Stacks for tasks of type aeronautics are allocated out of local memory on
CPU board C (line 17) (configuration-dependent)

• The stack size of tasks of type aeronautics is 4 KB (line 19)

• The weight of task equations is bound (line 25)

• Task equations executes on CPU #0 (line 26)

Use of this pragma requires theP_CPUBIASprivilege (seeintro(2)).

See “Memory Attributes” on page 6-21 for a list of other pragmas that modify mem
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.
6-28

Run-Time Configuration

so-

K
ata
ate
bus

the

ory
n-
Pragma POOL_CACHE_MODE 6

The implementation-defined pragmaPOOL_CACHE_MODEdefines the cache mode for a
memory pool.

pragma POOL_CACHE_MODE (pool_spec, cache_mode);

pool_spec

See “Pool Specifiers” on page 6-21 for more information.

cache_mode

The optionalcache_modesets the specified system cache attribute on the as
ciated memory pool (see thememadvise(2) service for more information).
This parameter can be eitherCOPYBACKor NCACHE.

COPYBACK

Use the operating system’s COPYBACK cache mode. In COPYBAC
cache mode, only a single task is usually modifying a semi-private d
area at any given point in time and other tasks will not read the upd
immediately. This mode does not cause a cache flush or memory
access until another CPU reads the data

NCACHE

Use the operating system’s NCACHE cache mode. The default is
value specified for the DEFAULT pool.

If there is no DEFAULT pool, this parameter value isCOPYBACK.

See “Memory Attributes” on page 6-21 for a list of other pragmas that modify mem
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma POOL_LOCK_STATE 6

The implementation-defined pragmaPOOL_LOCK_STATEdefines the lock state of a
memory pool.

pragma POOL_LOCK_STATE (pool_spec, lock_state);

pool_spec

See “Pool Specifiers” on page 6-21 for more information.

lock_state

The keywordLOCKEDor UNLOCKED.

LOCKED
6-29

MAXAda Reference Manual

not

em.

o

ory
n-
means the memory pages are physically locked in memory and can
be swapped out by the operating system.

UNLOCKED

means the memory pages can be swapped out by the operating syst

The default is the value specified for the DEFAULT pool. If there is n
DEFAULT pool, the default isUNLOCKED.

By default, all pages are unlocked. In contrast, if a program specifies

pragma POOL_LOCK_STATE (DEFAULT, LOCKED);

then by default, all pages are locked, even if allocated via user system calls.

If a program specifies that DATA, DEFAULT or COLLECTION, DEFAULT is to be
locked in local memory, then task migrations to foreign CPU boards are inhibited.

Other actions cause memory to be locked as well, including:

• Use of pragmaFAST_INTERRUPT_TASK(The entire address space is
locked in memory by the run-time system.)

• User invocation of system services such asplock(2) , mlock(2) , etc.

Use of this pragma to request page locking requires theP_PLOCKprivilege; see
intro(2) .

WARNING

When locking pages in memory andusing local memory pools
andusing hardware interrupt entries, the user mustspecify addi-
tional information to the hardware interrupt entry address clause.

See “Memory Attributes” on page 6-21 for a list of other pragmas that modify mem
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma POOL_SIZE 6

The implementation-defined pragmaPOOL_SIZE permits the setting of the size for a
STACK or COLLECTION memory pool.

pragma POOL_SIZE (sizeable_spec, size_spec);

sizeable_spec

See “Pool Specifiers” on page 6-21 for more information.
6-30

Run-Time Configuration

llo-

e
ue.

en

e

s
ts
size_spec ::= { size| UNLIMITED}

size

A static non-negative number that controls the amount of space a
cated for an Ada program’s use.

UNLIMITED

A value that is allowed only for the COLLECTION, DEFAULT and
STACK, ENVIRONMENT memory pools.

This pragma, if specified for the STACK, DEFAULT pool, will not affect the size of th
STACK, ENVIRONMENT pool. This is the only pragma where such a statement is tr
The implementation is this way so that the stack size for theENVIRONMENTtask can con-
tinue to beUNLIMITED, which is its default value. This value can always be overridd
explicitly, though.

If this pragma is not specified for theENVIRONMENTtask’s STACK pool, the default
value isUNLIMITED. If this pragma is not specified for a task type’s STACK pool, th
default value is the task type’s’Storage_Size value if it exists, and20,480 other-
wise. If noPOOL_SIZEpragma is valid for a task object or a task other than theENVI-
RONMENTtask, the default value for that real task is20,480 . The default values for
ghost tasks are as follows:

If this pragma is unspecified for the COLLECTION, DEFAULT pool, its value i
UNLIMITED. If this pragma is unspecified for any other COLLECTION pool, then i
default value is the value of the’Storage_Size attribute for the collection.

WARNING

A shell’s default stack limit occasionally causes storage problems
for the compiler and other large compiled programs because it
may provide too little stack space for theENVIRONMENTtask
(main program). To resolve these problems, users may need to
alter the shell’s stack limit and recompile.

Table 6-1. Stack Pool Sizes for Ghost Tasks

Shadow Type
Default
Stack Size

SHADOW N/A

COURIER 10240

INTR_COURIER 4096

ADMIN 12800

TIMER 12800
6-31

MAXAda Reference Manual

ory
n-

.

the
ol is

an-

ory
n-
Most Bourne shell implementations do not allow stack sizes to be
modified.

To reset the default stack size in the Korn shell, users execute the
following shell command:

$ ulimit -s kbytes

The C shell allows its default stack size of 512K bytes to be reset
as high as the default process size. To alter the default stack size
for the C shell, users execute the following shell command:

$ limit stacksize number

See “Memory Attributes” on page 6-21 for a list of other pragmas that modify mem
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.

Pragma POOL_PAD 6

The implementation-defined pragmaPOOL_PADsets the pad for a STACK memory pool

pragma POOL_PAD (paddable_spec, size);

paddable_spec::= {stack_pool}

See “Pool Specifiers” on page 6-21 for more information.

size

A non-negative number that controls the amount of additional pad after
stack size. This value has no meaning when the stack size for the same po
UNLIMITED.

This additional space is intended only for use by the run-time system or for signal h
dlers. For ADMIN ghost tasks, the default is 12,800; otherwise, it is 4,096.

See “Memory Attributes” on page 6-21 for a list of other pragmas that modify mem
attributes. In addition, “RM Annex L: Pragmas” on page M-103 lists all implementatio
dependent and implementation-defined pragmas.
6-32

Run-Time Configuration

sks
ence

he

ys-

cted

PL).
ated

ected

ent
Protected Object Attributes 6

Pragma PROTECTED_PRIORITY 6

The implementation-defined pragmaPROTECTED_PRIORITYsets the scheduling prior-
ity for a protected object. Protected object priority values determine the priorities of ta
during protected actions as described in sections D.1 and D.3 of the Ada 95 Refer
Manual.

pragma PROTECTED_PRIORITY (scheduling_priority
[, protected_object_specifier]);

scheduling_priority

A required integer expression specifying the scheduling priority. It is in t
rangeSystem.Any_Priority’Range as defined in the packageSys-
tem . See “Task Scheduling” on page 5-3 for more information.

Values that fall withinSystem.Interrupt_Priority’Range will be
truncated to the actual maximum interrupt priority allowed on the target s
tem executing the program.

Values less than0 are considered to be values relative toSystem.Prior-
ity’Last +1. The following pragmas are equivalent:

pragma PROTECTED_PRIORITY
(System.Priority’Last);

pragma PROTECTED_PRIORITY (-1);

protected_object_specifier::= ordinary_protected_object

The two-parameter form of pragmaPROTECTED_PRIORITYmust appear in the same
declarative part as the referenced protected object.

The one-parameter form must appear within the protected object itself. The prote
object is assumed to be that in whose context the pragma appears.

Priorities in excess ofSystem.Interrupt_Priority’First will cause all code
associated with the protected object to execute at system Interrupt Priority Level (I
See “Priorities” on page 5-5 for a discussion of interrupt level execution and associ
restrictions.

The PROTECTED_PRIORITYpragma differs from the language-defined pragmaPRI-
ORITY in that it can be applied to additional entities that pragmaPRIORITY cannot (e.g.
protected objects themselves, implementation-defined tasks associated with prot
object interrupt handlers, etc).

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
6-33

MAXAda Reference Manual
6-34

-2
-3

-4
-5

7-6
-7
7-7
7-7
7-8
-9
1
3
4

15
6
7

7
Interrupt Handling

Software Interrupts . 7
COURIER Ghost Tasks . 7
SHADOW Ghost Tasks .. 7-4

Hardware Interrupts . 7
INTR_COURIER and COURIER Ghost Tasks . 7
SHADOW Ghost Tasks .. 7-6

Required Privileges for Unrestricted Hardware Interrupts
Interrupt Attachments. 7

Package Ada.Interrupts.Names .
Package Ada.Interrupts.Services. .

Task Executives via Protected Handlers. .
Example. 7

Description of Example . 7-1
Pragma FAST_INTERRUPT_TASK . 7-1

FAST_INTERRUPT_TASK Performance. 7-1
Fast Interrupt Executives . 7-
Termination . 7-1
Conditional Task Entry Calls . 7-1

MAXAda Reference Manual

rupt

dlers
pro-

TC),

e
s)

ces

ge-

ames

rupt

al-

gma
7
Chapter 7Interrupt Handling

7
7
7

MAXAda supports both software and hardware interrupt handlers. Software inter
handlers allow applications to recieve and process operating system signals (seesig-
nal(2)) as calls to protected procedures or task entries. Hardware interrupt han
allow applications to receive and process machine-generated interrupts as calls to
tected procedures or task entries. Hardware interrupts include: real-time clocks (R
edge-triggered interrupts (ETI), and all system, VME, and PCI interrupts.

A list of software and hardware interrupts are defined in thepredefined package
Ada.Interrupts.Names . This package includes predefined values of typ
Ada.Interrupts.Interrupt_Id which represent the software interrupts (signal
and all the real-time clock and edge-triggered interrupts.

Additional implementation-defined support packages are provided invendorlib :

• Ada.Interrupts.Distrib_Control

Provides services for the configuration and manipulation of distributed devi
associated with closely-coupled systems. Seedistrib_intr(7) for more infor-
mation.

• Ada.Interrupts.ETI_Control

Provides services for the configuration, programming, and manipulation of ed
triggered interrupt devices. Seeeti(7) for more information.

• Ada.Interrupts.Names.Services

Provides textual information on device names, CPU biases, and reserved n
as so c i a t e d w i th i n t er r u p t d e v i ce s a n d v a l u e s o fAd a. In t er -
rupts.Interrupt_Id .

• Ada.Interrupts.PIG_Control

Provides services for the configuration and manipulation of programmable inter
generation devices associated with closely-coupled systems. Seepig(7) for more
information.

• Ada.Interrupts.RTC_Control

Provides services for the configuration, programming, and manipulation of re
time clock devices. Seertc(7) for more information.

• Ada.Interrupts.Services

Provides for the encoding, enabling, and decoding of values ofAda.Inter-
rupts.Interrupt_Id .

The recommended mechanism for handling interrupts in Ada programs is to use pra
IN TE R RU PT _H A ND LE R, p r a g m aA TT AC H _H AN DL E R, o r Ad a. In t er -
7-1

MAXAda Reference Manual

-
d for
inter-
s rel-
plex
echa-

por-

hat

nse

ted

with

in a
erms
rupts.Attach_Handler with protected procedures. However, MAXAda still sup
ports the obsolescent form of interrupt handling via task entries. An alternative metho
handling interrupts is to bypass the language defined mechanisms completely and
face directly to the operating system. In the case of software interrupts (signals), this i
atively easy and maintainable. However, in the case of hardware interrupts it is com
and dangerous; utilization of the language-defined and implementation-supported m
nism is highly recommended instead.

IMPORTANT

When bypassing the language mechanism for signal handling, be
sure to explicitly unblock any signals you intend to handle via the
sigprocmask(2) system call. MAXAda blocks most signals
from most tasks by default.

When bypassing the language mechanism for machine interrupt
handling, never attempt to attach an interrupt to anything other
than a library-level procedure. There are many other consider-
ations; seeiconnect(3C) .

The following definitions, paraphrased from RM C.3(2), are presented as they are im
tant in subsequent discussions.

Generationof an interrupt is the event in the underlying hardware or system t
makes the interrupt available to the program.

Delivery [of an interrupt] is the action that invokes part of the program as respo
to the interrupt.

An occurrenceof an interrupt is separable into generation and delivery.

Between generation and delivery, the interrupt ispending.

When an interrupt isblocked, all generated instances of that interrupt are preven
from being delivered.

MAXAda considers delivery to be the execution of the protected handler associated
the interrupt (or the rendezvous with the task entry associated with the interrupt).

Unfortunately, the operating system utilities and services use similar terminology
slightly different manner. Subsequent discussions within this chapter will use these t
as defined above (paraphrased from RM C.3(2)), notas they normally appear in system
service descriptions.

Software Interrupts 7

Software interrupts are based on the operating system concept of signals (seesig-
nal(2)).
7-2

Interrupt Handling

1
e sig-

o be

y the
ple-
f the

the
ly if
sk, in

r tasks
h
al is
such

very
rcep-
eptee
ntil
l
perat-

sk
The signalsSIGFPE, SIGSEGV, andSIGADAare used by the run-time system. Table 7-
shows the type of erroneous program behavior that can result from intercepting thes
nals with user-defined signal handlers.

The following set of software signals are reserved (and therefore not available t
attached to protected procedures):

• SIGADA

• SIGKILL

• SIGSTOP

• Signal values above 64

• SIGSEGV(if the POSIX package is in use)

• SIGALRM(if the POSIX package is in use)

• SIGFPE (if the POSIX package is in use)

• SIGILL (if the POSIX package is in use)

COURIER Ghost Tasks 7

After a signal is generated, it is scheduled by the operating system for interception b
MAXAda run-time system which addresses it properly for subsequent delivery. An im
mentation-provided ghost task, called a COURIER task, is responsible for delivery o
addressed signal. If the interrupt is currently blocked, then it is queued internally by
COURIER task and will be delivered subsequently. An interrupt would be blocked on
its associated protected object had an ongoing protected action (or if its associated ta
the obsolescent model, was not suspended at an (open) accept for its entry) or othe
executing in theSystem.Interrupt_Priority range were using resources whic
prevented delivery (e.g. they were executing on the CPU at the time). Once a sign
intercepted by the run-time system, a subsequent attempt at delivery will be made;
signals are not lost, they are queued.

The time taken for addressing an interrupt is extremely short; it is unrelated to the deli
of the signal or the execution of the associated protected procedure itself. Once inte
tion of the signal is scheduled by the operating system, the signal mask of the interc
(normally the COURIER task) contains the signal number of interest; it is not cleared u
interception is complete (seesigprocmask(2)). If another instance of the same signa
is generated while the interceptee has the signal number set in its signal mask, the o

Table 7-1. Erroneous Behavior Due to User-Defined Signal Handlers

Signal Used Erroneous Behavior

SIGFPE certain types of numeric exceptions may no longer be detected

SIGSEGV STORAGE_ERRORwill no longer be raised when such a signal occurs

SIGADA task preemption may cease to function, and certain kinds of ta
interactions may fail
7-3

MAXAda Reference Manual

dis-

d with
vered
nse of
t
with

OW
f the

ng is

er,
tem

to
ing system will either queue or discard the new signal. Whether or not such signals are
carded is dependent on how the signal was initiated (seesignal(2)).

Therefore, when a protected procedure handler is executed, only signals associate
that handler are blocked. They are blocked in the RM sense that they cannot be deli
to the protected handler; they are not necessarily blocked in the operating system se
signal blocking (seesigprocmask(2)). Note that the execution of the handler will no
be interrupted by interception of that signal number; task dispatching rules coupled
the priority of the protected object ensure this.

Important

The MAXAda run-time system automatically sets the signal mask
(seesigprocmask(2)) for all bound user tasks to exclude all
signals (except for a few of the reserved ones). This is done so that
signals associated with interrupt attachments will be delivered
directly to their corresponding COURIER task, as opposed to one
of the user’s tasks who would then forward it to the COURIER
task (via MAXAda run-time code). This approach improves gen-
eral throughput and also allows the user to isolate signal activity
to specific CPUs via application of pragmaTASK_CPU_BIASfor
the COURIER tasks. However, if the user is handling signals
using a different mechanism, he must unblock the signals via
sigprocmask(2) or they will never be delivered. Seesig-
nal(2) for more information on signal handling in the operating
system.

SHADOW Ghost Tasks 7

There is a ghost task associated with a software interrupt task handler, called a SHAD
task. It is not a physical task in any real sense. It merely acts as the virtual caller o
interrupt handler. It does not, however, physically execute on any server or CPU.

Hardware Interrupts 7

Hardware interrupts are machine-generated interrupts. Machine interrupt handli
based on the PowerMAX OS kernel’siconnect(3C) system service. Theicon-
nect(3C) service is employed to connect a process to interrupt level.

Technically, all machine interrupts may be handled by MAXAda programs; howev
many of the machine interrupts are utilized by the operating system for proper sys
behavior. Handling of such interrupts by MAXAda programs may cause the system
become unreliable or even crash. Handling of machine interruptsother than those associ-
ated with the following devices is not recommended:

• User-installed Hardware Devices

• Real-Time Clock Devices
7-4

Interrupt Handling

d”.
An

l Ada

rupt

indi-
-10.

pts;
e will
hile

ted

CPU
pt.

the
-

in-

n the
n-
oce-
nder-

PU
rity
ures
ise

er-
bject
ivery
on
e

• Edge-Triggered Interrupt Devices

Machine interrupts are further divided into two categories: “restricted” and “unrestricte
A “restricted” interrupt places restrictions upon the code executed by its handler.
“unrestricted” interrupt places no such restrictions; the handler may execute any lega
statement.

A handler which handles a “restricted” interrupt will execute at operating system inter
priority level (IPL); these priorities correspond to the Ada priorities in the range:

Interrupt_Priority’First +1 .. Interrupt_Priority’Last

as presented in “Priorities” on page 5-5. Such a handler must follow the restrictions
cated in “Restrictions for Priorities in the System.Interrupt_Priority Range” on page 5
Violating those restrictions almost always will result in a system hang or panic.

As shown below, “restricted” interrupts incur less overhead than “unrestricted” interru
but they also have a general impact on system performance. The system as a whol
not be able to handle machine interrupts of like or lower priority on the same CPU w
ANY protected action for that associated protected object is executed.

INTR_COURIER and COURIER Ghost Tasks 7

An INTR_COURIER ghost task is provided by the implementation for each protec
procedure handler or task which handles a machine interrupt.

When a machine interrupt is generated, the operating system vectors the interrupted
to the MAXAda run-time system’s INTR_COURIER for the associated interru
INTR_COURIER tasks execute at operating system interrupt priority levels. See
description of priorities in “Priorities” on page 5-5. The INTR_COURIER has the follow
ing responsibilities:

1. It addresses the interrupt for subsequent delivery.

2. Depending on circumstances described below, it may deliver the interrupt
itself or notify the COURIER task of the interrupt.

Addressing the interrupt for delivery is a very fast operation; it simply involves determ
ing which handler is currently attached to the interrupt.

For protected procedure handlers, if the interrupt is designated as “restricted”, the
INTR_COURIER will deliver the interrupt itself. Delivery for a protected procedure ha
dler involves initiating a protected action which invokes the associated protected pr
dure. If a protected action cannot be initiated (because a protected action is already u
way for the associated protected object), the INTR_COURIER will spin on its C
waiting for the action to complete. Note that an appropriate choice of the ceiling prio
associated with the protected object, in combination with task dispatching rules, ens
that the interrupt will not preempt a protected action for that protected object (otherw
the INTR_COURIER might spin forever). When handling a “restricted” machine int
rupt, the user must ensure that the ceiling priority of the associated protected o
matches (or exceeds) the priority of the interrupt; otherwise, when the attempt at del
is made, the INTR_COURIER will cause a ceiling violation and the excepti
PROGRAM_ERROR wil l be ra ised. The exception wi l l be handled by th
7-5

MAXAda Reference Manual

nted
to
inter-
he

gen-

the
e
IER

ub-
dling
or

er-
to be

, the
ner.
erna-
he
vi-
uent

a

rves
f the
INTR_COURIER task and the interrupt will be lost (a (suppressible) message is pri
by the MAXAda run-time when this occurs). For “restricted” interrupts, it is important
understand that the computer system as a whole is prevented from handling machine
rupts of like or lower priority, on the same CPU, while the INTR_COURIER delivers t
interrupt or when protected actions for the associated protected object are executed in
eral.

Alternatively, for protected procedure handlers, if the interrupt is “unrestricted”,
INTR_COURIER will notify another ghost task, the COURIER task, who will deliver th
interrupt. If another instance of the same interrupt is generated before the COUR
delivers the previous interrupt, it will be queued by the MAXAda run-time system for s
sequent delivery. Thus, the computer system as a whole is not prevented from han
machine interrupts of like or lower priority while the COURIER delivers an interrupt
during protected actions associated with the protected object.

For task handlers, the INTR_COURIER simply notifies the COURIER task of the int
rupt unless the user has specified that the address space of the entire application is
locked into memory (see “Pragma POOL_LOCK_STATE” on page 6-29). In this case
INTR_COURIER attempts to obtain critical access to the task in a non-blocking man
If it is able to obtain access to the task and the task is blocked with an open accept alt
tive for the entry, the INTR_COURIER delivers the interrupts; otherwise it notifies t
COURIER task of the interrupt. If the COURIER task is already busy delivering a pre
ous interrupt, then the interrupt is queued by the MAXAda run-time system for subseq
delivery.

Another type of task handler, aFAST_INTERRUPT_TASKis provided which essentially
i s a “ r e s t r i c t e d ” i n te r r u p t a ss o c ia t e d w i t h a t as k . S e e “P r ag m
FAST_INTERRUPT_TASK” on page 7-13 for a complete description.

SHADOW Ghost Tasks 7

The SHADOW task associated with a hardware interrupt handler for a task entry se
the same purpose as that for a software interrupt handler. It acts as the virtual caller o
interrupt handler. It does not physically execute on any server or CPU.

Required Privileges for Unrestricted Hardware Interrupts 7

The following privileges are required when hardware interrupts are to be handled:

• P_RTIME

• P_CPUBIAS

• P_USERINT

• P_PLOCK

• P_TSHAR

• P_SYSOPS
7-6

Interrupt Handling

ts
hing

ckage
e con-

s

tly
d on
vec-

e

r

n

ttach-
, it is
Interrupt Attachments 7

The language-defined package,Ada.Interrupts , is the basis for all interrupt attach-
ments. It defines the typeInterrupt_ID , which is an encoded integer which represen
an interrupt. It also includes language-defined procedures for attaching and detac
interrupts.

MAXAda provides additional child packages toAda.Interrupts which aid the user.

Package Ada.Interrupts.Names 7

The packageAda.Interrupts.Names provides predefined interrupt IDs for signals
and commonly handled hardware devices. Note that the constants defined in that pa
may not have the same internal encoded value across architectures or systems. Th
stants are set by the MAXAda run-time system upon program elaboration.

These constants may be specified inATTACH_HANDLERpragmas or calls to subprogram
in theAda.Interrupts package.

Package Ada.Interrupts.Services 7

Since values ofAda.Interrupt_ID are encoded integers, this package (subsequen
referred to asAIS in this chapter), provides a mechanism for encoding the values base
the common identifier for the interrupt; either a signal number or a machine interrupt
tor number.

IMPORTANT

Values ofAda.Interrupt_ID are not signals or machine inter-
rupt vector numbers; they are encoded values.

To o b t a i n a n In te rr u pt _I D f o r a s ig n a l , i n v o k e t h e r o u t in e
AIS.Encode_Signal_Interrupt_ID and supply the signal number. To obtain th
signal number associated with a value ofInterrupt_ID , first check that the interrupt
ID is indeed an encoded signal via the functionAIS.Is_Signal_Interrupt_ID and
then invokeAIS.Decode_Signal_Interrupt_ID .

To obtain anInterrupt_ID for a machine interrupt vector (often obtained viaicon-
nect(3C) or intstat(1)), invoke the routineAda.Interrupts.Ser-
vices.Encode_Machine_Interrupt_ID . To obtain the machine interrupt numbe
asociated with a value ofInterrupt_ID , first check that the interrupt ID is indeed an
en co d e d ma c h i n e i n t er r u p t v e c t o r n u m b er v i a t h e f u n ct i o
AI S. I s_ Si gn a l_ In te r ru pt _I D a n d t h en i n v o k e
AIS.Decode_Machine_Interrupt_ID .

Before an interrupt can be attached to a protected procedure or task entry, such a
ments must be “enabled”. Enabled in this sense is referring to enabling attachments
not at all related to enabled a hardware device.
7-7

MAXAda Reference Manual

s of

ined
a

ined

d
ias

ity
ay
, the
a

r

o
”

r

g

spe-
es
By default, attachment to all non-reserved signal interrupts is “enabled”; thus use
pragmaATTACH_HANDLERor Ada.Interrupts.Attach_Handler for signals are
allowed.

However, the same is not true of hardware interrupts. Only the interrupt ID values def
in Ada.Interrupts.Names are automatically enabled; thus uses of pragm
ATTACH_HANDLERor Ada.Interrupts.Attach_Handler for those interrupt IDs
are allowed. In order to attach other machine interrupts, the interrupt ID values obta
from a call toAIS.Encode_Machine_Interrupt_ID must be enabled via a call to
AIS.Enable_Interrupt . For most devices, additional information must be supplie
with the machine interrupt vector number for proper interrupt handling; the cpu_b
which identifies the CPU upon which the interrupt will occur and an interrupt prior
level (IPL) at which the interrupt will occur. Failure to provide accurate information m
cause the system to become unre l iable or even crash. For this reason
Enable_Interrupt routine was created; it associated additional information with
specifiedInterrupt_ID which remains in effectuntil the end of the program or anothe
call to Enable_Interrupt with the sameInterrupt_ID . Therefore, uses of pragma
ATTACH_HANDLERor Ada.Interrupts.Attach_Handler for such interrupt ID
values will fail (they are considered reserved until enabled) untilAda.Inter-
rupts.Services.Enable_Interrupt is called.

The routineAIS.Interrupt_Attributes may be called for any interrupt ID; it
r e tu r n s t h e i n f o r m a t i o n l as t p r o v i d e d f o r t h at in t e r r u p t i n a ca l l t
AIS.Enable_Interrupt (or the default information provided for “auto-enabled
interrupts if no call toAIS.Enable_Interrupt was made).

The routineAIS.Set_Restricted_Mode is provided as a convenience, mainly fo
use with RTC and ETI devices.AIS.Set_Restricted_Mode enables the specified
interrupt ID using the attributes currently in effect for that interrupt ID while overridin
the “is_restricted” attribute with the specified value.

Task Executives via Protected Handlers 7

Protected objects naturally lend themselves to providing efficient task scheduling, e
cially when combined with “restricted” interrupt handling. The following example utiliz
the receipt of an interrupt to begin the execution of a frame in a cyclic scheduler.

package executive is
protected executive is

procedure interrupt;
entry wait_for_interrupt;

private
execute : boolean := false;

end executive;
end executive;

package body executive is
protected body executive is

procedure interrupt is
begin

execute := true;
end interrupt;
entry wait_for_interrupt when execute is
begin

if wait_for_interrupt’count = 0 then
7-8

Interrupt Handling
execute := false;
end if;

end wait_for_interrupt;
end executive;

end executive;

Example 7

A complete example is provided to illustrate this concept:

with system ;
generic

type tasks is (<>) ;
package cyclic_scheduler is
--

type cycles is mod 2**32 ;
type cycle_counts is array (tasks) of cycles ;

protected type scheduler (priority : system.interrupt_priority) is
entry start_cycle (tasks) (overran, finished : out boolean) ;
procedure interrupt ;
procedure shut_down ;
function current_cycle return cycles ;

private
pragma interrupt_handler (interrupt) ;
pragma interrupt_priority (priority) ;
cycle : cycles := 0 ;
counts : cycle_counts := (others => 0) ;
stop : boolean := false ;

end scheduler ;
--
end cyclic_scheduler ;

package body cyclic_scheduler is
--

protected body scheduler is
--

procedure interrupt is
begin

cycle := cycle + 1 ;
end interrupt ;

entry start_cycle (for t in tasks) (overran, finished : out boolean)
when counts(t) /= cycle or stop is
begin

if stop then
finished := true ;
overran := false ;

else
finished := false ;
counts(t) := counts(t) + 1 ;
overran := counts(t) /= cycle ;

end if ;
end start_cycle ;

procedure shut_down is
begin

stop := true ;
end shut_down ;
7-9

MAXAda Reference Manual
function current_cycle return cycles is
begin

return cycle ;
end current_cycle ;

--
end scheduler ;

--
end cyclic_scheduler ;

with cyclic_scheduler ;
with system ;
package scheduler_example is
--

type tasks is (cpu_0, cpu_1) ;

task type t (id : tasks; priority : system.priority; cpu_bias : integer)
is

pragma priority (priority) ;
pragma task_cpu_bias (cpu_bias) ;

end t ;

package sched is new cyclic_scheduler (tasks) ;

scheduler : sched.scheduler (93+160) ;
done : boolean := false ;

--
end scheduler_example ;

with ada.text_io ;
package body scheduler_example is
--

workload : integer := 10_0000 ;

procedure work is
x : long_float := 0.0 ;

begin
for i in integer range 1..workload loop

x := x * x ;
end loop ;

end work ;

task body t is
overran : boolean ;
finished : boolean ;

begin
loop

scheduler.start_cycle(id) (overran, finished) ;
exit when overran or else finished ;
work ;

end loop ;
if overran then

ada.text_io.put_line (“Task “ & tasks’image(id) & “ overran”) ;
end if ;
ada.text_io.put_line (“Task “ & tasks’image(id) & “ complete.”) ;

end t ;
--
end scheduler_example ;

with ada.interrupts ;
with ada.interrupts.names ;
with ada.interrupts.rtc_control ;
with ada.interrupts.services ;
with ada.text_io ;
procedure scheduler_example.main is
--
7-10

Interrupt Handling

ng of

.

-

ct
t

rt of
of a

all to
xt

gle
package ai renames ada.interrupts ;

cpu0_task : t (id => cpu_0, priority => 150, cpu_bias => 2#0001#) ;
cpu1_task : t (id => cpu_1, priority => 149, cpu_bias => 2#0010#) ;
rtc : ai.rtc_control.rtc_id ;

--
begin
--

ai.services.set_restricted_mode(ai.names.rtc0c1,true) ;
ai.attach_handler (scheduler.interrupt’access,

ai.names.rtc0c1) ;

rtc := ai.rtc_control.configure_rtc (cycle_time_msec => 16.6666666,
id => ai.names.rtc0c1)

;
ai.rtc_control.start_rtc (rtc) ;
loop

exit when done ;
delay 1.0 ;
ada.text_io.put_line (“cycles =” &

sched.cycles’image(scheduler.current_cycle));
end loop ;
ai.rtc_control.stop_rtc (rtc) ;

delay 0.020 ;

scheduler.shut_down ;
--
end scheduler_example.main ;

Description of Example 7

In the example above, a protected object is used to coordinate the cyclic scheduli
multiple tasks using a real-time clock as an external timing source.

It is handy to run thea.monitor tool anda.rtm tool to track the execution of the test
Invoke a.monitor with the name of the program file for the test (e.g.a.monitor
a.out). Use the<Task> and <Sys> screens to track the number of interrupts deliv
ered, the status of each task, and the priority and CPU bias of each task. Invokea.rtm
without any arguments, then use the<Objects> screen to obtain a list of variables to
monitor (select<Search> from Objects Mode, then<Package for variables> from
Search Mode and specifyscheduler_example as the package name and sele
<Search>. Now in List Mode, select<* select> to select all the variables listed, selec
<Add> to add them, then select<Quit> to exit List Mode. Select<Quit> to exit Search
Mode. Select<Quit> to exit Objects Mode back to the main screen. The variabledone
can be modified via<Modify> to terminate the example or the variableworkload can
be increased or decreased to cause overruns to occur).

Receipt of the machine interrupt associated with expiration of the clock defines the sta
a cycle. In the example, all tasks are scheduled to start execution at the beginning
cycle.

Each task registers with the protected object when it is ready via a protected entry c
start_cycle . The tasks will block on that entry call until the beginning of the ne
cycle.

An entry family is used simply to detect cycle overruns for the tasks; otherwise a sin
entry might be used.
7-11

MAXAda Reference Manual

ill be

ure
ked
try

cycle

nother
ain
(i.e.

ions.

ior-
an-
om-
be
the

via

sys-

of

(the
as
Under normal operation (i.e. if there are no overruns), all the tasks in the scheduler w
blocked on their entry call tostart_cycle . Upon receipt of an interrupt, a protected
action is started and the protected procedureinterrupt is called, incrementing the cur-
rent cycle countcycle by one.

As part of finishing the protected action (immediately after returning from proced
interrupt), the entry queues are services (see RM 9.5.3(13)). All tasks which bloc
on the entrystart_cycle before the interrupt occurred are released (since the en
barrier condition will now evaluate to TRUE (see RM 9.5.3(7)).

Inside the entry body, overruns for each task are detected by comparing the current
number to the cycle number when that task was last released.

Finally, when all tasks have been released, the protected action completes.

Note that if one of the tasks is released, completes its processing, and then makes a
entry call tostart_cycle before all the other tasks have been released, it will rem
queued until the next interrupt occurs due to the barrier condition for that entry index
counts(id) will equalcycle until the next interrupt occurs).

The priority and cpu_bias of the tasks are set using pragmas and per-object express

The priority of the protected object is set similarly. Note that the value of the ceiling pr
ity for the protect object is important, especially if the restricted mode of interrupt h
dling is used (as it is in this example). The priority must be no less than that of the inc
ing interrupt (otherwise a ceiling priority violation would occur and the interrupt would
discarded (see RM D.3(13) and RM C.3(7)). The appropriate priority is calculated for
restricted mode by adding the IPL value of the interrupting device (obtained
intstat(1)) to interrupt_priority’first .

Note that you may need to adjust the value shown in the example as it differs between
tems.

The restricted mode is activated in this test by the call toAda.Interrupts.Ser-
vices.Set_Restricted_Mode() before the attachment to the protected object.

Warning

Do not modify the body of the protected type in this example until
understanding the restrictions imposed by utilization of priorities
aboveInterrupt_Priority’First as documented in “Pri-
orities” on page 5-5 and “Restrictions for Priorities in the Sys-
tem.Interrupt_Priority Range” on page 5-10.

Alternatively, the interrupt could be left in unrestricted mode and a ceiling priority
Interrupt_Priority’First would be sufficient.

In such a case, some additional overhead is involved in delivering the interrupt
INTR_COURIER notifies the COURIER task which then delivers the interrupt;
described previously in this chapter).
7-12

Interrupt Handling

o-
form

at
this
uring

can-

state-
o the
Pragma FAST_INTERRUPT_TASK 7

The implementation-defined pragmaFAST_INTERRUPT_TASKprovides extremely fast
interrupt handling via task entries. The overhead incurred forFAST_INTERRUPT_TASK
interrupt handling is slightly lower than that for “restricted” interrupt handling by pr
tected objects. However, the difference are so slight that the language-recommended
of handling, i.e. protected objects, is preferred.

Use of theFAST_INTERRUPT_TASKpragma causes the user’s task to execute directly
interrupt level, instead of relying on an INTR_COURIER ghost task to do so. Use of
pragma requires severe limitations on the form of the task and the actions taken d
rendezvous.

The compiler enforces many of the following restrictions on the task; however, others
not be easily detected and are not enforced by the compiler.

WARNING

Violating these restrictions willresult in system panics and
crashes.

Restrictions:

• Only one entry is allowed in the task specification

• Accept/select must be immediately enclosed by aloop statement

• No code is allowed within the loop outside ofaccept/select block

• Select statements must have

- No delay alternatives

- No else alternatives

- No guards onaccept or terminate alternatives

- No code after theaccept alternative

• Code within theaccept statement

- Must not raise an exception unless explicitly handled within the
accept statement

- Must not perform any tasking actions (except for restricted form of
conditional entry calls as defined below)

- Must not enter the kernel (I/O, system service calls, etc.)

- These restrictions also apply to all subprograms called

Note that the entire address space that is visible to the task is available to the code
ments in rendezvous. Additionally, subprogram calls are allowed but must adhere t
same restrictions as stated above. One system call is allowed,server_wake1(2) .
7-13

MAXAda Reference Manual

non-
l).

bpro-

the
This feature can be configured only via this pragma. It cannot be adjusted by thea.map
program editor. (See “a.map” on page 4-52.)

If present, this pragma also implies the following pragmas:

pragma TASK_WEIGHT (BOUND, SPEC);
pragma POOL_LOCK_STATE (DEFAULT, LOCKED);

See Chapter 6 for details about these pragmas.

FAST_INTERRUPT_TASK Performance 7

The performance ofFAST_INTERRUPT_TASKinterrupt handling is dependent on the
form of the body of code within the accept statement.

While all forms are extremely efficient, the mostefficient form has the body of code
inside the accept statement containing a single parameterless procedure call to a
nested subprogram (a subprogram nested only within packages will work equally wel

A close second place in performance has the subprogram nested within a task or su
gram.

Consider the following three forms, which are functionally equivalent, and supply
body for the package p as specified by:

package p is
counter : integer := 0;
task t is

entry e;
for e use at ...;
pragma fast_interrupt_task;

end t;
end p;

Form 1:

package body p is
task body t is
begin

loop
accept e do

counter := counter + 1;
end e;

end loop;
end t;

end p;

Form 2:

package body p is
task body t is

procedure handle_interrupt is
begin

counter := counter + 1;
end handle_interrupt;

begin
loop

accept e do
handle_interrupt;

end e;
7-14

Interrupt Handling

ma
,
s.

e

such
end loop;
end t;

end p;

Form 3:

package body p is
procedure handle_interrupt is
begin

counter := counter + 1;
end handle_interrupt;
task body t is
begin

loop
accept e do

handle_interrupt;
end e;

end loop;
end t;

end p;

Form 3 is most efficient, followed by Form 2 and then Form 1.

Fast Interrupt Executives 7

Typically, the performance of normal interrupt handlers (i.e., tasks without prag
FAST_INTERRUPT_TASK) is sufficient for most tasking executives; however
FAST_INTERRUPT_TASKs can serve as extremely efficient task scheduling executive

A FAST_INTERRUPT_TASKdirectly handles the source interrupt (perhaps a real tim
clock) and may utilize conditional entry calls to schedule application tasks.

Extreme care must be taken to ensure no errors or exceptional conditions occur in
executives.

Example:

with ada.interrupts;
with ada.interrupts.names;
with system;

package fast_interrupt_example is
--

real_time_clock : system.address :=
ada.interrupts.reference(ada.interrupts.names.rtc0c1) ;

task workload_1 is
entry go ;

end workload_1 ;

task workload_2 is
entry go ;

end workload_2 ;

task executive is
entry interrupt ;
for interrupt use at real_time_clock ;
pragma fast_interrupt_task ;

end executive ;
--
end fast_interrupt_example;
7-15

MAXAda Reference Manual

r-
package body fast_interrupt_example is
--

task body workload_1 is
begin

loop
select

accept go ;
-- do something

or
terminate ;

end select ;
end loop;

end;

task body workload_2 is
begin

loop
select

accept go ;
-- do something

or
terminate ;

end select ;
end loop;

end;

procedure schedule_tasks is
begin

select
workload_1.go ;

else
null ; -- perhaps set overrun flag

end select ;
select

workload_2.go ;
else

null ; -- perhaps set overrun flag
end select ;

exception
when others =>

null ; -- perhaps set catastrophic flag
end schedule_tasks ;

task body executive is
begin

loop
accept interrupt do

schedule_tasks ;
end interrupt ;

end loop ;
end executive ;

--
begin

null;
end fast_interrupt_example;

Termination 7

Ev e n t h o u g h se le c t i ve _t e rm in at e s ta t e me n t s a r e a l lo w ed i n
FAST_INTERRUPT_TASKs, the run-time executive will not consider the terminate alte
7-16

Interrupt Handling

e

native unti l the task has been detached from interrupt level.ada.inter-
rupts.detach_handler can be called with the ID of the interrupt associated with th
fast interrupt task; it will detect the interrupt from theFAST_INTERRUPT_TASK, thus
allowing it to terminate.

Conditional Task Entry Calls 7

Conditional entry calls are allowed withinFAST_INTERRUPT_TASKs as long as the
accept statement which accepts the entry call has no body.

Furthermore, conditional entry calls fromFAST_INTERRUPT_TASKs will fail (i.e., the
else alternative will be chosen) if:

• The called task is not immediately ready to accept the entry associated with
the call.

• The FAST_INTERRUPT_TASK cannot immediately obtain mutually
exclusive access to the called task’s control block. This can occur if
another task has obtained such access in order to abort the task, attempts to
rendezvous with it, or checks to see if the task should be terminated (if the
other task has arrived at aselect statement with an openterminate
alternative).

• The correspondingaccept statement has a body.
7-17

MAXAda Reference Manual
7-18

3
Part 3General Features

Replace with Part 3 tab

MAXAda Reference Manual

Part 3 - General Features
Part 3 - General Features

Part 3 General Features

Chapter 8 Shared Memory and Process Communication................................ 8-1

Chapter 9 Support Packages .. 9-1

MAXAda Reference Manual

-1
8-1
-1
8-4
8-4
8-5
8
Shared Memory and Process Communication

Shared Memory . 8
Shared Packages .

Pragma SHARED_PACKAGE. 8
Restrictions on Contents of Shared Packages .
Characteristics of Shared Packages .
Shared Package Semaphores .

Additional Ada Shared Memory Support . .. 8-8

MAXAda Reference Manual

sses.
pro-
ms.
hese

o-

as,

ges

ma

rams
cifica-
ge are
pack-

ma-
8
Chapter 8Shared Memory and Process Communication

8
8
8

This chapter describes how to use MAXAda to communicate between distinct proce
Through the use of implementation-defined pragmas and attributes, a user can write
grams in the Ada programming language that interface to objects in other progra
Some of these other programs may even be written in languages other than Ada. T
communications are provided only through implementation-defined features.

Shared Memory 8

With the use of pragmaSHARED_PACKAGE, Ada programs can interface to separate pr
grams, possibly running on different CPUs on a multiple-CPU system.

This communication is achieved internally by utilizing shared memory services, such
shmget(2) , shmat(2) , etc.

Shared Packages 8

MAXAda has provided an implementation-defined pragmaSHARED_PACKAGE. This
provides for the sharing and communication of Ada objects in library-level packa
between distinct Ada programs.

All variables declared in the specification of a package marked with prag
SHARED_PACKAGE(henceforth referred to as ashared package) are allocated in shared
memory that is created and maintained by the implementation. As such, all Ada prog
that reference the shared packages can communicate through variables in the spe
tions of those packages. Note that variables declared in the body of a shared packa
not shared. Any objects declared in specifications of packages nested within shared
ages are also shared as part of the same shared memory segment.

See also “4.1.4(12) Implementation-defined attributes” on page M-13 for more infor
tion related to pragmaSHARED_PACKAGE.

Pragma SHARED_PACKAGE 8

The implementation-defined pragmaSHARED_PACKAGEprovides for the sharing and
communication of data declared within the specification of library-level packages.

Its syntax is:
8-1

MAXAda Reference Manual

g a
rs, as

el
over-

ma in
fica-

gma

gur-

be

n the

al),
the

. By
-

pragma SHARED_PACKAGE[("params")];

params

an optional argument, that, if specified, must be a string constant containin
comma-separated list of system shared-segment configuration paramete
defined below

TheSHARED_PACKAGEpragma must appear within the specification of the library-lev
package. The pragma may also be repeated in the package body to allow the user to
ride the shared memory configuration parameters that were associated with the prag
the specification. However, the pragma still affects only objects declared in the speci
tion of the package.

The following is a list of the shared-segment configuration parameters that pra
SHARED_PACKAGEmay accept:

key= name

Identifies the system shared-segment key to be used in subsequentshmget(2)
system calls. These calls are done automatically by the implementation in confi
ing the shared segment.

nameis considered to be the name of an existing file. This filename will then
translated to a shared segment key using theftok(3C) service. Note that relative
pathnames may be specified but will cause key translation to be dependent o
user’s current working directory when program execution is initiated. Ifnameis a
numeric literal (a decimal integer or Ada octal- or hexadecimal-based liter
MAXAda interprets this as the actual system key, and does not translate it using
ftok service.

If no key is specified, MAXAda creates an empty file by the name:

{absolute MAXAda environment path}/.ada/shmem/ package_name

and uses that file as thekey for theSHARED_PACKAGEpragma.

ipc=(IPC_CREAT, IPC_EXCL, IPC_PRIVATE)

Allows the user to specify details about the initialization of the shared segment
default, MAXAda appliesipc=(IPC_CREAT) to the shared package, thereby cre
ating the shared segment if it did not previously exist. If anyipc parameters are
given, they entirely replace the defaultipc specification.

SHM_RDONLY

Specifies that the segment is available only forREADoperations. MAXAda defaults
shared package segments toREAD/WRITE.
8-2

Shared Memory and Process Communication

ment.
e,

mory
from

ram

d
ble

nitial-
utes

the

e

CAUTION

The current shared memory implementation does not allow the
use of the’LOCK and’UNLOCKattributes with aSHM_RDONLY
shared memory segment. Any use of these attributes with a pack-
age markedSHM_RDONLYwill raise PROGRAM_ERRORat run
time. See “Shared Package Semaphores” on page 8-5.

mode=n

Wheren is assumed to be an octal number defining the access to the shared seg
By default, MAXAda appliesmode=644 to the shared package, (owner read/writ
group read, other read). The specified value for mode isORed into theshmflgs
parameter that MAXAda uses for theshmget(2) call. Additional bits can be sup-
plied viamode to control caching, etc. (e.g., “mode = 8#200644# ” would spec-
ify SHM_COPYBACK, as well as the 644 mode). For more information, see thePow-
erMAX OS Programming Guide.

SHM_LOCAL

Requests that pages for the shared segment be allocated from the local me
pool. If a program attempts to attach to a segment which has been allocated
local memory on a different CPU, then the attachment will fail. Seeshmget(2) .

SHM_LOCK

Specifies that virtual memory pages be locked into physical memory at prog
start-up time. Doing this makes these pages immune to swapping.

SHM_HARD

When used in conjunction withSHM_LOCAL, specifies that pages for the share
segment mustbe allocated from the local memory pool. If pages are not availa
from local memory then the signalSIGSEGVis delivered to the process. See
shmget(2) .

no_bsem

Prohibits the use of the shared package lock attributes’LOCK and ’UNLOCK. In
shared packages marked with this parameter, binary semaphore space is not i
ized in the shared memory segment. Any attempt to make use of the lock attrib
in a shared package marked withno_bsem will raise PROGRAM_ERRORat run
time. UnlikeRDONLYshared packages, packages marked byno_bsem haveREAD/
WRITEcapability.

bind= n

Wheren is assumed to be an octal number. The segment will be attached to
physical memory address specified byn. This parameter requires theP_SHMBIND
privilege (seeintro(2)).

A detailed explanation of theIPC andSHMflags, and access modes may be found in th
following man pages:shmbind(2) , shmget(2) , ipcs(1) , ipcrm(1) , and
chmod(1) .
8-3

MAXAda Reference Manual

kage.

is not
ckage
ages

e data

user
ma in
uring
the
n

f the

t
ion of

ter the
main
y be

h the
Restrictions on Contents of Shared Packages 8

The implementation restricts the kinds of objects that can be declared in a shared pac
Objects that cannot be declared in a shared package include:

• Unconstrained or dynamically sized objects

• Access type objects

• Generic instantiations

If any of these restrictions are violated, a warning message is issued and the package
shared. These restrictions apply to nested packages as well. Note that if a nested pa
violates one of the preceding restrictions, it prevents the sharing of all enclosing pack
as well.

Task objects are allowed within shared packages, however, the tasks as well as th
defined within those tasks are not shared.

Packages that require initialization should not be marked with the pragma unless the
is prepared to deal with concurrency issues. The compiler does not reject the prag
these cases; however, every program that uses the shared package will initialize it d
program elaboration. Initialization can occur as a result of an explicit initialization by
user (e.g.,a : integer := 54 ;) or implicitly due to an object’s representation (a
array or record with gaps). The compiler issues a warning message in either case.

Characteristics of Shared Packages 8

With the valid application of pragmaSHARED_PACKAGEto a library-level package, the
following assumptions can be made about the objects declared in the specification o
package:

• The lifetime of such objects can be greater than the lifetime defined by the
complete execution of a single program.

• The lifetime of such objects is guaranteed to extend from the elaboration of
the shared package by the first concurrent program until the termination of
execution of the last concurrent program.

• A program that elaborates a shared package inherits the state of the objects
within it, if their lifetime, as defined before, has not expired.

In the preceding assumptions, aconcurrent programis defined to be any Ada program tha
elaborates the body of a shared package, whose span of execution, from elaborat
such a package to termination, overlaps that of another such program.

In actuality, the shared memory segments created by these programs remain even af
last concurrent program has exited. The values of objects within these segments re
valid until the segment is destroyed, or until the system is rebooted. Segments ma
explicitly destroyed through the shared memory serviceshmctl(2) , to which an inter-
face is provided in the MAXAda packageshared_memory_support . Alternatively,
the user may obtain information about active shared memory segments throug
ipcs(1) utility. These segments may be removed via theipcrm(1) utility.
8-4

Shared Memory and Process Communication

ized
t is a

it is
s not

, con-
n the

rs dur-
tem

ration

iables
Objects declared in shared packages that have not been implicitly or explicitly initial
may have invalid representations if of a scalar type, or may be abnormal otherwise. I
bounded error for a program to evaluate an object with an invalid representation, and
erroneous for a program to evaluate an abnormal object. This implementation doe
prevent these evaluations. See RM 13.9.1(9) for more details.

The preceding discussion describes the intent that several Ada programs may begin
tinue and complete their execution simultaneously, with the contents of the variables i
shared packages consistent with the execution of those programs.

The association of a system shared memory segment with the shared package occu
ing the elaboration of the package body. If this association should fail due to sys
shared memory constraints, access, or improper use of shared memory configu
parameters, an error message is issued and thePROGRAM_ERRORexception is raised.

WARNING

If the shmbind(2) attempt fails due toEBUSY, the implementa-
tion will ignore the error and continue, assuming that another pro-
gram has already bound the segment to the desired location.
Shared memory segments bound to physical memory should be
freed manually by the user viaipcrm(1) .

CAUTION

By default, every shared package that is available forREAD/
WRITEhas a binary semaphore initialized which starts 12 bytes
before the end of the segment and extends to the end of the seg-
ment. If a shared package is bound to a device using thebind=
parameter, be aware that the contents of these bytes may change if
the ’LOCK and’UNLOCKattributes are utilized. The only excep-
t io ns are those shared packages which are def ined as
SHM_RDONLYor those marked by theno_bsem parameter. In
these cases, the semaphore space is not initialized, but it is still
present.

Shared Package Semaphores 8

Because programs may wish to define critical sections to reference and update var
within the shared packages, MAXAda has provided semaphore operations,P’LOCK and
P’UNLOCK, with which this can be accomplished.

The following programs illustrate a use of pragmaSHARED_PACKAGE, ’LOCK and
’UNLOCK.

Example:

--
-- shared_data.a
--
8-5

MAXAda Reference Manual
package shared_data is
--

-- Data definitions
initialization_complete : boolean ;
writer_count : integer ;

-- Message Buffer Definitions
subtype message_range is integer range 0..20 ;
message : array (message_range) of string (1..3) ;
message_index : integer ;
--
pragma shared_package ;

--
end shared_data ;
package body shared_data is

begin
--

-- Every program which uses this shared package
-- will execute this code at elaboration time.
--
-- This holds all programs (they all wait till this flag is true)
initialization_complete := false ;

--
end shared_data ;

--
-- init.a
--
with shared_data ;

procedure init is

begin
--

shared_data.message_index := -1 ;
shared_data.writer_count := 0 ;

--
end init ;

--
-- starter.a
--
with shared_data ;

procedure starter is

begin
--

shared_data.initialization_complete := true ;
--
end starter ;

--
-- writer.a
--
with ada.command_line;
with shared_data ;

procedure writer is
index : integer ;

begin
--

-- Increment the writer count
8-6

Shared Memory and Process Communication
shared_data’lock ;
shared_data.writer_count := shared_data.writer_count - 1 ;
shared_data’unlock ;

-- Wait for starter program
while not shared_data.initialization_complete loop

delay 1.0;
end loop ;

-- Allocate slots in the shared message buffer and fill them in
while shared_data.message_index < shared_data.message’last loop
--

-- Lock the package
shared_data’lock ;

-- Reserve this index
if shared_data.message_index >= shared_data.message’last then

exit ; -- Might have changed already
end if ;
shared_data.message_index := shared_data.message_index + 1 ;
index := shared_data.message_index ;

-- Unlock the package
shared_data’unlock ;

-- Write the argument supplied to this routine to the buffer
shared_data.message(index) := ada.command_line.argument(1)(1..3) ;

-- Waste some time
delay 1.0 ;

--
end loop ;

-- Tell the reader we are done
shared_data’lock ;
shared_data.writer_count := shared_data.writer_count + 1 ;
shared_data’unlock ;

--
end writer ;

--
-- reader.a
--
with ada.text_io ;
with shared_data ;

procedure reader is

begin
--

-- Wait for the initialization program to complete
while not shared_data.initialization_complete loop

delay 1.0 ;
end loop ;

-- Wait for all writers to finish
while shared_data.writer_count < 0 loop

delay 1.0 ;
end loop ;

-- Write out the messages
for index in shared_data.message_range loop

ada.text_io.put_line (shared_data.message(index)) ;
8-7

MAXAda Reference Manual

with

t
three

y) by

ent
e and
end loop ;
--
end reader ;

Introduce the source files (your environment should already exist - if not, create one
a.mkenv):

$ a.intro shared_data.a init.a starter.a writer.a
reader.a

Now create an active partition for each of the units:

$ a.partition -create active init
$ a.partition -create active writer
$ a.partition -create active reader
$ a.partition -create active starter

Now build all of the partitions:

$ a.build -allparts

From the shell, invoke the programs in the following order. Note that the& character
instructs the shell to execute the program in the background.

$ init
$ writer one &
$ writer two &
$ writer thr &
$ reader &
$ starter

The reader program will wait until allwriter programs have finished and then prin
the contents of the message buffer. The message buffer will reflect the fact that all
writer s are writing simultaneously.

Additional Ada Shared Memory Support 8

The user can manually bind shared memory segments to physical memory (staticall
use of the PowerMAX OSshmconfig(1M) utility. The user may also bind shared
memory segments to physical memory via interfaces in theshared_memory_support
package ofvendorlib . This package provides interfaces to the memory managem
system services for shared memory, as well as an interface to the binary semaphor
general semaphore services.

Example:

-- This example program prints some minimal information
-- about shared memory segments that have been created on the system.
-- A b represents a single blank space.

with interfaces.c;
with interfaces.c.strings ; -- (supplied in predefined environment)
with ada.text_io ;
8-8

Shared Memory and Process Communication
with shared_memory_support ;
procedure shared_memory_info is
--

package ic renames interfaces.c;
package io is new ada.text_io.integer_io (integer) ;

function get_user_name (uid : in integer) return string is
--

type fill is array (integer range <>) of integer ;
type passwd_type is

record
pw_name : ic.strings.chars_ptr ;
other_stuff : fill (1..9) ;

end record ;
type passwd_ptr is access passwd_type ;

function getpwuid (id : in integer) return passwd_ptr ;
pragma import (C, getpwuid) ;

--
begin

return ic.strings.value (getpwuid(uid).pw_name) ;
end get_user_name ;

--
begin
--

ada.text_io.put_line (" Shared Memory Info.") ;
ada.text_io.new_line ;
ada.text_io.put_line (" shmid access user") ;
ada.text_io.put_line (" -------- -------- -----") ;

declare
use shared_memory_support ;
use ada.text_io ;
use io ;

mode : integer ;

buffer : shm.shmid_ds_ptr := new shm.shmid_ds ;

begin
for id in 0..1000 loop

if shmctl (id, ipc.IPC_STAT, buffer) /= -1 then
mode := get_flags (integer (buffer.shm_perm.mode), 8#777#) ;
set_col (4) ; put (id, width => 5) ;
set_col (11) ; put (mode, width => 3, base => 8) ; set_col (19);
put_line (get_user_name (integer (buffer.shm_perm.uid))) ;

end if ;
end loop ;

end ;
--
end shared_memory_info ;
8-9

MAXAda Reference Manual
8-10

-5
-6
8
9
10
10
0

11
1
-11
-11
1
1
2
2

12
2
2
2
3
14
14
4

5
16
6

16
7
7

7
8
8

9
Support Packages

Supplied Environments . 9
predefined . 9
vendorlib. .. 9-

Bit_Ops . 9-
Ada.Exceptions.Addresses. 9-
Ada.Numerics.Constants . 9-
Runtime_Configuration . 9-1
Shared_Memory_Support 9-10
System.Addresses . 9-
System.Information . 9-1
System.Storage_Pools.Standard. 9
System.Storage_Pools.Standard.Objects . 9
Walkbacks . 9-1
Walkbacks_Display . 9-1

publiclib . 9-1
C_To_Ada_Types. 9-1
Character_Type . 9-
Curses. 9-1
Qsort. 9-1

rtdm . 9-1
Real_Time_Data_Monitoring . 9-1

deprecated. 9-
obsolescent . 9-
posix_1003.1 9-1

Posix_1003_1. .. 9-15
posix_1003.5 9-1
sockets . 9-

Sockets . 9-1
general . 9-

Night_Trace_Bindings . 9-1
Timers . 9-1

AXI Supplied Environments .. 9-17
Xlibxt . 9-1
Stars-Xlibxt . 9-1
Motif . 9-1

MAXAda Reference Manual

n be
9
Chapter 9Support Packages

9
9
9

MAXAda supplies a number of environments containing various packages that ca
used for program development.

whererel_nameis the name of the MAXAda release.

Table 9-1. Support environments

Keyword Environment

predefined /usr/ada/ rel_name/predefined

vendorlib /usr/ada/ rel_name/vendorlib

publiclib /usr/ada/ rel_name/publiclib

rtdm /usr/ada/ rel_name/rtdm

deprecated /usr/ada/ rel_name/deprecated

obsolescent /usr/ada/ rel_name/obsolescent

posix_1003.1 /usr/ada/ rel_name/bindings/posix_1003.1

posix_1003.5 /usr/ada/ rel_name/bindings/posix_1003.5

sockets /usr/ada/ rel_name/bindings/sockets

general /usr/ada/ rel_name/bindings/general

The following environments are supplied with the AXI product and may be
purchased separately from MAXAda through

Concurrent Software Distribution.

motif /usr/ada/ rel_name/bindings/motif

stars-xlibxt /usr/ada/ rel_name/bindings/stars-xlibxt

xlibxt /usr/ada/ rel_name/bindings/xlibxt
9-1

MAXAda Reference Manual

are
Table 9-2 lists the MAXAda support packages and the environments in which they
contained.

Table 9-2. Support packages

package environment

Ada predefined

Ada.Calendar predefined

Ada.Characters predefined

Ada.Characters.Handling predefined

Ada.Characters.Latin_1 predefined

Ada.Command_Line predefined

Ada.Direct_IO predefined

Ada.Dynamic_Priorities predefined

Ada.Exceptions predefined

Ada.Exceptions.Addresses vendorlib

Ada.Finalization predefined

Ada.Float_Text_IO predefined

Ada.Float_Wide_Text_IO predefined

Ada.Integer_Text_IO predefined

Ada.Integer_Wide_Text_IO predefined

Ada.Interrupts predefined

Ada.Interrupts.Distrib_Control vendorlib

Ada.Interrupts.ETI_Control vendorlib

Ada.Interrupts.Names predefined

Ada.Interrupts.Names.Services vendorlib

Ada.Interrupts.PIG_Control vendorlib

Ada.Interrupts.RTC_Control vendorlib

Ada.Interrupts.Services vendorlib

Ada.IO_Exceptions predefined

Ada.Long_Float_Text_IO predefined

Ada.Long_Float_Wide_Text_IO predefined

Ada.Numerics predefined

Ada.Numerics.Constants vendorlib

Ada.Numerics.Discrete_Random predefined

Ada.Numerics.Elementary_Functions predefined

Ada.Numerics.Float_Random predefined

Ada.Numerics.Generic_Elementary_Functions predefined

Ada.Numerics.Long_Elementary_Functions predefined

Ada.Real_Time predefined

Ada.Sequential_IO predefined
9-2

Support Packages
Ada.Short_Integer_Text_IO predefined

Ada.Short_Integer_Wide_Text_IO predefined

Ada.Storage_IO predefined

Ada.Streams predefined

Ada.Streams.Stream_IO predefined

Ada.Strings predefined

Ada.Strings.Bounded predefined

Ada.Strings.Fixed predefined

Ada.Strings.Maps predefined

Ada.Strings.Maps.Constants predefined

Ada.Strings.Unbounded predefined

Ada.Strings.Wide_Bounded predefined

Ada.Strings.Wide_Fixed predefined

Ada.Strings.Wide_Maps predefined

Ada.Strings.Wide_Maps.Wide_Constants predefined

Ada.Strings.Wide_Unbounded predefined

Ada.Synchronous_Task_Control predefined

Ada.Tags predefined

Ada.Task_Attributes predefined

Ada.Task_Identification predefined

Ada.Text_IO predefined

Ada.Text_IO.Text_Streams predefined

Ada.Tiny_Integer_Wide_Text_IO predefined

Ada.Unchecked_Conversion predefined

Ada.Unchecked_Deallocation predefined

Ada.Wide_Text_IO predefined

Ada.Wide_Text_IO.Text_Streams predefined

Binary_Semaphores vendorlib

Bit_Ops vendorlib

C_To_Ada_Types publiclib

Calendar obsolescent

Character_Type publiclib

Client_Server_Services vendorlib

Curses publiclib

Cyclic_Scheduler vendorlib

Direct_IO obsolescent

Distrib_Services vendorlib

Table 9-2. Support packages (Cont.)

package environment
9-3

MAXAda Reference Manual
ETI_Services vendorlib

Indivisible_Operations vendorlib

Interfaces predefined

Interfaces.C predefined

Interfaces.C.Pointers predefined

Interfaces.C.Strings predefined

Interfaces.Restricted_Fortran predefined

Interfaces.Unchecked_C predefined

Interval_Timer vendorlib

IO_Exceptions obsolescent

Machine_Code obsolescent

Night_Trace_Bindings general

Posix posix_1003.5

Posix_1003_1 posix_1003.1

Posix_Calendar posix_1003.5

Posix_Configurable_File_Limits posix_1003.5

Posix_Configurable_System_Limits posix_1003.5

Posix_File_Locking posix_1003.5

Posix_File_Status posix_1003.5

Posix_Files posix_1003.5

Posix_Group_Database posix_1003.5

Posix_IO posix_1003.5

Posix_Local_Signals posix_1003.5

Posix_Permissions posix_1003.5

Posix_Process_Environment posix_1003.5

Posix_Process_Identification posix_1003.5

Posix_Process_Primitives posix_1003.5

Posix_Process_Times posix_1003.5

Posix_Signals posix_1003.5

Posix_Supplement_To_Ada_IO posix_1003.5

Posix_Terminal_Functions posix_1003.5

Posix_Unsafe_Process_Primitives posix_1003.5

Posix_User_Database posix_1003.5

Qsort publiclib

Real_Time_Data_Monitoring rtdm

Rescheduling_Control vendorlib

RT_Interface vendorlib

Table 9-2. Support packages (Cont.)

package environment
9-4

Support Packages
Supplied Environments 9

The following environments are supplied with MAXAda:

• “predefined” on page 9-6

• “vendorlib” on page 9-8

• “publiclib” on page 9-12

RTC_Services vendorlib

Runtime_Configuration vendorlib

Sequential_IO obsolescent

Shared_Memory_Support vendorlib

Sockets sockets

Spin_Locks vendorlib

System predefined

System.Address_To_Access_Conversions predefined

System.Addresses vendorlib

System.Information vendorlib

System.Machine_Code predefined

System.Storage_Elements predefined

System.Storage_Pools predefined

System.Storage_Pools.Standard vendorlib

System.Storage_Pools.Standard.Objects vendorlib

Task_Synchronization vendorlib

Tasking_Semaphores vendorlib

Text_IO obsolescent

Timers general

Unchecked_Conversion obsolescent

Unchecked_Deallocation obsolescent

User_Level_Interrupts vendorlib

User_Trace vendorlib

Userdma_Support vendorlib

Usermap_Support vendorlib

Virtual_To_Physical vendorlib

Walkbacks vendorlib

Walkbacks_Display vendorlib

Table 9-2. Support packages (Cont.)

package environment
9-5

MAXAda Reference Manual

the
ery
• “rtdm” on page 9-12

• “deprecated” on page 9-14

• “obsolescent” on page 9-14

• “posix_1003.1” on page 9-14

• “posix_1003.5” on page 9-15

• “sockets” on page 9-16

• “general” on page 9-16

predefined 9

MAXAda provides the Predefined Language Environment (predefined) which con-
tains packages as defined in Annex A of the Ada 95 Reference Manual. According to
Reference Manual, the library units listed in this Annex “shall be provided by ev
implementation”.

Table 9-3. predefined environment

package

Ada

Ada.Calendar

Ada.Characters

Ada.Characters.Handling

Ada.Characters.Latin_1

Ada.Command_Line

Ada.Direct_IO

Ada.Dynamic_Priorities

Ada.Exceptions

Ada.Finalization

Ada.Float_Text_IO

Ada.Float_Wide_Text_IO

Ada.Integer_Text_IO

Ada.Integer_Wide_Text_IO

Ada.Interrupts

Ada.Interrupts.Names

Ada.IO_Exceptions

Ada.Long_Float_Text_IO
9-6

Support Packages
Ada.Long_Float_Wide_Text_IO

Ada.Numerics

Ada.Numerics.Discrete_Random

Ada.Numerics.Elementary_Functions

Ada.Numerics.Float_Random

Ada.Numerics.Generic_Elementary_Functions

Ada.Numerics.Long_Elementary_Functions

Ada.Real_Time

Ada.Sequential_IO

Ada.Short_Integer_Text_IO

Ada.Short_Integer_Wide_Text_IO

Ada.Storage_IO

Ada.Streams

Ada.Streams.Stream_IO

Ada.Strings

Ada.Strings.Bounded

Ada.Strings.Fixed

Ada.Strings.Maps

Ada.Strings.Maps.Constants

Ada.Strings.Unbounded

Ada.Strings.Wide_Bounded

Ada.Strings.Wide_Fixed

Ada.Strings.Wide_Maps

Ada.Strings.Wide_Maps.Wide_Constants

Ada.Strings.Wide_Unbounded

Ada.Synchronous_Task_Control

Ada.Tags

Ada.Task_Attributes

Ada.Task_Identification

Ada.Text_IO

Ada.Text_IO.Text_Streams

Ada.Tiny_Integer_Wide_Text_IO

Ada.Unchecked_Conversion

Table 9-3. predefined environment (Cont.)

package
9-7

MAXAda Reference Manual

g but
ices.
vendorlib 9

This environment contains packages that do not collectively represent an Ada bindin
serve as a collection of utility packages and thin bindings to Concurrent-specific serv

Ada.Unchecked_Deallocation

Ada.Wide_Text_IO

Ada.Wide_Text_IO.Text_Streams

Interfaces

Interfaces.C

Interfaces.C.Pointers

Interfaces.C.Strings

Interfaces.Restricted_Fortran

Interfaces.Unchecked_C

System

System.Address_To_Access_Conversions

System.Machine_Code

System.Storage_Elements

System.Storage_Pools

Table 9-4. vendorlib environment

package

Bit_Ops

Ada.Exceptions.Addresses

Ada.Numerics.Constants

Runtime_Configuration

Shared_Memory_Support

System.Addresses

System.Information

System.Storage_Pools.Standard

Table 9-3. predefined environment (Cont.)

package
9-8

Support Packages
Bit_Ops 9

This package consists of bit_manipulation routines for typeinteger .

System.Storage_Pools.Standard.Objects

Walkbacks

Walkbacks_Display

The following packages are discussed in Chapter 7, "Interrupt Handling"

Ada.Interrupts.Distrib_Control

Ada.Interrupts.ETI_Control

Ada.Interrupts.Names.Services

Ada.Interrupts.PIG_Control

Ada.Interrupts.RTC_Control

Ada.Interrupts.Services

The following packages are discussed in Chapter 10, "Real-Time Extensions"

Binary_Semaphores

Client_Server_Services

Cyclic_Scheduler

Distrib_Services

ETI_Services

Indivisible_Operations

Interval_Timer

Rescheduling_Control

RT_Interface

RTC_Services

Spin_Locks

Task_Synchronization

Tasking_Semaphores

User_Level_Interrupts

User_Trace

Userdma_Support

Usermap_Support

Virtual_To_Physical

Table 9-4. vendorlib environment (Cont.)

package
9-9

MAXAda Reference Manual

wing

In all
cases
e and

fi-

s,
ser-
Ada.Exceptions.Addresses 9

This package contains two functions that deal with exceptions:

- originating_instruction

This function returns the address of the instruction which raised the excep-
tion associated with the supplied exception occurrence.

- propagation_map

This function returns the list of instructions associated with the most
recently raised exception in the calling task. The first entry in the list cor-
responds to the address of the instruction which raised the exception. Sub-
sequent entries refer to instruction addresses along which the exception
was propagated (or reraised) before reaching a handler.

This function need not be called directly from the handler; it always reports
on the last exception raised by the calling task.

Ada.Numerics.Constants 9

This package contains constants whose values have been taken from the follo
sources:

1. CRC Handbook of Tables for Mathematics, Fourth Ed., Robert C.
Weast (ed.), 1970, The Chemical Rubber Co.

2. Knuth, Donald E., 'Fundamental Algorithms', Vol. 1 of 'The Art of
Computer Programming', 2nd ed., 1973. (Appendix B).

3. Davis, Harold T. and Fisher, Vera J., 'Arithmetical Tables', Vol. III
of 'Tables of the Mathematical Functions', The Principia Press,
Texas, 1962.

4. Fletcher, A. et al., 'An Index of Mathematical Tables', Scientific
Computing Service Limited, London, 1962.

Where values exist in more than one source, such values have been cross checked.
cases, such values agree except for possibly a value of one in the last digit. In such
of difference, the higher value is used, under the assumption that it is a rounded valu
that the lower value is a truncated value.

Runtime_Configuration 9

TheRuntime_Configuration package provides support for the retrieval and modi
cation of certain run-time attributes.

Shared_Memory_Support 9

The Shared_Memory_Support package contains Ada types, subprogram definition
and interfaces to aid the user in manually interfacing to the shared memory system
vices.

This includes:
9-10

Support Packages

ion in
tic,

n for

o

a
this
type
the

n for
• System definesand records layouts as defined by the C programming lan-
guage include files<sys/shm.h> and<sys/ipc.h> .

• Interface specifications to shared memory system calls:shmbind(2) ,
shmget(2) , shmat(2) , shmctl(2) , shmdt(2) .

System.Addresses 9

This package provides routines to convert between integer types andSystem.Address ,
associate a variable with a machine register, and associate a variable with a locat
physical (machine; not virtual!) memory. It also includes other conversion, arithme
and comparison functions.

System.Information 9

The System.Information package is a thick/abstract binding to thesysinfo(2)
service. It also provides an emulation of the CX/UXsinfo(2) service for PowerMAX
OS systems. See the specification ofSystem.Information for more information.

System.Storage_Pools.Standard 9

This package contains the standard storage pool types used by the implementatio
access types without’Storage_Pool clauses.

The Predefined_Storage_Pool type is used for those access types for which n
’Storage_Size clause is present. There is a single object of this type (Sys-
tem.Storage_Pools.Standard.Objects.Predefined). It is erroneous to
attempt to create any other object of this type.

The Collection_Storage_Pool type is used for those access types for which
’Storage_Size clause is present. The implementation creates a distinct object of
type for each such access type. It is illegal to attempt to create any object of this
directly. However, it is possible to reference the implementation-created object via
’Storage_Pool attribute.

System.Storage_Pools.Standard.Objects 9

This package contains the predefined storage pool object used by the implementatio
access types with neither’Storage_Pool nor ’Storage_Size clauses.

Walkbacks 9

This generic procedure performs a stack walkback which calls a user-suppliedaction
routine to be called for each stack frame found.

Walkbacks_Display 9

Th is p ack a ge p r ov id e s a h an dy in s ta n t ia t i o n ofWalk back s t h a t ca l l s
Text_IO.Put_Line for each frame presented toaction .
9-11

MAXAda Reference Manual

ges.

cters

nd

fea-
publiclib 9

The publiclib environment contains general-purpose, public-domain Ada packa
Note that Concurrent neither owns nor supports any of the packages inpubliclib ; these
packages are provided as a courtesy to users.

C_To_Ada_Types 9

This package provides Ada type definitions for C types (int , char , bool , ...).

Character_Type 9

This package contains commonly used routines that test and manipulate chara
(isalpha , isupper , islower , ...).

Curses 9

The curses package provides an Ada interface to thecurses(3X) library containing
terminal information and screen-manipulation routines.

For more information about using routines in thecurses package, refer to theCharacter
User Interface Programmingmanual.

Qsort 9

A generic sort. The generic implements Knuth’s Algorithm Q [Knuth, "Searching a
Sorting",The Art of Computer Programming, Volume 3, Addison-Wesley, ppg 116-7].

The only parameter to the instantiated procedure is the array to be sorted.

rtdm 9

This environment contains a package which provides a flexible interface to the key
tures of data monitoring.

Table 9-5. publiclib environment

package

C_To_Ada_Types

Character_Type

Curses

Qsort
9-12

Support Packages

s that
s of
vari-

ge
rts a

n

e

gma

y

a

Real_Time_Data_Monitoring 9

This package contains subprograms that allow you to specify executable program
contain Ada, C, or FORTRAN variables to be monitored, obtain and modify the value
selected variables by specifying their names, and obtain such information about the
ables as their virtual addresses, types, and sizes.

The interface provided allows for viewing and modifying data objects without knowled
a priori of the set of data objects or their data type. The current implementation suppo
limited set of data items, including:

• integer objects

• floating point objects

• fixed point objects

• enumeration objects

• array components

• record fields

• pointers

• limited expressions involving pointer indirection

Th e R ea l _T im e_ D at a_ Mo ni t or in g p ac k a g e a l so m a k e s u se o f a
interest_threshold to filter out less interesting data items when usingget , set or
l i s t ac t iv i t i es . I f t h e in t er e s t l ev e l o f a d at a i te m is l o w er th a n th
interest_threshold of its associatedprogram_descriptor , it is as if that data
item did not exist.

Interest levels for particular data items are set using the implementation-defined pra
INTERESTING (see “Pragma INTERESTING” on page M-116) or the-Qinterest-
ing compilation option (see “Qualifier Keywords (-Q options)” on page 4-115). B
default, all data items have an interest level of zero.

This information is only useful if full debug information is enabled (see “Pragm
DEBUG” on page M-108 or “Debug Level (-g[level])” on page 4-110.

For more information about using routines in thereal_time_data_monitoring
package, see theData Monitoring Reference Manual.

Table 9-6. rtdm environment

package

Real_Time_Data_Monitoring
9-13

MAXAda Reference Manual

ous
ture

ely
fea-

Ref-

files
3.1b
deprecated 9

This environment contains packages which are provided for compatibility with previ
releases only. This environment, and all the packages in it, will be removed in a fu
release of MAXAda.

obsolescent 9

The obsolescent environment contains those packages whose functionality is larg
redundant with other features defined in the Ada 95 Reference Manual. Use of these
tures is not recommended in newly written programs.

Descriptions of these features of the language can be found in Annex J of the Ada 95
erence Manual.

posix_1003.1 9

This environment contains a package that provides a thin Ada binding to all header
and subprograms defined in the IEEE-Std-1003.1 (POSIX 1003.1) and IEEE-Std-100
(POSIX 1003.1b) standards for UNIX operating systems.

Table 9-7. obsolescent environment

package

Calendar

Direct_IO

IO_Exceptions

Machine_Code

Sequential_IO

Text_IO

Unchecked_Conversion

Unchecked_Deallocation

Table 9-8. posix_1003.1 environment

package

Posix_1003_1
9-14

Support Packages

ro-
X

OS

er-

ppli-

ter-

t be

nd
Posix_1003_1 9

ThePosix_1003_1 package provides a thin Ada binding to all header files and subp
grams defined in the IEEE-Std-1003.1 (POSIX 1003.1) and IEEE-Std-1003.1b (POSI
1003.1b) standards for UNIX operating systems.

Certain services available in POSIX 1003.1 require use of the PowerMAX
libthread.a library. These services are known asasync_IO and are most easily rec-
ognized because they begin with theaio_ prefix. If the libthread.a library is not
included in any link using these services, that link will fail with undefined external ref
ences. The easiest way to ensure thatlibthread.a is included in the link is to put the
following pragma in any Ada unit that uses these services:

pragma linker_options ("-lthread") ;

It is not included automatically because it would introduce unnecessary overhead in a
cations which do not use theasync_io services.

posix_1003.5 9

This environment contains packages whose specifications were extracted fromIEEE Std
1003.5-1992, IEEE Standard for Information Technology--POSIX Ada Language In
faces--Part 1: Binding System Application Program Interface, copyright (c)1992 by the
Institute of Electrical and Electronics Engineers, Inc. The IEEE Std 1003.5-1992 mus
used in conjunction with these package specifications in order to claim conformance.

The Concurrent implementation of this binding is fully compliant with the standard a
thus allows the user to write fully compliant Ada applications.

Table 9-9. posix_1003.5 environment

package

Posix

Posix_Calendar

Posix_Configurable_File_Limits

Posix_Configurable_System_Limits

Posix_File_Locking

Posix_File_Status

Posix_Files

Posix_Group_Database

Posix_IO

Posix_Local_Signals
9-15

MAXAda Reference Manual

IX

g an
race
sockets 9

This environment contains a package that provides a direct thin Ada binding to UN
sockets.

Sockets 9

This package provides a direct thin Ada binding to sockets.

general 9

This environment contains Ada bindings to some general purpose services includin
Ada interface to some of the system timing devices and a thin binding to the NightT
service routines.

Posix_Permissions

Posix_Process_Environment

Posix_Process_Identification

Posix_Process_Primitives

Posix_Process_Times

Posix_Signals

Posix_Supplement_To_Ada_IO

Posix_Terminal_Functions

Posix_Unsafe_Process_Primitives

Posix_User_Database

Table 9-10. sockets environment

package

Sockets

Table 9-9. posix_1003.5 environment (Cont.)

package
9-16

Support Packages

ribed

of

ed.
ges
hout
ny

X/Xt

ased

s to
Night_Trace_Bindings 9

This package contains a "thin/abstract" binding to the Ntrace service routines as desc
in ntrace(3x) .

Timers 9

This package contains interfaces to various OS timings services.

AXI Supplied Environments 9

Using AXITM (Ada X Interface), applications written in Ada may take full advantage
the XTM library, the X Toolkit, and MotifTM. This interface provides an Ada binding to the
X library (Xlib), X Toolkit (Xt), X Extension Library (Xext), and Motif libraries. Over
500 functions and procedures from the Xlib, Xt, Xext, and Motif libraries are provid
As well as an interface to the functions and variables of the X library, AXI also arran
for input requests through X and Xt input calls to use an Ada tasking mechanism. Wit
this arrangement, all tasks in a program would block during any X/Xt input call from a
task. Instead, usage of the Ada tasking mechanism lets all tasks not involved in the
call to proceed without hindrance.

This product is available through Concurrent Software Distribution and may be purch
for any system that is running a compatible release of MAXAda.

See theAXI Reference Manualfor more information.

Xlibxt 9

This environment contains bindings to the Xlib, Xt, and Xext libraries, providing acces
the functions in release 5 of the XWindow System Library Interface.

Table 9-11. general environment

package

Night_Trace_Bindings

Timers
9-17

MAXAda Reference Manual

nt.
s-

d to
Stars-Xlibxt 9

Bindings to the STARS interface to the Xlib library can be found in this environme
Developed by SAICTM, the STARS (Software Technology for Adaptable Reliable Sy
tems) interface provides an Ada data structure interface for the MIT XlibTM primitives.

Motif 9

The motif supplied environment includes all of the functions and procedures neede
access the functions in version 1.1 of Xm, the Motif toolkit.
9-18

4
Part 4Real-Time Features

Replace with Part 4 tab

MAXAda Reference Manual

Part 4 - Real-Time Features
Part 4 - Real-Time Features

Part 4 Real-Time Features

Chapter 10 Real-Time Extensions ... 10-1

Chapter 11 Real-Time Event Tracing .. 11-1

Chapter 12 Real-Time Monitoring .. 12-1

MAXAda Reference Manual

-1
-1
-2
-2

0-5
-6
-7
-9
-9
-9
11
11
12
12
12
10
Real-Time Extensions

High-Resolution Timing Interfaces . 10
Interval Timer Interface . 10

Mutual Exclusion Interfaces . 10
Spin Locks . 10
Binary Semaphores. 10-3
Tasking Semaphores . 1

Task Synchronization. 10
Cyclic Scheduling . 10
User Trace . 10
Low-Level Interfaces . 10

Indivisible Operations . 10
Rescheduling Control . 10-
Client-Server Services . 10-
User-Level Interrupts . 10-
Direct Memory Access . 10-
Usermap Support . 10-

MAXAda Reference Manual

ith
vices
ices
te
ices
ser-

sys-
nd the

lu-
er.

-bit
10
Chapter 10Real-Time Extensions

10
10
10

This chapter describes a variety of Ada extensions to MAXAda that can be utilized w
Concurrent real-time services. Because the majority of the interfaces to real-time ser
are C language library routines, MAXAda provides an Ada interface to these serv
through packages in thevendorlib environment. These packages provide a comple
Ada binding to the real-time library routines and data structures for the real-time serv
mentioned before. This capability provides users with an Ada interface to real-time
vices without having to go outside of the Ada language.

In addition to the preceding services, thevendorlib environment also provides an Ada
binding to high-resolution timing devices available on the Concurrent Series 6000
tems. These packages can be used to obtain high-resolution timings above and beyo
accuracy of the clock function provided in thepredefined environment.

The following real-time packages are available invendorlib :

Binary_Semaphores
Client_Server_Services
Cyclic_Scheduler
Distrib_Services
ETI_Services
Indivisible_Operations
Interval_Timer
Rescheduling_Control
RT_Interface
RTC_Services
Spin_Locks
Task_Synchronization
Tasking_Semaphores
User_Level_Interrupts
User_Trace
Userdma_Support
Usermap_Support
Virtual_To_Physical

High-Resolution Timing Interfaces 10

Interval Timer Interface 10

The packageInterval_Timer provides Ada programs direct access to the high-reso
tion timer. On Series 6000 systems, the interval timer is a 64-bit (two 32-bit words) tim
The upper half is a 32-bit word that “ticks” once per second. The lower half is a 32
10-1

MAXAda Reference Manual

over

ing
e

lar

sy-

red
han

era-
s are

f the
word that counts nanoseconds, incrementing at 320-nanosecond intervals and rolling
every one billion nanoseconds.

The Interval_Timer package provides an abstracted interface to this timer, includ
a t y p e t i m e t o r ep r e s en t t i m e i n A d a , a s w e l l a s a n in i t i a l v a lu
(interval_timer.time_zero), and a variable which represents the timer itself.

The following example program prints the real time involved in executing a particu
code sequence:

with interval_timer;
with ada.text_io;

procedure test_timer is
t1,t2 : interval_timer.time;
procedure code_sequence is separate;
package lfio is new

ada.text_io.float_io(long_float);
begin
--

t1 := interval_timer.clock;
code_sequence;
t2 := interval_timer.clock;

ada.text_io.put ("code_sequence took ");
lfio.put (interval_timer."-"(t2,t1));
ada.text_io.put (" seconds");
ada.text_io.new_line;

--
end test_timer;

Use of this package requiresP_SHMBINDprivilege; seeintro(2) .

Mutual Exclusion Interfaces 10

Spin Locks 10

TheSpin_Locks package provides an efficient and reliable means of performing bu
wait mutual exclusion between two (or more) programsusing the PowerMAX OS thread
synchronization services. A spin lock must be allocated within a PowerMAX OS sha
memory region (a MAXAda shared package, for instance) for it to be visible to more t
one program. See “Shared Memory” on page 8-1.

Spin locks are most efficient when the critical sections they guard are short. I/O op
tions, system calls, and extended computations should be avoided when spin lock
locked.

Special privileges are needed to use this package because it makes use o
Rescheduling_Control package. TheRescheduling_Control package
10-2

Real-Time Extensions

y-

rity
r a

clud-

aining
requires that theP_RTIME privilege (seeintro(2)). Refer to “Rescheduling Control”
on page 10-11 for proper use of theRescheduling_Control package.

Use of this package requiresP_RTIMEprivilege; seeintro(2) .

Binary Semaphores 10

The Binary_Semaphores package provides an efficient means of performing sleep
wait mutual exclusion between two or more programsusing the PowerMAX OS client/
server synchronization services. The “sleep” operation is performed using the prio
inheritance protocol which limits the length of time a high-priority process must wait fo
low-priority process to release the semaphore.

Once a semaphore is locked, the locking thread may perform any actions desired, in
ing I/O and system calls.

The most common means of using this package is to declare a shared package cont
an object of typebinary_semaphores.semaphore . For example,

with binary_semaphores;
package sync_package is
--

pragma elaborate_body;
--
-- A binary semaphore for arbitration of exclusive access to
-- some_unnamed_shared_resource shared among multiple programs.
--
sema : binary_semaphores.semaphore;

--
-- This flag is set to TRUE when the first program calls
-- sema_init to initialize sema.
--
initialized : boolean;

pragma shared_package;
pragma pool_lock_state (default, locked);

--
end sync_package;

package body sync_package is
begin
--

sync_package’lock;

if not initialized then
binary_semaphores.sema_init (sema);
initialized := True;

end if;

sync_package’unlock;
--
end sync_package;

Programs may specifysync_package andbinary_semaphores in with clauses to
obtain mutually exclusive access to any shared resource.

The following operations on binary semaphores are provided:
10-3

MAXAda Reference Manual

ng

pro-

dy.
and

nded

that
to
--
-- Initialize a semaphore.
--
procedure sema_init (sema : in out semaphore);

--
-- Lock a semaphore. If the semaphore is already locked, the
-- caller blocks until the lock can be gained and the owner of the
-- lock will inherit its priority.
--
procedure sema_lock (sema : in out semaphore);

--
-- Unlock a semaphore. If the calling process has had its priority
-- adjusted through priority inheritance this call may result in a
-- rescheduling operation.
--
procedure sema_unlock (sema : in out semaphore);

--
-- Return true if the semaphore is currently locked.
--
procedure sema_is_locked (sema : in out semaphore; result : out boolean);
--
-- Destroy the semaphore. Any waiting threads will be released
-- and will have semaphore_error raised within them. This operation
-- is provided to aid in recovery, and is not needed for deallocation
-- or other such ”normal” circumstances.
--
procedure sema_destroy (sema : in out semaphore);

The sema_init procedure must be called with any semaphore prior to calli
sema_lock , sema_unlock , or sema_is_locked . In the preceding example, the
package body provides for the initialization of the semaphore at elaboration time. All
grams that specify the shared package containing the binary semaphore in awith clause
will execute this elaboration code, so an “initialized” flag is provided in the package bo
In this way, the first program to elaborate the package will initialize the semaphore,
others will use its pre-existing state. The shared package’LOCK and ’UNLOCKattribute
procedures are used to arbitrate access to the initialization flag. This is the recomme
procedure for initializing binary semaphores.

Once a semaphore has been initialized,sema_lock andsema_unlock may be used to
obtain and release the semaphore. Thesema_is_locked procedure is provided as a
means of detecting a locked semaphore without blocking, but it should be noted
blocking may sti l l occur if another program obtains the lock after a call
sema_is_locked , but before a subsequent call tosema_lock .

The exception,Binary_Semaphores.SEMAPHORE_ERROR, may be raised under the
following circumstances:

• If any one ofsema_lock , sema_unlock , sema_is_locked is called
with an uninitialized semaphore.

• If any one ofsema_lock , sema_unlock , sema_is_locked is called
with a destroyed semaphore.

• Thesema_lock procedure is called with a semaphore owned by a thread
that no longer exists.
10-4

Real-Time Extensions

ng

ding

Ada
to the

ma-
• Thesema_lock procedure is called with a semaphore owned by a thread
with a different real or effective user id.

• The sema_unlock procedure is called with a semaphore owned by
another thread.

• The sema_unlock procedure is called and the
client_wakechan(2) service returns an error status when attempting
to wake waiting threads.

Use of this package requiresP_RTIMEprivilege; seeintro(2) .

Tasking Semaphores 10

TheTasking_Semaphores package provides a simple and fast means of performi
sleepy-wait mutual exclusion between two or more Ada taskswithin a single Ada pro-
gram.

Once a semaphore is locked, the locking task may perform any actions desired, inclu
I/O and system calls.

The semaphore defined by this package is valid only within the context of a single
program, and therefore, is meaningless to other processes that might have access
semaphore object if it is placed in shared memory. For multi-programming binary se
phores, see “Binary Semaphores” on page 10-3.

The following operations on tasking semaphores are provided:

--
-- Initialize a semaphore.
--
procedure sema_init (sema : out semaphore);
--
-- Lock a semaphore. If the semaphore is already locked, the
-- caller blocks until the lock can be gained.
--
procedure sema_lock (sema : in semaphore);

--
-- Unlock a semaphore.
--
procedure sema_unlock (sema : in semaphore);

--
-- Return true if the semaphore is currently locked.
--
function sema_is_locked (sema : in semaphore) return boolean;

--
-- Return true if the semaphore is currently locked.
--
procedure sema_is_locked (sema : in semaphore; result : out boolean);
--
-- Destroy the semaphore. Any waiting tasks will be released
-- and will have tasking_error raised within them. This operation is
-- provided to aid in recovery, and is not needed for deallocation
-- or other such "normal" circumstances.
10-5

MAXAda Reference Manual

fined
-
ing

h e
k

or
Ada
com-

o-
--
procedure sema_destroy (sema : in out semaphore);

The sema_init procedure should be called once per program. For semaphores de
in a package, it is recommended thatsema_init be called in the elaboration code por
tion of the package body. If this is done, it is also recommended to include the follow
line after thecontext_clause portion of the package body:

pragma ELABORATE (tasking_semaphores)

For example:

with tasking_semaphores ;
package sync_package is

sema : tasking_semaphores.semaphore ;
end sync_package ;

with tasking_semaphores ;
pragma elaborate (tasking_semaphores) ;
package body sync_package is
begin

tasking_semaphores.sema_init (sema) ;
end sync_package ;

Once a semaphore has been initialized,sema_lock andsema_unlock may be used to
obtain and release the semaphore. Thesema_is_locked function is provided as a
means of detecting a locked semaphore without blocking, and thesema_is_locked
p r o c ed u r e i s p r o v i d ed t o r e ma i n a s c o m p at i b l e a s p o ss i b le w i t h t
Binary_Semaphores package. Note that blocking may still occur if another tas
obtains the lock after a call tosema_is_locked , but before a subsequent call to
sema_lock .

The exception,Tasking_Semaphores.SEMAPHORE_ERROR, may be raised under the
following circumstances:

• If any one ofsema_lock , sema_unlock , sema_is_locked is called
with an uninitialized semaphore.

• If any one ofsema_lock , sema_unlock , sema_is_locked is called
with a destroyed semaphore.

Task Synchronization 10

TheTask_Synchronization package provides an extremely efficient mechanism f
synchronizing tasks. Synchronization of two tasks is naturally expressed within the
language as task rendezvous. Synchronization of more than two tasks becomes more
plicated. TheTask_Synchronization package provides a method for easily synchr
nizing more than two tasks.

Use of this package requiresP_RTIMEprivilege; seeintro(2) .
10-6

Real-Time Extensions

ling

da

clude:
Cyclic Scheduling 10

The real-time features provided with the run-time executive make cyclic schedu
designs extremely efficient and easy to implement.

Using theRTC_Control package, cyclic scheduling can be implemented with three A
statements:

1. Configure clock at desired frequency and attach to task entry

use system;
clock : address := rtc_control.configure_clock

(cycle_time_msec => 16.6,
device_name => "/dev/rrtc/0c2");

for entry_1 use at clock;

2. Start the clock

rtc_control.start_clock (clock);

3. Stop the clock

rtc_control.stop_clock (clock);

The generic packageCyclic_Scheduler supplied with MAXAda automatically multi-
threads a set of work loads and schedules them at a specified frequency. Features in

• Automatic distribution of work loads across CPUs

• Specification of timing source (RTC) and simulation rate

• Binding of work loads to CPUs

• Specification of individual periods for each work load

• Specification of individual priorities for each work load

• Overrun detection/handling

• Start/stop simulation

NOTE

TheCyclic_Scheduler included with MAXAda is not related
to the Concurrent frequency-based scheduler (FBS). Any similari-
ties between the two interfaces is purely coincidental.

Following is an example program that makes use of theCyclic_Scheduler package.

Example:

with cyclic_scheduler;

procedure cyclic_example is
10-7

MAXAda Reference Manual
--
procedure foo;
procedure bar;
procedure print;

type workloads is new integer range 1..3;
type workload_info is array (workloads) of integer;

package simulation is new cyclic_scheduler (
workload_id => workloads,
workload_info => workload_info,
cycle_duration => 500.0,
first_cycles => (2, 2, 1),
periods => (2, 2, 2),
workload_1 => foo,
workload_2 => bar,
workload_3 => print

);

initial_value : constant := 2 ** 9;
foo_value : integer := initial_value;
bar_value : integer := initial_value;

procedure foo is separate;
procedure bar is separate;
procedure print is separate;

--
begin
--

simulation.executive.enable;
delay 10.0;
simulation.executive.disable;
simulation.executive.termination;

--
end cyclic_example;

separate (cyclic_example)
procedure foo is
begin

foo_value := foo_value * 2;
end foo;

separate (cyclic_example)
procedure bar is
begin

bar_value := bar_value / 2;
end bar;

with ada.text_io;
separate (cyclic_example)
procedure print is
begin

ada.text_io.put_line ("foo_value =" & integer’image(foo_value));
ada.text_io.put_line ("bar_value =" & integer’image(bar_value));

end print;

Use of this package requires the following privi leges:P_RTIME, P_PLOCK,
P_USERINT, P_CPUBIAS, andP_TSHAR(seeintro(2)).
10-8

Real-Time Extensions

i-
ple-
User Trace 10

See “user_trace package” on page 11-3 for information about theUser_Trace tracing
package.

Low-Level Interfaces 10

Indivisible Operations 10

The Indivisible_Operations package provides subprograms that implement ind
visible operation for process synchronization. For maximum efficiency, they are im
mented as compiler intrinsics, whenever possible.

The memory location associated with the formal parametermemory in the supplied
te st _ an d_ se t , f e tc h_ an d _s to re , fe t ch _a nd _ ad d ,
fetch_and_increment , andfetch_and_decrement subprograms, is modified
according to the respective subprogram being invoked.

package indivisible_operations is
--

--
-- The memory location associated with the supplied operand is set to 1
-- and the previous value is returned as a boolean (TRUE if 1, FALSE if
-- 0). Only values of 0 and 1 are expected; other values will yield
-- erroneous results.
--
function test_and_set(memory : boolean) return boolean;
function test_and_set(memory : tiny_integer) return boolean;
function test_and_set(memory : short_integer) return boolean;
function test_and_set(memory : integer) return boolean;
function test_and_set(memory : system.address) return boolean;
--
-- These forms work the same as the function forms above, except that
-- they return the result of the test in the out parameter "result".
--
procedure test_and_set(memory : in out boolean;

result : out boolean);
procedure test_and_set(memory : in out tiny_integer;

result : out boolean);
procedure test_and_set(memory : in out short_integer;

result : out boolean);
procedure test_and_set(memory : in out integer;

result : out boolean);
procedure test_and_set(memory : in out system.address;

result : out boolean);
--
-- The variable "memory" is set to 1 and the previous value of "memory"
-- is returned in the out parameter "result".
--
procedure fetch_and_store(memory : in out boolean;

result : out boolean);
procedure fetch_and_store(memory : in out tiny_integer;

result : out tiny_integer);
procedure fetch_and_store(memory : in out short_integer;
10-9

MAXAda Reference Manual

r

nly
mpo-
esen-
result : out short_integer);
procedure fetch_and_store(memory : in out integer;

result : out integer);
procedure fetch_and_store(memory : in out system.address;

result : out system.address);
--
-- The variable "memory" is set to the value in the parameter "value"
-- and the previous value of "memory" is returned in the out parameter
-- "result".
--
procedure fetch_and_store(memory : in out boolean;

value : in boolean;
result : out boolean);

procedure fetch_and_store(memory : in out tiny_integer;
value : in tiny_integer;
result : out tiny_integer);

procedure fetch_and_store(memory : in out short_integer;
value : in short_integer;
result : out short_integer);

procedure fetch_and_store(memory : in out integer;
value : in integer;
result : out integer);

procedure fetch_and_store(memory : in out system.address;
value : in system.address;
result : out system.address);

--
-- The variable "memory" is incremented by the value in the parameter
-- "value" and the previous value of "memory" is returned in the out
-- parameter "result".
--
procedure fetch_and_add(memory : in out integer;

value : in integer;
result : out integer);

--
-- The variable "memory" is incremented (or decremented) by 1 and the
-- previous value of "memory" is returned in the out parameter "result".
--
procedure fetch_and_increment(memory : in out integer;

result : out integer);
procedure fetch_and_decrement(memory : in out integer;

result : out integer);
--
-- The variable "memory" is incremented (or decremented) by 1.
--
procedure increment(memory : in out integer);
procedure decrement(memory : in out integer);

--
end indivisible_operations;

Note that the forms that takeshort_integer perform operations only on the low-orde
byte of theshort_integer location. This is a restriction of the architecture.

Also note that the forms that takeboolean , tiny_integer , andshort_intege r are
considerably slower than the others due to restrictions of the architecture.

It is not possible to perform an indivisible operation on a bit location at a bit offset. O
byte, short and word operations are allowed. If the operand of an operation is the co
nent of a record or array, the user must take proper steps to align the field using a repr
tation clause.
10-10

Real-Time Extensions

other

ntrol
on-

be

g-
uires

(The
es an

er
ment
ate a
The operations available in theIndivisible_Operations package are highly depen-
dent on the target architecture, and as such, may not be available in the same form on
architectures.

Rescheduling Control 10

This package is an interface to the PowerMAX OS rescheduling control services. Co
over rescheduling is useful for low-level synchronization services. For example, a n
priority-inverting and very fast implementation of busy-wait mutual exclusion may
implemented by combining rescheduling control with a target machinetest_and_set
instruction.

See thevendorlib packageSpin_Locks for an example. See “Spin Locks” on page
10-2.

TheRescheduling_Control package allows Ada applications to set a flag which si
nals the operating system not to perform a context switch. Use of this package req
theP_RTIMEprivilege (seeintro(2)).

All Ada programs have a rescheduling variable registered with the operating system.
run-time system creates, registers, and initializes this variable.) This package provid
interface to the rescheduling services for manipulation of that rescheduling variable.

Client-Server Services 10

The Client_Server_Services package provides an interface to the client/serv
communication services. These services use a priority inheritance protocol to imple
efficient and deterministic client and server interactions. They may be used to cre
variety of “higher-level” inter-process communication protocols.

NOTE

These services should be used only very carefully with the Ada
r u n - t i me e x e cu t i v e . Th e , c l i e n t _ w a k e 1 (2) ,
cl ient_wa kechan(2) , server _wake1(2) , and
server_wakevec(2) should notbe issued unless the user is
certain that the processes being waked contain absolutely notask-
ing or are already blocked (via theclient_block(2) or
server_block(2) services). See “Client/Server Services” on
page A-3 for more details.

Use of this package requires theP_RTIMEprivilege (seeintro(2)).
10-11

MAXAda Reference Manual

s to
r-

and

dress

ess
earlier.

been
User-Level Interrupts 10

MAXAda provides Ada bindings to the user-level interrupt system services, as well a
mlock(2) and fork(2) , which are often used in conjunction with user-level inte
rupts. These services can be found in theUser_Level_Interrupts package.

For more information about user-level interrupts, refer to theiconnect(3C) and
ienable(3C) service descriptions. Refer also to thePowerMAX OS Real-Time Guide
for more information on user-level interrupt handling.

Use of this package requires theP_RTIMEandP_PLOCKprivileges; (seeintro(2)).

Direct Memory Access 10

The Userdma_Support package provides a thin/direct binding to theuserdma(2)
service which is used for setting up DMA buffers, locking specific pages in memory,
translating virtual addresses into physical addresses.

TheVirtual_To_Physical package exports an abstraction of theuserdma(2) ser-
vice which provides a physical address given a virtual address of an object.

Use of these packages requiresP_PLOCKprivilege; seeintro(2) .

Usermap Support 10

The Usermap_Support package provides an abstract binding to theusermap(2)
system service (which maps memory pages of an executing program into the ad
space of the calling process).

This package automatically tracks calls tousermap(2) in an effort to minimize it's use;
each call tousermap(2) will allocate a new attachment to the calling processes addr
space, regardless of whether an attachment to the same target address was made
(i.e. the OS doesn't do the bookkeeping).

This package deals with unsigned address arithmetic.

This package also allows the user to check-in a range of address that have already
mapped into the address space by some other means (shmat(2) perhaps), for consider-
ation on subsequentUsermap_Support.Usermap calls.
10-12

-1
1-2
2
-2

1-3
4
-5
6
7
-8

10
13
5

5
6
6

17
8

19
19
20
21
21
2

11
Real-Time Event Tracing

Specifying Trace Events . 11
Predefined Trace Events . 1

Library Unit Elaboration . 11-
User-Defined Trace Events. 11

user_trace package . 1
Specification. 11-
Usage . 11

NightTrace Binding. 11-
Specification. 11-
Usage . 11

NightView Debugger. 11-9
Tracing Options . 11-

Tracing Options - Examples . 11-
Logging Trace Events. 11-1

Logging Mechanisms 11-15
Ada Executive . 11-1

Trace Buffer . 11-1
Timing Source . 11-1

NightTrace Daemon . 11-
Log Files. 11-1

Viewing Trace Events . 11-
User Table. 11-
Viewing Trace Events with a.trace . 11-
Viewing Trace Events with NightTrace . 11-

Creating the NightTrace Configuration File . 11-
Modifying the NightTrace Configuration File . 11-2

MAXAda Reference Manual

plica-
out
es.

user-
race

as the

e

cha-

) is

king,
ration

cing

xact

thod
ls.
11
Chapter 11Real-Time Event Tracing

11
11
11

Real-time event tracing is one way to debug and analyze the performance of Ada ap
tions, including multi-tasking applications. It allows the user to gather information ab
important events in an application, such as event occurrences, timings, and data valu

MAXAda has established two types of trace events: predefined trace events and
defined trace events. This chapter will discuss these in further detail, including how t
events are specified. In addition, examples of usage are provided.

Tracing behavior is controlled via the-trace link option to a.partition . Details
about this option and its associated attributes are presented in this chapter.

Also discussed are the available mechanisms used for logging trace events as well
utilities used to view the resultant log files, including the MAXAdaa.trace utility and
the NightTrace tool.

Specifying Trace Events 11

A trace pointis a location within an application at which information is logged. Th
information logged is termed atrace event. At a minimum, it includes a trace event ID
number and a timestamp; it may be accompanied by additional data as well.

Logging of a trace event is done via a procedure call to one of various tracing me
nisms. These mechanisms are discussed in “Logging Mechanisms” on page 11-15.

A special version of the Ada runtime executive (see “Ada Executive” on page 11-15
provided with a significant number of trace points which logpredefined trace events.
These events describe the execution of the user's Ada application in terms of tas
interrupt handling, exception occurrence and handling, protected actions, and elabo
of library units.

The specification of certain attributes to the-trace link option causes the selection of a
version of the Ada runtime executive which contains these trace points. See “Tra
Options” on page 11-10 for details.

Additionally, the user may define trace points in his source code. At eachuser-defined
trace point, the user must provide an event ID and optional data arguments. The e
time that each trace point is encountered is included in the trace event.

A single clock is utilized to timestamp the events so that, regardless of the logging me
chosen, all trace events may be combined and sorted chronologically by analysis too

Trace points might be placed at:

• suspected bug locations
11-1

MAXAda Reference Manual

your

e and

han-

0 for

rti-

code
users
iming
n be

then
file is
• process, subprogram, or loop entry and exits

• timing points

• sychronization points/multi-process interaction

• endpoints of atomic operations

• endpoints of shared memory access code

Careful trace point placement may aid you in identifying patterns and anomalies in
application.

Predefined Trace Events 11

Predefined trace events are generated by tracing versions of the Ada runtime executiv
by library elaboration code generated for theENVIRONMENTtask. They typically
describe execution in terms of tasking, interrupt handling, exception occurrence and
dling, and protected actions.

Setting thertsinstrumentation attribute of the-trace link option to true for a
partition generates predefined trace events. See “Tracing Options” on page 11-1
details.

Library Unit Elaboration 11

A pair of trace events (entry and exit) for the elaboration of every library unit in the pa
tion may be generated by setting theelabinstrumentation attribute of the-trace
link option to true . See “Tracing Options” on page 11-10 for details.

NOTE

The user may wish to increase the length of the trace buffer used
for logging trace events if there are a large number of library units
to be traced. (See “Trace Buffer” on page 11-16 for more informa-
tion).

User-Defined Trace Events 11

User-defined trace events generate information at specified points within the source
that are of particular interest to the user. By placing these trace points strategically,
can determine locations of suspected bugs, values of certain variables, and errors in t
or synchronization. Patterns of irregular or erroneous behavior of an application ca
discovered by careful placement of the trace points.

Trace points are selected and placed within the source code. The source code is
recompiled, the application is relinked and executed, and the resultant trace event
analyzed.
11-2

Real-Time Event Tracing

for
event
he
-

trac-
d ana-
MAXAda supports three methods of establishing user-defined trace points:

• the MAXAda-supplieduser_trace package

• bindings to the NightTrace services

• support of trace points embedded by the NightView debugger

user_trace package 11

The user_trace package consists of all the procedures and functions necessary
placing user-defined trace points within source code and generating a resultant trace
file to be later viewed and analyzed. This package is supplied with MAXAda in t
vendorlib environment in the fileuser_trace.a . See Chapter 9, "Support Pack
ages" for more information about thevendorlib environment.

Theuser_trace package can be used independently of any other vendor-supplied
ing mechanism, and the trace events generated by this package can be viewed an
lyzed by tools supplied with MAXAda, specifically thea.trace utility.
11-3

MAXAda Reference Manual
Specification 11

The specification of theuser_trace package is:

with interval_timer ;
with ada.task_identification ;

package user_trace is
--

--
-- trace_mode
--
-- Specifies whether trace points logging is enabled or disabled.
--
type trace_mode is (DISABLED, ENABLED) ;

--
-- trace_user_type
--
-- Defines a type whose value must be zero. This distinguishes
-- user trace points from internal trace points. Trace log
-- entries for user trace points are marked with "USER_TRACE".
--
type trace_user_type is range 0..0 ;

--
-- user_trace_event_number
--
-- Defines the value of all trace events logged via this
-- package (see ntrace(1)).
--
user_trace_event_number : constant := 4402 ;

--
-- trace_sub_id
--
-- Defines a broad integer range of values representing
-- user events / trace_points. These values are echoed
-- in the trace log.
--
subtype trace_sub_id is natural range 0..2**16-1 ;

--
-- log
--
-- These overloaded procedures cause individual trace points
-- to be logged (assuming that the current mode is set to enabled).
--
procedure log (sub_id : trace_sub_id) renames pp.log0 ;

procedure log (sub_id : trace_sub_id ; data1 : integer) renames pp.log1 ;

procedure log (sub_id : trace_sub_id ; data1 : integer ;
data2 : integer) renames pp.log2 ;

--
-- buffer_length
--
-- The length of the trace buffer for each task (# of entries)
-- is specified by the following value. Buffer allocation
-- occurs during task creation if tracing is ENABLED, or on
-- the first "set_trace_mode" call that ENABLE tracing for a
-- task. Each trace buffer entry consumes approximately 24 bytes.
--
-- The default value is 1000 entries.
--
trace_buffer_length : integer ;

--
-- set_trace_mode
--
-- By default, the trace mode for the environment task is
-- DISABLED. When linking with the tracing runtime system
-- the trace mode is automatically set to ENABLED.
--
-- When a task is created, its trace mode is inherited from
-- its parent task (or environment task).
--
-- In the event that tracing is specified for a particular
11-4

Real-Time Event Tracing
-- task for the first time via "set_trace_mode", the trace
-- buffer is allocated at that time. STORAGE_ERROR is raised
-- if that allocation fails.
--
-- The "function" form of this utility returns the previous
-- trace mode for the specified task.
--
procedure set_trace_mode_all (mode : in trace_mode) ;
procedure set_trace_mode (mode : in trace_mode ;

task_id : in ada.task_identification.task_id :=
ada.task_identification.null_task_id);

function swap_trace_mode (mode : in trace_mode ;
task_id : in ada.task_identification.task_id :=

ada.task_identification.null_task_id)
return trace_mode ;

--
-- dump
--
-- This routine can be called from any task and results in the
-- trace records for ALL tasks (active and terminated) to be
-- dumped.
--
procedure dump ;

Usage 11

The call to log a user trace event using theuser_trace package might look like:

user_trace.log (sub_id => 47, data1 => x, data2 => y) ;

This example uses named notation to specify the parameters in the procedure call.

A NightTrace event with a trace event ID of4402 is logged for every invocation of
user_trace.log , with the following correspondence:

NOTE

The NightTrace exrepssionarg(1) will hold the task_id of
the task that issued the trace point.

user_trace parameter NightTrace Expression

sub_id arg(2)

data1 arg(3)

data2 arg(4)
11-5

MAXAda Reference Manual

sep-
ts by
fter
orma-

ing-

nd
NightTrace Binding 11

NightTrace is an interactive debugging and performance analysis tool that is available
arately from MAXAda. NightTrace allows users to generate user-defined trace even
making certain NightTrace procedure and function calls within their source code. A
the events are generated, NightTrace allows the users to display the trace event inf
tion as numerical statistics and as graphical images.

The framework of the graphical display can be configured by the user for more mean
ful analysis of the information generated by the trace events.

MAXAda provides a thin binding to the NightTrace services. This binding can be fou
in the MAXAda-suppliedgeneral environment in the filenight_trace.a . See
Chapter 9, "Support Packages" for more information about thegeneral environment.

NOTE

Use of thenight_trace_bindings package precludes the
use of any other MAXAda tracing mechanisms. This binding can
not be used in conjunction with either the-trace or -ntrace
link options, theuser_trace package, or thea.trace utility.
11-6

Real-Time Event Tracing
Specification 11

The specification of the NightTrace binding is:

--
-- This package contains a "thin/abstract" binding to the Ntrace
-- service routines as described in ntrace(3x).
--
-- Descriptions of the service routines are identical to those
-- found in the system documentation (e.g. man ntrace(3x)),
-- except that the subprograms have been specified using
-- Ada's descriptive style: overloading, enumerated error codes,
-- strong typing.
--
-- There is no overhead incurred due to the Ada bindings,
-- except for the trace_start and trace_open_thread routines
-- which translate an Ada string into a form suitable for their
-- respective system services.
--

package night_trace_bindings is
--

type ntrace_error is (
NTNOERROR,
NTIO,
NTNODAEMON,
NTNOTRACEFILE,
NTINVALID,
NTPERMISSION,
NTALREADY,
NTNOSHMID,
NTRESOURCE,
NTFLUSH,
NTINIT,
NTMAPSPLREG,
NTMAPTIMER,
NTLOSTDATA,
NTEXISTS,
NTBUSY,
NTPGLOCK,
NTNOMEM

) ;

type event_type is range 0..4095 ;

--
-- Administrative: start, end, etc
--
function trace_start (trace_file : string) return ntrace_error ;
procedure trace_start (trace_file : string) ;

function trace_end return ntrace_error ;
procedure trace_end ;

function trace_open_thread (threadname : string) return ntrace_error ;
procedure trace_open_thread (threadname : string) ;

function trace_close_thread return ntrace_error ;
procedure trace_close_thread ;

function trace_flush return ntrace_error ;
procedure trace_flush ;

function trace_trigger return ntrace_error ;
procedure trace_trigger ;

--
-- Logging Trace Events
--
function trace_event (event : event_type) return ntrace_error ;
procedure trace_event (event : event_type) ;

function trace_event (event : event_type ; arg : integer)
return ntrace_error ;

procedure trace_event (event : event_type ; arg : integer) ;

function trace_event (event : event_type ; arg : long_float)
11-7

MAXAda Reference Manual

abo-
e fol-

wn
return ntrace_error ;

procedure trace_event (event : event_type ; arg : long_float) ;

function trace_event (event : event_type ;
arg1 : integer ;
arg2 : integer ;
arg3 : integer ;
arg4 : integer)

return ntrace_error ;

procedure trace_event (event : event_type ;
arg1 : integer ;
arg2 : integer ;
arg3 : integer ;
arg4 : integer) ;

--
-- Enable/Disable Trace Events
--
function trace_enable (event : event_type) return ntrace_error ;
procedure trace_enable (event : event_type) ;

function trace_enable (event_low : event_type ;
event_high : event_type)

return ntrace_error renames private_bindings.ena ;
procedure trace_enable (event_low : event_type ;

event_high : event_type) ;

function trace_disable (event : event_type) return ntrace_error ;
procedure trace_disable (event : event_type) ;

function trace_disable (event_low : event_type ;
event_high : event_type)

return ntrace_error renames private_bindings.dis ;
procedure trace_disable (event_low : event_type ;

event_high : event_type) ;

function trace_enable_all return ntrace_error ;
procedure trace_enable_all ;

function trace_disable_all return ntrace_error ;
procedure trace_disable_all ;

--
end night_trace_bindings ;

Usage 11

Follow these steps to use the NightTrace binding:

1. Edit an Ada application and insert calls to the NightTrace services using
the night_trace_bindings package. This makes it possible to log
user-def ined trace events at user- def ined tr ace points . (S ee
ntrace(3X) .) Some sample calls might be:

retval := night_trace_bindings.trace_start ("my_trace_file");
retval := night_trace_bindings.trace_open_thread (trace_thread);
retval := night_trace_bindings.trace_event (event_id, data);
retval := night_trace_bindings.trace_close_thread;
retval := night_trace_bindings.trace_end;

Placement oftrace_start and trace_open_thread calls is critical to the
tracing strategy of Ada tasking programs. Performing these calls before task el
ration causes all tasks to log to the same thread name. This can be done with th
lowing type of statement:

Trace_start_stat : ntrace_error := trace_start("tracefile") ;
Trace_open_thread_stat : ntrace_error := trace_open_thread ("my_prog");

Alternatively, each task can have its own trace thread by making its o
trace_open_thread call.
11-8

Real-Time Event Tracing

at it
2. Make the bindings visible, compile, and link the application. For example,

$ a.path -a general
$ a.build main

3. Startntraceud , the NightTrace user daemon, to capture trace events in a
trace-event log file. (Note: this file should have the same name as the file
specified in thetrace_start call.) (Seentraceud(1) .) For exam-
ple,

$ ntraceud my_trace_file

4. Run the application and simultaneously log trace-event information into a
file. For example,

$ a.out

5. Stopntraceud , the NightTrace user daemon, when the application com-
pletes. For example,

$ ntraceud -quit my_trace_file

6. From an X server, set theDISPLAY environment variable to the server
name. This needs to be done only once per login. An example of setting
this variable in the Bourne shell for a terminal named “eagle” follows:

$ DISPLAY=eagle:0.0
$ export DISPLAY

7. From an X server, view the trace-event information from the trace-event
log file with ntrace , the NightTrace graphical display tool. (See
ntrace(1) .) For example,

$ ntrace my_trace_file

See theNightTrace Manualfor further information.

NightView Debugger 11

The NightView Debugger provides a means of modifying an executable program so th
logs trace events.

See theNightView User’s Guidefor details.
11-9

MAXAda Reference Manual

in

their

le,

rtic-
the
Tracing Options 11

Tracing behavior is controlled via the-trace link option toa.partition . See “Link
Options” on page 4-119 for more information.

Examples of usage are provided in “Tracing Options - Examples” on page 11-13.

The format for this option is:

-trace[: attributes]

whereattributesis a comma-separated list of the following (the defaults appear
parentheses):

enabled =true | false (true)
mechanism =internal [/ default | rcim_tick] | ntraceud

(internal/default)
buffersize =n (1000)
rtsinstrumentation =true | false (true)
elabinstrumentation =true | false (true)

Note that any of the keywords for the above attributes can be abbreviated to
shortest non-ambiguous form.

The following steps will help determine whichattributesare necessary to obtain the
desired tracing behavior.

1. Determine whether tracing should be activated for this executable.

-trace

When this option is specified, tracing support will be included in the output fi
allowing the logging of trace events.

If no attributes are specified, the default values for the attributes are used. In pa
ular, tracing is automatically enabled. To override this default, you may set
enabled attribute for the-trace option tofalse .

NOTE

If the partition is linked with the-trace option, tracing may be
subsequently enabled or disabled at runtime without the need for
relinking by calling user_trace.set_trace_mode or
user_trace.set_trace_mode_all . See “user_trace pack-
age” on page 11-3 for more information.

In addition, tracing may be enabled or disabled without the need
for relinking by usinga.map . See “a.map” on page 4-52 for
more information.
11-10

Real-Time Event Tracing

ust

be

ace
ed

g

cu-
If tracing support is not desired, then there is no need to specify the-trace option
to a.partition . However, if tracing is subsequently desired, the program m
be relinked with this option.

2. Determine whether tracing should be enabled.

enabled= true | false (true)

This attribute allows the user to control initially whether or not trace events are to
logged to a trace buffer. When the-trace option is specified, logging is automat-
ically enabled.

enabled= true

Enables logging of predefined and user-defined trace events to the tr
buffer. (See “Predefined Trace Events” on page 11-2 and “User-Defin
Trace Events” on page 11-2 for more information.)

enabled= false

Disables logging of predefined and user-defined trace events.

Tr a c i n g m ay b e en a b l e d o r d i sa b l e d a t r u n t im e b y c a l l i n
user_trace.set_trace_mode or user_trace.set_trace_mode_all .
(See “user_trace package” on page 11-3 for more information.)

NOTE

If the partition was linked with the-trace option, tracing may
be enabled or disabled without the need for relinking by using
a.map . (See “a.map” on page 4-52 for more information.)

3. Determine the mechanism used to log trace events.

mechanism= internal[/ [default|rcim_tick]] | ntraceud
(internal/default)

Real-time event tracing can be performed by either the MAXAda-supplied exe
tive (internal) or the NightTrace daemon (ntraceud). See “Logging Mecha-
nisms” on page 11-15 for more information.

NOTE

If the partition was linked with the-trace option, the mecha-
nism may be specified without the need for relinking by using
a.map . (See “a.map” on page 4-52 for more information.) This
is only applicable if the executable was originally linked with the
mechanism setting ofntraceud .
11-11

MAXAda Reference Manual

tive
-15

ory
ace

, fur-

ault
s;

e

al-
y

-

e

for
, it
re
the

re
mechanism= internal

This attribute specifies that logging shall be performed by the Ada execu
independent of the NightTrace product. See “Ada Executive” on page 11
for more information.

The Ada executive logs trace events to wraparound trace buffers in mem
(one buffer per task). When a trace buffer becomes full, the newest tr
events overwrite the oldest trace events in that buffer.

When the Ada executive is selected as the mechanism to log trace events
ther attributes may be specified:

i. Select the mechanism used to determine timestamps for trace
events. See “Timing Source” on page 11-16 for more informa-
tion.

mechanism= internal/default

By default, when theinternal mechanism is chosen, the timing
device used to determine timestamps for trace events is the def
high-precision clock for the architecture where the program run
specifically, the interval timer (NightHawk 6000 Series) or th
Time Base Register (Power-Hawk/PowerStack).

mechanism= internal/rcim_tick

If you are running on a closely-coupled system that has a Re
Time Clock and Interrupt Module (RCIM) attached, you ma
specify the synchronized tick clock on the RCIM as the trace tim
ing source.

See theReal-Time Clock and Interrupt Module User’s Guid
(0891082) for more information about this device.

ii. Specify the size of the trace buffer that the Ada executive uses
to log trace events. See “Trace Buffer” on page 11-16 for more
information.

buffersize= n (1000)

The length specified is the maximum number of trace events
each task that can be contained within the buffer. For instance
may be desirable to specify a fairly large buffer length if there a
in excess of 500 library units being traced. In such a case,
ENVIRONMENTtask will have logged a minimum of 1000 trace
events (an entry and exit of each library unit elaboration) befo
the main subprogram even executes.

If the partition was linked with the-trace option, the size of the trace
buffer may be specified without the need for relinking by usinga.map .
(See “a.map” on page 4-52 for more information.)
11-12

Real-Time Event Tracing

ce

ht-

rce.

the

to
events
cur-

nts

ess
mechanism= ntraceud

This attribute specifies that logging shall be performed via the NightTra
user daemon,ntraceud . This method allows greater flexibility, providing a
number of options to tailor the tracing to the needs of the user. See “Nig
Trace Daemon” on page 11-17 for more information. Also, seentra-
ceud(1) and theNightTrace Manual(0890398) for more information about
the NightTrace user daemon.

The NightTrace user daemon has its own option for selecting a timing sou
See the section titledOption to Select Timestamp Source (-clock)in Chap-
ter 4 of theNightTrace Manual(0890398).

In addition, the NightTrace user daemon has its own option for setting
shared memory buffer size. See the section titledOption to Define Shared
Memory Buffer Size (-memsize)in Chapter 4 of theNightTrace Manual
(0890398).

4. Determine whether runtime events are desired.

rtsinstrumentation= true | false (true)

When set totrue , this attribute causes the tracing version of the Ada executive
generate predefined trace events as the application executes. These trace
describe execution mostly in terms of tasking, interrupt handling, exception oc
rence and handling, and protected actions.

See “Predefined Trace Events” on page 11-2 for more information.

5. Determine whether library unit elaboration events are desired.

elabinstrumentation= true | false (true)

When set totrue , this attribute causes the generation of a pair of trace eve
(entry and exit) for the elaboration of every library unit in the partition.

NOTE

The user may wish to increase the length of the trace buffer used
for logging trace events if there are a large number of library units
to be traced. This is specified using thebuffersize attribute of
the-trace option.

Tracing Options - Examples 11

The following are some examples of using the-trace link option:

-trace:enabled=false

Specifies that tracing is activated but no logging of trace points will occur (unl
the user subsequently modifies theenabled setting via thea.map tool or calls the
11-13

MAXAda Reference Manual

nit

e

will

ing
on

and
tive
e
IM
lysis
ed
all
set_trace_mode subprograms from theuser_trace package at runtime - see
“user_trace package” on page 11-3 for more information.).

In addition, the default settings for other trace attributes specify that library u
elaboration and runtime events would be traced, the tracingmechanism would be
the Ada executive (i.e. notntraceud) using the default timing source, and the siz
of the per-task trace buffer is 1000 (events).

-trace:rts=false,elab=true,mech=ntraceud

Specifies that tracing is activated and enabled and that library unit elaboration
be traced but runtime events will not.

In addition, the default settings for other trace attributes specify that the trac
mechansim isntraceud ; this requires the user to start the NightTrace user daem
(ntraceud) before executing the program being traced.

-trace:mech=internal/rcim_tick

Specifies that tracing is activated and enabled and that library unit elaboration
runtime events will be traced and that the tracing mechanism is the Ada execu
(i.e. notntraceud) using the RCIM synchronized tick clock as the timing sourc
and the size of the per-task trace buffer is 1000 (events). Use of the RC
sychronized tick clock as the timing source is required for subsequent trace ana
if multiple trace files from multiple single board computers are to be combin
(which in turn requires that each of the single board computers have an RCIM
connected in the same chain).
11-14

Real-Time Event Tracing

sultant

ht-

quire

in
ve in
0

he
e

Logging Trace Events 11

This section discusses the available mechanisms used to log trace events and the re
log files from the tracing activity.

Logging Mechanisms 11

Logging of trace events is done by either the MAXAda-supplied executive or the Nig
Trace daemon.

Ada Executive 11

The Ada executive can log predefined and user-defined trace events. It does not re
the use of the NightTrace product.

This mechanism is specified by setting themechanism attribute of the-trace option to
internal . See “Tracing Options” on page 11-10 for details.

Because of the-trace link option (and the default values for its associated attributes)
the following example, predefined trace events will be generated by the Ada executi
addition to any user-defineduser_trace events (see “Tracing Options” on page 11-1
for details). Thea.partition command which sets the-trace option is not required
if only user-defineduser_trace events are desired. However, in such a case, t
enabled attribute defaults tofalse so no trace events will be generated until the mod
i s ch an g e d (e i t h e r v i a t h ea . ma p t o o l o r a t r u n t im e v i a a c a l l t o
user_trace.set_trace_mode or user_trace.set_trace_mode_all).

Example

1. Introduce the source file

$ a.intro some_tasking_program.a

2. Create the partition

$ a.partition -create active some_tasking_program

3. Select Ada executive logging

$ a.partition -oset "-trace" some_tasking_program

4. Build the partition

$ a.build some_tasking_program
11-15

MAXAda Reference Manual

mory.
n that

hen
ly 24

A

ation
ts are
for

fault
rval

).

rrupt
as

e

5. Invoke the application

$ some_tasking_program

NOTE

The -trace option could be specified at the same time the parti-
tion is created. The command would look like:

$ a.partition -create active -oset "-trace"
some_tasking_program

Trace Buffer 11

The Ada executive logs trace events to a separate wraparound trace buffer in me
When a trace buffer is full, the newest trace events overwrite the oldest trace events i
buffer.

Each task has its own trace buffer in memory so there is never any buffer contention w
logging trace events. The default size of these buffers is 1000 entries (approximate
bytes per entry) and may be configured by setting thetrace_buffer_length variable
in the user_trace package. These buffers are allocated during task creation.
storage_error exception is raised if the allocation fails.

Additionally, the size of the buffer can be specified using thebuffersize attribute to
the-trace option. See “Tracing Options” on page 11-10 for details.

NOTE

If the partition was linked with the-trace option, the size of the
trace buffer may be specified without the need for relinking by
usinga.map . (See “a.map” on page 4-52 for more information.)

The trace events are dumped only when specified by the user or when the applic
exits. They are then dumped to a trace file. Because the user controls when the even
written to the trace file, there is no extraneous disk activity. See "Log Files" below
more information about these trace files.

Timing Source 11

By default, the timing device used to determine timestamps for trace events is the de
high-precision clock for the architecture where the program runs; specifically, the inte
timer (NightHawk 6000 Series) or the Time Base Register (Power-Hawk/PowerStack

If you are running on a closely-coupled system that has a Real-Time Clock and Inte
Module (RCIM) attached, you may specify the synchronized tick clock on the RCIM
the trace timing source. See theReal-Time Clock and Interrupt Module User’s Guid
(0891082) for more information about this device.

The timing source can be specified using themechanism attribute to the-trace option.
See “Tracing Options” on page 11-10 for details.
11-16

Real-Time Event Tracing

e

be

tual

e
See
NightTrace Daemon 11

The NightTrace user daemon,ntraceud , can log predefined and user-defined trac
events. It is part of the NightTrace product, which is sold separately from MAXAda.

This mechanism is selected by setting themechanism attribute of the-trace option to
ntraceud (see “Tracing Options” on page 11-10 for details). All trace events will
logged to a singular global memory buffer controlled byntraceud . It is thentraceud
tool itself that dumps the actual trace events from the global memory buffer to the ac
trace file.

NOTE

The NightTrace daemon,ntraceud , must be invoked before the
Ada application is run. In addition,ntraceud must be termi-
nated when the application completes. See the example below.

The NightTrace daemon,ntraceud , allows greater flexibility using the buffers and trac
files by providing a number of options to tailor the tracing to the needs of the user.
ntraceud(1) for more information about the NightTrace user daemon

Example

1. Introduce the source file

$ a.intro some_tasking_program.a

2. Create the partition

$ a.partition -create active some_tasking_program

3. Select NightTrace user daemon logging

$ a.partition -oset "-trace:mech=ntraceud"
some_tasking_program

4. Build the partition

$ a.build some_tasking_program

5. Invoke the NightTrace user daemon (note the file specified)

$ ntraceud some_tasking_program.trace.data

6. Invoke the application

$ some_tasking_program

7. After the application finishes, stop the NightTrace user daemon

$ ntraceud -quit some_tasking_program.trace.data
11-17

MAXAda Reference Manual

d of

t the

x-
NOTE

The selection of the NightTrace user daemon could be made at the
same time the partition is created. The command would look like:

$ a .p a r t i t io n - cr ea te a ct iv e - os et " -
trace:mech=ntraceud" some_tasking_program

Log Files 11

Two files are created with respect to trace event logging, regardless of which metho
logging is chosen:

1. program_name.trace.data

This binary trace event file contains sequences of trace event information tha
application logged.

2. program_name.trace.tables

This ASCII configuration file contains dynamically generated string tables of te
tual information about the tasks in the Ada application.
11-18

Real-Time Event Tracing

pro-
ty,
be

er

r-
alues
Viewing Trace Events 11

Once the trace events have been logged, they must be viewed for analysis. MAXAda
vides two methods of viewing the trace event log files. MAXAda supplies a utili
a.trace , for viewing the trace event logging results. In addition, the results may
viewed using the NightTrace product.

Refer to Figure 11-1 to see how each method is used for viewing trace events.

Figure 11-1. Viewing Trace Events

User Table 11

A user tablecontains a format table that associates specificuser_trace trace events
with particular character strings. The user table can be used:

- by a.trace when viewing trace events or

- by a.trace when creating the configuration files needed by NightTrace

The -u option toa.trace is used to specify the name of the file containing the us
table.

The user table uses each trace eventsub_id as a table key, associating a particular cha
acter string with each event. Formatting for these character strings and optional v

Do you wish to
view trace events
with NightTrace?

no

yes

Runa.trace to
createntrace

configuration file

Runntrace

Runa.trace

a.trace -s -a main
or
a.trace -s -a -u your_event_table main

a.trace main
or
a.trace -u your_event_table main

ntrace main.ntrace.*
11-19

MAXAda Reference Manual

ed in

se

-

ace
a-
displayed within the string can be specified for each trace event. Events not specifi
the user table are displayed using the formatting for thedefault_item .

See theNightTrace Manual(0890398) for details on format tables and specifying the
values.

NOTE

The format tab letable_namespeci fied must be named
ada_user_trace .

An example of the contents of a simple user table file might look like:

format_table (ada_user_trace) = {
default_item = "<who knows>" ;
item = 1 , "Start it: data1=%d, data2=%d", "arg3", "arg4" ;
item = 2 , "End it: data1=%d, data2=%d", "arg3", "arg4" ;

} ;

When viewed, trace events with asub_id of 1 will produce a string similar to the follow-
ing:

Start it: data1=2, data2=2

containing the particular runtime values fordata1 anddata2 at the time the trace event
was logged.

Viewing Trace Events with a.trace 11

MAXAda provides thea.trace utility as a stand-alone method of viewing Ada execu
tive predefined trace events as well as user-defineduser_trace trace events. There is
no requirement for either NightTrace or for an X server. The resultant listing of tr
events is displayed in ASCII format in chronological order. High-level symbolic inform
tion, trace-event time stamps, and raw-trace dumps are also available.

a.trace usesprogram_name.trace.data andprogram_name.trace.tables .
See “Log Files” on page 11-18 for more information about these files.

To view trace event information in ASCII:

a.trace -a program_name.trace.data

or optionally,

a.trace -a program_name
11-20

Real-Time Event Tracing

e

ser-

play
for

ow-

ils.
NOTE

The .trace.data extention is optional when invoking
a.trace . a.trace will append .trace.data to the
program_namewhen invoked if it is not specified.

Additionally, a user table file can be specified by using the-u option toa.trace . For
example:

a.trace -u user_table_file -a program_name

will display theuser_trace trace events according to the formatting specified in th
format table contained inuser_table_file. See “User Table” on page 11-19 for more
details.

See “a.trace” on page 4-108 for more information about this utility and its options.

Viewing Trace Events with NightTrace 11

In order to view trace events with the NightTrace graphical display utility,ntrace , a con-
figuration file must be created for use with NightTrace. The MAXAda utilitya.trace
creates this NightTrace configuration file for viewing predefined trace events and u
defineduser_trace trace events withntrace .

Creating the NightTrace Configuration File 11

The MAXAda-supplied utility,a.trace uses theprogram_name.trace.data file
from the trace event logging to create the files needed by NightTrace before it can dis
graphically the information obtained from the tracing. See “Log Files” on page 11-18
more information about this file.

a.trace takes theprogram_name.trace.data file as its only argument to generate
the necessary files. (Note: no options should be specified toa.trace when generating
the NightTrace files.)

To create the files needed for NightTrace to view the tracing information, issue the foll
ing command:

a.trace program_name.trace.data

Optionally, a user table file can be specified by using the-u option toa.trace . For
example:

a.trace -u user_table_file program_name

will use the formatting specified in the format table contained inuser_table_filewhen cre-
ating the NightTrace configuration file. See “User Table” on page 11-19 for more deta

Either of these commands creates the following two files:
11-21

MAXAda Reference Manual

lud-
. It

n ,
1. program_name.ntrace.data

This file is a hard link toprogram_name.trace.data . See “Log Files” on page
11-18 for more information about this file.

2. program_name.ntrace.config

This file contains string tables, format tables, and a NightTrace display page, inc
ing descriptions of NightTrace display objects for this application’s trace events
combines information from thetemplate and table files in thesup/trace
di rec to ry an d t he f i le c re ated b y t he ex ecu t io n of th e ap p l ica t io
program_name.trace.data .

These two files then are given as input to the NightTrace graphical display tool,ntrace ,
to view the trace event information generated by the run of the application.

The tracing information from the application,program_name, can then be viewed using
ntrace by issuing the following command:

ntrace program_name.ntrace.*

Modifying the NightTrace Configuration File 11

The NightTrace configuration file,program_name.ntrace.config , may be modified
and reused on subsequent tracings ofprogram_name. This holds true only for programs
which create their tasks in a deterministic order.

NOTE

For programs which do not create their tasks in a deterministic
order, the internal representation of specific Ada tasks may
change with each run, thereby invalidating a previously created
(and perhaps modified) configuration file

I n ca se s s u ch a s t h is , t h e c o n f i g u r a t i o n f i l e ,
program_name.ntrace.config , must be recreated by execut-
ing a.trace on the latest trace event files. See “Creating the
NightTrace Configuration File” on page 11-21 for details.

If a.trace is executed on the latest trace event files, modifica-
tions to the previous configuration files will be not be retained.
11-22

-1
-1
-1
-2
2-2
-2
-5
-6
-6
-8
10
1
3

12
Real-Time Monitoring

Data Monitoring . 12
Compiling . 12
Eligible Data Objects . 12
Eligible Data Types . 12
real_time_data_monitoring Package . 1
a.rtm . 12

File Operations . 12
Task Monitoring. 12

a.monitor. 12
Task Display . 12
System Display . 12-
Memory Display . 12-1
LWP Display . 12-1

MAXAda Reference Manual

bles

ing
mon-

.

se
ibrary-
ccess
oni-

ng:
12
Chapter 12Real-Time Monitoring

12
12
12

Real-time monitoring involves observing and changing the values of program varia
and displaying task states and system utilization. This chapter describes thea.rtm and
a.monitor real-time monitoring utilities.

Data Monitoring 12

This section describes how to use MAXAda to perform data monitoring for debugg
real-time applications. Currently, several ways are available in which to use the data
itoring capabilities. The following sections include information for:

• Compiling Ada source code for data monitoring

• Eligibility of data objects for data monitoring

• Using thertdm Real_Time_Data_Monitoring package

• Using thea.rtm real-time data-monitoring tool

To fully utilize these packages and tools, theP_OWNERprivilege is required (see
intro(2)).

Compiling 12

Ada source code must be compiled with the-g option or pragmaDEBUGto allow the
resulting program to produce symbolic debug information required for data monitoring

Eligible Data Objects 12

The implementation of data monitoring supports monitoring and modifying only tho
data objects that have static addresses, such as the variables declared in an Ada l
level package. Variables declared in Ada procedures or tasks, or objects in an a
type’s collection, are allocated dynamically, and are, therefore, ineligible for data m
toring.

The following criteria are used to determine if a data object is eligible for data monitori

• The compilation unit containing the object must be a library-level package
specification or body. Objects declared in nested packages inside a library-
level package are also eligible.
12-1

MAXAda Reference Manual

da

ul-

rs to
• The object must notbe declared in a generic or in the instantiation of a
generic.

• The object must have a size and representation which is statically deter-
mined at compile time.

• The object may be declared in a library-level package marked with pragma
SHARED_PACKAGE. (See “Pragma SHARED_PACKAGE” on page
M-130.)

Eligible Data Types 12

The following data types are eligible for data monitoring:

• Any integer, fixed-point or floating-point type or subtype.

• Any character, Boolean or enumeration type or subtype.

• Access types.

• Array and record types (for records with variant parts, only components
that have a statically determined component offset are eligible).

• Task types are noteligible types.

real_time_data_monitoring Package 12

See “rtdm” on page 9-12 for more information on this package with respect to MAXA
and its usage.

SeeChapter 9of thePowerMAX OS Guide to Real-Time Services.

a.rtm 12

The MAXAda a.rtm utility provides users with a full-screen (curses(3X) -based)
real-time data-monitoring interface for viewing and/or modifying data, possibly from m
tiple programs, in real-time. Thea.rtm utility provides for the symbolic display and
modification of Ada variables. There is an interactive menu interface that allows use
establish the cyclic monitoring of Ada variables.

Thea.rtm utility:

• Is non-intrusive. It does virtual address space mapping, operates indepen-
dently of target applications, and performs target-variable reads and writes
without system calls.

• Can monitor multiple tasks and/or Ada applications concurrently.

• Is a stand-alone monitor that does not require an entire compilation envi-
ronment.
12-2

Real-Time Monitoring

ined
rray
of a

g
in
char-

nts.

user

a-

u

l, to

d help
red
may
a.rtm can monitor Ada package variables whose base address is "statically" determ
including integer types, floating-point types, fixed-point types, enumeration types, a
components, and record components. It permits the monitoring of the symbolic form
value, e.g., an enumeration image,white , instead of the integer value of the underlyin
implementation,1. It also can monitor memory locations specified by virtual address
bytes, shorts, and word integers in any base, single and double-precision floats, and
acters.

a.rtm cannotmonitor components of arrays whose index expressions are not consta

Use ofa.rtm requires theP_OWNERprivilege (seeintro(2) and “Privileges” on page
B-1) when monitoring processes whose effective user IDs are other than that of the
invoking a.rtm .

NOTE

Programs that are to be monitored bya.rtm must have been
compiled with the-g (debug) option or must use pragmaDEBUG
with a debug level offull (2).

See “a.rtm” on page 4-96 for syntax and list of options.

The applications to be monitored must already be running beforea.rtm can reference
data items within them. Whena.rtm is started, it clears the screen and displays inform
tion.

Screen 12-1 shows thea.rtm display at start up. On the top line of the display is a men
bar. It consists of a mode followed by button names in angle brackets (<>). Press<Tab>
or <Backspace> to move among the buttons. Press<Return> to select the action asso-
ciated with a button. Press an accelerator, the unique first letter of the button labe
move to a button andselect it. Selecting<Objects> , <Interval>, or <Help> puts
a.rtm into a new mode. These modes also have menu bars.

Beneath the menu bar is a message line. It displays status and error messages an
information. At the bottom of the screen is a large region. This region displays monito
variables and their values. Displays may be paged (scrolled), and on X servers, they
be resized.

Screen 12-1. Initial a.rtm Display

Menu: <File> <Objects> <Int> <Refresh> <+> <-> <Modify> <Style> <Help> <Quit>

Move via tab or backspace. Accelerator or ascii.cr selects choice.

12-3

MAXAda Reference Manual

e.

ss,
ate.
g

y
/or

y

fter

er,
A brief description of the buttons follows.

<File> Save current session into a file or restore a previous one from a fil

<Objects> Specify variables by package, simple name, logical (virtual) addre
position on the screen, or searching within a package or aggreg
Add the variable to, or delete or select it from, the list of items bein
cyclically monitored. (A variable can be cyclically monitored onl
after it has been added to the list.) View the value, address, and
size of the variable without adding it to the monitoring list. Modif
the variable or change the position of variables on the screen.

<Int> Change the display rate for automatically refreshing the display a
retrieving current values for variables. By default, thea.rtm display
is updated every 1.5 seconds.

<Refresh> Immediately refresh all displays with current data.

<+> Scroll the display of variables up.

<-> Scroll the display of variables down.

<Modify> Modify the value of a variable.

<Style> Change the default format used in printing values of type integ
float, etc.

<Help> Display information about buttons and fields.

<Quit> Exit from the current mode and potentially froma.rtm .

Screen 12-2 shows part of a typicala.rtm display.
12-4

Real-Time Monitoring

file
Screen 12-2. Typical a.rtm Display (Truncated)

File Operations 12

a.rtm allows the user to save the current configuration to a file for future use. This
contains information pertaining to:

• the pathname to each program being monitored

• the PID of each program being monitored (optional)

• the variables being monitored in each program and the packages to which
they belong

• the line number within the lower region of thea.rtm screen to display
each variable and its associated value

Screen 12-3 displays an example of such a configuration file.

Objects Mode: (auto-refresh stopped)

sim_data.y(7).b: address = 16#4000C4#, atomic_size = 32 bits

Lookup Mode: <Name> <Logical address> <Position on screen> <Search>
Program=sim
Pid=21669
Package=sim_data
Variable=y(7).b
<Add> <Delete> <View> <Modify> <Change position> <Reseq> <Info> <Help> <Quit>

10: sim_data.y(2).c 4.31671E+01
11: sim_data.y(2).d red
12: sim_data.y(3).a 1
13: sim_data.y(3).b 3.45600E-01
14: sim_data.y(3).c 0.00000E+00
15: sim_data.y(3).d red
16: sim_data.y(4).a 1
17: sim_data.y(4).b 3.45600E-01
18: sim_data.y(4).c 0.00000E+00
19: sim_data.y(4).d red
20: sim_data.y(5).a 1
12-5

MAXAda Reference Manual

for
pro-

users
t of
Screen 12-3. a.rtm Sample Configuration File

Task Monitoring 12

This section describes how to use MAXAda to perform real-time task monitoring
debugging real-time applications. No special options or pragmas are required in the
gram to be monitored. Task monitoring is accomplished through use of thea.monitor
tool.

a.monitor 12

The MAXAda a.monitor utility provides users with a full-screen (curses(3X) -
based) real-time program monitor. There is an interactive menu interface that allows
to cyclically monitor task and system information. The system information is a subse
information presented bytop(1) .

Thea.monitor utility:

• Is non-intrusive. It operates independently of target applications.

• Can monitor an Ada program in real-time by displaying system utilization
and the activities of selected Ada tasking threads of execution.

• Is a stand-alone monitor that does not require an entire compilation envi-
ronment.

Use ofa.monitor requires theP_OWNERprivilege (seeintro(2)) when monitoring
processes whose effective user IDs are other than that of the user invokinga.monitor .

See “a.monitor” on page 4-61 for syntax and list of options.

Default_Fore= 2
Default_Aft= 5
Default_Exp= 3
Default_Long_Fore= 2
Default_Long_Aft= 14
Default_Long_Exp= 3
Default_Base= 10
Program=/jas1/users/jefferyt/envs/rtmexamp/runrtm
Pid=19426
Language=ADA
Display_At= 0
Package=rtmexamp
Variable=i
Display_At= 1
Variable=j
Display_At= 2
Variable=nap
12-6

Real-Time Monitoring

.

kets

cter of

.)

t,

e,

d

ith

k
call
and

on

s

P

To usea.monitor , invokea.monitor with the name of the program to be monitored
Whena.monitor is started, it clears the screen and displays task information.

On the top line of the display is a menu bar. It consists of button names in angle brac
(<>). Press<Tab> or <Backspace> to move among the buttons. Press<Return> to
select the action associated with a button. Press an accelerator, the unique first chara
the button label, to move to a button andselect it.

A brief description of the buttons follows.

<Task> Display basic task state information (delay, accept, executing, etc

<Sys> Display system information including priority, CPU assignmen
CPU bias, and operating system state.

<Mem> Display memory information including virtual size, resident siz
individual virtual segment descriptions, and state of the heap.

<Lwp> Display lightweight process (LWP) information including state an
scheduling information.

<Refrsh> Immediately refresh all displays with current data.

<Int> Change the display rate for automatically refreshing the display w
current data. By default, thea.monitor display is updated every
2.0 seconds.

<Verbose> (Toggle button) Additionally display detailed information for tas
states (open entries, time-outs, etc.), system status (system
names), and symbolic memory pools (names of some packages
collections).

<Ghosts> (Toggle button) Additionally display ADMIN, TIMER, SHADOW,
COURIER, and INTR-COURIER ghost tasks. See “Ghost Tasks”
page 5-4.

<Addr> (Toggle button) Additionally display task control block addres
information.

<+> Scroll the display up one screen.

<-> Scroll the display down one screen.

<Quit> Exit from a.monitor .

The following buttons are available only on the LWP display.

<Next> Select the LWP in the process with the next highest LWP ID.

<Previous> Select the LWP in the process with the next lowest LWP ID.

<# lwp> Ask the user to enter the LWP ID of interest and select it.

1-9 (Invisible buttons) Automatically select the corresponding LW
(e.g., 5 means LWP with LWP ID=5).
12-7

MAXAda Reference Manual

ation.
ation.

is

P
ug-

an
It
of

re
wn
Beneath the menu bar is a message line. It displays error messages and help inform
Beneath the message line is a region that displays either task states or system inform
Displays may be paged (scrolled), and when run underxterm(1) , they may be resized.

Task Display 12

Screen 12-4 shows ana.monitor task display.

Screen 12-4. a.monitor Task Display (with Verbose and Ghosts)

The following columns appear in a task state display on the task screen.

lwpid Lightweight process identifier of the task (may be zero if the task
multiplexed and is not currently being served).

An asterisk (*) in this column indicates that the corresponding LW
is considered the representative LWP of the process. During deb
ging, it indicates that the debugger is stopped in this LWP.

grp The group number for multiplexed tasks. The group number is
arbitrary ordering of the list of server groups in the application.
associates rows in the task portion with rows in the server portion
the task screen.

tcb_addr The address of the Task Control Block (TCB). A TCB is a structu
created and manipulated by the Ada runtime. Every task has it's o
unique TCB.

<Task> <Sys> <Mem> <Lwp> <Refrsh> <Int> <Verbose> <Ghosts> <Addr> <+><-> <Quit>
--------------------------------- (pid 26874) ----------------------------------

lwpid grp tcb_addr task_name task_status
----- --- -------- ------------------------------ ---------------------------------

11 b004edd0 DEFAULT<courier> executing
0 b004ae50 signal_handler<shadow:sigintr> interrupts

* 3 1 b004a130 e executing
9 b0043af8 d delay (ready to wakeup)
0 1 b003d4c0 c async select (calling d.call_me):

async select (calling a.sync):
delay wakeup in 73.195082s

0 1 b0036e88 b entry call calling c.sync
0 2 b0030850 a entry call calling b.call_me

10 b002a218 signal_handler accept at entry: sigintr
8 b0022858 handle<intr_courier:1> executing
7 b001e768 handle<courier:1> executing
5 b001a1b8 <timer> timer set wakeup in 73.190512s
6 b0007b60 <admin> executing
1 b00014a8 <environment> executing

interrupt_id received delivered pending
------------ -------- --------- -------
rtc0c1 446 50 396
SIGINT 27 27 0

lwpid grp group_name server_status
----- --- --------------------------------------- ---------------------------------

4 1 my_group <idle>
* 3 1 my_group serving "e"

2 2 <predefined> <idle>
12-8

Real-Time Monitoring

ms

ch

ask

ler

n-
The TCB address is useful when debugging multi-tasking progra
with NightView. Certain forms of theselect-context com-
mand allow you to specify a TCB address; this allows you to swit
debugging context between tasks.

See the NightView User’s Guidefor more information about
select-context .

task_name Task name or a run-time-supplied name. The simple name of the t
is usually included in thetask_name. Tasks that are surrounded by
<>s are either implementation-defined tasks or the<environ-
ment> task, which executes the main subprogram.

task_status The Ada status of a task. For example,wait for interrupt ,
select_terminate , executing , select_delay , or in
rendezvous . Theverbose form of the task display also shows
open entries, rendezvous partners, and wake-up times.

The following columns appear in the interrupts display on the task screen.

received The number of interrupts received by the process on the whole.

delivered The number of interrupts which have been delivered to the hand
attached to that interrupt.

pending The number of interrupts which have yet to be delivered to the ha
dler attached to that interrupt.

NOTE

The above data cannot be calculated for fast interrupt tasks (tasks
which have pragmaFAST_INTERRUPT_TASKapplied to them).
Due to performance reasons, interrupts received, delivered and
pending cannot be tracked.

The following words will appear in the three colums to indicate it
is a fast interrupt task:

received Fast

delivered Interrupt

pending Task

In the example, the following are listed underinterrupt_id:

rtc0c1 The image associated with the interrupt ID listed in
ada.interrupts.names which refers to Real-Time Clock 1 on
board 0.
12-9

MAXAda Reference Manual

P
ug-

ask

For

the
SIGINT The image associated with the interrupt ID listed in
ada.interrupts.names which refers to theSIGINT signal.

The following columns appear in the group servers display on the task screen.

lwpid Lightweight process identifier of the server.

An asterisk (*) in this column indicates that the corresponding LW
is considered the representative LWP of the process. During deb
ging, it indicates that the debugger is stopped in this LWP.

grp The group number of the server (matches group number in the t
state display).

group_name The name of the server group corresponding to a group number.
most applications, there is a single group called<predefined> .
Otherwise, the group name corresponds to the name specified by
user in aTASK_WEIGHT, GROUP_CPU_BIAS, GROUP_PRIORITY,
or GROUP_SERVERSpragma.

server_status Status of the server. For example,idle (waiting to serve a task in
the group),serving "t" (wheret is a multiplexed task), etc.

System Display 12

Screen 12-5 shows ana.monitor system display.

Screen 12-5. a.monitor System Display (with Verbose and Ghosts)

The following columns appear in the task state display on the system screen.

<Task> <Sys> <Mem> <Lwp> <Refrsh> <Int> <Verbose> <Ghosts> <Addr> <+><-> <Quit>
--------------------------------- (pid 24802) ----------------------------------
Move via tab or backspace. Accelerator or ascii.cr selects choice.

lwpid grp task_name task task os pri cpu cpu cpu os
stack prio prio cls # bias time state

----- --- ------------------------------ ------ ---- ---- --- --- ---- ----- --------
11 DEFAULT<courier> 10K 159 159 AD 0 0x3 0:00 Sleeping (server_block)

0 signal_handler<shadow:sigintr> 0K 159
* 3 1 e 20K 29 29 AD 1 0x3 0:20 Running

9 d 20K 29 29 AD 1 0x3 0:00 Sleeping (server_block)
0 1 c 20K 29
0 1 b 20K 29
0 2 a 20K 29

10 signal_handler 20K 29 29 AD 0 0x3 0:00 Sleeping (server_block)
8 handle<intr_courier:1> 10K 60 159 AD 0 0x1 0:00 Sleeping (server_wake1)
7 handle<courier:1> 10K 159 159 AD 0 0x3 0:00 Sleeping (server_block)
5 <timer> 12K 159 159 AD 1 0x3 0:00 Sleeping (server_block)
6 <admin> 12K 29 159 AD 0 0x3 0:00 Sleeping (server_block)
1 <environment> 1024K 29 29 AD 0 0x3 0:00 Sleeping (read)

lwpid grp group_name os pri cpu cpu cpu os
prio cls # bias time state

----- --- ------------------------------ ---- --- --- ---- ----- --------------------
4 1 my_group 29 AD 0 0x3 0:00 Sleeping (server_block)

* 3 1 my_group 29 AD 1 0x3 0:20 Running
2 2 <predefined> 29 AD 0 0x3 0:00 Sleeping (server_block)
12-10

Real-Time Monitoring

P
ug-

bi-
ci-
en.

ask

a
on-
wn

e-

ly to

sk/
e

is

.

sk/

ou-

in a

ystem
lwpid Lightweight process identifier.

An asterisk (*) in this column indicates that the corresponding LW
is considered the representative LWP of the process. During deb
ging, it indicates that the debugger is stopped in this LWP.

grp Group number for multiplexed tasks. The group number is an ar
trary ordering of the list of server groups in the application. It asso
ates rows in the task portion and the server portion of the task scre

task_name Task name or a run-time-supplied name. The simple name of the t
is usually included in thetask_name. Tasks that are surrounded by
<>s are either implementation-defined tasks or the<environ-
ment> task, which executes the main subprogram.

task_stack Amount of data in kilobytes reserved for the task’s stack; this is
static value in all cases except for the environment task. The envir
ment task’s stack frame defaults to unlimited size, and the size sho
indicates a movable limit which has not yet been exceeded.

task_prio The current Ada task scheduling priority of the task. This corr
sponds to the priority associated with pragmaPRIORITY.

The following fields apply only to bound tasks (tasks being served by LWPs) and app
the single anonymous server (LWP) associated with it.

os prio The current global operating system scheduling priority of the ta
LWP. This priority corresponds to that associated with th
TASK_PRIORITY andGROUP_PRIORITYpragmas.

pri cls The operating system priority scheduling class of the task/LWP. It
automatically set based on the global priority of the task/LWP.

cpu # The logical CPU number (0..n) on which the task/LWP last executed

cpu bias The CPU bias (a mask of logical CPU numbers) on which the ta
LWP is allowed to run.

cpu time The amount of CPU time associated with the task/LWP.

os state Operating system state of the task/LWP. The name of the kernel r
tine is displayed when all of the following is true: theos state is
Sleeping, verbose mode is enabled, and the task/LWP is asleep
kernel routine.

Similarly, the group servers state display for the system screen provides the same s
status information for each group server.

Memory Display 12

Screen 12-6 shows ana.monitor memory display.
12-11

MAXAda Reference Manual

es

fol-
Screen 12-6. a.monitor Memory Display

The memory display includes the following information:

Heap State availThe number of bytes of free memory in the default collection.

totalThe total number of bytes in the default collection (indicat
allocated and freed bytes).

Total Memory Usage

The number of kilobytes of memory
1) that are physically resident and
2) that are virtually associated with the program.

Additionally, each virtual memory segment is described by a row in a table with the
lowing columns.

virtual address range

<Task> <Sys> <Mem> <Lwp> <Refrsh> <Int> <Verbose> <Ghosts> <Addr> <+><-> <Quit>
--------------------------------- (pid 24802) ----------------------------------

Heap State (avail/total) = 512/16384 K
Total Memory Usage (resident/virtual) = 908/35060 K

virtual address range prm size file mapping / symbolic pool
----------------------- --- ---------- --------------------------------------
0x10001000 - 0x10001fff r-x 0x1000 ufs.101.771.6433 offset=4096
0x10002000 - 0x10053fff r-x 0x52000 ufs.101.771.6433 offset=8192
0x10054000 - 0x10054fff r-x 0x1000 ufs.101.771.6433 offset=344064
0x10055000 - 0x10059fff r-x 0x5000 ufs.101.771.6433 offset=348160
0x1005a000 - 0x1005afff r-x 0x1000 ufs.101.771.6433 offset=368640
0x1005b000 - 0x1005cfff r-x 0x2000 ufs.101.771.6433 offset=372736
0x1005d000 - 0x1005dfff r-x 0x1000 ufs.101.771.6433 offset=380928
0x1005e000 - 0x1005ffff r-x 0x2000 ufs.101.771.6433 offset=385024
0x10060000 - 0x10060fff r-x 0x1000 ufs.101.771.6433 offset=393216
0x10061000 - 0x1006efff r-x 0xe000 ufs.101.771.6433 offset=397312
0x1006f000 - 0x1006ffff r-x 0x1000 ufs.101.771.6433 offset=454656
0x10070000 - 0x10090fff r-x 0x21000 ufs.101.771.6433 offset=458752
0x10596000 - 0x1059bfff r-- 0x6000 ufs.101.771.6433 offset=593920
0x11f80000 - 0x11ffffff rw- 0x80000
0x2df7f000 - 0x2ff7efff rw- 0x2000000
0x30097000 - 0x300adfff rw- 0x17000 ufs.101.771.6433 offset=618496
0x300ae000 - 0x300aefff rw- 0x1000 ufs.101.771.6433 offset=712704
0x300af000 - 0x300affff rw- 0x1000 ufs.101.771.6433 offset=716800
0x300b0000 - 0x300b0fff rw- 0x1000 ufs.101.771.6433 offset=720896
0x300b1000 - 0x300b3fff rw- 0x3000 ufs.101.771.6433 offset=724992
0x300b4000 - 0x300bcfff rw- 0x9000
0xaff80000 - 0xafffffff rw- 0x80000
0xb0001000 - 0xb0001fff rw- 0x1000
0xb0002000 - 0xb000bfff rw- 0xa000
0xb000c000 - 0xb000cfff rw- 0x1000
0xb000d000 - 0xb0010fff rw- 0x4000
0xb0011000 - 0xb0011fff rw- 0x1000
0xb0012000 - 0xb0014fff rw- 0x3000
0xb0015000 - 0xb0015fff rw- 0x1000
0xb0016000 - 0xb0019fff rw- 0x4000
0xb001a000 - 0xb001afff rw- 0x1000
0xb001b000 - 0xb001dfff rw- 0x3000
0xb001e000 - 0xb0023fff rw- 0x6000
0xb0024000 - 0xb0049fff rw- 0x26000
0xb004a000 - 0xb004afff rw- 0x1000
0xb004b000 - 0xb004efff rw- 0x4000
0xb004f000 - 0xb004ffff rw- 0x1000
0xb0050000 - 0xb0080fff rw- 0x31000
0xb0082000 - 0xb0082fff r-- 0x1000
12-12

Real-Time Monitoring

tion

n
pace
d

or-
of
in

ared
the
the

n,
The inclusive address range of a section of virtual memory.

prm The (r)ead/(w)rite/e(x)ecute permissions associated with the sec
of memory.

size The size in bytes of the section of memory.

fi le mapping/symbolic pool

If non-blank, this field provides a low-level description of a file o
the system with pages that have been mapped into the address s
of the process ora symbolic description of the memory associate
with the relevant virtual address range.

The low-level descriptions typically represent the .text and .data p
tions of the executing program; as such, the file system identifier
the executable image itself is present for at least one or two rows
the screen. For programs that use shared object (or system sh
libraries), additional file descriptions are shown that represent
shared object files. These descriptions include a byte offset from
beginning of the file where the mapping occurs (seemmap(2)).

The symbolic descriptions typically include the default collectio
shared packages (those marked with pragmaSHARED_PACKAGE),
and package and collections for which pragmaMEMORY_POOLwas
applied.

The symbolic descriptions are shown only in Verbose mode.

LWP Display 12

Screen 12-7 shows thea.monitor LWP display.
12-13

MAXAda Reference Manual

P.

ing
el.

is
Screen 12-7. a.monitor LWP Display

The LWP display includes the following information:

pr_flags The process flags.

pr_why The reason for the stop, if stopped.

pr_cursig The current signal, that is, the next signal to be delivered to the LW

pr_lwppend The set of synchronously generated or LWP-directed signals pend
for the LWP. It does not include signals pending at the process lev

pr_action The signal action information pertaining to the current signal. It
undefined ifpr_cursig is zero. Seesigaction(2) .

pr_info Additional information about thepr_cursig signal or fault. See
<sys/siginfo.h> .

pr_syscall The name of the system call, if any, being executed by the LWP.

pr_sysarg The arguments to thepr_syscall system call.

<Task> <Sys> <Mem> <Lwp> <Refrsh> <Int> <Next> <Previous> <# lwp> <+><-> <Quit>
--------------------------------- (pid 24802) ---------------------------------

lwpid = 1 is executing as task "<environment>"
pr_flags PR_ASLEEP PR_PCINVAL
pr_why
pr_cursig 0x0
pr_lwppend 0x00000000 0x00000000 0x00000000 0x00000000
pr_action 0x00000000 0x00000000 0x00000000
pr_info 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000
pr_syscall read
pr_sysarg 0x00000000 0xb0023479 0x00000400
pr_clname AD
pr_instr 0x00000000
pr_context R0 = 0x00000003 R14 = 0xb0023464 R28 = 0x00000000

R1 = 0x2ff7dd60 R15 = 0x1000ce48 R29 = 0x2fe7df4c
R2 = 0x2ff7df20 R16 = 0x00000000 R30 = 0x00000000
R3 = 0x00000000 R17 = 0xb0023478 R31 = 0xb0001210
R4 = 0xb0023479 R18 = 0xb0023479 PC = 0x1006bde8
R5 = 0x00000400 R19 = 0x00000400 SRR1= 0x0000f130
R6 = 0xb0023468 R20 = 0x00000000 LR = 0x1002b438
R7 = 0x00000014 R21 = 0xb0023879 CTR = 0x10039358
R8 = 0xb0023460 R22 = 0xdeadbeef CR = 0x28842444
R9 = 0xb0023878 R23 = 0xdeadbeef MQ = 0x00000000
R10 = 0xb0023478 R24 = 0xdeadbeef XER = 0x00000004
R11 = 0xb0023464 R25 = 0xdeadbeef DABR= 0xdeadbeef
R12 = 0xb0023478 R26 = 0xdeadbeef SWSR= 0x00000001
R13 = 0x10006440 R27 = 0xdeadbeef

pr_addr 0x011cee00
pr_wchan 58600992
pr_stype 1
pr_state 2
pr_sname S
pr_nice 0
pr_pri 29
pr_time.tv_sec 0
pr_clname AD
pr_onpro 0
pr_bias 0x00000003
12-14

Real-Time Monitoring
pr_clname The scheduling class name of the LWP.

pr_instr The instruction at the current program counter.

pr_context The user context of the LWP as if it had calledgetcontext(2) .

pr_addr The internal address of the LWP.

pr_wchan The wait address for a sleeping LWP.

pr_stype The synchronization event type.

pr_state The numeric scheduling state.

pr_sname The printable character representingpr_state.

pr_nice Thenice value for CPU usage.

pr_pri The priority. A high value is an urgent priority.

pr_time.tv_sec The system and user CPU time in seconds.

pr_clname The scheduling class name.

pr_onpro The processor on which the LWP is running.

pr_bias The processor bias mask.

The LWP screen represents a query on the specified task/LWP from the/proc file sys-
tem. Seeproc(4) for details about the data displayed.
12-15

MAXAda Reference Manual
12-16

5
Part 5Appendixes and Index

Replace with Part 5 tab

MAXAda Reference Manual

Part 5 - Appendixes, Glossary, and Index
Part 5 - Appendixes, Glossary, and Index

Part 5 Appendixes and Index

Appendix A Troubleshooting .. A-1

Appendix B MAXAda Configuration ... B-1

Appendix C Ada NightView.. C-1

Appendix M Implementation-Defined Characteristics...................................M-1

MAXAda Reference Manual

-1
-1
2
2
-2
-2
-3

-3
-3

-8
A
Troubleshooting

Configuration Errors . A
System Configuration. A
Application Configuration . A-

Using Tasks to Multithread Algorithms . A-
User Errors. A

Concurrent Access . A
Hung Processes. A
Referencing errno . A
Client/Server Services . A

Run-Time Diagnostics. A-5
Run-Time Diagnostic Messages.. A-5

Compiler Errors . A

MAXAda Reference Manual

n the
pplica-

xe-
n-

fol-
A
Appendix ATroubleshooting

1
1
1

Typically, problems can be categorized into configuration errors and user errors.

Configuration Errors A

Configuration issues may involve many areas of the computer system depending o
features that are used. These areas include: kernel, administrative, hardware, and a
tion software.

System Configuration A

As described in Appendix B, Ada applications require special privileges in order to e
cute. See “MAXAda Configuration” on page B-1 for details on kernel and privilege co
figuration.

If an invalid system configuration exists or sufficient privileges cannot be granted, the
lowing scenarios are possible:

• Program fails to initialize

- Due to system constraints on number of processes or lightweight pro-
cesses system-wide or per user (NPROC, MAXUP, or MAXULWP). See
System Administration Volume 2.

- Due to system constraints on the amount of real memory or swap
space (see the system administrator).

- Due to insufficient privileges (all tasking programs require the
P_RTIME privilege). Seeintro(2) andSystem Administration
Volume 1.

• Task activation raisesTASKING_ERROR

- Due to system constraints on total number of processes system-wide
(NPROC). SeeSystem Administration Volume 2.

- Due to system constraints on total number of processes or light-
weight processes per-user (MAXUP or MAXULWP). SeeSystem
Administration Volume 2.

- Due to invalid hardware interrupt requests (bad device, device busy,
bad vector number, etc.)

• Task elaboration diagnostics issued
A-1

MAXAda Reference Manual

nvi-
imit
lim-

ated
l-time

page

eter-

han-
it

can
, one
sing
lgo-

fined
r

asso-

bles
hen
- Due to insufficient privilege (e.g., pragmaTASK_PRIORITY
requi resP _TSH AR; p ragmaTASK_C PU_BI AS req uires
P_CPUBIAS)

- Due to invalid hardware configuration (e.g., pragmas
MEMORY_POOLor TASK_CPU_BIASspecifying CPUs which do
not exist)

Application Configuration A

Typical application configuration problems are those associated with the size of the e
ronment task stack and default collection. By default there is no run-time-enforced l
on the size of the environment task stack or the default collection; however, absolute
its may be specified. When absolute limits are specified, allocation of the associ
memory pages occurs at program start-up time. This is often advantageous for rea
applications as all pages can be faulted in and locked in memory, if needed.

For information on how to change these two values, see “Pragma POOL_SIZE” on
6-30 and theRUNTIME_CONFIGURATIONspecification invendorlib .

Another typical problem: a user-defined task may attempt to exceed its statically d
mined maximum stack size, resulting inSTORAGE_ERRORbeing raised within the task.
This often results in the task simply completing (assuming the user does not supply a
dler for theSTORAGE_ERRORexception). The application may then appear to hang if
is expecting activity from the task.

Using Tasks to Multithread Algorithms A

With bound tasks (or tasks within a group which contains multiple servers), Ada tasks
be used as an easy and effective method to multithread parallel algorithms. (E.g.
might use multiple tasks to implement a quick sort on large amounts of data.) When u
this method, applications should take into account the stack requirements of their a
rithms. The maximum size of a task stack frame may be set using the language-de
method of applying a’STORAGE_SIZE length clause to the task type specification, o
via pragmaPOOL_SIZE(See “Pragma POOL_SIZE” on page 6-30).

User Errors A

Other than normal application errors, this chapter attempts to describe typical errors
ciated with utilizing parallel programming language techniques.

Concurrent Access A

In a multi-programmed model, (e.g., multiple non-tasking programs), access to varia
that are shared between multiple processes is usually explicitly defined by the user. W
A-2

Troubleshooting

tween
ier to

an be

ified
da

, the
ime.
m for

ns are
ma

ions,

ro-

ation
task

ive if
ay not

not

ple-
programming with tasks, the user does not need to take extra steps to share data be
them. Because the user does not need to explicitly mark items to be shared, it is eas
overlook concurrency problems.

Users should take steps to define critical sections where necessary. Critical sections c
defined with task rendezvous and/or protected types.

Additionally, there may be occasions where tasks poll variables which are being mod
by other tasks. By default, if these variables are in library-level packages, the MAXA
compiler ensures that all modifications are eventually stored to memory. However
compiler is free to keep local copies of the variables in registers for short periods of t
When dealing with local (stack-based) variables, the compiler has even more freedo
register allocation.

In cases where the application needs to ensure that all references and modificatio
applied immediatelyto memory, the user should apply implementation-defined prag
VOLATILE. (See “Pragma VOLATILE” on page M-134.)

Concurrency issues are not isolated to variables, but also apply to Ada I/O operat
interface routines, and programming on the whole.

Hung Processes A

In addition to tasking deadlock conditions, applications may hang. All lightweight p
cesses sleep due to the abnormal termination of an Ada task. (This does notinclude Ada
abort statements.)

For example, if an Ada task is aborted due to some non-Ada event (e.g., segment
fault, abort external from Ada, etc.) then the run-time executive may still consider the
to be in a runnable state when the actual task is no longer executing.

This situation may be accompanied with an error message from the run-time execut
tasking operations are requested by some other task. However, an error message m
occur if tasking operations are quiescent.

Referencing errno A

If a program contains tasking or is linked with the threads library, the program must
statically referenceerrno , or unexpected behavior may occur.

Client/Server Services A

The run-time executive utilizes the client/server services of the operating system to im
ment task activation, rendezvous, and completion.

The services it uses are:

• server_block(2)
A-3

MAXAda Reference Manual

not to

no
rvice
• server_wake1(2)

• server_wakevec(2)

• client_block(2)

• client_wake1(2)

• client_wakechan(2)

Users may use these operating services directly; however, care must be taken so as
interfere with the run-time executive.

A simple rule should be followed:

Only issue aserver_wake1(2) , server_wakevec(2) , client_wake1(2) , or
client_wakechan(2) call if the process(es) that are to wake up contain absolutely
tasking or are indeed already blocked by a user’s call to the respective blocking se
(server_block(2) or client_block(2)).

If the user were to issue aserver_wake1(2) call on a process that was currently
blocked in the run-time executive on aserver_block(2) call, it would wake up pre-
maturely and would probably execute erroneously (or abort).
A-4

Troubleshooting

valid
ternal

scrip-

y pre-
ed in
ternal

sing

a
r
r

lers
Run-Time Diagnostics A

Run-time diagnostic messages may be issued due to invalid system configuration, in
user requests (pragmas, hardware interrupts, etc.), abnormal task termination, and in
executive failures.

All diagnostics are accompanied by a severity level, a message type, and a text de
tion. The diagnostic severity level is either: information, warning, fatal, or panic.

Panic and fatal diagnostics occur when at least one task has terminated abnormall
venting the entire application from normal termination. Panic diagnostics are also us
cases where the integrity of the run-time system has been violated. (These are in
errors.)

Warning diagnostics may or may not prevent the completion of the operation cau
them. If associated with task activation,TASKING_ERRORis raised when appropriate in
the activator.

Run-time diagnostic messages are written tostderr and may be suppressed via pragm
RUNTIME_DIAGNOSTICS(See “Pragma RUNTIME_DIAGNOSTICS” on page 6-1) o
via calls available in theRUNTIME_CONFIGURATIONpackage (See the specification fo
RUNTIME_CONFIGURATION).

If internal errors occur, contact Concurrent Customer Support.

Run-Time Diagnostic Messages A

Message:

Priorities in excess of interrupt_priority’first are not
supported on this system (cannot modify IPL)

Cause/Correction:

Under certain conditions, MAXAda needs to have read/write access to/dev/
spl* . Such conditions include protected operations which are acting as hand
for interrupts whose priority are greater thanInterrupt_Priority’First .

This message may occur if MAXAda does not have the required permissions.

Usechmod(1) to change the permissions of/dev/spl for read/write access.

Seespl_request(1) for more information.

Message:

Priorities in excess of interrupt_priority’first require SPL
access:spl_map() fails

Cause/Correction:
A-5

MAXAda Reference Manual

lers

k II
tem
ore
Under certain conditions, MAXAda needs to have read/write access to/dev/
spl* . Such conditions include protected operations which are acting as hand
for interrupts whose priority are greater thanInterrupt_Priority’First .

This message may occur if MAXAda does not have the required permissions.

Usechmod(1) to change the permissions of/dev/spl* for read/write access.

Seespl_request(1) for more information.

This message may also occur if you have linked your program on a

- Night Hawk

- TurboHawk

- PowerMAXION

and then transported it to a

- Power Hawk

- PowerStack

- PowerStack II

If you wish to run such a program on a PowerHawk, PowerStack, or PowerStac
system, it must be linked natively on one of those systems or the libud.a sys
library must be linked in as a shared library. See “a.partition” on page 4-68 for m
information.

Message:

configuration: unable to lock pages in memory, memcntl(2)
failed.

Cause/Correction:

Insufficient physical memory. Adjust local/global bindings. Add memory.

Message:

configuration: bind of package to memory pool failed, mmap(2).

Cause/Correction:

Invalid CPU bias for configuration. Insufficient local memory. Change pragma.
A-6

Troubleshooting
Message:

configuration: specified bias applies to multiple local memory
pools.

Cause/Correction:

CPU bias does not identify a single CPU board. Change pragma.

Message:

configuration: unable to connect task to interrupt
(iconnect(3C));

configuration: unable to enable task interrupts (ienable(3C));

configuration: unable to set task cpu bias (mpadvise(3C));

configuration: unable to set task priority (priocntl(2));

configuration: unable to set task quantum (priocntl(2));

Cause/Correction:

Invalid configuration. Invalid access.errno supplied with message.

Message:

configuration: unable to set cpu_bias = 128, mpadvise: errno =
21

Cause/Correction:

Specification of inactive CPUs. Insufficient privilege.errno supplied.
Change pragma.

Message:

panic: ...

Cause/Correction:

Abnormal termination of task. Internal errors.
A-7

MAXAda Reference Manual

hat
one

ile

axi-
Compiler Errors A

Message(s):

fatal: unable to open ...; errno = 24 (Too many open files)

fatal: unable to create ...; errno = 24 (Too many open files)

fatal: unable to determine current directory; errno = 24 (Too
many open files)

fatal: cannot allocate DWARF memory: open() failure; errno = 24
(Too many open files)

fatal: ...; errno = 24 (Too many open files)

Cause/Correction:

The tool has exceeeded the maximum allowable number of file descriptors. T
maximum must be increased. If the user has sufficient privileges, this can be d
with theulimit -n command. To determine the current maximum number of f
descriptors:

ulimit -n
64

To increase the number to 256 file descriptors:

ulimit -n 256

If the user does not have sufficient privileges, or it is desirable to change the m
mum for all users of a system, the kernel tunableSFNOLIMshould be changed.
This is done most conveniently with theconfig(1M) tool.
A-8

Troubleshooting

ect

vi-

.

nted
S cli-

may
Message(s):

unit_name is damaged: net (net_name) is older than expected
(unit_time)

unit_name is damaged: net (net_name) is missing

unit_name is damaged: backup (backup_name) is older than
expected (unit_time)

unit_name is damaged: backup (backup_name) is missing

unit_name is damaged: nonshared object (object) is older than
expected (unit_time)

unit_name is damaged: nonshared object (object) is missing

unit_name is damaged: shared object (object) is older than
expected (unit_time)

unit_name is damaged: shared object (object) is missing

Cause/Correction:

Something has happened to the internal representation of the unit.

Runa.build in the home environment for the damaged units, so that it can corr
any such problems.

Message(s):

TEXT_IO not defined

Cause/Correction:

This package is now a child of the packageAda and resides in thepredefined
environment. See “predefined” on page 9-6 for more information about this en
ronment. However, MAXAda allows you to continue using the packageText_IO .
You may do so by adding theobsolescent environment to your path. See
“a.path” on page 4-79 and also “obsolescent” on page 9-14 for more information

Message(s):

ld: ...: libelf error: I/O error: output msync elf_update:
ld: ...: libelf error: I/O error: output write elf_update:
fatal: unable to determine current directory
fatal: unable to open ...; errno = 59 (Message too long)
fatal: unable to fstat ...; errno = 59 (Message too long)
fatal: terminated with signal 10; si_code = 3; errno = 59
(Message too long)

Cause/Correction:

If these errors happen intermittently and the environment is on an NFS-mou
filesystem, then a possible cause is that the speeds of the NFS server's and NF
ent's network interfaces are radically different. For instance, the NFS server
A-9

MAXAda Reference Manual

ce, or
ether-

to be
e

ms"
have a 10baseT interface whereas the NFS client may have a 100baseT interfa
vice versa. If this is the case, the faster system may cause data overruns in the
net driver of the slower system.

To solve this problem, the NFS-specificmount(1) optionsrsize andwsize
should be used, and should be set to the value 1024. Usually, the filesystems
mounted are specified in the/etc/vfstab file, and the changes should be mad
there. For instance, an entry like:

nfs-server:/ fs - / fs nfs - yes rw,bg,soft

would need to be changed to something like:

nfs-server:/ fs - / fs nfs - yes rw,bg,soft,rsize=1024,wsize=1024

See the manual titledNetwork Administration(0890432), in the "Troubleshooting
and Tuning NFS" chapter under the section "Clearing Remote Mounting Proble
for more information.
A-10

-1
-3

-4
B
MAXAda Configuration

Privileges . B
Basic System Configurations . B

Kernel Configuration . B

MAXAda Reference Manual

uire
anner
curity

tures
B
Appendix BMAXAda Configuration

2
2
2

The MAXAda tools and run-time utilize sensitive real-time system services that req
special privileges that are not generally available to all users and processes. The m
in which privileges are granted to users and processes depends on the specific se
configuration of the system.

Additionally, the operating system kernel may need to be reconfigured to activate fea
utilized by the run-time.

Privileges B

Table B-1 shows the features, pragmas, and tools that require privileges.
B-1

MAXAda Reference Manual
NOTE

TheP_SYSOPSprivilege is recommended but not required. If the
user has the privilege, then tasks with hardware interrupts are not
allowed to complete their activation until their INTR_COURIER
companion ghost task has completed its activation, thus allowing
the task to accept hardware interrupts. Otherwise, the elaboration
of the INTR_COURIER task proceeds in parallel with the rest of
the activation of the task owning the interrupt entry. In the latter
case, it is possible that the task owning the interrupt entry could
begin execution before an interrupt could actually be delivered to
i t . I f so, the dispos i t ion of in ter rupts sent b efo re the
INTR_COURIER has completed its activation is undefined. See
“Required Privileges for Unrestricted Hardware Interrupts” on
page 7-6 for more information.

Table B-1. Required Privileges

Privilege Feature(s) Requiring Privilege

P_CPUBIAS PragmasTASK_CPU_BIAS, GROUP_CPU_BIAS,
MEMORY_POOL, packagescyclic_scheduler ,
runtime_configuration , hardware interrupts

P_OWNER Packagereal_time_data_monitoring , a.rtm ,
a.monitor

P_PLOCK PragmasPOOL_LOCK_STATE,
FAST_INTERRUPT_TASK, packages
cyclic_scheduler , user_level_interrupts ,
userdma_support , virtual_to_physical , hard-
ware interrupts

P_RTIME a.rtm , a.monitor , tasking, software signal handling,
packagesrescheduling_control ,
binary_semaphores , spin_locks ,
task_synchronization

P_SHMBIND Physical memory address clauses, pragma
SHARED_PACKAGE

P_SYSOPS Hardware interrupts (recommended), package
cyclic_scheduler (recommended)

P_TSHAR PragmasPRIORITY, TASK_PRIORITY,
GROUP_PRIORITY, TASK_QUANTUM, packages
runtime_configuration , cyclic_scheduler ,
hardware interrupts

P_USERINT Hardware interrupts, packagecyclic_scheduler
B-2

MAXAda Configuration

sses.
most
tem

e and
iption

ns on

exe-
ates

ir shell
of an
he

pro-
NOTE

In the current version of PowerMAX OS, theP_RTIME and
P_FPRI privileges are two different names for the same privi-
lege. As such, only one of the two should be specified when
assigning privileges. Likewise, when displaying privileges with
the priv built-in command orfilepriv(1M) , only the
P_FPRI privilege is displayed.

Privileges are associated with users, executable files on disk, and executing proce
However, ultimately, the set of privileges associated with an executing process is
important. If a system call requires a specific privilege, any process making that sys
call must also have that privilege.

The granting of privileges to users, executable files and processes is a complex issu
depends on the specific security configuration of each system. For a complete descr
of privileges and security refer to the “Trusted Facility Management” Chapter inSystem
Administration Volume 1andintro(2) .

Basic System Configurations B

This section discusses configuration actions to allow users to execute Ada applicatio
their systems.

A convenient way to associate privileges with users is through the use ofroles. A role is
simply a named description of a set of privileges that have been registered for certain
cutable files, such as the shell (job control interface). The system administrator cre
roles and assigns users to them. During the login process, users can request that the
be granted the privileges associated with their role. Such a request takes the form
invocation of thetfadmin(1M) command. Once privileges have been granted to t
user’s shell, subsequently spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by Ada
grams to three commonly used shells (sh , ksh , andcsh). The system administrator
should issue the following commands once. (The# is the shell prompt.)

/usr/bin/adminrole -n ADA_USERS

/usr/bin/adminrole -a sh:/usr/bin/sh:cpubias:fpri:\
owner:plock:setspriv:setupriv:shmbind:tshar:userint\
ADA_USERS

/usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:fpri:\
owner:plock:setspriv:setupriv:shmbind:tshar:userint\
ADA_USERS

/usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:fpri:\
owner:plock:setspriv:setupriv:shmbind:tshar:userint\
ADA_USERS
B-3

MAXAda Reference Manual

hell

w
ol-

ally
y

asic
nel
ernel
NOTE

In the preceding commands, theP_SYSOPSprivilege was not
included. If it is desired, it should be included assysops in the
colon-delimited list of privileges.

The following command assigns an example user (Ada_Lovelace) to the ADA_USERS
role. The system administrator should issue the following command once.

/usr/bin/adminuser -n -o ADA_USERS Ada_Lovelace

Ada_Lovelaceis now allowed to request that the above privileges be granted to her s
(assuming Ada_Lovelace utilizes either thesh , ksh , or csh shell, as these are the only
shell commands registered in the ADA_USERS role (see above)). However,by default,
these privileges are not granted. She must explicitly make the request by initiating a ne
shell with thetfadmin(1) command. For convenience, it is recommended that the f
lowing command be added to the end of her.profile (or .login for csh users) file.
(This file is executed during initialization of the login shell.)

exec /sbin/tfadmin ADA_USERS: $SHELL

This causes the privileges associated with the ADA_USERS role to be automatic
granted to a newly spawned shell (SHELLis an environment variable that is automaticall
set by the shell; it represents the user’s actual default shell path name; e.g.,/usr/bin/
ksh). The original shell that executed the.profile (or .login) file is replaced by the
new shell spawned by thetfadmin command.

TheAda_Lovelaceuser can now execute Ada applications.

Kernel Configuration B

The default kernel configuration shipped with the system should be sufficient for b
Ada applications. However, some optional MAXAda features require additional ker
configuration options to be enabled and may require increases in the values of some k
tunable parameters.
B-4

MAXAda Configuration

k-

k-
Table B-2 describes the kernel options that specific MAXAda features require.

Table B-3 describes kernel tunable parameters that influence MAXAda features.

Refer to “Booting and System States” inSystem Administration Volume 1, “Configuring
and Building the Kernel” and “Tunable Parameters” inSystem Administration Volume 2
for instructions on modifying kernel configurations.

Table B-2. Required Kernel Options

Kernel Option Feature(s) Requiring Option

fc (fixed class scheduler) PragmasPRIORITY, TASK_PRIORITY, and
GROUP_PRIORITY; package
runtime_configuration

fp (fixed-priority class scheduler) PragmasPRIORITY, TASK_PRIORITY, and
GROUP_PRIORITY; package
runtime_configuration

ipc (inter-process
communications)

PragmaSHARED_PACKAGE; machine address
clauses, packageSHARED_MEMORY_SUPPORT

ui (user-level interrupts) Hardware interrupt task entries; package
user_level_interrupts

procfs (processor file system) a.monitor , a.rtm , package
real_time_data_monitoring

Table B-3. Significant Kernel Tunable Parameters

Kernel Tunable Parameter Feature(s) Affected by Parameter

MAXULWP(maximum number of
concurrent LWPs per user)

Number of bound tasks or task servers in all appli-
cations concurrently executing for a single user.

SHMMAX(maximum shared
memory size)

Maximum size of objects with machine address
clauses; maximum size of package marked with
pragmaSHARED_PACKAGE.

SHMMNI(maximum number of
shared memory identifiers sys-
tem-wide)

Total number of machine address clauses and pac
ages marked with pragmaSHARED_PACKAGE.

SHMSEG(maximum number of
shared memory identifiers per
process)

Total number of machine address clauses and pac
ages marked with pragmaSHARED_PACKAGEper
application.
B-5

MAXAda Reference Manual
B-6

-3
-3

-6
-6
-7

-7
C-7
-8
-8
C
Ada NightView

Debugger Command Comparison C-1
Hints for Debugging Ada Programs with NightView . C

Tasking Programs . C
Debugging Context .. C-4

Exception Handling and Interception. C
Generics . C
Overloaded Subprograms . C
General NightView Operational Hints . C

Listing Source, Packages, and Subprograms .
Disassembly . C
Expression Evaluation Syntax. C

MAXAda Reference Manual

bug-

in
m-
C
Appendix CAda NightView

This appendix discusses debugging Ada programs with the NightView symbolic de
ger. Specific topics include:

• Mappinga.db commands to NightView commands

• Debugging tasking programs

• Understanding the debugging context, NightView’sselect-context
command, and MAXAda-supplied macros

• Debugging with exception handling and interception using NightView’s
handle/exception andx commands

• Debugging generics

• Debugging overloaded subprograms

• Listing source, packages, and subprograms

• Disassembling

• Evaluating expressions

For more information about NightView, see theNightView User’s Guideand NightView’s
on-line help.

NightView is provided as a replacement fora.db . a.db is no longer available.

Debugger Command Comparison C

Table C-1 shows users of thea.db symbolic debugger corresponding commands
NightView. Note that allNightView commands may be abbreviated to the shortest una
biguous prefix, and many more NightView commands exist.

Table C-1. Mappings of a.db and NightView Commands

a.db Command NightView Command(s)
NightView
Command
Abbreviation

! shell

. <RETURN>

<RETURN> <RETURN>
C-1

MAXAda Reference Manual
/ forward-search fo

:= set, print p

? reverse-search

H help

R info registers

a next n

ai nexti ni

attach attach

b breakpoint b

bd finish

bi breakpoint b

bx handle/exception

cb frame 99999 f 99999

cd up

cs backtrace bt

ct frame 0 f 0

cu down

d delete d

define define

detach detach

dis disable

e list l

ena enable

g continue, resume c

halt stop

handle handle

l list l

lb info breakpoint i b

li x/i, display/i

lt See “Debugging Context” on page C-4

macro info macros

n <RETURN>

Table C-1. Mappings of a.db and NightView Commands (Cont.)

a.db Command NightView Command(s)
NightView
Command
Abbreviation
C-2

Ada NightView

hey

a
ort

ndent
Hints for Debugging Ada Programs with NightView C

The “Debugging Ada Programs” section of theNightView User’s Guideprovides an over-
view of this topic. The following section contains hints that may also be useful, but t
should not be considered a substitute for theNightView User’s Guide.

Tasking Programs C

Support for Ada tasking is currently incomplete in NightView. However, the MAXAd
a.monitor tool, NightView commands, and some MAXAda-supplied run-time supp
routines provide basic mechanisms for debugging tasking programs.

First, some review on the implementation of Ada tasks.

Ada tasks are implemented by the run-time system in various manners that are depe
on pragmas and linker options you specify.

A task has a weight which is one of:

p print, x, output, display p

quit quit q

r run, !

read source

reg info registers

s step s

select See “Debugging Context” on page C-4

set log set-log

set output print/{d | o | u | x}, output/{d | o | u | x},
display/{d | o | u | x}, x/{d | o | u | x}

p

set prompt set-prompt

set safe set-safety

set source directory

sh shell

si stepi si

w list from,to l

Table C-1. Mappings of a.db and NightView Commands (Cont.)

a.db Command NightView Command(s)
NightView
Command
Abbreviation
C-3

MAXAda Reference Manual

h, a
LWP.

ext

t is

gging
.

default
ies a

the

ciated

sk as
ated
o

rm,
ody

ter-
• Bound

• Multiplexed

• Passive

A bound taskalways has a single lightweight process (LWP) associated with it. As suc
task's context (register set) is always represented by the registers associated with its

A multiplexed taskis served by one or more LWPs. At any point in time, the task's cont
may be represented by either:

• A server LWP which is actively serving the task

• Its task control block (TCB), if no LWP is actively serving the task
(Note that the termactivelymeans that the LWP is currently acting on
behalf of the assigned task; it does not necessarily mean that the LWP is
actually executing on a CPU.)

A passive taskis served by the task it is in rendezvous with. A passive task's contex
represented either by its TCB or by the LWP that is currently serving it.

Consult Chapter 5 for more information on the run-time tasking implementation.

Debugging Context C

When the operating system gives the debugger control of a process due to a debu
event (e.g., hitting a breakpoint, receiving a signal, etc.), all LWPs in the process stop

The operating system chooses a representative LWP, and the debugger defines the
context via the register set associated with that LWP. The representative LWP impl
current context which in turn implies a current task (the task currently being served by
representative LWP).

You can change the current context to an alternative task (other than the one asso
with the default context) via theselect-context command. (Theselect-context
command may be abbreviated assel .)

The formats of the command include:

select-context task= expr
select-context lwp= lwpid
select-context default

The first form of the command sets the current context to that associated with the ta
specified byexpr. The second form of the command sets the context to that associ
with the LWP as specified bylwpid. The third form of the command sets the context t
that which was presented when the debugger was last given control of the process.

The first form of the command is usually appropriate for tasking programs. In this fo
expr should be an Ada expression that identifies a task object (task variable, task b
proper, or an expression which evaluates to a task type). Alternatively,exprcan be an inte-
ger literal that identifies the address of the Task Control Block (TCB) for the task of in
est. The TCB address of a task is available through:
C-4

Ada NightView

f the
f the
fying
is

s
ID of

on

le
is

e
nt

e

r

• MAXAda runtime_configuration.current_task subprogram
call

• MAXAda tool a.monitor

• MAXAda temporary NightView tasking macros (see below)

When using the first form of the command, the debugger automatically determines i
specified task is currently being served by an LWP. If so, the context is set to that o
LWP serving the task (equivalent to using the second form of the command and speci
the appropriatelwpid). If the task is not currently being served by an LWP, the context
taken from the TCB.

The MAXAda-supplied tool,a.monitor , provides dynamic snapshots of all the task
associated within a single process. Such snapshots include the LWP ID and task
each active task. By runninga.monitor in parallel with NightView, you can always
determine the ${lwpid} and ${taskid} of any active task in the process.

Alternatively, MAXAda provides some simple NightView tasking macros that report
the status, weight, LWP ID, and task ID of tasks within the process under debug.

NOTE

The following tasking macros are recommended for use until
NightView support for tasking is completed. These macros are
subject to change or deletion between major releases of MAXAda
or NightView. They should be used only when the process is
stopped.

task_list Lists all active tasks in the process. It includes the simp
name of the task, the task status, the LWP ID (if an LWP
serving the task), and the task ID (TCB address).

task_whoami Displays a one-line description, as defined in th
task_list macro, of the task associated with the curre
debugging context.

task_whois(task_id) Displays a one-line description (as defined in th
task_list macro) of the task associated with thetask_id
you supply.

These macros can be found insup/nviewinit and can be defined or activated in you
current debug session via the following NightView command:

source sup/nviewinit

For systems with a single MAXAda installation, this is equivalent to

source /usr/ada/default/sup/nviewinit
C-5

MAXAda Reference Manual

vari-
ion-
pped

deliv-

ter-
med

n
being
edi-
ugger

ic

m-
bpro-
not
WARNING

These macros all invoke subprograms in the run-time system.
They are implemented by the debugger as actual subprograms
calls made by the process under debug. It is possible that before
the subprogram call can complete, another LWP may stop in the
debugger. In this case, the debugger: 1) informs you that the sub-
program call could not be completed; 2) aborts the macro invoca-
tion; and 3) presents the new context.

For this reason, it may be useful to runa.monitor in conjunc-
tion to NightView; a.monitor provides the required informa-
tion without changing the state of the process under debug.

Once the debugging context has been changed, you can peruse stack frames, view
ables, set breakpoints, etc. However, modification of registers is not permitted. Addit
ally, when the process is resumed, it is resumed with the context it had when it last sto
(the context associated withselect-context default).

For a more complete description, seeselect-context in theNightView User’s Guide.

Exception Handling and Interception C

Exceptions raised in your program can be intercepted by the debugger before being
ered to the process. The NightViewhandle/exception command is effective in
doing this.

Note that the exception will be delivered to the process regardless of whether it is in
cepted by the debugger. Interception simply delays delivery until the process is resu
again.

Some forms of thehandle/exception command currently do not print the exceptio
that was raised when the debugger stops. The name of the exception currently
raised can always be determined by the use of following command, if executed imm
ately (i.e., before the process is resumed or any registers are modified) after the deb
intercepts an exception:

x/s $r3

The handle/exception command allows for intercepting all exceptions or specif
exceptions you specified. For more information, seex , handle , andinfo exception
in theNightView User’s Guide.

Generics C

NightView does not currently fully support debugging generic instantiations. For exa
ple, you cannot set a breakpoint on a routine by specifying the name of a generic su
gram or the file/line-number of a file that contains a generic body. Similarly, you can
view variables that are associated with portions of shared generic instantiations.
C-6

Ada NightView

neric.

g, and

ntia-

rams
can
ific

bpro-
um-

r as

ia its
f the

bug
The debugger does support setting breakpoints on the instantiated unit name of a ge

Once a breakpoint has been reached inside a generic body, single stepping, advancin
setting breakpoints via line number function correctly.

If debugging of generics is desired, it is recommended that you ensure that the insta
tions are not shared. This can be achieved by use of the-N option to the Ada compiler or
the pragmaSHARE_BODY.

Overloaded Subprograms C

NightView does not currently support overloaded subprogram names. If two subprog
with the same simple name appear in two different library-level packages, NightView
properly locate the subprogram only if you utilize the fully expanded name of the spec
subprogram of interest (e.g.,pkg_name.subprogram_name).

In cases where the fully expanded name of the subprogram is the same (e.g., two su
grams in the same package with differing parameter profiles), you must use file/line-n
ber notation instead.

General NightView Operational Hints C

The following is not meant as complete description of NightView commands, rathe
some helpful hints about useful commands for Ada programmers. Consult theNightView
User’s Guidefor more information.

Listing Source, Packages, and Subprograms C

In Ada, more so than in other languages, programmers tend to think of source code v
corresponding unit name (package, procedure, function) rather than by the name o
source file containing the source code.

To list the names of functions, subroutines, or Ada unit names recorded in the de
tables, use the following NightView command:

info functions regexp

To list the source for a specific unit, simply supply the unit name.
C-7

MAXAda Reference Manual

ring

he

ur-

ram

n the

ult

the

,

Examples:

To list a file by file name, the file name should be a quoted string. Otherwise, the st
may be ambiguous. For example:

list "myfile.a"

Disassembly C

Users familiar witha.db ’s source screen “instruction” mode may want to make use of t
NightView display command to aid in assembly-level debugging.

You may set thedisplay command to disassemble several instructions around the c
rent program counter whenever the debugger hits a breakpoint.

For example:

display/3i $pc

causes NightView to show the next three instructions, starting at the current prog
counter, whenever a breakpoint is encountered.

Expression Evaluation Syntax C

NightView automatically parses commands and expressions you supply based o
effective language setting. Theset-language command allows you to let NightView
automatically determine the language based on the current debugging context (set-
language auto) or allows you to specify a constant value. To specify Ada as the defa
language, use the command:

set-language ada

For example, the following command has two drastically different effects based on
effective language setting:

print variable = 3

If the effective language is Ada, the preceding command printsTRUEor FALSE, depend-
ing on whethervariablehas the value3 or not. However, if the effective language is C
the preceding command assigns the value3 to variable!

list text_io’spec Lists the specification oftext_io

list system Lists the body ofsystem

list calendar.local_time.clock Lists the body of the subprogram
clock inside the package body
local_time inside the package
bodycalendar

list 45:my_unit_name Lists line 45 of the source file con-
taining the unitmy_unit_name
C-8

Ada NightView

lan-
error.

fol-
In many other cases, if you attempt a command using Ada syntax and the effective
guage setting is not Ada, the debugger does not recognize the syntax and issues an

For example, if the effective language setting is C, the following commands have the
lowing effect:

Ensure that your language setting is as you desire.

print variable’address Illegal syntax

print package_name.variable_name Package_nameis not a record
C-9

MAXAda Reference Manual
C-10

-2
-2
-2
-4
-5
-5
-5

-6
-9

-9
-9
-9
10
10

1
1

12
-12
-13
3
16
-17

-19
0
-21
21
22
-23

23
23
-24
25
9

30
-30
-31
32
-33
33
34
34
4

6
9
0

41
M
Implementation-Defined Characteristics

RM Chapter 1: General . M
RM 1.1.2 Structure . M
RM 1.1.3 Conformity of an Implementation with the Standard. M
RM 1.1.4 Method of Description and Syntax Notation M

RM Chapter 2: Lexical Elements . M
RM 2.1 Character Set . M
RM 2.2 Lexical Elements, Separators, and Delimiters M
RM 2.8 Pragmas . M

RM Chapter 3: Declarations and Types. M
RM 3.5 Scalar Types . M
RM 3.5.2 Character Types . M
RM 3.5.4 Integer Types . M
RM 3.5.5 Operations of Discrete Types . M-
RM 3.5.6 Real Types . M-
RM 3.5.7 Floating Point Types. M-1
RM 3.5.9 Fixed Point Types. M-1
RM 3.6.2 Operations of Array Types . M-
RM 3.9 Tagged Types and Type Extensions . M

RM Chapter 4: Names and Expressions . M
RM 4.1.4 Attributes . M-1
RM 4.3.1 Record Aggregates . M-

RM Chapter 5: Statements. M
RM Chapter 6: Subprograms.. M-18
RM Chapter 7: Packages . M
RM Chapter 8: Visibility Rules . M-2
RM Chapter 9: Tasks and Synchronizations . M

RM 9.6 Delay Statements, Duration, and Time . M-
RM 9.10 Shared Variables . M-

RM Chapter 10: Program Structure and Compilation Issues M
RM 10.1 Separate Compilation . M-
RM 10.1.4 The Compilation Process . M-
RM 10.1.5 Pragmas and Program Units. M
RM 10.2 Program Execution . M-
RM 10.2.1 Elaboration Control . M-2

RM Chapter 11: Exceptions. M-
RM 11.4.1 The Package Exceptions. M
RM 11.5 Suppressing Checks. M

RM Chapter 12: Generic Units . M-
RM Chapter 13: Representation Issues . M

RM 13.1 Representation Items. M-
RM 13.2 Pragma Pack . M-
RM 13.3 Representation Attributes . M-

Address Attributes. M-3
Alignment Attributes. M-3
Size Attributes for Objects . M-3
Size Attributes for Subtypes . M-4
Component_Size Attributes . M-

MAXAda Reference Manual

2
-43
-43
46
6
-46

-47
47
8

48
2
3
3
54
60

-63
63
64

65
-66
6
6

9
0

-72

73
3
3
74
75

75
79
0
2
2
84
84
85
-87
87
-88
88
89
90

91
1
1

91

3
3

External_Tag Attributes. M-4
RM 13.4 Enumeration Representation Clauses . M
RM 13.5.1 Record Representation Clauses . M
RM 13.5.2 Storage Place Attributes . M-
RM 13.5.3 Bit Ordering . M-4
RM 13.7 The Package System . M
RM 13.7.1 The Package System.Storage_Elements. M
RM 13.8 Machine Code Insertions . M-

PowerPC-604. M-4
PowerPC-604 Instruction Set . M-
Register Set. M-5
Addressing Modes . M-5
Usage . M-5

RM 13.9 Unchecked Type Conversions . M-
RM 13.11 Storage Management . M-
RM 13.11.2 Unchecked Storage Deallocation . M
RM 13.12 Pragma Restrictions. M-
RM 13.13.2 Stream-Oriented Attributes. M-

RM Annex A: Predefined Language Environment . .. M-65
RM A.1 The Package Standard. M-
RM A.3.2 The Package Characters.Handling. M
RM A.4.4 Bounded-Length String Handling . M-6
RM A.5.1 Elementary Functions . M-6
RM A.5.2 Random Number Generation. .. M-67
RM A.5.3 Attributes of Floating Point Types. M-6
RM A.7 External Files and File Objects. M-7
RM A.9 The Generic Package Storage_IO. M
RM A.10 Text Input-Output. M-72
RM A.10.7 Input-Output of Characters and Strings . M-
RM A.10.9 Input-Output for Real Types . M-7
RM A.13 Exceptions in Input-Output. M-7
RM A.15 The Package Command_Line. M-

RM Annex B: Interface to Other Languages . M-
RM B.1 Interfacing Pragmas . M-
RM B.2 The Package Interfaces . M-
RM B.3 Interfacing with C . M-8
RM B.4 Interfacing with COBOL . M-8
RM B.5 Interfacing with Fortran . M-8

RM Annex C: Systems Programming . M-
RM C.1 Access to Machine Operations . M-
RM C.3 The Package Interrupts . M-
RM C.3.1 Protected Procedure Handlers . M
RM C.3.2 The Package Interrupts . M-
RM C.4 Preelaboration Requirements . M
RM C.5 Pragma Discard_Names . M-
RM C.7.1 The Package Task_Identification . M-
RM C.7.2 The Package Task_Attributes. M-

RM Annex D: Real-Time Systems . M-
RM D.1 Task Priorities . M-9
RM D.2.1 The Task Dispatching Model . M-9
RM D.2.2 The Standard Task Dispatching Policy . M-
RM D.3 Priority Ceiling Locking . M-92
RM D.4 Entry Queuing Policies . M-9
RM D.6 Preemptive Abort . M-9

3
5
6
96
7
7
7

98
-98
9
9
-99
00
101
01

03
5
5

5
6

6

08
08
9

09
9

0
0
0
1
11
2
2

13
13
13
4
4
5

6
17
7

18
18

8
9
9

RM D.7 Tasking Restrictions . M-9
RM D.8 Monotonic Time . M-9
RM D.9 Delay Accuracy . M-9
RM D.12 Other Optimizations and Determinism Rules M-

RM Annex G: Numerics . M-9
RM G.1 Complex Arithmetic . M-9
RM G.1.1 Complex Types . M-9
RM G.1.2 Complex Elementary Functions. M-
RM G.2 Numeric Performance Requirements . M
RM G.2.1 Model of Floating Point Arithmetic. M-9
RM G.2.3 Model of Fixed Point Arithmetic. M-9
RM G.2.4 Accuracy Requirements for the Elementary Functions M
RM G.2.6 Accuracy Requirements for Complex Arithmetic M-1

RM Annex J: Obsolescent Features. M-
RM J.7.1 Interrupt Entries . M-1

RM Annex K: Language-Defined Attributes. M-102
RM Annex L: Pragmas . M-1

Pragma ALL_CALLS_REMOTE - (not yet supported) M-10
Pragma ASSIGNMENT . M-10
Pragma ASYNCHRONOUS - (not yet supported) M-105
Pragma ATOMIC . M-10
Pragma ATOMIC_COMPONENTS . M-10
Pragma ATTACH_HANDLER .. M-106
Pragma CONTROLLED . M-10
Pragma CONVENTION.. M-107
Pragma DATA_RECORD - (obsolete) . M-1
Pragma DEBUG . M-1
Pragma DEFAULT_HARDNESS . M-10
Pragma DEPRECATED_FEATURE . M-1
Pragma DISCARD_NAMES . M-10
Pragma DISTRIBUTED_LOCAL_LOCKING . M-110
Pragma DONT_ELABORATE . M-11
Pragma ELABORATE . M-11
Pragma ELABORATE_ALL . M-11
Pragma ELABORATE_BODY . M-11
Pragma EXPORT . M-1
Pragma EXTERNAL_NAME - (obsolete). M-11
Pragma FAST_INTERRUPT_TASK . M-11
Pragma GROUP_CPU_BIAS . M-1
Pragma GROUP_PRIORITY. M-1
Pragma GROUP_SERVERS . M-1
Pragma IMPLICIT_CODE. M-11
Pragma IMPORT . M-11
Pragma INLINE . M-11
Pragma INSPECTION_POINT - (not yet supported) M-116
Pragma INTERESTING. M-11
Pragma INTERFACE - (obsolete) . M-1
Pragma INTERFACE_NAME - (obsolete) . M-11
Pragma INTERFACE_OBJECT - (obsolete) . M-1
Pragma INTERFACE_SHARED - (obsolete) . M-1
Pragma INTERRUPT_HANDLER M-118
Pragma INTERRUPT_PRIORITY. M-11
Pragma LINK_OPTION - (obsolete) . M-11
Pragma LINKER_OPTIONS . M-11

MAXAda Reference Manual

9
9
0
0

21
2
2

23
23
23
3
4

24
24
4
5

25
26
6

27

28
8
9

30

0
31
31
32
2
2

3

4
34
4
4
5

Pragma LIST. M-11
Pragma LOCKING_POLICY. M-11
Pragma MAP_FILE . M-12
Pragma MEMORY_POOL . M-12
Pragma NORMALIZE_SCALARS - (not yet supported). M-120
Pragma OPT_FLAGS . M-1
Pragma OPT_LEVEL . M-12
Pragma OPTIMIZE. M-12
Pragma PACK. M-1
Pragma PAGE . M-1
Pragma PASSIVE_TASK - (obsolete) . M-1
Pragma POOL_CACHE_MODE . M-12
Pragma POOL_LOCK_STATE . M-12
Pragma POOL_PAD . M-1
Pragma POOL_SIZE . M-1
Pragma PREELABORATE. M-12
Pragma PRIORITY. M-12
Pragma PROTECTED_PRIORITY . M-1
Pragma PURE . M-1
Pragma QUEUING_POLICY. M-12
Pragma REMOTE_CALL_INTERFACE - (not yet supported) M-126
Pragma REMOTE_TYPES - (not yet supported). M-126
Pragma RESTRICTIONS . M-1
Pragma RETURN_CONVENTION. M-127
Pragma REVIEWABLE - (not yet supported) . .. M-128
Pragma RUNTIME_DIAGNOSTICS M-128
Pragma SERVER_CACHE_SIZE . M-1
Pragma SHARE_BODY. M-12
Pragma SHARE_MODE . M-12
Pragma SHARED - (obsolete) . M-1
Pragma SHARED_PACKAGE. . .. M-130
Pragma SHARED_PASSIVE - (not yet supported). M-130
Pragma SPECIAL_FEATURE . M-13
Pragma STORAGE_SIZE . M-1
Pragma SUPPRESS . M-1
Pragma SUPPRESS_ALL . M-1
Pragma TASK_CPU_BIAS . M-13
Pragma TASK_DISPATCHING_POLICY. M-13
Pragma TASK_HANDLER. M-133
Pragma TASK_PRIORITY. M-13
Pragma TASK_QUANTUM. M-133
Pragma TASK_WEIGHT . M-13
Pragma TDESC. M-1
Pragma TRAMPOLINE . M-13
Pragma VOLATILE . M-13
Pragma VOLATILE_COMPONENTS. M-13

Pro-

ter.
M
Appendix MImplementation-Defined Characteristics

This appendix describes amendments to the Ada 95 Reference Manual for the Ada
gramming Language, ANSI/ISO/IEC-8652:1995.

The appendix is organized parallel to the RM, with one section for each RM chap
Headings specify RM subsections and paragraphs where appropriate.

In the following text, syntactic categories, such asrange_constraintandunit, are itali-
cized.
M-1

MAXAda Reference Manual RM 1.1.2 Structure

en-
the

h
ice.

n of
rator
RM Chapter 1: General M

RM 1.1.2 Structure M

Implementation Advice M

1.1.2(37) Whether or not each recommendation given in Implementation Advice is followed

Each recommendation given in Implementation Advice is listed within this app
dix parallel to its appropriate section in the RM. Each of these sections contains
headingIMPLEMENTATION ADVICE under which is listed each specific paragrap
that appears in the RM and whether or not MAXAda has followed the given adv

RM 1.1.3 Conformity of an Implementation with the Standard M

Implementation Requirements M

1.1.3(3) Capacity limitations of the implementation

• Source files are limited to 4,294,967,295 lines

Excessively long subprogram bodies or declarative areas requiring generatio
code can result in long compiler times or even exhaustion of internal code gene
limits. A practical limit of 100,000 lines per source file is recommended.

• Source lines are limited to 500 characters

• Rooted names are limited in length such that no symbol name may exceed
800 characters in length. Symbols name lengths are usually similar in
length to rooted names, but will include additional characters. They always
include an ’A_’ prefix. If the rooted name contains any overloadable enti-
ties other than a child unit name, then the name will also contain overload
resolution substrings of the form ’llllllSccc ’ or ’ llllllBccc ’ for
each such overloadable entity. The sequence ’llllll ’ is the line number
and the sequence ’ccc ’ is the column number of the declaration of the
overloadable entity. The line number and column number will not contain
leading zeros and so will be variable length. They will usually be much
shorter than these worst-case examples.

• The number of individual declarative items associated with a single sub-
program body, entry body, or task body (including declarations within
nested packages) is limited by the addressing modes used for the target
machine architecture.

The actual limitation is dependent on the ordering and size of the individ-
ual declarative items in each body; the limitation could be as small as
~3,000 items or as large as ~16,000 items.

• Static data is limited only by any virtual memory limitations enforced by
the operating system, and by limitations of the system linker.
M-2

RM 1.1.3 Conformity of an Implementation with the Standard Implementation-Defined Characteristics

oid

r
a-

ed in
fer-
• Subtypes and objects are limited to 2,147,483,520 (256 * 1024 * 1024 * 8 -
128) bits in size. (records, arrays, protected types, and objects)

1.1.3(6) Variations from the standard that are impractical to avoid given the implementa-
tion’s execution environment

MAXAda contains no variations from the standard that are impractical to av
given the implementation’s execution environment.

1.1.3(10) Which code_statements cause external interactions

Instructions thatmightcause external interactions include:

All store instructions:

stb , stbu , stbux , stbx , stfd , stfdu , stfdux , stfdx , stfiwx , stfs ,
stfsu , stfsux , stfsx , sth , sthbrx , sthu , sthux , sthx , stmw, stswi ,
stswx , stw , stwbrx , stwcx_dot , stwu , stwux , stwx

Any load instructions that access a DMA device whichmightcause external interac-
tions:

lbz , lbzu , lbzux , lbzx , lfd , lfdu , lfdux , lfdx , lfs , lfsu , lfsux , lfsx ,
lha , lhau , lhaux , lhax , lhbrx , lhz , lhzu , lhzux , lhzx , lmw, lswi , lswx ,
lwarx , lwbrx , lwz , lwzu , lwzux , lwzx

Instructions that affect the machine state:

ecowx , eieio , icbi , isync , mtdar , mtdbatl , mtdbatu , mtdec , mtdsisr ,
mtear , mtfsb0 , mtfsb0_dot , mtfsb1 , mtfsb1_dot , mtfsf , mtfsf_dot ,
mtfsfi , mtfsfi_dot , mtibatl , mtibatu , mtmsr , mtsdr1 , mtspr ,
mtsprg , mtsr , mtsrin , mtsrr0 , mtsrr1 , mttb , mttbu , sc , sync , tlbie ,
tlbiex , tlbsync , trap , tw , tweq , tweqi , twge , twgei , twgt , twgti , twi ,
twle , twlei , twlge , twlgei , twlgt , twlgti , twlle , twllei , twllt ,
twllti , twlng , twlngi , twlnl , twlnli , twlt , twlti , twne , twnei ,
twng , twngi , twnl , twnli

Documentation Requirements M

1.1.3(18) Certain aspects of the semantics are defined to be either implementation defined o
unspecified. In such cases, the set of possible effects is specified, and the implement
tion may choose any effect in the set. Implementations shall document their behavior
in implementation-defined situations, but documentation is not required for unspeci-
fied situations. The implementation-defined characteristics are summarized in
Annex M.

This appendix documents the implementation-defined characteristics address
the Ada 95 Reference Manual as summarized in Annex M as well as items re
enced under the headings:

• Implementation Advice

• Implementation Permissions

• Documentation Requirements
M-3

MAXAda Reference Manual RM 1.1.4 Method of Description and Syntax Notation

nding
n be

r

ed in

a-
Such behavior is documented in subsequent sections of this appendix correspo
to the appropriate RM section. Further discussion of a particular section ca
found under its corresponding headingNOTES.

1.1.3(19) The implementation may choose to document implementation-defined behavio
either by documenting what happens in general, or by providing some mechanism
for the user to determine what happens in a particular case.

This appendix documents all implementation-defined characteristics address
the Ada 95 Reference Manual, as noted above.

Implementation Advice M

1.1.3(20) If an implementation detects the use of an unsupported Specialized Needs Annex fe
ture at run time, it should raise Program_Error if feasible.

MAXAda follows this advice.

1.1.3(21) If an implementation wishes to provide implementation-defined extensions to the
functionality of a language-defined library unit, it should normally do so by adding
children to the library unit.

MAXAda follows this advice.

RM 1.1.4 Method of Description and Syntax Notation M

Implementation Advice M

1.1.4(12) If an implementation detects a bounded error or erroneous execution, it should raise
Program_Error.

MAXAda follows this advice.
M-4

RM 2.1 Character Set Implementation-Defined Characteristics

) is
w 00

ESC
er

s cell-

ari-
full

r-
RM Chapter 2: Lexical Elements M

RM 2.1 Character Set M

Static Semantics M

2.1(4) The coded representation for the text of an Ada program.

MAXAda provides the fullgraphic_charactertextual representation for programs.

Any character in row 00 of the ISO 10646-1 BMP except ESC (decimal value 27
represented as a single byte whose value is the character's cell-octet within ro
of the BMP.

Any other character in the ISO 10646-1 BMP is represented as the character
followed by twoextended_digitcharacters which encode the hexadecimal numb
representing the character's row-octet within the BMP and two moreextended_digit
characters which encode the hexadecimal number representing the character'
octet within that row.

2.1(14) The control functions allowed in comments

The following control characters are allowed in comments:

RM 2.2 Lexical Elements, Separators, and Delimiters M

Static Semantics M

2.2(2) The representation for an end of line.

Each line is terminated by a line feed (LF) or vertical tab (VT) character.

Implementation Requirements M

2.2(15) Maximum supported line length and lexical element length.

Source lines may contain up to 500 characters, including the terminator. All v
able-length Ada elements, such as identifiers and literals, may extend up to the
499-character limit. However,ld(1) symbol names are restricted to an 800-cha

Control character Decimal value

HT (horizonal tab) 9

LF (line feed) 10

VT (vertical tab) 11

FF (form feed) 12

CR (carriage return) 13
M-5

MAXAda Reference Manual RM 2.8 Pragmas

ames,

mas
acter limit. Because these symbol names are generated from Ada expanded n
care should be taken not to approach this limit.

RM 2.8 Pragmas M

Implementation Permissions M

2.8(14) Implementation-defined pragmas.

Implementation-defined pragmas are listed along with Language-Defined Prag
in “RM Annex L: Pragmas” on page M-103.

Specifically, they are:

Pragma ASSIGNMENT page M-105

Pragma DATA_RECORD - (obsolete) page M-108

Pragma DEBUG page M-108

Pragma DEFAULT_HARDNESS page M-109

Pragma DEPRECATED_FEATURE page M-109

Pragma DISTRIBUTED_LOCAL_LOCKING page M-110

Pragma DONT_ELABORATE page M-110

Pragma EXTERNAL_NAME - (obsolete) page M-112

Pragma FAST_INTERRUPT_TASK page M-112

Pragma GROUP_CPU_BIAS page M-113

Pragma GROUP_PRIORITY page M-113

Pragma GROUP_SERVERS page M-113

Pragma IMPLICIT_CODE page M-114

Pragma INTERESTING page M-116

Pragma INTERFACE - (obsolete) page M-117

Pragma INTERFACE_NAME - (obsolete) page M-117

Pragma INTERFACE_OBJECT - (obsolete) page M-118

Pragma INTERFACE_SHARED - (obsolete) page M-118

Pragma LINK_OPTION - (obsolete) page M-119

Pragma MAP_FILE page M-120

Pragma MEMORY_POOL page M-120

Pragma OPT_FLAGS page M-121

Pragma OPT_LEVEL page M-122

Pragma PASSIVE_TASK - (obsolete) page M-123

Pragma POOL_CACHE_MODE page M-123

Pragma POOL_LOCK_STATE page M-124

Pragma POOL_PAD page M-124

Pragma POOL_SIZE page M-124

Pragma PROTECTED_PRIORITY page M-125

Pragma RETURN_CONVENTION page M-127
M-6

RM 2.8 Pragmas Implementation-Defined Characteristics

rror-
ect.
Implementation Advice M

2.8(16) Normally, implementation-defined pragmas should have no semantic effect for
error-free programs; that is, if the implementation-defined pragmas are removed
from a working program, the program should still be legal, and should still have the
same semantics.

The following implementation-defined pragmas can have a semantic effect on e
free programs; their removal from a working program could have a semantic eff

• DONT_ELABORATE

• GROUP_PRIORITY

• IMPLICIT_CODE

• MEMORY_POOL

• OPT_FLAGS

• OPT_LEVEL

• POOL_SIZE

• PROTECTED_PRIORITY

• RUNTIME_DIAGNOSTICS

• SHARED_PACKAGE

• SPECIAL_FEATURE

• SUPPRESS_ALL

• TASK_HANDLER

• TASK_PRIORITY

• TASK_WEIGHT

Pragma RUNTIME_DIAGNOSTICS page M-128

Pragma SERVER_CACHE_SIZE page M-128

Pragma SHARE_BODY page M-128

Pragma SHARE_MODE page M-129

Pragma SHARED - (obsolete) page M-130

Pragma SHARED_PACKAGE page M-130

Pragma SPECIAL_FEATURE page M-130

Pragma SUPPRESS_ALL page M-132

Pragma TASK_CPU_BIAS page M-132

Pragma TASK_HANDLER page M-133

Pragma TASK_PRIORITY page M-133

Pragma TASK_QUANTUM page M-133

Pragma TASK_WEIGHT page M-134

Pragma TDESC page M-134

Pragma TRAMPOLINE page M-134
M-7

MAXAda Reference Manual RM 2.8 Pragmas
• TDESC

2.8(17) Normally, an implementation should not define pragmas that can make an illegal
program legal, except as follows:

2.8(18) A pragma used to complete a declaration, such as a pragma Import;

MAXAda follows this advice.

2.8(19) A pragma used to configure the environment by adding, removing, or replacing
library_items.

MAXAda follows this advice.

Static Semantics M

2.8(27) Effect of pragma Optimize.

The implementation-dependent pragmaOPTIMIZE is recognized by the implemen-
tation but does not have an effect in this release.
M-8

RM 3.5 Scalar Types Implementation-Defined Characteristics

e

d by
RM Chapter 3: Declarations and Types M

RM 3.5 Scalar Types M

Dynamic Semantics M

3.5(37) The sequence of characters of the value returned by S’Image when some of th
graphic characters of S’Wide_image are not defined in Character

For S’Image , when some of the characters inS’Wide_Image are not defined in
Character , the sequence of characters returned is the same as that returne
S’Wide_Image except that each character not defined inCharacter is replaced
with a space character.

RM 3.5.2 Character Types M

Implementation Advice M

3.5.2(5) If an implementation supports a mode with alternative interpretations for Character
and Wide_Character, the set of graphic characters of Character should nevertheless
remain a proper subset of the set of graphic characters of Wide_Character. Any
character set ``localizations'' should be reflected in the results of the subprograms
defined in the language-defined package Characters.Handling (see A.3) available in
such a mode. In a mode with an alternative interpretation of Character, the imple-
mentation should also support a corresponding change in what is a legal
identifier_letter.

MAXAda does not support a mode with alternative interpretations forCharacter
andWide_Character ; therefore, this advice is not relevant.

RM 3.5.4 Integer Types M

Implementation Permissions M

3.5.4(25) The predefined integer types declared in Standard

Four predefined integer types are declared in Standard:

type integer is range -2_147_483_648 ..
2_147_483_647;
type long_integer is range -2_147_483_648 ..
2_147_483_647;
type short_integer is range -32768 .. 32767;
type tiny_integer is range -128 .. 127;

3.5.4(26) Any nonstandard integer types and the operators defined for them

MAXAda does not define any nonstandard integer types.
M-9

MAXAda Reference Manual RM 3.5.5 Operations of Discrete Types

n on
her

n the
Implementation Advice M

3.5.4(28) An implementation should support Long_Integer in addition to Integer if the target
machine supports 32-bit (or longer) arithmetic. No other named integer subtypes are
recommended for package Standard. Instead, appropriate named integer subtypes
should be provided in the library package Interfaces (see B.2).

MAXAda does not follow this advice.

MAXAda provides the following predefined integer types in the packageStan-
dard :

tiny_integer
short_integer
long_integer

Removal of these types from the package Standard would put an undue burde
users which were familiar with legacy Ada products from Concurrent and ot
companies which provide these definitions.

Users are advised to remove uses of such types and utilize those provided i
packageInterfaces .

3.5.4(29) An implementation for a two's complement machine should support modular types
with a binary modulus up to System.Max_Int*2+2. An implementation should sup-
port a nonbinary modulus up to Integer'Last.

MAXAda follows this advice.

RM 3.5.5 Operations of Discrete Types M

Implementation Advice M

3.5.5(8) For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the
operand does not correspond to the internal code for any enumeration literal of its
type (perhaps due to an uninitialized variable), then the implementation should raise
Program_Error. This is particularly important for enumeration types with noncon-
tiguous internal codes specified by an enumeration_representation_clause.

MAXAda follows this advice.

RM 3.5.6 Real Types M

Implementation Permissions M

3.5.6(8) Any nonstandard real types and the operators defined for them

There are not any nonstandard real types defined in MAXAda.
M-10

RM 3.5.7 Floating Point Types Implementation-Defined Characteristics

f

RM 3.5.7 Floating Point Types M

Legality Rules M

3.5.7(7) What combinations of requested decimal precision and range are supported for
floating point types

MAXAda provides two floating-point types in addition touniversal_real :
FLOATandLONG_FLOAT.

Implementation Permissions M

3.5.7(16) The predefined floating point types declared in Standard

Two predefined floating point types are declared in Standard:

type float is digits 6 ;
type long_float is digits 15 ;

Implementation Advice M

3.5.7(17) An implementation should support Long_Float in addition to Float if the target
machine supports 11 or more digits of precision. No other named floating point sub-
types are recommended for package Standard. Instead, appropriate named floating
point subtypes should be provided in the library package Interfaces (see B.2).

MAXAda follows this advice.

FLOATis implemented in MAXAda with 6 digits of precision.

LONG_FLOATis implemented in MAXAda with 15 digits of precision.

There are no other floating point types defined in the package Standard.

RM 3.5.9 Fixed Point Types M

Legality Rules M

3.5.9(8) The small of an ordinary fixed point type

MAXAda defines thesmallof an ordinary fixed point type to be the largest power o
two less than or equal to the delta.

Type Precision Range

FLOAT 6 decimal digits -3.40282e+38 .. 3.40282e+38

LONG_FLOAT 15 decimal digits -1.79769313486232e+308 ..
1.79769313486232e+308
M-11

MAXAda Reference Manual RM 3.6.2 Operations of Array Types

type
f the
3.5.9(10) What combinations of small, range, and digits are supported for fixed point types

MAXAda defines the allowable values for asmall to be between 2**-26 and
2**1024.

MAXAda defines the allowablerangefor a givensmallto be:

(-2.0**31)*small .. ((2.0**31)+1)*small

MAXAda does not support decimal types; therefore,digits is not supported.

RM 3.6.2 Operations of Array Types M

Implementation Advice M

MAXAda follows this advice.

RM 3.9 Tagged Types and Type Extensions M

Static Semantics M

3.9(10) The result of Tags.Expanded_Name for types declared within an unnamed
block_statement

The result is the expanded name of the first subtype of the type of the prefix sub
with an automatically generated anonymous block id inserted at the place o
unnamed block statement.
M-12

RM 4.1.4 Attributes Implementation-Defined Characteristics

the
. One

ned
er
on

red
with
y

ip-
have

hed-

-
s to
RM Chapter 4: Names and Expressions M

RM 4.1.4 Attributes M

Implementation Permissions M

4.1.4(12) Implementation-defined attributes

• MAXAda has defined the following attributes for use in conjunction with
the implementation-defined pragmaSHARED_PACKAGE(see “Pragma
SHARED_PACKAGE” on page M-130):

P’Key
P’SHM_ID
P’Lock
P’Unlock

where the prefixP denotes a package marked with pragmaSHARED_PACKAGE.

The ’Key attribute is an overloaded function without parameters that returns
key used to identify the system shared segment associated with the package
specification of the function returns the predefined typeString and returns a value
specifying the file name used in the key translation (ftok(3C)). If an integer lit-
eral key was specified in the pragmaSHARED_PACKAGEparameters, this function
returns a null string. The other specification of the function returns the predefi
type universal_integer , and returns a value specifying the translated integ
key. The la t te r form of the function ra ises the predef ined excepti
Program_Error if the shared package body has not yet been elaborated.

The ’SHM_ID attribute is a function without parameters that returns the sha
memory segment identifier for the system shared memory segment associated
the shared packageP. This identifier corresponds to the identifier that is returned b
the shared memory serviceshmget(2) upon creation of the shared package.

The ’SHM_ID attribute raisesProgram_Error if the call toshmget failed when
the segment associated with the shared packageP was created.

The ’Lock and’Unlock attributes are procedures without parameters that man
ulate the “state” of a shared package. MAXAda defines all shared packages to
two states:Lock ed andUnlock ed. Upon return from the’Lock procedure, the
state of the package will beLock ed. If upon invocation,’Lock finds the state
alreadyLock ed, it waits until it becomesUnlock ed before altering the state and
returning.’Unlock sets the state of the package toUnlock ed and then returns. At
the point of unlocking the package, if another process waiting in the’Lock proce-
dure has a more favorable operating system priority, the system immediately sc
ules its execution.

Note that if’Lock is waiting, it may be interrupted by the MAXAda run-time sys
tem’s time slice for tasks which may cause another task within the proces
become active. Eventually, MAXAda will again transfer control to the’Lock pro-
cedure in the original task, and it will continue waiting or return to the task.
M-13

MAXAda Reference Manual RM 4.1.4 Attributes

era-
d to

his

does
an

y to

ility
as a

ore-
mer's

that
The state of the package is meaningful only to the’Lock and ’Unlock attribute
procedures that set and query the state. ALock ed statedoes not prevent concurrent
accessto objects in the shared package. These attributes provide indivisible op
tions only for the setting and testing of implicit semaphores that could be use
control access to shared package objects.

CAUTION

The current shared memory implementation does not allow the
use of the’Lock and ’Unlock attributes with aSHM_RDONLY
shared memory segment or a shared package marked with the
no_bsem parameter.

• MAXAda has defined the following attribute for use in machine code
insertions:

X’Ref

where X denotes an object or label.

See “RM 13.8 Machine Code Insertions” on page M-47 for details about t
attribute.

• MAXAda has defined the following attribute:

X'Addr

For a prefix that denotes an object, program unit, or label, it behaves exactly as
the 'Address attribute defined in RM 13.3(10-11). For a prefix that denotes
exception, it denotes the first of the storage elements allocated toX. The value is
equivalent to an unchecked conversion toSystem.Address of X'Identity ,
but without the semantic dependence onAda.Exceptions .

Addr may not be specified via anattribute_definition_clause .

• MAXAda has defined the following attributes:

P'Unrestricted_Access
X'Unrestricted_Access

For a prefixP that denotes a subprogram, all rules and semantics that appl
P'Access apply also toP'Unrestricted_Access , except that it is as ifP
were declared immediately within a library package. In other words, accessib
checks are not performed, and it is possible to pass a more-nested subprogram
parameter to a less-nested subprogram. An attempt to call a dereferenced m
nested subprogram that is no longer in scope is erroneous, and it is the program
responsibility to ensure that this does not happen.

For a prefixX that denotes an aliased view of an object, all rules and semantics
apply toX'Unchecked_Access apply also toX'Unrestricted_Access .
M-14

RM 4.1.4 Attributes Implementation-Defined Characteristics

is

r a
ed;
e

• MAXAda has defined the following attribute:

S'Has_Tag

For a prefixS that is a formal subtype, it yieldsTrue if the actual subtype corre-
sponding toS is a tagged record type or a derivation of a type whose private view
non-tagged but whose full view is tagged; otherwise it yieldsFalse . The value of
this attribute is of the predefined typeBoolean .

• MAXAda has defined the following attribute:

S'Tagged

For a prefixS that is a formal subtype, it yieldsTrue if the actual subtype corre-
sponding toS is a tagged record type; otherwise it yieldsFalse . The value of this
attribute is of the predefined typeBoolean .

• MAXAda has defined the following attribute:

S'Has_Discriminants

For a prefixS that is a formal subtype, it yieldsTrue if the actual subtype corre-
sponding toS has discriminants; otherwise it yieldsFalse . The value of this
attribute is of the predefined typeBoolean .

• MAXAda has defined the following attribute:

S'Part_Has_Tag

For a prefixS that is a formal subtype, it yieldsTrue if the actual subtype corre-
sponding toS is a composite type with any part which is a tagged record type o
derivation of a type whose private view is non-tagged but whose full view is tagg
otherwise it yieldsFalse . The value of this attribute is of the predefined typ
Boolean .

• MAXAda has defined the following attribute for future use:

S’Internal_Tag

where S denotes a subtype of a tagged type.

Its meaning is currently undefined.

• MAXAda also supports the following attributes for backward compatibil-
ity with Ada 83. A warning will be issued when any of these attributes are
used:

Emax
Epsilon
Large
Mantissa
Safe_Emax
Safe_Large
Safe_Small
M-15

MAXAda Reference Manual RM 4.3.1 Record Aggregates

-
d
o-

ts of
ects

sub-
nent

ory
, the

a

ritten
an

liza-
RM 4.3.1 Record Aggregates M

Dynamic Semantics M

4.3.1(19) For the evaluation of a record_component_association_list, any per-object con
straints (see 3.8) for components specified in the association list are elaborated an
any expressions are evaluated and converted to the subtype of the associated comp
nent. Any constraint elaborations and expression evaluations (and conversions)
occur in an arbitrary order, except that the expression for a discriminant is evaluated
(and converted) prior to the elaboration of any per-object constraint that depends on
it, which in turn occurs prior to the evaluation and conversion of the expression for
the component with the per-object constraint.

In order to support efficient renaming of dynamic non-dependent subcomponen
record objects, the implementation will reorder subcomponents of record obj
and aggregates in memory such that no data for any dynamic component whose
type does not depend upon a discriminant ever follows data for a subcompo
whose subtype depends upon a discriminant. In order to also minimize the mem
size and execution time involved in elaborating record objects and aggregates
implementation will evaluaterecord_component_association_lists in
the order in which the component data is physically laid out in memory.

Th e o r d e r o f e v a lu a t i o n o f e x p r e ss io n s in v o lv e d i n
record_component_association_list may be different than the textual
order of the expressions in the user’s source code. Source code should not be w
so as to implicitly depend upon the order of evaluation of the expressions in
aggregate or extension aggregate, or the order of evaluation of component initia
tion expressions for a default-initialized record object.
M-16

RM 4.3.1 Record Aggregates Implementation-Defined Characteristics
RM Chapter 5: Statements M

There are no MAXAda amendments to Chapter 5 of the RM.
M-17

MAXAda Reference Manual RM 4.3.1 Record Aggregates
RM Chapter 6: Subprograms M

There are no MAXAda amendments to Chapter 6 of the RM.
M-18

RM 4.3.1 Record Aggregates Implementation-Defined Characteristics
RM Chapter 7: Packages M

There are no MAXAda amendments to Chapter 7 of the RM.
M-19

MAXAda Reference Manual RM 4.3.1 Record Aggregates
RM Chapter 8: Visibility Rules M

There are no MAXAda amendments to Chapter 8 of the RM.
M-20

RM 9.6 Delay Statements, Duration, and Time Implementation-Defined Characteristics

rts

on of
dent

hus,
itch-

0.0

nize

k can

ocal

syn-

a-

e

RM Chapter 9: Tasks and Synchronizations M

RM 9.6 Delay Statements, Duration, and Time M

Legality Rules M

9.6(6) Any implementation-defined time types

There are no implementation-defined time types in MAXAda. MAXAda suppo
Ada.Calendar.Time andAda.Real_Time.Time only.

Dynamic Semantics M

9.6(20) The time base associated with relative delays

The time base associated with relative delay statements is the system’s noti
GMT at the time the statement is executed. The time base is therefore indepen
of local time, inasmuch as the system’s clock can accurately determine GMT. T
a relative delay statement with a value of 3600.0 (seconds) issued just before sw
ing to or from daylight savings time would indeed delay for (approximately) 360
physical seconds. However, the time base forAda.Calendar.Time may be
adjusted via user interaction or by system daemons which attempt to synchro
system time with an external source. The time base forAda.Real_Time.Time is
not adjusted after system boot time.

9.6(23) The time base of the type Calendar.Time

The time base of the typeCalendar.Time is the system’s notion of GMT. The
time base is therefore independent of local time, inasmuch as the system’s cloc
accurately determine GMT. Therefore, values of typeCalendar.Time are inter-
changeable across time zones (with other MAXAda Calendar.Time values). L
time affects only the splitting and forming of values of typeCalendar.Time via
the Calendar.Split andCalendar.Time_Of subprograms. The time base
may be adjusted due to user interaction or by system daemons which attempt to
chronize system time with an external source.

9.6(24) The timezone used for package Calendar operations

The packageCalendar gets the time zone information from the system configur
tion (Seetimezone(4)) which can be overridden with theTZ environment vari-
able (Seeenviron(5)).

Implementation Permissions M

9.6(28) An implementation may define additional time types (see D.8).

M A X A d a s u p p o r t s t w o t i m e t y p e s :Ad a .C al en d ar .T im e a n d
Ada.Real_Time.Time . MAXAda also supports subtypes of the supported tim
types, as well as types derived from a supported time type.

9.6(29) Any limit on delay_until_statements of select_statements
M-21

MAXAda Reference Manual RM 9.10 Shared Variables

038.

e

for
se

r

i-
The expression in adelay_until_statement of a select_statement may
not specify a time in excess of a value corresponding to approximately 19 Jan 2

Implementation Advice M

9.6(30) Whenever possible in an implementation, the value of Duration'Small should be no
greater than 100 microseconds.

MAXAda follows this advice.

The value ofduration’small is 61.035 microseconds (or 2**-14 seconds).

9.6(31) The time base for delay_relative_statements should be monotonic; it need not be th
same time base as used for Calendar.Clock.

MAXAda follows this advice.

The time base fordelay_relative statements is the same time base as used
Ada.Real_Time.Clock , which is monotonic. As explained above, the time ba
for Ada.Real_Time.Clock andAda.Calendar.Clock are initially the same
(at system boot time) butAda.Calendar.Clock ’s base can be adjusted by use
interaction or system daemons (and therefore may not be monotonic).

RM 9.10 Shared Variables M

Static Semantics M

9.10(1) Whether or not two nonoverlapping parts of a composite object are independently
addressable, in the case where packing, record layout, or Component_Size is spec
fied for the object

These are not independently addressable in the MAXAda implementation.
M-22

RM 10.1 Separate Compilation Implementation-Defined Characteristics

on-
ular
for

l
ory.

an
ni-
See

ot

ent
none
RM Chapter 10: Program Structure and Compilation Issues M

RM 10.1 Separate Compilation M

10.1(2) The representation for a compilation

A compilation may be:

• The portion of an ASCII source file containing a single compilation
unit together with any preceding configuration pragmas (even con-
figuration pragmas that are not immediately preceding),

OR

• The entire source file for an ASCII source file that contains only con-
figuration pragmas.

Implementation Permissions M

10.1(4) Any restrictions on compilations that contain multiple compilation_units

Compilations may not contain multiple compilation units. This should not pose c
siderable hardship, however, because multiple compilation units within a partic
source file may be compiled as distinct compilations. See “a.build” on page 4-8
more information.

RM 10.1.4 The Compilation Process M

10.1.4(3) The mechanisms for creating an environment and for adding and replacing compila-
tion units

MAXAda usesa.mkenv to create an environment. MAXAda will set up its interna
directory structure for that environment within the current, or a specified, direct
For more information, see “a.mkenv” on page 4-58.

The toola.rmenv is provided to remove an existing environment. It removes
environment, including all units, their state information, and any partition defi
tions. The source files and any built partitions are left intact after this operation.
“a.rmenv” on page 4-94 for more details.

This implementation requires that a unit beintroducedto an environment before it
can be used in any way. Compilation units are introduced using thea.intro tool.
See “a.intro” on page 4-35.

After having been introduced, though, a unit is still not visible (i.e. it has still n
been added to the environment) until it has been compiled successfully.

Further, if multiple versions of the same unit are introduced, possibly from differ
source files, none are visible (i.e. appropriate removals are performed such that
M-23

MAXAda Reference Manual RM 10.1.5 Pragmas and Program Units

vor

tro-
anti-
n be

real
urce

tain
any
case

be
ny

is-
cally
gram

its in

nvi-
exist in the environment) until the user has manually resolved the ambiguity in fa
of one of the versions.

To be precise, our environment is defined to include those units which are in
duced to the environment, which have been compiled, and which are still sem
cally consistent, unless those units are obscured by other units. Units ca
obscured in the following cases:

1. Having been manuallyhidden. Units can be hidden from the
environment using thea.hide utility. More information
about this tool can be found on page 4-32.

2. Having been hidden by a resolution in favor of another version
of that unit. MAXAda provides thea.resolve tool as one
way of resolving an ambiguity between units. See “Ambiguous
Units” on page 3-10 for a more detailed discussion. For an
example of this situation and its resolution, see “Hello Again...
Ambiguous Units” on page 2-15.

3. Being a body for which a specification of the same name is
already introduced to the environment, where the body cannot
possibly be a completion for the specification (e.g. the specifi-
cation is a package, whereas the body is a subprogram).

We consider this functionality desirable because it detects situations which, in
programs, are most probably user errors. It occasionally happens in large so
trees that the same unit will be declared twice in two different source files. Cer
compilation systems may arbitrarily select one to be compiled, perhaps without
indication that such an arbitrary choice had been made. Our system detects this
and forces the user to choose the intended version.

Further, the accidental introduction of a unit which causes an ambiguity can
resolved in favor of the original version without damaging the consistency of a
units in the environment which might have depended upon the original version.

Finally, the accidental introduction of a subprogram body will not affect the cons
tency of any non-subprogram declaration with the same name unless specifi
desired by the user. Once again, this permits the user to select the non-subpro
declaration as the correct version, without damaging the consistency of any un
the environment which might have depended upon it.

Units can also be removed from the environment completely using thea.rmsrc
tool. This tool removes knowledge of source files (and units therein) from the e
ronment. The syntax and usage of this tool can be found on page 4-95.

RM 10.1.5 Pragmas and Program Units M

Implementation Permissions M

10.1.5(9) An implementation may place restrictions on configuration pragmas, so long as it
allows them when the environment contains no library_items other than those of the
predefined environment.
M-24

RM 10.2 Program Execution Implementation-Defined Characteristics

o
o
as”

(or
are

ng

er

nits

sis-

or
e

er
s of
are
con-
par-
C o n f i g u r a t i o n p r a g ma s t h a t ap p e a r i n a c o mp i l a t i o n w i t h n
compilation_units may only be successfully compiled when all units local t
an environment are either uncompiled or inconsistent. See “Configuration Pragm
on page 3-9 for more information.

RM 10.2 Program Execution M

Post-Compilation Rules M

10.2(2) The manner of explicitly assigning library units to a partition

Library units are explicitly assigned to a partition using the-set or -add options
to a.partition .

Both options take a parameter which is a list of units that are to be included
excluded) from a specified partition. There is also a way to include units that
directly or indirectly required by a given unit.

The -set option assigns the units in this list to the partition specified, removi
any other units that may have previously been assigned to the partition.

The -add option assigns the units in this list to the partition, retaining any oth
units that may have been previously been assigned to the partition.

In addition, the-del option toa.partition is provided to remove specified
units from a given partition.

A complete description ofa.partition can be found on page 4-68.

10.2(2) The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit

There are no implementation-defined means of specifying which compilation u
are needed by a given compilation unit.

However, it is possible for the implementation to require that certain units be con
tently compiled even though they will not be elaborated by theENVIRONMENTtask
of an active partition.

If a unit is required by an active partition but the user specifies (via a link rule
dependent par t i t ion l is t) tha t the l ink method for that unit should b
shared_object , then the unit will be utilized via a shared object partition, rath
than being included directly in the active partition. As a result, for the purpose
the active partition, any other units included in the shared object partition
required to be consistently compiled, so that the shared object partition can be
sistently linked. However, these other units will not be elaborated by the active
tition.
M-25

MAXAda Reference Manual RM 10.2 Program Execution

gram
umed

Ada

19

In
uire-
cted

e. If a

uire-
-
will

at is
est-
will

rs.
t is
an be
the

lab-
ent
NOTE

The active partition can be defined not to need any otherwise
unneeded units in a required shared object partition by use of the
-nosoclosure link option. However, extreme caution is rec-
ommended so that attempts to link the partition do not result in
undefined symbols.

10.2(7) The manner of designating the main subprogram of a partition

The main subprogram of a partition is specified by using the-main option to
a.partition . In the absence of an explicitly supplied-main option, if the parti-
tion has the same name as a library subprogram in the environment, that subpro
is assumed to be the main subprogram. Otherwise, no main subprogram is ass
and one must be explicitly specified using this option, if desired.

See “a.partition” on page 4-68 for details.

10.2(18) The order of elaboration of library_items

The order is determined with respect to the rules specified in Section 10.2 of the
95 Reference Manual.

The order of elaboration oflibrary_items for a particular partition may be
obtained by invoking thea.link tool with the -E option for that partition. See
“a.link” on page 4-38 for details. In addition, the-elab_src link option will pro-
duce similar results when the partition is built. See “Link Options” on page 4-1
for more information.

MAXAda obeys all the elaboration order requirements specified in RM 10.2.1.
addition, it attempts to automatically detect cases where elaboration order req
ments were not specified but probably were desired. These automatically-dete
elaboration order requirements are secondary to those specified by the languag
conflict should arise,a.link will issue a warning and will obey the language
requirements. Furthermore, if two automatically detected elaboration order req
ments conflict,a.link will issue a warning and will select one arbitrarily. Con
flicts arising solely from automatically-detected elaboration order requirements
never cause a partition to fail to link.

Whenever MAXAda automatically detects an elaboration order requirement th
not already specified by a pragma, it will issue an informational diagnostic sugg
ing that a pragma probably is desired. The insertion of the suggested pragma
increase the probability that the unit will work successfully with other compile
Also, if two automatically-detected elaboration order requirements conflict, but i
known that an acceptable elaboration order does exist, the elaboration order c
specified by selecting and following the appropriate suggestion and ignoring
other.

When the execution for any of the following constructs can occur as part of the e
oration of a library unit, MAXAda assumes that an elaboration order requirem
identical to the presence of a pragmaElaborate_All is desired:

• call to a subprogram

• call to a protected operation
M-26

RM 10.2 Program Execution Implementation-Defined Characteristics

1(9-
r-
ent to
task

r calls,
able
the

t

tion
ical

tion
, the
ove.

ndi-
exe-
ions.

ire-
ora-
e

ted
auto-

one

ctual

s the
• creation of a task object

• evaluation of a 'Access attribute whose prefix is a subprogram or pro-
tected operation

• call to a task entry

This first three items correspond to the elaboration checks required by RM 3.1
12). The item related to'Access is present to provide safety for calls to derefe
enced access-to-subprogram objects. The item related to task entry calls is pres
provide safety against deadlock or inconsistent rendezvous behavior with a
whose body has not been elaborated and therefore has not been activated. Fo
the elaboration order requirement indicates the library unit that contains the call
entity. For the creation of a task object, it indicates the library unit that contains
task type. For evaluation of'Access attributes, it indicates the library unit tha
contains the callable entity denoted by the prefix.

When the execution for the following construct can occur as part of the elabora
of a library unit, MAXAda assumes that an elaboration order requirement ident
to the presence of a pragmaElaborate is desired:

• instantiation of a generic

This corresponds to the elaboration check required by RM 3.11(13). The elabora
order requirement indicates the library unit that contains the generic. In addition
content of an instance of a generic is checked for any of the constructs listed ab

If the elaboration of a library unit includes constructs that are only executed co
tionally, MAXAda assumes the worst: that all the constructs present can be
cuted. So, it assumes elaboration order requirements for all the possible execut

Unfortunately, it is impossible to detect automatically all elaboration order requ
ments. In particular, the execution of the following constructs as part of the elab
tion of a library unit probably will require a particular elaboration order, but th
nature of that requirement cannot be determined automatically:

• dispatching call

• a library unit whose elaboration calls one of its own subunits which
calls another of its subunits which executes any of the constructs
listed above.

The execution in a task declared at library level of the any of the constructs lis
earlier also can cause an elaboration order requirement. These are not detected
matically because, in general practice, library level tasks are written to postp
their execution until after the elaboration of library units.

10.2(21) Parameter passing and function return for the main subprogram

A main subprogram may not have any formal parameters and therefore no a
parameters are provided.

A main subprogram may be either a procedure or a function returningStan-
dard.Integer (predefined type).

Unless overridden, the result of the call to a function main subprogram is used a
exit status of the program.
M-27

MAXAda Reference Manual RM 10.2 Program Execution

fol-

and

da)
Upon program termination, the exit status is determined by the first applicable
lowing rule:

- If the Ada.Command_Line.Set_Exit_Status procedure was
called, the program's exit status is the last value used in a call to this
procedure.

- If the main subprogram propagated an (unhandled) exception to the
environment task, the exit status is the value 42, as required by the
POSIX 1003.5 standard.

- If the main subprogram was a procedure which returned normally,
the exit status isAda.Command_Line.Success , which is the
value 0.

- If the main subprogram was a function which returned normally, the
exit status is the result of the call to that main subprogram.

10.2(24) The mechanisms for building and running partitions

The a.build utility is provided for building partitions. A single partition may be
built by specifying its name toa.build or all partitions may be built by using the
-allparts option. For more information, see “a.build” on page 4-8.

Active partitions may be run by specifying the executable’s name on the comm
line (either the partition name itself or the output file name passed toa.build with
the -o option). Nonactive partitions (archive andshared_object) cannot be
executed independently but rather are utilized by active partitions.

Dynamic Semantics M

10.2(25) The details of program execution, including program termination

The execution of an Ada program (whose main procedure is written in A
includes the following steps:

1. Allocation of resources by the operating system required for execu-
tion, including internal operating system tables, virtual memory for
program instructions and data, etc.

2. Execution is then begun at the start address of the program, or, for
programs which utilize dynamically linked libraries, initially at the
dynamic linker followed by the start address of the program (the start
address is a symbol named__start).

3. Initialization of system libraries and user-defined.init routines
then occurs.

4. Initialization of the run-time system then takes place.

5. The partition is then executed by calling its environment task.

6. After the environment task completes (and assuming it has not been
terminated directly by the operating system or by direct user action
via an operating system service (e.g.exit(2))), the run-time sys-
tem is finalized.
M-28

RM 10.2.1 Elaboration Control Implementation-Defined Characteristics

-
pen-

an
7. Finalization of system libraries and (non-Ada) user-defined.final
routines then occurs.

8. Execution of the program is then completed via the operating system
serviceexit(2) .

Implementation Permissions M

10.2(28) The semantics of any nonactive partitions supported by the implementation

archive andshared_object are two nonactive partitions supported by MAX
Ada. Neither of these types of partitions can be elaborated or executed inde
dently. They are associated with anactive partition at static link time (for an
archive partition) or dynamic link time (for ashared_object partition). The
active partition is responsible for elaboration and execution of any units in
archive or shared_object partition.

RM 10.2.1 Elaboration Control M

Implementation Advice M

10.2.1(12) In an implementation, a type declared in a preelaborated package should have the
same representation in every elaboration of a given version of the package, whether
the elaborations occur in distinct executions of the same program, or in executions of
distinct programs or partitions that include the given version.

MAXAda follows this advice.
M-29

MAXAda Reference Manual RM 11.4.1 The Package Exceptions

e
rom

n
fined

ion.

ment.
e of

o f
RM Chapter 11: Exceptions M

RM 11.4.1 The Package Exceptions M

Static Semantics M

11.4.1(10) The information returned by Exception_Message

The functionException_Message returns a string containing the reason for th
exception and a reference to the section in the Ada 95 Reference Manual f
which it was derived.

The implementation-defined functionOriginating_Instruction in the pack-
ageAda.Exceptions.Addresses provides the address of the instructio
which caused the associated exception to be raised. The implementation-de
function Ada.Exceptions.Addresses.Propagation_Map provides
instruction addresses associated with the propagation of the associated except

11.4.1(12) The result of Exceptions.Exception_Name for types declared within an unnamed
block_statement

The unnamed block_statement is given an artificial name of the form:

BLOCK__Mnumber

wherenumberis assigned in an arbitrary order for each declare block in the unit.

Consider the following example,

procedure foo is
procedure bar is
begin

myname:
declare

this_except:exception;
begin

:
:

end
declare

this_except:exception;
begin

:
:

end
end bar;

end foo;

In this example, there is a named block_statement and an unnamed block_state
The exception in the named block_statement has a fully expanded nam
foo.bar.myname.th is_except . The except ion in the un named
b lo ck _ s ta t e me n t h as a f u l l y e x p an d e d n a me
M-30

RM 11.5 Suppressing Checks Implementation-Defined Characteristics

,

e
rom

via

d by

n

up-

no
foo.bar.BLOCK__M1.this_except (where thenumber1 has been arbitrarily
assigned).

11.4.1(13) The information returned by Exception_Information

The functionException_Information returns a string containing the
Exception_Name , Exception_Message , and the value of the program
counter where the exception occurred.

Implementation Advice M

11.4.1(19) Exception_Message (by default) and Exception_Information should produce infor-
mation useful for debugging. Exception_Message should be short (about one line)
whereas Exception_Information can be long. Exception_Message should not include
the Except ion_Name. Excep t ion_Informat ion should inc lude both the
Exception_Name and the Exception_Message.

The functionException_Message returns a string containing the reason for th
exception and a reference to the section in the Ada 95 Reference Manual f
which it was derived.

The functionException_Information returns a string containing the
Exception_Name , Exception_Message , and the value of the program
counter where the exception occurred. Additional information can be obtained
the implementation-defined functionPropagation_Map in the package
Ada.Exceptions.Addresses .

RM 11.5 Suppressing Checks M

Implementation Permissions M

11.5(27) Implementation-defined check names

There are no implementation-defined check names in addition to those define
the RM.

Implementation Advice M

11.5(28) The implementation should minimize the code executed for checks that have bee
suppressed.

MAXAda does not strictly follow this advice.

In general, MAXAda will minimize code executed for checks that have been s
pressed, but not always. Specifically, when a pragmaSuppress is applied to a spe-
cific named entity, MAXAda does NOT minimize such code (i.e. the pragma has
effect in such circumstances).
M-31

MAXAda Reference Manual RM 11.5 Suppressing Checks
RM Chapter 12: Generic Units M

There are no MAXAda amendments to Chapter 12 of the RM.
M-32

RM 13.1 Representation Items Implementation-Defined Characteristics

ns

d

RM Chapter 13: Representation Issues M

RM 13.1 Representation Items M

Implementation Permissions M

13.1(20) The interpretation of each aspect of representation

Any restrictions placed upon representation items

Codingaspect of enumeration literals of an enumeration subtype:

See “RM 13.4 Enumeration Representation Clauses” on page M-43.

Controlledaspect of an access type:

See “RM 13.11 Storage Management” on page M-60.

Conventionaspect of an object or subtype:

See “RM B.1 Interfacing Pragmas” on page M-75.

Exportedaspect of an object:

See “RM B.1 Interfacing Pragmas” on page M-75.

Importedaspect of an object:

See “RM B.1 Interfacing Pragmas” on page M-75.

Layoutaspect of records and record extensions:

See “RM 13.5.1 Record Representation Clauses” on page M-43.

Packingaspect of a type:

See “RM 13.2 Pragma Pack” on page M-34.

Alignmentaspect of a subtype:

See “Notes” on page M-37.

Implementation Advice M

13.1(21) The recommended level of support for all representation items is qualified as follows:

MAXAda does not follow this advice in this release for nonstatic expressio
that are names denoting a constant declared before the entity.

13.1(23) An implementation need not support a specification for the Size for a given
composite subtype, nor the size or storage place for an object (including a com-
ponent) of a given composite subtype, unless the constraints on the subtype an
its composite subcomponents (if any) are all static constraints.
M-33

MAXAda Reference Manual RM 13.2 Pragma Pack

d

b-

i-

ts

-

o-
tric-
MAXAda follows this advice.

13.1(24) An aliased component, or a component whose type is by-reference, shoul
always be allocated at an addressable location.

MAXAda follows this advice.

RM 13.2 Pragma Pack M

Implementation Advice M

13.2(6) If a type is packed, then the implementation should try to minimize storage allocated
to objects of the type, possibly at the expense of speed of accessing components, su
ject to reasonable complexity in addressing calculations.

MAXAda follows this advice.

13.2(7) The recommended level of support for pragma Pack is:

13.2(8) For a packed record type, the components should be packed as tightly as poss
ble subject to the Sizes of the component subtypes, and subject to any
record_representation_clause that applies to the type; the implementation may,
but need not, reorder components or cross aligned word boundaries to improve
the packing.

MAXAda follows this advice. In addition, MAXAda may reorder componen
if a representation clause does not fully specify the layout of the record.

13.2(9) For a packed array type, if the component subtype's Size is less than or equal to
the word size , and Component_Size is not spec if ied for th e type,
Component_Size should be less than or equal to the Size of the component sub
type, rounded up to the nearest factor of the word size.

MAXAda follows this advice. The implementation attempts to pack comp
nents of composite types as tightly as possible, except when alignment res
tions apply.

RM 13.3 Representation Attributes M

Address Attributes M

Implementation Advice M

13.3(14) For an array X, X'Address should point at the first component of the array, and not
at the array bounds.

MAXAda follows this advice.

13.3(15) The recommended level of support for the Address attribute is:
M-34

RM 13.3 Representation Attributes Implementation-Defined Characteristics

-

e. A
13.3(16) X'Address should produce a useful result if X is an object that is aliased or of a
by-reference type, or is an entity whose Address has been specified.

MAXAda follows this advice.

13.3(17) An implementation should support Address clauses for imported subprograms.

MAXAda follows this advice.

13.3(18) Objects (including subcomponents) that are aliased or of a by-reference type
should be allocated on storage element boundaries.

MAXAda follows this advice.

13.3(19) If the Address of an object is specified, or it is imported or exported, then the
implementation should not perform optimizations based on assumptions of no
aliases.

MAXAda follows this advice.

Notes M

The implementation supportsAddress attribute definition clauses for variables, con
stants, and task entries.

For variables and constants, both logical and machine addresses are supported. Alogical
addressrefers to a virtual memory address in the execution program’s address spac
machine addressrefers to a physical memory address.

Logical Address Clauses

• The function Virtual_Address is defined in the packageSys-
tem.Addresses to provide conversion fromInteger values to
Address values for virtual addresses only.

• Both static and variable logical addresses are supported.

• The value supplied to the address clause must be a valid logical address in
the user’s program.

Machine Address Clauses

• When a machine address is desired, the expression supplied on the address
clausemustbe an invocation of the functionMachine_Address , found
in the implementation-defined packageSystem.Addresses . Any other
expression supplied to the address clause will cause it to be interpreted as a
virtual address.

• Both static and variable machine addresses are supported.

• If the argument toMachine_Address is an integer literal, then static
address translation can occur, thereby removing any additional overhead
involved in accessing the variable at run time.

• In order to use machine address clauses, you must have theP_SHMBIND
privilege. Seeintro(2) .
M-35

MAXAda Reference Manual RM 13.3 Representation Attributes

These
abora-

(RM

ow-
cts.
WARNING

It is the user’s responsibility to ensure that the supplied address is
a valid physical memory address.

Memory copies done through address clauses will require a bus
access for each word.

Machine address clauses are implemented via system shared memory segments.
shared memory segments are bound to the specified physical memory address at el
tion time and are removed at the end of program execution.

Alignment Attributes M

Implementation Advice M

13.3(29) The recommended level of support for the Alignment attribute for subtypes is:

13.3(30) An implementation should support specified Alignments that are factors and multi-
ples of the number of storage elements per word, subject to the following:

13.3(31) An implementation need not support specified Alignments for combinations of
Sizes and Alignments that cannot be easily loaded and stored by available
machine instructions.

MAXAda follows this advice.

Alignments of 0, 1, 2, 4, 8, and 16 bytes are supported. AnAlignment of 0
is used for non-aligned (or bit-aligned) subtypes. AnAlignment of 0 means
that the object is not necessarily aligned on a storage element boundary
13.3(24)).

MAXAda disallows combinations ofSize andAlignment for stand-alone
objectswhen not permitted by the target architecture. For example, the P
erPC architecture requires at least 4-byte alignment of floating point obje
Such restrictions will be enforced by the compiler.

13.3(32) An implementation need not support specified Alignments that are greater
than the maximum Alignment the implementation ever returns by default.

MAXAda follows this advice.

Alignments greater than 16 bytes will not be supported for a subtype.

13.3(33) The recommended level of support for the Alignment attribute for objects is:

13.3(34) Same as above, for subtypes, but in addition:

13.3(35) For stand-alone library-level objects of statically constrained subtypes, the
implementation should support all Alignments supported by the target linker.
M-36

RM 13.3 Representation Attributes Implementation-Defined Characteristics

ge

ress
iva-

sub-
ral
ake

rPC
es.

nt,
e

will

s of
For example, page alignment is likely to be supported for such objects, but not
for subtypes.

MAXAda does not follow this advice.

MAXAda provides support for 0, 1, 2, 4, 8, and 16 byte alignments. Pa
alignment for objects is not supported.

Notes M

Alignment is a property of a subtype. If a subtype requires alignment, then the add
of any object of the subtype modulo the alignment is required to be zero. This is equ
lent to the address being an integer multiple of theAlignment (if non-zero). For exam-
ple, if an object’s subtype has anAlignment of 4 (i.e. it is word aligned), its address
must be a multiple of 4 bytes. The address16#7fff439c# is a multiple of 4 bytes, so it
is word aligned. However, the address16#7fff439b# is not, because16#7fff439b#
mod 4 is 3.

Ideally, computer hardware and compilers would allow the size and alignment of any
type to be any number of bits with any alignment. Unfortunately, allowing this in gene
can produce very slow code, so compilers impose some minimal restrictions, and m
additional default choice to produce code with will execute much faster. For the Powe
architecture, MAXAda imposes restrictions on the alignment of several classes of typ

MAXAda defines two distinct alignment concepts for each subtype: optimal alignme
and minimal alignment. Theoptimal alignmentis the smallest alignment supported by th
underlying hardware efficiently. Theminimal alignmentis the absolutely smallest align-
ment supported for the subtype. If smaller than the optimal alignment, its use often
result in inefficient code.

The following table summarizes the optimal and minimal alignments for each clas
types:

Table M-1. Alignment Restrictions

Class of type
Optimal (default)
alignment

Minimal alignment

discrete and fixed point, repre-
sentable in 1 - 8 bits

1 0

discrete and fixed point, repre-
sentable in 9 - 16 bits

2 0

discrete and fixed point, repre-
sentable in 17 - 32 bits

4 0

floating point, single precision
(e.g.Float)

4 4

floating point, double precision
(e.g.Long_Float)

8 4
M-37

MAXAda Reference Manual RM 13.3 Representation Attributes

int
with
rfectly

b-
f mis-
un-

.g.

.g.
an

, in
es.
NOTE

Notwithstanding the above table, the minimal alignment of an
atomic or by-reference subtype is equal to its optimal alignment.
Furthermore, for an aliased or atomic object, its subtype is treated
as though its minimal alignment was equal to its optimal align-
ment.

When a subtype is packed, its defaultAlignment is equal to its minimal alignment. Oth-
erwise, its defaultAlignment is equal to its optimal alignment.

Discrete and fixed point

MAXAda imposes no minimal alignment restrictions on any discrete or fixed po
subtypes. Components of these subtypes may be aligned to any arbitrary bit
record representation clauses, and arrays of these subtypes can be packed pe
with attribute definition clauses orpragma Pack .

Floating point

MAXAda imposes a minimal alignment of 4 bytes (a word) for floating point su
types. The PowerPC architecture imposes a large penalty loads and stores o
aligned objects of floating point subtypes, so allowing smaller alignments is co
terproductive.

The optimal alignment for single precision (32 bit) floating point subtypes (e
Float) also is 4 bytes.

The optimal alignment for double precision (64 bit) floating point subtypes (e
Long_Float) is 8 bytes, which allows for somewhat faster loads and stores th
the minimal alignment of 4 bytes.

Access

MAXAda imposes a minimal alignment of 4 bytes (a word) for access subtypes
order to ensure fast dereference operations. The optimal alignment also is 4 byt

access 4 4

class-wide tagged 16 16

other composite see below see below

Table M-1. Alignment Restrictions

Class of type
Optimal (default)
alignment

Minimal alignment
M-38

RM 13.3 Representation Attributes Implementation-Defined Characteristics

lign-
ents
type
array

sub-
the

ffect
ned
and

ject
tly)
ts of
est

ror
Composite

Except for class-wide tagged subtypes (see below), the minimal and optimal a
ments are determined, respectively, by the largest minimal and optimal alignm
of all the component and subcomponent subtypes. For example, if a record sub
contains an object whose subtype is an array of an access subtype, then the
subtype has both a minimal and optimal alignment of 4 bytes, and the record
type has both a minimal and optimal alignment of at least 4 bytes (although
alignments could be larger because of other components).

Composite subtypes may contain implementation-defined components which a
alignment, also. The following classes of types contain implementation-defi
components with minimal and optimal alignment of 4 bytes, causing a minimal
optimal alignment of the composite subtype of at least 4 bytes:

• record types with components or subcomponents of dynamic size
(e.g. array components with variable or discriminant bounds)

• task types (contain a pointer to a task control block)

• protected types (contain a pointer to runtime protected information)

• tagged types (contain a tag component)

• controlled types (contain a tag component)

Class-wide tagged

An object nominally of a class-wide tagged subtype may actually denote an ob
of the root tagged type of the class, or of any type derived (directly or indirec
from the root. Because an extension of the root is capable of adding componen
any subtype, the minimum alignment for any class-wide subtype is the larg
Alignment allowed for any subtype, 16 bytes.

Size Attributes for Objects M

Static Semantics M

13.3(41) Size may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static and its value nonnegative.

The expression of anattribute_definition_clause specifying theSize
of a first subtype or object must have a value in the range 0 .. (2 ** 31) -1.

If an attempt is made to specify a size larger than (2 ** 31) - 1, a compilation er
will occur.

The Component_Size attribute_definition_clause is restricted simi-
larly.

Implementation Advice M

13.3(42) The recommended level of support for the Size attribute of objects is:
M-39

MAXAda Reference Manual RM 13.3 Representation Attributes

s
is

en
ect

ch a
.
m
ss-

ould

ror

-

a

13.3(43) A Size clause should be supported for an object if the specified Size is at least a
large as its subtype's Size, and corresponds to a size in storage elements that
a multiple of the object's Alignment (if the Alignment is nonzero).

MAXAda does not follow this advice.

A size clause will be supported for an object if all of the following apply:

• TheSize is at least as large as the object subtype’sSize

• The Size is a multiple of the object subtype’sminimal align-
ment (if non-zero), which may allow aSize other than a mul-
tiple of the object’sAlignment

• For an aliased or floating point object, theSize is exactly its
subtype’sSize

Size Attributes for Subtypes M

Static Semantics M

13.3(48) The meaning of Size for indefinite subtypes

If the prefix of aSize attribute reference denotes a specific indefinite subtype, th
such aSize attribute reference will return the maximum possible size for an obj
of that prefix subtype.

If the prefix of aSize attribute reference denotes a class-wide subtype, then su
Size attribute reference will return theSize of the subtype at the root of the class
Note that theSize attribute is not defined for class-wide subtypes of the for
S’Class , so this implementation-defined behavior applies only to named cla
wide subtypes.

If the size of any subtype is not representable because its representation w
exceed the word size of the target machine, thenConstraint_Error will be
raised.

The expression of anattribute_definition_clause specifying theSize
of a first subtype or object must have a value in the range 0 .. (2 ** 31) -1.

If an attempt is made to specify a size larger than (2 ** 31) - 1, a compilation er
will occur.

Implementation Advice M

13.3(50) If the Size of a subtype is specified, and allows for efficient independent addressabil
ity (see 9.10) on the target architecture, then the Size of the following objects of the
subtype should equal the Size of the subtype:

13.3(51) Aliased objects (including components).

MAXAda follows this advice.

13.3(52) Unaliased components, unless the Size of the component is determined by
component_clause or Component_Size clause.
M-40

RM 13.3 Representation Attributes Implementation-Defined Characteristics

-

of

,

ported.

s

MAXAda follows this advice.

13.3(53) A Size clause on a composite subtype should not affect the internal layout of compo
nents.

MAXAda follows this advice.

13.3(54) The recommended level of support for the Size attribute of subtypes is:

13.3(55) The Size (if not specified) of a static discrete or fixed point subtype should be
the number of bits needed to represent each value belonging to the subtype
using an unbiased representation, leaving space for a sign bit only if the sub-
type contains negative values.

MAXAda follows this advice.

13.3(56) For a subtype implemented with levels of indirection, the Size should include
the size of the pointers, but not the size of what they point at.

MAXAda follows this advice.

The implementation does not implement any subtypes with implicit levels
indirection. Therefore no reference to theSize of a subtype will return a
pointer or offset size.

Notes M

MAXAda supports theSize attribute definition clause fully for all discrete, fixed point
and composite subtypes. For floating point and access subtypes, aSize must conform to
a supported machine representation; alternate or packed representations are not sup
The following table shows the requiredSize for each restricted class of type:

Component_Size Attributes M

Implementation Advice M

13.3(71) The recommended level of support for the Component_Size attribute is:

13.3(72) An implementation need not support specified Component_Sizes that are les
than the Size of the component subtype.

MAXAda does not follow this advice.

Class of type RequiredSize

Floating point, single precision (e.g.Float) 32

Floating point, double precision (e.g.Long_Float) 64

Access-to-object 32

Access-to-subprogram, protected 64

Access-to-subprogram, not protected 96
M-41

MAXAda Reference Manual RM 13.3 Representation Attributes

ult
of

-

,
en

me of
ta-
MAXAda supports aComponent_Size that is less than theSize of the
component subtype’sSize , as long as it is at least as large as the defa
Size that MAXAda would choose for the component subtype, and none
the restrictions in the following section apply.

13.3(73) An implementation should support specified Component_Sizes that are factors
and multiples of the word size. For such Component_Sizes, the array should
contain no gaps between components. For other Component_Sizes (if sup
ported), the array should contain no gaps between components when packing is
also specified; the implementation should forbid this combination in cases
where it cannot support a no-gaps representation.

MAXAda does not follow this advice.

MAXAda supports aComponent_Size only if all of the following apply:

• The Component_Size is at least as large as the component
subtype’sSize

• The Component_Size is an integer multiple of the compo-
nent subtype’sminimal alignment (if non-zero), which may
allow a Size other than a multiple of the subtype’sAlign-
ment

• For an aliased or floating point component subtype, the
Component_Size is exactly its subtype’sSize

For aComponent_Size which is a factor or multiple of the word size (1, 2
4, 8, 16, or integer multiples of 32 bits), MAXAda will not place gaps betwe
components.

For any otherComponent_Size , MAXAda will not place gaps between
components when packing also is specified (e.g. via pragmaPack).

External_Tag Attributes M

Static Semantics M

13.3(75) The default external representation for a type tag

The default external_tag representation of a tagged subtype is the expanded na
the first subtype of the type of the prefix subtype with the following implemen
tion-defined names inserted:

• At the place of an unnamed block statement, or package elaboration
block, an automatically generated anonymous block id.

• At the place of an accept statement, an automatically generated
unique accept statement id.

• At the place of an unnamed loop statement, an automatically gener-
ated anonymous loop id.

• At the place of an Others exception handler, an automatically gener-
ated anonymous clause id.
M-42

RM 13.4 Enumeration Representation Clauses Implementation-Defined Characteristics

pes

at
r-

such
d that
ple
on
ura-

ver-

n

w-
• At the place of an inline expanded subprogram call, an automatically
generated inline label id.

• At the place of an overloaded subprogram, an automatically gener-
ated overload resolution suffix is appended to the subprogram's
name.

The implementation-defined names allow unique identification of tagged ty
defined within the associated language constructs.

Implementation Requirements M

13.3(76) What determines whether a compilation unit is the same in two different partitions

If a compilation unit is not recompiled between building two different partitions th
utilize it, it is considered “the same” compilation unit in both partitions. For pu
poses relating to the formation of the external tag of tagged types declared in
compilation units, the restrictions are not as stringent. The user can be assure
the external tag will be formed in the same manner for compilation units in multi
partitions if the source text of the compilation unit (and all compilation units up
which it depends) are identical, the compilation options are identical, the config
tion pragmas in effect are identical, the target architectures are identical, and the
sion of the compiler is identical.

RM 13.4 Enumeration Representation Clauses M

Implementation Advice M

13.4(9) The recommended level of support for enumeration_representation_clauses is:

13.4(10) An implementation should support at least the internal codes in the range Sys-
tem.Min_Int. .System.Max_Int. An implementation need not support
enumeration_representation_clauses for boolean types.

MAXAda follows this advice.

MAXAda implements the recommended leve l of support for a
enumeration_representation_clause :

• The implementation will support internal codes in the range
System.Min_Int .. System.Max_Int . Internal codes
outside the supported range will be rejected at compile time.

• enumeration_representation_clauses are not sup-
ported for boolean types in this release.

RM 13.5.1 Record Representation Clauses M

The simple expression following the keywordsat mod in an alignment clause specifies
theStorage_Unit alignment restrictions for the record and must be one of the follo
ing values: 0, 1, 2, 4, 8, or 16.
M-43

MAXAda Reference Manual RM 13.5.1 Record Representation Clauses

e

pack-
that
nent
en a

ses

rted,
n a

e

-

,

The simple expression following the keywordat in a component clause specifies th
Storage_Unit (relative to the beginning of the record) at which the followingrange
is applicable. The static range following the keywordrange specifies the bit range of the
component. Components may overlap word boundaries (4Storage_Unit s).

A component clause applied to a component that is a composite type does not imply
ing for that component. For such component types, the implementation requires
pragmaPACKor a record representation clause be applied to the subtype of the compo
if packing beyond the component’s default size is desired. No component may be giv
component clause which specifies a component size smaller than theSize of the compo-
nent’s subtype.

Implementation Permissions M

13.5.1(15) Implementation-defined components

MAXAda generates implementation-defined components for the following clas
of types:

• record types with components or subcomponents of dynamic size
(e.g. array components with variable or discriminant bounds)

• task types (contain a pointer to a task control block)

• protected types (contain a pointer to runtime protected information)

• tagged types (contain a tag component)

• controlled types (contain a tag component)

However, no means of naming implementation-defined components is suppo
an d n o sup po r t i s pr o v id ed f or r ep re sent in g su ch co mp on en ts i
component_clause of a record_representation_clause .

13.5.1(16) If a record_representation_clause is given for an untagged derived type, the storag
place attributes for all of the components of the derived type may differ from those of
the corresponding components of the parent type, even for components whose stor
age place is not specified explicitly in the record_representation_clause.

MAXAda takes advantage of this permission.

Implementation Advice M

13.5.1(17) The recommended level of support for record_representation_clauses is:

13.5.1(18) An implementation should support storage places that can be extracted with a
load, mask, shift sequence of machine code, and set with a load, shift, mask
store sequence, given the available machine instructions and run-time model.

MAXAda follows this advice.

For a component_clause for a component withSize less thanSys-
tem.Word_Size , MAXAda will not permit the component to occupy bits
from more than 4 storage units. Specifically,R.C’Last_Bit must be less
thanSystem.Word_Size .
M-44

RM 13.5.1 Record Representation Clauses Implementation-Defined Characteristics

nt
or a
ich

o-

e

ome

f

i-
An informational diagnostic is issued if it is determined that a compone
clause would force the generation of less that optimal loads or stores f
component. This is commonly caused by components with alignments wh
do not conform to the optimal alignment.

13.5.1(19) A storage place should be supported if its size is equal to the Size of the comp
nent subtype, and it starts and ends on a boundary that obeys the Alignment of
the component subtype.

MAXAda follows this advice.

MAXAda places no restriction on the end of a storage place.

13.5.1(20) If the default bit ordering applies to the declaration of a given type, then for a
component whose subtype's Size is less than the word size, any storage plac
that does not cross an aligned word boundary should be supported.

MAXAda follows this advice.

MAXAda does support storage places that cross word boundaries in s
cases. See 13.5.1(18) on page M-44.

13.5.1(21) An implementation may reserve a storage place for the tag field of a tagged
type, and disallow other components from overlapping that place.

MAXAda does not follow this advice.

13.5.1(22) An implementation need not support a component_clause for a component o
an extension part if the storage place is not after the storage places of all com-
ponents of the parent type, whether or not those storage places had been spec
fied.

MAXAda follows this advice.

Notes M

MAXAda supports a storage place only if all of the following apply:

• For a discrete or fixed point component, the size of its storage place is at
least as large as the minimum size required to represent its base range

• For a composite or access component, the size of its storage place is at least
as large as the component subtype’sSize

• For a component withSize less thanSystem.Word_Size , the storage
place occupies bits from no more than 4 storage units (specifically,
R.C’Last_Bit must be less thanSystem.Word_Size)

• The Size is a multiple of the component subtype’sminimalalignment (if
non-zero)

• For an aliased or floating point component, theComponent_Size is
exactly its subtype’sSize
M-45

MAXAda Reference Manual RM 13.5.2 Storage Place Attributes

e

hine

-

RM 13.5.2 Storage Place Attributes M

Implementation Advice M

13.5.2(5) If a component is represented using some form of pointer (such as an offset) to th
actual data of the component, and this data is contiguous with the rest of the object,
then the storage place attributes should reflect the place of the actual data, not the
pointer. If a component is allocated discontiguously from the rest of the object, then a
warning should be generated upon reference to one of its storage place attributes.

MAXAda follows this advice.

RM 13.5.3 Bit Ordering M

Static Semantics M

13.5.3(5) If Word_Size = Storage_Unit, the default bit ordering is implementation defined. If
Word_Size > Storage_Unit, the default bit ordering is the same as the ordering of
storage elements in a word, when interpreted as an integer.

Storage_Unit = 8 bits.
Word_Size = 32 bits.

The implementation supports only the default bit ordering.

The default bit ordering is dependent upon the conventions of the target mac
architecture.

MAXAda on the PowerPC 604 (PPC604) usesHigh_Order_First (“big
endian”) bit ordering.

Implementation Advice M

13.5.3(7) The recommended level of support for the nondefault bit ordering is:

13.5.3(8) If Word_Size = Storage_Unit, then the implementation should support the non-
default bit ordering in addition to the default bit ordering.

Since Word_Size /= Storage_Unit, this advice is not relevant.

RM 13.7 The Package System M

Static Semantics M

13.7(2) The contents of the visible part of package System and its language-defined children

The following files contain the packageSystem and its language-defined descen
dants. They can be found in/usr/ada/ rel_name/predefined (whererel_name
is the name of the MAXAda release).
M-46

RM 13.7.1 The Package System.Storage_Elements Implementation-Defined Characteristics

for

g

• System.a

• System.Storage_Elements.a

• System.Storage_Pools.a

• System.Address_To_Access_Conversions.a

• System.Machine_Code.a

Implementation Advice M

13.7(37) Address should be of a private type.

MAXAda follows this advice.

RM 13.7.1 The Package System.Storage_Elements M

Implementation Advice M

13.7.1(16) Operations in System and its children should reflect the target environment seman-
tics as closely as is reasonable. For example, on most machines, it makes sense
address arithmetic to “wrap around.” Operations that do not make sense should
raise Program_Error.

MAXAda follows this advice.

In particular, the address arithmetic operations in theSystem.Addresses pack-
age “wrap around”.

RM 13.8 Machine Code Insertions M

Static Semantics M

13.8(7) The contents of the visible part of package System.Machine_Code, and the meanin
of code_statements

The following file can be found in/usr/ada/ rel_name/predefined (where
rel_nameis the name of the MAXAda release).

• System.Machine_Code.a

WARNING

Inline expansion of machine-code procedures is supported, but the
user should exercise caution. It is not recommended practice to
inline-expand machine-code procedures, as the compiler does not
track register uses and definitions made by machine-code proce-
dures.
M-47

MAXAda Reference Manual RM 13.8 Machine Code Insertions

e
ment,
ions,

-

or a
n

ated
th the

ithin

cient
PowerPC-604 M

The general definition of the packageMachine_Code provides an assembly languag
interface for the target machine including the record types needed in the code state
an enumeration type containing all of the opcode mnemonics, a set of register definit
and a set of addressing mode functions. Also supplied (for use only in units thatwith
Machine_Code) is the implementation-defined attribute’Ref .

Machine-code statements accept operands of typeOperand , a private type that forms the
basis of all machine-code address formats for the target.

The general syntax for a machine-code statement is

code_n’ (opcode, operand {, operand});

In the following example,code_3 is a record ‘format’ whose first argument is an enu
meration value of the typeOpcode followed by three operands of typeOperand .

code_3’ (ai, r4, r4, +1);

Theopcodemust be an enumeration literal (i.e., it cannot be an object, an attribute,
rename). Validopcodesare listed in “PowerPC-604 Instruction Set” on page M-48. A
operandcan only be an entity defined inMachine_Code .

The ’Ref attribute denotes the effective address of the first of the storage units alloc
to the object. For a label, it refers to the address of the machine code associated wi
corresponding body or statement. The attribute is of typeOperand defined in the pack-
ageMachine_Code and is allowed only within a machine code procedure.’Ref is sup-
ported only for simple objects, formal parameters and labels declared immediately w
the subprogram containing the reference. Using’Ref on a formal parameter forces the
formal parameter to be stored in memory and reference via memory. The most effi
way to access a formal parameter is to reference its associated register directly.

PowerPC-604 Instruction Set M

TheMachine_Code package supports the following PowerPC-604 opcodes:

add add_dot addc addc_dot addco

addco_dot adde adde_dot addeo addeo_dot

addi addic addic_dot addis addme

addme_dot addmeo addmeo_dot addo addo_dot

addze addze_dot addzeo addzeo_dot and_dot

and_r andc andc_dot andi_dot andis_dot

b ba bc bca bcctr

bcctrl bcl bcla bclr bclrl

bctr bctrl bdnz bdnza bdnzeq

bdnzeqa bdnzeql bdnzeqla bdnzeqlr bdnzeqlrl

bdnzf bdnzfa bdnzfl bdnzfla bdnzflr
M-48

RM 13.8 Machine Code Insertions Implementation-Defined Characteristics
bdnzflrl bdnzge bdnzgea bdnzgel bdnzgela

bdnzgelr bdnzgelrl bdnzgt bdnzgta bdnzgtl

bdnzgtla bdnzgtlr bdnzgtlrl bdnzl bdnzla

bdnzle bdnzlea bdnzlel bdnzlela bdnzlelr

bdnzlelrl bdnzlr bdnzlrl bdnzlt bdnzlta

bdnzltl bdnzltla bdnzltlr bdnzltlrl bdnzne

bdnznea bdnznel bdnznela bdnznelr bdnznelrl

bdnzng bdnznga bdnzngl bdnzngla bdnznglr

bdnznglrl bdnznl bdnznla bdnznll bdnznlla

bdnznllr bdnznllrl bdnzns bdnznsa bdnznsl

bdnznsla bdnznslr bdnznslrl bdnznu bdnznua

bdnznul bdnznula bdnznulr bdnznulrl bdnzso

bdnzsoa bdnzsol bdnzsola bdnzsolr bdnzsolrl

bdnzt bdnzta bdnztl bdnztla bdnztlr

bdnztlrl bdnzun bdnzuna bdnzunl bdnzunla

bdnzunlr bdnzunlrl bdz bdza bdzeq

bdzeqa bdzeql bdzeqla bdzeqlr bdzeqlrl

bdzf bdzfa bdzfl bdzfla bdzflr

bdzflrl bdzge bdzgea bdzgel bdzgela

bdzgelr bdzgelrl bdzgt bdzgta bdzgtl

bdzgtla bdzgtlr bdzgtlrl bdzl bdzla

bdzle bdzlea bdzlel bdzlela bdzlelr

bdzlelrl bdzlr bdzlrl bdzlt bdzlta

bdzltl bdzltla bdzltlr bdzltlrl bdzne

bdznea bdznel bdznela bdznelr bdznelrl

bdzng bdznga bdzngl bdzngla bdznglr

bdznglrl bdznl bdznla bdznll bdznlla

bdznllr bdznllrl bdzns bdznsa bdznsl

bdznsla bdznslr bdznslrl bdznu bdznua

bdznul bdznula bdznulr bdznulrl bdzso

bdzsoa bdzsol bdzsola bdzsolr bdzsolrl

bdzt bdzta bdztl bdztla bdztlr

bdztlrl bdzun bdzuna bdzunl bdzunla

bdzunlr bdzunlrl beq beqa beqctr

beqctrl beql beqla beqlr beqlrl

bf bfa bfctr bfctrl bfl
M-49

MAXAda Reference Manual RM 13.8 Machine Code Insertions
bfla bflr bflrl bge bgea

bgectr bgectrl bgel bgela bgelr

bgelrl bgt bgta bgtctr bgtctrl

bgtl bgtla bgtlr bgtlrl bl

bla ble blea blectr blectrl

blel blela blelr blelrl blr

blrl blt blta bltctr bltctrl

bltl bltla bltlr bltlrl bne

bnea bnectr bnectrl bnel bnela

bnelr bnelrl bng bnga bngctr

bngctrl bngl bngla bnglr bnglrl

bnl bnla bnlctr bnlctrl bnll

bnlla bnllr bnllrl bns bnsa

bnsctr bnsctrl bnsl bnsla bnslr

bnslrl bnu bnua bnuctr bnuctrl

bnul bnula bnulr bnulrl bso

bsoa bsoctr bsoctrl bsol bsola

bsolr bsolrl bt bta btctr

btctrl btl btla btlr btlrl

bun buna bunctr bunctrl bunl

bunla bunlr bunlrl clrlslwi clrlslwi_dot

clrlwi clrlwi_dot clrrwi clrrwi_dot cmp

cmpi cmpl cmpli cmplw cmplwi

cmpw cmpwi cntlzw cntlzw_dot crand

crandc crclr creqv crmove crnand

crnor crnot cror crorc crset

crxor dcbf dcbi dcbst dcbt

dcbtst dcbz divw divw_dot divwo

divwo_dot divwu divwu_dot divwuo divwuo_dot

eciwx ecowx eieio eqv eqv_dot

extlwi extlwi_dot extrwi extrwi_dot extsb

extsb_dot extsh extsh_dot fabs fabs_dot

fadd fadd_dot fadds fadds_dot fcmpo

fcmpu fctiw fctiw_dot fctiwz fctiwz_dot

fdiv fdiv_dot fdivs fdivs_dot fmadd

fmadd_dot fmadds fmadds_dot fmr fmr_dot
M-50

RM 13.8 Machine Code Insertions Implementation-Defined Characteristics
fmsub fmsub_dot fmsubs fmsubs_dot fmul

fmul_dot fmuls fmuls_dot fnabs fnabs_dot

fneg fneg_dot fnmadd fnmadd_dot fnmadds

fnmadds_dot fnmsub fnmsub_dot fnmsubs fnmsubs_dot

fres fres_dot frsp frsp_dot frsqrte

frsqrte_dot fsel fsel_dot fsqrt fsqrt_dot

fsqrts fsqrts_dot fsub fsub_dot fsubs

fsubs_dot icbi inslwi inslwi_dot insrwi

insrwi_dot isync lbz lbzu lbzux

lbzx lfd lfdu lfdux lfdx

lfs lfsu lfsux lfsx lha

lhau lhaux lhax lhbrx lhz

lhzu lhzux lhzx li lis

lmw lswi lswx lwarx lwbrx

lwz lwzu lwzux lwzx mcrf

mcrfs mcrxr mfcr mfctr mfdar

mfdbatl mfdbatu mfdec mfdsisr mfear

mffs mffs_dot mfibatl mfibatu mflr

mfmsr mfpvr mfsdr1 mfspr mfsprg

mfsr mfsrin mfsrr0 mfsrr1 mftb

mftbl mftbu mfxer mr mtcrf

mtctr mtdar mtdbatl mtdbatu mtdec

mtdsisr mtear mtfsb0 mtfsb0_dot mtfsb1

mtfsb1_dot mtfsf mtfsf_dot mtfsfi mtfsfi_dot

mtibatl mtibatu mtlr mtmsr mtsdr1

mtspr mtsprg mtsr mtsrin mtsrr0

mtsrr1 mttb mttbu mtxer mulhw

mulhw_dot mulhwu mulhwu_dot mulli mullw

mullw_dot mullwo mullwo_dot nand nand_dot

neg neg_dot nego nego_dot nop

nor nor_dot not_r not_dot or_dot

or_r orc orc_dot ori oris

rfi rlwimi rlwimi_dot rlwinm rlwinm_dot

rlwnm rlwnm_dot rotlw rotlw_dot rotlwi

rotlwi_dot rotrwi rotrwi_dot sc slw

slw_dot slwi slwi_dot sraw sraw_dot
M-51

MAXAda Reference Manual RM 13.8 Machine Code Insertions

cture
Register Set M

Registers - The full set of 32 general-purpose registers for the PowerPC-604 archite
is supported (R0 throughR31), plus a full set of 32 floating-point registers (F0 through
F31), 8 control registers (CRF0 throughCRF7), 16 segment registers (SR0 through
SR15), and 46 special-purpose registers (XER, LR, CTR, DSISR, DAR, DEC, SDR1,
SRR0, SRR1, SPRG0, SPRG1, SPRG2, SPRG3, ASR, EAR, TB, TBU, PVR, IBAT0U,
IBAT0L , IBAT1U , IBAT1L , IBAT2U , IBAT2L , IBAT3U , IBAT3L , DBAT0U,
DBAT0L, DBAT1U, DBAT1L, DBAT2U, DBAT2L, DBAT2L, DBAT3U, DBAT3L,MMCR0,
PMC1, PMC2, SIA , SDA, HID0 , IABR, DABR,PIR).

srawi srawi_dot srw srw_dot srwi

srwi_dot stb stbu stbux stbx

stfd stfdu stfdux stfdx stfiwx

stfs stfsu stfsux stfsx sth

sthbrx sthu sthux sthx stmw

stswi stswx stw stwbrx stwcx_dot

stwu stwux stwx sub sub_dot

subc subc_dot subco subco_dot subf

subf_dot subfc subfc_dot subfco subfco_dot

subfe subfe_dot subfeo subfeo_dot subfic

subfme subfme_dot subfmeo subfmeo_dot subfo

subfo_dot subfze subfze_dot subfzeo subfzeo_dot

subi subic subic_dot subis subo

subo_dot sync tlbie tlbiex tlbsync

trap tw tweq tweqi twge

twgei twgt twgti twi twle

twlei twlge twlgei twlgt twlgti

twlle twllei twllt twllti twlng

twlngi twlnl twlnli twlt twlti

twne twnei twng twngi twnl

twnli xor_dot xor_r xori xoris
M-52

RM 13.8 Machine Code Insertions Implementation-Defined Characteristics

are
Addressing Modes M

All of the PowerPC-604 addressing modes are supported by the compiler. They
accessed through the following functions provided inMachine_Code .

Usage M

The following example uses machine code to move a block of data.

with system.machine_code;
with system;

procedure move (dest, src : in system.address; length : in positive) is
--

use system.machine_code;
pragma implicit_code(off); -- See Section 9.3.4
pragma opt_flags ("noreorder");

--
begin
--
-- PowerPC-604 input arguments set up as:
-- r3 <= dest; r4 <= src; r5 <= length;
--

-- save CTR in r8 and restore it before returning
code_2' (mfspr, r8, CTR) ;
code_3' (andi_dot, r7, r5, +3) ;

<<backward_unaligned>>
-- backward move is used when the end of the source region
-- overlaps the beginning of the destination.

Address Mode Assembler Notation Ada Function Call

External Name lo16(name) ext_lo (<name>)

hi16(name) ext_hi (<name>)

uhi16(name) ext_uhi(<name>)

label lo14(<name>)

label lo24(<name>)

Absolute lo16(xxx) absol_lo (<disp>)

hi16(xxx) absol_hi (<disp>)

uhi16(xxx) absol_uhi(<disp>)

I14 lo14(<disp>)

I24 lo24(<disp>)

Register Indirect 0(Rn) indr (<addr_reg>)

with Displacement I16(Rn) disp (<reg>, <disp>)

with External lo16(name)(Rn) lo16 (<name>, <addr_reg>)

Immediate Data D, SI, UI “+” (< integer>)

SI “-” (< integer>)

SI immed(<integer>)
M-53

MAXAda Reference Manual RM 13.9 Unchecked Type Conversions

o not
ere.
ose
r for

f bits
d to a

eter,
tia-
-- adjust addresses to the end
code_3' (add, r3, r3, r5) ;
code_3' (add, r4, r4, r5) ;

code_3' (srawi, r6, r5, immed(2));-- calculate number of words
code_1' (mtctr, r6); -- put # of words in CTR
-- check for partial word
<<bu_partial>>

code_3' (cmpwi, crf0, r7, +0);
code_2' (ble, crf0, bu_loop'ref);
-- move partial word
code_2' (lbzu, r6, disp(r4, -1));
code_2' (stbu, r6, disp(r3, -1));
code_3' (addi, r7, r7, -1);
code_1' (b, bu_partial'ref);

<<bu_loop>>
code_3' (addi, r4, r4, -4);
code_3' (lswi, r6, r4, +4);
code_3' (addi, r3, r3, -4);
code_3' (stswi, r6, r3, +4);
code_1' (bdnz, bu_loop'ref); -- CTR -= 1; b if /= 0

<<done>>
code_1' (mtctr, r8) ; -- restore CTR
code_0' (op => blr); -- Return.

--
end move;

NOTE

The IMPLICIT_CODE pragma optimizes the code by eliminating
the otherwise automatic stack extension and the copy of theIN
parameters to that stack frame. Thebr instruction is necessary
when theIMPLICIT_CODE pragma is utilized to act as the
return statement.

RM 13.9 Unchecked Type Conversions M

Dynamic Semantics M

13.9(11) The effect of unchecked conversion

Unchecked Type Conversions are implemented both for cases which do and d
meet the criteria in RM 13.9(6-10). The behavior for both cases is described h
This behavior is consistent with the semantics described in RM 13.9(5) for th
cases that do meet the criteria in RM 13.9(6-10), and is a reasonable behavio
other cases.

The implementation treats an unchecked conversion as if some number o
of the representation of the source expression are interpreted as, or move
target object.

The source expression is the actual expression passed to the formal param
S, of the instantiation. The target object is the result returned by an instan
tion of the unchecked conversion function.
M-54

RM 13.9 Unchecked Type Conversions Implementation-Defined Characteristics

sult
se,
is is

lue
s the
enta-

ot,
er-

tual

N
ed,

2),
en-

lt by
rn-

arget
n the
ger.

ed”
d”.
the
the
ifi-
If the target subtype is an unconstrained composite subtype, then the re
will have the maximum size possible for any object of that type. Otherwi
the result will have the same size as the size of the target subtype. Th
referred to as the target size.

If the target subtype of an unchecked conversion is indefinite, then the va
of the source expression is interpreted as a value of the target subtype. It i
user’s responsibility to ensure that the source expression is a valid repres
tion of a value of the target subtype, and that theSize of the source expres-
sion is sufficient to represent a value of the target subtype. If n
Storage_Error may be raised when the result of the unchecked conv
sion is used, or else the value of the result may contain garbage data.

The size of the source expression is simply the size of the value of the ac
expression. This is referred to as the source size.

The representation of the result will be determined by effectively moving
bits from the actual expression to the result object. The number of bits mov
N, is the smaller of the source size and the target size.

The implementation will take advantage of permission granted in 13.9(1
and return the result by reference when appropriate. However, the implem
tation currently goes beyond the granted permission and returns the resu
reference even for by-copy types if the result is indistinguishable from retu
ing the result by copy.

Additional explanation is necessary in cases where the source size and t
size are not the same. The meaning of such conversions depends upo
class of types involved, as well as which of the source or target sizes is lar

Justification:

The implementation considers all objects of elementary types to be “right-justifi
within the storage allocated, and all objects of composite types to be “left-justifie
If, for alignment reasons, an object is placed in storage which is larger than
object'sSize , the representation of an object of an elementary type is placed in
least-significant bits of storage, right-justified, with any padding in the most-sign
cant bits.

Figure M-1. An object of an elementary type

VALUEPAD

msb lsb
M-55

MAXAda Reference Manual RM 13.9 Unchecked Type Conversions

rger
of

ple-
yte

f the
ibute

rep-
rget
pre-
rep-

ation

f the
Likewise, should an object of a composite type be allocated storage which is la
than the object'sSize , the representation is placed in the most-significant bits
storage, left-justified, with any padding in the least-significant bit.

Figure M-2. An object of a composite type

Elementary Type to Elementary Type Conversions:

For all elementary types, calls to instantiations of unchecked conversions are im
mented using the most efficient block move instruction to move a 1, 2, 4, or 8 b
source expression object to the target object. However, a bit move will be used i
size aspect of the object's representation has been specified in a size attr
definition_clause to be a value which is not a power of two.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the bits of the source object's
resentation are moved to the least-significant bits of the target object. If the ta
object's subtype is signed, then the most-significant bit of the source object's re
sentation is sign-extended through the most-significant bits of the target object's
resentation. Otherwise, the most-significant bits of the target object's represent
are zero-filled.

Figure M-3. Convert small elementary object to large elementary object

If the target size is smaller than the source size, then the least-significant bits o
source object's representation are moved to the target object.

Figure M-4. Convert large elementary object to small elementary object

msb lsb

PADVALUE

Source

Target Zero or Sign fill

Value

Value

Source

Target

V a l u e

a l u e
M-56

RM 13.9 Unchecked Type Conversions Implementation-Defined Characteristics

tion
rget

rep-
east-

f the

ving
the
Composite Type to Composite Type Conversions:

All conversions logically occur by moving bits of the source object's representa
to the target object, starting at the most-significant bit of the source and ta
objects.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the bits of the source object's
resentation are moved to the most-significant bits of the target object, and the l
significant bits of the target object's representation are zero-filled.

Figure M-5. Convert small composite object to large composite object

If the target size is smaller than the source size, then the most-significant bits o
source object's representation are moved to the target object.

Figure M-6. Convert large composite object to small composite object

Elementary Type to Composite Type Conversions:

Conversions from elementary types to composite types are implemented by mo
least-significant, right-justified bits of the representation of the source object to
most-significant, left-justified bits of the target object.

If the source size and target size differ, then the smaller size is used.

Source

Target

Value

Value Zero fill

Source

Target

Value

Value
M-57

MAXAda Reference Manual RM 13.9 Unchecked Type Conversions

rep-
east-

f the

ving
the

rep-
rget
pre-
rep-

ation
If the target size is larger than the source size, then the bits of the source object's
resentation are moved to the most-significant bits of the target object, and the l
significant bits of the target object's representation are zero-filled.

Figure M-7. Convert small elementary object to large composite object

If the target size is smaller than the source size, then the least-significant bits o
source object's representation are moved to the target object.

Figure M-8. Convert large elementary object to small composite object

Composite Type to Elementary Type Conversions:

Conversions from composite types to elementary types are implemented by mo
most-significant, left-justified bits of the representation of the source object to
least-significant, right-justified bits of the target object.

If the source size and target size differ, then the smaller size is used.

If the target size is larger than the source size, then the bits of the source object's
resentation are moved to the least-significant bits of the target object. If the ta
object's subtype is signed, then the most-significant bit of the source object's re
sentation is sign-extended through the most-significant bits of the target object's
resentation. Otherwise, the most-significant bits of the target object's represent
are zero-filled.

Figure M-9. Convert small composite object to large elementary object

Source

Target Zero fill

Value

Value

Source

Target

V a l u e

a l u e

Source

Target Zero or Sign fill

Value

Value
M-58

RM 13.9 Unchecked Type Conversions Implementation-Defined Characteristics

f the

d

t

is a

nce
user,

only

e
f
-

here
ion

tati-
sub-
mi-
If the target size is smaller than the source size, then the most-significant bits o
source object's representation are moved to the target object.

Figure M-10. Convert large composite object to small elementary object

Implementation Advice M

13.9(14) The Size of an array object should not include its bounds; hence, the bounds shoul
not be part of the converted data.

MAXAda follows this advice.

13.9(15) The implementation should not generate unnecessary run-time checks to ensure tha
the representation of S is a representation of the target type. It should take advantage
of the permission to return by reference when possible. Restrictions on unchecked
conversions should be avoided unless required by the target environment.

MAXAda follows this advice.

The implementation will not generate any unnecessary checks to determine if S
valid representation of the target type.

The implementation will take advantage of the permission to return by refere
when reasonable. No warnings or info messages will be issued alerting the
however, if the implementation is unable to return by reference.

Restrictions on unchecked conversions are avoided by the implementation
when necessary to determine the size of the target subtype.

13.9(16) The recommended level of support for unchecked conversions is:

13.9(17) Unchecked conversions should be supported and should be reversible in th
cases where this clause defines the result. To enable meaningful use o
unchecked conversion, a contiguous representation should be used for elemen
tary subtypes, for statically constrained array subtypes whose component sub-
type is one of the subtypes described in this paragraph, and for record subtypes
without discriminants whose component subtypes are described in this para-
graph.

Unchecked conversions will be supported and reversible in the cases w
RM95 13.9 defines the result (with the exception that the implementat
definesS’Size andTarget’Size differently from the RM).

A contiguous representation will be used for elementary subtypes, for s
cally constrained array subtypes whose component subtype is one of the
types described in RM95 13.9(17), and for record subtypes without discri
nants whose component subtypes are described in RM95 13.9(17).

Source

Target

V a l u e V a l u e

V a l u e V a
M-59

MAXAda Reference Manual RM 13.11 Storage Management

or
e

ot

con-

stor-
The implementation will additionally support unchecked conversion f
S’Size /= Target’Size . The smaller of the two sizes will be used, and th
excess target space, if any, will be sign extended or zero filled as needed.

RM 13.11 Storage Management M

Static Semantics M

13.11(17) The manner of choosing a storage pool for an access type when Storage_Pool is n
specified for the type

For each access type with a’Storage_Size clause, a distinct object of type
System.Storage_Pools.Standard.Collection_Storage_Pool is
created with the given size and used.

A l l t y p e s w i t h o u t ’ S to ra ge _ Si ze c l a u se s u s e t h e o b j e c tS ys -
tem.Storage_Pools.Standard.Objects.Predefined of the typeSys-
tem.Storage_Pools.Standard.Predefined_Storage_Pool .

A variety of aspects of the memory used for these standard storage pools can be
figured with following implementation-defined pragmas:

- MEMORY_POOL- (see “Pragma MEMORY_POOL” on page 6-23)

- POOL_CACHE_MODE- (see “Pragma POOL_CACHE_MODE” on
page 6-29)

- POOL_LOCK_STATE- (see “Pragma POOL_LOCK_STATE” on
page 6-29)

- POOL_SIZE- (see “Pragma POOL_SIZE” on page 6-30)

13.11(17) Whether or not the implementation provides user-accessible names for the standard
pool type(s)

MAXAda does provide user-accessible names for the standard pool types. The
age pool type used for types with a’Storage_Size clause isSys-
tem.Storage_Pools.Standard.Collection_Storage_Pool . The stor-
age pool type used for types wi th ne i ther a’Storage_Pool nor a
’S to r ag e_ Si z e c l au s e i s S y st em .S t or ag e_ P oo ls .S t an -
dard.Predefined_Storage_Pool .

There is a single object of typePredefined_Storage_Pool namedSys-
tem.Storage_Pools.Standard.Objects.Predefined . It is erroneous to
create any other object of this type.

13.11(18) The meaning of Storage_Size

If neither 'Storage_Size nor 'Storage_Pool is specified for a particular
access type,Storage_Size for that type is defined to return the value-1 . The
Storage_Size does not include the TCB (Task Control Block) for the task.
M-60

RM 13.11 Storage Management Implementation-Defined Characteristics

ne-
ese

o f

ma

h

tack
ally

t for a
13.11(20) The effect of calling Allocate and Deallocate for a standard storage pool directly
(rather than implicitly via an allocator or an instance of Unchecked_Deallocation) is
unspecified.

The primitivesAllocate andDeallocate operate on memory directly. They
are unaware of the manner in which that memory will be used. As such, it is erro
ous to attempt to allocate or deallocate a controlled object by directly calling th
r o u t in e s . I n s t e a d , a n a l l o ca t o r o r an i n s t a n c e
Ada.Unchecked_Deallocation should be used.

Documentation Requirements M

13.11(22) Implementation-defined aspects of storage pools

The set of values that a user-definedAllocate or Deallocate procedure needs
to accept are:

1, 2, 4, 8, 16

13.11(22) Information of how storage is allocated by the standard storage pools

The System.Storage_Pools.Standard.Predefined_Storage_Pool ,
the s tor age p ool u sed fo r ty pes wi th ne i ther’Storage_Pool n or
’Storage_Size clauses, allocates memory via themmap(2) system service. It
a l lo c at es an amo u n t o f me mo r y e qu a l to th at s pe c i f ie d i n p r ag
POOL_SIZE(COLLECTION, DEFAULT, size) . If the value is the keyword
UNLIMITED or if no such pragma exists, then 512K is allocated initially, althoug
more may be allocated later, also viammap(2) .

The System.Storage_Pools.Standard.Collection_Storage_Pool ,
the storage pool used for types with’Storage_Size clauses, allocates memory
based on the context in which the access type is declared. If in a context with a s
frame, memory will generally be allocated inside that stack frame. This is gener
possible if the type is declared within one of the following constructs:

• subprogram

• task body

• protected operation body

• handled_sequence_of_statements in a package body

There are a couple circumstances where, even though a stack frame is presen
given construct, memory cannot be allocated from it:

• The size of the storage pool cannot be determined when the stack
frame is created. This can occur if the type is declared inside a sepa-
rate package body or inside the body of an instance whose corre-
sponding generic body is not declared within the same compilation
unit as the instance or is separate.

• The memory attributes (see “Memory Attributes” on page 6-21) of
the collection differ from those specified for the stack.
M-61

MAXAda Reference Manual RM 13.11 Storage Management

ated

:

In any case where memory cannot be allocated from a stack frame, it is alloc
instead from theSystem.Storage_Pools.Standard.Object.Pre-
defined storage pool.

Implementation Advice M

13.11(23) An implementation should document any cases in which it dynamically allocates
heap storage for a purpose other than the evaluation of an allocator.

MAXAda performs dynamic implicit heap allocations for the following operations

• creation of a task, or object of a type with task parts

• creation of a protected object, or object of a type with protected parts

• creation of an object with controlled parts

• creation of a package body stub

• elaboration of a package instance whose corresponding generic is not
declared within the same compilation unit as the instance or is sepa-
rate

• elaboration of an instance ofAda.Task_Attributes

• elaboration of a shared instance whose generic environment (the
memory space containing information required to differentiate a
shared instance from other shared instances of the same generic) is
larger than 51.2 Kb. See “Pragma SHARE_BODY” on page M-128.

• call to the functionAda.Exceptions.Save_Occurrence (but
not the procedure)

• elaboration of a master, other than that associated with theENVI-
RONMENTtask, which contains any of the following declarations:

- access type

- separate body

- instance whose corresponding generic is not declared within
the same compilation unit as the instance or is separate

• any of the following operations performed at library-level (i.e. any
operation not performed within a subprogram or task):

- creation of an object of a dynamically constrained type

- conversion of a value of a dynamically constrained type

- string catenation producing a dynamically constrained result

- non-string catenation

- logical ornot operator expression involving dynamically con-
strained arrays of booleans

- copy of a dynamically sized bit-aligned actual used for param-
eter passing
M-62

RM 13.11.2 Unchecked Storage Deallocation Implementation-Defined Characteristics

n

ce

nce
ita-
- copy of a dynamically sized atomic actual whose correspond-
ing formal type is not atomic (see RM C.6(19))

- call of an’Input attribute whose prefix is a composite type

- call of an instance ofAda.Unchecked_Conversion with a
dynamically constrained target type

- elaboration of a’Storage_Size representation clause

MAXAda does not follow this advice in this release.

MAXAda does not follow this advice in this release.

RM 13.11.2 Unchecked Storage Deallocation M

Implementation Advice M

13.11.2(17) For a standard storage pool, Free should actually reclaim the storage.

MAXAda follows this advice.

Implementation Permissions M

13.11.3(8) An implementation need not support garbage collection, in which case, a pragma
Controlled has no effect.

PragmaCONTROLLEDwill be accepted, but will have no effect since this implementatio
does not perform garbage collection.

RM 13.12 Pragma Restrictions M

13.12(7) The set of restrictions allowed in a pragma Restrictions

MAXAda supports all restrictions defined in Section D.7 of the Ada 95 Referen
Manual and the following implementation-defined restriction:

No_Stream_Attributes

See “Pragma RESTRICTIONS” on page M-127 for more details.

13.12(9) The consequences of violating limitations on Restrictions pragmas

An expression in a pragmaRESTRICTIONSmay contain only static, nonnegative
values whose values are in the range of the typeInteger . Any other values will
result in a compilation error.

Because none of the restrictions defined in Section D.7 of the Ada 95 Refere
Manual currently have an actual effect on the run-time, there are no further lim
tions.
M-63

MAXAda Reference Manual RM 13.13.2 Stream-Oriented Attributes

le-
orage

ite

en-
bits

ry

ll
RM 13.13.2 Stream-Oriented Attributes M

13.13.2(9) The representations used by Read and Write attributes of elementary types in terms
of stream elements

A stream element is a value of the typeAda.Streams.Stream_Element . This
is the smallest unit of data that is read from or written to a stream. For this imp
mentation, a stream element is an 8-bit byte. Its size is the same as that of a st
element, defined in 13.3(8).

The implementation follows the advice of 13.13.2(9) for the Read and Wr
attributes:

• For a scalar type, the implementation will use the smallest number of
stream elements that will represent all the values of the base range of
the type. The normal, in-memory storage element representation will
be used for the stream element representation of the value, with the
stream elements ordered according to theBit_Order aspect of the
type. For this implementation, highest order first, lowest order last.

If the Size of the type is smaller than the bits of the stream element repres
tation, signed scalar values will be sign-extended. The extra highest order
of a modular value will be zeroed.

• For access-object types, the value will be emitted as four stream ele-
ments, high order first, as for an object of typeSystem.Address .

• For access-subprogram types, the value will be emitted as a sequence
of 2 .. 3 values of access-object format:

• subprogram entry address

• protected object address | static link address

• generic environment address, when necessary.

Implementation Advice M

13.13.2(17) If a stream element is the same size as a storage element, then the normal in-memo
representation should be used by Read and Write for scalar objects. Otherwise, Read
and Write should use the smallest number of stream elements needed to represent a
values in the base range of the scalar type.

MAXAda follows this advice.
M-64

of

-

MRM Annex A: Predefined Language Environment M

Implementation Permissions M

A(4) The implementation may restrict the replacement of language-defined compilation
units. The implementation may restrict the children of language-defined library
units (other than Standard).

MAXAda restricts the replacement of any of the following units or any children
the following units:

Ada.Asynchronous_Task_Control
Ada.Calendar
Ada.Dynamic_Priorities
Ada.Exceptions
Ada.Finalization
Ada.Interrupts
Ada.Real_Time
Ada.Task_Attributes
Ada.Task_Identification
Ada.Tags
Interfaces.Restricted_Fortran
System
System.Machine_Code
System.Storage_Elements
System.Storage_Pools
System.Storage_Pools.Standard
System.Storage_Pools.Standard.Objects

In addition, MAXAda restricts the replacement of any of the units within the follow
ing package or any of the units within its children:

Ada.RTS

RM A.1 The Package Standard M

Static Semantics M

A.1(3) The names and characteristics of the numeric subtypes declared in the visible part of
package Standard

subtype natural is integer range 0 .. integer'last;
subtype positive is integer range 1 .. integer'last;

where, in this implementation, the typeInteger is defined as:

type Integer is range -2**31 .. 2**31-1;
M-65

MAXAda Reference Manual RM A.3.2 The Package Characters.Handling

)

Implementation Advice M

A.1(52) If an implementation provides additional named predefined integer types, then the
names should end with ``Integer'' as in ``Long_Integer''. If an implementation pro-
vides additional named predefined floating point types, then the names should end
with ``Float'' as in ``Long_Float''.

MAXAda follows this advice.

MAXAda supplies the following additional named predefined types:

Long_Integer

Short_Integer (for compatibility only; its use is not recommended

Tiny_Integer (for compatibility only; its use is not recommended)

Long_Float

RM A.3.2 The Package Characters.Handling M

Implementation Advice M

A.3.2(49) If an implementation provides a localized definition of Character or
Wide_Character, then the effects of the subprograms in Characters.Handling should
reflect the localizations. See also 3.5.2.

MAX Ada does no t pr ov ide lo ca l ized def in i t ions ofCharacter or
Wide_Character ; thus the advice is not relevant.

RM A.4.4 Bounded-Length String Handling M

Implementation Advice M

MAXAda does not follow this advice in this release.

RM A.5.1 Elementary Functions M

A.5.1(1) The accuracy actually achieved by the elementary functions

These functions use the underlying fast math library,libM . Function results are
expressed infloat or long_float , which equate to Cfloat or double . Ada
float has 6 digits of precision, wherelong_float has 15 digits of precision.

Implementation Requirements M

A.5.1(46) The sign of a zero result from some of the operators or functions in Numer-
ics.Generic_Elementary_Functions, when Float_Type’Signed_Zeros is True
M-66

RM A.5.2 Random Number Generation

itive

ndom
ger

t

d

r

teger
The sign of a prescribed zero result in the aforementioned cases would be pos
(+0.0).

RM A.5.2 Random Number Generation M

Static Semantics M

A.5.2(27) The value of Numerics.Float_Random.Max_Image_Width

The following line appears inNumerics.Float_Random :

max_image_width : constant := 12 + 4 ; -- base 16
integer literal, 12 digits

A.5.2(27) The value of Numerics.Discrete_Random.Max_Image_Width

The following line appears inNumerics.Discrete_Random :

max_image_width : constant := 12 + 4 ; -- base 16
integer literal, 12 digits

A.5.2(32) The algorithms for random number generation

MAXAda uses the standard C functions,erand48 , nrand48 , andjrand48 in its
random number generation algorithms. These functions generate pseudo-ra
numbers using the well-known linear congruential algorithm and 48-bit inte
arithmetic.

erand48 returns non-negative double-precision floating-poin
values uniformly distributed over the interval [0.0, 1.0).

nrand48 returns non-negative long integers uniformly distribute
over the interval [0, 2**31).

jrand48 returns signed long integers uniformly distributed ove
the interval [-2**31, 2**31).

A.5.2(38) The string representation of a random number generator’s state

The string representation of a random number generator’s state is a 12-digit in
literal in base 16, such as,16#123456789abc# . This 12-digit literal is a 48-bit
number composed of three 16-bit entities which the generator uses.

Documentation Requirements M

A.5.2(44) No one algorithm for random number generation is best for all applications. To
enable the user to determine the suitability of the random number generators for the
intended application, the implementation shall describe the algorithm used and shall
give its period, if known exactly, or a lower bound on the period, if the exact period is
unknown. Periods that are so long that the periodicity is unobservable in practice
can be described in such terms, without giving a numerical bound.

The base algorithm oferand48 , nrand48 , and jrand48 for generating 48 bit
random numbers is a linear congruential scheme with the formula:
M-67

MAXAda Reference Manual RM A.5.2 Random Number Generation

pg

type
d by

us

onger

nge
X(n+1) = (a*X(n)+c)mod(m)

where the arithmetic is carried out using 48 bit arithmetic.

nrand48 returns the high order 31 bits ofX(n+1)

jrand48 returns the high order 32 bits ofX(n+1)

erand48 returns all 48 bits ofX(n+1) considered as a fraction with the binary
point before the first bit.

a = 0x5deece66d,c=0x0b, andm=2^48.

Knuth - Art of Computer Programming, Seminumerical Algorithms Vol II 3.2.1.1
15 Theorem Astates that:

The linear congrential sequence has a period of lengthmif and only if

i. c is relatively prime tom;

ii. b = a-1 is a multiple ofp, for every prime p dividingm;

iii. b is a multiple of 4, ifmis a multiple of 4.

In our case:

i. c = 11 which is a prime so it is relatively prime to 2^48

ii. b = 0x5deece66c is divisible by 2, and 2 is the only prime
dividing 2^48

iii. m is divisible by 4 as isb = 0x5deece66c.

Hence the period is 2^48.

A.5.2(45) The minimum time interval between calls to the time-dependent Reset procedure
that are guaranteed to initiate different random number sequences

Th e t i me - d e p en d e n tRe s et p r o ce d u r e i s b a se d o n a v a l u e f r o m
Interval_Timer.Clock . The precision of this clock is 1 nanosecond.

The actual rate at which the clock ticks is dependent on the specific system
where the application runs. The range of clock ticks across systems supporte
this implementation is approximately 80..320 nanoseconds.

However, the act of obtaining the time from the clock itself requires significant b
access such that subsequent calls toInterval_Timer.Clock will always return
unique values.

Thus, the minimum time interval between calls to theReset procedure from the
same task which are guaranteed to initiate different sequences is zero (it takes l
to access the clock than it does for the clock to tick).

However, the minimum time interval between calls to theReset procedure from
different tasks which are guaranteed to initiate different sequences is in the ra
80..320 nanoseconds.
M-68

RM A.5.3 Attributes of Floating Point Types

ence

t

e

this
Also note that the maximum time interval between successive calls to theReset
procedure from the same task that is guaranteed NOT to initiate a previous sequ
is approximately 2**16 seconds (~18+ hours).

Implementation Advice M

A.5.2(46) Any storage associated with an object of type Generator should be reclaimed on exi
from the scope of the object.

MAXAda follows this advice.

A.5.2(47) If the generator period is sufficiently long in relation to the number of distinct initia-
tor values, then each possible value of Initiator passed to Reset should initiate a
sequence of random numbers that does not, in a practical sense, overlap the sequenc
initiated by any other value. If this is not possible, then the mapping between initia-
tor values and generator states should be a rapidly varying function of the initiator
value.

The number of possible initial values is 2^48 which is the same as the period so
is not applicable to MAXAda.

RM A.5.3 Attributes of Floating Point Types M

Static Semantics M

A.5.3(72) The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First,
and Safe_Last attributes, if the Numerics Annex is not supported

The Numerics Annex is not supported in this release of MAXAda.

Attribute IEEE_Float_32 IEEE_Float_64

’Model_Mantiss
a

24
(s a m e a s
’Machine_Mantissa)

53
(s a m e a s
’Machine_Mantissa)

’Model_Emin -125
(same as ’Machine_Emin)

-1021
(same as ’Machine_Emin)

’Model_Epsilon 2.0**(-23) 2.0**(-52)

’Model returns the same value as
the parameter passed in

returns the same value as
the parameter passed in

’Safe_First -2.0**128*(1.0-2.0**(-24)) -2.0**1024*(1.0-2.0**(-
53))

’Safe_Last 2.0**128*(1.0-2.0**(-24)) 2.0**1024*(1.0-2.0**(-
53))
M-69

MAXAda Reference Manual RM A.7 External Files and File Objects

rm
RM A.7 External Files and File Objects M

Static Semantics M

A.7(14) Any implementation-defined characteristics of the input-output packages

The MAXAda implementation of the standard Ada I/O packages support fo
parameters of the following syntax and semantics for theOpen andCreate sub-
programs:

form_parameters ::= [form_specification{, form_specification}]
form_specification::= form_name=> form_value

The following list defines the supportedform_nameandform_values:

Append => True | False

When specified to theOpen subprogram:

• If the mode is out_file or inout_file , then if the
form_value is True , the file will be opened inappend
mode, and if theform_value is False , the file will be trun-
cated.

• If the mode isappend_file , then this form parameter is
ignored and the file is opened inappend mode.

• If the mode isin_file , then this form parameter is irrelevent
and ignored.

Use_Error is raised if specified to theCreate subprogram.

Owner => read | write | execute | read_write | ...
Group => read | write | execute | read_write | ...
Other => read | write | execute | read_write | ...

The file being created will have the permissions as defined byform_nameand
form_value. Note thatform_valuemay be any combination ofread , write ,
or execute , separated by an underscore (e.g.,write_read_execute).

Use_Error is raised if specified to theOpen subprogram.

File_Descriptor => n

This specifies that the high-levelfile_type be associated with an existing
open file descriptor, as specified byn. n should be of a form consistent with
integer’ image.

Use_Error is raised if specified to theCreate subprogram.

Page_Terminators => True | False
M-70

RM A.7 External Files and File Objects

If

ci-

e

lt.

ch
s 0

ated

oci-

he
If False , then page terminators are not output to the external file.
Ada.Characters.Latin_1.FF is encountered while reading from the
e x te r n a l f i l e , i t is i n t e r p r e t e d a s a c h ar ac t erA da .C ha r ac -
ters.Latin_1.FF and not as a page terminator.Use_Error will be
ra ised upo n expl ic i t ca l ls toAda.Text_IO.New_Page or to
Ada.Text_IO.Set_Line when the current line number exceeds the spe
fied argument.

If True , page termination on output will result inAda.Charac-
ters.Latin_1.FF being written to the external file. Encountering
Ada.Characters.Latin_1.FF on input is interpreted as a new pag
(e.g . Ada.Text_IO.Get w o uld nev er see anAda.Charac-
ters.Latin_1.FF returned to it).True is the default.

Terminal_Input => Lines | Characters

If Lines , terminal input shall be done in canonical mode. This is the defau

If Characters , terminal input shall be done in non-canonical mode, su
that the minimum input count is 1 character, and the minimum input time i
seconds.

This form specification has no effect if the associatedfile_type is not used
for terminal input.

Echo => True | False

If True , echoing of characters is done on input operations to the associ
terminal device. This is the default.

If False , echoing of characters is not done on input operations to the ass
ated terminal device for non-canonical processing.Use_Error is raised if
the non-canonical processing has not been specified.

File_Structure => Regular | Fifo

If Fifo , then the file being created will be a named FIFO file. Otherwise, t
file being created will be a regular file, which is the default.

Use_Error is raised if specified to theOpen subprogram.

Blocking => Tasks | Program

If all the tasks in the running program havetask_weightbound, then the
form_valuemust beTasks ; otherwise,Use_Error is raised.

If all the tasks in the running program havetask_weightmultiplexed, then the
form_valuemust beProgram ; otherwise,Use_Error is raised.
M-71

MAXAda Reference Manual RM A.9 The Generic Package Storage_IO

k
am

t

r

an
rac-
n
n

n

n at

dard
If the running program has tasks of both bound and multiplexedtask_weight,
then theform_valuemust beProgram ; otherwise,Use_Error is raised.
This use ofProgram blocking behavior is intended to indicate that if a tas
blocks while performing I/O on the associated file, other tasks in the progr
may be blocked. The actual blocking behavior depends on thetask_weightof a
blocked task.

WCEM => n | h

If n, wide_characters are not allowed to be written or read. An attemp
to write a character that is not in typeCharacter will result in Use_Error .
On a read, any encodedwide_character will be interpreted only as the
constituent characters of the encoding.

If h, wide_characters are allowed to be written and read. Any characte
that is in typeCharacter exceptESC(decimal value 27) is written and read
normally. Any other character is written or read in a hex-encoded format:
ESCcharacter followed by four hexadecimal digits that represents the cha
ter’s 2 digit row-octet followed by its 2 digit cell-octet. An attempt to read a
ESC followed by anything other than 4 hexadecimal digits will result i
Data_Error .

T h is f o r m p a r am e t er h a s n o ef f e c t o n t y p e s o t h e r t h a
Ada.Text_IO.File_Type andAda.Wide_Text_IO.File_Type .

The default value forAda.Text_IO.File_Type is ’n’. The default value
for Ada.Wide_Text_IO.File_Type is ’h’.

Implementation-defined exception propagations in I/O packages are not know
this time.

RM A.9 The Generic Package Storage_IO M

Static Semantics M

A.9(10) The value of Buffer_Size in Storage_IO

(Element_Type’Size + System.Storage_Unit - 1) / System.Storage_Unit

RM A.10 Text Input-Output M

Static Semantics M

A.10(5) external files for standard input, standard output, and standard error

The following are the external files for standard input, standard output, and stan
error:

• stdin - standard input

• stdout - standard output
M-72

RM A.10.7 Input-Output of Characters and Strings
• stderr - standard error

RM A.10.7 Input-Output of Characters and Strings M

Implementation Advice M

A.10.7(23) The Get_Immediate procedures should be implemented with unbuffered input. For a
device such as a keyboard, input should be "available" if a key has already been
typed, whereas for a disk file, input should always be available except at end of file.
For a file associated with a keyboard-like device, any line-editing features of the
underlying operating system should be disabled during the execution of
Get_Immediate.

MAXAda follows this advice.

RM A.10.9 Input-Output for Real Types M

Implementation Permissions M

A.10.9(36) The accuracy of the value produced by Put

Values of typefloat have 6 digits of precision.

Values of typelong_float have 15 digits of precision.

RM A.13 Exceptions in Input-Output M

Documentation Requirements M

A.13(15) The implementation shall document the conditions under which Name_Error,
Use_Error and Device_Error are propagated.

Name_Error

- When a null string is used to create a temporary file

- Whenmkfifo or open returnENOTDIRor ENOENT(i.e an invalid file-
name is provided to an "open" call)

Use_Error

- Whenmkfifo or open return an error other thanENOENTor ENOTDIR

- If status for the file cannot be obtained

- If a file is opened for writing but the opener does not have write access

- If a file is opened for reading but the opener does not have read access

- If the file cannot be opened for any reason
M-73

MAXAda Reference Manual RM A.15 The Package Command_Line

eters,
- If the supplied file descriptor for anopen is invalid

- If a file is already open but the file position is unknown

- A semaphore used to controlfile_locking fails

- An invalid file descriptor is used in an attempt to close a file

- If an attempt is made to "put" a wide character when the
file_encoding mode prohibits it

- If a file name is reused in a form string

- If create andappend are used in the same form string

- When one of owner, group or other is not used in association withcreate
in a form string

- If a null file or file_descriptor is passed totext_support.name

- If the file_structure form parameter is used without thecreate
parameter

- If the file_descriptor form parameter is used with thecreate
parameter

Device_Error

- If an error occurs while reading a file (other thanEOF)

- If an error occurs opening or reading from a tty device

- If an fstat operation performed by aread , write or open call returns
an error status

RM A.15 The Package Command_Line M

A.15(1) The meaning of Argument_Count, Argument, and Command_Name

These functions are implemented as transformations of the standard C param
argc andargv :

argument_count integer value ofargc-1

argument string value of the argumentargv[n]

command_name string value ofargv[0]
M-74

RM B.1 Interfacing Pragmas

ing

htly
See
for

f

fol-
RM Annex B: Interface to Other Languages M

RM B.1 Interfacing Pragmas M

MAXAda supports theAda, Assembler , andC conventions as required by RM B for
use in pragmasIMPORT, EXPORT, andCONVENTION. MAXAda generally follows the
advice and recommendations of RM B for these conventions, as indicated in the follow
sections."

MAXAda also supports theUnchecked_C andRestricted_Fortran conventions,
as well as the internal conventionsIntrinsic , Protected , andEntry .

TheCOBOLandFortran conventions are not supported in this implementation.

The implementation supports elaboration by a foreign language program in a slig
more versatile manner than that specified in Ada 95 Reference Manual B.1(39).
“a.partition” on page 4-68 and “Elaboration and Finalization Methods” on page 3-16
more information.

Legality Rules M

B.1(11) Implementation-defined convention names

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Intrinsic

• Entry (internal use only)

• Protected (internal use only)

Static Semantics M

B.1(36) The meaning of link names

The link name passed to the system linker is identical to theLink_Name parameter
as specified in a pragmaIMPORTor EXPORT.

B.1(36) The manner of choosing link names when neither the link name nor the addresses o
an imported or exported entity is specified

If a link name is not specified, then the link name is obtained according to the
lowing rules for the specified conventions:

• Ada, Assembler , Intrinsic :
M-75

MAXAda Reference Manual RM B.1 Interfacing Pragmas

n-

he
a
is

a-
ult-
- If an external_nameis specified, then the link name is obtained
by prepending a “A_” prefix to the reversedexpanded_name
specified in theexternal_namestring. For example, an
external_nameof “ my_package.my_subprogram ” will be
t r an s f o r m ed t o a l in k n a m e o f
“A_my_subprogram.my_package ”.

- If no external_nameis specified, then the link name is obtained
b y p r e p en d i n g "A _" p r e f ix t o t h e r ev e r s ed f u l l y
expanded_nameof the entity with implementation-defined
names inserted for unnamed constructs and overload resolu-
tion.

• C andUnchecked_C :

- If the external_nameis specified, it is used verbatim as the link
name.

- If no external_nameis specified, the entity’s simple Ada name
is used as the link name converted to lowercase.

• Restricted_Fortran :

If the external_nameis specified then:

- Any object where theexternal_namecontains a ‘/ ’ will be
interpreted as a Fortran datapool element. The link name is
obtained by appending two underscores after the datapool
name and by prepending a ‘$’ to the datapool element. ie. an
external_nameof “ /dp/aa ” will be transformed to a link
name of “dp__$aa ”.

- For all other entities the link name will be obtained by append-
ing an underscore to theexternal_name.

If the external_nameis not specified then:

- For all other entities the link name will be obtained by append-
ing an underscore to the entity’s simple Ada name.

B.1(37) The effect of pragma Linker_Options

PragmaLINKER_OPTIONShas one required parameter, a string within quotes co
taining the link options to be passed to the linker (a.link). Multiple link options
within this string can be separated by spaces or tabs.

Link options specified within a compilation unit via this pragma will be added to t
set of linker options for the resultant partition. The ordering of link options within
compilation unit will be preserved. But the ordering of link options between units
chosen arbitrarily. Link options specified by this pragma within mulitiple compil
tion units are arbitrarily combined and added to the set of link options for the res
ant partition.

Any conflicts (such as those between-trace /-notrace) will be resolved as nec-
essary.
M-76

RM B.1 Interfacing Pragmas

is

s

Link options-bound , -multiplexed , -skipobscurity , -nosoclosure ,
and-forgive are not supported by this pragma in this release of MAXAda.

See “Pragma LINKER_OPTIONS” on page M-119 for more details about th
pragma.

See “Link Options” on page 4-119 for more information about link options.

Implementation Advice M

B.1(39) If an implementation supports pragma Export to a given language, then it should
also allow the main subprogram to be written in that language. It should support
some mechanism for invoking the elaboration of the Ada library units included in
the system, and for invoking the finalization of the environment task. On typical sys-
tems, the recommended mechanism is to provide two subprograms whose link name
are "adainit" and "adafinal". Adainit should contain the elaboration code for
library units. Adafinal should contain the finalization code. These subprograms
should have no effect the second and subsequent time they are called.

MAXAda follows this advice with the following exceptions:

- The user is not forced to use the namesadainit and adafinal
for the subprograms. These names are user-configurable and are
specified at the time of partition creation. The elaboration and final-
ization routines for these units may be called by the user. Of course,
the user is free to choose the namesadainit andadafinal .

Optionally, the user may specify that these routines are automatically
called. In this case, MAXAda will create elaboration and finalization
routines with internal names not available to the user.

See “a.partition” on page 4-68 and “Elaboration and Finalization
Methods” on page 3-16 for more information.

- Calling adainit andadafinal more than once is defined differ-
ently than described by the RM. A second (or subsequent) call to
adainit will not generally cause the elaboration library units to be
elaborated. It will, however, be remembered that the second (or sub-
sequent) call occurred. Calls toadafinal will not have an effect
until it has been called an equal number of times asadainit was
called. Calls toadainit after an effective call toadafinal will
cause re-elaboration to occur. This results in nested elaboration/
finalization behavior. For example, if theadainit andadafinal
routines are called as described below, only those marked aseffec-
tive will actually elaborate or finalize library units:

adainit -- effective
adainit

adainit
adafinal
adainit
adafinal

adafinal
adainit

adainit
M-77

MAXAda Reference Manual RM B.1 Interfacing Pragmas

a-

t

en-

ns
adafinal
adafinal

adafinal -- effective
adainit -- effective

adainit
adafinal

adafinal -- effective

See “Elaboration and Finalization Methods” on page 3-16 for more inform
tion.

MAXAda does not follow this advice.

B.1(41) For each supported convention L other than Intrinsic, an implementation should
support Import and Export pragmas for objects of L-compatible types and for sub-
programs, and pragma Convention for L-eligible types and for subprograms, pre-
suming the other language has corresponding features. Pragma Convention need no
be supported for scalar types.

MAXAda supports theIMPORT, EXPORT, andCONVENTIONpragmas for each of
the supported conventions with the following restrictions applicable to all conv
tions:

- It is illegal to apply more than one of the interfacing pragmas to an
entity.

- The EXPORTpragma cannot be applied to alocal_namethat is
ambiguous.

- The IMPORT, EXPORTandCONVENTIONpragma cannot be applied
to formal parameters.

- The IMPORTandEXPORTpragma cannot be applied to components.

In addition, the following restrictions apply specifically to each of the conventio
listed below:

• Ada

- The EXPORTandCONVENTIONpragmas can only be applied
to subprograms that are declared at the library level.

• Assembler

- The EXPORTandCONVENTIONpragmas can only be applied
to subprograms that are declared at the library level.

• C

- The EXPORTand CONVENTIONpragma are disallowed for
subprograms containing unconstrained array formals and/or
result types.

- The IMPORT, EXPORT, andCONVENTIONpragmas are disal-
lowed for functions returning an array type.

- The EXPORTand CONVENTIONpragma can only be applied
to subprograms that are declared at the library level.
M-78

RM B.2 The Package Interfaces
- The IMPORT, EXPORTand CONVENTIONpragmas are disal-
lowed for subprograms containing by-refence record formals
of modein or by-reference record return types.

- Private and incomplete types whose full type is not visible are
not considered C-compatible.

In addition, only the types listed below are considered to be C-compatible:

- Scalar types with the exception of fixed-point types.

- System.Address and its derivatives.

- Array types with an unconstrained or a statically-constrained
first subtype, if its component type is C-compatible.

- Non-tagged record types having components with statically-
constrained subtypes, if each component type is C-compatible.

- Access-to-object type, if its designated type is C-compatible.

- Access-to-subprogram type, if its designated profile’s parame-
ter and result types are all C-compatible.

- A type derived from a C-compatible type.

• Unchecked_C

- No additional restrictions.

• Restricted_Fortran

- Private and incomplete types whose full type is not visible are
not consideredRestricted_Fortran -compatible.

- The EXPORTand CONVENTIONpragma can only be applied
to subprograms that are declared at the library level.

Only the types listed below are consideredRestricted_Fortran compat-
ible:

- System.Address and its derivatives.

- Standard.Integer and its derivatives.

RM B.2 The Package Interfaces M

B.2(1) The contents of the visible part of package Interfaces and its language-defined
descendants

The following files contain the packageInterfaces and its language-defined
descendants. They can be found in/usr/ada/ rel_name/predefined (where
rel_nameis the name of the MAXAda release).

• Interfaces.a

• Interfaces.C.a
M-79

MAXAda Reference Manual RM B.3 Interfacing with C
• Interfaces.C.Pointers.a

• Interfaces.C.Strings.a

Implementation Permissions M

B.2(11) Implementation-defined children of package Interfaces. The contents of the visible
part of package Interfaces

The implementation-defined children of packageInterfaces are:

• Interfaces.Restricted_Fortran.a

• Interfaces.Unchecked_C.a

The contents of the visible part of packageInterfaces can be found in/usr/
ada/ rel_name/predefined/interfaces.a (whererel_nameis the name of
the MAXAda release).

Implementation Advice M

B.2(12) For each implementation-defined convention identifier, there should be a child pack-
age of package Interfaces with the corresponding name. This package should contain
any declarations that would be useful for interfacing to the language (implementa-
tion) represented by the convention. Any declarations useful for interfacing to any
language on the given hardware architecture should be provided directly in Inter-
faces.

MAXAda provides the implementation-defined packages:

• Interfaces.Restricted_Fortran

• Interfaces.Unchecked_C

MAXAda does not provide a child package of packageInterfaces for the con-
vention identifierAssembler .

B.2(13) An implementation supporting an interface to C, COBOL, or Fortran should pro-
vide the corresponding package or packages described in the following clauses.

MAXAda follows this advice.

RM B.3 Interfacing with C M

Implementation Advice M

B.3(63) An implementation should support the following interface correspondences between
Ada and C.

B.3(64) An Ada procedure corresponds to a void-returning C function.

MAXAda follows this advice.

B.3(65) An Ada function corresponds to a non-void C function.
M-80

RM B.3 Interfacing with C

o be

a

MAXAda follows this advice.

B.3(66) An Ada in scalar parameter is passed as a scalar argument to a C function.

MAXAda follows this advice.

An Ada in scalar parameter is passed by value. Some types may have t
promoted when they are passed to a C function.

Discrete types whose size is smaller thanStandard.Integer are pro-
moted toStandard.Integer . For example, Interfaces.C.Short is
promoted toStandard.Integer .

B.3(67) An Ada in parameter of an access-to-object type with designated type T is
passed as a t* argument to a C function, where t is the C type corresponding to
the Ada type T.

MAXAda follows this advice.

B.3(68) An Ada access T parameter, or an Ada out or in out parameter of an elemen-
tary type T, is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T. In the case of an elementary out or in out
parameter, a pointer to a temporary copy is used to preserve by-copy seman-
tics.

MAXAda follows this advice.

B.3(69) An Ada parameter of a record type T, of any mode, is passed as a t* argument
to a C function, where t is the C struct corresponding to the Ada type T.

MAXAda does not follow this advice.

MAXAda implements this in the following manner:

• An Ada parameter of a record type T, of modeout or in out, is
passed as a t* argument to a C function, where t is the C struct
corresponding to the Ada type T.

B.3(70) An Ada parameter of an array type with component type T, of any mode, is
passed as a t* argument to a C function, where t is the C type corresponding to
the Ada type T.

MAXAda follows this advice.

B.3(71) An Ada parameter of an access-to-subprogram type is passed as a pointer to
C function whose prototype corresponds to the designated subprogram's speci-
fication.

MAXAda follows this advice.

Notes M

Additional conventions not listed above are as follows:

C

Parameter passing conventions:
M-81

MAXAda Reference Manual RM B.4 Interfacing with COBOL

s
y

• System.Address and its derivatives are passed by value.

Return conventions:

• Elementary types are returned by value.

• Composite types are returned by copying the contents of the compos-
ite object to the address passed in by the caller as the dummy first
argument.

Unchecked_C

Same as theCconvention forC-compatible entities. All other entities are handled a
by theAda convention. Exceptions to nonC-compatible entities being passed as b
theAda convention are listed below:

• Records and arrays are passed by reference; however, no additional
information (ie. dope vectors and constraint flags) is passed.

RM B.4 Interfacing with COBOL M

Static Semantics M

B.4(50) The types Floating, Long_Floating, Binary, Long_Binary, Decimal_Element, and
COBOL_Character; and the initializations of the variables Ada_To_COBOL and
COBOL_To_Ada, in Interfaces.COBOL

Interfaces.COBOL is not supported by MAXAda.

RM B.5 Interfacing with Fortran M

Implementation Advice M

B.5(22) An Ada implementation should support the following interface correspondences
between Ada and Fortran:

B.5(23) An Ada procedure corresponds to a Fortran subroutine.

MAXAda does not support the Fortran convention in the current release.

B.5(24) An Ada function corresponds to a Fortran function.

MAXAda does not support the Fortran convention in the current release.

B.5(25) An Ada parameter of an elementary, array, or record type T is passed as a Tf
argument to a Fortran procedure, where Tf is the Fortran type corresponding
to the Ada type T, and where the INTENT attribute of the corresponding
dummy argument matches the Ada formal parameter mode; the Fortran
implementation's parameter passing conventions are used. For elementary
types, a local copy is used if necessary to ensure by-copy semantics.

MAXAda does not support the Fortran convention in the current release.
M-82

RM B.5 Interfacing with Fortran

to
B.5(26) An Ada parameter of an access-to-subprogram type is passed as a reference
a Fortran procedure whose interface corresponds to the designated subpro-
gram's specification.

MAXAda does not support the Fortran convention in the current release.

Notes M

Additional conventions not listed above are as follows:

Restricted_Fortran

• All Restricted_Fortran compatible entities are passed by
value.
M-83

MAXAda Reference Manual RM C.1 Access to Machine Operations

,

RM Annex C: Systems Programming M

RM C.1 Access to Machine Operations M

Support for access to machine instructions is provided through theSys-
tem.Machine_Code package in the predefined environment.

Implementation Advice M

A list of these instructions may be found in theSystem.Machine_Code package.
This list can also be found in the “PowerPC-604 Instruction Set” on page M-48.

C.1(4) The interfacing pragmas (see Annex B) should support interface to assembler; the
default assembler should be associated with the convention identifier Assembler.

MAXAda follows this advice.

C.1(5) If an entity is exported to assembly language, then the implementation should allo-
cate it at an addressable location, and should ensure that it is retained by the linking
process, even if not otherwise referenced from the Ada code. The implementation
should assume that any call to a machine code or assembler subprogram is allowed
to read or update every object that is specified as exported.

MAXAda follows this advice.

Documentation Requirements M

This information has not yet been documented.

This information has not yet been documented.

This information has not yet been documented.

Implementation Advice M

C.1(10) The implementation should ensure that little or no overhead is associated with call-
ing intrinsic and machine-code subprograms.

MAXAda follows this advice.

C.1(11) It is recommended that intrinsic subprograms be provided for convenient access to
any machine operations that provide special capabilities or efficiency and that are
not otherwise available through the language constructs. Examples of such instruc-
tions include:

C.1(12) Atomic read-modify-write operations -- e.g., test and set, compare and swap
decrement and test, enqueue/dequeue.

MAXAda provides theindivisible_operations package in theven-
dorlib environment which contains the following subprograms:

test_and_set
fetch_and_store
M-84

RM C.3 The Package Interrupts

s to

s to

s to

s to

er-

ered
rupt

rupt
fetch_and_add
fetch_and_increment
increment
decrement

C.1(13) Standard numeric functions -- e.g., sin, log.

MAXAda does not supply any intrinsic subprograms for convenient acces
standard numeric functions.

C.1(14) String manipulation operations -- e.g., translate and test.

MAXAda does not supply any intrinsic subprograms for convenient acces
string manipulation operations.

C.1(15) Vector operations -- e.g., compare vector against thresholds.

MAXAda does not supply any intrinsic subprograms for convenient acces
vector operations.

C.1(16) Direct operations on I/O ports.

MAXAda does not supply any intrinsic subprograms for convenient acces
direct operations on I/O ports.

RM C.3 The Package Interrupts M

Dynamic Semantics M

C.3(2) Implementation-defined aspects of interrupts

MAXAda supports two forms of interrupts: software and hardware. Software int
rupts are operating system signals (seesignal(2)). Hardware interrupts are
machine-generated interrupts from devices such as real-time clocks, edge trigg
devices, VME boards, etc. Hardware interrupts are identified by machine inter
vector numbers.

Consult the user-defined packageAda.Interrupts.Services and Chapter 7 -
Interrupt Handling for important information on using interrupts.

Documentation Requirements M

C.3(12) The implementation shall document the following items:

See Chapter 7 - Interrupt Handling.

All interrupts that can be attached can be blocked. See Chapter 7 - Inter
Handling.

C.3(15) Which run-time stack an interrupt handler uses when it executes as a result of
an interrupt delivery; if this is configurable, what is the mechanism to do so;
how to specify how much space to reserve on that stack.
M-85

MAXAda Reference Manual RM C.3 The Package Interrupts

ed
be

ma

g in

sks

are
tach-
ome

the
sks
cute
n-
tem
en-
r-
licit
See

The

run-
ific

the
The run-time stack for the COURIER or INTR_COURIER task associat
with the attached interrupt. The size of the stack for such tasks can
adjusted by the user via application of pragma POOL_SIZE. See “Prag
POOL_SIZE” on page 6-30.

See Chapter 7 - Interrupt Handling.

No limitations are imposed for software interrupt handlers.

Severe limitations are imposed for hardware interrupt handlers operatin
restricted mode. See Chapter 7 - Interrupt Handling.

C.3(18) The state (blocked/unblocked) of the non-reserved interrupts when the pro-
gram starts; if some interrupts are unblocked, what is the mechanism a pro-
gram can use to protect itself before it can attach the corresponding handlers.

For software interrupts, all non-reserved signals are blocked for all ta
(including theENVIRONMENTtask).

For hardware interrupts, no interrupts are blocked, however, no hardw
interrupts are ever delivered to a program unless the program has an at
ment to them. Hardware interrupts can be restricted to specific CPUs in s
machine configurations. See the chapter on Shielding Processors in thePow-
erMAX OS Real-Time Guide(0890466).

C.3(19) Whether the interrupted task is allowed to resume execution before the inter-
rupt handler returns.

Tasks which are preempted by an interrupt may resume execution before
interrupt handler returns if sufficient system resources are available. Ta
which are interrupted (in the sense that an interrupt causes them to exe
code they would not otherwise execute) will notify the appropriate impleme
tation-defined COURIER task and then resume execution based on sys
resources and priority. Normally, the only tasks interrupted are the implem
tation-supplied COURIER or INTR_COURIER tasks; interruption of use
defined tasks would only occur under unusual circumstances due to exp
user actions (such as the user modifying the signal mask for a user task).
Chapter 7 - Interrupt Handling for more information.

See Chapter 7 - Interrupt Handling for more information.

C.3(21) Whether predefined or implementation-defined exceptions are raised as a
result of the occurrence of any interrupt, and the mapping between the
machine interrupts (or traps) and the predefined exceptions.

No exceptions are raised upon occurence of a non-reserved interrupt.
reserved interrupts,SIGFPE and SIGSEGV, cause the exceptions
Constraint_Error andStorage_Error to be raised, respectively.

C.3(22) On a multi-processor, the rules governing the delivery of an interrupt to a par-
ticular processor.

For software interrupts, the processor affected is the processor which is
ning the task to be interrupted. Users can isolate signal activity to spec
CPUs by modifying the CPU bias of the COURIER task associated with
signal interrupt attachment.
M-86

RM C.3.1 Protected Procedure Handlers

or is

pa-
de
ore

de
ke.

ith
y

For hardware interrupts, the system configuration defines which process
interrupted. See thePowerMAX OS Real-Time Guide(0890466).

Implementation Advice M

C.3(28) If the Ceiling_Locking policy is not in effect, the implementation should provide
means for the application to specify which interrupts are to be blocked during pro-
tected actions, if the underlying system allows for a finer-grain control of interrupt
blocking.

TheCEILING_LOCKING policy is the only locking policy currently supported.

RM C.3.1 Protected Procedure Handlers M

Implementation Advice M

C.3.1(20) Whenever possible, the implementation should allow interrupt handlers to be called
directly by the hardware.

The implementation of interrupt handling was designed specifically with this ca
bility in mind. Handlers are called directly by the hardware in the "restricted" mo
of hardware interrupt handling. See “Hardware Interrupts” on page 7-4 for m
information.

C.3.1(21) Whenever practical, the implementation should detect violations of any implementa-
tion-defined restrictions before run time.

MAXAda generally does not follow this advice.

The compiler does not detect any violations or restrictions for "restricted" mo
interrupt handling, made by protected procedure handlers or the code they invo

The compiler does detect violations of restrictions on the form of tasks marked w
pragmaFAST_INTERRUPT_TASK, but it does not detect any violations made b
protected procedure handlers or the code they invoke.

RM C.3.2 The Package Interrupts M

Documentation Requirements M

C.3.2(24) If the Ceiling_Locking policy (see D.3) is in effect the implementation shall document
the default ceiling priority assigned to a protected object that contains either the
Attach_Handler or Interrupt_Handler pragmas, but not the Interrupt_Priority
pragma. This default need not be the same for all interrupts.

The ceil ing pr ior i ty for protec ted objects withATTACH_HANDLERor
INTERRUPT_HANDLERpragmas but notINTERRUPT_PRIORITY pragma is
System.Interrupt_Priority’First .
M-87

MAXAda Reference Manual RM C.4 Preelaboration Requirements

ure

u-
rently
ther
eres
ges

the
ous

.

a
.

Implementation Advice M

MAXAda does not provide implementation-defined forms of protected proced
handlers.

RM C.4 Preelaboration Requirements M

Documentation Requirements M

Preelaboration is not fully implemented in this release of MAXAda. Specific doc
mentation on when code is generated for Preelaborated packages is not cur
available. Generally, application of pragma Preelaborate does not affect whe
code is generated for the elaboration of such packages. However, MAXAda adh
to all legality rules for this pragma and elaborates all "preelaborated" packa
before any other packages.

C.4(13) Implementation-defined aspects of preelaboration

Preelaboration is not fully implemented in this release of MAXAda.

Implementation Advice M

MAXAda does not follow this advice.

RM C.5 Pragma Discard_Names M

Static Semantics M

C.5(7) The semantics of pragma Discard_Names

In the current release of MAXAda, pragma DISCARD_NAMES does not reduce
storage of entities to which it is applied. Therefore, the semantics of the vari
a t t r i b u t es an d f u n ct i o n s (’ Wi d e_ Im ag e , ’ Wi de _ Va lu e ,
Text_IO.Enumeration_IO , Tags.Expanded_Name , and Excep-
tions.Exception_Name) are the same as if the pragma had not been applied

Implementation Advice M

C.5(8) If the pragma applies to an entity, then the implementation should reduce the
amount of storage used for storing names associated with that entity.

MAXAda does not follow this advice. In the current release of MAXAda, pragm
DISCARD_NAMES does not reduce the storage of entities to which it is applied
M-88

RM C.7.1 The Package Task_Identification

ing

g

g

ro-
the

e

he
ade

he
RM C.7.1 The Package Task_Identification M

Dynamic Semantics M

C.7.1(7) The result of the Task_Identification.Image attribute

For an actual parameter which is a non-nullTask_ID obtained from:

• a task object declared by a single_task_declaration:

Image returns the defining_identifier that appears in the correspond
single_task_declaration.

• a stand-alone variable or constant of a task subtype:

Image re turn s the def in ing_id ent i f ie r f r om the correspon din
object_declaration.

• any other expression of a task subtype (after any implicit derefer-
ence):

Image re turn s the def in ing_id ent i f ie r f r om the correspon din
task_type_declaration.

A Ta s k_ ID i s o b t a in e d f r o m a t a sk u s i n g th e
Ada.Task_Identification.Current_Task function, or by applying the
'Identity attribute to the task object.

Bounded (Run-Time) Errors M

C.7.1(17) The value of Current_Task when in a protected entry or interrupt handler

Current_Task returns the task ID of whatever task is actually executing the p
tected entry at the time of the call (this is not necessarily the task which made
entry call).

Current_Task returnsNull_Task_ID when called from a protected procedur
interrupt handler (during the execution of the interrupt).

Documentation Requirements M

C.7.1(19) The effect of calling Current_Task from an entry body or interrupt handler

Calling Current_Task from an entry body returns the task ID associated with t
task actually executing the entry body (this is not necessarily the task which m
the associated entry call).

Calling Current_Task from a protected procedure interrupt handler results in t
valueNull_Task_ID being returned (during the execution of the interrupt).
M-89

MAXAda Reference Manual RM C.7.2 The Package Task_Attributes

for

sk
RM C.7.2 The Package Task_Attributes M

Documentation Requirements M

C.7.2(18) The implementation shall document the limit on the number of attributes per task, if
any, and the limit on the total storage for attribute values per task, if such a limit
exists.

There are no limits on the number of attributes per task or the total storage
attributes values per task.

C.7.2(19) In addition, if these limits can be configured, the implementation shall document how
to configure them (Implementation-defined aspects of Task_Attributes)

There are no such limits.

Implementation Advice M

C.7.2(30) Some implementations are targeted to domains in which memory use at run time
must be completely deterministic. For such implementations, it is recommended that
the storage for task attributes will be pre-allocated statically and not from the heap.
This can be accomplished by either placing restrictions on the number and the size of
the task's attributes, or by using the pre-allocated storage for the first N attribute
objects, and the heap for the others. In the latter case, N should be documented.

MAXAda currently uses dynamic heap allocation for the implementation of ta
attributes.
M-90

RM D.1 Task Priorities

e of

his
RM Annex D: Real-Time Systems M

Metrics M

D(2) Values of all Metrics

The metrics as required by Annex D are not available at the time of this releas
MAXAda.

RM D.1 Task Priorities M

Static Semantics M

D.1(11) The declarations of Any_Priority and Priority

The following declarations appear in packageSystem :

subtype any_priority is integer range 0..287 ;
subtype priority is any_priority range 0..159 ;

Dynamic Semantics M

RM D.2.1 The Task Dispatching Model M

Dynamic Semantics M

D.2.1(3) Whether, on a multiprocessor, a task that is waiting for access to a protected object
keeps its processor busy

This depends on the locking policy in use. The only available locking policy in t
release isCEILING_LOCKING. A task with this locking policy that is waiting for
access to a protected object keeps its processor busy.

Implementation Permissions M

RM D.2.2 The Standard Task Dispatching Policy M

Legality Rules M

D.2.2(3) Implementation-defined policy_identifiers allowed in a pragma
Task_Dispatching_Policy

Th e f o l lo w i n g p o l i c y_ id e nt i f ie r s a r e v a l id f o r p r a g ma
task_dispatching_policy :

• DEFAULT
M-91

MAXAda Reference Manual RM D.3 Priority Ceiling Locking

ip-

se
• FIFO_WITHIN_PRIORITIES

• ROUND_ROBIN_PRIORITIES

• ROUND_ROBIN_ADJUSTABLE_PRIORITIES

See “Pragma TASK_DISPATCHING_POLICY” on page 6-2 for a detailed descr
tion of these policy identifiers.

Documentation Requirements M

D.2.2(14) Priority inversion is the duration for which a task remains at the head of the highest
priority ready queue while the processor executes a lower priority task. The imple-
mentation shall document:

Implementation Permissions M

RM D.3 Priority Ceiling Locking M

Legality Rules M

D.3(4) Implementation-defined policy_identifiers allowed in a pragma Locking_Policy

The followingpolicy_identifiers are valid for pragmaLOCKING_POLICY:

• CEILING_LOCKING

• SLEEPY_CEILING_LOCKING - (not yet implemented)

• SLEEPY_INHERITANCE_LOCKING - (not yet implemented)

See “Pragma LOCKING_POLICY” on page 6-3 for a detailed description of the
policy identifiers.

Dynamic Semantics M

D.3(10) Default ceiling priorities

The default ceiling priority isInterrupt_Priority’First .

Implementation Permissions M

D.3(16) The ceiling of any protected object used internally by the implementation

This is not applicable to MAXAda.

Implementation Advice M

D.3(17) The implementation should use names that end with ``_Locking'' for implementa-
tion-defined locking policies.

The followingpolicy_identifiers are valid for pragmaLOCKING_POLICY:
M-92

RM D.4 Entry Queuing Policies

nce

lt is

:

• CEILING_LOCKING

• SLEEPY_CEILING_LOCKING - (not yet implemented)

• SLEEPY_INHERITANCE_LOCKING - (not yet implemented)

RM D.4 Entry Queuing Policies M

D.4(1) Implementation-defined queuing policies

MAXAda supports only those queuing policies as defined by the Ada 95 Refere
Manual. They are:

• FIFO_QUEUING

• PRIORITY_QUEUING

These are defined in the Ada 95 Reference Manual, Section D.4. The defau
FIFO_QUEUING.

There are no other implementation-defined queuing policies.

Implementation Advice M

D.4(16) The implementation should use names that end with ``_Queuing'' for implementa-
tion-defined queuing policies.

MAXAda follows this advice.

RM D.6 Preemptive Abort M

Documentation Requirements M

Implementation Advice M

RM D.7 Tasking Restrictions M

Static Semantics M

D.7(8) Any operations that implicitly require heap storage allocation

MAXAda performs dynamic implicit heap allocations for the following operations

• creation of a task, or object of a type with task parts

• creation of a protected object, or object of a type with protected parts

• creation of an object with controlled parts

• creation of a package body stub
M-93

MAXAda Reference Manual RM D.7 Tasking Restrictions

itled
• elaboration of a package instance whose corresponding generic is not
declared within the same compilation unit as the instance or is sepa-
rate

• elaboration of an instance ofAda.Task_Attributes

• elaboration of a shared instance whose generic environment (the
memory space containing information required to differentiate a
shared instance from other shared instances of the same generic) is
larger than 51.2 Kb. See “Pragma SHARE_BODY” on page M-128.

• call to the functionAda.Exceptions.Save_Occurrence (but
not the procedure)

• elaboration of a master, other than that associated with theENVI-
RONMENTtask, which contains any of the following declarations:

- access type

- separate body

- instance whose corresponding generic is not declared within
the same compilation unit as the instance or is separate

• any of the following operations performed at library-level (i.e. any
operation not performed within a subprogram or task):

- creation of an object of a dynamically constrained type

- conversion of a value of a dynamically constrained type

- string catenation producing a dynamically constrained result

- non-string catenation

- logical or "not" operator expression involving dynamically
constrained arrays of booleans

- copy of a dynamically sized bit-aligned actual used for param-
eter passing

- copy of a dynamically sized atomic actual whose correspond-
ing formal type is not atomic (see RM C.6(19))

- call of an’Input attribute whose prefix is a composite type

- call of an instance ofAda.Unchecked_Conversion with a
dynamically constrained target type

- elaboration of a’Storage_Size representation clause

Dynamic Semantics M

D.7(20) Implementation-defined aspects of pragma Restrictions

The effects of the use of pragma RESTRICTIONS are described in the section t
“Pragma RESTRICTIONS” on page M-127.
M-94

RM D.8 Monotonic Time

-

ture

ge
Implementation Advice M

D.7(21) When feasible, the implementation should take advantage of the specified restric
tions to produce a more efficient implementation.

The specified restrictions have no effect upon the run-time in this release. A fu
release will optimize the run-time based upon which restrictions are present.

RM D.8 Monotonic Time M

Static Semantics M

D.8(17) Implementation-defined aspects of package Real_Time

The fo l lowing implementat ion-def ined items are declared in packa
Ada.Real_Time :

a. Time_Unit is 0.000_000_001 seconds (1 nanosecond)
(RM D.8(4-5,30))

b. Tick is 0.000_000_320 (320 nanoseconds) (RM D.8(7-8))

c. Time_Span_First is -2**31 seconds (RM D.8(6-7,31))

d. Time_Span_Last is 2**31-1 seconds (RM D.8(6-7, 31))

e. A clock-jump is currently anticipated at ~ 1-2 microseconds
(RM D.8(32))

f. The Epoch is 1/1/1995; 00:00:00 (RM D.8(19))

g. Time shall be able to represent a range of real times relative to pro-
gram start-up that correspond (roughly) to the following interval (in
years) - 68..68. As such, values of type Time will be able to repre-
sent time periods approximately equivalent to the range of years
defined by 1927..2063.

h. Time_First and Time_Last are identical to their Time_Span counter-
parts (RM D.8(4))

Documentation Requirements M

D.8(33) The implementation shall document the values of Time_First, Time_Last,
Time_Span_First, Time_Span_Last, Time_Span_Unit, and Tick.

The following values are defined in MAXAda:

time_first : two_word := (integer'first, 0)
;

time_last : two_word := (integer'last,
999999999) ;

time_span_first : two_word := (integer'first, 0)
;

time_span_last : two_word := (integer'last, 0)
;

M-95

MAXAda Reference Manual RM D.9 Delay Accuracy

-

tly

-

e

d-
avail-
time_span_zero : two_word := (0, 0) ;
time_span_unit : two_word := (0, 1) ;
tick : two_word := (0, 320) ;

The underlying time base used for the clock is the Night Hawk interval timer.

D.8(35) The implementation shall document whether or not there is any synchronization
with external time references, and if such synchronization exists, the sources of syn
chronization information, the frequency of synchronization, and the synchronization
method applied.

Synchronization of the clock base, i.e. theInterval_Timer , and local time
occurs during system initialization (boot); it is not synchronized subsequen
except through pathological user action.

Pathological user action may interfere with clock behavior.

Implementation Advice M

D.8(47) When appropriate, implementations should provide configuration mechanisms to
change the value of Tick.

It is not appropriate to change the value ofTick ; as such, no mechanism is pro
vided to do that.

D.8(48) It is recommended that Calendar.Clock and Real_Time.Clock be implemented as
transformations of the same time base.

Calendar.Clock is implemented as a set of t ransformations of th
Interval_Timer .

D.8(49) It is recommended that the "best" time base which exists in the underlying system be
available to the application through Clock. "Best" may mean highest accuracy or
largest range.

TheInterval_Timer is the "best" time base which exists in the underlying har
ware. It has both the highest accuracy and the largest range of any time base
able on the system.

RM D.9 Delay Accuracy M

Documentation Requirements M

RM D.12 Other Optimizations and Determinism Rules M

Documentation Requirements M
M-96

RM G.1 Complex Arithmetic

r

d

RM Annex G: Numerics M

Implementation Advice M

G(7) If Fortran (respectively, C) is widely supported in the target environment, implemen-
tations supporting the Numerics Annex should provide the child package Inter-
faces.Fortran (respectively, Interfaces.C) specified in Annex B and should support a
convention_identifier of Fortran (respectively, C) in the interfacing pragmas (see
Annex B), thus allowing Ada programs to interface with programs written in that
language.

Interfaces.C is supplied by MAXAda. Accordingly, the convention_identifie
C is supported by the interfacing pragmas.

RM G.1 Complex Arithmetic M

G.1(1) The accuracy actually achieved by the complex elementary functions and by other
complex arithmetic operations

MAXAda does not provide complex arithmetic packages in this release.

RM G.1.1 Complex Types M

Implementation Requirements M

G.1.1(53) The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real’Signed_Zeros is True

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

G.1.1(56) Because the usual mathematical meaning of multiplication of a complex operand and
a real operand is that of the scaling of both components of the former by the latter, an
implementation should not perform this operation by first promoting the real oper-
and to complex type and then performing a full complex multiplication. In systems
that, in the future, support an Ada binding to IEC 559:1989, the latter technique will
not generate the required result when one of the components of the complex operand
is infinite. (Explicit multiplication of the infinite component by the zero component
obtained during promotion yields a NaN that propagates into the final result.) Anal-
ogous advice applies in the case of multiplication of a complex operand and a pure-
imaginary operand, and in the case of division of a complex operand by a real or
pure-imaginary operand.

MAXAda does not provide complex arithmetic packages in this release.

G.1.1(57) Likewise, because the usual mathematical meaning of addition of a complex operan
and a real operand is that the imaginary operand remains unchanged, an implemen-
tation should not perform this operation by first promoting the real operand to com-
M-97

MAXAda Reference Manual RM G.1.2 Complex Elementary Functions

.

f

lt

a

plex type and then performing a full complex addition. In implementations in which
the Signed_Zeros attribute of the component type is True (and which therefore con-
form to IEC 559:1989 in regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not generate the required result
when the imaginary component of the complex operand is a negatively signed zero
(Explicit addition of the negative zero to the zero obtained during promotion yields a
positive zero.) Analogous advice applies in the case of addition of a complex operand
and a pure-imaginary operand, and in the case of subtraction of a complex operand
and a real or pure-imaginary operand.

MAXAda does not provide complex arithmetic packages in this release.

G.1.1(58) Implementations in which Real'Signed_Zeros is True should attempt to provide a
rational treatment of the signs of zero results and result components. As one exam-
ple, the result of the Argument function should have the sign of the imaginary com-
ponent of the parameter X when the point represented by that parameter lies on the
positive real axis; as another, the sign of the imaginary component of the
Compose_From_Polar function should be the same as (resp., the opposite of) that o
the Argument parameter when that parameter has a value of zero and the Modulus
parameter has a nonnegative (resp., negative) value.

MAXAda does not provide complex arithmetic packages in this release.

RM G.1.2 Complex Elementary Functions M

Implementation Requirements M

G.1.2(45) The sign of a zero result (or a component thereof) from any operator or function in
N u m e r i cs .G e n e r i c _ C o m p l e x _ E l em e n t a r y _ F u n ct i o n s , w h e n
Complex_Types.Real’Signed_Zeros is True

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

G.1.2(49) Implementations in which Complex_Types.Real'Signed_Zeros is True should
attempt to provide a rational treatment of the signs of zero results and result compo-
nents. For example, many of the complex elementary functions have components
that are odd functions of one of the parameter components; in these cases, the resu
component should have the sign of the parameter component at the origin. Other
complex elementary functions have zero components whose sign is opposite that of
parameter component at the origin, or is always positive or always negative.

MAXAda does not provide complex arithmetic packages in this release.

RM G.2 Numeric Performance Requirements M

Implementation Permissions M

G.2(2) Whether the strict mode or the relaxed mode is the default
M-98

RM G.2.1 Model of Floating Point Arithmetic

nt
MAXAda uses the relaxed mode as the default.

RM G.2.1 Model of Floating Point Arithmetic M

Implementation Requirements M

G.2.1(10) The result interval in certain cases of fixed-to-float conversion

MAXAda does not support smalls that are not a power of 2 (T’Machine_Radix)
so there are no implementation-defined result intervals.

G.2.1(13) The result of a floating point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda sinceMachine_Overflows is alwaysTrue .

Implementation Permissions M

G.2.1(16) The result interval for division (or exponentiation by a negative exponent), when the
floating point hardware implements division as multiplication by a reciprocal

This is not applicable to MAXAda. Floating point division is based on expone
subtraction and division of significands.

RM G.2.3 Model of Fixed Point Arithmetic M

Implementation Requirements M

G.2.3(27) The result of a fixed point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda sincemachine_overflows is alwaysTrue .

RM G.2.4 Accuracy Requirements for the Elementary Functions M

G.2.4(4) The result of an elementary function reference in overflow situations, when the
Machine_Overflows attribute of the result type is False

This is not applicable to MAXAda sincemachine_overflows is alwaysTrue .

Implementation Advice M

G.2.4(19) The versions of the forward trigonometric functions without a Cycle parameter
should not be implemented by calling the corresponding version with a Cycle param-
eter of 2.0*Numerics.Pi, since this will not provide the required accuracy in some
portions of the domain. For the same reason, the version of Log without a Base
parameter should not be implemented by calling the corresponding version with a
Base parameter of Numerics.e.
M-99

MAXAda Reference Manual RM G.2.6 Accuracy Requirements for Complex Arithmetic
MAXAda follows this advice.

RM G.2.6 Accuracy Requirements for Complex Arithmetic M

G.2.6(5) The result of a complex arithmetic operation or complex elementary function refer-
ence in overflow situations, when the Machine_Overflows attribute of the corre-
sponding real type is False

This is not applicable to MAXAda sinceMachine_Overflows is alwaysTrue .

G.2.6(8) The accuracy of certain complex arithmetic operations and certain complex elemen-
tary functions for parameters (or components thereof) beyond the angle threshold

MAXAda does not provide complex arithmetic packages in this release.

Implementation Advice M

MAXAda does not provide complex arithmetic packages in this release.
M-100

RM J.7.1 Interrupt Entries

s

RM Annex J: Obsolescent Features M

RM J.7.1 Interrupt Entries M

Documentation Requirements M

Implementation Permissions M

J.7.1(17) The implementation is allowed to impose restrictions on the specifications and bodie
of tasks that have interrupt entries.

A requeue_statementis not allowed within thehandled_sequence_of_statementsof
anaccept_statementif the corresponding entry is an interrupt entry.
M-101

MAXAda Reference Manual RM J.7.1 Interrupt Entries

le-
RM Annex K: Language-Defined Attributes M

The implementation-defined attributes of MAXAda are discussed in “4.1.4(12) Imp
mentation-defined attributes” on page M-13.
M-102

MRM Annex L: Pragmas M

The following lists all implementation-dependent andimplementation-definedpragmas.

Pragma ALL_CALLS_REMOTE - (not yet supported) page M-105

Pragma ASSIGNMENT page M-105

Pragma ASYNCHRONOUS - (not yet supported) page M-105

Pragma ATOMIC page M-105

Pragma ATOMIC_COMPONENTS page M-106

Pragma ATTACH_HANDLER page M-106

Pragma CONTROLLED page M-106

Pragma CONVENTION page M-107

Pragma DATA_RECORD - (obsolete) page M-108

Pragma DEBUG page M-108

Pragma DEFAULT_HARDNESS page M-109

Pragma DEPRECATED_FEATURE page M-109

Pragma DISCARD_NAMES page M-109

Pragma DISTRIBUTED_LOCAL_LOCKING page M-110

Pragma DONT_ELABORATE page M-110

Pragma ELABORATE page M-110

Pragma ELABORATE_ALL page M-110

Pragma ELABORATE_BODY page M-111

Pragma EXPORT page M-111

Pragma EXTERNAL_NAME - (obsolete) page M-112

Pragma FAST_INTERRUPT_TASK page M-112

Pragma GROUP_CPU_BIAS page M-113

Pragma GROUP_PRIORITY page M-113

Pragma GROUP_SERVERS page M-113

Pragma IMPLICIT_CODE page M-114

Pragma IMPORT page M-114

Pragma INLINE page M-115

Pragma INSPECTION_POINT - (not yet supported) page M-116

Pragma INTERESTING page M-116

Pragma INTERFACE - (obsolete) page M-117

Pragma INTERFACE_NAME - (obsolete) page M-117

Pragma INTERFACE_OBJECT - (obsolete) page M-118

Pragma INTERFACE_SHARED - (obsolete) page M-118

Pragma INTERRUPT_HANDLER page M-118

Pragma INTERRUPT_PRIORITY page M-118

Pragma LINK_OPTION - (obsolete) page M-119

Pragma LINKER_OPTIONS page M-119

Pragma LIST page M-119
M-103

MAXAda Reference Manual
Pragma LOCKING_POLICY page M-119

Pragma MAP_FILE page M-120

Pragma MEMORY_POOL page M-120

Pragma NORMALIZE_SCALARS - (not yet supported) page M-120

Pragma OPT_FLAGS page M-121

Pragma OPT_LEVEL page M-122

Pragma OPTIMIZE page M-122

Pragma PACK page M-123

Pragma PAGE page M-123

Pragma PASSIVE_TASK - (obsolete) page M-123

Pragma POOL_CACHE_MODE page M-123

Pragma POOL_LOCK_STATE page M-124

Pragma POOL_PAD page M-124

Pragma POOL_SIZE page M-124

Pragma PREELABORATE page M-124

Pragma PRIORITY page M-125

Pragma PROTECTED_PRIORITY page M-125

Pragma PURE page M-126

Pragma QUEUING_POLICY page M-126

Pragma REMOTE_CALL_INTERFACE - (not yet supported) page M-126

Pragma REMOTE_TYPES - (not yet supported) page M-126

Pragma RESTRICTIONS page M-127

Pragma RETURN_CONVENTION page M-127

Pragma REVIEWABLE - (not yet supported) page M-128

Pragma RUNTIME_DIAGNOSTICS page M-128

Pragma SERVER_CACHE_SIZE page M-128

Pragma SHARE_BODY page M-128

Pragma SHARE_MODE page M-129

Pragma SHARED - (obsolete) page M-130

Pragma SHARED_PACKAGE page M-130

Pragma SHARED_PASSIVE - (not yet supported) page M-130

Pragma SPECIAL_FEATURE page M-130

Pragma STORAGE_SIZE page M-131

Pragma SUPPRESS page M-131

Pragma SUPPRESS_ALL page M-132

Pragma TASK_CPU_BIAS page M-132

Pragma TASK_DISPATCHING_POLICY page M-132

Pragma TASK_HANDLER page M-133

Pragma TASK_PRIORITY page M-133

Pragma TASK_QUANTUM page M-133

Pragma TASK_WEIGHT page M-134

Pragma TDESC page M-134
M-104

Pragma ALL_CALLS_REMOTE - (not yet supported)

ent

ent

ent

nce

tomic
An

.

by
Pragma ALL_CALLS_REMOTE - (not yet supported) M

PragmaALL_CALLS_REMOTEis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ASSIGNMENT M

NOTE

PragmaASSIGNMENTis reserved for internal MAXAda use only;
it is not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ASYNCHRONOUS - (not yet supported) M

PragmaASYNCHRONOUSis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ATOMIC M

PragmaATOMICis implemented as described in Section C.6 of the Ada 95 Refere
Manual.

Its syntax is:

pragma ATOMIC(local_name);

This pragma accepts a single variable name which must be of a type which can be a
for the pragma to apply. All reads and updates of an atomic object are indivisible.
atomic object is also defined to be volatile (see “Pragma VOLATILE” on page M-134)

PragmaATOMICshould be used on any variable that may be modified concurrently
different threads of a program (e.g. semaphores).

Pragma TRAMPOLINE page M-134

Pragma VOLATILE page M-134

Pragma VOLATILE_COMPONENTS page M-135
M-105

MAXAda Reference Manual Pragma ATOMIC_COMPONENTS

ent

a

h can
ivisi-
ge

n-

ent

95

ent

t in

the

on-
See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ATOMIC_COMPONENTS M

PragmaATOMIC_COMPONENTSis implemented as described in Section C.6 of the Ad
95 Reference Manual.

Its syntax is:

pragma ATOMIC_COMPONENTS(array_local_name);

This pragma accepts an array name, the components of which must be of a type whic
be atomic for the pragma to apply. All reads and updates of an atomic object are ind
ble. An atomic object is also defined to be volatile (see “Pragma VOLATILE” on pa
M-134).

PragmaATOMIC_COMPONENTSshould be used on variables that may be modified co
currently by different threads of a program (e.g. semaphores).

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ATTACH_HANDLER M

PragmaATTACH_HANDLERis implemented as described in Section C.3.1 of the Ada
Reference Manual.

Its syntax is:

pragma ATTACH_HANDLER(handler_name,expresion);

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma CONTROLLED M

PragmaCONTROLLEDis recognized by the implementation but does not have an effec
this release.

Its syntax is:

pragma CONTROLLED(first_subtype_local_name);

PragmaCONTROLLEDis used to prevent any automatic reclamation of storage for
objects created by allocators of a given access type.

This pragma accepts a single argument which shall be the defining identifier of a n
derived access type declaration.
M-106

Pragma CONVENTION

is

this

ent

er-

other

f the

-
ecific

this

ent
PragmaCONTROLLEDhas no effect in this release of MAXAda as garbage collection
not supported. (Ada 95 Reference Manual 13.11.3(8))

See Section 13.11.3 of the Ada 95 Reference Manual for more information about
pragma.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma CONVENTION M

PragmaCONVENTIONis implemented as described in Section B.1 of the Ada 95 Ref
ence Manual.

Its syntax is:

pragma CONVENTION([Convention=>] convention_identifier,
[Entity=>]local_name);

This pragma is used to specify that an Ada entity should use the conventions of an
language. This pragma is referred to in the Ada 95 Reference Manual as aninterfacing
pragma.

An interfacing pragma defines the convention of the entity denoted bylocal_name .
The convention represents the calling convention or representation convention o
entity.

Theconvention_identifier is the name of aconvention. The convention names repre
sent the calling conventions of foreign languages, language implementations, or sp
run-time models.

The allowable conventions are:

• Ada

• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

See “RM B.1 Interfacing Pragmas” on page M-75 for details on the implementation of
pragma with respect to the Ada 95 Reference Manual.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-107

MAXAda Reference Manual Pragma DATA_RECORD - (obsolete)

ossi-

ent

g
r

ary
to

hin
me-
ed

for

t be
on is
er-

ent
Pragma DATA_RECORD - (obsolete) M

The implementation-defined pragmaDATA_RECORDis obsolete. It will be removed in a
future release and should not be used. Use “Pragma DEBUG” on page M-108 and p
bly “Pragma INTERESTING” on page M-116 instead.

In this release, if pragmaDATA_RECORDis used, pragmaDEBUGwill be activated
instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma DEBUG M

The implementation-defined pragmaDEBUGspecifies the debug level for a compilation
unit from within the Ada source code.

Its syntax is:

pragma DEBUG([unit_name,] debug_level);

whereunit_name, if specified, is the name of the compilation unit for which the debu
level is being specified, and wheredebug_levelis the debug level which should be used fo
that compilation unit. The possible values fordebug_levelareNONE, LINES , andFULL.

The single-parameter form of this pragma is allowed only immediately within a libr
unit or as a configuration pragma. When specified within a library unit, it applies only
that library unit. When specified as a configuration pragma, it applies to all units wit
the same compilation, if any, or to all units in the environment, if none. The two-para
ter form of this pragma is allowed only immediately following the unit which is specifi
as theunit_nameargument. It applies only to the unit which is specified.

If applied to a specification, the debug level does notapply to the body or any separate
bodies of the unit. If applied to a body, the debug level does notapply to any separate
bodies of the unit. If the debug level is desired for any such units, it must be specified
them, too.

The pragma is meaningless when applied to a generic unit. If so applied, it will no
applied to any instantiations of that generic. The debug level applied to an instantiati
the debug level of the unit which contains it, or if the instantiation is library-level, is det
mined in the same way as for any other library-level unit.

See “Real-Time Debugging” on page 3-38 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-108

Pragma DEFAULT_HARDNESS

r

ent

anged
nit
m-
stic
f the

ent

an

gma.

ent
Pragma DEFAULT_HARDNESS M

The implementation-defined pragmaDEFAULT_HARDNESSsets the default hardness fo
any memory bound to LOCAL via a pragmaMEMORY_POOL.

Its syntax is:

pragma DEFAULT_HARDNESS(hardness) ;

See “Pragma DEFAULT_HARDNESS” on page 6-4 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma DEPRECATED_FEATURE M

NOTE

PragmaDEPRECATED_FEATUREis reserved for internal MAX-
Ada use only; it is not intended for use in user-defined code.

This pragma marks packages that have been deprecated and may be significantly ch
or completely removed in future releases of MAXAda. Whenever a compilation u
requires another unit (via awith clause) that has been marked with this pragma, a co
piler alert (diagnostic) is issued. The alert consists of a standard MAXAda diagno
header followed by the exact text of the string that is the single required argument o
pragma.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma DISCARD_NAMES M

PragmaDISCARD_NAMESis recognized by the implementation but does not have
effect in this release.

Its syntax is:

pragma DISCARD_NAMES[([On=>]local_name)];

See Section C.5 of the Ada 95 Reference Manual for more information about this pra

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-109

MAXAda Reference Manual Pragma DISTRIBUTED_LOCAL_LOCKING

on

ip-

nt”

ent

ent

fer-

ent

95
Pragma DISTRIBUTED_LOCAL_LOCKING M

The implementation-defined pragmaDISTRIBUTED_LOCAL_LOCKINGindicates that
any partition linked with the library units to which it applies has both a distributi
requirement and a local-locking requirement.

Its syntax is:

pragma DISTRIBUTED_LOCAL_LOCKING;

See “Pragma DISTRIBUTED_LOCAL_LOCKING” on page 6-5 for a complete descr
tion.

See “Distribution Requirement” on page 5-16 and “Local Memory Locking Requireme
on page 5-17 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma DONT_ELABORATE M

The implementation-defined pragmaDONT_ELABORATEprevents dynamic elaboration
of any library units to which it applies.

Its syntax is:

pragma DONT_ELABORATE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ELABORATE M

PragmaELABORATEis implemented as described in Section 10.2.1 of the Ada 95 Re
ence Manual.

Its syntax is:

pragma ELABORATE(library_unit_name{, library_unit_name});

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ELABORATE_ALL M

PragmaELABORATE_ALLis implemented as described in Section 10.2.1 of the Ada
Reference Manual.
M-110

Pragma ELABORATE_BODY

ent

95

ent

nce

Ada
rom a

f the

-
ecific
Its syntax is:

pragma ELABORATE_ALL(library_unit_name{, library_unit_name});

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma ELABORATE_BODY M

PragmaELABORATE_BODYis implemented as described in Section 10.2.1 of the Ada
Reference Manual.

Its syntax is:

pragma ELABORATE_BODY[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma EXPORT M

PragmaEXPORTis implemented as described in Section B.1 of the Ada 95 Refere
Manual.

Its syntax is:

pragma EXPORT([Convention=>] convention_identifier,
[Entity=>]local_name
[,[External_Name=>] string_expression]
[,[Link_Name=>] string_expression]);

This pragma is used to export an Ada entity to a foreign language, thus allowing an
subprogram to be called from a foreign language, or an Ada object to be accessed f
foreign language. This pragma is referred to in the Ada 95 Reference Manual as aninter-
facing pragma.

An interfacing pragma defines the convention of the entity denoted bylocal_name .
The convention represents the calling convention or representation convention o
entity.

Theconvention_identifier is the name of aconvention. The convention names repre
sent the calling conventions of foreign languages, language implementations, or sp
run-time models.

The allowable conventions are:

• Ada

• Assembler

• C
M-111

MAXAda Reference Manual Pragma EXTERNAL_NAME - (obsolete)

ro-

en-

the
an

both

this

ent

4 or

ent
• Unchecked_C

• Restricted_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

PragmaEXPORToptionally specifies an entity’s external name, link name, or both.

An External_Name is a string value for the name used by the foreign language p
gram for referring to an entity that an Ada program exports.

A Link_Name is a string value for the name of the exported entity, based on the conv
tions of the foreign language’s compiler in interfacing with the system’s linker tool.

The meaning of link names is implementation defined. If neither a link name nor
Address attribute of an imported entity is specified, then a link name is chosen in
implementation-defined manner, based on the external name if one is specified. If
the external name and the link name are specified, the external name is ignored.

See “RM B.1 Interfacing Pragmas” on page M-75 for details on the implementation of
pragma with respect to the Ada 95 Reference Manual.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma EXTERNAL_NAME - (obsolete) M

The implementation-defined pragmaEXTERNAL_NAMEis obsolete. It will be removed in
a future release and should not be used. Use “Pragma IMPORT” on page M-11
“Pragma EXPORT” on page M-111 instead.

In this release, if pragmaEXTERNAL_NAMEis used with pragmaINTERFACE(see
“Pragma INTERFACE - (obsolete)” on page M-117), pragmaIMPORTwill be activated
instead. Otherwise, pragmaEXPORTwill be activated instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma FAST_INTERRUPT_TASK M

The implementation-defined pragmaFAST_INTERRUPT_TASKprovides extremely fast
interrupt handling.

Its syntax is:

pragma FAST_INTERRUPT_TASK;
M-112

Pragma GROUP_CPU_BIAS

this
uring

ot be

ent

ent

ent
Use of this pragma causes the task to execute directly at interrupt-level. Use of
pragma requires severe limitations on the form of the task and the actions taken d
rendezvous.

The compiler enforces many of the restrictions on the task; however, others cann
detected and are not enforced by the compiler.

See “Pragma FAST_INTERRUPT_TASK” on page 7-13 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma GROUP_CPU_BIAS M

The implementation-defined pragmaGROUP_CPU_BIASspecifies the CPU bias for all
the servers in a given group.

Its syntax is:

pragma GROUP_CPU_BIAS(cpu_bias, group_spec) ;

See “Pragma GROUP_CPU_BIAS” on page 6-19 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma GROUP_PRIORITY M

The implementation-defined pragmaGROUP_PRIORITYspecifies the operating system
scheduling priority of all the servers in a given group.

Its syntax is:

pragma GROUP_PRIORITY(scheduling_priority, group_spec) ;

See “Pragma GROUP_PRIORITY” on page 6-19 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma GROUP_SERVERS M

The implementation-defined pragmaGROUP_SERVERScontrols the number of servers
for a particular group, including thePREDEFINEDgroup.

Its syntax is:

pragma GROUP_SERVERS(group_size, group_spec) ;
M-113

MAXAda Reference Manual Pragma IMPLICIT_CODE

ent

used
e
” on

ent

nce

pro-
ign-
Ref-

f the

-
ecific
See “Pragma GROUP_SERVERS” on page 6-20 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma IMPLICIT_CODE M

The implementation-defined pragmaIMPLICIT_CODE provides a way to eliminate the
stack frame and the copying of parameters when using theMachine_Code package.

Its syntax is:

pragma IMPLICIT_CODE(flag) ;

This pragma takes a single argument (ONor OFF). WhenOFF, it does not generate code
for the argument copies, nor does it generate any return code upon exiting. It can be
as an optimization for writingMachine_Code routines to eliminate the generation of th
implicit code. An example demonstrating the use of this pragma is given in “Usage
page M-53.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma IMPORT M

PragmaIMPORTis implemented as described in Section B.1 of the Ada 95 Refere
Manual.

Its syntax is:

pragma IMPORT([Convention=>] convention_identifier,
[Entity=>]local_name
[,[External_Name=>] string_expression]
[,[Link_Name=>] string_expression]);

This pragma is used to import an entity defined in a foreign language into an Ada
gram, thus allowing a foreign-language subprogram to be called from Ada, or a fore
language variable to be accessed from Ada. This pragma is referred to in the Ada 95
erence Manual as aninterfacing pragma.

An interfacing pragma defines the convention of the entity denoted bylocal_name .
The convention represents the calling convention or representation convention o
entity.

Theconvention_identifier is the name of aconvention. The convention names repre
sent the calling conventions of foreign languages, language implementations, or sp
run-time models.

The allowable conventions are:

• Ada
M-114

Pragma INLINE

ro-

en-

the
an

both

this

ent

nce

com-
pro-
• Assembler

• C

• Unchecked_C

• Restricted_Fortran

• Entry (internal use only)

• Intrinsic (internal use only)

• Protected (internal use only)

PragmaIMPORToptionally specifies an entity’s external name, link name, or both.

An External_Name is a string value for the name used by the foreign language p
gram for the entitiy that an Ada program imports.

A Link_Name is a string value for the name of the imported entity, based on the conv
tions of the foreign language’s compiler in interfacing with the system’s linker tool.

The meaning of link names is implementation defined. If neither a link name nor
Address attribute of an imported entity is specified, then a link name is chosen in
implementation-defined manner, based on the external name if one is specified. If
the external name and the link name are specified, the external name is ignored.

See “RM B.1 Interfacing Pragmas” on page M-75 for details on the implementation of
pragma with respect to the Ada 95 Reference Manual.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INLINE M

PragmaINLINE is implemented as described in Section 6.3.2 of the Ada 95 Refere
Manual.

Its syntax is:

pragma INLINE(name{,name});

However, there are a number of restrictions on inline subprogram expansion. The
piler will issue a warning, not perform the inline expansion, and output code for a sub
gram call if any of these restrictions are violated or exceeded.

The restrictions and limitations on inline subprogram expansion include:

• The body of the subprogram must be compiled before it can be expanded
inline. Thea.build utility, when the-IO option is specified with a value
other than0, attempts to compile bodies that define inline subprograms
before bodies that use inline subprograms, however, if two bodies contain
mutual inline dependencies,a.build chooses, in an arbitrary manner,
which to compile first.
M-115

MAXAda Reference Manual Pragma INSPECTION_POINT - (not yet supported)

f the
u-

anded

ent

ent
• There are a number of Ada constructs that prevent inline expansion if they
appear in the declarations of a subprogram marked with pragmaINLINE .
These constructs include tasks, most generic instantiations, and (inner)
subprograms that perform up-level addressing.

• Direct or indirect recursive calls are never inline-expanded.

• The actual parameters to the inline expanded subprogram must not contain
task objects, must not contain dependent arrays, and must have complete
type declarations.

• Subprograms marked with pragmaINTERFACE are never inline-
expanded.

The uncontrolled use of inline expansion can adversely affect the performance o
MAXAda compiler itself. Inline expansion can be controlled by using MAXAda config
ration management described in “Qualifier Keywords (-Q options)” on page 4-115.

Subprograms that contain machine-code insertion statements are always inline exp
if they are marked with pragmaINLINE , regardless of any configuration limits.

WARNING

Inline expansion of machine-code procedures is supported, but the
user should exercise caution. It is not recommended practice to
inline-expand machine-code procedures, as the compiler does not
track register uses and definitions made by machine-code proce-
dures.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INSPECTION_POINT - (not yet supported) M

PragmaINSPECTION_POINT is not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERESTING M

The implementation-defined pragmaINTERESTING specifies the degree of interest of a
named entity.

Its syntax is:

pragma INTERESTING(static_expression[, simple_name]);
M-116

Pragma INTERFACE - (obsolete)

ared
clar-

ntity.
a

ts or

m

lt
-Q

ent

ad.

ent

-114

ent
The specifiedstatic_expression must be a static integer value. Thesimple_name is an
optional argument denoting an entity visible at the place of the pragma and decl
within the same declarative part as the pragma. If omitted, the pragma must be in a de
ative part and then applies to that declarative part.

This pragma indicates in the debug information the degree of interest of a named e
This information is only useful if full debug information is enabled (see “Pragm
DEBUG” on page M-108 or “Debug Level (-g[level])” on page 4-110).

This information is useful in conjunction with theReal_Time_Data_Monitoring
package. A minimum interest "threshold" may be specified to restrict the set of objec
components to be monitored using theinterest_threshold parameter (see “rtdm”
on page 9-12).

This information is also useful in conjunction with the NightView debugger. A minimu
interest threshold may be specified via theinterest command to restrict the set of rou-
tines to be displayed in various circumstances.

In addition, the-Qinteresting compile option may be used to indicate the defau
degree of interest for every entity in the compilation. See “Qualifier Keywords (
options)” on page 4-115 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERFACE - (obsolete) M

The implementation-defined pragmaINTERFACEis obsolete. It will be removed in a
future release and should not be used. Use “Pragma IMPORT” on page M-114 inste

In this release, if pragmaINTERFACEis used, pragmaIMPORTwill be activated instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERFACE_NAME - (obsolete) M

The implementation-defined pragmaINTERFACE_NAMEis obsolete. It will be removed
in a future release and should not be used. Use “Pragma IMPORT” on page M
instead.

In this release, if pragmaINTERFACE_NAMEis used, pragmaIMPORTwill be activated
instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-117

MAXAda Reference Manual Pragma INTERFACE_OBJECT - (obsolete)

page

ent

page

ent

da

ent

a

ent
Pragma INTERFACE_OBJECT - (obsolete) M

The implementation-defined pragmaINTERFACE_OBJECTis obsolete. It will be
removed in a future release and should not be used. Use “Pragma IMPORT” on
M-114 instead.

In this release, if pragmaINTERFACE_OBJECTis used, pragmaIMPORTwill be acti-
vated instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERFACE_SHARED - (obsolete) M

The implementation-defined pragmaINTERFACE_SHAREDis obsolete. It will be
removed in a future release and should not be used. Use “Pragma IMPORT” on
M-114 with “Pragma VOLATILE” on page M-134 instead.

In this release, if pragmaINTERFACE_SHAREDis used, pragmaIMPORTand pragma
VOLATILE will be activated instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERRUPT_HANDLER M

PragmaINTERRUPT_HANDLERis implemented as described in Section C.3.1 of the A
95 Reference Manual.

Its syntax is:

pragma INTERRUPT_HANDLER(handler_name);

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma INTERRUPT_PRIORITY M

PragmaINTERRUPT_PRIORITY is implemented as described in Section D.1 of the Ad
95 Reference Manual.

Its syntax is:

pragma INTERRUPT_PRIORITY[(expression)];

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-118

Pragma LINK_OPTION - (obsolete)

-119

ent

5

ta-

ent

an-

ent

95
Pragma LINK_OPTION - (obsolete) M

The implementation-defined pragmaLINK_OPTION is obsolete. It will be removed in a
future release and should not be used. Use “Pragma LINKER_OPTIONS” on page M
instead.

In this release, if pragmaLINK_OPTION is used, pragmaLINKER_OPTIONSwill be
activated instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma LINKER_OPTIONS M

PragmaLINKER_OPTIONSis implemented as described in Section B.1 of the Ada 9
Reference Manual.

Its syntax is:

pragma LINKER_OPTIONS(string_expression);

See also “B.1(37) The effect of pragma Linker_Options” on page M-76 for implemen
tion-defined aspects of this pragma.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma LIST M

PragmaLIST is implemented as described in Section 2.8 of the Ada 95 Reference M
ual.

Its syntax is:

pragma LIST(identifier);

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma LOCKING_POLICY M

PragmaLOCKING_POLICYis implemented as described in Section D.3 of the Ada
Reference Manual.

Its syntax is:

pragma LOCKING_POLICY(policy_identifier);
M-119

MAXAda Reference Manual Pragma MAP_FILE

Y”

ma

ent

ent

l

ent

ent
This pragma sets the protected object locking policy. See “Pragma LOCKING_POLIC
on page 6-3 for a complete description.

See also “D.3(4) Implementation-defined policy_identifiers allowed in a prag
Locking_Policy” on page M-92.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma MAP_FILE M

The implementation-defined pragmaMAP_FILE causes a map file to be emitted at link
time.

Its syntax is:

pragma MAP_FILE(file_name) ;

See “Pragma MAP_FILE” on page 6-2 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma MEMORY_POOL M

The implementation-defined pragmaMEMORY_POOLchanges physical memory poo
attributes from their default values for a memory pool.

Its syntax is:

pragma MEMORY_POOL(pool_spec, memory_spec) ;

See “Pragma MEMORY_POOL” on page 6-23 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma NORMALIZE_SCALARS - (not yet supported) M

PragmaNORMALIZE_SCALARSis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-120

Pragma OPT_FLAGS

ng,
om-
the

d in
fig-

the
led
con-

ion
y val-

ther

ent
Pragma OPT_FLAGS M

The implementation-defined pragmaOPT_FLAGSprovides a method for overriding the
optimization parameters defined by a MAXAda environment’s configuration.

Its syntax is:

pragma OPT_FLAGS(string_expression);

The OPT_FLAGSpragma takes a single string literal as an argument. This stri
enclosed in quotes, should contain all of the optimizer flags to be overridden for the c
pilation, along with the value to be observed. The literal string argument must take
form:

" flag = value, flag = value, flag = value ..."

Nine flags are recognized by the MAXAda compiler. Many of these flags are describe
detail in “Qualifier Keywords (-Q options)” on page 4-115 of this manual and are con
urable not only via the pragma, but also as parameters to thea.options tool. The opti-
mizer flags are:

objects
loops
unroll_limit_const
unroll_limit_var
unroll_limit
growth_limit
optimize_for_space
opt_class
noreorder

By specifying a configuration value for an optimizer parameter using this pragma,
given value is observed by the MAXAda compiler when the enclosing unit is compi
(regardless of the value specified for the optimizer parameter(s) in the environment’s
figuration).

For example, the line:

pragma OPT_FLAGS("growth_limit=200, unroll_limit=5");

optimizes a total of 200 objects and uses a loop unrolling limit of 5 for the compilat
unit whose declarative part contains the preceding pragma. These values override an
ues given by a local or system configuration record for the compilation.

Compilation units that omit any flags from the pragma or that omit the pragma altoge
observe the optimizer flag values specified by corresponding-Q options applied to the
unit or the environment.

See “Compile Options” on page 4-109 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-121

MAXAda Reference Manual Pragma OPT_LEVEL

a-

ary
to

hin
me-
ed

ust

t be
nti-
y-

ent

t in

en-

ma.

ent
Pragma OPT_LEVEL M

The implementation-defined pragmaOPT_LEVELcontrols the level of optimization per-
formed by the compiler.

Its syntax is:

pragma OPT_LEVEL([unit_name,] level);

whereunit_name, if specified, is the name of the compilation unit for which the optimiz
tion level is being specified, and where thelevel is one of:MINIMAL, GLOBAL, or MAXI-
MAL.

The single-parameter form of this pragma is allowed only immediately within a libr
unit or as a configuration pragma. When specified within a library unit, it applies only
that library unit. When specified as a configuration pragma, it applies to all units wit
the same compilation, if any, or to all units in the environment, if none. The two-para
ter form of this pragma is allowed only immediately following the unit which is specifi
as theunit_nameargument. It applies only to the unit which is specified.

If applied to a specification, the optimization level does notapply to the body or any sepa-
rate bodies of the unit. If applied to a body, the optimization level does notapply to any
separate bodies of the unit. If the optimization level is desired for any such units, it m
be specified for them, too.

The pragma is meaningless when applied to a generic unit. If so applied, it will no
applied to any instantiations of that generic. The optimization level applied to an insta
ation is the optimization level of the unit which contains it, or if the instantiation is librar
level, is determined in the same way as for any other library-level unit.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma OPTIMIZE M

PragmaOPTIMIZE is recognized by the implementation but does not have an effec
this release.

Its syntax is:

pragma OPTIMIZE(identifier);

See the-O compile option for code optimization levels (see page 4-109) or the implem
tation-defined pragmaOPT_LEVEL.

See Section 2.8 of the Ada 95 Reference Manual for more information about this prag

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-122

Pragma PACK

an-

nts of
vel.

ent

an-

ent

ent

ent
Pragma PACK M

PragmaPACKis implemented as described in Section 13.2 of the Ada 95 Reference M
ual.

Its syntax is:

pragma PACK(first_subtype_local_name);

This pragma causes the compiler to choose a non-aligned representation for eleme
composite types. Application of the pragma causes objects to be packed to the bit le

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma PAGE M

PragmaPAGEis implemented as described in Section 2.8 of the Ada 95 Reference M
ual.

Its syntax is:

pragma PAGE;

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma PASSIVE_TASK - (obsolete) M

The implementation-defined pragmaPASSIVE_TASKis obsolete. It will be removed in a
future release and should not be used. Use protected objects instead.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma POOL_CACHE_MODE M

The implementation-defined pragmaPOOL_CACHE_MODEdefines the cache mode for a
memory pool.

Its syntax is:

pragma POOL_CACHE_MODE(pool_spec, cache_mode) ;

See “Pragma POOL_CACHE_MODE” on page 6-29 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-123

MAXAda Reference Manual Pragma POOL_LOCK_STATE

ent

.

ent

ent

95
Pragma POOL_LOCK_STATE M

The implementation-defined pragmaPOOL_LOCK_STATEdefines the lock state of a
memory pool.

Its syntax is:

pragma POOL_LOCK_STATE(pool_spec, lock_state);

See “Pragma POOL_LOCK_STATE” on page 6-29 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma POOL_PAD M

The implementation-defined pragmaPOOL_PADsets the pad for a STACK memory pool

Its syntax is:

pragma POOL_PAD(paddable_spec, size);

See “Pragma POOL_PAD” on page 6-32 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma POOL_SIZE M

The implementation-defined pragmaPOOL_SIZE sets the size for a STACK or COL-
LECTION memory pool.

Its syntax is:

pragma POOL_SIZE(sizeable_spec, size_spec) ;

See “Pragma POOL_SIZE” on page 6-30 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma PREELABORATE M

PragmaPREELABORATEis implemented as described in Section 10.2.1 of the Ada
Reference Manual.

Its syntax is:
M-124

Pragma PRIORITY

ent

nce

ent

ro-

ent
pragma PREELABORATE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma PRIORITY M

PragmaPRIORITY is implemented as described in Section D.1 of the Ada 95 Refere
Manual.

Its syntax is:

pragma PRIORITY(expression);

Priorities range from 0 through 287, with 287 being the most urgent.

See “Pragma TASK_PRIORITY” on page M-133 for a related pragma.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma PROTECTED_PRIORITY M

The implementation-defined pragmaPROTECTED_PRIORITYsets the scheduling prior-
ity for a given protected object.

Its syntax is:

pragma PROTECTED_PRIORITY(scheduling_priority
[, protected_object_specifier]);

See “Pragma PROTECTED_PRIORITY” on page 6-33 for a complete description of p
tected priorities.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-125

MAXAda Reference Manual Pragma PURE

nce

ent

95

ent

ent

ent
Pragma PURE M

PragmaPUREis implemented as described in Section 10.2.1 of the Ada 95 Refere
Manual.

Its syntax is:

pragma PURE[(library_unit_name)];

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma QUEUING_POLICY M

PragmaQUEUING_POLICYis implemented as described in Section D.4 of the Ada
Reference Manual.

Its syntax is:

pragma QUEUING_POLICY(policy_identifier);

The implementation-defined pragmaQUEUING_POLICYsets the entry queuing policy.

See “Pragma QUEUING_POLICY” on page 6-2 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma REMOTE_CALL_INTERFACE - (not yet supported) M

PragmaREMOTE_CALL_INTERFACEis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma REMOTE_TYPES - (not yet supported) M

PragmaREMOTE_TYPESis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-126

Pragma RESTRICTIONS

s
on-

he
any
best
ne

aran-

nual
iled
enta-

this

ent

rn-

rther,
Pragma RESTRICTIONS M

In this release, pragmaRESTRICTIONSis supported only for the tasking restriction
defined in Section D.7 of the Ada 95 Reference Manual and for the implemenati
defined restrictionNo_Stream_Attributes .

Its syntax is:

pragma RESTRICTIONS(restriction{,restriction});

Th e d y n a mi c r e s t r i c t i o n s M ax _ St or ag e _A t_ Bl o ck in g ,
Max_Asynchronous_Select_Nesting , andMax_Tasks have no effect in this
release. A future release will enforce the limits set by these restrictions.

The presence of the restrictionNo_Stream_Attributes indicates that the’Read ,
’Write , ’Input , and’Output attributes can never be referenced. This allows t
implementation to omit routines to implement stream attributes for tagged types in
units to which this restriction applies. This results in a space savings. To achieve
results with this restriction, it should be applied to all units in a partition. A stand-alo
configuration pragma (see “Configuration Pragmas” on page 3-9) can be used to gu
tee this.

The presence of any restrictions defined in Section D.7 of the Ada 95 Reference Ma
has no effect upon the run-time in this release. A future release will optimize the comp
code and the run-time based upon which restrictions are present. That is, the Implem
tion Advice at D.7(22) is ignored in this release.

See Section 13.12 of the Ada 95 Reference Manual for more information about
pragma.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma RETURN_CONVENTION M

The implementation-defined pragmaRETURN_CONVENTIONis used to specify that a
composite type should be returnedBY_REGISTERrather thanBY_COPY.

Its syntax is:

pragma RETURN_CONVENTION(convention, identifier);

where:

convention ::= BY_REGISTER | BY_COPY
identifier ::= subtype_mark| function_identifier

Thesubtype_mark(or result type of the specified function) must resolve to denote a retu
by-copy type as per Ada 95 Reference Manual 6.5(17).

The current implementation further restricts the application ofRETURN_CONVENTIONto
record types (or functions returning record types) whose sizes are 8 bytes or less. Fu
theBY_REGISTERconvention is the only convention currently allowed in the pragma.
M-127

MAXAda Reference Manual Pragma REVIEWABLE - (not yet supported)

ent

ent

ent

ent

-

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma REVIEWABLE - (not yet supported) M

PragmaREVIEWABLEis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma RUNTIME_DIAGNOSTICS M

The implementation-defined pragmaRUNTIME_DIAGNOSTICScontrols whether or not
the run-time emits warning diagnostics.

Its syntax is:

pragma RUNTIME_DIAGNOSTICS(boolean);

See “Pragma RUNTIME_DIAGNOSTICS” on page 6-1 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SERVER_CACHE_SIZE M

The implementation-defined pragmaSERVER_CACHE_SIZEsets the size of the server
cache.

Its syntax is:

pragma SERVER_CACHE_SIZE(cache_size);

See “Pragma SERVER_CACHE_SIZE” on page 6-4 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SHARE_BODY M

The implementation-defined pragmaSHARE_BODYindicates whether or not an instantia
tion is to be shared.

Its syntax is:

pragma SHARE_BODY(generic_name, boolean_literal)
M-128

Pragma SHARE_MODE

ces a
n by
an
not

n a

ust be
tan-

ent

e

ary
to

hin
me-
ed

for

t be
ion is
ter-

ent
The pragma may reference the generic unit or the instantiated unit. When it referen
generic unit, it sets sharing on/off for all instantiations of the generic, unless overridde
specificSHARE_BODYpragmas for individual instantiations. When it references
instantiated unit, sharing is on/off only for that unit. For this release, the default is to
share any generics.

PragmaSHARE_BODYis allowed only in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit i
compilation, but before any subsequent compilation unit.

Sharing generics causes a slight execution-time penalty because all type attributes m
indirectly referenced (as if an extra calling argument were added). However, it subs
tially reduces compilation time in most circumstances and reduces program size.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SHARE_MODE M

The implementation-defined pragmaSHARE_MODEsets theshare_modefor a compilation
unit from within the Ada source code. The format of the pragma is:

pragma SHARE_MODE([unit_name,] share_mode);

whereunit_name, if specified, is the name of the compilation unit for which th
share_modeis being specified, and where theshare_modeis one of:SHARED,
NON_SHARED, or BOTH.

The single-parameter form of this pragma is allowed only immediately within a libr
unit or as a configuration pragma. When specified within a library unit, it applies only
that library unit. When specified as a configuration pragma, it applies to all units wit
the same compilation, if any, or to all units in the environment, if none. The two-para
ter form of this pragma is allowed only immediately following the unit which is specifi
as theunit_nameargument. It applies only to the unit which is specified.

If applied to a specification, the share mode does notapply to the body or any separate
bodies of the unit. If applied to a body, the share mode does notapply to any separate bod-
ies of the unit. If the share mode is desired for any such units, it must be specified
them, too.

The pragma is meaningless when applied to a generic unit. If so applied, it will no
applied to any instantiations of that generic. The share mode applied to an instantiat
the share mode of the unit which contains it, or if the instantiation is library-level, is de
mined in the same way as for any other library-level unit.

See also “Shared Objects” on page 3-13 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-129

MAXAda Reference Manual Pragma SHARED - (obsolete)

ent

gment

ma-

ent

ent
Pragma SHARED - (obsolete) M

The implementation-defined pragmaSHAREDis obsolete. It will be removed in a future
release and should not be used. Use “Pragma ATOMIC” on page M-105 instead.

In this release, if pragmaLINK_OPTION is used, pragmaVOLATILE will be activated
instead. See “Pragma VOLATILE” on page M-134 for more information.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SHARED_PACKAGE M

The implementation-defined pragmaSHARED_PACKAGEprovides for the sharing and
communication of data declared within the specification of library-level packages.

Its syntax is:

pragma SHARED_PACKAGE[("params")];

PragmaSHARED_PACKAGEaccepts as an optional argument, “params”, that, if specified,
must be a string constant containing a comma-separated list of system shared-se
configuration parameters.

See “Pragma SHARED_PACKAGE” on page 8-1 for details.

See also “4.1.4(12) Implementation-defined attributes” on page M-13 for more infor
tion.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SHARED_PASSIVE - (not yet supported) M

PragmaSHARED_PASSIVEis not supported in this release.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SPECIAL_FEATURE M

NOTE

PragmaSPECIAL_FEATUREis reserved for internal MAXAda
use only; it is not intended for use in user-defined code.
M-130

Pragma STORAGE_SIZE

ent

ef-

ent

nce

pe is

ent
The implementation-defined pragmaSPECIAL_FEATUREforces the compiler to assume
that the specifiedfeatureis used by the unit associated with this pragma.

Its syntax is:

pragma SPECIAL_FEATURE(feature);

wherefeaturecan be one of the following:

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma STORAGE_SIZE M

PragmaSTORAGE_SIZEis implemented as described in Section 13.3 of the Ada 95 R
erence Manual.

Its syntax is:

pragma STORAGE_SIZE(expression);

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma SUPPRESS M

PragmaSUPPRESSis implemented as described in Section 11.5 of the Ada 95 Refere
Manual.

Its syntax is:

pragma SUPPRESS(identifier[,[On=>]name]);

The double parameter form of the pragma, with a name of an object, type, or subty
recognized, but has no effect.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

hardware_interrupts software_interrupts cpu_biases priorities

rescheduling_variables page_locking quanta data_monitoring

shmbind trace_dump needs_xlib needs_xt

needs_motif tasks protected_objects
M-131

MAXAda Reference Manual Pragma SUPPRESS_ALL

ely
ura-

ent

a

PU

ent

of

n.

ent
Pragma SUPPRESS_ALL M

The implementation-defined pragmaSUPPRESS_ALLgives permission to the implemen-
tation to suppress all run-time checks.

Its syntax is:

pragma SUPPRESS_ALL;

PragmaSUPPRESS_ALLdoes not have any parameters. It may appear immediat
within a declarative part or immediately within a package specification or as a config
tion pragma. Its effects are equivalent to a list ofSUPPRESSpragmas, each naming a dif-
ferent check.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TASK_CPU_BIAS M

The implementation-defined pragmaTASK_CPU_BIASsets the CPU assignments for
given bound task.

Its syntax is:

pragma TASK_CPU_BIAS(cpu_bias[,task_specifier]);

See “Pragma TASK_CPU_BIAS” on page 6-14 for a complete description of task C
assignments.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TASK_DISPATCHING_POLICY M

PragmaTASK_DISPATCHING_POLICYis implemented as described in Section D.2.2
the Ada 95 Reference Manual.

Its syntax is:

pragma TASK_DISPATCHING_POLICY(policy_identifier);

This pragma sets the task dispatching policy.

See “Pragma TASK_DISPATCHING_POLICY” on page 6-2 for a complete descriptio

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-132

Pragma TASK_HANDLER

task,

pens

ent

tem

ori-

ent

r

me
Pragma TASK_HANDLER M

The implementation-defined pragmaTASK_HANDLERcalls the specified procedure when
the task to which it is applied completes because of an unhandled exception.

This pragma is especially useful when applied to theENVIRONMENT task. It will be
called for any unhandled exception that would cause completion of the environment
and thus of the application.

It is also especially useful when applied to theDEFAULT task. It will be called for any
unhandled exception that would cause completion of any task which otherwise hap
silently without any notification to the user.

Its syntax is:

pragma TASK_HANDLER(handler_name[, task_specifier]);

See “Pragma TASK_HANDLER” on page 6-16 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TASK_PRIORITY M

The implementation-defined pragmaTASK_PRIORITY sets the scheduling priority for a
given task withinthe server group and for entry queuing. It also sets the operating sys
priority for bound tasks.

Its syntax is:

pragma TASK_PRIORITY(scheduling_priority[, task_specifier]);

See “Pragma TASK_PRIORITY” on page 6-12 for a complete description of task pri
ties.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TASK_QUANTUM M

The implementation-defined pragmaTASK_QUANTUMsets the task time-slice duration fo
a given task.

Its syntax is:

pragma TASK_QUANTUM(quantum[, task_specifier]) ;

See “Pragma TASK_QUANTUM” on page 6-15 for a complete description of task ti
slicing.
M-133

MAXAda Reference Manual Pragma TASK_WEIGHT

ent

ent

ent

ent

nce
See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TASK_WEIGHT M

The implementation-defined pragmaTASK_WEIGHTspecifies the weight of a task.

Its syntax is:

pragma TASK_WEIGHT(weight[,task_specifier]);

See “Pragma TASK_WEIGHT” on page 6-10 for a complete description.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TDESC M

NOTE

PragmaTDESCis reserved for internal MAXAda use only; it is
not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma TRAMPOLINE M

NOTE

PragmaTRAMPOLINEis reserved for internal MAXAda use only;
it is not intended for use in user-defined code.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma VOLATILE M

PragmaVOLATILE is implemented as described in Section C.6 of the Ada 95 Refere
Manual.

Its syntax is:
M-134

Pragma VOLATILE_COMPONENTS

latile
ces.
ly by

ent

e

h can
efer-
e
tween

ent
pragma VOLATILE(local_name);

This pragma accepts a single variable name which must be of a type which can be vo
for the pragma to apply. All accesses to this variable results in memory referen
PragmaVOLATILE should be used on any variable that may be accessed concurrent
different threads of a program, e.g., a variable shared between tasks.

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.

Pragma VOLATILE_COMPONENTS M

PragmaVOLATILE_COMPONENTSis implemented as described in Section C.6 of th
Ada 95 Reference Manual.

Its syntax is:

pragma VOLATILE_COMPONENTS(array_local_name);

This pragma accepts an array name, the components of which must be of a type whic
be volatile for the pragma to apply. All accesses to these variables result in memory r
ences. PragmaVOLATILE_COMPONENTSshould be used on variables that may b
accessed concurrently by different threads of a program (e.g., a variable shared be
tasks).

See “RM Annex L: Pragmas” on page M-103 for a list of all implementation-depend
and implementation-defined pragmas.
M-135

MAXAda Reference Manual Pragma VOLATILE_COMPONENTS
M-136

ces

f

hose

it,

tion
on-

ular
Glossary

This glossary defines terms used in the documentation. Terms initalics are defined here.

active partition

An active partition is the simplest form ofpartition and it describes how to build an
executable program.

Ada binding

Ada bindings provide a pure Ada interface to libraries of routines and servi
which have been originally developed in another programming language.

ADMIN ghost task

A ghost taskthat exists only in programs that contain tasking (other than theENVI-
RONMENT task). If it exists, it is abound taskthat is responsible for the creation o
all namedserver groupsand for the creation of the ENVIRONMENT task. It also
detects the termination of all other tasks and performs cleanup operations on t
tasks, including deallocation of memory associated with those tasks.

alert

A diagnostic message that conveys information to the user about packages,prag-
mas, or options that are considered to be obsolete in thisrelease.

ambiguous unit

Upon introducing aunit having the same name as a previously introduced un
MAXAda labels both units as ambiguous.

archive

An archive is a collection of routines and data that is associated with an applica
during the link and execution phases. Archives contain statically-built (i.e. n
shared) objects within them.

ARMS

The Ada Real-time Multiprocessor System, also known as therun-time system.

attachment index

Denotes a particular static attachment based on its textual order within a partic
handler. (e.g. the firstattach_handler pragma in a particular handler is “1”, the
second is “2”, etc. The firstattach_handler in a different handler is “1”, etc...)
Glossary-1

MAXAda Reference Manual

d

ted,

ypes,

ined

ion.

an of
t of

rary

nce
ntly
on
AXI

The optional Ada X Interface. It provides an Ada binding to the full Xlib, Xt, an
Motif libraries.

bound task

A task that is served by an anonymousserver groupcontaining exactly one server.
This server group exists only to execute the single task for which it was crea
dedicated for its exclusive use. Seetask weight.

cache mode

A system cache memory attribute that is either COPYBACK or NCACHE.

collection (memory)

A memory region (heap) used for designated objects of user-defined access t
dynamically sized objects, internal run-time structures, etc.

companion ghost task

A ghost taskthat is associated with some user-defined real task or a user-def
entry of a real task.

compilation unit

Seeunit.

compile options

Stored as part of theenvironmentor as part of an individualunit’s information, these
options do not need to be specified on the command line for each compilat
Rather, they are “remembered” when the MAXAda compilation tools are used.

concurrent program

Any Ada program that elaborates the body of a shared package and whose sp
execution, from elaboration of such a package to termination, overlaps tha
another such program.

configuration pragma

Configuration pragmas are syntactical entities that are not part of aunit. Configura-
tion pragmas can appear either at the beginning of a source file containing lib
units or independently in a source file with no units. See alsopragma.

consistency

The compilation of a unit is consistent if its source file has not been modified si
it has been compiled and all of the units on which it depends are still consiste
compiled. In addition, the unit can only remain consistent if it and the units
which it depends have not becomeambiguousor obscured. In addition, a unit can
Glossary-2

Glossary

h it

alid
t

an

les,

-

tion

r

any
only remain consistent if the compile options for that unit and the units on whic
depends have not changed.

Eachunit is considered consistent up to a particular state. This means that it is v
up to that state of compilation. Any recompilation of the unit can start from tha
state. It does not need to go through the earlier stages of recompilation.

COURIER ghost task

A bound taskassociated with thehardware interruptentry. It does not execute at
interrupt level. It may be involved in forwarding the hardware interrupt from
INTR_COURIER taskto the real task.

CPU bias

A mask in which the relative bit number identifies a CPU number (LSBcorresponds
to CPU #0). It is used to assign aserverto a CPU.

data (memory)

Statically sized memory segment used for the allocation of library-level variab
such as those in library-level packages.

data monitoring

The real-time display and modification of static Ada variables via thea.rtm utility
or thereal_time_data_monitoring package. This is usually performed dur
ing program debugging.

debug level

The setting for the amount of debug information to be generated for a compila
unit. Debug level can be established via the-g option to several utilities or pragma
DEBUGin the source. Values include:none , lines , andfull .

DEFAULT pseudo group

The non-executing pseudogroup that provides default group-attribute values fo
any groups that omit any groupconfiguration pragmas.

DEFAULT pseudo task

The non-executing pseudo task that provides default task-attribute values for
tasks that omit any taskconfiguration pragmas.

deprecated

A MAXAda environmentshipped with thisreleasefor compatibility purposes with
previous versions only. It will be removed in a future release of MAXAda.
Glossary-3

MAXAda Reference Manual

the

amic
o the

een

Ada
iza-

cify
de
ly to
arch

ion
deprecated feature

A MAXAda feature considered to be obsolete in thisreleasebut which is still sup-
ported for backward compatibility.

distributed application

A program that requires the use of CPUs on more than one CPU board.

DWARF

The debug format that MAXAda supports. The debug information is stored in
executableprogram.

dynamic-linking phase

This phase occurs only for programs that useshared objects. The initial phase of
execution when actual associations and memory allocations occur. The dyn
linker tries to locate each essential shared-object and bind its physical pages int
application program.

effective options

The resultant set of compile options based on the hierarchical relationship betw
the environment-wide compile options, permanent unit options, andtemporary unit
options.

ELF

The executable and object format that MAXAda supports.

environment

An entity that is associated with an operating system directory and that contains
units. MAXAda uses the concept of environments as its basic structure of organ
tion. The environmentsvendorlib , publiclib , andpredefined are sup-
plied as part of MAXAda.

Environment Search Path

MAXAda uses the concept of an Environment Search Path to allow users to spe
that units fromenvironmentsother than the current environment should be ma
available in the current environment. This Environment Search Path relates on
each particular environment and each environment has its own Environment Se
Path.

ENVIRONMENT task

The task therun-timecreates at start-up to perform library-level package elaborat
and execute themain subprogram.
Glossary-4

Glossary

ions

ion

-

r than

fer-

s

environment-wide compile options

Environment-wide compile options apply to all units within thatenvironment. All
compilations within this environment then observe these environment-wide opt
unless overridden.

executive

SeeARMS.

fast interrupt task

A task that executes directly at interrupt level to accepthardware interruptsinstead
of relying on anINTR_COURIER ghost taskto do so.

fatal error

An error of such severity that meaningful recovery is impossible and compilat
stops.

foreign environments

Foreign environments are allenvironmentsother than the local (or current) environ
ment.

foreign units

Foreign units are thoseunits that exist in otherenvironmentswhich are on theEnvi-
ronment Search Path.

frozen environment

An environmentthat is made unalterable by thea.freeze utility. Since frozen
environments are unalterable, accesses to these environments are much faste
accesses to environments that are not frozen.

general error

An error that is semantic in nature but does not fall within a specific Ada 95 Re
ence Manual reference.

ghost task

A task artificially created by therun-timeexecutive for various internal purpose
(overhead).

global memory

Physical memory available to all CPUs via asystem-wide bus. Seelocal memory
andremote memory.
Glossary-5

MAXAda Reference Manual

r

ge-

ted
ded.

er
group

Seeserver group.

HAPSE

Harris Ada Programming Support Environment. The predecessor to theMAXAda
product. Based on the Ada 83 Reference Manual.

hardness

An attribute of physicallocal memory, either SOFT or HARD, that controls whethe
physicalglobal memoryis used if insufficient physical local memory is available.

hardware interrupt

An interrupt generated by a hardware device. For example, real-time clock, ed
triggered interrupt, and all system and VME interrupts. Seesoftware interrupt.

heap

Seecollection (memory).

immediate binding

During dynamic linking, all shared objects that the application requires are alloca
and linked into the application’s address space before any of them are ever nee

independent configuration pragmas

Configuration pragmasthat appear independently in a source file with nounits.

internal error

An error due to faults within the compiler.

interoptimization

MAXAda provides a method of optimization that controls the compilation ord
such that inlined subprogram calls will be performed whenever possible.

interrupt

An event external to the currently executing process. The two types arehardware
interrupt andsoftware interrupt.

interrupt handler

A subprogram that is called when aninterrupt occurs.
Glossary-6

Glossary

-
call

n, an
then

sub-
ry
m.

ed
n

that

d

ns
set
INTR_COURIER ghost task

The realghost taskassociated with ahardware interruptentry. It has abound
weight and executes atinterrupt level. It receives the hardware interrupt and for
wards it to the real task with which it is associated in such a way that the entry
seems to be coming from theSHADOW task. A COURIER taskmay also be
involved in forwarding the hardware interrupt to the real task.

lazy binding

By default, the dynamic linker does not link anyshared objectsinto the applica-
tion’s address space until they are needed. If, during execution of the applicatio
as-yet unrelocated reference occurs, control passes to the dynamic linker which
relocates the reference.

lexical error

An error in the formation of literals, identifiers, and delimiters.

library unit

A library unit is a separately compiled program unit, and is always a package,
program, or generic unit. Library units may have other (logically nested) libra
units as children, and may have other program units physically nested within the

lightweight process

A lightweight operating system thread of control, one or more of which is contain
within every process. An LWP is the basic entity that the operating system ca
schedule. All LWPs within a process share the memory and file resources of
process. In MAXAda,serversare implemented as lightweight processes.

link method

The link method specifies the manner in which aunit is included in the linking pro-
cess. It can instruct the linker to use the object of a unit directly (object method),
utilize the unit found in anarchive (archive method), or include the unit con-
tained within ashared object(shared_object method). These methods are use
in conjunction with thelink rule.

link options

Each MAXAdapartition has a set of link options associated with it. These optio
are persistent and remain in effect for the life of the partition. They are normally
and modified using the-oset , -oappend , -oprepend , and-oclear options to
a.partition .

link rule

The order the linker follows to determine thelink methodfor each requiredunit.
Glossary-7

MAXAda Reference Manual

ory.

local

ame

d

in

unc-

of
local environment

The local environment, or the current environment, is the current working direct

local-locking

The case when an application has a requirement for pages to be locked into
memory.

local memory

Physical memory available to CPUs via a local bus physically located on the s
CPU as the local memory. Seeglobal memoryandremote memory.

lock state

An attribute ofmemory poolsthat determines if memory pages are physically locke
in memory and thus cannot be swapped out by the operating system.

logical address

A virtual memory address in an executing program’s address space. Seemachine
address.

LWP

Seelightweight process.

LSB

Least-significant bit.

machine address

A physical memory address. Seelogical address.

machine-code insertion

A MAXAda feature that allows the inclusion of assembly language instructions
an Ada program. This is accomplished via themachine_code package.

main subprogram

A non-generic subprogram without parameters that is either a procedure or a f
tion returning an AdaSTANDARD.INTEGER(the predefined type). It is specified
to a.partition .

map file

A file containing ASCII descriptions of attributes of the run-time configuration
the generated program, including: the layout ofmemory pools; dynamic memory
management parameters; and task attributes, such as,CPU bias, quantum, priority,
weight, and stack usage.
Glossary-8

Glossary

nt of
lan-

n-

nt
its

e
ter-
rac-
MAPSE

The Minimum Ada Programming Support Environment.

MAXAda

MAXAda is a high-performance system intended for the large-scale developme
Ada application, real-time, and systems software. MAXAda supports the Ada
guage specification as defined in the Ada 95 Reference Manual

MAXAda installation

Any complete MAXAda directory structure that contains a version of MAXAda.

MAXAda release

Any released version of MAXAda or any MAXAda release containing a valid co
figuration of patches intended for that release.

MCI

Seemachine code insertion.

memory pool

A physical region ofglobal memoryor local memory.

MSB

Most-significant bit.

multiplexed task

A task that shares the resources of a single pool and is served by a namedserver
group, which may contain one or more servers. Seetask weight.

native unit

A native unit is aunit which has been introduced into anenvironmentby using the
a.intro function.

naturalized unit

A naturalized unit is the compiled form of a foreign unit in the local environme
created by the compilation system. A naturalized unit retains the options from
original environment.

NightSim

An optional, graphical, non-intrusive tool for scheduling and monitoring real-tim
single and multi-process applications running on one or more CPUs. It allows in
active control of the high-resolution Frequency-Based Scheduler (FBS) and inte
tive or deferred performance monitoring.
Glossary-9

MAXAda Reference Manual

ith

pro-

al/

lar

n-
fea-

s

-

NightTrace

An optional, graphical debugging and performance-analysis tool that works w
single and multi-process programs running on one or more CPUs.

NightView

An optional symbolic debugger that supports debugging of Ada, C, and Fortran
grams running on one or more CPUs.

NUMA

Non-Uniform Memory Access. An architecture classification with a local/glob
remote memory subclass that underlies Series 6000 computers.

obscurities

Obscurities occur when the natural behavior of MAXAda and theEnvironment
Search Pathmechanism prevent an intended file from being used for a particu
compilation.

obsolescent

A MAXAda environmentcontaining packages whose functionality is largely redu
dant with other features defined in the Ada 95 Reference Manual. Use of these
tures is not recommended in newly written programs.

operating system quantum

A quantumassociated with aserver groupthat determines the length of time that it
servers execute on a CPU before being preempted.

operating system scheduling priority

A scheduling priorityassociated with aserver groupthat determines how the real-
time kernel selectsgroupsfor execution on CPUs.

opportunism

Make opportunistic use ofunit bodies to improve code optimization (beyond inlin
ing).

optimization level

The setting for the amount of compile-time optimization to occur for acompilation
unit. Optimization level can be established via the-O option to several utilities or
pragmaOPT_LEVELin the source. Option values include:1, 2, and3. Corre-
sponding pragma values include:MINIMAL, GLOBAL, andMAXIMAL.

panic

An error due to faults within the compiler.
Glossary-10

Glossary

d by
s, as
n-

be

eed
can

ely on
for

give
ort

95

e-

age
partition

A partition is an executable,archive, or shared objectthat can be invoked outside of
MAXAda. The user can explicitly assignunitsto partitions. The units included in a
partition are those of the explicitly assigned units, as well as other units neede
those explicitly assigned. MAXAda manages these units and their dependencie
well as link options and configuration information for each partition within the co
text of anenvironment.

permanent unit options

This set of options is associated with a unit and override itsenvironment-wide com-
pile options. Each unit has its own set of permanent unit options. They may
specified and later modified via thea.options utility.

persistent options

Unlike most other compilation systems, MAXAda uses persistent options that n
not be specified on the command line to the compilation system. These options
be either associated with anenvironmentor a particularunit and are “remembered”
by the compilation system.

position independent code (PIC)

Position independent code refers to the fact that the generated code does not r
labels, data, or routines being in known locations. This type of code allows
shared objectsto be dynamically linked to an executable.

pragma

A pragma is a compiler directive. There are language-defined pragmas that
instructions for optimization, listing control, etc. An implementation may supp
additional (implementation-dependent) pragmas. See alsoconfiguration pragmas.

predefined

The Ada Predefined Language Environment, as specified in Annex A of the Ada
Reference Manual. It contains standard, system, I/O packages, etc.

PREDEFINED group

The predefinedgroup the run-timecreates at start-up that usually includes and ex
cutes theENVIRONMENT taskand theDEFAULT pseudo task.

priority

Seescheduling priority.

process

The full-weight operating system entity that is spawned when the executable im
is initiated.
Glossary-11

MAXAda Reference Manual

he

ith an

t.

eing

n-

e

-

program

The ENVIRONMENT taskand the entire set of Ada tasks that are included in t
Ada program as defined by its dependencies.

protected procedure handler

A protected procedure with a parameterless profile and declared as a handler w
attach_handler or aninterrupt_handler pragma.

publiclib

Environmentthat contains packages not maintained or guaranteed by Concurren

quantum

The length of time an entity spends executing on an execution resource before b
preempted.

queuing policy

The entry queuing policy, either FIFO_QUEUING or PRIORITY_QUEUING.

release

Any released version of MAXAda or any MAXAda release containing a valid co
figuration of patches intended for that release.

relocation

The dynamic linker’s final address resolution ofshared objectsymbol references in
internal symbol tables.

remote memory

Physical memory on another remote CPU board than the CPU accessing it.

rtdm

A MAXAda environmentcontaining a package which provides a flexible interfac
to the key features of data monitoring.

run-time system

SeeARMS.

scheduling priority

Used by the real-time kernels and therun-timeexecutive to schedule tasks for exe
cution within agroup.
Glossary-12

Glossary

ntity
ed as

be

n
ed or

real

ring
ami-

em-

and
semantic error

An error in the semantic usage of language constructs.

server

The basic execution entity in the tasking mode. A server is an anonymous e
that executes on a CPU and is utilized by Ada tasks. Servers are implement
LWPs. Servers are identified by entities calledserver groups.

server cache

A set of serversthat are currently unneeded by the application, but which can
placed back into service when they become necessary.

server group

A collection of one or moreservers. Server groups are considered the executio
resources that are available to Ada tasks. Server groups can be either nam
anonymous, depending on their usage. Seetask weight.

SHADOW ghost task

A ghost taskassociated with asoftware interruptor hardware interrupttask entry. It
is not a physical task in any real sense. It merely acts as the virtual caller of the
task’s entry. It does not, however, physically execute on anyserveror CPU.

share mode

The setting for acompilation unitor library that determines whethershared objects
will be used. Share mode can be established via the-sm option to several utilities or
pragmaSHARE_MODEin the source. Values include:shared , non_shared , and
both .

shared object

A shared collection of routines and data associated with a user’s application du
the link and execution phases of program generation. Shared objects are dyn
cally built (i.e. shared) objects that containposition independent code.

shared package

A package with all variables declared in its specification allocated in shared m
ory.

software interrupt

An operating system signal. Seeinterrupt andhardware interrupt.

stack (memory)

A memory region used for subprogram and task data. Stacks dynamically grow
shrink during execution.
Glossary-13

MAXAda Reference Manual

the

on a

r its

er
ed to

, lit-

s an
een
syntax error

An error in the form of grammatical constructs.

system bus

A single data path toglobal memorythat all CPUs on Series 6000 systems share.

task monitoring

The real-time display and modification of user-defined tasks,ghost tasks, server
groups, and the display of heap and virtual memory and system information via
a.monitor utility. This is usually performed during program debugging.

task quantum

A quantumassociated with a task. It determines how long the task executes
server groupbefore being preempted by therun-timeexecutive.

task scheduling priority

A scheduling priorityassociated with a task. It determines how therun-timeexecu-
tive schedules tasks for execution onserver groups.

task weight

A configuration attribute that isbound, multiplexed, or passive. It determines
whether a task is to have a specific server (execution resource) dedicated fo
exclusive use, to shareserversfrom a server group, or to borrow another task’s
server when executing.

temporary unit options

This set of options is temporarily associated with a unit and override itspermanent
unit options. The temporary unit options allow the user to “try out” options und
consideration. These options can then be discarded or, if desired, can be add
the permanent unit options.

text (memory)

Statically sized memory segment used for the allocation of machine instructions
erals, and some constant data.

TIMER ghost task

A ghost taskthat exists only in programs that containmultiplexed tasks(other than
theENVIRONMENT task). If it exists, it is abound taskthat is responsible for all
timing operations associated with multiplexed tasks. The TIMER task acts a
“alarm clock” that triggers rescheduling events when certain times have b
reached because of these operations.
Glossary-14

Glossary

lud-

data

ts

and

ode
tracing

A means of debugging and analyzing the performance of Ada applications, inc
ing multi-tasking applications via thea.trace and possibly theNightTracetools.
It involves the logging and display of predefined and user-defined trace events,
values (arguments), and timings with minimal impact on the application.

unit

Shorthand forcompilation unitsas defined in the Ada 95 Reference Manual, uni
are the basic building blocks of the MAXAdaenvironments. It is through units that
MAXAda performs most all its library management and compilation activities.

vendorlib

Environmentthat contains mathematical functions; real-time, system service,
operating system bindings; and miscellaneous packages.

warning

An error message about a problem that is not sufficiently serious to prevent c
generation or that indicates questionable use of a construct.

weight

Seetask weight.
Glossary-15

MAXAda Reference Manual
Glossary-16

Index
Symbols

4-24
.login file B-4
.pprc file 4-83, 4-85, 4-86
.profile file B-4
/bin/ld 4-120
/tmp directory 4-39

A

a.analyze 1-2,4-3, 4-5, 4-6
invoking 4-5
profiling tool 4-6

a.build 1-2, 1-3, 2-12, 2-15,4-8, 4-11, 11-9
automatic compilation 3-20
example 2-4, 2-13, 2-14, 2-17, 4-22
-IO option 3-25
-noimport option 2-15

a.cat 1-2,4-12
example 2-5
-h option 2-5

a.chmod 1-1,4-13
a.compile 1-3, 3-21,4-14
a.db C-1
a.demangle4-16
a.deps 1-3,4-18
a.edit 1-2, 2-12,4-20

example 2-12
a.error 1-3, 3-26,4-21, 4-56

example 4-23
a.expel 1-2, 3-10,4-26
a.fetch 1-2, 3-3, 3-5,4-27
a.freeze 1-1,4-30
a.help 1-3,4-31
a.hide 1-2, 3-10,4-32
a.install 1-3,4-33
a.intro 1-2, 1-3, 2-2, 3-5, 4-32,4-35

example 2-3, 2-12, 2-16, 4-22
a.invalid 1-2,4-37
a.link 1-3, 4-5,4-38
a.ls 1-2,4-40

example 2-5, 2-14
-l option 2-5
-v option 2-5

a.lssrc 4-47
a.man 1-3,4-49
a.map 1-2,4-52, 6-2, 6-10, 6-23, 7-14
a.mkenv 1-1, 1-3, 2-1, 2-2, 3-1,4-58

example 2-2, 2-12, 4-22
a.monitor 1-2, 3-38,4-61, 7-11,12-6, B-2, B-5, C-3, C-6
a.monitor

C-5
a.nfs 1-1,4-62
a.options 1-1, 1-2, 2-7, 3-20, 3-21, 3-31,4-64, M-121

modifying default options 4-25
a.partition 1-2, 1-3, 3-5, 3-12, 3-13, 3-14, 3-16, 3-17,

3-18,4-68, 11-15
-elab option 3-12, 3-13, 3-16, 3-17
example 2-3, 2-6, 4-22
-final option 3-12, 3-13, 3-16
-list option 2-6
-List option example 2-6
-sl option 3-14

a.path 1-1, 3-3, 3-5,4-79, 11-9
example 2-7, 2-13, 2-14

a.pclookup 1-2,4-81
a.pp 1-3,4-82, 4-87
a.release 1-1,4-88
a.report 1-2, 4-6,4-90
a.resolve 1-2, 3-10,4-92

example 2-17
a.restore 1-1,4-93
a.rmenv 1-1,4-94
a.rmsrc 1-2, 3-11,4-95
a.rtm 1-2, 3-38,4-96, 7-11,12-2, B-2, B-5
a.script 1-1, 3-6,4-97
a.slinker 1-3,4-100
a.syntax 1-2,4-102
a.tags 1-2,4-104
a.touch 1-2,4-107
a.trace 1-2,4-108, 4-123, 11-19, 11-20, 11-21, 11-22

viewing trace events 11-20
Access

Alignment M-38
Access limits

license management 1-7
Index-1

MAXAda Reference Manual
Access type 3-25, 6-23, 8-4, 12-1, 12-2
Activation 1-9
Active partitions 2-3, 3-12, Glossary-1
AD (Ada) scheduling class 5-8, 5-9
Ada

packages 1-11, 1-12, 3-14, 4-100, 6-20, 8-3, 8-4,
8-5, 8-8, 9-10, 9-11,10-1, 10-2, 10-3, 10-5,
10-6, 10-7, 10-9, 10-11, M-13, M-35,
M-48, M-53, M-114

pragmas 3-25, 3-31, 5-4,7-13, 7-14, 7-15, 7-17, 8-1,
8-5, 12-2, A-2, A-3, B-2

Ada (AD) scheduling class 5-8, 5-9
Ada 83 Reference Manual Glossary-6
Ada 95 Reference Manual 1-1, 2-7, 3-1, 3-3, 3-12, 3-20,

6-8, M-1, M-105, M-106, M-107, M-110,
M-111, M-114, M-115, M-118, M-119, M-123,
M-124, M-125, M-126, M-127, M-131, M-132,
M-134, M-135, Glossary-9, Glossary-10,
Glossary-11, Glossary-15

Ada bindings 1-12, Glossary-1
Ada Executive 11-15
ADDR M-14
AddressM-34

logical 12-4, M-35, Glossary-8
machine B-5, M-35, Glossary-8

Address space 3-13, 5-14
Addressing modes

PowerPC M-53
ADMIN ghost task 5-5, 6-6, 6-32, Glossary-1
adminrole B-3
adminuser B-4
Alert errors 3-32, M-109, Glossary-1
Alignment M-36

attribute M-36
clause M-43
minimal M-37
optimal M-37

ALL_CALLS_REMOTE pragma M-105
Ambiguous units 2-15, 3-10, 4-32, Glossary-1
Anchored-local NUMA policy 5-14, 5-16, 5-17
ANSI/ISO/IEC-8652

1995 5-1, 5-2, M-1
Any_Priority 5-5
Application 5-1

distributed 5-15
Application configuration A-2
Architecture 4-60, 4-120
Archives 3-12, Glossary-1
ARMS 5-1, Glossary-1
Array

Alignment M-39
ASSIGNMENT pragma M-105
ASYNCHRONOUS pragma M-105
at clause M-44

at mod M-43
ATOMIC pragma M-105
ATOMIC_COMPONENTS pragma M-106
ATTACH_HANDLER pragma M-106
Attachment index Glossary-1
Attribute

’ADDR M-14
’Address M-34
’Alignment M-36
’Component_SizeM-41
’External_Tag M-42
’HAS_DISCRIMINANTS M-15
’HAS_TAG M-15
’INTERNAL_TAG M-15
’KEY M-13
’LOCK 8-3, 8-5, 10-4, M-13,M-13
’PART_HAS_TAG M-15
’REF M-14,M-48, M-48
’SHM_ID M-13
’Size

Object M-39
SubtypeM-40

’STORAGE_SIZE 5-12, 6-23,6-31, A-2
’TAGGED M-15
’UNLOCK 8-3, 8-5, 10-4, M-13,M-13

AXI window system 1-12,1-13

B

Back-end 3-31
Binary semaphores 8-3, 8-5, 8-8,10-3
BINARY_SEMAPHORES package10-3, 10-3, 10-4,

10-6, B-2
Binding 1-12

immediate 3-13, 3-14, Glossary-6
lazy 3-13, Glossary-7
NightTrace 11-6
POSIX 1003.5 1-12
sockets 1-12

Bound task5-3, 12-11, A-2, C-4, M-71
Busy wait 10-2, 10-11

C

Cache 8-3
COPYBACK mode 6-29
mode Glossary-2
NCACHE mode 6-29
server 6-4, Glossary-13
Index-2

Index
CEILING_LOCKING locking policy 5-9, 6-3
chmod 8-3
Class-wide

Alignment M-39
client_block 10-11,A-4
client_wake1 10-11,A-4
client_wakechan 10-11,A-4
Client-server services 10-11, A-3
Collection memory5-11, 6-23, Glossary-2
Comment 4-24
Communication

inter-process8-1, 10-11, B-5
Companion ghost task Glossary-2
Compilation

automatic 3-20
separate 3-20

Compilation states 2-18, 3-20
a.build -state 4-9
a.compile -state 4-15
a.ls -C state 4-40
categorized (a.ls -n) 4-41
compiled 3-22
drafted 3-22
listing (a.ls -l) 4-41
parsed 3-22
uncompiled 3-22

Compilation unit Glossary-2
Compilation Utilities 1-2

a.build 4-8
a.partition 4-68

Compile options 2-10,4-109, Glossary-2
clearing 4-66
deleting 2-10, 4-66
effective 2-10, 3-20, 3-22, 4-65, Glossary-4
environment-wide 2-7, 3-6, 3-21, 4-65, Glossary-4,

Glossary-5
listing 2-8, 4-65
modifying 2-9, 4-66
propagating temporary to permanent 2-10, 4-67
setting 2-8, 4-66
unit 3-11

permanent2-8, 3-21, 4-65, Glossary-4, Glos-

sary-11

temporary2-9, 3-21, 4-65, Glossary-4, Glos-

sary-14
Compiler

error message 3-26
error message processing 3-26

Component
Storage placeM-45

Component_SizeM-41
Components

implementation-definedM-44

Composite
Alignment M-39
type M-123

Concurrent access A-2
Concurrent program 8-4, Glossary-2
Configuration

application A-2
errors A-1
kernel A-1,B-4
stack size 6-31
system A-1, B-1

Configuration Pragmas 3-9
Independent 3-9

Configuration pragmas 3-7, Glossary-2
independent Glossary-6

Consistency 3-23, Glossary-2
Context C-4
Control block

task C-4
Controlled

Alignment M-39
CONTROLLED pragma M-106
CONVENTION pragma M-107
COPYBACK cache mode 6-29
Core Utilities 1-3

a.build 4-8
a.intro 4-35
a.mkenv 4-58
a.partition 4-68

COURIER ghost task 6-6, 6-11, Glossary-3
cpp 4-83
cprs 3-40
CPU bias5-4, 6-14, 6-24, 6-27, 12-11, A-6, Glossary-3
cpu_bias 5-4
Cross referencing4-104
crossref a-monitor 3-38
crossref a-rtm 3-38
curses 4-61, 4-96, 12-2, 12-6
Cyclic scheduler 10-7
CYCLIC_SCHEDULER package 10-7, B-2

D

Data memory5-11, 5-18, 6-23, Glossary-3
Data monitoring 12-1, Glossary-3
DATA_RECORD pragmaM-108
Dead-code elimination 4-116
Debug level4-110, M-108, Glossary-3
DEBUG pragma 12-1,M-108
Debug Utilities 1-2

a.analyze4-3
a.man 4-49
Index-3

MAXAda Reference Manual

9

a.map 4-52
a.monitor 4-61
a.pclookup4-81
a.report 4-90
a.rtm 4-96
a.trace4-108

Debugging
a.db C-1
NightView 3-38,C-1, Glossary-10
tools 3-38

DEFAULT pseudo group6-9, Glossary-3
DEFAULT pseudo task6-5, 6-7, 6-9, 6-22, Glossary-3
DEFAULT_HANDLER package 3-14
DEFAULT_HARDNESS pragma6-4, 6-24, M-109
Defaults 4-86
Dependency

analysis 4-10
loop 4-11

deprecated 1-11, 9-1, 9-14, Glossary-3
Deprecated feature Glossary-4
DEPRECATED_FEATURE pragma M-109
Digits of precision M-11
Direct memory access10-12
Directory

/tmp 4-39
sup C-5

DISCARD_NAMES pragma M-109
Discrete

Alignment M-38
display C-8
DISPLAY environment variable 11-9
Distributed application 5-15, Glossary-4
DISTRIBUTED_LOCAL_LOCKING pragma 6-5,

M-110
DONT_ELABORATE pragma M-110
DWARF Glossary-4
Dynamic linker 3-13
Dynamic linking 3-13, Glossary-4

E

Edge-triggered interrupts 7-1
EDITOR environment variable 2-12, 4-56
EDITOR envrionment variable 4-18, 4-35, 4-52, 4-102,

4-109
Effective compile options 2-10, 3-20, 3-22, 4-65,

Glossary-4
ELABORATE pragma M-110
ELABORATE_ALL pragma M-110
ELABORATE_BODY pragma M-111
Elaboration 6-5, 6-24, 8-4,8-5, 10-4, 10-6, A-1, M-13,

M-36

archives 3-12
shared objects 3-13

Élan License Manager 1-6
ELF Glossary-4
elm_resource 1-8
elmadmin 1-6, 1-7
elmd 1-6, 1-8
emacs4-104, 4-105
Enumeration

Alignment M-38
Enumeration type 12-2, 12-3, M-48
Environment Search Path 2-7, 2-13, 2-14, 3-2, 3-10,

4-75, Glossary-4
a.path 3-3
adding environments to 2-13
viewing 2-14

ENVIRONMENT task 5-1, 5-2, 5-5, 5-8, 5-9, 5-11,
5-12, Glossary-4

Environment task6-5, 6-7, 6-9, 6-17, 6-24, M-133
Environment variable

TMPDIR 4-39
Environment variables

DISPLAY 11-9
EDITOR 2-12, 4-18, 4-35, 4-52, 4-56, 4-102, 4-10
LD_BIND_NOW 3-14
PATH 2-1
SHELL B-4
TMPDIR 4-39

Environment/State Utilities 1-1
a.chmod4-13
a.freeze4-30
a.mkenv 4-58
a.options4-64
a.path 4-79
a.release4-88
a.restore4-93
a.rmenv 4-94

Environments 3-1, Glossary-4
AXI supplied 1-13, 9-17

motif 9-1, 9-18

stars-xlibxt 9-1, 9-18

xlibxt 9-1, 9-17
creating 2-1, 2-12
environment-wide compile options 3-6, 3-21
foreign 3-2, Glossary-5
freezing Glossary-5
local 3-2, Glossary-8
relocating 3-4
restoring 3-4
supplied 1-11, 3-3

deprecated1-11, 9-1, 9-14, Glossary-3

general1-12, 9-1, 9-16, 11-6

obsolescent1-11, 9-1, 9-14, Glossary-10
Index-4

Index
posix_1003.11-12, 9-1, 9-14

posix_1003.51-12, 9-1, 9-15

predefined 1-11, 3-3, 9-1, 9-6, Glossary-4,

Glossary-11

publiclib 1-11, 9-1, 9-12, Glossary-4, Glossa-

ry-12

rtdm 1-11, 9-1, 9-12, Glossary-12

sockets1-12, 9-1, 9-16

vendorlib 1-11, 3-14, 9-1, 9-8, 10-1, 11-3,

Glossary-4, Glossary-15
Environment-wide compile options 2-7, 3-6, 3-21, 4-65,

Glossary-4, Glossary-5
Environment-wide link options 3-34
Errors

alert 3-32, M-109, Glossary-1
configuration A-1
fatal 3-33, Glossary-5
general3-30
internal 3-33, Glossary-6
lexical 3-27, 4-23, 4-24, Glossary-7
license management 1-8
messages3-26, 3-31
panics 3-33, Glossary-10
processing 3-26, 3-31
redirecting to a file 4-22
run-time A-5
semantic3-29, Glossary-13
syntax 3-28, Glossary-14
user A-2
warnings 3-32

Exceptions C-6
addresses 9-10
and optimization 3-25
misaligned access3-25
originating_instruction 9-10
PROGRAM_ERROR 8-3, 8-5, M-13
propagation_map 9-10
SEMAPHORE_ERROR10-4, 10-6
STORAGE_ERROR A-2
TASKING_ERROR A-1, A-5
unhandled 6-16, M-133
USE_ERROR M-71

Executive
run-time 5-1, 5-2, 5-3, 5-8, 6-12, 6-18, 6-19, 7-16,

10-11, A-2, A-3, A-5, Glossary-12
Exit status 3-19
EXPORT pragma M-111
Expressions 4-85
Extensibility 5-11
EXTERNAL_NAME pragma M-112
External_TagM-42

F

Fast interrupt task Glossary-5
Fast task interrupt7-13, 7-14
FAST_INTERRUPT_TASK pragma7-13, 7-14, 7-15,

7-17, B-2, M-112
Fatal errors3-33, Glossary-5
FC (Fixed Class) scheduling class 5-9
Feature alias 1-7
feature name 1-7
Fetched units 3-3, 3-10, 4-67
FIFO_WITHIN_PRIORITIES 5-3 , 5-8 , 5-9 , 6-3
File

.login B-4

.pprc 4-83, 4-85, 4-86

.profile B-4
ipc.h 9-11
map 6-2, Glossary-8
shm.h 9-11

File system
processor B-5

filepriv B-3
Finalization

archives 3-12
shared objects 3-13

Fixed Class (FC) scheduling class 5-9
Fixed point

Alignment M-38
Fixed Priority (FP) scheduling class 5-8, 5-9
Fixed-point type 12-2, 12-3
FLOAT type M-11
Floating point

Alignment M-38
Floating-point NUMA policy 5-14, 5-16, 5-17
Floating-point type 12-2, 12-3
Foreign environments 3-2, Glossary-5
Foreign units 3-10, Glossary-5
fork 10-12
FP (Fixed Priority) scheduling class 5-8, 5-9
ftok 8-2, M-13
Function

UNCHECKED_CONVERSION 5-13

G

general 1-12, 9-1, 9-16, 11-6
General errors3-30, Glossary-5
GENERAL passive task Glossary-5
Generic

debugging C-6
Ghost task 4-55,5-4, 6-6, 12-7, 12-10, Glossary-5
Index-5

MAXAda Reference Manual

7

ADMIN 5-5, 6-6, 6-32, Glossary-1
companion Glossary-2
COURIER 6-6, 6-11
INTR_COURIER 6-6, 6-11, B-2, Glossary-7
SHADOW 6-6, 6-11,7-4, 7-6, Glossary-13
TIMER 5-5, 6-6, Glossary-14

Global memory 5-13, 5-14, 5-18, 6-24,6-25, Glossary-5
Global NUMA policy 5-14
GLOBAL optimization 3-25
Global priorities 5-9
graphic_character M-5
Group Glossary-6

DEFAULT 6-9, Glossary-3
PREDEFINED 6-9, 6-20,6-20
server 5-1,6-9, 12-10

GROUP_CPU_BIAS pragma 5-4, 6-14,6-19, 6-20,
6-25, B-2, M-113

GROUP_PRIORITY pragma6-19, B-2, B-5, M-113
GROUP_SERVERS pragma6-20, M-113
growth_limit qualifier keyword4-117, M-121

H

Handler
interrupt 7-15, Glossary-6
protected procedure Glossary-12

HAPSE Glossary-6
Hardness of memory 6-4, Glossary-6
Hardware interrupt 6-30, 7-6, B-2, Glossary-6
HAS_DISCRIMINANTS M-15
HAS_TAG M-15
Heap 5-11, Glossary-6
Hung processes A-3

I

iconnect 7-4, 10-12, A-7
ienable 10-12, A-7
Immediate binding 3-13, 3-14, Glossary-6
Implementation-defined Characteristics M-1
Implementation-defined componentsM-44
IMPLICIT_CODE pragma M-54,M-114
Implicitly-included libraries 4-78
IMPORT pragma M-114
Incrementally updateable partition 4-122
Independent configuration pragmas 3-9, Glossary-6
Index

attachment Glossary-1
INDIVISIBLE_OPERATIONS package 6-25,10-9,

10-11

Informational messages 3-31
INLINE pragma 3-25,M-115
inline_line_count qualifier keyword4-115
inline_nesting_depth qualifier keyword4-115
inline_statement_limit qualifier keyword4-116
inlines_per_compilation qualifier keyword4-116
Insertion

machine code M-116, Glossary-8
machine-codeM-47, M-116

INSPECTION_POINT pragma M-116
Instantiation C-6
Instruction set

PowerPC M-48
Integer

Alignment M-38
Integer type 12-2, 12-3
Interest levels 9-13
INTERESTING pragma 9-13, M-116
interesting qualifier keyword4-117
INTERFACE pragma M-117
INTERFACE_NAME pragma M-117
INTERFACE_OBJECT pragma M-118
INTERFACE_SHARED pragma M-118
Internal errors3-33, Glossary-6
Internal Utilities 1-3

a.compile 4-14
a.deps4-18
a.error 4-21
a.install 4-33
a.link 4-38
a.pp 4-82
a.slinker 4-100

INTERNAL_TAG M-15
Interoptimization 3-24, 4-8, Glossary-6
Inter-process communication8-1, 10-11, B-5
Interrupt Glossary-6

handler 7-15, Glossary-6
hardware 6-30, 7-6, B-2, Glossary-6
software Glossary-13
task 7-13, 7-14, Glossary-5

INTERRUPT_HANDLER pragma M-118
Interrupt_Priority 5-5
INTERRUPT_PRIORITY pragma M-118
INTERVAL_TIMER package10-1
INTR_COURIER ghost task 6-6, 6-11, B-2, Glossary-
IPC 8-1, 10-11, B-5
IPC flags 8-3
ipc.h file 9-11
ipcrm 8-3, 8-4, 8-5
ipcs 8-3, 8-4
Index-6

Index
K

Kernel configuration A-1,B-4
Kernel option

fc B-5
fp B-5
ipc B-5
procfs B-5
ui B-5

Kernel tunable parameter
MAXULWP A-1, B-5
MAXUP A-1
NPROC A-1
SHMMAX B-5
SHMMNI B-5
SHMSEG B-5

KEY M-13
Key

license 1-6

L

Lazy binding 3-13, Glossary-7
ld M-5
LD_BIND_NOW environment variable 3-14
Level

debug Glossary-3
optimization 4-5, 4-6, Glossary-10

Lexical
errors 4-23, 4-24

Lexical errors3-27, Glossary-7
Libraries

implicitly-included 4-78
Library

supplied 1-11
Library unit Glossary-7
License key 1-6
License management 1-6

access limits 1-7
activating licenses 1-6
elm_resource 1-8
elmadmin 1-6, 1-7
elmd 1-6, 1-8
error messages 1-8
feature alias 1-7
feature name 1-7
key 1-6
POWERWORKS_ELMHOST 1-7
resource file 1-8

Lightweight process 1-11,5-1, 12-11, C-4
Limits

shell 6-31
Link

name 4-5
optimization 4-5, 4-6

Link method 4-73, Glossary-7
Link options 3-34, 4-71,4-119, Glossary-7

-arch 4-60, 4-120
architecture 4-60
-bound 4-123
-c 4-120
-cV 4-120
-cv 4-120
environment-wide 3-34
in source code 3-35
-incr 4-122
incrementally updateable partition 4-122
-multiplexed 4-123
-nosoclosure 4-124
obscurity checks 4-124
OS version 4-60, 4-122
-osversion 4-60, 4-122
selective linking 4-120
share path 4-122
shared object transitive closure 4-124
-skipobscurity 4-124
-sl 4-122
-sp 4-122
specifying 3-34
target architecture 4-60, 4-120
task weight 4-123
-trace 4-123
tracing 4-123

Link rule 4-73, Glossary-7
LINK_OPTION pragma M-119
Linker

dynamic 3-13
LINKER_OPTIONS pragma M-119
Linking

dynamic Glossary-4
selective 4-120
static Glossary-14

list C-8
LIST pragma M-119
Listing

partitions 2-6
units 2-5

listing effective options 2-10
Local environments 3-2, Glossary-8
Local memory 5-13, 5-14, 5-17, 6-4, 6-24,6-25, 8-3,

Glossary-8
Local memory management 5-15
Local units 3-9
LOCK M-13, M-13
Lock
Index-7

MAXAda Reference Manual
memory pages 5-14, 5-17, 8-3, A-6
spin 10-2
state 6-29, Glossary-8

Locking policy
CEILING_LOCKING 5-9 , 6-3
default 5-9, 6-3
protected object 6-3

LOCKING_POLICY pragma 5-9,6-3, M-119
Logical address 12-4, M-35, Glossary-8
LONG_FLOAT type M-11
Loops in dependencies 4-11
loops qualifier keyword4-116, M-121
LSB Glossary-8
LWP 1-11,5-1, 12-11, C-4, Glossary-8

M

Machine address B-5, M-35, Glossary-8
MACHINE_CODE package M-114
Machine-code insertionM-47, M-116, Glossary-8

PowerPC M-48
Macro

task_list C-5
task_whoami C-5
task_whois C-5

Main subprogram 2-3, 4-41, 4-70, 5-1, Glossary-8
exit status 3-19
requirements 3-19

Map file 6-2, Glossary-8
MAP_FILE pragma6-2, M-120
MAPSE Glossary-9
MAX_PRIORITY 6-19
MAXAda Glossary-9
MAXAda installation Glossary-9
MAXAda release Glossary-9
MAXIMAL optimization 3-25, 4-5, 4-6
MCI M-47, M-116, Glossary-8, Glossary-9
memadvise 6-29
memcntl A-6
memcntl(2) 5-17
Memory

attributes 6-25
collection 5-11, 6-23, Glossary-2
data 5-11, 5-18, 6-23, Glossary-3
direct access10-12
global 5-13, 5-14, 5-18, 6-24,6-25, Glossary-5
hardness 6-4
heap 5-11
local 5-13, 5-14, 5-17, 6-4, 6-24,6-25
management 5-11
non-uniform access 5-13, 5-14, 5-16, 5-17
page locking 5-14, 5-17, 8-3, A-6

pages 5-14
pool 6-23
primary 5-13, 5-15
remote 5-13, Glossary-12
resident 12-12
segment 3-13
shared8-1
stack 5-12, 6-22, Glossary-13
text 5-11, 6-22, Glossary-14
virtual 12-12

Memory configuration
ultimate-default 5-16

Memory management
local 5-15

Memory policy
anchored-local 5-14, 5-16, 5-17
floating-point 5-14, 5-16, 5-17
global 5-14

Memory pool 6-21, 6-29, 6-30, A-6, Glossary-9
lock state 6-29, Glossary-8
pad 6-32
size 6-30

memory(7) 5-15
MEMORY_POOL pragma 5-4, 5-16, 5-17, 6-4,6-23,

12-13, A-2, B-2, M-120
Minimal alignment M-37
Misaligned access3-25
mlock 6-30, 10-12
mmap A-6
mmap(2) 12-13
Monitoring 3-38

data 12-1, Glossary-3
task 12-6, Glossary-14

motif 9-1, 9-18
Motif bindings 1-13
mpadvise A-7
MSB Glossary-9
Multiple process communication 8-1
Multiplexed task 12-8, 12-11, C-4, M-71
Multithreading A-2
Mutual exclusion 10-2, 10-3, 10-5, 10-11

N

Nationalities 3-9
Native units 3-9, Glossary-9
Naturalization 2-15, 3-3

inhibiting 2-15
Naturalized units 3-3, 3-9, Glossary-9
NCACHE cache mode 6-29
NIGHT_TRACE_BINDINGS package 11-6
NightSim 1-13, Glossary-9
Index-8

Index
NightTrace 1-13, 4-123, 11-6, 11-8, 11-19, Glossary-10
binding 11-6
configuration file

creating11-21

modifying 11-22
display utility 11-9
ntrace 11-8, 11-21
ntraceud 11-9, 11-17
user daemon 11-11, 11-13, 11-15, 11-17
viewing trace events 11-21

NightView 3-38, 11-9,C-1, Glossary-10
NightView debugger command

display C-8
handle C-6
info exception C-6
list C-8
print C-8
select-context C-4, C-6
set-language C-8
source C-5
x C-6

NightView debugger macro
task_list C-5
task_whoami C-5
task_whois C-5

nm 4-5
no_bsem parameter 8-5, M-14
Non-tasking

run-time 5-8
Non-uniform memory access 5-13, 5-14, 5-16, 5-17
noreorder qualifier keyword M-121
NORMALIZE_SCALARS pragma M-120
ntrace 4-123, 11-8, 11-9, 11-21
ntraceud 11-9, 11-17
NUMA 5-13, 5-14, 5-16, 5-17, Glossary-10

policy 5-14
NUMA policy

anchored-local 5-14, 5-16, 5-17
floating-point 5-14, 5-16, 5-17
global 5-14

nview 3-38

O

Objects
protected 5-9, 6-3, M-120
shared 3-13, Glossary-13

objects qualifier keyword 3-31,4-116, M-121
Obscurities Glossary-10
Obscurity checks 4-124
obsolescent 1-11, 9-1, 9-14, Glossary-10

Operating system quantum 6-15, Glossary-10
Operating system scheduling priority 6-12, 12-11,

Glossary-10
Opportunism4-110, Glossary-10
opt_class qualifier keyword4-116, M-121
OPT_FLAGS pragma 3-25, 3-31,M-121
OPT_LEVEL pragmaM-122
Optimal alignmentM-37
Optimization 3-31

levels 4-5, 4-6,4-112, M-122, Glossary-10
optimization_size_limit qualifier keyword4-116
OPTIMIZE pragma M-122
optimize_for_space qualifier keyword4-116, M-121
Options

compile 4-109, Glossary-2
See also Compile options

effective (compile) 3-20, 3-22, Glossary-4
hierarchical relationship 3-20, 3-22, Glossary-4
link 4-119
negating 3-22
permanent unit (compile) 2-8, 3-21, 4-65,

Glossary-4, Glossary-11
persistent 3-20, Glossary-11
-Q 4-114,4-115
temporary unit (compile) 2-9, 3-21, 4-65,

Glossary-4, Glossary-14
OS global priorities 5-9
OS scheduling classes 5-8

Ada (AD) 5-8, 5-9
Fixed Class (FC) 5-9
Fixed Priority (FP) 5-8, 5-9
Time Sharing (TS) 5-9

OS version 4-60, 4-122
Overloading C-7

P

P_CPUBIAS 6-14, 6-20, 6-28, 10-8, A-2,B-2
P_FPRI B-3
P_OWNER 12-1, 12-3, 12-6,B-2
P_PLOCK 6-30, 10-8, 10-12,B-2
P_RTIME 6-13, 6-15, 6-19, 10-3, 10-5, 10-6, 10-8,

10-11, 10-12, A-1,B-2, B-3
P_SHMBIND 10-2,B-2, M-35
P_SYSOPSB-2, B-4
P_TSHAR 6-13, 6-15, 6-19, 10-8, A-2,B-2
P_USERINT 10-8,B-2
PACK pragma 3-25, M-123
Package

BINARY_SEMAPHORES10-3, 10-3, 10-4, 10-6,
B-2

CYCLIC_SCHEDULER 10-7, B-2
Index-9

MAXAda Reference Manual
DEFAULT_HANDLER 3-14
INDIVISIBLE_OPERATIONS 6-25,10-9, 10-11
INTERVAL_TIMER 10-1
MACHINE_CODE M-114
NIGHT_TRACE_BINDINGS 11-6
REAL_TIME_DATA_MONITORING 3-40, 9-13,

12-2, B-5, M-117
RESCHEDULING_CONTROL B-2
RTC_CONTROL 10-7
RUNTIME_CONFIGURATION 6-1, 6-4, 6-5, 6-9,

6-10, 6-15, 6-19, 6-20, A-5, B-2, B-5
SHARED_MEMORY_SUPPORT 8-4, 8-8,9-10,

B-5
SPIN_LOCKS 10-2, B-2
SYNC_PACKAGE 10-3
SYSTEM 5-7
SYSTEM_INFORMATION 9-11
TASK_SYNCHRONIZATION 10-6, B-2
TASKING_SEMAPHORES 10-5
USER_LEVEL_INTERRUPTS 10-12, B-2, B-5
USER_TRACE 10-9, 11-3
USERDMA_SUPPORT 10-12, B-2
VIRTUAL_TO_PHYSICAL 10-12, B-2

Packages
shared Glossary-13

PAGE pragma M-123
Pages

memory 5-14
Panics 3-33, Glossary-10
Parallel

compilation 4-10
dependency analysis 4-10

PART_HAS_TAG M-15
Partition Glossary-11
Partitions

active 2-3, 3-12, Glossary-1
archives 3-12
building 2-4
defining 2-3
elaboration - archives 3-12
elaboration - shared objects 3-13
finalization - archives 3-12
finalization - shared objects 3-13
incrementally updateable 4-122
listing 2-6
obscurity checks 4-124
shared objects 3-13, Glossary-13
types 3-12

Passive task C-4
GENERAL Glossary-5
SERVER Glossary-13

PASSIVE_TASK pragma M-123
PATH environment variable 2-1
Performance 5-2

analysis 4-6
Permanent unit compile options 2-8, 3-21, 4-65,

Glossary-4, Glossary-11
Persistent options Glossary-11
plock 6-30
Policy

anchored-local 5-14, 5-16, 5-17
floating-point 5-14, 5-16, 5-17
global 5-14
NUMA 5-14

Pool
lock state 6-29, Glossary-8
memory 6-21, 6-23, 6-29, 6-30, Glossary-9
pad 6-32
size 6-30

POOL_CACHE_MODE pragma6-29, M-123
POOL_LOCK_STATE pragma 5-17,6-29, 7-14, B-2,

M-124
POOL_PAD pragma6-32, M-124
POOL_SIZE pragma6-30, A-2, M-124
Position independent code (PIC) 3-14, Glossary-11
POSIX 1-12
posix_1003.1 1-12, 9-1, 9-14
posix_1003.5 1-12, 9-1, 9-15
PowerPC

addressing modes M-53
instruction set M-48
machine-code insertions M-48

POWERWORKS_ELMHOST 1-7
Pragma 4-86

ALL_CALLS_REMOTE M-105
ASSIGNMENT M-105
ASYNCHRONOUS M-105
ATOMIC M-105
ATOMIC_COMPONENTS M-106
ATTACH_HANDLER M-106
CONTROLLED M-106
CONVENTION M-107
DATA_RECORD M-108
DEBUG 12-1,M-108
DEFAULT_HARDNESS 6-4, 6-24, M-109
DEPRECATED_FEATURE M-109
DISCARD_NAMES M-109
DISTRIBUTED_LOCAL_LOCKING 6-5, M-110
DONT_ELABORATE M-110
ELABORATE M-110
ELABORATE_ALL M-110
ELABORATE_BODY M-111
EXPORT M-111
EXTERNAL_NAME M-112
FAST_INTERRUPT_TASK7-13, 7-14, 7-15,

7-17, B-2, M-112
GROUP_CPU_BIAS 5-4, 6-14,6-19, 6-20, 6-25,

B-2, M-113
Index-10

Index

1

,

GROUP_PRIORITY6-19, B-2, B-5, M-113
GROUP_SERVERS6-20, M-113
IMPLICIT_CODE M-54,M-114
IMPORT M-114
INLINE 3-25, M-115
INSPECTION_POINT M-116
INTERESTING 9-13, M-116
INTERFACE M-117
INTERFACE_NAME M-117
INTERFACE_OBJECT M-118
INTERFACE_SHARED M-118
INTERRUPT_HANDLER M-118
INTERRUPT_PRIORITY M-118
LINK_OPTION M-119
LINKER_OPTIONS M-119
LIST M-119
LOCKING_POLICY 5-9,6-3, M-119
MAP_FILE 6-2, M-120
MEMORY_POOL 5-4, 5-16, 5-17, 6-4,6-23,

12-13, A-2, B-2, M-120
NORMALIZE_SCALARS M-120
OPT_FLAGS 3-25, 3-31,M-121
OPT_LEVEL M-122
OPTIMIZE M-122
PACK 3-25, M-123
PAGE M-123
PASSIVE_TASK M-123
POOL_CACHE_MODE6-29, M-123
POOL_LOCK_STATE 5-17,6-29, 7-14, B-2,

M-124
POOL_PAD 6-32, M-124
POOL_SIZE 6-30, A-2, M-124
PREELABORATE M-124
PRIORITY B-2, B-5, M-125
PROTECTED_PRIORITY 6-33, M-125
PURE M-126
QUEUING_POLICY 6-2, M-126
REMOTE_CALL_INTERFACE M-126
REMOTE_TYPES M-126
RESTRICTIONS M-127
RETURN_CONVENTION M-127
REVIEWABLE M-128
RUNTIME_DIAGNOSTICS 6-1, A-5, M-128
SERVER_CACHE_SIZE6-4, M-128
SHARE_BODY C-7,M-128
SHARE_MODE M-129
SHARED M-130
SHARED_PACKAGE 8-1, 8-2, 8-4, 8-5, 12-2,

12-13, B-2, B-5, M-13, M-130
SHARED_PASSIVE M-130
SPECIAL_FEATURE M-130
STORAGE_SIZE M-131
SUPPRESS 3-25, 5-13, M-131
SUPPRESS_ALLM-132

TASK_CPU_BIAS 5-4, 5-16,6-14, 6-14, 6-20,
6-25, A-2, B-2, M-132

TASK_DISPATCHING_POLICY 5-9, M-132
TASK_HANDLER 6-16, M-133
TASK_PRIORITY 6-12, A-2, B-2, B-5, M-133
TASK_QUANTUM 5-9,6-15, B-2, M-133
TASK_WEIGHT 5-6,6-10, 7-14, M-134
TDESC M-134
TRAMPOLINE M-134
VOLATILE A-3, M-134
VOLATILE_COMPONENTS M-135

Pragmas Glossary-11
Precision M-11
predefined 1-11, 3-3, 9-1, 9-6, Glossary-4, Glossary-1
PREDEFINED group6-9, 6-20,6-20
Predefined Language Environment 2-7
Predefined trace events 11-1, 11-15, 11-17, 11-20
predefined trace events 11-2
PREELABORATE pragma M-124
Primary memory 5-13, 5-15
print C-8
Priorities

global 5-9
Priority 6-12, 10-7, M-13, M-133

fixed B-5
inheritance 10-3, 10-11
operating system 6-12, 12-11, Glossary-10
scheduling Glossary-12
task scheduling 6-12, 12-11, Glossary-14

Priority 5-5
PRIORITY pragma B-2, B-5, M-125
PRIORITY_OF_ENVIRONMENT 5-9
priv B-3
Privilege

P_CPUBIAS 6-14, 6-20, 6-28, 10-8, A-2,B-2
P_FPRI B-3
P_OWNER 12-1, 12-3, 12-6,B-2
P_PLOCK 6-30, 10-8, 10-12,B-2
P_RTIME 6-13, 6-15, 6-19, 10-3, 10-5, 10-6, 10-8

10-11, 10-12, A-1,B-2, B-3
P_SHMBIND 10-2,B-2, M-35
P_SYSOPSB-2, B-4
P_TSHAR 6-13, 6-15, 6-19, 10-8, A-2,B-2
P_USERINT 10-8,B-2

Privileges 1-4
Process 5-1, Glossary-11

communication8-1, 10-11, B-5
hung A-3
lightweight 5-1, 12-11, C-4

Processor file system B-5
procfs B-5
Profiling 4-6
Program 5-1, Glossary-12

concurrent 8-4
Index-11

MAXAda Reference Manual
PROGRAM_ERROR exception 8-3, M-13
Programming

caveats 3-25
hints 3-25

Protected
Alignment M-39

Protected objects 5-9, 6-3, M-120
protected procedure handler Glossary-12
PROTECTED_PRIORITY pragma 6-33, M-125
Pseudo group

DEFAULT 6-9, Glossary-3
Pseudo task

DEFAULT 6-5, 6-7, 6-9, 6-22, Glossary-3
publiclib 1-11, 9-1, 9-12, Glossary-4, Glossary-12
PURE pragma M-126

Q

-Q options 4-114,4-115
growth_limit 4-117, M-121
inline_line_count4-115
inline_nesting_depth4-115
inline_statement_limit4-116
inlines_per_compilation4-116
interesting 4-117, 9-13
loops 4-116, M-121
noreorder M-121
objects 3-31,4-116, M-121
opt_class4-116, M-121
optimization_size_limit4-116
optimize_for_space4-116, M-121
unroll_limit M-121
unroll_limit_const M-121
unroll_limit_var M-121

Qualifier keyword. See -Q options
Quantum 5-3, Glossary-12

operating system 6-15, Glossary-10
task 6-15, Glossary-14

Queuing policy 6-2, Glossary-12
QUEUING_POLICY pragma6-2, M-126

R

REAL_TIME_DATA_MONITORING package 3-40,
9-13, 12-2, B-5, M-117

Real-time
Ada tasking 5-2, 5-8
clocks 7-1
data monitoring 12-1, Glossary-3
debugging 3-38

extensions 10-1
task monitoring 12-6, Glossary-14
vendorlib packages 10-1

Record
Alignment M-39
representation clausesM-43
type M-48

REF M-14
Ref M-48
release Glossary-12
Relevance 3-23
Relocation 3-13, Glossary-12
Remote memory 5-13, Glossary-12
REMOTE_CALL_INTERFACE pragma M-126
REMOTE_TYPES pragma M-126
RESCHEDULING_CONTROL package B-2
Resource file

license management 1-8
RESTRICTIONS pragma M-127
RETURN_CONVENTION pragma M-127
REVIEWABLE pragma M-128
Role B-3
ROUND_ROBIN_ADJUSTABLE_PRIORITIES 5-9
ROUND_ROBIN_PRIORITIES 5-9
RTC_CONTROL package 10-7
rtdm 1-11, 9-1, 9-12, Glossary-12
run(1) 5-15
Run-time errors A-5
Run-time executive5-1, 5-2, 5-3, 5-8, 6-12, 6-18, 6-19,

7-16, 10-11, A-2, A-3, A-5, Glossary-12
RUNTIME_CONFIGURATION package 6-1, 6-4, 6-5,

6-9, 6-10, 6-15, 6-19, 6-20, A-5, B-2, B-5
RUNTIME_DIAGNOSTICS pragma6-1, A-5, M-128

S

s# 4-106
Scheduling

classes 5-8
fixed-priority B-5
priority Glossary-12
task 5-3

Scheduling classes 5-8
Ada (AD) 5-9
Fixed Class (FC) 5-9
Fixed Priority (FP) 5-9
Time Sharing (TS) 5-9

Scheduling priority
operating system 6-12, Glossary-10
task 6-12, Glossary-14

select-context C-4, C-6
Selective linking 4-120
Index-12

Index

,

Semantic errors3-29, Glossary-13
SEMAPHORE_ERROR exception10-4, 10-6
Semaphores

binary 8-3, 8-5, 8-8,10-3
Server 5-1, Glossary-13
Server cache 6-4, Glossary-13
Server group 5-1,6-9, 12-10, Glossary-13
SERVER passive task Glossary-13
server_block 10-11,A-3
SERVER_CACHE_SIZE pragma6-4, M-128
server_wake1 7-13, 10-11,A-4
server_wakevec 10-11,A-4
set-language C-8
SHADOW ghost task 6-6, 6-11,7-4, 7-6, Glossary-13
Share mode 3-14,4-111, 4-111, Glossary-13
Share path 3-14, 4-122
SHARE_BODY pragma C-7,M-128
SHARE_MODE pragmaM-129
Shared

memory 8-1
Shared memory segment8-3, 8-5, M-13, M-14,M-36
Shared objects 3-13, Glossary-13

issues to consider 3-15
share mode 3-14,4-111, 4-111, Glossary-13
share path 3-14
transitive closure 4-124

Shared packages 8-4, 8-5, Glossary-13
SHARED pragma M-130
SHARED_MEMORY_SUPPORT package 8-4, 8-8,

9-10, B-5
SHARED_PACKAGE pragma8-1, 8-2, 8-4, 8-5, 12-2,

12-13, B-2, B-5, M-13, M-130
bind parameter 8-3
ipc parameter 8-2
key parameter 8-2
mode parameter 8-3
no_bsem parameter 8-3
SHM_HARD parameter 8-3
SHM_LOCAL parameter 8-3
SHM_LOCK parameter 8-3
SHM_RDONLY parameter 8-2

SHARED_PASSIVE pragma M-130
SHELL environment variable B-4
Shell environment variable

TMPDIR 4-39
Shell limits 6-31
SHM flags 8-3
shm.h file 9-11
SHM_COPYBACK parameter 8-3
SHM_ID M-13
SHM_RDONLY parameter 8-5,M-14
shmat 8-1, 9-11
shmbind 8-3, 8-5, 9-11
shmconfig 8-8

shmctl 8-4, 9-11
shmdt 9-11
shmget 8-1,8-2, 8-3, 9-11,M-13
SIGADA signal 7-3
SIGBUG signal 4-124, 4-127
SIGFPE signal 7-3
SIGILL signal 4-124, 4-127
Signals 7-1

SIGADA 7-3
SIGBUS 4-124, 4-127
SIGFPE 7-3
SIGILL 4-124, 4-127
SIGSEGV 4-124, 4-127, 7-3, 8-3

SIGSEGV signal 4-124, 4-127, 7-3, 8-3
sinfo 9-11
Size

Object M-39
SubtypeM-40

Sleepy wait 10-3, 10-5
Sockets 1-12
sockets 1-12, 9-1, 9-16
Soft links 3-14, 4-122
Software interrupt Glossary-13
Source File Utilities 1-2

a.intro 4-35
a.rmsrc4-95
a.syntax4-102
a.tags4-104

SPECIAL_FEATURE pragmaM-130
SPIN_LOCKS package10-2, B-2
Stack memory5-12, 6-22, Glossary-13
stars-xlibxt 9-1, 9-18
Static linking Glossary-14
stderr 3-26, 4-35, 4-52, 4-102, 4-109
stdin 4-16, 4-18, 4-35, 4-52, 4-53, 4-81, 4-83, 4-95,

4-102, 4-104
stdout 4-3, 4-4, 4-14, 4-16, 4-18, 4-21, 4-22, 4-35, 4-52

4-83, 4-95, 4-102, 4-104, 4-109
Storage place

componentM-45
STORAGE_ERROR exception A-2
STORAGE_SIZE pragma M-131
stub# 4-106
Subprogram

main 2-3, 5-1, Glossary-8
TEST_AND_SET 10-9

sup directory C-5
SUPPRESS pragma 3-25, 5-13, M-131
SUPPRESS_ALL pragmaM-132
SYNC_PACKAGE package 10-3
Syntax errors3-28, Glossary-14
System bus 5-13, Glossary-14
System configuration A-1, B-1
System.Priority 5-8
Index-13

MAXAda Reference Manual
SYSTEM_INFORMATION package 9-11

T

TAGGED M-15
Tagged

Alignment M-39
Target Architecture 4-120
Target architecture 4-60, 4-120
Task

ADMIN 5-5, 6-6, 6-32
Alignment M-39
attributes 6-10
bound 5-3, 12-11, A-2, C-4, M-71
control block C-4
COURIER 6-6, 6-11
CPU binding 5-3
DEFAULT 6-5, 6-7, 6-9, 6-22, Glossary-3
dispatching policy 5-3, 5-8, 5-9, 6-3, M-132
ENVIRONMENT 5-1, 5-2, 5-5, 5-8, 5-9, 5-11, 5-12
environment6-5, 6-7, 6-9, 6-17, 6-24, M-133
fast interrupt 7-13, 7-14, Glossary-5
GENERAL Glossary-5
ghost 5-4, 6-6, 12-7, 12-10, Glossary-1, Glossary-5,

Glossary-7
interrupt entries 7-1
INTR_COURIER 6-6, 6-11, B-2
monitoring 12-6, Glossary-14
multiplexed 12-8, 12-11, C-4, M-71
multithreading A-2
passive C-4
priority 6-12
quantum 6-15, Glossary-14
scheduling 5-3
scheduling priority 6-12, 12-11, Glossary-14
SERVER Glossary-13
SHADOW 6-6, 6-11,7-4, 7-6, Glossary-13
time slicing 5-3, 6-15
TIMER 5-5, 6-6, Glossary-14
type 6-6, 6-8, 6-22, 12-2
weight 4-123, 5-1, 5-2, 6-10, Glossary-14

Task dispatching policy 5-3, 5-8, 5-9, 6-3, M-132
FIFO_WITHIN_PRIORITIES 5-3 , 5-8 , 5-9 ,

6-3
ROUND_ROBIN_ADJUSTABLE_PRIORITIES

5-9
ROUND_ROBIN_PRIORITIES 5-9

Task weight 4-123
TASK_CPU_BIAS pragma 5-4, 5-16,6-14, 6-14, 6-20,

6-25, A-2, B-2, M-132
TASK_DISPATCHING_POLICY pragma 5-9, M-132
TASK_HANDLER pragma6-16, M-133

task_list C-5
TASK_PRIORITY pragma6-12, A-2, B-2, B-5, M-133
TASK_QUANTUM pragma 5-9,6-15, B-2, M-133
TASK_SYNCHRONIZATION package 10-6, B-2
TASK_WEIGHT pragma 5-6,6-10, 7-14, M-134
task_whoami C-5
task_whois C-5
Tasking

debugging C-3
model 5-1
real-time Ada 5-2
run-time 5-8
semaphores 10-5

TASKING_ERROR exception A-1, A-5
TASKING_SEMAPHORES package 10-5
TCB C-4
TDESC pragma M-134
Temporary unit compile options 2-9, 3-21, 4-65,

Glossary-4, Glossary-14
TEST_AND_SET subprogram 10-9
Text memory 5-11, 6-22, Glossary-14
tfadmin B-3, B-4
Time Sharing (TS) scheduling class 5-9
TIMER ghost task5-5, 6-6, Glossary-14
TMPDIR environment variable 4-39
top 4-61, 12-6
Trace events 11-1

predefined 11-1, 11-2, 11-15, 11-17, 11-20
user-defined 11-2, 11-15, 11-17, 11-20
viewing 11-19, 11-20, 11-21

Trace points 11-1
Tracing 4-123, Glossary-15

log files 11-18
trace events 11-1
trace points 11-1
user table 11-19, 11-21

TRAMPOLINE pragma M-134
Transitive closure 4-124
Troubleshooting A-1
TS (Time Sharing) scheduling class 5-9
Type

access 3-25, 6-23, 8-4, 12-1, 12-2
access AlignmentM-38
array AlignmentM-39
class-wide AlignmentM-39
composite M-123
composite AlignmentM-39
controlled AlignmentM-39
discrete AlignmentM-38
enumeration 12-2, 12-3, M-48
enumeration AlignmentM-38
fixed point Alignment M-38
fixed-point 12-2, 12-3
FLOAT M-11
Index-14

Index
floating point Alignment M-38
floating-point 12-2, 12-3
integer 12-2, 12-3
integer AlignmentM-38
LONG_FLOAT M-11
protected AlignmentM-39
record M-48
record AlignmentM-39
tagged AlignmentM-39
task 6-6, 6-8, 6-22, 12-2
task AlignmentM-39
universal_real M-11

U

Ultimate-default memory configuration 5-16
UNCHECKED_CONVERSION function 5-13
Unhandled exceptions. See Exceptions - unhandled.
Unit compile options 3-11
Unit Utilities 1-2

a.cat 4-12
a.demangle4-16
a.edit 4-20
a.expel 4-26
a.fetch 4-27
a.hide 4-32
a.invalid 4-37
a.ls 4-40
a.lssrc 4-47
a.resolve4-92
a.touch 4-107

Units Glossary-15
ambiguous 2-15, 3-10, 4-32, Glossary-1
compile options 3-11
configuration pragmas 3-7, Glossary-2
consistency 3-23, Glossary-2
fetched 3-3, 3-10, 4-67
foreign 3-10, Glossary-5
introducing 2-2
library Glossary-7
listing 2-5
local 3-9
modifying 2-12
nationalities 3-9
native 3-9, Glossary-9
naturalized 3-3, 3-9, Glossary-9
viewing source 2-5

universal_real type M-11
UNLOCK M-13, M-13
unroll_limit qualifier keyword M-121
unroll_limit_const qualifier keyword M-121
unroll_limit_var qualifier keyword M-121

USE_ERROR exception M-71
User errors A-2
User roles B-3
User table 11-19, 11-21
USER_LEVEL_INTERRUPTS package 10-12, B-2,

B-5
USER_TRACE package 10-9, 11-3
User-defined trace events 11-2, 11-15, 11-17, 11-20
userdma 10-12
USERDMA_SUPPORT package 10-12, B-2
User-level interrupts 10-12
usermap 10-12
Utilities

a.analyze4-3, 4-5, 4-6
a.build 4-8, 4-11, 11-9
a.cat 4-12
a.chmod4-13
a.compile4-14
a.db C-1
a.demangle4-16
a.deps4-18
a.edit 4-20
a.error 3-26,4-21, 4-56
a.expel4-26
a.fetch 3-5,4-27
a.freeze4-30
a.help 4-31
a.hide 4-32
a.install 4-33
a.intro 3-5, 4-32,4-35
a.invalid 4-37
a.link 4-5,4-38
a.ls 4-40
a.lssrc 4-47
a.man 4-49
a.map 4-52, 6-2, 6-10, 6-23, 7-14
a.mkenv 4-58
a.monitor 3-38,4-61, 7-11,12-6, B-2, B-5, C-3,

C-5, C-6
a.nfs 4-62
a.options 2-7, 3-31,4-64, M-121
a.partition 3-5,4-68, 11-15
a.path 3-5,4-79, 11-9
a.pclookup4-81
a.pp 4-82, 4-87
a.release4-88
a.report 4-6,4-90
a.resolve4-92
a.restore4-93
a.rmenv 4-94
a.rmsrc4-95
a.rtm 3-38,4-96, 7-11,12-2, B-2, B-5
a.script 3-6,4-97
a.slinker 4-100
Index-15

MAXAda Reference Manual
a.syntax4-102
a.tags4-104
a.touch 4-107
a.trace4-108, 4-123, 11-19, 11-20, 11-21, 11-22
NightSim 1-13, Glossary-9
NightTrace 1-13, 4-123, Glossary-10
NightTrace display 11-9
NightView C-1, Glossary-10
nview 3-38

Utility
a.demangle4-16

V

vendorlib 1-11, 3-14, 9-1, 9-8, 10-1, 11-3, Glossary-4,
Glossary-15

vi 4-21, 4-23, 4-24, 4-25,4-104, 4-105, 4-106
VIRTUAL_TO_PHYSICAL package 10-12, B-2
VOLATILE pragma A-3, M-134
VOLATILE_COMPONENTS pragma M-135

W

Wait
busy 10-2, 10-11
sleepy 10-3, 10-5

Warnings 3-32
Weight

process5-1, 12-11, C-4
task 5-1, 5-2, 6-10, Glossary-14

X

X bindings 1-13
X server 11-9
xlibxt 9-1, 9-17
Xt bindings 1-13
Index-16

Spine for 2.0” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Reference
Manual

M
A

X
A

da

0890516

	MAXAda Reference Manual
	Preface
	Contents
	Part 1 - Operations
	Introduction to MAXAda
	MAXAda Utilities
	MAXAda Core Utilities

	Privileges
	License Management (PowerMAX OS only)
	Activating MAXAda Licenses (PowerMAX OS only)
	POWERWORKS_ELMHOST (PowerMAX OS only)
	Access Limits (PowerMAX OS only)
	Resource File (PowerMAX OS only)
	Error Messages (PowerMAX OS only)
	Further Information (PowerMAX OS only)

	Activation (Linux only)
	Run-Time Systems
	Supplied Environments
	Ada Bindings
	Complementary MAXAda Products

	Using MAXAda
	Hello World - An Example
	Creating an environment
	Introducing units
	Defining a partition
	Building a partition
	Success!!!
	Let’s look around...
	Listing the units in your environment
	Viewing the source for a particular unit
	Listing the partitions defined
	Looking at the Environment Search Path
	What are my options?

	Hello Galaxy - The Example Continues...
	Setting up another environment
	Modifying an existing unit
	Building a unit with references outside the local environment
	Adding an environment to the Environment Search Path
	Making contact!!!
	Who resides here now?

	Hello Again... Ambiguous Units
	Resolving the ambiguity
	No more ambiguities!!!

	MAXAda Concepts
	Environments
	Local Environments
	Foreign Environments
	Environment Search Path
	Naturalization
	Fetching
	Supplied Environments

	NFS Environments
	Freezing Environments
	Restoring Environments
	Relocating Environments
	Environment-wide Compile Options

	Units
	Unit Identification
	Configuration Pragmas
	Nationalities
	Local Units
	Foreign Units

	Ambiguous Units
	Artificial Units
	Unit Compile Options

	Partitions
	Types of Partitions
	Active Partitions
	Archives
	Shared Objects
	Lazy Versus Immediate Binding
	Position Independent Code
	Share Path
	Shared Objects and Special MAXAda Packages
	Issues to consider

	Elaboration and Finalization Methods
	Elaboration Methods
	Finalization Methods

	Main Subprogram Requirements
	Exit Status

	Compilation and Program Generation
	Compilation
	Automatic Compilation Utility
	Compile Options
	Environment-wide Options
	Permanent Unit Options
	Temporary Unit Options
	Effective Options

	Compilation States
	Consistency
	Interoptimization
	Programming Hints and Caveats

	Compiler Error Messages
	Lexical Errors
	Syntax Errors
	Semantic Errors
	General Errors
	Informational Messages
	Warnings
	Alerts
	Fatal Errors
	Internal Errors and Panics

	Link Options
	Linking Executable Programs
	Linking Ada Programs with Shared Objects

	Debugging
	Real-Time Debugging
	Selecting a Debug Level
	Degree of Interest
	Debug Information and cprs

	MAXAda Utilities
	Common Options
	a.analyze
	Link-Time Optimizations with a.analyze
	Profiling with a.analyze

	a.build
	Parallel Compilations and Dependency Analyses
	Inline Dependencies
	Forcing Attempts
	Why

	a.cat
	a.chmod
	a.compile
	a.demangle
	a.deps
	a.edit
	a.error
	a.expel
	a.fetch
	a.freeze
	a.help
	a.hide
	a.install
	a.intro
	a.invalid
	a.link
	a.ls
	Formatting the listing
	Dependent units
	Parts
	Sorting
	Filtering

	a.lssrc
	a.man
	References to the Ada 95 Reference Manual
	References to the MAXAda Reference Manual
	Access to Support Packages

	a.map
	a.mkenv
	a.monitor
	a.nfs
	a.options
	Option Sets
	Listing options
	Setting options
	Modifying options
	Clearing options
	Deleting options
	Keeping temporary options
	Setting options on foreign units

	a.partition
	Main Subprogram
	Elaboration and Finalization
	Case Sensitivity
	Consistency
	Link Options
	Link Rule
	Implicitly-Included Libraries

	a.path
	a.pclookup
	a.pp
	Commands
	Expressions
	Defaults
	Examples

	a.release
	a.report
	a.resolve
	a.restore
	a.rmenv
	a.rmsrc
	a.rtm
	a.script
	Generated Script - Options

	a.slinker
	a.syntax
	a.tags
	a.touch
	a.trace
	Compile Options
	Negation (!)
	Debug Level (-g[level])
	Opportunism (-opp)
	Share Mode (-sm)
	Not Shared (-N)
	Optimization Level (-O[level])
	Qualifier Keyword (-Qkeyword[=value])
	Suppress Checks (-S)

	Qualifier Keywords (-Q options)
	Link Options
	Selective Linking
	Target Architecture
	OS Version
	Share Path
	Incrementally Updateable Partition
	Tracing
	Task Weight
	Shared Object Transitive Closure
	Obscurity Checks

	Part 2 - Run-Time
	Run-Time Concepts
	Tasking Model
	Features
	Performance
	Task Weights
	Bound Tasks
	Multiplexed Tasks

	Task Scheduling
	Task Time Slices

	Utilization of Multiple CPUs
	Ghost Tasks
	ADMIN Ghost Task
	TIMER Ghost Task

	Priorities
	OS Scheduling Classes
	Class Selection by the Non-Tasking Run-Time
	Class Selection by the Tasking Run-Time

	Restrictions for Priorities in the System.Interrupt_Priority Range

	Memory Management
	Text Memory
	Data Memory
	Collection Memory
	Stack Memory
	Other Memory
	Visibility of Memory
	Local Memory Management
	NUMA Policies
	MAXAda Local Memory Management
	Distribution Requirement
	Local Memory Locking Requirement
	Example

	Run-Time Configuration
	General Pragmas
	Pragma RUNTIME_DIAGNOSTICS
	Pragma MAP_FILE
	Pragma QUEUING_POLICY
	Pragma TASK_DISPATCHING_POLICY
	Pragma LOCKING_POLICY
	Pragma SERVER_CACHE_SIZE
	Pragma DEFAULT_HARDNESS
	Pragma DISTRIBUTED_LOCAL_LOCKING

	Task and Group Configuration Concepts
	Task Names and Default Settings
	Task Specifiers in Task Pragmas
	Group Names and Default Settings
	Group Specifiers in Group Pragmas

	Task Attributes
	Pragma TASK_WEIGHT
	Pragma TASK_PRIORITY
	Pragma TASK_CPU_BIAS
	Pragma TASK_QUANTUM
	Pragma TASK_HANDLER

	Group Attributes
	Pragma GROUP_PRIORITY
	Pragma GROUP_CPU_BIAS
	Pragma GROUP_SERVERS

	Memory Attributes
	Pool Specifiers
	Pragma MEMORY_POOL
	Pragma POOL_CACHE_MODE
	Pragma POOL_LOCK_STATE
	Pragma POOL_SIZE
	Pragma POOL_PAD

	Protected Object Attributes
	Pragma PROTECTED_PRIORITY

	Interrupt Handling
	Software Interrupts
	COURIER Ghost Tasks
	SHADOW Ghost Tasks

	Hardware Interrupts
	INTR_COURIER and COURIER Ghost Tasks
	SHADOW Ghost Tasks
	Required Privileges for Unrestricted Hardware Interrupts

	Interrupt Attachments
	Package Ada.Interrupts.Names
	Package Ada.Interrupts.Services

	Task Executives via Protected Handlers
	Example
	Description of Example

	Pragma FAST_INTERRUPT_TASK
	FAST_INTERRUPT_TASK Performance
	Fast Interrupt Executives
	Termination
	Conditional Task Entry Calls

	Part 3 - General Features
	Shared Memory and Process Communication
	Shared Memory
	Shared Packages
	Pragma SHARED_PACKAGE
	Restrictions on Contents of Shared Packages
	Characteristics of Shared Packages
	Shared Package Semaphores

	Additional Ada Shared Memory Support

	Support Packages
	Supplied Environments
	predefined
	vendorlib
	Bit_Ops
	Ada.Exceptions.Addresses
	Ada.Numerics.Constants
	Runtime_Configuration
	Shared_Memory_Support
	System.Addresses
	System.Information
	System.Storage_Pools.Standard
	System.Storage_Pools.Standard.Objects
	Walkbacks
	Walkbacks_Display

	publiclib
	C_To_Ada_Types
	Character_Type
	Curses
	Qsort

	rtdm
	Real_Time_Data_Monitoring

	deprecated
	obsolescent
	posix_1003.1
	Posix_1003_1

	posix_1003.5
	sockets
	Sockets

	general
	Night_Trace_Bindings
	Timers

	AXI Supplied Environments
	Xlibxt
	Stars-Xlibxt
	Motif

	Part 4 - Real-Time Features
	Real-Time Extensions
	High-Resolution Timing Interfaces
	Interval Timer Interface

	Mutual Exclusion Interfaces
	Spin Locks
	Binary Semaphores
	Tasking Semaphores

	Task Synchronization
	Cyclic Scheduling
	User Trace
	Low-Level Interfaces
	Indivisible Operations
	Rescheduling Control
	Client-Server Services
	User-Level Interrupts
	Direct Memory Access
	Usermap Support

	Real-Time Event Tracing
	Specifying Trace Events
	Predefined Trace Events
	Library Unit Elaboration

	User-Defined Trace Events
	user_trace package
	Specification
	Usage

	NightTrace Binding
	Specification
	Usage

	NightView Debugger

	Tracing Options
	Tracing Options - Examples

	Logging Trace Events
	Logging Mechanisms
	Ada Executive
	Trace Buffer
	Timing Source

	NightTrace Daemon

	Log Files

	Viewing Trace Events
	User Table
	Viewing Trace Events with a.trace
	Viewing Trace Events with NightTrace
	Creating the NightTrace Configuration File
	Modifying the NightTrace Configuration File

	Real-Time Monitoring
	Data Monitoring
	Compiling
	Eligible Data Objects
	Eligible Data Types
	real_time_data_monitoring Package
	a.rtm
	File Operations

	Task Monitoring
	a.monitor
	Task Display
	System Display
	Memory Display
	LWP Display

	Part 5 - Appendixes, Glossary, and Index
	Troubleshooting
	Configuration Errors
	System Configuration
	Application Configuration
	Using Tasks to Multithread Algorithms

	User Errors
	Concurrent Access
	Hung Processes
	Referencing errno
	Client/Server Services

	Run-Time Diagnostics
	Run-Time Diagnostic Messages

	Compiler Errors

	MAXAda Configuration
	Privileges
	Basic System Configurations

	Kernel Configuration

	Ada NightView
	Debugger Command Comparison
	Hints for Debugging Ada Programs with NightView
	Tasking Programs
	Debugging Context

	Exception Handling and Interception
	Generics
	Overloaded Subprograms
	General NightView Operational Hints
	Listing Source, Packages, and Subprograms
	Disassembly
	Expression Evaluation Syntax

	Implementation-Defined Characteristics
	RM Chapter 1: General
	RM 1.1.2 Structure
	Implementation Advice

	RM 1.1.3 Conformity of an Implementation with the Standard
	Implementation Requirements
	Documentation Requirements
	Implementation Advice

	RM 1.1.4 Method of Description and Syntax Notation
	Implementation Advice

	RM Chapter 2: Lexical Elements
	RM 2.1 Character Set
	Static Semantics

	RM 2.2 Lexical Elements, Separators, and Delimiters
	Static Semantics
	Implementation Requirements

	RM 2.8 Pragmas
	Implementation Permissions
	Implementation Advice
	Static Semantics

	RM Chapter 3: Declarations and Types
	RM 3.5 Scalar Types
	Dynamic Semantics

	RM 3.5.2 Character Types
	Implementation Advice

	RM 3.5.4 Integer Types
	Implementation Permissions
	Implementation Advice

	RM 3.5.5 Operations of Discrete Types
	Implementation Advice

	RM 3.5.6 Real Types
	Implementation Permissions

	RM 3.5.7 Floating Point Types
	Legality Rules
	Implementation Permissions
	Implementation Advice

	RM 3.5.9 Fixed Point Types
	Legality Rules

	RM 3.6.2 Operations of Array Types
	Implementation Advice

	RM 3.9 Tagged Types and Type Extensions
	Static Semantics

	RM Chapter 4: Names and Expressions
	RM 4.1.4 Attributes
	Implementation Permissions

	RM 4.3.1 Record Aggregates
	Dynamic Semantics

	RM Chapter 5: Statements
	RM Chapter 6: Subprograms
	RM Chapter 7: Packages
	RM Chapter 8: Visibility Rules
	RM Chapter 9: Tasks and Synchronizations
	RM 9.6 Delay Statements, Duration, and Time
	Legality Rules
	Dynamic Semantics
	Implementation Permissions
	Implementation Advice

	RM 9.10 Shared Variables
	Static Semantics

	RM Chapter 10: Program Structure and Compilation Issues
	RM 10.1 Separate Compilation
	Implementation Permissions

	RM 10.1.4 The Compilation Process
	RM 10.1.5 Pragmas and Program Units
	Implementation Permissions

	RM 10.2 Program Execution
	Post-Compilation Rules
	Dynamic Semantics
	Implementation Permissions

	RM 10.2.1 Elaboration Control
	Implementation Advice

	RM Chapter 11: Exceptions
	RM 11.4.1 The Package Exceptions
	Static Semantics
	Implementation Advice

	RM 11.5 Suppressing Checks
	Implementation Permissions
	Implementation Advice

	RM Chapter 12: Generic Units
	RM Chapter 13: Representation Issues
	RM 13.1 Representation Items
	Implementation Permissions
	Implementation Advice

	RM 13.2 Pragma Pack
	Implementation Advice

	RM 13.3 Representation Attributes
	Address Attributes
	Implementation Advice
	Notes

	Alignment Attributes
	Implementation Advice
	Notes

	Size Attributes for Objects
	Static Semantics
	Implementation Advice

	Size Attributes for Subtypes
	Static Semantics
	Implementation Advice
	Notes

	Component_Size Attributes
	Implementation Advice

	External_Tag Attributes
	Static Semantics
	Implementation Requirements

	RM 13.4 Enumeration Representation Clauses
	Implementation Advice

	RM 13.5.1 Record Representation Clauses
	Implementation Permissions
	Implementation Advice
	Notes

	RM 13.5.2 Storage Place Attributes
	Implementation Advice

	RM 13.5.3 Bit Ordering
	Static Semantics
	Implementation Advice

	RM 13.7 The Package System
	Static Semantics
	Implementation Advice

	RM 13.7.1 The Package System.Storage_Elements
	Implementation Advice

	RM 13.8 Machine Code Insertions
	Static Semantics
	PowerPC-604
	PowerPC-604 Instruction Set
	Register Set
	Addressing Modes
	Usage

	RM 13.9 Unchecked Type Conversions
	Dynamic Semantics
	Implementation Advice

	RM 13.11 Storage Management
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM 13.11.2 Unchecked Storage Deallocation
	Implementation Advice
	Implementation Permissions

	RM 13.12 Pragma Restrictions
	RM 13.13.2 Stream-Oriented Attributes
	Implementation Advice

	RM Annex A: Predefined Language Environment
	Implementation Permissions
	RM A.1 The Package Standard
	Static Semantics
	Implementation Advice

	RM A.3.2 The Package Characters.Handling
	Implementation Advice

	RM A.4.4 Bounded-Length String Handling
	Implementation Advice

	RM A.5.1 Elementary Functions
	Implementation Requirements

	RM A.5.2 Random Number Generation
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM A.5.3 Attributes of Floating Point Types
	Static Semantics

	RM A.7 External Files and File Objects
	Static Semantics

	RM A.9 The Generic Package Storage_IO
	Static Semantics

	RM A.10 Text Input-Output
	Static Semantics

	RM A.10.7 Input-Output of Characters and Strings
	Implementation Advice

	RM A.10.9 Input-Output for Real Types
	Implementation Permissions

	RM A.13 Exceptions in Input-Output
	Documentation Requirements

	RM A.15 The Package Command_Line

	RM Annex B: Interface to Other Languages
	RM B.1 Interfacing Pragmas
	Legality Rules
	Static Semantics
	Implementation Advice

	RM B.2 The Package Interfaces
	Implementation Permissions
	Implementation Advice

	RM B.3 Interfacing with C
	Implementation Advice
	Notes

	RM B.4 Interfacing with COBOL
	Static Semantics

	RM B.5 Interfacing with Fortran
	Implementation Advice
	Notes

	RM Annex C: Systems Programming
	RM C.1 Access to Machine Operations
	Implementation Advice
	Documentation Requirements
	Implementation Advice

	RM C.3 The Package Interrupts
	Dynamic Semantics
	Documentation Requirements
	Implementation Advice

	RM C.3.1 Protected Procedure Handlers
	Implementation Advice

	RM C.3.2 The Package Interrupts
	Documentation Requirements
	Implementation Advice

	RM C.4 Preelaboration Requirements
	Documentation Requirements
	Implementation Advice

	RM C.5 Pragma Discard_Names
	Static Semantics
	Implementation Advice

	RM C.7.1 The Package Task_Identification
	Dynamic Semantics
	Bounded (Run-Time) Errors
	Documentation Requirements

	RM C.7.2 The Package Task_Attributes
	Documentation Requirements
	Implementation Advice

	RM Annex D: Real-Time Systems
	Metrics
	RM D.1 Task Priorities
	Static Semantics
	Dynamic Semantics

	RM D.2.1 The Task Dispatching Model
	Dynamic Semantics
	Implementation Permissions

	RM D.2.2 The Standard Task Dispatching Policy
	Legality Rules
	Documentation Requirements
	Implementation Permissions

	RM D.3 Priority Ceiling Locking
	Legality Rules
	Dynamic Semantics
	Implementation Permissions
	Implementation Advice

	RM D.4 Entry Queuing Policies
	Implementation Advice

	RM D.6 Preemptive Abort
	Documentation Requirements
	Implementation Advice

	RM D.7 Tasking Restrictions
	Static Semantics
	Dynamic Semantics
	Implementation Advice

	RM D.8 Monotonic Time
	Static Semantics
	Documentation Requirements
	Implementation Advice

	RM D.9 Delay Accuracy
	Documentation Requirements

	RM D.12 Other Optimizations and Determinism Rules
	Documentation Requirements

	RM Annex G: Numerics
	Implementation Advice
	RM G.1 Complex Arithmetic
	RM G.1.1 Complex Types
	Implementation Requirements
	Implementation Advice

	RM G.1.2 Complex Elementary Functions
	Implementation Requirements
	Implementation Advice

	RM G.2 Numeric Performance Requirements
	Implementation Permissions

	RM G.2.1 Model of Floating Point Arithmetic
	Implementation Requirements
	Implementation Permissions

	RM G.2.3 Model of Fixed Point Arithmetic
	Implementation Requirements

	RM G.2.4 Accuracy Requirements for the Elementary Functions
	Implementation Advice

	RM G.2.6 Accuracy Requirements for Complex Arithmetic
	Implementation Advice

	RM Annex J: Obsolescent Features
	RM J.7.1 Interrupt Entries
	Documentation Requirements
	Implementation Permissions

	RM Annex K: Language-Defined Attributes
	RM Annex L: Pragmas
	Pragma ALL_CALLS_REMOTE - (not yet supported)
	Pragma ASSIGNMENT
	Pragma ASYNCHRONOUS - (not yet supported)
	Pragma ATOMIC
	Pragma ATOMIC_COMPONENTS
	Pragma ATTACH_HANDLER
	Pragma CONTROLLED
	Pragma CONVENTION
	Pragma DATA_RECORD - (obsolete)
	Pragma DEBUG
	Pragma DEFAULT_HARDNESS
	Pragma DEPRECATED_FEATURE
	Pragma DISCARD_NAMES
	Pragma DISTRIBUTED_LOCAL_LOCKING
	Pragma DONT_ELABORATE
	Pragma ELABORATE
	Pragma ELABORATE_ALL
	Pragma ELABORATE_BODY
	Pragma EXPORT
	Pragma EXTERNAL_NAME - (obsolete)
	Pragma FAST_INTERRUPT_TASK
	Pragma GROUP_CPU_BIAS
	Pragma GROUP_PRIORITY
	Pragma GROUP_SERVERS
	Pragma IMPLICIT_CODE
	Pragma IMPORT
	Pragma INLINE
	Pragma INSPECTION_POINT - (not yet supported)
	Pragma INTERESTING
	Pragma INTERFACE - (obsolete)
	Pragma INTERFACE_NAME - (obsolete)
	Pragma INTERFACE_OBJECT - (obsolete)
	Pragma INTERFACE_SHARED - (obsolete)
	Pragma INTERRUPT_HANDLER
	Pragma INTERRUPT_PRIORITY
	Pragma LINK_OPTION - (obsolete)
	Pragma LINKER_OPTIONS
	Pragma LIST
	Pragma LOCKING_POLICY
	Pragma MAP_FILE
	Pragma MEMORY_POOL
	Pragma NORMALIZE_SCALARS - (not yet supported)
	Pragma OPT_FLAGS
	Pragma OPT_LEVEL
	Pragma OPTIMIZE
	Pragma PACK
	Pragma PAGE
	Pragma PASSIVE_TASK - (obsolete)
	Pragma POOL_CACHE_MODE
	Pragma POOL_LOCK_STATE
	Pragma POOL_PAD
	Pragma POOL_SIZE
	Pragma PREELABORATE
	Pragma PRIORITY
	Pragma PROTECTED_PRIORITY
	Pragma PURE
	Pragma QUEUING_POLICY
	Pragma REMOTE_CALL_INTERFACE - (not yet supported)
	Pragma REMOTE_TYPES - (not yet supported)
	Pragma RESTRICTIONS
	Pragma RETURN_CONVENTION
	Pragma REVIEWABLE - (not yet supported)
	Pragma RUNTIME_DIAGNOSTICS
	Pragma SERVER_CACHE_SIZE
	Pragma SHARE_BODY
	Pragma SHARE_MODE
	Pragma SHARED - (obsolete)
	Pragma SHARED_PACKAGE
	Pragma SHARED_PASSIVE - (not yet supported)
	Pragma SPECIAL_FEATURE
	Pragma STORAGE_SIZE
	Pragma SUPPRESS
	Pragma SUPPRESS_ALL
	Pragma TASK_CPU_BIAS
	Pragma TASK_DISPATCHING_POLICY
	Pragma TASK_HANDLER
	Pragma TASK_PRIORITY
	Pragma TASK_QUANTUM
	Pragma TASK_WEIGHT
	Pragma TDESC
	Pragma TRAMPOLINE
	Pragma VOLATILE
	Pragma VOLATILE_COMPONENTS

	Glossary
	Index

