
Concurrent Fortran 95 Tutorial

0890498-000

February 2002

Copyright 2002 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerMAX OS, Power Hawk, NightSim, NightTrace, and NightView are trademarks of Concurrent Computer Corporation.

Motorola is a registered trademark of Motorola, Inc.

UNIX is a registered trademark of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- February 2002 000 PowerMAX OS 4.3

Preface

General Information

Concurrent Fortran 95 utilizes the Numerical Algorithms Group’s F95 compiler and Con-
current’s C/C++ compiler to produce highly optimized object code tailored to Concurrent
systems running PowerMAX OSTM.

Scope of Manual

This manual is a tutorial for Concurrent Fortran 95. In this tutorial, we will compile and
link a Fortran program and then document its usage with the NightViewTM symbolic
debugger, the NightSimTM frequency-based scheduler, and the NightTraceTM event ana-
lyzer.

Structure of Manual

This manual consists of one chapter which is the tutorial for Concurrent Fortran 95.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window
type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.
3

Concurrent Fortran 95 Tutorial
{ } Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView User’s Guide

0890398 NightTrace Manual

0890458 NightSim User’s Guide
4

Contents
Contents

Chapter 1 Using Concurrent Fortran 95 with NightStar Tools

Overview . 1-1
Before you begin . 1-1

Getting Started . 1-3
Using NEdit . 1-4
Using the Concurrent Fortran 95 compiler . 1-7

Viewing the intermediate C code . 1-7
Using NightSim . 1-9

Invoking NightSim . 1-9
Configuring the Scheduler . 1-9
Scheduling a process . 1-12
Activating user tracing and kernel tracing . 1-13
Setting up the scheduler . 1-15

Using NightView . 1-17
Adding a tracepoint in the program . 1-18
Inserting a monitorpoint . 1-20
Resuming execution . 1-22
Starting the simulation . 1-23
Inserting a patchpoint . 1-24
Halting user tracing and kernel tracing . 1-26
Disabling the patchpoint. 1-26
Exiting the program . 1-27
Removing the scheduler . 1-28

Using NightTrace. 1-30
Converting kernel trace event files. 1-30
Invoking NightTrace. 1-31
Creating a default page. 1-32
Creating a default kernel page . 1-32
Searching for a kernel trace event . 1-33
Searching for a user trace event . 1-36
Zooming in . 1-38

Conclusion . 1-40

Illustrations

Figure 1-1. NEdit Editor . 1-4
Figure 1-2. NightSim Scheduler . 1-10
Figure 1-3. NightSim Edit Process . 1-12
Figure 1-4. NightView Dialogue . 1-17
Figure 1-5. NightView Principal Debug Window . 1-18
Figure 1-6. Setting a new tracepoint . 1-19
Figure 1-7. Setting a new monitorpoint . 1-21
Figure 1-8. NightView Monitor Window . 1-22
Figure 1-9. Resuming execution . 1-23
Figure 1-10. Starting the simulation . 1-24
5

PowerWorks Linux Development Environment Tutorial
Figure 1-11. Setting a new patchpoint . 1-25
Figure 1-12. Disabling a patchpoint . 1-27
Figure 1-13. Resuming execution . 1-28
Figure 1-14. Removing the scheduler . 1-28
Figure 1-15. Removing the scheduler . 1-29
Figure 1-16. NightTrace Main window . 1-31
Figure 1-17. NightTrace default page . 1-32
Figure 1-18. Default Kernel Page . 1-33
Figure 1-19. Searching for a kernel trace event . 1-34
Figure 1-20. First kernel trace event . 1-35
Figure 1-21. NightTrace display page repositioned accordingly 1-36
Figure 1-22. Searching for a user trace event . 1-37
Figure 1-23. NightTrace display page . 1-38
Figure 1-24. Zoomed in kernel display page . 1-39
6

Using Concurrent Fortran 95 with NightStar Tools
1
Chapter 1Using Concurrent Fortran 95 with NightStar Tools

1
1
1

Concurrent Fortran 95 compiles Fortran source using C as its intermediate language. The
Fortran source is first translated to its equivalent in C and that resultant C code is then
compiled using the Concurrent C/C++ compiler.

Because of this, certain considerations must be taken into account. In the generated C
code, an underscore (“_”) is appended to the names of all variables and function calls.
This must be taken into consideration when using any of the NightStar tools which refer-
ence the variables or function names in the Fortran source.

This tutorial will demonstrate the interaction of a Fortran program with the various Night-
Star tools including the NightViewTM symbolic debugger, NightTraceTM event analyzer,
and NightSimTM frequency-based scheduler.

Overview 1

This is a demonstration of the Concurrent Fortran 95 compiler and its interactions with
various NightStar tools, including:

- NEdit

- NightSim

- NightView

- NightTrace

integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin 1

For the sections of the tutorial that use the NightSim Scheduler and the NightView
Source-Level Debugger, this tutorial requires that the user have the following privileges:

• P_CPUBIAS

• P_PLOCK

• P_RTIME
1-1

Concurrent Fortran 95 Tutorial
A convenient way to associate privileges with users is through the use of roles. A role is
simply a named description of a set of privileges that have been registered for certain exe-
cutable files, such as the shell. The system administrator creates roles and assigns users to
them. During the login process, users can request that their shell be granted the privileges
associated with their role. Such a request takes the form of an invocation of the tfad-
min(1M) command. Once privileges have been granted to the user’s shell, subsequently
spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by this tuto-
rial to three commonly used shells (sh, ksh, and csh). The PowerMAX OS system
administrator should issue the following commands once.

/usr/bin/adminrole -n NSTAR_USERS
/usr/bin/adminrole -a sh:/usr/bin/sh:cpubias:plock:rtime NSTAR_USERS
/usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:plock:rtime NSTAR_USERS
/usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:plock:rtime NSTAR_USERS

The following command assigns an example user (JoeUser) to the NSTAR_USERS role.
The system administrator should issue the following command once.

/usr/bin/adminuser -n -o NSTAR_USERS JoeUser

JoeUser is now allowed to request that the above privileges be granted to his shell (assum-
ing JoeUser utilizes either the sh, ksh, or csh shell, as these are the only shell commands
registered in the NSTAR_USERS role). However, by default, these privileges are not
granted. He must explicitly make the request by initiating a new shell with the tfad-
min(1M) command. For convenience, it is recommended that the following command
be added to the end of his .profile (or .login for csh users) file. (This file is exe-
cuted during initialization of the login shell).

exec /sbin/tfadmin NSTAR_USERS: shell

where shell is the shell of your choice (sh, ksh, or csh).

Proceed to “Getting Started” on page 1-3 to begin the tutorial.
1-2

Using Concurrent Fortran 95 with NightStar Tools
Getting Started 1

We will start by creating a directory in which we will do all our work.

To create a working directory

- Use the mkdir(1) command to create a working directory.

We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the cd(1) com-
mand:

cd tutorial
1-3

Concurrent Fortran 95 Tutorial
Using NEdit 1

Next, we will create one of the source files that will be used by our example program. We
will do this using the NEdit Editor. Although other editors may be used, NEdit comes
with PowerMAX OS and thus will be demonstrated in this tutorial.

Let’s open the NEdit editor.

To start NEdit

- From the command line in a terminal window, type the following com-
mand:

nedit

The NEdit Editor will be opened, ready to accept input.

Figure 1-1. NEdit Editor

We will enter the source file for our example program. This program is written in Fortran
and is shown on the following pages:
1-4

Using Concurrent Fortran 95 with NightStar Tools
MODULE do_work_module

 REAL , DIMENSION(:), ALLOCATABLE :: results

CONTAINS

 SUBROUTINE do_work(iteration_count)

 INTEGER i
 REAL , POINTER :: real_ptr => NULL()

 ALLOCATE(real_ptr)
 real_ptr = iteration_count * 2.549
 DO i = 1, 500
 ALLOCATE(results(i))
 DO j = 1, i
 results(j) = i * real_ptr
 END DO
 DEALLOCATE(results)
 END DO
 DEALLOCATE(real_ptr)

 RETURN
 END SUBROUTINE do_work

END MODULE do_work_module

MODULE tracing_module

CONTAINS

 SUBROUTINE start_tracing

 ! trace_start() takes a trace-event file name as an argument.
 ! The ntraceud daemon writes the trace events logged by the
 ! NightTrace library to the trace-event file. The trace_start()
 ! routine must be called by a process to attach to the shared
 ! memory buffer used by the NightTrace library and the ntraceud
 ! daemon.

 ! trace_open() opens the current thread of execution for
 ! tracing. This routine is required for NightTrace to identify
 ! the process logging the trace events.

 INTEGER trace_start, rc_trace_start
 INTEGER trace_open_thread, rc_trace_open_thread

 rc_trace_start = trace_start(“prog.trace.data”)
 rc_trace_open_thread = trace_open_thread(“abc”)

 RETURN
 END SUBROUTINE start_tracing

 SUBROUTINE end_tracing

 ! The trace_close_thread() routine is used to close the
 ! currently running thread and disable it from logging trace
 ! events.

 ! The trace_end() routine disables the trace mechanism,
1-5

Concurrent Fortran 95 Tutorial
 ! detaches the shared memory buffer, and frees all resources
 ! allocated for tracing.

 INTEGER trace_close_thread, rc_trace_close_thread
 INTEGER trace_end, rc_trace_end

 rc_trace_close_thread = trace_close_thread()
 rc_trace_end = trace_end()

 RETURN
 END SUBROUTINE end_tracing

END MODULE tracing_module

PROGRAM prog

 USE do_work_module
 USE tracing_module

 INTEGER istat
 INTEGER i

 i = 0
 CALL start_tracing ! contained in the tracing_module
 CALL fbswait(istat)
 DO WHILE (istat .GE. 0)
 CALL do_work(i) ! contained in the do_work_module
 CALL fbswait(istat)
 i = i + 1
 END DO
 CALL end_tracing ! contained in the tracing_module

END PROGRAM prog

This program utilizes the fbswait service. fbswait causes the calling process to go to
sleep. The process will be awakened by a frequency-based scheduler at the process's
scheduled frequency. At that point, it will enter the loop. The subroutine do_work will
do some calculations. When do_work returns from its processing, the program will
encounter another fbswait call which will cause the program to sleep until the fre-
quency-based scheduler allows it continue.

To save an untitled file using the NEdit Editor

- Select Save from the File menu. This will open a file dialog.

- Ensure the Directory is the same as the one you created in “Getting
Started” on page 1-3.

- Enter the name prog.f95 in the Save File As field.

- Press OK .

Now that we have saved the file, we may exit our NEdit session.

To exit NEdit

- Select Exit from the File menu.
1-6

Using Concurrent Fortran 95 with NightStar Tools
Using the Concurrent Fortran 95 compiler 1

Concurrent Fortran 95 utilizes the Numerical Algorithms Group’s F95 compiler and Con-
current’s C/C++ compiler to produce highly optimized object code tailored to Concurrent
systems running PowerMAX OSTM.

To compile the Fortran program

- Open a terminal window and position yourself in the working directory
you created in “Getting Started” on page 1-3.

- Execute the following command:

f95 -g -o prog prog.f95 -lntrace -lud -lF77rt

In order to debug the program using the NightView Source Level Debugger, we
need to compile the program with debug information so we specify the -g compile
option.

We specify the name of the resultant output file using the -o compile option (in this
example, our executable will be named prog).

In order to generate trace data when we run the program and then subsequently ana-
lyze it using the NightTrace Analyzer, we specify the compile options:

-lntrace -lud -lF77rt

At this point, we have a directory, tutorial, that has within it a Fortran executable,
prog, and its corresponding source file, prog.f95. Full debug information will be gen-
erated for the program and tracing functionality has been included so that we may gather
tracing data for later analysis.

Viewing the intermediate C code 1

Concurrent Fortran 95 compiles Fortran source using C as its intermediate language. The
Fortran source is first translated to its equivalent in C and that resultant C code is then
compiled using the Concurrent C/C++ compiler.

This intermediate source can be viewed by using the -S compile option to f95. For
instance,

f95 -S prog.f95

will generate a file named prog.c which consists of the Fortran source translated to C.
(References to the Fortran source appear throughout the C code.)

Because of this, certain considerations must be taken into account. In the generated C
code, an underscore (“_”) is appended to the names of all variables and function calls.
This must be taken into consideration when using any of the NightStar tools which refer-
1-7

Concurrent Fortran 95 Tutorial
ence the variables or function names in the Fortran source. Some of these points will be
addressed in the following sections.

To view the intermediate C code

- Open a terminal window and position yourself in the working directory
you created in “Getting Started” on page 1-3.

- Execute the following command:

f95 -S prog.f95

This will generate a file named prog.c. The following code fragment shows a
portion of that file:

line 1 "prog.f95"
#include <f95.h>
typedef struct { Real *addr; Integer3 offset; Triplet dim[1]; }
AAType1;
line 1 "prog.f95"
AAType1 do_work_module_MP_results;
extern void do_work_module_MP_do_work();
line 26 "prog.f95"
line 7 "prog.f95"
void do_work_module_MP_do_work(iteration_count_)
 Integer *iteration_count_;
{
Integer Tmp1;
Integer Tmp2;
Integer Tmp3;
register Integer j_;
register Integer i_;
line 7 "prog.f95"
static Real *real_ptr_ = (Real *)0;
line 12 "prog.f95"
real_ptr_ = ((Real *)__NAGf90_Allocate_s(4,(Integer *)0));
line 12 "prog.f95"
;
line 13 "prog.f95"
 *real_ptr_ = *iteration_count_*2.549000025e+00f;
line 14 "prog.f95"
for(i_ = 1;i_ <= 500;i_++) {
line 15 "prog.f95"
if (do_work_module_MP_results.addr)
__NAGf90_already_allocated("RESULTS");
line 15 "prog.f95"
do_work_module_MP_results.offset = 0;
line 15 "prog.f95"
do_work_module_MP_results.dim[0].lower = 1;
line 15 "prog.f95"
Tmp1 = i_;
line 15 "prog.f95"
if (Tmp1<0) Tmp1 = 0;
line 15 "prog.f95"
do_work_module_MP_results.dim[0].extent = Tmp1;
line 15 "prog.f95"
do_work_module_MP_results.dim[0].mult = 1;
line 15 "prog.f95"
1-8

Using Concurrent Fortran 95 with NightStar Tools
Using NightSim 1

NightSim is a tool for scheduling and monitoring real-time applications which require pre-
dictable, repetitive process execution. NightSim provides a graphical interface to the
PowerMAX OS frequency-based scheduler and performance monitor. With NightSim,
application builders can control and dynamically adjust the periodic execution of multiple
coordinated processes, their priorities, and their CPU assignments. NightSim’s perfor-
mance monitor tracks the CPU utilization of individual processes and provides a customi-
zable display of period times, minimums, maximums, and frame overruns. For more
information on NightSim, refer to the NightSim User’s Guide (0890480).

Invoking NightSim 1

Because our program uses the frequency-based scheduler, we will use the NightSim
Scheduler to schedule the process.

To invoke the NightSim Scheduler

- From the command line, type the following command:

nsim &

The NightSim Scheduler will be opened, ready to be configured.

NOTE

We specify the & so that the NightSim session runs in the back-
ground.

Configuring the Scheduler 1

The NightSim Scheduler window is opened, ready for us to configure it for our particular
simulation.
1-9

Concurrent Fortran 95 Tutorial
Figure 1-2. NightSim Scheduler

To configure a NightSim Scheduler

- Specify a Scheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
100 .

- Specify the Cycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the value 1.

- Specify the Max. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. Enter 10 for our example.

- Specify the Max. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value 10 .

- Enter the name of a PowerMAX OS system which will act as the Timing
host for the simulation. You may use the drop down list associated with
this field for the names of systems previously used as timing hosts. For our
example, we will enter amber2, a Turbo Hawk system.

NOTE

When NightSim is operating in On-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User’s Guide (0890480) for more information.
1-10

Using Concurrent Fortran 95 with NightStar Tools
- Select a Timing source from the list provided. This list contains the set
of devices available on the timing host. We will use Real-time clock
0c2.

NOTE

Do not use Real-time clock 0c0 for the Timing source as it
is typically used by system utilities and could cause unwanted
effects if used. See hrtconfig(1) for more information

Since we are using the real-time clock on the target system, we need to specify the clock
period. For our simulation, we would like the real-time clock to “fire” every .5 seconds
(or 500 milliseconds).

IMPORTANT

The following steps should be performed in the order presented
below to ensure the correct value for the clock period.

- Choose the msec from the drop-down list next to the Clock period field.

- Specify Clock period . For our example, we will specify 500 for the
number of milliseconds.
1-11

Concurrent Fortran 95 Tutorial
Scheduling a process 1

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

Figure 1-3. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press the Edit... button on the NightSim Scheduler window. This will
bring up the Edit Process window.

- Press the Select... button next to the Process Name field. This brings
up the Select a Program dialog.

- Either type the full pathname to your working directory, tutorial,
in the Directory field, or maneuver to that directory using the items
in the Directories list.
1-12

Using Concurrent Fortran 95 with NightStar Tools
- Choose the program we wish to schedule from the Files list. For our
example, we will select prog from the list.

- Press OK to select the program.

- Ensure that the Working Directory is the same directory that contains
our program (the directory of the Process Name selected in the previous
step).

- Check the Schedule program within a NightView dialogue check-
box. This will bring the program up in the NightView debugger before the
program executes, allowing us to set tracepoints so that we may generate
trace data when the program executes.

- Specify the Priority for this process. The range of priority values that you
can enter is governed by the scheduling policy specified. NightSim dis-
plays the range of priority values that you can enter next to the Priority
field. Higher numerical values correspond to more favorable scheduling
priorities. For our example, we will give the process a priority of 50.

- Select Starting Cycle. This field allows you to specify the first minor
cycle in which the specified program is to be wakened in each major frame.
We will choose the lowest value, 0, for our example.

- Select Period. This field allows you to establish the frequency with
which the specified program is to be wakened in each major frame. Enter
the number of minor cycles representing the frequency with which you
wish the program to be wakened. For our example, we will specify a
period of 1 , indicating that the specified program is to be wakened every
minor cycle.

- Press Add to add the process to the frequency-based scheduler.

- Press the Close button to dismiss the Edit Process window.

Activating user tracing and kernel tracing 1

At this point in the tutorial, we are about to create the scheduler configured according to
the parameters we just specified and allow the program to run. However, we would like to
generate trace data from this program while it is running so we need to start the Night-
Trace user daemon to log user trace events as well as KernelTrace which will collect data
about the execution time of interrupts, exceptions, system calls, context switches, and I/O
to various devices.

To activate the NightTrace user daemon

- Open a terminal window and position yourself in the working directory
you created in “Getting Started” on page 1-3.
1-13

Concurrent Fortran 95 Tutorial
IMPORTANT

It is essential that you are positioned in the working directory that
is associated with the user program being scheduled with
NightSim. The NightTrace user daemon will communicate with
the user program based on the file argument supplied in the next
step.

- Invoke the NightTrace user daemon. We issue the ntraceud command
which takes as an argument the name of a file in which to save the trace
data. This file should be named program_name.trace.data, where
program_name is the name of the program generating the trace data.

NOTE

By default, ntraceud requires write access to system SPL
devices, e.g. /dev/spl, /dev/spl1, etc. On most systems,
these devices are only writeable by the root user; therefore, you
should run the ntraceud command as root.

However, since the use of SPL devices is not strictly necessary for
tracing single-threaded user applications (although, for optimal
real-time performance it is recommended), the -ipldisable
option to ntraceud is acceptable.

Since the application in this tutorial is single-threaded, you may
use the -ipldisable option as indicated below.

For our example, we will issue the following command:

ntraceud -ipldisable prog.trace.data

Now we can activate kernel tracing.

To activate kernel tracing

- Open a terminal window and position yourself in the working directory
you created in “Getting Started” on page 1-3.

- Invoke the KernelTrace utility. We issue the ktrace command which can
take a number of arguments.

NOTE

The KernelTrace utility requires root access in order to run.
1-14

Using Concurrent Fortran 95 with NightStar Tools
We will use the -o option which specifies the name of a file in which to save the
kernel trace data.

When generating kernel trace data, the resultant file can grow extremely large very
quickly. In order to circumvent any problems that may arise from the output file
growing extremely large, we will use the -bufferwrap option which limits the
size of the output file. Specifying a value of 50 to this option will limit the size of
the resulting output file to a little over 2 megabytes.

NOTE

Due to a problem with the -bufferwrap option, user and kernel
data may not appear synchronized when viewing the trace data in
subsequent steps. This problem has been fixed in the ktrace
and ntfilter commands in PowerMAX OS 4.3 Patch Set 6
(trace-004 and base-006). If these packages are not
installed on your system, you may omit the -bufferwrap
option. However, be aware that the kernel trace file may grow
extremely large in a short period of time.

So, for our example, we will issue the following command, as the root user:

ktrace -bufferwrap 50 -o prog.ktrace.data

You should see output similar to the following:

locking into memory
setting priority to RT 59
open /dev/trace
initialize
set trace event time stamp source to Motorola Time Base
Register
gather trace point data

Setting up the scheduler 1

To set up the scheduler

- In the NightSim Scheduler window, press the Set up button.

This action:

• creates a scheduler that is configured according to the parameters we
specified

• schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the first fbswait call,
and

• attaches the timing source to the scheduler.
1-15

Concurrent Fortran 95 Tutorial
Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-12), the NightView Source Level
Debugger will be started.
1-16

Using Concurrent Fortran 95 with NightStar Tools
Using NightView 1

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications. NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minimal intrusion. In addition to
standard debugging capabilities, NightView supports application-speed eventpoint condi-
tions, hot patches, synchronized data monitoring, exception handling and loadable mod-
ules.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-12), we are presented with a NightView
Dialogue Window as well as a Principal Debug Window with the execution of the pro-
gram stopped.

Figure 1-4. NightView Dialogue

During initialization, you will see a message similar to the following:

Warning: Process local:11749 is no longer debuggable,
detaching.
[E-SlashProcMethod-012]
 (errno=13) Permission denied

This is an anomaly caused by an intermediate process which schedules the user program.
You may ignore this warning.
1-17

Concurrent Fortran 95 Tutorial
Figure 1-5. NightView Principal Debug Window

Adding a tracepoint in the program 1

Since we would like to generate user trace data, but did not place any calls within the code
before our program was compiled, we can use NightView to insert a tracepoint in the
1-18

Using Concurrent Fortran 95 with NightStar Tools
code. A tracepoint is a call to one of the ntrace(3X) library routines for recording the
time when execution reached the tracepoint.

To add a tracepoint in a program

- In the NightView Principal Debug Window, click on the line:

CALL do_work(i)

- Select Set Tracepoint... from the Eventpoint menu. This will open
the Set a New Tracepoint dialog.

Figure 1-6. Setting a new tracepoint

- Enter the 12 for the Event ID. Each trace event has a user-defined trace
event ID. This ID is a valid integer in the range reserved for user trace
events (0-4095, inclusive). We have chosen 12 for this example.

- Enter i_ in the Value field. This will log the value of the variable i as
arg1 in the trace file every time this tracepoint is encountered.
1-19

Concurrent Fortran 95 Tutorial
IMPORTANT

Note the underscore appended to the name of the Fortran variable
i. When debugging a Concurrent Fortran 95 program, the Fortran
source (not the generated C code) will appear in the NightView
Source-Level Debugger. However, NightView uses the generated
C code as its underlying source for debugging. As such, an under-
score ("_") must be appended to variables or function names that
are referenced. See “Viewing the intermediate C code” on page
1-7 for more information.

- Press OK .

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

 tracepoint 12 at line_number value=i_

where line_number coincides with the line:

 CALL do_work(i)

See tracepoint for details on the use of this command.

Inserting a monitorpoint 1

NightView allows the use of monitorpoints while debugging a process. Monitorpoints
allow you to monitor the value of one or more variables without interrupting the execution
of your program.

In our example, we will insert a monitorpoint in the do_work subroutine contained in the
do_work_module.

To insert a monitorpoint in a program

- In the NightView Principal Debug Window, click on the line:

real_ptr = iteration_count * 2.549

which appears in the do_work subroutine in the do_work_module.

- Select Set Monitorpoint... from the Eventpoint menu. This will open
the Set a New Monitorpoint dialog.
1-20

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-7. Setting a new monitorpoint

- Enter the expression:

print *iteration_count_

in the Commands field.

IMPORTANT

Note the underscore appended to the name of the Fortran variable
iteration_count. When debugging a Concurrent Fortran 95
program, the Fortran source (not the generated C code) will
appear in the NightView Source-Level Debugger. However,
NightView uses the generated C code as its underlying source for
debugging. As such, an underscore ("_") must be appended to
variables or function names that are referenced. See “Viewing the
intermediate C code” on page 1-7 for more information.

Also, because arguments to Fortran functions and subroutines are
passed by reference, iteration_count is actually a pointer
(see “Viewing the intermediate C code” on page 1-7). As such,
we must prepend a * to iteration_count to access the value
o f t h e v a r i a b le a t t h e m e mo r y a d d r es s s t o r e d i n
iteration_count.
1-21

Concurrent Fortran 95 Tutorial
- Press OK .

This will open a NightView Monitor Window which will display the value of
iteration_count while the program is running.

Figure 1-8. NightView Monitor Window

NOTE

You may have also entered the following commands in the
Command field of the NightView Principal Debug Window:

 monitorpoint at line_number
 print *iteration_count_
 end monitor

where line_number coincides with the line:

 real_ptr = iteration_count * 2.549

See monitorpoint for details on the use of this command.

Resuming execution 1

Now it’s time to let the program run and generate some trace data from the tracepoint we
just entered.
1-22

Using Concurrent Fortran 95 with NightStar Tools
To resume execution in NightView

- Press the Resume button in the NightView Principal Debug Window.

Figure 1-9. Resuming execution

Starting the simulation 1

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on the Start button, NightSim carries out the following actions:

• Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

• If a real-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in the Clock period field in the
Scheduler Configuration Area

• Starts the simulation with the values of the minor cycle, major frame, and
overrun counts set to zero

To start a simulation in NightSim

- Press the Start button on the NightSim Scheduler window.
1-23

Concurrent Fortran 95 Tutorial
Figure 1-10. Starting the simulation

Once the simulation is started, note the value of iteration_count incrementing in the
NightView Monitor Window. See “Inserting a monitorpoint” on page 1-20 for details.

Inserting a patchpoint 1

NightView allows the use of patchpoints while debugging a process. Patchpoints are loca-
tions in the debugged process where a patch, usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop in program prog to change the
value of the istat variable in order to exit the loop:

DO WHILE (istat .GE. 0)
 CALL do_work(i) ! contained in the do_work_module
 CALL fbswait(istat)
 i = i + 1
END DO

To insert a patchpoint in a program

- In the NightView Principal Debug Window, click on the line:

DO WHILE (istat .GE. 0)

- Select Set Patchpoint... from the Eventpoint menu. This will open
the Set a New Patchpoint dialog.
1-24

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-11. Setting a new patchpoint

- Enter the expression:

istat_ = -1

in the Evaluate field.

IMPORTANT

Note the underscore appended to the name of the Fortran variable
istat. When debugging a Concurrent Fortran 95 program, the
Fortran source (not the generated C code) will appear in the
NightView Source-Level Debugger. However, NightView uses
the generated C code as its underlying source for debugging. As
such, an underscore ("_") must be appended to variables or func-
tion names that are referenced. See “Viewing the intermediate C
code” on page 1-7 for more information.

- Press OK .

When this patchpoint is encountered during the execution of the program, the value
of the Fortran variable istat will be set to -1, breaking out of the loop, thereby ter-
minating the program.
1-25

Concurrent Fortran 95 Tutorial
NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

 patchpoint at line_number eval istat_ = -1

where line_number coincides with the line:

 DO WHILE (istat .GE. 0)

See patchpoint for details on the use of this command.

Halting user tracing and kernel tracing 1

Now that our program has finished, we can exit the KernelTrace utility and stop the Night-
Trace user daemon.

To halt kernel tracing

- In the terminal window where you invoked the KernelTrace utility (see “To
activate kernel tracing” on page 1-14), press Ctrl-C .

You should see the message:

terminating

To halt the NightTrace user daemon

- In the terminal window where you invoked the NightTrace user daemon
(see “To activate the NightTrace user daemon” on page 1-13), enter the fol-
lowing command:

ntraceud -quit program_name.trace.data

where program_name is the name of the program generating the trace data. So, for
our example, we will issue the following command:

ntraceud -quit prog.trace.data

Disabling the patchpoint 1

Before we exit NightView, we should disable the patchpoint that we set in “Inserting a
patchpoint” on page 1-24. NightView retains knowledge of all eventpoints for a particular
program in a current session and will reinitialize them if that program is re-run. If not dis-
abled, the patchpoint in our program will be encountered immediately if our program is
re-run under the current session of NightView, causing us to exit the loop and terminate
the program.
1-26

Using Concurrent Fortran 95 with NightStar Tools
To disable a patchpoint in NightView

- Select Summarize/Change... from the Eventpoint menu.

- Select the patchpoint from the list of eventpoints (listed with a P in the
Type column).

Figure 1-12. Disabling a patchpoint

- Press Disable .

- Press Close.

Exiting the program 1

NightView suspends the process it is debugging before it exits. We may allow the process
to complete its termination by resuming its execution.

To resume execution in NightView

- Press the Resume button in the NightView Principal Debug Window.
1-27

Concurrent Fortran 95 Tutorial
Figure 1-13. Resuming execution

Removing the scheduler 1

To remove the scheduler

- In the NightSim Scheduler window, press the Remove button.

Figure 1-14. Removing the scheduler

You will be presented with the following dialog:
1-28

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-15. Removing the scheduler

- Press Yes to kill the processes that are currently scheduled on the sched-
uler.
1-29

Concurrent Fortran 95 Tutorial
Using NightTrace 1

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log application data events from simultaneous pro-
cesses executing on multiple CPUs or even multiple systems. NightTrace combines appli-
cation events with PowerMAX OS events and presents a synchronized view of the entire
system. NightTrace allows users to zoom, search, filter, summarize, and analyze events in
a wide variety of ways. PowerMAX OS events include individual system calls, context
switches, machine exceptions, page faults and interrupts. Application events are defined
by the user allowing logging of the data items associated with each event.

We may use NightTrace to analyze the trace data that we gathered during the execution of
our program but first we will need to convert the files so that they may be used by Night-
Trace.

Converting kernel trace event files 1

To convert kernel trace event files

- On the PowerMAX OS system where you invoked the KernelTrace utility
(see “To activate kernel tracing” on page 1-14), enter the following com-
mand:

ntfilter -v < raw_kernel_file > filtered_kernel_file

where raw_kernel_file is the file we specified using the -o option to ktrace and
filtered_kernel_file is the name of the resultant output file from ntfilter.

So, for our example, we will issue the following command:

ntfilter -v < prog.ktrace.data > prog.ntrace.kernel

The converted KernelTrace trace event file will then be saved to the file
prog.ntrace.kernel. The -v option creates a vectors files that will be
specified to NightTrace along with the converted KernelTrace trace event file. The
vectors file is generated dynamically because it is system-configuration depen-
dent. Without a vectors file, NightTrace will not be able to display the names of
the system processes, interrupts, and exceptions that occurred during kernel tracing.

See “Converting KernelTrace Trace Event Files with ntfilter” in the NightTrace
Manual (0890398) for more detailed information about this process.
1-30

Using Concurrent Fortran 95 with NightStar Tools
Invoking NightTrace 1

Now that all our files are created and converted, we may invoke NightTrace and analyze
the results.

To invoke NightTrace

- In the working directory you created in “Getting Started” on page 1-3,
enter the following command

ntrace prog.ntrace.kernel prog.trace.data vectors

This will start the NightTrace Analyzer and pass to it:

prog.ntrace.kernel the file created by “Converting kernel trace
event files” on page 1-30

prog.trace.data the file created by “To activate the Night-
Trace user daemon” on page 1-13

vectors a file created by “Converting kernel trace
event files” on page 1-30 which allows
NightTrace to display the names of the sys-
tem processes, interrupts, and exceptions
that occurred during kernel tracing.

See ntrace Arguments for more information about invoking NightTrace.

NightTrace will present the NightTrace window which is shown below:

Figure 1-16. NightTrace Main window

For more information on the NightTrace window, see ntrace Global Window in the
NightTrace Manual (0890398).
1-31

Concurrent Fortran 95 Tutorial
Creating a default page 1

In order to view our user trace events, we need to create a default page.

To create a default page

- In the NightTrace window, select Default Page from the File menu.

This will create a Default Page as shown below:

Figure 1-17. NightTrace default page

For more information on display pages, see The Display Page in the NightTrace Manual
(0890398).

Creating a default kernel page 1

In order to view our kernel trace events, we need to create a default kernel page.

To create a default kernel page

- In the NightTrace window, select Default Kernel Page from the File
menu.

This will create a Default Kernel Page as shown below:
1-32

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-18. Default Kernel Page

For more information on the Default Kernel Page, see Kernel Display Pages in the Night-
Trace Manual (0890398).

Searching for a kernel trace event 1

Now that we have loaded our data into NightTrace and created the appropriate display
pages, we can search for the system call that corresponds to the fbswait call made in our
program (see “Using NEdit” on page 1-4).

To search for a kernel trace event

- Select Search... from the Tools menu of the kernel display page (see
“Creating a default kernel page” on page 1-32).

You will be presented with the following dialog:
1-33

Concurrent Fortran 95 Tutorial
Figure 1-19. Searching for a kernel trace event

- Enter TR_SYSCALL_RESUME in the Event List field. This trace
event is logged whenever a system call (syscall) is resumed (i.e., the pro-
cess that caused the syscall to occur, which was switched out before the
syscall could be completed, is switched back in).

- Enter arg2 == get_item(syscall, "fbswait") in the If Expression
field. The fbswait system call corresponds to the fbswait call we
made in our Fortran program.

- Press Apply.

- Press Search .

NightTrace will set the current time to that of the first logged kernel trace event that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. This is shown in the figure below. Note the Current Time . In our exam-
ple, it is set to 72.1783521 seconds.

NOTE

Since we specified the -bufferwrap option to ktrace (see
“To activate kernel tracing” on page 1-14), it is likely that the ear-
lier trace events may have been overwritten by buffer wraparound
during the execution of the program. Hence, we may not actually
see the first actual kernel trace event that corresponds to our
search criteria. However, this is sufficient for our example.
1-34

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-20. First kernel trace event

In addition to setting the current time and repositioning the grid on the kernel display page
when the search for the kernel trace event was performed, NightTrace will automatically
set the current time and reposition the display page that contains the user trace events as
well. This is shown in the following figure.
1-35

Concurrent Fortran 95 Tutorial
Figure 1-21. NightTrace display page repositioned accordingly

Searching for a user trace event 1

Now that we have found the first logged kernel trace event, we can search for the user
trace events that we logged using NightView (see “Adding a tracepoint in the program” on
page 1-18).

To search for a user trace event

NOTE

You may use the same search dialog that you used in the previous
step, “Searching for a kernel trace event” on page 1-33.

- Select Search... from the Tools menu of the display page containing the
user trace events (see “Creating a default page” on page 1-32).

You will be presented with the following dialog:
1-36

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-22. Searching for a user trace event

- Enter 12 in the Event List field. This corresponds to the Event ID for
the tracepoint we specified in NightView (see “Adding a tracepoint in the
program” on page 1-18).

- Ensure that the value of the If Expression field is TRUE.

- Press Apply.

- Press Search .

NightTrace will set the current time to the first user trace event after the current time that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. This is shown in the figure below. Note the Current Time now. In our
example, it is set to 72.1785713 seconds, 0.0002192 seconds after the fbswait system
call we found in “Searching for a kernel trace event” on page 1-33.

You can alternately search between the kernel display page (see “To search for a kernel
trace event” on page 1-33) and the display page which contains the user trace events (see
“To search for a user trace event” on page 1-36) to see that an fbswait system call
always precedes the user trace event that we logged, which is what we would expect.
1-37

Concurrent Fortran 95 Tutorial
NOTE

If you used the same search dialog as you used for searching for a
kernel trace event, you may use the Prev button on the search
dialog for the previous search criteria. You can alternate between
searching for user trace events and kernel trace events using this
functionality.

Figure 1-23. NightTrace display page

Zooming in 1

To zoom in:

- You may use the Zoom In button on the NightTrace Analyzer to see more
details.

For our example, we zoomed in on our kernel display page 13 times to see the fol-
lowing level of detail.
1-38

Using Concurrent Fortran 95 with NightStar Tools
Figure 1-24. Zoomed in kernel display page

In the above figure, the first bar (red) listed for CPU 0 indicates the real-time clock inter-
rupt for this cycle. The first bar (blue) listed for CPU 3 shows the target process prog
exiting the fbswait call in the Fortran code. The current time line is positioned at the
user trace event that we previously searched for.

Looking at the other display page (which shows our user trace events), we can see the user
trace event inserted through NightView (see “Adding a tracepoint in the program” on page
1-18). Note that both displays are synchronized in time (the current time line represents
the same instant in time on both display pages). You may middle-click on the line repre-
senting the user trace event to see more detailed information.

NOTE

Due to a problem with the -bufferwrap option to the ktrace
command, user and kernel data may not appear synchronized.
This problem has been fixed in the ktrace and ntfilter
commands in PowerMAX OS 4.3 Patch Set 6 (trace-004 and
base-006). See “To activate kernel tracing” on page 1-14 for
more information.
1-39

Concurrent Fortran 95 Tutorial
Conclusion 1

This concludes our tutorial for using the Concurrent Fortran 95 compiler with the Night-
Star tools. We hope that we have given you a sufficient overview of the various tools and
the interactions between them.
1-40

	Using Concurrent Fortran 95 with NightStar Tools
	Overview
	Before you begin

	Getting Started
	Using NEdit
	Using the Concurrent Fortran 95 compiler
	Viewing the intermediate C code

	Using NightSim
	Invoking NightSim
	Configuring the Scheduler
	Scheduling a process
	Activating user tracing and kernel tracing
	Setting up the scheduler

	Using NightView
	Adding a tracepoint in the program
	Inserting a monitorpoint
	Resuming execution
	Starting the simulation
	Inserting a patchpoint
	Halting user tracing and kernel tracing
	Disabling the patchpoint
	Exiting the program
	Removing the scheduler

	Using NightTrace
	Converting kernel trace event files
	Invoking NightTrace
	Creating a default page
	Creating a default kernel page
	Searching for a kernel trace event
	Searching for a user trace event
	Zooming in

	Conclusion

