
Compilation Systems Volume 1 (Tools)

0890459-050

April 1999

Copyright 1999 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope“Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.

Acknowledgment: This manual contains material contributed by 88open Consortium, Ltd.

In this document, the term 601 is used as an abbreviation for the phrase “PowerPC 601 RISC microprocessor.” The
terms 603, 604, 620, and 640 are used similarly.

Escala is a trademark of Bull Information Systems.
IBM, RS/6000, PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, PowerPC 620, POWER, and POWER2 are trademarks of International
Business Machines Corporation.
PowerUX is a trademark of Concurrent Computer Corporation.
PowerMAX OS is a trademark of Concurrent Computer Corporation.
UNIX is a registered trademark of the Open Group.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the
manufacturers or marketers of the products with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- October 1994 000 PowerUX 1.0

Previous Release -- March 1997 040 PowerMAX OS 4.1

Current Release -- April 1999 050 PowerMAX OS 4.3

are

ms

isters
Preface

Scope of Manuals

The Compilation Systems Manual set is composed of two manuals:Compilation Systems
Volume 1 (Tools)and Compilation Systems Volume 2 (Concepts). The Compilation
Systems Volume 1 (Tools)manual describes the features and use of several softw
development environment tools, analysis tools, and project-control tools. TheCompilation
Systems Volume 2 (Concepts)manual describes the concepts behind compilation syste
including environments, performance analysis, and formats.

Information in this manual applies to the PowerPCTM platforms described in the
Concurrent Computer Corporation Product Catalog.

Structure of Manuals

A brief description of the parts, chapters, and appendixes in theCompilation Systems
Volume 1 (Tools)manual follows:

Part 1 discusses software development environment tools.

Chapter 1 introduces compilation system tools and concepts.

Chapter 2 describes the assembly language, and it discusses the assembler,as .

Chapter 3 summarizes the instructions, condition codes, operands, and reg
associated with the PowerPC.

Chapter 4 covers the link editor,ld . It also discusses dynamic linking, plus the
creation and use of shared objects.

Chapter 5 describes the macro processor,m4.

Chapter 6 presents the lexical analyzer,lex .

Chapter 7 presents the compiler-compiler,yacc .

Part 2 describes analysis tools.

Chapter 8 provides an introduction to the other chapters in this part.

Chapter 9 presents the C code browser,cscope .

Chapter 10 discusses the C code checker,lint .

Chapter 11 discusses performance analysis and use of theanalyze and report
utilities.

Part 3 presents project-control tools.
iii

Compilation Systems Volume 1 (Tools)

ard-

hard-

he

y a

ing
X

cify
y

ns
Chapter 12 provides an introduction to the other chapters in this part.

Chapter 13 presents themake utility.

Chapter 14 covers thesccs source code control system.

A brief description of the parts, chapters, and appendixes in theCompilation Systems
Volume 2 (Concepts)manual follows:

Part 4 discusses environments.

Chapter 15 provides an introduction to the other chapters in this part.

Chapter 16 provides an overview of commonly-used system libraries.

Chapter 17 discusses the IEEE floating-point operations used on supporting h
ware platforms.

Chapter 18 describes interfaces between C and Fortran routines on supporting
ware platforms.

Part 5 describes performance analysis concepts.

Chapter 19 provides an introduction to the other chapters in this part.

Chapter 20 provides a tutorial on program optimization, focusing on t
optimizations performed by the Concurrent compilers.

Part 6 covers formats.

Chapter 21 provides an introduction to the other chapters in this part.

Chapter 22 describes the executable and linking format, ELF.

Chapter 23 discusses text description information, tdesc.

Chapter 24 describes the debugging information format, DWARF. It is primaril
reprint of the DWARF specification from UNIX International.

Chapter 25 covers the libdwarf library that provides access to DWARF debugg
and line number information. It is primarily a reprint of a document from UNI
International.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms and comments in code ma
also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, optio
and man page references also appear inlist bold type.
iv

Preface

and

ons,

are
ify

ipe
ype

ing

ive’s
list Operating system and program output such as prompts
messages and listings of files and programs appears inlist type.
Keywords also appear inlist type.

emphasis Words or phrases that require extra emphasis use emphasistype.

window Keyboard sequences and window features such as push butt
radio buttons, menu items, labels, and titles appear inwindow
type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{} Braces enclose mutually exclusive choices separated by the p
(|) character, where one choice must be selected. You do not t
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

The window images in this manual come from a Motif environment. If you are us
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual

0890288 HAPSE Reference Manual

0890395 NightView User’s Guide

0890398 NightTrace Manual

0891019 Concurrent C Reference Manual

The vendor publications referenced in this manual may be viewed on the respect
companies WWW site.
v

Compilation Systems Volume 1 (Tools)
vi

Contents

-1

1-2
1-3
-5
-6

-6
-7

-1
-1
-2
-2
-4

2-4
-4
-4
-5
-5
-5
-6
-8
-8
-8
-8

2-9
-9

-10
-10
11
11
12
12
13
4
6
7
18
19
Contents

Part 1 Software Development Environments

Chapter 1 Introduction to SDEs

Introduction . 1
Programming Languages. 1-1
Compilation Systems Concepts .
Concurrent Computer Corporation Compilation Systems. .
Object Files . 1
Stack Frames . 1
Static and Dynamic Linking . 1
Floating-Point Arithmetic . 1

Chapter 2 Assembler and Assembly Language

Introduction . 2
Assembler Operation . 2
Using the Assembler . 2

Assembler Invocation. 2
Character Set . 2
Source Statements .

Null Statements . 2
Alphanumeric Labels . 2
Numeric (Local) Labels . 2
Comments. 2

Identifiers. 2
Predefined Symbols . 2
User-Defined Symbols . 2

Constants . 2
Integer Constants . 2
Floating-Point Constants . 2
Character Constants .

Expressions . 2
Expression Operators . 2
Operator Precedence. 2
Expression Types . 2-
Expression Values. 2-

Assembler Directives. 2-
Location Counter Control. 2-
Section Switching. 2-
Data Initialization . 2-1
Symbol Definitions. 2-1
ELF Symbol Attributes. 2-1
Miscellaneous Operations . 2-
Summary of Directives Mnemonics . 2-
vii

Compilation Systems Volume 1 (Tools)

0
-21
21
2

-2
25
26
26
-28

-31
-31

-1
-1
-8
-9
0
11
13
-15
6
7

17
18
2
3
4

24
25
7
8

28
9
0
1

34
35

-1
-2
-2
-3
-5
7
-7
-8
Example . 2-2
Position-Independent Code . 2

Assembly Syntax . 2-
Example . 2-2

Chapter 3 PowerPC Instruction Set Summary

PowerPC Instruction Set . 3
Condition Codes. 3-
Trap Operand . 3-
Operand Abbreviations . 3-
Special-Purpose Registers . 3
Time Base Registers. 3
Implementation-Specific and Optional Instructions . 3

Chapter 4 Link Editor and Linking

Introduction . 4
Using the Link Editor. 4
Basics of Linking . 4

Default Arrangement . 4
Linking with Standard Libraries . 4-1
Creating and Linking with Archive and Shared Object Libraries 4-
Specifying Directories to Be Searched by the Link Editor. 4-
Specifying Directories to Be Searched by the Dynamic Linker 4
Checking for Run-Time Compatibility . 4-1
Dynamic Linking Programming Interface . 4-1
Implementation . 4-
Guidelines for Building Shared Objects . 4-
Multiply-Defined Symbols . 4-2
Mapfiles . 4-2

Using the Mapfile Option . 4-2
Mapfile Structure and Syntax . 4-

Segment Declarations. 4-
Mapping Directives . 4-2
Extended Mapping Directives . 4-2
Size-Symbol Declarations . 4-
Mapping Example . 4-2
Mapfile Option Defaults. 4-3
Internal Map Structure . 4-3
Error Messages . 4-

Quick-Reference Guide . 4-

Chapter 5 m4 Macro Processor

Introduction . 5
m4 Macros . 5

Defining Macros . 5
Quoting . 5
Arguments. 5
Arithmetic Built-Ins . 5-
File Inclusion . 5
Diversions . 5
viii

Contents

-8
-8
-9
0

-1
6-1
-3

-4
-4
6
-7

6-8
0

2
3

14
5

17
-18

-1
-3

-5
-7
7-9
2

-16
0

22
23
4
4
5
26
26
26
-26
7

9
30
0

33
System Command. 5
Conditionals . 5
String Manipulation . 5
Printing . 5-1

Chapter 6 Lexical Analysis with lex

Introduction . 6
Generating a Lexical Analyzer Program .
Writing lex Source. 6

The Fundamentals of lex Rules .. 6-3
Regular Expressions . 6
Operators . 6
Actions . 6-

Advanced lex Usage . 6
Some Special Features .
lex Routines. 6-1
Definitions. 6-1
Start Conditions. 6-1
User Routines . 6-

Using lex with yacc . 6-1
Miscellaneous . 6-
Summary of Source Format. 6

Chapter 7 Parsing with yacc

Introduction . 7
Basic Specifications. 7

Actions . 7
Lexical Analysis . 7

Parser Operation .
Ambiguity and Conflicts . 7-1
Precedence . 7
Error Handling . 7-2
The yacc Environment. 7-
Hints for Preparing Specifications. 7-

Input Style . 7-2
Left Recursion . 7-2
Lexical Tie-Ins . 7-2
Reserved Words . 7-

Advanced Topics . 7-
Simulating error and accept in Actions . 7-
Accessing Values in Enclosing Rules. 7
Support for Arbitrary Value Types . 7-2
yacc Input Syntax. 7-2

Examples . 7-
1. A Simple Example . 7-3
2. An Advanced Example . 7-
ix

Compilation Systems Volume 1 (Tools)

-1

-1
-1
-1
-2
-2
-3
-9

10
3

-14
14
-14
7

18
18
8

18

-1
-1
-2
0-2
-2
-2

-3
0-5
-6
7
8
-8
12

-13
-13
-13
-14

0-14
0-14
-15

-16
-16

-17
-17
Part 2 Analysis

Chapter 8 Introduction to Analysis

Introduction . 8

Chapter 9 Browsing Through Your Code with cscope

Introduction . 9
How cscope Works . 9

How to Use cscope. 9
Step 1: Set Up the Environment . 9
Step 2: Invoke cscope . 9
Step 3: Locate the Code . 9
Step 4: Edit the Code . 9
Command Line Options . 9-
Using Viewpaths . 9-1
Stacking cscope and Editor Calls . 9
Examples. 9-

Changing a Constant to a Preprocessor Symbol . 9
Adding an Argument to a Function . 9-1
Changing the Value of a Variable . 9-

Technical Tips . 9-
Unknown Terminal Type. 9-1
Command Line Syntax for Editors . 9-

Chapter 10 Analyzing Your Code with lint

Introduction to lint . 10
Options and Directives . 10
lint and the Compiler . 10
Message Formats . 1

What lint Does . 10
Consistency Checks . 10
Portability Checks. 10
Suspicious Constructs . 1

Usage . 10
lint Libraries . 10-
lint Filters . 10-
Options and Directives Listed. 10

lint-specific Messages . 10-
argument unused in function. 10
array subscript cannot be > value: value. 10
array subscript cannot be negative: value . 10
assignment causes implicit narrowing conversion . 10
assignment of negative constant to unsigned type . 1
assignment operator ?=? found where ?==? was expected 1
bitwise operation on signed value nonportable. 10
constant in conditional context 10-16
constant operand to op: ?!? . 10
constant truncated by assignment . 10
conversion of pointer loses bits. 10
conversion to larger integral type may sign-extend incorrectly 10
x

Contents

-18

-19
-19
-20
-20
21

-21
-22
3
3

-24
-24
-25
-25
26
-26

27
-27
-27

-28
28
-28

29
-30
-30
0-31
31
32
0-32
-32

-33
-33
4
-34
-35

35
36
-36
-37
-37

-1
-1

-1
-3
3

declaration unused in block. 10-18
declared global, could be static . 10
equality operator ?==? found where ?=? was expected. 10-18
evaluation order undefined: name . 10
fallthrough on case statement . 10
function argument (number) declared inconsistently . 10
function argument (number) used inconsistently . 10
function argument type inconsistent with format . 10-
function called with variable number of arguments . 10
function declared with variable number of arguments . 10
function falls off bottom without returning value . 10-2
function must return int: main() . 10-2
function returns pointer to [automatic/parameter] . 10
function returns value that is always ignored . 10
function returns value that is sometimes ignored . 10
function value is used, but none returned . 10
logical expression always false: op ?&&? . 10-
logical expression always true: op ?||? . 10
malformed format string. 10-
may be indistinguishable due to truncation or case . 10
name declared but never used or defined . 10
name defined but never used . 10
name multiply defined . 10-
name used but not defined . 10
nonportable bit-field type. 10-29
nonportable character constant . .. 10-29
only 0 or 2 parameters allowed: main() . 10-
pointer cast may result in improper alignment . 10
pointer casts may be troublesome. 10
precedence confusion possible; parenthesize . 1
precision lost in bit-field assignment . 10-
set but not used in function. 10-
statement has no consequent: else . 1
statement has no consequent: if . 10
statement has null effect . 10
statement not reached . 10
static unused. 10-3
suspicious comparison of char with value: op ?op? . 10
suspicious comparison of unsigned with value: op ?op? 10
too few arguments for format . 10-
too many arguments for format . 10-
value type declared inconsistently . 10
value type used inconsistently . 10
variable may be used before set: name. 10
variable unused in function. 10-37

Chapter 11 Performance Analysis

Introduction . 11
analyze . 11

Information . 11
Statistics . 11
Profiling . 11-
xi

Compilation Systems Volume 1 (Tools)

-4
1-9
-9
10
-12

-1

-1
3-2
-5

3-6
-6
-6
-6
-6
-7

3-7
-8
-8
-8
-9
9
1
-13
3
14
14
-14
5
-16
16
18
-19
19

-1
-1

-1
-2

-2
4-3
-4
-5
Usage . 11
Assumptions and Constraints . 1

report . 11
Usage . 11-
Assumptions and Constraints. 11

Part 3 Project Control

Chapter 12 Introduction to Project Control

Introduction . 12

Chapter 13 Managing File Interactions with make

Introduction . 13
Basic Features . 1

Parallel make. 13
Description Files and Substitutions . 1

Comments . 13
Continuation Lines . 13
Macro Definitions . 13
General Form . 13
Dependency Information . 13
Executable Commands . 1
Extensions of $*, $@, and $<. 13
Output Translations. 13
Recursive Makefiles . 13
Suffixes and Transformation Rules. 13
Implicit Rules . 13-
Archive Libraries . 13-1
Source Code Control System File Names. 13
The Null Suffix . 13-1
Included Files . 13-
SCCS Makefiles . 13-
Dynamic Dependency Parameters . 13
Viewpaths (VPATH) . 13-1

Command Usage . 13
The make Command . 13-
Environment Variables . 13-

Suggestions and Warnings . 13
Internal Rules . 13-

Chapter 14 Tracking Versions with SCCS

Introduction . 14
Basic Usage . 14

Terminology . 14
Creating an SCCS File with admin. 14
Retrieving a File with get . 14
Recording Changes with delta . 1
More on get . 14
The help Command. 14
xii

Contents

-5
4-7
-8
-8

4-8
-9
0
0
12
13
3
3
15
6
17
19
19
0

20
21
-23
23
23
24
24
25
25
26
26
26
7
8

-1

-1
-1
1
2
2
2
3

Delta Numbering . 14
SCCS Command Conventions. 1

x.files and z.files. 14
Error Messages . 14

SCCS Commands . 1
The get Command . 14

ID Keywords . 14-1
Retrieval of Different Versions . 14-1
To Update Source . 14-
Undoing a get -e . 14-
Additional get Options . 14-1
Concurrent Edits of Different SID . 14-1
Concurrent Edits of Same SID . 14-
Key letters that Affect Output . 14-1

The delta Command . 14-
The admin Command . 14-
Creation of SCCS Files . 14-

Inserting Commentary for the Initial Delta . 14-2
Initialization and Modification of SCCS File Parameters. 14-

The prs Command . 14-
The sact Command. 14
The help Command . 14-
The rmdel Command . 14-
The cdc Command . 14-
The what Command . 14-
The sccsdiff Command. 14-
The comb Command . 14-
The val Command . 14-

SCCS Files. 14-
Protection . 14-
Formatting . 14-2
Auditing . 14-2

Index

Part 4 Environments

Chapter 15 Introduction to Environments

Introduction . 15

Chapter 16 Run-Time Libraries

Introduction . 16
System Libraries. 16

C Library . 16-
Alternate C Library . 16-
Math Library . 16-
Alternate Math Library . 16-
ELF Library. 16-
xiii

Compilation Systems Volume 1 (Tools)

3
-3
-3
-4
-4
-4
-5
-6
-7
-7
-8
-9
0
1
12
2

12
13

14
15
5

7
8
22

22
-22
3
4
25
26
26
27
-27
8
8
9
0

30
31

31
31
2
2

-32
33
3
33
34
5
5

35
6

DWARF Library . 16-
General-Purpose Library . 16

Including Functions and Data . 16
Including Declarations . 16

Listing of Functions . 16
Input/Output Control. 16

File and I/O Control and Access . 16
File and I/O Status . 16
Directories . 16
File Systems. 16
General Input . 16
General Output . 16
Terminal I/O. 16-1
STREAMS. 16-1
Pipes and FIFOs. 16-
Devices . 16-1

Special Files . 16-
File Systems Table File . 16-
File Systems Mount Table File. 16-14
Password File. 16-
Shadow Password File . 16-
Group File . 16-1
User and Accounting Information Files 16-16
ELF Files . 16-1
DWARF Debugging Information. 16-1
Shared Objects . 16-
Temporary Files . 16-

Strings and Characters . 16
String Manipulation. 16-2
Wide String Manipulation . 16-2
Character Test . 16-
Wide Character Test. 16-
Character Translation. 16-
Multibyte and Wide Characters . 16-
Regular Expression and Pattern Matching . 16

Memory. 16-2
Memory Manipulation . 16-2
Memory Allocation . 16-2
Memory Control . 16-3
Shared Memory . 16-

Data Structures . 16-
Tables . 16-
Hash Tables . 16-
File Trees . 16-3
Binary Trees. 16-3
Message Queues . 16
Queues . 16-
Semaphores 16-3

Date and Time. 16-
General Date and Time . 16-
Interval Timer . 16-3
POSIX Timer . 16-3

Internationalization . 16-
Locales. 16-3
xiv

Contents

-36
36
7
37
8
38

39
1
1

44
4
4
45
-45
6
7

49
49

50
51
1
1
2
2

53
53
53

-1
-1
7-2
-2
-2
-3
-3
-3

7-4
7-4
-5
6
-6

7-7
-9
7-9
11
-11
11

-11
12
-12
Message Catalogs . 16
Mathematic and Numeric . 16-

Trigonometric. 16-3
Bessel . 16-
Hyperbolic. 16-3
Miscellaneous Mathematic Functions. 16-
Numeric Conversion . 16-
Other Arithmetic . 16-4
Floating-Point Environment . 16-4
Pseudo-Random Number Generation Functions. 16-42

Programs. 16-
Flow. 16-4
Profile . 16-4
Parameters . 16-

Processes. 16
Control. 16-4
Signals . 16-4
User-Level Interrupts. 16-
Lightweight Processes. 16-

Security. 16-
Access Control Lists . 16-
Auditing. 16-5
Levels . 16-5
Other Security . 16-5
Encryption and Decryption . 16-5

System Environment . 16-
Loadable Kernel Modules . 16-
Other System Environment . 16-

Chapter 17 Floating-Point Operations

Introduction . 17
IEEE Arithmetic . 17

Data Types and Formats . 1
Single-Precision . 17
Double-Precision. 17
Language Mappings . 17

Normalized Numbers . 17
Denormalized Numbers . 17
Maximum and Minimum Representable Floating-Point Values 1
Special-Case Values . 1
NaNs and Infinities. 17
Rounding Control. 17-

Floating-Point Exceptions . 17
Exceptions, Status Bits, and Control Bits. 1
Exception Handling . 17

Single-Precision Floating-Point Operations . 1
Single-Precision Functions. 17-

Double-Extended-Precision. 17
IEEE Requirements . 17-

Conversion of Floating-Point Formats to Integer. 17
Square Root . 17-
Compares and Unordered Condition . 17
xv

Compilation Systems Volume 1 (Tools)

-1
-1
-1
-2
-3

-4
-5
-5
-5
-6
-6

-1

-2
-2
-3
8
-10
-10
10
11
11
11
11
12

12
13
14
15
5

16
6
17
17
7
8

20
21
NaNs and Infinities in Input/Output. 17-12

Chapter 18 Inter-Language Interfacing

Introduction . 18
Subroutine Linkage . 18

The Stack Frame . 18
Parameters. 18
Return Values . 18
Prologue and Epilogue 18-3
Register Usage . 18

External Names . 18
Data Types . 18

Scalar Types . 18
Structures . 18
Common Blocks . 18

Part 5 Program Optimization

Chapter 19 Introduction to Program Optimization

Introduction . 19

Chapter 20 Program Optimization

Introduction to Compiler Technology .. 20-1
Compiler Optimization Options. 20

Setting the Compiler Optimization Level . 20
Controlling Compiler Optimizations . 20
Giving Hints to Compiler Optimizations (C++ only) . 20-
Obtaining Optimization Messages . 20

Classes of Optimizations . 20
Branch Optimizations . 20-

Straightening Blocks . 20-
Folding Conditional Tests . 20-
Eliminating Unreachable Code . 20-
Inserting Zero Trip Tests . 20-
Duplicating Partially-Constant Conditional Branches. 20-

Variable Optimizations . 20-
Dead Code Elimination . 20-
Copy Propagation . 20-
Separate Lifetimes . 20-
Copy Variables. 20-1

Expression Optimizations . 20-
Algebraic Simplification . 20-1
Address Mode Determination . 20-
Common Subexpression Elimination . 20-
Code Motion . 20-1

Loop Optimizations . 20-1
Loops with Multiple Entry Points 20-19
Strength Reduction . 20-
Test Replacement. 20-
xvi

Contents

1
2
4

24
5

26
7

29
0

-30
1
32

34

-1

-1
-1
2-2
-3
-3
6
-9
-9
15
18
22
23

6
27
28
35
35
38
-39
-40
41
42
45
6
7

-52
3
4

Duplicating Loop Exit Tests . 20-2
Loop Unrolling and Software Pipelining . 20-2

Register Allocation. 20-2
Instruction Scheduling . 20-
Post-Linker Optimization . 20-2
Inline Expansion of Subprograms (Ada only) . 20-
Optimization of Constraints (Ada only) . 20-2
Inline Expansion of Subprograms (C++ only) . 20-
Precise Alias Analysis (C++ Only) . 20-3

Programming Techniques . 20
Coding Tips . 20-3
Identifying Performance Problems. 20-

Debugging Optimized Code .. 20-32
Understanding Optimization’s Effects on Debugging 20-33
Examining Your Program . 20-

Part 6 Formats

Chapter 21 Introduction to Formats

Introduction . 21

Chapter 22 Executable and Linking Format (ELF)

Introduction . 22
File Format . 22
Data Representation . 2

Program Linking . 22
ELF Header . 22

ELF Identification . 22-
ELF Header Flags . 22

Section Header . 22
Special Sections. 22-
Vendor Section . 22-

String Table . 22-
Symbol Table . 22-

Symbol Values. 22-2
Relocation. 22-

Relocation Types . 22-
Program Execution . 22-

Program Header . 22-
Base Address . 22-

Segment Permissions . 22
Segment Contents . 22
Note Section . 22-

Program Loading . 22-
Program Interpreter . 22-
Dynamic Linker . 22-4

Dynamic Section . 22-4
Shared Object Dependencies. 22
Link Map . 22-5
Global Offset Table . 22-5
xvii

Compilation Systems Volume 1 (Tools)

57
58
59
0

-1
2
3-10
13

-1
4-2
-2
-3
-3
-4

-5

-7
-8

4-8
-8
9

-10
10
1
3

13
-13
14
5
16
6

6
7
7
17
18
19

19
-19
0

22
-23
23
-23
24
Function Addresses . 22-
Procedure Linkage Table . 22-
Hash Table . 22-
Initialization and Termination Functions. 22-6

Symbolic Debugging Information. 22-61

Chapter 23 tdesc Information

Introduction . 23
tdesc Chunks 23-
tdesc in Executable Programs and Shared Objects . 2
Examples . 23-

Chapter 24 DWARF Debugging Information Format

Introduction . 24
Purpose and Scope . 2
Overview. 24
Vendor Extensibility . 24
Changes from Version 1 . 24

General Description . 24
The Debugging Information Entry. 24-4
Attribute Types . 24
Relationship of Debugging Information Entries.. 24-7
Location Descriptions . 24

Location Expressions. 24
Register Name Operators. 2
Addressing Operations . 24

Literal Encodings . 24-
Register Based Addressing. 24
Stack Operations. 24-
Arithmetic and Logical Operations . 24-1
Control Flow Operations . 24-1
Special Operations . 24-

Sample Stack Operations. 24
Example Location Expressions . 24-
Location Lists . 24-1

Types of Declarations . 24-
Accessibility of Declarations . 24-1
Visibility of Declarations . 24-1
Virtuality of Declarations . 24-1
Artificial Entries . 24-1
Target-Specific Addressing Information. 24-
Non-Defining Declarations. 24-
Declaration Coordinates . 24-
Identifier Names . 24-

Program Scope Entries. 24
Compilation Unit Entries . 24-2
Module Entries . 24-
Subroutine and Entry Point Entries . 24

General Subroutine and Entry Point Information . 24-
Subroutine and Entry Point Return Types . 24
Subroutine and Entry Point Locations. 24-
xviii

Contents

-24
4
25
26
26
27
27
28
9

29
30
30
-31
31
33
33
33
34
34
5

36
6

-37
38
-38
9

39
41
-41
2
43
44
44
45
-45
46
47
47
-47

9
9

-50
-51

-53
53
54
55
6
7

57
7

Declarations Owned by Subroutines and Entry Points 24
Low-Level Information . 24-2
Types Thrown by Exceptions . 24-
Function Template Instantiations . 24-
Inline Subroutines . 24-

Abstract Instances . 24-
Concrete Inlined Instances . 24-
Out-of-Line Instances of Inline Subroutines . 24-

Lexical Block Entries . 24-2
Label Entries. 24-
With Statement Entries. 24-
Try and Catch Block Entries . 24-

Data Object and Object List Entries . 24
Data Object Entries. 24-
Common Block Entries . 24-
Imported Declaration Entries . 24-
Namelist Entries . 24-

Type Entries . 24-
Base Type Entries . 24-
Type Modifier Entries. 24-3
Typedef Entries. 24-
Array Type Entries . 24-3
Structure, Union, and Class Type Entries. 24

General Structure Description. 24-
Derived Classes and Structures . 24
Friends. 24-3
Structure Data Member Entries. 24-
Structure Member Function Entries . 24-
Class Template Instantiations . 24
Variant Entries . 24-4

Enumeration Type Entries . 24-
Subroutine Type Entries . 24-
String Type Entries . 24-
Set Entries. 24-
Subrange Type Entries . 24
Pointer to Member Type Entries. 24-
File Type Entries. 24-

Other Debugging Information . 24-
Accelerated Access. 24

Lookup by Name. . .. 24-48
Lookup by Address .. 24-48

Line Number Information. 24-4
Definitions. 24-4
State Machine Registers . 24
Statement Program Instructions . 24
The Statement Program Prologue .. 24-51
The Statement Program. 24

Special Opcodes . 24-
Standard Opcodes . 24-
Extended Opcodes . 24-

Macro Information . 24-5
Macinfo Types. 24-5

Define and Undefine Entries . 24-
Start File Entries. 24-5
xix

Compilation Systems Volume 1 (Tools)

8
58
-58

8
-58
9

60
62
64
-64
4

-65
-65

65
65
6

7
7

71
74
74
7

-77
78
8
9

-79
-79
80
80
80
1
1

1
-82
2
3
3

-84
85
85

-99

-1
5-1
End File Entries . 24-5
Vendor Extension Entries . 24-

Base Source Entries . 24
Macinfo Entries for Command Line Options . 24-5
General Rules and Restrictions . 24

Call Frame Information . 24-5
Structure of Call Frame Information . 24-
Call Frame Instructions . 24-
Call Frame Instruction Usage . 24-

Data Representation . 24
Vendor Extensibility . 24-6
Reserved Error Values. 24
Executable Objects and Shared Objects . 24
File Constraints . 24-
Format of Debugging Information . 24-

Compilation Unit Header. 24-6
Debugging Information Entry. 24-66
Abbreviation Tables . 24-6
Attribute Encodings . 24-6

Variable Length Data . 24-
Location Descriptions . 24-

Location Expressions. 24-
Location Lists . 24-7

Base Type Encodings . 24
Accessibility Codes. 24-
Visibility Codes. 24-7
Virtuality Codes . 24-7
Source Languages . 24
Address Class Encodings . 24
Identifier Case. 24-
Calling Convention Encodings . 24-
Inline Codes . 24-
Array Ordering . 24-8
Discriminant Lists. 24-8
Name Lookup Table. 24-8
Address Range Table . 24
Line Number Information. 24-8
Macro Information . 24-8
Call Frame Information . 24-8
Dependencies . 24

Future Directions . 24-
Appendix 1 -- Current Attributes by Tag Value . 24-
Appendix 2 -- Organization of Debugging Information 24-96
Appendix 3 -- Statement Program Examples . 24
Appendix 4 -- Encoding and decoding variable length data.
24-100
Appendix 5 -- Call Frame Information Examples .
24-102

Chapter 25 DWARF Access Library (libdwarf)

Introduction . 25
Purpose and Scope . 2
xx

Contents

2
-2
-2
-2
-3
-3

-4
-4
-4

-5
-5

-6
-8
-8
-8
-9

-9

15
16
16
18
-20
0
2

29
0
32
-3

-10
-5

4-6
4-7
-8
-8
-29
3-1

9-3
9-4
9-5

9-7
9-7
9-8
-9
Definitions . 25-
Overview . 25

Type Definitions . 25
General Description . 25
Scalar Types . 25
Aggregate Types . 25

Location Record . 25
Location Description . 25
Element List . 25
Subscript Bounds Information 25-5
Data Block. 25

Opaque Types . 25
Error Handling . 25
Memory Management . 25

Read-only Properties . 25
Storage Deallocation . 25

Functional Interface. 25
Initialization Operations . 25
Debugging Information Entry Delivery Operations 25-10
Debugging Information Entry Query Operations. 25-12
Array Subscript Query Operations . 25-
Type Information Query Operations . 25-
Attribute Form Queries. 25-
Line Number Operations . 25-
Global Name Space Operations . 25
Utility Operations . 25-2
Appendix1--libdwarf.h . 25-2

Illustrations

Figure 4-1. User-Defined Mapfile . 4-
Figure 4-2. Default Mapfile . 4-3
Figure 4-3. Simple Map Structure . 4-
Figure 6-1. Creation and Use of a Lexical Analyzer with lex 6
Figure 13-1. Summary of Default Transformation Path . 13
Figure 14-1. Evolution of an SCCS File . 14
Figure 14-2. Tree Structure with Branch Deltas . 1
Figure 14-3. Extended Branching Concept . 1
Figure 22-1. Data Encoding ELFDATA2LSB . 22
Figure 22-2. Data Encoding ELFDATA2MSB . 22
Figure 22-3. Relocatable Fields . 22
Figure 23-1. The Parts of a Body of Code . 2

Screens

Screen 9-1. The cscope Menu of Tasks .
Screen 9-2. Requesting a Search for a Text String .
Screen 9-3. cscope Lists Lines Containing the Text String
Screen 9-4. Examining a Line of Code Found by cscope. 9-6
Screen 9-5. Requesting a List of Functions That Call alloctest()
Screen 9-6. cscope Lists Functions That Call alloctest() .
Screen 9-7. cscope Lists Functions That Call mymalloc() .
Screen 9-8. Viewing dispinit() in the Editor . 9
xxi

Compilation Systems Volume 1 (Tools)

-10
-14
9-15
-16
9-16

-17
1-2
-20

-4
19
3-2

26
-26
-28

-31
-31
-6
-3

9-5
-15

14
6-5
6-6
-7

6-7

6-9
10
11
-12
-12
-13
-14
-14
-15

-15
-16
17

-22
22
23
24
-25
-26
-26
-27
6-27
28
Screen 9-9. Using cscope to Fix the Problem . 9
Screen 9-10. Changing a Text String . 9
Screen 9-11. cscope Prompts for Lines to Be Changed .
Screen 9-12. Marking Lines to Be Changed . 9
Screen 9-13. cscope Displays Changed Lines of Text .
Screen 9-14. Escaping from cscope to the Shell . 9
Screen 11-1. Sample Output from analyze . 1
Screen 13-1. make Internal Rules . 13

Tables

Table 1-1. Compilers and Utilities . 1
Table 2-1. Available Directives . 2-
Table 3-1. PowerPC Instruction Set .
Table 3-2. Condition Codes (CC). 3-25
Table 3-3. Trap Operand (TO) . 3-
Table 3-4. Operand Abbreviations . 3
Table 3-5. Special-Purpose Registers . 3
Table 3-6. Time Base Registers . 3
Table 3-7. Implementation-Specific and Optional Instructions 3
Table 6-1. lex Operators . 6
Table 9-1. Menu Manipulation Commands . 9
Table 9-2. Commands for Use after Initial Search .
Table 9-3. Commands for Selecting Lines to Be Changed 9
Table 14-1. Determination of New SID . 14-
Table 16-1. File and I/O Control and Access Functions . 1
Table 16-2. File and I/O Status Functions . 1
Table 16-3. Directories Functions . 16
Table 16-4. File Systems Functions . 1
Table 16-5. General Input Functions .. 16-8
Table 16-6. General Output Functions . 1
Table 16-7. Terminal I/O Functions . 16-
Table 16-8. STREAMS Functions . 16-
Table 16-9. Pipes and FIFOs Functions . 16
Table 16-10. Devices Control Functions . 16
Table 16-11. File Systems Table File Functions . 16
Table 16-12. File Systems Mount Table File Functions . 16
Table 16-13. Password File Functions . 16
Table 16-14. Shadow Password File Functions . 16
Table 16-15. Group File Functions . 16
Table 16-16. User and Accounting Information Files . 16
Table 16-17. ELF Files Functions . 16-
Table 16-18. DWARF Debugging Information Functions 16-18
Table 16-19. Shared Objects Functions . 16
Table 16-20. Temporary Files . 16-
Table 16-21. String Manipulation Functions . 16-
Table 16-22. Wide String Manipulation Functions . 16-
Table 16-23. Character Test Functions . 16
Table 16-24. Wide Character Test Functions . 16
Table 16-25. Character Translation Functions . 16
Table 16-26. Multibyte and Wide Characters Functions . 16
Table 16-27. Regular Expression and Pattern Matching Functions 1
Table 16-28. Memory Manipulation Functions . 16-
xxii

Contents

29
30
-30
-31
-31
-32
-32
6-32
-33
-33
-34
35
35
-36
6-36

-37
38
-38
-39
41
-41
6-42
44
44
-45
46
-47
-49
-49
-51
51
-51
-52
-52

-53
8-2
18-2
8-4
8-4
8-5
8-5
8-6
-2
-3
-6
-9
2-9
-10
-12
-14
-14
-15
Table 16-29. Memory Allocation Functions . 16-
Table 16-30. Memory Control Functions . 16-
Table 16-31. Shared Memory Control Functions . 16
Table 16-32. Tables Functions . 16
Table 16-33. Hash Tables Functions . 16
Table 16-34. File Trees Functions . 16
Table 16-35. Binary Trees Functions . 16
Table 16-36. Message Queues Functions . 1
Table 16-37. Queues Functions . 16
Table 16-38. Semaphores Functions . 16
Table 16-39. General Date and Time Functions . 16
Table 16-40. Interval Timer Functions . 16-
Table 16-41. POSIX Timer Functions . 16-
Table 16-42. Locales Functions . 16
Table 16-43. Message Catalogs Functions . 1
Table 16-44. Trigonometric Functions 16-37
Table 16-45. Bessel Functions . 16
Table 16-46. Hyperbolic Functions . 16-
Table 16-47. Miscellaneous Mathematical Functions . 16
Table 16-48. Numeric Conversion Functions . 16
Table 16-49. Other Arithmetic Functions . 16-
Table 16-50. Floating-Point Environment Functions . 16
Table 16-51. Pseudo-Random Number Generation Functions 1
Table 16-52. Flow Functions . 16-
Table 16-53. Profile Functions . 16-
Table 16-54. Parameters Functions . 16
Table 16-55. Control Functions . 16-
Table 16-56. Signals Functions . 16
Table 16-57. User-Level Interrupts Functions . 16
Table 16-58. Lightweight Processes Functions . 16
Table 16-59. Access Control Lists Functions . 16
Table 16-60. Auditing Functions . 16-
Table 16-61. Levels Functions . 16
Table 16-62. Other Security Functions . 16
Table 16-63. Encryption and Decryption Functions . 16
Table 16-64. Loadable Kernel Modules Functions. 16-53
Table 16-65. Other System Environment Functions . 16
Table 18-1. Stack Frame . 1
Table 18-2. Where Parameters Are Passed .
Table 18-3. General Registers . 1
Table 18-4. Floating-point Registers . 1
Table 18-5. Special Registers . 1
Table 18-6. C Scalar Types . 1
Table 18-7. Fortran Scalar Types . 1
Table 22-1. Object File Format. 22
Table 22-2. 32-Bit Data Types . 22
Table 22-3. e_ident[] Identification Indexes . 22
Table 22-4. PowerUX Identification, e_ident . 22
Table 22-5. Processor-Specific Flags, e_flags . 2
Table 22-6. Special Section Indexes . 22
Table 22-7. Section Types, sh_type . 22
Table 22-8. Section Header Table Entry: Index 0. 22
Table 22-9. Section Attribute Flags, sh_flags. 22
Table 22-10. sh_link and sh_info Interpretation. 22
xxiii

Compilation Systems Volume 1 (Tools)

-15
-19
-19
2-20
2-20
2-21

2-22
22
-22

26
-32
-37
-39
-39

-40
-40
41
-42
-43
2-43
2-44
2-45

-48
-56
56
57
59
60
4-4
-5
16

16
17
4-18

-21
26
34
35
37
-43
-68
-69
-70
-70
-72
73
-74
-75
-75
-76
Table 22-11. Special Sections . 22
Table 22-12. Vendor Section Rounding Modes, round_mode 22
Table 22-13. Vendor Section Floating-Point Exceptions Kind, fp_except_kind . . . 22
Table 22-14. Vendor Section Enabled Exceptions, float_exceptions 2
Table 22-15. Vendor Section PowerPC Features, IBM_mode 2
Table 22-16. Vendor Section Extended Double-Precision Use, float_precision. . . . 2
Table 22-17. Vendor Section Process Private Data Pointer Use, ppdp_used. 22-21
Table 22-18. Vendor Section FP Speculative Execution Use, fp_spec_exec 2
Table 22-19. String Table . 22-
Table 22-20. String Table Indexes. 22
Table 22-21. Symbol Binding, ELF32_ST_BIND . .. 22-24
Table 22-22. Symbol Types, ELF32_ST_TYPE 22-25
Table 22-23. Symbol Table Entry: Index 0 . 22-
Table 22-24. Relocation Types . 22
Table 22-25. Segment Types, p_type . 22
Table 22-26. Segment Flag Bits, p_flags . 22
Table 22-27. Segment Permissions . 22
Table 22-28. Text Segment . 22
Table 22-29. Data Segment . 22
Table 22-30. Note Information . 22-
Table 22-31. Example Note Segment . 22
Table 22-32. Executable File. 22
Table 22-33. Program Header Segments. 2
Table 22-34. Process Image Segments . 2
Table 22-35. Example Shared Object Segment Addresses . 2
Table 22-36. Dynamic Array Tags, d_tag . 22
Table 22-37. GOTP Binding Entry Stack Frame . 22
Table 22-38. GOTP Binding Entry . 22-
Table 22-39. GOTP Binding Helper . 22-
Table 22-40. PLT Entry . 22-
Table 22-41. Symbol . 22-
Table 24-1. Tag Names . 2
Table 24-2. Attribute Names . 24
Table 24-3. Accessibility Codes . 24-
Table 24-4. Visibility Codes . 24-
Table 24-5. Virtuality Codes . 24-
Table 24-6. Example Address Class Codes. 2
Table 24-7. Language Names .. 24-20
Table 24-8. Identifier Case Codes. 24
Table 24-9. Inline Codes . 24-
Table 24-10. Encoding Attribute Values . 24-
Table 24-11. Type Modifier Tags . 24-
Table 24-12. Array Ordering. 24-
Table 24-13. Discriminant Descriptor Values . 24
Table 24-14. Tag Encodings (Part 1) . 24
Table 24-15. Tag Encodings (Part 2) . 24
Table 24-16. Child Determination Encodings. 24
Table 24-17. Attribute Encodings (Part 1) . 24
Table 24-18. Attribute Encodings (Part 2) . 24
Table 24-19. Attribute Form Encodings . 24-
Table 24-20. Examples of unsigned LEB128 Encodings . 24
Table 24-21. Examples of signed LEB128 Encodings . 24
Table 24-22. Location Operation Encodings (Part 1) . 24
Table 24-23. Location Operation Encodings (Part 2) . 24
xxiv

Contents

-78
78
8

79
-79
-80
-80
80
-81
-81
-82
-83
83
-84
-85
5-3
-7
-9
-21
Table 24-24. Base Type Encoding Values . 24
Table 24-25. Accessibility Encodings . 24-
Table 24-26. Visibility Encodings . 24-7
Table 24-27. Virtuality Encodings . 24-
Table 24-28. Language Encodings . 24
Table 24-29. Identifier Case Encodings . 24
Table 24-30. Calling Convention Encodings . 24
Table 24-31. Inline Encodings . 24-
Table 24-32. Ordering Encodings . 24
Table 24-33. Discriminant Descriptor Encodings . 24
Table 24-34. Standard Opcode Encodings . 24
Table 24-35. Extended Opcode Encodings . 24
Table 24-36. Macinfo Type Encodings . 24-
Table 24-37. Call Frame Instruction Encodings . 24
Table 24-38. Current Attributes by Tag Value . 24
Table 25-1. Scalar Types. 2
Table 25-2. Error Indications . 25
Table 25-3. Allocation/Deallocation Identifiers . 25
Table 25-4. Error Codes . 25
xxv

Compilation Systems Volume 1 (Tools)
xxvi

1
Part 1Software Development Environments

Replace with Part 1 tab

Compilation Systems Volume 1 (Tools)

Part 1 - Software Development Environments
Part 1 - Software Development Environments

Part 1 Software Development Environments

Chapter 1 Introduction to SDEs... 1-1

Chapter 2 Assembler and Assembly Language ... 2-1

Chapter 3 PowerPC Instruction Set Summary... 3-1

Chapter 4 Link Editor and Linking.. 4-1

Chapter 5 m4 Macro Processor ... 5-1

Chapter 6 Lexical Analysis with lex.. 6-1

Chapter 7 Parsing with yacc .. 7-1

Compilation Systems Volume 1 (Tools)

-1

1-2
1-3
-5
-6

-6
-7
1
Introduction to SDEs

Introduction . 1
Programming Languages. 1-1
Compilation Systems Concepts .
Concurrent Computer Corporation Compilation Systems. .
Object Files . 1
Stack Frames . 1
Static and Dynamic Linking . 1
Floating-Point Arithmetic . 1

Compilation Systems Volume 1 (Tools)

Introduction to SDEs

ftware

ilers

ment

and

ition

ared

mbly

to
s that

ntactic
1
Chapter 1Introduction to SDEs

1
1
1

Introduction 1

To create a program, you must be working in and understand some aspects of a so
development environment (SDE). Asoftware development environmentincludes the hard-
ware, operating system, supported object and debugging information formats, comp
and utilities.

This part of the manual discusses some of the tools available in the software develop
environment.

Chapter 2 (“Assembler and Assembly Language”) covers the instruction mnemonics
assembler implementation for the supporting hardware platforms1.

Chapter 3 (“PowerPC Instruction Set Summary”) summarizes the instructions, cond
codes, operands, and registers associated with the PowerPC.

Chapter 4 (“Link Editor and Linking”) describes theld link editor and static and dynamic
linking of relocatable object files and libraries (including relocatable archives and sh
objects). For information about compressing common object files, seecprs(1) .

Chapter 5 (“m4 Macro Processor”) discusses preprocessing C, RATFOR, asse
language, and other source files with built-in and user-definedm4macros. For information
about the C preprocessor, seecpp(1) andacpp(1) .

Chapter 6 (“Lexical Analysis with lex”) describes how to write specifications forlex to
separate (and possibly generate statistics for) components of program input.

Chapter 7 (“Parsing with yacc”) explains how to write grammar rules foryacc so that it
can act upon identified components of program input.

The following sections describe compilation systems.

Programming Languages 1

Programming languagesare used for specifying instructions and operations which are
be performed by programs running on a computer system. Like the spoken language
all human beings use, each programming language has a grammar and a set of sy
and semantic rules.

1. See the Preface for details.
1-1

Compilation Systems Volume 1 (Tools)

ncur-

”) in

vided
sed by
an

and

ries
nvert

, they
cter-

igh-
f the
of the

chine-
evel
urce
it can
f the

t
fly”

e than
truc-
There are hundreds of programming languages available to the computing world. Co
rent Computer Corporation supports a few of the most popular languages:

C See the ConcurrentC Reference Manual

Fortran See thehf77 Fortran Reference Manual

Ada See theHAPSE Reference Manual

assembly language See Chapter 2 (“Assembler and Assembly Language
this manual.

C, Fortran, and Ada are often referred to ashigh-level languages. The source code for
programs written in these languages is fairly portable across computer systems pro
by different manufacturers. In addition, these programs can be accepted and proces
compilers produced by different software vendors. The literary world provides
abundance of books and references on these languages.

Assembly language is often referred to as alow-level language. This language provides
mnemonics and directives which usually map one-to-one with the instruction set
resources of the computer system.

All of these languages are supported for the supporting hardware platforms.

Compilation Systems Concepts 1

A compilation systemis a set of language processors, commands, utilities, and libra
which can be used in the development of software programs. Compilation systems co
source code into binary programs which can be executed on a computer. In addition
provide tools and facilities for debugging and analyzing program behavior and chara
istics.

At the heart of a compilation system is thelanguage processor. Usually, this is the
compiler. A compiler is a program which accepts, as input, source code written in a h
level language. It processes this input and produces a lower-level representation o
source code. This new representation can be an assembly language representation
higher-level source code, making it necessary to run an assembler to produce a ma
level representation of the code. Sometimes a compiler will translate the high-l
language directly into the machine-level representation. A compiler analyzes the so
code, both syntactically and semantically. A good compiler detects as many errors as
locate, enabling the programmer to correct them before they occur during execution o
program. A good compiler can alsooptimizethe program. Optimization transforms the
program, allowing it to run faster and more efficiently.

Some languages are processed by aninterpreter. Whereas a compiler produces output tha
must be further processed and then executed, an interpreter performs “on the
translation and execution of the program.

Assembly language is processed by anassembler. Assemblers are usually less
sophisticated than compilers and interpreters. An assembler often does nothing mor
convert the specified assembly language instructions and directives into machine ins
tions.
1-2

Introduction to SDEs

other

er
he

y the
ries.

he

hine

ance

and
ecut-

ies
files.

s are

CG)
arget

not
Compilers and assemblers are used to producerelocatable object files. Each of these files
cannot be executed individually, for they require further processing. Anexecutable
programconsists of one or more relocatable object files. It is produced by alink editor.
One relocatable object file may reference routines and/or data that are provided by an
relocatable object file. The link editor resolves these references.

Sometimes it is useful to maintain a library of relocatable object files. A programm
could then include object files from the library with object files that are specific to t
program. Thislibrary of relocatable object files is also referred to as anarchive, and the
archive is maintained by anarchiver. When utilizing an archive, the link editor
incorporates into the program only those relocatable object files which are needed b
program. The system on which a program is developed provides several system libra

Newly-written programs seldom execute correctly on the first run, requiring t
programmer to debug the program. Adebuggerutility is often used to facilitate the search
for problems in the code. Some debuggers operate only at the level of mac
instructions.Symbolic debuggerspermit debugging at the source code level.

Once a program is running correctly, it is sometimes desirable to analyze its perform
and identify bottlenecks during its execution.Profiling tools are called upon to perform
this analysis. These tools are available in various degrees of complexity.

Finally, compilation systems provide a set of tools for examining, compressing,
performing miscellaneous functions on source code, relocatable object files, and ex
able programs.

Concurrent Computer Corporation Compilation Systems 1

Concurrent Computer Corporation’s compilation systems provide all of the facilit
described above, except for interpreters. The compilers produce assembly language
These are assembled into relocatable object files, and the relocatable object file
combined into an executable program.

Concurrent Computer Corporation’s compilers share a commonback endwhich is
responsible for optimization and code generation. This Common Code Generator (C
technology makes it possible to easily add support for new languages and to ret
existing compilers to new hardware platforms.

Concurrent Computer Corporation has developed its own compilers. They are
reincarnations of compilers produced by other vendors.

Table 1-1 shows which compilers and utilities are available.
1-3

Compilation Systems Volume 1 (Tools)

-

m-

a

er
n.

s a
he

er

k

-
er

n-
F

o
ee

ws

a

a

of
Table 1-1. Compilers and Utilities

Type Name Description

C compiler cc(1) Both ANSI C and “old-style” C are accepted, as are Concurrent Com
puter Corporation extensions to the C language.

Fortran
compiler

f77(1) The ANSI Fortran 77 language is accepted, as are Concurrent Co
puter Corporation extensions to the Fortran language.

Ada compiler ada(1) Concurrent Computer Corporation provides a complete Ad
programming support environment known as HAPSE.

C
preprocessors

cpp(1)
acpp(1)

Th e C prepr ocesso r expands macros and p er forms oth
preprocessing functions on the source code as part of the compilatio

Assembler as(1) Each system supported by Concurrent Computer Corporation use
“base” assembly language that is supported by other vendors of t
underlying architecture. Extensions are added to this language.

Link editor ld(1) The Concurrent link editor produces programs which can use eith
static linking or dynamic linking.

Archiver ar(1) The Concurrent archiver is optimized for fast archive operations.

Post-link
optimizer and
profiler

analyze(1)

report(1)

These tools are unique to Concurrentanalyze(1) can be used to
perform additional optimizations on programs that have been lin
edited. It can also be used to obtained profi ling and timing
information for executable programs.report(1) provides readable
profiling data.

Profiler prof(1) This tool is the standard UNIX® profiling utility. It is available but not
useful on the supporting hardware platforms.

Performance
analyzer

NightTrace(1) This tool is unique to and can be purchased from Concurrent Com
puter Corporation. It allows users to analyze data and timings in us
applications and the kernel. See theNightTrace Manualfor details.

Symbolic
debugger

gdb(1) This is a port of the Free Software Foundation’s GNU debugger. Co
current has added support for the Fortran language and for DWAR
symbolic debugging information.

Symbolic
debugger

NightView(1) This source-level, multi-lingual, multi-process debugger is unique t
and can be purchased from Concurrent Computer Corporation. S
theNightView User’s Guidefor details.

Symbolic
debugger

ctrace(1) This utility displays source statements as they execute. It also sho
variable names and values and any output from the statement.

Object
debugger

adb(1) This debugger, provided on some vendors’ UNIX systems, allows
program to be debugged at the instruction level.

Compiler-
compiler

yacc(1) This utility converts a context-free grammar into a set of tables for
simple automation which uses an LR(1) parsing algorithm.

Lexical
analyzer

lex(1) This utility generates simple code to be used in the lexical analysis
text input.
1-4

Introduction to SDEs

on.

e

s.

ult

f

f
d

ic

l

d

s

,

Object Files 1

An object file is a binary container of machine instructions and reference informati
Relocatable object files and executable programs are two kinds of object files.

C code
checker

lint(1) This utility examines C source for syntax errors and incompatibl
routine interfaces.

C code
browser

cscope(1) This utility is used for browsing C source code for specified element

C cross refer-
ence generator

cxref(1) This utility builds a cross reference table from C source files.

Name lister nm(1) This utility is used to provide a readable display of an object file’s
symbol table.

Section
manipulator

mcs(1) This utility adds, deletes, prints, or compresses a section, by defa
the .comment section, in an ELF object file.

Dumper dump(1) This utility is used to provide a readable display of all components o
an object file.

Sizer size(1) This utility gives the byte size of selected sections of an object file.

Stripper strip(1) This utility is used to remove the symbol table from an object file.

Compressor cprs(1) This utility, available on some UNIX systems for compression o
COFF symbolic debug information in an object file, has been adapte
by Concurrent Computer Corporation to compress DWARF symbol
debug information from ELF files.

Disassembler dis(1) This util ity provides a readable display of the machine leve
instructions in an object file.

pc to line
number and file
name translator

pctolf(1) This utility is unique to Concurrent Computer Corporation. For a
particular program counter value within an object file, it utilizes
DWARF symbolic debug information to present the file name an
line number which correspond to that address.

Macro
preprocessor

m4(1) This utility serves as a macro processor front end for source file
written in C and other languages.

Ordering
identifier

lorder(1) This utility finds the ordering relation of object files for a library.

C flow grapher cflow(1) This utility builds a graph of external function references from C
yacc , lex , assembler, and object files.

Topological
sorter

tsort(1) This utility provides an ordered list of items, which are usually the
output fromlorder(1) .

Table 1-1. Compilers and Utilities (Cont.)

Type Name Description
1-5

Compilation Systems Volume 1 (Tools)

in

us
tion
gram

ften
ular

d it

s the
p of

s its
oked
utine,

dern
stack
h sub-

for a
er of
tion

m,

. A
on.

ing
able

eeded
An object file must have a well-defined format if it is to be used by the various utilities
a compilation system. The object file format used under PowerUX is theExecutable and
Linking Format (ELF). This format provides object file sections, which contain the vario
components of an object file, such as the machine-level instructions, reloca
information, and the symbol table. It also specifies the segments an executing pro
will have in the address space.

Information about an object file that can be used by a symbolic debugger is o
embedded within the object file. ELF was designed to be independent of any partic
representation of symbolic debugging information. Thus,Debugging With Arbitrary
Record Format (DWARF)has become the de facto representation for use with ELF, an
is used under PowerUX.

Stack Frames 1

During execution, a computer program utilizes a portion of its address space known a
stack. Each subroutine or procedure that is currently active utilizes a contiguous grou
words on the stack, which is that subroutine’sstack frame. The stack frame contains such
information as the address to which the subroutine should return when it complete
execution, the address of the stack frame corresponding to the subroutine which inv
the current subroutine, the values of certain registers upon entry to the current subro
and the values of data variables visible only to the current subroutine.

Some computer architectures provide hardware support for stack frames. Mo
architectures have made the stack frame a software concept, leaving control of
frames to the executable program. Compilers, then, generate code which causes eac
routine to create, update, and remove its own stack frame.

The absence of hardware support for stack frames would make it virtually impossible
debugger to produce a stack traceback, which is an identification of the invocation ord
subroutines at any point in time during execution of the program. Concurrent compila
systems are able to support stack tracebacks through the use oftext description
information, or tdesc. This information, embedded within an executable progra
describes pertinent portions of subroutines to the debugger.

Static and Dynamic Linking 1

Programs may be developed under PowerUX with static linking or dynamic linking
statically linkedprogram contains all of the code and data it will need during executi
The link editor supplies the program with these necessary components.

A dynamically linkedprogram does not contain all of the code and data it will need dur
execution. The link editor statically links a portion of the code and data into the execut
program. When the program begins execution, aprogram interpreter dynamically links
into the executing program’s process’ address space the remaining code and data n
by the program. This additional code and data is provided byshared objects, or shared
libraries.
1-6

Introduction to SDEs

on-
ally

uter
tions

ision
Dynamically linked programs provide greater sharing of pages of memory, and their
disk images are smaller than those of equivalent statically linked programs. Static
linked programs, however, typically run faster than dynamically linked programs.

Floating-Point Arithmetic 1

The representation and operations of floating-point numbers varies among comp
systems. The supporting hardware platforms uses the representation and opera
specified by theIEEE Standard for Binary Floating-Point Arithmetic, which has become a
de facto standard for floating-point arithmetic.

Concurrent compilation systems support the single precision and the double prec
formats. No support is provided for the double extended precision format.
1-7

Compilation Systems Volume 1 (Tools)
1-8

-1
-1
-2
-2
-4

2-4
-4
-4
-5
-5
-5
-6
-8
-8
-8
-8

2-9
-9

-10
-10
11
11
12
12
13
4
6
7
18
19
0

-21
21
2

2
Assembler and Assembly Language

Introduction . 2
Assembler Operation . 2
Using the Assembler . 2

Assembler Invocation. 2
Character Set . 2
Source Statements .

Null Statements . 2
Alphanumeric Labels . 2
Numeric (Local) Labels . 2
Comments. 2

Identifiers. 2
Predefined Symbols . 2
User-Defined Symbols . 2

Constants . 2
Integer Constants . 2
Floating-Point Constants . 2
Character Constants .

Expressions . 2
Expression Operators . 2
Operator Precedence. 2
Expression Types . 2-
Expression Values. 2-

Assembler Directives. 2-
Location Counter Control. 2-
Section Switching. 2-
Data Initialization . 2-1
Symbol Definitions. 2-1
ELF Symbol Attributes. 2-1
Miscellaneous Operations . 2-
Summary of Directives Mnemonics . 2-
Example . 2-2

Position-Independent Code . 2
Assembly Syntax . 2-
Example . 2-2

Compilation Systems Volume 1 (Tools)

plat-
nder-
mer’s
mon

ilable
s and

ives.
of the

very
g the

ates a
and

n of
2
Chapter 2Assembler and Assembly Language

2
2
2

Introduction 2

Concurrent Computer Corporation’s assembler is available on supporting hardware
forms1. The assembler accepts instruction mnemonics appropriate to the particular u
lying architecture. An extended set of directives, or pseudo-ops, extends the program
capability for specifying data and section control. A subset of these directives is com
to each platform.

The following sections describe the assembly statements and directives. The ava
instructions and their syntax and semantics may be found in the reference manual
documents listed below.

Assembler Operation 2

Input to the assembler is a source file containing instruction mnemonics and direct
The assembler processes this input in two passes. During the first pass, it reads each
instructions and directives, creates a symbol table containing information about e
symbol seen within the assembly source, and creates other internal tables describin
instructions and directives it reads. During the second pass, the assembler cre
relocatable object file. This object file is in ELF format. (See Chapter 22 (“Executable
Linking Format (ELF)”) for details.) The.text section of the object file contains the
binary encodings of the assembly instructions in the source. Historically, this collectio
bits and bytes has been referred to asmachine language. The .data and the.bss

1. See the Preface for details.

Title

Chapter 3 (“PowerPC Instruction Set Summary”) of
this manual

Assembler Language Reference for IBM® AIXTM

Version 3 for RISC System/6000TM

PowerPC 604 RISC Microprocessor User’s Manual

PowerPC Microprocessor Family: The Programming
Environments

PowerPC User Instruction Set Architecture
2-1

Compilation Systems Volume 1 (Tools)

The
o

m.

e of
e
not

their
s into

ct
sections contain the initialized and uninitialized data, respectively. The.symtab section
contains information about all of the symbols present in the assembly source.
.rela_ * sections provide relocation information to the link editor, enabling it t
combine this relocatable object file with other such files to form an executable progra

The assembler processes only one input file on each invocation. Traditionally, the nam
an input file ends with the suffix.s , although any valid UNIX name is acceptable. Th
-o option can be used to specify the name of the output object file. If this option is
used, the assembler names the output file according to the following rules:

• If the name of the input file ends in.s , then the name of the output file is
the same as the name of the input file, but with.s replaced with.o .

• If the name of the input file does not end in.s , then the name of the output
file is the same as the name of the input file, but with.o appended.

The C, Fortran, and Ada compilers produce assembly language source file(s) as
compiled output. They then invoke the assembler to convert the assembly source file
relocatable object files.

Temporary files are used during assembly. If theTMPDIRenvironment variable is
defined, these files are placed under this directory. If it is not defined, the/var/tmp
directory is used, if it is available; otherwise,/tmp is used. Temporary files are removed
by the assembler upon completion of assembly.

Using the Assembler 2

Assembler Invocation 2

The assembler is invoked as:

as [options] file

The options are listed below.

-f float Use float as the floating-point mode of assembly and the obje
file.

-m Run them4macro preprocessor on the input to the assembler.

Desired Mode Acceptable Argument Values

IEEE-COMPATIBLE 3 ieeecom

IEEE-NEAREST 4 ieeenear near ieee

IEEE-ZERO 5 ieeezero zero

IEEE-POS-INFINITY 6 ieeepos pos

IEEE-NEG-INFINITY 7 ieeeneg neg
2-2

Assembler and Assembly Language

an
a
er

he

PC
ch

PC
ch

PC
ch

PC
ch

PC
ch

he
ly

ler

he
-o objfile Put the output of the assembly inobjfile by default. The output file
name is formed by removing the.s suffix, if there is one, from
the input file name and appending a.o suffix.

-A Accept certain extensions to the Ada language.

(1) Allow a string enclosed in double quotes to appear in
identifier, provided the first character of the identifier is not
double quote. The characters normally allowed in an identifi
may appear in the quoted string. Additionally, the characters+,
-, *, /, =, <, > , and& may appear in the quoted string.

(2) Allow multiple file directives in the source program.

-P Create a formatted listing on standard output. The format of t
printout is:

’ line-number pc memory-layout source-line’

The ’pc’ field in a .data section will be followed by a ’* ’.

-QTARGET=PPC601 Mark the object module as using features unique to the Power
601, and provide warnings for any assembly instructions whi
are unique to another PowerPC chip architecture.

-QTARGET=PPC603 Mark the object module as using features unique to the Power
603, and provide warnings for any assembly instructions whi
are unique to another PowerPC chip architecture.

-QTARGET=PPC604 Mark the object module as using features unique to the Power
604, and provide warnings for any assembly instructions whi
are unique to another PowerPC chip architecture.

-QTARGET=PPC604EMark the object module as using features unique to the Power
604e, and provide warnings for any assembly instructions whi
are unique to another PowerPC chip architecture.

-QTARGET=PPC620 Mark the object module as using features unique to the Power
620, and provide warnings for any assembly instructions whi
are unique to another PowerPC chip architecture.

-QTARGET=PPCCOMPAT
Mark the object module as using only features common to all t
PowerPC platforms, and provide warnings for any assemb
instructions which are unique to any of the platforms.

-Q{ y |n} If -Qy is specified, place the version number of the assemb
being run in the object file. The default is-Qn .

-R Remove (unlink) the input file after assembly is completed.

-V Write the version number of the assembler being run on t
standard error output.

-Y [md],dir Find them4preprocessor (m) and/or the file of predefined macros
(d) in directorydir instead of in the customary place.
2-3

Compilation Systems Volume 1 (Tools)

e the
. That
in

cified

te-

the

. The
pilers

bler

not
th of
Character Set 2

The standard ASCII characters and special two-character combinations compris
assembly character set. When used in identifiers and labels, letters are case-sensitive
is, the symbolsVAL25 andval25 are distinct symbols. Letters are not case-sensitive
instruction and directives mnemonics. Thusword andWORDidentify the same directive.

Source Statements 2

Source statements may appear on individual lines, or multiple statements may be spe
on a single line separated by the; delimiting character.

Any statement may be preceded by one or more labels.

The assembler imposes no limit on the character length of a source line.

Null Statements 2

Null statementsare empty lines or lines containing only one or more labels. Such sta
ments are ignored by the assembler.

Alphanumeric Labels 2

Alphanumeric labelsconsist of the following characters:

a-z, A-Z, 0-9, _, ., $, %, and @

These labels must not begin with a digit.

If the assembler-A option is used, labels may also contain double-quoted strings of
preceding character set and the characters+, -, *, /, =, <, > , and&.

Labels may be preceded by zero or more blanks. They are terminated by a: (which does
not become part of the label name). One or more blanks may precede the colon
assembler does not prefix or suffix additional underscores to the label, as some com
do. If a version "03.00" or a version "02.00" directive (discussed in “ELF
Symbol Attributes” on page 2-17) does not exist in the assembly file, the assem
removes a leading underscore, if one exists, from label names. If aversion "03.00"
or aversion "02.00" directive does exist in the assembly file, the assembler does
remove a leading underscore from labels. Alphanumeric labels have a maximum leng
1,024 characters. For example,

_label1: PCB.flag:
2-4

Assembler and Assembly Language

o the
at

n that

and

ent
An alphanumeric label assigns the current value and type of the location counter t
named symbol. In the.text section, the location counter is the program counter in th
section. In other sections, the location counter is the address of the next data byte i
section.

Numeric (Local) Labels 2

A numeric labelconsists of a digit0-9 followed by a colon. It defines a temporary
symbol of the formnb or nf , wheren is the digit of the label andb or f indicates aback-
ward or forward reference, respectively. A numeric label assigns the current value
type of the location counter to the temporary symbol. For example, the operand3b refers
to the nearest label3: seen prior to the instruction, and8f refers to the nearest label8:
seen after the instruction.

For example,

6:

cmpwi crf1,r3,13
addi r3,r3,1
bgt crf1,6f
cmpwi crf1,r3,4
blt crf1,6b

6:

NOTE

The symbol0f may not be used as a numeric label because0f
denotes the floating-point constant0.0 .

Comments 2

A line with # in column 1 is regarded as a comment line.

C-style comments, beginning with/* and ending with*/ , may appear anywhere in the
source. These comments may traverse multiple lines.

Comments to the end of the line may also be used. The delimiter for this kind of comm
is #. This delimiter can be used anywhere on the line.

Identifiers 2

Identifiers consist of the following characters:

a-z, A-Z, 0-9, _, ., $, %, and @
2-5

Compilation Systems Volume 1 (Tools)

of

ome

bler

not
024

ned by
Identifiers must not begin with a digit.

If the assembler-A option is used, identifiers may also contain double-quoted strings
the preceding character set and the characters+, -, *, /, =, <, > , and&.

The assembler does not prefix or suffix additional underscores to the identifier, as s
compilers do. If aversion "03.00" or a version "02.00" directive (discussed
“ELF Symbol Attributes” on page 2-17) does not exist in the assembly file, the assem
removes a leading underscore, if one exists, from identifiers. If aversion "03.00" or
a version "02.00" directive does exist in the assembly file, the assembler does
remove a leading underscore from identifiers. Identifiers have a maximum length of 1
characters. Examples of identifiers include:

@L5, _subroutine_

Each identifier (symbol) may be classified as eitherpredefinedby the assembler or
user-defined.

Predefined Symbols 2

These symbols possess specific meanings for the assembler. They cannot be redefi
the user, nor may they be used outside their specific contexts.

Predefinitions:

• Instruction mnemonics

• Assembler directives (see “Assembler Directives” on page 2-12)

• General register names:r0 - r31

• Floating-point register names:f0 - f31

• Special-purpose register names:xer, lr, ctr, dsisr, dar,
dec, sdr1, srr0, srr1, sprg0, sprg1, sprg2, sprg3,
ear, pvr, ibat0u, ibat0l, ibat1u, ibat1l, ibat2u,
ibat2l, ibat3u, ibat3l, iabr

• PowerPC 601-specific special-purpose register names:mq, rtcu,
rtcl, dec, hid1

• PowerPC 603-specific special-purpose register names:dmiss, dcmp,
hash1, hash2, imiss, icmp, rpa

• PowerPC 604-specific special-purpose register names:mmcr0, pmc1,
pmc2, sia, sda

• PowerPC 620-specific special-purpose register names:asr, mmcr0,
pmc1, pmc2, sia, sda, buscsr, l2cr, l2sr, fpecr

• Special-purpose register names absent from PowerPC 601:tb, tbl,
dbat0u, dbat0l, dbat1u, dbat1l, dbat2u, dbat2l,
dbat3u, dbat3l
2-6

Assembler and Assembly Language

s)

ed

er
• Special-purpose register names absent from PowerPC 603:hid0, dabr,
pir

• Special-purpose register names absent from PowerPC 601 and 620:tbu

• Half-word specifiers:

hi16 (upper 16 bits of a relocatable expression, for signed operation

uhi16 (upper 16 bits of a relocatable expression, for unsign
operations)

lo16 (lower 16 bits of a relocatable expression)

NOTE

An instruction which useslo16 as the half-word specifier often
has a corresponding instruction which provides the upper 16 bits
of a relocatable expression. If the instruction usinglo16
performs a sign extension of the 16-bit operand, thenhi16
should be used in the corresponding instruction which provides
the upper 16 bits; otherwise,uhi16 should be used in the
corresponding instruction. For example:

lis rs,uhi16(x)
ori rs,rs,lo16(x)

but

lis rs,hi16(x)
addi rs,rs,lo16(x)

• Branch instruction operands:eq, ne, gt, le, lt, ge, so, un,
ns, z, nl, ng, nz, nu

If the version "03.00" directive is specified in an assembly file, the assembl
requires that a leading@be prefixed to the following predefinitions:

• General register names

• Extended register names

• Control register names

• Half-word specifiers

• Bit-number mnemonics

• Match-field mnemonics
2-7

Compilation Systems Volume 1 (Tools)

. It
d an
n the

oint

.
rtion

or
User-Defined Symbols 2

The user may define a symbol in one of the following ways.

• As a label. The symbol’s value is the value of the location counter where
the label is defined.

• As a constant. Thedef directive can be used to assign a 32-bit integer
value to the symbol. (Refer to “Symbol Definitions” on page 2-16.)

• As a special symbol. Thefile directive, for example, can be used to give
the symbol a special meaning. (Refer to “Miscellaneous Operations” on
page 2-18 and “Summary of Directives Mnemonics” on page 2-19.)

Constants 2

Integer Constants 2

An integer constantis a 32-bit, two’s complement number.

A decimal constantconsists of digits from0-9 and does not possess a leading zero.

An octal constantconsists of digits from0-7 and possesses a leading zero.

A hexadecimal constantconsists of digits from0-9 , a-f , andA-F and possesses a
leading0x or 0X. For example,

914, 037775, 0x23a

Floating-Point Constants 2

A floating-point constantis a 32-bit or a 64-bit number represented in the IEEE format
consists of an optionally signed integer portion, a decimal point, a fraction portion, an
exponent. The precision (single or double) of the constant ultimately depends upo
context in which the constant is assembled.

The following conventions help the assembler disambiguate certain floating-p
constants from identifiers beginning with. and a digit. A leading0f or 0F identifies a
single-precision constant while a leading0d or 0D identifies a double-precision constant
Floating-point constants may begin with one of these prefixes (making the integer po
optional), or they must possess an integer portion.

The fraction portion may be omitted. Either the decimal point and the fraction portion
the exponent may be omitted, but not both. The exponent consists ofe or E followed by an
optionally signed integer. For example,

-4.3, 25.4367e-10, 0f.15
2-8

Assembler and Assembly Language

er.
s. For
a

l

ols,
later in
Character Constants 2

A single-character constantconsists of a single quote’ followed by an ASCII character
other than backslash (\). The value of the constant is the ASCII code for the charact
Special meanings of characters are overridden when used in character constant
example,’# and’; represent the constants# and; , respectively, and do not represent
terminating’ followed by a comment.

A special character constantconsists of’\ followed by another character. The specia
character constants are listed below.

For example,’q, ’\n, ’015

Expressions 2

Expressionsrepresent 32-bit, two’s complement values. They are built up from symb
constants, operators, and parentheses. Expressions have types, which are discussed
this section.

Constant Value Meaning

’\b 0x08 backspace

’\t 0x09 horizontal tab

’\n 0x0a newline (line feed)

’\f 0x0c form feed

’\r 0x0d carriage return

’\? 0x3f question mark

’\" 0x22 double quote

’\’ 0x27 single quote

’\\ 0x5c backslash

’\ nnn 0nnn octal characternnn
2-9

Compilation Systems Volume 1 (Tools)

ay be
Expression Operators 2

The following operators are available.

Operator Precedence 2

The precedences of the operators appear next.

Binary operators of the same precedence are left-to-right associative. Parentheses m
used to override the default precedences and/or associativity.

Class Operator Function Comment

binary + addition

- subtraction

* multiplication

/ division The integer quotient is returned, with
truncation performed on the real value

& bitwise AND

| bitwise OR

^ bitwise XOR

~ bitwise NOR (a~b) is equivalent to (a OR (NOT b))

< logical left shift (a<b) is a shifted left b bits

> ar i t h me t i c r i g ht
shift

(a>b) is a shifted right b bits

unary - negation

~ one’s complement

() highest

unary ~, +, - |

*, /, <, > |

|, ^, & |

binary +, - |

|

lowest
2-10

Assembler and Assembly Language

s. The

its

not

he
at

are

the
f

lues,

f the

nk

e
-

Expression Types 2

The type of an expression depends upon the types of the operators and the operand
possible expression and identifier types are:

manifest The value can be computed by the assembler at the time of
appearance.

absolute The value can be computed by the assembler, though
necessarily at the time of its appearance.

relocatable The value is relative to the start of a particular section. T
memory location represented by the expression is not known
assembly time, but the relative values of two such expressions
known if they refer to the same section.

undefined external No value is assigned to the expression. It is expected that
values will be determined at link time. The relative values o
undefined externals are not known at assembly time.

A manifest value is also an absolute value. All absolute values are also manifest va
except for the difference between two relocatable values.

The following rules determine the type of an expression based upon the types o
operands.

• If both operands are of manifest type, the expression is manifest.

• If both operands are of absolute type, the expression is absolute.

• If one operand is an undefined external, the expression is an undefined
external.

• If one operand is absolute, and the other operand is relocatable, the
expression is relocatable.

• The difference of two relocatable operands is of absolute type.

• It is not possible for one operand to be manifest while the other is absolute
or relocatable.

Expression Values 2

An absolute symbolis defined from a constant, and its value is not affected by the li
editor.

Text, data, andbss symbolshave values which indicate their displacements from th
beginning of the.text , .data , or .bss sections, respectively. Text, data, and bss sym
bols may change in value if the assembler output is link-edited.

At the beginning of assembly, the value of the location counter. is the beginning
displacement of the.text section. After the firstdata directive is seen, the value of.
becomes the beginning displacement of the.data section.
2-11

Compilation Systems Volume 1 (Tools)

ly. If
l, the

d by
d in
obal

g,
d

are
t.

d
ation
be in
Symbolswhich are declaredglobal have global visibility. Such a symbol may be
defined in the current assembly, or it may be defined externally to the current assemb
it is defined in the current assembly as an absolute, a text, a data, or a bss symbo
symbol may be used as if it were not globally visible. Its value and type may be use
the link editor to satisfy external references to the symbol. If the symbol is not define
the current assembly, the link editor will regard it as an external reference to a gl
definition of the symbol outside the current assembly.

Assembler Directives 2

Assembler directives(pseudo-ops) specify location counter control, section switchin
data init ial ization, symbol definitions, symbolic debugging information, an
miscellaneous operations. The following notation is used:

{ directive | .directive} [operand]...

directiveand.directiveare acceptable assembly mnemonics, andoperandis the kind
of operand accepted by the directive.

Location Counter Control 2

{ align | .align } alignment

The location counter is adjusted so that its value, modulo the specifiedalignment, is
zero. Bytes between the current location counter and the new (aligned) value
filled with zeroes (\0). alignmentis the base-2 logarithm of the desired alignmen
alignmentis of manifest type. For example,:

align 3 /* align the location counter to an 8-byte
boundary */

.org counter

The location counter is set tocounter, which must be defined and must not excee
the current value of the location counter. Its recommended use is to set the loc
counter at a known offset beyond an already-seen label. The directive should
the same section as the referenced label. A constantcountermay be used, but the
assembler will produce a warning message. For example,

label: .long 5; .org label+30 /* change the location
counter to 30 past the label */

{ zero | .space } number

numberbytes of zeroes (\0) are assembled at the current location counter.number
must be non-negative. It is of manifest type. For example,

zero 24 /* assemble 24 bytes of zeroes */
2-12

Assembler and Assembly Language

by

it

n

are
Section Switching 2

{ text | .text }

The location counter is changed to the next available value in the.text section.
Before the first section directive is encountered in an input file, assembly is
default directed into the.text section.

{ data | .data }

The location counter is changed to the next available value in the.data section.

section identifier[, attributes][, sectiontype]

Succeeding bytes are assembled into the section namedidentifier. One or more flags
comprise a quoted character string ofattributesfor the section. Theattributesflags
are optional. The attributes are indicated in thesh_flags entry of the section
header. The assembler permits another optional parameter,sectiontype, which is
indicated in thesh_type entry in the section header. This section is created, if
does not already exist, with the givenattributesandsectiontype. If the same section
is specified by more than onesection directive, the last value ofattributesand
sectiontypeis assigned to the section.

Any combination of the following flags can be specified in theattributesstring.

w Set theSHF_WRITEflag (0x1)

x Set theSHF_ALLOCflag (0x2)

a Set theSHF_EXECINSTRflag (0x4)

The assembler permits one of the following flags to be specified assectiontype. The
assembler requires that the given value be preceded with an@.

progbits The section may contain data

nobits The section contains no data

symtab The section is a symbol table

strtab The section is a string table

note The section is a comment section

vendor The section is a Concurrent Computer Corporatio
vendor section

A hexadecimal integer constant may also be specified assectiontype, provided it is
preceded by# or @, as described above.

Some of the flags do not have meaning in a PowerMAX OS environment. They
provided for compatibility with other systems.

As an example,
2-13

Compilation Systems Volume 1 (Tools)

the
ion.

ch
ch

ch
ch

d.

this
te
section mysect,"a",@progbits /* specify ’mysect’ as
SHF_ALLOC and SHT_PROGBITS */

previous

This directive exchanges the current section and the previous section.

At any point in the assembly, both acurrent section and aprevioussection are in
effect. Initially, the current section istext and the previous section is undefined. A
text , data , or section operation causes the current section to become
previous section and the operation-specified section to become the current sect

Data Initialization 2

{ byte | .byte } value[, value]...

The specifiedvalue(s) are assembled into consecutive 1-byte locations. Eachvalue
is of manifest type and is in the range -(27) to 28-1. For example,

byte 21, -43

ubyte expression[, expression]...

The specifiedexpression(s) are assembled into consecutive 1-byte locations. Ea
expressionis of absolute or relocatable type or is an undefined external. Ea
expressionis in the range 0 to 28-1. For example,

ubyte 55, 0

sbyte expression[, expression]...

The specifiedexpression(s) are assembled into consecutive 1-byte locations. Ea
expressionis of absolute or relocatable type or is an undefined external. Ea
expressionis in the range -(27) to 27-1. For example,

sbyte -63,34

{ vbyte | .vbyte } number, expression

The specifiedexpressionis assembled into consecutivenumber-byte locations.
expressionis of manifest or absolute type.numberis in the range 1-4, inclusive. If
expressionrequires more thannumberbytes, the left-most bytes are not assemble
For example,

.vbyte 3,726

{ half | .word | short | .short } value[, value]...

The assembler requires that the location counter be evenly divisible by 2 when
directive is used. The specifiedvalue(s) are assembled into consecutive 2-by
locations. Eachvalue is of manifest type and is in the range -(215) to 216-1. For
example,
2-14

Assembler and Assembly Language

The
ch
ch

The
ch
ch

ive
ch

The

ive
s.
ch

The
ch
half 0x56b

uhalf expression[, expression]...

The location counter must be evenly divisible by 2 when this directive is used.
specifiedexpression(s) are assembled into consecutive 2-byte locations. Ea
expressionis of absolute or relocatable type or is an undefined external. Ea
expressionis in the range 0 to 216-1. For example,

uhalf 1078,457,3

shalf expression[, expression]...

The location counter must be evenly divisible by 2 when this directive is used.
specifiedexpression(s) are assembled into consecutive 1-byte locations. Ea
expressionis of absolute or relocatable type or is an undefined external. Ea
expressionis in the range -(215) to 215-1. For example,

shalf -20345,26

uahalf value[, value]...

There is no restriction on the divisibility of the location counter when this direct
is used. The specifiedvalue(s) are assembled into consecutive 2-byte locations. Ea
valueis of absolute type and is in the range -(215) to 0 to 216-1. For example,

uahalf 7823,-40201

{ word | .int | .long } value[, value]...

The location counter must be evenly divisible by 4 when this directive is used.
specifiedvalue(s) are assembled into consecutive 4-byte locations. Eachvalueis of
manifest type and is in the range -(231) to 232-1. For example,

word -3, 759323, 0

uaword expression[, expression]...

There is no restriction on the divisibility of the location counter when this direct
is used. The specifiedexpression(s) are assembled into consecutive 4-byte location
Eachexpressionis of absolute or relocatable type or is an undefined external. Ea
expressionis in the range -(231) to 232-1. For example,

uaword 1078,457,-108324

{ float | .float } floatconst[, floatconst]...

The location counter must be evenly divisible by 4 when this directive is used.
specifiedfloatconst(s) are assembled into consecutive 4-byte locations. Ea
floatconstis in the range of IEEE single-precision numbers. For example,

float 3.1415, 0.0
2-15

Compilation Systems Volume 1 (Tools)

The
ch

r of
and

d with

r of
and
ith a

. If
nal
{ double | .double } floatconst[, floatconst]...

The location counter must be evenly divisible by 8 when this directive is used.
specifiedfloatconst(s) are assembled into consecutive 8-byte locations. Ea
floatconstis in the range of IEEE double-precision numbers. For example,

double -1.5, 2.34e31

{ string | .ascii } string[, string]...

The specifiedstring(s) are assembled into consecutive locations--one characte
the string per byte. The quoted string is regarded as a C-style string. The leading
the terminating double quotes are not assembled, and the string is not appende
a trailing null byte (\0). For example,

string "several bytes"

.asciiz string[, string]...

The specifiedstring(s) are assembled into consecutive locations--one characte
the string per byte. The quoted string is regarded as a C-style string. The leading
the terminating double quotes are not assembled, and the string is appended w
trailing null byte (\0). For example,

asciiz "error in format\n", "syntax error\n"

Symbol Definitions 2

{ def | .def | set | .set } identifier, expression

The assembler requires thatexpressionbe of absolute or relocatable type. A new
symbol, identifier, is created, and its value is set to the value ofexpression. For
example,

def temp,2*4
/* create a variable ’temp’, giving it the value 8 */

{ global | .globl } identifier

identifier is made externally visible. Ifidentifier is defined in this assembly, its
definition may be used by the link editor to resolve external references to it
identifier is not defined in this assembly, the link editor must locate an exter
definition to satisfy its external reference. For example,

global sub /* give ’sub’ external visibility */

{ extern | .extern } identifier

identifier is regarded as being defined in another source file. For example,

extern var
/* identify ’var’ as defined in another source file. */
2-16

Assembler and Assembly Language

e

f

y

d
ult

and
{ comm | .comm} identifier, size[, alignment]

identifier is made externally visible and is to be assigned to a common area ofsize
bytes. If identifier is not defined at link time, the link editor assigns it to the.bss
section.identifier becomes relocatable.sizeis of manifest type. The optional third
argument,alignment,is of manifest type and must be a power of two. It has th
meaning asalignmentin the align directive, above. Ifalignmentis not specified,
the alignment ofidentifier is 1 or 2 whensizeis 1 or 2, respectively; otherwise, the
alignment is to an 8-byte boundary. For example,

comm block,20 /* define a common area ’block’ of
size 20 bytes, on an 8-byte boundary */

{ bss | .bss } identifier, size[, alignment]

identifier is made externally invisible but internally visible. It issizebytes long and is
assigned to the.bss section.alignmentis optional and must be a power of two, i
present. Ifalignmentis missing the alignment is regarded as 1-byte. Bothsizeand
alignmentare of manifest type. For example,

bss var,10,4 /* define a .bss variable ’var’, size
10 bytes, on a 4-byte boundary */

local identifier[, identifier]...

Eachidentifier is defined in the input file and not accessible to other files. An
default binding foridentifier is overridden by this directive. For example,

local local_var /* declare a local variable
’local_var’ */

weak identifier[, identifier]...

Each identifier is declared to be a weak global identifier. It is either define
externally or defined in the input file and accessible in other files. Any defa
binding for identifier is overridden by this directive. For example,

weak _sub /* give ’_sub’ weak binding */

NOTE

The assembler permits the use of at most one ofglobal , local ,
andweak for each symbol in the input file.

ELF Symbol Attributes 2

These directives provide attributes for symbols. Refer to Chapter 22 (“Executable
Linking Format (ELF)”) for information about the symbol table.
2-17

Compilation Systems Volume 1 (Tools)

g
ded

f

If
es a

he

els.

he
ith a

ler
ly

.
ing is
type identifier, type

identifier is declared with typetype. The assembler permits one of the followin
flags to be specified astype. The assembler requires that the given value be prece
with a @.

no_type no specified type

object a data object

function a function or other executable code

For example,

type abc,@object /* associate ’abc’ with a data
object */

size identifier, size

The sizesizeis associated withidentifier. sizespecifies the size in bytes and is o
absolute type. For example,

size 6 /* indicate the identifier has size 6 */

version value

The quoted stringvalue is compared with an internal assembler version string.
valueis lexicographically greater than the internal string, the assembler produc
fatal error message and exits.

This directive is optional. If present, it must appear first in the assembly file. T
only acceptablevaluesare"03.00" and"02.00" . "02.00" suppresses the auto-
matic removal of a leading underscore from labels and alphanumeric lab
Additionally, "03.00" requires that# be prefixed to certain keywords, as
described throughout this chapter.

Miscellaneous Operations 2

{ file | .file } file

The quoted stringfile is placed in the object file’s symbol table. The leading and t
terminating double quotes are not assembled, and the string is not appended w
trailing null byte (\0). file is of length 1-255 characters, inclusive. If the assemb
-A option is used, however,file may be of length 1-800 characters, inclusive. On
one file directive may be specified in an assembly file. If the-A option is used,
however, multiplefile directives may be specified. For example,

file "source.c" /* place the file name ’source.c’ in
the symbol table */

ident string

string is assembled into the.comment section. It is regarded as a C-style string
The leading and the terminating double quotes are not assembled, and the str
2-18

Assembler and Assembly Language

ions
lative
int
sary

of
appended with a trailing null byte (\0). This directive is typically used to provide
revision level tracking information. For example,

ident "revision 5.1.3" /* place the string in the
.comment section */

fp_spec_exec

This directive indicates that the assembly code contains floating-point instruct
that are executed in a speculative manner. (See the discussion of specu
execution in Chapter 20.) Modules that speculatively execute floating-po
instructions could erroneously raise floating-point exceptions, making it neces
to link programs with all floating-point exceptions disabled. (See the discussion
the-Qfpexcept= option in Chapter 3.)

fp_spec_exec /* indicate that floating-point
instructions are speculatively
executed.*/

Summary of Directives Mnemonics 2

Table 2-1 summarizes the available directives.

Table 2-1. Available Directives

Mnemonic(s) Argument(s)

align, .align alignment

.org counter

zero, .space number

text, .text

data, .data

section identifier[,attributes][,sectiontype]

previous

byte, .byte value[,value]...

ubyte expression[,expression]...

sbyte expression[,expression]...

vbyte, .vbyte number, expression

half, .word value[,value]...

short, .short value[,value]...

uhalf expression[,expression]...

shalf expression[,expression]...

uahalf value[,value]...

word, .int, .long value,[value]...
2-19

Compilation Systems Volume 1 (Tools)

elow.
Example 2

The following C function could be assembled to the assembly source code shown b
Assembly source that is accepted by the assembler is used in this example.

sub(i) {
if (i > 0) {

printf (" the value of i = %d \n", i);
}

}

version "02.00"
file "example.c"
data
align 3

uaword expression[,expression]...

float, .float floatconst[,floatconst]...

double, .double floatconst[,floatconst]...

string, .ascii string[,string]...

.asciiz string[,string]...

def, .set identifier,expression

.def, set identifier,expression

global, .globl identifier

extern, .extern identifier

comm, .comm identifier,size[,alignment]

bss, .bss identifier,size[,alignment]

local identifier[,identifier]...

weak identifier[,identifier]...

type identifier,type

size identifier,size

version value

file, .file file

ident string

fp_spec_exec

Table 2-1. Available Directives (Cont.)

Mnemonic(s) Argument(s)
2-20

Assembler and Assembly Language

sed in
ic
e of
t

lit_lab:
string "the value of i = %d\n\000"
text
align 2
global sub

sub:
type sub,@function
size sub,..sub_sub_end - sub
addi r1,r1,-80
mflr r13 # return address
stw r13,88(r1) ; mr r4,r3

..sub_sub_:
line 3
cmpwi crf1,r4,0
ble crf1,@L6

line 4
lis r3,uhi16(lit_lab)
ori r3,r3,lo16(lit_lab)
bl printf

@L6:
lwz r13,88(r1)
mtlr r13
addi r1,r1,80
blr

..sub_sub_end:
@L12:

section .tdesc,"x"
word 0x42
word 0x1
word ..sub_sub_
word @L12
word 0x10000021
word 0x50,0x8,0xfffffff0

Position-Independent Code 2

Assembly Syntax 2

The assembly language is extended to support position-independent code, which is u
dynamic linking. (See Chapter 4 (“Link Editor and Linking”) for information on dynam
linking and shared object files.) The following expressions are explained, and som
these extensions are used in the example that follows. The assembler requires tha@be
used in these expressions (e.g.,s@got). The@is used in the explanations that follow.
2-21

Compilation Systems Volume 1 (Tools)

he

he

he
ct

ject

ng

A
e by
h-

t and
cepted
s@got The address of a global offset table entry for symbols.

p@gotp The address of a global offset table procedure entry for t
procedure named by the symbolp.

p@plt An address to which control can be transferred to invoke t
procedure named by symbolp. It is either the address ofp or the
address of a procedure linkage table entry forp.

s@rel The difference between the value of the symbols and the
addressing base for the object containing the expression. T
value of the symbols must represent an address in the obje
containing the expression.

s@got_rel The difference between the address denoted bys@got and the
addressing base for the object containing the expression.

p@gotp_rel The difference between the address denoted byp@gotp and the
addressing base for the object containing the expression.

p@plt_rel The difference between the address denoted byp@plt and the
addressing base for the object containing the expression.

s@abdiff The difference between the addressing base for the shared ob
containing the expression and the value of the symbols. The value
of the symbols must represent an address in the object containi
the expression.

The addressing baserefers to a particular virtual address
associated with the memory image of a shared object.
position-independent function establishes the addressing bas
computing its value and preserving it in a register for use throug
out the activation of the function.

Example 2

The following C code serves to illustrate the difference between position-independen
position-dependent code, at the assembly language level. Assembly source that is ac
by the assembler is used in this example.

int global;
int *global_ptr;
sub () {

extern char * malloc();
global_ptr = (int *) malloc (20);
*global_ptr = global;

}

2-22

Assembler and Assembly Language
Position-Independent Position-Dependent

global sub global sub

sub: sub:

addi
stw
mflr
stw
local
bl

r1,r1,-80
r16,64(r1)
r13
r13,88(r1)
base
base

addi

mflr
stw

r1,r1,-80

r13
r13,88(r1)

base:

ori
mflr
add
local

r16,r16,lo16(base@abdiff)
r13
r16,r16,r3
be

be: be:

lis
ori
lwzx
li
mtctr
btcrl
lis
ori
lwzx
stw
lis
ori
lwzx
lwz
lis
ori
lwzx
lwz
stw
lwz
lwz
mtlr
addi
blr

r3,uhi16(malloc@gotp_rel)
r3,r3,lo16(malloc@gotp_rel)
r4,r16,r3
r3,lo16(0x14)
r4

r4,uhi16(global_ptr@got_rel)
r4,r4,lo16(global_ptr@got_rel)
r4,r16,r4
r3,0(r4)
r3,uhi16(global@got_rel)
r3,r3,lo16(global@got_rel)
r3,r16,r3
r4,0(r3)
r3,uhi16(global_ptr@got_rel)
r3,r3,lo16(global_ptr@got_rel)
r3,r16,r3
r3,0(r3)
r4,0(r3)
r16,64(r1)
r13,88(r1)
r13
r1,r1,80

li

bl
lis

stw
lis
lwz

stw

lwz
mtlr
addi
blr

r3,lo16(0x14)

malloc
r4,hi16(global_ptr)

r3,lo16(global_ptr)(r4)
r4,hi16(global)
r4,lo16(gloabl)(r4)

r4,0(r3)

r13,88(r1)
r13
r1,r1,80

en: en:
2-23

Compilation Systems Volume 1 (Tools)

g that
In the

for
e

itor
of
to

f the

h is
d
ally
bol.

d as
For executable code in a shared object to be shared among multiple processes usin
shared object, it must reference symbols and data in a position-independent manner.
code above, the addressing base is computed into registerr14 .

Because each process will have its own, private copy of the global offset table
procedures, the address ofglobal_ptr , specific to a process, can be obtained from th
process’ private copy of the table. Theglobal_ptr @got_rel syntax directs the
assembler to produce relocation information that the link editor will use. The link ed
will establish an offset, in the global offset table, which will contain the address
global_ptr . The value in registerr3 contains a byte offset from the addressing base
this location in the table. The value inr5 is the address ofglobal_ptr . Thus, an extra
level of indirection is needed to obtain the address of the variable. An explanation o
use of@gotp_rel , for referencingmalloc , is similar.

Thebe@rel syntax directs the assembler and the link editor to produce a value whic
the difference between the address of the symbolbe and the addressing base of the share
object. A consumer of this information, such as a debugger, would need to dynamic
add the addressing base to this difference to determine the actual address of the sym

The local directives are needed to indicate that the symbols are to be regarde
inaccessible from other files and shared objects.

section
word
word
word
word
word
word
word
word

.tdesc,"x"
0x42
0x2
be@rel
en@rel
0x1020021
0x50
0x8
0xfffffff0

section
word
word
word
word
word
word
word
word

.tdesc,"x"
0x42
0x1
be
en
0x1000021
0x50
0x8
0xfffffff0

Position-Independent Position-Dependent
2-24

-2
25
26
26
-28

-31
-31
3
PowerPC Instruction Set Summary

PowerPC Instruction Set . 3
Condition Codes . 3-
Trap Operand . 3-
Operand Abbreviations . 3-
Special-Purpose Registers . 3
Time Base Registers . 3
Implementation-Specific and Optional Instructions . 3

Compilation Systems Volume 1 (Tools)

PowerPC Instruction Set Summary

, 604,
ther
docu-

sed on
d is
y to

s

m-
a

ty

sent

nt

the
s,
e

ss.

o

he

is
is
3
Chapter 3PowerPC Instruction Set Summary

3
3
3

This chapter summarizes the instruction sets of the PowerPC 601, 602, 603, 603e
604e, 620, and 75021 microprocessors. Instructions specific to or excluded from o
members of the PowerPC family are not documented here. These processors are
mented to assist porting between PowerPC implementations. These tables are ba
preliminary documentation from the chip manufacturers. The information containe
subject to change without notice. The following special notation conventions appl
tables in this chapter only.

In the PowerPC Mnemonic column:

Bold mnemonics Signify instructions defined for 64-bit implementation
only.

Italic mnemonics Signify extended mnemonics added by Concurrent Co
puter Corporation that are not present in IBM or Motorol
documentation.

Small mnemonics Signify IBM RS/6000 POWERTM instructions that are
provided on the PowerPC 601 systems for compatibili
purposes.

In all columns except the Syntax of Operands column, the following codes that repre
variations of the instructions appear:

[o] Cause the SO and OV bits to be set in the fixed-poi
exception register.

[.] For integer instructions, cause crf0 to be set as though
result were compared to zero; for floating-point instruction
cause crf1 to be set with the high order four bits of th
floating-point status and control register.

[l] Cause link register to be set to the return address.

[a] Cause the displacement to be taken as an absolute addre

[s] Cause the floating-point result to be rounded t
single-precision.

[u] Cause rA to be updated with the effective address of t
load or store.

In the Syntax of Operands column:

[operand] Signify an operand the assembler allows you to omit. Th
feature is not documented in the IBM documentation, but
a carry over from the Rios assembly language.
3-1

Compilation Systems Volume 1 (Tools)

C

al

r
re

me
In the Description column:

operanddefaults tovalue
Signifies the default value for an omitted operand.

(optional) Signifies instructions defined as optional in the PowerP
architecture definition.

(optional)(not on xxx)
Signifies implementations that do not include the option
instruction.

(xxx only) Signifies instructions that are specific to a particula
implementation but are not part of the PowerPC architectu
definition.

xxx[e] Signifies both xxx and xxxe.

In the RS/6000 POWER Mnemonic column:

" Means the RS/6000 POWER mnemonic is spelled the sa
as the PowerPC mnemonic.

PowerPC Instruction Set 3

Table 3-1. PowerPC Instruction Set

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic

abs[o][.] rT,rA Absolute Value(601 only) "

add[o][.] rT,rA,rB Add cax[o][.]

addc[o][.] rT,rA,rB Add Carrying a[o][.]

adde[o][.] rT,rA,rB Add Extended ae[o][.]

addi rT,rA,SI Add Immediate cal

addic[.] rT,rA,SI Add Immediate Carrying ai[.]

addis rT,rA,SI Add Immediate Shifted cau

addme[o][.] rT,rA Add to Minus One Extended ame[o][.]

addze[o][.] rT,rA Add to Zero Extended aze[o][.]

and[.] rA,rS,rB AND "

andc[.] rA,rS,rB AND with Complement "

andi. rA,rS,UI AND Immediate andil.
3-2

PowerPC Instruction Set Summary
andis. rA,rS,UI AND Immediate Shifted andiu.

b[l][a] LI Branch "

bc[l][a]* BO,BI,BD Branch Conditional "

bcctr[l]* BO,BI Branch Conditional to Count Register bcc[l]

bclr[l]* BO,BI Branch Conditional to Link Register bcr[l]

bctr[l] - Branch to Count Register
Same as: bcctr[l] 20,0

"

bdnz[l][a]* BD Branch Decrement Count Non-Zero
Same as: bc[l][a] 16,0,BD

bdn[l][a]

bdnzCC[l][a]* [crfA,]BD Branch Decrement Count Non-Zero on CC
crfA defaults to crf0
Same as: bc[l][a] BO,BI,BD

bdnCC

bdnzCClr[l]* [crfA] Branch Decrement Count Non-Zero on CC to LR
crfA defaults to crf0
Same as: bclr[l] BO,BI,BD

bdnzf[l][a]* BI,BD Branch Decrement Count Non-Zero False
Same as: bc[l][a] 0,BI,BD

bdnzflr[l]* BI Branch Decrement Count Non-Zero False to LR
Same as: bclr[l] 0,BI

bdnzlr[l]* - Branch Decrement Count Non-Zero to LR
Same as: bclr[l] 16,0

bdnr[l]

bdnzt[l][a]* BI,BD Branch Decrement Count Non-Zero True
Same as: bc[l][a] 8,BI,BD

bdnztlr[l]* BI Branch Decrement Count Non-Zero True to LR
Same as: bclr[l] 8,BI

bdz[l][a]* BD Branch Decrement Count Zero
Same as: bc[l][a] 18,0,BD

"

bdzCC[l][a]* [crfA,]BD Branch Decrement Count Zero on Condition Code
crfA defaults to crf0
Same as: bc[l][a] BO,BI,BD

bdzCC

bdzCClr[l]* [crfA] Branch Decrement Count Non-Zero on CC to LR
crfA defaults to crf0
Same as: bclr[l] BO,BI,BD

bdzf[l][a]* BI,BD Branch Decrement Count Zero False
Same as: bc[l][a] 2,BI,BD

bdzflr[l]* BI Branch Decrement Count Zero False to LR
Same as: bclr[l] 2,BI

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-3

Compilation Systems Volume 1 (Tools)
bdzlr[l]* - Branch Decrement Count Zero to LR
Same as: bclr[l] 18,0

bdzr[l]

bdzt[l][a]* BI,BD Branch Decrement Count Zero True
Same as: bc[l][a] 10,BI,BD

bdztlr[l]* BI Branch Decrement Count Zero True to LR
Same as: bclr[l] 10,BI

bf[l][a]* BI,BD Branch False
Same as: bc[l][a] 4,BI,BD

bbf[l][a]

bfctr[l]* BI Branch False to Count Register
Same as: bcctr[l] 4,BI

bbfc[l]

bflr[l]* BI Branch False to Link Register
Same as: bclr[l] 4,BI

bbfr[l]

blr[l] - Branch to Link Register
Same as: bclr[l] 20,0

br[l]

bt[l][a]* BI,BD Branch True
Same as: bc[l][a] 12,BI,BD

bbt[l][a]

btctr[l]* BI Branch True to Count Register
Same as: bcctr[l] 12,BI

bbtc[l]

btlr[l]* BI Branch True to Link Register
Same as: bclr[l] 12,BI

bbtr[l]

bCC[l][a]* [crfA,]BD Branch on Condition Code
crfA defaults to crf0
Same as: bc[l][a] BO,BI,BD

"

bCCctr[l]* [crfA] Branch on Condition Code to Count Register
crfA defaults to crf0
Same as: bcctr[l] BO,BI

bCCc[l]

bCClr[l]* [crfA] Branch on Condition Code to Link Register
crfA defaults to crf0
Same as: bclr[l] BO,BI

bCCr[l]

clcs rT,rA Cache Line Compute Size(601 only) "

clrldi[.] rA,rS,n Clear Left Doubleword Immediate
Same as: rldicl[.] rA,rS,0,n

clrlsdi[.] rA,rS,b,n Clear Left and Shift Doubleword Immediate
Same as rldicr[.] rA,rS,n,b-n

clrlslwi[.] rA,rS,b,n Clear Left and Shift Left Word Immediate

Same as: rlwinm[.] rA,rS,n,b-n,31-n

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic

n b 31≤ ≤
3-4

PowerPC Instruction Set Summary
clrlwi[.] rA,rS,n Clear Left Word Immediate

Same as: rlwinm[.] rA,rS,0,n,31

clrrdi[.] rA,rS,n Clear Right Doubleword Immediate
Same as: rldicl[.] rA,rS,0,63-n

clrrwi[.] rA,rS,n Clear Right Word Immediate

Same as: rlwinm[.] rA,rS,0,0,31-n

cmp [crfT,]L,rA,rB Compare
crfT defaults to crf0

cmpd [crfT,]rA,rB Compare Doubleword
crfT defaults to crf0
Same as: cmp crfT,1,rA,rB

cmpdi [crfT,]rA,SI Compare Doubleword Immediate
crfT defaults to crf0
Same as: cmpi crfT,1,rA,SI

cmpi [crfT,]L,rA,SI Compare Immediate
crfT defaults to crf0

cmpw [crfT,]rA,rB Compare Word
crfT defaults to crf0
Same as: cmp crfT,0,rA,rB

cmp

cmpwi [crfT,]rA,SI Compare Word Immediate
crfT defaults to crf0
Same as: cmpi crfT,0,rA,SI

cmpi

cmpl [crfT,]L,rA,rB Compare Logical
crfT defaults to crf0

cmpld [crfT,]rA,rB Compare Logical Doubleword
crfT defaults to ctf0
Same as: cmpl crfT,1,rA,rB

cmpldi [crfT,]rA,UI Compare Logical Doubleword Immediate
crfT defaults to crf0
Same as: cmpli crfT,1,rA,UI

cmpli [crfT,]L,rA,UI Compare Logical Immediate
crfT defaults to crf0

cmplw [crfT,]rA,rB Compare Logical Word
crfT defaults to crf0
Same as: cmpl crfT,0,rA,rB

cmpl

cmplwi [crfT,]rA,UI Compare Logical Word Immediate
crfT defaults to crf0
Same as: cmpli crfT,0,rA,UI

cmpli

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic

n 31<

n 31<
3-5

Compilation Systems Volume 1 (Tools)
cntlzd[.] rA,rS Count Leading Zeros Doubleword

cntlzw[.] rA,rS Count Leading Zeros Word cntlz[.]

crand BT,BA,BB Conditional Register AND "

crandc BT,BA,BB Conditional Register AND with Complement "

crclr BT Conditional Register Clear Bit
Same as: crxor BT,BT,BT

creqv BT,BA,BB Conditional Register Equivalent "

crmove BT,BA Conditional Register Move
Same as: cror BT,BA,BA

crnand BT,BA,BB Conditional Register NOT AND "

crnor BT,BA,BB Conditional Register NOT OR "

crnot BT,BA Conditional Register NOT
Same as: crnor BT,BA,BA

cror BT,BA,BB Conditional Register OR "

crorc BT,BA,BB Conditional Register OR with Complement "

crset BT Conditional Register Set Bit
Same as: creqv BT,BT,BT

crxor BT,BA,BB Conditional Register Exclusive OR "

dcbf rA,rB Data Cache Block Flush

dcbi rA,rB Data Cache Block Invalidate
Supervisor Level

dcbst rA,rB Data Cache Block Store

dcbt rA,rB Data Cache Block Touch

dcbtst rA,rB Data Cache Block Touch for Store

dcbz rA,rB Data Cache Block set to Zero dclz

div[o][.] rT,rA,rB Divide (601 only)

divd[o][.] rT,rA,rB Divide Doubleword

divdu[o][.] rT,rA,rB Divide Doubleword Unsigned

divs[o][.] rT,rA,rB Divide Short(601 only)

divw[o][.] rT,rA,rB Divide Word

divwu[o][.] rT,rA,rB Divide Word Unsigned

doz[o][.] rT,rA,rB Difference or Zero(601 only)

dozi rT,rA,SI Difference or Zero Immediate(601 only)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-6

PowerPC Instruction Set Summary
dsa - Disable Supervisor Access(602 only)

eciwx rT,rA,rB External Control In Word Indexed (optional)(not on
602)

ecowx rS,rA,rB External Control Out Word Indexed (optional)(not on
602)

eieio - Enforce In-order Execution of I/O

eqv[.] rA,rS,rB Equivalent

esa - Enable Supervisor Access(602 only)

extldi[.] rA,rS,n,b Extract and Left Justify Doubleword Immediate
Same as: rldicr[.] rA,rS,b,n-1

extlwi[.] rA,rS,n,b Extract and Left Justify Word Immediate
Same as: rlwinm[.] rA,rS,b,0,n-1

extrdi[.] rA,rS,n,b Extract and Right Justify Doubleword Immediate
Same as: rldicl[.] rA,rS,b+n,64-n

extrwi[.] rA,rS,n,b Extract and Right Justify Word Immediate
Same as: rlwinm[.] rA,rS,b+n,32-n,31

extsb[.] rA,rS Extend Sign Byte

extsh[.] rA,rS Extend Sign Halfword exts[.]

extsw[.] rA,rS Extend Sign Word

fabs[.] fT,fB Floating Absolute Value "

fadd[s][.] fT,fA,fB Floating Add(double precision not on 602) fa[.]

fcfid[.] fT,fB Floating Convert From Integer Doubleword

fcmpo [crfT,]fA,fB Floating Compare Ordered
crfT defaults to crf0

"

fcmpu [crfT,]fA,fB Floating Compare Unordered
crfT defaults to crf0

"

fctid[.] fT,fB Floating Convert to Integer Doubleword

fctidz[.] fT,fB Floating Convert to Integer Doubleword with round
toward Zero

fctiw[.] fT,fB Floating Convert to Integer Word

fctiwz[.] fT,fB Floating Convert to Integer Word with round toward
Zero

fdiv[s][.] fT,fA,fB Floating Divide(double precision not on 602) fd[.]

fmadd[s][.] fT,fA,fB,fC Floating Multiply-Add(double precision not on 602) fma[.]

fmr[.] fT,fB Floating Move Register "

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-7

Compilation Systems Volume 1 (Tools)
fmsub[s][.] fT,fA,fB,fC Floating Multiply-Subtract(double precision not on
602)

fms[.]

fmul[s][.] fT,fA,fC Floating Multiply (double precision not on 602) fm[.]

fnabs[.] fT,fB Floating Negate Absolute Value "

fneg[.] fT,fB Floating Negate "

fnmadd[s][.] fT,fA,fB,fC Floating Negate Multiply-Add(double precision not on
602)

fnma[.]

fnmsub[s][.] fT,fA,fB,fC Floating Negate Multiply-Subtract(double precision
not on 602)

fnms[.]

fres[.] fT,fB Floating Reciprocal Estimate Single (optional)(not on
601)

frsp[.] fT,fB Floating Round to Single-Precision(double precision
not on 602)

"

frsqrte[.] fT,fB Floating Reciprocal Square Root Estimate (optional)
(not on 601)

fsel[.] fT,fA,fC,fB Floating Select (optional)(not on 601)

fsqrt[s][.] fT,fB Floating Square Root (optional)(Not on 601, 602,
603[e], 604[e])

f sq r t [.]
(R S / 6 0 0 0
P O W ER 2
only)

fsub[s][.] fT,fA,fB Floating Subtract(double precision not on 602) fs[.]

icbi rA,rB Instruction Cache Block Invalidate

inslwi[.] rA,rS,n,b Insert from Left Word Immediate
Same as: rlwimi[.] rA,rS,32-b,b,b+n-1

insrdi[.] rA,rS,n,b Insert from Right Doubleword Immediate
Same as: rldimi[.] rA,rS,64-b-n,b

insrwi[.] rA,rS,n,b Insert from Right Word Immediate
Same as: rlwimi[.] rA,rS,32-b-n,b,b+n-1

isync - Instruction Synchronize ics

la rT,D(rA) Load Address
Same as: addi rT,rA,D

lax rT,rA,rB Load Address Indexed
Same as: add rT,rA,rB

lbz[u] rT,D(rA) Load Byte and Zero "

lbz[u]x rT,rA,rB Load Byte and Zero Indexed "

ld[u] rT,D(rA) Load Doubleword

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-8

PowerPC Instruction Set Summary
ld[u]x rT,rA,rB Load Doubleword Indexed

ldarx rT,rA,rB Load Doubleword And Reserve Indexed

lfd[u] fT,D(rA) Load Floating-Point Double(not on 602) "

lfd[u]x fT,rA,rB Load Floating-Point Double Indexed(not on 602) "

lfs[u] fT,D(rA) Load Floating-Point Single "

lfs[u]x fT,rA,rB Load Floating-Point Single Indexed "

lha[u] rT,D(rA) Load Halfword Algebraic "

lha[u]x rT,rA,rB Load Halfword Algebraic Indexed "

lhbrx rT,rA,rB Load Halfword Byte-Reverse Indexed "

lhz[u] rT,D(rA) Load Halfword and Zero "

lhz[u]x rT,rA,rB Load Halfword and Zero Indexed "

li rT,SI Load Immediate
Same as: addi rT,0,SI

lil

lis rT,SI Load Immediate Shifted
Same as: addis rT,0,SI

liu

lmw rT,D(rA) Load Multiple Word lm

lscbx[.] rT,rA,rB Load String And Compare Byte Indexed(601 only) "

lswi rT,rA,NB Load String Word Immediate(not on 602) lsi

lswx rT,rA,rB Load String Word Indexed(not on 602) lsx

lwa rT,D(rA) Load Word Algebraic

lwarx rT,rA,rB Load Word And Reserved Indexed

lwax rT,rA,rB Load Word Algebraic Indexed

lwbrx rT,rA,rB Load Word Byte-Reverse Indexed lbrx

lwz[u] rT,D(rA) Load Word and Zero l[u]

lwz[u]x rT,rA,rB Load Word and Zero Indexed l[u]x

maskg[.] rA,rS,rB Mask Generate(601 only) "

maskir[.] rA,rS,rB Mask Insert From Register(601 only) "

mcrf crfT,crfA Move Condition Register Field "

mcrfs crfT,BFA Move to Condition Register Field from FPSCR "

mcrxr crfT Move to Condition Register Field from XER "

mfasr rT Move From Address Space Register
Supervisor Level
Same as: mfspr rT,280

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-9

Compilation Systems Volume 1 (Tools)
mfbatl rT,n Move From Block Address Translation Lower n(601
only)
Supervisor Level
Same as: mfspr rT,529+2n

mfbatu rT,n Move From Block Address Translation Upper n(601
only)
Supervisor Level
Same as: mfspr rT,528+2n

mfbuscr rT Move From Bus Control & Status Register(620 only)
Supervisor Level
Same as: mfspr rT,1016

mfcr rT Move From Condition Register "

mfctr rT Move From Count Register
Same as: mfspr rT,9

"

mfdabr rT Move From Data Address Breakpoint Register(601,
604[e], 620 only)
Supervisor Level
Same as: mfspr rT,1013

mfdar rT Move From Data Address Register
Supervisor Level
Same as: mfspr rT,19

mfdbatl rT,n Move From Data Block Address Translation Lower n
(not on 601)
Supervisor Level
Same as: mfspr rT,537+2n

mfdbatu rT,n Move From Data Block Address Translation Upper n
(not on 601)
Supervisor Level
Same as: mfspr rT,536+2n

mfdcmp rT Move From Data TLB Compare(602, 603[e] only)
Supervisor Level
Same as: mfspr rT,977

mfdec rT Move From Decrementer
Supervisor Level
Same as: mfspr rT,22

"

mfdmiss rT Move From Data TLB Miss Address(602, 603[e] only)
Supervisor Level
Same as: mfspr,976

mfdsisr rT Move From Data Storage Interrupt Status Register
Supervisor Level
Same as: mfspr rT,18

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-10

PowerPC Instruction Set Summary
mfear rT Move From External Access Register (optional)(not on
602)
Supervisor Level
Same as: mfspr rT,282

mfesasrr rT Move From Enable Supervisor Access Save and Restore
Register(602 only)
Supervisor Level
Same as: mfspr rT,987

mffpecr rT Move From Floating-Point Exception Cause Register
(optional)(not on 601, 602, 603[e], 604[e])
Supervisor Level
Same as: mfspr rT,1022

mffs[.] fT Move From FPSCR "

mfhash1 rT Move From Primary Hash Address(602, 603[e] only)
Supervisor Level
Same as: mfspr rT, 978

mfhash2 rT Move From Secondary Hash Address(602, 603[e] only)
Supervisor Level
Same as: mfspr rT, 979

mfhid0 rT Move From Hardware Implementation Dependent 0
(601, 602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mfspr rT,1008

mfhid1 rT Move From Hardware Implementation Dependent 1
(601, 602, 603e, 604e only)
Supervisor Level
Same as: mfspr rT,1009

mfiabr rT Move From Instruction Address Breakpoint Register
(601, 602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mfspr rT,1010

mfibatl rT,n Move From Instruction Block Address Translation
Lower n(not on 601)
Supervisor Level
Same as: mfspr rT,529+2n

mfibatu rT,n Move From Instruction Block Address Translation
Upper n(not on 601)
Supervisor Level
Same as: mfspr rT,528+2n

mfibr rT Move From Interrupt Base Register(602 only)
Supervisor Level
Same as: mfspr rT,986

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-11

Compilation Systems Volume 1 (Tools)
mficmp rT Move From Instruction TLB Compare(602, 603[e]
only)
Supervisor Level
Same as: mfspr rT,981

mfictc rT Move From Instruction Cache-Throttling Control Regis-
ter (750 only)
Supervisor Level
Same as: mfspr rT,1019

mfimiss rT Move From Instruction TLB Miss Address(602, 603[e]
only)
Supervisor Level
Same as: mfspr rT,980

mfl2cr rT Move From L2 Control Register(620 only)
Supervisor Level
Same as: mfspr rT,1017

mfl2sr rT Move From L2 Status Register(620 only)
Supervisor Level
Same as: mfspr rT,1018

mflr rT Move From Link Register
Same as: mfspr rT,8

"

mflt rT Move From Integer Tag Register(602 only)
Supervisor Level
Same as: mfspr rT,1022

mfmmcr0 rT Move From Mask Register(604[e], 620 only)
Supervisor Level
Same as: mfspr rT,952

mfmmcr0rd rT Move From Mask Register/Read Only(620 only)
Supervisor Level
Same as: mfspr rT,779

mfmmcr1 rT Move From Mask Register 1(604e only)
Supervisor Level
Same as: mfspr rT,956

mfmq rT Move From Multiply-Quotient Register(601 only)
Same as: mfspr rT,0

"

mfmsr rT Move From Machine State Register
Supervisor Level

"

mfpir rT Move From Processor ID Register (optional)(601,
604[e], 620 only)
Supervisor Level
Same as: mfspr rT,1023

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-12

PowerPC Instruction Set Summary
mfpmc1 rT Move From Performance Monitor Counter 1(604[e],
620 only)
Supervisor Level
Same as: mfspr rT,953

mfpmc1rd rT Move From Performance Monitor Counter 1/Read Only
(620 only)
Same as: mfspr rT,771

mfpmc2 rT Move From Performance Monitor Counter 2(604[e],
620 only)
Supervisor Level
Same as: mfspr rT,954

mfpmc2rd rT Move From Performance Monitor Counter 2/Read Only
(620 only)
Same as: mfspr rT,772

mfpmc3 rT Move From Performance Monitor Counter 3(604e only)
Supervisor Level
Same as: mfspr rT,957

mfpmc4 rT Move From Performance Monitor Counter 4(604e only)
Supervisor Level
Same as: mfspr rT,958

mfpvr rT Move From Processor Version Register
Supervisor Level
Same as: mfspr rT,287

mfrpa rT Move From Required Physical Address(602, 603[e]
only)
Supervisor Level
Same as: mfspr rT,982

mfrtcl rT Move From Real Time Clock Lower(601 only)
Same as: mfspr rT,5

"

mfrtcu rT Move From Real Time Clock Upper(601 only)
Same as: mfspr rT,4

"

mfsda rT Move From Sampled Data Address Register(604[e], 620
only)
Supervisor Level
Same as: mfspr rT,959

mfsdr1 rT Move From Storage Description Register 1
Supervisor Level
Same as: mfspr rT,25

mfsebr rT Move From Special Execute Base Register(602 only)
Supervisor Level
Same as: mfspr rT,990

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-13

Compilation Systems Volume 1 (Tools)
mfser rT Move From Special Execute Register(602 only)
Supervisor Level
Same as: mfspr rT,991

mfsia rT Move From Sampled Instruction Address Register
(604[e], 620 only)
Supervisor Level
Same as: mfspr rT,955

mfsp rT Move From Single-Precision Tag Register(602 only)
Supervisor Level
Same as: mfspr rT,1021

mfspr rT,SPR Move From Special Purpose Register
Supervisor Level if SPR[0]==1

"

mfsprg rT,n Move From Special Purpose Register General n
Supervisor Level
Same as: mfspr rT,272+n

mfsr rT,SR Move From Segment Register
Supervisor Level

"

mfsrin rT,rB Move From Segment Register Indirect
Supervisor Level

mfsri

mfsrr0 rT Move From Save/Restore Register 0
Supervisor Level
Same as: mfspr rT,26

mfsrr1 rT Move From Save/Restore Register 1
Supervisor Level
Same as: mfspr rT,27

mftb rT,TBR Move From Time Base (lower)(not on 601)
Note that 64-bit implementations get all 64 bits with this
one instruction
Same as: mftb rT,268

mftbl rT Move From Time Base Lower(not on 601,64-bit)
Same as: mftb rT,268

mftbu rT Move From Time Base Upper(not on 601,64-bit)
Same as: mftb rT,269

mftcr rT Move From Time Control Register(602 only)
Supervisor Level
Same as: mfspr rT,984

mfthrm1 rT Move From Thermal 1(750 only)
Supervisor Level
Same as : mfspr rT, 1020

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-14

PowerPC Instruction Set Summary
mfthrm2 rT Move From Thermal 1(750 only)
Supervisor Level
Same as : mfspr rT,1021

mfthrm3 rT Move From Thermal 1(750 only)
Supervisor Level
Same as : mfspr rT,1022

mfummcr0 rT Move From User Mask Register 0(750 only)
Same as: mfspr rT,936

mfummcr1 rT Move From User Mask Register 1(750 only)
Same as: mfspr rT, 940

mfupmc1 rT Move From User Performance Monitor Counter 1(750
only)
Same as: mfspr rT, 937

mfupmc2 rT Move From User Performance Monitor Counter 2(750
only)
Same as: mfspr rT, 938

mfupmc3 rT Move From User Performance Monitor Counter 4(750
only)
Same as: mfspr rT, 941

mfupmc4 rT Move From User Performance Monitor Counter 4(750
only)
Same as: mfspr rT, 942

mfusia rT Move From User Sampled Instruction Address Register
(750 only)
Same as: mfspr rT, 939

mfxer rT Move From Fixed-Point Exception Register
Same as: mfspr rT,1

"

mr[.] rT,rA Move Register
Same as: or[.] rT,rA,rA

"

mtasr rS Move To Address Space Register
Supervisor Level
Same as: mtspr 280,rS

mtbatl n,rS Move To Block Address Translation Lower n(601 only)
Supervisor Level
Same as: mtspr 529+2n,rS

mtbatu n,rS Move To Block Address Translation Upper n(601 only)
Supervisor Level
Same as: mtspr 528+2n,rS

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-15

Compilation Systems Volume 1 (Tools)
mtbuscr rS Move To Bus Control & Status Register(620 only)
Supervisor Level
Same as: mtspr 1016,rS

mtcr rS Move To Condition Register
Same as: mtcrf 0xff,rS

mtcrf FXM,rS Move To Condition Register Fields "

mtctr rS Move To Count Register
Same as: mtspr 9,rS

"

mtdabr rS M o ve To D a ta A d d r e ss Br ea k p o i n t R eg i s te r
(601,604[e],620 only)
Supervisor Level
Same as: mtspr 1013,rS

mtdar rS Move To Data Address Register
Supervisor Level
Same as: mtspr 19,rS

mtdbatl n,rS Move To Data Block Address Translation Lower n(not
on 601)
Supervisor Level
Same as: mtspr 537+2n,rS

mtdbatu n,rS Move To Data Block Address Translation Upper n(not
on 601)
Supervisor Level
Same as: mtspr 536+2n,rS

mtdec rS Move To Decrementer
Supervisor Level
Same as: mtspr 22,rS

"

mtdsisr rS Move To Data Storage Interrupt Status Register
Supervisor Level
Same as: mtspr 18,rS

mtear rS Move To External Access Register (optional)
Supervisor Level
Same as: mtspr 282,rS

mtesasrr rS Move To Enable Supervisor Access Save and Restore
Register(602 only)
Supervisor Level
Same as: mtspr 987, rS

mtfpecr rS Move To Floating-Point Exception Cause Register
(optional)(not on 601, 602, 603[e], 604[e])
Supervisor Level
Same as: mtspr 1022,rS

mtfsb0[.] BT Move To FPSRC Bit a 0 "

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-16

PowerPC Instruction Set Summary
mtfsb1[.] BT Move To FPSRC Bit a 1 "

mtfsf[.] FLM,fB Move To FPSCR Fields "

mtfsfi[.] BFT,U Move To FPSCR Field Immediate "

mthid0 rS Move To Hardware Implementation Dependent 0(601,
602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mtspr 1008,rS

mthid1 rS Move to Hardware Implementation Dependent 1(601,
602, 603e, 604e only)
Supervisor Level
Same as: mtspr 1009,rS

mtiabr rS Move To Instruction Address Breakpoint Register(601,
602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mtspr 1010,rS

mtibatl n,rS Move To Instruction Block Address Translation Lower n
(not on 601)
Supervisor Level
Same as: mtspr 529+2n,rS

mtibatu n,rS Move to Instruction Block Address Translation Upper n
(not on 601)
Supervisor Level
Same as: mtspr 528+2n,rS

mtibr rS Move To Interrupt Base Register(602 only)
Supervisor Level
Same as: mtspr 986,rS

mtictc rS Move To Instruction Cache-Throttling Control Register
(750 only)

mtl2sr rS Move To L2 Status Register(620 only)
Supervisor Level
Same as: mtspr 1018,rS

mtlr rS Move To Link Register
Same as: mtspr 8,rS

"

mtlt rS Move To Integer Tag Register(602 only)
Supervisor Level
Same as: mfspr 1022,rS

mtmmcr0 rS Move To Mask Register 0(604[e], 620 only)
Supervisor Level
Same as: mtspr 952,rS

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-17

Compilation Systems Volume 1 (Tools)
mtmmcr1 rS Move To Mask Register 1(604e only)
Supervisor Level
Same as: mtspr 956,rS

mtmq rS Move To Multiply Quotient Register(601 only)
Same as: mtspr 0,rS

"

mtmsr rS Move To Machine State Register
Supervisor Level

"

mtpir rS Move To Processor ID Register (optional)(not on 602,
603[e])
Supervisor Level
Same as: mtspr 1023,rS

mtpmc1 rS Move To Performance Monitor Counter 1(604[e], 620
only)
Supervisor Level
Same as: mtspr 953,rS

mtpmc2 rS Move To Performance Monitor Counter 2(604[e], 620
only)
Supervisor Level
Same as: mtspr 954,rS

mtpmc3 rS Move To Performance Monitor Counter 3(604e only)
Supervisor Level
Same as: mtspr 957,rS

mtpmc4 rS Move To Performance Monitor Counter 4(604e only)
Supervisor Level
Same as: mtspr 958,rS

mtrpa rS Move To Required Physical Address(602, 603[e] only)
Supervisor Level
Same as:mtspr 982,rS

mtrtcl rS Move To Real Time Clock Lower(601 only)
Same as: mtspr 21,rS

"

mtrtcu rS Move To Real Time Clock Upper(601 only)
Same as: mtspr 20,rS

"

mtsda rS Move To Sampled Data Address Register(604[e], 620
only)
Supervisor Level
Same as: mtspr 959,rS

mtsdr1 rS Move to Storage Description Register 1
Supervisor Level
Same as: mtspr 25,rS

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-18

PowerPC Instruction Set Summary
mtsebr rS Move To Special Execute Base Register(602 only)
Supervisor Level
Same as: mtspr 990,rS

mtser rS Move To Special Execute Register(602 only)
Supervisor Level
Same as: mtspr 991,rS

mtsia rS Move To Sampled Instruction Address Register(604[e],
620 only)
Supervisor Level
Same as: mtspr 955,rS

mtsp rS Move To Single-Precision Tag Register(602 only)
Supervisor Level
Same as: mtspr 1021,rS

mtspr SPR,rS Move To Special Purpose Register
Supervisor Level if SPR[0]==1

"

mtsprg n,rS Move to Special Purpose Register General n
Supervisor Level
Same as: mtspr 272+n,rS

mtsr SR,rS Move To Segment Register
Supervisor Level

"

mtsrd SR,rS Move Doubleword To Segment Register
Supervisor Level

mtsrdin or
mtsrind

rS,rB Move Doubleword To Segment Register Indirect
Supervisor Level

mtsrin rS,rB Move To Segment Register Indirect
Supervisor Level

mtsri

mtsrr0 rS Move to Save/Restore Register 0
Supervisor Level
Same as: mtspr 26,rS

mtsrr1 rS Move to Save/Restore Register 1
Supervisor Level
Same as: mtspr 27,rS

mttb rS Move to Time Base (lower)(not on 601)
Supervisor Level
Same as: mtspr 284,rS

mttbl rS Move to Time Base Lower(not on 601,64-bit)
Supervisor Level
Same as: mtspr 284,rS

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-19

Compilation Systems Volume 1 (Tools)
mttbu rS Move to Time Base Upper(not on 601,64-bit)
Supervisor Level
Same as: mtspr 285,rS

mttcr rS Move To Time Control Register(602 only)
Supervisor Level
Same as: mtspr 984,rS

mtthrm1 rS Move To Thermal 1(750 only)
Supervisor Level
Same as: mtspr 1020,rS

mtthrm2 rS Move To Thermal 1(750 only)
Supervisor Level
Same as: mtspr 1021,rS

mtthrm3 rS Move To Thermal 1(750 only)
Supervisor Level
Same as: mtspr 1022,rS

mtxer rS Move To Fixed-Point Exception Register
Same as: mtspr 1,rS

mul[o][.] rT,rA,rB Multiply (601 only) "

mulhd[.] rT,rA,rB Multiply High Doubleword

mulhdu[.] rT,rA,rB Multiply High Doubleword Unsigned

mulhw[.] rT,rA,rB Multiply High Word

mulhwu[.] rT,rA,rB Multiply High Word Unsigned

mulld[o][.] rT,rA,rB Multiply Low Doubleword

mulli rT,rA,SI Multiply Low Immediate muli

mullw[o][.] rT,rA,rB Multiply Low Word muls[o][.]

nabs[o][.] rT,rA Negative Absolute Value(601 only) "

nand[.] rA,rS,rB Not AND "

neg[o][.] rT,rA Negate "

nop - No Operation
Same as: ori r0,r0,0

"

no-op - No Operation
Same as: ori r0,r0,0

nop

not[.] rA,rS NOT
Same as: nor[.] rA,rS,rS

nor[.] rA,rS,rB Not OR "

or[.] rA,rS,rB OR "

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-20

PowerPC Instruction Set Summary
orc[.] rA,rS,rB OR with Complement "

ori rA,rS,UI OR Immediate oril

oris rA,rS,UI OR Immediate Shifted oriu

rfi - Return From Interrupt
Supervisor Level

"

rldcl[.] rA,rS,rB,MB Rotate Left Doubleword then Clear Left

rldcr[.] rA,rS,rB,ME Rotate Left Doubleword then Clear Right

rldic[.] rA,rS,SH,MB Rotate Left Doubleword Immediate then Clear

rldicl[.] rA,rS,SH,MB Rotate Left Doubleword Immediate then Clear Left

rldicr[.] rA,rS,SH,ME Rotate Left Doubleword Immediate then Clear Right

rldimi[.] rA,rS,SH,MB Rotate Left Doubleword Immediate then Mask Insert

rlmi[.] rA,rS,rB,MB[,ME] Rotate Left Then Mask Insert(601 only) "

rlwimi[.] rA,rS,SH,MB[,ME] Rotate Left Word Immediate then Mask Insert
If ME is omitted, MB is the mask rather than the begin-
ning bit of the mask

rlimi[.]

rlwinm[.] rA,rS,SH,MB[,ME] Rotate Left Word Immediate then AND with Mask
If ME is omitted, MB is the mask rather than the
beginning bit of the mask

rlinm[.]

rlwnm[.] rA,rS,rB,MB[,ME] Rotate Left Word then AND with Mask
If ME is omitted, MB is the mask rather than the
beginning bit of the mask

rlnm[.]

rotld[.] rA,rS,rB Rotate Left Doubleword
Same as: rldcl rA,rS,rB,0

rotldi[.] rA,rS,n Rotate Left Doubleword Immediate
Same as rldicl rA,rS,n,0

rotlw[.] rA,rS,rB Rotate Left Word
Same as: rlwnm[.] rA,rS,rB,0,31

rotlwi[.] rA,rS,n Rotate Left Word Immediate
Same as: rlwinm[.] rA,rS,n,0,31

rotrdi[.] rA,rS,n Rotate Right Doubleword Immediate
Same as: rldicl rA,rS,64-n,0

rotrwi[.] rA,rS,n Rotate Right Word Immediate
Same as: rlwinm[.] rA,rS,32-n,0,31

rrib[.] rA,rS,rB Rotate Right And Insert Bit(601 only) "

sc - System Call svca

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-21

Compilation Systems Volume 1 (Tools)
slbia - SLB Invalidate All (optional)
Supervisor Level

slbie rB SLB Invalidate Entry (optional)
Supervisor Level

slbiex rB SLB Invalidate Entry by Index (optional)(not on 620)
Supervisor Level

sld[.] rA,rS,rB Shift Left Doubleword

sldi[.] rA,rS,n Shift Left Doubleword Immediate
Same as rldicl rS,rS,n,63-n

sle[.] rA,rS,rB Shift Left Extended(601 only) "

sleq[.] rA,rS,rB Shift Left Extended with MQ(601 only) "

sliq[.] rA,rS,SH Shift Left Immediate with MQ(601 only) "

slliq[.] rA,rS,SH Shift Left Long Immediate with MQ(601 only) "

sllq[.] rA,rS,rB Shift Left Long with MQ(601 only) "

slq[.] rA,rS,rB Shift Left with MQ (601 only) "

slw[.] rA,rS,rB Shift Left Word sl[.]

slwi[.] rA,rS,n Shift Left Word Immediate
Same as: rlwinm[.] rA,rS,n,0,31-n

sli[.]

srad[.] rA,rS,rB Shift Right Algebraic Doubleword

sradi[.] rA,rS,SH Shift Right Algebraic Doubleword Immediate

sraiq[.] rA,rS,SH Shift Right Algebraic Immediate With MQ(601 only) "

sraq[.] rA,rS,rB Shift Right Algebraic With MQ(601 only) "

sraw[.] rA,rS,rB Shift Right Algebraic Word sra[.]

srawi[.] rA,rS,SH Shift Right Algebraic Word Immediate srai[.]

srd[.] rA,rS,rB Shift Right Doubleword

srdi[.] rA,rS,n Shift Right Doubleword Immediate
Same as: rldicl rS,rS,64-n,n

sre[.] rA,rS,rB Shift Right Extended(601 only) "

srea[.] rA,rS,rB Shift Right Extended Algebraic(601 only) "

sreq[.] rA,rS,rB Shift Right Extended With MQ(601 only) "

sriq[.] rA,rS,SH Shift Right Immediate With MQ(601 only) "

srliq[.] rA,rS,SH Shift Right Long Immediate With MQ(601 only) "

srlq[.] rA,rS,rB Shift Right Long With MQ(601 only) "

srq[.] rA,rS,rB Shift Right With MQ(601 only) "

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-22

PowerPC Instruction Set Summary
srw[.] rA,rS,rB Shift Right Word sr[.]

srwi[.] rA,rS,n Shift Right Word Immediate
Same as: rlwinm rA,rS,32-n,n,31

sri[.]

stb[u] rS,D(rA) Store Byte "

stb[u]x rS,rA,rB Store Byte Indexed "

std[u] rS,D(rA) Store Doubleword

std[u]x rS,rA,rB Store Doubleword Indexed

stdcx. rS,rA,rB Store Doubleword Conditional Indexed

stfd[u] fS,D(rA) Store Floating-Point Double(not on 602) "

stfd[u]x fS,rA,rB Store Floating-Point Double Indexed(not on 602) "

stfiwx fS,rA,rB Store Floating-Point as Integer Word Indexed (Optional)
(not on 601)

stfs[u] fS,D(rA) Store Floating-Point Single "

stfs[u]x fS,rA,rB Store Floating-Point Single Indexed "

sth[u] rS,D(rA) Store Halfword "

sth[u]x rS,rA,rB Store Halfword Indexed "

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed "

stmw rS,D(rA) Store Multiple Word stm

stswi rS,rA,NB Store String Word Immediate(not on 602) stsi

stswx rS,rA,rB Store String Word Indexed(not on 602) stsx

stw[u] rS,D(rA) Store Word st[u]

stw[u]x rS,rA,rB Store Word Indexed st[u]x

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed stbrx

stwcx. rS,rA,rB Store Word Conditional Indexed

sub[o][.] rT,rA,rB Subtract
Same as: subf rT,rB,rA

subc[o][.] rT,rA,rB Subtract Carrying
Same as: subfc rT,rB,rA

subf[o][.] rT,rA,rB Subtract From

subfc[o][.] rT,rA,rB Subtract From Carrying sf[o][.]

subfe[o][.] rT,rA,rB Subtract From Extended sfe[o][.]

subfic rT,rA,SI Subtract From Immediate Carrying sfi

subfme[o][.] rT,rA Subtract From Minus One Extended sfme[o][.]

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-23

Compilation Systems Volume 1 (Tools)
subfze[o][.] rT,rA Subtract From Zero Extended sfze[o][.]

subi rT,rA,SI Subtract Immediate
Same as: addi rT,rA,-SI

subic[.] rT,rA,SI Subtract Immediate Carrying
Same as: addic[.] rT,rA,-SI

subis rT,rA,SI Subtract Immediate Shifted
Same as: addis rT,rA,-SI

sync - Synchronize dcs

td TO,rA,rB Trap Double

tdi TO,rA,SI Trap Double Immediate

tdTO rA,rB Trap Double If Condition
Same as: td TO,rA,rB

tdTOi rA,SI Trap Double Immediate If Condition
Same as: tdi TO,rA,SI

tlbia - TLB Invalidate All (optional) (not on 601, 602, 603[e],
604[e], 620)
Supervisor Level

tlbie rB TLB Invalidate Entry (optional)
Supervisor Level

tlbi

tlbiex rB TLB Invalidate Entry by Index (optional) (not on 601,
602, 603[e], 604[e], 620)
Supervisor Level

tlbld rB TLB Load Data Entry(602, 603[e] only)
Supervisor Level

tlbli rB TLB Load Instruction Entry(602, 603[e] only)
Supervisor Level

tlbsync - TLB Synchronize (optional)(not on 601)
Supervisor Level

trap - Trap Unconditionally
Same as: tw 31,0,0

tw TO,rA,rB Trap Word t

twi TO,rA,SI Trap Word Immediate ti

twTO rA,rB Trap Word If Condition
Same as: tw TO,rA,rB

tTO

twTOi rA,SI Trap Word Immediate If Condition
Same as: twi TO,rA,SI

tTOi

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-24

PowerPC Instruction Set Summary

ken
s the
ward
jumps
* A ‘+’ or ‘-’ can be appended to conditional branches to indicate predicted branch ta
or predicted branch not taken, respectively. A lower order bit of BO being zero mean
default prediction; a one means reverse the default prediction. The defaults are: for
branches are predicted not taken, backwards branches are predicted taken, and
through link or count register are predicted not taken.

Condition Codes 3

For example, the following two instructions are equivalent:

beq crf2,L1
bc 12,10,L1

xor[.] rA,rS,rB XOR "

xori rA,rS,UI XOR Immediate xoril

xoris rA,rS,UI XOR Immediate Shifted xoriu

Table 3-2. Condition Codes (CC)

CC Meaning BO BI CC Meaning BO BI

eq equal 8 bdnzCC
10 bdzCC
12 bCC

2+4*CRF ne not equal 0 bdnzCC
2 bdzCC
4 bCC

2+4*CRF

gt greater than See eq 1+4*CRF le less than or
equal

See ne 1+4*CRF

ng not greater
than

See ne 1+4*CRF

lt less than See eq 0+4*CRF ge greater than or
equal

See ne 0+4*CRF

nl not less than See ne 0+4*CRF

so summary
overflow

See eq 3+4*CRF ns not summary
overflow

See ne 3+4*CRF

un unordered See eq 3+4*CRF nu not unordered See ne 3+4*CRF

z zero See eq See eq nz not zero See ne See ne

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands Description
RS/6000
POWER

Mnemonic
3-25

Compilation Systems Volume 1 (Tools)
Trap Operand 3

For example, the following two instructions are equivalent:

tweq r3,r4
tw 4,r3,r4

Operand Abbreviations 3

In the following table, * means unsigned comparison.

Table 3-3. Trap Operand (TO)

TO Meaning Operand TO Meaning Operand

eq equal 4 ne not equal 24

ge greater than or equal 12 lge logical greater than or equal (*) 5

gt greater than 8 lgt logical greater than (*) 1

le less than or equal 20 lle logical less than or equal (*) 6

lt less than 16 llt logical less than (*) 2

ng not greater than 20 lng logical not greater than (*) 6

nl not less than 12 lnl logical not less than (*) 5

Table 3-4. Operand Abbreviations

Abbre-
viation

Description

BA bit number in CR: 0-31

BB bit number in CR: 0-31

BD 14-bit branch displacement: label

BFT FPSCR field number, target: 0-7

BFA FPSCR field number, source: 0-7

BI bit number in CR: 0-31

BO conditional branch options: 0-31

BT bit number in CR or FPSCR, target: 0-31

crfT condition register field target: crf0-crf7

crfA condition register field source: crf0-crf7

D 16-bit offset: -32768-32767
3-26

PowerPC Instruction Set Summary
FLM mask of FPSCR fields: 1-255

fA floating-point register: f0-f31

fB floating-point register: f0-f31

fC floating-point register: f0-f31

fS floating-point register: f0-f31

fT floating-point register, target: f0-f31

FXM mask of CR fields: 1-255

L precision of fixed-point compare: 0-1

LI 24-bit displacement: label

MB bit number of first bit of mask: 0-31

ME bit number of last bit of mask: 0-31

NB byte count: 0-31 (0 means 32)

rA general register (If italic, then rA=0 means zero): r0-r31

rB general register: r0-r31

rS general register: r0-r31

rT general register, target: r0-r31

SH shift amount: 0-31

SI signed 16-bit integer: -32768-32767

SPR special purpose register: 0-1023

SR segment register: 0-15

TBR time base register: 268-269

TO trap conditions: 0-31

U immediate value: 0-15

UI unsigned 16-bit integer: 0-65535

Table 3-4. Operand Abbreviations (Cont.)

Abbre-
viation

Description
3-27

Compilation Systems Volume 1 (Tools)
Special-Purpose Registers 3

Table 3-5. Special-Purpose Registers

Number Name Description

0 MQ Multiply-Quotient Register(601 only)

1 XER Fixed-Point Exception Register

4 RTCU Real Time Clock Upper (read only)(601 only)

5 RTCL Real Time Clock Lower (read only)(601 only)

6 DEC Decrementer(601 only)
This is identical to Special Register 22.

8 LR Link Register

9 CTR Count Register

18 DSISR Data Storage Interrupt Status Register

19 DAR Data Address Register

20 RTCU Real Time Clock Upper (write only)(601 only)

21 RTCL Real Time Clock Lower (write only)(601 only)

22 DEC Decrementer

25 SDR1 Storage Description Register 1

26 SRR0 Save/Restore Register 0

27 SRR1 Save/Restore Register 1

272 SPRG0 Special Purpose Register General 0

273 SPRG1 Special Purpose Register General 1

274 SPRG2 Special Purpose Register General 2

275 SPRG3 Special Purpose Register General 3

280 ASR Address Space Register(620 only)

282 EAR External Access Register (optional)(not on 602)

284 TBL Time Base Lower (dest only)(not on 601)

285 TBU Time Base Upper (dest only)(not on 601,64-bit)

287 PVR Processor Version Register (src only)

528 IBAT0U Instruction Block Address Translation 0 Upper

529 IBAT0L Instruction Block Address Translation 0 Lower

530 IBAT1U Instruction Block Address Translation 1 Upper

531 IBAT1L Instruction Block Address Translation 1 Lower

532 IBAT2U Instruction Block Address Translation 2 Upper

533 IBAT2L Instruction Block Address Translation 2 Lower
3-28

PowerPC Instruction Set Summary
534 IBAT3U Instruction Block Address Translation 3 Upper

535 IBAT3L Instruction Block Address Translation 3 Lower

536 DBAT0U Data Block Address Translation 0 Upper(not on 601)

537 DBAT0L Data Block Address Translation 0 Lower(not on 601)

538 DBAT1U Data Block Address Translation 1 Upper(not on 601)

539 DBAT1L Data Block Address Translation 1 Lower(not on 601)

540 DBAT2U Data Block Address Translation 2 Upper(not on 601)

541 DBAT2L Data Block Address Translation 2 Lower(not on 601)

542 DBAT3U Data Block Address Translation 3 Upper(not on 601)

543 DBAT3L Data Block Address Translation 4 Lower(not on 601)

771 PMC1/RD Performance Monitor Counter 1/Read Only(620 only)

772 PMC2/RD Performance Monitor Counter 2/Read Only(620 only)

779 MMCR0/RD Mask Register/Read Only(620 only)

936 UMMCR0 User Mask Register 0(750 only)

937 UPMC1 Performance Monitor Counter 1(750 only)

938 UPMC2 Performance Monitor Counter 2(750 only)

939 USIA Sampled Instruction Address Register(750 only)

940 UMMCR1 Mask Register 1(750 only)

941 UPMC3 Performance Monitor Counter 3(750 only)

942 UPMC4 Performance Monitor Counter 4(750 only)

952 MMCR0 Mask Register 0(604[e], 620, 750 only)

953 PMC1 Performance Monitor Counter 1(604[e], 620, 750 only)

954 PMC2 Performance Monitor Counter 2(604[e], 620, 750 only)

955 SIA Sampled Instruction Address Register(604[e], 620, 750
only)

956 MMCR1 Mask Register 1(604e, 750 only)

957 PMC3 Performance Monitor Counter 3(604e, 750 only)

958 PMC4 Performance Monitor Counter 4(604e, 750 only)

959 SDA Sampled Data Address Register(604[e], 620 only)

976 DMISS Data TLB Miss Address (src only)(602, 603[e] only)

977 DCMP Data TLB Compare (src only)(602, 603[e] only)

978 HASH1 Primary Hash Address (src only)(602, 603[e] only)

979 HASH2 Secondary Hash Address (src only)(602, 603[e] only)

Table 3-5. Special-Purpose Registers (Cont.)

Number Name Description
3-29

Compilation Systems Volume 1 (Tools)
980 IMISS Instruction TLB Miss Address (src only)(602, 603[e] only)

981 ICMP Instruction TLB Compare (src only)(602, 603[e] only)

982 RPA Required Physical Address(602, 603[e] only)

984 TCR Timer Control Register(602 only)

986 IBR Interrupt Base Register(602 only)

987 ESASRR ESA Save/Restore Register(602 only)

990 SEBR Special Execute Base Register(602 on ly)

991 SER Special Execute Register(602 only)

1008 HID0 Hardware Implementation Dependent 0(601, 603[e],
604[e], 620, 750 only)

1009 HID1 Hardware Implementation Dependent 1(601, 602, 603e,
604e, 750 only)

1010 IABR Instruction Address Breakpoint Register(601, 602, 603[e],
604[e], 620, 750 only)

1013 DABR Data Address Breakpoint Register(601, 604[e], 620, 750
only)

1016 BUSCSR Bus Control & Status Register(620 only)

1017 L2CR L2 Control Register(620, 750 only)

1018 L2SR L2 Status Register(620 only)

1019 ICTC Instruction Cache-Throttling Control Register(750 only)

1020 THRM1 Thermal 1(750 only)

1021 SP Single-Precision Tag Register(602 only)

1021 THRM2 Thermal 2(750 only)

1022 LT Integer Tag Register(602 only)

1022 THRM3 Thermal 3(750 only)

1022 FPECR Floating-Point Exception Cause Register (optional)(not on
601, 602, 603[e], 604[e])

1023 PIR Processor ID Register (optional)(not on 602, 603[e], 750)

Table 3-5. Special-Purpose Registers (Cont.)

Number Name Description
3-30

PowerPC Instruction Set Summary
Time Base Registers 3

Implementation-Specific and Optional Instructions 3

Table 3-6. Time Base Registers

Number Name Description

268 TBL Time Base(not on 601)

269 TBU Time Base Upper(not on 601,64-bit)

Table 3-7. Implementation-Specific and Optional Instructions

Mnemonic 601 602 603[e] 604[e] 620 750

abs[o][.] ✔

clcs ✔

clrlsdi[.] ✔

clrldi[.] ✔

clrrdi[.] ✔

cmpd ✔

cmpdi ✔

cmpld ✔

cmpldi ✔

cntlzd[.] ✔

div[o][.] ✔

divd[o][.] ✔

divdu[o][.] ✔

divs[o][.] ✔

doz[o][.] ✔

dozi ✔

dsa ✔

eciwx ✔ ✔ ✔ ✔ ✔

ecowx ✔ ✔ ✔ ✔ ✔

esa ✔

extldi[.] ✔

extrdi[.] ✔
3-31

Compilation Systems Volume 1 (Tools)
extsw[.] ✔

fadd[.] ✔ ✔ ✔ ✔ ✔

fcfid[.] ✔

fctid[.] ✔

fctidz[.] ✔

fdiv[.] ✔ ✔ ✔ ✔ ✔

fmadd[.] ✔ ✔ ✔ ✔ ✔

fmsub[.] ✔ ✔ ✔ ✔ ✔

fmul[.] ✔ ✔ ✔ ✔ ✔

fnmadd[.] ✔ ✔ ✔ ✔ ✔

fnmsub[.] ✔ ✔ ✔ ✔ ✔

fres[.] ✔ ✔ ✔ ✔ ✔

frsp[.] ✔ ✔ ✔ ✔ ✔

frsqrte[.] ✔ ✔ ✔ ✔ ✔

fsel[.] ✔ ✔ ✔ ✔ ✔

fsqrt[s][.] ✔

fsub[.] ✔ ✔ ✔ ✔ ✔

insrdi[.] ✔

ld[u] ✔

ld[u][x] ✔

ldarx ✔

lfd[u] ✔ ✔ ✔ ✔ ✔

lfd[u]x ✔ ✔ ✔ ✔ ✔

lscbx[.] ✔

lswi ✔ ✔ ✔ ✔ ✔

lswx ✔ ✔ ✔ ✔ ✔

lwa ✔

lwax ✔

maskg[.] ✔

maskir[.] ✔

mfasr ✔

mfbatl ✔

mfbatu ✔

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-32

PowerPC Instruction Set Summary
mfbuscr ✔

mfdabr ✔ ✔ ✔ ✔

mfdbatl ✔ ✔ ✔ ✔ ✔

mfdbatu ✔ ✔ ✔ ✔ ✔

mfdcmp ✔ ✔

mfdmiss ✔ ✔

mfear ✔ ✔ ✔ ✔ ✔

mfesasrr ✔

mffpecr ✔

mfhash1 ✔ ✔

mfhash2 ✔ ✔

mfhid0 ✔ ✔ ✔ ✔ ✔ ✔

mfhid1 ✔ ✔ 603e 604e ✔

mfiabr ✔ ✔ ✔ ✔ ✔ ✔

mfibatl ✔ ✔ ✔ ✔ ✔

mfibatu ✔ ✔ ✔ ✔ ✔

mfibr ✔

mficmp ✔ ✔

mfimiss ✔ ✔

mfl2cr ✔

mfl2sr ✔

mflt ✔

mfmmcr0 ✔ ✔ ✔

mfmmcr0rd ✔

mfmmcr1 604e ✔

mfmq ✔

mfpir ✔ ✔ ✔

mfpmc1 ✔ ✔ ✔

mfpmc1rd ✔

mfpmc2 ✔ ✔ ✔

mfpmc2rd ✔

mfpmc3 604e ✔

mfpmc4 604e ✔

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-33

Compilation Systems Volume 1 (Tools)
mfrpa ✔ ✔

mfrtcl ✔

mfrtcu ✔

mfsda ✔ ✔

mfsebr ✔

mfser ✔

mfsia ✔ ✔ ✔

mfsp ✔

mftb ✔ ✔ ✔ ✔ ✔

mftbl ✔ ✔ ✔ ✔

mftbu ✔ ✔ ✔ ✔

mftcr ✔

mtasr ✔

mtbatl ✔

mtbatu ✔

mtbuscr ✔

mtdabr ✔ ✔ ✔ ✔

mtdbatl ✔ ✔ ✔ ✔ ✔

mtdbatu ✔ ✔ ✔ ✔ ✔

mtear ✔ ✔ ✔ ✔ ✔

mtesasrr ✔

mtfpecr ✔

mthid0 ✔ ✔ ✔ ✔ ✔ ✔

mthid1 ✔ ✔ 603e 604e ✔

mtiabr ✔ ✔ ✔ ✔ ✔ ✔

mtibatl ✔ ✔ ✔ ✔ ✔

mtibatu ✔ ✔ ✔ ✔ ✔

mtibr ✔

mtl2cr ✔

mtl2sr ✔

mtlt ✔

mtmmcr0 ✔ ✔ ✔

mtmmcr1 604e ✔

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-34

PowerPC Instruction Set Summary
mtmq ✔

mtpir ✔ ✔ ✔

mtpmc1 ✔ ✔ ✔

mtpmc2 ✔ ✔ ✔

mtpmc3 604e ✔

mtpmc4 604e ✔

mtrpa ✔ ✔

mtrtcl ✔

mtrtcu ✔

mtsda ✔ ✔

mtsebr ✔

mtser ✔

mtsia ✔ ✔ ✔

mtsp ✔

mtsrd ✔

mt sr d i n o r
mtsrind

✔

mttb ✔ ✔ ✔ ✔ ✔

mttbl ✔ ✔ ✔ ✔

mttbu ✔ ✔ ✔ ✔

mttcr ✔

mul[o][.] ✔

mulhd[.] ✔

mulhdu[.] ✔

mulld[o][.] ✔

nabs[o][.] ✔

rldcl[.] ✔

rldcr[.] ✔

rldic[.] ✔

rldicl[.] ✔

rldicr[.] ✔

rldimi[.] ✔

rlmi[.] ✔

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-35

Compilation Systems Volume 1 (Tools)
rotld[.] ✔

rotldi[.] ✔

rotrdi[.] ✔

rrib[.] ✔

slbia ✔

slbie ✔

slbiex

sld[.] ✔

sldi[.] ✔

sle[.] ✔

sleq[.] ✔

sliq[.] ✔

slliq[.] ✔

sllq[.] ✔

slq[.] ✔

srad[.] ✔

sradi[.] ✔

sraiq[.] ✔

sraq[.] ✔

srd[.] ✔

srdi[.] ✔

sre[.] ✔

srea[.] ✔

sreq[.] ✔

sriq[.] ✔

srliq[.] ✔

srlq[.] ✔

srq[.] ✔

std[u] ✔

std[u]x ✔

stdcx. ✔

stfd[u] ✔ ✔ ✔ ✔ ✔

stfd[u]x ✔ ✔ ✔ ✔ ✔

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-36

PowerPC Instruction Set Summary

rPC
rence
and

sics

e

The Concurrent C compiler provides a number of intrinsic functions to access Powe
instructions that are not normally generated by C code. See the Concurrent C Refe
Manual for details on enabling intrinsics. The following table gives pseudo-prototypes
short descriptions of the provided intrinsics.

The user might infer the existence of some additional intrinsics. However, these intrin
are not guaranteed to behave as expected and should not be used.

The compiler wil l generate warnings for any intrinsic inconsistent with th
Qtarget= architectureoption.

stfiwx ✔ ✔ ✔ ✔ ✔

stswi ✔ ✔ ✔ ✔ ✔

stswx ✔ ✔ ✔ ✔ ✔

td ✔

tdi ✔

tdTO ✔

tdTOi ✔

tlbia

tlbie ✔ ✔ ✔ ✔ ✔ ✔

tlbiex

tlbld ✔ ✔

tlbli ✔ ✔

tlbsync ✔ ✔ ✔ ✔ ✔

Table 3-8. Compiler Intrinsics

Intrinsic Description

FRT=(double) __compose_double (
int uw,int lw)

Generate a double-precision
floating-point constant given
the bit patterns of the two
words

FRT=(float) __compose_float (int w) Generate a single-precision
floating-point constant given
the bit pattern of the word

__get_fpscr (double *RA) Do an mffs and store it in a
memory location pointed to by
RA without modifying any
floating point registers

RT=(unsigned int) __get_thread_reg () Get value of the thread register

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750
3-37

Compilation Systems Volume 1 (Tools)
RT=(unsigned int) __inst_clcs (int RA) clcs RA

RA=(int) __inst_cntlzw (int RS) cntlzw RA,RS

__inst_dcbf (void *RA,int RB) dcbf RA,RB

__inst_dcbi (void *RA,int RB) dcbi RA,RB

__inst_dcbst (void *RA,int RB) dcbst RA,RB

__inst_dcbt (void *RA,int RB) dcbt RA,RB

__inst_dcbtst (void *RA,int RB) dcbtst RA,RB

__inst_dcbz (void *RA,int RB) dcbz RA,RB

__inst_dsa (void) dsa

RT=(int) __inst_eciwx (int *RA,int RB) eciwx RT,RA,RB

__inst_ecowx (int RS,int *RA,int RB) ecowx RS,RA,RB

__inst_eieio (void) eieio

__inst_esa (void) esa

FRT=(float) __inst_fres (double FRB) fres FRT,FRB

FRT=(double) __inst_frsqrte (
double FRB)

frsqrte FRT,FRB

FRT=(double) __inst_fsel (double FRA,
double FRC, double FRB)

fsel FRT,FRA,FRC,FRB

__inst_icbi (void *RA,int RB) icbi RA,RB

__inst_isync (void) isync

RT=(short) __inst_lhbrx (short *RA,
int RB)

lhbrx RT,RA,RB

RT=(int) __inst_lwarx (int *RA,int RB) lwarx RT,RA,RB

RT=(int) __inst_lwbrx (int *RA,int RB) lwbrx RT,RA,RB

RT=(int) __inst_maskg (int RA,int RB) maskg RT,RA,RB

RT=(int) __inst_maskir (int RT,int RA,
int RB)

maskir RT,RA,RB

FRT=(double) __inst_mffs (void) mffs FRT

RT=(int) __inst_mfmsr (void) mfmsr RT

RT=(int) __inst_mfspr (int spr) mfspr RT,spr
s pr mu s t b e a n in teg e r
constant. Extended mnemonics
are generated for appropriate
register numbers.

RT=(int) __inst_mfsr (int sr) mfsr RT,sr
sr must be an integer constant

Table 3-8. Compiler Intrinsics (Cont.)

Intrinsic Description
3-38

PowerPC Instruction Set Summary
RT=(int) __inst_mfsrin (void *RB) mfsrin RT,RB

RT=(int) __inst_mftbl (void) mftb RT,268

RT=(int) __inst_mftbu (void) mftb RT,269

__inst_mtfsb0 (int bit) mtfsb0 bit
b i t mu s t b e a n in teg e r
constant

__inst_mtfsb1 (int bit) mtfsb1 bit
b i t mu s t b e a n in teg e r
constant

__inst_mtfsf (int mask,double FRB) mtfsf mask,FRB
ma sk mu st be an in t eg er
constant

__inst_mtfsfi (int n,unsigned u) mtfsfi n,u
n a n d u mu s t b e in teg e r
constants

__inst_mtmsr (int RS) mtmsr RS

__inst_mtspr (int spr,int RS) mtspr spr,RS
s pr mu s t b e a n in teg e r
constant. Extended mnemonics
are generated for appropriate
register numbers.

__inst_mtsr (int sr,int RS) mtsr sr,RS
sr must be an integer constant

__inst_mtsrin (int RS,void *RB) mtsrin RS,RB

__inst_nop () ori r0,r0,0

__inst_rfi () rfi

__inst_sc () sc

__inst_sthbrx (short RS,void *RA,
int RB)

sthbrx RS,RA,RB

__inst_stwbrx (int RS,void *RA,
int RB)

stwbrx RS,RA,RB

RT=(int) __inst_stwcx_ (int RS,
void *RA,int RB)

stwcx. RS,RA,RB
mfcr RT
rlwinm RT,RT,3,31,31

__inst_sync (void) sync

__inst_tlbia (void) tlbia

__inst_tlbie (void *RB) tlbie RB

__inst_tlbld (void *RB) tlbld RB

__inst_tlbli (void *RB) rlbli RB

Table 3-8. Compiler Intrinsics (Cont.)

Intrinsic Description
3-39

Compilation Systems Volume 1 (Tools)
__inst_tlbsync (void) tlbsync

__inst_tw (int to,int RA, int RB) tw to,RA,RB

__inst_twi (int to,int RA,int si) twi to,RA,si

RT=(unsigned int)
__ref_double_first_half (double FA)

Obtain the bit pattern of the
first word of a double-precision
f loa t ing-point value as an
integer

RT=(unsigned int)
__ref_double_second_half (double FA)

Obtain the bit pattern of the
s ec o n d w o r d o f a
d o u b l e - p r e c i s io n f l o a t -
ing-point value as an integer

RT=(unsigned int)
__ref_float_as_uint (float FA)

Obtain the bit pattern of a
single-precision floating-point
value as an integer

RT=(unsigned_int) __rot (
unsigned int RA,int RB)

Rotate RA by RB bits

__set_fpscr (double *RA) Do a mtfsf 0xff from a
memory location pointed to by
RA without modifying any
floating point registers.

__set_thread_reg (unsigned int RA) Set the thread register to a
value

RT=(int) abs (int RA) abs RT,RA

G en er at e a n f u nc t io n a l ly
equivalent code sequence on
implementations without an
abs instruction.

FT=(float or double)
fabs ((float or double)FB)

fabs FT,RB

FT=(double) pow(double FA, double FB) Generate code to raise to a
power

FT=(float) powf (float FA, float FB) Sngle-precision version ofpow

FT=(double) sqrt (double FB) fsqrt FT,FB

Generate function cal l for
implementations without an
fsqrt instruction.

FT=(single) sqrtf (single FB) fsqrts FT,FB

Generate function cal l for
implementations without an
fsqrts instruction.

Table 3-8. Compiler Intrinsics (Cont.)

Intrinsic Description
3-40

-1
-1
-8
-9
0
11
13
-15
6
7

17
18
2
3
4

24
25
7
8

28
9
0
1

34
35
4
Link Editor and Linking

Introduction . 4
Using the Link Editor . 4
Basics of Linking. 4

Default Arrangement . 4
Linking with Standard Libraries. 4-1
Creating and Linking with Archive and Shared Object Libraries 4-
Specifying Directories to Be Searched by the Link Editor 4-
Specifying Directories to Be Searched by the Dynamic Linker. 4
Checking for Run-Time Compatibility. 4-1
Dynamic Linking Programming Interface . 4-1
Implementation. 4-
Guidelines for Building Shared Objects. 4-
Multiply-Defined Symbols. 4-2
Mapfiles . 4-2

Using the Mapfile Option . 4-2
Mapfile Structure and Syntax . 4-

Segment Declarations . 4-
Mapping Directives . 4-2
Extended Mapping Directives . 4-2
Size-Symbol Declarations . 4-
Mapping Example . 4-2
Mapfile Option Defaults . 4-3
Internal Map Structure . 4-3
Error Messages. 4-

Quick-Reference Guide . 4-

Compilation Systems Volume 1 (Tools)

Link Editor and Linking

bject

ious
r a

is

lex-
itor
The

text
st

rs
tic
4
Chapter 4Link Editor and Linking

4
4
4

Introduction 4

Linking is the process of combining object files to produce an executable or another o
file. Linking may be done statically or dynamically.

The ld command is the static linker, often referred to as thelink editor. The inputs told
are relocatable object files produced by a compiler, by the assembler, or by a prev
invocation of the link editor. The link editor combines these object files to form eithe
relocatable or an absolute (in other words, executable) object file.

There is no system command which performs dynamic linking. Dynamic linking
performed by user code during the execution of a program.

The link editor supports a command language that allows you to control theld process
with great flexibility and precision. Most users, however, do not require the degree of f
ibility provided by the command language. In fact, it is usually best to allow the link ed
to produce its own layout and perform its own allocation of program resources.
detailed command language supports the ability to:

• Specify the memory configuration of the program

• Combine object file sections in particular fashions

• Bind the files to specific addresses or portions of memory

• Define or redefine global symbols at link edit time

Using the Link Editor 4

The link editor is invoked as follows.

ld [options] files

Files passed to the link editor are object files, libraries containing object files, or
source files containingld directives. The link editor uses the “magic number” (the fir
two bytes of the file) to determine the file type.

The following options are recognized byld .

-a In static mode only, produce an executable object file; give erro
for undefined references. This is the default behavior for sta
mode.-a may not be used with the-r option.
4-1

Compilation Systems Volume 1 (Tools)

do
red

ns
ed

he

le.

of

rd

ct’s

.

es,

ch
t

m

he

ject
is

put

e
e
he
m
n

-b In dynamic mode only, when creating an executable, do not
special processing for relocations that reference symbols in sha
objects. Without the-b option, the link editor will create special
position-independent relocations for references to functio
defined in shared objects and will arrange for data objects defin
in shared objects to be copied into the memory image of t
executable by the dynamic linker at run time. With the-b option,
the output code may be more efficient, but it will be less sharab

-d{y|n } When -dy , the default (ifSTATIC_LINK is not set) is specified,
use dynamic linking; when-dn is specified, use static linking.

-e epsym Set the default entry point address for the output file to be that
the symbolepsym.

-h name In dynamic mode only, when building a shared object, reco
namein the object’s dynamic section.namewill be recorded in
executables that are linked with this object rather than the obje
system file name. Accordingly,namewill be used by the dynamic
linker as the name of the shared object to search for at run time

-l x Search a librarylib x.so or lib x.a . lib x.so andlib x.a are
the conventional names for shared object and archive librari
respectively. In dynamic mode, unless the-Bstatic option is in
effect, ld searches each directory specified in the library sear
path for a filelib x.so or lib x.a . The directory search stops a
the first directory containing either.ld chooses the file ending in
.so if -l x expands to two files whose names are of the for
lib x.so and lib x.a . If no lib x.so is found, thenld accepts
lib x.a . In static mode, or when the-Bstatic option is in
effect, ld selects only the file ending in.a . A library is searched
when its name is encountered, so the placement of-l is
significant. By default, libraries are located in/lib , /usr/lib ,
and/usr/ccs/lib .

-m Produce a map or listing of the input/output sections on t
standard output.

-o outfile Produce an output object file by the nameoutfile. The name of the
default object file isa.out .

-r Combine relocatable object files to produce one relocatable ob
file. ld will not complain about unresolved references. Th
option cannot be used in dynamic mode or with-a . Relocation
entries are retained in the output file so that it can become an in
file in a subsequentld run.

-s Strip symbolic information from the output file. Debug and lin
information and their associated relocation entries will b
removed. Except for relocatable files or shared objects, t
symbol table and string table sections will also be removed fro
the output object file. Relocation entries will not be saved whe
this option is used.
4-2

Link Editor and Linking

ot

is

ded
is
d

tput.
ls
e
ot

of
so
t is
ed

a
e),

a
in
s
his

st

ng
nce
zy
or

ber
-t Turn off the warning about multiply-defined symbols that are n
the same size.

-u symname Entersymnameas an undefined symbol in the symbol table. Th
is useful for loading entirely from an archive library, since initially
the symbol table is empty and an unresolved reference is nee
to force the loading of the first routine. The placement of th
option on the command line is significant; it must be place
before the library that will define the symbol.

-v Same as-V.

-x Do not preserve local symbols with typeSTT_NOTYPE. This
option saves some space in the output file.

-x1 Produce a pseudo-cross reference listing on the standard ou
Each file and archive library is examined, and all external symbo
are listed along with the names of the object files which defin
and/or reference the symbols. An executable output file is n
produced.

-zdefs Force a fatal error if any undefined symbols remain at the end
the link. This is the default when building an executable. It is al
useful when building a shared object to assure that the objec
self-contained, that is, that all its symbolic references are resolv
internally.

-z{lowzeroes|lowzeros }
Support dereferencing of null pointers. The link editor creates
segment at addresses 0 (inclusive) through 0x1000 (exclusiv
consisting entirely of read-only zeroes.

-znodefs Allow undefined symbols. This is the default when building
shared object. It may be used when building an executable
dynamic mode and linking with a shared object that ha
unresolved references in routines not used by that executable. T
option should be used with caution.

-ztext In dynamic mode only, force a fatal error if any relocations again
non-writable, allocatable sections remain.

-Bbind_now In dynamic mode only, this option adds aDT_BIND_NOWentry
to thedynamicsection of the output file. This entry instructs the
dynamic linker to process all relocations for the object containi
this entry before transferring control to the program. The prese
of DT_BIND_NOWtakes precedence over a directive to use la
binding for this object when specified through the environment
via dlopen .

-B{dynamic|static }
Options governing library inclusion.-Bdynamic is valid in
dynamic mode only. These options may be specified any num
of times on the command line as toggles: if the-Bstatic option
is given, no shared objects will be accepted until-Bdynamic is
seen. See also the-l option.
4-3

Compilation Systems Volume 1 (Tools)

es

ject
le
the
ior

s
e

able

e

re

ose
with

s
this
er

d

es

ol
n.

to

re
at
-Bexport[= list|: filename]

-Bhide[= list|: filename]
list is a comma-separated sequence of symbol names.filename
contains a list of symbol names, one symbol name per line. Lin
beginning with a # character and blank lines are ignored.

Normally, when building a shared object,ld makes all global and
weak names defined in the shared object visible outside the ob
itself (exported). When building an executable, it makes visib
only those names used by the shared objects with which
executable is linked. All other names are hidden. This behav
can be modified with-Bhide and-Bexport .

When building a shared object,-Bexport is the default. All
global and weak definitions are exported.-Bexport with a set of
symbol names instructsld to hide all global and weak definitions,
except those in the specified set.-Bhide means to hide all global
and weak definitions.-Bhide with a set of symbol names mean
to export all global and weak definitions, except for those in th
set of names.

When building an executable,-Bhide is the default. Only those
names referenced by the shared objects with which the execut
is linked are exported.-Bhide with a set of symbol names
instructsld to export all global and weak definitions, except thos
in the specified set. Names in a-Bhide list that are referenced by
the shared objects with which the executable is linked, a
ignored, that is, they are exported.-Bexpor t means to export all
global and weak definitions.-Bexport with a set of symbol
names means to hide all global and weak definitions except th
in the set of names and those referenced by the shared objects
which the executable is linked.

If -Bhide and -Bexport are used together, one of the option
must contain a set of symbol names and the other must not. In
case, the option without the symbol set is ignored. Neith
-Bhide nor -Bexport may be used with-dn .

-Bsortbss All uninitialized global variables within a module will be assigne
contiguous addresses.

-Bsymbolic[= list|: filename]
list is a comma-separated sequence of symbol names.filename
contains a list of symbol names, one symbol name per line. Lin
beginning with a # character and blank lines are ignored.

When building a shared object, if a definition for a named symb
exists, bind all references to the named symbol to that definitio
If no list of symbols is provided, bind all references to symbols
definitions that are available;ld will issue warnings for undefined
symbols unless-z defs overrides.

Normally, references to global symbols within shared objects a
not bound until run time, even if definitions are available, so th
4-4

Link Editor and Linking

red

ed

in
he

r

he

a

he

or

is

he

ing
er-
e

definitions of the same symbol in an executable or other sha
objects can override the object’s own definition.

-G In dynamic mode only, produce a shared object. Undefin
symbols are allowed unless the-z defs option is specified.

-I name When building an executable, usenameas the path name of the
interpreter to be written into the program header. The default
static mode is no interpreter; in dynamic mode, the default is t
name of the dynamic linker,/usr/lib/libc.so.1 . Either
case may be overridden by-I . exec will load this interpreter
when it loadsa.out and will pass control to the interpreter rathe
than toa.out directly.

-L path Add path to the library search directories.ld searches for libraries
first in any directories specified with-L options, then in the
standard directories. This option is effective only if it precedes t
-l option on the command line.

-M mapfile Read mapfile as a text file of directives told . Because these
directives change the shape of the output file created byld , use of
this option is strongly discouraged.

-O args Invoke theanalyze(1) tool to perform a static performance
analysis, to produce an optimized program, or to produce
profiling program. Ifargs begins with a hyphen, the system
analyze(1) tool is used, andargs is passed to it. Ifargs does
not begin with a hyphen, then the first field is considered to be t
name of an alternativeanalyze(1) tool, and the remainder of
args is passed to it.

-QAda Issue a warning if a user object file contains a global definition
reference oferrno . Also, set the EF_PPC_ADAflag in the
program’s ELF header.

-QABI Suppress the output of pointer arrays to tdesc information.

-Qanalyze_patch_size= size
Set the amount of patch space reserved foranalyze(1)
profiling to size. By default, the reserved size of the patch space
ten times the size of the program’s.text section. This option is
used to change the amount reserved.

-QBSS Force undefined externals with a positive size into the.bss
section, even when the-r option is used.

-Q{ dynamic|static }
Same as-B { dynamic|static }.

-Qfpcr= value Set appropriate fields in the vendor section so that t
floating-point control register (fpscr) is initialized, on program
start -up, tovalue. By defaul t, thefpscr spec ifies the
round-to-nearest floating-point rounding mode and the enabl
of the floating-point reserved operand, divide-by-zero, and ov
flow exceptions. Use of this option effects an override of th
default setting offpscr at program start up.
4-5

Compilation Systems Volume 1 (Tools)

ine
te

d

ed
be

ly.

ilt
ce,

-

c

e
he
ch

es

fy
hive
e.
ve

e

th

es
for
ext

am
p to

ith
-Qfpexcept =value Set appropriate fields in the vendor section so that the mach
state register (msr) is initialized, on program start-up, to indica
the kind of floating-point exceptions that can be taken.valuecan
be imprecise (floating-point exceptions are imprecise an
non-recoverable),precise (floating-point exceptions are pre-
cise and recoverable), ordisabled (floating-point exceptions do
not occur). The default mode isimprecise.

If any input module contains floating-point code that is execut
speculatively (see chapter 20), the executable program should
link edited with the-Qfpexcept=disabled option. Without
this option, floating-point exceptions could be raised erroneous

-QG Same as-G .

-QGOTP_TO_GOT Implicitly convert GOTP relocation to GOT relocation during link
editing. This permits the static linking of files that have been bu
to be link edited into shared objects. For improved performan
however, these object files should be rebuilt without the com
pile-time -ZPIC option

-QLD_RUN_PATH=file
Accept fromfile a list of library search directories for the dynami
linker. The list is specified as it would be for theLD_RUN_PATH
environment var iable. This option overrides use of th
environment variable and is useful when the list is too long for t
environment variable. See the discussion of library sear
directories later in this section.

-Qload= file Accept a list of input object files, shared objects, and archiv
from file. This is useful when the list would be too long for theld
invocation line.

-Qmult_archive Perform multiple passes over the list of archive libraries to satis
unresolved symbol references. Each pass examines the arc
libraries in the order in which they appear on the invocation lin
Without this option, only one pass is made over the list of archi
libraries.

-Qno_vendor_reloc
Do not output relocation information in the vendor section of th
object file for use by theanalyze(1) tool. By default, this
relocation information is output. This option cannot be used wi
the-O option.

-Qnotdesc Suppress the production of tdesc information.

-Qsearch_order When performing multiple passes over the list of archive librari
to satisfy unresolved symbol references, do not search
unresolved references detected in the current pass until the n
pass. This option implies the-Qmult_archive option.

-Qsmall_memory By default, the link editor allocates the data space of the progr
beginning at address segment 3, allowing programs to use u
several address segments of memory for their data space. W
4-6

Link Editor and Linking

ess

in
nse
it
rd
is
are

t
o
re

or
the

ill

ic

red

o
sed
this option, the link editor allocates the data space only in addr
segment 2.

-Qstandard_fortran_common
By default, the link editor checks for and properly handles certa
nonstandard Fortran common block constructs, but at the expe
of increased link time. Use of this option reduces link time, but
presumes that all Fortran common blocks are strictly standa
conforming. Unexpected results could be obtained if this option
used and nonstandard Fortran common block extensions
present.

-Qsymbolic Same as-Bsymbolic .

-Qwarn_mult_init Warns if a Fortran common block is multiply initialized. If a
particular byte in the common block is multiply initialized, the las
initialized value of the byte is selected. Without this option, n
warning is produced, and all initialization values of the byte a
OR’ed together.

-Q{ y|n } Same as-d { y |n}.

-V Output a message giving information about the version ofld
being used.

-X Do not look in alternate search paths for libraries. An err
message will be generated if the libraries cannot be located in
specified search path(s).

-YP , dirlist Change the default directories used for finding libraries.dirlist is a
colon-separated path list.

The environment variableLD_LIBRARY_PATHmay be used to
specify library search directories. In the most general case, it w
contain two directory lists separated by a semicolon:

dirlist1;dirlist2

If ld is called with any number of occurrences of-L , as in

ld ... -L path1 ... -L pathn ...

then the search path ordering is

dirlist1 path1 . . . pathn dirlist2 LIBPATH

LD_LIBRARY_PATHis also used to specify library search directories to the dynam
linker at run time. That is, ifLD_LIBRARY_PATHexists in the environment, the dynamic
linker will search the directories named in it, before its default directory, for sha
objects to be linked with the program at execution.

The environment variableLD_RUN_PATH, containing a directory list, may also be used t
specify library search directories to the dynamic linker. If present and not null, it is pas
to the dynamic linker byld via data stored in the output object file.
4-7

Compilation Systems Volume 1 (Tools)

is
or a
al

hat can
y is
me
st
h it

our
the

less

rch
s of
r a
ble
ch

pal
ch is
Basics of Linking 4

If any argument told is a library, it is searched exactly once (by default) at the point it
encountered in the argument list. The library may be either a relocatable archive
shared object. For anarchive library, only those routines defining an unresolved extern
reference are loaded. The archive library symbol table [seear(4)] is searched
sequentially with as many passes as are necessary to resolve external references t
be satisfied by library members. Thus, the ordering of members in the librar
functionally unimportant, unless there exist multiple library members defining the sa
external symbol. Ashared objectconsists of a single entity all of whose references mu
be resolved within the executable being built or within other shared objects with whic
is linked.

NOTE

Because we try to cover the widest possible audience in this
section, it may provide more background than many users will
need to link their programs with a C language library. If you are
interested only in the how-to, and are comfortable with a purely
formal presentation that scants motivation and background alike,
you may want to skip to “Quick-Reference Guide” on page 4-35.

Link editing refers to the process in which a symbol referenced in one module of y
program is connected with its definition in another--for example, the process by which
symbolprintf() in an example source filehello.c is connected with its definition in
the standard C library.

The link editor uses two models of linking, static or dynamic, as governed by the-d
option or by the presence of theSTATIC_LINK environment variable. If this environment
variable is not set, then dynamic linking is the model used, unless overridden by the-dn
option. If this environment variable is set, then static linking is the model used, un
overridden by the-dy option.

Whichever link editing model you choose, static or dynamic, the link editor will sea
each module of your program, including any libraries you have used, for definition
undefined external symbols in the other modules. If it does not find a definition fo
symbol, the link editor will report an error by default, and fail to create an executa
program. (Multiply-defined symbols are treated differently, however, under ea
approach. For details, see “Multiply-Defined Symbols” on page 4-22.) The princi
difference between static and dynamic linking lies in what happens after this sear
completed:

• Under static linking, copies of the archive library object files that satisfy
still unresolved external references in your program are incorporated in
your executable at link time. External references in your program are
connected with their definitions--assigned addresses in memory--when the
executable is created.

• Under dynamic linking, the contents of a shared object are mapped into the
virtual address space of your process at run time. External references in
4-8

Link Editor and Linking

ult
ries
the
s for
why

with
object

d with

rary
ble
alled
ur
ave

m,
the
n
man

S man
your program are connected with their definitions when the program is
executed.

In this section, we’ll examine the link editing process in detail. We’ll start with the defa
arrangement, and with the basics of linking your program with the standard libra
supplied by the C compilation system. Later, we’ll discuss the implementation of
dynamic linking mechanism, and look at some coding guidelines and maintenance tip
shared library development. Throughout the discussion, we’ll consider the reasons
you might prefer dynamic to static linking. These are, briefly:

• Dynamically linked programs save disk storage and system process mem-
ory by sharing library code at run time.

• Dynamically linked code can be fixed or enhanced without having to relink
applications that depend on it.

Default Arrangement 4

We stated earlier that the defaultcc command line

cc file1.c file2.c file3.c

would create object files corresponding to each of your source files, and link them
each other to create an executable program. These object files are called relocatable
files because they contain references to symbols that have not yet been connecte
their definitions--have not yet been assigned addresses in memory.

We also suggested that this command line would arrange for the standard C lib
functions that you have called in your program to be linked with your executa
automatically. The standard C library is, in this default arrangement, a shared object c
libc.so , which means that the functions you have called will be linked with yo
program at run time. (There are some exceptions. A number of C library functions h
been left out oflibc.so by design. If you use one of these functions in your progra
the code for the function will be incorporated in your executable at link time. That is,
function will still be automatically linked with your program, only statically rather tha
dynamically.) The standard C library contains the system calls described in Section 2
pages, and the C language functions described in Section 3, Subsections 3C and 3
pages.

Now let’s look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefixlib and the suffix.so ; archives, or statically
linked libraries, are designated by the prefixlib and the suffix.a.
libc.so , then, is the shared object version of the standard C library;
libc.a is the archive version.

2. These conventions are recognized, in turn, by the-l option to thecc
command. That is,

cc file1.c file2.c file3.c -l x

directs the link editor to search the shared objectlib x.so or the archive library
lib x.a . Thecc command automatically passes-lc to the link editor.
4-9

Compilation Systems Volume 1 (Tools)

ow.

C

are
n the
of

ith
jects

le
to be

you

d C
th
ur

ed
ual
that

e
s in
hared

in

ally,
3. By default, the link editor chooses the shared object implementation of a
library, lib x.so , in preference to the archive library implementation,
lib x.a , in the same directory.

4. By default, the link editor searches for libraries in the standard places on
the system,/usr/lib and/lib , in that order.

Adding it up, we can say, more exactly than before, that the defaultcc command line will
direct the link editor to search/usr/lib/libc.so rather than its archive library
counterpart. We’ll look at each of the items that make up the default in more detail bel

libc.so is, with one exception, the only shared object library supplied by the
compilation system. (The exception,libdl.so , is used with the programming interface
to the dynamic linking mechanism described later. Other shared object libraries
supplied with the operating system, and usually are kept in the standard places.) I
next subsection, we’ll show you how to link your program with the archive version
libc to avoid the dynamic linking default. Of course, you can link your program w
libraries that perform other tasks as well. Finally, you can create your own shared ob
and archive libraries. We’ll show you the mechanics of doing that below.

The default arrangement, then, is this: thecc command creates and then links relocatab
object files to generate an executable program, then arranges for the executable
linked with the shared C library at run time. If you are satisfied with this arrangement,
need make no other provision for link editing on thecc command line.

Linking with Standard Libraries 4

libc.so is a single object file that contains the code for every function in the share
library. When you call a function in that library, and dynamically link your program wi
it, the entire contents oflibc.so are mapped into the virtual address space of yo
process at run time.

Archive libraries are configured differently. Each function, or small group of relat
functions (typically, the related functions that you will sometimes find on the same man
page), is stored in its own object file. These object files are then collected in archives
are searched by the link editor when you specify the necessary options on thcc
command line. The link editor makes available to your program only the object file
these archives that contain a function you have called in your program. You create a s
object library by specifying the-Zlink=so option to the compiler:

As noted,libc.a is the archive version of the standard C library. Thecc command will
automatically direct the link editor to searchlibc.a if you turn off the dynamic linking
default with the-Zlink=static option:

cc -Zlink=static file1.c file2.c file3.c

Copies of the object files inlibc.a that resolve still unresolved external references
your program will be incorporated in your executable at link time.

If you need to point the link editor to standard libraries that are not searched automatic
you specify the-l option explicitly on thecc command line. As we have seen,-l x directs
the link editor to search the shared objectlib x.so or the archive librarylib x.a . So if
4-10

Link Editor and Linking

n

ct
mic

h

olve

bjects
basis
e, if
n if

k

at
d not

the
your program calls the functionsin() , for example, in the standard math librarylibm ,
the command

cc file1.c file2.c file3.c -lm

will direct the link editor to search for/usr/lib/libm.so , and if it does not find it,
/lib/libm.a , to satisfy references tosin() in your program. Because the compilatio
system supplies shared object versions only oflibc and libdl , the above command
will direct the link editor to searchlibm.a unless you have installed a shared obje
version oflibm in the standard place. Note that because we did not turn off the dyna
linking default with the-Zlink=static option, the above command will direct the link
editor to searchlibc.so rather thanlibc.a . You would use the same command wit
the -Zlink=static option to link your program statically withlibm.a andlibc.a .
The contents oflibm are described in Chapter 16 (“Run-Time Libraries”).

Note, finally, that because the link editor searches an archive library only to res
undefined external references it has previously seen, the placement of the-l option on the
cc command line is important. That is, the command

cc -Zlink=static file1.c -lm file2.c file3.c

will direct the link editor to searchlibm.a only for definitions that satisfy still
unresolved external references infile1.c . As a rule, then, it’s best to put-l at the end
of the command line.

Creating and Linking with Archive and Shared Object Libraries 4

In this subsection we describe the basic mechanisms by which archives and shared o
are built. The idea is to give you some sense of where these libraries come from, as a
for understanding how they are implemented and linked with your programs. Of cours
you are developing a library, you will need to know the material in this subsection. Eve
you are not, it should prove a useful introduction to the subsequent discussion.

The following commands

cc -c function1.c function2.c function3.c
ar -r libfoo.a function1.o function2.o function3.o

will create an archive library,libfoo.a , that consists of the named object files. (Chec
the ar(1) manual page for details of usage.) When you use the-l option to link your
program withlibfoo.a

cc -L dir file1.c file2.c file3.c -lfoo

the link editor will incorporate in your executable only the object files in this archive th
contain a function you have called in your program. Note, again, that because we di
turn off the dynamic linking default with the-Zlink=static option, the above
command will direct the link editor to searchlibc.so as well aslibfoo.a . We’ll look
at the directory search option--represented in the above command line by-L dir--in the
next subsection. For now it’s enough to note that you use it to point the link editor to
directory in which your library is stored.
4-11

Compilation Systems Volume 1 (Tools)

sion
at

mall
nent

s not
ble
ason,

it. In
have
e with

ic
nal

er the
g

s

our

in
As mentioned earlier, you create a shared object library by specifying the-Zlink=so
option to the compiler:

cc -Zlink=so -o libfoo.so function1.o function2.o \
function3.o

That command will create the shared objectlibfoo.so consisting of the object code for
the functions contained in the named files. (We are deferring for the moment a discus
of a compiler option,-ZPIC , that you should use in creating a shared object. For th
discussion, see “Implementation” on page 4-17.) When you use the-l option to link your
program withlibfoo.so

cc -L dir file1.c file2.c file3.c -lfoo

the link editor will record in your executable the name of the shared object and a s
amount of bookkeeping information for use by the system at run time. Another compo
of the system--the dynamic linker--does the actual linking.

A number of things are worth pointing out here. First, because shared object code i
copied into your executable object file at link time, a dynamically linked executa
normally will use less disk space than a statically linked executable. For the same re
shared object code can be changed without breaking executables that depend on
other words, even if the shared C library were enhanced in the future, you would not
to relink programs that depended on it (as long as the enhancements were compatibl
your code; see “Checking for Run-Time Compatibility” on page 4-16). The dynam
linker would simply use the definitions in the new version of the library to resolve exter
references in your executables at run time.

Second, we specified the name of the shared object that we wanted to be created und
-Zlink=so option. Of course, you don’t have to do it the way we did. The followin
command, for example, will create a shared object calleda.out :

cc -Zlink=so function1.o function2.o function3.o

You can then rename the shared object:

mv a.out libfoo.so

As noted, you use thelib prefix and the.so suffix because they are convention
recognized by-l , just as arelib and.a for archive libraries. So while it is legitimate to
create a shared object that does not follow the naming convention, and to link it with y
program

cc -Zlink=so -o sharedob function1.o function2.o \
function3.o

cc file1.c file2.c file3.c / path/sharedob

we recommend against it. Not only will you have to enter a path name on thecc command
line every time you usesharedob in a program, that path name will be hard-coded
your executables. The reason why you want to avoid this is related to our next point.

We said that the command line

cc -L dir file1.c file2.c file3.c -lfoo
4-12

Link Editor and Linking

with
.

at
the
to

mic
of a

t to a
ou

a

o

red
le
way

es

ctory

t and

t

would direct the link editor to record in your executable the name of the shared object
which it is to be linked at run time. Note: thenameof the shared object, not its path name
What this means is that when you use the-l option to link your program with a shared
object library, not only must the link editor be told which directory to search for th
library, so must the dynamic linker (unless the directory is the standard place, which
dynamic linker searches by default). We’ll show you how to point the dynamic linker
directories in the subsection “Specifying Directories to Be Searched by the Dyna
Linker” on page 4-15. What we want to stress here is that as long as the path name
shared object is not hard-coded in your executable, you can move the shared objec
different directory without breaking your program. That’s the main reason why y
should avoid using path names of shared objects on thecc command line. Those path
names will be hard-coded in your executable. They won’t be if you use-l .

Finally, thecc -Zlink=so command will not only create a shared object, it will accept
shared object or archive library as input. In other words, when you createlibfoo.so ,
you can link it with a library you have already created, say,libsharedob.so :

cc -Zlink=so -o libfoo.so -L dir function1.o function2.o\
function3.o -lsharedob

That command will arrange forlibsharedob.so to be linked withlibfoo.so when,
at run time,libfoo.so is linked with your program. Note that here you will have t
point the dynamic l inker to the directories in which bothl ibfoo.so and
libsharedob.so are stored.

Specifying Directories to Be Searched by the Link Editor 4

In the previous subsection we created the archive librarylibfoo.a and the shared object
libfoo.so . For the sake of discussion, we’ll now say that both these libraries are sto
in the directory/home/mylibs . We’ll also assume that you are creating your executab
in a different directory. In fact, these assumptions are not academic. They reflect the
most programmers organize their work on the PowerUX system.

The first thing you must do if you want to link your program with either of these librari
is point the link editor to the/home/mylibs directory by specifying its path name with
the-L option:

cc -L /home/mylibs file1.c file2.c file3.c -lfoo

The -L option directs the link editor to search for the libraries named with-l first in the
specified directory, then in the standard places. In this case, having found the dire
/home/mylibs , the link editor will searchlibfoo.so rather thanlibfoo.a . As we
saw earlier, when the link editor encounters otherwise identically named shared objec
archive libraries in the same directory, it searches the library with the.so suffix by
default. For the same reason, it will searchlibc.so here rather thanlibc.a . Note that
you must specify-L if you want the link editor to search for libraries in your curren
directory. You can use a period (.) to represent the current directory.

To direct the link editor to searchlibfoo.a , you can turn off the dynamic linking
default:

cc -Zlink=static -L /home/mylibs file1.c file2.c \
file3.c -lfoo
4-13

Compilation Systems Volume 1 (Tools)

ll

for

til
ny

the

t by a

ecto-
der,
Under-Zlink=static , the link editor will not accept shared objects as input. It wi
searchlibfoo.a rather thanlibfoo.so , andlibc.a rather thanlibc.so .

To link your program statically withlibfoo.a and dynamically withlibc.so , you
can do either of two th ings. First, you can movel ibfoo.a to a different
directory--/home/archives , for example--then specify/home/archives with the
-L option:

cc -L /home/archives -L /home/mylibs file1.c file2.c \
file3.c -lfoo

As long as the link editor encounters the/home/archives directory before it encoun-
ters the/home/mylibs directory, it will searchlibfoo.a rather thanlibfoo.so .
That is, when otherwise identically named.so and.a libraries exist in your directories,
the link editor will search the first one it finds. The same thing is true, by the way,
identically named libraries of either type. If you have different versions oflibfoo.a in
your directories, the link editor will search the first one it finds.

A better alternative might be to leavelibfoo.a where you had it in the first place and
use the-Zlibs=static and-Zlibs=dynamic options to turn dynamic linking off
and on. The following command will link your program statically withlibfoo.a and
dynamically withlibc.so :

cc -L /home/mylibs file1.c file2.c file3.c \
-Zlibs=static -lfoo -Zlibs=dynamic

When you specify-Qstatic , the link editor will not accept a shared object as input un
you specify-Qdynamic . In other words, you can use these options as toggles--a
number of times--on thecc command line:

cc -L /home/mylibs file1.c file2.c -Zlibs=static -lfoo \
file3.c -Zlibs=dynamic -lsharedob

That command will direct the link editor to search

• First, libfoo.a to resolve still unresolved external references in
file1.c andfile2.c ;

• Second,libsharedob.so to resolve still unresolved external references
in all three files and inlibfoo.a ;

• Last, libc.so to resolve still unresolved external references in all three
files and the preceding libraries.

Files, including libraries, are searched for definitions in the order they are listed on thecc
command line. The standard C library is always searched last.

You can add to the list of directories to be searched by the link editor by using
environment variableLD_LIBRARY_PATH. LD_LIBRARY_PATHmust be a list of
colon-separated directory names; an optional second list is separated from the firs
semicolon:

LD_LIBRARY_PATH=dir: dir/; dir: dir;export LD_LIBRARY_PATH

The directories specified before the semicolon are searched, in order, before the dir
ries specified with-L ; the directories specified after the semicolon are searched, in or
after the directories specified with-L . Note that you can useLD_LIBRARY_PATHin
4-14

Link Editor and Linking

after
when

. The

want
ith the

have
he
d

.

to
place of-L altogether. In that case the link editor will search for libraries named with-l
first in the directories specified before the semicolon, next in the directories specified
the semicolon, and last in the standard places. You should use absolute path names
you set this environment variable.

NOTE

As we explain in the next subsection,LD_LIBRARY_PATHis
also used by the dynamic linker. That is, ifLD_LIBRARY_PATH
exists in your environment, the dynamic linker will search the
directories named in it for shared objects to be linked with your
program at execution. In usingLD_LIBRARY_PATHwith the link
editor or the dynamic linker, then, you should keep in mind that
any directories you give to one you are also giving to the other.

Specifying Directories to Be Searched by the Dynamic Linker 4

Earlier we said that when you use the-l option, you must point the dynamic linker to the
directories of the shared objects that are to be linked with your program at execution
environment variableLD_RUN_PATHlets you do that at link time. To setLD_RUN_PATH,
list the absolute path names of the directories you want searched in the order you
them searched. Separate path names with a colon. Since we are concerned only w
directory/home/mylibs here, the following will do:

LD_RUN_PATH=/home/mylibs;export LD_RUN_PATH

Now the command

cc -o prog -L /home/mylibs file1.c file2.c file3.c -lfoo

will direct the dynamic linker to search forlibfoo.so in /home/mylibs when you
execute your program:

prog

The dynamic linker searches the standard place by default, after the directories you
assigned toLD_RUN_PATH. Note that as far as the dynamic linker is concerned, t
standard place for libraries is/usr/lib . Any executable versions of libraries supplie
by the compilation system are kept in/usr/lib .

The environment variableLD_LIBRARY_PATHlets you do the same thing at run time
Suppose you have movedlibfoo.so to /home/sharedobs . It is too late to replace
/home/mylibs with /home/sharedobs in LD_RUN_PATH, at least without link
edit ing your program again. You can, however, assign the new directory
LD_LIBRARY_PATH, as follows:

LD_LIBRARY_PATH=/home/sharedobs;export LD_LIBRARY_PATH

Now when you execute your program

prog
4-15

Compilation Systems Volume 1 (Tools)

ther

n is
trast,

d
n the
or the

ker

the

have
d it

thing
will
lved

n. You
l that
new

our

the

a or
g
nces

ion
t

ble
the dynamic linker will search forlibfoo.so first in /home/mylibs and, not finding
it there, in/home/sharedobs . That is, the directory assigned toLD_RUN_PATHis
searched before the directory assigned toLD_LIBRARY_PATH. The important point is
that because the path name oflibfoo.so is not hard-coded inprog , you can direct the
dynamic linker to search a different directory when you execute your program. In o
words, you can move a shared object without breaking your application.

You can setLD_LIBRARY_PATHwithout first having setLD_RUN_PATH. The main
difference between them is that once you have usedLD_RUN_PATHfor an application,
the dynamic linker will search the specified directories every time the applicatio
executed (unless you have relinked the application in a different environment). In con
you can assign different directories toLD_LIBRARY_PATHeach time you execute the
application.LD_LIBRARY_PATHdirects the dynamic linker to search the assigne
directories before it searches the standard place. Directories, including those i
optional second list, are searched in the order listed. See the previous subsection f
syntax.

Note, finally, that when linking a set-user or set-group ID program, the dynamic lin
will ignore any directories specified byLD_LIBRARY_PATHthat are not “trusted.”
Trusted directories are built into the dynamic linker and cannot be modified by
application. Currently, the only trusted directory is/usr/lib .

Checking for Run-Time Compatibility 4

Suppose you have been supplied with an updated version of a shared object. You
already compiled your program with the previous version; the link editor has checke
for undefined symbols, found none, and created an executable. According to every
we have said, you should not have to link your program again. The dynamic linker
simply use the definitions in the new version of the shared object to satisfy unreso
external references in the executable.

Suppose further that this is a database update program that takes several days to ru
want to be sure that your program does not fail in a critical section because a symbo
was defined by the previous version of the shared object is no longer defined by the
version. In other words, you want the information that the link editor gives you--that y
executable is compatible with the shared library--without having to link edit it again.

There are two ways you can check for run-time compatibility. The commandldd(1)
(“list dynamic dependencies”) directs the dynamic linker to print the path names of
shared objects on which your program depends:

ldd prog

When you specify the-d option to ldd(1) , the dynamic linker prints a diagnostic
message for each unresolved data reference it would encounter ifprog were executed.
When you specify the-r option, it prints a diagnostic message for each unresolved dat
function reference it would encounter ifprog were executed. You can do the same thin
when you execute your program. Whereas the dynamic linker resolves data refere
immediately at run time, it normally delays resolving function references until a funct
is invoked for the first time. Normally, then, the lack of a definition for a function will no
be apparent until the function is invoked. By setting the environment varia
LD_BIND_NOW
4-16

Link Editor and Linking

nces

ared
s of a
ger
e

on of

t’s
that
e, a

ked
ok-
your

ents
s data
ing

object
data

data,
out

ccess
n

LD_BIND_NOW=1;export LD_BIND_NOW

before you execute your program, you direct the dynamic linker to resolve all refere
immediately. In that way, you can learn before execution ofmain() begins that the
functions invoked by your process actually are defined.

Dynamic Linking Programming Interface 4

You can use a programming interface to the dynamic linking mechanism to attach a sh
object to the address space of your process during execution, look up the addres
function in the library, call that function, and then detach the library when it is no lon
needed. The routines for this are stored inlibdl.so . Subsection 3X man pages describ
its contents.

Implementation 4

We have already described, in various contexts in this section, the basic implementati
the static and dynamic linking mechanisms:

• When you use an archive library function, a copy of the object file that
contains the function is incorporated in your executable at link time.
External references to the function are assigned virtual addresses when the
executable is created.

• When you use a shared library function, the entire contents of the library
are mapped into the virtual address space of your process at run time.
External references to the function are assigned virtual addresses when you
execute the program. The link editor records in your executable only the
name of the shared object and a small amount of bookkeeping information
for use by the dynamic linker at run time.

We’ll take a closer look at how dynamic linking is implemented in a moment. First le
consider the one or two cases in which you might not want to use it. Earlier we said
because shared object code is not copied into your executable object file at link tim
dynamically linked executable normally will use less disk space than a statically lin
executable. If your program calls only a few small library functions, however, the bo
keeping information to be used by the dynamic linker may take up more space in
executable than the code for those functions. You can use thesize(1) command to
determine the difference.

In a similar way, using a shared object may occasionally add to the memory requirem
of a process. Although a shared object’s text is shared by all processes that use it, it
typically are not (at least its writable data; see the subsection “Guidelines for Build
Shared Objects” on page 4-18 for the distinction). Every process that uses a shared
usually gets a private copy of its entire data segment, regardless of how many of the
are needed. If an application uses only a small portion of a shared library’s text and
executing the application might require more memory with a shared object than with
one. It would be unwise, for example, to use the standard C shared object library to a
only strcmp() . Although sharingstrcmp() saves space on your disk and memory o
4-17

Compilation Systems Volume 1 (Tools)

ry’s

es a
other

f that
have
will,
may
annot

mory
as they
ating
fits of

on at

ory,
ocess.
page
, you

es in
this

for
use

rary
n to
ible
riate
the system, the memory cost to your process of having a private copy of the C libra
data segment would make the archive version ofstrcmp() the more appropriate choice.

Now let’s consider dynamic linking in a bit more detail. First, each process that us
shared object references a single copy of its code in memory. That means that when
users on your system call a function in a shared object library, the entire contents o
library are mapped into the virtual address space of their processes as well. If they
called the same function as you, external references to the function in their programs
in all likelihood, be assigned different virtual addresses. That is, because the function
be loaded at a different virtual address for each process that uses it, the system c
calculate absolute addresses in memory until run time.

Second, the memory management scheme underlying dynamic linking shares me
among processes at the granularity of a page. Memory pages can be shared as long
are not modified at run time. If a process writes to a shared page in the course of reloc
a reference to a shared object, it gets a private copy of that page and loses the bene
code sharing (although without affecting other users of the page).

Third, to create programs that require the least possible amount of page modificati
run time, the compiler generates position-independent code under the-ZPIC option.
Whereas executable code normally must be tied to a fixed address in mem
position-independent code can be loaded anywhere in the address space of a pr
Because the code is not tied to specific addresses, it will execute correctly--without
modification--at a different address in each process that uses it. As we have indicated
should specify-ZPIC when you create a shared object:

cc -ZPIC -Zlink=so -o libfoo.so function1.c function2.c\
function3.c

Relocatable references in your object code will be moved from its text segment to tabl
the data segment. See Chapter 22 (“Executable and Linking Format (ELF)”) in
manual for the details. In the next subsection we’ll look at some basic guidelines
building shared objects. For now, we’ll sum up the reasons why you might want to
one:

• Because library code is not copied into the executables that use it, they
require less disk space.

• Because library code is shared at run time, the dynamic memory needs of
systems are reduced.

• Because symbol resolution is put off until run time, shared objects can be
updated without having to relink applications that depend on them.

• As long as its path name is not hard-coded in an executable, a shared object
can be moved to a different directory without breaking an application.

Guidelines for Building Shared Objects 4

This subsection gives coding guidelines and maintenance tips for shared lib
development. Before getting down to specifics, we should emphasize that if you pla
develop a commercial shared library, you ought to consider providing a compat
archive as well. As we have noted, some users may not find a shared library approp
4-18

Link Editor and Linking

tem
with
and

o to

s data
rivate
eded.

ations

to
the

to the
for
ilar

f each
ded.

aside.
ment,
ver,
time.

t, the
dd in
for their applications. Others may want their applications to run on PowerUX sys
releases without shared object support. Shared object code is completely compatible
archive library code. In other words, you can use the same source files to build archive
shared object versions of a library.

Let’s look at some performance issues first. There are two things you want to d
enhance shared library performance:

Minimize the Library’s Data Segment

As noted, only a shared object’s text segment is shared by all processes that use it; it
segment typically is not. Every process that uses a shared object usually gets a p
memory copy of its entire data segment, regardless of how many of the data are ne
You can cut down the size of the data segment a number of ways:

• Try to use automatic (stack) variables. Don’t use permanent storage if
automatic variables will work.

• Use functional interfaces rather than global variables. Generally speaking,
that will make library interfaces and code easier to maintain. Moreover,
defining functional interfaces often eliminates global variables entirely,
which in turn eliminates global “copy” data. The ANSI C function
strerror(3C) illustrates these points.

In previous implementations, system error messages were made available to applic
only through two global variables:

extern int sys_nerr;
extern char *sys_errlist[];

That is,sys_errlist[X] gives a character string for the errorX, if X is a non-negative
value less thansys_nerr . Now if the current list of messages were made available
applications only through a lookup table in an archive library, applications that used
table obviously would not be able to access new messages as they were added
system unless they were relinked with the library. In other words, errors might occur
which these applications could not produce meaningful diagnostics. Something sim
happens when you use a global lookup table in a shared library.

First, the compilation system sets aside memory for the table in the address space o
executable that uses it, even though it does not know yet where the table will be loa
After the table is loaded, the dynamic linker copies it into the space that has been set
Each process that uses the table, then, gets a private copy of the library’s data seg
including the table, and an additional copy of the table in its own data segment. Moreo
each process pays a performance penalty for the overhead of copying the table at run
Finally, because the space for the table is allocated when the executable is buil
application will not have enough room to hold any new messages you might want to a
the future. A functional interface overcomes these difficulties.strerror() might be
implemented as follows:

static const char *msg[] = {
"Error 0",
"Not owner",
"No such file or directory",
...

};
4-19

Compilation Systems Volume 1 (Tools)

copy.
g the
ssages

ta are

of
need
ne

hem
es a

ared
ut of
ases

may
ize
char * strerror(int err)
{

if (err < 0 || err >= sizeof(msg)/sizeof(msg[0]))
return 0;

return (char *)msg[err];
}

The message array is static, so no application space is allocated to hold a separate
Because no application copy exists, the dynamic linker does not waste time movin
table. New messages can be added, because only the library knows how many me
exist. Finally, note the use of the type qualifierconst to identify data as read-only.
Whereas writable data are stored in a shared object’s data segment, read-only da
stored in its text segment. For more onconst , see the ConcurrentC Reference Manual.

In a similar way, you should try to allocate buffers dynamically--at run time--instead
defining them at link time. That will save memory because only the processes that
the buffers will get them. It will also allow the size of the buffers to change from o
release of the library to the next without affecting compatibility. Example:

char * buffer()
{

static char *buf = 0;

if (buf = = 0)
{

if ((buf = malloc(BUFSIZE)) = = 0)
return 0;

}
...
return buf;

}

Exclude functions that use large amounts of global data--that is, if you cannot rewrite t
in the ways described in the foregoing items. If an infrequently used routine defin
great deal of static data, it probably does not belong in a shared library.

Make the library self-contained. If a shared object imports definitions from another sh
object, each process that uses it will get a private copy not only of its data segment, b
the data segment of the shared object from which the definitions were imported. In c
of conflict, this guideline should probably take precedence over the preceding one.

Minimize Paging Activity

Although processes that use shared libraries will not write to shared pages, they still
incur page faults. To the extent they do, their performance will degrade. You can minim
paging activity in the following ways:

• Organize to improve locality of reference. First, exclude infrequently used
routines on which the library itself does not depend. Traditionala.out
files contain all the code they need at run time. So if a process calls a
function, it may already be in memory because of its proximity to other text
in the process. If the function is in a shared library, however, the
surrounding library code may be unrelated to the calling process. Only
4-20

Link Editor and Linking

uffers
o be
ns so
void
there
with
for
wly

ably
the

tter
fol-
ject:
rarely, for example, will any single executable use everything in the shared
C library. If a shared library has unrelated functions, and if unrelated
processes make random calls to those functions, locality of reference may
be decreased, leading to more paging activity. The point is that functions
used by only a fewa.out files do not save much disk space by being in a
shared library, and can degrade performance.

Second, try to improve locality of reference by grouping dynamically
related functions. If every call tofuncA() generates calls tofuncB()
andfuncC() , try to put them in the same page.cflow(1) generates this
kind of static dependency information. Combine it with profiling to see
what things actually are called, as opposed to what things might be called.

• Align for paging. Try to arrange the shared library’s object files so that
frequently used functions do not unnecessarily cross page boundaries.
First, determine where the page boundaries fall. The page size is 4K. You
can use thenm(1) command to determine how symbol values relate to
page boundaries. After grouping related functions, break them up into
page-sized chunks. Although some object files and functions are larger
than a page, many are not. Then use the less frequently called functions as
glue between the chunks. Because the glue between pages is referenced
less frequently than the page contents, the probability of a page fault is
decreased. You can put frequently used, unrelated functions together
because they will probably be called randomly enough to keep the pages in
memory.

• Avoid hardware thrashing. You get better performance by arranging the
typical process to avoid cache entry conflicts. If a heavily used library had
both its text and its data segments mapped to the same cache entry, the
performance penalty would be particularly severe. Every library instruction
would bring the text segment information into the cache. Instructions that
referenced data would flush the entry to load the data segment. Of course,
the next instruction would reference text and flush the cache entry again.

Now let’s look at some maintenance issues. We have already seen how allocating b
dynamically can ease the job of library maintenance. As a general rule, you want t
sure that updated versions of a shared object are compatible with its previous versio
that users will not have to recompile their applications. At the very least, you should a
changing the names of library symbols from one release to the next. All the same,
may be instances in which you need to release a library version that is incompatible
its predecessor. On the one hand, you will want to maintain the older version
dynamically linked executables that depend on it. On the other hand, you will want ne
created executables to be linked with the updated version. Moreover, you will prob
want both versions to be stored in the same directory. In this situation, you could give
new release a different name, rewrite your documentation, and so forth. A be
alternative would be to plan for the contingency in the very first instance by using the
lowing sequence of commands when you create the original version of the shared ob

cc -ZPIC -Zlink=so -h libfoo.1 -o libfoo.1 function1.c \
function2.c function3.c

ln libfoo.1 libfoo.so

In the first command-h stores the name given to it,libfoo.1 , in the shared object
itself. You then use the UNIX system commandln(1) to create a link between the name
4-21

Compilation Systems Volume 1 (Tools)

r

gave
a

ic
olved

e

ot
ill

hen
ked
n in
y

wn
ry.

ing.
the

he

his
time,

cannot
libfoo.1 and the namelibfoo.so . The latter, of course, is the name the link edito
will look for when users of your library specify

cc -L dir file1.c file2.c file3.c -lfoo

In this case, however, the link editor will record in the user’s executable the name you
to -h , libfoo.1 , rather than the namelibfoo.so . That means that when you release
subsequent, incompatible version of the library,libfoo.2 , executables that depend on
libfoo.1 will continue to be linked with it at run time. As we saw earlier, the dynam
linker uses the shared object name that is stored in the executable to satisfy unres
external references at run time.

You use the same sequence of commands when you createlibfoo.2 :

cc -ZPIC -Zlink=so -h libfoo.2 -o libfoo.2 function1.c \
function2.c function4.c

ln libfoo.2 libfoo.so

Now when users specify

cc -L dir file1.c file2.c file3.c -lfoo

The namelibfoo.2 will be stored in their executables, and their programs will b
linked with the new library version at run time.

Multiply-Defined Symbols 4

Multiply-defined symbols--except for different-sized initialized data objects--are n
reported as errors under dynamic linking. To put that more formally, the link editor w
not report an error for multiple definitions of a function or a same-sized data object w
each such definition resides within a different shared object or within a dynamically lin
executable and different shared objects. The dynamic linker will use the definitio
whichever object occurs first on thecc command line. You can, however, specif
-Qsymbolic when you create a shared object

cc -ZPIC -Zlink=so -Zsymbolic -o libfoo.so function1.c \
function2.c function3.c

to insure that the dynamic linker will use the shared object’s definition of one of its o
symbols, rather than a definition of the same symbol in an executable or another libra

In contrast, multiply-defined symbols are generally reported as errors under static link
We say “generally” because definitions of so-called weak symbols can be hidden from
link editor by a definition of a global symbol. That is, if a defined global symbol exists, t
appearance of a weak symbol with the same name will not cause an error.

To illustrate this, let’s look at our own implementation of the standard C library. T
library provides services that users are allowed to redefine and replace. At the same
however, ANSI C defines standard services that must be present on the system and
be replaced in a strictly conforming program.fread() , for example, is an ANSI C
library function; the system functionread() is not. So a conforming program may
redefineread() and still usefread() in a predictable way.
4-22

Link Editor and Linking

use a

ol

The
st
) or

s

.

The problem with this is thatread() underlies thefread() implementation in the
standard C library. A program that redefinesread() could “confuse” thefread()
implementation. To guard against this, ANSI C states that an implementation cannot
name that is not reserved to it. That’s why we use_read() --note the leading under-
score--to implementfread() in the standard C library.

Now suppose that a program you have written callsread() . If your program is going to
work, a definition forread() does exist in the C library. It is identical to the definition
for _read() and contained in the same object file.

Suppose further that another program you have written redefinesread() , as it has every
right to do under ANSI C; this same program callsfread() . Because you get our
definitions of both_read() andread() when you usefread() , we would expect the
link editor to report the multiply-defined symbolread() as an error, and fail to create an
executable program. To prevent that, we used the#pragma directive in our source code
for the library as follows:

#pragma weak read = _read

Because ourread() is defined as a weak symbol, your own definition ofread() will
override the definition in the standard C library. You can use the#pragma directive in the
same way in your own library code.

There’s a second use for weak symbols that you ought to know about:

#pragma weak read

tells the link editor not to complain if it does not find a definition for the weak symb
read. References to the symbol use the symbol value if defined,0 otherwise. The link
editor does not extract archive members to resolve undefined weak symbols.
mechanism is intended to be used primarily with functions. Although it will work for mo
data objects, it should not be used with uninitialized global data (“common” symbols
with shared library data objects that are exported to executables.

Mapfiles 4

The link editor (ld) automatically and intelligently maps input sections from object file
(.o files) to output segments in executable files (a.out files). Themapfile option to
the ld command allows you to change the default mapping provided by the link editor

In particular, themapfile option allows you to:

• Declare segments and specify values for segment attributes such as
segment type, permissions, addresses, length, and alignment

• Control mapping of input sections to segments by specifying the attribute
values necessary in a section to map to a specific segment (the attributes
are section name, section type, and permissions) and by specifying which
object file(s) the input sections should be taken from, if necessary

• Declare a global-absolute symbol that is assigned a value equal to the size
of a specified segment (by the link editor) and that can be referenced from
object files
4-23

Compilation Systems Volume 1 (Tools)

e

ath

pace

ives,
omes
out

nts,
ment
NOTE

The major purpose of themapfile option is to allow users of
ifiles (an option previously available told that used link
editor command language directives) to convert to mapfiles. All
other facilities previously available forifiles , other than those
mentioned above, are not available with themapfile option.

When using themapfile option, be aware that you can easily
createa.out files that do not execute. Therefore, the use of the
mapfile option is strongly discouraged.ld knows how to
produce a correcta.out without the use of themapfile option.
The mapfile option is intended for system programming use,
not application programming use.

This subsection describes the structure and syntax of a mapfile and the use of th-M
option to theld command.

Using the Mapfile Option 4

To use themapfile option, you must:

1. Enter mapfile directives into a file (this is your “mapfile”)

2. Enter the following option on theld command line:

-M mapfile

mapfileis the file name of the file you produced in step 1. If themapfileis not in
your current directory, you must include the full path name; no default search p
exists. (See theld(1) for information on operation of theld command.)

Mapfile Structure and Syntax 4

You can enter three types of directives into a mapfile:

• Segment declarations

• Mapping directives

• Size-symbol declarations

Each directive can span more than one line and can have any amount of white s
(including new-lines) as long as it is followed by a semicolon. You can enter0 (zero) or
more directives in a mapfile. (Entering 0 directives causesld to ignore the mapfile and
use its own defaults.) Typically, segment declarations are followed by mapping direct
i.e., you would declare a segment and then define the criteria by which a section bec
part of that segment. If you enter a mapping directive or size-symbol declaration with
first declaring the segment to which you are mapping (except for built-in segme
explained later), the segment is given default attributes as explained below. This seg
is then animplicitly declared segment.
4-24

Link Editor and Linking

, the

e of

gment
Size-symbol declarations can appear anywhere in a mapfile.

The following sections describe each directive type. For all syntax discussions
following apply:

• All entries in “constant width”, all colons, semicolons, equal signs, and at
(@) signs are typed in literally.

• All entries in italics are “substitutables.”

• { ... }* means “zero or more.”

• { ... }+ means “one or more.”

• [...] means “optional.”

• section_namesand segment_namesfollow the same rules as C identifiers
where a period (.) is treated as a letter (e.g.,.bss is a legal name).

• section_names, segment_names, file_names, and symbol_namesare case
sensitive; everything else is not case sensitive.

• Spaces (or new-lines) may appear anywhere except before a number or in
the middle of a name or value.

• Comments beginning with# and ending at a new-line may appear any-
where that a space may appear.

Segment Declarations 4

A segment declaration creates a new segment in thea.out or changes the attribute values
of an existing segment. (An existing segment is one that you previously defined or on
the three built-in segments described below.)

A segment declaration has the following syntax:

segment_name= { segment_attribute_value}*;

For eachsegment_name, you can specify any number ofsegment_attribute_valuesin any
order, each separated by a space. (Only one attribute value is allowed for each se
attribute.) The segment attributes and their valid values are as follows:

“ segment_type:”
LOAD
NOTE

“ segment_flags:”
?[R][W][X]

“ virtual_address:”
Vnumber

“ physical_address:”
Pnumber

“ length:”
Lnumber

“ alignments:”
Anumber

There are three built-in segments with the following default attribute values:
4-25

Compilation Systems Volume 1 (Tools)

n. See
• text (LOAD, ?RX, no virtual_address, physical_address, or length
specified,alignmentvalues set to defaults per CPU type)

• data (LOAD, ?RWX, no virtual_address, physical_address, or length
specified,alignmentvalues set to defaults per CPU type)

• note (NOTE)

ld behaves as if these segments had been declared before your mapfile is read i
“Mapfile Option Defaults” on page 4-30 for more information.

Note the following when entering segment declarations:

• A numbercan be hexadecimal, decimal, or octal, following the same rules
as in the C language.

• No space is allowed between theV, P, L, or A and thenumber.

• Thesegment_typevalue can be eitherLOADor NOTE.

• Thesegment_typevalue defaults toLOAD.

• The segment_flagsvalues areR for readable,Wfor writable, andX for
executable. No spaces are allowed between the question mark and the
individual flags that make up thesegment_flagsvalue.

• Thesegment_flagsvalue for aLOADsegment defaults toRWX.

• NOTEsegments cannot by assigned any segment attribute value other than
a segment_type.

• Implicitly declared segments default tosegment_typevalue LOAD,
segment_flagsvalueRWX, a defaultvirtual_address, physical_address, and
alignmentvalue, and have nolengthlimit.

ld calculates the addresses and length of the current segment based on the
previous segment’s attribute values. Also, even though implicitly declared
segments default to “no length limit,” any machine memory limitations still
apply.

• LOAD segments can have an explicitly specifiedvirtual_addressvalue
and/orphysical_addressvalue, as well as a maximum segmentlengthvalue.

• If a segment has asegment_flagsvalue of ? with nothing following, the
value defaults to not readable, not writable and not executable.

• The alignment value is used in calculating the virtual address of the
beginning of the segment. This alignment only affects the segment for
which it is specified; other segments still have the default alignment unless
their alignments are also changed.

• If any of thevirtual_address, physical_address, or lengthattribute values are
not set,ld calculates these values as it builds thea.out .

• If an alignmentvalue is not specified for a segment, it is set to the built-in
default. (The default differs from one CPU to another and may even differ
between kernel versions. You should check the appropriate documentation
for these numbers).
4-26

Link Editor and Linking

me
st be

nt. In
e

ection
• If both a virtual_addressand analignmentvalue are specified for a seg-
ment, thevirtual_addressvalue takes priority.

• If a virtual_addressvalue is specified for a segment, the alignment field in
the program header contains the defaultalignmentvalue.

NOTE

If a virtual_addressvalue is specified, the segment is placed at that
virtual address. For the PowerUX system kernel, this creates a
correct result. For files that start viaexec() , this method creates
an incorrecta.out file because the segments do not have correct
offsets relative to their page boundaries.

Mapping Directives 4

A mapping directive tellsld how to map input sections to segments. Basically, you na
the segment that you are mapping to and indicate what the attributes of a section mu
in order to map into the named segment. The set ofsection_attribute_valuesthat a section
must have to map into a specific segment is called the entrance criteria for that segme
order to be placed in a specified segment of thea.out , a section must meet the entranc
criteria for a segment exactly.

A mapping directive has the following syntax:

segment_name: { section_attribute_value}* [: { file_name}+];

For asegment_name, you specify any number ofsection_attribute_valuesin any order,
each separated by a space. (At most one section attribute value is allowed for each s
attribute.) You can also specify that the section must come from a certain.o file(s) via the
file_namesubstitutable. The section attributes and their valid values are as follows:

“ section_name:”
any valid section name

“ section_type:”
$PROGBITS
$SYMTAB
$STRTAB
$REL
$RELA
$NOTE
$NOBITS

“ section_flags:”
?[[!]A][[!]W][[!]X]

Note the following when entering mapping directives:

• You must choose at most onesection_typefrom the section_typeslisted
above. Thesection_typeslisted above are built- in types. For more
information onsection_types, see Chapter 22 (“Executable and Linking
Format (ELF)”).

• The section_flagsvalues areA for allocatable,W for writable, or X for
executable. If an individual flag is preceded by an exclamation mark (!),
4-27

Compilation Systems Volume 1 (Tools)

y to

bove.
ese

ts the
files.

e

the link editor checks to make sure that the flag is not set. No spaces are
allowed between the question mark, exclamation point(s), and the
individual flags that make up thesection_flagsvalue.

• file_name may be any legal file name and can be of the form
archive_name(component_name), e.g.,/lib/libc.a (printf.o) . A
file name may be of the form* file_name(see next bullet item). Note that
ld does not check the syntax of file names.

• If a file_nameis of the form * file_name, ld simulates a basename (see
basename(1)) on the file name from the command line and uses that to
match against the mapfilefile_name. In other words, thefile_namefrom the
mapfile only needs to match the last part of the file name from the
command line. (See “Mapping Example” on page 4-29.)

• If you use the-l option on thecc or ld command line, and the library
after the-l option is in the current directory, you must precede the library
with ./ (or the entire path name) in the mapfile in order to create a match.

• More than one directive line may appear for a particular output segment,
e.g., the following set of directives is legal:

S1 : $PROGBITS;
S1 : $NOBITS;

Entering more than one mapping directive line for a segment is the only wa
specify multiple values of a section attribute.

• A section can match more than one entrance criteria. In this case, the first
segment encountered in the mapfile with that entrance criteria is used, e.g.,
if a mapfile reads:

S1 : $PROGBITS;
S2 : $PROGBITS;

the$PROGBITSsections are mapped to segmentS1.

Extended Mapping Directives 4

PowerUX mapfiles support an extension to the set of mapping directives described a
These extensions permit the definition or redefinition of variables within a section. Th
extended directives are output by theshmdefine(1) utility.

Size-Symbol Declarations 4

Size-symbol declarations let you define a new global-absolute symbol that represen
size, in bytes, of the specified segment. This symbol can be referenced in your object
A size-symbol declaration has the following syntax:

segment_name@ symbol_name symbol_name

can be any legal C identifier, although theld command does not check the syntax of th
symbol_name.
4-28

Link Editor and Linking

uded
ers

ment

her

h
e

e
he
as

s

e

te
e the
e

Mapping Example 4

Figure 4-1 is an example of a user-defined mapfile. The numbers on the left are incl
in the example for tutorial purposes. Only the information to the right of the numb
would actually appear in the mapfile.

Figure 4-1. User-Defined Mapfile

Four separate segments are manipulated in this example. The implicitly declared seg
elephant (line 1) receives all of the.bss sections from the filespeanuts.o and
popcorn.o . Note that*popcorn.o matches anypopcorn.o file that may have been
entered on theld command line; the file need not be in the current directory. On the ot
hand, if /var/tmp/peanuts.o were entered on theld command line, it would not
matchpeanuts.o because it is not preceded by a* .

The implicitly declared segmentmonkey (line 2) receives all sections that are bot
$PROGBITSand allocatable-executable (?AX), as well as all sections (not already in th
segmentelephant) with the name.bss (line 3). The.bss sections entering the
monkey segment need not be$PROGBITSor allocatable-executable because th
section_typeand section_flagsvalues were entered on a separate l ine from t
section_namevalue. (Anand relationship exists between attributes on the same line
illustrated by$PROGBITSand?AX on line 2. Anor relationship exists between attribute
for the same segment that span more than one line as illustrated by$PROGBITS ?AXon
line 2 or .bss on line 3.) Themonkey segment is implicitly declared in line 2 with
segment_typevalue LOAD, segment_flagsvalue RWX, and novirtual_address,
physical_address, lengthor alignmentvalues specified (defaults are used). In line 4 th
segment_typevalue ofmonkey is set toLOAD(since thesegment_typeattribute value does
not change, no warning is issued),virtual_addressvalue to0x80000000 and maximum
lengthvalue to0x4000 (since thelengthattribute value changed, a warning is issued).

Line 5 implicitly declares thedonkey segment. The entrance criteria is designed to rou
all .bss sections to this segment. Actually, no sections fall into this segment becaus
entrance criteria formonkey in line 3 capture all of these sections. In line 6, th
segment_flagsvalue is set to?RXand thealignmentvalue is set to0x1000 (since both of
these attribute values changed, a warning is issued).

Line 7 sets thevirtual_addressvalue of thetext segment to0x80008000 (no warning
is issued here).

1. elephant : .bss : peanuts.o *popcorn.o;

2. monkey : $PROGBITS ?AX;
3. monkey : .bss;
4. monkey = LOAD V0x80000000 L0x40000;

5. donkey : .bss;
6. donkey = ?RX A0x1000;

7. text = V0x80008000;
4-29

Compilation Systems Volume 1 (Tools)

for
oid

der

ate

read
.

st of
The example user-defined mapfile in Figure 4-1 is designed to cause warnings
illustration purposes. If you wanted to change the order of the directives to av
warnings, the example would appear as follows:

1. elephant : .bss : peanuts.o *popcorn.o;
4. monkey = LOAD V0x80000000 L0x4000;
2. monkey : $PROGBITS ?AX;
3. monkey : .bss;
6. donkey = ?RX A0x1000;
5. donkey : .bss;
7. text = V0x80008000;

This order eliminates all warnings.

Mapfile Option Defaults 4

The ld command has three built-in segments (text , data , andnote) with default
segment_attribute_valuesand corresponding default mapping directives as described un
“Segment Declarations” on page 4-25. Even though theld command does not use an
actual “mapfile” to store the defaults, the model of a “default mapfile” helps to illustr
what happens when theld command encounters your mapfile.

Figure 4-2 shows how a mapfile would appear for theld command defaults. Theld
command begins execution behaving as if the mapfile in Figure 4-2 has already been
in. Thenld reads your mapfile and either augments or makes changes to the defaults

NOTE

The interp segment, which precedes all others, and the
dynamic segment, which follows thedata segment, are not
shown in Figure 4-2 and Figure 4-3 because you cannot manipu-
late them.

Figure 4-2. Default Mapfile

As each segment declaration in your mapfile is read in, it is compared to the existing li
segment declarations as follows:

text = LOAD ?RX
text : $PROGBITS ?A!W

data = LOAD ?RW
data : $PROGBITS ?AW
data : $NOBITS ?AW

note = NOTE
note : $NOTE
4-30

Link Editor and Linking

ther
efault

y

he
ives
the

ailed
are in
1. If the segment does not already exist in the mapfile, but another with the
samesegment_typevalue exists, the segment is added before all of the
existing segments of the samesegment_type.

2. If none of the segments in the existing mapfile has the samesegment_type
value as the segment just read in, then the segment is added by
segment_typevalue to maintain the following order:

1. INTERP
2. LOAD
3. DYNAMIC
4. NOTE

3. If the segment is ofsegment_typeLOAD and you have defined a
virtual_addressvalue for thisLOADable segment, the segment is placed
before anyLOADable segments without a definedvirtual_addressvalue or
with a highervirtual_addressvalue, but after any segments with a
virtual_addressvalue that is lower.

As each mapping directive in your mapfile is read in, the directive is added after any o
mapping directives that you already specified for the same segment but before the d
mapping directives for that segment.

Internal Map Structure 4

One of the most important data structures inld is the map structure. A default map
structure, corresponding to the model default mapfile mentioned above, is used bld
when the command is executed. Then, if the mapfile option is used,ld parses the mapfile
to augment and/or override certain values in the default map structure.

A typical (although somewhat simplified) map structure is illustrated in Figure 4-3. T
“Entrance Criteria” boxes correspond to the information in the default mapping direct
and the “Segment Attribute Descriptors” boxes correspond to the information in
default segment declarations. The “Output Section Descriptors” boxes give the det
attributes of the sections that fall under each segment. The sections themselves
circles.
4-31

Compilation Systems Volume 1 (Tools)
Figure 4-3. Simple Map Structure

ld performs the following steps when mapping sections to segments:

1. When a section is read in,ld checks the list of Entrance Criteria looking
for a match. (All specified criteria must match):

• In Figure 4-3, for a section to fall into thetext segment it must have
a section_typevalue of$PROGBITSand have asection_flagsvalue
of ?A!W. It need not have the name.text since no name is
specified in the Entrance Criteria. The section may be eitherX or !X
(in the section_flagsvalue) since nothing was specified for the
execute bit in the Entrance Criteria.

• If no Entrance Criteria match is found, the section is placed at the
end of thea.out file after all other segments. (No program header
entry is created for this information. See Chapter 22 (“Executable
and Linking Format (ELF)”) for information on program headers.)

$PROGBITS
?A!W

Entrance
Criteria

$PROGBITS
?AW

$NOBITS
?AW

$NOTE NO MATCH -
appended to end

of a.out

text
LOAD
?RX

data
LOAD
?RWX

note
NOTE

Segment
Attribute

Descriptors

.data
$PROGBITS

?AWX

.data1
$PROGBITS

?AWX

.data2
$PROGBITS

?AWX

.bss
$NOBITS

?AWX

.data
from
fido.o

.data
from
fido.o

.data2
from
fido.o

.bss
from

rover.o

.data1
from

rover.o

.data1
from

sam.o

Sections
Placed in
Segments

Output
Section

Descriptors
4-32

Link Editor and Linking
2. When the section falls into a segment,ld checks the list of existing Output
Section Descriptors in that segment as follows:

• If the section attribute values match those of an existing Output
Section Descriptor exactly, the section is placed at the end of the list
of sections associated with that Output Section Descriptor.

• For instance, a section with asection_namevalue of .data1 , a
section_typevalue of $PROGBITS, and asection_flagsvalue of
?AWXfalls into the second Entrance Criteria box in Figure 4-3,
placing it in thedata segment. The section matches the second Out-
put Section Descriptor box exactly (.data1 , $PROGBITS, ?AWX)
and is added to the end of the list associated with that box. The
.data1 sections fromfido.o, rover.o , andsam.o illustrate
this point.

• If no matching Output Section Descriptor is found, but other Output
Section Descriptors of the samesection_typeexist, a new Output
Section Descriptor is created with the same attribute values as the
section and that section is associated with the new Output Section
Descriptor. The Output Section Descriptor (and the section) are
placed after the last Output Section Descriptor of the same
section_type. The .data2 section in Figure 4-3 was placed in this
manner.

• If no other Output Section Descriptors of the indicatedsection_type
exist, a new Output Section Descriptor is created and the section is
placed so as to maintain the followingsection_typeorder:

$DYNAMIC
$PROGBITS
$SYMTAB
$STRTAB
$RELA
$REL
$HASH
$NOTE
$NOBITS

The .bss section in Figure 4-3 illustrates this point.

NOTE

If the input section has a user-definedsection_typevalue (i.e.,
betweenSHT_LOUSERand SHT_HIUSER, see Chapter 22
(“Executable and Linking Format (ELF)”)) it is treated as a
$PROGBITSsection. Note that no method exists for naming this
section_typevalue in the mapfile, but these sections can be
redirected using the other attr ibute value specif ications
(section_flags, section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files
and libraries have been read in, no program header entry is produced for
that segment.
4-33

Compilation Systems Volume 1 (Tools)

k

he

es-
NOTE

Input sections of type$SYMTAB, $STRTAB, $REL, and
$RELA are used internally byld . Directives that refer to these
section_typescan only map output sections produced byld to
segments.

Error Messages 4

When using the mapfile option,ld can return the following types of error messages:

Warnings Do not stop execution of the link editor nor prevent the lin
editor from producing a viablea.out .

Fatal Errors Stop execution of the link editor at the point at which t
fatal error occurred.

Eitherwarning: or fatal: appears at the beginning of each error message. Error m
sages are not numbered. The following conditions produce warnings:

• A physical_addressor avirtual_addressvalue or alengthvalue appears for
any segment other than aLOADsegment (the directive is ignored)

• A second declaration line exists for the same segment that changes an
attribute value(s) (the second declaration overrides the original)

• An attribute value(s) (segment_typeand/or segment_flagsfor text and
data ; segment_typefor note) was changed for one of the built-in
segments

• An attribute value(s) (segment_type, segment_flags, length and/or
alignment) was changed for a segment created by an implicit declaration

The following conditions produce fatal errors:

• Specifying more than one-M option on the command line

• Specifying both the-r and the-M option on the same command line

• A mapfile cannot be opened or read

• A syntax error is found in the mapfile

NOTE

ld does not return an error if afile_name, section_name,
segment_nameor symbol_namedoes not conform to the rules in
“Mapfile Structure and Syntax” on page 4-24 unless this condi-
tion produces a syntax error. For instance, if a name begins with a
special character and this name is at the beginning of a directive
line, ld returns an error. If the name is asection_name(appearing
within the directive)ld does not return an error.
4-34

Link Editor and Linking
• More than one segment_type, segment_flags, virtual_address,
physical_address, length, or alignmentvalue appears on a single declaration
line

• You attempt to manipulate either theinterp segment ordynamic
segment in a mapfile

NOTE

The interp and dynamic segments are special built- in
segments that you cannot change in any way.

• A segment grows larger than the size specified by yourlength attribute
value

• A user-definedvirtual_addressvalue causes a segment to overlap the
previous segment

• More than onesection_name, section_type, or section_flagsvalue appears
on a single directive line

• A flag and its complement (e.g.,A and!A) appear on a single directive line

Quick-Reference Guide 4

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefixlib and the suffix.so ; archives, or statically
linked libraries, are designated by the prefixlib and the suffix.a.
libc.so , then, is the shared object version of the standard C library;
libc.a is the archive version.

2. These conventions are recognized, in turn, by the-l option to thecc
command. That is,-l x directs the link editor to search the shared object
lib x.so or the archive librarylib x.a . Thecc command automatically
passes-lc to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program
transparently.

3. By default, the link editor chooses the shared object implementation of a
library, lib x.so , in preference to the archive library implementation,
lib x.a , in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system,/usr/lib and/lib , in that order.

In this arrangement, then, C programs are dynamically l inked withlibc.so
automatically:

cc file1.c file2.c file3.c

To link your program statically withlibc.a , turn off the dynamic linking default with
the-Zlink=static option:
4-35

Compilation Systems Volume 1 (Tools)

kept

t is

y the
le

that

e

cc -Zlink=static file1.c file2.c file3.c

Specify the-l option explicitly to link your program with any other library. If the library
is in the standard place, the command

cc file1.c file2.c file3.c -l x

will direct the link editor to search forlib x.so , thenlib x.a in the standard place. Note
that the compilation system supplies shared object versions only oflibc and libdl .
(Other shared object libraries are supplied with the operating system, and usually are
in the standard places.) Note too that as a rule it’s best to place-l at the end of the
command line.

If the library is not in the standard place, specify the path of the directory in which i
stored with the-L option

cc -L dir file1.c file2.c file3.c -lx

or the environment variableLD_LIBRARY_PATH

LD_LIBRARY_PATH=dir;export LD_LIBRARY_PATH
cc file1.c file2.c file3.c -lx

If the library is a shared object and is not in the standard place, you must also specif
path of the directory in which it is stored with either the environment variab
LD_RUN_PATHat link time, or the environment variableLD_LIBRARY_PATHat run
time:

LD_RUN_PATH=dir;export LD_RUN_PATH
LD_LIBRARY_PATH=dir;export LD_LIBRARY_PATH

It’s best to use an absolute path when you set these environment variables. Note
LD_LIBRARY_PATHis read both at link time and at run time.

To direct the link editor to searchlib x.a wherelib x.so exists in the same directory,
turn off the dynamic linking default with the-Zlink=static option:

cc -Zlink=static -L dir file1.c file2.c file3.c -lx

That command will direct the link editor to searchlibc.a as well as lib x.a . To link
your program statically with lib x.a and dynamically withlibc.so , use the
-Zlibs=static and-Zlibs=dynamic options to turn dynamic linking off and on:

cc -L dir file1.c file2.c file3.c -Zlibs=static -lx \
-Zlibs=dynamic

Files, including libraries, are searched for definitions in the order they are listed on thcc
command line. The standard C library is always.
4-36

-1
-2
-2
-3
-5
7
-7
-8
-8

-8
-9
0

5
m4 Macro Processor

Introduction . 5
m4 Macros . 5

Defining Macros. 5
Quoting . 5
Arguments . 5
Arithmetic Built-Ins . 5-
File Inclusion . 5
Diversions . 5
System Command. 5
Conditionals . 5
String Manipulation . 5
Printing . 5-1

Compilation Systems Volume 1 (Tools)

sembly
f one

lt-in
ilt-in
rs on

ts
acro.

shed
ments
ning

e no
cting
uoted

for a
acro
ally
ear in
ment
d.
5
Chapter 5m4 Macro Processor

5
5
5

Introduction 5

m4 is a general purpose macro processor that can be used to preprocess C and as
language programs, among other things. Besides the straightforward replacement o
string of text by another,m4lets you perform

• Integer arithmetic

• File inclusion

• Conditional macro expansion

• String and substring manipulation

You can use built-in macros to perform these tasks or define your own macros. Bui
and user-defined macros work exactly the same way except that some of the bu
macros have side effects on the state of the process. A list of built-in macros appea
them4(1) page.

The basic operation ofm4 is to read every legal token (string of ASCII letters and digi
and possibly supplementary characters) and determine if the token is the name of a m
The name of the macro is replaced by its defining text, and the resulting string is pu
back onto the input to be rescanned. Macros may be called with arguments. The argu
are collected and substituted into the right places in the defining text before the defi
text is rescanned.

Macro calls have the general form

name(arg1, arg2, ..., argn)

If a macro name is not immediately followed by a left parenthesis, it is assumed to hav
arguments. Leading unquoted blanks, tabs, and new-lines are ignored while colle
arguments. Left and right single quotes are used to quote strings. The value of a q
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
matching right parenthesis. If fewer arguments are supplied than are in the m
definition, the trailing arguments are taken to be null. Macro evaluation proceeds norm
during the collection of the arguments, and any commas or right parentheses that app
the value of a nested call are as effective as those in the original input text. After argu
collection, the value of the macro is pushed back onto the input stream and rescanne

You invokem4with a command of the form

m4 file file file
5-1

Compilation Systems Volume 1 (Tools)

t is a

e

).)

e

Each argument file is processed in order. If there are no arguments or if an argumen
hyphen, the standard input is read. If you are eventually going to compile them4output,
you could use a command something like this:

m4 file1.m4 > file1.c

You can use the-D option to define a macro on them4command line. Suppose you hav
two similar versions of a program. You might have a singlem4 input file capable of
generating the two output files. For example,file1.m4 could contain lines such as

if(VER, 1, do_something)
if(VER, 2, do_something)

(makefiles are discussed in Chapter 13 (“Managing File Interactions with make”
Your makefile for the program might look like this:

file1.1.c : file1.m4
m4 -DVER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4
m4 -DVER=2 file1.m4 > file1.2.c
...

You can use the-U option to “undefine”VER. If file1.m4 contains

if(VER, 1, do_something)
if(VER, 2, do_something)
ifndef(VER, do_something)

then yourmakefile would contain

file0.0.c : file1.m4
m4 -UVER file1.m4 > file1.0.c
...

file1.1.c : file1.m4
m4 -DVER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4
m4 -DVER=2 file1.m4 > file1.2.c
...

m4 Macros 5

Defining Macros 5

The primary built-inm4macro isdefine() , which is used to define new macros. Th
following input
5-2

m4 Macro Processor

le
tary

tains

it is

hich

ion

t

ded
lue of
define(name, stuff)

causes the stringnameto be defined asstuff. All subsequent occurrences ofnamewill be
replaced bystuff. The defined string must contain only ASCII alphanumeric or printab
supplementary characters and must begin with a letter or printable supplemen
character (underscore counts as a letter). The defining string is any text that con
balanced parentheses; it may stretch over multiple lines. As a typical example

define(N, 100)
...
if (i > N)

definesN to be100 and uses the “symbolic constant”N in a laterif statement. As noted,
the left parenthesis must immediately follow the worddefine to signal thatdefine()
has arguments. If the macro name is not immediately followed by a left parenthesis,
assumed to have no arguments. In the previous example, then,N is a macro with no
arguments.

A macro name is only recognized as such if it appears surrounded by characters w
cannot be used in a macro name. In the following example

define(N, 100)
...
if (NNN > 100)

the variableNNNis unrelated to the defined macroNeven though the variable containsNs.

m4expands macro names into their defining text as soon as possible.

define(N, 100)
define(M, N)

definesMto be100 because the stringN is immediately replaced by100 as the arguments
of define(M, N) are collected. To put this another way, ifN is redefined,Mkeeps the
value100 .

There are two ways to avoid this behavior. The first, which is specific to the situat
described here, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the stringN, so when the value ofM is requested later, the resul
will always be the value ofN at that time (because the M will be replaced byNwhich will
be replaced by 100).

Quoting 5

The more general solution is to delay the expansion of the arguments ofdefine() by
quoting them. Any text surrounded by left and right single quotes is not expan
immediately, but has the quotes stripped off as the arguments are collected. The va
the quoted string is the string stripped of the quotes.
5-3

Compilation Systems Volume 1 (Tools)

it

ing to

s

s can

stead
long.

ed.
define(N, 100)
define(M, ‘N’)

definesMas the stringN, not100 .

The general rule is thatm4 always strips off one level of single quotes whenever
evaluates something. This is true even outside of macros. If the worddefine is to appear
in the output, the word must be quoted in the input:

‘define’ = 1;

It’s usually best to quote the arguments of a macro to assure that what you are assign
the macro name actually gets assigned. To redefineN, for example, you delay its
evaluation by quoting:

define(N, 100)
...
define(‘N’, 200)

Otherwise

define(N, 100)
...
define(N, 200)

the N in the second definition is immediately replaced by100 . The effect is the same as
saying

define(100, 200)

Note that this statement will be ignored bym4because only things that look like name
can be defined.

If left and right single quotes are not convenient for some reason, the quote character
be changed with the built-in macrochangequote() :

changequote([,])

In this example the macro makes the “quote” characters the left and right brackets in
of the left and right single quotes. The quote symbols can be up to five characters
The original characters can be restored by usingchangequote() without arguments:

changequote

undefine() removes the definition of a macro or built-in:

undefine(‘N’)

Here the macro removes the definition ofN. Be sure to quote the argument to
undefine() . Built-ins can be removed withundefine() as well:

undefine(‘define’)

Note that once a built-in is removed or redefined, its original definition cannot be reus

Macros can be renamed withdefn() . Suppose you want the built-indefine() to be
calledXYZ() . You specify
5-4

m4 Macro Processor

d.
ade

lue
of

one
ions
of its

ssible
ot
nates

are
define(XYZ, defn(‘define’))
undefine(‘define’)

After this,XYZ() takes on the original meaning ofdefine() .

XYZ(A, 100)

definesA to be100 .

The built-in ifdef() provides a way to determine if a macro is currently define
Depending on the system, a definition appropriate for the particular machine can be m
as follows:

ifdef(‘pdp11’, ‘define(wordsize,16)’)
ifdef(‘u3b’, ‘define(wordsize,32)’)

The ifdef() macro permits three arguments. If the first argument is defined, the va
of ifdef() is the second argument. If the first argument is not defined, the value
ifdef() is the third argument:

ifdef(‘unix’, on UNIX, not on UNIX)

If there is no third argument, the value ofifdef() is null.

Arguments 5

The previous sections focused on the simplest form of macro processing — replacing
string with another (fixed) string. Macros can also be defined so that different invocat
have different results. In the replacement text for a macro (the second argument
define()), any occurrence of$n is replaced by thenth argument when the macro is
actually used. The macrobump() , defined as

define(bump, $1 = $1 + 1)

is equivalent tox = x + 1 for bump(x) .

A macro can have as many arguments as you want, but only the first nine are acce
individually, $1 through$9 . $0 refers to the macro name itself. Arguments that are n
supplied are replaced by null strings, so a macro can be defined that simply concate
its arguments:

define(cat, $1$2$3$4$5$6$7$8$9)

cat(x, y, z) is equivalent toxyz . Arguments$4 through$9 are null because no
corresponding arguments were provided.

Leading unquoted blanks, tabs, or new-lines that occur during argument collection
discarded. All other white space is retained, so

define(a, b c)

definesa to beb c .
5-5

Compilation Systems Volume 1 (Tools)

s not

ent

tion.

.

ted

so
Arguments are separated by commas. A comma “protected” by parentheses doe
terminate an argument:

define(a, (b,c))

has two arguments,a and(b,c) . You can specify a comma or parenthesis as an argum
by quoting it.

$* is replaced by a list of the arguments given to the macro in a subsequent invoca
The listed arguments are separated by commas.

define(a, 1)
define(b, 2)
define(star, ‘$*’)
star(a, b)

gives the result1,2 .

star(‘a’, ‘b’)

gives the same result becausem4 strips the quotes froma and b as it collects the
arguments ofstar() , then expandsa andb when it evaluatesstar() .

$@is identical to$* except that each argument in the subsequent invocation is quoted

define(a, 1)
define(b, 2)
define(at, ‘$@’)
at(‘a’, ‘b’)

gives the resulta,b because the quotes are put back on the arguments whenat() is
evaluated.

$# is replaced by the number of arguments in the subsequent invocation.

define(sharp, ‘$#’)
sharp(1, 2, 3)

gives the result3,

sharp()

gives the result1, and

sharp

gives the result0.

The built-in shift() returns all but its first argument. The other arguments are quo
and pushed back onto the input with commas in between. The simplest case

shift(1, 2, 3)

gives2,3 . As with $@, you can delay the expansion of the arguments by quoting them,
5-6

m4 Macro Processor

ng

e

of an
e

define(a, 100)
define(b, 200)
shift(‘a’, ‘b’)

gives the resultb because the quotes are put back on the arguments whenshift() is
evaluated.

Arithmetic Built-Ins 5

m4provides three built-in macros for doing integer arithmetic.incr() increments its
numeric argument by 1.decr() decrements by 1. To handle the common programmi
situation in which a variable is to be defined as “one more than N” you would use

define(N, 100)
define(N1, ‘incr(N)’)

N1 is defined as one more than the current value ofN.

The more general mechanism for arithmetic is a built-in calledeval() , which is capable
of arbitrary arithmetic on integers. Its operators in decreasing order of precedence ar

+ - (unary)
**
* / %
+ -
== != < <= > >=
! ~
&
| ^
&&
||

Parentheses may be used to group operations where needed. All the operands
expression given toeval() must ultimately be numeric. The numeric value of a tru
relation (like1 > 0) is 1, and false is 0. The precision ineval() is 32 bits on the UNIX
operating system.

As a simple example, you can defineMto be2**N+1 with

define(M, ‘eval(2**N+1)’)

Then the sequence

define(N, 3)
M(2)

gives9 as the result.

File Inclusion 5

A new file can be included in the input at any time with the built-in macroinclude() :
5-7

Compilation Systems Volume 1 (Tools)

of
can

e

terial
9.

f a

ons
sion.

does

is
include(filename)

inserts the contents offilenamein place of the macro and its argument. The value
include() (its replacement text) is the contents of the file. If needed, the contents
be captured in definitions and so on.

A fatal error occurs if the file named ininclude() cannot be accessed. To get som
control over this situation, the alternate formsinclude() (“silent include”) can be used.
This built-in says nothing and continues if the file named cannot be accessed.

Diversions 5

m4output can be diverted to temporary files during processing, and the collected ma
can be output on command.m4maintains nine of these diversions, numbered 1 through
If the built-in macrodivert(n) is used, all subsequent output is put onto the end o
temporary file referred to asn. Diverting to this file is stopped by thedivert() or
divert(0) macros, which resume the normal output process.

Diverted text is normally output at the end of processing in numerical order. Diversi
can be brought back at any time by appending the new diversion to the current diver
Output diverted to a stream other than 0 through 9 is discarded. The built-inundivert()
brings back all diversions in numerical order;undivert() with arguments brings back
the selected diversions in the order given. “Undiverting” discards the diverted text (as
diverting) into a diversion whose number is not between 0 and 9, inclusive.

The value ofundivert() is not the diverted text. Furthermore, the diverted material
not rescanned for macros. The built-indivnum() returns the number of the currently
active diversion. The current output stream is 0 during normal processing.

System Command 5

Any program can be run by using thesyscmd() built-in:

syscmd(date)

invokes the UNIX operating systemdate command. Normally,syscmd() would be
used to create a file for a subsequentinclude() .

To make it easy to name files uniquely, the built-inmaketemp() replaces a string of
XXXXXin the argument with the process ID of the current process.

Conditionals 5

Arbitrary conditional testing is performed with the built-inifelse() . In its simplest
form

ifelse(a, b, c, d)
5-8

m4 Macro Processor

r

of

nt.
compares the two stringsa andb. If a andb are identical,ifelse() returns the stringc.
Otherwise, stringd is returned. Thus, a macro calledcompare() can be defined as one
that compares two strings and returnsyes or no , respectively, if they are the same o
different:

define(compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes, which prevent evaluation ofifelse() from occurring too early. If the
final argument is omitted, the result is null, so

ifelse(a, b, c)

is c if a matchesb, and null otherwise.

ifelse() can actually have any number of arguments and provides a limited form
multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the stringa matches the stringb, the result isc. Otherwise, ifd is the same ase, the
result isf. Otherwise, the result isg.

String Manipulation 5

The len() macro returns the length of the string (number of characters) in its argume

len(abcdef)

is 6, and

len((a,b))

is 5.

Thesubstr() macro can be used to produce substrings of strings. If you type

substr(s, i, n)

it will return the substring ofs that starts at theith position (origin 0) and isn characters
long. If n is omitted, the rest of the string is returned. If you type

substr(‘now is the time’,1)

it will return the following string:

now is the time

If i or n are out of range, a blank line is returned. For example, if you type

substr(‘now is the time’,-1)

or

substr(‘now is the time’,1,39)
5-9

Compilation Systems Volume 1 (Tools)

xt
up

line

t is to

le

ms
itions
you will get a blank line.

The index(s1 , s2) macro returns the index (position) ins1 where the strings2 occurs,
-1 if it does not occur. As withsubstr() , the origin for strings is 0.

translit() performs character transliteration and has the general form

translit(s, f, t)

which modifiess by replacing any character inf by the corresponding character int.
Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. Ift is shorter thanf, characters that do not
have an entry int are deleted. As a limiting case, ift is not present at all, characters fromf
are deleted froms.

translit(s, aeiou)

would delete vowels froms .

The macrodnl() deletes all characters that follow it up to and including the ne
new-line. It is useful mainly for throwing away empty lines that otherwise would clutter
m4output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new-line at the end of each line that is not part of the definition. The new-
is copied into the output where it may not be wanted. When you adddnl() to each of
these lines, the new-lines will disappear. Another method of achieving the same resul
input

divert(-1)
define(...)
...
divert

Printing 5

The built-inerrprint() writes its arguments out on the standard error file. An examp
would be

errprint(‘fatal error’)

dumpdef() is a debugging aid that dumps the current names and definitions of ite
specified as arguments. If no arguments are given, then all current names and defin
are printed.
5-10

-1
6-1
-3

-4
-4
6
-7

6-8
0

2
3

14
5

17
-18
6
Lexical Analysis with lex

Introduction . 6
Generating a Lexical Analyzer Program .
Writing lex Source. 6

The Fundamentals of lex Rules .. 6-3
Regular Expressions . 6
Operators . 6
Actions . 6-

Advanced lex Usage . 6
Some Special Features .
lex Routines. 6-1
Definitions. 6-1
Start Conditions. 6-1
User Routines . 6-

Using lex with yacc . 6-1
Miscellaneous . 6-
Summary of Source Format. 6

Compilation Systems Volume 1 (Tools)

ext
, you
late
ine
lems

tain

a

orm
than

ht. In

h as
the

e the
s of
take
6
Chapter 6Lexical Analysis with lex

6
6
6

Introduction 6

lex is a software tool that lets you solve a wide class of problems drawn from t
processing, code enciphering, compiler writing, and other areas. In text processing
might check the spelling of words for errors; in code enciphering, you might trans
certain patterns of characters into others; and in compiler writing, you might determ
what the tokens are in the program to be compiled. The task common to all these prob
is lexical analysis: recognizing different strings of characters that satisfy cer
characteristics. Hence the namelex .

You don't have to uselex to handle problems of this kind. You could write programs in
standard language like C to handle them, too. In fact, whatlex does is produce such C
programs. (lex is therefore called a program generator.) Whatlex offers you, once you
acquire a facility with it, is typically a faster, easier way to create programs that perf
these tasks. Its weakness is that it often produces C programs that are longer
necessary for the task at hand and that execute more slowly than they otherwise mig
many applications this is a minor consideration, and the advantages of usinglex
considerably outweigh it.

lex can also be used to collect statistical data on features of an input text, suc
character count, word length, number of occurrences of a word, and so forth. In
remaining sections of this chapter, we will see

• How to generate a lexical analyzer program

• How to write lex source

• How to translate source

• How to uselex with yacc

Generating a Lexical Analyzer Program 6

lex generates a C language scanner from a source specification that you write to solv
problem at hand. This specification consists of a list of rules indicating sequence
characters — expressions — to be searched for in an input text, and the actions to
when an expression is found. We'll show you how to write alex specification in “Writing
lex Source” on page 6-3.

The C source code for the lexical analyzer is generated when you enter
6-1

Compilation Systems Volume 1 (Tools)

, that
ar,

red.

t.

s the

e

lex lex.l

wherelex.l is the file containing yourlex specification. (The namelex.l is the
favored convention, but you may use whatever name you want. Keep in mind, though
the .l suffix is a convention recognized by other UNIX system tools, in particul
make.) The source code is written to an output file calledlex.yy.c by default. That file
contains the definition of a function calledyylex() that returns 1 whenever an
expression you have specified is found in the input text, 0 when end of file is encounte
Each call toyylex() parses one token. Whenyylex() is called again, it picks up
where it left off.

Note that runninglex on a specification that is spread across several files

lex lex1.l lex2.l lex3.l

produces onelex.yy.c . Invoking lex with the-t option causes it to write its output to
stdout rather thanlex.yy.c , so that it can be redirected:

lex -t lex.l > lex.c

Options tolex must appear between the command name and the file name argumen

The lexical analyzer code stored inlex.yy.c (or the.c file to which it was redirected)
must be compiled to generate the executable object program, or scanner, that perform
lexical analysis of an input text. Thelex library, libl.a , supplies a defaultmain() that
calls the functionyylex() , so you need not supply your ownmain() . The library is
accessed by specifyinglibl with the-l option tocc :

cc lex.yy.c -ll

Alternatively, you may want to write your own driver. The following is similar to th
library version:

extern int yylex();

int yywrap()
{

return(1);
}

main()
{

while (yylex())
;

}

We'll take a closer look at the functionyywrap() in “lex Routines” on page 6-10. For
now it's enough to note that when your driver file is compiled withlex.yy.c

cc lex.yy.c driver.c

its main() will call yylex() at run time exactly as if thelex library had been loaded.
The resulting executable readsstdin and writes its output tostdout . Figure 6-1 shows
how lex works.
6-2

Lexical Analysis with lex

tines.
l, but

les
that

ng of
to

e on
The
the
Figure 6-1. Creation and Use of a Lexical Analyzer with lex

Writing lex Source 6

lex source consists of at most three sections: definitions, rules, and user-defined rou
The rules section is mandatory. Sections for definitions and user routines are optiona
if present, must appear in the indicated order:

definitions
%%
rules
%%
user routines

The Fundamentals of lex Rules 6

The mandatory rules section opens with the delimiter%%. If a routines section follows,
another%%delimiter ends the rules section. The%%delimiters must be entered at the
beginning of a line, without leading blanks. If there is no second delimiter, the ru
section is presumed to continue to the end of the program. Lines in the rules section
begin with white space and that appear before the first rule are copied to the beginni
the functionyylex() , immediately after the first brace. You might use this feature
declare local variables foryylex() .

Each rule consists of a specification of the pattern sought and the action(s) to tak
finding it. The specification of the pattern must be entered at the beginning of a line.
scanner writes input that does not match a pattern directly to the output file. So
simplest lexical analyzer program is just the beginning rules delimiter,%%. It writes out the
entire input to the output with no changes at all.

lex
source lex

lexical
analyzer

code

lexical
analyzer
program

output:
tokens,

text, etc.

C
compiler

input
text
6-3

Compilation Systems Volume 1 (Tools)

sion.
tors.
ll:

s in an

does
lar

t be
the
e of
s to
re

ding
ion.
d an

in a

een

ndard
Regular Expressions 6

You specify the patterns you are interested in with a notation called a regular expres
A regular expression is formed by stringing together characters with or without opera
The simplest regular expressions are strings of text characters with no operators at a

apple
orange
pluto

These three regular expressions match any occurrences of those character string
input text. If you want to have the scanner remove every occurrence oforange from the
input text, you could specify the rule

orange ;

Because you specified a null action on the right with the semicolon, the scanner
nothing but print out the original input text with every occurrence of this regu
expression removed, that is, without any occurrence of the stringorange at all.

Operators 6

Unlike orange above, most of the expressions that we want to search for canno
specified so easily. The expression itself might simply be too long. More commonly,
class of desired expressions is too large; it may, in fact, be infinite. Thanks to the us
operators — summarized in Table 6-1 below — we can form regular expression
signify any expression of a certain class. The+ operator, for instance, means one or mo
occurrences of the preceding expression, the? means 0 or 1 occurrence(s) of the
preceding expression (which is equivalent, of course, to saying that the prece
expression is optional), and* means 0 or more occurrences of the preceding express
(It may at first seem odd to speak of 0 occurrences of an expression and to nee
operator to capture the idea, but it is often quite helpful. We will see an example
moment.) Som+is a regular expression that matches any string ofms:

mmm
m
mmmmm

and7* is a regular expression that matches any string of zero or more7s:

77
77777

777

The empty third line matches because it has no7s in it at all.

The | operator indicates alternation, so thatab|cd matches eitherab or cd . The
operators{} specify repetition, so thata{1,5} looks for 1 to 5 occurrences ofa.
Brackets,[] , indicate any one character from the string of characters specified betw
the brackets. Thus,[dgka] matches a singled, g, k , or a. Note that the characters
between brackets must be adjacent, without spaces or punctuation. The^ operator, when it
appears as the first character after the left bracket, indicates all characters in the sta
set except those specified between the brackets. (Note that| , {} , and^ may serve other
6-4

Lexical Analysis with lex

er (

it, an

not
t to
ter in

ular

rs or
tches

wed
y

rs to
a

by a
taken

od to
purposes as well; see below.) Ranges within a standard alphabetic or numeric ordA
throughZ, a throughz , 0 through9) are specified with a hyphen.[a-z] , for instance,
indicates any lowercase letter. Somewhat more interestingly,

[A-Za-z0-9*&#]

is a regular expression that matches any letter (whether upper or lowercase), any dig
asterisk, an ampersand, or a sharp character. Given the input text

$$$$?? ????!!!*$$ $$$$$$&+====r~~# ((

the lexical analyzer with the previous specification in one of its rules will recognize* , &,
r , and#, perform on each recognition whatever action the rule specifies (we have
indicated an action here), and print out the rest of the text as it stands. If you wan
include the hyphen character in the class, it should appear as the first or last charac
the brackets:[-A-Z] or [A-Z-] .

The operators become especially powerful in combination. For example, the reg
expression to recognize an identifier in many programming languages is

[a-zA-Z][0-9a-zA-Z]*

An identifier in these languages is defined to be a letter followed by zero or more lette
digits, and that is just what the regular expression says. The first pair of brackets ma
any letter. The second, if it were not followed by a* , would match any digit or letter. The
two pairs of brackets with their enclosed characters would then match any letter follo
by a digit or a letter. But with the* , the example matches any letter followed by an
number of letters or digits. In particular, it would recognize the following as identifiers:

e
not
idenTIFIER
pH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFIER
5times
$hello

becausenot_idenTIFIER has an embedded underscore;5times starts with a digit,
not a letter; and$hello starts with a special character.

A potential problem with operator characters is how we can specify them as characte
look for in a search pattern. The last example, for instance, will not recognize text with*
in it. lex solves the problem in one of two ways: an operator character preceded
backslash, or characters (except backslash) enclosed in double quotation marks, are
literally, that is, as part of the text to be searched for. To use the backslash meth
recognize, say, a* followed by any number of digits, we can use the pattern

[1-9]
6-5

Compilation Systems Volume 1 (Tools)

ion

a rule,
ns.
one
You
tate-
ay or
ssion

ms,
To recognize a\ itself, we need two backslashes:\\ . Similarly, “x*x” matchesx*x ,
and“y“ z“ matchesy”z . Otherlex operators are noted as they arise in the discuss
below.lex recognizes all the C language escape sequences.

Actions 6

Once the scanner recognizes a string matching the regular expression at the start of
it looks to the right of the rule for the action to be performed. You supply the actio
Kinds of actions include recording the token type found and its value, if any; replacing
token with another; and counting the number of instances of a token or token type.
write these actions as program fragments in C. An action may consist of as many s
ments as are needed for the job at hand. You may want to change the text in some w
simply print a message noting that the text has been found. So, to recognize the expre
Amelia Earhart and to note such recognition, the rule

"Amelia Earhart" printf("found Amelia");

would do. And to replace in a text lengthy medical terms with their equivalent acrony
a rule such as

Electroencephalogram printf("EEG");

Table 6-1. lex Operators

Expression Description

\ x x, if x is a lex operator

“ xy” xy, even ifx or y arelex operators (except\)

[xy] x or y

[x-z] x, y, or z

[^ x] any character butx

. any character but new-line

^x x at the beginning of a line

<y>x x whenlex is in start conditiony

x$ x at the end of a line

x? optionalx

x* 0, 1, 2, . . . instances ofx

x+ 1, 2, 3, . . . instances ofx

x{ m, n} m throughn occurrences ofx

xx| yy eitherxx or yy

x | the action onx is the action for the next rule

(x) x

x/ y x but only if followed byy

{ xx} the translation ofxx from the definitions section
6-6

Lexical Analysis with lex

and
es,

we

revi-

ents,

f all
rint

r not,
ch
the
tive

ite
when
into

s, you
aws
would be called for. To count the lines in a text, we need to recognize the ends of lines
increment a line counter. As we have noted,lex uses the standard C escape sequenc
including \n for new-line. So, to count lines we might have

\n lineno++;

wherelineno , like other C variables, is declared in the definitions section that
discuss later.

Input is ignored when the C language null statement; is specified. So the rule

[\t\n] ;

causes blanks, tabs, and new-lines to be ignored. Note that the alternation operator| can
also be used to indicate that the action for a rule is the action for the next rule. The p
ous example could have been written:

" " |
\t |
\n ;

with the same result.

The scanner stores text that matches an expression in a character array calledyytext[] .
You can print or manipulate the contents of this array as you like. In fact,lex provides a
macro calledECHOthat is equivalent toprintf("%s", yytext) . We'll see an example
of its use in “Start Conditions” on page 6-13.

Sometimes your action may consist of a long C statement, or two or more C statem
and you wish to write it on several lines. To informlex that the action is for one rule
only, simply enclose the C code in braces. For example, to count the total number o
digit strings in an input text, print the running total of the number of digit strings, and p
out each one as soon as it is found, yourlex code might be

\+?[1-9]+ { digstrngcount++;
printf("%d",digstrngcount);
printf("%s", yytext); }

This specification matches digit strings whether they are preceded by a plus sign o
because the? indicates that the preceding plus sign is optional. In addition, it will cat
negative digit strings because that portion following the minus sign will match
specification. “Advanced lex Usage” explains how to distinguish negative from posi
integers.

Advanced lex Usage 6

lex provides a suite of features that let you process input text riddled with qu
complicated patterns. These include rules that decide what specification is relevant
more than one seems so at first; functions that transform one matching pattern
another; and the use of definitions and subroutines. Before considering these feature
may want to affirm your understanding thus far by examining an example that dr
together several of the points already covered:
6-7

Compilation Systems Volume 1 (Tools)

tions
r

zes a
e

The
eral

e

) in

the
rd”
The first three rules recognize negative integers, positive integers, and negative frac
between 0 and -1. The use of the terminating+ in each specification ensures that one o
more digits compose the number in question. Each of the next three rules recogni
specific pattern. The specification forrailroad matches cases where one or mor
blanks intervene between the two syllables of the word. In the cases ofrailroad and
crook , we could have simply printed a synonym rather than the messages stated.
rule recognizing a function simply increments a counter. The last rule illustrates sev
points:

• The braces specify an action sequence that extends over several lines.

• Its action uses thelex array yytext[] , which stores the recognized
character string.

• Its specification uses the* to indicate that zero or more letters may follow
theG.

Some Special Features 6

Besides storing the matched input text inyytext[] , the scanner automatically counts th
number of characters in a match and stores it in the variableyyleng . You may use this
variable to refer to any specific character just placed in the arrayyytext[] . Remember
that C language array indexes start with 0, so to print out the third digit (if there is one
a just recognized integer, you might enter

[1-9]+ {if (yyleng > 2)
printf("%c", yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that may arise from
set of rules that you write. In the following lexical analyzer example, the “reserved wo
end could match the second rule as well as the eighth, the one for identifiers:

%%
-[0-9]+ printf("negative integer");
\+?[0-9]+ printf("positive integer");
-0.[0-9]+ printf("negative fraction, no whole number part");
rail[\t]+road printf("railroad is one word");
crook printf("Here's a crook");
function subprogcount++;
G[a-zA-Z]* { printf("may have a G word here:%s", yytext);

Gstringcount++; }
6-8

Lexical Analysis with lex

ion,

s will

is the
e are

r that.
e

d the
u've

. The

h,
in

tran
lex follows the rule that, where there is a match with two or more rules in a specificat
the first rule is the one whose action will be executed. By placing the rule forend and the
other reserved words before the rule for identifiers, we ensure that our reserved word
be duly recognized.

Another potential problem arises from cases where one pattern you are searching for
prefix of another. For instance, the last two rules in the lexical analyzer example abov
designed to recognize> and>=. If the text has the string>= at one point, you might worry
that the lexical analyzer would stop as soon as it recognized the> character and execute
the rule for>, rather than read the next character and execute the rule forb. lex follows
the rule that it matches the longest character string possible and executes the rule fo
Here the scanner would recognize the>= and act accordingly. As a further example, th
rule would enable you to distinguish+ from ++ in a C program.

Still another potential problem exists when the analyzer must read characters beyon
string you are seeking because you cannot be sure that you've in fact found it until yo
read the additional characters. These cases reveal the importance of trailing context
classic example here is theDOstatement in Fortran. In the statement

DO 50 k = 1 , 20, 1

we cannot be sure that the first 1 is the initial value of the indexk until we read the first
comma. Until then, we might have the assignment statement

DO50k = 1

(Remember that Fortran ignores all blanks.) The way to handle this is to use the slas/ ,
which signifies that what follows is trailing context, something not to be stored
yytext[] , because it is not part of the pattern itself. So the rule to recognize the For
DOstatement could be

DO/([]*[0-9]+[]*[a-zA-Z0-9]+=[a-zA-Z0-9]+,) {
printf("found DO");
}

begin return(BEGIN);
end return(END);
while return(WHILE);
if return(IF);
package return(PACKAGE);
reverse return(REVERSE);
loop return(LOOP);
[a-zA-Z][a-zA-Z0-9]* { tokval = put_in_tabl();

return(IDENTIFIER); }
[0-9]+ { tokval = put_in_tabl();

return(INTEGER); }
\+ { tokval = PLUS;

return(ARITHOP); }
\- { tokval = MINUS;

return(ARITHOP); }
> { tokval = GREATER;

return(RELOP); }
>= { tokval = GREATEREQL;

return(RELOP); }
6-9

Compilation Systems Volume 1 (Tools)

. To
ions”

f a

you
rt a
s

s

acter,
tput

ial

all
match
s of

eeds,
the

har-
Different versions of Fortran have limits on the size of identifiers, here the index name
simplify the example, the rule accepts an index name of any length. See “Start Condit
on page 6-13 for a discussion oflex `s similar handling of prior context.

lex uses the$ symbol as an operator to mark a special trailing context — the end o
line. An example would be a rule to ignore all blanks and tabs at the end of a line:

[\t]+$;

which could also be written:

[\t]+/\n ;

On the other hand, if you want to match a pattern only when it starts a line or a file,
can use thê operator. Suppose a text-formatting program requires that you not sta
line with a blank. You might want to check input to the program with some such rule a

^[] printf("error: remove leading blank");

Note the difference in meaning when the^ operator appears inside the left bracket, a
described in “Operators” on page 6-4.

lex Routines 6

Some of your action statements themselves may require your reading another char
putting one back to be read again a moment later, or writing a character on an ou
device.lex supplies three macros to handle these tasks —input() , unput(c) , and
output(c) , respectively. One way to ignore all characters between two spec
characters, say between a pair of double quotation marks, would be to useinput() , thus:

\" while (input() != '"');

Upon finding the first double quotation mark, the scanner will simply continue reading
subsequent characters so long as none is a double quotation mark, and not look for a
again until it finds a second double quotation mark. (See the further example
input() andunput(c) usage in “User Routines” on page 6-14.)

By default, these routines are provided as macro definitions. To handle special I/O n
such as writing to several files, you may use standard I/O routines in C to rewrite
functions. Note, however, that they must be modified consistently. In particular, the c
acter set used must be consistent in all routines, and a value of 0 returned byinput()
must mean end of file. The relationship betweeninput() and unput(c) must be
maintained or thelex lookahead will not work.

If you do provide your owninput() , output(c) , or unput(c) , you will have to
write a#undef input and so on in your definitions section first:

#undef input
#undef output

. . .
#define input() . . . etc.
more declarations

. . .
6-10

Lexical Analysis with lex

fur-

-
t to

nly

d by

be

. The
d are
r,
t is
tween
ing it
ewhat

s

d up

an
in
e
cters

hen
Your new routines will replace the standard ones. See “Definitions” on page 6-12 for
ther details.

A lex library routine that you may sometimes want to redefine isyywrap() , which is
called whenever the scanner reaches end of file. Ifyywrap() returns 1, the scanner con
tinues with normal wrapup on end of input. Occasionally, however, you may wan
arrange for more input to arrive from a new source. In that case, redefineyywrap() to
return 0 whenever further processing is required. The defaultyywrap() always returns 1.
Note that it is not possible to write a normal rule that recognizes end of file; the o
access to that condition is throughyywrap() . Unless a private version ofinput() is
supplied, a file containing nulls cannot be handled because a value of 0 returne
input() is taken to be end of file.

There are a number oflex routines that let you handle sequences of characters to
processed in more than one way. These includeyymore() , yyless(n) , andREJECT.
Recall that the text that matches a given specification is stored in the arrayyytext[] . In
general, once the action is performed for the specification, the characters inyytext[]
are overwritten with succeeding characters in the input stream to form the next match
function yymore() , by contrast, ensures that the succeeding characters recognize
appended to those already inyytext[] . This lets you do one thing and then anothe
when one string of characters is significant and a longer one including the firs
significant as well. Consider a language that defines a string as a set of characters be
double quotation marks and specifies that to include a double quotation mark in a str
must be preceded by a backslash. The regular expression matching that is som
confusing, so it might be preferable to write:

\" [^"]*{
if (yytext[yyleng-1] == '\\')

yymore();
else
. . . normal processing
}

When faced with the string“abc“ def” , the scanner will first match the character
“abc‚ whereupon the call toyymore() will cause the next part of the string“def to be
tacked on the end. The double quotation mark terminating the string should be picke
in the code labeled “normal processing.”

The functionyyless(n) lets you specify the number of matched characters on which
action is to be performed: only the firstn characters of the expression are retained
yytext[] . Subsequent processing resumes at thenth + 1 character. Suppose you ar
again in the code deciphering business and the idea is to work with only half the chara
in a sequence that ends with a certain one, say upper or lowercaseZ. The code you want
might be

[a-yA-Y]+[Zz] { yyless(yyleng/2);
. . . process first half of string. . . }

Finally, the functionREJECTlets you more easily process strings of characters even w
they overlap or contain one another as parts.REJECTdoes this by immediately jumping to
the next rule and its specification without changing the contents ofyytext[] . If you
want to count the number of occurrences both of the regular expressionsnapdragon and
of its subexpressiondragon in an input text, the following will do:
6-11

Compilation Systems Volume 1 (Tools)

r of

ply
riables

tical

ese
tween a

y
The

d by

al

ns
he left
on the
ithin
ake

n
rs,
snapdragon {countflowers++; REJECT;}
dragon countmonsters++;

As an example of one pattern overlapping another, the following counts the numbe
occurrences of the expressionscomedian anddiana , even where the input text has
sequences such ascomediana. :

comedian {comiccount++; REJECT;}
diana princesscount++;

Note that the actions here may be considerably more complicated than sim
incrementing a counter. In all cases, you declare the counters and other necessary va
in the definitions section commencing thelex specification.

Definitions 6

The lex definitions section may contain any of several classes of items. The most cri
are external definitions, preprocessor statements like#include , and abbreviations.
Recall that for validlex source this section is optional, but in most cases some of th
items are necessary. Preprocessor statements and C source code should appear be
line of the form%{ and one of the form%}. All lines between these delimiters —
including those that begin with white space — are copied tolex.yy.c immediately
before the definition ofyylex() . (Lines in the definition section that are not enclosed b
the delimiters are copied to the same place provided they begin with white space.)
definitions section is where you would normally place C definitions of objects accesse
actions in the rules section or by routines with external linkage.

One example occurs in usinglex with yacc , which generates parsers that call a lexic
analyzer. In this context, you should include the filey.tab.h , which may contain
#define s for token names:

%{
#include "y.tab.h"
extern int tokval;
int lineno;
%}

After the %} that ends your#include 's and declarations, you place your abbreviatio
for regular expressions to be used in the rules section. The abbreviation appears on t
of the line and, separated by one or more spaces, its definition or translation appears
right. When you later use abbreviations in your rules, be sure to enclose them w
braces. Abbreviations avoid needless repetition in writing your specifications and m
them easier to read.

As an example, reconsider thelex source reviewed at the beginning of this section o
advancedlex usage. The use of definitions simplifies our later reference to digits, lette
and blanks. This is especially true if the specifications appear several times:
6-12

Lexical Analysis with lex

n is
an
r the
the
ou

uced
Start Conditions 6

Some problems require for their solution a greater sensitivity to prior context tha
afforded by thê operator alone. You may want different rules to be applied to
expression depending on a prior context that is more complex than the end of a line o
start of a file. In this situation you could set a flag to mark the change in context that is
condition for the application of a rule, then write code to test the flag. Alternatively, y
could define forlex the different “start conditions” under which it is to apply each rule.

Consider this problem: copy the input to the output, except change the wordmagic to the
word first on every line that begins with the lettera; changemagic to second on
every line that begins withb; changemagic to third on every line that begins withc .
Here is how the problem might be handled with a flag. Recall thatECHOis a lex macro
equivalent toprintf(“%s”, yytext) :

To handle the same problem with start conditions, each start condition must be introd
to lex in the definitions section with a line reading

%Start name1 name2. . .

where the conditions may be named in any order. The wordStart may be abbreviated to
S or s . The conditions are referenced at the head of a rule with<> brackets. So

<name1>expression

D [0-9]
L [a-zA-Z]
B [\t]+
%%
-{D}+ printf("negative integer");
\+?{D}+ printf("positive integer");
-0.{D}+ printf("negative fraction");
G{L}* printf("may have a G word here");
rail{B}road printf("railroad is one word");
crook printf("criminal");

. .

. .

int flag
%%
^a {flag = 'a'; ECHO;}
^b {flag = 'b'; ECHO;}
^c {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{

case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

}
}

6-13

Compilation Systems Volume 1 (Tools)

ions.

in
n be

ing

or to
ple,

ents
is a rule that is only recognized when the scanner is in start conditionname1. To enter a
start condition, execute the action statement

BEGIN name1;

which changes the start condition toname1. To resume the normal state

BEGIN 0;

resets the initial condition of the scanner. A rule may be active in several start condit
That is,

<name1, name2, name3>

is a valid prefix. Any rule not beginning with the<> prefix operators is always active.

The example can be written with start conditions as follows:

User Routines 6

You may want to use your own routines inlex for much the same reason that you do so
other programming languages. Action code that is to be used for several rules ca
written once and called when needed. As with definitions, this can simplify the writ
and reading of programs. The functionput_in_tabl() , to be discussed in “Using lex
with yacc” on page 6-15, is a good candidate for the user routines section of alex
specification.

Another reason to place a routine in this section is to highlight some code of interest
simplify the rules section, even if the code is to be used for one rule only. As an exam
consider the following routine to ignore comments in a language like C where comm
occur between/* and*/ :

%Start AA BB CC
%%
^a {ECHO; BEGIN AA;}
^b {ECHO; BEGIN BB;}
^c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");
6-14

Lexical Analysis with lex

t
ion
that

put

it is

on
r

to

arser

other

the
r, or

ify the
There are three points of interest in this example. First, theunput(c) macro (putting
back the last character read) is necessary to avoid missing the final/ if the comment ends
with a **/ . In this case, eventually having read a* , the scanner finds that the nex
character is not the terminal/ and must read some more. Second, the express
yytext[yyleng-1] picks out that last character read. Third, this routine assumes
the comments are not nested, which is indeed the case with the C language.

Using lex with yacc 6

If you work on a compiler project or develop a program to check the validity of an in
language, you may want to use the UNIX system toolyacc (see Chapter 7 (“Parsing with
yacc”)). yacc generates parsers, programs that analyze input to insure that
syntactically correct.lex often forms a fruitful union withyacc in the compiler
development context. Whether or not you plan to uselex with yacc , be sure to read this
section because it covers information of interest to alllex programmers.

As noted, a program uses thelex -generated scanner by repeatedly calling the functi
yylex() . This name is used because ayacc -generated parser calls its lexical analyze
with this very name. To uselex to create the lexical analyzer for a compiler, you want
end eachlex action with the statementreturn token, wheretokenis a defined term
whose value is an integer. The integer value of the token returned indicates to the p
what the lexical analyzer has found. The parser, calledyyparse() by yacc , then
resumes control and makes another call to the lexical analyzer when it needs an
token.

In a compiler, the different values of the token indicate what, if any, reserved word of
language has been found or whether an identifier, constant, arithmetic operato
relational operator has been found. In the latter cases, the analyzer must also spec
exact value of the token: what the identifier is, whether the constant is, say,9 or 888 ,
whether the operator is+ or * , and whether the relational operator is= or >. Consider the

%{
static skipcmnts();
%}
%%
"/*" skipcmnts();
.
. /* rest of rules */
%%
static
skipcmnts()
{

for(;;)
{

while (input() != '*')
;

if (input() != '/')
unput(yytext[yyleng-1])

else return;
}

}

6-15

Compilation Systems Volume 1 (Tools)

that

use

e the
ging
t

n
ed

r the
fined
ns
ss it.

ble
ore
following portion of lex source (discussed in another context earlier) for a scanner
recognizes tokens in a “C-like” language:

Despite appearances, the tokens returned, and the values assigned totokval , are indeed
integers. Good programming style dictates that we use informative terms such asBEGIN,
END, WHILE, and so forth to signify the integers the parser understands, rather than
the integers themselves. You establish the association by using#define statements in
your parser calling routine in C. For example,

#define BEGIN 1
#define END 2
.
#define PLUS 7
.

If the need arises to change the integer for some token type, you then chang
#define statement in the parser rather than hunt through the entire program chan
every occurrence of the particular integer. In usingyacc to generate your parser, inser
the statement

#include "y.tab.h"

in the definitions section of yourlex source. The filey.tab.h , which is created when
yacc is invoked with the-d option, provides#define statements that associate toke
names such asBEGIN, END, and so on with the integers of significance to the generat
parser.

To indicate the reserved words in the example, the returned integer values suffice. Fo
other token types, the integer value of the token type is stored in the programmer-de
variabletokval . This variable, whose definition was an example in the definitio
section, is globally defined so that the parser as well as the lexical analyzer can acce
yacc provides the variableyylval for the same purpose.

Note that the example shows two ways to assign a value totokval . First, a function
put_in_tabl() places the name and type of the identifier or constant in a symbol ta
so that the compiler can refer to it in this or a later stage of the compilation process. M

begin return(BEGIN);
end return(END);
while return(WHILE);
if return(IF);
package return(PACKAGE);
reverse return(REVERSE);
loop return(LOOP);
[a-zA-Z][a-zA-Z0-9]* { tokval = put_in_tabl();

return(IDENTIFIER); }
[0-9]+ { tokval = put_in_tabl();

return(INTEGER); }
\+ { tokval = PLUS;

return(ARITHOP); }
\- { tokval = MINUS;

return(ARITHOP); }
> { tokval = GREATER;

return(RELOP); }
>= { tokval = GREATEREQL;

return(RELOP); }
6-16

Lexical Analysis with lex

input
t
f the
al

ified

ite
s
heir

at the
f
large

(The
to

meter
to the present point,put_in_tabl() assigns a type value totokval so that the parser
can use the information immediately to determine the syntactic correctness of the
text. The functionput_in_tabl() would be a routine that the compiler writer migh
place in the user routines section of the parser. Second, in the last few actions o
example,tokval is assigned a specific integer indicating which arithmetic or relation
operator the scanner recognized. If the variablePLUS, for instance, is associated with the
integer 7 by means of the#define statement above, then when a+ is recognized, the
action assigns totokval the value 7, which indicates the+. The scanner indicates the
general class of operator by the value it returns to the parser (that is, the integer sign
by ARITHOPor RELOP).

In usinglex with yacc , either may be run first. The command

yacc -d grammar.y

generates a parser in the filey.tab.c . As noted, the-d option creates the file
y.tab.h , which contains the#define statements that associate theyacc -assigned
integer token values with the user-defined token names. Now you can invokelex with
the command

lex lex.l

then compile and link the output files with the command

cc lex.yy.c y.tab.c -ly -ll

Note that theyacc library is loaded (via-ly) before thelex library (via -ll) to ensure
that the suppliedmain() will call the yacc parser.

Miscellaneous 6

Recognition of expressions in an input text is performed by a deterministic fin
automaton generated bylex . The-v option prints out for you a small set of statistic
describing the finite automaton. (For a detailed account of finite automata and t
importance forlex , see the Aho, Sethi, and Ullman text,Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986.)

lex uses a table to represent its finite automaton. The maximum number of states th
finite automaton allows is set by default to 500. If yourlex source has a large number o
rules or the rules are very complex, this default value may be too small. You can en
the value by placing another entry in the definitions section of yourlex source as follows:

%n 700

This entry tellslex to make the table large enough to handle as many as 700 states.
-v option will indicate how large a number you should choose.) If you have need
increase the maximum number of state transitions beyond 2000, the designated para
is a, thus:

%a 2800
6-17

Compilation Systems Volume 1 (Tools)

it it.
Summary of Source Format 6

• The general form of alex source file is

definitions
%%
rules
%%
user routines

• The definitions section contains any combination of

- definitions of abbreviations in the form

name space translation

- included code in the form

%{
C code
%}

- start conditions in the form

Start name1 name2. . .

- changes to internal array sizes in the form

%x nnn

wherennn is a decimal integer representing an array size andx selects the
parameter as follows:

• Lines in the rules section have the form

expression action

where the action may be continued on succeeding lines by using braces to delim

• The lex operator characters are

" \ [] ^ - ? . * | () $ / {} <> +

• Importantlex variables, functions, and macros are

p positions

n states

e tree nodes

a transitions

k packed character classes

o output array size
6-18

Lexical Analysis with lex
yytext[] array ofchar

yyleng int

yylex() function

yywrap() function

yymore() function

yyless(n) function

REJECT macro

ECHO macro

input() macro

unput(c) macro

output(c) macro
6-19

Compilation Systems Volume 1 (Tools)
6-20

-1
-3

-5
-7
7-9
2

-16
0

22
23
4
4
5
26
26
26
-26
7

9
30
0

33
7
Parsing with yacc

Introduction . 7
Basic Specifications. 7

Actions . 7
Lexical Analysis . 7

Parser Operation .
Ambiguity and Conflicts . 7-1
Precedence . 7
Error Handling . 7-2
The yacc Environment. 7-
Hints for Preparing Specifications. 7-

Input Style . 7-2
Left Recursion . 7-2
Lexical Tie-Ins . 7-2
Reserved Words . 7-

Advanced Topics . 7-
Simulating error and accept in Actions . 7-
Accessing Values in Enclosing Rules. 7
Support for Arbitrary Value Types . 7-2
yacc Input Syntax. 7-2

Examples . 7-
1. A Simple Example . 7-3
2. An Advanced Example . 7-

Compilation Systems Volume 1 (Tools)

am.

put
r,
re

ked.
rn

es

;
e
ppear
and

lied
icates
tream
avoid

xical
7
Chapter 7Parsing with yacc

7
7
7

Introduction 7

yacc provides a general tool for imposing structure on the input to a computer progr
When you useyacc , you prepare a specification that includes

• A set of rules to describe the elements of the input;

• Code to be invoked when a rule is recognized;

• Either a definition or declaration of a low-level scanner to examine the
input.

yacc then turns the specification into a C language function that examines the in
stream. This function, called aparser, works by calling the low-level scanner. The scanne
called alexical analyzer, picks up items from the input stream. The selected items a
known astokens. Tokens are compared to the input construct rules, calledgrammar rules.
When one of the rules is recognized, the code you have supplied for the rule is invo
This code is called anaction. Actions are fragments of C language code. They can retu
values and make use of values returned by other actions.

The heart of theyacc specification is the collection of grammar rules. Each rule describ
a construct and gives it a name. For example, one grammar rule might be

date : month_name day ´,´ year ;

where date , month_name , day, and year represent constructs of interest
presumably,month_name , day , andyear are defined in greater detail elsewhere. In th
example, the comma is enclosed in single quotes. This means that the comma is to a
literally in the input. The colon and semicolon merely serve as punctuation in the rule
have no significance in evaluating the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This user-supp
routine reads the input stream, recognizes the lower-level constructs, and commun
these as tokens to the parser. The lexical analyzer recognizes constructs of the input s
as terminal symbols; the parser recognizes constructs as non-terminal symbols. To
confusion, we will refer to terminal symbols astokens.

There is considerable leeway in deciding whether to recognize constructs using the le
analyzer or grammar rules. For example, the rules
7-1

Compilation Systems Volume 1 (Tools)

nize
icate

er and

the

imal

put
ce of
ually

mits
bad

or
wer-
n
ower-

the

ram
month_name : 'J' 'a' 'n' ;
month_name : 'F' 'e' 'b' ;

. . .
month_name : 'D' 'e' 'c' ;

might be used in the above example. While the lexical analyzer only needs to recog
individual letters, such low-level rules tend to waste time and space, and may compl
the specification beyond the ability ofyacc to deal with it. Usually, the lexical analyzer
recognizes the month names and returns an indication that amonth_name is seen. In this
case,month_name is a token and the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical analyz
are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above example
rule

date : month '/' day '/' year ;

allowing

7/4/1776

as a synonym for

July 4, 1776

on input. In most cases, this new rule could be slipped into a working system with min
effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. With a left-to-right scan, in
errors are detected as early as is theoretically possible. Thus, not only is the chan
reading and computing with bad input data substantially reduced, but the bad data us
can be found quickly. Error handling, provided as part of the input specifications, per
the reentry of bad data or the continuation of the input process after skipping over the
data.

In some cases,yacc fails to produce a parser when given a set of specifications. F
example, the specifications may be self-contradictory, or they may require a more po
ful recognition mechanism than that available toyacc . The former cases represent desig
errors; the latter cases often can be corrected by making the lexical analyzer more p
ful or by rewriting some of the grammar rules. Whileyacc cannot handle all possible
specifications, its power compares favorably with similar systems. Moreover,
constructs that are difficult foryacc to handle are also frequently difficult for human
beings to handle. Some users have reported that the discipline of formulating validyacc
specifications for their input revealed errors of conception or design early in prog
development.

The remainder of this chapter describes the following subjects:

• Basic process of preparing ayacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions
7-2

Parsing with yacc

ation
Like
ation
brou-

s or
They

form

r

s, and
case
ns or

back-
e

• Error detection and recovery

• The operating environment and special features of the parsersyacc
produces

• Suggestions to improve the style and efficiency of the specifications

• Advanced topics

In addition, there are two examples and a summary of theyacc input syntax.

Basic Specifications 7

Names refer to either tokens or non-terminal symbols.yacc requires token names to be
declared as such. While the lexical analyzer may be included as part of the specific
file, it is perhaps more in keeping with modular design to keep it as a separate file.
the lexical analyzer, other subroutines may be included as well. Thus, every specific
file theoretically consists of three sections: the declarations, (grammar) rules, and su
tines. The sections are separated by double percent signs (%%; the percent sign is generally
used inyacc specifications as an escape character).

A full specification file looks like

declarations
%%
rules
%%
subroutines

when all sections are used. Thedeclarationsandsubroutinessections are optional. The
smallest validyacc specification might be

%%
S:;

Blanks, tabs, and new-l ines are ignored, but they may not appear in name
multi-character reserved symbols. Comments may appear wherever a name is valid.
are enclosed in/* and*/ , as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule has the

A : BODY ;

whereA represents a non-terminal symbol, andBODYrepresents a sequence of zero o
more names and literals. The colon and the semicolon areyacc punctuation.

Names may be of any length and may be made up of letters, periods, underscore
digits although a digit may not be the first character of a name. Upper case and lower
letters are distinct. The names used in the body of a grammar rule may represent toke
non-terminal symbols.

A literal consists of a character enclosed in single quotes. As in the C language, the
slash is an escape character within literals.yacc recognizes all the C language escap
7-3

Compilation Systems Volume 1 (Tools)

sed in

used
e is

side
dable

tion is
ar on

ult,
n. It
ction

r. The
ut not
func-
the

en
, such
sequences. For a number of technical reasons, the null character should never be u
grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar can be
to avoid rewriting the left-hand side. In addition, the semicolon at the end of a rul
dropped before a vertical bar. Thus the grammar rules

A : B C D ;
A : E F ;
A : G ;

can be given toyacc as

A : B C D
| E F
| G
;

by using the vertical bar. It is not necessary that all grammar rules with the same left
appear together in the grammar rules section although it makes the input more rea
and easier to change.

If a non-terminal symbol matches the empty string, this can be indicated by

epsilon : ;

The blank space following the colon is understood byyacc to be a non-terminal symbol
namedepsilon .

Names representing tokens must be declared. This is most simply done by writing

%token name1 name2 name3

and so on in the declarations section. Every name not defined in the declarations sec
assumed to represent a non-terminal symbol. Every non-terminal symbol must appe
the left side of at least one rule.

Of all the non-terminal symbols, the start symbol has particular importance. By defa
the symbol is taken to be the left-hand side of the first grammar rule in the rules sectio
is possible and desirable to declare the start symbol explicitly in the declarations se
using the%start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the end-marke
end-marker is represented by either a zero or a negative number. If the tokens up to b
including the end-marker form a construct that matches the start symbol, the parser
tion returns to its caller after the end-marker is seen and accepts the input. If
end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker wh
appropriate. Usually the end-marker represents some reasonably obvious I/O status
as end of file or end of record.
7-4

Parsing with yacc

le is
ious

t, call
tate-

, The
, the

n can
y
ed

e the
the
Actions 7

With each grammar rule, you can associate actions to be performed when the ru
recognized. Actions may return values and may obtain the values returned by prev
actions. Moreover, the lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input and outpu
subroutines, and alter arrays and variables. An action is specified by one or more s
ments enclosed in{ and} . For example,

A : '(' B ')'
{

hello(1, "abc");
}

and

XXX : YYY ZZZ
{

(void) printf("a message\n");
flag = 25;

}

are grammar rules with actions.

The$ symbol is used to facilitate communication between the actions and the parser
pseudo-variable$$ represents the value returned by the complete action. For example
action

{ $$ = 1; }

returns the value of one; in fact, that's all it does.

To obtain the values returned by previous actions and the lexical analyzer, the actio
use the pseudo-variables$1, $2, . . . $n . These refer to the values returned b
components 1 throughn of the right side of a rule, with the components being number
from left to right. If the rule is

A : B C D ;

then$2 has the value returned byC, and$3 the value returned byD. The rule

expr : '(' expr ')' ;

provides a common example. One would expect the value returned by this rule to b
value of theexpr within the parentheses. Since the first component of the action is
literal left parenthesis, the desired logical result can be indicated by

expr : '(' expr ')'
{

$$ = $2 ;
}

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form
7-5

Compilation Systems Volume 1 (Tools)

e at
sed.
his

o its

erior

as a
put is

and
node
A : B ;

frequently need not have an explicit action. In previous examples, all the actions cam
the end of rules. Sometimes, it is desirable to get control before a rule is fully par
yacc permits an action to be written in the middle of a rule as well as at the end. T
action is assumed to return a value accessible through the usual$ mechanism by the
actions to the right of it. In turn, it may access the values returned by the symbols t
left. Thus, in the rule below the effect is to setx to 1 andy to the value returned byC:

A : B
{

$$ = 1;
}
C

{
x = $2;
y = $3;

}
;

Actions that do not terminate a rule are handled byyacc by manufacturing a new non-
terminal symbol name and a new rule matching this name to the empty string. The int
action is the action triggered by recognizing this added rule.yacc treats the above
example as if it had been written

$ACT : /* empty */
{

$$ = 1;
}
;

A : B $ACT C
{

x = $2;
y = $3;

}
;

where$ACT is an empty action.

In many applications, output is not done directly by the actions. A data structure, such
parse tree, is constructed in memory and transformations are applied to it before out
generated. Parse trees are particularly easy to construct given routines to build
maintain the tree structure desired. For example, suppose there is a C function
written so that the call

node(L, n1, n2)

creates a node with labelL and descendantsn1 andn2 and returns the index of the newly
created node. Then a parse tree can be built by supplying actions such as

expr : expr '+' expr
{

$$ = node('+', $1, $3);
}

7-6

Parsing with yacc

s can

made

rs. A
ally,

(with
alled
d of
o the

er for

al
name

urn
in the specification.

You may define other variables to be used by the actions. Declarations and definition
appear in the declarations section enclosed in%{ and %}. These declarations and
definitions have global scope, so they are known to the action statements and can be
known to the lexical analyzer. For example:

%{ int variable = 0; %}

could be placed in the declarations section makingvariable accessible to all of the
actions. You should avoid names beginning withyy because theyacc parser uses only
such names. Note, too, that in the examples shown thus far all the values are intege
discussion of values of other types is found in “Advanced Topics” on page 7-26. Fin
note that in the following case

%{
int i;
printf("%}");

%}

yacc will start copying after%{ and stop copying when it encounters the first%}, the one
in printf() . In contrast, it would copy%{ in printf() if it encountered it there.

Lexical Analysis 7

You must supply a lexical analyzer to read the input stream and communicate tokens
values, if desired) to the parser. The lexical analyzer is an integer-valued function c
yylex() . The function returns an integer, the token number, representing the kin
token read. If there is a value associated with that token, it should be assigned t
external variableyylval .

The parser and the lexical analyzer must agree on these token numbers in ord
communication between them to take place. The numbers may be chosen byyacc or the
user. In either case, the#define mechanism of C language is used to allow the lexic
analyzer to return these numbers symbolically. For example, suppose that the token
DIGIT has been defined in the declarations section of theyacc specification file. The
relevant portion of the lexical analyzer might look like the screen shown below to ret
the appropriate token.
7-7

Compilation Systems Volume 1 (Tools)

e
the
al

oid
ge or

ther

literal
This

not

can-
urn 0

e

o not
The intent is to return a token number ofDIGIT and a value equal to the numerical valu
of the digit. You put the lexical analyzer code in the subroutines section and
declaration forDIGIT in the declarations section. Alternatively, you can put the lexic
analyzer code in a separately compiled file, provided

• You invoke yacc with the -d option, which generates a file called
y.tab.h that contains#define statements for the tokens, and

• You #include y.tab.h in the separately compiled lexical analyzer.

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to av
is using any token names in the grammar that are reserved or significant in C langua
the parser. For example, the use of token namesif or while will almost certainly cause
severe difficulties when the lexical analyzer is compiled. The token nameerror is
reserved for error handling and should not be used naively.

In the default situation, token numbers are chosen byyacc . The default token number for
a literal character is the numerical value of the character in the local character set. O
names are assigned token numbers starting at 257.

If you prefer to assign the token numbers, the first appearance of the token name or
in the declarations section must be followed immediately by a nonnegative integer.
integer is taken to be the token number of the name or literal. Names and literals
defined this way are assigned default definitions byyacc . The potential for duplication
exists here. Care must be taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or be negative. You
not redefine this token number. Thus, all lexical analyzers should be prepared to ret
or a negative number as a token upon reaching the end of their input.

As noted in Chapter 6 (“Lexical Analysis with lex”), lexical analyzers produced bylex
are designed to work in close harmony withyacc parsers. The specifications for thes
lexical analyzers use regular expressions instead of grammar rules.lex can be used to
produce quite complicated lexical analyzers, but there remain some languages that d
fit any theoretical framework and whose lexical analyzers must be crafted by hand.

int yylex()
{

extern int yylval;
int c;
...
c = getchar();
...
switch (c)
{

...
case '0':
case '1':
...
case '9':
yylval = c - '0';
return (DIGIT);
...

}
...

}

7-8

Parsing with yacc

put
the

ively
uities

r is

state
tack

be an

n
. The

epared
y the

or not

also
Parser Operation 7

yacc turns the specification file into a C language procedure, which parses the in
according to the specification given. The algorithm used to go from the specification to
parser is complex and will not be discussed here. The parser itself, though, is relat
simple and understanding its usage will make treatment of error recovery and ambig
easier.

The parser produced byyacc consists of a finite state machine with a stack. The parse
also capable of reading and remembering the next input token, called thelookahead token.
The current state is always the one on the top of the stack. The states of the finite
machine are given small integer labels. Initially, the machine is in state 0 (the s
contains only state 0) and no lookahead token has been read.

The machine has only four actions available:shift , reduce , accept , anderror . A
step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead token
to choose the action to be taken. If it needs one and does not have one, it
callsyylex() to obtain the next token.

2. Using the current state and the lookahead token if needed, the parser
decides on its next action and carries it out. This may result in states being
pushed onto the stack or popped off of the stack and in the lookahead token
being processed or left alone.

Theshift action is the most common action the parser takes. Whenever ashift action
is taken, there is always a lookahead token. For example, in state 56 there may
action

IF shift 34

which says, in state 56, if the lookahead token isIF , the current state (56) is pushed dow
on the stack, and state 34 becomes the current state (on the top of the stack)
lookahead token is cleared.

The reduce action keeps the stack from growing without bounds.reduce actions are
appropriate when the parser has seen the right-hand side of a grammar rule and is pr
to announce that it has seen an instance of the rule replacing the right-hand side b
left-hand side. It may be necessary to consult the lookahead token to decide whether
to reduce. In fact, the default action (represented by.) is often areduce action.

reduce actions are associated with individual grammar rules. Grammar rules are
given small integer numbers, and this leads to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule
7-9

Compilation Systems Volume 1 (Tools)

p off
ls the
s put
r

before
ide of
e
ing of
ed a
by a

the
The
f the

urrent

ues.
ck is
with

ction
er has

ere
kens
ould
n and
ssed
A : x y z ;

is being reduced. Thereduce action depends on the left-hand symbol (A in this case) and
the number of symbols on the right-hand side (three in this case). To reduce, first po
the top three states from the stack. (In general, the number of states popped equa
number of symbols on the right side of the rule.) In effect, these states were the one
on the stack while recognizingx , y, andz and no longer serve any useful purpose. Afte
popping these states, a state is uncovered, which was the state the parser was in
beginning to process the rule. Using this uncovered state and the symbol on the left s
the rule, perform what is in effect a shift ofA. A new state is obtained, pushed onto th
stack, and parsing continues. There are significant differences between the process
the left-hand symbol and an ordinary shift of a token, however, so this action is call
goto action. In particular, the lookahead token is cleared by a shift but is not affected
goto . In any case, the uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, thereduce action turns back the clock in the parse, popping the states off
stack to go back to the state where the right-hand side of the rule was first seen.
parser then behaves as if it had seen the left side at that time. If the right-hand side o
rule is empty, no states are popped off the stacks. The uncovered state is in fact the c
state.

Thereduce action is also important in the treatment of user-supplied actions and val
When a rule is reduced, the code supplied with the rule is executed before the sta
adjusted. In addition to the stack holding the states, another stack running in parallel
it holds the values returned from the lexical analyzer and the actions. When ashift takes
place, the external variableyylval is copied onto the value stack. After the return from
the user code, the reduction is carried out. When thegoto action is done, the external
variableyyval is copied onto the value stack. The pseudo-variables$1 , $2 , and so on
refer to the value stack.

The other two parser actions are conceptually much simpler. Theaccept action indicates
that the entire input has been seen and that it matches the specification. This a
appears only when the lookahead token is the end-marker and indicates that the pars
successfully done its job. Theerror action, on the other hand, represents a place wh
the parser can no longer continue parsing according to the specification. The input to
it has seen (together with the lookahead token) cannot be followed by anything that w
result in a valid input. The parser reports an error and attempts to recover the situatio
resume parsing. The error recovery (as opposed to the detection of error) will be discu
later.

Consider

%token DING DONG DELL
%%
rhyme : sound place

;
sound : DING DONG

;
place : DELL

;

7-10

Parsing with yacc

nd)

being
at is

. The
tate 0,
0 on
red.

tate 6,
as ayacc specification. Whenyacc is invoked with the-v (verbose) option, a file called
y.output is produced with a human-readable description of the parser. They.output
file corresponding to the above grammar (with some statistics stripped off the e
follows.

The actions for each state are specified and there is a description of the parsing rules
processed in each state. The_ character is used to indicate what has been seen and wh
yet to come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the current state is state 0
parser needs to refer to the input in order to decide between the actions available in s
so the first token,DING, is read and becomes the lookahead token. The action in state
DING is shift 3 , state 3 is pushed onto the stack, and the lookahead token is clea
State 3 becomes the current state. The next token,DONG, is read and becomes the
lookahead token. The action in state 3 on the tokenDONGis shift 6 , state 6 is pushed
onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In s
without even consulting the lookahead, the parser reduces by

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2
7-11

Compilation Systems Volume 1 (Tools)

te 0.

state
one

is to
d off,

r

nds

rect

se in

ed in

on is
, this

be

ut
sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off the stack, uncovering sta
Consulting the description of state 0 (looking for agoto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token,DELL, must be read. The action isshift 5 , so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
5, the only action is to reduce by rule 3. This has one symbol on the right-hand side, so
state, 5, is popped off, and state 2 is uncovered. Thegoto in state 2 onplace (the left
side of rule 3) is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action
reduce by rule 1. There are two symbols on the right, so the top two states are poppe
uncovering state 0 again. In state 0, there is agoto on rhyme causing the parser to ente
state 1. In state 1, the input is read and the end-marker is obtained indicated by$end in
they.output file. The action in state 1 (when the end-marker is seen) successfully e
the parse.

You might want to consider how the parser works when confronted with such incor
strings asDING DONG DONG, DING DONG, DING DONG DELL DELL, and so on. A
few minutes spent with this and other simple examples is repaid when problems ari
more complicated contexts.

Ambiguity and Conflicts 7

A set of grammar rules is ambiguous if there is some input string that can be structur
two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expressi
to put two other expressions together with a minus sign between them. Unfortunately
grammar rule does not completely specify the way that all complex inputs should
structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

The first is called left association, the second right association.

yacc detects such ambiguities when it is attempting to build the parser. Given the inp

expr - expr - expr
7-12

Parsing with yacc

ut by

il

m to

ight

ing

rule

Rule
, but

rules

arser
n of

ason,
consider the problem that confronts the parser. When the parser has read the secondexpr ,
the input seen

expr - expr

matches the right side of the grammar rule above. The parser could reduce the inp
applying this rule. After applying the rule, the input is reduced toexpr (the left side of the
rule). The parser would then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue reading the input unt

expr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols, reducing the
expr , which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to take the r
associative interpretation. Thus, having read

expr - expr

the parser can do one of two valid things, shift or reduce. It has no way of decid
between them. This is called ashift -reduce conflict. It may also happen that the
parser has a choice of two valid reductions. This is called areduce -reduce conflict.
Note that there are never anyshift -shift conflicts.

When there areshift -reduce or reduce -reduce conflicts,yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice. A
describing the choice to make in a given situation is called a disambiguating rule.

yacc invokes two default disambiguating rules:

1. In ashift -reduce conflict, the default is to do the shift.

2. In a reduce -reduce conflict, the default is to reduce by the earlier
grammar rule (in theyacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is a choice.
2 gives the user rather crude control over the behavior of the parser in this situation
reduce -reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the grammar
(while consistent) require a more complex parser thanyacc can construct. The use of
actions within rules can also cause conflicts if the action must be done before the p
can be sure which rule is being recognized. In these cases, the applicatio
disambiguating rules is inappropriate and leads to an incorrect parser. For this re
7-13

Compilation Systems Volume 1 (Tools)

rrect
ad but
idered
what

-

aving
yacc always reports the number ofshift -reduce and reduce -reduce conflicts
resolved by rules 1 and 2 above.

In general, whenever it is possible to apply disambiguating rules to produce a co
parser, it is also possible to rewrite the grammar rules so that the same inputs are re
there are no conflicts. For this reason, most previous parser generators have cons
conflicts to be fatal errors. Our experience has suggested that this rewriting is some
unnatural and produces slower parsers. Thus,yacc will produce parsers even in the
presence of conflicts.

As an example of the power of disambiguating rules, consider

stat : IF '(' cond ')' stat
| IF '(' cond ')' stat ELSE stat
;

which is a fragment from a programming language involving anif -then -else state-
ment. In these rules,IF andELSEare tokens,cond is a non-terminal symbol describing
conditional (logical) expressions, andstat is a non-terminal symbol describing state
ments. The first rule will be called the simpleif rule and the second theif -else rule.

These two rules form an ambiguous construction because input of the form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways

IF (C1)
{

IF (C2)
S1

}
ELSE

S2

or

IF (C1)
{

IF (C2)
S1

ELSE
S2

}

where the second interpretation is the one given in most programming languages h
this construct; eachELSE is associated with the last preceding un-ELSE'd IF . In this
example, consider the situation where the parser has seen

IF (C1) IF (C2) S1

and is looking at theELSE. It can immediately reduce by the simpleif rule to get

IF (C1) stat

and then read the remaining input
7-14

Parsing with yacc

e

the

ol,

ill be
read

The
arser
been

sible
,

ELSE S2

and reduce

IF (C1) stat ELSE S2

by theif -else rule. This leads to the first of the above groupings of the input.

On the other hand, theELSEmay be shifted,S2 read, and then the right-hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by theif -else rule to get

IF (C1) stat

which can be reduced by the simpleif rule. This leads to the second of the abov
groupings of the input, which is usually the one desired.

Once again, the parser can do two valid things — there is ashift -reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to
desired grouping.

This shift -reduce conflict arises only when there is a particular current input symb
ELSE, and particular inputs, such as

IF (C1) IF (C2) S1

have already been seen. In general, there may be many conflicts, and each one w
associated with an input symbol and a set of previously read inputs. The previously
inputs are characterized by the state of the parser.

The conflict messages ofyacc are best understood by examining the-v output. For
example, the output corresponding to the above conflict state might be

where the first line describes the conflict — giving the state and the input symbol.
ordinary state description gives the grammar rules active in the state and the p
actions. Recall that the underscore marks the portion of the grammar rules that has
seen. Thus in the example, in state 23, the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two pos
things. If the input symbol isELSE, it is possible to shift into state 45. State 45 will have
as part of its description, the line

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
. reduce 18
7-15

Compilation Systems Volume 1 (Tools)

ion
s.

,
e

n be

not
sed
n of

ivity.
used
from

with
ding
tion

les

n. This

ed
er of

rd
stat : IF (cond) stat ELSE_stat

because theELSEwill have been shifted in this state. In state 23, the alternative act
(specified by.) is to be done if the input symbol is not mentioned explicitly in the action
In this case, if the input symbol is notELSE, the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers followingshift commands refer to other states
while the numbers followingreduce commands refer to grammar rule numbers. In th
y.output file, rule numbers are printed in parentheses after those rules that ca
reduced. In most states, there is areduce action possible, andreduce is the default
command. If you encounter unexpectedshift -reduce conflicts, you will probably
want to look at the-v output to decide whether the default actions are appropriate.

Precedence 7

There is one common situation where the rules given above for resolving conflicts are
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly u
constructions for arithmetic expressions can be naturally described by the notio
precedence levels for operators, together with information about left or right associat
It turns out that ambiguous grammars with appropriate disambiguating rules can be
to create parsers that are faster and easier to write than parsers constructed
unambiguous grammars. The basic notion is to write grammar rules of the form

expr : expr OP exprand

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar
many parsing conflicts. You specify as disambiguating rules the precedence or bin
strength of all the operators and the associativity of the binary operators. This informa
is sufficient to allowyacc to resolve the parsing conflicts in accordance with these ru
and construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations sectio
is done by a series of lines beginning with theyacc keywords%left , %right , or
%nonassoc , followed by a list of tokens. All of the tokens on the same line are assum
to have the same precedence level and associativity; the lines are listed in ord
increasing precedence or binding strength. Thus

%left '+' '-'
%left '*' '/'

describes the precedence and associativity of the four arithmetic operators.+ and- are left
associative and have lower precedence than* and/ , which are also left associative. The
keyword %right is used to describe right associative operators. The keywo
7-16

Parsing with yacc

used,
r and a
s. An

hile

wed
hat of
%nonassoc is used to describe operators, like the operator.LT. in Fortran, that may not
associate with themselves. That is, because

A .LT. B .LT. C

is invalid in Fortran,.LT. would be described with the keyword%nonassoc in yacc .

As an example of the behavior of these declarations, the description

might be used to structure the input

a = b = c * d - e - f * g

as follows

a = (b = (((c * d) - e) - (f * g)))

in order to achieve the correct precedence of operators. When this mechanism is
unary operators must, in general, be given a precedence. Sometimes a unary operato
binary operator have the same symbolic representation but different precedence
example is unary and binary minus.

Unary minus may be given the same strength as multiplication, or even higher, w
binary minus has a lower strength than multiplication. The keyword%prec changes the
precedence level associated with a particular grammar rule.%prec appears immediately
after the body of the grammar rule, before the action or closing semicolon, and is follo
by a token name or literal. It causes the precedence of the grammar rule to become t
the following token name or literal. For example, the rules

%right '='
%left '+' '-'
%left '*' '/'

%%

expr : expr '=' expr
| expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| NAME
;

7-17

Compilation Systems Volume 1 (Tools)

y

ea to
ience

ly

e a
he
might be used to give unary minus the same precedence as multiplication.

A token declared by%left , %right , and%nonassoc need not, but may, be declared b
%token as well.

Precedences and associativities are used byyacc to resolve parsing conflicts. They give
rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule. It is
the precedence and associativity of the last token or literal in the body of
the rule. If the%prec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is areduce -reduce or shift -reduce conflict, and either
the input symbol or the grammar rule has no precedence and associativity,
then the two default disambiguating rules given in the preceding section are
used, and the conflicts are reported.

4. If there is ashift -reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the action —shift or reduce —
associated with the higher precedence. If precedences are equal, then
associativity is used. Left associative impliesreduce ; right associative
impliesshift ; “nonassociating” implieserror .

Conflicts resolved by precedence are not counted in the number ofshift -reduce and
reduce -reduce conflicts reported byyacc . This means that mistakes in the
specification of precedences may disguise errors in the input grammar. It is a good id
be sparing with precedences and use them in a cookbook fashion until some exper
has been gained. They.output file is useful in deciding whether the parser is actual
doing what was intended.

To illustrate further how you might use the precedence keywords to resolv
shift -reduce conflict, we'll look at an example similar to the one described in t
previous section. Consider the following C statement:

if (flag) if (anotherflag) x = 1;
else x = 2;

%left '+' '-'
%left '*' '/'

%%

expr : expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| '-' expr %prec '*'
| NAME
;

7-18

Parsing with yacc

nd
The problem for the parser is whether theelse goes with the first or the secondif . C
programmers will recognize that theelse goes with the secondif , contrary to what the
misleading indentation suggests. The followingyacc grammar for anif -then -else
construct abstracts the problem. That is, the inputiises will model the C statement
shown above.

When the specification is passed toyacc , however, we get the following message:

conflicts: 1 shift/reduce

The problem is that whenyacc has readiis in trying to matchiises , it has two
choices: recognizeis as a statement (reduce), or read some more input (shift) a
eventually recognizeises as a statement.

One way to resolve the problem is to invent a new tokenREDUCEwhose sole purpose is to
give the correct precedence for the rules:

%{
#include <stdio.h>
%}
%token SIMPLE IF ELSE
%%
S : stmnt '\n'

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt
{ printf("simple if\n");}

| IF stmnt ELSE stmnt
{ printf("if_then_else\n");}

;
%%
int
yylex() {

int c;
c=getchar();
if (c==EOF) return 0;
else switch(c) {

case 'i': return IF;
case 's': return SIMPLE;
case 'e': return ELSE;
default: return c;
}

}

7-19

Compilation Systems Volume 1 (Tools)

ay,

ostic

nes.
rage,
any

ul to
of

olves
er so

ected
re the

token
halts
Since the precedence associated with the second form ofif_stmnt is higher now,yacc
will try to match that rule first, and no conflict will be reported.

Actually, in this simple case, the new token is not needed:

%nonassoc IF
%nonassoc ELSE

would also work. Moreover, it is not really necessary to resolve the conflict in this w
because, as we have seen,yacc will shift by default in ashift -reduce conflict.
Resolving conflicts is a good idea, though, in the sense that you should not see diagn
messages for correct specifications.

Error Handling 7

Error handling is an extremely difficult area, and many of the problems are semantic o
When an error is found, for example, it may be necessary to reclaim parse tree sto
delete or alter symbol table entries, and/or, typically, set switches to avoid generating
further output.

It is seldom acceptable to stop all processing when an error is found. It is more usef
continue scanning the input to find further syntax errors. This leads to the problem
getting the parser restarted after an error. A general class of algorithms to do this inv
discarding a number of tokens from the input string and attempting to adjust the pars
that input can continue.

To allow the user some control over this process,yacc provides the token nameerror .
This name can be used in grammar rules. In effect, it suggests where errors are exp
and recovery might take place. The parser pops its stack until it enters a state whe
tokenerror is valid. It then behaves as if the tokenerror were the current lookahead
token and performs the action encountered. The lookahead token is then reset to the
that caused the error. If no special error rules have been specified, the processing
when an error is detected.

%{
#include <stdio.h>
%}
%token SIMPLE IF
%nonassoc REDUCE
%nonassoc ELSE
%%
S : stmnt '\n'

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt %prec REDUCE
{ printf("simple if");}

| IF stmnt ELSE stmnt
{ printf("if_then_else");}

;
%%
...
7-20

Parsing with yacc

error,
If an

nd the

h the
might
s of

tate-

pt to

er the
and

lon is

to

ust
ized
rser

or this
ry has

as
In order to prevent a cascade of error messages, the parser, after detecting an
remains in error state until three tokens have been successfully read and shifted.
error is detected when the parser is already in error state, no message is given, a
input token is quietly deleted.

As an example, a rule of the form

stat : error

means that on a syntax error the parser attempts to skip over the statement in whic
error is seen. More precisely, the parser scans ahead, looking for three tokens that
validly follow a statement, and starts processing at the first of these. If the beginning
statements are not sufficiently distinctive, it may make a false start in the middle of a s
ment and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attem
reinitialize tables, reclaim symbol table space, and so forth.

Error rules such as the above are very general but difficult to control. Rules such as

stat : error ';'

are somewhat easier. Here, when there is an error, the parser attempts to skip ov
statement but does so by skipping to the next semicolon. All tokens after the error
before the next semicolon cannot be shifted and are discarded. When the semico
seen, this rule will be reduced and any cleanup action associated with it performed.

Another form oferror rule arises in interactive applications where it may be desirable
permit a line to be reentered after an error. The following example

input : error '\n'
{

(void) printf("Reenter last line: ");
}
input

{
$$ = $4;

}
;

is one way to do this. There is one potential difficulty with this approach. The parser m
correctly process three input tokens before it admits that it has correctly resynchron
after the error. If the reentered line contains an error in the first two tokens, the pa
deletes the offending tokens and gives no message. This is clearly unacceptable. F
reason, there is a mechanism that can force the parser to believe that error recove
been accomplished. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example can be rewritten
7-21

Compilation Systems Volume 1 (Tools)

e, an
me

ed to
lled,
t.

tive
with

The

ly
ge
input : error '\n'
{

yyerrok;
(void) printf("Reenter last line: ");

}
input

{
$$ = $4;

}
;

As previously mentioned, the token seen immediately after theerror symbol is the input
token at which the error was discovered. Sometimes this is inappropriate; for exampl
error recovery action might take upon itself the job of finding the correct place to resu
input. In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action aftererror were to call
some sophisticated resynchronization routine (supplied by the user) that attempt
advance the input to the beginning of the next valid statement. After this routine is ca
the next token returned byyylex() is presumably the first token in a valid statemen
The old invalid token must be discarded and theerror state reset. A rule similar to

stat : error
{

resynch();
yyerrok ;
yyclearin;

}
;

could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly effec
recovery of the parser from many errors. Moreover, the user can get control to deal
the error actions required by other portions of the program.

The yacc Environment 7

You create ayacc parser with the command

yacc grammar.y

wheregrammar.y is the file containing youryacc specification. (The.y suffix is a
convention recognized by other UNIX system commands. It is not strictly necessary.)
output is a file of C language subroutines calledy.tab.c . The function produced by
yacc is calledyyparse() , and is integer-valued. When it is called, it in turn repeated
callsyylex() , the lexical analyzer supplied by the user (see “Lexical Analysis” on pa
7-7), to obtain input tokens. Eventually, an error is detected,yyparse() returns the
7-22

Parsing with yacc

arker

in a
lled

initial

line
ternal

as

,
the

le by

clear
value 1, and no error recovery is possible, or the lexical analyzer returns the end-m
token and the parser accepts. In this case,yyparse() returns the value 0.

You must provide a certain amount of environment for this parser in order to obta
working program. For example, as with every C language program, a routine ca
main() must be defined that eventually callsyyparse() . In addition, a routine called
yyerror() is needed to print a message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the
effort of usingyacc , a library has been provided with default versions ofmain() and
yyerror() . The library,liby , is accessed by a-ly argument to thecc command. The
source codes

main()
{

return (yyparse());
}

and

include <stdio.h>
yyerror(s)

char *s;
{

(void) fprintf(stderr, "%s\n", s);
}

show the triviality of these default programs. The argument toyyerror() is a string
containing an error message, usually the stringsyntax error . The average application
wants to do better than this. Ordinarily, the program should keep track of the input
number and print it along with the message when a syntax error is detected. The ex
integer variableyychar contains the lookahead token number at the time the error w
detected. This may be of some interest in giving better diagnostics. Since themain()
routine is probably supplied by the user (to read arguments, for instance), theyacc library
is useful only in small projects or in the earliest stages of larger ones.

The external integer variableyydebug is normally set to 0. If it is set to a nonzero value
the parser will output a verbose description of its actions including a discussion of
input symbols read and what the parser actions are. It is possible to set this variab
using gdb(1).

Hints for Preparing Specifications 7

This part contains miscellaneous hints on preparing efficient, easy to change, and
specifications. The individual subsections are more or less independent.
7-23

Compilation Systems Volume 1 (Tools)

ica-

ere
ss of

les.

ases,
for
Input Style 7

It is difficult to provide rules with substantial actions and still have a readable specif
tion file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters for
non-terminal names. This is useful in debugging.

2. Put grammar rules and actions on separate lines. It makes editing easier.

3. Put all rules with the same left-hand side together. Put the left-hand side in
only once and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and put
the semicolon on a separate line. This allows new rules to be easily added.

5. Indent rule bodies by one tab stop and action bodies by two tab stops.

6. Put complicated actions into subroutines defined in separate files.

Example 1 below is written following this style, as are the examples in this section (wh
space permits). The central problem is to make the rules visible through the mora
action code.

Left Recursion 7

The algorithm used by theyacc parser encourages so called left recursive grammar ru
Rules of the form

name : name rest_of_rule ;

match this algorithm. Rules such as

list : item
| list ',' item
;

and

seq : item
| seq item
;

frequently arise when writing specifications of sequences and lists. In each of these c
the first rule will be reduced for the first item only; and the second rule will be reduced
the second and all succeeding items.

With right recursive rules, such as

seq : item
| item seq
;

7-24

Parsing with yacc

seri-
ng

left

f so,

nce
each
ever,
n it

want
to a

tions
For

ore
ng
n by
the parser is a bit bigger; and the items are seen and reduced from right to left. More
ously, an internal stack in the parser is in danger of overflowing if an extremely lo
sequence is read (althoughyacc can process very large stacks). Thus, you should use
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any meaning, and i
consider writing the sequence specification as

seq : /* empty */
| seq item
;

using an empty rule. Once again, the first rule would always be reduced exactly o
before the first item was read, and then the second rule would be reduced once for
item read. Permitting empty sequences often leads to increased generality. How
conflicts might arise ifyacc is asked to decide which empty sequence it has seen whe
hasn't seen enough to know!

Lexical Tie-Ins 7

Some lexical decisions depend on context. For example, the lexical analyzer might
to delete blanks normally, but not within quoted strings, or names might be entered in
symbol table in declarations but not in expressions. One way of handling these situa
is to create a global flag that is examined by the lexical analyzer and set by actions.
example,

specifies a program that consists of zero or more declarations followed by zero or m
statements. The flagdflag is now 0 when reading statements and 1 when readi
declarations, except for the first token in the first statement. This token must be see

%{
int dflag;

%}
... other declarations...

%%

prog : decls stats
;

decls : /* empty */
{

dflag = 1;
}
| decls declaration
;

stats : /* empty */
{

dflag = 0;
}
| stats statement
;

other rules
7-25

Compilation Systems Volume 1 (Tools)

s have

ss, it
ise.

valid
n the
s
sing

f

een
ms
ntax

The
the parser before it can tell that the declaration section has ended and the statement
begun. In many cases, this single token exception does not affect the lexical scan.

This kind of back-door approach can be elaborated to a noxious degree. Neverthele
represents a way of doing some things that are difficult, if not impossible, to do otherw

Reserved Words 7

Some programming languages permit you to use words likeif , which are normally
reserved as label or variable names, provided that such use does not conflict with the
use of these names in the programming language. This is extremely hard to do i
framework ofyacc . It is difficult to pass information to the lexical analyzer telling it thi
instance ofif is a keyword and that instance is a variable. You can make a stab at it u
the mechanism described in the last subsection, but it is difficult.

Advanced Topics 7

This part discusses a number of advanced features ofyacc .

Simulating error and accept in Actions 7

The parsing actions oferror and accept can be simulated in an action by use o
macrosYYACCEPTandYYERROR. TheYYACCEPTmacro causesyyparse() to return
the value 0;YYERRORcauses the parser to behave as if the current input symbol had b
a syntax error;yyerror() is called, and error recovery takes place. These mechanis
can be used to simulate parsers with multiple end-markers or context sensitive sy
checking.

Accessing Values in Enclosing Rules 7

An action may refer to values returned by actions to the left of the current rule.
mechanism is simply the same as with ordinary actions,$ followed by a digit.
7-26

Parsing with yacc

cially

ser is

each
a

no

y of
y the
ay of
is a
In this case, the digit may be 0 or negative. In the action following the wordCRONE, a
check is made that the preceding token shifted was notYOUNG. Obviously, this is only
possible when a great deal is known about what might precede the symbolnoun in the
input. Nevertheless, at times this mechanism prevents a great deal of trouble espe
when a few combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types 7

By default, the values returned by actions and the lexical analyzer are integers.yacc can
also support values of other types including structures. In addition,yacc keeps track of
the types and inserts appropriate union member names so that the resulting par
strictly type checked. Theyacc value stack is declared to be aunion of the various types
of values desired. You declare the union and associate union member names with
token and non-terminal symbol having a value. When the value is referenced through$$
or $n construction,yacc will automatically insert the appropriate union name so that
unwanted conversions take place.

There are three mechanisms used to provide for this typing. First, there is a wa
defining the union. This must be done by the user since other subroutines, notabl
lexical analyzer, must know about the union member names. Second, there is a w
associating a union member name with tokens and non-terminals. Finally, there
mechanism for describing the type of those few values whereyacc cannot easily
determine the type.

To declare the union, you include

sent : adj noun verb adj noun
{

look at the sentence ...
}
;

adj : THE
{

$$ = THE;
}
| YOUNG
{

$$ = YOUNG;
}
...
;

noun : DOG
{

$$ = DOG;
}
| CRONE
{

if($0 == YOUNG)
{

(void) printf("what?\n");
}
$$ = CRONE;

}
;
...
7-27

Compilation Systems Volume 1 (Tools)

s

ious

ns

union
r

is an
rly,

mber

ly.

are

ple,
ies
%union
{

body of union
}

in the declaration section. This declares theyacc value stack and the external variable
yylval andyyval to have type equal to this union. Ifyacc was invoked with the-d
option, the union declaration is copied into they.tab.h file asYYSTYPE.

OnceYYSTYPEis defined, the union member names must be associated with the var
terminal and non-terminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords%token ,
%left , %right , and%nonassoc , the union member name is associated with the toke
listed. Thus, saying

%left <optype> '+' '-'

causes any reference to values returned by these two tokens to be tagged with the
member nameoptype . Another keyword,%type , is used to associate union membe
names with non-terminals. Thus, one might say

%type <nodetype> expr stat

to associate the union membernodetype with the non-terminal symbolsexpr and
stat .

There remain a couple of cases where these mechanisms are insufficient. If there
action within a rule, the value returned by this action has no a priori type. Simila
reference to left context values (such as$0) leavesyacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by inserting a union me
name between< and> immediately after the first$. The example below

shows this usage. This syntax has little to recommend it, but the situation arises rare

A sample specification is given in Example 2 below. The facilities in this subsection
not triggered until they are used. In particular, the use of%type will turn on these
mechanisms. When they are used, there is a fairly strict level of checking. For exam
use of$n or $$ to refer to something with no defined type is diagnosed. If these facilit
are not triggered, theyacc value stack is used to holdint s.

rule : aaa
{

$<intval>$ = 3;
}
bbb

{
fun($<intval>2, $<other>0);

}
;

7-28

Parsing with yacc

as
tely

e;
tion
tifier

n) is a
yacc Input Syntax 7

This section has a description of theyacc input syntax as ayacc specification. Context
dependencies and so forth are not considered. Ironically, althoughyacc accepts an
LALR(1) grammar, theyacc input specification language is most naturally specified
an LR(2) grammar; the sticky part comes when an identifier is seen in a rule immedia
following an action. If this identifier is followed by a colon, it is the start of the next rul
otherwise, it is a continuation of the current rule, which just happens to have an ac
embedded in it. As implemented, the lexical analyzer looks ahead after seeing an iden
and decides whether the next token (skipping blanks, new-lines, comments, and so o
colon. If so, it returns the tokenC_IDENTIFIER . Otherwise, it returnsIDENTIFIER .
Literals (quoted strings) are also returned asIDENTIFIER s but never as part of
C_IDENTIFIER s.

/* grammar for the input to yacc */

/* basic entries */
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal) followed by a : */
%token NUMBER /* [0-9]+ */

/* reserved words: %type=>TYPE %left=>LEFT,etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */

%token spec

%%

spec : defs MARK rules tail
;

tail : MARK
{

In this action, eat up the rest of the file
}
| /* empty: the second MARK is optional */
;

defs : /* empty */
| defs def
;

def : START IDENTIFIER
| UNION
{

Copy union definition to output
}
| LCURL
{

Copy C code to output file
}

RCURL
| rword tag nlist
;

7-29

Compilation Systems Volume 1 (Tools)

e
up

wise,
ed to
Examples 7

1. A Simple Example 7

This example gives the completeyacc applications for a small desk calculator; th
calculator has 26 registers labeleda throughz and accepts arithmetic expressions made
of the operators+, -, *, /, %, &, | , and the assignment operators.

If an expression at the top level is an assignment, only the assignment is done; other
the expression is printed. As in the C language, an integer that begins with 0 is assum
be octal; otherwise, it is assumed to be decimal.

rword : TOKEN
| LEFT
| RIGHT
| NONASSOC
| TYPE
;

tag : /* empty: union tag is optional */
| '<' IDENTIFIER '>'
;

nlist : nmno
| nlist nmno
| nlist ',' nmno
;

nmno : IDENTIFIER /* Note: literal invalid with % type */
| IDENTIFIER NUMBER /* Note: invalid with % type */
;

/* rule section */

rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| '|' rbody prec
;

rbody : /* empty */
| rbody IDENTIFIER
| rbody act
;

act : '{'
{

Copy action translate $$ etc.
}
'}'

;

prec : /* empty */
| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ';'
;

7-30

Parsing with yacc

of
ry. The
pli-

imal
y the
As an example of ayacc specification, the desk calculator does a reasonable job
showing how precedence and ambiguities are used and demonstrates simple recove
major oversimplifications are that the lexical analyzer is much simpler than for most ap
cations, and the output is produced immediately line by line. Note the way that dec
and octal integers are read in by grammar rules. This job is probably better done b
lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left '|'
%left '&'
%left '+' '-'
%left '*' '/' '%'
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */
| list stat '\n'
| list error '\n'
{

yyerrok;
}
;

stat : expr
{

(void) printf("%d\n", $1);
}
| LETTER '=' expr
{

regs[$1] = $3;
}
;

expr : '(' expr ')'
{

$$ = $2;
}
| expr '+' expr
{

$$ = $1 + $3;
}
| expr '-' expr
{

$$ = $1 - $3;
{
| expr '*' expr
7-31

Compilation Systems Volume 1 (Tools)
{
$$ = $1 * $3;

}
| expr '/' expr
{

$$ = $1 / $3;
}
| exp '%' expr
{

$$ = $1 % $3;
}
| expr '&' expr
{

$$ = $1 & $3;
}
| expr '|' expr
{

$$ = $1 | $3;
}
| '-' expr %prec UMINUS
{

$$ = -$2;
}
| LETTER
{

$$ = reg[$1];
}
| number
;

number : DIGIT
{

$$ = $1; base = ($1==0) ? 8 ; 10;
}
| number DIGIT
{

$$ = base * $1 + $2;
}
;

%% /* beginning of subroutines section */

int yylex() /* lexical analysis routine */
{ /* return LETTER for lowercase letter, */

/* yylval = 0 through 25 */
/* returns DIGIT for digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;
/*skip blanks*/

while ((c = getchar()) == ' ')
;

/* c is now nonblank */

if (islower(c))
{

yylval = c - 'a';
return (LETTER);

}
if (isdigit(c))
}

yylval = c - '0';
return (DIGIT);

}
return (c);

}

7-32

Parsing with yacc

. The
ting
the

value

d as

into
ly on

s call

very

s an
l) of
rval if
n the

e, but
rser
head
This
one
cond

lied
may
that
e
d to

ion
d the
ing
2. An Advanced Example 7

This section gives an example of a grammar using some of the advanced features
desk calculator in Example 1 is modified to provide a desk calculator that does floa
point interval arithmetic. The calculator understands floating point constants, and
arithmetic operations+, - , * , / , and unary- . It uses the registersa throughz . Moreover,
it understands intervals written

(X,Y)

whereX is less than or equal toY. There are 26 interval valued variablesA throughZ that
may also be used. The usage is similar to that in Example 1; assignments return no
and print nothing while expressions print the (floating or interval) value.

This example explores a number of interesting features ofyacc and C. Intervals are
represented by a structure consisting of the left and right endpoint values store
double s. This structure is given a type name,INTERVAL, by usingtypedef . The
yacc value stack can also contain floating point scalars and integers (used to index
the arrays holding the variable values). Notice that the entire strategy depends strong
being able to assign structures and unions in C language. In fact, many of the action
functions that return structures as well.

It is also worth noting the use ofYYERRORto handle error conditions — division by an
interval containing 0 and an interval presented in the wrong order. The error reco
mechanism ofyacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrate
interesting use of syntax to keep track of the type (for example, scalar or interva
intermediate expressions. Note that scalar can be automatically promoted to an inte
the context demands an interval value. This causes a large number of conflicts whe
grammar is run throughyacc \: 18 shift -reduce and 26reduce -reduce . The
problem can be seen by looking at the two input lines.

2.5 + (3.5 - 4.)

and

2.5 + (3.5, 4)

Notice that the 2.5 is to be used in an interval value expression in the second exampl
this fact is not known until the comma is read. By this time, 2.5 is finished, and the pa
cannot go back and change its mind. More generally, it might be necessary to look a
an arbitrary number of tokens to decide whether to convert a scalar to an interval.
problem is evaded by having two rules for each binary interval valued operator —
when the left operand is a scalar and one when the left operand is an interval. In the se
case, the right operand must be an interval, so the conversion will be app
automatically. Despite this evasion, there are still many cases where the conversion
be applied or not, leading to the above conflicts. They are resolved by listing the rules
yield scalars first in the specification file; in this way, the conflict will be resolved in th
direction of keeping scalar valued expressions scalar valued until they are force
become intervals.

This way of handling multiple types is instructive. If there were many kinds of express
types instead of just two, the number of rules needed would increase dramatically an
conflicts even more dramatically. Thus, it is better practice in a more normal programm
7-33

Compilation Systems Volume 1 (Tools)

art of

t of

yzer
king
language environment to keep the type information as part of the value and not as p
the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatmen
floating point constants. The C language library routineatof() is used to do the actual
conversion from a character string to a double-precision value. If the lexical anal
detects an error, it responds by returning a token that is invalid in the grammar, provo
a syntax error in the parser and thence error recovery.

%{

#include <stdio.h>
#include <ctype.h>

typedef struct interval
{

double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];

INTERVAL vreg[26];

%}

%start lines

%union
{

int ival;
double dval;
INTERVAL vval;

}

%token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left '+' '/-'
%left '*' '/'

%% /* beginning of rules section */

lines : /* empty */
| lines line
;

line : dexp '\n'
{

(void)printf("%15.8f\n", $1);
}
| vexp '\n'
7-34

Parsing with yacc
{
(void)printf("(%15.8f, %15.8f)\n", $1.lo, $1.hi);

}
| DREG '=' dexp '\n'
{

dreg[$1] = $3;
}
| VREG '=' vexp '\n'
{

vreg[$1] = $3;
}
| error '\n'
{

yyerrok;
}
;

dexp : CONST
| DREG
{

$$ = dreg[$1];
}
| dexp '+' dexp
{

$$ = $1 + $3;
}
| dexp '-' dexp
{

$$ = $1 - $3;
}
| dexp '*' dexp
{

$$ = $1 * $3;
}
| dexp '/' dexp
{

$$ = $1 / $3;
}
| '-' dexp
{

$$ = -$2;
}
| '(' dexp ')'
{

$$ = $2;
}
;

vexp : dexp
{

$$.hi = $$.lo = $1;
}
| '(' dexp ',' dexp ')'
{

7-35

Compilation Systems Volume 1 (Tools)
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi)
{

(void) printf("interval out of order\n");
YYERROR;

}
}
| VREG
{

$$ = vreg[$1];
}
| vexp '+' vexp
{

$$.hi = $1.hi + $3.hi;
$$.lo = $1.lo + $3.lo;

}
| dexp '+' vexp
{

$$.hi = $1 + $3.hi;
$$.lo = $1 + $3.lo;

}
| vexp '-' vexp
{

$$.hi = $1.hi - $3.lo;
$$.lo = $1.lo - $3.hi;

}
| dexp '-' vexp
{

$$.hi = $1 - $3.lo;
$$.lo = $1 - $3.hi;

}
| vexp '*' vexp
{

$$ = vmul($1.lo, $1.hi, $3);
}
| dexp '*' vexp
{

$$ = vmul($1, $1, $3);
}
| vexp '/' vexp
{

if (dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3);

}
| dexp '/' vexp
{

if (dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3);

}
| '-' vexp
{

7-36

Parsing with yacc
$$.hi = -$2.lo; $$.lo = -$2.hi;
}
| '(' vexp ')'
{

$$ = $2;
}
;

%% /* beginning of subroutines section */

define BSZ 50 /* buffer size for floating point number */

/* lexical analysis */

int yylex()
{

register int c;

/* skip over blanks */

while ((c=getchar()) == ' ')
;

if (isupper(c))
{

yylval.ival = c - 'A';
return(VREG);

}
if (islower(c))
{

yylval.ival = c - 'a';
return(DREG);

}

/* gobble up digits, points, exponents */

if (isdigit(c) || c == '.')
{

char buf[BSZ + 1], *cp = buf;
int dot = 0, exp = 0;

for (;(cp - buf) < BSZ; ++cp, c = getchar())
{

*cp = c;
if (isdigit(c))

continue;
if (c == '.')
{

if (dot++ || exp)
return('.'); /* will cause

syntax error */
continue;

}

7-37

Compilation Systems Volume 1 (Tools)
if (c == 'e')
{

if (exp++)
return('e'); /* will cause

syntax error */
continue;

}
/* end of number */

break;
}

*cp = '\0';
if (cp - buf >= BSZ)

(void)printf("constant too long -- truncated\n");
else

ungetc(c, stdin); /* push back last char read */
yylval.dval = atof(buf);
return(CONST);

}
return(c);

}

INTERVAL
hilo(a, b, c, d)

double a, b, c, d;
{

/* returns the smallest interval containing a, b, c, and d
used by vmul, vdiv routines */

INTERVAL v;

if (a > b)
{

v.hi = a;
v.lo = b;

}
else
{

v.hi = b;
v.lo = a;

}
if (c > d)
{

if (c > v.hi) v.hi = c;
if (d < v.lo) v.lo = d;

}
else
{

if (d > v.hi) v.hi = d;
if (c < v.lo) v.lo = c;

}
return(v);
7-38

Parsing with yacc
}
INTERVAL
vmul(a, b, v)

double a, b;
INTERVAL v;

{
return(hilo(a * v.hi, a * v.lo, b * v.hi, b * v.lo));

}

dcheck(v)
INTERVAL v;

{
if (v.hi >= 0. && v.lo <= 0.)
{

(void) printf("divisor interval contains 0.\n");
return(1);

}
return(0);

}
INTERVAL
vdiv(a, b, v)

double a, b;
INTERVAL v;

{
return(hilo(a / v.hi, a / v.lo, b / v.hi, b / v.lo));

}

7-39

Compilation Systems Volume 1 (Tools)
7-40

2
Part 2Analysis

Replace with Part 2 tab

Compilation Systems Volume 1 (Tools)

Part 2 - Analysis
Part 2 - Analysis

Part 2 Analysis

Chapter 8 Introduction to Analysis.. 8-1

Chapter 9 Browsing Through Your Code with cscope 9-1

Chapter 10 Analyzing Your Code with lint ... 10-1

Chapter 11 Performance Analysis ... 11-1

Compilation Systems Volume 1 (Tools)

-1
8
Introduction to Analysis

Introduction . 8

Compilation Systems Volume 1 (Tools)

Introduction to Analysis

ms”

ation.

or

ing,
8
Chapter 8Introduction to Analysis

8
8
8

Introduction 8

By using tools to analyze source files and executables you can:

• Locate and correct problems

• Obtain statistics on usage and performance timings

• Improve program reliability and performance

Many analysis tools exist. See “Concurrent Computer Corporation Compilation Syste
section in Chapter 1 for an extensive list of these and other utilities.

Although not discussed in this manual, the C beautifier,cb(1) , can assist in analysis; it
makes C source files more readable with judicious placement of spaces and indent
The xref(1) utility combines many cross referencing aspects ofcscope and
inconsistency-detecting aspects oflint for Fortran source files. See the man page f
details.

This part of the manual discusses the analysis of source files and executables.

Chapter 9 (“Browsing Through Your Code with cscope”) discusses cross referenc
searching, and editing C,lex , andyacc source files withcscope .

Chapter 10 (“Analyzing Your Code with lint”) describes usinglint on C source files to
flag inconsistent use, non-portable code, and suspicious constructs.

Chapter 11 (“Performance Analysis”) explains how to useanalyze to optimize
programs or obtain performance profiles on programs andreport to generate reports
from analyze ’s output.
8-1

Compilation Systems Volume 1 (Tools)
8-2

-1
-1
-1
-2
-2
-3
-9

10
3

-14
14
-14
7

18
18
8

18
9
Browsing Through Your Code with cscope

Introduction . 9
How cscope Works . 9

How to Use cscope . 9
Step 1: Set Up the Environment . 9
Step 2: Invoke cscope . 9
Step 3: Locate the Code. 9
Step 4: Edit the Code. 9
Command Line Options . 9-
Using Viewpaths. 9-1
Stacking cscope and Editor Calls . 9
Examples . 9-

Changing a Constant to a Preprocessor Symbol . 9
Adding an Argument to a Function. 9-1
Changing the Value of a Variable . 9-

Technical Tips . 9-
Unknown Terminal Type . 9-1
Command Line Syntax for Editors. 9-

Compilation Systems Volume 1 (Tools)

e in
tly

y
orial

essor
you

d like

ame

that

in
rom

ing

the

how
9
Chapter 9Browsing Through Your Code with cscope

9
9
9

Introduction 9

Thecscope browser is an interactive program that locates specified elements of cod
C, lex , or yacc source files. It lets you search and edit your source files more efficien
than you could with a typical editor.cscope has this capability because it can identif
function calls and C language identifiers and keywords. This chapter contains a tut
on thecscope browser.

How cscope Works 9

When you invokecscope for a set of C,lex , or yacc source files, it builds a symbol
cross-reference table for the functions, function calls, macros, variables, and preproc
symbols in those files. It then lets you query that table about the locations of symbols
specify. First, it presents a menu and asks you to choose the type of search you woul
to have performed. You may, for instance, wantcscope to find all functions that call a
specified function.

Whencscope has completed this search, it prints a list. Each list entry contains the n
of the file, the number of the line, and the text of the line in whichcscope has found the
specified code. In this example, the list will also include the names of the functions
call the specified function. If you choose the latter,cscope invokes the editor for the file
in which the line appears, with the cursor on that line. You may now view the code
context and edit the file as you would any other file. You can then return to the menu f
the editor to request a new search.

Because of the procedure you follow there is no single set of instructions for us
cscope . For an extended example of its use, review thecscope session described in the
next section. It shows how you can locate a bug in a program without learning all
code.

How to Use cscope 9

In the first example, an error message,out of storage , appears intermittently in the
programprog , just as the program starts up. The following series of steps shows you
to usecscope to locate the parts of the code that are generating the message.
9-1

Compilation Systems Volume 1 (Tools)

inal

d

for

rent
re in
oke

rce
ile

ffer-
from
rtup
Step 1: Set Up the Environment 9

cscope is a screen-oriented tool that can only be used on terminals listed in the Term
Information Utilities (terminfo) database. Be sure you have set theTERMenvironment
variable to your terminal type so thatcscope can verify that it is listed in theterminfo
database. If you have not done so, assign a value toTERMand export it to the shell as
follows:

TERM=term_nameexport TERM

You may now want to assign a value to theEDITORenvironment variable. By default,
cscope invokes thevi editor. (The examples in this chapter illustratevi usage.) If you
prefer not to usevi , set theEDITORenvironment variable to the editor of your choice an
exportEDITOR:

EDITOR=emacs export EDITOR

Note that you may have to write an interface betweencscope and your editor. For
details, see “Command Line Syntax for Editors” on page 9-18.

If you want to usecscope only for browsing (without editing), you can set theVIEWER
environment variable topg and exportVIEWER. cscope will then invokepg instead of
vi .

An environment variable calledVPATHcan be set to specify directories to be searched
source files. See “Using Viewpaths” on page 9-13.

Step 2: Invoke cscope 9

By default,cscope builds a symbol cross-reference table for all the C,lex , andyacc
source files in the current directory, and for any included header files in the cur
directory or the standard place. If all the source files for the program to be browsed a
the current directory, and if its header files are there or in the standard place, inv
cscope without arguments:

cscope

To browse through selected source files, invokecscope with the names of those files as
arguments:

cscope file1.c file2.c file3.h

For other ways to invokecscope , see “Command Line Options” on page 9-10.

cscope builds the symbol cross-reference table the first time it is used on the sou
fi les for the program to be browsed. By default, the table is stored in the f
cscope.out in the current directory. On a subsequent invocation,cscope rebuilds the
cross-reference only if a source file has been modified or the list of source files is di
ent. When the cross-reference is rebuilt, the data for the unchanged files are copied
the old cross-reference, which makes rebuilding faster than the initial build and sta
time less for subsequent invocations.
9-2

Browsing Through Your Code with cscope

s

nd
d
form
Step 3: Locate the Code 9

Now you can begin to identify the problem that is causing the error messageout of
storage to be printed. You have invokedcscope , and the cross-reference table ha
been built. Thecscope menu of tasks appears on the screen:

Screen 9-1. The cscope Menu of Tasks

Press theRETURN or Enter key to move the cursor down the screen (with wraparou
at the bottom of the display), andCtrl-p to move the cursor up; or use the up arrow an
down arrow keys if your keyboard has them. You can manipulate the menu, and per
other tasks, with the following single-key commands:

Table 9-1. Menu Manipulation Commands

TAB move to next input field

RETURN move to next input field

Ctrl-n move to next input field

Ctrl-p move to previous input field

Ctrl-y search with the last pattern typed

Ctrl-b move to previous input field and search pattern

Ctrl-f recall next input field and search pattern

Ctrl-c toggle ignore/use letter case when searching (a search forFILE will
match, for example,File andfile when ignoring letter case)

Ctrl-r rebuild the cross-reference

! start an interactive shell (typeCtrl-d to return tocscope)

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-3

Compilation Systems Volume 1 (Tools)

ese

s its
If the first character of the text for which you are searching matches one of th
commands, you can escape the command by entering a backslash (\) before the character.

Now move the cursor to the fifth menu item,Find this text string , enter the text
out of storage , and press theRETURN key:

Screen 9-2. Requesting a Search for a Text String

NOTE

Follow the same procedure to perform any other task listed in the
menu except the sixth,Change this text string . Because
this task is slightly more complex than the others, there is a
different procedure for performing it. For a description of how to
change a text string, see “Examples” on page 9-14.

cscope searches for the specified text, finds one line that contains it, and report
finding as follows:

Ctrl-l redraw the screen

? display list of commands

Ctrl-d exit cscope

Table 9-1. Menu Manipulation Commands (Cont.)

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string: out of storage
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-4

Browsing Through Your Code with cscope

. You
r, if

you
om
ter

s

ll
Screen 9-3. cscope Lists Lines Containing the Text String

After cscope shows you the results of a successful search, you have several options
may want to change the lines or examine the code surrounding it in the editor. O
cscope has found so many lines that a list of them will not fit on the screen at once,
may want to look at the next part of the list. You can even filter out unwanted lines fr
the list cscope has found. The following table shows the commands available af
cscope has found the specified text:

Table 9-2. Commands for Use after Initial Search

1-9 edit the file referenced by this line (the number you type correspond
to an item in the list of lines printed bycscope)

space bar display next set of matching lines

+ display next set of matching lines

Ctrl-v display next set of matching lines

- display previous set of matching lines

Ctrl-e edit displayed files in order

> write the list of lines being displayed to a file

>> append the list of lines being displayed to a file

< read lines from a file

^ filter all lines through a shell command, replacing the lines originally
found with the output of the shell command

| pipe all lines to a shell command, displaying the output of the she
command without changing the list of lines found

Text string: out of storage

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-5

Compilation Systems Volume 1 (Tools)

ese
ter.

sks.
If the first character of the text for which you are searching matches one of th
commands, you can escape the command by entering a backslash before the charac

Now examine the code around the newly found line. Enter1 (the number of the line in the
list). The editor will be invoked with the filealloc.c ; the cursor will be at the begin-
ning of line 63 ofalloc.c :

Screen 9-4. Examining a Line of Code Found by cscope

You can see that the error message is generated when the variablep is NULL. To
determine how an argument passed toalloctest() could have beenNULL, you must
first identify the functions that callalloctest() .

Exit the editor by using normal quit conventions. You are returned to the menu of ta
Now type alloctest after the fourth item,Find functions calling this
function :

{
return(alloctest(realloc(p, (unsigned) size)));

}

/* check for memory allocation failure */

static char *
alloctest(p)
char *p;
{

if (p == NULL) {
(void) fprintf(stderr, "\n%s: out of storage\n", argv0);
exit(1);

}
return(p);

}
~
~
~
~
~
~
~
"alloc.c" 67 lines, 1283 characters
9-6

Browsing Through Your Code with cscope

to see
Screen 9-5. Requesting a List of Functions That Call alloctest()

cscope finds and lists three such functions:

Screen 9-6. cscope Lists Functions That Call alloctest()

Now you want to know which functions callmymalloc() . cscope finds ten such
functions. It lists nine of them on the screen and instructs you to press the space bar
the rest of the list:

Text string: out of storage

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function: alloctest
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Functions calling this function: alloctest

File Function Line
1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned)

size)));
3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-7

Compilation Systems Volume 1 (Tools)

func-
Screen 9-7. cscope Lists Functions That Call mymalloc()

Because you know that the error messageout of storage is generated at the
beginning of the program, you can guess that the problem may have occurred in the
tion dispinit() (display initialization). To viewdispinit() , the seventh function
on the list, type7:

Functions calling this function: mymalloc

File Function Line
1 alloc.c stralloc 24 return(strcpy(mymalloc(strlen(s) + 1), s));
2 crossref.c crossref 47 symbol = (struct symbol *) mymalloc(msymbols *

sizeof(struct symbol));
3 dir.c makevpsrcdirs 63 srcdirs = (char **) mymalloc(nsrcdirs *
sizeof(char

*));
4 dir.c addincdir 167 incdirs = (char **) mymalloc(sizeof(char *));
5 dir.c addincdir 168 incnames = (char **) mymalloc(sizeof(char *));
6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc(sizeof(struct

listitem));
7 display.c dispinit 87 displine = (int *) mymalloc(mdisprefs *
sizeof(int));
8 history.c addcmd 19 h = (struct cmd *) mymalloc(sizeof(struct
cmd));
9 main.c main 212 s = mymalloc((unsigned) (strlen(reffile) +

strlen(home) + 2));

* 9 more lines - press the space bar to display more *
Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-8

Browsing Through Your Code with cscope

tive

ror

the
Screen 9-8. Viewing dispinit() in the Editor

mymalloc() failed because it was called either with a very large number or a nega
number. By examining the possible values ofFLDLINE andREFLINE, you can see that
there are scenarios in which the value ofmdisprefs is negative, for example, when you
are trying to callmymalloc() with a negative number.

Step 4: Edit the Code 9

On a windowing terminal you may have multiple windows of arbitrary size. The er
messageout of storage might have appeared as a result of runningprog . That may
have been one of the situations in whichmymalloc() was called with a negative
number. Now you want to be sure that when the program aborts in this scenario in
future, it does so after printing the more significant error messagescreen too small .
Edit the functiondispinit() as follows:

void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {

mdisprefs = 9;
}
/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

}
^L/* display a page of the references */

void
display()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1]; /* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters
9-9

Compilation Systems Volume 1 (Tools)

tion.

a

s by

g

as
s are
Screen 9-9. Using cscope to Fix the Problem

You have fixed the problem that you began investigating at the beginning of this sec
Now if prog is run in a window with too few lines, it will not simply fail with the vague
error messageout of storage . Instead, it will check the window size and generate
more significant error message before exiting.

Command Line Options 9

As noted,cscope builds a symbol cross-reference table for the C,lex , andyacc source
files in the current directory by default.

cscope

is equivalent to

cscope *.[chly]

The following example shows how you can browse through selected source file
invoking cscope with the names of those files as arguments:

cscope file1.c file2.c file3.h

cscope provides command line options that allow you greater flexibility in specifyin
source files to be included in the cross-reference. When you invokecscope with the-s
option and any number of directory names (separated by commas)

cscope -s dir,dir,dir

cscope will build a cross-reference for all the source files in the specified directories
well as the current directory. To browse through all of the source files whose name

/* initialize display parameters */

void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs <= 0) {

(void) fprintf(stderr,"\n%s: screen too small\n", argv0);
exit(1);

}
if (mdisprefs > 9) {

mdisprefs = 9;
}
/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

}
^L/* display a page of the references */

void
display()
9-10

Browsing Through Your Code with cscope

to

-

ant
of

ame
not

ent
listed in file (file names separated by spaces, tabs, or new-lines), invokecscope with the
-i option and the name of the file containing the list:

cscope -i file

If your source files are in a directory tree, the following commands will allow you
browse through all of them easily:

find . -name '*.[chly]' -print | sort > file
cscope -i file

Note that if this option is selected,cscope ignores any other files appearing on the com
mand line.

The-I option tocscope is similar to the-I option tocc . By default,cscope searches
for included header files in the current directory, then the standard place. If you w
cscope to search for an included header file in a different directory, specify the path
the directory with-I :

cscope -I dir

In this example,cscope will search the directorydir for #include files called into the
source files in the current directory. Directories are searched for#include files in the
following order:

1. the current directory;

2. the directories specified with-I ;

3. the standard place for header files, usually/usr/include .

You can invoke the-I option more than once on a command line.cscope will search the
specified directories in the order they appear on the command line.

You can specify a cross-reference file other than the defaultcscope.out by invoking
the-f option. This is useful for keeping separate symbol cross-reference files in the s
directory. You may want to do this if two programs are in the same directory, but do
share all the same files:

cscope -f admin.ref admin.c common.c aux.c libs.c
cscope -f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two programs,admin anddelta , are in the same
directory, but the programs consist of different groups of files. By specifying differ
symbol cross-reference files when you invokecscope for each set of source files, the
cross-reference information for the two programs is kept separate.

You can use the-p n option to specify thatcscope display the path name, or part of the
path name, of a file when it lists the results of a search. The number you give to-p stands
for the lastn elements of the path name you want to be displayed. The default is1, the
name of the file itself. So if your current directory ishome/common, the command

cscope -p2

will causecscope to displaycommon/file1.c , common/file2.c , and so forth
when it lists the results of a search.
9-11

Compilation Systems Volume 1 (Tools)

e the

or the

ormal
tinue

e it
at

eep-

ave
If the program you want to browse contains a large number of source files, you can us
-b option to tellcscope to stop after it has built a cross-reference;cscope will not
display a menu of tasks. When you usecscope -b in a pipeline with thebatch com-
mand,cscope will build the cross-reference in the background:

echo 'cscope -b' | batch

NOTE

See batch(1) for more information.

Once the cross-reference is built (and as long as you have not changed a source file
list of source files in the meantime), you need only specify

cscope

for the cross-reference to be copied and the menu of tasks to be displayed in the n
way. In other words, you can use this sequence of commands when you want to con
working without having to wait forcscope to finish its initial processing.

The-d option instructscscope not to update the symbol cross-reference. You can us
to save time —cscope will not check the source files for changes — if you are sure th
no such changes have been made.

NOTE

Use the-d option with care. If you specify-d under the
erroneous impression that your source files have not been
changed,cscope will refer to an outdated symbol cross-
reference in responding to your queries.

To usecscope separately on several programs in the same directory structure while k
ing the databases in the same directory, use the-f and -i options to rename the
cscope.out andcscope.files file as follows:

find dir1 -name '*.[chlyCGHL}' -print >dir1.files
find dir2 -name '*.[chlyCGHL}' -print >dir2.files
cscope -b -f dir1.db -i dir1.files
cscope -b -f dir2.db -i dir2.files

Call cscope with:

cscope -d -f dir2.db

Options used only when building the database, such as-i are not needed with the-d
option. Use the-P option to give the path to relative file names so the script does not h
to change to the directory where the database was built.

The-F file option reads symbol reference lines fromfile, similar to the< command.
9-12

Browsing Through Your Code with cscope

ion

s, you
e to

build
ins
.

ld a
's

stem
ta-
dex

the
t
the

t of
y
just
The-q option builds an inverted index for quick symbol searching. If you use this opt
with the-f option, you must use-f on every call tocscope including building the data-
base, because it changes the names of the inverted index files. For large database
will be able to find a symbol in a few seconds instead of the several minutes it can tak
build without -q , at the expense of about twice as much database disk space and
CPU time. Updating a-q database takes about half as long as building it. It conta
binary numbers, so it is portable only between machines with the same byte ordering

The-q option makes it practical to have databases for entire projects. If you try to bui
project database and get afile too large message, you need to get your login
ulimit raised by your system administrator. (Seesh(1) for information on the shell
built-in ulimit command.) If you get theno space left on device message, you
will have to use a file system with more space. You can change the temporary file sy
by setting theTMPDIRenvironment variable. If you have enough space to build the da
base but not to rebuild it after some files have changed, try removing the inverted in
cscope.in.out andcscope.po.out files. If you still don't have enough space to
rebuild, remove thecscope.out file.

Check thecscope(1) page for other command line options.

Using Viewpaths 9

cscope searches for source files in the current directory by default. When
environment variableVPATHis set,cscope searches for source files in directories tha
comprise your viewpath. A viewpath is an ordered list of directories, each of which has
same directory structure below it.

For example, suppose you are part of a software project. There is an “official” se
source files in directories below/fs1/ofc . Each user has a home director
(/usr/you). If you make changes to the software system, you may have copies of
those files you are changing in/usr/you/src/cmd/prog1 . The official versions of
the entire program can be found in the directory/fs1/ofc/src/cmd/prog1 .

Suppose you usecscope to browse through the three files that compriseprog1 , namely,
f1.c , f2.c, andf3.c. You would setVPATH to /usr/you and/fs1/ofc and
export it, as in

VPATH=/usr/you:/fs1/ofc export VPATH

You would then make your current directory/usr/you/src/cmd/prog1 , and invoke
cscope :

cscope

The program will locate all files in the viewpath. In case duplicates are found,cscope
uses the file whose parent directory appears earlier inVPATH. Thus if f2.c is in your
directory (and all three files are in the official directory),cscope will examine f2.c
from your directory andf1.c andf3.c from the official directory.

The first directory inVPATHmust be a prefix (usually$HOME) of the directory you will
be working in. Each colon-separated directory inVPATHmust be absolute: it should
begin at/ .
9-13

Compilation Systems Volume 1 (Tools)

u can
ng
e

g-
nging
a text

t it

nu) to
Stacking cscope and Editor Calls 9

cscope and editor calls can be stacked. That means that whencscope puts you in the
editor to view a reference to a symbol and there is another reference of interest, yo
invokecscope again from within the editor to view the second reference without exiti
the current invocation of eithercscope or the editor. You can then back up by exiting th
most recent invocation with the appropriatecscope and editor commands.

Examples 9

This section presents examples of howcscope can be used to perform three tasks: chan
ing a constant to a preprocessor symbol, adding an argument to a function, and cha
the value of a variable. The first example demonstrates the procedure for changing
string, which differs slightly from the other tasks on thecscope menu. Once you have
entered the text string to be changed,cscope prompts you for the new text, displays the
lines containing the old text, and waits for you to specify which of these lines you wan
to change.

Changing a Constant to a Preprocessor Symbol 9

Suppose you want to change a constant,100 , to a preprocessor symbol,MAXSIZE.
Select the sixth menu item,Change this text string , and enter\100 . The1 must
be escaped with a backslash because it has a special meaning (item 1 on the me
cscope . PressRETURN. cscope will prompt you for the new text string. Type
MAXSIZE:

Screen 9-10. Changing a Text String

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
To: MAXSIZE
9-14

Browsing Through Your Code with cscope

lect

e

the

he
cscope displays the lines containing the specified text string, and waits for you to se
those in which you want the text to be changed:

Screen 9-11. cscope Prompts for Lines to Be Changed

You know that the constant100 in lines 2, 3, and 4 of the list (lines 4, 26, and 8 of th
listed source files) should be changed toMAXSIZE. You also know that100 in err.c
and0100.0 in read.c (lines 1 and 5 of the list) should not be changed. You select
lines you want changed with the following single-key commands:

In this case, enter2, 3, and4. Note that the numbers you type are not printed on t
screen. Instead,cscope marks each list item you want to be changed by printing a>
(greater than) symbol after its line number in the list:

Table 9-3. Commands for Selecting Lines to Be Changed

1-9 mark or “unmark” the line to be changed

* mark or “unmark” all displayed lines to be changed

space bar display next set of lines

+ display next set of lines

- display previous set of lines

a mark or “unmark” all lines to be changed

Ctrl-d change the marked lines and exit

ESC exit without changing the marked lines

Change "100" to "MAXSIZE"

File Line
1 err.c 19 p = total/100.0; /* get percentage */
2 find.c 8 if (c < 100) {
3 init.c 4 char s[100];
4 init.c 26 for (i = 0; i < 100; i++)
5 read.c 12 f = (bb & 0100);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help):
9-15

Compilation Systems Volume 1 (Tools)
Screen 9-12. Marking Lines to Be Changed

Now pressCtrl-d to change the selected lines.cscope displays the lines that have been
changed and prompts you to continue:

Screen 9-13. cscope Displays Changed Lines of Text

Change "100" to "MAXSIZE"

File Line
1 err.c 19 p = total/100.0; /* get percentage */
2>find.c 8 if (c < 100) {
3>init.c 4 char s[100];
4>init.c 26 for (i = 0; i < 100; i++)
5 read.c 12 f = (bb & 0100);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help):

Changed lines:
char s[MAXSIZE];
for (i = 0; i < MAXSIZE; i++)

if (c < MAXSIZE) {

Press the RETURN key to continue:
9-16

Browsing Through Your Code with cscope

creen

ed,
e

nd

m,

the
by
he
When you pressRETURN in response to this prompt,cscope redraws the screen,
restoring it to its state before you selected the lines to be changed, as shown in the s
below.

The next step is to add the#define for the new symbolMAXSIZE. Because the header
file in which the#define is to appear is not among the files whose lines are display
you must escape to the shell by typing! . The shell prompt will appear at the bottom of th
screen. Then enter the editor and add the#define :

Screen 9-14. Escaping from cscope to the Shell

To resume thecscope session, quit the editor and pressCtrl-d to exit the shell.

Adding an Argument to a Function 9

Adding an argument to a function involves two steps: editing the function itself a
adding the new argument to every place in the code where the function is called.cscope
makes that easy.

First, edit the function by using the second menu item,Find this global
definition . Next, find out where the function is called. Use the fourth menu ite
Find functions calling this function , to get a list of all the functions that
call it. With this list, you can either invoke the editor for each line found by entering
list number of the line individually, or invoke the editor for all the lines automatically
pressingCtrl-e. Using cscope to make this type of change assures that none of t
functions you need to edit will be overlooked.

Text string: 100

File Line
1 err.c 19 p = total/100.0; /* get percentage */
2 find.c 8 if (c < 100) {
3 init.c 4 char s[100];
4 init.c 26 for (i = 0; i < 100; i++)
5 read.c 12 f = (bb & 0100);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
$ vi defs.h
9-17

Compilation Systems Volume 1 (Tools)

w a
e or

help
ver-

tion
the

ion

-

y

ote,
the

you
Changing the Value of a Variable 9

The value ofcscope as a browser becomes apparent when you want to see ho
proposed change will affect your code. If you want to change the value of a variabl
preprocessor symbol, use the first menu item,Find this C symbol , to obtain a list of
references that will be affected. Then use the editor to examine each one. This will
you predict the overall effects of your proposed change. You can also use this menu to
ify that your changes have been made.

Technical Tips 9

This section describes certain problems that may arise when you usecscope and how to
avoid them.

Unknown Terminal Type 9

You may see the error message

Sorry, I don't know anything about your "term" terminal

If this message appears, your terminal may not be listed in the Terminal Informa
Utilities (terminfo) database that is currently loaded. Make sure you have assigned
correct value toTERM. If the message reappears, try reloading the Terminal Informat
Utilities.

You may also see

Sorry, I need to know a more specific terminal type
than "unknown"

If this message appears, set and export theTERMas described in “Step 1: Set Up the Envi
ronment” on page 9-2.

Command Line Syntax for Editors 9

cscope invokes thevi editor by default. You may override the default setting b
assigning your preferred editor to theEDITOR environment variable and exporting
EDITOR, as described in the section “Step 1: Set Up the Environment” on page 9-2. N
however, thatcscope expects the editor it uses to have a command line syntax of
form

editor +linenum filename

as doesvi . If the editor you want to use does not have this command line syntax,
must write an interface betweencscope and the editor.
9-18

Browsing Through Your Code with cscope

ith

17
Suppose you want to useed , for example. Becauseed does not allow specification of a
line number on the command line, you will not be able to use it to view or edit files w
cscope unless you write a shell script (calledmyedit here) that contains the following
line:

/usr/bin/ed $2

Now set the value ofEDITORto your shell script and exportEDITOR:

EDITOR=myedit; export EDITOR

Whencscope invokes the editor for the list item you have specified, for example, line
in main.c , it will invoke your shell script with the command line

myedit +17 main.c

myedit will discard the line number($1) and called correctly with the file name
($2) . You will then have to execute the appropriateed commands to display and edit the
line because you will not be moved automatically to line 17 of the file.
9-19

Compilation Systems Volume 1 (Tools)
9-20

-1
-1
-2
0-2
-2
-2

-3
0-5
-6
7
8
-8
12
13
-13
-13
-14

0-14
0-14
-15

-16
-16
17
-17

-18

-19
-19
-20
-20
21

-21
-22
3
3

-24
-24
-25
-25
26
-26

27
-27
-27

-28
10
Analyzing Your Code with lint

Introduction to lint . 10
Options and Directives . 10
lint and the Compiler . 10
Message Formats . 1

What lint Does . 10
Consistency Checks . 10
Portability Checks . 10
Suspicious Constructs. 1

Usage . 10
lint Libraries . 10-
lint Filters . 10-
Options and Directives Listed . 10

lint-specific Messages . 10-
argument unused in function . 10-
array subscript cannot be > value: value . 10
array subscript cannot be negative: value. 10
assignment causes implicit narrowing conversion . 10
assignment of negative constant to unsigned type . 1
assignment operator ?=? found where ?==? was expected 1
bitwise operation on signed value nonportable . 10
constant in conditional context . .. 10-16
constant operand to op: ?!?. 10
constant truncated by assignment . 10
conversion of pointer loses bits . 10-
conversion to larger integral type may sign-extend incorrectly 10
declaration unused in block. 10-18
declared global, could be static . 10
equality operator ?==? found where ?=? was expected. 10-18
evaluation order undefined: name . 10
fallthrough on case statement . 10
function argument (number) declared inconsistently . 10
function argument (number) used inconsistently . 10
function argument type inconsistent with format . 10-
function called with variable number of arguments . 10
function declared with variable number of arguments . 10
function falls off bottom without returning value . 10-2
function must return int: main() . 10-2
function returns pointer to [automatic/parameter] . 10
function returns value that is always ignored . 10
function returns value that is sometimes ignored . 10
function value is used, but none returned . 10
logical expression always false: op ?&&? . 10-
logical expression always true: op ?||? . 10
malformed format string. 10-
may be indistinguishable due to truncation or case . 10
name declared but never used or defined . 10
name defined but never used . 10

Compilation Systems Volume 1 (Tools)

28
-28

29
-30
-30
0-31
31
32
0-32
-32

-33
-33
4
-34
-35

35
36
-36
-37
-37
name multiply defined . 10-
name used but not defined . 10
nonportable bit-field type .. 10-29
nonportable character constant 10-29
only 0 or 2 parameters allowed: main() . 10-
pointer cast may result in improper alignment . 10
pointer casts may be troublesome. 10
precedence confusion possible; parenthesize . 1
precision lost in bit-field assignment . 10-
set but not used in function . 10-
statement has no consequent: else . 1
statement has no consequent: if . 10
statement has null effect . 10
statement not reached . 10
static unused. 10-3
suspicious comparison of char with value: op ?op? . 10
suspicious comparison of unsigned with value: op ?op? 10
too few arguments for format . 10-
too many arguments for format. 10-
value type declared inconsistently . 10
value type used inconsistently. 10
variable may be used before set: name . 10
variable unused in function. 10-37

r to
ed

d

by
ave

ed by

ent
, with
to be
nd

ences
hable

of
s

10
Chapter 10Analyzing Your Code with lint

10
10
10

Introduction to lint 10

lint checks for code constructs that may cause your C program not to compile, o
execute with unexpected results.lint issues every error and warning message produc
by the C compiler. It also issues “lint -specific” warnings about potential bugs an
portability problems.

In particular,lint compensates for separate and independent compilation of files in C
flagging inconsistencies in definition and use across files, including any libraries you h
used. In a large project environment especially, where the same function may be us
different programmers in hundreds of separate modules of code,lint can help discover
bugs that otherwise might be difficult to find. A function called with one less argum
than expected, for example, looks at the stack for a value the call has never pushed
results correct in one condition, incorrect in another, depending on whatever happens
in memory at that stack location. By identifying dependencies like this one, a
dependencies on machine architecture as well,lint can improve the reliability of code
run on your machine or someone else's.

Options and Directives 10

lint is a static analyzer, which means that it cannot evaluate the run-time consequ
of the dependencies it detects. Certain programs may contain hundreds of unreac
break statements, andlint will give a warning for each of them. The shear number
lint messages issued can be distracting.lint , however, provides command line option
and directives to help suppress warnings you consider to be spurious.

NOTE

Directives are special comments embedded in the source text.

For the example we've cited here,

• You can invokelint with the -b option to suppress all complaints about
unreachablebreak statements;

• For a finer-grained control, you can precede any unreachable statement
with the comment/* NOTREACHED */ to suppress the diagnostic for
that statement.
10-1

Compilation Systems Volume 1 (Tools)

s.

ly,
f
ued
s”

ce of
s by

d, in a
rence

to the

stent
les of
es they

ll as
uses,

t use
o a
“Usage” on page 10-6 details options and directives and introduces thelint filter
technique, which lets you tailorlint 's behavior even more finely to your project's need
It also shows you how to uselint libraries to check your program for compatibility with
the library functions you have called in it.

lint and the Compiler 10

Nearly five hundred diagnostic messages are issued bylint . However, this chapter only
describes thoselint -specific warnings that are not issued by the compiler. Additional
this chapter lists diagnostics issued both bylint and the compiler that are capable o
being suppressed only bylint options. For the text and examples of all messages iss
exclusively bylint or subject exclusively to its options, refer to “lint-specific Message
on page 10-12.

Message Formats 10

Most of lint 's messages are simple, one-line statements printed for each occurren
the problem they diagnose. Errors detected in included files are reported multiple time
the compiler but only once bylint , no matter how many times the file is included in
other source files. Compound messages are issued for inconsistencies across files an
few cases, for problems within them as well. A single message describes every occur
of the problem in the file or files being checked. When use of alint filter requires that a
message be printed for each occurrence, compound diagnostics can be converted
simple type by invokinglint with the-s option.

NOTE

See “Usage” on page 10-6 for more information.

What lint Does 10

lint -specific diagnostics are issued for three broad categories of conditions: inconsi
use, non-portable code, and suspicious constructs. In this section, we'll review examp
lint 's behavior in each of these areas, and suggest possible responses to the issu
raise.

Consistency Checks 10

Inconsistent use of variables, arguments, and functions is checked within files as we
across them. Generally speaking, the same checks are performed for prototype
declarations, and parameters as for old-style functions. (If your program does no
function prototypes,lint will check the number and types of parameters in each call t
10-2

Analyzing Your Code with lint

n

s

under

les

m.

ost
function more strictly than the compiler.)lint also identifies mismatches of conversio
specifications and arguments in[fs]printf and [fs]scanf control strings.
Examples:

• Within files, lint flags non-void functions that “fall off the bottom”
without returning a value to the invoking function. In the past,
programmers often indicated that a function was not meant to return a
value by omitting the return type:fun() {} . That convention means
nothing to the compiler, which regardsfun as having the return typeint .
Declare the function with the return typevoid to eliminate the problem.

• Across files, lint detects cases where a non-void function does not
return a value, yet is used for its value in an expression, and the opposite
problem, a function returning a value that is sometimes or always ignored
in subsequent calls. When the value is always ignored, it may indicate an
inefficiency in the function definition. When it is sometimes ignored, it's
probably bad style (typically, not testing for error conditions). If you do not
need to check the return values of string functions likestrcat , strcpy ,
andsprintf , or output functions likeprintf andputchar , cast the
offending call(s) tovoid .

• lint identifies variables or functions that are declared but not used or
defined; used but not defined; or defined but not used. That means that
whenlint is applied to some, but not all files of a collection to be loaded
together, it will complain about functions and variables declared in those
files but defined or used elsewhere; used there but defined elsewhere; or
defined there and used elsewhere. Invoke the-x option to suppress the
former complaint,-u to suppress the latter two.

Portability Checks 10

Some non-portable code is flagged bylint in its default behavior, and a few more case
are diagnosed whenlint is invoked with-p and/or-Xc . The latter tellslint to check
for constructs that do not conform to the ANSI C standard. For the messages issued
-p and-Xc , check “Usage” on page 10-6. Examples:

• In some C language implementations, character variables that are not
explicitly declaredsigned or unsigned are treated as signed quantities
with a range typically from -128 to 127. In other implementations, they are
treated as nonnegative quantities with a range typically from 0 to 255. So
the test

char c;

c = getchar();
if (c == EOF) . . .

whereEOFhas the value -1, will always fail on machines where character variab
take on nonnegative values. One oflint 's -p checks will flag any comparison that
implies a “plain”char may have a negative value. Note, however, that declaringc a
signed char in the above example eliminates the diagnostic, not the proble
That's becausegetchar must return all possible characters and a distinctEOF
value, so achar cannot store its value. This example, which is perhaps the m
10-3

Compilation Systems Volume 1 (Tools)

w a
t

d by
tics

,

the
common one arising from implementation-defined sign-extension, shows ho
thoughtful application oflint 's portability option can help you discover bugs no
related to portability. In any case, declarec as anint .

• A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that
treats bit-fields of typeint as unsigned quantities, the values allowed for
int x:3 range from 0 to 7, whereas on machines that treat them as signed
quantities they range from -4 to 3. However unintuitive it may seem, a
three-bit field declared typeint cannot hold the value 4 on the latter
machines.lint invoked with -p flags all bit-field types other than
unsigned int or signed int . Note that these are the only portable
bit-field types. The compilation system supportsint , char , short , and
long bit-field types that may beunsigned , signed , or “plain.” It also
supports theenum bit-field type.

• Bugs can arise when a larger-sized type is assigned to a smaller-sized type.
If significant bits are truncated, accuracy is lost:

short s;
long l;
s = l;

lint flags all such assignments by default; the diagnostic can be suppresse
invoking the-a option. Bear in mind that you may be suppressing other diagnos
when you invokelint with this or any other option. Check the list in “Usage” on
page 10-6 for the options that suppress more than one diagnostic.

• A cast of a pointer to one object type to a pointer to an object type with
stricter alignment requirements may not be portable.lint flags

int *fun(y)
char *y;

{
return(int *)y;

}

because, on most machines, anint cannot start on an arbitrary byte boundary
whereas achar can. If you suppress the diagnostic by invokinglint with -h , you
may be disabling other messages. You can eliminate the problem by using
generic pointervoid * .

• ANSI C leaves the order of evaluation of complicated expressions
undefined. What this means is that when function calls, nested assignment
statements, or the increment and decrement operators cause side effects —
when a variable is changed as a by-product of the evaluation of an
expression — the order in which the side effects take place is highly
machine dependent. By default,lint flags any variable changed by a side
effect and used elsewhere in the same expression:

int a[10];
main()
{

int i = 1;
a[i++] = i;

}

10-4

Analyzing Your Code with lint

s

mer

f

Note that in this example the value ofa[1] may be 1 if one compiler is used, 2 if
another. The bitwise logical operator& can also give rise to this diagnostic when it i
mistakenly used in place of the logical operator&&:

if ((c = getchar()) != EOF & c != '0')

Suspicious Constructs 10

lint flags a number of valid constructs that may not represent what the program
intended. Examples:

• An unsigned variable always has a nonnegative value. So the test

unsigned x;
if (x < 0) . . .

will always fail. Whereas the test

unsigned x;
if (x > 0) . . .

is equivalent to

if (x != 0) . . .

which may not be the intended action.lint flags suspicious comparisons o
unsigned variables with negative constants or 0. To compare anunsigned
variable to the bit pattern of a negative number, cast it tounsigned :

if (u == (unsigned) -1) . . .

Or use theU suffix:

if (u == -1U) . . .

• lint flags expressions without side effects that are used in a context
where side effects are expected, where the expression may not represent
what the programmer intended. It issues an additional warning whenever
the equality operator is found where the assignment operator was expected,
in other words, where a side effect was expected:

int fun()
{

int a, b, x, y;
(a = x) && (b == y);

}

• lint cautions you to parenthesize expressions that mix both the logical
and bitwise operators (specifically,&, |, ^ , <<, >>) , where
misunderstanding of operator precedence may lead to incorrect results.
Because the precedence of bitwise&, for example, falls below logical== ,
the expression

if (x & a == 0) . . .
10-5

Compilation Systems Volume 1 (Tools)

o C
to the

nt

.

will be evaluated as

if (x & (a == 0)) . . .

which is most likely not what you intended. Invokinglint with -h disables the
diagnostic.

Usage 10

You invokelint with a command of the form

lint file.c file.c

lint examines code in two passes. In the first, it checks for error conditions local t
source files, in the second for inconsistencies across them. This process is invisible
user unlesslint is invoked with-c :

lint -c file1.c file2.c

That command directslint to execute the first pass only and collect information releva
to the second — about inconsistencies in definition and use acrossfile1.c and
file2.c — in intermediate files namedfile1.ln andfile2.ln :

ls -1
file1.c
file1.ln
file2.c
file2.ln

In this way, the-c option tolint is analogous to the-c option tocc , which suppresses
the link editing phase of compilation. Generally speaking,lint 's command line syntax
closely followscc 's.

When the.ln files arelint ed

lint file1.ln file2.ln

the second pass is executed.lint processes any number of.c or .ln files in their
command line order. So

lint file1.ln file2.ln file3.c

directslint to checkfile3.c for errors internal to it and all three files for consistency

lint searches directories for included header files in the same order ascc

NOTE

For further information, see “Preprocessing Directives” in Con-
currentC Reference Manual.
10-6

Analyzing Your Code with lint

r the

d
tions
f the

and

ed in

the

both
c-
Use the-I option tolint as you would the-I option tocc . If you wantlint to check
an included header file that is stored in a directory other than your current directory o
standard place, specify the path of the directory with-I as follows:

lint -I dir file1.c file2.c

You can specify-I more than once on thelint command line. Directories are searche
in the order they appear on the command line. Of course, you can specify multiple op
to lint on the same command line. Options may be concatenated unless one o
options takes an argument:

lint -cp -I dir -I dir file1.c file2.c

That command directslint to

• Execute the first pass only;

• Perform additional portability checks;

• Search the specified directories for included header files.

lint Libraries 10

You can uselint libraries to check your program for compatibility with the library
functions you have called in it: the declaration of the function return type, the number
types of arguments the function expects, and so on. The standardlint libraries
correspond to libraries supplied by the C compilation system, and generally are stor
the standard place on your system, the directory/usr/ccs/lib . By convention,lint
libraries have names of the formllib-lx.ln .

The lint standard C library,llib-lc.ln , is appended to thelint command line by
default; checks for compatibility with it can be suppressed by invoking the-n option.
Otherlint libraries are accessed as arguments to-l .

lint -lx file1.c file2.c

directslint to check the usage of functions and variables infile1.c andfile2.c for
compatibility with thelint library llib-lx.ln . The library file, which consists only
of definitions, is processed exactly as are ordinary source files and ordinary.ln files,
except that functions and variables used inconsistently in the library file, or defined in
library file but not used in the source files, elicit no complaints.

To create your ownlint library, insert the directive/* LINTLIBRARY */ at the head
of a C source file, then invokelint for that file with the-o option and the library name
that will be given to-l :

lint -o x files headed by/* LINTLIBRARY */

causes only definitions in the source files headed by/* LINTLIBRARY */ to be written
to the file llib-lx.ln . (Note the analogy oflint -o to cc -o .) A library can be
created from a file of function prototype declarations in the same way, except that
/* LINTLIBRARY */ and/* PROTOLIB n */ must be inserted at the head of the de
larations file. Ifn is 1, prototype declarations will be written to a library.ln file just as are
10-7

Compilation Systems Volume 1 (Tools)

with

of

as
lues
nostic

ed for
uitable

be
fying
ected
red out.
old-style definitions. Ifn is 0, the default, the process is canceled. Invokinglint with -y
is another way of creating alint library:

lint -y -ox file1.c file2.c

causes each source file named on the command line to be treated as if it began
/* LINTLIBRARY */ and only its definitions to be written tollib-lx.ln .

By default,lint searches forlint libraries in the standard place. To directlint to
search for alint library in a directory other than the standard place, specify the path
the directory with the-L option:

lint -L dir -lx file1.c file2.c

The specified directory is searched before the standard place.

lint Filters 10

A lint filter is a project-specific post-processor that typically uses anawk script or
similar program to read the output oflint and discard messages that your project h
decided do not identify real problems — string functions, for instance, returning va
that are sometimes or always ignored. It enables you to generate customized diag
reports whenlint options and directives do not provide sufficient control over output.

Two options tolint are particularly useful in developing a filter. Invokinglint with -s
causes compound diagnostics to be converted into simple, one-line messages issu
each occurrence of the problem diagnosed. The easily parsed message format is s
for analysis by anawk script.

Invoking lint with -k causes certain comments you have written in the source file to
printed in output, and can be useful both in documenting project decisions and speci
the post-processor's behavior. In the latter instance, if the comment identified an exp
lint message, and the reported message was the same, the message might be filte
To use-k , insert on the line preceding the code you want to comment the/* LINTED
[msg] */ directive, wheremsgrefers to the comment to be printed whenlint is
invoked with-k . (Refer to the list of directives below for whatlint does when-k is not
invoked for a file containing/* LINTED [msg] */ .)

Options and Directives Listed 10

These options suppress specific messages:

-a Suppress:

• assignment causes implicit narrowing
conversion

• conversion to larger integral type may
sign-extend incorrectly
10-8

Analyzing Your Code with lint
-b For unreachablebreak and empty statements, suppress:

• statement not reached

-h Suppress:

• assignment operator “=” found where
equality operator “==” was expected

• constant operand to op: “!”

• fallthrough on case statement

• pointer cast may result in improper
alignment

• precedence confusion possible; parenthesize

• statement has no consequent: if

• statement has no consequent: else

-m Suppress:

• declared global, could be static

-u Suppress:

• name defined but never used

• name used but not defined

-v Suppress:

• argument unused in function

-x Suppress:

• name declared but never used or defined

These options enable specific messages:

-p Enable:

• conversion to larger integral type may
sign-extend incorrectly

• may be indistinguishable due to truncation
or case

• pointer casts may be troublesome

• nonportable bit-field type

• suspicious comparison of char with value: op
“ op”
10-9

Compilation Systems Volume 1 (Tools)

d.

h
s.

d

e

-Xc Enable:

• bitwise operation on signed value
nonportable

• function must return int: main()

• may be indistinguishable due to truncation
or case

• only 0 or 2 parameters allowed: main()

• nonportable character constant

Other options:

-c Create a.ln file consisting of information relevant tolint 's second pass for
every.c file named on the command line. The second pass is not execute

-F When referring to the.c files named on the command line, print their pat
names as supplied on the command line rather than only their base name

-I dir Search the directorydir for included header files.

-k When used with the directive/* LINTED [msg] */ , print info: msg.

-lx Access thelint library llib-lx.ln .

-L dir When used with-l , search for alint library in the directorydir.

-n Suppress checks for compatibility with the defaultlint standard C library.

-ox Create the filellib-lx.ln , consisting of information relevant tolint 's
second pass, from the.c files named on the command line. Generally use
with -y or /* LINTLIBRARY */ to createlint libraries.

-s Convert compound messages into simple ones.

-y Treat every.c file named on the command line as if it began with th
directive/* LINTLIBRARY */ .

-V Write the product name and release to standard error.

Directives:

/* ARGSUSEDn */
Suppress:

• argument unused in function

for every argument but the firstn in the function definition it precedes.
Default is 0.

/* CONSTCOND */
Suppress:

• constant in conditional context

• constant operand to op: "!"
10-10

Analyzing Your Code with lint

ile
• logical expression always false: op “&&”

• logical expression always true: op “||”

for the constructs it precedes. Also/* CONSTANTCONDITION */ .

/* EMPTY */
Suppress:

• statement has no consequent: else

when inserted between theelse and semicolon;

• statement has no consequent: if

when inserted between the controlling expression of theif and semicolon.

/* FALLTHRU */
Suppress:

• fallthrough on case statement

for thecase statement it precedes. Also/* FALLTHROUGH */ .

/* LINTED [msg] */
When -k is not invoked, suppress every warning pertaining to an intra-f
problem except:

• argument unused in function

• declaration unused in block

• set but not used in function

• static unused

• variable unused in function

for the line of code it precedes.msgis ignored.

/* LINTLIBRARY */
When-o is invoked, write to a library.ln file only definitions in the.c file
it heads.

/* NOTREACHED */
Suppress:

• statement not reached

for the unreached statements it precedes;

• fallthrough on case statement

for the case it precedes that cannot be reached from the preceding case;

• function falls off bottom without returning
value

for the closing curly brace it precedes at the end of the function.
10-11

Compilation Systems Volume 1 (Tools)

a

sion
to

the
tion to
/* PRINTFLIKE n */
Treat thenth argument of the function def init ion it precedes as
[fs]printf format string and issue:

• malformed format string

for invalid conversion specifications in that argument, and

• function argument type inconsistent with
format

• too few arguments for format

• too many arguments for format

for mismatches between the remaining arguments and the conver
specifications.lint issues these warnings by default for errors in calls
[fs]printf functions provided by the standard C library.

/* PROTOLIB n */
Whenn is 1 and/* LINTLIBRARY */ is used, write to a library.ln file
only function prototype declarations in the.c file it heads. Default is 0,
canceling the process.

/* SCANFLIKE n */
Same as/* PRINTFLIKEn */ except that thenth argument of the function
definition is treated as a[fs]scanf format string. By default,lint issues
warnings for errors in calls to[fs]scanf functions provided by the
standard C library.

/* VARARGSn */
For the function whose definition it precedes, suppress:

• function called with variable number of
arguments

for calls to the function withn or more arguments.

lint-specific Messages 10

This section lists alphabetically the warning messages issued exclusively bylint or
subject exclusively to its options. The code examples illustrate conditions in which
messages are elicited. Note that some of the examples would elicit messages in addi
the one stated.
10-12

Analyzing Your Code with lint

i th

d to a
argument unused in function 10

Format: Compound

A function argument was not used. Preceding the function def in it ion w
/* ARGSUSEDn */ suppresses the message for all but the firstn arguments; invoking
lint with -v suppresses it for every argument.

1 int fun(int x, int y)
2 {
3 return x;
4 }
5 /* ARGSUSED1 */
6 int fun2(int x, int y)
7 {
8 return x;
9 }
============
argument unused in function

(1) y in fun

array subscript cannot be > value: value 10

Format: Simple

The value of an array element's subscript exceeded the upper array bound.

1 int fun()
2 {
3 int a[10];
4 int *p = a;
5 while (p != &a[10]) /* using address is ok */
6 p++;
7 return a[5 + 6];
8 }
============
(7) warning: array subscript cannot be > 9: 11

array subscript cannot be negative: value 10

Format: Simple

The constant expression that represents the subscript of a true array (as oppose
pointer) had a negative value.
10-13

Compilation Systems Volume 1 (Tools)
1 int f()
2 {
3 int a[10];
4 return a[5 * 2 / 10 - 2];
5 }
============
(4) warning: array subscript cannot be negative: -1

assignment causes implicit narrowing conversion 10

Format: Compound

An object was assigned to one of a smaller type. Invokinglint with -a suppresses the
message. So does an explicit cast to the smaller type.

1 void fun()
2 {
3 short s;
4 long l = 0;
5 s = l;
6 }
============
assignment causes implicit narrowing conversion
(5)

assignment of negative constant to unsigned type 10

Format: Simple

A negative constant was assigned to a variable ofunsigned type. Use a cast or theU
suffix.

1 void fun()
2 {
3 unsigned i;
4 i = -1;
5 i = -1U;
6 i = (unsigned) (-4 + 3);
7 }
============
(4) warning: assignment of negative constant to unsigned
type

assignment operator ?=? found where ?==? was expected 10

Format: Simple
10-14

Analyzing Your Code with lint

. The
e of a
g is

d by
tations
The
An assignment operator was found where a conditional expression was expected
message is not issued when an assignment is made to a variable using the valu
function call or in the case of string copying (see the example below). The warnin
suppressed whenlint is invoked with-h .

1 void fun()
2 {
3 char *p, *q;
4 int a = 0, b = 0, c = 0, d = 0, i;
5 i = (a = b) && (c == d);
6 i = (c == d) && (a = b);
7 if (a = b)
8 i = 1;
9 while (*p++ = *q++);
10 while (a = b);
11 while ((a = getchar()) == b);
12 if (a = foo()) return;
13 }
============
(5) warning: assignment operator "=" found where "=="

was expected
(7) warning: assignment operator "=" found where "=="

was expected
(10) warning: assignment operator "=" found where "=="

was expected

bitwise operation on signed value nonportable 10

Format: Compound

The operand of a bitwise operator was a variable of signed integral type, as define
ANSI C. Because these operators return values that depend on the internal represen
of integers, their behavior is implementation-defined for operands of that type.
message is issued only whenlint is invoked with-Xc .

1 fun()
2 {
3 int i;
4 signed int j;
5 unsigned int k;
6 i = i & 055;
7 j = j | 022;
8 k = k >> 4;
9 }
============
warning: bitwise operation on signed value nonportable

(6) (7)
10-15

Compilation Systems Volume 1 (Tools)

g

with

l type
constant in conditional context 10

Format: Simple

The controlling expression of anif , while , or for statement was a constant. Precedin
the statement with/* CONSTCOND */ suppresses the message.

1 void fun()
2 {
3 if (! 1) return;
4 while (1) foo();
5 for (;1;);
6 for (;;);
7 /* CONSTCOND */
8 while (1);
9 }
============
(3) warning: constant in conditional context
(4) warning: constant in conditional context
(5) warning: constant in conditional context

constant operand to op: ?!? 10

Format: Simple

The operand of the NOT operator was a constant. Preceding the statement
/* CONSTCOND */ suppresses the message for that statement; invokinglint with -h
suppresses it for every statement.

1 void fun()
2 {
3 if (! 0) return;
4 /* CONSTCOND */
5 if (! 0) return;
6 }
============
(3) warning: constant operand to op: "!"

constant truncated by assignment 10

Format: Simple

An integral constant expression was assigned or returned to an object of an integra
that cannot hold the value without truncation.
10-16

Analyzing Your Code with lint

.

e.
he
1 unsigned char f()
2 {
3 unsigned char i;
4 i = 255;
5 i = 256;
6 return 256;
7 }
============
(5) warning: constant truncated by assignment
(6) warning: constant truncated by assignment

conversion of pointer loses bits 10

Format: Simple

A pointer was assigned to an object of an integral type that is smaller than the pointer

1 void fun()
2 {
3 char c;
4 int *i;
5 c = i;
6 }
============
(5) warning: conversion of pointer loses bits

conversion to larger integral type may sign-extend incorrectly 10

Format: Compound

A variable of type “plain”char was assigned to a variable of a larger integral typ
Whether a “plain”char is treated as signed or unsigned is implementation-defined. T
message is issued only whenlint is invoked with-p , and is suppressed when it is
invoked with-a .

1 void fun()
2 {
3 char c = 0;
4 short s = 0;
5 long l;
6 l = c;
7 l = s;
8 }
============
conversion to larger integral type may sign-extend
incorrectly

(6)
10-17

Compilation Systems Volume 1 (Tools)
declaration unused in block 10

Format: Compound

An external variable or function was declared but not used in an inner block.

1 int fun()
2 {
3 int foo();
4 int bar();
5 return foo();
6 }
============
declaration unused in block

(4) bar

declared global, could be static 10

Format: Compound

An external variable or function was declared global, instead ofstatic , but was
referenced only in the file in which it was defined. The message is suppressed whenlint
is invoked with-m.

file f1.c
1 int i;
2 int foo() {return i;}
3 int fun() {return i;}
4 static int stfun() {return fun();}
file f2.c
1 main()
2 {
3 int a;
4 a = foo();
5 }
============
declared global, could be static

fun f1.c(3)
i f1.c(1)

equality operator ?==? found where ?=? was expected 10

Format: Simple

An equality operator was found where a side effect was expected.
10-18

Analyzing Your Code with lint

for that
1 void fun(a, b)
2 int a, b;
3 {
4 a == b;
5 for (a == b; a < 10; a++);
6 }
============
(4) warning: equality operator "==" found where "="

was expected
(5) warning: equality operator "==" found where "="

was expected

evaluation order undefined: name 10

Format: Simple

A variable was changed by a side effect and used elsewhere in the same expression.

1 int a[10];
2 main()
3 {
4 int i = 1;
5 a[i++] = i;
6 }
============
(5) warning: evaluation order undefined: i

fallthrough on case statement 10

Format: Simple

Execution fell through one case to another without abreak or return . Preceding a
case statement with/* FALLTHRU */ , or /* NOTREACHED */ when the case
cannot be reached from the preceding case (see below), suppresses the message
statement; invokinglint with -h suppresses it for every statement.

1 void fun(i)
2 {
3 switch (i) {
4 case 10:
5 i = 0;
6 case 12:
7 return;
8 case 14:
9 break;
10 case 15:
11 case 16:
12 break;
13 case 18:
14 i = 0;
10-19

Compilation Systems Volume 1 (Tools)

eir
sued
s.

rs in
15 /* FALLTHRU */
16 case 20:
17 error("bad number");
18 /* NOTREACHED */
19 case 22:
20 return;
21 }
22 }
============
(6) warning: fallthrough on case statement

function argument (number) declared inconsistently 10

Format: Compound

The parameter types in a function prototype declaration or definition differed from th
types in another declaration or definition. The message described after this one is is
for uses (not declarations or definitions) of a prototype with the wrong parameter type

file i3a.c
1 int fun1(int);
2 int fun2(int);
3 int fun3(int);
file i3b.c
1 int fun1(int *i);
2 int fun2(int *i) {}
3 void foo()
4 {
5 int *i;
6 fun3(i);
7 }
============
function argument (number) declared inconsistently

fun2 (arg 1) i3b.c(2) int * :: i3a.c(2) int
fun1 (arg 1) i3a.c(1) int :: i3b.c(1) int *

function argument (number) used inconsistently
fun3 (arg 1) i3a.c(3) int :: i3b.c(6) int *

function argument (number) used inconsistently 10

Format: Compound

The argument types in a function call did not match the types of the formal paramete
the function definition. (And see the discussion of the preceding message.)
10-20

Analyzing Your Code with lint

the

ion
file f1.c
1 int fun(int x, int y)
2 {
3 return x + y;
4 }
file f2.c
1 int main()
2 {
3 int *x;
4 extern int fun();
5 return fun(1, x);
6 }
============
function argument (number) used inconsistently

fun(arg 2) f1.c(2) int :: f2.c(5) int *

function argument type inconsistent with format 10

Format: Compound

An argument was inconsistent with the corresponding conversion specification in
control string of a[fs]printf or [fs]scanf function call. (See also/*
PRINTFLIKE n */ and /* SCANFLIKE n */ in the list of directives in “Usage” on
page 10-6.)

1 #include <stdio.h>
2 main()
3 {
4 int i;
5 printf("%s", i);
6 }
============
function argument type inconsistent with format

printf(arg 2) int :: (format) char * test.c(5)

function called with variable number of arguments 10

Format: Compound

A function was called with the wrong number of arguments. Preceding a funct
definition with /* VARARGSn */ suppresses the message for calls withn or more
arguments; defining and declaring a function with the ANSI C notation “. . . ”
suppresses it for every argument.

NOTE

See “function declared with variable number of arguments” on
page 10-22 for more information.
10-21

Compilation Systems Volume 1 (Tools)

om
ype
e

ed for
nts.
file f1.c
1 int fun(int x, int y, int z)
2 {
3 return x + y + z;
4 }
5 int fun2(int x, . . .)
6 {
7 return x;
8 }
10 /* VARARGS1 */
11 int fun3(int x, int y, int z)
12 {
13 return x;
14 }
file f2.c
1 int main()
2 {
3 extern int fun(), fun3(), fun2(int x, . . .);
4 return fun(1, 2);
5 return fun2(1, 2, 3, 4);
6 return fun3(1, 2, 3, 4, 5);
7 }
============
function called with variable number of arguments

fun f1.c(2) :: f2.c(4)

function declared with variable number of arguments 10

Format: Compound

The number of parameters in a function prototype declaration or definition differed fr
their number in another declaration or definition. Declaring and defining the protot
with the ANSI C notation “. . . ” suppresses the warning if all declarations have th
same number of arguments. The message immediately preceding this one is issu
uses (not declarations or definitions) of a prototype with the wrong number of argume

file i3a.c
1 int fun1(int);
2 int fun2(int);
3 int fun3(int);
10-22

Analyzing Your Code with lint

ly
file i3b.c
1 int fun1(int, int);
2 int fun2(int a, int b) {}
3 void foo()
4 {
5 int i, j, k;
6 i = fun3(j, k);
7 }
============
function declared with variable number of arguments

fun2 i3a.c(2) :: i3b.c(2)
fun1 i3a.c(1) :: i3b.c(1)

function called with variable number of arguments
fun3 i3a.c(3) :: i3b.c(6)

function falls off bottom without returning value 10

Format: Compound

A non-void function did not return a value to the invoking function. If the closing cur
brace is truly not reached, preceding it with/* NOTREACHED */ suppresses the
message.

1 fun()
2 {}
3 void fun2()
4 {}
5 foo()
6 {
7 exit(1);
8 /* NOTREACHED */
9 }
============
function falls off bottom without returning value (2) fun

function must return int: main() 10

Format: Simple

The program'smain function does not returnint , in violation of ANSI C restrictions.
The message is issued only whenlint is invoked with-Xc .

1 void main()
2 {}
============
(2) warning: function must return int: main()
10-23

Compilation Systems Volume 1 (Tools)

with
of the
the

rn
function returns pointer to [automatic/parameter] 10

Format: Simple

A function returned a pointer to an automatic variable or a parameter. Since an object
automatic storage duration is no longer guaranteed to be reserved after the end
block, the value of the pointer to that object will be indeterminate after the end of
block.

1 int *fun(int x)
2 {
3 int a[10];
4 int b;
5 if (x == 1)
6 return a;
7 else if (x == 2)
8 return &b;
9 else return &x;
10 }
============
(6) warning: function returns pointer to automatic
(8) warning: function returns pointer to automatic
(9) warning: function returns pointer to parameter

function returns value that is always ignored 10

Format: Compound

A function contained areturn statement and every call to the function ignored its retu
value.

file f1.c
1 int fun()
2 {
3 return 1;
4 }
file f2.c
1 extern int fun();
2 int main()
3 {
4 fun();
5 return 1;
6 }
============
function returns value that is always ignored fun
10-24

Analyzing Your Code with lint

n

n

function returns value that is sometimes ignored 10

Format: Compound

A function contained areturn statement and some, but not all, calls to the functio
ignored its return value.

file f1.c
1 int fun()
2 {
3 return 1;
4 }
file f2.c
1 extern int fun();
2 int main()
3 {
4 if(1) {
5 return fun();
6 }

else {
7 fun();
8 return 1;
9 }
10 }
============
function returns value that is sometimes ignored

fun

function value is used, but none returned 10

Format: Compound

A non-void function did not contain areturn statement, yet was used for its value in a
expression.

file f1.c
1 extern int fun();
2 main()
3 {
4 return fun();
5 }
file f2.c
1 int fun()
2 {}
============
function value is used, but none returned

fun
10-25

Compilation Systems Volume 1 (Tools)

on-
on with

on-
ing the
logical expression always false: op ?&&? 10

Format: Simple

A logical AND expression checked for equality of the same variable to two different c
stants, or had the constant 0 as an operand. In the latter case, preceding the expressi
/* CONSTCOND */ suppresses the message.

1 void fun(a)
2 int a;
3 {
4 a = (a == 1) && (a == 2);
5 a = (a == 1) && (a == 1);
6 a = (1 == a) && (a == 2);
7 a = (a == 1) && 0;
8 /* CONSTCOND */
9 a = (0 && (a == 1));
10 }
============
(4) warning: logical expression always false: op "&&"
(6) warning: logical expression always false: op "&&"
(7) warning: logical expression always false: op "&&"

logical expression always true: op ?||? 10

Format: Simple

A logical OR expression checked for inequality of the same variable to two different c
stants, or had a nonzero integral constant as an operand. In the latter case, preced
expression with/* CONSTCOND */ suppresses the message.

1 void fun(a)
2 int a;
3 {
4 a = (a != 1) || (a != 2);
5 a = (a != 1) || (a != 1);
6 a = (1 != a) || (a != 2);
7 a = (a == 10) || 1;
8 /* CONSTCOND */
9 a = (1 || (a == 10));
10 }
============
(4) warning: logical expression always true: op "||"
(6) warning: logical expression always true: op "||"
(7) warning: logical expression always true: op "||"
10-26

Analyzing Your Code with lint

ther
age is

wer

any
malformed format string 10

Format: Compound

A [fs]printf or [fs]scanf control string was formed incorrectly. (See also/*
PRINTFLIKE n */ and/* SCANFLIKE n */ in the list of directives in “Usage” on
page 10-6.)

1 #include <stdio.h>
2 main()
3 {
4 printf("%y");
5 }
============
malformed format string

printf test.c(4)

may be indistinguishable due to truncation or case 10

Format: Compound

External names in a program may be indistinguishable when it is ported to ano
machine due to implementation-defined restrictions as to length or case. The mess
issued only whenlint is invoked with-Xc or -p . Under-Xc , external names are
truncated to the first 6 characters with one case, in accordance with the ANSI C lo
bound; under-p , to the first 8 characters with one case.

file f1.c
1 int foobar1;
2 int FooBar12;
file f2.c
1 int foobar2;
2 int FOOBAR12;
============
under-p
may be indistinguishable due to truncation or case

FooBar12 f1.c(2) :: FOOBAR12 f2.c(2)
under-Xc
may be indistinguishable due to truncation or case

foobar1 f1.c(1) :: FooBar12 f1.c(2)
foobar1 f1.c(1) :: foobar2 f2.c(1)
foobar1 f1.c(1) :: FOOBAR12 f2.c(2)

name declared but never used or defined 10

Format: Compound

A non-static external variable or function was declared but not used or defined in
file. The message is suppressed whenlint is invoked with-x .
10-27

Compilation Systems Volume 1 (Tools)

ssed

he
file f.c
1 extern int fun();
2 static int foo();
============
name declared but never used or defined

fun f.c(1)

name defined but never used 10

Format: Compound

A variable or function was defined but not used in any file. The message is suppre
whenlint is invoked with-u .

file f.c
1 int i, j, k = 1;
2 main()
3 {
4 j = k;
5 }
============
name defined but never used

i f.c(1)

name multiply defined 10

Format: Compound

A variable was defined in more than one source file.

file f1.c
1 char i = 'a';
file f2.c
1 long i = 1;
============
name multiply defined

i f1.c(1) :: f2.c(1)

name used but not defined 10

Format: Compound

A non-static external variable or function was declared but not defined in any file. T
message is suppressed whenlint is invoked with-u .
10-28

Analyzing Your Code with lint

s
d

ge is
file f.c
1 extern int fun();
2 int main()
3 {
4 return fun();
5 }
============
name used but not defined

fun f.c(4)

nonportable bit-field type 10

Format: Simple

A bit-field type other thansigned int or unsigned int was used. The message i
issued only whenlint is invoked with-p . Note that these are the only portable bit-fiel
types. The compilation system supportsint , char , short , andlong bit-field types that
may beunsigned , signed , or “plain.” It also supports theenum bit-field type.

1 struct u {
2 unsigned v:1;
3 int w:1;
4 char x:8;
5 long y:8;
6 short z:8;
7 };
============
(3) warning: nonportable bit-field type
(4) warning: nonportable bit-field type
(5) warning: nonportable bit-field type
(6) warning: nonportable bit-field type

nonportable character constant 10

Format: Simple

A multi-character character constant in the program may not be portable. The messa
issued only whenlint is invoked with-Xc .

1 int c = 'abc';
============
(1) warning: nonportable character constant

only 0 or 2 parameters allowed: main() 10

Format: Simple
10-29

Compilation Systems Volume 1 (Tools)

an
hen

ent
ype.

ge is
The functionmain in your program was defined with only one parameter or more th
two parameters, in violation of the ANSI C requirement. The message is issued only w
lint is invoked with-Xc .

1 main(int argc, char **argv, char **envp)
2 {}
============
(2) warning: only 0 or 2 parameters allowed: main()

pointer cast may result in improper alignment 10

Format: Compound

A pointer to one object type was cast to a pointer to an object type with stricter alignm
requirements. Doing so may result in a value that is invalid for the second pointer t
The warning is suppressed whenlint is invoked with-h .

1 void fun()
2 {
3 short *s;
4 int *i;
5 i = (int *) s;
6 }
============
pointer cast may result in improper alignment

(5)

pointer casts may be troublesome 10

Format: Compound

A pointer to one object type was cast to a pointer to a different object type. The messa
issued only whenlint is invoked with-p , and is not issued for the generic pointervoid
* .

1 void fun()
2 {
3 int *i;
4 char *c;
5 void *v;
6 i = (int *) c;
7 i = (int *) v;
8 }
============
warning: pointer casts may be troublesome

(6)
10-30

Analyzing Your Code with lint

. The

ote
4

precedence confusion possible; parenthesize 10

Format: Simple

An expression that mixes a logical and a bitwise operator was not parenthesized
message is suppressed whenlint is invoked with-h .

1 void fun()
2 {
3 int x = 0, m = 0, MASK = 0, i;
4 i = (x + m == 0);
5 i = (x & MASK == 0); /* eval'd

(x & (MASK == 0)) */
6 i = (MASK == 1 & x); /* eval'd

((MASK == 1) & x) */
7 }
============
(5) warning: precedence confusion possible; parenthesize
(6) warning: precedence confusion possible; parenthesize

precision lost in bit-field assignment 10

Format: Simple

A constant was assigned to a bit-field too small to hold the value without truncation. N
that in the following example the bit-fieldz may have values that range from 0 to 7 or -
to 3, depending on the machine.

1 void fun()
2 {
3 struct {
4 signed x:3; /* max value allowed is 3 */
5 unsigned y:3; /* max value allowed is 7 */
6 int z:3; /* max value allowed is 7 */
7 } s;
8 s.x = 3;
9 s.x = 4;
10 s.y = 7;
11 s.y = 8;
12 s.z = 7;
13 s.z = 8;
14 }
============
(9) warning: precision lost in bit-field assignment: 4
(11) warning: precision lost in bit-field assignment: 0x8
(13) warning: precision lost in bit-field assignment: 8
10-31

Compilation Systems Volume 1 (Tools)

in a

king
set but not used in function 10

Format: Compound

An automatic variable or a function parameter was declared and set but not used
function.

1 void fun(y)
2 int y;
3 {
4 int x;
5 x = 1;
6 y = 1;
7 }
============
set but not used in function

(4) x in fun
(1) y in fun

statement has no consequent: else 10

Format: Simple

An if statement had a nullelse part. Inserting/* EMPTY */ between theelse and
semicolon suppresses the message for that statement; invokinglint with -h suppresses
it for every statement.

1 void f(a)
2 int a;
3 {
4 if (a)
5 return;
6 else;
7 }
============
(6) warning: statement has no consequent: else

statement has no consequent: if 10

Format: Simple

An if statement had a nullif part. Inserting/* EMPTY */ between the controlling
expression of theif and semicolon suppresses the message for that statement; invo
lint with -h suppresses it for every statement.
10-32

Analyzing Your Code with lint

e that
a side

state-
ing
t

1 void f(a)
2 int a;
3 {
4 if (a);
5 if (a == 10)
6 /* EMPTY */;
7 else return;
8 }
============
(4) warning: statement has no consequent: if

statement has null effect 10

Format: Compound

An expression did not generate a side effect where a side effect was expected. Not
the message is issued for every subsequent sequence point that is reached at which
effect is not generated.

1 void fun()
2 {
3 int a, b, c, x;
4 a;
5 a == 5;
6 ;
7 while (x++ != 10);
8 (a == b) && (c = a);
9 (a = b) && (c == a);
10 (a, b);
11 }
============
statement has null effect

(4) (5) (9) (10)

statement not reached 10

Format: Compound

A function contained a statement that cannot be reached. Preceding an unreached
ment with /* NOTREACHED */ suppresses the message for that statement; invok
lint with -b suppresses it for every unreachedbreak and empty statement. Note tha
this message is also issued by the compiler but cannot be suppressed.
10-33

Compilation Systems Volume 1 (Tools)

e the
1 void fun(a)
2 {
3 switch (a) {
4 case 1:
5 return;
6 break;
7 case 2:
8 return;
9 /* NOTREACHED */
10 break;
11 }
12 }
============
statement not reached

(6)

static unused 10

Format: Compound

A variable or function was defined or declaredstatic in a file but not used in that file.
Doing so is probably a programming error because the object cannot be used outsid
file.

1 static int x;
2 static int main() {}
3 static int foo();
4 static int y = 1;
============
static unused

(4) y (3) foo (2) main (1) x

suspicious comparison of char with value: op ?op? 10

Format: Simple

A comparison was performed on a variable of type “plain”char that implied it may have
a negative value (< 0, <= 0, >= 0, > 0). Whether a “plain”char is treated as signed or
non-negative is implementation-defined. The message is issued only whenlint is
invoked with-p .

1 void fun(c, d)
2 char c;
3 signed char d;
4 {
5 int i;
6 i = (c == -5);
7 i = (c < 0);
8 i = (d < 0);
9 }
10-34

Analyzing Your Code with lint
============
(6) warning: suspicious comparison of char with negative

constant: op "=="
(7) warning: suspicious comparison of char with 0: op "<"

suspicious comparison of unsigned with value: op ?op? 10

Format: Simple

A comparison was performed on a variable ofunsigned type that implied it may have a
negative value (< 0, <= 0, >= 0, > 0).

1 void fun(x)
2 unsigned x;
3 {
4 int i;
5 i = (x > -2);
6 i = (x < 0);
7 i = (x <= 0);
8 i = (x >= 0);
9 i = (x > 0);
10 i = (-2 < x);
11 i = (x == -1);
12 i = (x == -1U);
13 }
============
(5) warning: suspicious comparison of unsigned with

negative constant: op ">"
(6) warning: suspicious comparison of unsigned with 0:

op "<"
(7) warning: suspicious comparison of unsigned with 0:

op "<="
(8) warning: suspicious comparison of unsigned with 0:

op ">="
(9) warning: suspicious comparison of unsigned with 0:

op ">"
(10) warning: suspicious comparison of unsigned with

negative constant: op "<"
(11) warning: suspicious comparison of unsigned with

negative constant: op "=="

too few arguments for format 10

Format: Compound

A control string of a [fs]printf or [fs]scanf function call had more conversion
specifications than there were arguments remaining in the call. (See also/* PRINTF-
LIKE n */ and/* SCANFLIKE n */ in the list of directives in “Usage” on page 10-6.)
10-35

Compilation Systems Volume 1 (Tools)

in
nsis-
1 #include <stdio.h>
2 main()
3 {
4 int i;
5 printf("%d%d", i);
6 }
============
too few arguments for format

printf test.c(5)

too many arguments for format 10

Format: Compound

A control string of a [fs]printf or [fs]scanf function call had fewer conversion
specifications than there were arguments remaining in the call. (See also/* PRINTF-
LIKE n */ and/* SCANFLIKE n */ in the list of directives in “Usage” on page 10-6.)

1 #include <stdio.h>
2 main()
3 {
4 int i, j;
5 printf("%d", i, j);
6 }
============
too many arguments for format

printf test.c(5)

value type declared inconsistently 10

Format: Compound

The return type in a function declaration or definition did not match the return type
another declaration or definition of the function. The message is also issued for inco
tent declarations of variable types.

file f1.c
1 void fun() {}
2 void foo();
3 extern int a;
file f2.c
1 extern int fun();
2 extern int foo();
3 extern char a;
============
value type declared inconsistently

fun f1.c(1) void() :: f2.c(1) int()
foo f1.c(2) void() :: f2.c(2) int()
a f1.c(3) int :: f2.c(3) char
10-36

Analyzing Your Code with lint

n.

arlier
plies
value type used inconsistently 10

Format: Compound

The return type in a function call did not match the return type in the function definitio

file f1.c
1 int *fun(p)
2 int *p;
3 {
4 return p;
5 }
file f2.c
1 main()
2 {
3 int i, *p;
4 i = fun(p);
5 }
============
value type used inconsistently

fun f1.c(3) int *() :: f2.c(4) int()

variable may be used before set: name 10

Format: Simple

The first reference to an automatic, non-array variable occurred at a line number e
than the first assignment to the variable. Note that taking the address of a variable im
both a set and a use, and that the first assignment to any member of astruct or union
implies an assignment to the entirestruct or union .

1 void fun()
2 {
3 int i, j, k;
4 static int x;
5 k = j;
6 i = i + 1;
7 x = x + 1;
8 }
============
(5) warning: variable may be used before set: j
(6) warning: variable may be used before set: i

variable unused in function 10

Format: Compound

A variable was declared but never used in a function.
10-37

Compilation Systems Volume 1 (Tools)
1 void fun()
2 {
3 int x, y;
4 static z;
5 }
============
variable unused in function

(4) z in fun
(3) y in fun
(3) x in fun
10-38

-1
-1

-1
-3
3
-4
1-9
-9
10
-12
11
Performance Analysis

Introduction . 11
analyze . 11

Information . 11
Statistics . 11
Profiling . 11-
Usage . 11
Assumptions and Constraints . 1

report . 11
Usage . 11-
Assumptions and Constraints . 11

Compilation Systems Volume 1 (Tools)

ntify
ram.

led

ge of

re not

lled
r
ary
ot
his
one

k, or
tool,
.

, to
sly

d

11
Chapter 11Performance Analysis

11
11
11

Introduction 11

An analysis of the run-time performance and characteristics of a program can ide
sections of code which have a significant effect on the speed and behavior of the prog
PowerUX provides a tool which can be used to obtain an execution profile of anypro-
gram.

Two traditional UNIX tools provide profile data for a program which has been compi
to produce this data during execution. The output fromprof identifies which routines in
the program have been executed, how often they were invoked, and what percenta
the program’s execution time was spent in each routine. Thegprof tool additionally pro-
vides a call graph of the ancestors and descendants of the routines. These tools a
available on supported hardware platforms.

Better information can be obtained through a Concurrent-developed tool, ca
analyze . Whereprof andgprof require a special compilation of a program fo
producing profile data,analyze operates on already-compiled code. It may be necess
to invokeanalyze through a link edit step, but recompilation of the program is n
necessary.analyze first reads an executable file. It then interprets the instructions in t
file to find the routines and basic blocks (a block is a sequence of instructions having
entry and one exit point) within each routine. Next,analyze performs a local timing
analysis for each basic block to determine statistics like; the time spent in the bloc
places where execution is delayed due to pipe constraints, etc. A companion
report , produces information that is useful in evaluating the program’s performance

analyze can also be used to transform, or even eliminate instructions in the program
produce fasterrunning code. Thus, it is able to further optimize code that has previou
been compiled.

analyze 11

Information 11

The lowest level of detailed output is generated with the-d option, which generates a
disassembly listing, and the-v option, which annotates that listing with detaile
information on the resources being used.

Because there is so much information, it is compressed into a fairly cryptic form:
11-1

Compilation Systems Volume 1 (Tools)

ne

he
rce

e

e it
s the
and

as
lar

mely
gative
by

it
blank
the
elf,

s in
pper
t=# This indicates the relative clock time. Everything on the same li
happens at the same time.

u#r An entry that starts with the letteru indicates a resource is now being
used. The number following theu is the sequence number of the
instruction within the basic block that is using the resource, finally t
resource name appears immediately following the number (resou
names are things like registers or pipeline stages).

f#r An entry that starts withf indicates the instruction at the given sequenc
has now freed the resource.

b#r[#] The b entry indicates an instruction that has been blocked becaus
needs a resource. The number at the end enclosed in brackets i
sequence number of the instruction which currently has the resource
is the cause of the block.

s#r On the PowerPC platforms, individual pipeline stages are not shown
allocated and freed. Instead, it is simply announced that a particu
instruction has entered a particular stage with thes entry.

Use the-Zstage_status option to causeanalyze ’s output to include the status of all
the pipeline stages each cycle. While this output is much easier to read, it is extre
verbose. Note that instructions are disassembled at the cycle they enter dispatch. Ne
numbers in thestage_status output are placeholders for pipeline bubbles caused
alignment constraints. Screen 11-1 illustrates this situation.

Screen 11-1. Sample Output from analyze

Whenanalyze prints an instruction out, it puts it on a line by itself with the clock time
started execution on the end. The fields on the line represent the source line number (
if no debug information is available in the file), the sequence number within the block,
absolute address of the instruction in the file, the four-byte hex for the instruction its
then the symbolic disassembly of the instruction.

Currently, max time is defined as the total number of cycles required for all instruction
the block to make it through all pipe stages. It, therefore, represents a worst-case u
bound.

10 (10001028) 3d000000 lis r8,0 t=6
11 (1000102c) 39200000 li r9,0 t=6

t=6
Fetch: 16 17 18 19
Decode: 12 13 14 15
Dispatch: 8 9 10 11

SCIU1 SCIU2 MCIU FPU LSU BPU
Q2 ---- ---- ---- ---- ---- ----
Q1 ---- ---- spr ---- m/d ---- ---- ----
X1 6 7 ---- ---- ---- ---- ----
X2 ---- ---- ---- ----
X3 ---- ---- ----
Finished: 4 5
Complete: 4 5
Writeback GPR: 4 5 FPR: CRF:
11-2

Performance Analysis

me
the
brou-
any
ycles
ins).

-

han

s
max
sting

(or

ns a

flow
is

ets
dge is

ill
t file
table

data
ty
. This
Note that all times are local; a block containing a subroutine call will only have the ti
for the call instruction. No information is computed about the time actually spent in
subroutine, and no information is known about the state of the pipelines when the su
tine returns. The max time for a block ending in a subroutine call does not count
cycles remaining in the pipe at the time the call is made because most of these c
never cause any delay (the subroutine is usually still in the prologue when the pipe dra

The optimization features ofanalyze can be invoked at link edit time by using the Con
current link editor’s-O option. Refer told(1) and Chapter 20 (“Program Optimiza-
tion”), for more information.

Statistics 11

The analyze tool computes several statistics, some of which are more meaningful t
others, but all are designed to help someone analyze the quality of generated code.

BURT

BURTstands forBogus Uniform Routine Time, and (as its name indicates) is a fairly bogu
statistic which may have some value as a guide. It is computed by multiplying the
time for each basic block by a weighting factor that increases rapidly as the loop ne
level goes up. The accumulated time for all the blocks is theBURTnumber.

ERNIE

ERNIE is External Routine Necessary Interface Executions, and is a statistic designed to
help you decide ifBURTnumbers are different because subroutines have been inlined
vice-versa), or if they are different simply because of different code quality.ERNIE is
computed by simply adding up all the nesting level factors for any block that contai
subroutine call.

The above statistics all depend on accurately computing loop nesting levels. If the
graph is irreducible, then it is difficult to decide just what a loop is, so a warning
generated for routines with irreducible flow graphs. Often when code finally g
generated, a single basic block will be the header of several back edges. Each back e
counted as a separate loop, so the nesting level for the header may get very high.

Profiling 11

The -P option patches the input program, generating a new program which w
accumulate cycle count statistics at the basic block level and dump them to an outpu
on exit. The statistics are always dumped to a file with the same name as the execu
given as the argument to-P , with the .prof suffix added. For example, if you specified
-P fred then when you run the generated program the filefred.prof will be generated
with the profiling statistics.

The -C option adds statistics about cache misses due to instruction fetches and
accesses to the profile data. With the-C option, the patched program simulates the activi
of the primary instruction and data caches, as well as that of the secondary cache
11-3

Compilation Systems Volume 1 (Tools)

ory
ntly

the
only
that

hat

cur-
g to

ed

ave
are

ts to

ry to
l

en
ot

.

This
iled

ed
rol.
t of
option can be useful for diagnosing performance problems arising from lack of mem
access locality (proximity). It should be used with care because it can significa
increase run-time overhead and the size of the executable program.

Currently, the statistics are only as accurate as the timing information shown in
disassembly listing. Both min and max times are accumulated, so the report can print
upper and lower bounds on the cycle count. A future version may attempt to add code
will correct the cycle count with additional information gathered about pipe conflicts t
will occur depending on the arc followed to reach each basic block.

It is often difficult to profile some programs, especially those generated by non-Con
rent compilers. The following guidelines are given as an aid to people attemptin
profile foreign code:

The analyze tool relies on the symbol table to find subroutine entry points. A stripp
program cannot be profiled. Even if a symbol table exists,analyze can identify
subroutine entry points only if they have associated tdesc information, if they h
symbolic debug information identifying them as subroutine entry points, or if they
explicitly named using the-a option.

analyze records its profile statistics by writing them into the.bss section. The header
of the object file is modified to reserve space in.bss , but the run-time environment also
needs to be informed that the space is being used.analyze does this by first attempting
to patch the initial value of the global variable (curbrk) used by the library routines to
record the break address. If this variable is not found in the symbol table it then attemp
patch a call tobrk() into the main entry point. If it cannot find thebrk() entry point in
the symbol table, then it cannot successfully patch the program. It may be necessa
re-link the program, forcing thebrk() routine to be included by linking in an additiona
object file that references it, or use the-Zbreak= nameoption to specify a different name
for the break variable.

Finally, analyze writes the statistics out by patching in a call to the write routine wh
the__exit routine is called (that is two underscores). If the low level exit routine is n
called__exit or if the program exits in a different way (possibly by callingexec()),
then you will need to use the-X option to name the routines that should dump statistics

After dumping the statistics at an exit point, all the basic block counts are set to zero.
feature allows you to divide your program into separate sections which will be prof
independently, each generating a separate data set in the.prof file. All you need to do is
call a dummy routine once between each section of the program, then use the-X option to
declare these dummy routines as exit points.

If any basic block begins with a trap instruction of some kind,analyze will generate a
warning. Normally it relies on the flow of control resuming right after the patch
instruction, but it is uncertain where control will resume after the kernel gets cont
Unless you know what the routine does, it might be wise to exclude it from the lis
routines to be profiled.

Usage 11

analyze is invoked as follows:
11-4

Performance Analysis

n.

es
r store
hat

is

the

obal
ker
the
hat

er

g

The

to
e

can
analyze [-A] [-C] [-D flag] [-H] [-N] [-O file] [-P file]
[-S section] [-X routine] [-W routine[= weight]] [-a routine]
[-d file] [-g file] [-i] [-n] [-r file] [-s routine]
[-v] [-x] [-Z keyword] file

The file argument specifies the name of the executable file over whichanalyze will be
run. All other arguments are optional and are as follows:

-A Include all the routines in the analysis. This is the default mode of operatio

-C Gather cache activity statistics during profiling. This option works with-P
and has no effect without it. It also writes its statistics tofile.prof as
specified by the-P option. Cache statistics include instruction access
gathered at each basic block, and data accesses gathered at each load o
instruction. Thereport program can be used to generate various reports t
include this information.

-D flag Turn on the specified debug flag. You will not be interested in using th
unless you know a lot about the inner details ofanalyze .

-H Print a summary of the command usage.

-N Set the list of routines to be analyzed to the empty set. This overrides
default setting (which corresponds to-A above).

-O file Generate a new program file infile which has been optimized by replacing
many of the two-instruction sequences (which are required to reference gl
memory locations) with single instructions which use the reserved lin
registers (r28 throughr31) as base registers. This allows faster access to
four most commonly referenced 64K data blocks. Certain library routines t
are known to access the linker registers (e.g.,setjmp and longjmp) are
automatically excluded from the optimization process. The-X option may be
used to specifically exclude others. (Normally any reference to a link
register will cause an error).

-P file Generate a new program file infile which has been patched to gather profilin
statistics on each basic block and dump them tofile.prof on exit. The report
program can be used to generate various reports from this information.
-X option may be useful with this option.

-S section
Analyzesectioninstead of text.

-X routine
Declareroutine to be the name of a subroutine which causes the program
exit. When the-P option is used, this routine, when called, will dump th
accumulated statistics to the.prof file. After writing the statistics data set to
the .prof file, the statistics are reset to zero. When the-O option is used, the
-X option will exclude the named routine from the optimization.

-W routine[=weight]
Specify a weighting factor for counting lis instructions in routineroutine. If
weightis omitted, it will default to 5. This option is used with the-O option.

-a routine
Add the specific named routine to the list of routines to be analyzed. This
11-5

Compilation Systems Volume 1 (Tools)

the
nly
es at
tion

are

ow-
as

. It
04

ow-
as

. It
01

e

the
e

to
be used after-N to add a routine to the list. If used without-N , it assumes you
meant to specify-N , and supplies one for you.

-d file Generate a detailed disassembly listing of each routine included in
analysis. The listing is done on a per basic block basis. By default this o
generates the assembler listing, the clock cycle each instruction execut
(relative to the beginning of each basic block), and the reason any instruc
is delayed. Use the-v option for more detail. Use the-Zstage_status
option for much more verbose status of each pipeline stage each cycle.

-g file Generate global program statistics to file.

-i Print various informative bits of information about the object file.

-n Use nesting level to weight the count oflis instructions. This option is used
with the-O option.

-r file Print summary statistics for each routine to file.

-s routine
Subtract a routine from the list to be analyzed. It pairs with the-A option
much like-N and-a team up, only inverted.

-v Annotate the disassembly listing with the details about which instructions
using which machine resources at each cycle.

-w Suppress the output of warning messages.

-Z keyword
Pass a keyword option toanalyze . The keywords recognized on the-Z
option are:

PPC604 Disassemble instructions as they would be interpreted on a P
erPC 604 system. By default, instructions are disassembled
they would be interpreted relative to a PowerPC 604 system
also causes-C to emulate the cache behavior of the PowerPC 6
system.

PPC601 Disassemble instructions as they would be interpreted on a P
erPC 601 system. By default, instructions are disassembled
they would be interpreted relative to a PowerPC 601 system
also causes-C to emulate the cache behavior of the PowerPC 6
system.

break =name
Tell analyze the name of the global variable used to contain th
break address. This variable is used by thebrk() andsbrk()
routines to track the next available heap address. When using
-P option, the initial value of this variable must be patched. Th
default name iscurbrk .

exclude =register
Exclude the named register from the list of registers used
optimize outlis instruction. It may be used multiple times to
exclude more than one register. Normally the-O option uses
registersr28 thoughr31 .
11-6

Performance Analysis

out
re

h
.

ith

y

,
1
ot
che

it

ets,

rate
ed

it

ch
help Give a short list and description of keyword options.

include =register
Add the named register to the list of registers used to optimize
lis instructions. It may be used multiple times to include mo
than one register. Normally the-O option uses registersr28
thoughr31 . However, if no routine in a program uses r6 thoug
r27 or the frame pointer,r2 , these registers can be used too
Analyze will exit with an error if it finds a use of any of the
named registers.

l2cache =cache_size[,block_size]
Define the characteristics of the secondary (L2) cache for use w
the -C option. Thecache_sizeargument is the total secondary
cache size. It may be suffixed withM for megabytes orK for
kilobytes. A cache_sizeof 0 means that there is no secondar
cache. The optionalblock_sizeargument is the cache block (line)
s i z e i n by t es ; i t d e f a u l t s t o 6 4 b y te s . F o r ex am p l e
-Zl2cache=1m,128 specifies a secondary cache size of
megabyte with 128 bytes per cache block. If this option is n
used, the secondary cache is 1 megabyte with 64-byte ca
blocks. (Note that the first character is the letterl not the number
1.)

options =filename
Tell analyze to readfilenamefor a list of additional options.
Each additional option should be on a separate line.

pdcache= cache_size[,block_size[,sets]]
Define the characteristics of the primary datacache for use with
the -C option. Thecache_sizeargument is the total primary data
cache size. It may be suffixed withM for megabytes orK for
kilobytes. A cache_sizeof 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes;
defaults to 64 bytes. The optionalsetsargument is the number of
sets; i t defaults tocache_sizedivided by block_size. For
example,-Zpdcache=32k,32,128 specifies an 8-way
associative primary data cache of size 32768 bytes with 128 s
each set containing 8 cache blocks 32 bytes long.

This option also indicates that the primary data cache is sepa
from the primary instruction cache; therefore, it may not be us
with the -Zpucache option. If this option is not used, the data
cache characteristics are determined by the CPU type.

picache =cache_size[,block_size[,sets]]
Define the characteristics of the primary instructioncache for use
with the -C option. Thecache_sizeargument is the total primary
instruction cache size. It may be suffixed withMfor megabytes or
K for kilobytes. Acache_sizeof 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes;
defaults to 64 bytes. The optionalsetsargument is the number of
sets; it defaults tocache_sizedivided byblock_size. For example,
-Zpicache=32k,32,128 specifies an 8-way associative
primary instruction cache of size 32768 bytes with 128 sets, ea
11-7

Compilation Systems Volume 1 (Tools)

is
be

pe.

se

it

et

for
the

k

is
t

n
an

rn
e

rts.
da

t in
le

cle
set containing 8 cache blocks 32 bytes long.

This option also indicates that the primary instruction cache
separate from the primary data cache; therefore, it may not
used with the-Zpucache option. If this option is not used, the
instruction cache characteristics are determined by the CPU ty

pucache =cache_size[,block_size[,sets]]
Define the characteristics of the unified primary cache for u
with the -C option. Thecache_sizeargument is the total unified
primary cache size. It may be suffixed withMfor megabytes orK
for kilobytes. A cache_sizeof 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes;
defaults to 64 bytes. The optionalsetsargument is the number of
sets; it defaults tocache_sizedivided byblock_size. For example,
-Zpucache=32k,64,64 specifies an 8-way associative unified
primary cache of size 32768 bytes with 64 sets, each s
containing 8 cache blocks 64 bytes long.

This option also indicates that a single primary cache is used
both instructions and data; therefore, it may not be used with
-Zpdcache or -Zpicache options. If this option is not used,
the cache characteristics are determined by the CPU type.

retain Retain the extra relation information that the Concurrent lin
editor to the object file. This information is provided soanalyze
can optimize things like assigned gotos correctly. Normally th
information is stripped after optimization. If you are going to wan
to profile or disassemble the program file, this option will retai
the extra relocation information so the additional processing c
be more accurate.

rmask =register_list
Specify a list of registers to be considered live at a retu
instruction. To optimize pure C or Fortran 77 code, us
-Zrmask=r3r4 . The default mask containsr3 throughr15 .

rtag =character
Specify a character to enclose all routine names output in repo
This is for an Ada filter that translates raw routine names into A
R.M. expanded names.

stag =character
Specify a character to enclose all source file names outpu
reports. This is for an Ada filter that translates raw source fi
names into actual file names.

stage_status
Add output describing the status of all pipeline stages each cy
to the disassembly output of the-d option.

strip Strip the object file before writing it out.
11-8

Performance Analysis

uld
ough
the
o the

tion
nalysis

e the
The

le
ltiple

ing

een

end

d to

ms
s are
one
Assumptions and Constraints 11

The timing information is not totally accurate. The worst-case timing information sho
really be generated by propagating live on entry resource utilizations backwards thr
the flow graph to see how they interact with live on exit resource utilizations from
predecessor blocks, but this is complex and would require a great deal more code to d
analysis.

analyze assumes all memory references are cache hits. Thus, the timing informa
assumes there will never be any cache misses or memory wait states since a static a
cannot know if a memory reference will be in the cache or not. Note that the-C option
does not circumvent this restriction.

The -C option cannot provide a completely accurate model of the real cache becaus
simulation is not aware of other running processes nor of the operating system itself.
purpose of this option is to provide a measure of the locality of a user program.

With the -C option, loads and stores that access multiple storage locations (e.g.,lmw or
stmw) are treated as if they access only the first unit of storage. Also, if multip
consecutive accesses of a cache block occur, only one miss is recorded. In reality, mu
misses might occur while the cache block is loading. Finally, conditional stores (stwcx .)
are assumed to always succeed.

For more detailed information on the hardware architectures, refer to the follow
publications:

PowerPC User Instruction Set Architecture

PowerPC 604 User’s Manual

report 11

The report tool reads the profile data generated by running a program which has b
patched with the-P option of theanalyze tool.

report needs two arguments, the name of the patched program (generated byanalyze)
and the name of the profile data file. If the second argument is not specified, it will app
to the end of the first argument and look there for the profile data.

The printed reports are generated in a format that will conform with tools that are use
parse error messages from compilers, with

file name : line number

listed first on the line.

Except where explicitly indicated in the individual report, all times are reported in ter
of cycles. Because no analysis of pipe conflicts across basic blocks is done, time
always reported in terms of a range of times from max time to min time. All sorts are d
on max time, and percentages are calculated in terms of max time.
11-9

Compilation Systems Volume 1 (Tools)

re as

re
as

dual
ted

of

he

n, it
his
s set
ally
s or

the

he

ing

rom
Usage 11

report is invoked as follows:

report [-H] [-a] [-b] [-B number] [-c] [-d range] [-i]
[-l] [-m] [-M megahertz] [-n] [-N number] [-o] [-O number]
[-r] [-R number] [-s] [-t] [-T file] [-w] [-Y character] [-z]
[-Z character] programfile [programfile.prof]

Theprogramfileargument specifies the name of the executable file over whichanalyze
has patched, for producing profile information. All other arguments are optional and a
follows:

-H Print a help message and exit.

-a Report on all the individual data sets recorded in the profile data file. If the-t
option is used, normally only the totals for all the runs of the program a
printed. The-a option forces all the individual runs to generate reports
well.

-b Generate a report showing where the program spent its time at the indivi
basic block level. This report is ordered with the most expensive block lis
first (in terms of cycles spent in that block).

-B number
Restrict the basic block report to only the firstnumberbasic blocks. If the
number is written with a trailing%character on the end, then it will restrict the
list of blocks printed to just the first set of blocks that total to that percent
the total time. This option implies the use of the-b option. Both forms of the
-B option may be used, in which case the first limit reached will terminate t
listing.

-c List the names of routines called by each routine.

-d range Select which data sets to report. Each time a patched program is ru
appends a new set of profile data onto the end of its profile data file. T
means that one data file may contain several sets of data. The first set i
number one. This option may be used to select which sets are actu
reported.Rangecan be a single number, a list of comma separated number
a range of numbers separated with a dash.

-i Report summary information for the complete program. This option uses
assumed clock rate (specified with the-M option) to report the clock time the
original program would take to run. It also summarizes the count of t
different types of instructions that were executed.

-l Use max time instead of min time when sorting statistics and comput
percentages.

-m Print timing information in milliseconds rather than cycles.

-M megahertz
Specify the megahertz clock rate to assume when computing clock time f
cycle counts. The default is 100.
11-10

Performance Analysis

data
er of

to
ary

port

a

by
r to

rts
s on

n

t in
da

f no
the

me
time

t in
nto
-n Generate a profiling report showing the number of cache misses due to
accesses (loads and stores). The report is sorted in decreasing ord
secondary cache misses.

-N number
Limit the number of data access cache statistics printed. Use of-N implies-n .
This option acts much like the-B option (above).

-o Generate a profiling report showing the number of cache misses due
instruction fetches. The report is sorted in decreasing order of second
cache misses.

-O number
Limit the number of instruction access cache statistics printed. Use of-O
implies -o . This option acts much like the-B option (above).

-r Generate a profiling report showing the time spent in each routine. This re
is generated by adding up all the time in the individual basic blocks.

-R number
Restrict the routine report to only the firstnumberroutines. This option acts
much like the-B option (above), and will accept an absolute number or
percentage. Use of-R implies -r .

-s Print the header information from each profile data set. This may be used
itself to determine how many sets of data are in a profile data file in orde
determine which sets to examine with the-d option.

-t Total all the data sets and print the total statistics in any of the repo
requested. Normally this option suppresses the generation of any report
individual data sets and only the totals are printed. The-a option (above) can
be used to change this behavior.

-T file Print a summary of all data sets to the specified file.

-w Print the raw statistics information from the profile data file in a huma
readable form.

-Y character
Specify a character which is used to enclose all routine names outpu
reports. This is for an Ada filter that translates raw routine names into A
R.M. expanded names.

-z Print information about blocks and routines that are executed zero times. I
blocks in a routine were executed, only the routine name is printed and
individual blocks for that routine are not reported. For routines in which so
blocks were executed and some were not, the blocks with zero execution
are reported individually.

-Z character
Specify a character which is used to enclose all source file names outpu
reports. This is for an Ada filter that translates raw source file names i
actual file names.
11-11

Compilation Systems Volume 1 (Tools)

wall
tion

ore
le
um-
Assumptions and Constraints 11

The cycle counts reported are based on the cycle counts calculated byanalyze and are
subject to the same limitations described in the documentation for that tool.

Most notably the behavior of the memory system is not taken into account, so actual
time may be even longer than the maximum time reported (especially if the applica
has many cache misses).

If the program was not compiled with line number information, or if it was stripped bef
being processed byanalyze , none of the reports will be able to include accurate fi
names or line numbers. (Generally the file name will be the null string, and the line n
bers will be0 if the information was not present in the object file).
11-12

3
Part 3Project Control

Replace with Part 3 tab

Compilation Systems Volume 1 (Tools)

Part 3 - Project Control
Part 3 - Project Control

Part 3 Project Control

Chapter 12 Introduction to Project Control ... 12-1

Chapter 13 Managing File Interactions with make.. 13-1

Chapter 14 Tracking Versions with SCCS... 14-1

Compilation Systems Volume 1 (Tools)

-1
12
Introduction to Project Control

Introduction . 12

Compilation Systems Volume 1 (Tools)

Introduction to Project Control

anual
12
Chapter 12Introduction to Project Control

12
12
12

Introduction 12

A software projectconsists of one or more products. Eachproductconsists of one or more
files, including the following:

• Program files, for example, source, object, and executables for one or more
platforms

• Documentation files, for example, design and functional specifications,
release notes, man pages, user and reference manuals, and reference cards

• Training files, for example, student guides, instructor guides, and example
source files

• Testing files, for example, third-party and internally developed test suites
and programs supplied with error reports

You can save time by using tools to automate project management. This part of the m
covers tools that give you control over projects, products, and files. For example:

• Remembering file locations and dependencies and product-generation
steps for a developing product can be cumbersome. You can store this
information in description files for themake tool to process. Chapter 13
(“Managing File Interactions with make”) discussesmake and its
description files.

• Retaining an audit trail of editing changes can be useful in debugging and
documenting a developing product. Chapter 14 (“Tracking Versions with
SCCS”) describes SCCS, the Source Code Control System, that allows you
to capture this information.
12-1

Compilation Systems Volume 1 (Tools)
12-2

-1
3-2
-5

3-6
-6
-6
-6
-6
-7

3-7
-8
-8
-8
-9
9
1
-13
3
14
14
-14
5
-16
16
18
-19
19
13
Managing File Interactions with make

Introduction . 13
Basic Features . 1

Parallel make . 13
Description Files and Substitutions . 1

Comments. 13
Continuation Lines . 13
Macro Definitions. 13
General Form . 13
Dependency Information . 13
Executable Commands . 1
Extensions of $*, $@, and $< . 13
Output Translations . 13
Recursive Makefiles . 13
Suffixes and Transformation Rules . 13
Implicit Rules . 13-
Archive Libraries . 13-1
Source Code Control System File Names . 13
The Null Suffix. 13-1
Included Files . 13-
SCCS Makefiles . 13-
Dynamic Dependency Parameters . 13
Viewpaths (VPATH) . 13-1

Command Usage . 13
The make Command. 13-
Environment Variables . 13-

Suggestions and Warnings . 13
Internal Rules. 13-

Compilation Systems Volume 1 (Tools)

cope
tion

able

of a

files.

y or
s that

and

e the
es
the
13
Chapter 13Managing File Interactions with make

13
13
13

Introduction 13

The trend toward increased modularity of programs means that a project may have to
with a large assortment of individual files. There may also be a wide range of genera
procedures needed to turn the assortment of individual files into the final execut
product.

make provides a method for maintaining up-to-date versions of programs that consist
number of files that may be generated in a variety of ways.

An individual programmer can easily forget

• File-to-file dependencies

• Files that were modified and the impact that has on other files

• The exact sequence of operations needed to generate a new version of the
program

make keeps track of the commands that create files and the relationship between
Whenever a change is made in any of the files that make up a program, themake
command creates the finished program by recompiling only those portions directl
indirectly affected by the change. The relationships between files and the processe
generate files are specified by the user in a description file.

The basic operation ofmake is to

• Find the target in the description file

• Ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

• (Re)create the target file if any of the generators have been modified more
recently than the target

The description file that holds the information on inter-file dependencies and comm
sequences is conventionally calledmakefile , Makefile , s.makefile , or
s.Makefile . If this naming convention is followed, the simple commandmake is
usually sufficient to regenerate the target regardless of the number of files edited sinc
last make. In most cases, the description file is not difficult to write and chang
infrequently. Even if only a single file has been edited, rather than entering all
commands to regenerate the target, entering themake command ensures that the
regeneration is done in the prescribed way.
13-1

Compilation Systems Volume 1 (Tools)

n
it has

es

the
Basic Features 13

The basic operation ofmake is to update a target file by ensuring that all of the files o
which the target file depends exist and are up to date. The target file is regenerated if
not been modified since the dependents were modified. Themake program builds and
searches a graph of these dependencies. The operation ofmake depends on its ability to
find the date and time that a file was last modified.

Themake program operates using three sources of information:

• A user-supplied description file

• File names and last-modified times from the file system

• Built-in rules supply default dependency information and implied
commands

To illustrate, consider a simple example in which a program namedprog is made by
compiling and loading three C language filesx.c , y.c , andz.c with the math library,
libm . By convention, the output of the C language compilations will be found in fil
namedx.o , y.o , andz.o . Assume that the filesx.c andy.c share some declarations in
a file nameddefs.h , but thatz.c does not. That is,x.c andy.c have the line

#include "defs.h"

The following specification describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o -lm -o prog

x.o y.o : defs.h

If this information were stored in a file namedmakefile , the command

make

would perform the operations needed to regenerateprog after any changes had been
made to any of the four source filesx.c , y.c , z.c , or defs.h . In the example above,
the first line states thatprog depends on three.o files. Once these object files are
current, the second line describes how to combine them to createprog. The third line
states thatx.o andy.o depend on the filedefs.h . From the file system,make discov-
ers that there are three.c files corresponding to the needed.o files and uses built-in rules
on how to generate an object from a C source file (that is, issue acc -c command).

If make did not have the ability to determine automatically what needs to be done,
following longer description file would be necessary:

prog : x.o y.o z.o
cc x.o y.o z.o -lm -o prog

x.o : x.c defs.h
cc -c x.c

y.o : y.c defs.h
cc -c y.c

z.o : z.c
cc -c z.c
13-2

Managing File Interactions with make

r,

is

and
take

out

n is
, the

ain
and

gs is
d in
ol
the

wing

tion
bsti-

ome
If none of the source or object files have changed since the last timeprog was made, and
all of the files are current, the commandmake announces this fact and stops. If, howeve
the defs.h file has been edited,x.c andy.c (but notz.c) are recompiled; and then
prog is created from the newx.o andy.o files, and the existingz.o file. If only the file
y.c had changed, only it is recompiled; but it is still necessary to relinkprog . If no target
name is given on themake command line, the first target mentioned in the description
created; otherwise, the specified targets are made. The command

make x.o

would regeneratex.o if x.c or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic names
commands that do not actually produce a file with that name. These entries can
advantage ofmake's ability to generate files and substitute macros (for information ab
macros, see “Description Files and Substitutions” on page 13-6.) Thus, an entrysave
might be included to copy a certain set of files, or an entryclean might be used to throw
away unneeded intermediate files.

If a file exists after such commands are executed, the file's time of last modificatio
used in further decisions. If the file does not exist after the commands are executed
current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which cert
actions were performed. This technique is useful for maintaining remote archives
listings.

A simple macro mechanism for substitution in dependency lines and command strin
used bymake. Macros can either be defined by command-line arguments or include
the description file. In either case, a macro consists of a name followed by the symb=
followed by what the macro stands for. A macro is invoked by preceding the name by
symbol$. Macro names longer than one character must be parenthesized. The follo
are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two are equivalent.

$* , $@, $?, and $< are four special macros that change values during the execu
of the command. (These four macros are described later in “Description Files and Su
tutions” on page 13-6.) The following fragment shows assignment and use of s
macros:

OBJECTS = x.o y.o z.o
LIBES = -lm
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog
. . .

The command

make LIBES="-ll -lm"
13-3

Compilation Systems Volume 1 (Tools)

(In
d.)

e
e

loads the three objects with both thelex (-ll) and the math (-lm) libraries, because
macro definitions on the command line override definitions in the description file.
UNIX system commands, arguments with embedded blanks must somehow be quote

As an example of the use ofmake, a description file that might be used to maintain th
make command itself is given. The code formake is spread over a number of C languag
source files and has ayacc grammar. The description file contains the following:

Themake program prints out each command before issuing it.

The following output results from entering the commandmake in a directory containing
only the source and description files:

Description file for the make command

FILES = Makefile defs.h main.c doname.c misc.c \
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o \
dosys.o gram.o

LIBES =
LINT = lint -p
CFLAGS = -O
LP = lp

make: $(OBJECTS)
$(CC) $(CFLAGS) -o make $(OBJECTS) $(LIBES)
@size make

$(OBJECTS): defs.h

cleanup:
-rm *.o gram.c
-du

install:
make
@size make /usr/ccs/bin/make
cp make /usr/ccs/bin/make && rm make

lint: dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

print files that are out-of-date
with respect to "print" file.

print: $(FILES)
pr $? | $(LP)
touch print
13-4

Managing File Interactions with make

in
hich

ts.
hen
ame
The last line results from thesize make command. The printing of the command line
itself was suppressed by the symbol@in the description file.

Parallel make 13

If make is invoked with the-P option, it tries to build more than one target at a time,
parallel. (This is done by using the standard UNIX system process mechanism w
enables multiple processes to run simultaneously.)

prog : x.o y.o z.o
cc x.o y.o z.o -lm -o prog

x.o : x.c defs.h
cc -c x.c

y.o : y.c defs.h
cc -c y.c

z.o : z.c
cc -c z.c

For themakefile shown above, it would create processes to buildx.o , y.o andz.o in
parallel. After these processes were complete, it would buildprog .

The number of targetsmake will try to build in parallel is determined by the value of the
environment variablePARALLEL. If -P is invoked, butPARALLELis not set, thenmake
will try to build no more than two targets in parallel.

You can use the.MUTEXdirective to serialize the updating of some specified targe
This is useful when two or more targets modify a common output file, such as w
inserting modules into an archive or when creating an intermediate file with the s
name, as is done bylex andyacc .

If the makefile above contained a.MUTEX directive of the form

.MUTEX: x.o y.o

it would preventmake from buildingx.o andy.o in parallel.

cc -O -c main.c
cc -O -c doname.c
cc -O -c misc.c
cc -O -c files.c
cc -O -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -O -c gram.c
cc -o make main.o doname.o misc.o files.o dosys.o gram.o

13188 + 3348 + 3044 = 19580
13-5

Compilation Systems Volume 1 (Tools)

it

can

he

icitly

tters,

on a
Description Files and Substitutions 13

The following section will explain the customary elements of the description file.

Comments 13

The comment convention is that the symbol# and all characters on the same line after
are ignored. Blank lines and lines beginning with# are totally ignored.

Continuation Lines 13

If a non-comment line is too long, the line can be continued by using the symbol\ , which
must be the last character on the line. If the last character of a line is\ , then it, the
new-line, and all following blanks and tabs are replaced by a single blank. Comments
be continued on to the next line as well.

Macro Definitions 13

A macro definition is an identifier followed by the symbol=. The identifier must not be
preceded by a colon (:) or a tab. The name (string of letters and digits) to the left of the=
(trailing blanks and tabs are stripped) is assigned the string of characters following t=
(leading blanks and tabs are stripped). The following are valid macro definitions:

2 = xyz
abc = -ll -ly -lm
LIBES =

The last definition assignsLIBES the null string. A macro that is never explicitly defined
has the null string as its value. Remember, however, that some macros are expl
defined inmake's own rules.

General Form 13

The general form of an entry in a description file is

target1 [target2 ...] :[:] [dependent1 ...] [; commands] [# ...]
[\t commands] [# ...]
. . .

Items inside brackets may be omitted and targets and dependents are strings of le
digits, periods, and slashes. Shell metacharacters such as* and? are expanded when the
commands are evaluated. Commands may appear either after a semicolon
dependency line or on lines beginning with a tab (denoted above as\t) immediately
13-6

Managing File Interactions with make

pear
le or
ay be

f the
ll one
. In
n one
the
ouble
the

each
after

ode.

e
s
each
with

nly
ted.

d
e

are no
ame
following a dependency line. A command is any string of characters not including#,
except when# is in quotes.

Dependency Information 13

A dependency line may have either a single or a double colon. A target name may ap
on more than one dependency line, but all of those lines must be of the same (sing
double colon) type. For the more common single colon case, a command sequence m
associated with at most one dependency line. If the target is out of date with any o
dependents on any of the lines and a command sequence is specified (even a nu
following a semicolon or tab), it is executed; otherwise, a default rule may be invoked
the double colon case, a command sequence may be associated with more tha
dependency line. If the target is out of date with any of the files on a particular line,
associated commands are executed. A built-in rule may also be executed. The d
colon form is particularly useful in updating archive-type files, where the target is
archive library itself. (An example is included in “Archive Libraries” on page 13-11.)

Executable Commands 13

If a target must be created, the sequence of commands is executed. Normally,
command line is printed and then passed to a separate invocation of the shell
substituting for macros. The printing is suppressed in the silent mode (-s option of the
make command) or if the command line in the description file begins with an@sign.
make normally stops if any command signals an error by returning a nonzero error c
Errors are ignored if the-i flag has been specified on themake command line, if the fake
target name.IGNORE appears in the description file, or if the command string in th
description file begins with a hyphen (-). If a program is known to return a meaningles
status, a hyphen in front of the command that invokes it is appropriate. Because
command line is passed to a separate invocation of the shell, care must be taken
certain commands (cd and shell control commands, for instance) that have meaning o
within a single shell process. These results are forgotten before the next line is execu

Before issuing any command, certain internally maintained macros are set. The$@macro
is set to the full target name of the current target. The$@macro is evaluated only for
explicitly named dependencies. The$? macro is set to the string of names that were foun
to be younger than the target. The$? macro is evaluated when explicit rules from th
makefile are evaluated. If the command was generated by an implicit rule, the$<
macro is the name of the related file that caused the action; and the$* macro is the prefix
shared by the current and the dependent file names. If a file must be made but there
explicit commands or relevant built-in rules, the commands associated with the n
.DEFAULT are used. If there is no such name,make prints a message and stops.

In addition, a description file may also use the following related macros:$(@D) ,
$(@F), $(*D), $(*F), $(<D), and $(<F) (see below).
13-7

Compilation Systems Volume 1 (Tools)

t
ros:

ckets

me is
ro is
s, and

hive
rite a

urce
rt to

he
en if

s.
Extensions of $*, $@, and $< 13

The internally generated macros$* , $@, and$< are useful generic terms for curren
targets and out-of-date relatives. To this list is added the following related mac
$(@D), $(@F), $(*D), $(*F), $(<D), and $(<F). The D refers to the
directory part of the single character macro. TheF refers to the file name part of the single
character macro. These additions are useful when building hierarchicalmakefile s. They
allow access to directory names for purposes of using thecd command of the shell. Thus,
a command can be

cd $(<D); $(MAKE) $(<F)

Output Translations 13

The values of macros are replaced when evaluated. The general form, where bra
indicate that the enclosed sequence is optional, is as follows:

$(macro[: string1=[string2]])

The parentheses are optional if there is no substitution specification and the macro na
a single character. If a substitution sequence is present, the value of the mac
considered to be a sequence of “words” separated by sequences of blanks, tab
new-line characters. Then, for each such word that ends withstring1, string1 is replaced
with string2(or no characters ifstring2is not present).

This particular substitution capability was chosen becausemake usually concerns itself
with suffixes. The usefulness of this type of translation occurs when maintaining arc
libraries. Now, all that is necessary is to accumulate the out-of-date members and w
shell script that can handle all the C language programs (that is, files ending in.c). Thus,
the following fragment optimizes the executions ofmake for maintaining an archive
library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)(c.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the different types of so
files (suffixes) that define the archive library. These translations are added in an effo
make more general use of the wealth of information thatmake generates.

Recursive Makefiles 13

Another feature ofmake concerns the environment and recursive invocations. If t
sequence$(MAKE) appears anywhere in a shell command line, the line is executed ev
the -n flag is set. Since the-n flag is exported across invocations ofmake (through the
MAKEFLAGSvariable), the only thing that is executed is themake command itself. This
feature is useful when a hierarchy ofmakefile s describes a set of software subsystem
13-8

Managing File Interactions with make

one

o a

the

ser's

irst
re to

s
be

ault
fol-
For testing purposes,make -n can be executed and everything that would have been d
will be printed including output from lower-level invocations ofmake.

Suffixes and Transformation Rules 13

make uses an internal table of rules to learn how to transform a file with one suffix int
file with another suffix. If the-r flag is used on themake command line, the internal
table is not used.

The list of suffixes is actually the dependency list for the name.SUFFIXES. make
searches for a file with any of the suffixes on the list. If it finds one,make transforms it
into a file with another suffix. Transformation rule names are the concatenation of
before and after suffixes. The name of the rule to transform a.r file to a .o file is thus
.r.o . If the rule is present and no explicit command sequence has been given in the u
description files, the command sequence for the rule.r.o is used. If a command is
generated by using one of these suffixing rules, the macro$* is given the value of the
stem (everything but the suffix) of the name of the file to be made; and the macro$< is the
full name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to right. The f
name formed that has both a file and a rule associated with it is used. If new names a
be appended, the user can add an entry for.SUFFIXES in the description file. The
dependents are added to the usual list. A.SUFFIXES line without any dependents delete
the current list. It is necessary to clear the current list if the order of names is to
changed.

Implicit Rules 13

make uses a table of suffixes and a set of transformation rules to supply def
dependency information and implied commands. The default suffix list (in order) is as
lows:

.o Object file

.c C source file

.c~ SCCS C source file

.y yacc C source grammar

.y~ SCCSyacc C source grammar

.l lex C source grammar

.l~ SCCSlex C source grammar

.s Assembler source file

.s~ SCCS assembler source file

.sh Shell file
13-9

Compilation Systems Volume 1 (Tools)

ths
or is

-1.

flag
piler
.sh~ SCCS shell file

.h Header file

.h~ SCCS header file

.f Fortran source file

.f~ SCCS Fortran source file

.C C++ source file

.C~ SCCS C++ source file

.Y yacc C++ source grammar

.Y~ SCCS yacc C++ source grammar

.L lex C++ source grammar

.L~ SCCS lex C++ source grammar

Figure 13-1 summarizes the default transformation paths. If there are two pa
connecting a pair of suffixes, the longer one is used only if the intermediate file exists
named in the description.

Figure 13-1. Summary of Default Transformation Path

If the file x.o is needed and anx.c is found in the description or directory, thex.o file
would be compiled. If there is also anx.l , that source file would be run throughlex
before compiling the result. However, if there is nox.c but there is anx.l , make would
discard the intermediate C language file and use the direct link as shown in Figure 13

It is possible to change the names of some of the compilers used in the default or the
arguments with which they are invoked by knowing the macro names used. The com
names are the macrosAS, CC, C++C, F77, YACC, andLEX. The command

make CC=newcc

.o

.c .y

.y

.l

.l .Y .L

.s .f .C
13-10

Managing File Interactions with make

The

of a

the
the

and
; the

ndle

the

. The
will cause thenewcc command to be used instead of the usual C language compiler.
macrosCFLAGS, YFLAGS, LFLAGS, ASFLAGS, FFLAGS, andC++FLAGSmay be
set to cause these commands to be issued with optional flags. Thus

make CFLAGS=-g

causes thecc command to include debugging information.

Archive Libraries 13

Themake program has an interface to archive libraries. A user may name a member
library in the following manner:

projlib(object.o)

or

projlib((entry_pt))

where the second method actually refers to an entry point of an object file within
library. (make looks through the library, locates the entry point, and translates it to
correct object file name.)

To use this procedure to maintain an archive library, the following type ofmakefile is
required:

projlib:: projlib(pfile1.o)
$(CC) -c $(CFLAGS) pfile1.c
$(AR) $(ARFLAGS) projlib pfile1.o
rm pfile1.o

projlib:: projlib(pfile2.o)
$(CC) -c $(CFLAGS) pfile2.c
$(AR) $(ARFLAGS) projlib pfile2.o
rm pfile2.o

and so on for each object. This is tedious and error prone. Obviously, the comm
sequences for adding a C language file to a library are the same for each invocation
file name being the only difference each time. (This is true in most cases.)

Themake command also gives the user access to a rule for building libraries. The ha
for the rule is the.a suffix. Thus, a.c.a rule is the rule for compiling a C language
source file, adding it to the library, and removing the.o file. Similarly, the .y.a , the
.s.a , and the.l.a rules rebuildyacc , assembler, andlex files, respectively. The
archive rules defined internally are.c.a , .c~.a , .f.a , .f~.a , and.s~.a . (The tilde
(~) syntax will be described shortly.) The user may define other needed rules in
description file.

The above two-member library is then maintained with the following shortermakefile :

projlib: projlib(pfile1.o) projlib(pfile2.o)
@echo projlib up-to-date.

The internal rules are already defined to complete the preceding library maintenance
actual.c.a rule is as follows:
13-11

Compilation Systems Volume 1 (Tools)

s

sed.
e

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $(<F:.c=.o)
rm -f $(<F:.c=.o)

Thus, the$@macro is the.a target (projlib); the $< and $* macros are set to the
out-of-date C language file, and the file name minus the suffix, respectively (pfile1.c
andpfile1). The$< macro (in the preceding rule) could have been changed to$*.c .

It is useful to go into some detail about exactly whatmake does when it sees the
construction

projlib: projlib(pfile1.o)
@echo projlib up-to-date

Assume the object in the library is out of date with respect topfile1.c . Also, there is no
pfile1.o file.

1. make projlib .

2. Beforemakeing projlib , check each dependent ofprojlib .

3. projlib (pfile1.o) is a dependent ofprojlib and needs to be
generated.

4. Before generatingprojlib (pfile1.o), check each dependent of
projlib (pfile1.o). (There are none.)

5. Use internal rules to try to createprojlib (pfile1.o). (There is no
explicit rule.) Note thatprojlib (pfile1.o) has a parenthesis in the
name to identify the target suffix as.a . This is the key. There is no explicit
.a at the end of theprojlib library name. The parenthesis implies the
.a suffix. In this sense, the.a is hard-wired intomake.

6. Break the name projlib (pfile1.o) up into projlib and
pfile1.o . Define two macros,$@(projlib) and$* (pfile1).

7. Look for a rule.X.a and a file$*.X . The first .X (in the .SUFFIXES
list) which fulfills these conditions is.c so the rule is.c.a , and the file is
pfile1.c . Set$< to bepfile1.c and execute the rule. In fact,make
must then compilepfile1.c .

8. The library has been updated. Execute the command associated with the
projlib: dependency, namely

@echo projlib up-to-date

It should be noted that to letpfile1.o have dependencies, the following syntax i
required:

projlib(pfile1.o): $(INCDIR)/stdio.h pfile1.c

There is also a macro for referencing the archive member name when this form is u
The $%macro is evaluated each time$@is evaluated. If there is no current archiv
member,$% is null. If an archive member exists, then$%evaluates to the expression
between the parenthesis.
13-12

Managing File Interactions with make

of
ses a

file

arch

he
Source Code Control System File Names 13

The syntax ofmake does not directly permit referencing of prefixes. For most types
files on UNIX operating system machines, this is acceptable since nearly everyone u
suffix to distinguish different types of files. SCCS files are the exception. Here,s.
precedes the file name part of the complete path name.

To allow make easy access to the prefixs. the symbol~ is used as an identifier of SCCS
files. Hence,.c~.o refers to the rule which transforms an SCCS C language source
into an object file. Specifically, the internal rule is

.c~.o:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
rm -f $*.c

Thus,~ appended to any suffix transforms the file search into an SCCS file name se
with the actual suffix named by the dot and all characters up to (but not including)~.

The following SCCS suffixes are internally defined:

.c~ .sh~ .C~

.y~ .h~ .Y~

.l~ .f~ .L~

.s~

The following rules involving SCCS transformations are internally defined:

.c~: .s~.s: .C~:

.c~.c: .s~.a: .C~.C:

.c~.a: .s~.o: .C~.a:

.c~.o: .sh~: .C~.o:

.y~.c: .sh~.sh: .Y~.C:

.y~.o: .h~.h: .Y~.o:

.y~.y: .f~: .Y~.Y:

.l~.c: .f~.f: .L~.C:

.l~.o: .f~.a: .L~.o:

.l~.l: .f~.o: .L~.L:

.s~:

Obviously, the user can define other rules and suffixes that may prove useful. T~
provides a handle on the SCCS file name format so that this is possible.

The Null Suffix 13

There are many programs that consist of a single source file.make handles this case by
the null suffix rule. Thus, to maintain the UNIX system programcat , a rule in the
makefile of the following form is needed:

.c:
$(CC) $(CFLAGS) -o $@ $< $(LDFLAGS)
13-13

Compilation Systems Volume 1 (Tools)

r

are

a
file
.

in a

For
In fact, this.c: rule is internally defined so nomakefile is necessary at all. The use
only needs to enter

make cat dd echo date

(these are all UNIX system single-file programs) and all four C language source files
passed through the above shell command line associated with the.c: rule. The internally
defined single suffix rules are

.c: .sh: .f~:

.c~: .sh~: .C:

.s: .f: .C~:

.s~:

.sh:

Others may be added in themakefile by the user.

Included Files 13

The make program has a capability similar to the#include directive of the C
preprocessor. If the stringinclude appears as the first seven letters of a line in
makefile and is followed by a blank or a tab, the rest of the line is assumed to be a
name, which the current invocation ofmake will read. Macros may be used in file names
The file descriptors are stacked for readinginclude files so that no more than 16 levels
of nestedincludes are supported.

SCCS Makefiles 13

Makefiles under SCCS control are accessible tomake. That is, ifmake is typed and only
a file nameds.makefile or s.Makefile exists,make will do a get on the file, then
read and remove the file.

Dynamic Dependency Parameters 13

A dynamic dependency parameter has meaning only on the dependency line
makefile . The$$@refers to the current “thing” to the left of the: symbol (which is
$@). Also the form$$(@F) exists, which allows access to the file part of$@.Thus, in
the following:

cat: $$@.c

the dependency is translated at execution time to the stringcat.c . This is useful for
building a large number of executable files, each of which has only one source file.
instance, the UNIX system software command directory could have amakefile like:

CMDS = cat dd echo date cmp comm chown
13-14

Managing File Interactions with make

, a

the

ent

s
be
line

e
be
d

ies.

, the
tory.
ethod
$(CMDS): $$@.c
$(CC) $(CFLAGS) $? -o $@

Obviously, this is a subset of all the single file programs. For multiple file programs
directory is usually allocated and a separatemakefile is made. For any particular file
that has a peculiar compilation procedure, a specific entry must be made in
makefile .

The second useful form of the dependency parameter is$$(@F) . It represents the file
name part of$$@. Again, it is evaluated at execution time. Its usefulness becomes evid
when trying to maintain the/usr/include directory from makefile in the
/usr/src/head directory. Thus, the/usr/src/head/makefile would look like

INCDIR = /usr/include

INCLUDES = \
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

This would completely maintain the/usr/include directory whenever one of the
above files in/usr/src/head was updated.

Viewpaths (VPATH) 13

This implementation ofmake(1) has been enhanced to supportVPATHfunctionality or
the concept of viewpaths.VPATHis a macro that allows one to specify a list of directorie
to search for the filesmake(1) needs to complete its tasks. The viewpath may
specified in one or more of four methods. First, it may be specified on the command
with the -v viewpathoption; whereviewpathis some directory (absolute or relative to th
current working directory) other than the current working directory. Second, it may
specified on the command line in theVPATH=macro specification as a colon separate
list of directories to be searched. The third method is to specify theVPATH=macro within
the makefile being used; again, as a blank- or colon-separated list of director
Finally, theVPATHmay be specified within the environment by setting theVPATH=
environment variable to a blank- or colon-separated list of directories. In all cases
directories specified may be absolute paths or relative to the current working direc
The methods have been identified in the order of precedence; in other words, the m
of using-v viewpathtakes precedence over the others.

Examples of how to invoke use these methods are illustrated below:

To search for components in the current working directory and/usr/src :

make -f makefile -v /usr/src

To search for components in the current working directory,mysrc , and/usr/src
in that order:
13-15

Compilation Systems Volume 1 (Tools)

sim-

an
an-

rget

are

itions
sible

is
make -f makefile VPATH=mysrc:/usr/src

To search for components in the current working directory,mysrc , /usr/src , and
yoursrc in that order:

VPATH = mysrc:/usr/src:${DIR1}
DIR1 = yoursrc
OBJS = main.o allocate.o delete.o
outfile: ${OBJS}

${CC} -o $@ ${OBJS}
main.o: main.c
allocate.o: allocate.c
delete.o: delete.c

With this enhancement, SCCS directories can now be searched for build components
ply by specifying the SCCS directory in one of the above methods.

This enhancement also allows for the expansion of theVPATHas new makefiles are
included or referenced through the initial invocation.

Some limitations on theVPATHinclude: any one path specified cannot be longer th
MAXPATHLEN-1and the maximum number of paths specified, regardless of length, c
not exceed 10.

Command Usage 13

Refer tomake(1) for detailed information.

The make Command 13

Themake command takes macro definitions, options, description file names, and ta
file names as arguments in the form:

make [-f makefile] [-v viewpath] [-eiknpPqrstuw] [names]

The following summary of command operations explains how these arguments
interpreted.

First, all macro definition arguments (arguments with embedded= symbols) are analyzed
and the assignments made. Command line macros override corresponding defin
found in the description files. Next, the option arguments are examined. The permis
options are as follows:

-i Ignore error codes returned by invoked commands. This mode
entered if the fake target name.IGNORE appears in the descrip-
tion file.
13-16

Managing File Interactions with make

is

m.

an

s
.

ip-

ut
ent

a
f

in

r of
ent

ted.

or
me

upt
-s Silent mode. Do not print command lines before executing. Th
mode is also entered if the fake target name.SILENT appears in
the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute the
Even lines beginning with an@sign are printed.

-t Touch the target files (causing them to be up to date) rather th
issue the usual commands.

-q Question. Themake command returns a zero or nonzero statu
code depending on whether the target file is or is not up to date

-p Print out the complete set of macro definitions and target descr
tions.

-k Abandon work on the current entry if something goes wrong, b
continue on other branches that do not depend on the curr
entry.

-e Environment variables override assignments withinmakefile s.

-f makefile Description file name.makefile is assumed to be the name of
description file. Amakefileof - denotes the standard input. I
there are no-f arguments, the file namedmakefile, Make-
file, s.makefile, or s.Makefile in the current directory
is read. The contents of the description files override the built-
rules if they are present.

-P Update, in parallel, more than one target at a time. The numbe
targets updated concurrently is determined by the environm
variablePARALLELand the presence of.MUTEXdirectives in
makefiles.

-u Unconditionally make the target, ignoring all timestamps.

-v viewpath Absolute or relative path name (viewpath) to be searched for
needed files.

-w Suppress warning messages. Fatal messages will not be affec

The following fake target names are evaluated in the same manner as flags:

.DEFAULT If a file must be made but there are no explicit commands
relevant built-in rules, the commands associated with the na
.DEFAULT are used if it exists.

.PRECIOUS Dependents on this target are not removed when quit or interr
is pressed.

.SILENT Same effect as the-s option.

.IGNORE Same effect as the-i option.
13-17

Compilation Systems Volume 1 (Tools)

e and
name

ing

ing
tions

ding
.PRECIOUS Dependents of the.PRECIOUS entry will not be removed when
quit or interrupt are pressed.

Finally, the remaining arguments are assumed to be the names of targets to be mad
the arguments are done in left-to-right order. If there are no such arguments, the first
in the description file that does not begin with the symbol. is made.

Environment Variables 13

Environment variables are read and added to the macro definitions each timemake
executes. Precedence is a prime consideration in doing this properly. The follow
describesmake's interaction with the environment. A macro,MAKEFLAGS,is maintained
by make. The macro is defined as the collection of all input flag arguments into a str
(without minus signs). The macro is exported and thus accessible to recursive invoca
of make. Command line flags and assignments in themakefile updateMAKEFLAGS.
Thus, to describe how the environment interacts withmake, the MAKEFLAGSmacro
(environment variable) must be considered.

When executed,make assigns macro definitions in the following order:

1. Read theMAKEFLAGSenvironment variable. If it is not present or null, the
internalmake variableMAKEFLAGSis set to the null string. Otherwise,
each letter inMAKEFLAGSis assumed to be an input flag argument and is
processed as such. (The only exceptions are the-f , -p , and-r flags.)

2. Read the internal list of macro definitions.

3. Read the environment. The environment variables are treated as macro
definitions and marked asexported(in the shell sense).

4. Read themakefile (s). The assignments in themakefile (s) override the
environment. This order is chosen so that when amakefile is read and
executed, you know what to expect. That is, you get what is seen unless the
-e flag is used. The-e is the input flag argument, which tellsmake to
have the environment override themakefile assignments. Thus, ifmake
-e is entered, the variables in the environment override the definitions in
the makefile . Also MAKEFLAGSoverrides the environment if assigned.
This is useful for further invocations ofmake from the currentmakefile .

It may be clearer to list the precedence of assignments. Thus, in order from least bin
to most binding, the precedence of assignments is as follows:

1. Internal definitions

2. Environment

3. makefile (s)

4. Command line

The-e flag has the effect of rearranging the order to:

1. Internal definitions

2. makefile (s)
13-18

Managing File Interactions with make

cter

ssary
3. Environment

4. Command line

This order is general enough to allow a programmer to define amakefile or set of
makefile s whose parameters are dynamically definable.

Suggestions and Warnings 13

The most common difficulties arise frommake's specific meaning of dependency. If file
x.c has a

#include "defs.h"

line, then the object filex.o depends ondefs.h ; the source filex.c does not. If
defs.h is changed, nothing is done to the filex.c while file x.o must be recreated.

To discover whatmake would do, the-n option is very useful. The command

make -n

ordersmake to print out the commands thatmake would issue without actually taking the
time to execute them. If a change to a file is absolutely certain to be mild in chara
(adding a comment to aninclude file, for example), the-t (touch) option can save a lot
of time. Instead of issuing a large number of superfluous recompilations,make updates
the modification times on the affected file. Thus, the command

make -ts

(touch silently) causes the relevant files to appear up to date. Obvious care is nece
because this mode of operation subverts the intention ofmake and destroys all memory of
the previous relationships.

Internal Rules 13

The standard set of internal rules used bymake are reproduced below.
13-19

Compilation Systems Volume 1 (Tools)
Screen 13-1. make Internal Rules

#
SUFFIXES RECOGNIZED BY MAKE
#

.SUFFIXES: .o .c .c~ .y .y~ .l .l~ .s .s~ .sh .sh~ .h .h~ .f .f~ .C .C~ \
.Y .Y~ .L .L~

#
PREDEFINED MACROS
#

AR=ar
ARFLAGS=rv
AS=as
ASFLAGS=
BUILD=build
CC=cc
CFLAGS=-O
C++C=CC
C++FLAGS=-O
F77=f77
FFLAGS=-O
GET=get
GFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
MAKE=make
YACC=yacc
YFLAGS=
#
SPECIAL RULES
#

markfile.o : markfile
A=@; echo "static char _sccsid[]=\042`grep $$A'(#)' markfile`\042;" \
> markfile.c
$(CC) -c markfile.c
-rm -f markfile.c

#
SINGLE SUFFIX RULES
#

.c:
$(CC) $(CFLAGS) -o $@ $< $(LDFLAGS)

.c~:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -o $@ $*.c $(LDFLAGS)
-rm -f $*.c
13-20

Managing File Interactions with make
.s:
$(AS) $(ASFLAGS) -o $*.o $<
$(CC) -o $@ $*.o $(LDFLAGS)
-rm -f $*.o

.s~:
$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) -o $*.o $*.s
$(CC) -o $* $*.o $(LDFLAGS)
-rm -f $*.[so]

.sh:
cp $< $@; chmod +x $@

.sh~:
$(GET) $(GFLAGS) $<
cp $*.sh $*; chmod +x $@
-rm -f $*.sh

.f:
$(F77) $(FFLAGS) -o $@ $< $(LDFLAGS)

.f~:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -o $@ $*.f $(LDFLAGS)
-rm -f $*.f

.C:
$(C++C) $(C++FLAGS) -o $@ $< $(LDFLAGS)

.C~:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -o $@ $*.C $(LDFLAGS)
-rm -f $*.C

#
DOUBLE SUFFIX RULES
#

.c~.c .y~.y .l~.l .s~.s .sh~.sh .h~.h: .f~.f .C~.C .Y~.Y .L~.L:
$(GET) $(GFLAGS) $<

.c.a:
$(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $(<F:.c=.o)
-rm -f $(<F:.c=.o)

.c~.a:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[co]
13-21

Compilation Systems Volume 1 (Tools)
.c.o:
$(CC) $(CFLAGS) -c $<

.c~.o:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

.y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.y~.c:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
-rm -f $*.y

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
-rm -f y.tab.c
mv y.tab.o $@

.y~.o:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
-rm -f y.tab.c $*.y
mv y.tab.o $*.o

.l.c:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.l~.c:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@
-rm -f $*.l

.l.o:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
-rm -f lex.yy.c
mv lex.yy.o $@

.l~.o:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
-rm -f lex.yy.c $*.l
mv lex.yy.o $@
13-22

Managing File Interactions with make
.s.a:
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o

.s~.a:
$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[so]

.s.o:
$(AS) $(ASFLAGS) -o $@ $<

.s~.o:
$(GET) $(GFLAGS) $<
$(AS) $(ASFLAGS) -o $*.o $*.s
-rm -f $*.s

.f.a:
$(F77) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $@ $(<F:.f=.o)
-rm -f $(<F:.f=.o)

.f~.a:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[fo]

.f.o:
$(F77) $(FFLAGS) -c $*.f

.f~.o:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -c $*.f
-rm -f $*.f

.C.a:
$(C++C) $(C++FLAGS) -c $<
$(AR) $(ARFLAGS) $@ $(<F:.C=.o)
-rm -f $(<F:.C=.o)

.C~.a:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[Co]

.C.o:
$(C++C) $(C++FLAGS) -c $<

.C~.o:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
-rm -f $*.C
13-23

Compilation Systems Volume 1 (Tools)
.Y.C:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.Y~.C:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
mv y.tab.c $*.C
-rm -f $*.Y

.Y.o:
$(YACC) $(YFLAGS) $<
$(C++C) $(C++FLAGS) -c y.tab.c
-rm -f y.tab.c
mv y.tab.o $@

.Y~.o:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
$(C++C) $(C++FLAGS) -c y.tab.c
-rm -f y.tab.c $*.Y
mv y.tab.o $*.o

.L.C:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.L~.C:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
mv lex.yy.c $@
-rm -f $*.L

.L.o:
$(LEX) $(LFLAGS) $<
$(C++C) $(C++FLAGS) -c lex.yy.c
-rm -f lex.yy.c
mv lex.yy.o $@

.L~.o:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
$(C++C) $(C++FLAGS) -c lex.yy.c
-rm -f lex.yy.c $*.L
mv lex.yy.o $@
13-24

-1
-1

-1
-2

-2
4-3
-4
-5
-5
4-7
-8
-8

4-8
-9
0
0
12
13
3
3
15
6
17
19
19
0

20
21
-23
23
23
24
24
25
25
26
26
26
7
8

14
Tracking Versions with SCCS

Introduction . 14
Basic Usage . 14

Terminology . 14
Creating an SCCS File with admin . 14
Retrieving a File with get . 14
Recording Changes with delta . 1
More on get. 14
The help Command . 14

Delta Numbering . 14
SCCS Command Conventions. 1

x.files and z.files. 14
Error Messages . 14

SCCS Commands . 1
The get Command . 14

ID Keywords . 14-1
Retrieval of Different Versions . 14-1
To Update Source . 14-
Undoing a get -e . 14-
Additional get Options . 14-1
Concurrent Edits of Different SID . 14-1
Concurrent Edits of Same SID . 14-
Key letters that Affect Output . 14-1

The delta Command . 14-
The admin Command . 14-
Creation of SCCS Files . 14-

Inserting Commentary for the Initial Delta . 14-2
Initialization and Modification of SCCS File Parameters. 14-

The prs Command . 14-
The sact Command. 14
The help Command . 14-
The rmdel Command . 14-
The cdc Command . 14-
The what Command . 14-
The sccsdiff Command. 14-
The comb Command . 14-
The val Command . 14-

SCCS Files. 14-
Protection . 14-
Formatting . 14-2
Auditing . 14-2

Compilation Systems Volume 1 (Tools)

track
y of

ginal
d and

s it
ory

ade

best

track
inal
ed as
se 1
elta
14
Chapter 14Tracking Versions with SCCS

14
14
14

Introduction 14

The Source Code Control System, SCCS, is a set of programs that you can use to
evolving versions of files, ordinary text files as well as source files. SCCS takes custod
a file and, when changes are made, identifies and stores them in the file with the ori
source code and/or documentation. As other changes are made, they too are identifie
retained in the file.

Retrieval of the original or any set of changes is possible. Any version of the file a
develops can be reconstructed for inspection or additional modification. Hist
information can be stored with each version: why the changes were made, who m
them, and when they were made.

This chapter covers the following topics:

• The basics of creating, retrieving, and updating an SCCS file;

• Delta numbering: how versions of an SCCS file are named;

• SCCS command conventions: what rules apply to SCCS commands;

• SCCS commands: the 14 SCCS commands and their more useful
arguments;

• SCCS files: protection, format, and auditing of SCCS files.

Basic Usage 14

Several terminal session fragments are presented in this section. Try them all. The
way to learn SCCS is to use it.

Terminology 14

A delta is a set of changes made to a file under SCCS custody. To identify and keep
of a delta, it is assigned an SID (SCCS IDentification) number. The SID for any orig
file turned over to SCCS is composed of release number 1 and level number 1, stat
1.1. The SID for the first set of changes made to that file, that is, its first delta, is relea
version 2, or 1.2. The next delta would be 1.3, the next 1.4, and so on. More on d
14-1

Compilation Systems Volume 1 (Tools)

IDs

it for

may

as

f

numbering later. At this point, it is enough to know that by default SCCS assigns S
automatically.

Creating an SCCS File with admin 14

Suppose you have a file calledlang that is simply a list of five programming language
names:

C
PL/I
Fortran
COBOL
ALGOL

Custody of yourlang file can be given to SCCS using theadmin (for administer)
command. The following creates an SCCS file from thelang file:

admin -ilang s.lang

All SCCS files must have names that begin withs. , hences.lang . The-i key letter,
together with its valuelang , meansadmin is to create an SCCS file and initialize it with
the contents of the filelang .

Theadmin command replies

No id keywords (cm7)

This is a warning message that may also be issued by other SCCS commands. Ignore
now. Its significance is described later under theget command in “SCCS Commands” on
page 14-8. In the following examples, this warning message is not shown although it
be issued.

Remove thelang file. It is no longer needed because it exists now under SCCS
s.lang .

rm lang

Retrieving a File with get 14

The command

get s.lang

retrieves the latest version ofs.lang and prints

1.1
5 lines

This tells you thatget retrieved version 1.1 of the file, which is made up of five lines o
text.
14-2

Tracking Versions with SCCS

u

le,

arize
The retrieved text is placed in a new file calledlang . That is, if you list the contents of
your directory, you will see bothlang ands.lang .

The get s.lang command createslang , a file meant for viewing (read-only), not for
making changes to. If you want to make changes to it, the-e (edit) option must be used.
This is done as follows:

get -e s.lang

get -e causes SCCS to createlang for both reading and writing (editing). It also
places certain information aboutlang in another new file, calledp.lang , which is
needed later by thedelta command. Now if you list the contents of your directory, yo
will sees.lang , lang , andp.lang .

get -e prints the same messages asget , except that the SID for the first delta you will
create also is issued:

1.1
new delta 1.2
5 lines

Changelang by adding two more programming languages:

SNOBOL
ADA

Recording Changes with delta 14

Next, use thedelta command as follows:

delta s.lang

delta then prompts with

comments?

Your response should be an explanation of why the changes were made. For examp

added more languages

delta now reads the filep.lang and determines what changes you made tolang . It
does this by doing its ownget to retrieve the original version and applying thediff(1)
command to the original version and the edited version. Next,delta stores the changes
in s.lang and destroys the no longer neededp.lang andlang files.

When this process is complete,delta outputs

1.2
2 inserted
0 deleted
5 unchanged

The number 1.2 is the SID of the delta you just created, and the next three lines summ
what was done tos.lang .
14-3

Compilation Systems Volume 1 (Tools)

in
e

sion in
n, in

the

hereby

can be
l be
More on get 14

The command

get s.lang

retrieves the latest version of the files.lang , now 1.2. SCCS does this by starting with
the original version of the file and applying the delta you made. If you use theget
command now, any of the following will retrieve version 1.2:

get s.lang
get -r1 s.lang
get -r1.2 s.lang

The numbers following-r are SIDs. When you omit the level number of the SID (as
get -r1 s.lang), the default is the highest level number that exists within th
specified release. Thus, the second command requests the retrieval of the latest ver
release 1, namely 1.2. The third command requests the retrieval of a particular versio
this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by changing
release number, the first number of the SID. This, too, is done with theget command:

get -e -r2 s.lang

Because release 2 does not exist,get retrieves the latest version before release 2.get
also interprets this as a request to change the release number of the new delta to 2, t
naming it 2.1 rather than 1.3. The output is

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the version thedelta command
will create. If the file is now edited — for example, by deletingCOBOLfrom the list of
languages — anddelta is executed

delta s.lang
comments? deleted cobol from list of languages

you will see bydelta 's output that version 2.1 is indeed created:

2.1
0 inserted
1 deleted
6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release
created in a similar manner. A delta can still be made to the “old” release 1. This wil
explained later in the chapter.
14-4

Tracking Versions with SCCS

age.

f the
. The
ormal

mati-

release
, the

nt on

ed to a
er a
2 is
The help Command 14

If the command

get lang

is now executed, the following message will be output:

ERROR [lang]: not an SCCS file (co1)

The codeco1 can be used withhelp to print a fuller explanation of the message:

help co1

This gives the following explanation of whyget lang produced an error message:

co1:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any SCCS mess

Delta Numbering 14

Think of deltas as the nodes of a tree in which the root node is the original version o
file. The root node is normally named 1.1 and deltas (nodes) are named 1.2, 1.3, etc
components of these SIDs are called release and level numbers, respectively. Thus, n
naming of new deltas proceeds by incrementing the level number. This is done auto
cally by SCCS whenever a delta is made.

Because the user may change the release number to indicate a major change, the
number then applies to all new deltas unless specifically changed again. Thus
evolution of a particular file could be represented by Figure 14-1.

Figure 14-1. Evolution of an SCCS File

This is the normal sequential development of an SCCS file, with each delta depende
the preceding deltas. Such a structure is called the trunk of an SCCS tree.

There are situations that require branching an SCCS tree. That is, changes are plann
given delta that will not be dependent on all previous deltas. For example, consid
program in production use at version 1.3 and for which development work on release

1.1 1.2 1.3 1.4 2.1 2.2
14-5

Compilation Systems Volume 1 (Tools)

wn in
nnot
plied
that

se 2
f the

d level
t is as

its
elta
ence

ch off
, the
ndary
already in progress. Release 2 may already have a delta in progress as sho
Figure 14-1. Assume that a production user reports a problem in version 1.3 that ca
wait to be repaired in release 2. The changes necessary to repair the trouble will be ap
as a delta to version 1.3 (the version in production use). This creates a new version
will then be released to the user but will not affect the changes being applied for relea
(that is, deltas 1.4, 2.1, 2.2, etc.). This new delta is the first node of a new branch o
tree.

Branch delta names always have four SID components: the same release number an
number as the trunk delta, plus a branch number and sequence number. The forma
follows:

release. level. branch. sequence

The branch number of the first delta branching off any trunk delta is always 1, and
sequence number is also 1. For example, the full SID for a delta branching off trunk d
1.3 will be 1.3.1.1. As other deltas on that same branch are created, only the sequ
number changes: 1.3.1.2, 1.3.1.3, etc. This is shown in Figure 14-2.

Figure 14-2. Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that starts a new bran
an existing branch, as shown in Figure 14-3. As this secondary branch develops
sequence numbers of its deltas are incremented (1.3.2.1, 1.3.2.2, etc.), but the seco
branch number remains the same.

1.1 1.2 1.3 1.4

1.3.1.1

2.1

1.3.1.2

2.2
14-6

Tracking Versions with SCCS

ing of
plex

ses,
cture

etters
s,

ng a
iles

n is
and
d until

ry —
right.

CCS
see
Figure 14-3. Extended Branching Concept

The concept of branching may be extended to any delta in the tree, and the number
the resulting deltas proceeds as shown above. SCCS allows the generation of com
tree structures. Although this capability has been provided for certain specialized u
the SCCS tree should be kept as simple as possible. Comprehension of its stru
becomes difficult as the tree becomes complex.

SCCS Command Conventions 14

SCCS commands accept two types of arguments, key letters and file names. Key l
are options that begin with a hyphen (-) followed by a lowercase letter and, in some case
a value.

File and/or directory names specify the file(s) the command is to process. Nami
directory is equivalent to naming all the SCCS files within the directory. Non-SCCS f
and unreadable files in the named directories are silently ignored.

In general, file name arguments may not begin with a hyphen. If a lone hyphe
specified, the command will read the standard input (usually your terminal) for lines
take each line as the name of an SCCS file to be processed. The standard input is rea
end-of-file. This feature is often used in pipelines.

Key letters are processed before file names, so the placement of key letters is arbitra
they may be interspersed with file names. File names, however, are processed left to
Somewhat different conventions apply tohelp , what , sccsdiff , andval , detailed
later in “SCCS Commands” on page 14-8.

Certain actions of various SCCS commands are controlled by flags appearing in S
files. Some of these flags will be discussed, but for a complete description
admin(1) .

1.1 1.2 1.3 1.4

1.3.1.1 1.3.2.1 1.3.2.2

2.1

1.3.1.2

2.2
14-7

Compilation Systems Volume 1 (Tools)

l and

a
ing
he
e
lete,

also
at

file.
ther)
y for

shes

of a
xt file

r most

ns.
The distinction between real user (seepasswd(1)) and effective user will be of concern
in discussing various actions of SCCS commands. For now, assume that the rea
effective users are the same — the person logged into the UNIX system.

x.files and z.files 14

All SCCS commands that modify an SCCS file do so by first writing and modifying
copy calledx. file. This is done to ensure that the SCCS file is not damaged if process
terminates abnormally.x. file is created in the same directory as the SCCS file, given t
same mode (seechmod(1)) and is owned by the effective user. It exists only for th
duration of the execution of the command that creates it. When processing is comp
the contents ofs. file are replaced by the contents ofx. file, whereuponx. file is
destroyed.

To prevent simultaneous updates to an SCCS file, the same modifying commands
create a lock-file calledz. file. z. file contains the process number of the command th
creates it, and its existence prevents other commands from processing the SCCS
z. file is created with access permission mode 444 (read-only for owner, group, and o
in the same directory as the SCCS file and is owned by the effective user. It exists onl
the duration of the execution of the command that creates it.

In general, you can ignore these files. They are useful only in the event of system cra
or similar situations.

Error Messages 14

SCCS commands produce error messages on the diagnostic output in this format:

ERROR [file]: message text(code)

The code in parentheses can be used as an argument to thehelp command to obtain a
further explanation of the message. Detection of a fatal error during the processing
file causes the SCCS command to stop processing that file and proceed with the ne
specified.

SCCS Commands 14

This section describes the major features of the fourteen SCCS commands and thei
common arguments.

Here is a quick-reference overview of the commands:

get(1) Retrieves versions of SCCS files.

unget(1) Undoes the effect of aget -e prior to the file beingdelta ed.

delta(1) Applies deltas (changes) to SCCS files and creates new versio
14-8

Tracking Versions with SCCS

d

as

ial

an

The
der,

to the

as

er,

ing

xam-
admin(1) Initializes SCCS files, manipulates their descriptive text, an
controls delta creation rights.

prs(1) Prints portions of an SCCS file in user-specified format.

sact(1) Prints information about files that are currently out for editing.

help(1) Gives explanations of error messages.

rmdel(1) Removes a delta from an SCCS file — allows removal of delt
created by mistake.

cdc(1) Changes the commentary associated with a delta.

what(1) Searches any UNIX system file(s) for all occurrences of a spec
pattern and prints out what follows it — useful in finding
identifying information inserted by theget command.

sccsdiff(1) Shows differences between any two versions of an SCCS file.

comb(1) Combines consecutive deltas into one to reduce the size of
SCCS file.

val(1) Validates an SCCS file.

The get Command 14

The get command creates a file that contains a specified version of an SCCS file.
version is retrieved by beginning with the initial version and then applying deltas, in or
until the desired version is obtained. The resulting file, called ag-file (for gotten), is
created in the current directory and is owned by the real user. The mode assigned
g-file depends on how theget command is used.

The most common use ofget is

get s.abc

which normally retrieves the latest version ofs.abc from the SCCS file tree trunk and
produces (for example) on the standard output

1.3
67 lines
No id keywords (cm7)

meaning version 1.3 ofs.abc was retrieved (assuming 1.3 is the latest trunk delta), it h
67 lines of text, and no ID keywords were substituted in the file.

Theg-file, namely, fileabc , is given access permission mode 444 (read-only for own
group, and other). This particular way of usingget is intended to produceg-files only for
inspection, compilation, or copying, for example. It is not intended for editing (mak
deltas).

When several files are specified, the same information is output for each one. For e
ple,
14-9

Compilation Systems Volume 1 (Tools)

n,

nient
ny-
ose
cent

ords

lta
with
get s.abc s.xyz

produces

s.abc:
1.3
67 lines
No id keywords (cm7)
s.xyz:
1.7
85 lines
No id keywords (cm7)

ID Keywords 14

In generating ag-file for compilation, it is useful to record the date and time of creatio
the version retrieved, the module's name, and so on in theg-file itself. This information
appears in a load module when one is eventually created. SCCS provides a conve
mechanism for doing this automatically. Identification (ID) keywords appearing a
where in theg-file are replaced by appropriate values according to the definitions of th
ID keywords. The format of an ID keyword is an uppercase letter enclosed by per
signs (%). For example,

%I%

is the ID keyword replaced by the SID of the retrieved version of a file. Similarly,%H%
and%M%are the date and name of theg-file, respectively. Thus, executingget on an
SCCS file that contains the PL/I declaration

DCL ID CHAR(100) VAR INIT('%M% %I% %H%');

gives (for example) the following:

DCL ID CHAR(100) VAR INIT(‘MODNAME 2.3 07/18/85’);

When no ID keywords are substituted byget , the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning byget although the presence of thei flag
in the SCCS file causes it to be treated as an error. For a complete list of the keyw
provided, seeget(1) .

Retrieval of Different Versions 14

The version of an SCCS file thatget retrieves by default is the most recently created de
of the highest numbered trunk release. However, any other version can be retrieved
get -r by specifying the version's SID. Thus,

get -r1.3 s.abc

retrieves version 1.3 ofs.abc and produces (for example) on the standard output
14-10

Tracking Versions with SCCS

error

ase.

l
ease.

given

most
elta
1.3
64 lines

A branch delta may be retrieved similarly,

get -r1.5.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a SID is specified and the particular version does not exist in the SCCS file, an
message results.

Omitting the level number, as in

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given rele
Thus, the above command might output

3.7
213 lines

If the given release does not exist,get retrieves the trunk delta with the highest leve
number within the highest-numbered existing release that is lower than the given rel
For example, assume release 9 does not exist in files.abc and release 7 is the
highest-numbered release below 9. Executing

get -r9 s.abc

would produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of files.abc below release 9.
Similarly, omitting the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the
branch. This might result in the following output:

4.3.2.8
89 lines

(If the given branch does not exist, an error message results.)

get -t will retrieve the latest (top) version of a particular release when no-r is used or
when its value is simply a release number. The latest version is the delta produced
recently, independent of its location on the SCCS file tree. Thus, if the most recent d
in release 3 is 3.5,

get -r3 -t s.abc
14-11

Compilation Systems Volume 1 (Tools)

same

e of

ding

the
would produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the
command might produce

3.2.1.5
46 lines

To Update Source 14

get -e indicates an intent to make a delta. First,get checks the following:

• The user list to determine if the login name or group ID of the person
executingget is present. The login name or group ID must be present for
the user to be allowed to make deltas. (See “The admin Command” on page
14-19 for a discussion of making user lists.)

• The release number (R) of the version being retrieved to determine if the
release being accessed is a protected release. That is, the release number
must satisfy the relation

floor is less than or equal to R,
which is less than or equal to ceiling

floor andceiling are flags in the SCCS file representing start and end of the rang
valid releases.

• R is not locked against editing. The lock is a flag in the SCCS file.

• Whether multiple concurrent edits are allowed for the SCCS file by thej
flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the correspon
SCCS file to terminate.

If the above checks succeed,get -e causes the creation of ag-file in the current directory
with mode 644 (readable by everyone, writable only by the owner) that is owned by
real user. If a writableg-file already exists,get terminates with an error.

Any ID keywords appearing in theg-file are not replaced byget -e because the
generatedg-file is subsequently used to create another delta.

In addition,get -e causes the creation (or updating) of thep. file that is used to pass
information to thedelta command.

The following

get -e s.abc

produces (for example) on the standard output
14-12

Tracking Versions with SCCS

dit-

ec-
its
ame
it not
to be

r
of the

r

e in

ltiple

en
ctive
1.3
new delta 1.4
67 lines

Undoing a get -e 14

There may be times when a file is retrieved accidentally for editing; there is really no e
ing that needs to be done at this time. In such cases, theunget command can be used to
cancel the delta reservation that was set up.

Additional get Options 14

If get -r and/or-t are used together with-e , the version retrieved for editing is the one
specified with-r and/or-t .

get -i and-x are used to specify a list of deltas to be included and excluded, resp
tively (seeget(1) for the syntax of such a list). Including a delta means forcing
changes to be included in the retrieved version. This is useful in applying the s
changes to more than one version of the SCCS file. Excluding a delta means forcing
to be applied. This may be used to undo the effects of a previous delta in the version
created.

Whenever deltas are included or excluded,get checks for possible interference with othe
deltas. Two deltas can interfere, for example, when each one changes the same line
retrievedg-file. A warning shows the range of lines within the retrievedg-file where the
problem may exist. The user should examine theg-file to determine what the problem is
and take appropriate corrective steps (edit the file if necessary).

CAUTION

get -i andget -x should be used with extreme care.

get -k is used either to regenerate ag-file that may have been accidentally removed o
ruined afterget -e , or simply to generate ag-file in which the replacement of ID key-
words has been suppressed. Ag-file generated byget -k is identical to one produced by
get -e , but no processing related top. file takes place.

Concurrent Edits of Different SID 14

The ability to retrieve different versions of an SCCS file allows several deltas to b
progress at any given time. This means that severalget -e commands may be executed
on the same file as long as no two executions retrieve the same version (unless mu
concurrent edits are allowed).

The p. file created byget -e is created in the same directory as the SCCS file, giv
mode 644 (readable by everyone, writable only by the owner), and owned by the effe
user. It contains the following information for each delta that is still in progress:
14-13

Compilation Systems Volume 1 (Tools)

in
less
that
ssage

the
ause
for a
files.
• The SID of the retrieved version

• The SID given to the new delta when it is created

• The login name of the real user executingget

The first execution ofget -e causes the creation ofp. file for the corresponding SCCS
file. Subsequent executions only updatep. file with a line containing the above
information. Before updating, however,get checks to assure that no entry already
p. file specifies that the SID of the version to be retrieved is already retrieved (un
multiple concurrent edits are allowed). If the check succeeds, the user is informed
other deltas are in progress and processing continues. If the check fails, an error me
results.

It should be noted that concurrent executions ofget must be carried out from different
directories. Subsequent executions from the same directory will attempt to overwrite
g-file, which is an SCCS error condition. In practice, this problem does not arise bec
each user normally has a different working directory. See “Protection” on page 14-26
discussion of how different users are permitted to use SCCS commands on the same

Table 14-1 shows the possible SID components a user can specify withget (left-most
column), the version that will then be retrieved byget , and the resulting SID for the delta,
which delta will create (right-most column). In the table

• R, L, B, and S mean release, level, branch, and sequence numbers in the
SID, and m means maximum. Thus, for example, R.mL means the
maximum level number within release R. R.L.(mB+1).1 means the first
sequence number on the new branch (maximum branch number plus 1) of
level L within release R. Note that if the SID specified is R.L, R.L.B, or
R.L.B.S, each of these specified SID numbers must exist.

• The-b key letter is effective only if theb flag (see admin(1)) is present
in the file. An entry of- means irrelevant.

• The first two entries in the left-most column apply only if thed (default
SID) flag is not present. If thed flag is present in the file, the SID is
interpreted as if specified on the command line. Thus, one of the other
cases in this figure applies.

• R.1 (the third entry in the right-most column) is used to force the creation
of the first delta in a new release.

• hR (the seventh entry in the fourth column) is the highest existing release
that is lower than the specified, nonexistent release R.

Table 14-1. Determination of New SID

SID
Specified

in get

-b Key-
Letter
Used

Other
Conditions

SID
Retrieved
by get

SID of Delta
To be Created

by delta

none no R defaults to mR mR.mL mR.(mL+1)

none yes R defaults to mR mR.mL mR.mL.(mB+1).1

R no R > mR mR.mL R.1
14-14

Tracking Versions with SCCS

t

Concurrent Edits of Same SID 14

Under normal conditions, more than oneget -e for the same SID is not permitted. Tha
is, delta must be executed before a subsequentget -e is executed on the same SID.

Multiple concurrent edits are allowed if thej flag is set in the SCCS file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R - R< mR and R
does not exist

hR.mL hR.mL.(mB+1).1

R - Trunk successor
number in
release > R
and R exists

R.mL R.mL.(mB+1).1

R.L no No trunk
successor

R.L R.(L+1)

R.L yes No trunk
successor

R.L R.L.(mB+1).1

R.L - Trunk successor
in release R

R.L R.L.(mB+1).1

R.L.B no No branch
successor

R.L.B.mS R.L.B.(mS+1)

R.L.B yes No branch
successor

R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch
successor

R.L.B.S R.L.B.(S+1)

R.L.B.S yes No branch
successor

R.L.B.S R.L.(mB+1).1

R.L.B.S - Branch successor R.L.B.S R.L.(mB+1).1

Table 14-1. Determination of New SID (Cont.)

SID
Specified

in get

-b Key-
Letter
Used

Other
Conditions

SID
Retrieved
by get

SID of Delta
To be Created

by delta
14-15

Compilation Systems Volume 1 (Tools)

the
dard

of the
nor-

es

his

.

y

a

the
get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an interveningdelta . In this case, adelta after the firstget will produce
delta 1.2 (assuming 1.1 is the most recent trunk delta), and adelta after the secondget
will produce delta 1.1.1.1.

Key letters that Affect Output 14

get -p causes the retrieved text to be written to the standard output rather than to ag-file.
In addition, all output normally directed to the standard output (such as the SID of
version retrieved and the number of lines retrieved) is directed instead to the stan
error.get -p is used, for example, to create ag-file with an arbitrary name, as in

get -p s.abc > arbitrary file name

get -s suppresses output normally directed to the standard output, such as the SID
retrieved version and the number of lines retrieved, but it does not affect messages
mally directed to the standard error.get -s is used to prevent non-diagnostic messag
from appearing on the user's terminal and is often used with-p to pipe the output, as in

get -p -s s.abc | pg

get -g prints the SID on standard output and there is no retrieval of the SCCS file. T
is useful in several ways. For example, to verify a particular SID in an SCCS file

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the SCCS files.abc or an error message if it does not
Another use ofget -g is in regenerating ap. file that may have been accidentally
destroyed, as in

get -e -g s.abc

get -l causes SCCS to createl. file in the current directory with mode 444 (read-onl
for owner, group, and other) and owned by the real user. Thel. file contains a table
(whose format is described onget(1)). showing the deltas used in constructing
particular version of the SCCS file. For example

get -r2.3 -l s.abc

generates anl. file showing the deltas applied to retrieve version 2.3 ofs.abc .
Specifyingp with -l , as in

get -lp -r2.3 s.abc

causes the output to be written to the standard output rather than tol. file. get -g can be
used with-l to suppress the retrieval of the text.

get -m identifies the changes applied to an SCCS file. Each line of theg-file is preceded
by the SID of the delta that caused the line to be inserted. The SID is separated from
text of the line by a tab character.
14-16

Tracking Versions with SCCS

in a

f the

und,

ing
a.
er has

the
g with
get -n causes each line of ag-file to be preceded by the value of the%M%ID keyword
and a tab character. This is most often used in a pipeline withgrep(1). For example, to
find all lines that match a given pattern in the latest version of each SCCS file
directory, the following may be executed:

get -p -n -s directory | grep pattern

If both -m and-n are specified, each line of theg-file is preceded by the value of the%M%
ID keyword and a tab (this is the effect of-n) and is followed by the line in the format
produced by-m.

Because use of-m and/or-n causes the contents of theg-file to be modified, such ag-file
must not be used for creating a delta. Therefore, neither-m nor -n may be specified
together withget -e . See theget(1) page.

The delta Command 14

The delta command is used to incorporate changes made to ag-file into the
corresponding SCCS file — that is, to create a delta and, therefore, a new version o
file.

Thedelta command requires the existence ofp. file (created byget -e). It examines
p. file to verify the presence of an entry containing the user's login name. If none is fo
an error message results.

Thedelta command performs the same permission checks thatget -e performs. If all
checks are successful,delta determines what has been changed in theg-file by
comparing it with its own temporary copy of theg-file as it was before editing. This
temporary copy is calledd. file and is obtained by performing an internalget on the SID
specified in thep. file entry.

The requiredp. file entry is the one containing the login name of the user execut
delta , because the user who retrieved theg-file must be the one who creates the delt
However, if the login name of the user appears in more than one entry, the same us
executedget -e more than once on the same SCCS file. Then,delta -r must be used
to specify the SID that uniquely identifies thep. file entry. This entry is then the one used
to obtain the SID of the delta to be created.

In practice, the most common use ofdelta is

delta s.abc

which prompts

comments?

to which the user replies with a description of why the delta is being made, ending
reply with a new-line character. The user's response may be up to 512 characters lon
new-lines (not intended to terminate the response) escaped by backslashes (\).

If the SCCS file has av flag, delta first prompts with

MRs?
14-17

Compilation Systems Volume 1 (Tools)

MR
er. A
the
s are

o on,
the

and

put is

fied

lag,

new
For

es are
e
er of

that
their
from

hile
lta
e

(Modification Requests) on the standard output. The standard input is then read for
numbers, separated by blanks and/or tabs, ended with a new-line charact
Modification Request is a formal way of asking for a correction or enhancement to
file. In some controlled environments where changes to source files are tracked, delta
permitted only when initiated by a trouble report, change request, trouble ticket, and s
collectively called MRs. Recording MR numbers within deltas is a way of enforcing
rules of the change management process.

delta -y and/or-m can be used to enter comments and MR numbers on the comm
line rather than through the standard input, as in

delta -y "descriptive comment"-m"mrnum1 mrnum2"s.abc

In this case, the prompts for comments and MRs are not printed, and the standard in
not read. These two key letters are useful whendelta is executed from within a shell
procedure. Note thatdelta -m is allowed only if the SCCS file has av flag.

No matter how comments and MR numbers are entered withdelta , they are recorded as
part of the entry for the delta being created. Also, they apply to all SCCS files speci
with thedelta .

If delta is used with more than one file argument and the first file named has av flag, all
files named must have this flag. Similarly, if the first file named does not have the f
none of the files named may have it.

Whendelta processing is complete, the standard output displays the SID of the
delta (fromp. file) and the number of lines inserted, deleted, and left unchanged.
example:

1.4
14 inserted
7 deleted
345 unchanged

If line counts do not agree with the user's perception of the changes made to ag-file, it may
be because there are various ways to describe a set of changes, especially if lin
moved around in theg-file. However, the total number of lines of the new delta (th
number inserted plus the number left unchanged) should always agree with the numb
lines in the editedg-file.

If you are in the process of making a delta and thedelta command finds no ID keywords
in the editedg-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This means
any ID keywords that may have existed in the SCCS file have been replaced by
values or deleted during the editing process. This could be caused by making a delta
a g-file that was created by aget without -e (ID keywords are replaced byget in such a
case). It could also be caused by accidentally deleting or changing ID keywords w
editing theg-file. Or, it is possible that the file had no ID keywords. In any case, the de
will be created unless there is ani flag in the SCCS file (meaning the error should b
treated as fatal), in which case the delta will not be created.

After the processing of an SCCS file is complete, the correspondingp. file entry is
removed fromp. file. All updates top. file are made to a temporary copy,q. file, whose
14-18

Tracking Versions with SCCS

-7.

than

n

CS
aram-

f exist-

ting”

ner,
on in

l

use is similar to that ofx. file described in “SCCS Command Conventions” on page 14
If there is only one entry inp. file, thenp. file itself is removed.

In addition,delta removes the editedg-file unless-n is specified. For example

delta -n s.abc

will keep theg-file after processing.

delta -s suppresses all output normally directed to the standard output, other
comments? and MRs?. Thus, use of-s with -y (and/or-m) causesdelta neither to
read from the standard input nor to write to the standard output.

The differences between theg-file and thed. file constitute the delta and may be printed o
the standard output by usingdelta -p . The format of this output is similar to that
produced bydiff .

The admin Command 14

The admin command is used to administer SCCS files — that is, to create new SC
files and change the parameters of existing ones. When an SCCS file is created, its p
eters are initialized by use of key letters withadmin or are assigned default values if no
key letters are supplied. The same key letters are used to change the parameters o
ing SCCS files.

Two key letters are used in detecting and correcting corrupted SCCS files (see “Audi
on page 14-28).

Newly created SCCS files are given access permission mode 444 (read-only for ow
group and other) and are owned by the effective user. Only a user with write permissi
the directory containing the SCCS file may use theadmin(1) command on that file.

Creation of SCCS Files 14

An SCCS file can be created by executing the command

admin -ifirst s.abc

in which the valuefirst with -i is the name of a file from which the text of the initia
delta of the SCCS files.abc is to be taken. Omission of a value with-i meansadmin is
to read the standard input for the text of the initial delta.

The command

admin -i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message

No id keywords (cm7)
14-19

Compilation Systems Volume 1 (Tools)

not

ents
th

CCS

le's

)

ts of
is issued byadmin as a warning. However, if the command also sets thei flag (not to be
confused with the-i key letter), the message is treated as an error and the SCCS file is
created. Only one SCCS file may be created at a time usingadmin -i .

admin -r is used to specify a release number for the first delta. Thus:

admin -ifirst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1. Because-r has
meaning only when creating the first delta, its use is permitted only with-i .

Inserting Commentary for the Initial Delta 14

When an SCCS file is created, the user may want to record why this was done. Comm
(admin -y) and/or MR numbers (-m) can be entered in exactly the same way as wi
delta .

If -y is omitted, a comment line of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (admin -m), thev flag must be set with-f . Thev
flag simply determines whether MR numbers must be supplied when using any S
command that modifies a delta commentary in the SCCS file (seesccsfile(4)). An
example would be

admin -ifirst -m mrnum1 -fv s.abc

Note that-y and-m are effective only if a new SCCS file is being created.

Initialization and Modification of SCCS File Parameters 14

Part of an SCCS file is reserved for descriptive text, usually a summary of the fi
contents and purpose. It can be initialized or changed by usingadmin -t .

When an SCCS file is first being created and-t is used, it must be followed by the name
of a file from which the descriptive text is to be taken. For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from filedesc .

When processing an existing SCCS file,-t specifies that the descriptive text (if any
currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the conten
desc . Omission of the file name after the-t key letter as in

admin -t s.abc
14-20

Tracking Versions with SCCS

e the

file)
e

r

the

d to
ate a

t. If
tion

For
causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized or changed byadmin -f , or deleted by
admin -d .

SCCS file flags are used to direct certain actions of the various commands. (Se
admin(1) page for a description of all the flags.) For example, thei flag specifies that a
warning message (stating that there are no ID keywords contained in the SCCS
should be treated as an error. Thed (default SID) flag specifies the default version of th
SCCS file to be retrieved by theget command.

admin -f is used to set flags and, if desired, their values. For example

admin -ifirst -fi -fm modnames.abc

sets thei andm(module name) flags. The valuemodnamespecified for themflag is the
value that theget command will use to replace the%M%ID keyword. (In the absence of
the mflag, the name of theg-file is used as the replacement for the%M%ID keyword.)
Several-f key letters may be supplied on a singleadmin , and they may be used whethe
the command is creating a new SCCS file or processing an existing one.

admin -d is used to delete a flag from an existing SCCS file. As an example,
command

admin -dm s.abc

removes themflag from the SCCS file. Several-d key letters may be used with one
admin and may be intermixed with-f .

SCCS files contain a list of login names and/or group IDs of users who are allowe
create deltas. This list is empty by default, allowing anyone to create deltas. To cre
user list (or add to an existing one),admin -a is used. For example,

admin -axyz -awql -a1234 s.abc

adds the login namesxyz andwql and the group ID1234 to the list.admin -a may be
used whether creating a new SCCS file or processing an existing one.

admin -e (erase) is used to remove login names or group IDs from the list.

The prs Command 14

Theprs command is used to print all or part of an SCCS file on the standard outpu
prs -d is used, the output will be in a format called data specification. Data specifica
is a string of SCCS file data keywords (not to be confused withget ID keywords)
interspersed with optional user text.

Data keywords are replaced by appropriate values according to their definitions.
example,

:I:

is defined as the data keyword replaced by the SID of a specified delta. Similarly,:F: is
the data keyword for the SCCS file name currently being processed, and:C: is the
14-21

Compilation Systems Volume 1 (Tools)

an

tion.

by
comment line associated with a specified delta. All parts of an SCCS file have
associated data keyword. For a complete list, see theprs(1) page.

There is no limit to the number of times a data keyword may appear in a data specifica
Thus, for example,

prs -d":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying its SID usingprs -r . For
example,

prs -d":F:: :I: comment line is: :C:" -r1.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If -r is not specified, the value of the SID defaults to the most recently created delta.

In addition, information from a range of deltas may be obtained with-l or -e. The use
of prs -e substitutes data keywords for the SID designated with-r and all deltas
created earlier, whileprs -l substitutes data keywords for the SID designated with-r
and all deltas created later. Thus, the command

prs -d:I: -r1.4 -e s.abc

may output

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d:I: -r1.4 -l s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be obtained
specifying both-e and-l .
14-22

Tracking Versions with SCCS

ut
es.

he

ser's
end

age
and an
ion,

be
oved
or on
n be

the
who

ID

alid

h a

the
iting.
The sact Command 14

sact is a special form of theprs command that produces a report about files that are o
for edit. The command takes only one type of argument: a list of file or directory nam
The report shows the SID of any file in the list that is out for edit, the SID of t
impending delta, the login of the user who executed theget -e command, and the date
and time theget -e was executed. It is a useful command for an administrator.

The help Command 14

The help command prints information about messages that may appear on the u
terminal. Arguments tohelp are the code numbers that appear in parentheses at the
of SCCS messages. (If no argument is given,help prompts for one.) Explanatory
information is printed on the standard output. If no information is found, an error mess
is printed. When more than one argument is used, each is processed independently,
error resulting from one will not stop the processing of the others. For more informat
see thehelp(1) page.

The rmdel Command 14

The rmdel command allows removal of a delta from an SCCS file. Its use should
reserved for deltas in which incorrect global changes were made. The delta to be rem
must be a leaf delta. That is, it must be the most recently created delta on its branch
the trunk of the SCCS file tree. In Figure 14-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 ca
removed. Only after they are removed can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write permission in
directory containing the SCCS file. In addition, the real user must be either the one
created the delta being removed or the owner of the SCCS file and its directory.

The-r key letter is mandatory withrmdel . It is used to specify the complete SID of the
delta to be removed. Thus

rmdel -r2.3 s.abc

specifies the removal of trunk delta 2.3.

Before removing the delta,rmdel checks that the release number (R) of the given S
satisfies the relation

floor is less than or equal to R,
which is less than or equal to ceiling

floor andceiling are flags in the SCCS file representing start and end of the range of v
releases.

The rmdel command also checks the SID to make sure it is not for a version on whic
get for editing has been executed and whose associateddelta has not yet been made.
In addition, the login name or group ID of the user must appear in the file's user list (or
user list must be empty). Also, the release specified cannot be locked against ed
14-23

Compilation Systems Volume 1 (Tools)

t.
ved.

CCS

ed. It

then

has
. The

ers

e

er

e

That is, if thel flag is set (seeadmin(1)), the release must not be contained in the lis
If these conditions are not satisfied, processing is terminated, and the delta is not remo

Once a specified delta has been removed, its type indicator in the delta table of the S
file is changed fromD (delta) toR (removed).

The cdc Command 14

Thecdc command is used to change the commentary made when the delta was creat
is similar to thermdel command (for example,-r and full SID are necessary), although
the delta need not be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commentary is
prompted for as withdelta .

The old commentary is kept, but it is preceded by a comment line indicating that it
been superseded, and the new commentary is entered ahead of the comment line
inserted comment line records the login name of the user executingcdc and the time of its
execution.

The cdc command also allows for the insertion of new and deletion of old MR numb
with the ! symbol. Thus

cdc -r1.4 s.abc
MRs? mrnum3 !mrnum1 (The MRs? prompt appears only

if the v flag has been set.)
comments? deleted wrong MR no.and inserted correct MR no.

insertsmrnum3 and deletesmrnum1 for delta 1.4.

The what Command 14

The what command is used to find identifying information in any UNIX system fil
whose name is given as an argument. No key letters are accepted. Thewhat command
searches the given file(s) for all occurrences of the string@(#) , which is the replacement
for the%Z%ID keyword (see theget(1) page). It prints on the standard output whatev
follows the string until the first double quote (“), greater than symbol (>), backslash (\),
new-line, null, or non-printing character.

For example, if an SCCS file calleds.prog.c (a C language source file) contains th
following line

char id[]= "%W%";

and the command

get -r3.4 s.prog.c
14-24

Tracking Versions with SCCS

ces
cified
s
ctory

shell
nted

ffect of
s, in

the
s a
is used, the resultingg-file is compiled to produceprog.o and a.out . Then, the
command

what prog.c prog.o a.out

produces

prog.c:
prog.c: 3.4

prog.o:
prog.c: 3.4

a.out:
prog.c: 3.4

The string searched for bywhat need not be inserted with an ID keyword ofget ; it may
be inserted in any convenient manner.

The sccsdiff Command 14

The sccsdiff command determines (and prints on the standard output) the differen
between any two versions of an SCCS file. The versions to be compared are spe
with sccsdiff -r in the same way as withget -r . SID numbers must be specified a
the first two arguments. The SCCS file or files to be processed are named last. Dire
names and a lone hyphen are not acceptable tosccsdiff .

The following is an example of the format ofsccsdiff :

sccsdiff -r3.4 -r5.6 s.abc

The differences are printed the same way as bydiff .

The comb Command 14

The comb command lets the user reduce the size of an SCCS file. It generates a
procedure on the standard output, which reconstructs the file by discarding unwa
deltas and combining other specified deltas. (It is not recommended thatcomb be used as
a matter of routine.)

In the absence of any key letters,comb preserves only leaf deltas and the minimum
number of ancestor deltas necessary to preserve the shape of an SCCS tree. The e
this is to eliminate middle deltas on the trunk and on all branches of the tree. Thu
Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated.

Some of the key letters used with this command are:

-s This option generates a shell procedure that produces a report of
percentage space (if any) the user will save. This is often useful a
preliminary check.

-p This option is used to specify the oldest delta the user wants preserved.
14-25

Compilation Systems Volume 1 (Tools)

ed
tree

the
cular

CS
m

e

nted
ci-

, and

ion
es by

e lock
-c This option is used to specify a list (see theget(1) page for its syntax) of
deltas the user wants preserved. All other deltas will be discarded.

The shell procedure generated bycomb is not guaranteed to save space. A reconstruct
file may even be larger than the original. Note, too, that the shape of an SCCS file
may be altered by the reconstruction process.

The val Command 14

The val command is used to determine whether a file is an SCCS file meeting
characteristics specified by certain key letters. It checks for the existence of a parti
delta when the SID for that delta is specified with-r .

The string following-y or -m is used to check the value set by thet or m flag,
respectively. Seeadmin(1) for descriptions of these flags.

The val command treats the special argument hyphen differently from other SC
commands. It allowsval to read the argument list from the standard input instead of fro
the command line, and the standard input is read until an end-of-file (control-d) is
entered. This permits oneval command with different values for key letters and fil
arguments. For example,

val -
-yc -mabc s.abc
-mxyz -ypl1 s.xyz
control_d

first checks if files.abc has a valuec for its type flag and valueabc for the module
name flag. Once this is done,val processes the remaining file, in this cases.xyz .

Theval command returns an 8-bit code. Each bit set shows a specific error (seeval(1)
for a description of errors and codes). In addition, an appropriate diagnostic is pri
unless suppressed by-s . A return code of 0 means all files met the characteristics spe
fied.

SCCS Files 14

This section covers protection mechanisms used by SCCS, the format of SCCS files
the recommended procedures for auditing SCCS files.

Protection 14

SCCS relies on the capabilities of the UNIX system for most of the protect
mechanisms required to prevent unauthorized changes to SCCS files — that is, chang
non-SCCS commands. Protection features provided directly by SCCS are the releas
flag, the release floor and ceiling flags, and the user list.
14-26

Tracking Versions with SCCS

nly
rally)
ing

y to

rary
The
large

o so
f the
y is

han

nd the
ectly

large
en as

o not
ble to

ining
rface

e the
s
ring
ose
iven
ram.

file

e of

d to
Files created by theadmin command are given access permission mode 444 (read-o
for owner, group, and other). This mode should remain unchanged because it (gene
prevents modification of SCCS files by non-SCCS commands. Directories contain
SCCS files should be given mode 755, which allows only the owner of the director
modify it.

SCCS files should be kept in directories that contain only SCCS files and any tempo
files created by SCCS commands. This simplifies their protection and auditing.
contents of directories should be logical groupings — subsystems of the same
project, for example.

SCCS files should have only one link (name) because commands that modify them d
by creating and modifying a copy of the file. When processing is done, the contents o
old file are automatically replaced by the contents of the copy, whereupon the cop
destroyed. If the old file had additional links, this would break them. Then, rather t
process such files, SCCS commands would produce an error message.

When only one person uses SCCS, the real and effective user IDs are the same; a
user ID owns the directories containing SCCS files. Therefore, SCCS may be used dir
without any preliminary preparation.

When several users with unique user IDs are assigned SCCS responsibilities (on
development projects, for example), one user — that is, one user ID — must be chos
the owner of the SCCS files. This person will administer the files (use theadmin
command) and will be SCCS administrator for the project. Because other users d
have the same privileges and permissions as the SCCS administrator, they are not a
execute directly those commands that require write permission in the directory conta
the SCCS files. Therefore, a project-dependent program is required to provide an inte
to theget , delta , and, if desired,rmdel andcdc commands.

The interface program must be owned by the SCCS administrator and must hav
set-user-ID-on-execution bit on (seechmod(1)). This assures that the effective user ID i
the user ID of the SCCS administrator. With the privileges of the interface program du
command execution, the owner of an SCCS file can modify it at will. Other users wh
login names or group IDs are in the user list for that file (but are not the owner) are g
the necessary permissions only for the duration of the execution of the interface prog
Thus, they may modify SCCS only withdelta and, possibly,rmdel andcdc .

Formatting 14

SCCS files are composed of lines of ASCII text arranged in six parts as follows:

Checksum a line containing the logical sum of all the characters of the
(not including the checksum line itself)

Delta Table information about each delta, such as type, SID, date and tim
creation, and commentary

User Names list of login names and/or group IDs of users who are allowe
modify the file by adding or removing deltas

Flags indicators that control certain actions of SCCS commands
14-27

Compilation Systems Volume 1 (Tools)

S

s like
(a
k was

ssue
ermine
g lost

t and

the

een
ksum
om
le
.

f the
tem

age is
Descriptive Text usually a summary of the contents and purpose of the file

Body the text administered by SCCS, intermixed with internal SCC
control lines

Details on these file sections may be found insccsfile(4). The checksum line is
discussed in “Auditing” on page 14-28.

Because SCCS files are ASCII files they can be processed by non-SCCS command
ed , grep , andcat . This is convenient when an SCCS file must be modified manually
delta's time and date were recorded incorrectly, for example, because the system cloc
set incorrectly), or when a user wants simply to look at the file.

CAUTION

Extreme care should be exercised when modifying SCCS files
with non-SCCS commands.

Auditing 14

When a system or hardware malfunction destroys an SCCS file, any command will i
an error message. Commands also use the checksum stored in an SCCS file to det
whether the file has been corrupted because it was last accessed (possibly by havin
one or more blocks or by having been modified withed). No SCCS command will
process a corrupted SCCS file except theadmin -h or -z , as described below.

SCCS files should be audited for possible corruptions on a regular basis. The simples
fastest way to do an audit is to useadmin -h and specify all SCCS files:

admin -h s. file1 s. file2 . . .

or

admin -h directory1 directory2 . . .

If the new checksum of any file is not equal to the checksum in the first line of that file,
message

corrupted file (co6)

is produced for that file. The process continues until all specified files have b
examined. When examining directories (as in the second example above), the chec
process will not detect missing files. A simple way to learn whether files are missing fr
a directory is to execute thels command periodically, and compare the outputs. Any fi
whose name appeared in a previous output but not in the current one no longer exists

When a file has been corrupted, the way to restore it depends on the extent o
corruption. If damage is extensive, the best solution is to contact the local UNIX sys
operations group and request that the file be restored from a backup copy. If the dam
minor, repair through editing may be possible. After such a repair, theadmin command
must be executed:
14-28

Tracking Versions with SCCS

the
file
admin -z s. file

The purpose of this is to recompute the checksum and bring it into agreement with
contents of the file. After this command is executed, any corruption that existed in the
will no longer be detectable.
14-29

Compilation Systems Volume 1 (Tools)
14-30

9,

Index
Symbols

#pragma 4-23
.align directive 2-12
.ascii directive 2-16
.asciiz directive 2-16
.bss directive 2-17
.bss section 2-1, 2-11, 2-17
.byte directive 2-14
.comm directive 2-17
.comment section 2-18, 2-19
.data directive 2-13
.data section 2-1, 2-3, 2-11, 2-13
.def directive 2-16
.double directive 2-16
.extern directive 2-16
.file directive 2-18
.float directive 2-15
.globl directive 2-16
.int directive 2-15
.long directive 2-15
.org directive 2-12
.rela_* section 2-2
.set directive 2-16
.short directive 2-14
.space directive 2-12
.symtab section 2-2
.text directive 2-13
.text section 2-1, 2-5, 2-11, 2-13
.vbyte directive 2-14
.word directive 2-14
/etc/group file 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow file 16-15
/etc/vfstab 16-13
/tmp directory 2-2
/usr

lib 4-15, 4-16
/var/adm/utmp 16-16
/var/adm/utmpx 16-16
/var/adm/wtmp 16-16
/var/adm/wtmpx 16-16
/var/tmp directory 2-2

A

Access control list functions 16-51
acpp(1) 1-4
Ada 2-3
Ada compiler 1-4
Ada programming language 1-2
ada(1) 1-4
adb(1) 1-4
Address mode determination 20-16, 20-17
Address modes 20-17
admin(1) 14-2, 14-9, 14-19-14-21, 14-28-14-29
Algebraic simplification 20-16, 20-17
align directive 2-12, 2-17
Alphanumeric labels 2-4
Alternate math library 16-2
Analyze

detecting references to reserved registers 20-25
optimizing programs during post-linking stage

20-25
analyze(1) 1-4
ar(1) 1-4, 4-11
Archive 1-3
archive libraries 4-9

implementation 4-17
linking with 4-9, 4-15, 4-35

archive libraries, creating
creating 4-11

archive libraries, maintaining 13-11-13-12
Archiver 1-3, 1-4
Arithmetic functions 16-41
as

invocation 2-2
as(1) 1-4
Assembler 1-2, 1-4
Assembler directive 2-6
Assembly language 1-2, 2-1, 2-2, 2-4, 2-5, 2-6, 2-8, 2-

2-10, 2-11, 2-12, 2-15, 2-17, 2-19, 2-20, 2-21
Alphanumeric labels 2-4
Assembler directives 2-12, 2-17, 2-19
Assembler invocation 2-2
Assembly syntax 2-21
Character constants 2-9
Character set 2-4
Index-1

Compilation Systems Volume 1 (Tools)

,

Constants 2-8, 2-9
Directives mnemonics 2-19
Expression operators 2-10
Expression types 2-10, 2-11
Expression values 2-11
Expressions 2-9, 2-10, 2-11
Floating point constants 2-8
Identifiers 2-6, 2-8
identifiers 2-5
Integer constants 2-8
Location counter control 2-12
Null statements 2-4
Numeric (local) labels 2-5
Operator precedence 2-10
Position-independent code 2-21
Predefined symbols 2-5, 2-6
Source statements 2-4, 2-5
Symbol attributes 2-17
User-defined symbols 2-8
Using the assembler 2-2, 2-20

Assembly language, Comments
Comments 2-5

Auditing functions 16-51

B

Back end 1-3
Backward reference 2-5
base address 22-38
Bessel Functions 16-37
Bessel functions 16-37
Binary tree functions 16-32
Binary Tree Management 16-32
bit-fields 10-4
Branch displacement optimization 2-20
Branch optimizations 20-10, 20-11, 20-12
Browser

C 1-5
bss directive 2-17
byte directive 2-14

C

C code browser 1-5
C code checkter 1-5
C compiler 1-4
C library 16-1, 16-2

linking with 4-9, 4-11
C preprocessor 1-4
C programming language 1-2

CC(1)
creating shared objects 4-13

cc(1) 1-4
creating shared objects 4-12, 4-18, 4-21, 4-22
library linking option 4-9, 4-16, 4-35
library search option 4-16, 4-36
static linking options 4-10, 4-11, 4-14, 4-15, 4-35

cc(1), 4-13
CCG 1-3
cdc(1) 14-9, 14-24
cflow(1) 1-5
Character Manipulation 16-22, 16-25, 16-26
Character test functions 16-25
Character Translation Functions 16-26
Character translation functions 16-26
Code checker

C 1-5
Code motion 20-16, 20-17
COFF 1-5
comb(1) 14-9, 14-25-14-26
comm directive 2-17
Comment 2-5
Common code generator 1-3
Common Object File Format 1-5
Common subexpression elimination 20-16, 20-17
Compilation system 1-2
Compiler 1-2

Ada 1-4
C 1-4
Fortran 1-4

Compiler optimization classes 20-10, 20-11, 20-12,
20-14, 20-15, 20-16, 20-17, 20-18, 20-19,
20-20, 20-21, 20-22, 20-24, 20-26, 20-27,
20-28, 20-29

Branch optimizations 20-10, 20-11, 20-12
Expression optimizations 20-10, 20-16, 20-17
Inline expansion of subprograms 20-10, 20-26
Instruction scheduling 20-10, 20-24
Loop optimizations 20-10, 20-18, 20-19, 20-20,

20-21, 20-22
Optimization of constraints 20-10, 20-27, 20-28,

20-29
Register allocation 20-10, 20-24
Variable optimizations 20-10, 20-12, 20-14, 20-15

20-16
Compiler optimization levels 20-2
Compiler optimization options 20-2

O 20-2
Q 20-2, 20-3, 20-8

Compiler options, Verbose
Verbose 20-10

Compiler technology 20-1
Compiler-compiler 1-4
Compressor 1-5
Index-2

Index
const 4-20
Constant propagation 20-11
Control functions 16-46
Control level functions 16-51
Controlling compiler optimizations 20-3, 20-8
Copy propagation 20-12, 20-14, 20-15, 20-16

Expression 20-14
Copy propagation, Constant

Constant 20-14
Copy propagation, Variable

Variable 20-14
Copy variables 20-12, 20-15, 20-16
cpp(1) 1-4
cprs(1) 1-5
Cross reference 1-5
cscope(1) 1-5, 9-1-9-19
cscope(1), command line 9-2, 9-10-9-13
cscope(1), environment setup 9-2, 9-18-9-19
cscope(1), environment variable 9-13
cscope(1), usage examples 9-1-9-10, 9-14-9-18
ctrace(1) 1-4
cxref(1) 1-5

D

data directive 2-11, 2-13
data representation 22-2
data segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Data structures functions 16-31
Date and time functions 16-34
Dead code elimination 20-12, 20-13, 20-14
Debugger

object 1-4
symbolic 1-3, 1-4

Debugging optimized code 20-32, 20-33, 20-34, 20-35
Debugging with arbitrary record format 1-5, 1-6
def directive 2-8, 2-16
Delimeter

comment 2-5
delta(1) 14-3, 14-8, 14-17-14-19
DES Algorithm Access 16-41, 16-52
Devices functions 16-12
Directive 2-1

.align 2-12

.ascii 2-16

.asciiz 2-16

.bss 2-17

.byte 2-14

.comm 2-17

.data 2-13

.def 2-16

.double 2-16

.extern 2-16

.file 2-18

.float 2-15

.globl 2-16

.int 2-15

.long 2-15

.org 2-12

.set 2-16

.short 2-14

.space 2-12

.text 2-13

.vbyte 2-14

.word 2-14
align 2-12, 2-17
byte 2-14
comm 2-17
data 2-11, 2-13
def 2-8, 2-16
double 2-16
extern 2-16
file 2-8, 2-18
float 2-15
gloabl 2-16
half 2-14
ident 2-18, 2-19
local 2-17
previous 2-14
sbyte 2-14
section 2-13
set 2-16
shalf 2-15
short 2-14
size 2-18
string 2-16
text 2-13
type 2-18
uahalf 2-15
uaword 2-15
ubyte 2-14
uhalf 2-15
vbyte 2-14
version 2-4, 2-6, 2-7, 2-18
weak 2-17
zero 2-12

directive
bss 2-17
word 2-15

Directory
/tmp 2-2
/var/tmp 2-2

Directory functions 16-7
Directory Use Functions 16-7
Diretive
Index-3

Compilation Systems Volume 1 (Tools)
assembler 2-6
dis(1) 1-5
Disassembler 1-5
double directive 2-16
dump(1) 1-5
Dumper 1-5
Duplicating loop exit tests 20-18, 20-22
Duplicating partially-constant conditional branches

20-11, 20-12
DWARF 1-5, 1-6
DWARF Access Library 22-61
DWARF address ranges tables 22-16
DWARF debugging 22-16
DWARF line number information 22-16
DWARF name lookup tables 22-17
DWARF version 2 draft 5 specification 22-61
Dwarf_base_encoding() 22-62
dwarf_dealloc() 22-62
Dwarf_Error *error 22-62
Dwarf_Half** tagbuf 22-62
dwarf_isbasetype() 22-62
Dwarf_Signed dwarf_modtags 22-62
Dwarf_Type 22-62
Dwarf_Type typ 22-62
Dynamic link 1-6
dynamic linking 4-8

implementation 4-17, 4-18, 22-27, 22-45

E

EDITOR environment variable 9-2, 9-18
ELF 1-5, 1-6, 2-1
ELF (see also object files) 22-1
ELF file functions 16-17, 16-18
ELF library 16-3
Eliminating unreachable code 20-10, 20-11
Encryption functions 16-52
Environment variable

EDITOR 9-2, 9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5, 13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 2-2, 9-13
VIEWER 9-2
VPATH 9-2, 9-13

exceptions 22-61
Executable and linking format 1-5, 1-6, 2-1
executable files 22-1

Executable program 1-3
Expression optimizations 20-10, 20-16, 20-17
Expressions

Optimizing 20-16
Propagating 20-14
Simplifying 20-16

extensions 22-61
extern directive 2-16

F

f77(1) 1-4
FIle

/var/adm/utmpx 16-16
File

/etc/group 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow 16-15
/etc/vfstab 16-13
/var/adm/utmp 16-16
/var/adm/wtmp 16-16
/var/adm/wtmpx 16-16
common object format 1-5
object 1-5
relocatable object 1-3, 2-1, 2-2

File Access Functions 16-5, 16-11, 16-12
File and I/O status functions 16-6
file directive 2-8, 2-18
File functions 16-7
File Status Functions 16-6
File systems tables file functions 16-13
File tree functions 16-32
float directive 2-15
Floating point 1-7
Floating-point functions 16-41
Floating-point operations 17-1, 17-12

compares 17-12
control bits 17-7
data representation 17-1, 17-6
data types and formats 17-2
denormalized numbers 17-3
double-extended 17-11
double-precision 17-2
exception handling 17-7, 17-9
exceptions 17-7
floating point to integer conversion 17-11
IEEE requirements 17-11
infinities 17-5
infinities I/O 17-12
language mappings 17-3
maximum and minimum values 17-4
Index-4

Index
NaNs 17-5
NaNs I/O 17-12
normalized numbers 17-3
rounding 17-6
single-precision 17-2, 17-9, 17-11
single-precision functions 17-11
special-case values 17-4
square root 17-12
status bits 17-7
unordered condition 17-12

Floating-point register name 2-6
Flow functions 16-44
Flow grapher 1-5
Folding conditional tests 20-10, 20-11
Format

DWARF 1-5, 1-6
ELF 1-5, 1-6, 2-1

Fortran compiler 1-4
Fortran programming language 1-2
Forward reference 2-5
Frame

stack 1-6
Function

message queue 16-32
function prototypes, lint(1) 10-2
function prototypes, lint(1) checks for 10-7
Functions

access control lists 16-51
arithmetic 16-41
auditing 16-51
bessel 16-37
binary tree 16-32
character test 16-25
character translation 16-26
control 16-46
control levels 16-51
data structures 16-31
devices 16-12
directory 16-7
ELF files 16-17, 16-18
encryption 16-52
file 16-7
file and I/O status 16-6
file systems tables file 16-13
file tree 16-32
floating-point 16-41
flow 16-44
general date and time 16-34
general input 16-8
general output 16-9
group file 16-15
hash table 16-31
hyperbolic 16-38
I/O control 16-4

internationalization 16-35
interval timer 16-35
loadable kernel modules 16-53
locales 16-36
LWP 16-49
mathematic 16-38
mathematic and numeric 16-36
memory 16-28
memory allocation 16-29
memory control 16-30
memory manipulation 16-28
message catalog 16-36
mount table file 16-14
multibyte and wide characters 16-27
numeric conversion 16-39
other security 16-52
parameter 16-45
password file 16-14
pipes and FIFOs 16-12
POSIX timer 16-35
processes 16-45
profile 16-44
program 16-44
queues 16-33
random number 16-42
regular expression and pattern matching 16-27
security 16-50
semaphores 16-33
shadow password file 16-15
shared memory 16-30
shared object 16-22
signal 16-47
special files 16-12
STREAMS 16-11
string and characters 16-22
string manipulation 16-23
system environment 16-53
tables 16-31
temporary file 16-22
terminal I/O 16-10
trees 16-31
trigonometric 16-37
user and accounting files 16-16
user-level interrupt 16-49
wide character test 16-26
wide string manipulation 16-24

G

gdb(1) 1-4
General input functions 16-8
General output functions 16-9
Index-5

Compilation Systems Volume 1 (Tools)
General register name 2-6
General-purpose library 16-3
get(1) 14-2-14-4, 14-8, 14-9-14-17
global directive 2-16
global symbols 4-22
Grapher 1-5
Group file functions 16-15

H

half directive 2-14
Hash table functions 16-31
Hash Table Management 16-31
header files, lint(1)ing 10-6-10-7
help(1) 14-5, 14-9, 14-23
High-level language 1-2
Hyperbolic Functions 16-38
Hyperbolic functions 16-38

I

I/O control functions 16-4
ident directive 2-18, 2-19
Identifier

ordering 1-5
predefined 2-6
user-defined 2-6

Identifiers 2-5
ifiles 4-23
Induction variable 20-20
Inline expansion 20-11, 20-26
Inline expansion of subprograms 20-10, 20-26
Input Functions 16-8
Inserting zero trip tests 20-11, 20-12
Instruction mnemonic 2-1
Instruction mnemonics 2-6
Instruction scheduling 20-10, 20-24
Instruction set

PowerPC 3-2
Internal table

Table
internal 2-1

Internationalization functions 16-35
Interpreter 1-2

program 1-6
Interval timer functions 16-35
Invocation

as 2-2

L

Label
numeric 2-5

Labels
alphanumeric 2-4

Language
high-level 1-2
low-level 1-2
machine 2-1
processor 1-2
programming 1-1

ld(1) 1-4
LD_BIND_NOW 4-16, 22-47
LD_BIND_NOW environment variable 4-16, 22-47,

22-55
LD_LIBRARY_PATH 4-14, 4-16
LD_LIBRARY_PATH environment variable 4-7, 4-14,

4-36, 22-52
LD_RUN_PATH 4-15, 4-16
LD_RUN_PATH environment variable 4-7, 4-15, 4-36
ldd(1) 4-16
lex(1) 1-4, 6-1-6-19
lex(1), command line 6-1-6-2
lex(1), definitions 6-12-6-14, 6-17
lex(1), disambiguating rules 6-9
lex(1), how to write source 6-3-6-15
lex(1), library 6-2, 6-17
lex(1), operators 6-4-6-6
lex(1), quick reference 6-18-6-19
lex(1), routines 6-7, 6-10-6-12
lex(1), source format 6-3, 6-18-6-19
lex(1), start conditions 6-13-6-14
lex(1), use with yacc(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-

7-8, 7-22-7-23
lex(1), user routines 6-10-6-11, 6-14-6-15
lex(1), yylex() 6-2, 6-15
Lexical analyzer 1-4
lexical analyzer (see lex(1)) 6-2
libraries

archive 4-9
creating 4-11, 4-13, 4-18, 4-22
libc 4-9, 4-11
libdl 4-10, 4-11, 4-17
libelf 22-1
libm 4-11
linking with 4-35
naming conventions 4-35
shared object 4-8, 22-27, 22-45
standard place 4-11

libraries, lint(1) 10-7-10-8
libraries, maintaining 13-11-13-12
Library 1-3
Index-6

Index

-

alternate math 16-2
C 16-1, 16-2
DWARF Access Library 22-61
ELF 16-3
general-purpose 16-3
math 16-2
shared 1-6
system 16-1

Link
dynamic 1-6
static 1-6

link editing 22-23, 22-45
library linking options 4-9, 4-16, 4-35
multiply defined symbols 4-22, 4-23
quick reference 4-35
undefined symbols 4-8

link editing, dynamic
dynamic 4-8, 22-27, 22-45

link editing, static
static 4-8

Link editor 1-3, 1-4
Linking 4-1
lint(1) 1-5, 10-1-10-38
lint(1), command line 10-6-10-8
lint(1), consistency checks 10-2-10-3
lint(1), filters 10-8
lint(1), libraries 10-7-10-8
lint(1), message formats 10-2
lint(1), messages 10-12-10-38
lint(1), options and directives 10-1-10-2, 10-8-10-12
lint(1), portability checks 10-3-10-5
lint(1), suspicious constructs 10-5-10-6
Lister

name 1-5
Loadable kernel module functions 16-53
local directive 2-17
Locale functions 16-36
Locale Information 16-36
Location counter 2-5
Loop optimizations 20-10, 20-18, 20-19, 20-20, 20-21,

20-22
Loop unrolling 20-18, 20-22
Loops

Forward branch into 20-19
Optimizing 20-17, 20-18, 20-19, 20-20, 20-21,

20-22
Test replacement 20-21
Unrolling 20-22
With multiple entries 20-19, 20-20

lorder(1) 1-5
Low-level language 1-2
LWP functions 16-49

M

m4(1) 1-5, 2-2, 2-3, 5-1-5-10
m4(1), argument handling 5-5-5-7
m4(1), arithmetic capabilities 5-7
m4(1), command line 5-1-5-2
m4(1), conditional preprocessing 5-8-5-9
m4(1), defining macros 5-2-5-5
m4(1), file manipulation 5-7-5-8
m4(1), quoting 5-3-5-5
m4(1), string handling 5-9-5-10
Machine language 2-1
Macro preprocessor 1-5
make(1) 13-1-13-24
make(1), command line 13-16-13-18
make(1), environment variables 13-18-13-19
make(1), how to write source 13-2-13-8
make(1), macros 13-3-13-8, 13-10, 13-12
make(1), maintaining libraries 13-11-13-12
make(1), makefile convention 13-1
make(1), sample output 13-4-13-5
make(1), source format 13-6
make(1), suffix transformation rules 13-9-13-11, 13-19

13-24
make(1), usage example 13-4-13-5
make(1), use with SCCS 13-13-13-14
MAKEFLAGS environment variable 13-18
Manipulator 1-5
mapfiles 4-35

defaults 4-30
error messages 4-34
example 4-29
map structure 4-31
mapping directives 4-27
segment declarations 4-25
size-symbol declarations 4-28
structure 4-24
syntax 4-24
usage 4-24

Math library 16-2
math library, linking with

linking with 4-11
Mathematic and numeric functions 16-36
Mathematic functions 16-38
mcs(1) 1-5
Memory Allocation 16-29, 16-30
Memory allocation functions 16-29
Memory control functions 16-30
Memory functions 16-28
Memory Manipulation Functions 16-28
Memory manipulation functions 16-28
Message catalog functions 16-36
Message queue functions 16-32
Index-7

Compilation Systems Volume 1 (Tools)

9

Messages
About copy variables 20-15
About forward branch into loop 20-19
About loop exits 20-22
About loop unrolling 20-23, 20-24
About optimizing variables 20-13
About uninitialized variables 20-35
About zero trip tests 20-11
at unknown line 20-19

Miscellaneous Functions 16-10, 16-12, 16-27, 16-38,
16-44, 16-45, 16-51, 16-52, 16-53

Mnemonic
instruction 2-1, 2-6

Mount table file functions 16-14
Multibyte and wide character functions 16-27
multiply defined symbols 4-22, 4-23

N

Name lister 1-5
NightTrace(1) 1-4
NightView(1) 1-4
nm(1) 1-5
Null statement 2-4
Numeric conversion functions 16-39
Numeric Conversions 16-39

O

O option 20-2
Object

shared 1-6
Object debugger 1-4
Object file 1-5

relocatable 1-3, 2-1, 2-2
Object File Library 16-2, 16-17, 16-18, 16-35, 16-36
Object files

80-bit precision 22-21, 22-22
FP rounding modes 22-19

object files 22-1
data representation 22-2
function addresses 22-57
global offset table 22-54
procedure linkage table 22-58
program header 22-35
program interpreter 22-45
program linking 22-3
program loading 22-42
section alignment 22-12
section attributes 22-14

section header 22-9
segment contents 22-40
segment permissions 22-39
tools for manipulating 22-1

object files, base address
base address 22-38

object files, ELF header
ELF header 22-3

Object files, FP exceptions
FP exceptions 22-19

object files, hash table
hash table 22-59

object files, libelf
libelf 22-1

object files, note section
note section 22-41

object files, relocation
relocation 22-27, 22-54

object files, section names
section names 22-18

object files, section types
section types 22-12

object files, segment types
segment types 22-36

Object files, string table
string table 22-22

object files, symbol table
symbol table 22-23

Object files, zero page
zero page 22-21, 22-22

Optimization
during post-linking stage 20-25
longjmp routine 20-25
setjmp routine 20-25

Optimization of constraints 20-10, 20-27, 20-28, 20-2
Optimization programming techniques 20-30, 20-31,

20-32
Coding tips 20-30, 20-31
Performance analysis techniques 20-30, 20-32

Optimizations, Safe
Safe 20-2

Optimizations, Unsafe
Unsafe 20-2

Optimize 1-2
Optimizer 1-4
Options

O 20-2
Q 20-13, 20-15, 20-18, 20-20, 20-22

Ordering identifier 1-5
Other security functions 16-52
Output Functions 16-9
Index-8

Index
P

paging 4-18, 4-20, 4-21, 22-42
PARALLEL environment variable 13-5, 13-17
Parameter functions 16-45
parser (see yacc(1)) 7-1
Password File Access 16-13, 16-14, 16-15, 16-16
Password file functions 16-14
pctolf(1) 1-5
Performance analysis 11-1
Performance analyzer 1-4
Pipe and FIFO functions 16-12
portability, lint(1) checks for 10-3-10-5
position-independent code 4-18, 22-45, 22-54
POSIX timer functions 16-35
Post-Linker Optimization 20-25
PowerPC

condition codes 3-25
implementation-specific instructions 3-31
operand abbreviations 3-26
optional instructions 3-31
special-purpose registers 3-28
time base registers 3-31
trap operand 3-26

PowerPC instructions 3-1
Precprocessor

macro 1-5
Predefined identifer 2-6
Preprocessor

C 1-4
previous directive 2-14
Process functions 16-45
Processor

language 1-2
prof(1) 1-4
Profile functions 16-44
Profiler 1-4
Profiling 1-3
Program

executable 1-3
Program counter 1-5, 2-5
Program functions 16-44
Program interpreter 1-6
Program Monitoring 16-44
Program optimization 20-1, 20-2
Programming language 1-1

Ada 1-2
assembly 1-2
C 1-2

Proramming language
Fortran 1-2

prs(1) 14-9, 14-21-14-22
Pseudo-op 2-1

Pseudo-random number functions 16-42
Pseudo-random Number Generation 16-42

Q

Q option 20-3, 20-8, 20-18
benchmark 20-8
block_limit= 20-8
fast_math 20-8
growth_limit= 20-11, 20-20, 20-22
loops= 20-15
objects= 20-13
opt_class= 20-2
optimize_for_space 20-8
variable_limit= 20-8

-Qalign_double
see Table 2-1 20-3

-Qavoid_overflow
see Table 2-1 20-3

-Qinline_divide
see Table 2-1 20-3

-Qinvert_divides
see Table 2-1 20-3

-Qnotic
see Table 2-1 20-3

-Qschedule_tn_window
see Table 2-1 20-3

-Qskew_large_arrays
see Table 2-1 20-3

-Qtic
see Table 2-1 20-3

query operations 22-61
Queue functions 16-33
Queue Management 16-32, 16-33
-Qunaligned_args

see Table 2-1 20-3

R

Random number functions 16-42
Reference

backward 2-5
forward 2-5

Region constant 20-20
Register allocation 20-10, 20-24
Register name

floating-point 2-6
general 2-6
special-purpose 2-6

Regular expression and pattern matching functions
Index-9

Compilation Systems Volume 1 (Tools)
16-27
regular expressions 6-4-6-6
relocatable files (see also object files) 4-9, 22-1
Relocatable object file 1-3, 2-1, 2-2
relocation 22-27
report(1) 1-4
rmdel(1) 14-9, 14-23-14-24

S

sact(1) 14-9, 14-23
sbyte directive 2-14
SCCS 14-1-14-29
SCCS, auditing files 14-28-14-29
SCCS, changing comments 14-24
SCCS, changing file parameters 14-19, 14-20-14-21
SCCS, commands 14-7-14-26
SCCS, creating files 14-2, 14-19-14-21
SCCS, file format 14-27-14-28
SCCS, file protection 14-26-14-27
SCCS, ID keywords 14-10
SCCS, marking differences 14-19, 14-25
SCCS, printing files 14-21-14-23
SCCS, removing versions 14-23-14-24
SCCS, retrieving files 14-2-14-3, 14-9-14-17
SCCS, updating files 14-3, 14-17-14-19
SCCS, usage example 14-2-14-4
SCCS, use with make(1) 13-13-13-14
SCCS, version numbering 14-5-14-7
sccsdiff(1) 14-9, 14-25
Section

.bss 2-1, 2-11, 2-17

.comment 2-18, 2-19

.data 2-1, 2-3, 2-11, 2-13

.rela_* 2-2

.symtab 2-2

.text 2-1, 2-5, 2-11, 2-13
section directive 2-13
Security functions 16-50
Selecting compiler optimization levels 20-2
Semaphore functions 16-33
Separate lifetimes 20-12, 20-15
set directive 2-16
Shadow password file functions 16-15
shalf directive 2-15
Shared library 1-6
Shared memory functions 16-30
Shared object 1-6
Shared object functions 16-22
shared objects 4-8

guidelines for building 4-18, 4-22
implementation 4-17, 4-18, 22-27, 22-45

linking with 4-9, 4-16, 4-35
shared objects, creating

creating 4-12, 4-13, 4-18
short directive 2-14
Signal functions 16-47
Signal Handling Functions 16-47
size directive 2-18
size(1) 1-5
Sizer 1-5
Sorter

topological 1-5
Special files functions 16-12
Special-purpose register name 2-6
Stack 1-6
Stack frame 1-6
Statement

null 2-4
Static link 1-6
static linking 4-8

implementation 4-17
STATIC_LINK environment variable 4-8
Straightening blocks 20-10, 20-11
STREAMS functions 16-11
Strength reduction 20-13, 20-18, 20-20, 20-21
String and characters functions 16-22
string directive 2-16
String Manipulation Functions 16-22
String manipulation functions 16-23
strip(1) 1-5
Stripper 1-5
Subprograms

inline expansion 20-26
Symbol table 1-5, 2-1

Table
symbol 1-6

Symbolic debugger 1-3, 1-4
Symbols 2-2, 2-6
System environment functions 16-53
System libraries 16-1

T

Table
symbol 1-5, 2-1

Table functions 16-31
Table Management 16-31
tdesc 1-6
tdesc (text description) 23-1
Temporary file functions 16-22
TERM environment variable 9-2
Terminal I/O functions 16-10
Test replacement 20-18, 20-21
Index-10

Index
Text description (tdesc) 23-1
Text description information 1-6
text directive 2-13
text segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Time Functions 16-33
TMPDIR environment variable 2-2, 9-13
Topological sorter 1-5
Translator 1-5
Tree functions 16-31
Trigonometric Functions 16-37
Trigonometric functions 16-37
Trigonometric identities 20-17
tsort(1) 1-5
type directive 2-18
type information 22-61

U

uahalf directive 2-15
uaword directive 2-15
ubyte directive 2-14
uhalf directive 2-15
undefined symbols 4-8
unget(1) 14-8, 14-13
Unreachable code 20-11
Unsafe optimizations 20-21
User and accounting file functions 16-16
User-defined identifier 2-6
User-level interrupt functions 16-49

V

val(1) 14-9, 14-26
Variable

EDITOR 9-2, 9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5, 13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 9-13
VIEWER 9-2
VPATH 9-2, 9-13

Variable length displacements 2-20
Variable optimizations 20-10, 20-12, 20-14, 20-15,

20-16
Variables

Copy 20-15, 20-16
Number to optimize 20-13
Optimizing 20-12
Separate lifetimes 20-15

vbyte directive 2-14
version directive 2-4, 2-6, 2-7, 2-18
Version number

assembler 2-3
VIEWER environment variable 9-2
virtual addressing 22-42
VPATH environment variable 9-2, 9-13

W

weak directive 2-17
weak symbols 4-22, 4-23
what(1) 14-9, 14-24-14-25
Wide character test functions 16-26
Wide string manipulation functions 16-24
word directive 2-15

Y

yacc(1) 1-4, 7-1-7-39
yacc(1), definitions 7-7-7-8
yacc(1), disambiguating rules 7-12-7-20
yacc(1), error handling 7-20-7-22
yacc(1), how to write source 7-3-7-7
yacc(1), library 6-17, 7-22-7-23
yacc(1), parser actions 7-9-7-12
yacc(1), routines 7-26
yacc(1), source format 7-3
yacc(1), symbols 7-3-7-7
yacc(1), typing 7-27-7-28
yacc(1), usage examples 7-29-7-39
yacc(1), use with lex(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-

7-8, 7-22-7-23
yacc(1), yylex() 7-22
yacc(1), yyparse() 7-22-7-23

Z

zero directive 2-12
Zero-trip test 20-11
Index-11

Compilation Systems Volume 1 (Tools)
Index-12

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
O

S

Compilaton Systems
Volume 1 (Tools)

0890459

Programmer

	Compilation Systems Volume 1 (Tools)
	Preface
	Contents
	Part 1 - Software Development Environments
	Introduction to SDEs
	Introduction
	Programming Languages
	Compilation Systems Concepts
	Concurrent Computer Corporation Compilation Systems
	Object Files
	Stack Frames
	Static and Dynamic Linking
	Floating-Point Arithmetic

	Assembler and Assembly Language
	Introduction
	Assembler Operation
	Using the Assembler
	Assembler Invocation

	Character Set
	Source Statements
	Null Statements
	Alphanumeric Labels
	Numeric (Local) Labels
	Comments

	Identifiers
	Predefined Symbols
	User-Defined Symbols

	Constants
	Integer Constants
	Floating-Point Constants
	Character Constants

	Expressions
	Expression Operators
	Operator Precedence
	Expression Types
	Expression Values

	Assembler Directives
	Location Counter Control
	Section Switching
	Data Initialization
	Symbol Definitions
	ELF Symbol Attributes
	Miscellaneous Operations
	Summary of Directives Mnemonics
	Example

	Position-Independent Code
	Assembly Syntax
	Example

	PowerPC Instruction Set Summary
	PowerPC Instruction Set
	Condition Codes
	Trap Operand
	Operand Abbreviations
	Special-Purpose Registers
	Time Base Registers
	Implementation-Specific and Optional Instructions

	Link Editor and Linking
	Introduction
	Using the Link Editor
	Basics of Linking
	Default Arrangement
	Linking with Standard Libraries
	Creating and Linking with Archive and Shared Object Libraries
	Specifying Directories to Be Searched by the Link Editor
	Specifying Directories to Be Searched by the Dynamic Linker
	Checking for Run-Time Compatibility
	Dynamic Linking Programming Interface
	Implementation
	Guidelines for Building Shared Objects
	Multiply-Defined Symbols
	Mapfiles
	Using the Mapfile Option
	Mapfile Structure and Syntax
	Segment Declarations
	Mapping Directives
	Extended Mapping Directives
	Size-Symbol Declarations
	Mapping Example
	Mapfile Option Defaults
	Internal Map Structure
	Error Messages

	Quick-Reference Guide

	m4 Macro Processor
	Introduction
	m4 Macros
	Defining Macros
	Quoting
	Arguments
	Arithmetic Built-Ins
	File Inclusion
	Diversions
	System Command
	Conditionals
	String Manipulation
	Printing

	Lexical Analysis with lex
	Introduction
	Generating a Lexical Analyzer Program
	Writing lex Source
	The Fundamentals of lex Rules
	Regular Expressions
	Operators
	Actions

	Advanced lex Usage
	Some Special Features
	lex Routines
	Definitions
	Start Conditions
	User Routines

	Using lex with yacc
	Miscellaneous
	Summary of Source Format

	Parsing with yacc
	Introduction
	Basic Specifications
	Actions
	Lexical Analysis

	Parser Operation
	Ambiguity and Conflicts
	Precedence
	Error Handling
	The yacc Environment
	Hints for Preparing Specifications
	Input Style
	Left Recursion
	Lexical Tie-Ins
	Reserved Words

	Advanced Topics
	Simulating error and accept in Actions
	Accessing Values in Enclosing Rules
	Support for Arbitrary Value Types
	yacc Input Syntax

	Examples
	1. A Simple Example
	2. An Advanced Example

	Part 2 - Analysis
	Introduction to Analysis
	Introduction

	Browsing Through Your Code with cscope
	Introduction
	How cscope Works

	How to Use cscope
	Step 1: Set Up the Environment
	Step 2: Invoke cscope
	Step 3: Locate the Code
	Step 4: Edit the Code
	Command Line Options
	Using Viewpaths
	Stacking cscope and Editor Calls
	Examples
	Changing a Constant to a Preprocessor Symbol
	Adding an Argument to a Function
	Changing the Value of a Variable

	Technical Tips
	Unknown Terminal Type
	Command Line Syntax for Editors

	Analyzing Your Code with lint
	Introduction to lint
	Options and Directives
	lint and the Compiler
	Message Formats

	What lint Does
	Consistency Checks
	Portability Checks
	Suspicious Constructs

	Usage
	lint Libraries
	lint Filters
	Options and Directives Listed

	lint-specific Messages
	argument unused in function
	array subscript cannot be > value: value
	array subscript cannot be negative: value
	assignment causes implicit narrowing conversion
	assignment of negative constant to unsigned type
	assignment operator ?=? found where ?=�=? was expected
	bitwise operation on signed value nonportable
	constant in conditional context
	constant operand to op: ?!?
	constant truncated by assignment
	conversion of pointer loses bits
	conversion to larger integral type may sign-extend incorrectly
	declaration unused in block
	declared global, could be static
	equality operator ?=�=? found where ?=? was expected
	evaluation order undefined: name
	fallthrough on case statement
	function argument (number) declared inconsistently
	function argument (number) used inconsistently
	function argument type inconsistent with format
	function called with variable number of arguments
	function declared with variable number of arguments
	function falls off bottom without returning value
	function must return int: main()
	function returns pointer to [automatic/parameter]
	function returns value that is always ignored
	function returns value that is sometimes ignored
	function value is used, but none returned
	logical expression always false: op ?&&?
	logical expression always true: op ?||?
	malformed format string
	may be indistinguishable due to truncation or case
	name declared but never used or defined
	name defined but never used
	name multiply defined
	name used but not defined
	nonportable bit-field type
	nonportable character constant
	only 0 or 2 parameters allowed: main()
	pointer cast may result in improper alignment
	pointer casts may be troublesome
	precedence confusion possible; parenthesize
	precision lost in bit-field assignment
	set but not used in function
	statement has no consequent: else
	statement has no consequent: if
	statement has null effect
	statement not reached
	static unused
	suspicious comparison of char with value: op ?op?
	suspicious comparison of unsigned with value: op ?op?
	too few arguments for format
	too many arguments for format
	value type declared inconsistently
	value type used inconsistently
	variable may be used before set: name
	variable unused in function

	Performance Analysis
	Introduction
	analyze
	Information
	Statistics
	Profiling
	Usage
	Assumptions and Constraints

	report
	Usage
	Assumptions and Constraints

	Part 3 - Project Control
	Introduction to Project Control
	Introduction

	Managing File Interactions with make
	Introduction
	Basic Features
	Parallel make

	Description Files and Substitutions
	Comments
	Continuation Lines
	Macro Definitions
	General Form
	Dependency Information
	Executable Commands
	Extensions of $*, $@, and $<
	Output Translations
	Recursive Makefiles
	Suffixes and Transformation Rules
	Implicit Rules
	Archive Libraries
	Source Code Control System File Names
	The Null Suffix
	Included Files
	SCCS Makefiles
	Dynamic Dependency Parameters
	Viewpaths (VPATH)

	Command Usage
	The make Command
	Environment Variables

	Suggestions and Warnings
	Internal Rules

	Tracking Versions with SCCS
	Introduction
	Basic Usage
	Terminology
	Creating an SCCS File with admin
	Retrieving a File with get
	Recording Changes with delta
	More on get
	The help Command

	Delta Numbering
	SCCS Command Conventions
	x.files and z.files
	Error Messages

	SCCS Commands
	The get Command
	ID Keywords
	Retrieval of Different Versions
	To Update Source
	Undoing a get -e
	Additional get Options
	Concurrent Edits of Different SID
	Concurrent Edits of Same SID
	Key letters that Affect Output

	The delta Command
	The admin Command
	Creation of SCCS Files
	Inserting Commentary for the Initial Delta
	Initialization and Modification of SCCS File Parameters

	The prs Command
	The sact Command
	The help Command
	The rmdel Command
	The cdc Command
	The what Command
	The sccsdiff Command
	The comb Command
	The val Command

	SCCS Files
	Protection
	Formatting
	Auditing

	Index

