
Compilation Systems Volume 2 (Concepts)

0890460-050

April 1999

Copyright 1999 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope“Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.

Acknowledgment: This manual contains material contributed by 88open Consortium, Ltd. and UNIX International

In this document, the term 601 is used as an abbreviation for the phrase “PowerPC 601 RISC microprocessor.” The
terms 603, 604, and 620 are used similarly.

Escala is a trademark of Bull Information Systems.
IBM, RS/6000, PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, and PowerPC 620 are trademarks of International Business Machines Cor-
poration.
PowerUX is a trademark of Concurrent Computer Corporation.
UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the manufactur-
ers or marketers of the products with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- October 1994 000 PowerUX r1.0

Previous Release -- July 1996 034 PowerUX 3.1

Current Release -- April 1999 050 PowerMAX OS 4.3

are

ms

isters
Preface

Scope of Manuals

The Compilation Systems Manual set is composed of two manuals:Compilation Systems
Volume 1 (Tools)and Compilation Systems Volume 2 (Concepts). The Compilation
Systems Volume 1 (Tools)manual describes the features and use of several softw
development environment tools, analysis tools, and project-control tools. TheCompilation
Systems Volume 2 (Concepts)manual describes the concepts behind compilation syste
including environments, performance analysis, and formats.

Information in this manual applies to the PowerPCTM platforms described in the
Concurrent Computer Corporation Product Catalog.

Structure of Manuals

A brief description of the parts, chapters, and appendixes in theCompilation Systems
Volume 1 (Tools)manual follows:

Part 1 discusses software development environment tools.

Chapter 1 introduces compilation system tools and concepts.

Chapter 2 describes the assembly language, and it discusses the assembler,as .

Chapter 3 summarizes the instructions, condition codes, operands, and reg
associated with the PowerPC.

Chapter 4 covers the link editor,ld . It also discusses dynamic linking, plus the
creation and use of shared objects.

Chapter 5 describes the macro processor,m4.

Chapter 6 presents the lexical analyzer,lex .

Chapter 7 presents the compiler-compiler,yacc .

Part 2 describes analysis tools.

Chapter 8 provides an introduction to the other chapters in this part.

Chapter 9 presents the C code browser,cscope .

Chapter 10 discusses the C code checker,lint .

Chapter 11 discusses performance analysis and use of theanalyze and report
utilities.

Part 3 presents project-control tools.
iii

Compilation Systems Volume 2 (Concepts)

ard-

hard-

he

y a

ing
X

cify
y

ns
Chapter 12 provides an introduction to the other chapters in this part.

Chapter 13 presents themake utility.

Chapter 14 covers thesccs source code control system.

A brief description of the parts, chapters, and appendixes in theCompilation Systems
Volume 2 (Concepts)manual follows:

Part 4 discusses environments.

Chapter 15 provides an introduction to the other chapters in this part.

Chapter 16 provides an overview of commonly-used system libraries.

Chapter 17 discusses the IEEE floating-point operations used on supporting h
ware platforms.

Chapter 18 describes interfaces between C and Fortran routines on supporting
ware platforms.

Part 5 describes performance analysis concepts.

Chapter 19 provides an introduction to the other chapters in this part.

Chapter 20 provides a tutorial on program optimization, focusing on t
optimizations performed by the Concurrent compilers.

Part 6 covers formats.

Chapter 21 provides an introduction to the other chapters in this part.

Chapter 22 describes the executable and linking format, ELF.

Chapter 23 discusses text description information, tdesc.

Chapter 24 describes the debugging information format, DWARF. It is primaril
reprint of the DWARF specification from UNIX International.

Chapter 25 covers the libdwarf library that provides access to DWARF debugg
and line number information. It is primarily a reprint of a document from UNI
International.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms and comments in code ma
also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, optio
and man page references also appear inlist bold type.
iv

Preface

and

ons,

are
ify

ipe
ype

ing

ive’s
list Operating system and program output such as prompts
messages and listings of files and programs appears inlist type.
Keywords also appear inlist type.

emphasis Words or phrases that require extra emphasis use emphasistype.

window Keyboard sequences and window features such as push butt
radio buttons, menu items, labels, and titles appear inwindow
type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{} Braces enclose mutually exclusive choices separated by the p
(|) character, where one choice must be selected. You do not t
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

The window images in this manual come from a Motif environment. If you are us
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual

0890288 HAPSE Reference Manual

0890395 NightView User’s Guide

0890398 NightTrace Manual

0891019 Concurrent C Reference Manual

The vendor publications referenced in this manual may be viewed on the respect
companies WWW site.
v

Compilation Systems Volume 2 (Concepts)
vi

Contents

-1

1-2
1-3
-5
-6

-6
-7

-1
-1
-2
-2
-4

2-4
-4
-4
-5
-5
-5
-6
-8
-8
-8
-8

2-9
-9

-10
-10
11
11
12
12
13
4
6
7
18
19
Contents

Part 1 Software Development Environments

Chapter 1 Introduction to SDEs

Introduction . 1
Programming Languages. 1-1
Compilation Systems Concepts .
Concurrent Computer Corporation Compilation Systems. .
Object Files . 1
Stack Frames . 1
Static and Dynamic Linking . 1
Floating-Point Arithmetic . 1

Chapter 2 Assembler and Assembly Language

Introduction . 2
Assembler Operation . 2
Using the Assembler . 2

Assembler Invocation. 2
Character Set . 2
Source Statements .

Null Statements . 2
Alphanumeric Labels . 2
Numeric (Local) Labels . 2
Comments. 2

Identifiers. 2
Predefined Symbols . 2
User-Defined Symbols . 2

Constants . 2
Integer Constants . 2
Floating-Point Constants . 2
Character Constants .

Expressions . 2
Expression Operators . 2
Operator Precedence. 2
Expression Types . 2-
Expression Values. 2-

Assembler Directives. 2-
Location Counter Control. 2-
Section Switching. 2-
Data Initialization . 2-1
Symbol Definitions. 2-1
ELF Symbol Attributes. 2-1
Miscellaneous Operations . 2-
Summary of Directives Mnemonics . 2-
vii

Compilation Systems Volume 2 (Concepts)

0
-21
21
2

-2
25
26
26
-28

-31
-31

-1
-1
-8
-9
0
11
13
-15
6
7

17
18
2
3
4

24
25
7
8

28
9
0
1

34
35

-1
-2
-2
-3
-5
7
-7
-8
Example . 2-2
Position-Independent Code . 2

Assembly Syntax . 2-
Example . 2-2

Chapter 3 PowerPC Instruction Set Summary

PowerPC Instruction Set . 3
Condition Codes. 3-
Trap Operand . 3-
Operand Abbreviations . 3-
Special-Purpose Registers . 3
Time Base Registers. 3
Implementation-Specific and Optional Instructions . 3

Chapter 4 Link Editor and Linking

Introduction . 4
Using the Link Editor. 4
Basics of Linking . 4

Default Arrangement . 4
Linking with Standard Libraries . 4-1
Creating and Linking with Archive and Shared Object Libraries 4-
Specifying Directories to Be Searched by the Link Editor. 4-
Specifying Directories to Be Searched by the Dynamic Linker 4
Checking for Run-Time Compatibility . 4-1
Dynamic Linking Programming Interface . 4-1
Implementation . 4-
Guidelines for Building Shared Objects . 4-
Multiply-Defined Symbols . 4-2
Mapfiles . 4-2

Using the Mapfile Option . 4-2
Mapfile Structure and Syntax . 4-

Segment Declarations. 4-
Mapping Directives . 4-2
Extended Mapping Directives . 4-2
Size-Symbol Declarations . 4-
Mapping Example . 4-2
Mapfile Option Defaults. 4-3
Internal Map Structure . 4-3
Error Messages . 4-

Quick-Reference Guide . 4-

Chapter 5 m4 Macro Processor

Introduction . 5
m4 Macros . 5

Defining Macros . 5
Quoting . 5
Arguments. 5
Arithmetic Built-Ins . 5-
File Inclusion . 5
Diversions . 5
viii

Contents

-8
-8
-9
0

-1
6-1
-3

-4
-4
6
-7

6-8
0

2
3

14
5

17
-18

-1
-3

-5
-7
7-9
2

-16
0

22
23
4
4
5
26
26
26
-26
7

9
30
0

33
System Command. 5
Conditionals . 5
String Manipulation . 5
Printing . 5-1

Chapter 6 Lexical Analysis with lex

Introduction . 6
Generating a Lexical Analyzer Program .
Writing lex Source. 6

The Fundamentals of lex Rules .. 6-3
Regular Expressions . 6
Operators . 6
Actions . 6-

Advanced lex Usage . 6
Some Special Features .
lex Routines. 6-1
Definitions. 6-1
Start Conditions. 6-1
User Routines . 6-

Using lex with yacc . 6-1
Miscellaneous . 6-
Summary of Source Format. 6

Chapter 7 Parsing with yacc

Introduction . 7
Basic Specifications. 7

Actions . 7
Lexical Analysis . 7

Parser Operation .
Ambiguity and Conflicts . 7-1
Precedence . 7
Error Handling . 7-2
The yacc Environment. 7-
Hints for Preparing Specifications. 7-

Input Style . 7-2
Left Recursion . 7-2
Lexical Tie-Ins . 7-2
Reserved Words . 7-

Advanced Topics . 7-
Simulating error and accept in Actions . 7-
Accessing Values in Enclosing Rules. 7
Support for Arbitrary Value Types . 7-2
yacc Input Syntax. 7-2

Examples . 7-
1. A Simple Example . 7-3
2. An Advanced Example . 7-
ix

Compilation Systems Volume 2 (Concepts)

-1

-1
-1
-1
-2
-2
-3
-9

10
3

-14
14
-14
7

18
18
8

18

-1
-1
-2
0-2
-2
-2

-3
0-5
-6
7
8
-8
12

-13
-13
-13
-14

0-14
0-14
-15

-16
-16

-17
-17
Part 2 Analysis

Chapter 8 Introduction to Analysis

Introduction . 8

Chapter 9 Browsing Through Your Code with cscope

Introduction . 9
How cscope Works . 9

How to Use cscope. 9
Step 1: Set Up the Environment . 9
Step 2: Invoke cscope . 9
Step 3: Locate the Code . 9
Step 4: Edit the Code . 9
Command Line Options . 9-
Using Viewpaths . 9-1
Stacking cscope and Editor Calls . 9
Examples. 9-

Changing a Constant to a Preprocessor Symbol . 9
Adding an Argument to a Function . 9-1
Changing the Value of a Variable . 9-

Technical Tips . 9-
Unknown Terminal Type. 9-1
Command Line Syntax for Editors . 9-

Chapter 10 Analyzing Your Code with lint

Introduction to lint . 10
Options and Directives . 10
lint and the Compiler . 10
Message Formats . 1

What lint Does . 10
Consistency Checks . 10
Portability Checks. 10
Suspicious Constructs . 1

Usage . 10
lint Libraries . 10-
lint Filters . 10-
Options and Directives Listed. 10

lint-specific Messages . 10-
argument unused in function. 10
array subscript cannot be > value: value. 10
array subscript cannot be negative: value . 10
assignment causes implicit narrowing conversion . 10
assignment of negative constant to unsigned type . 1
assignment operator ?=? found where ?==? was expected 1
bitwise operation on signed value nonportable. 10
constant in conditional context 10-16
constant operand to op: ?!? . 10
constant truncated by assignment . 10
conversion of pointer loses bits. 10
conversion to larger integral type may sign-extend incorrectly 10
x

Contents

-18

-19
-19
-20
-20
21

-21
-22
3
3

-24
-24
-25
-25
26
-26

27
-27
-27

-28
28
-28

29
-30
-30
0-31
31
32
0-32
-32

-33
-33
4
-34
-35

35
36
-36
-37
-37

-1
-1

-1
-3
3

declaration unused in block. 10-18
declared global, could be static . 10
equality operator ?==? found where ?=? was expected. 10-18
evaluation order undefined: name . 10
fallthrough on case statement . 10
function argument (number) declared inconsistently . 10
function argument (number) used inconsistently . 10
function argument type inconsistent with format . 10-
function called with variable number of arguments . 10
function declared with variable number of arguments . 10
function falls off bottom without returning value . 10-2
function must return int: main() . 10-2
function returns pointer to [automatic/parameter] . 10
function returns value that is always ignored . 10
function returns value that is sometimes ignored . 10
function value is used, but none returned . 10
logical expression always false: op ?&&? . 10-
logical expression always true: op ?||? . 10
malformed format string. 10-
may be indistinguishable due to truncation or case . 10
name declared but never used or defined . 10
name defined but never used . 10
name multiply defined . 10-
name used but not defined . 10
nonportable bit-field type. 10-29
nonportable character constant . .. 10-29
only 0 or 2 parameters allowed: main() . 10-
pointer cast may result in improper alignment . 10
pointer casts may be troublesome. 10
precedence confusion possible; parenthesize . 1
precision lost in bit-field assignment . 10-
set but not used in function. 10-
statement has no consequent: else . 1
statement has no consequent: if . 10
statement has null effect . 10
statement not reached . 10
static unused. 10-3
suspicious comparison of char with value: op ?op? . 10
suspicious comparison of unsigned with value: op ?op? 10
too few arguments for format . 10-
too many arguments for format . 10-
value type declared inconsistently . 10
value type used inconsistently . 10
variable may be used before set: name. 10
variable unused in function. 10-37

Chapter 11 Performance Analysis

Introduction . 11
analyze . 11

Information . 11
Statistics . 11
Profiling . 11-
xi

Compilation Systems Volume 2 (Concepts)

-4
1-9
-9
10
-12

-1

-1
3-2
-5

3-6
-6
-6
-6
-6
-7

3-7
-8
-8
-8
-9
9
1
-13
3
14
14
-14
5
-16
16
18
-19
19

-1
-1

-1
-2

-2
4-3
-4
-5
Usage . 11
Assumptions and Constraints . 1

report . 11
Usage . 11-
Assumptions and Constraints. 11

Part 3 Project Control

Chapter 12 Introduction to Project Control

Introduction . 12

Chapter 13 Managing File Interactions with make

Introduction . 13
Basic Features . 1

Parallel make. 13
Description Files and Substitutions . 1

Comments . 13
Continuation Lines . 13
Macro Definitions . 13
General Form . 13
Dependency Information . 13
Executable Commands . 1
Extensions of $*, $@, and $<. 13
Output Translations. 13
Recursive Makefiles . 13
Suffixes and Transformation Rules. 13
Implicit Rules . 13-
Archive Libraries . 13-1
Source Code Control System File Names. 13
The Null Suffix . 13-1
Included Files . 13-
SCCS Makefiles . 13-
Dynamic Dependency Parameters . 13
Viewpaths (VPATH) . 13-1

Command Usage . 13
The make Command . 13-
Environment Variables . 13-

Suggestions and Warnings . 13
Internal Rules . 13-

Chapter 14 Tracking Versions with SCCS

Introduction . 14
Basic Usage . 14

Terminology . 14
Creating an SCCS File with admin. 14
Retrieving a File with get . 14
Recording Changes with delta . 1
More on get . 14
The help Command. 14
xii

Contents

-5
4-7
-8
-8

4-8
-9
0
0
12
13
3
3
15
6
17
19
19
0

20
21
-23
23
23
24
24
25
25
26
26
26
7
8

-1

-1
-1
1
2
2
2
3

Delta Numbering . 14
SCCS Command Conventions. 1

x.files and z.files. 14
Error Messages . 14

SCCS Commands . 1
The get Command . 14

ID Keywords . 14-1
Retrieval of Different Versions . 14-1
To Update Source . 14-
Undoing a get -e . 14-
Additional get Options . 14-1
Concurrent Edits of Different SID . 14-1
Concurrent Edits of Same SID . 14-
Key letters that Affect Output . 14-1

The delta Command . 14-
The admin Command . 14-
Creation of SCCS Files . 14-

Inserting Commentary for the Initial Delta . 14-2
Initialization and Modification of SCCS File Parameters. 14-

The prs Command . 14-
The sact Command. 14
The help Command . 14-
The rmdel Command . 14-
The cdc Command . 14-
The what Command . 14-
The sccsdiff Command. 14-
The comb Command . 14-
The val Command . 14-

SCCS Files. 14-
Protection . 14-
Formatting . 14-2
Auditing . 14-2

Index

Part 4 Environments

Chapter 15 Introduction to Environments

Introduction . 15

Chapter 16 Run-Time Libraries

Introduction . 16
System Libraries. 16

C Library . 16-
Alternate C Library . 16-
Math Library . 16-
Alternate Math Library . 16-
ELF Library. 16-
xiii

Compilation Systems Volume 2 (Concepts)

3
-3
-3
-4
-4
-4
-5
-6
-7
-7
-8
-9
0
1
12
2

12
13

14
15
5

7
8
22

22
-22
3
4
25
26
26
27
-27
8
8
9
0

30
31

31
31
2
2

-32
33
3
33
34
5
5

35
6

DWARF Library . 16-
General-Purpose Library . 16

Including Functions and Data . 16
Including Declarations . 16

Listing of Functions . 16
Input/Output Control. 16

File and I/O Control and Access . 16
File and I/O Status . 16
Directories . 16
File Systems. 16
General Input . 16
General Output . 16
Terminal I/O. 16-1
STREAMS. 16-1
Pipes and FIFOs. 16-
Devices . 16-1

Special Files . 16-
File Systems Table File . 16-
File Systems Mount Table File. 16-14
Password File. 16-
Shadow Password File . 16-
Group File . 16-1
User and Accounting Information Files 16-16
ELF Files . 16-1
DWARF Debugging Information. 16-1
Shared Objects . 16-
Temporary Files . 16-

Strings and Characters . 16
String Manipulation. 16-2
Wide String Manipulation . 16-2
Character Test . 16-
Wide Character Test. 16-
Character Translation. 16-
Multibyte and Wide Characters . 16-
Regular Expression and Pattern Matching . 16

Memory. 16-2
Memory Manipulation . 16-2
Memory Allocation . 16-2
Memory Control . 16-3
Shared Memory . 16-

Data Structures . 16-
Tables . 16-
Hash Tables . 16-
File Trees . 16-3
Binary Trees. 16-3
Message Queues . 16
Queues . 16-
Semaphores 16-3

Date and Time. 16-
General Date and Time . 16-
Interval Timer . 16-3
POSIX Timer . 16-3

Internationalization . 16-
Locales. 16-3
xiv

Contents

-36
36
7
37
8
38

39
1
1

44
4
4
45
-45
6
7

49
49

50
51
1
1
2
2

53
53
53

-1
-1
7-2
-2
-2
-3
-3
-3

7-4
7-4
-5
6
-6

7-7
-9
7-9
11
-11
11

-11
12
-12
Message Catalogs . 16
Mathematic and Numeric . 16-

Trigonometric. 16-3
Bessel . 16-
Hyperbolic. 16-3
Miscellaneous Mathematic Functions. 16-
Numeric Conversion . 16-
Other Arithmetic . 16-4
Floating-Point Environment . 16-4
Pseudo-Random Number Generation Functions. 16-42

Programs. 16-
Flow. 16-4
Profile . 16-4
Parameters . 16-

Processes. 16
Control. 16-4
Signals . 16-4
User-Level Interrupts. 16-
Lightweight Processes. 16-

Security. 16-
Access Control Lists . 16-
Auditing. 16-5
Levels . 16-5
Other Security . 16-5
Encryption and Decryption . 16-5

System Environment . 16-
Loadable Kernel Modules . 16-
Other System Environment . 16-

Chapter 17 Floating-Point Operations

Introduction . 17
IEEE Arithmetic . 17

Data Types and Formats . 1
Single-Precision . 17
Double-Precision. 17
Language Mappings . 17

Normalized Numbers . 17
Denormalized Numbers . 17
Maximum and Minimum Representable Floating-Point Values 1
Special-Case Values . 1
NaNs and Infinities. 17
Rounding Control. 17-

Floating-Point Exceptions . 17
Exceptions, Status Bits, and Control Bits. 1
Exception Handling . 17

Single-Precision Floating-Point Operations . 1
Single-Precision Functions. 17-

Double-Extended-Precision. 17
IEEE Requirements . 17-

Conversion of Floating-Point Formats to Integer. 17
Square Root . 17-
Compares and Unordered Condition . 17
xv

Compilation Systems Volume 2 (Concepts)

-1
-1
-1
-2
-3

-4
-5
-5
-5
-6
-6

-1

-2
-2
-3
8
-10
-10
10
11
11
11
11
12

12
13
14
15
5

16
6
17
17
7
8

20
21
NaNs and Infinities in Input/Output. 17-12

Chapter 18 Inter-Language Interfacing

Introduction . 18
Subroutine Linkage . 18

The Stack Frame . 18
Parameters. 18
Return Values . 18
Prologue and Epilogue 18-3
Register Usage . 18

External Names . 18
Data Types . 18

Scalar Types . 18
Structures . 18
Common Blocks . 18

Part 5 Program Optimization

Chapter 19 Introduction to Program Optimization

Introduction . 19

Chapter 20 Program Optimization

Introduction to Compiler Technology .. 20-1
Compiler Optimization Options. 20

Setting the Compiler Optimization Level . 20
Controlling Compiler Optimizations . 20
Giving Hints to Compiler Optimizations (C++ only) . 20-
Obtaining Optimization Messages . 20

Classes of Optimizations . 20
Branch Optimizations . 20-

Straightening Blocks . 20-
Folding Conditional Tests . 20-
Eliminating Unreachable Code . 20-
Inserting Zero Trip Tests . 20-
Duplicating Partially-Constant Conditional Branches. 20-

Variable Optimizations . 20-
Dead Code Elimination . 20-
Copy Propagation . 20-
Separate Lifetimes . 20-
Copy Variables. 20-1

Expression Optimizations . 20-
Algebraic Simplification . 20-1
Address Mode Determination . 20-
Common Subexpression Elimination . 20-
Code Motion . 20-1

Loop Optimizations . 20-1
Loops with Multiple Entry Points 20-19
Strength Reduction . 20-
Test Replacement. 20-
xvi

Contents

1
2
4

24
5

26
7

29
0

-30
1
32

34

-1

-1
-1
2-2
-3
-3
6
-9
-9
15
18
22
23

6
27
28
35
35
38
-39
-40
41
42
45
6
7

-52
3
4

Duplicating Loop Exit Tests . 20-2
Loop Unrolling and Software Pipelining . 20-2

Register Allocation. 20-2
Instruction Scheduling . 20-
Post-Linker Optimization . 20-2
Inline Expansion of Subprograms (Ada only) . 20-
Optimization of Constraints (Ada only) . 20-2
Inline Expansion of Subprograms (C++ only) . 20-
Precise Alias Analysis (C++ Only) . 20-3

Programming Techniques . 20
Coding Tips . 20-3
Identifying Performance Problems. 20-

Debugging Optimized Code .. 20-32
Understanding Optimization’s Effects on Debugging 20-33
Examining Your Program . 20-

Part 6 Formats

Chapter 21 Introduction to Formats

Introduction . 21

Chapter 22 Executable and Linking Format (ELF)

Introduction . 22
File Format . 22
Data Representation . 2

Program Linking . 22
ELF Header . 22

ELF Identification . 22-
ELF Header Flags . 22

Section Header . 22
Special Sections. 22-
Vendor Section . 22-

String Table . 22-
Symbol Table . 22-

Symbol Values. 22-2
Relocation. 22-

Relocation Types . 22-
Program Execution . 22-

Program Header . 22-
Base Address . 22-

Segment Permissions . 22
Segment Contents . 22
Note Section . 22-

Program Loading . 22-
Program Interpreter . 22-
Dynamic Linker . 22-4

Dynamic Section . 22-4
Shared Object Dependencies. 22
Link Map . 22-5
Global Offset Table . 22-5
xvii

Compilation Systems Volume 2 (Concepts)

57
58
59
0

-1
2
3-10
13

-1
4-2
-2
-3
-3
-4

-5

-7
-8

4-8
-8
9

-10
10
1
3

13
-13
14
5
16
6

6
7
7
17
18
19

19
-19
0

22
-23
23
-23
24
Function Addresses . 22-
Procedure Linkage Table . 22-
Hash Table . 22-
Initialization and Termination Functions. 22-6

Symbolic Debugging Information. 22-61

Chapter 23 tdesc Information

Introduction . 23
tdesc Chunks 23-
tdesc in Executable Programs and Shared Objects . 2
Examples . 23-

Chapter 24 DWARF Debugging Information Format

Introduction . 24
Purpose and Scope . 2
Overview. 24
Vendor Extensibility . 24
Changes from Version 1 . 24

General Description . 24
The Debugging Information Entry. 24-4
Attribute Types . 24
Relationship of Debugging Information Entries.. 24-7
Location Descriptions . 24

Location Expressions. 24
Register Name Operators. 2
Addressing Operations . 24

Literal Encodings . 24-
Register Based Addressing. 24
Stack Operations. 24-
Arithmetic and Logical Operations . 24-1
Control Flow Operations . 24-1
Special Operations . 24-

Sample Stack Operations. 24
Example Location Expressions . 24-
Location Lists . 24-1

Types of Declarations . 24-
Accessibility of Declarations . 24-1
Visibility of Declarations . 24-1
Virtuality of Declarations . 24-1
Artificial Entries . 24-1
Target-Specific Addressing Information. 24-
Non-Defining Declarations. 24-
Declaration Coordinates . 24-
Identifier Names . 24-

Program Scope Entries. 24
Compilation Unit Entries . 24-2
Module Entries . 24-
Subroutine and Entry Point Entries . 24

General Subroutine and Entry Point Information . 24-
Subroutine and Entry Point Return Types . 24
Subroutine and Entry Point Locations. 24-
xviii

Contents

-24
4
25
26
26
27
27
28
9

29
30
30
-31
31
33
33
33
34
34
5

36
6

-37
38
-38
9

39
41
-41
2
43
44
44
45
-45
46
47
47
-47

9
9

-50
-51

-53
53
54
55
6
7

57
7

Declarations Owned by Subroutines and Entry Points 24
Low-Level Information . 24-2
Types Thrown by Exceptions . 24-
Function Template Instantiations . 24-
Inline Subroutines . 24-

Abstract Instances . 24-
Concrete Inlined Instances . 24-
Out-of-Line Instances of Inline Subroutines . 24-

Lexical Block Entries . 24-2
Label Entries. 24-
With Statement Entries. 24-
Try and Catch Block Entries . 24-

Data Object and Object List Entries . 24
Data Object Entries. 24-
Common Block Entries . 24-
Imported Declaration Entries . 24-
Namelist Entries . 24-

Type Entries . 24-
Base Type Entries . 24-
Type Modifier Entries. 24-3
Typedef Entries. 24-
Array Type Entries . 24-3
Structure, Union, and Class Type Entries. 24

General Structure Description. 24-
Derived Classes and Structures . 24
Friends. 24-3
Structure Data Member Entries. 24-
Structure Member Function Entries . 24-
Class Template Instantiations . 24
Variant Entries . 24-4

Enumeration Type Entries . 24-
Subroutine Type Entries . 24-
String Type Entries . 24-
Set Entries. 24-
Subrange Type Entries . 24
Pointer to Member Type Entries. 24-
File Type Entries. 24-

Other Debugging Information . 24-
Accelerated Access. 24

Lookup by Name. . .. 24-48
Lookup by Address .. 24-48

Line Number Information. 24-4
Definitions. 24-4
State Machine Registers . 24
Statement Program Instructions . 24
The Statement Program Prologue .. 24-51
The Statement Program. 24

Special Opcodes . 24-
Standard Opcodes . 24-
Extended Opcodes . 24-

Macro Information . 24-5
Macinfo Types. 24-5

Define and Undefine Entries . 24-
Start File Entries. 24-5
xix

Compilation Systems Volume 2 (Concepts)

8
58
-58

8
-58
9

60
62
64
-64
4

-65
-65

65
65
6

7
7

71
74
74
7

-77
78
8
9

-79
-79
80
80
80
1
1

1
-82
2
3
3

-84
85
85

-99

-1
5-1
End File Entries . 24-5
Vendor Extension Entries . 24-

Base Source Entries . 24
Macinfo Entries for Command Line Options . 24-5
General Rules and Restrictions . 24

Call Frame Information . 24-5
Structure of Call Frame Information . 24-
Call Frame Instructions . 24-
Call Frame Instruction Usage . 24-

Data Representation . 24
Vendor Extensibility . 24-6
Reserved Error Values. 24
Executable Objects and Shared Objects . 24
File Constraints . 24-
Format of Debugging Information . 24-

Compilation Unit Header. 24-6
Debugging Information Entry. 24-66
Abbreviation Tables . 24-6
Attribute Encodings . 24-6

Variable Length Data . 24-
Location Descriptions . 24-

Location Expressions. 24-
Location Lists . 24-7

Base Type Encodings . 24
Accessibility Codes. 24-
Visibility Codes. 24-7
Virtuality Codes . 24-7
Source Languages . 24
Address Class Encodings . 24
Identifier Case. 24-
Calling Convention Encodings . 24-
Inline Codes . 24-
Array Ordering . 24-8
Discriminant Lists. 24-8
Name Lookup Table. 24-8
Address Range Table . 24
Line Number Information. 24-8
Macro Information . 24-8
Call Frame Information . 24-8
Dependencies . 24

Future Directions . 24-
Appendix 1 -- Current Attributes by Tag Value . 24-
Appendix 2 -- Organization of Debugging Information 24-96
Appendix 3 -- Statement Program Examples . 24
Appendix 4 -- Encoding and decoding variable length data.
24-100
Appendix 5 -- Call Frame Information Examples .
24-102

Chapter 25 DWARF Access Library (libdwarf)

Introduction . 25
Purpose and Scope . 2
xx

Contents

2
-2
-2
-2
-3
-3

-4
-4
-4

-5
-5

-6
-8
-8
-8
-9

-9

15
16
16
18
-20
0
2

29
0
32
-3

-10
-5

4-6
4-7
-8
-8
-29
3-1

9-3
9-4
9-5

9-7
9-7
9-8
-9
Definitions . 25-
Overview . 25

Type Definitions . 25
General Description . 25
Scalar Types . 25
Aggregate Types . 25

Location Record . 25
Location Description . 25
Element List . 25
Subscript Bounds Information 25-5
Data Block. 25

Opaque Types . 25
Error Handling . 25
Memory Management . 25

Read-only Properties . 25
Storage Deallocation . 25

Functional Interface. 25
Initialization Operations . 25
Debugging Information Entry Delivery Operations 25-10
Debugging Information Entry Query Operations. 25-12
Array Subscript Query Operations . 25-
Type Information Query Operations . 25-
Attribute Form Queries. 25-
Line Number Operations . 25-
Global Name Space Operations . 25
Utility Operations . 25-2
Appendix1--libdwarf.h . 25-2

Illustrations

Figure 4-1. User-Defined Mapfile . 4-
Figure 4-2. Default Mapfile . 4-3
Figure 4-3. Simple Map Structure . 4-
Figure 6-1. Creation and Use of a Lexical Analyzer with lex 6
Figure 13-1. Summary of Default Transformation Path . 13
Figure 14-1. Evolution of an SCCS File . 14
Figure 14-2. Tree Structure with Branch Deltas . 1
Figure 14-3. Extended Branching Concept . 1
Figure 22-1. Data Encoding ELFDATA2LSB . 22
Figure 22-2. Data Encoding ELFDATA2MSB . 22
Figure 22-3. Relocatable Fields . 22
Figure 23-1. The Parts of a Body of Code . 2

Screens

Screen 9-1. The cscope Menu of Tasks .
Screen 9-2. Requesting a Search for a Text String .
Screen 9-3. cscope Lists Lines Containing the Text String
Screen 9-4. Examining a Line of Code Found by cscope. 9-6
Screen 9-5. Requesting a List of Functions That Call alloctest()
Screen 9-6. cscope Lists Functions That Call alloctest() .
Screen 9-7. cscope Lists Functions That Call mymalloc() .
Screen 9-8. Viewing dispinit() in the Editor . 9
xxi

Compilation Systems Volume 2 (Concepts)

-10
-14
9-15
-16
9-16

-17
1-2
-20

-4
19
3-2

26
-26
-28

-31
-31
-6
-3

9-5
-15

14
6-5
6-6
-7

6-7

6-9
10
11
-12
-12
-13
-14
-14
-15

-15
-16
17

-22
22
23
24
-25
-26
-26
-27
6-27
28
Screen 9-9. Using cscope to Fix the Problem . 9
Screen 9-10. Changing a Text String . 9
Screen 9-11. cscope Prompts for Lines to Be Changed .
Screen 9-12. Marking Lines to Be Changed . 9
Screen 9-13. cscope Displays Changed Lines of Text .
Screen 9-14. Escaping from cscope to the Shell . 9
Screen 11-1. Sample Output from analyze . 1
Screen 13-1. make Internal Rules . 13

Tables

Table 1-1. Compilers and Utilities . 1
Table 2-1. Available Directives . 2-
Table 3-1. PowerPC Instruction Set .
Table 3-2. Condition Codes (CC). 3-25
Table 3-3. Trap Operand (TO) . 3-
Table 3-4. Operand Abbreviations . 3
Table 3-5. Special-Purpose Registers . 3
Table 3-6. Time Base Registers . 3
Table 3-7. Implementation-Specific and Optional Instructions 3
Table 6-1. lex Operators . 6
Table 9-1. Menu Manipulation Commands . 9
Table 9-2. Commands for Use after Initial Search .
Table 9-3. Commands for Selecting Lines to Be Changed 9
Table 14-1. Determination of New SID . 14-
Table 16-1. File and I/O Control and Access Functions . 1
Table 16-2. File and I/O Status Functions . 1
Table 16-3. Directories Functions . 16
Table 16-4. File Systems Functions . 1
Table 16-5. General Input Functions .. 16-8
Table 16-6. General Output Functions . 1
Table 16-7. Terminal I/O Functions . 16-
Table 16-8. STREAMS Functions . 16-
Table 16-9. Pipes and FIFOs Functions . 16
Table 16-10. Devices Control Functions . 16
Table 16-11. File Systems Table File Functions . 16
Table 16-12. File Systems Mount Table File Functions . 16
Table 16-13. Password File Functions . 16
Table 16-14. Shadow Password File Functions . 16
Table 16-15. Group File Functions . 16
Table 16-16. User and Accounting Information Files . 16
Table 16-17. ELF Files Functions . 16-
Table 16-18. DWARF Debugging Information Functions 16-18
Table 16-19. Shared Objects Functions . 16
Table 16-20. Temporary Files . 16-
Table 16-21. String Manipulation Functions . 16-
Table 16-22. Wide String Manipulation Functions . 16-
Table 16-23. Character Test Functions . 16
Table 16-24. Wide Character Test Functions . 16
Table 16-25. Character Translation Functions . 16
Table 16-26. Multibyte and Wide Characters Functions . 16
Table 16-27. Regular Expression and Pattern Matching Functions 1
Table 16-28. Memory Manipulation Functions . 16-
xxii

Contents

29
30
-30
-31
-31
-32
-32
6-32
-33
-33
-34
35
35
-36
6-36

-37
38
-38
-39
41
-41
6-42
44
44
-45
46
-47
-49
-49
-51
51
-51
-52
-52

-53
8-2
18-2
8-4
8-4
8-5
8-5
8-6
-2
-3
-6
-9
2-9
-10
-12
-14
-14
-15
Table 16-29. Memory Allocation Functions . 16-
Table 16-30. Memory Control Functions . 16-
Table 16-31. Shared Memory Control Functions . 16
Table 16-32. Tables Functions . 16
Table 16-33. Hash Tables Functions . 16
Table 16-34. File Trees Functions . 16
Table 16-35. Binary Trees Functions . 16
Table 16-36. Message Queues Functions . 1
Table 16-37. Queues Functions . 16
Table 16-38. Semaphores Functions . 16
Table 16-39. General Date and Time Functions . 16
Table 16-40. Interval Timer Functions . 16-
Table 16-41. POSIX Timer Functions . 16-
Table 16-42. Locales Functions . 16
Table 16-43. Message Catalogs Functions . 1
Table 16-44. Trigonometric Functions 16-37
Table 16-45. Bessel Functions . 16
Table 16-46. Hyperbolic Functions . 16-
Table 16-47. Miscellaneous Mathematical Functions . 16
Table 16-48. Numeric Conversion Functions . 16
Table 16-49. Other Arithmetic Functions . 16-
Table 16-50. Floating-Point Environment Functions . 16
Table 16-51. Pseudo-Random Number Generation Functions 1
Table 16-52. Flow Functions . 16-
Table 16-53. Profile Functions . 16-
Table 16-54. Parameters Functions . 16
Table 16-55. Control Functions . 16-
Table 16-56. Signals Functions . 16
Table 16-57. User-Level Interrupts Functions . 16
Table 16-58. Lightweight Processes Functions . 16
Table 16-59. Access Control Lists Functions . 16
Table 16-60. Auditing Functions . 16-
Table 16-61. Levels Functions . 16
Table 16-62. Other Security Functions . 16
Table 16-63. Encryption and Decryption Functions . 16
Table 16-64. Loadable Kernel Modules Functions. 16-53
Table 16-65. Other System Environment Functions . 16
Table 18-1. Stack Frame . 1
Table 18-2. Where Parameters Are Passed .
Table 18-3. General Registers . 1
Table 18-4. Floating-point Registers . 1
Table 18-5. Special Registers . 1
Table 18-6. C Scalar Types . 1
Table 18-7. Fortran Scalar Types . 1
Table 22-1. Object File Format. 22
Table 22-2. 32-Bit Data Types . 22
Table 22-3. e_ident[] Identification Indexes . 22
Table 22-4. PowerUX Identification, e_ident . 22
Table 22-5. Processor-Specific Flags, e_flags . 2
Table 22-6. Special Section Indexes . 22
Table 22-7. Section Types, sh_type . 22
Table 22-8. Section Header Table Entry: Index 0. 22
Table 22-9. Section Attribute Flags, sh_flags. 22
Table 22-10. sh_link and sh_info Interpretation. 22
xxiii

Compilation Systems Volume 2 (Concepts)

-15
-19
-19
2-20
2-20
2-21

2-22
22
-22

26
-32
-37
-39
-39

-40
-40
41
-42
-43
2-43
2-44
2-45

-48
-56
56
57
59
60
4-4
-5
16

16
17
4-18

-21
26
34
35
37
-43
-68
-69
-70
-70
-72
73
-74
-75
-75
-76
Table 22-11. Special Sections . 22
Table 22-12. Vendor Section Rounding Modes, round_mode 22
Table 22-13. Vendor Section Floating-Point Exceptions Kind, fp_except_kind . . . 22
Table 22-14. Vendor Section Enabled Exceptions, float_exceptions 2
Table 22-15. Vendor Section PowerPC Features, IBM_mode 2
Table 22-16. Vendor Section Extended Double-Precision Use, float_precision. . . . 2
Table 22-17. Vendor Section Process Private Data Pointer Use, ppdp_used. 22-21
Table 22-18. Vendor Section FP Speculative Execution Use, fp_spec_exec 2
Table 22-19. String Table . 22-
Table 22-20. String Table Indexes. 22
Table 22-21. Symbol Binding, ELF32_ST_BIND . .. 22-24
Table 22-22. Symbol Types, ELF32_ST_TYPE 22-25
Table 22-23. Symbol Table Entry: Index 0 . 22-
Table 22-24. Relocation Types . 22
Table 22-25. Segment Types, p_type . 22
Table 22-26. Segment Flag Bits, p_flags . 22
Table 22-27. Segment Permissions . 22
Table 22-28. Text Segment . 22
Table 22-29. Data Segment . 22
Table 22-30. Note Information . 22-
Table 22-31. Example Note Segment . 22
Table 22-32. Executable File. 22
Table 22-33. Program Header Segments. 2
Table 22-34. Process Image Segments . 2
Table 22-35. Example Shared Object Segment Addresses . 2
Table 22-36. Dynamic Array Tags, d_tag . 22
Table 22-37. GOTP Binding Entry Stack Frame . 22
Table 22-38. GOTP Binding Entry . 22-
Table 22-39. GOTP Binding Helper . 22-
Table 22-40. PLT Entry . 22-
Table 22-41. Symbol . 22-
Table 24-1. Tag Names . 2
Table 24-2. Attribute Names . 24
Table 24-3. Accessibility Codes . 24-
Table 24-4. Visibility Codes . 24-
Table 24-5. Virtuality Codes . 24-
Table 24-6. Example Address Class Codes. 2
Table 24-7. Language Names .. 24-20
Table 24-8. Identifier Case Codes. 24
Table 24-9. Inline Codes . 24-
Table 24-10. Encoding Attribute Values . 24-
Table 24-11. Type Modifier Tags . 24-
Table 24-12. Array Ordering. 24-
Table 24-13. Discriminant Descriptor Values . 24
Table 24-14. Tag Encodings (Part 1) . 24
Table 24-15. Tag Encodings (Part 2) . 24
Table 24-16. Child Determination Encodings. 24
Table 24-17. Attribute Encodings (Part 1) . 24
Table 24-18. Attribute Encodings (Part 2) . 24
Table 24-19. Attribute Form Encodings . 24-
Table 24-20. Examples of unsigned LEB128 Encodings . 24
Table 24-21. Examples of signed LEB128 Encodings . 24
Table 24-22. Location Operation Encodings (Part 1) . 24
Table 24-23. Location Operation Encodings (Part 2) . 24
xxiv

Contents

-78
78
8

79
-79
-80
-80
80
-81
-81
-82
-83
83
-84
-85
5-3
-7
-9
-21
Table 24-24. Base Type Encoding Values . 24
Table 24-25. Accessibility Encodings . 24-
Table 24-26. Visibility Encodings . 24-7
Table 24-27. Virtuality Encodings . 24-
Table 24-28. Language Encodings . 24
Table 24-29. Identifier Case Encodings . 24
Table 24-30. Calling Convention Encodings . 24
Table 24-31. Inline Encodings . 24-
Table 24-32. Ordering Encodings . 24
Table 24-33. Discriminant Descriptor Encodings . 24
Table 24-34. Standard Opcode Encodings . 24
Table 24-35. Extended Opcode Encodings . 24
Table 24-36. Macinfo Type Encodings . 24-
Table 24-37. Call Frame Instruction Encodings . 24
Table 24-38. Current Attributes by Tag Value . 24
Table 25-1. Scalar Types. 2
Table 25-2. Error Indications . 25
Table 25-3. Allocation/Deallocation Identifiers . 25
Table 25-4. Error Codes . 25
xxv

Compilation Systems Volume 2 (Concepts)
xxvi

4
Part 4Environments

Replace with Part 4 tab

Compilation Systems Volume 2 (Concepts)

Part 4 - Environments
Part 4 - Environments

Part 4 Environments

Chapter 15 Introduction to Environments ... 15-1

Chapter 16 Run-Time Libraries... 16-1

Chapter 17 Floating-Point Operations... 17-1

Chapter 18 Inter-Language Interfacing ... 18-1

Compilation Systems Volume 2 (Concepts)

-1
15
Introduction to Environments

Introduction . 15

Compilation Systems Volume 2 (Concepts)

to
the

ent.

the

ble-
ns.

rtran
eter
15
Chapter 15Introduction to Environments

15
15
15

Introduction 15

You can save time writing routines by calling system functions instead. You know how
write and tune your math-intensive and multi-language programs if you understand
concepts behind floating-point operations and inter-language interfacing.

This part of the manual describes implementation-dependent aspects of the environm

Chapter 16 (“Run-Time Libraries”) categorizes, groups, and briefly describes
functions in the C, ELF, and math system libraries.

Chapter 17 (“Floating-Point Operations”) discusses IEEE single-precision and dou
precision floating-point arithmetic, exception handling, operations, and implementatio

Chapter 18 (“Inter-Language Interfacing”) describes the interfaces between C and Fo
routines on supporting hardware platforms. Topics include stack frames, param
passing, return values, register use, external names, and data types.
15-1

Compilation Systems Volume 2 (Concepts)
15-2

-1
-1
1
2
2
2
3
3
-3
-3
-4
-4
-4
-5
-6
-7
-7
-8
-9
0
1
12
2

12
13

14
15
5

7
8
22

22
-22
3
4
25
26
26
27
-27
8
8
9
0

30
16
Run-Time Libraries

Introduction . 16
System Libraries. 16

C Library . 16-
Alternate C Library . 16-
Math Library . 16-
Alternate Math Library . 16-
ELF Library. 16-
DWARF Library . 16-
General-Purpose Library . 16

Including Functions and Data. 16
Including Declarations . 16

Listing of Functions. 16
Input/Output Control . 16

File and I/O Control and Access . 16
File and I/O Status. 16
Directories . 16
File Systems . 16
General Input. 16
General Output . 16
Terminal I/O . 16-1
STREAMS . 16-1
Pipes and FIFOs . 16-
Devices . 16-1

Special Files . 16-
File Systems Table File . 16-
File Systems Mount Table File 16-14
Password File . 16-
Shadow Password File. 16-
Group File . 16-1
User and Accounting Information Files . .. 16-16
ELF Files . 16-1
DWARF Debugging Information . 16-1
Shared Objects. 16-
Temporary Files. 16-

Strings and Characters . 16
String Manipulation. 16-2
Wide String Manipulation . 16-2
Character Test . 16-
Wide Character Test . 16-
Character Translation . 16-
Multibyte and Wide Characters. 16-
Regular Expression and Pattern Matching . 16

Memory . 16-2
Memory Manipulation. 16-2
Memory Allocation . 16-2
Memory Control . 16-3
Shared Memory . 16-

Compilation Systems Volume 2 (Concepts)

31
31
31
2
2

-32
33
3
33
34
5
5

35
6

-36
36
7
37
8
38

39
1
1

44
4
4
45
-45
6
7

49
49

50
51
1
1
2
2

53
53
53
Data Structures . 16-
Tables . 16-
Hash Tables . 16-
File Trees . 16-3
Binary Trees. 16-3
Message Queues . 16
Queues . 16-
Semaphores 16-3

Date and Time. 16-
General Date and Time . 16-
Interval Timer . 16-3
POSIX Timer . 16-3

Internationalization . 16-
Locales. 16-3
Message Catalogs . 16

Mathematic and Numeric . 16-
Trigonometric .. 16-3
Bessel. 16-
Hyperbolic . 16-3
Miscellaneous Mathematic Functions . 16-
Numeric Conversion . 16-
Other Arithmetic . 16-4
Floating-Point Environment . 16-4
Pseudo-Random Number Generation Functions 16-42

Programs . 16-
Flow . 16-4
Profile . 16-4
Parameters . 16-

Processes . 16
Control . 16-4
Signals . 16-4
User-Level Interrupts . 16-
Lightweight Processes . 16-

Security . 16-
Access Control Lists . 16-
Auditing . 16-5
Levels. 16-5
Other Security . 16-5
Encryption and Decryption . 16-5

System Environment. 16-
Loadable Kernel Modules . 16-
Other System Environment . 16-

ers.
the

r the

ions
tion,

re
,
n-
16
Chapter 16Run-Time Libraries

16
16
16

Introduction 16

PowerUX provides several system libraries which are available to software develop
This chapter introduces three of these libraries. A brief synopsis of each function in
libraries is presented. More detailed information can be found in the manual pages fo
functions.

System Libraries 16

The following system libraries are available:

• C

• Math

• Alternate math

• ELF

• DWARF

• General-purpose

C Library 16

This is the basic library for C language programs. It contains functions and declarat
used for file access, string testing and manipulation, character testing and manipula
memory allocation, and other capabilities.

The following man page sections pertain to the library:
2 System Calls
3C Standard C Library
3S Standard I/O Library

The static C library is/usr/ccs/lib/libc.a . It is used when link editing programs
which do not perform dynamic linking. Programs which do perform dynamic linking a
link edited with /usr/ccs/lib/libc.so . This library contains a shared object
/usr/lib/libc.so.1 , which contains the dynamic linker and other position indepe
dent functions.
16-1

Compilation Systems Volume 2 (Concepts)

ro-
nly
een-
mic

eads

The

igher
dard

s:
Alternate C Library 16

An alternate static C library,/usr/ccs/lib/libnc.a , is available under Power
UNIX. It does not support reentrancy of its functions, as does the default C library. P
grams that are link edited with this alternate library will exhibit better performance. O
those programs which do not use dynamic linking and which do not depend upon the r
trancy quality of the library, however, can use this library. Programs which use dyna
linking must continue to use/usr/ccs/lib/libc.so . Programs which depend upon
reentrancy in the library, such as programs that are link edited with the system thr
library, cannot use/usr/ccs/lib/libnc.a . This library may be referenced during
invocation of the C compiler as follows:

cc file.c -lnc

Math Library 16

The math library provides interfaces for commonly used mathematical functions.
functions reside in/usr/ccs/lib/libm.a . This library may be referenced during
invocation of the C compiler as follows:

cc file.c -lm

The following man page section pertains to this library:
3M Math Library

Alternate Math Library 16

An alternate math library,/usr/ccs/lib/libM.a , is available under PowerUX. It is
intended for use when the characteristics of the arguments are well-understood and h
performance is preferred to increased accuracy. This library differs from the stan
math library,/usr/ccs/lib/libm.a , in the following ways:

• Arguments are not checked to ensure that they are valid IEEE float-
ing-point numbers.

• Arguments are not checked for mathematical validity (for example,
sqrt(-2)).

• For the single-precision functions, certain calculations that are performed
in double precision in the standard library are performed in single precision
in the alternate library. As a result, 1-bit errors can occur in some calcula-
tions.

• This alternate library uses large tables of constants as a repository of data
for its calculations. Use of this library will require a larger address space
than is needed with the standard library.

This alternate library may be referenced during invocation of the C compiler as follow

cc file.c -lM
16-2

Run-Time Libraries

r to

ma-

ith

link
eeded
you
s of
The Fortran and Ada compilation systems reference the standard math library,libm.a ,
by default. The C compilation system has no default math library.

ELF Library 16

This library provides functions that access and manipulate ELF object files. Refe
Chapter 22 (“Executable and Linking Format (ELF)”) for information on ELF.

The functions reside in/usr/ccs/lib/libelf.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -lelf

The following man page section pertains to this library:
3E Executable and Linking Format Library

DWARF Library 16

This library provides functions that access and manipulate DWARF debugging infor
tion in ELF object files.

The functions reside in/usr/ccs/lib/libdwarf.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -ldwarf

The following man page section pertains to this library:
3DWARF Debugging with Arbitrary Record Format Library

General-Purpose Library 16

This library provides general-purpose functions, often maintained for compatibility w
previous versions of UNIX®.

The functions reside in/usr/ccs/lib/libgen.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -lgen

The following man page section pertains to this library:
3G General-Purpose Library

Including Functions and Data 16

When a program is being compiled, the compilation system automatically directs the
editor to search the C library to locate and resolve references to functions and data n
by the program. For it to locate and include functions and data from other libraries,
must specify these libraries on the invocation line. For example, when using function
16-3

Compilation Systems Volume 2 (Concepts)

his
rary

are in
st

ions
lared
the math library, you must request that the math library be searched by including-lm on
the invocation line:

cc file.c -lm

The -lm must appear after all files that reference functions in the math library. In t
way, the link editor is able to use the math library to resolve references to math lib
functions, and thereby include these functions in thea.out file.

Including Declarations 16

To operate properly, some functions need a set of declarations. These declarations
header files under the/usr/include directory. To include these header files, you mu
code requests in your C source program. A request is of the form:

#include < file.h>

wherefile.h is the name of the file. Because the header files define the types of funct
and various preprocessor constants, they must be included before invoking the dec
functions.

Listing of Functions 16

Input/Output Control 16

The input/output control functions are grouped into the following categories:

• “File and I/O Control and Access” on page 16-5

• “File and I/O Status” on page 16-6

• “Directories” on page 16-7

• “File Systems” on page 16-7

• “General Input” on page 16-8

• “General Output” on page 16-9

• “STREAMS” on page 16-11

• “Pipes and FIFOs” on page 16-12

• “Devices” on page 16-12
16-4

Run-Time Libraries

l

-

File and I/O Control and Access 16

Table 16-1. File and I/O Control and Access Functions

Function Reference Brief Description

access access(2) Determine the accessibility of a file.

basename basename(3G) Provide the last element of a path name.

chmod,
fchmod

chmod(2) Change the mode of a file.

chown,
fchown,
lchown

chown(2) Change the owner and group of a file.

close close(2) Close a file descriptor.

copylist copylist(3G) Copy a file into memory.

creat creat(2) Create a new file or rewrite an existing file.

dirname dirname(3G) Provide the parent directory name of a file path name.

dup dup(3C) Duplicate an open file descriptor.

dup2 dup2(3C) Duplicate an open file descriptor.

fclose fclose(3S) Close an open stream.

fcntl fcntl(2) Control an open file.

fdopen fopen(3S) Associate a file stream with an open file.

fgetpos fsetpos(3C) Get the position of a file pointer in a file stream.

fileno ferror(3S) Identify the file descriptor associated with an open stream.

filepriv filepriv(2) Control the privileges associated with a file.

flockfile flock(3S),
flockfile(3S)

Grant thread ownership of a file.

fopen fopen(3S) Open a file with specified permissions.

fpathconf,
pathconf

fpathconf(2) Get configurable path name variables.

freopen fopen(3S) Substitute a named file in place of an open file stream.

fseek fseek(3S) Reposition the file pointer in a file stream.

fsetpos fsetpos(3C) Set the position of a file pointer in a file stream.

fsync fsync(2) Synchronize a file’s in-memory state with that on a physica
medium.

ftrylockfile flock(3S),
ftrylockfile(3S)

Grant thread ownership of a file, and indicate a status of suc
cess or failure.

funlockfile flock(3S),
funlockfile(3S)

Relinquish file ownership granted to a thread.

getdtablesize getdtablesize(3C) Get the file descriptor table size.
16-5

Compilation Systems Volume 2 (Concepts)
File and I/O Status 16

These functions provide status information on files and I/O operations.

link link(2) Create a new link for a file.

lockf lockf(3C) Record locking on files.

lseek lseek(2) Move a read/write file pointer.

open open(2) Open a file descriptor.

pathfind pathfind(3G) Find a named file in named directories.

poll poll(2) Multiplex I/O.

rename rename(2) Change the name of a file.

remove remove(3C) Remove a file.

rewind fseek(3S) Reposition the file pointer to the beginning of a file.

select select(3C) Perform synchronous I/O multiplexing.

setbuf setbuf(3S) Assign buffering to a file stream.

setvbuf setbuf(3S) Assign buffering to a file stream, but allow finer control.

symlink symlink(2) Make a symbolic link to a file.

truncate,
ftruncate

truncate(3C) Set a file to a specified length.

unlink unlink(2) Remove a directory entry.

userdma userdma(2) Prepare a buffer for DMA transfers.

utime utime(2) Set file access and modification times.

Table 16-2. File and I/O Status Functions

Function Reference Brief Description

clearerr ferror(3S) Reset an error condition on a file stream.

feof ferror(3S) Test for end-of-file on a file stream.

ferror ferror(3S) Test for an error condition on a file stream.

ftell fseek(3S) Indicate the current position in the file.

readlink readlink(2) Read the value of a symbolic link.

realpath realpath(3C) Return a file name.

stat,
fstat,
lstat

stat(2) Obtain file status information.

Table 16-1. File and I/O Control and Access Functions (Cont.)

Function Reference Brief Description
16-6

Run-Time Libraries
Directories 16

These functions support operations on directories.

File Systems 16

These functions support operations on file systems.

Table 16-3. Directories Functions

Function Reference Brief Description

alphasort scandir(3C) Sort directory entries.

chdir,
fchdir

chdir(2) Change the working directory.

chroot chroot(2) Change the root directory.

closedir directory(3C) Close a directory.

getdents getdents(2) Read directory entries.

mkdir mkdir(2) Make a directory.

mkdirp mkdirp(3G) Create directories in a path.

mknod mknod(2) Make a directory, or a special or ordinary file.

opendir directory(3C) Open a directory.

rmdir rmdir(2) Remove a directory.

rmdirp mkdirp(3G) Remove directories in a path.

re ad di r ,
readdir_r

directory(3C) Read a directory.

rewinddir directory(3C) Reset the file position to the beginning of a
directory.

scandir scandir(3C) Scan a directory.

seekdir directory(3C) Seek in a directory.

telldir directory(3C) Provide a pointer to the current location in a
directory.

Table 16-4. File Systems Functions

Function Reference Brief Description

mount mount(2) Mount a file system.

statvfs,
fstatvfs

statvfs(2) Obtain file system status information.
16-7

Compilation Systems Volume 2 (Concepts)
General Input 16

These functions support a variety of general input operations.

sysfs sysfs(2) Obtain file system type information.

umount umount(2) Unmount a file system.

ustat ustat(2) Obtain file system statistics.

Table 16-5. General Input Functions

Function Reference Brief Description

bgets bgets(3G) Read a stream up to the next delimiter.

fgetc getc(3S) Read a character from standard input.

fgets gets(3S) Read a string from a file stream.

fread fread(3S) Read buffered data from a file stream.

fscanf scanf(3S) Read characters from a file stream.

fwscanf fwscanf(3S) Read wide characters from a file stream.

g et c,
getc_unlocked

getc(3S) Read character from a file stream.

g et ch ar ,
getchar_unlocked

getc(3S) Read a character from standard input.

gets gets(3S) Read a string from standard input.

getw getc(3S) Read a word from a file stream.

pread pread(2) Perform an atomic position and read.

read read(2) Read from a file.

scanf scanf(3S) Read characters from standard input.

sscanf scanf(3S) Read characters from a string.

swscanf fwscanf(3S) Read wide characters from a string.

ungetc ungetc(3S) Put one character back on standard input.

vfscanf vscanf(3S) Read characters from a file stream by
varargs argument list.

vfwscanf vfwscanf(3S) Read wide characters from a file stream by
varargs argument list.

vscanf vscanf(3S) Read characters from standard input by
varargs argument list.

Table 16-4. File Systems Functions (Cont.)

Function Reference Brief Description
16-8

Run-Time Libraries

t

.

r-
General Output 16

These functions support a variety of general output operations.

vsscanf vscanf(3S) R e a d ch a r a c te r s f r o m a s t r i n g by
varargs argument list.

wscanf vscanf(3S) Read characters from standard input by
varargs argument list.

vswcanf vfwscanf(3S) Read wide characters from a string by
varargs argument list.

vwscanf vfwscanf(3S) Read wide characters from standard inpu
by varargs argument list.

Table 16-6. General Output Functions

Function Reference Brief Description

addsev addsev(3C) Define additional severities.

addseverity addseverity(3C) Build a list of severity levels.

fflush fclose(3S) Write all currently buffered characters to a file stream.

fmtmsg fmtmsg(3C) Display a message on standard error or the system console

fprintf printf(3S) Write characters to a file stream.

fputc putc(3S) Write a character to standard output.

fputs puts(3S) Write a string to a file stream.

funflush funflush(3S) Discard buffered data.

fwprintf fwprintf(3S) Write wide characters to a file stream.

fwrite fread(3S) Write buffered data to a file stream.

lfmt lfmt(3C) Display an error message and pass it to logging and monito
ing services.

perror perror(3C) Write an error message to standard error.

printf printf(3S) Write characters to standard output.

pu tc ,
putc_unlocked

putc(3S) Write a character to standard output.

pu tc ha r ,
putchar_unlocked

putc(3S) Write a character to standard output.

puts puts(3S) Write a string to standard output.

putw putc(3S) Write a word to a file stream.

Table 16-5. General Input Functions (Cont.)

Function Reference Brief Description
16-9

Compilation Systems Volume 2 (Concepts)

r-
Terminal I/O 16

These functions support terminal I/O operations.

pwrite pwrite(2) Perform an atomic position and write.

pfmt pfmt(3C) Display an error message.

setlabel setlabel(3C) Define the label forpfmt .

snprintf printf(3S) Write a specified number of characters to a string.

sprintf printf(3S) Write characters to a string.

strerror strerror(3C) Write an error message to standard error.

swprintf fwprintf(3S) Write wide characters to a string.

vfprintf vprintf(3S) Write characters to a file stream byvarargs argument list.

vfwprintf vfwprintf(3S) Write wide characters to a file stream byvarargs argu-
ment list.

vlfmt lfmt(3C) Display an error message and pass it to logging and monito
ing services, byvarargs argument list.

vpfmt pfmt(3C) Display an error message, byvarargs argument list.

vprintf vprintf(3S) Write characters to standard output byvarargs argument
list.

vsprintf vprintf(3S) Write characters to a string byvarargs argument list.

vswprintf vfwprintf(3S) Write wide characters to a string byvarargs argument list.

vwprintf vfwprintf(3S) Write wide characters to standard output byvarargs argu-
ment list.

wprintf fwprintf(3S) Write wide characters to standard output.

write write(2) Write to a file.

Table 16-7. Terminal I/O Functions

Function Reference Brief Description

cfgetispeed termios(2) Get the input baud rate.

cfsetispeed termios(2) Set the input baud rate.

cfgetospeed termios(2) Get the output baud rate.

cfsetospeed termios(2) Set the output baud rate.

ctermid ctermid(3S) Indicate the file name for the controlling terminal.

grantpt grantpt(3C) Grant access to a slave pseudo-terminal device.

Table 16-6. General Output Functions (Cont.)

Function Reference Brief Description
16-10

Run-Time Libraries

e

STREAMS 16

These functions support operations on STREAMS files.

isatty ttyname(3C) Determine if the file descriptor is associated with a terminal.

ptsname ptsname(3C) Provide the name of a slave pseudo-terminal device.

tcdrain termios(2) Wait for transmission of all output.

tcflow termios(2) Suspend transmission or reception of data.

tcflush termios(2) Discard untransmitted or unread data.

tcgetattr termios(2) Get terminal attributes.

tcgetpgrp termios(2) Get the foreground process group ID.

tcsendbreak termios(2) Send data to generate a break condition.

tcsetattr termios(2) Set terminal attributes.

tcsetpgrp termios(2) Set the foreground process group ID.

tcsetsid termios(2) Set the session ID.

t ty na m e,
ttyname_r

ttyname(3C) Provide the path name of the terminal associated with th
file descriptor.

unlockpt unclockpt(3C) Unlock a pseudo-terminal master/slave pair.

Table 16-8. STREAMS Functions

Function Reference Brief Description

fattach fattach(3C) Attach a STREAMS-based file descriptor to a
file system object.

fdetach fdetach(3C) Detach a name from a STREAMS-based file
descriptor.

getmsg,
getpmsg

getmsg(2) Get the next message off a stream from a
STREAMS file.

isastream isastream(3C) Determine if a file descriptor represents a
STREAMS file.

putmsg,
putpmsg

putmsg(2) Set a message to a STREAMS file.

Table 16-7. Terminal I/O Functions (Cont.)

Function Reference Brief Description
16-11

Compilation Systems Volume 2 (Concepts)

are

g

Pipes and FIFOs 16

These functions support operations on pipes and FIFOs.

Devices 16

These functions support general control of devices.

Special Files 16

The special files functions support a variety of operations on special files. They
grouped into the following categories:

• “File Systems Table File” on page 16-13

• “File Systems Mount Table File” on page 16-14

• “Password File” on page 16-14

• “Shadow Password File” on page 16-15

Table 16-9. Pipes and FIFOs Functions

Function Reference Brief Description

mkfifo mkfifo(3C) Create a new FIFO special file.

p2close p2close(3G) Close a pipe from a command.

p2open p2open(3G) Open a pipe to a command.

pclose popen(3S) Close a stream opened bypopen .

pipe pipe(2) Create an inter-process channel

popen popen(3S) Create a pipe as a stream between the callin
process and a command.

Table 16-10. Devices Control Functions

Function Reference Brief Description

devstat,
fdevstat

devstat(2) Get or set device security attributes.

ioctl ioctl(2) Control a device.

major makedev(3C) Provide the major number component from a
device.

makedev makedev(3C) Make a device.

minor makedev(3C) Provide the minor number component from a
device.
16-12

Run-Time Libraries

file
• “User and Accounting Information Files” on page 16-16

• “ELF Files” on page 16-17

• “Shared Objects” on page 16-22

• “Temporary Files” on page 16-22

File Systems Table File 16

These functions search and access information stored in the file systems table
(/etc/vfstab).

Table 16-11. File Systems Table File Functions

Function Reference Brief Description

endfsent getfsent(3C) Close/etc/vfstab .

getfsent getfsent(3C) Read the next line of/etc/vfstab .

getfsfile getfsent(3C) Read the next line of/etc/vfstab that
matches the file system file name.

getfsspec getfsent(3C) Read the next line of/etc/vfstab that
matches the special file name

getfstype getfsent(3C) Read the next line of/etc/vfstab that
matches the file system type.

getvfsany getvfsent(3C) Read the next line of/etc/vfstab that
matches the vfs table entry.

getvfsent getvfsent(3C) Read the next line of/etc/vfstab .

getvfsfile getvfsent(3C) Read the next line of/etc/vfstab that
matches the file system file name.

getvfsspec getvfsent(3C) Read the next line of/etc/vfstab that
matches the special file name

getvfstype getvfsent(3C) Read the next line of/etc/vfstab that
matches the file system type.

setfsent getfsent(3C) Open and rewind/etc/vfstab .
16-13

Compilation Systems Volume 2 (Concepts)

le file

fi le
File Systems Mount Table File 16

These functions search and access information stored in the file systems mount tab
(/etc/mnttab).

Password File 16

These functions search and access information stored in the password
(/etc/passwd).

Table 16-12. File Systems Mount Table File Functions

Function Reference Brief Description

addmntent getmntent(3C) A d d a mo u n t en t r y to th e en d o f
/etc/mnttab .

endmntent getmntent(3C) Close/etc/mnttab .

getmntany getmntent(3C) Read the next line of/etc/mnttab that
matches the mount entry.

getmntent getmntent(3C) Read the next line of/etc/mnttab .

hasmntopt getmntent(3C) Obtain the options subfield of a mount
entry that has the option.

setmntent getmntent(3C) Open and rewind/etc/mnttab .

Table 16-13. Password File Functions

Function Reference Brief Description

endpwent getpwent(3G) Close/etc/passwd .

fgetpwent getpwent(3G) Read the next line of a password file.

getpw getpw(3G) Read the next line of/etc/passwd that matches
the user id.

getpwent getpwent(3G) Read the next line of/etc/passwd .

putpwent putpwent(3C) Write a line to a password file.

getpwnam getpwent(3G) Read the next line of/etc/passwd that matches
the login name.

getpwuid getpwent(3G) Read the next line of/etc/passwd that matches
the user id.

setpwent getpwent(3G) Open and rewind/etc/passwd .
16-14

Run-Time Libraries

d file
Shadow Password File 16

These functions search and access information stored in the shadow passwor
(/etc/shadow).

Group File 16

These functions search and access information stored in the group file (/etc/group).

Table 16-14. Shadow Password File Functions

Function Reference Brief Description

endspent getspent(3G) Close/etc/shadow

fgetspent getspent(3G) Read the next line of a shadow password file.

getspent getspent(3G) Read the next line of/etc/shadow .

putspent putspent(3G) Write a line to a shadow password file.

getspnam getspent(3G) Read the next line of/etc/shadow that matches
the login name.

lckpwdf getspent(3G) Obtain an exclusive lock for modification of
/etc/shadow and/etc/passwd .

setspent getspent(3G) Open and rewind/etc/shadow .

ulckpwdf getspent(3G) Relinquish an exclusive lock for modification of
/etc/shadow and/etc/passwd .

Table 16-15. Group File Functions

Function Reference Brief Description

endgrent getgrent(3G) Close/etc/group .

fgetgrent getgrent(3G) Read the next line of a group file.

getgrent getgrent(3G) Read the next line of/etc/group .

getgrgid getgrent(3C) Read the next line of/etc/group that matches
the group id.

getgrnam getgrent(3C) Read the next line of/etc/group that matches
the group name.

setgrent getgrent(3G) Open and rewind/etc/group .
16-15

Compilation Systems Volume 2 (Concepts)

files
User and Accounting Information Files 16

These functions search and access information stored in the user information
(/var/adm/utmp , /var/adm/utmpx ,/var/adm/wtmp , and/var/adm/wtmpx).

Table 16-16. User and Accounting Information Files

Function Reference Brief Description

endtutent getut(3G) Close/var/adm/utmp .

endtutxent getutx(3G) Close/var/adm/utmpx .

get logi n,
getlogin_r

getlogin(3C) Provide the login name from/var/adm/utmp .

getutent getut(3G) Read the next entry of/var/adm/utmp .

getutid getut(3G) Read the next entry of/var/adm/utmp that
matches the id.

getutline getut(3G) Read the next entry of/var/adm/utmp that
matches the line.

getutmp getutx(3G) Copyutmp fields toutmpx fields.

getutmpx getutx(3G) Copyutmpx fields toutmp fields.

getutxent getutx(3G) Read the next entry of/var/adm/utmpx .

getutxid getutx(3G) Read the next entry of/var/adm/utmpx that
matches the id.

getutxline getutx(3G) Read the next entry of/var/adm/utmpx that
matches the line.

pututline getut(3G) Write an entry to/var/adm/utmp .

pututxline getutx(3G) Write an entry to/var/adm/utmpx .

setutent getut(3G) Rewind/var/adm/utmp .

setutxent getutx(3G) Rewind/var/adm/utmpx .

ttyslot ttyslot(3C) F i n d t h e s lo t o f t h e c u r r e n t u se r i n
/var/adm/utmp .

updwtmp getutx(3G) U p d a te / va r / a dm /w t m p a n d
/var/adm/wtmpx .

updwtmpx getutx(3G) U p d a te /va r /a dm / w tmp x a n d
/var/adm/wtmp .

utmpname getut(3G) Change the name from/var/adm/utmp .

utmpxname getutx(3G) Change the name from/var/adm/utmpx .
16-16

Run-Time Libraries

s
ail-
ELF Files 16

These functions access and manipulate ELF object files.

These functions usedescriptors , which provide private handles to the various piece
of an ELF object file. A more detailed overview of the ELF files access functions is av
able inelf(3E) .

Table 16-17. ELF Files Functions

Function Reference Brief Description

elf_begin elf_begin(3E) Make a file descriptor.

elf_cntl elf_cntl(3E) Control a file descriptor.

elf_end elf_end(3E) Finish using an object file.

elf_errmsg elf_error(3E) Return an error message.

elf_errno elf_error(3E) Return an internal error number.

elf_fill elf_fill(3E) Set the fill byte.

elf_flagdata elf_flag(3E) Manipulate flags for a data descriptor.

elf_flagehdr elf_flag(3E) Manipulate flags for an ELF header descriptor.

elf_flagelf elf_flag(3E) Manipulate flags for an ELF descriptor.

elf_flagphdr elf_flag(3E) Manipulate flags for a program header descriptor.

elf_flagscn elf_flag(3E) Manipulate flags for a section descriptor.

elf_flagshdr elf_flag(3E) Manipulate flags for a section header descriptor.

elf32_fsize elf_fsize(3E) Return the size of an object file.

elf_getarhdr elf_getarhdr(3E) Retrieve an archive member header.

elf_getarsym elf_getarsym(3E) Retrieve the archive symbol table.

elf_getbase elf_getbase(3E) Get the base offset for an object file.

elf_getdata elf_getdata(3E) Get a data buffer.

elf_newdata elf_getdata(3E) Create a new data descriptor.

elf_rawdata elf_getdata(3E) Get uninterpreted bytes of a data buffer.

elf32_getehdr elf_getehdr(3E) Get an ELF header.

elf32_newehdr elf_getehdr(3E) Create an ELF header.

elf_getident elf_getident(3E) Retrieve file identification data.

elf32_getphdr elf_getphdr(3E) Get a program header.

elf32_newphdr elf_getphdr(3E) Create a program header.

elf_getscn elf_getscn(3E) Return a section descriptor.

elf_ndxscn elf_getscn(3E) Return a section table index.

elf_newscn elf_getscn(3E) Create a section.
16-17

Compilation Systems Volume 2 (Concepts)

ject

of
ng

e

y

DWARF Debugging Information 16

These functions access and manipulate DWARF debugging information in ELF ob
files.

These functions usedescriptors, which provide private handles to the various pieces
DWARF debugging information. A more detailed overview of the DWARF debuggi
information access functions is available in Chapter 25.

elf_nextscn elf_getscn(3E) Return a section descriptor for the next higher section.

elf32_getshdr elf_getshdr(3E) Return a section header.

elf_hash elf_hash(3E) Compute a hash value.

elf_kind elf_kind(3E) Determine the file type.

elf_next elf_next(3E) Provide sequential access to the next archive member.

elf_rand elf_rand(3E) Provide random access to an archive member.

elf_rawfile elf_rawfile(3E) Retrieve uninterpreted file contents.

elf_strptr elf_strptr(3E) Create a string pointer.

elf_update elf_update(3E) Update an ELF descriptor.

elf_version elf_version(3E) Determinelibelf ’s internal version.

elf32_xlateof elf_xlate(3E) Translate memory representations to 32-bit class fil
representations.

elf32_xlateom elf_xlate(3E) Translate 32-bit class file representations to memor
representations.

Table 16-18. DWARF Debugging Information Functions

Function Reference Brief Description

dwarf_arrayorder dwarf_arrayorder(3DWARF) Return a code indicating array ordering.

dwarf_atname dwarf_atname(3DWARF) Return the attribute name of an attribute.

dwarf_attr dwarf_attr(3DWARF) Return an attribute desciptor.

dwarf_attrlist dwarf_attrlist(3DWARF) Return the number of elements in an attribute
list.

dwarf_bitoffset dwarf_bitoffset(3DWARF) Return the bit offset of a bit field value.

dwarf_bitsize dwarf_bitsize(3DWARF) Return the number of bits in a bit field value.

dwarf_bytesize dwarf_bytesize(3DWARF) Return the byte size for a DIE.

dwarf_child dwarf_child(3DWARF) Identify the first child of a DIE.

dwarf_childcnt dwarf_childcnt(3DWARF) Return the number of children for a DIE.

Table 16-17. ELF Files Functions (Cont.)

Function Reference Brief Description
16-18

Run-Time Libraries

-

-

dwarf_dealloc dwarf_dealloc(3DWARF) Free dynamic storage.

dwarf_dieline dwarf_dieline(3DWARF) Return a line number descriptor.

dwarf_diename dwarf_diename(3DWARF) Return the name for a DIE.

dwarf_dieoffset dwarf_dieoffset(3DWARF) Return the offset of a DIE.

dwarf_elemlist dwarf_elemlist(3DWARF) Return the number of an elements in an ele
ment list.

dwarf_errmsg dwarf_errmsg(3DWARF) Return an error message string.

dwarf_errno dwarf_errno(3DWARF) Return an error number.

dwarf_finish dwarf_finish(3DWARF) Release internal resources.

dwarf_formaddr dwarf_formaddr(3DWARF) Return the address value of an attribute.

dwarf_formblock dwarf_formblock(3DWARF) Return a block structure.

dwarf_formref dwarf_formref(3DWARF) Return the reference value of an attribute.

dwarf_formsdata dwarf_formsdata(3DWARF) Return the signed value of an attribute.

dwarf_formstring dwarf_formstring(3DWARF) Return the string of an attribute.

dwarf_formudata dwarf_formudata(3DWARF) Return the unsigned value of an attribute.

dwarf_fundtype dwarf_fundtype(3DWARF) Return the fundamental type of a type.

dwarf_globdie dwarf_globdie(3DWARF) Return a global DIE.

dwarf_globname dwarf_globname(3DWARF) Return the name for a global DIE.

dwarf_hasattr dwarf_hasattr(3DWARF) Indicate if a DIE has a particular attribute.

dwarf_hasform dwarf_hasform(3DWARF) Indicate if a DIE has a particular attribute
form.

dwarf_hibounds dwarf_hibounds(3DWARF) Return the upper bound of an array subscript.

dwarf_highpc dwarf_highpc(3DWARF) Return the high pc for a DIE.

dwarf_init dwarf_init(3DWARF) Return a handle for accessing DWARF infor-
mation.

dwarf_is1stline dwarf_is1stline(3DWARF) Indicate if a line is the first in a block.

dwarf_isbitfield dwarf_isbitfield(3DWARF) Indicate whether if a DIE represents a bit field
member.

dwarf_isfundtype dwarf_isfundtype(3DWARF) Indicate whether a type represents a fundamen
tal type.

dwarf_lineaddr dwarf_lineaddr(3DWARF) Return the address for a line number.

dwarf_lineno dwarf_lineno(3DWARF) Return the source statement line number for a
line number.

dwarf_lineoff dwarf_lineoff(3DWARF) Return the offset for a line number.

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function Reference Brief Description
16-19

Compilation Systems Volume 2 (Concepts)

.

dwarf_linesrc dwarf_linesrc(3DWARF) Return the name of a compilation unit for a
line number.

dwarf_lobounds dwarf_lobounds(3DWARF) Return the lower bound of an array subscript.

dwarf_loclist dwarf_loclist(3DWARF) Return the number of elements in a location
list.

dwarf_lowpc dwarf_lowpc(3DWARF) Return the low pc for a DIE.

dwarf_modlist dwarf_modlist(3DWARF) Return the number of elements in a type modi-
fier list.

dwarf_nextdie dwarf_nextdie(3DWARF) Return the next DIE.

dwarf_nextglob dwarf_nextglob(3DWARF) Return the next global DIE.

dwarf_nextline dwarf_nextline(3DWARF) Return the next line number.

dwarf_nthsubscr dwarf_nthsubscr(3DWARF) Return a subscript.

dwarf_offdie dwarf_offdie(3DWARF) Return the DIE at a particular offset.

dwarf_pcfile dwarf_pcfile(3DWARF) Return the compilation unit DIE for a pc.

dwarf_pclines dwarf_pclines(3DWARF) Create a block of line numbers.

dwarf_pcscope dwarf_pcscope(3DWARF) Return the DIE for a pc scope.

dwarf_pcsubr dwarf_pcsubr(3DWARF) Return the subroutine DIE for a pc.

dwarf_prevline dwarf_prevline(3DWARF) Return the previous line number.

dwarf_seterrarg dwarf_seterrarg(3DWARF) Replace the error handler communication area

dwarf_seterrhand dwarf_seterrhand(3DWARF) Replace the error handler.

dwarf_srclang dwarf_srclang(3DWARF) Return the source language for a compilation
unit.

dwarf_srclines dwarf_srclines(3DWARF) Place all compilation unit line numbers into a
block.

dwarf_stringlen dwarf_stringlen(3DWARF) Return the length of a string represented by a
DIE.

dwarf_subscrcnt dwarf_subscrcnt(3DWARF) Return the number of subscript attributes for a
type.

dwarf_subscrtype dwarf_subscrtype(3DWARF) Return the type of a subscript element.

dwarf_tag dwarf_tag(3DWARF) Return the tag for a DIE.

dwarf_typeof dwarf_typeof(3DWARF) Return a type descriptor for a type.

dwarf_udtype dwarf_udtype(3DWARF) Return a DIE for a user defined type.

dwarf_is1stline dwarf_is1stline(3DWARF) Indicate if a line is the first in a block.

dwarf_isbitfield dwarf_isbitfield(3DWARF) Indicate whether if a DIE represents a bit field
member.

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function Reference Brief Description
16-20

Run-Time Libraries

-

.

dwarf_isfundtype dwarf_isfundtype(3DWARF) Indicate whether a type represents a fundamen
tal type.

dwarf_lineaddr dwarf_lineaddr(3DWARF) Return the address for a line number.

dwarf_lineno dwarf_lineno(3DWARF) Return the source statement line number for a
line number.

dwarf_lineoff dwarf_lineoff(3DWARF) Return the offset for a line number.

dwarf_linesrc dwarf_linesrc(3DWARF) Return the name of a compilation unit for a
line number.

dwarf_lobounds dwarf_lobounds(3DWARF) Return the lower bound of an array subscript.

dwarf_loclist dwarf_loclist(3DWARF) Return the number of elements in a location
list.

dwarf_lowpc dwarf_lowpc(3DWARF) Return the low pc for a DIE.

dwarf_modlist dwarf_modlist(3DWARF) Return the number of elements in a type modi-
fier list.

dwarf_nextdie dwarf_nextdie(3DWARF) Return the next DIE.

dwarf_nextglob dwarf_nextglob(3DWARF) Return the next global DIE.

dwarf_nextline dwarf_nextline(3DWARF) Return the next line number.

dwarf_nthsubscr dwarf_nthsubscr(3DWARF) Return a subscript.

dwarf_offdie dwarf_offdie(3DWARF) Return the DIE at a particular offset.

dwarf_pcfile dwarf_pcfile(3DWARF) Return the compilation unit DIE for a pc.

dwarf_pclines dwarf_pclines(3DWARF) Create a block of line numbers.

dwarf_pcscope dwarf_pcscope(3DWARF) Return the DIE for a pc scope.

dwarf_pcsubr dwarf_pcsubr(3DWARF) Return the subroutine DIE for a pc.

dwarf_prevline dwarf_prevline(3DWARF) Return the previous line number.

dwarf_seterrarg dwarf_seterrarg(3DWARF) Replace the error handler communication area

dwarf_seterrhand dwarf_seterrhand(3DWARF) Replace the error handler.

dwarf_srclang dwarf_srclang(3DWARF) Return the source language for a compilation
unit.

dwarf_srclines dwarf_srclines(3DWARF) Place all compilation unit line numbers into a
block.

dwarf_stringlen dwarf_stringlen(3DWARF) Return the length of a string represented by a
DIE.

dwarf_subscrcnt dwarf_subscrcnt(3DWARF) Return the number of subscript attributes for a
type.

dwarf_subscrtype dwarf_subscrtype(3DWARF) Return the type of a subscript element.

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function Reference Brief Description
16-21

Compilation Systems Volume 2 (Concepts)

y are
Shared Objects 16

These functions support control of shared objects.

Temporary Files 16

These functions support control of temporary files.

Strings and Characters 16

These functions provide operations on characters and strings of characters. The
grouped into the following categories:

• “String Manipulation” on page 16-23

• “Wide String Manipulation” on page 16-24

dwarf_tag dwarf_tag(3DWARF) Return the tag for a DIE.

dwarf_typeof dwarf_typeof(3DWARF) Return a type descriptor for a type.

dwarf_udtype dwarf_udtype(3DWARF) Return a DIE for a user defined type.

Table 16-19. Shared Objects Functions

Function Reference Brief Description

dlclose dlclose(3C) Close a shared object.

dlerror dlerror(3C) Obtain diagnostic information..

dlopen dlopen(3C) Open a shared object.

dlsym dlsym(3C) Obtain the address of a symbol in a shared object.

Table 16-20. Temporary Files

Function Reference Brief Description

mktemp mktemp(3C) Create file name using a template.

tempnam tmpnam(3S) Create a temporary file name.

tmpfile tmpfile(3S) Create a temporary file.

tmpnam tmpnam(3S) Create a temporary file name.

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function Reference Brief Description
16-22

Run-Time Libraries

to

e

• “Wide String Manipulation” on page 16-24

• “Wide Character Test” on page 16-26

• “Wide Character Test” on page 16-26

• “Multibyte and Wide Characters” on page 16-27

• “Regular Expression and Pattern Matching” on page 16-27

String Manipulation 16

These functions manipulate character strings.

Table 16-21. String Manipulation Functions

Function Reference Brief Description

confstr confstr(3C) Obtain a configurable string.

index string(3C) Locate the first occurrence of a character in a string.

rindex string(3C) Locate the last occurrence of a character in a string.

strcadd strccpy(3G) Copy a string, compressing escape codes, and point
the terminating null byte.

strcat string(3C) Concatenate two strings.

strccpy strccpy(3G) Copy a string, compressing escape codes.

strchr string(3C) Search a string for character.

strcmp string(3C) Compare two strings.

strcoll strcoll(3C) Sort strings using locale-specific collation tables.

strcpy string(3C) Copy a string.

strcspn string(3C) Obtain the length of the initial string not containing a
set of characters.

strdup string(3C) Obtain a pointer to a new string.

streadd strccpy(3G) Copy a string, expanding escape codes, and point to th
terminating null byte.

strecpy strccpy(3G) Copy a string, expanding escape codes.

strfind str(3G) Locate the first occurrence of a string.

strlen string(3C) Obtain the length of a string.

strncat string(3C) Concatenate two strings, with a maximum length.

strncmp string(3C) Compare two strings, with a maximum length.

strncpy string(3C) Copy a string, with a maximum length.

strpbrk string(3C) Search a string for a set of characters.

strrchr string(3C) Search a string backwards for a character.
16-23

Compilation Systems Volume 2 (Concepts)

of
Wide String Manipulation 16

These functions manipulate wide character strings.

strrspn str(3G) Locate the first character to be trimmed.

strspn string(3C) Obtain the length of the initial string containing a set of
characters.

strstr string(3C) Locate the first occurrence of a substring in a string.

st r t ok ,
strtok_r

string(3C) Search a string for a token separated by any of a set
characters.

strtrns str(3G) Transform a string.

strxfrm strxfrm(3C) Transform a string.

Table 16-22. Wide String Manipulation Functions

Function Reference Brief Description

wcscat wcscat(3C) Concatenate two wide character strings.

wcschr wcschr(3C) Scan a wide character string.

wcscmp wcscmp(3C) Compare two wide character strings.

wcscoll wcscoll(3C) Compare two wide character strings using collating information.

wcscpy wcscpy(3C) Copy a wide character string.

wcscspn wcscspn(3C) Obtain the length of a complementary wide character substring.

wcsftime wcsftime(3C) Convert a date and time to a wide character string.

wcslen wcslen(3C) Obtain the length of a wide character string.

wcsncat wcsncat(3C) Concatenate two wide character strings, with bound.

wcsncmp wcsncmp(3C) Compare two wide character strings, with bound.

wcsncpy wcsncpy(3C) Copy a wide character string, with bound.

wcspbrk wcspbrk(3C) Scan a wide character string for wide characters.

wcsrchr wcsrchr(3C) Reverse the scan of a wide character string for wide characters.

wcsspn wcsspn(3C) Obtain the length of a wide character substring.

wcsstr wcsstr(3C) Find a wide character substring in a wide character string.

wcstod wcstod(3C) Convert a wide character string to a double-precision value.

wcstof wcstof(3C) Convert a wide character string to a single-precision value.

wcstok wcstok(3C) Split a wide character string into tokens.

wcstold wcstod(3C) Convert a wide character string to a long double-precision value.

Table 16-21. String Manipulation Functions (Cont.)

Function Reference Brief Description
16-24

Run-Time Libraries

r.
Character Test 16

These functions test characters.

wcstol wcsstrtol(3C) Convert a wide character string to a long integer value.

wcstoul wcsstrtol(3C) Convert a wide character string to an unsigned long integer value.

wcswidth wcswidth(3C) Determine the number of column positions for a wide character string.

wcsxfrm wcsxfrm(3C) Transform a wide character string.

wctob wctob(3C) Provide the single byte representation of a wide character.

Table 16-23. Character Test Functions

Function Reference Brief Description

isalnum ctype(3C) Determine if the character is an alphanumeric characte

isalpha ctype(3C) Determine if the character is an alphabetic character.

isascii ctype(3C) Determine if the character is an ASCII character.

iscntrl ctype(3C) Determine if the character is a control character.

isdigit ctype(3C) Determine if the character is a digit.

isgraph ctype(3C) Determine if the character is a printable character.

islower ctype(3C) Determine if the character is a lowercase letter.

isprint ctype(3C) Determine if the character is a printing character.

ispunct ctype(3C) Determine if the character is a punctuation character.

isspace ctype(3C) Determine if the character is a white space character.

isupper ctype(3C) Determine if the character is an uppercase letter.

isxdigit ctype(3C) Determine if the character is a hex digit.

Table 16-22. Wide String Manipulation Functions (Cont.)

Function Reference Brief Description
16-25

Compilation Systems Volume 2 (Concepts)
Wide Character Test 16

These functions test wide characters.

Character Translation 16

These functions translate characters and character strings.

Table 16-24. Wide Character Test Functions

Function Reference Brief Description

iswalnum wctype(3C) Determine if the wide character is an alphanumeric character.

iswalpha wctype(3C) Determine if the wide character is an alphabetic character.

iswcntrl wctype(3C) Determine if the wide character is a control character.

iswctype iswctype(3C) Determines if the wide character is of a particular wide character class.

iswdigit wctype(3C) Determine if the wide character is a digit.

iswgraph wctype(3C) Determine if the wide character is a printable character.

iswlower wctype(3C) Determine if the wide character is a lowercase letter.

iswprint wctype(3C) Determine if the wide character is a printing character.

iswpunct wctype(3C) Determine if the wide character is a punctuation character.

iswspace wctype(3C) Determine if the wide character is a white space character.

iswupper wctype(3C) Determine if the wide character is an uppercase letter.

iswxdigit wctype(3C) Determine if the wide character is a hex digit.

wcwidth wcwidth(3C) Determine the number of column positions for a wide character.

wcswidth wcswidth(3C) Determine the number of column positions for a wide character string.

Table 16-25. Character Translation Functions

Function Reference Brief Description

iconv iconv(3C) Convert characters from one code set to another.

iconv_close iconv_close(3C) Close a code set conversion file descriptor.

iconv_open iconv_open(3C) Open a code set conversion file descriptor.

toascii conv(3C) Convert an integer value to ASCII character.

tolower,
_tolower

conv(3C) Convert character to lowercase.

toupper,
_toupper

conv(3C) Convert character to uppercase.
16-26

Run-Time Libraries

r-

on

a

on

a

.

Multibyte and Wide Characters 16

These functions support operations on multibyte and wide characters.

Regular Expression and Pattern Matching 16

These functions support operations involving regular expressions and patterns.

Table 16-26. Multibyte and Wide Characters Functions

Function Reference Brief Description

mblen mbchar(3C) Determine the number of bytes in a multibyte character.

mbrlen mbchar(3C) Determine the number of bytes in a multibyte character, using a conve
sion state.

mbrtowc mbchar(3C) Convert a multibyte character to a wide character, using a conversi
state.

mbsrtowcs mbstring(3C) Convert a multibyte character string to a wide character string, using
conversion state

mbstowcs mbstring(3C) Convert a multibyte character string to a wide character string.

mbtowc mbchar(3C) Convert a multibyte character to a wide character.

sisinit sisinit(3C) Test for an initial multibyte conversion state.

wcrtomb mbchar(3C) Convert a wide character to a multibyte character, using a conversi
state.

wcsrtombs mbstring(3C) Convert a wide character string to a multibyte character string, using
conversion state.

wcstombs mbstring(3C) Convert a wide character string to a multibyte character string.

Table 16-27. Regular Expression and Pattern Matching Functions

Function Reference Brief Description

advance regexpr(3G) Step and perform a restricted comparison with a regular expression

bufsplit bufsplit(3G) Split a buffer into fields.

compile regexpr(3G) Compile a regular expression.

fnmatch fnmatch(3C) Match a file name or pattern.

glob glob(3C) Generate a path name matching a pattern.

globfree glob(3C) Free space allocated in a previous call toglob .

gmatch gmatch(3G) Perform shell global pattern matching.

regcmp regcmp(3G) Compile a regular expression.

regcomp regcomp(3C) Compile a regular expression.
16-27

Compilation Systems Volume 2 (Concepts)

fol-

emory
Memory 16

These functions provide operations on blocks of memory. They are grouped into the
lowing categories:

• “Memory Manipulation” on page 16-28

• “Memory Allocation” on page 16-29

• “Memory Control” on page 16-30

• “Shared Memory” on page 16-30

Memory Manipulation 16

These functions locate characters in a memory area and copy characters from one m
area to another.

regerror regcomp(3C) Provide a printable error string.

regex regcmp(3G) Execute a compiled regular expression.

regexec regcomp(3C) Compare with a regular expression.

regfree regcomp(3C) Free space allocated in a previous call toregcomp .

step regexpr(3G) Step and compare with a regular expression.

wordexp wordexp(3C) Perform word expansions.

wordfree wordexp(3C) Free space allocated in a previous call towordexp .

Table 16-28. Memory Manipulation Functions

Function Reference Brief Description

bcmp bstring(3C) Compare two blocks of memory.

bcopy bstring(3C) Copy a block of memory.

bzero bstring(3C) Zero out a block of memory.

ffs ffs(3C) Find the first set bit in a value.

memccpy memory(3C) Copy characters from one memory area to another
until a given character is found.

memchr memory(3C) Obtain a pointer to the first occurrence of a given
character in a memory area.

memcmp memory(3C) Compare two memory areas.

Table 16-27. Regular Expression and Pattern Matching Functions (Cont.)

Function Reference Brief Description
16-28

Run-Time Libraries

reed.
Memory Allocation 16

These functions provide a means by which memory can be dynamically allocated or f

memcpy memory(3C) Copy characters from one memory area to another.

memset memory(3C) Set the first characters in a memory area to a char-
acter value.

memmove memory(3C) Copy characters from one memory area to another
until a given character is found.

swab swab(3C) Swap bytes.

Table 16-29. Memory Allocation Functions

Function Reference Brief Description

brk,
sbrk

brk(2) Change the data segment space allocation.

calloc malloc(3C) Allocate an area of zeroed storage.

free malloc(3C) Free some previously allocated storage.

mallinfo malloc(3C) Provide information describing the usage of
allocated storage.

malloc malloc(3C) Allocate storage.

memalign malloc(3C) Allocate storage on a specific byte-aligned
boundary.

realloc malloc(3C) Change the size of allocated storage.

valloc malloc(3C) Allocate storage on a page-aligned boundary.

Table 16-28. Memory Manipulation Functions (Cont.)

Function Reference Brief Description
16-29

Compilation Systems Volume 2 (Concepts)
Memory Control 16

These functions control pages in memory.

Shared Memory 16

These functions support operations on shared memory.

Table 16-30. Memory Control Functions

Function Reference Brief Description

memcntl memcntl(2) Control operations over the address space.

mincore mincore(2) Determine the residency of memory pages.

mlock mlock(3C) Lock pages in memory.

mlockall mlockall(3C) Lock an address space in memory.

mmap mmap(2) Map pages of memory.

munmap munmap(2) Unmap pages of memory.

mprotect mprotect(2) Set the protection of memory mapping.

msync msync(3C) Synchronize memory with physical storage.

munlock mlock(3C) Unlock pages in memory.

munlockall mlockall(3C) Unlock an address space in memory.

plock plock(2) Lock segments into memory, or unlock text or
data segments.

Table 16-31. Shared Memory Control Functions

Function Reference Brief Description

shmat shmop(2) Attach the shared memory segment to the data
segment of the calling process.

shmbind shmbind(2) Bind a shared memory segment to a physical
address.

shmctl shmctl(2) Perform shared memory control operations.

shmdt shmop(2) Detach the shared memory segment from the
data segment of the calling process.

shmget shmget(2) Get a shared memory segment identifier.
16-30

Run-Time Libraries

nto the

, suffi-
Data Structures 16

These functions provide operations on tables, trees, and queues. They are grouped i
following categories:

• “Tables” on page 16-31

• “Hash Tables” on page 16-31

• “File Trees” on page 16-32

• “Binary Trees” on page 16-32

• “Message Queues” on page 16-32

• “Queues” on page 16-33

Tables 16

These functions manage tables. Because none of these functions allocate storage
cient memory must be allocated before using them.

Hash Tables 16

These functions manage hash search tables.

Table 16-32. Tables Functions

Function Reference Brief Description

bsearch bsearch(3C) Search a table using a binary search.

lfind lsearch(3C) Find an element in a library tree.

lsearch lsearch(3C) Look for and add an element in a binary tree.

qsort qsort(3C) Sort a table using the quick-sort algorithm.

Table 16-33. Hash Tables Functions

Function Reference Brief Description

hcreate hsearch(3C) Create a hash table.

hdestroy hsearch(3C) Destroy a hash table.

hsearch hsearch(3C) Search a hash table.
16-31

Compilation Systems Volume 2 (Concepts)

.

File Trees 16

These functions traverse file trees.

Binary Trees 16

These functions manage binary trees.

Message Queues 16

These functions support operations on message queues.

Table 16-34. File Trees Functions

Function Reference Brief Description

ftw ftw(3C) Walk a file tree.

nftw ftw(3C) Walk a file tree in an enhanced mode.

Table 16-35. Binary Trees Functions

Function Reference Brief Description

tdelete tsearch(3C) Delete nodes from a binary tree.

tfind tsearch(3C) Find an element in a binary tree.

tsearch tsearch(3C) Look for and add an element to a binary tree.

twalk tsearch(3C) Walk through a binary tree.

Table 16-36. Message Queues Functions

Function Reference Brief Description

mq_close mq_close(3) Close a message queue.

mq_getattr mq_getattr(3) Get attributes of a message queue.

mq_notify mq_notify(3) Attach notification request to a message queue

mq_open mq_open(3) Open a message queue.

mq_receive mq_receive(3) Receive a message from a message queue.

mq_send mq_send(3) Send a message to a message queue.

mq_setattr mq_setattr(3) Set attributes of a message queue.

mq_unlink mq_unlink(3) Unlink a message queue.

msgctl msgctl(2) Control message operations.
16-32

Run-Time Libraries

timer,
Queues 16

These functions manipulate queues built from doubly linked lists.

Semaphores 16

These functions support operations on semaphores.

Date and Time 16

These functions access and reformat the current date and time, access the POSIX
and access the interval timer. They are grouped into the following categories:

• “General Date and Time” on page 16-34

• “Interval Timer” on page 16-35

• “POSIX Timer” on page 16-35

msgget msgget(2) Get a message queue identifier.

msgrcv msgop(2) Receive a message.

msgsnd msgop(2) Send a message.

Table 16-37. Queues Functions

Function Reference Brief Description

insque insque(3C) Insert element into a queue.

remque insque(3C) Delete element from a queue.

Table 16-38. Semaphores Functions

Function Reference Brief Description

semctl semctl(2) Control semaphores.

semget semget(2) Get a set of semaphores.

semop semop(2) Atomically perform sema-
phore operations.

Table 16-36. Message Queues Functions (Cont.)

Function Reference Brief Description
16-33

Compilation Systems Volume 2 (Concepts)

a

n

a

General Date and Time 16

These functions access and manipulate the current date and time.

Table 16-39. General Date and Time Functions

Function Reference Brief Description

adjtime adjtime(2) Correct the time to allow synchronization of the system clock.

as ct im e ,
asctime_r

ctime(3C) Return the string representation of the date and time.

ascftime strftime(3C) Return the string representation of the date and time based on
format string.

ctime,
ctime_r

ctime(3C) Return the string representation of the date and time, given a
integer form.

cftime strftime(3C) Return the string representation of the date and time based on
format string, given an integer form.

clock clock(3C) Report the CPU time used.

difftime difftime(3C) Compute the difference between two calendar times.

getdate getdate(3C) Convert a user-defined date and/or time specification.

gettimeofday gettimeofday(3C) Get the system’s current time.

gmtime,
gmtime_r

ctime(3C) Return the Greenwich mean time.

lo ca l t i me ,
localtime_r

ctime(3C) Return the local time.

mktime mktime(3C) Convert a time to a calendar time.

settime stime(2) Set the system’s time and date.

settimeofday settimeofday(3C) Set the system’s current time.

strftime strftime(3C) Convert a date and time to a string.

strptime strtime(3C) Convert a string to a date and time.

time time(2) Obtain the time since UTC.

times times(2) Obtain process and child process times.

tzset ctime(3C) Set the time zone field from an environment variable.
16-34

Run-Time Libraries

uped
Interval Timer 16

These functions access the interval timer.

POSIX Timer 16

These functions access the POSIX clock and per-process timer.

Internationalization 16

The functions support the internationalization of data and messages. They are gro
according to the following categories:

• “Locales” on page 16-36

• “Message Catalogs” on page 16-36

Table 16-40. Interval Timer Functions

Function Reference Brief Description

getitimer getitimer(3C) Get the value of the interval timer.

setitimer getitimer(3C) Set the value of the interval timer.

Table 16-41. POSIX Timer Functions

Function Reference Brief Description

clock_getres clock_getres(3C) Get the resolution of the POSIX clock.

clock_gettime clock_gettime(3C) Get the value of the POSIX clock.

clock_settime clock_settime(3C) Set the value of the POSIX clock.

posix_clocks posix_clocks(2) Get or set a POSIX clock.

posix_timers posix_timers(2) Support the per-process POSIX timers.

timer_create timer_create(3C) Create a POSIX per-process timer.

timer_delete timer_delete(3C) Delete a POSIX per-process timer.

timer_getoverrun timer_getoverrun(3C) Get the overrun count for a POSIX per-process timer.

timer_gettime timer_gettime(3C) Get the value of a POSIX per-process timer.

timer_settime timer_settime(3C) Arm a POSIX per-process timer.
16-35

Compilation Systems Volume 2 (Concepts)

con-
at-
Locales 16

These functions support the use of locales.

Message Catalogs 16

These functions support the use of message catalogs.

Mathematic and Numeric 16

The functions provide mathematical, arithmetic, and numeric operations, as well as
trol over the floating-point environment They are grouped according to the following c
egories:

• “Trigonometric” on page 16-37

• “Bessel” on page 16-37

• “Hyperbolic” on page 16-38

• “Miscellaneous Mathematic Functions” on page 16-38

• “Numeric Conversion” on page 16-39

• “Other Arithmetic” on page 16-41

• “Floating-Point Environment” on page 16-41

Table 16-42. Locales Functions

Function Reference Brief Description

nl_langinfo nl_langinfo(3C) Obtain locale-specific information.

setlocale setlocale(3C) Establish the current locale name.

localeconv localeconv(3C) Obtain numeric and monetary formatting infor-
mation.

strfmon strfmon(3C) Convert a monetary value to a string.

Table 16-43. Message Catalogs Functions

Function Reference Brief Description

catopen catopen(3C) Open a message catalog.

catclose catopen(3C) Close a message catalog.

catgets catgets(3C) Read a message from a message catalog.

gettxt gettxt(3C) Read a text string from a message catalog.

setcat setcat(3C) Define the default message catalog.
16-36

Run-Time Libraries

nd tan-

f sev-
• “Pseudo-Random Number Generation Functions” on page 16-42

Trigonometric 16

These functions are used to compute angles (in radian measure), sines, cosines, a
gents.

Bessel 16

These functions are used to calculate bessel functions of the first and second kinds o
eral orders.

Table 16-44. Trigonometric Functions

Function Reference Brief Description

ac os ,
acosf

trig(3M) Arc cosine.

as in ,
asinf

trig(3M) Arc sine.

at an ,
atanf

trig(3M) Arc tangent.

at an 2,
atan2f

trig(3M) Arc tangent of a ratio.

cos,
cosf

trig(3M) Cosine.

sin,
sinf

trig(3M) Sine.

tan,
tanf

trig(3M) Tangent.

Table 16-45. Bessel Functions

Function Reference Brief Description

j0 bessel(3M) Bessel function of the first kind of order 0.

j1 bessel(3M) Bessel function of the first kind of order 1.

jn bessel(3M) Bessel function of the first kind or order n.

y0 bessel(3M) Bessel function of the second kind of order 0.

y1 bessel(3M) Bessel function of the second kind of order 1.

yn bessel(3M) Bessel function of the second kind of order n.
16-37

Compilation Systems Volume 2 (Concepts)

ntial,
r por-

.

n

Hyperbolic 16

These functions are used to compute the hyperbolic sine, cosine, and tangent.

Miscellaneous Mathematic Functions 16

These functions cover a wide variety of operations, such as natural logarithm, expone
and absolute value. In addition, several functions are provided to truncate the intege
tion of floating-point values.

Table 16-46. Hyperbolic Functions

Function Reference Brief Description

acosh sinh(3M) Inverse hyperbolic cosine.

asinh sinh(3M) Inverse hyperbolic sine.

atanh sinh(3M) Inverse hyperbolic tangent.

co sh ,
coshf

sinh(3M) Hyperbolic cosine.

si nh ,
sinhf

sinh(3M) Hyperbolic sine.

ta nh ,
tanhf

sinh(3M) Hyperbolic tangent.

Table 16-47. Miscellaneous Mathematical Functions

Function Reference Brief Description

ce i l ,
ceilf

floor(3M) Smallest integral value not less than a given value

cbrt exp(3M) Cube root.

erf erf(3M) Error function.

erfc erf(3M) Complementary error function.

copysign floor(3M) Copy of given value with a given sign.

exp, expf exp(3M) Exponential (base e).

expm1 exp(3M) Equivalent to exp(x)-1.0.

fa bs ,
fabsf

floor(3M) Absolute value.

f l oo r ,
floorf

floor(3M) Largest integral value not greater than a give
value.

fm od ,
fmodf

floor(3M) Remainder of division of two given values.
16-38

Run-Time Libraries

lt

s.

t

Numeric Conversion 16

These functions perform numeric conversions.

gamma,
lgamma

gamma(3M) Natural logarithm of the absolute value of the resu
of applying the gamma function to a given value.

hypot hypot(3M) Square root of the sum of the squares of two value

log,
logf

exp(3M) Natural logarithm.

lo g1 0,
log10f

exp(3M) Logarithm base ten.

log1p exp(3M) Equivalent to log(1.0+x).

matherr matherr(3M) Error-handling function for math functions.

pow,
powf

exp(3M) A given value raised to another given value.

remainder floor(3M) Remainder of division of two given values.

rint floor(3M) Nearest integral value to a given floating-poin
value.

sq r t ,
sqrtf

exp(3M) Square root.

Table 16-48. Numeric Conversion Functions

Function Reference Brief Description

a64l a64l(3C) Convert a base-64 ASCII string to a long integer
value.

abs abs(3C) Obtain the absolute integer value.

atof strtod(3C) Convert a string to a single-precision value.

atoi strtol(3C) Convert a string to an integer value.

atol strtol(3C) Convert a string to a long integer value.

ecvt ecvt(3C) Convert a double-precision value to a string.

ecvtl ecvt(3C) Convert a long double-precision value to a string.

fcvt ecvt(3C) Convert a double-precision value to a string using
Fortran format.

fcvtl ecvt(3C) Convert a long double-precision value to a string
using Fortran format.

Table 16-47. Miscellaneous Mathematical Functions (Cont.)

Function Reference Brief Description
16-39

Compilation Systems Volume 2 (Concepts)

-

g

n

n

frexp frexp(3C) Split a double-precision value into mantissa and
exponent.

frexpl frexp(3C) Split a long double-precision value into mantissa
and exponent.

gcvt ecvt(3C) Convert a double-precision value to a string in the
style of FortranF or E format.

gcvtl ecvt(3C) Convert a long double-precision value to a string in
the style of FortranF or E format.

labs abs(3C) Return the absolute integer value.

ldexp frexp(3C) Combine the mantissa and the exponent of a dou
ble-precision value.

ldexpl frexp(3C) Combine the mantissa and the exponent of a lon
double-precision value.

logb frexp(3C) Obtain the radix exponent of a double-precision
value.

logbl frexp(3C) Obtain the radix exponent of long double-precision
value.

ltol3 l3tol(3C) Convert long integer values to 3-byte integer val-
ues.

l3tol l3tol(3C) Convert 3-byte integer values to long integer values

l6 4a ,
l64a_r

a64l(3C) Convert a long integer value to a base-64 ASCII
string.

modf frexp(3C) Split the mantissa of a double-precision value into
integer and fraction parts.

modff frexp(3C) Split the mantissa of long double-precision value
into integer and fraction parts.

modfl frexp(3C) Split mantissa of a single-precision value into inte-
ger and fraction parts.

nextafter frexp(3C) Return the next representable double-precisio
value.

nextafterl frexp(3C) Return the next representable long double-precisio
value.

scalb frexp(3C) Perform radix scaling for a double-precision value.

scalbl frexp(3C) Perform radix scaling for a long double-precision
value.

strtod strtod(3C) Convert a string to a double-precision value.

Table 16-48. Numeric Conversion Functions (Cont.)

Function Reference Brief Description
16-40

Run-Time Libraries

the

.

Other Arithmetic 16

These functions provide simple arithmetic operations.

Floating-Point Environment 16

These functions provide control over the IEEE floating-point environment used by
program.

strtold strtod(3C) Convert a string to a long double-precision value.

strtol strtol(3C) Convert a string to a long integer value.

strtoul strtol(3C) Convert a string to an unsigned long integer value.

Table 16-49. Other Arithmetic Functions

Function Reference Brief Description

div div(3C) Divide two integers.

ldiv div(3C) Divide two long integers.

Table 16-50. Floating-Point Environment Functions

Function Reference Brief Description

finite,
finitel

isnan(3C) Determine if the number is neither infinity nor
a NaN.

fpclass,
fpclassl

isnan(3C) Provide the class to which the number belongs

fpgetieee fpgetieee(3C) Get the current IEEE mode bit.

fpgetmask fpgetmask(3C) Get the current exceptions mask.

fpgetround fpgetround(3C) Get the current rounding mode.

fpgetsticky fpgetsticky(3C) Get the current exceptions sticky flags.

fpsetieee fpsetieee(3C) Set the current IEEE mode.

fpsetmask fpsetmask(3C) Set the current exceptions mask.

fpsetround fpsetround(3C) Set the current rounding mode.

Table 16-48. Numeric Conversion Functions (Cont.)

Function Reference Brief Description
16-41

Compilation Systems Volume 2 (Concepts)

l

l

l

l

l

l

Pseudo-Random Number Generation Functions 16

The following functions generate pseudo-random numbers.

fpsetsticky fpsetsticky(3C) Set the current exceptions sticky flags.

isnan,
isnand,
isnanf

isnan(3C) Determine if the number is a NaN.

unordered,
unorderedl

isnan(3C) Determine if the numbers are unordered.

Table 16-51. Pseudo-Random Number Generation Functions

Function Reference Brief Description

drand48 drand48(3C) Obtain a random double-precision value over the
interval (0 to 1).

erand48 drand48(3C) Obtain a random double-precision value over the
interval (0 to 1), but without the need for an ini-
tialization entry point.

jrand48 drand48(3C) Generate a random integer value over the interva
(-2**32-1 to 2**32-1), but without the need for
an initialization entry point.

lcong48 drand48(3C) Set the parameters fordrand48 , lrand48 , and
mrand48 .

initstate random(3C) Initialize a state array.

lrand48 drand48(3C) Generate a random integer value over the interva
(0 to 2**32-1).

mrand48 drand48(3C) Generate a random integer value over the interva
(-2**32-1 to 2**32-1).

nrand48 drand48(3C) Generate a random integer value over the interva
(0 to 2**32-1), but without the need for an initial-
ization entry point.

ra nd ,
rand_r

rand(3C) Generate a random integer value over the interva
(0 to 32767).

random random(3C) Generate a random integer value over the interva
(0 to 2**32-1).

seed48 drand48(3C) Seed the generator fordrand48 , lrand48 , and
mrand48 .

setstate random(3C) Set a state array.

Table 16-50. Floating-Point Environment Functions (Cont.)

Function Reference Brief Description
16-42

Run-Time Libraries
srand rand(3C) Seed the generator forrand.

srandom random(3C) Seed the generator forrandom.

srand48 drand48(3C) Seed the generator fordrand48 , lrand48 , and
mrand48 using a long integer.

Table 16-51. Pseudo-Random Number Generation Functions (Cont.)

Function Reference Brief Description
16-43

Compilation Systems Volume 2 (Concepts)

envi-

y

Programs 16

These functions provide control over a running program and access to its invocation
ronment. They are grouped according to the following categories:

• “Flow” on page 16-44

• “Profile” on page 16-44

• “Parameters” on page 16-45

Flow 16

These functions provide control over the flow of a program.

Profile 16

These functions prepare an execution profile of a program.

Table 16-52. Flow Functions

Function Reference Brief Description

atexit atexit(3C) Add a program termination routine.

longjmp setjmp(3C) Restore the environment saved bysetjmp .

setjmp setjmp(3C) Save the environment for later use bylongjmp .

siglongjmp sigsetjmp(3C) Restore the environment saved bysigsetjmp .

sigsetjmp sigsetjmp(3C) Save the environment, with signal state, for later use b
siglongjmp .

Table 16-53. Profile Functions

Function Reference Brief Description

monitor monitor(3C) Cause the process to record a histogram of the
program counter location.

profil profil(2) Provide an execution time profile.
16-44

Run-Time Libraries

envi-

the

-

-

Parameters 16

These functions support the getting and setting of program invocation arguments and
ronment information.

Processes 16

These functions provide control over the IEEE floating-point environment used by
program. They are grouped according to the following categories:

• “Control” on page 16-46

• “Signals” on page 16-47

• “User-Level Interrupts” on page 16-49

• “Lightweight Processes” on page 16-49

Table 16-54. Parameters Functions

Function Reference Brief Description

getopt getopt(3C) Get the next option letter from the option vector.

getsubopt getsubopt(3C) Parse suboptions in a flag argument initially parsed
by getopt .

getcwd getcwd(3C) Get the path name of the current directory.

getenv getenv(3C) Obtain the string value associated with an environ
ment variable.

ge tp as s ,
getpass_r

getpass(3C) Read a string from the terminal without echoing.

getwd getwd(3C) Get the path name of the current directory.

putenv putenv(3C) Change or add the value of an environment vari
able.
16-45

Compilation Systems Volume 2 (Concepts)

-

n

l,
Control 16

These functions support operations on processes and control of processes.

Table 16-55. Control Functions

Function Reference Brief Description

abort abort(3C) Cause an IOT signal to be sent to the process.

alarm alarm(2) Set the process’ alarm clock.

cuserid cuserid(3S) Indicate the login name for the owner of the current pro
cess.

execl,
execle,
execlp,
execv,
execve,
execvp

exec(2) Overlay a process image on an old process.

exit,
_exit

exit(2) Terminate a process.

ftok stdipc(3C) Create a key for use by the inter-process communicatio
facilities.

fork,
fork1,
forkall

fork(2) Create a new process.

getcontext getcontext(2) Get a user-level context.

getegid getuid(2) Get the effective group ID of the calling process.

geteuid getuid(2) Get the effective user ID of the calling process.

getgid getuid(2) Get the real group ID of the calling process.

getpgid getpid(2) Get the process group ID of the calling process.

getpgrp getpid(2) Get the process group ID of the calling process.

getpid getpid(2) Get the process ID of the calling process.

getppid getpid(2) Get the parent process ID of the calling process.

getsid getsid(2) Get the session ID of the calling process.

getuid getuid(2) Get the real user ID of the calling process.

kill kill(2) Send a signal to a process or group of processes.

makecontext makecontext(3C) Make a user-level context.

nanosleep nanosleep(3C) Suspend execution of current process for an interva
using high-resolution timing.

nice nice(2) Change the priority of a time-sharing process.

pause pause(2) Suspend the process until a signal is received.

priocntl priocntl(2) Control the scheduling of active processes.
16-46

Run-Time Libraries

.

Signals 16

These functions support the use of signals.

priocntlset priocntlset(2) Change the scheduling properties of running processes

processor_bind processor_bind(3C) Bind a process or LWP(s) to a specific processor.

procpriv procpriv(2) Control privileges associated with the calling process.

procprivl procprivl(3C) Control privileges associated with the calling process.

ptrace ptrace(2) Trace a process.

setcontext setcontext(2) Set a user-level context.

setgid setuid(2) Set the real group ID of the calling process.

setpgid setpgid(2) Set the process group ID of the calling process.

setpgrp setpgrp(2) Set the process group ID of the calling process.

setgid setsid(2) Set the session ID of the calling process.

setuid setuid(2) Set the real user ID of the calling process.

tcsetpgrp tcsetpgrp(3C) Set a terminal foreground process group ID.

sleep sleep(3C) Suspend execution of current process for an interval.

swapcontext swapcontext(3C) Swap a user-level context.

system system(3S) Execute a shell command.

vfork vfork(2) Spawn a new process efficiently.

wait wait(2) Wait for a child process to stop or terminate.

waitid,
waitpid

waitid(2) Wait for a child process to change state.

Table 16-56. Signals Functions

Function Reference Brief Description

bsd_signal bsd_signal(3C) Alternative tosignal(2) .

gsignal ssignal(3C) Send a software signal.

psiginfo psignal(3C) Write a signal message to standard error.

psignal psignal(3C) Write a signal message to standard error.

sig2str st2sig(3C) Obtain the suffix name of a system signal.

sigaction sigaction(2) Perform detailed signal management.

sigaddset sigsetops(3C) Add a signal to a set.

Table 16-55. Control Functions (Cont.)

Function Reference Brief Description
16-47

Compilation Systems Volume 2 (Concepts)

l

l

l

-

s

sigalstack sigalstack(2) Get or set a signal alternate stack context.

sigdelset sigsetops(3C) Delete a signal from a set.

sigemptyset sigsetops(3C) Exclude from a set all signals defined by the sys-
tem.

sigfillset sigsetops(3C) Include in a set all signals defined by the system.

sighold signal(2) Add a signal to the calling process’ signal mask.

sigignore signal(2) Set the disposition of a signal to SIG_IGN.

sigismember sigsetops(3C) Determine if a signal is in a set.

signal signal(2) Modify signal disposition.

sigpause signal(2) Remove a signal from the calling process’ signa
mask, and suspend the calling process.

sigpending sigpending(2) Obtain signals that are blocked and pending.

sigprocmask sigprocmask(2) Examine and/or change the calling process’ signa
mask.

sigrelse signal(2) Remove a signal from the calling process’ signa
mask.

sigsend,
sigsendset

sigsend(2) Send a signal to a process or group of processes.

sigset signal(2) Add a signal to the calling process’ signal mask
before executing the signal handler.

sigsuspend sigsuspend(2) Install a signal mask and suspend the calling pro
cess.

ssignal ssignal(3C) Arrange for handling of software signals.

sigsendset sigsend(2) Provides an alternate interface for sending signal
to sets of processes.

sigsend sigsend(2) Send a signal to a process or group of processes.

sigwait sigwait(2) Wait for a signal to be posted.

ssignal ssignal(3C) Arrange for handling of software signals.

str2sig st2sig(3C) Obtain the number of a system signal.

Table 16-56. Signals Functions (Cont.)

Function Reference Brief Description
16-48

Run-Time Libraries
User-Level Interrupts 16

These functions support the use of user-level interrupts.

Lightweight Processes 16

These functions support lightweight processes (LWPs).

Table 16-57. User-Level Interrupts Functions

Function Reference Brief Description

iconnect iconnect(3C) Provide a user-level interrupt connection.

ienable ienable(3C) Enable a user-level interrupt.

Table 16-58. Lightweight Processes Functions

Function Reference Brief Description

_lwp_cond_broadcast _lwp_cond_broadcast(2) Wake up all LWPs waiting on a condition.

_lwp_cond_signal _lwp_cond_signal(2) Wake up a single LWP waiting on a condition.

_lwp_cond_timedwait _lwp_cond_timedwait(2) Wait on a condition variable for a limited time.

_lwp_cond_wait _lwp_cond_wait(2) Wait on a condition.

_lwp_continue _lwp_continue(2) Continue LWP execution.

_lwp_create _lwp_create(2) Create a new LWP.

_lwp_exit _lwp_exit(2) Terminate the calling LWP.

_lwp_getprivate _lwp_getprivate(2) Get an LWP-specific reference.

_lwp_global_self _lwp_global_self(2) Get the current LWP’s global identifier.

_lwp_info _lwp_info(2) Get time-accounting information of a single
LWP.

_lwp_kill _lwp_kill(2) Send a signal to a sibling LWP.

_lwp_makecontext _lwp_makecontext(2) Make an LWP context.

_lwp_mutex_lock _lwp_mutex_lock(2) Lock a mutex on behalf of the calling LWP.

_lwp_mutex_trylock _lwp_mutex_trylock(2) Conditionally lock a mutex on behalf of the
calling LWP.

_lwp_mutex_unlock _lwp_mutex_unlock(2) Unlock a mutex.

_lwp_self _lwp_self(2) Provide the current LWP’s identifier.

_lwp_sema_init _lwp_sema_init(2) Initialize a semaphore.

_lwp_sema_post _lwp_sema_post(2) Release a semaphore.

_lwp_sema_trywait _lwp_sema_trywait(2) Conditionally acquire a semaphore.
16-49

Compilation Systems Volume 2 (Concepts)

llow-
Security 16

These functions support user- and system-level security. They are grouped into the fo
ing categories:

• “Access Control Lists” on page 16-51

• “Auditing” on page 16-51

• “Levels” on page 16-51

• “Other Security” on page 16-52

• “Encryption and Decryption” on page 16-52

_lwp_sema_wait _lwp_sema_wait(2) Acquire a semaphore.

_lwp_setprivate _lwp_setprivate(2) Set an LWP-specific reference.

_lwp_suspend _lwp_suspend(2) Suspend LWP execution.

_lwp_wait _lwp_wait(2) Wait for termination of a sibling LWP.

client_block client_block(2) Block a client LWP and establish a server
LWP.

client_wake1 client_block(2) Wake a client LWP.

client_wakechan client_block(2) Wake all client LWPs on a chain.

cpu_bias cpu_bias(2) Control CPU biasing and assignment for
LWPs.

priocntllist priocntllist(2) Control the scheduling of active processes for a
set of LWPs.

server_block server_block(2) Block a server LWP.

server_wake1 server_block(2) Wake a blocked server LWP.

server_wakechan server_block(2) Wake all blocked server LWPs on a chain.

Table 16-58. Lightweight Processes Functions (Cont.)

Function Reference Brief Description
16-50

Run-Time Libraries
Access Control Lists 16

These functions access Access Control Lists (ACLs).

Auditing 16

These functions support auditing operations.

Levels 16

These functions control levels.

Table 16-59. Access Control Lists Functions

Function Reference Brief Description

acl acl(2) Set a file’s ACL.

aclipc aclipc(2) Get or set an IPC object’s ACL.

aclsort aclsort(3C) Sort an ACL.

Table 16-60. Auditing Functions

Function Reference Brief Description

auditbuf auditbuf(2) Get or set audit buffer attributes.

auditctl auditctl(2) Get or set the status of auditing.

auditdmp auditdmp(2) Write an audit record to an audit buffer.

auditevt auditevt(2) Get or set auditable events.

auditlog auditlog(2) Get or set audit log file attributes.

Table 16-61. Levels Functions

Function Reference Brief Description

lvldom lvldom(2) Determine the domination relationship of
two levels.

lvlequal lvlequal(2) Determine the equality of two levels.

lvlfile lvlfile(2) Get or set the level of a file.

lvlin lvlin(3C) Translate a level from text format to internal
format.

lvlintersect lvlintersect(3C) Perform the intersection of two levels.

lvlipc lvlipc(2) Manipulate an IPC object’s level.
16-51

Compilation Systems Volume 2 (Concepts)

thm
Other Security 16

These functions support miscellaneous security operations.

Encryption and Decryption 16

The following functions allow access to the Data Encryption Standard (DES) algori
and other encryption/decryption algorithms.

lvlout lvlout(3C) Translate a level from internal format to text
format.

lvlproc lvlproc(2) Get or set the level of a process.

lvlunion lvlunion(3C) Perform the union of two levels.

lvlvalid lvlvalid(3C) Check the validity of a level.

lvlvfs lvlvfs(2) Get or set the level ceiling of a mounted file
system.

Table 16-62. Other Security Functions

Function Reference Brief Description

initgroups initgroups(3C) Initialize the supplementary group access
list.

mkmld mkmld(2) Make a Multilevel Directory.

mldmode mldmode(2) Get or set the Multilevel Directory mode of
a process.

secadvise secadvise(2) Obtain kernel advisory access information.

secsys secsys(2) Initialize enhanced security.

Table 16-63. Encryption and Decryption Functions

Function Reference Brief Description

crypt crypt(3C) Encode a string.

encrypt crypt(3C) Encode/decode a string.

isencrypt isencrypt(3G) Determine if a character buffer is encrypted.

setkey crypt(3C) I n i t ia l ize a key f or subsequent use by
encrypt .

Table 16-61. Levels Functions (Cont.)

Function Reference Brief Description
16-52

Run-Time Libraries

urces

l

s

System Environment 16

These functions provide support operations that access and control system-wide reso
and configurations. They are grouped into the following categories:

• “Loadable Kernel Modules” on page 16-53

• “Other System Environment” on page 16-53

Loadable Kernel Modules 16

These functions provide control over loadable kernel modules.

Other System Environment 16

These functions support other operations on the system-wide environment.

Table 16-64. Loadable Kernel Modules Functions

Function Reference Brief Description

modload modload(2) Load a loadable kernel module on demand.

modpath modpath(2) Change the search path for loadable kerne
modules.

modstat modstat(2) Get information for loadable kernel modules.

moduload moduload(2) Unload a loadable kernel module on demand.

Table 16-65. Other System Environment Functions

Function Reference Brief Description

access access(2) Enable or disable process accounting.

eti_map eti_request(3C) Map an edge-triggered interrupt into the process’ addres
space.

eti_request eti_request(3C) Issue a control operation to an edge-triggered interrupt.

eti_unmap eti_unmap(3C) Detach a shared memory region from a process.

getpagesize getpagesize(3C) Get the system page size.

getgroups getgroups(2) Get supplementary group access list IDs.

getksym getksym(2) Get information for a global kernel symbol.

getrlimit getrlimit(2) Get a maximum system resource consumption limit.

hrdclk hrdclk(2) Control hardclock interrupt handling.

keyctl keyctl(2) Get and set user and processor limits.

mpadvise mpadvise(3C) Provide multiprocessor control.
16-53

Compilation Systems Volume 2 (Concepts)
processor_info processor_info(2) Provide information about a processor.

resched_cntl resched_cntl(2) Provide CPU rescheduling control.

setgroups getgroups(2) Set supplementary group access list IDs.

setrlimit setrlimit(2) Set a maximum system resource consumption limit.

swapctl swapctl(2) Manage swap space.

sysconf sysconf(3C) Provide the value of a configurable system variable.

syscx syscx(2) Perform machine-specific functions.

sync sync(2) Update a super block.

sysinfo sysinfo(2) Get and set system information strings.

uadmin uadmin(2) Control basic administrative operations.

ulimit ulimit(2) Get and set user limits.

umask umask(2) Get and set the file creation mask.

uname uname(2) Obtain the name of the current UNIX system.

vme_address vme_address(3C) Obtain a (H)VME physical address.

Table 16-65. Other System Environment Functions (Cont.)

Function Reference Brief Description
16-54

-1
-1
7-2
-2
-2
-3
-3
-3

7-4
7-4
-5
6
-6

7-7
-9
7-9
11
-11
11

-11
12
-12
17
Floating-Point Operations

Introduction . 17
IEEE Arithmetic . 17

Data Types and Formats . 1
Single-Precision . 17
Double-Precision. 17
Language Mappings . 17

Normalized Numbers . 17
Denormalized Numbers . 17
Maximum and Minimum Representable Floating-Point Values 1
Special-Case Values . 1
NaNs and Infinities. 17
Rounding Control. 17-

Floating-Point Exceptions . 17
Exceptions, Status Bits, and Control Bits. 1
Exception Handling . 17

Single-Precision Floating-Point Operations . 1
Single-Precision Functions. 17-

Double-Extended-Precision. 17
IEEE Requirements . 17-

Conversion of Floating-Point Formats to Integer. 17
Square Root . 17-
Compares and Unordered Condition . 17
NaNs and Infinities in Input/Output 17-12

Compilation Systems Volume 2 (Concepts)

pi-
tions,
EE

our
t in
dard

of a
the
ffect it
wing

here

ling.
ent.
17
Chapter 17Floating-Point Operations

17
17
17

Introduction 17

The supporting hardware platforms support theIEEE Standard for Binary Floating-Point
Arithmetic(ANSI/IEEE Standard 754-1985). Concurrent Computer Corporation’s com
lation systems use the IEEE standard single- and double-precision data types, opera
and conversions specified in this standard. Library functions are provided for further IE
support.

You will probably not need any special functions to use floating-point operations in y
programs. If you do, however, you can find information about floating-point suppor
this chapter. (For more details on how the compilation systems support the IEEE stan
see “IEEE Requirements” on page 17-11.)

This chapter contains sections on the following topics:

• The details of IEEE arithmetic

• Floating-point exception handling

• Single-precision floating-point operations

• Implicit precision of subexpressions

• IEEE requirements

If your code depends on a side effect of a floating-point operation (such as the setting
trap), note that the optimizer may remove the floating-point operation if the result of
operation is not used elsewhere. Therefore, your process may never see the side e
depends on. For example, if your program depends on a trap resulting from the follo
operation:

x = a + b

and the operation is removed by the optimizer because the result is not used anyw
else, the trap never occurs.

IEEE Arithmetic 17

This section provides the details of floating-point representation and exception hand
Most users need not be concerned with the details of the floating-point environm
Floating-point formats, values, and operations are based on theIEEE Standard for Binary
Floating-Point Arithmetic,ANSI/IEEE Standard 754-1985.
17-1

Compilation Systems Volume 2 (Concepts)
Data Types and Formats 17

Single-Precision 17

Single-precision floating-point numbers have the following format:

Double-Precision 17

Double-precision floating-point numbers have the following format:

Field Bit Position Full Name

Sign 0 Sign bit (0==positive, 1==negative)

Exponent 1-8 Exponent (biased by 127)

Fraction 9-31 Fraction (bits to right of binary point)

Field Bit Position Full Name

Sign 0 Sign bit (0==positive, 1==negative)

Exponent 1-11 Exponent (biased by 1023)

Fraction 12-63 Fraction (bits to right of binary point)

Sign Exponent Fraction

0 1 8 9 31

^
binary point

Sign Exponent Fraction

0 1 11 12

^
binary point
17-2

Floating-Point Operations

uage

he
, and
is in
023,

The
d

nary
nt
-

oes

float-
Language Mappings 17

The IEEE single- and double-precision data types are denoted by the following lang
data types.

Normalized Numbers 17

A number is normalized if the exponent field contains other than all 1’s or all 0’s. T
exponent field contains a biased exponent, where the bias is 127 in single-precision
1023 in double-precision. Thus, the exponent of a normalized floating-point number
the range -126 to 127, inclusive, for single-precision, and in the range -1022 to 1
inclusive, for double-precision.

There is an implicit bit associated with both single- and double-precision formats.
implicit bit is not explicitly stored anywhere (thus its name). Logically, for normalize
operands the implicit bit has a value of 1 and resides immediately to the left of the bi
point (in the 20 position). Thus the implicit bit and fraction field together can represe
values in the range 1 to 2 - 2-23, inclusive, for single-precision, and in the range 1 to 2
2-52, inclusive, for double-precision.

Thus normalized single-precision numbers can be in the range (plus or minus) 2-126 to (2
- 2-23) x 2127, inclusive.

Normalized double-precision numbers can be in the range (plus or minus) 2-1022 to (2
- 2-52) x 21023, inclusive.

Denormalized Numbers 17

A number is denormalized if the exponent field contains all 0’s and the fraction field d
not contain all 0’s.

Thus denormalized single-precision numbers can be in the range (plus or minus) 2-126 x
2-22= 2-148 to (1 - 2-22) x 2-126, inclusive.

Denormalized double-precision numbers can be in the range (plus or minus) 2-1022 x 2-51 =
2-1073 to (1 - 2-51) x 2-1022, inclusive.

Both positive and negative zero values exist, but they are treated the same during
ing-point calculations.

Data Type C Fortran Ada

Single float REAL float (digits 1..9)

REAL*4

Double double DOUBLE PRECISION long_float (digits 10..16)

REAL*8
17-3

Compilation Systems Volume 2 (Concepts)

d in

r to

l

Maximum and Minimum Representable Floating-Point Values 17

The maximum and minimum representable values in floating-point format are define
the C header filevalues.h . They evaluate to the following values:

The Fortran run-time library provides functions which return these values. Refe
flmin(3F) for further information.

Refer to Appendix F in theHAPSE Reference Manualfor the use and values of the mode
numbers of floating-point type.

Special-Case Values 17

The following table gives the names of special cases and how each is represented.

Key:

X Does not matter

Max Maximum value that can be stored in the field (all 1’s)

Min Minimum value that can be stored in the field (all 0’s)

NaN Not a number

Symbolic Constant Value

MAXDOUBLE 1.79769313486231470e+308

MAXFLOAT ((float)3.402823466385288540e+38)

MINDOUBLE 2.22507385850720270e-308

MINFLOAT ((float)1.17549435082228740e-38)

Value Name Sign Exponent Fraction

MSB Rest of Fraction

NaN (non-trapping) X Max 0 Nonzero

Trapping NaN X Max 1 X

Positive Infinity 0 Max Min

Negative Infinity 1 Max Min

Positive Zero 0 Min Min

Negative Zero 1 Min Min

Denormalized Number X Min Nonzero

Normalized Number X NotMM X
17-4

Floating-Point Operations

d

NotMM Field is not equal to either Min or Max values

Nonzero Field contains at least one “1” bit

MSB Most Significant Bit

The algorithm for classification of a value into special cases follows:

If (Exponent==Max)
If (Fraction==Min)

Then the number is Infinity (Positive or Negative
as determined by the Sign bit).

Else the number is NaN (Trapping if FractionMSB==0,
non-Trapping if FractionMSB==1).

Else If (Exponent==Min)
If (Fraction==Min)

Then the number is Zero (Positive or Negative
as determined by the Sign bit).

Else the number is Denormalized.
Else the number is Normalized.

NaNs and Infinities 17

The floating-point system supports two special representations:

• Infinity - Positive infinity in a format compares greater than all other repre-
sentable numbers in the same format. Arithmetic operations on infinities
are quite intuitive. For example, adding any representable number to infin-
ity is a valid operation, the result of which is positive infinity. Subtracting
positive infinity from itself is invalid. If some arithmetic operation over-
flows, and the overflow trap is disabled, in some rounding modes the result
is infinity.

• Not-a-Number(NaN) - These floating-point representations are not num-
bers. They can be used to carry diagnostic information. There are two kinds
of NaNs: signaling NaNs and quiet NaNs. Signaling NaNs raise the invalid
operation exception whenever they are used as operands in floating-point
operations. Quiet NaNs propagate through most operations without raising
any exception. The result of these operations is the same quiet NaN. NaNs
are sometimes produced by the arithmetic operations themselves. For
example, 0.0 divided by 0.0, when the invalid operation trap is disabled,
produces a quiet NaN.

The C header fileieeefp.h defines the interface for the floating-point exception an
environment control. This header defines three interfaces:
17-5

Compilation Systems Volume 2 (Concepts)

tion

ost

ibed

ypes.

eger
effect

e by
rams
tforms
• Rounding Control

• Exception Control

• Exception Handling

The Fortran compilation system provides intrinsic functions for compile-time genera
of NaNs forREALandCOMPLEXdata types. Refer tonan(3F) andhf77(1) for more
information.

Rounding Control 17

The floating-point arithmetic provides four rounding modes that affect the result of m
floating-point operations. (These modes are defined in the headerieeefp.h):

FP_RN Round to nearest representable number, tie -> even

FP_RP Round toward plus infinity

FP_RM Round toward minus infinity

FP_RZ Round toward zero (truncate)

You can check the current rounding mode with the function

fp_rnd fpgetround(void); /*return current rounding mode*/

You can change the rounding mode for floating-point operations with the function:

fp_rnd fpsetround(fp_rnd);
/* set rounding mode, return previous */

(fp_rnd is an enumeration type with the enumeration constants listed and descr
above. The values for these constants are inieeefp.h .) Alternatively, this can be done
with the-Qfpcr linker option; see “Using the Link Editor” on page 4-1 for details.

The examples in this section, such as the one directly above, illustrate function protot
For information on function prototypes, see the ConcurrentC Reference Manual.

The default rounding mode is round-to-nearest. In C and Fortran, floating-point to int
conversions are always done by truncation, and the current rounding mode has no
on these operations.

(For more information, see thefpgetround(3C) and fpsetround(3C) manual
pages.)

Floating-Point Exceptions 17

Floating-point exception interrupts are enabled, and they operate in imprecise mod
default on the supporting hardware platforms for C and Fortran programs. Ada prog
generate the exceptions if checks are not suppressed. The supporting hardware pla
17-6

Floating-Point Operations

cify
ating
is
s on
ed
e, it
pro-

ise

ise
float-

ays
or

is to

ts
the

ep-

by

ion
,

ra-

ra-

is
ero
ver-
n
y

n is
re
p-
r-
n-
provide the ability to enable or disable floating-point exceptions, as well as to spe
whether the exceptions are precise or imprecise. If this interrupt is enabled, the oper
system will receive aSIGFPE signal any time an enabled floating-point exception
raised by the hardware. A floating-point exception is enabled if its corresponding bit i
in thefpcsr register. If this interrupt is disabled, the operating system will not be notifi
when a floating-point exception is raised by the hardware. If an exception is imprecis
may not be possible for a program to recover from the exception because the system
vides insufficient information for doing so. Complete information is provided for a prec
exception.

The disabling of this interrupt provides for improved performance. Use of imprec
exceptions rather than precise exceptions provides for improved performance when
ing-point exceptions are enabled. By default, programs run in animprecise excep-
tions mode. Concurrent Computer Corporation’s compilation systems provide two w
of creating programs which will execute with floating-point exceptions disabled
enabled as precise or imprecise. One way is to use the-Qflttrap option with the C
compiler,cc(1) , or the Fortran compiler,f77(1) . This option directs the compilers to
produce additional code to detect and trap floating-point exceptions. The other way
use the-Qfpexcept= option with the link editor,ld(1) . This option directs the link
editor to set thefp_except_kind field in the program’s vendor section. The kernel se
bits 52 and 55 of themsr register, at program start up, based upon the setting of
fp_except_kind field.

Exceptions, Status Bits, and Control Bits 17

Floating-point operations can lead to any of the following types of floating-point exc
tions:

Divide by zero This exception happens when a non-zero number is divided
floating-point zero.

Invalid operation All operations on signaling NaNs raise an invalid operat
exception. Zero divided by zero, infinity subtracted from infinity
and infinity divided by infinity all raise this exception. When a
quiet NaN is compared with the greater or lesser relational ope
tors, an invalid operation exception is raised.

Overflow This exception occurs when the result of any floating-point ope
tion is too large in magnitude to fit in the intended destination.

Underflow When the underflow trap is enabled, an underflow exception
signaled when the result of some operation is a very tiny non-z
number that may cause some other exception later (such as o
flow upon division). When the underflow trap is disabled, a
underflow exception occurs only when both the result is very tin
(as explained above) and a loss of accuracy is detected.

Inexact or imprecise This exception is signaled if the rounded result of an operatio
not identical to the infinitely precise result. Inexact exceptions a
quite common. 1.0 / 3.0 is an inexact operation. Inexact exce
tions also occur when the operation overflows without an ove
flow trap. The above examples for the exception types do not co
17-7

Compilation Systems Volume 2 (Concepts)

an

n. On

red by

on-

rting

curs,
can

n

pt

ms
its
stitute an exhaustive list of the conditions when an exception c
occur.

Whenever an exception occurs, a corresponding status bit is set (=1) for that exceptio
the supporting hardware platforms, these bits are contained in thefpscr register. When
status bits are set by the hardware and/or operating system, they remain set until clea
user software.

You can check the status of the status bits by using the function

fp_except fpgetsticky(void);
/* return logged exceptions */

fp_except is an enumeration type that can have any combination of the following c
stant values:

FP_X_DZ Divide-by-zero exception

FP_X_INV Invalid operation exception

FP_X_OFL Overflow exception

FP_X_UFL Underflow exception

FP_X_IMP Imprecise (loss of precision)

(The values for these constants are inieeefp.h .)

You can change the status bits by using the function

fp_except fpsetsticky(fp_except);
/* set logged exceptions, return previous */

There is also a control bit (mask bit) associated with each exception. On the suppo
hardware platforms, these bits are contained in thefpscr register. When an exception
occurs, if the corresponding control bit is enabled (=1), a trap occurs. When a trap oc
the result of the operation is not written and a signal is sent to the user process. You
check the status of these mask bits by using the function

fp_except fpgetmask(void); /* current exception mask */

You can also selectively enable or disable any of the exceptions by calling the functio

fp_except fpsetmask(fp_except);
/* set mask, return previous */

with appropriate mask values.

In Ada programs, anumeric_error is raised for each of these exceptions exce
underflow .

By default, programs built with Concurrent Computer Corporation’s compilation syste
will begin execution having only the underflow and imprecise exception control b
masked off.

Alternatively, this can be done with the-Qfpcr linker option; see “Using the Link Edi-
tor” on page 4-1 for details. For more information, see the following manual pages:
17-8

Floating-Point Operations

loat-

-

sin-

a

fpgetsticky(3C) ,
fpsetsticky(3C) ,
fpgetmask(3C) ,
fpsetmask(3C) ,
and
fpgetround(3C)

Exception Handling 17

If a floating-point trap is enabled, your process is signaled when the corresponding f
ing-point exception occurs. PowerUX signals your process by sendingSIGFPE. If you
intend to handle the exception, you must specify a handler forSIGFPE. You can specify
the handler by calling the Csignal() routine as follows:

#include <signal.h>

extern void myhandler ();

foo ()
{

(void) signal (SIGFPE, myhandler);
}

The Fortran compilation system also provides asignal function. Refer tosig-
nal(3F) for more information.

Ada users who set up a signal handler should note that the Ada executive reservesSIG-
FPE. Use of a signal handler forSIGFPE will cause non-standard behavior in Ada pro
grams.

Single-Precision Floating-Point Operations 17

The ANSI standard for C has a provision that allows expressions to be evaluated in
gle-precision arithmetic if there is nodouble (or long double) operand in the expres-
sion. The C compiler supports this provision.

Floating-point constants are double-precision, unless explicitly stated to befloat . For
example, in the statements

float a,b;
...

a = b + 1.0;

because the constant1.0 has typedouble , b is promoted todouble before the addition
and the result is converted back tofloat . However, the constant can be made explicitly
float :

a = b + 1.0f;
17-9

Compilation Systems Volume 2 (Concepts)

reci-

rands

pre-

ent

loss

d.

the
or

a = b + (float) 1.0;

In this case, the statement can potentially be compiled to a single instruction. Single-p
sion operations tend to be faster than double-precision operations.

Whether a computation can be done in single-precision is decided based on the ope
of each operator. Consider the following:

float s;
double d;
d = d + s * s;

s * s is computed to produce a single-precision result, which is promoted to double-
cision and added tod.

The IEEE P854 task force responsible for format independent floating-point environm
issues may disallow the multiplication to be carried in single-precision in this context.

Note that using single-precision (as versus double-precision) arithmetic can result in
of precision, as illustrated in the following example.

float f = 8191.f * 8191.f; /* evaluate as a float */
double d = 8191. * 8191. ; /* evaluate as a double */
printf ("As float: %f\nAs double: %f\n", f, d);

The result is:

As float: 67092480.000000
As double: 67092481.000000

Also, long int variables (same asint) have more precision thanfloat variables.
Consider the following example:

int i,j;
i = 0x7ffffff;
j = i * 1.0;
printf("j = %x\n", j);
j = i * 1.0f;
printf("j = %x\n", j);

The firstprintf() statement outputs7ffffff , while the second prints0. The second
printf() prints 0 because the nearest float to0x7fffffff has a value of
0x80000000 . When the value is converted to an integer, the result is0, and a float-
ing-point imprecise result exception occurs. A trap occurs if this exception was enable

A function that is declared to return afloat may actually return either afloat or a
double . If the function declaration is a prototype declaration in which at least one of
parameters isfloat , the function returns afloat . Otherwise, it returns adouble with
precision limited to that of afloat . (All of this is transparent.) For example:

float retflt(float); /* actually returns a float */
float retdbl1(); /* actually returns a double */
float retdbl2(int); /* actually returns a double */
17-10

Floating-Point Operations

f

r a
me

uses
All

re-

ila-
me
EE

rent
to be

float-
Arguments work as follows:

double takeflt(float x); /* takes a float */

double takedbl(x)
float x; /* takes a double */

Single-Precision Functions 17

The system math libraries (libm.a and libM.a) contain single-precision versions o
several functions. These floating-point functions all have names that end inf , take and
returnfloats , and do most internal computations in single-precision arithmetic. Fo
complete list of floating-point functions in the math libraries, see Chapter 16 (“Run-Ti
Libraries”).

The Ada packagemath includeslibm.a .

Double-Extended-Precision 17

Concurrent Computer Corporation’s compilation systems do not produce code that
IEEE double-extended-precision arithmetic, either for intermediate or final results.
results are computed with the precision implicit in their type.

The C long double data type is computationally equivalent to thedouble data type.
In the future,long double may be used for double-extended-precision values; the
fore, it is best to avoid usinglong double , for compatibility reasons.

IEEE Requirements 17

All arithmetic computations generated by Concurrent Computer Corporation’s comp
tion systems strictly conform to IEEE requirements. The following is a discussion of so
topics where the compilation systems fall short of completely meeting the ANSI/IE
Standard 754-1985 requirements or the spirit of the requirements.

Conversion of Floating-Point Formats to Integer 17

IEEE requires floating-point to integer format conversions to be affected by the cur
rounding mode. However, the C and Fortran languages require these conversions
done by truncation (which is the same as round-to-zero). In the compilation systems,
ing-point to integer conversions are done by truncation.
17-11

Compilation Systems Volume 2 (Concepts)

tion,

ual,
hen at
ding
EE

m-
. If the
ional

he
which

ode

y,
t.

s.
mpu-
them.
Square Root 17

IEEE requires the square root of a negative non-zero number to raise invalid opera
whereas PowerUX system compatibility requires square root to return 0.0 witherrno set
to EDOM. The PowerUX math libraries provide this level of compatibility.

Compares and Unordered Condition 17

In addition to the usual relationships between floating-point values (less than, eq
greater than), there is a fourth relationship: unordered. The unordered case arises w
least one operand is a NaN. Every NaN compares unordered with any value, inclu
itself. The C compilation system provides the following predicates required by IE
between floating-point operands:

While there is no predicate to test for unordered, you can useisnand() or isnanf() to
test whether an argument is a NaN. For information onisnand() and isnanf() , see
the isnan(3C) manual page.

The relations>, >=, <, and<= raise invalid operation for unordered operands. The co
piler generated code does not guard against the unordered outcome of a comparison
trap is masked, the path taken for unordered conditions is the same as if the condit
were true, which may result in incorrect behavior.

For the predicates== and!= , unordered condition does not lead to invalid operation. T
path taken for unordered condition is the same as when the operands are non-equal,
is correct.

(a > b) is not the same as(!(a <= b)) in IEEE floating-point arithmetic. The dif-
ference occurs whenb or a compares unordered. The C compiler generates the same c
for both cases.

NaNs and Infinities in Input/Output 17

Theprintf() family of functions prints NaNs or infinities as symbolic names. Ideall
whateverprintf() outputs,scanf() should be able to read using the same forma
However,scanf() does not recognize NaNs and infinities for floating-point format
Since these special cases serve mostly as diagnostics for erroneous floating-point co
tation, outputting these cases was considered more important than being able to read

== >=

!= <

> <=
17-12

-1
-1
-1
-2
-3

-4
-5
-5
-5
-6
-6
18
Inter-Language Interfacing

Introduction . 18
Subroutine Linkage . 18

The Stack Frame. 18
Parameters . 18
Return Values . 18
Prologue and Epilogue . .. 18-3
Register Usage . 18

External Names . 18
Data Types . 18

Scalar Types . 18
Structures . 18
Common Blocks . 18

Compilation Systems Volume 2 (Concepts)

es a
the

sses
rms.

d is
her

one
tarts

gis-
18
Chapter 18Inter-Language Interfacing

18
18
18

Introduction 18

Calling subroutines written in one language from routines written in another requir
knowledge of calling conventions and data types specific to the architecture on which
program will run and the languages the program is written in. This chapter discu
inter-language interfacing between C and Fortran on the supporting hardware platfo
For more information about C, see theConcurrent C Reference Manual. For more infor-
mation about Fortran, see thehf77 Fortran Reference Manual.

For information about inter-language interfacing with Ada, see theHAPSE Reference
Manual.

Subroutine Linkage 18

The Stack Frame 18

Every routine’s stack frame has the following three areas:

link area This area occupies the lowest addresses of the stack frame an
24 bytes in size. It holds the return address sometimes. Ot
words in it are reserved for future use.

parameter area This area is reserved for parameters. Every parameter, even
passed in a register, is assigned space in this area. This area s
24 bytes above the address where the stack pointer (r1) points
and is always at least 32 bytes in size.

temp area This area holds local variables, compiler temporaries, saved re
ters, etc.
18-1

Compilation Systems Volume 2 (Concepts)

ble to

gen-
in
ssed in

rea. If
that the
ace is

in the
Table 18-1 illustrates stack frame layout.

If a routine needs no temp area and does not call another subroutine, it is accepta
have a zero-sized stack frame.

Parameters 18

The first thirteen floating-point parameters are passed in floating-point registersf1
throughf13 . Integer, character, pointer and structure parameters are passed in
eral-purpose registersr3 throughr10 . If there are no more parameter registers left (or,
the case of structures, not enough parameter registers left), then the parameter is pa
the parameter area.

Even when passed in a register, space exists for each parameter in the parameter a
the parameter has alignment constraints, space in the parameter area is skipped so
slot for the parameter in the parameter area has the appropriate alignment. This sp
frequently referred to as ahole.

Take the following C function definition as an example:

f(int i1,struct {int i[10];} s1, struct {int i[2];} s2,
double d1, float f1, int i2) {...}

The following table shows where each parameter gets passed and where its slot
parameter area is:

Table 18-1. Stack Frame

Size in
Bytes

Contents

High Address 32+ Caller’s parameter area

24 Caller’s link area

Any Callee’s temp area

32+ Callee’s parameter area

Low Address 24 Callee’s link area

Table 18-2. Where Parameters Are Passed

Parameter Where Passed
Parameter Area Slot

(offset in bytes)

i1 r3 0-3

s1 parameter area (because
of general-

register shortage)

4-43

s2 r4 ,r5 44-51
18-2

Inter-Language Interfacing

er

to
first

e-

es
k.

s a
s the

rma-
The length of a FortranCHARACTERparameter is in a hidden extra integer paramet
appended to the parameter list.

Return Values 18

Integer, character, and pointer values are returned in the general registerr3 . Float-
ing-point values are returned in the floating-point registerf1 .

C struct andunion return values require the caller to provide a block of memory
hold the return value. The C compiler passes the address of that block as a hidden
parameter (i.e., in general registerr3) to the callee. When this is the case, actual param
ters are passed beginning atr4 .

FortranCOMPLEXreturn values are treated as a Cstruct consisting of twofloat s or
two double s. FortranCHARACTERreturn values are similar, except that the caller pass
two hidden parameters to the callee: the address of the block and the size of the bloc

Prologue and Epilogue 18

The caller places the parameters in registers or its own parameter area and executebl
instruction to branch and link to the callee. The callee’s prologue code then perform
following operations:

• Adjust the stack pointer (r1) downward to allocate space for its own stack
frame. The stack pointer always maintains 16-byte alignment.

• Save the return address at offset 8 bytes in the caller’s link area if the callee
needs to use thelink register.

• Save in the temp area any register that the callee is not allowed to kill but
wants to use.

Before returning, each of these operations is undone in reverse order. For more info
tion about the prologue and epilogue, see “Introduction” on page 23-1.

d1 f1 56-63

f1 f2 64-67

i2 r6 68-71

Table 18-2. Where Parameters Are Passed (Cont.)

Parameter Where Passed
Parameter Area Slot

(offset in bytes)
18-3

Compilation Systems Volume 2 (Concepts)

of reg-
Register Usage 18

The following tables document the usage and reserved status of the various classes
isters:

Table 18-3. General Registers

Register Use

r0 Scratch register (Warning: some instructions treat this reg-
ister as a constant zero)

r1 Stack pointer

r2 Frame pointer, if needed foralloca or stack frames larger
than 32K

r3 int , char and pointer return values;
first word of non-float parameters;
scratch register

r4-r10 Second through eighth words of non-float parameters;
scratch registers

r11 Static link;
scratch register

r12-r15 Scratch registers

r16-r27 Preserved registers (These registers must be saved and
restored by any function that uses them.)

r28-r30 Reserved for post-linker optimizations

r31 Reserved for post-linker optimizations;
thread register

Table 18-4. Floating-point Registers

Register Use

f0 Scratch register

f1 Floating-point return value;
first floating-point parameter;
scratch register

f2-f13 Second through thirteenth floating-point parameter
scratch registers

f14-f21 Scratch registers

f22-f31 Preserved registers (These registers must be saved and
restored by any function that uses them)
18-4

Inter-Language Interfacing

ource

nder-
names.

iven
External Names 18

For C, all external names appear in the object file exactly as they are spelled in the s
file.

For Fortran, all external names are folded to lower case. Subroutines get a single u
score appended and common block names get two underscores appended to their
Blank common is spelled__BLNK__.

Data Types 18

Scalar Types 18

The following tables give a brief description of the size and alignment constraints g
various data types by default:.

Table 18-5. Special Registers

Register Use

Link Return address; the caller is responsible for saving and
restoring this register

Count Scratch register

crf0-crf7 All condition-register fields are scratch registers

MQ Scratch register (PowerPC 601 system only)

Table 18-6. C Scalar Types

Type Size Alignment Description

char 1 1 character

short int 2 2 integer

long int 4 4 integer

float 4 4 float

double 8 8 float

type * 4 4 pointer
18-5

Compilation Systems Volume 2 (Concepts)

sup-

ely
of a
pe

y.

rting
On the supporting hardware platforms, thechar type isunsigned by default. The
-Qchars_signed option makes the default besigned .

The -W1,-7 option to the C compiler causesdouble to be aligned to 4 bytes. This
results in a minor performance penalty on the supporting hardware platforms.

The -Qalign_double=4 option to the Fortran compiler causesDOUBLE PRECISION
to be aligned to 4-byte boundaries. This results in a minor performance penalty on the
porting hardware platforms.

Structures 18

The alignment of a structure is the alignment of its most restrictive field. Padding is fre
added to make each individual field maintain its alignment requirements. The size
structure is an integer multiple of its alignment requirement. Bit fields that are of ty
char , short , or long must notcross 1, 2 or 4-byte alignment boundaries, respectivel

Common Blocks 18

Common blocks align their variables much like C structures. ACHARACTERtype takes up
space as though it was achar array. The Fortran standard requires thatDOUBLE PRE-
CISION be aligned to only a 4-byte boundary. Use the-Qalign_double=4 option to
achieve this. Beware of the minor performance penalty for doing so on the suppo
hardware platforms.

Table 18-7. Fortran Scalar Types

Type Size Alignment Description

LOGICAL*1 1 1 boolean

LOGICAL*2 2 2 boolean

LOGICAL 4 4 boolean

INTEGER*1 1 1 integer

INTEGER*2 2 2 integer

INTEGER 4 4 integer

REAL 4 4 float

DOUBLE PRECISION 8 8 float

COMPLEX 8 4 complex

COMPLEX*16 16 8 complex
18-6

5
Part 5Program Optimization

Replace with Part 5 tab

Compilation Systems Volume 2 (Concepts)

Part 5 - Program Optimization
Part 5 - Program Optimization

Part 5 Program Optimization

Chapter 19 Introduction to Program Optimization.. 19-1

Chapter 20 Program Optimization... 20-1

Compilation Systems Volume 2 (Concepts)

-1
19
Introduction to Program Optimization

Introduction . 19

Compilation Systems Volume 2 (Concepts)

ram
per-

me-
19
Chapter 19Introduction to Program Optimization

19
19
19

Introduction 19

If you want to reduce the time your program takes to run or the resources your prog
uses, you should understand program optimization. This part of the manual deals with
formance tuning through program optimization.

Chapter 20 (“Program Optimization”) discusses optimization concepts, options, para
ters, considerations, and strategies.

For information about program performance and profiling with theanalyze and
report tools, see Chapter 11 (“Performance Analysis”).
19-1

Compilation Systems Volume 2 (Concepts)
19-2

-2
-2
-3
8
-10
-10
10
11
11
11
11
12
12
13
14
15
5

16
6
17
17
7
8

20
21
1
2
4

24
5

26
7

29
0

-30
1
32

34
20
Program Optimization

Introduction to Compiler Technology. 20-1
Compiler Optimization Options . 20

Setting the Compiler Optimization Level. 20
Controlling Compiler Optimizations . 20
Giving Hints to Compiler Optimizations (C++ only). 20-
Obtaining Optimization Messages . 20

Classes of Optimizations . 20
Branch Optimizations. 20-

Straightening Blocks . 20-
Folding Conditional Tests . 20-
Eliminating Unreachable Code . 20-
Inserting Zero Trip Tests . 20-
Duplicating Partially-Constant Conditional Branches 20-

Variable Optimizations . 20-
Dead Code Elimination . 20-
Copy Propagation . 20-
Separate Lifetimes. 20-
Copy Variables . 20-1

Expression Optimizations. 20-
Algebraic Simplification . 20-1
Address Mode Determination . 20-
Common Subexpression Elimination . 20-
Code Motion . 20-1

Loop Optimizations . 20-1
Loops with Multiple Entry Points .. 20-19
Strength Reduction . 20-
Test Replacement . 20-
Duplicating Loop Exit Tests . 20-2
Loop Unrolling and Software Pipelining . 20-2

Register Allocation. 20-2
Instruction Scheduling . 20-
Post-Linker Optimization . 20-2
Inline Expansion of Subprograms (Ada only) . 20-
Optimization of Constraints (Ada only) . 20-2
Inline Expansion of Subprograms (C++ only) . 20-
Precise Alias Analysis (C++ Only) . 20-3

Programming Techniques . 20
Coding Tips . 20-3
Identifying Performance Problems. 20-

Debugging Optimized Code .. 20-32
Understanding Optimization’s Effects on Debugging 20-33
Examining Your Program . 20-

Compilation Systems Volume 2 (Concepts)

logy
ons
ilers
e the
.

pro-
y. It is
ulti-

s the

or by

r an
ilers
ance

iza-
nal,
asy.

any
es to

an
You
pro-

ns”
ed in
are
opti-

om-
20
Chapter 20Program Optimization

20
20
20

This chapter provides an overview of the features of Concurrent’s compiler techno
that make program optimization possible. It explains the compiler optimization opti
and parameters and describes in detail all of the types of optimization that the comp
can perform. It provides a set of programming techniques that you can use to improv
optimizer’s performance, and it explains the procedures for debugging optimized code

Introduction to Compiler Technology 20

The Concurrent Computer Corporation’s compilers for the Ada, C, C++, and Fortran
gramming languages are based on the Common Code Generator (CCG) technolog
this technology that makes it possible to provide source-level compatibility across m
ple architectures, a key component of Concurrent’s P3I policy. One of the major focuses of
CCG is to produce the highest quality code possible so that your application attain
highest performance possible. Part of this process is performingoptimizations--that is,
transformations of your code so that it does the same work either by taking less time
using fewer machine resources.

Many of the optimizations are complex and interrelated. It is not always possible fo
optimizer to determine the best form in which to express code; therefore, CCG comp
provide a wide range of options and parameters to help you obtain the best perform
from your application.

One of the major features of the CCG optimizer is that it strives to ensure that optim
tions areprofitable--that is, that the optimized program runs at least as fast as the origi
if not faster. That the optimizer should do so may seem obvious, but it is not always e
Many loop optimizations, for instance, are profitable only if the loop is executed m
times once it is entered. Other optimizations depend on a favorable allocation of valu
registers for their profitability.

One result of the concern with profitability is that the compiler may fail to perform
optimization because it cannot determine whether or not the change will be profitable.
may be able to assist the compiler in such cases by making slight changes in your
gram.

Optimization options and parameters are explained in “Compiler Optimization Optio
on page 20-2. The classes of optimizations that the compilers perform are describ
“Classes of Optimizations” on page 20-10. Programming techniques for optimization
presented in “Programming Techniques” on page 20-30. Procedures for debugging
mized programs are explained in “Debugging Optimized Code” on page 20-32.

It is assumed that you are familiar with the procedures for using one or more of the c
pilers. For information specific to a compiler, refer to theHAPSE Reference Manualand
the ada(1) system manual page; the ConcurrentC Reference Manualand thehc(1)
20-1

Compilation Systems Volume 2 (Concepts)

-
s
Opti-
-3,
ation
pti-

are

s
ri-

-

.
xe-

-

gh

age

ually
ini-

those
AL

e
n-
system manual page; or thehf77 Fortran Reference Manualand thehf77(1) system
manual page.

Compiler Optimization Options 20

Compiler optimization options include the-O option, which enables you to set the com
piler optimization level, and the-Q option, which enables you to control the optimizer’
behavior. Procedures for using these options are explained in “Setting the Compiler
mization Level” on page 20-2 and “Controlling Compiler Optimizations” on page 20
respectively. Each compiler has a verbose option that you can use to obtain inform
about the compilation and about optimization. This option is described in“Obtaining O
mization Messages” on page 20-10.

Setting the Compiler Optimization Level 20

The -On option allows you to select one of five levels of optimization. These levels
described as follows:

Level 0 This level is called NONE; it performs only relatively simple optimization
and limits the register allocator to binding only a small number of global va
ables to registers (see-Qhuge_heuristic) . The NONE level is provided
to compile extremely huge, usually machine-generated, programs rapidly.

Level 1 This level is called MINIMAL; it performs only relatively simple optimiza
tions. The MINIMAL level is provided for fast compilation.

Level 2 This level is called GLOBAL; it selects more optimizations than MINIMAL
The GLOBAL level provides a compromise between compile speed and e
cution speed by placing limits on how much certain optimizations can do.

Level 3 This level is called MAXIMAL; it sets the limits placed on the GLOBAL opti
mizations higher.

Level 4 This level is called ULTIMATE; it sets time and space limits to extremely hi
levels.

MINIMAL is the default level if you do not specify the-O option. Compilations at the
MAXIMAL level may take significantly longer than those at the MINIMAL level, but the
generated code is usually significantly faster code. “Classes of Optimizations” on p
20-10 provides more detail on the optimizations that are included in each level.

Optimizations are also classified assafeor unsafe. An unsafe optimization may change the
behavior of the program under certain boundary conditions whose occurrence is us
rare; for instance, if your program manipulates integer values that are close to the m
mum or maximum possible integer values, then an unsafe optimization can cause
computations to overflow. By default, unsafe optimizations are enabled at the GLOB
MAXIMAL, and ULTIMATE levels. You can disallow unsafe optimizations by using th
-Qopt_class option (see “Controlling Compiler Optimizations” on page 20-3). In ge
20-2

Program Optimization

iza-

on
mplifi-

by
d in
f the
tood

r-

PU
ing
f the

ure
ut.

ill
rray
le-
pro-
s-

ure
is

ure
tell
d.

ure
is
eral, you obtain less performance from your program if you disable the unsafe optim
tions; you should disable them only if your program fails otherwise.

Optimizations that are potentially unsafe are identified in “Classes of Optimizations”
page 20-10. These currently include test replacement and some cases of algebraic si
cation.

Controlling Compiler Optimizations 20

The -Qoption-specoption provides more precise control over the optimizer’s behavior
allowing you to selectively enable or disable some of the optimizations describe
“Classes of Optimizations” on page 20-10. In general, you want to use these forms o
-Q option only after you have analyzed your application thoroughly and have unders
which parts are the most important to optimize. It is suggested that you useana-
lyze(1) to perform this analysis. Use of this tool is described in “Identifying Perfo
mance Problems” on page 20-32.

Optimization--especially of very large programs--can often take a large amount of C
time and memory. The compiler has built-in time and space limits to prevent it from us
excessive time or space; however, these limits can be overridden by other forms o
-Qoption-specoption.

Forms of the-Q option that can be used for optimization are presented next.

-Qalias_array_elements_limit= N
(C++ only) Limits the number of objects (variables, array elements, struct
fields) in an array element that the alias analysis will tell the optimizer abo
The default is 100. A value of zero indicates unlimited.

-Qalias_const_subscripts_limit= N
(C++ only) Limits the number of array elements that the alias analysis w
track. The default is 3. If your source uses a lot of constant subscripted a
elements, increasing this option will allow the optimizer to treat those e
ments as separate variables. Setting this option to a high number or most
grams, however, will just increase compile time without significantly increa
ing the precision of the alias analysis.

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, struct
fields) that the alias analysis will tell the optimizer about. The default
10,000. A value of zero indicates unlimited.

-Qalias_structure_fields_limit= N
(C++ only) Limits the number of objects (variables, array elements, struct
fields) contained in a given structure or union that the alias analysis will
the optimizer about. The default is 100. A value of zero indicates unlimite

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, struct
fields) that the alias analysis will tell the optimizer about. The default
10,000.
20-3

Compilation Systems Volume 2 (Concepts)

.

tes

mon
not

on
pos-
the
9 for
this
s.

s;

ti-

ize
ult
at
v-

n of
ccu-

t that

llo-
g

ONE
-Qalign_double= N
(Fortran only) Specifies the byte boundary to whichREAL*8, COMPLEX*8
andCOMPLEX*16variables are aligned within common blocks.

Specifying-Qalign_double=8 is equivalent to the default operation
Using the default-Qalign_double=8 option, or-Qalign_double ,
aligns variables of these types to double-word boundaries. This elimina
having to manually align the variables.

Programs compiled with-Qalign_double=8 may not be strictly “stan-
dard-conforming” because the standard does not permit gaps in com
block layout. On the PowerPC, doubles aligned on a 4-byte boundary but
on an 8-byte boundary have a small execution-time penalty.

-Qavoid_overflow
(Fortran only) For some complicated operations, such as, dividingCOMPLEX
numbers or taking the absolute value of aCOMPLEXnumber, the most
straight-forward and efficient implementation can encounter overflow
intermediate results even though the final answer is representable. This is
sible only if the real or imaginary portions are greater in magnitude than
square root of the largest real number (greater than about 1.844674e+1
single precision and 1.340780793e+154 for double precision). The use of
option causes the compiler to generate slower code to avoid these overflow

-Qbenchmark
Sets the optimization level to MAXIMAL; enables all unsafe optimization
sets all time and space limits to extremely high values.

-Qblock_limit= N
(Fortran only) Limits the number of differentCOMMONblocks that will be
treated as unique entities by the optimizer toN. The default is 128 at GLO-
BAL and 10,000 at MAXIMAL and ULTIMATE. Normally an assignment to
a variable in oneCOMMONblock does not affect variable and expression op
mizations involving variables in otherCOMMONblocks. This may not be true if
-Qblock_limit is exceeded. This option has no effect onCOMMONblocks
that do not exceed the limit specified by-Qvariable_limit .

-Qgrowth_limit= N
Limits the percent by which the optimizer is allowed to increase program s
(for each subprogram) toN. N is an integer representing a percent; the defa
is 50 percent at GLOBAL, 200 percent at MAXIMAL and 10,000 percent
ULTIMATE for the supporting hardware platforms. This option controls se
eral optimizations that replicate program code.

Keep in mind that the optimizer operates on an intermediate representatio
the program; the size of this intermediate representation does not always a
rately reflect the actual size of the generated code. Therefore, the percen
you specify for-Qgrowth_limit is only an approximation.

-Qhuge_heuristic= N
Limits the number of simultaneously alive global variables that the register a
cator will attempt to bind to a register. This is very useful for compilin
extremely huge, usually machine-generated, modules. The default is 33 at N
and 1,000,000 (i.e., unlimited) otherwise.
20-4

Program Optimization

ee
-

as

n
ed

n-
O-

will
ers
per-

ure
is

nge
em
-
es

cu-
nter,
aly-

this
imal

ase

i-
is

rray
r

-Qignore_optimization_hints
(C++ only) Directs the compiler to ignore optimization hint pragmas (S
“Giving Hints to Compiler Optimizations (C++ only)” on page 20-8) embed
ded in the source.

-Qinline= routine list
(C only) Directs the compiler to treat the comma separated list of routines
though they had been specified asinline in the source. This will also work
in C++ on routines with C linkage (extern “C” { ...}).

-Qinline_depth= N
(C, C++ only) Limits the depth that inline functions will actually be inlined i
other inline functions. Beyond that depth, out-of-line instances are invok
instead. The default is 1 for NONE and MINIMAL (meaning no inline expa
sion will happen inside a routine that is being expanded inline), 2 for GL
BAL, MAXIMAL, and ULTIMATE (meaning that routines can be inline
expanded inside other routines that are inline expanded, but they in turn
not have routines inline expanded in them). Set the limit to higher numb
with caution as it can result in an huge increase in program size and hurt
formance.

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, struct
fields) that the alias analysis will tell the optimizer about. The default
10,000.

-Qinvert_divides
Hoists divides by region constants (an expression whose value will not cha
during the execution of the loop containing it) out of loops and replace th
with a multiply by the reciprocal in the loop. In C and Ada, it also will trans
form divides by literals into multiplies by the reciprocal. (Fortran always do
this unless-Qno_reciprocal_multiply is used.) This is the default for
ULTIMATE.

-Qflow_insensitive_alias_analysis
(C++ only) Normally, the alias analysis takes into account whether a parti
lar assignment to a pointer can actually reach a particular use of that poi
i.e., makes use of the actual program flow. This option causes the alias an
sis to assume all definitions of a pointer can reach all uses of it. Usually,
makes the analysis run a little faster at the expense of making some pess
aliasing assumptions. Sometimes, however, this option will greatly incre
compile time.

-Qno_multiply_add
Disables combining multiplies with adds in a single instruction.

-Qloops= N
Limits the number of loops for which the compiler will perform the copy-var
able optimization toN (see “Copy Variables” on page 20-15). The default
20 at GLOBAL and 1000 at MAXIMAL and ULTIMATE.

-Qno_float_var_args
(PowerPC only) Causes floating point registers to not be dumped to an a
an the stack whenvar_args is used. Using this option causes the compile
20-5

Compilation Systems Volume 2 (Concepts)

int

n-

nt

the
full

more
re-

h e

nd

n-

e
tting

his

ill
e

ach
to not store the floating point registers. It should only be used if floating po
arguments will never be passed to thevar_args subroutine being compiled.

-Qno_invert_divides
(Fortran only) Disables the transformation of divide by a floating-point co
stant into multiply by the reciprocal of that constant.

-Qno_multiply_add
Disables combining multiplies with adds in a single instruction.

-Qno_reciprocal_multiply
(Fortran only) Disables the transformation of divide by floating-point consta
into multiply by the reciprocal of that constant.

-Qno_short_circuit
(Fortran only) Do not short-circuit logical operations. The result of.AND. or
.OR. may be known by evaluating only the first operand, i.e., (.FALSE.
.AND. anything) is .FALSE. ; (.TRUE. .OR. anything) is .TRUE. By
default, the compiler may or may not short-circuit.AND. and .OR. logical
operators depending on the estimated efficiency of the operations. Where
terms of a logical expression are scalar variable references and literals, the
logical expression is evaluated. In cases where a logical expression has
complicated operands with possible side effects, it is short-circuited. The
f o r e , sh o r t - c i r c u i t se m an t i c s ar e ma i n t a i n e d u n le ss t
-Qno_short_circuit option is specified.

-Qno_skew_large_arrays
(Fortran only) Disables skewing large arrays. See-Qskew_large_arrays .
This is the default at GLOBAL and MAXIMAL.

-Qobjects= N
Sets the number of variables that the compiler will optimize toN. (See “Vari-
able Optimizations” on page 20-12.) The default is 128 at GLOBAL a
10,000 at MAXIMAL and ULTIMATE.

-Qopt_class= setting
Enables or disables unsafe optimizations according to the value ofsetting. The
value ofsettingmay besafe, unsafe, or standard. Specify either
safe to disable unsafe optimizations orunsafe to enable them. Specify
standard to enable unsafe optimizations specifically allowed by the la
guage standard.

Individual compilers may allow additional values for setting. Refer to th
appropriate language reference manual to determine the acceptable se
values, precise meanings and defaults.

-Qoptimize_for_space
Specifies that space rather than time is the critical factor in optimizing t
program. Note that this option sets-Qgrowth_limit to zero.

-Qpeel_limit_const =N
Specifies the minimum number of iterations the loop unrolling algorithm w
peel from a loop (see “Loop Unrolling and Software Pipelining” on pag
20-22). This is used to achieve the effect of software pipelining so that e
iteration of the resulting loop might overlap instructions fromN+1 iterations
20-6

Program Optimization

t is
ect
er-

g
re-
re-
the

or in

is is

ons
ealt
n is
s is

sets
set
bdi-

line
ets,

e hit
umed

ew-
cal
ra-

-

I-

der
lso
r

of the original loop. The default is 1 at GLOBAL and 2 at MAXIMAL and
ULTIMATE.

-Qpeel_var
Enables peeling a single iteration off a loop when the iteration coun
unknown at compile time (i.e., is variable). This is used to achieve the eff
of software pipelining so that each iteration of the resulting loop might ov
lap instructions from 2 iterations of the original loop. This is done by movin
instructions from the loop into the loop’s preheader, and moving the cor
sponding instruction from the peeled iteration into the loop. Thus the p
header primes the software pipeline, and the remaining instructions in
peeled iteration drain it. Because this can adversely effect cache behavi
loops that execute only a few times, this optimization is off by default.

-Qprecise_alias
(C++ only) Directs the alias analysis to perform precise alias analysis. Th
d ef au l t f o r G LO BA L , M A X I M A L, an d U LTI M ATE . S ee a l so
-Qquick_alias .

-Qquick_alias
(C++ only) Directs the alias analysis to quickly make worst case assumpti
about everything. Elements of arrays and fields of structures are not d
with as separate objects. Any local variable whose address is take
assummed to be aliased by all pointer indirections and function calls. Thi
default for NONE and MINIMAL. See also-Qprecise_alias .

-Qskew_large_arrays
(Fortran only) Skew the start of large local arrays onto unique data cache
to prevent primary cache collisions. Membership in a primary cache
depends on the memory address modulo page size, which is further su
vided modulo cache line size. This is the default for ULTIMATE.
Thus, data at similar page offsets cannot occupy the same primary cache
at the same time. By aligning the start of large arrays to unique cache s
array elements with similar indices such asX(I) andY(I) do not occupy the
same data cache line and may be co-resident in the cache, improving cach
frequency for proximate references. On the PowerPC, cache lines are ass
to be 128 bytes and that 512 such cache lines fit into the 64KB cache.

A large array is considered larger than the primary cache. Note that this sk
ing applies only to uninitialized, non-equivalencies, non-character lo
arrays. For further information see the “Cache and Bus Interface Unit Ope
tion” chapter in thePowerPC 604 RISC Microprocessor User’s Manual.

-Qunroll_limit= N
Limits the number of times a loop with an iteration count that is a com
pile-time constant may be unrolled toN. (see “Loop Unrolling and Software
Pipelining” on page 20-22). The default is 1 at GLOBAL and 10 at MAX
MAL and ULTIMATE.

The resulting code consists of the unrolled loop plus zero or more remain
iterations that are placed immediately after the unrolled loop. See a
-Qpeel_limit_const to control the number of iterations in the remainde
portion of the unrolled code.
20-7

Compilation Systems Volume 2 (Concepts)

m-

the
tes

10.

ain

y of

ally
rrect
ify a

eded)

he
g-
by

hat
ss

or
ep-
-Qunroll_limit_var= N
Limits the number of times a loop with an iteration count that is not a co
pile-time constant (i.e., that is variable) may be unrolled toN. (see “Loop
Unrolling and Software Pipelining” on page 20-22). The default is 1.

The resulting code consists of the unrolled loop plus a cleanup loop for
remainder iterations. If the loop is unrolled twice, the cleanup “loop” execu
at most once, and so is not a loop. This option is disabled by-Qpeel_var.

-Qvariable_limit= N
(Fortran only) Limits the number of variables in eachCOMMONblock that will
be treated as unique entities by the optimizer toN. The default is 128. Nor-
mally an assignment to a variable in aCOMMONblock does not affect variable
and expression optimizations involving other variables in thatCOMMONblock.
This may not be true if-Qvariable_limit is exceeded.

These options are explained in more detail in “Classes of Optimizations” on page 20-

If you have an application about which you know very little and you want to try to obt
the maximum performance from it, enable the-O4 option. Specifying-04 removes all
safety limits on compile time and space; hence, you should use it only when plent
CPU and memory resources are available. You can reimpose limits removed by-04 by
specifying other-Q options after the-O4 specification.

Giving Hints to Compiler Optimizations (C++ only) 20

The alias analysis phase of the C++ compiler may be given several hints with#pragma s
embedded in the source. These allow the user to specify information that can norm
only be obtained through interprocedural analysis. Use them with caution, as inco
hints can cause invalid optimizations to occur in later optimization phases. To spec
routine in these pragmas, an entire signature must be used. For example,

#pragma never_returns void print_error_and_exit(int, char *)

Variable lists are comma separated names of variables (with scoping operators as ne
and may be an empty list.

#pragma nonrecursive routine-signature
Tells the compiler that calling the designated routine will not result in t
caller routine being called, i.e., will not result in recursion. Further, if desi
nated routine is the routine being defined, it means that no routine called
the designated routine will result in itself being called recursively.

The effect of this pragma is to let the alias analysis and optimizer know t
local static variables will not be modified by function calls unless their addre
as been made visible to other routines.

#pragma explicit_use_def routine-signature
Tells the compiler that no variable visible to the caller routine will be used
modified (defined) by calling the designated routine, unless there are exc
tions listed in subsequent#pragmas (seemaybe_use , maybe_def , and
definitely_def below).
20-8

Program Optimization

i-

the
sig-

: the

s
does
. If

not

se
y not

ll-
the
, or a

to

y

a

e

the
not
es,

the
.

the

any
lue
Ordinarily, the optimizer must assume function calls kill every externally vis
ble variable, a worst case assumption that is rarely true.

#pragma maybe_use routine-signature{ variable-list} [,parameters][,all]
Tells the compiler that the specified, comma separated, list of variables are
only variables visible to the caller whose values are referenced by the de
nated routine. Using this pragma implies theexplicit_use_def pragma.
This pragma may be used several times on the same designated routine
effects are cumulative.

The optional,parameters designation tells the compiler that object
pointed to by pointer parameters may also be referenced. Note that this
not apply to objects pointed to by pointers contained in objects referenced
you pass a pointer to a node in a linked list and use the,parameters desig-
nation, the compiler will assume the fields of that node are referenced, but
other objects pointed to by fields of that node.

The optional,all designation directs the compiler to make worst ca
assumptions about what the designated routine might reference. This ma
be combined with a variable list or the,parameters designation.

#pragma maybe_def routine-signature{ variable-list} [,parameters][,all]
Tells the compiler what variables visible to the caller might be defined by ca
ing the designated routine. The optimizer will assume after the call that
designated variables might have whatever values they had before the call
new value given them by the call. As formaybe_use , this pragma will imply
the explicit_use_def pragma, and also may be used multiple times
build up a longer list of variables.

The optional,parameters and,all designations operate the same wa
they do for themaybe_use pragma.

#pragma definitely_def routine-signature{ variable-list}
Tells the compiler what variables visible to the caller will definitely be given
new value by calling the designated routine. As formaybe_use , this pragma
will imply the explicit_use_def pragma, and also may be used multipl
times to build up a longer list of variables.

#pragma returns_new_object functon-signature
Tells the compiler that the object pointed to by the pointer return value of
designated function is an uninitialized object that is newly allocated. Do
use this pragma on functions that return pointers to initialized structur
unions, or variables.

#pragma returns_new_zeroed_object function-signature
Tells the compiler that the object pointed to by the pointer return value of
designated function is newly allocated and all its bits have been set to zero

#pragma never_returns routine-signature
Tells the compiler that the designated routine will never return. This gives
compiler more accurate flow information.

#pragma pure_function function-signature
Tells the compiler that the designated function neither uses nor modifies
variable that is visible to the caller and that it computes its return va
20-9

Compilation Systems Volume 2 (Concepts)

that
is
sion
e

t by

-
bout

more
ect
-
tion.

the
ing:
entirely from its actual arguments in a deterministic manner. This means
the compiler can eliminate the call if its result isn’t used or if its result
redundantly computed elsewhere in the caller routine (common subexpres
elimination). If an actual argument is of pointer type, it is implied that th
result is computed by manipulating the actual bits of the pointer value, no
referencing the object pointed to by the pointer.

Obtaining Optimization Messages 20

Each compiler has a verbose (-v) option that produces output giving you more informa
tion about the compilation. Part of this output may include informative messages a
optimization.

These messages inform you when the optimizer has been unable to perform one or
optimizations because of the limits in effect for the compilation. You can usually corr
the problem by using the-Q option to specify a higher limit. Refer to the appropriate lan
guage reference manual or compiler man page to learn how to specify the verbose op

Classes of Optimizations 20

CCG compilers perform the following classes of optimizations:

• Branch optimizations Page 20-10

• Variable optimizations Page 20-12

• Expression optimizations Page 20-16

• Loop optimizations Page 20-18

• Register allocation Page 20-24

• Instruction scheduling Page 20-24

• Inline expansion of subprograms (Ada only) Page 20-26

• Optimization of constraints (Ada only) Page 20-27

Branch Optimizations 20

The compiler performs branch optimizations to minimize the number of branches in
program and to reduce memory requirements. These optimizations include the follow

• Straightening blocks

• Folding conditional tests

• Eliminating unreachable code
20-10

Program Optimization

d at

cks to
e sec-
ose

by a
with
e as
con-

on of
this

con-
imi-
n.

annot
t of
ve a
ub-

oop
body
o-trip
Code
for

le
• Inserting zero trip tests

• Duplicating partially-constant conditional branches

Each of these optimizations is described in the sections that follow. All are performe
the GLOBAL, MAXIMAL, and ULTIMATE levels.

Straightening Blocks 20

If two sections of code are executed in sequence, the optimizer rearranges the blo
place them in sequence in the program so that it is not necessary to branch from on
tion to the other. Subprograms with very complicated flow of control (especially th
using manyGOTOstatements) benefit most from this optimization.

Folding Conditional Tests 20

If all of the operands of a conditional test are constant, then the test can be replaced
branch to the appropriate location. Programmers seldom intentionally write programs
such conditional tests. Most of the time, opportunities for this type of optimization aris
a result of other optimizations. Constant propagation often makes all the operands of
ditional tests become constant (see “Copy Propagation” on page 20-14 for a descripti
this optimization). Inline expansion of a subprogram may also create opportunities for
type of optimization--especially if one or more arguments in the expanded call are
stant values (see “Instruction Scheduling” on page 20-24 for a description of this opt
zation). Using macros in C also frequently generates opportunities for this optimizatio

Eliminating Unreachable Code 20

The compiler eliminates code that it determines can never be executed. Code that c
be executed is calledunreachable. Code most often becomes unreachable as a resul
folding a conditional test. Unreachable code usually results from programs that ha
long history of modification and maintenance--especially in large and complicated s
programs, or from folding conditional tests.

Inserting Zero Trip Tests 20

To minimize the amount of branching within loops, the optimizer may insertzero-trip tests
prior to the loop. This technique is used with loops that exit at the beginning of the l
rather than at the end. These “early exit” tests are duplicated before the loop; then the
of the loop is rearranged so that the test appears at the end of the loop. Inserting zer
tests also helps in such optimizations as code motion and strength reduction (see “
Motion” on page 20-17 and “Strength Reduction” on page 20-20, respectively,
descriptions of these optimizations).

The -Qgrowth_limit option controls zero-trip test insertion. If the optimizer is unab
to insert a zero-trip test because of the specifiedgrowth_limit , you may receive an
informative message similar to the following:
20-11

Compilation Systems Volume 2 (Concepts)

d in
alues.
ith a

” on
then,

on

s
iders
s that
ation.

-

foo.c, line 98: information: 50% growth limit prevents
any more zero trip tests for this routine.
See -Qgrowth_limit=N.

Duplicating Partially-Constant Conditional Branches 20

Another technique for minimizing branches is to duplicate conditional tests backwar
the program to paths in which all of the operands of the test are assigned constant v
Constant propagation and folding conditional tests then replace the duplicated test w
direct branch (see “Copy Propagation” on page 20-14 and “Folding Conditional Tests
page 20-11 for descriptions of these optimizations). On such paths of the program,
no test is necessary.

The following Fortran fragment illustrates this type of optimization:

1. IF(ETI.LT.0.0)ETI = 0.0
2. IF(ETI.GT.1.0)GO TO 110
3. IF(XFFINT)ETI = 10.0
4. 110 ...

If the program executes the assignment toETI on line 1, the test on line 2 is obviously
false. After optimization, this fragment is modified so that following the assignment
line 1, the program branches directly to line 3.

Variable Optimizations 20

For purposes of optimization, avariable is any scalar entity in the program that either ha
or can have a unique memory address. Not all of the variables that the compiler cons
optimizing have names that you have declared, however, and some of the variable
you have declared may not be considered because they are not susceptible to optimiz
Note the following:

• In some cases, an array element accessed by a constant subscript may be
considered a variable.

• A scalar dummy argument in Fortran is usually considered a variable
although it is passed by address.

• Scalar variables in largeCOMMONblocks may not always be considered
variables.

CCG compilers perform the following optimizations on variables in your program:

• Dead code elimination

• Copy propagation

• Separate lifetimes

• Copy variables

Variable optimizations are performed only at the GLOBAL, MAXIMAL, and ULTIMATE
levels. At the MAXIMAL and ULTIMATE levels, dead code elimination and copy propa
20-12

Program Optimization

n intro-
pro-

izer
er of
iables

rtifi-
.

h as

other
e

sign-

nly
vice

of the
vari-
age

e.

ments
ent to

a par-
gation are repeated several times. They are repeated because other optimizations ca
duce additional opportunities for them; for instance, strength reduction may render a
gram variable unnecessary.

The number of variables that the compiler optimizes is limited by default. The optim
chooses which of the variables in a subprogram to optimize according to the numb
times that the variable is referenced. You can increase or decrease the number of var
that the optimizer will optimize by specifying the-Qobjects= N option, whereN repre-
sents the number of variables. Note, however, that this number may include some “a
cial” variables created by the compiler as part of its translation of the source program

If the verbose option is enabled and the optimizer observes more variables than the-Qob-
jects option allows it to optimize, the compiler issues an informative message suc
the following:

foo.c, line 34: information: only first 128 most
frequently occurring variables out of 337 total
variables were optimized. See -Qobjects=N option.

Note that substantially increasing the value for the-Qobjects option may significantly
increase compilation time and the amount of memory consumed by the compiler.

Each of the variable optimizations is described in the sections that follow.

Dead Code Elimination 20

An assignment to a variable that is not subsequently used or is always assigned an
value before being used is calleddead code. A set of assignments to a variable may also b
dead if the values computed for the variable are used only in one or more of the as
ments in the set. The following C fragment provides an example:

1. i = 0 ;
2. j = 0 ;
3. while (j < 100) {
4. i = i + 1 ;
5. foo() ;
6. i = i + 2 ;
7. j = j + 1 ;
8. }

The assignments toi (a local variable) on lines 4 and 6 compute values that are used o
in those assignments (line 6 computes a value that will be used only on line 4, and
versa). Those two assignments are actually dead code.

Most dead assignments occur because other optimizations have removed the uses
variable. Strength reduction, for example, replaces some occurrences of an induction
able with compiler-generated temporary variables (see “Strength Reduction” on p
20-20 for a description of this optimization and a definition ofinduction variable). This
procedure may cause the assignments to the induction variable to become dead cod

Dead code may also occur in large and complicated subprograms when new assign
are added or old code is removed. A new assignment may transform another assignm
the same variable into dead code. Removing old code may remove all of the uses for
ticular assignment.
20-13

Compilation Systems Volume 2 (Concepts)

to be
be the
. See
for

es to
llows
duces

, vari-

nt.
as it
le is

.) If all
oved.

ari-

on-
s in

her
ned
not be

t the
e left.

es-
ga-
ble is
prop-
if the

oval.
ts the
nal
When debugging your program, you may notice that some assignments appear
skipped or do not appear to have any associated code. Such discrepancies may
result of dead code removal, or they may be caused by several other optimizations
“Debugging Optimized Code” on page 20-32 for an explanation of the procedures
debugging optimized programs.

Copy Propagation 20

Copy propagation is an optimization in which an assignment to a variable ispropagatedto
uses of that value of the variable. This propagation is performed by replacing referenc
the variable by the right-hand side of the assignment. In some cases, propagation a
the assignment to be removed; in other cases, it allows faster access to the value or re
the usage of registers. There are three distinct types of copy propagation: constant
able, and expression. Each type is explained in the paragraphs that follow.

Constant propagationis performed if the right-hand side of the assignment is a consta
In this type of propagation, the optimizer replaces as many references to the variable
can. (It cannot, for example, replace a reference in which the address of the variab
used, as is the case when passing the variable by reference to another subprogram
of the references that use the assigned value are replaced, then the assignment is rem

A special form of constant propagation is performed for Fortran programs. A local v
able (not in aCOMMONblock) that is initialized with aDATAstatement and never modified
in the subprogram can usually be replaced by the initializing constant. This form of c
stant propagation is performed primarily to accommodate older Fortran/66 program
which DATAstatements frequently substituted for the absence of aPARAMETERstate-
ment.

Variable propagationmay be performed if the right-hand side of the assignment is anot
variable. Variable propagation is usually performed only if all references to the assig
value can be replaced and the assignment then removed. Even if the assignment can
removed, the optimizer may decide to perform the propagation if it determines tha
variable on the right-hand side can usually be accessed faster than the variable on th

NOTE

In C, if the variable on the left-hand side of the assignment is
declaredregister , variable propagation is not performed.

Expression propagationis attempted if the right-hand side of the assignment is an expr
sion. To prevent unprofitable optimizations, the optimizer’s use of this form of propa
tion has quite a few restrictions; for instance, only one reference to the assigned varia
replaced. If more than one reference uses the assigned value, the compiler refuses to
agate the expression. Furthermore, the replaced reference must not be inside a loop
original assignment is not also in that loop.

Copy propagation may affect your debugging efforts even more than dead code rem
In addition to possibly removing assignment statements, copy propagation also affec
values of variables. Refer to “Debugging Optimized Code” on page 20-32 for additio
information on this problem.
20-14

Program Optimization

ften
nre-
For-

.
vior

iable
ferent
em-
ory
ble.

the
ns in
arate
ple,
reg-
(or

that
es not
g the

they
ription
mmy

,
f
ative
Separate Lifetimes 20

Using the same variable name for different purposes is fairly common practice. It o
happens with loop-control variables; you may use the same variable to control two u
lated loops in a subprogram when you can as easily use two variables. The following
tran program fragment provides an example:

1. A = F(X)
2. IF (A .GT. 0) THEN
3. Y = A + B
4. ELSE
5. Y = B - A
6. ENDIF
7. A = G(X)

...

In this example, the references toA in lines 1-5 are distinct from the reference on line 7
You can use another variable name in the first set of lines without affecting the beha
of the program.

In these cases, the compiler makes each use of the variable a logically different var
(but maintains the same name). The separate variables can then be allocated to dif
locations (either to different registers or one instance to a register and the other to m
ory--the compiler never allocates separate lifetimes of a variable to two different mem
locations). With this approach, a register is more likely to be available to hold the varia

Copy Variables 20

In addition to the naturally occurring opportunities for separate lifetimes of variables,
optimizer creates more opportunities by inserting new assignments at strategic locatio
the program. These assignments copy the variable to itself to introduce multiple sep
lifetimes of the variable. Copy assignments for a variable used inside a loop, for exam
may be inserted before and after the loop. In this way, the variable can be placed in a
ister for the duration of the loop, although outside the loop, a register is not available
the variable must reside in memory for some other reason).

Copy variables are particularly effective with FortranCOMMONvariables and Ada
library-level package variables. Normally these variables must reside in memory so
other subprograms can access them; however, if a loop that uses such a variable do
call any other subprograms, then that variable can be allocated to a register durin
loop.

Note that some variables are not subject to the copy-variables optimization; instead,
are treated as expressions (see “Expression Optimizations” on page 20-16 for a desc
of expression optimizations). Some examples of such variables are scalar Fortran du
arguments and Ada variables that are declared in an enclosing subprogram.

The copy-variable optimization is restricted to theN most deeply nested loops in a routine
whereN is specified with the-Qloops= N option. If you have more than this number o
loops in your program and the verbose option is enabled, you may receive an inform
message similar to the following:
20-15

Compilation Systems Volume 2 (Concepts)

or
age

val-
The

mon
XI-
hat

nec-
se of
lan-
foo.c, line 34: information: copy variables applied only
to first 20 most deeply nested loops out of 37 total
loops. See -Qloops=N option.

Copy variables can affect debugging of optimized programs by making it difficult
impossible to examine the value of a variable. See “Debugging Optimized Code” on p
20-32 for an explanation of the procedures for debugging optimized programs.

Expression Optimizations 20

Expression optimizations refer to efforts made by the compiler either to eliminate the e
uation of an expression or to reduce the time or space required for that evaluation.
CCG optimizer applies the following expression optimizations:

• Algebraic simplification

• Address mode determination

• Common subexpression elimination

• Code motion

Algebraic simplification and address mode determination are always performed. Com
subexpression elimination and code motion are performed only at the GLOBAL, MA
MAL, and ULTIMATE levels. Each of these optimizations is explained in the sections t
follow.

Algebraic Simplification 20

The compiler performs many transformations on expressions in order to eliminate un
essary computations, take advantage of special hardware, and make optimum u
machine resources. The specific transformations performed vary from language to
guage and from one target architecture to another.

NOTE

The compiler does not perform an algebraic simplification if
doing so violates the language’s rules concerning parentheses or
the order in which expressions are evaluated.

Some of the transformations that are performed are described as follows:

1. An operation in which all of the operands are constants is folded into a sin-
gle constant.

2. Constants within an expression are collected whenever possible by apply-
ing the laws of commutation, association, and distribution to the operations
of addition, subtraction, multiplication, and division. This transformation
creates additional opportunities for constant-folding.
20-16

Program Optimization

ment

CCG
d by

g
h sub-

. If an
e first
re are
paths

ere it

n
laced
Except for special cases, these transformations are limited to integer
expressions to prevent introduction of unwanted round-off errors in float-
ing-point operations. Even for integer operations, however, some of the
transformations can be unsafe because of possible overflow. These trans-
formations are enabled only if unsafe optimizations are allowed.

3. Arithmetic identity operations (for example, multiplying by zero or one and
adding zero) are eliminated for both integer and floating-point operands.

4. Constants are factored out of integer expressions when possible; for exam-
ple, the expression(A*5)+(B*5) is transformed into(A+B)*5 . This
transformation is performed only if unsafe optimizations are allowed.

5. Whenever possible, additive constants that appear in address computations
are collected (for example, accessing array elementA(I+1)). If the base
address of the item being accessed is also constant, the additive constants
are combined with it, thus eliminating one or more addition operations. If
the base address is not constant, then the compiler attempts to rearrange the
computation so that the addition can be performed by the addressing hard-
ware.

6. For Fortran, some trigonometric and transcendental identities are also
applied to expressions; for instance,SIN(X) * COS(X) is transformed
into 0.5*SIN(2*X) .

Address Mode Determination 20

System processors have the capability of combining the computation of an array-ele
address with the access to memory. Using these complexaddress modescan improve per-
formance by reducing the amount of explicit computation required to access data.
compilers take advantage of this capability by analyzing address computations an
selecting the best address mode to use in each case.

Common Subexpression Elimination 20

Common subexpression eliminationrefers to the optimizer’s attempt to avoid evaluatin
an expression whose value has already been computed. The optimizer analyzes eac
program to determine the flow of data and the occurrence of each unique expression
expression is evaluated at a point where its value has previously been computed, th
evaluation saves the value, and the subsequent evaluation only references it. If the
some code paths to the point of evaluation that evaluate the expression and some
that do not, the optimizer may insert computations of the expression on the paths wh
is missing.

Code Motion 20

An expression that is computed inside a loop and whose value does notchange within that
loop is a candidate forcode motion. The optimizer inserts a computation of the expressio
before entering the loop and saves that value. The computation within the loop is rep
with a reference to the saved value.
20-17

Compilation Systems Volume 2 (Concepts)

ed

pro-

, code
, your
cur in
tside

ops,
rmed
e

pro-

for
9.
Code motion can sometimes be applied to an expression whose value doeschange within
the loop. Consider the following Fortran program fragment:

1. DO 10 I = 1,N
2. IF (I .GT. M) THEN
3. A = A - 2
4. ELSE
5. C = C + 1
6. ENDIF
7. X(I) = A + B
8. 10 CONTINUE

In this example, the value ofA + B can be computed outside the loop and recomput
only whenA’s value changes on line 3.

If you are programming in Ada, note that code motion may affect the behavior of the
gram if an expression raises a predefined exception such asNUMERIC_ERROR; for
instance, although an expression may appear after an assignment to a variable
motion may cause the expression to be evaluated before the assignment. Therefore
program should not depend on this ordering unless the assignment and expression oc
different exception frames. (Code motion does not move an expression evaluation ou
of any exception frame in which it occurs.)

Loop Optimizations 20

Because most programs spend the majority of their execution time in one or more lo
CCG provides an extensive set of loop optimizations. These optimizations are perfo
only at the MAXIMAL and ULTIMATE levels because they may significantly increas
compile time. They may also significantly increase the amount of memory that your
gram requires, so you may need to use the-Qgrowth_limit option to control their
behavior more precisely.

NOTE

The optimizer does not restrict its attention to loops formed by
using high-level language constructs. Loops formed from condi-
tional tests and explicit branches are also considered in loop opti-
mizations.

Loop optimizations cannot be applied to loops with multiple entry points. Procedures
identifying such loops are explained in “Loops with Multiple Entry Points” on page 20-1

The following optimizations are applied to loops:

• Strength reduction (See “Strength Reduction” on page 20-20.)

• Test replacement (See “Test Replacement” on page 20-21.)

• Duplicating loop exit tests (See “Duplicating Loop Exit Tests” on page
20-21.)
20-18

Program Optimization

the
trans-
or-

them
first

--if it
rce in
has
more
upies

d ter-
. In

ntry
• Loop unrolling (See “Loop Unrolling and Software Pipelining” on page
20-22.)

Loops with Multiple Entry Points 20

Loop optimizations cannot be applied to loops with more than one point of entry. If
verbose option is enabled, the compiler warns you about such loops and attempts to
form them into single-entry loops by duplicating part of the loop body. The following F
tran procedure, for example, contains a loop with multiple entries:

1. subroutine irred (arr,n)
2. integer arr(n)
3. i = n - 1
4. goto (10,20,30), i
5. 10 continue
6. arr(i) = arr(n) - arr(i+1)
7. 20 continue
8. arr (i+1) = arr(i) + arr(n)
9. 30 continue
10. i = i - 1
11. if (i .gt. 0) goto 20
12. end

The messages you receive may be similar to the following:

At irreducible.f:7: information: Forward branch into
loop number 1 repaired: Routine grew to 114%.

At irreducible.f:9: information: Forward branch into
loop number 1 ends here and originates at line 4

Each loop is numbered internally by the compiler so that messages can refer to
uniquely. The messages provided in the example both refer to the same loop. The
message indicates whether or not the compiler has been able to repair the problem
has not, the message indicates why. This message also refers to the line in the sou
which one of the entry points of the loop occurs--in this case, line 7. If the compiler
been able to repair the problem, this message tells you approximately how much
memory the transformed code occupies. In this example, the transformed code occ
about 14 percent more memory than the original.

The second message informs you where the second entry into the loop originates an
minates. This information enables you to modify your program to remove the problem
this example, line 4 branches into the loop to line 9. If there are more than two e
points, the compiler repeats the second message for each one.

NOTE

You may occasionally see a message that refers to “unknown
line.” Such a message means that the compiler cannot determine
exactly which line has caused the extra entry point into the loop. It
usually happens with programs that contain manyGOTOstate-
ments.
20-19

Compilation Systems Volume 2 (Concepts)

ec-
an

gram
st half

-

mula-
ding
s for
to

oops
n that

fferent

ith

1 is
d

tion
. A

is
nds
t be

opera-

ften
riable
ement
ore
The compiler repairs loops with multiple entries only if doing so does not violate the sp
ified growth_limit . Note that the percent increase that the compiler reports is only
approximation because it is based on the compiler’s internal representation of the pro
rather than the actual instructions generated. Furthermore, the compiler uses at mo
of the a l low edgrowth_l imi t in r epai r ing th ese loop s. I f y ou spec i fy
-Qgrowth_limit=30 , for example, repairing multiple-entry loops will increase pro
gram size by a maximum of 15 percent.

When the compiler repairs forward branches, it reports percent increases that are cu
tive; that is, the amount of increase reflects the new total size of the procedure, inclu
all previous repairs. Reporting a cumulative total helps you to select appropriate value
the -Qgrowth_limit option. It is important to note that the messages about repairs
multiple-entry loops are not necessarily generated in the same order in which the l
have been repaired. The new size reported in one message may be greater tha
reported in a subsequent message. This indicates that the loops were repaired in a di
order.

The following C program segment illustrates how you may unwittingly create a loop w
multiple entry points by using agoto :

1. if (a < b) {
2. lab1:
3. a += b ;
4. }
5. if (a == b) goto lab1 ;

This loop has two entry points because line 5 is part of the loop. When the test on line
true, the loop is entered at labellab1 . When the test on line 1 is false, the loop is entere
at line 5.

Strength Reduction 20

Many of the loop optimizations involve the concepts of a region constant and an induc
variable. Aregion constantis an expression whose value does not change within a loop
variable is classified as aninduction variableif all assignments to it within a loop have
one of the following forms:

IV1 = IV1 + RC
IV1 = IV1 - RC
IV1 = IV2
IV1 = RC

whereRCis a region-constant expression, andIV1 andIV2 are induction variables.

Strength reductionis an optimization that is applied to integer expressions in loops; it
applied to expressions that involve only addition and multiplication. One of the opera
of the expression must be an induction variable; all of the other operands mus
region-constant expressions. Such expressions can be reduced to simple addition
tions that execute much faster.

Expressions to which strength reduction optimization can be applied occur more o
than you may think. References to array elements that are indexed by an induction va
are usually candidates for strength reduction because the computation of the array-el
address typically involves a multiplication (by the stride of the array) and one or m
20-20

Program Optimization

ica-

ly if
puted
ould
the
ions
eing

C

mi-

est

n.
f the

ehave
ou

tions,

t
m a
addition operations. Multidimensional arrays usually involve more than one multipl
tion, so they benefit even more from strength reduction.

To ensure profitability, the optimizer performs strength reduction on an expression on
the expression is computed every time the loop body is executed. Expressions com
only inside an if-test in the loop, for instance, are not reduced. When possible, you sh
avoid writing loops in which a test for exiting the loop precedes other computations in
loop. Doing so prevents the optimizer from performing strength reduction on express
appearing after the exit test. It may also prevent other useful optimizations from b
performed.

Test Replacement 20

In many loops, an induction variable controls the number of iterations. The following
fragment provides an example:

for (i = 1; i < ending_value ; ++i) {
...

}

In this example,i is an induction variable whose value determines when the loop ter
nates. If there are one or more expressions involvingi to which strength reduction can be
applied and if the value ofi is not required after the loop terminates, then the loop exit t
can be modified to test the value of the reduced expression (the value to whichi is com-
pared is also suitably modified). This modification allows the variablei to be eliminated.

Although test replacementrarely causes a failure, it is potentially an unsafe optimizatio
If the induction variable used in the test can become large enough to cause one o
reduced expressions to overflow, then test replacement can cause a program to b
incorrectly. The problem most likely to occur is that the program loops infinitely. If y
suspect that test replacement has caused a program to fail, disable unsafe optimiza
and recompile your program.

Duplicating Loop Exit Tests 20

At the MAXIMAL and ULTIMATE levels, the optimizer may duplicate a loop exit tes
elsewhere in the loop to avoid an unconditional branch. The following C fragment fro
binary search algorithm illustrates the need for this optimization:

1. min = 0 ;
2. max = N - 1 ;
3. while (1) {
4. target = (min + max)/2 ;
5. if (arr [target] == elem) {
6. break ; /* exit the loop, found */
7. } else if (arr [target] < elem) {
8. max = target - 1 ;
9. } else {

10. min = target + 1 ;
11. }
12. if (min > max) break ; /* exit the loop,
20-21

Compilation Systems Volume 2 (Concepts)

sts
line

other
t
e

ion

pli-
ed for

loop
body
e on
y be
Ada

tor,
e as
pti-
ule
truc-
the

era-
ofit-
ake

h

ter-
eeds

can
not found */
13. }

Normally, after executing line 8, the program has to branch to line 12, where it te
whether to exit the loop. In this case, the optimizer may decide to duplicate the test on
12 after line 8, thus eliminating an unconditional branch.

Internal limits and the-Qgrowth_limit option prevent this optimization from drasti-
cally increasing the size of the program. Because this optimization occurs after the
optimizations that are controlled by-Qgrowth_limit , the optimizer reserves 5 percen
of the specifiedgrowth_limit for this optimization. If the preceding optimizations us
less than 95 percent of the allowedgrowth_limit , this optimization is allowed to use
all that remains.

If the growth_limit prevents a loop exit from being duplicated and the verbose opt
is enabled, you may see the following informative message:

foo.c, line 56: information: 25% growth limit prevents
replacing unconditional branch with loop exit code.
See -Qgrowth_limit=N.

Loop Unrolling and Software Pipelining 20

Unrolling a loop means that the loop body is duplicated one or more times, with the du
cates and the original body concatenated. The loop exit test, however, is not repeat
each duplication, so the unrolled loop executes one test for several executions of the
body. This procedure reduces the overhead involved for each execution of the loop
and makes the loop run faster. Programs benefit more from loop unrolling becaus
pipelined and/or superscalar machines, computations from one copy of the loop ma
overlapped with computations from another (see “Inline Expansion of Subprograms (
only)” on page 20-26 for a description of instruction scheduling).

Because the number of iterations may not be an integer multiple of the unrolling fac
there may be some clean up iterations following the unrolled loop. We refer to thes
“peeled” iterations.reorder can take advantage of these peeled iterations to do an o
mization called software pipelining. The basic idea of this optimization is to sched
some instructions from subsequent iterations during the current iteration. Some ins
tions from the unrolled body are moved into the block that branches to the loop, and
corresponding instructions in the peeled iterations are moved into the loop.

Loop unrolling is controlled by several of the-Q options.Loops with an iteration count
that is known at compile-time are controlled separately from those with a variable it
tion count. This is because unrolling a loop that iterates only a few times is often unpr
able. The compiler can make profitability decisions for the former, but the user must m
them for the latter.

The -Qunroll_limit_const option specifies the maximum unroll factor for eac
loop whose iteration count is a compile time constant. A value ofN means that the body of
the loop is duplicatedN-1 times to get a total ofN copies of the body in the unrolled loop
(thus, specifying a limit of one or zero disables this optimization). The optimizer de
mines the best unroll factor for each loop, but it never chooses a factor that exc
unroll_limit or a factor that is greater than eight. the-Qpeel_limit_const
option specifies a minimum number of times to be peeled off from the unrolled loop. This
be used to force software pipelining to be done even if the loop is not unrolled.
20-22

Program Optimization

n
om-
any
the
in-
nly
d

it-

ins
of
or-
nroll

. If
then
ssi-
her-

the

t
ppro-
inal.

nal

oop
d or
ional
pro-

ra-
ilable,
cantly
f the

g the
mall

r-
, you
if the
The-Qunroll_limit_var option specifies the unroll factor for loops with an iteratio
count that is not known at compile time (i.e., whose count is variable). Because the c
piler does not know how many times the loop iterates, it also does not know how m
iterations are peeled off. Thus there is a clean-up loop that is not unrolled after
unrolled loop. If the unroll factor is 2, this clean up loop is not actually a loop, but is a s
gle iteration with a zero trip test before it. Software pipelining on these loops is done o
if the -Qpeel_var option is used. This option turns off unrolling of those loops an
peels a single iteration off. It is difficult, if not impossible, to predict when this is prof
able.

The choice of unroll factor may be further limited by the-Qgrowth_limit
option.When loop unrolling is performed, the amount of available growth that rema
from previous optimizations minus approximately 5 percent (to allow for duplication
loop exit tests as explained in “Duplicating Loop Exit Tests” on page 20-21) is app
tioned equally to all of the candidate loops. Thus, large loops may have a smaller u
factor than small loops.

To be a candidate for loop unrolling, a loop must be controlled by an induction variable
the initial value, increment, and final value of the induction variable are all constants,
the optimizer can determine exactly how many iterations the loop will perform. If po
ble, it chooses an unroll factor that evenly divides the total number of iterations. Ot
wise, the unrolled loop is preceded by one or more copies of the loop body to make
number of iterations a multiple of the unroll factor.

If any one of the initial value, increment, or final value of the induction variable is noa
constant, then the optimizer cannot replace the original loop. Instead, it constructs a
priate conditional tests that determine whether to execute the unrolled loop or the orig
Furthermore, if the number of iterations is not a multiple of the unroll factor, the origi
loop may be executed after exiting the unrolled loop.

If the optimizer is unable to compute the total number of iterations, then unrolling the l
may gain little or nothing in performance. If, for instance, the loop is seldom execute
usually executed once, unrolling may actually degrade performance by adding addit
overhead to the subprogram. You should probably disable loop unrolling for the sub
gram.

The optimizer cannot choose the optimum unroll factor for loops with an unknown ite
tion count. In some cases, the unrolled loop may require more registers than are ava
thus increasing memory accesses. As a result, the performance gain may be signifi
less than you expect. Correction of these problems requires trial and error choice o
unroll limit and analysis of the program’s behavior.

In rare cases, loop unrolling may also worsen instruction-cache behavior by increasin
program size. If you suspect this is happening, disable loop unrolling, specify a very s
growth_limit , or specify a smaller unroll limit.

If the specifiedgrowth_limit prevents the optimizer from unrolling a loop that othe
wise can be unrolled and if you have enabled the verbose option on the compilation
may receive one or more informative messages. The following message appears
specifiedgrowth_limit prevents anyloop from being unrolled:

foo.c, line 98: information: 25% growth limit prevents
unrolling any loops in this routine.
See -Qgrowth_limit=N.
20-23

Compilation Systems Volume 2 (Concepts)

ied
ps:

go-
main

oca-

d; its
egis-
ction
ions

xecute
tions
tion.
oaded
extra
is sel-

class
com-

You
ode
tion”
curs
e the
value

edul-
xcep-

ging
you
ents.

ch still
n be
I f one or more loops are simply too large to be unrolled under the specif
growth_limit , however, you may receive the following message for each of the loo

foo.c, line 98: information: 25% growth limit prevents
unrolling this loop. See -Qgrowth_limit=N.

Register Allocation 20

At all levels of optimization, the compiler performs sophisticated register allocation al
rithms to make the best use of the machine registers and to minimize accesses to
memory. At the GLOBAL, MAXIMAL and ULTIMATE levels, however, the compiler
performs more preliminary analysis of the program to provide even better register all
tion.

The register allocator does not necessarily try to minimize the number of registers use
goal is to minimize the amount of data movement between two registers or between r
ters and memory. Furthermore, the register allocator attempts to provide the instru
scheduler with more opportunities for rearranging instructions by evaluating express
in different registers when possible.

Because of this approach, optimization may, in rare cases, cause a subroutine to e
more slowly than the un-optimized version. Slower execution results when some sec
of the subroutine are rarely executed but require many registers for efficient execu
Those registers may have to be saved in memory when entering the subroutine and l
again when exiting. Hence, the entry and exit code takes longer to execute, and the
registers do not improve execution speed because the code in which they are used
dom executed.

Instruction Scheduling 20

Instructions are divided into several classes. A different functional unit executes each
of instructions. As a result, several instructions can be executing simultaneously. The
pilers take advantage of this capability byscheduling, or reordering, the instructions of the
program and attempting to keep all of the functional units as busy as possible.

Instruction schedulingusually causes parts of several statements to be intermixed.
may be affected in two ways. First, instruction scheduling has effects similar to c
motion when exceptions caused by evaluation of expressions occur (see “Code Mo
on page 20-17 for a description of code motion optimization). An expression that oc
after an assignment in the text may, in fact, be partially or completely evaluated befor
assignment occurs. If that evaluation raises an exception, you cannot depend on the
of the variable to which the assignment is made. Note, however, that instruction sch
ing obeys all of the rules of Ada so that an expression is never evaluated outside the e
tion frame in which it occurs.

Second, you may observe the effects of instruction scheduling when you are debug
the program; for instance, if you try to single step through the lines of the program,
may notice that the program seems to skip back and forth among two or more statem
The reason is that the instructions for those statements have been intermixed, yet ea
carries with it the line number of the associated program text. Such information ca
20-24

Program Optimization

ow
ing

out
lock

ation
debug

-
s to

ges
p-

om-

-
use of

m-

bles.
most

s can

ic

dor
y
this

timi-
e-

n. The

ines
invaluable if an exception occurs: once you find the offending instruction, you kn
exactly which line of your program has caused the failure. Unfortunately, debugg
becomes somewhat more difficult.

When instructions are moved out of a basic block (eight linear set of instructions with
branches), either to a place where it is being executed speculatively or to another b
that always executes if the source block executes and vice versa. line number inform
is not carried along. Thus some parts of a statement might be executed long before
information indicates.

By default, instruction scheduling is performed at the GLOBAL, MAXIMAL and ULTI
MATE optimization levels. The C and Fortran compilers provide command-line option
disable instruction scheduling at the GLOBAL, MAXIMAL and ULTIMATE levels and
enable it at the NONE and MINIMAL levels. For details, refer to the system manual pa
for these compilers. Enabling instruction scheduling at MINIMAL is typically the chea
est compile-time method to get a significant performance boost.

Post-Linker Optimization 20

analyze optimizes programs during the post-linking stage. It uses program-wide, c
mon subexpressions to optimize address and constant computation. (Refer to theana-
lyze(1) man page for more information aboutanalyze).

During the post-linking process, the compiler drivers pass the-O option to analyze, which
invokes the post-linker optimization-code inanalyze . This creates program-wide, com
mon sub-expressions, and insures that the target instruction cache doesn’t fail beca
instruction misalignment.

Four reserved registers,r28 throughr31 on the PowerPC, are set equal to the most co
mon values that were loaded into registers using the “lis rD,imm ” on the PowerPC.
These values are usually the high-order, sixteen bits of the address of external varia
These same values get loaded repeatedly. By loading the reserved registers with the
common values at program start-up time, most loads and stores of external variable
be performed with one instruction instead of two instructions.

Additionally, if two different registers are loaded with the same value with‘lis’ instruc-
tions, and one of them reaches all of the uses of the other,analyze will substitute the
former for the latter and eliminate the latter‘lis’ instruction even if its value isn’t
loaded into one of the registers.

The -W and -n options ofanalyze may be used to adjust the weighting of the stat
count oflis instructions.

The Concurrent compilation system puts additional relocation information into the ven
section to handle Fortran programs with assignedGOTOstatements. Handwritten assembl
code, or code produced by non-Concurrent compilers, might not be compatible with
optimization. The-X option can be used to exclude such routines.

If analyze detects a routine that references any of the reserved registers prior to op
zation,analyze will generate a fatal error and refuse to optimize the program. Som
times, certain assembly routines can reference these registers in a harmless fashio
setjmp and longjmp routines, along with some signal handling code in_sigtramp ,
are known routines that are automatically excluded from optimization. Any other rout
20-25

Compilation Systems Volume 2 (Concepts)

r

i-
s
to

alls.
age

ld
with
-
gies

ee
n the
le ,
l or
ddi-
e of
the

ge
(as
r the
t the

to the

ities
rgu-
nstant
limi-
4 for a
p is
ove

y also
and

duc-
that reference these registers can still be optimized by naming them with the-X option.
This will causeanalyze to ignore them.

Programs that use the threads library use registerr31 as a process private data pointe
(also called thethreads register).

The link editor,ld , scans all object linked together, including both statically and dynam
cally linked libraries, and sets theppdp_used flag in the vendor section if certain thread
library routines are used. Whenanalyze sees this flag set, it does not use register r31
optimizelis instructions. See also thethread(3thread) man page.

Inline Expansion of Subprograms (Ada only) 20

The Ada compiler supports the substitution of subprogram bodies for subprogram c
Such substitutions are controlled by user application of the predefined Ada langu
pragma,INLINE , and by inline configuration parameter limits.

The intent of pragmaINLINE is to notify the compiler that particular subprograms shou
be considered for inline substitution, thereby eliminating the overhead associated
subprogram calls. PragmaINLINE can, therefore, be effective in maximizing perfor
mance while allowing the user to adhere to such higher level programming methodolo
as modularity, data abstraction, and information hiding.

While the intent of pragmaINLINE is to improve execution speed, there is no guarant
that the resultant code will actually run faster. In some cases, the overhead involved i
pr eser vat ion o f A d a la ng uag e r u l es fo r su b pr og ram cal l s (f or examp
copy-in/copy-out argument semantics, exception handling, and so on) may equa
even overshadow the savings achieved in removal of the actual subprogram call. A
tionally, through repeated inline substitution within a single subprogram, the actual siz
the subprogram may prevent other optimizations from occurring (for example, see
information on variable optimizations presented in “Variable Optimizations” on pa
20-12). PragmaINLINE also creates additional compilation unit dependencies
required by the Ada language), which cause additional routines to be recompiled afte
body of a subprogram that has been expanded inline is modified. You can circumven
overhead associated with implementingcopy-in/copy-out semantics when the argu-
ments on the subprogram call are constants or stack variables that are not visible
body of the subprogram.

You can realize the most effective use of pragmaINLINE by judiciously applying it in
time-critical areas. Inline expansion is especially effective when it creates opportun
for other optimizations to occur; for instance, if a subprogram uses the value of an a
ment to select among various actions, and calls to the subprogram often pass a co
value for that argument, inline expansion, together with constant propagation, can e
nate the test and remove the unused actions (see “Copy Propagation” on page 20-1
description of constant propagation optimization). A subprogram called inside a loo
also a good candidate for inline expansion because it may allow code motion to m
some of the expressions in the subprogram outside the loop; strength reduction ma
be applied to the expressions in the subprogram (see “Code Motion” on page 20-17
“Strength Reduction” on page 20-20 for descriptions of code motion and strength re
tion optimizations, respectively).
20-26

Program Optimization

call.
f lim-
and

nfig-

than
de the
, the
e tests

-
ry. As

te-
flow;
The Ada compiler does not always honor the user’s request to inline a subprogram
The compiler issues a warning message when it rejects inline substitutions because o
itations on the form of subprograms or the form and type of subprogram arguments
when HAPSE inline configuration parameters are exceeded. Inline limitations and co
uration parameters are described in theHAPSE Reference Manual.

Optimization of Constraints (Ada only) 20

The Ada programming language is more stringent concerning the integrity of data
such languages as C and Fortran. Ada declarations of variables and data types inclu
provision for specifying the values that are allowed for those entities. In many cases
compiler must insert run-time tests to ensure that those constraints are obeyed; thes
are calledconstraint checks. They generally occur in one of the following contexts:

• An assignment to a variable may require a constraint check to ensure that
the value being stored is valid.

• An operation such as addition may require a constraint check to ensure that
the result is a valid value of the result’s data type.

• An argument to a function or procedure may require a constraint check to
ensure that the argument’s value is within the range required by the formal
parameter’s data type.

• A dereference of an access variable may require a check to ensure that the
access variable is not null.

At the GLOBAL, MAXIMAL and ULTIMATE levels, the CCG optimizer has the capabil
ity to remove these constraint checks when it can determine that they are unnecessa
a simple example, consider the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;
a, b : little ;
c : integer ;

begin
...
c := a + b ;

end procedure doit ;

Normally, the additiona + b checks that its result does not exceed the bounds of an in
ger. In this case, however, the range of the operands precludes the possibility of over
therefore, the check can be removed.

Another example is provided by the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;
subtype bigger is integer range 1..100 ;
a, b : little ;
c : bigger ;

begin
...
20-27

Compilation Systems Volume 2 (Concepts)

the

hecks
nds of
t to

vari-

the
c := a + b ;
end procedure doit ;

The assignment toc normally requires a constraint check to ensure that the result of
addition is a valid value of typebigger . In this example, however, the types ofa andb
guarantee that their sum will be within the bounds ofbigger ; the constraint check is
unnecessary.

The following Ada program fragment contains function calls:

package pkg is
subtype little is integer range 1..10 ;
subtype bigger is integer range 1..100 ;

function fun1 (a, b: little) return bigger ;

function fun2 (a, b: bigger) return bigger ;

procedure doit is
a, b : integer ;
c : bigger ;

begin
...
c := fun1 (a, b) + fun2 (a, b) ;

end procedure doit ;
end package pkg ;

The call tofun1 imposes constraint checks on botha andb. Ordinarily, the call tofun2
also imposes these constraint checks; however, the optimizer can remove these c
because they have been previously performed. Also note that the ranges of the opera
the addition imply that the result can never be smaller than two; thus, the assignmenc
needs to check only the upper bound of its constraints.

The optimizer also uses comparisons in the program to narrow range restrictions on
ables; for instance, in the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;
a, b : little ;
c : integer ;

begin
...
if c >= 1 then

a := c ;
if c <= 10 then

b := c ;
end if ;

end if ;
end procedure doit ;

the assignment toa must check that the value ofc does not exceed10 . It does not have to
check the lower bound because the if-test guarantees thatc already meets that condition.
Similarly, the assignment tob needs no constraint checks because the combination of
two if-tests guarantees thatc lies in the range1..10 .
20-28

Program Optimization

lace a

tions
ese

he

redun-

sub-

n-
rou-

ing
data

the
eser-

ay
call.

tual
see

age

ther
elect
In some cases, the range information derived from the program can be used to rep
variable with a constant. The following Ada program fragment provides an example:

procedure doit is
subtype little is integer range 1..10 ;
a, b : little ;
c : integer ;

begin
...
c := a ;
if c < 2 then

b := c ;
end if ;

end procedure doit ;

After the assignmentc := a, c is known to lie in the range1..10 . Within the if-test,
c is further restricted to be less than2; the only possible value forc , then, is1. In the
assignment tob, therefore, the optimizer will replacec with the value1.

Obviously, the examples used here to explain the various types of constraint optimiza
are very simple. Nevertheless, typical Ada applications benefit substantially from th
optimizations.

Constraint optimizations are performed at the GLOBAL, MAXIMAL and ULTIMATE
levels even when run-time constraint checks are suppressed by the user (either via t-S
option or the predefined language pragma,SUPPRESS). As indicated in the preceding
paragraphs, constraint optimizations benefit general code sequences and remove
dant constraint checks.

Inline Expansion of Subprograms (C++ only) 20

The C++ compiler supports the substitution of subroutine bodies for their calls. Such
stitutions are controlled by use of theinline C++ keyword (which is implied in some
contexts). For language specifics, the user is directed to any good C++ text.

The intent ofinline is to notify the compiler that particular subroutines should be co
sidered for inline substitution, thereby eliminating the overhead associated with sub
tine calls. Inlining can, therefore, be effective in maximizing performance while allow
the user to adhere to such higher level programming methodologies as modularity,
abstraction, and information hiding.

While the intentinline is to improve execution speed, there is no guarantee that
resultant code will actually run faster. In some cases, the overhead involved in the pr
vation of C++ language rules for subroutine calls (for example, exception handling) m
equal or even overshadow the savings achieved in removal of the actual subroutine
Additionally, through repeated inline substitution within a single subroutine, the ac
size of the subroutine may prevent other optimizations from occurring (for example,
the information on variable optimizations presented in “Variable Optimizations” on p
20-12).

You can realize the most effective use ofinline by judiciously applying it in time-criti-
cal areas. Inline expansion is especially effective when it creates opportunities for o
optimizations to occur; for instance, if a subroutine uses the value of an argument to s
20-29

Compilation Systems Volume 2 (Concepts)

r that
t and

on of
ndi-

pres-
o the
duc-
ons,

ll. In

ms.
ch as
ake

estric-
r for-

tions
more
ress

ternal
ss is
able

ts to
ti-
ural
ro-

cod-
oding
rob-
among various actions, and calls to the subroutine often pass a constant value fo
argument, inline expansion, together with constant propagation, can eliminate the tes
remove the unused actions (see “Copy Propagation” on page 20-14 for a descripti
constant propagation optimization). A subroutine called inside a loop is also a good ca
date for inline expansion because it may allow code motion to move some of the ex
sions in the subroutine outside the loop; strength reduction may also be applied t
expressions in the subroutine (see “Code Motion” on page 20-17 and “Strength Re
tion” on page 20-20 for descriptions of code motion and strength reduction optimizati
respectively).

The C++ compiler does not always honor the user’s request to inline a subroutine ca
this case, an out-of-line instance is called instead.

Precise Alias Analysis (C++ Only) 20

All compilers do a certain amount of alias analysis to drive the optimization algorith
Alias analysis determines what variables are being referred to by an expression su
*p , i.e., it determines what variables that expression is an alias for. Most compilers m
simple worst case assumptions about aliasing, though some languages have more r
tive rules, such as the FORTRAN77 rule that a formal argument does not alias anothe
mal argument or other variable visible to the subroutine.

The C++ does a more sophisticated analysis. It takes advantage of the assump
allowed by the emerging C++ standard and also tracks assignments so that it has a
precise idea of the set of variables a pointer might be pointing too. Also, when the add
of a variable is taken, it is possible to determine if that address gets passed to an ex
routine by way of a global variable or actual argument. If not, meaning that the addre
used locally in a single subroutine only, it isn’t necessary to assume that the vari
whose address was taken is killed by function calls.

This framework makes it easy and advantageous to add pragmas (See “Giving Hin
Compiler Optimizations (C++ only)” on page 20-8) to provide information to the op
mizer about things that ordinarily could only be obtained by having an interproced
optimizer analyzing the whole program and will be the enabling technology for future p
gram analysis and debugging tools in the future.

Programming Techniques 20

The programming techniques that you can use for optimization of your code include
ing techniques and performance analysis techniques. Coding tips are presented in “C
Tips” on page 20-31. Performance analysis is discussed in “Identifying Performance P
lems” on page 20-32.
20-30

Program Optimization

r your
that
ro-
Coding Tips 20

The CCG compilers are designed to obtain the highest performance code possible fo
program, but they can go only so far in optimizing your program. It is recommended
you use the following techniques to improve a compiler’s ability to optimize your p
gram:

1. If you need to evaluate the same expression twice, write it exactly the same
way each time. Do not writea + b + c one time anda + c + b the
next.

2. Do not write loops with multiple entry points. Although the optimizer may
be able to repair such loops, it may not be able to do so as well as you can.

3. Avoid writing loops that seldom execute more than once. If you cannot
avoid writing such a loop, consider putting it in a separate subroutine so
that any extra overhead imposed by optimizing the loop is confined to that
routine. As an alternative, consider turning off loop unrolling for that rou-
tine.

4. If you are stepping through an array with a loop, try to make thestride a
constant. The stride is the number of elements between successive ele-
ments examined by the loop. It is possible to make a loop with a stride that
is not a constant although the increment of the loop counter is a constant.
The following Fortran fragment provides an example:

SUBROUTINE SUB(ARR,N,M)
REAL ARR(M,N)
DO 20 I=1,N

... ARR(1,I) ...
20 CONTINUE

END
The reference to arrayARRhas a stride that is not a constant because For-
tran arrays are stored in column-major order. Thus, each element ofARR
that is accessed by the loop isMelements away from the last one accessed.

5. Traverse your data as compactly as possible to minimize paging and cache
misses. This implies traversing Fortran column-order arrays from first
index to last index, and C and Ada row-order arrays from last index to first
index.

6. Avoid writing routines that contain a large amount of code but usually
check a condition and exit. Large routines typically require that several reg-
isters be saved on entry and restored on exit. The overhead becomes signif-
icant if the routine does little else once it is entered.

If you are programming in C, consider writing a macro to perform the
checks, thus avoiding a subroutine call when the “early exit” is taken.

If you are programming in Ada, consider putting the checks in another rou-
tine for which you specifypragma INLINE .

7. If possible, use a local variable instead of a global variable. Global vari-
ables are less susceptible to optimization. If a routine performs many oper-
ations on a global variable, consider using a temporary local variable for all
20-31

Compilation Systems Volume 2 (Concepts)

ific
-
al
the

s on
pti-

Ver-
tion.
on

ion’s
have
der-
ng is
tips
of the computations. Store the resulting value in the global variable only at
the last possible moment.

If you are programming in C, avoid frequent accesses to data through glo-
bal pointers. The optimizer must assume that these pointers can change
each time a subroutine is called or memory is modified through any
pointer. If the global pointer does not change, consider copying it to a local
variable.

8. Excessively large routines are generally less susceptible to optimization
than small ones. The more complicated the logic of a large routine, the less
optimization is likely to improve its performance. You must simply use
your best judgment in considering whether such a routine should be split
into two or more routines.

9. Ada programmers should specifypragma INLINE only on relatively
small, simple routines. Ifpragma INLINE is specified too often, the call-
ing routines may become very large, thus limiting the amount of optimiza-
tion performed.

Identifying Performance Problems 20

If you wish to obtain the highest possible performance from your program, use theana-
lyze(1) tool to profile your program more accurately so that you can identify spec
sections within routines where time is consumed.analyze can also give you a disassem
bly listing of a routine that includes information about how well the various function
units are being utilized. For additional information on the use of these tools, refer to
corresponding system manual pages.

You can use the information gained from using these tools to determine the routine
which to focus efforts to increase the performance of your program. In the context of o
mization, make sure that those routines are receiving the full benefit of the optimizer.
ify that none of the optimizer’s safety limits has been encountered during the compila
Also check the code in these routines for any of the problems listed in “Coding Tips”
page 20-31.

Debugging Optimized Code 20

Successfully debugging optimized code requires that you understand optimizat
effects on debugging. It may require that you examine your code to ensure that you
not violated assumptions that the language rules allow the optimizer to make. “Un
standing Optimization’s Effects on Debugging” on page 20-33 describes how debuggi
affected by optimization. “Examining Your Program” on page 20-34 provides some
for examining your program.
20-32

Program Optimization

pro-
, you
an

sec-
y for
tion.

rmine
ine
Understanding Optimization’s Effects on Debugging 20

Throughout this chapter, aspects of optimization that can affect the debugging of your
gram have been pointed out. Note that, before trying to debug an optimized program
should first make sure that the bug is not reproducible at MINIMAL optimization. You c
count on the following when you are debugging an optimized program:

• You can examine the values of global variables and obtain the value that
has last been stored in memory. If the program is not currently executing a
loop in which a particular variable is modified, the value you obtain is,
indeed, the correct one.

• Because of limitations in the format of debug information in executable
files, the debugger expects a given variable to reside in one and only one
location throughout a subprogram; yet if the variable has been copied, it
may reside in different locations at different points in the subprogram (see
“Copy Variables” on page 20-15 for a description of copy variables optimi-
zation). For global variables, the location that the debugger examines is
usually the one in memory.

• The line number reported by the debugger is correct to the extent that some
partof that line is being executed.

More detailed debugging usually requires that you obtain an assembly listing of the
tion of the program that you are debugging. Most debuggers have some capabilit
relating a specific instruction to the line in the program that has generated that instruc
If you are reasonably adept at reading assembly language, you can usually dete
where the instructions for a particular line are located. You can probably also determ
the registers used for each variable involved.

You cannotcount on the following when you are debugging an optimized program:

• Setting a breakpoint on a given line may not stop the program before that
line is executed; in fact, it may not stop the program at all because another
copy of the line may exist elsewhere and the program will execute that
instead.

• Printing the value of a local variable does not necessarily yield the correct
value; for instance, if an assignment to variablea has been propagated and
eliminated, you may see an outdated value when you print variablea
although your program is about to evaluate an expression involving vari-
ablea. When you examine the results of an expression such as(a + b)
and then examine variablesa andb, you may be surprised to find that the
values of the variables do not match the computed value.

If the program has executed past the last use of a particular variable in the
current routine, the variable’s value may not exist anywhere. It may have
been allocated to a register, and that register may have been reused for
something else.

• On the supporting hardware platforms, floating-point exceptions are impre-
cise by default. See “Floating-Point Exceptions” on page 17-6 for details
on how to make them precise or to disable them.
20-33

Compilation Systems Volume 2 (Concepts)

nfor-
all-
hen
of
hat
ally
ingly
t the
olded

hen
t it
pro-
y of
your
n of

or (3)
les
para-

riable
tion
exe-
• An exception may not occur precisely on the instruction that has caused the
fault, although it will usually be close by. The reasons include (1) varia-
tions in the time required for different instructions to execute and (2) the
machine’s ability to execute multiple instructions at the same time.

NOTE

The Ada compiler ensures that exceptions occur in the correct
frame by preventing the overlapped execution of instructions from
different frames. The supporting hardware platforms support pre-
cise exceptions so the exception will be on the correct instruction.

Debugging inlined routines has some special considerations. While the line number i
mation will reflect the source of the inlined routine, the stack frame is still that of the c
ing routine since calling the inlined routine did not create a new stack frame. Thus w
you go up a frame while in an inlined routine, you will not find you self at the call site
the inlined routine, but at the call site of the caller of the inlined routine. Also the fact t
optimizations may move code out of the place where the inlined routine was origin
located and scatter it in various places in the calling routine, can also result in seem
inexplicable behavior from the debugger. Optimization can, in fact, make it seem tha
inlined routine as completely disappeared when in fact its operations have just been f
into the operations of the calling routine.

Examining Your Program 20

You may compile a program without enabling optimization, successfully execute it, t
recompile it with optimization enabled, and find that it fails. It is important to note tha
may notbe the optimizer that is causing the failure. You should first determine the sub
gram in which the problem has occurred and then verify that you have not violated an
the rules of the language of which the optimizer takes advantage; for example, check
code to determine whether or not you are (1) depending on the ordering of executio
statements, (2) using an uninitialized variable that has not been assigned a value,
omitting thevolatile attribute on a variable that is modified asynchronously. Examp
that show what can happen in the first and second instances are presented in the
graphs that follow.

The example Ada code sequence that follows erroneously assumes that the va
cycle will be incremented at least once. In the presence of optimization, the evalua
of x/y may be moved outside of the loop and cause an exception to occur before the
cution of the loop (Ada R.M. 11.6(3)).

procedure erroneous(x,y : in float ; z : in out float) is
cycle : integer := 0 ;

begin
loop

cycle := cycle + 1 ;
z := z - x / y ;
exit when z < 0.0 ;

end loop ;
z := z / float(cycle) ;
20-34

Program Optimization

dif-

n the

pu-

sages

ces

h the
ths to
exception
when numeric_error =>

z := z / float(cycle) ;
-- <<< -- erroneous assumption that cycle > 0

end erroneous ;

If you forget to initialize a variable before using its value, your program may behave
ferently with optimization turned on. Consider the following C example:

1. double foo(i, j)
2. int i, j ;
3. {
4. double a, b ;
5. int k ;
6.
7. for (k = i ; k < j ; ++k) {
8. a = b + 1.0 ;
9. b = i * a ;

10. }
11. return a + b ;
12. }

The first time that line 8 is executed, variableb will not have a defined value. Further-
more, if j >= i , the loop body will not be executed, and neithera nor b will have a
defined value when line 11 is executed. The value used will be the value last stored i
variable’s location. Because optimization may causea or b to be stored in a different loca-
tion from the one in which it is stored without optimization, the value used in the com
tation can be different.

The optimizer can help you locate such problems as these. If you enable caution mes
on your compilation (with the C compiler, you can do so by using the-n option), the opti-
mizer will report variables that it finds are uninitialized. The preceding example produ
the following messages:

"example1.c", line 11: caution: Possibly un-initialized
item <a> detected

"example1.c", line 11: caution: Possibly un-initialized
item detected

"example1.c", line 8: caution: Possibly un-initialized
item detected

The wordpossibly in these messages means that there is at least one path throug
program that assigns a value to the given variable, but there are also one or more pa
that line that do not assign a value to the variable.
20-35

Compilation Systems Volume 2 (Concepts)
20-36

6
Part 6Formats

Replace with Part 6 tab

Compilation Systems Volume 2 (Concepts)

Part 6 - Formats
Part 6 - Formats

Part 6 Formats

Chapter 21 Introduction to Formats... 21-1

Chapter 22 Executable and Linking Format (ELF) 22-1

Chapter 23 tdesc Information .. 23-1

Chapter 24 DWARF Debugging Information Format 24-1

Chapter 25 DWARF Access Library (libdwarf) .. 25-1

Compilation Systems Volume 2 (Concepts)

-1
21
Introduction to Formats

Introduction . 21

Compilation Systems Volume 2 (Concepts)

vel
mats

ink-

a-

-

21
Chapter 21Introduction to Formats

21
21
21

Introduction 21

If you are writing programs that operate on other programs or if you require low-le
knowledge of the system to perform debugging, then you should understand the for
supported by the software development environment.

This part of the manual describes these formats.

Chapter 22 (“Executable and Linking Format (ELF)”) describes the executable and l
ing format, ELF.

Chapter 23 (“tdesc Information”) discusses text description information, tdesc.

Chapter 24 (“DWARF Debugging Information Format”) describes the debugging inform
tion format, DWARF. It is primarily a reprint of the DWARF specification from UNIX
International.

Chapter 25 (“DWARF Access Library (libdwarf)”) covers the libdwarf library that pro
vides access to DWARF debugging and line number information.
21-1

Compilation Systems Volume 2 (Concepts)
21-2

-1
-1
2-2
-3
-3
6
-9
-9
15
18
22
23

6
27
28
35
35
38
-39
-40
41
42
45
6
7

-52
3
4
57
58
59
0

22
Executable and Linking Format (ELF)

Introduction . 22
File Format . 22
Data Representation . 2

Program Linking . 22
ELF Header . 22

ELF Identification . 22-
ELF Header Flags . 22

Section Header . 22
Special Sections. 22-
Vendor Section . 22-

String Table . 22-
Symbol Table . 22-

Symbol Values. 22-2
Relocation. 22-

Relocation Types . 22-
Program Execution . 22-

Program Header . 22-
Base Address . 22-

Segment Permissions . 22
Segment Contents . 22
Note Section . 22-

Program Loading . 22-
Program Interpreter . 22-
Dynamic Linker . 22-4

Dynamic Section . 22-4
Shared Object Dependencies. 22
Link Map . 22-5
Global Offset Table . 22-5
Function Addresses . 22-
Procedure Linkage Table. 22-
Hash Table. 22-
Initialization and Termination Functions . 22-6

Symbolic Debugging Information 22-61

Compilation Systems Volume 2 (Concepts)

sec-
ro-

e for-
and

to

w

he
ble
the
r

rary,

on-
nts,
ani-
22
Chapter 22Executable and Linking Format (ELF)

22
22
22

Introduction 22

This chapter describes the executable and linking format (ELF) object files. The first
tion, “Program Linking” on page 22-3, focuses on how the format pertains to building p
grams. The second section, “Program Execution” on page 22-35, focuses on how th
mat pertains to loading programs. For background, see Chapter 4 (“Link Editor
Linking”). There are three main types of ELF object files.

Relocatable file Holds code and data suitable for linking with other object files
create an executable or a shared object file.

Executable file Holds a program suitable for execution; the file specifies ho
exec() creates a program’s process image.

Shared object file Holds code and data suitable for linking in two contexts. First, t
link editor processes the shared object file with other relocata
and shared object files to create another object file. Second,
dynamic linker combines it with an executable file and othe
shared objects to create a process image.

Programs manipulate object files with the functions contained in the ELF access lib
libelf . See the(3E) man pages, “ELF Library” on page 16-3, and “ELF Files” on
page 16-17 for details.

File Format 22

As indicated, object files participate in program linking and program execution. For c
venience and efficiency, the object file format provides parallel views of a file’s conte
reflecting the differing needs of these activities. Table 22-1 shows an object file’s org
zation.
22-1

Compilation Systems Volume 2 (Concepts)

ga-

sec-
sses

iles
; relo-

such
have

ader,
sec-

ion in

d
ller)

epen-
n a
ssor,
An ELF headerresides at the beginning and holds a “road map” describing the file’s or
nization.Sectionshold the bulk of object file information for the linking view: instruc-
tions, data, symbol table, relocation information, and so on. Descriptions of special
tions appear in the first part of this chapter. The second part of this chapter discu
segmentsand the program execution view of the file.

A program header table, if present, tells the system how to create a process image. F
used to build a process image (execute a program) must have a program header table
catable files do not need one. Asection header tablecontains information describing the
file’s sections. Every section has an entry in the table; each entry gives information
as the section name, the section size, and so forth. Files used during link editing must
a section header table; other object files may or may not have one.

Although Table 22-1 shows the program header table immediately after the ELF he
and the section header table following the sections, actual files may differ. Moreover,
tions and segments have no specified order. Only the ELF header has a fixed posit
the file.

Data Representation 22

As described here, the object fileformatsupports various processors with 8-bit bytes an
32-bit architectures. Nevertheless, it is intended to be extensible to larger (or sma
architectures. Object files, therefore, represent some control data with a machine-ind
dent format, making it possible to identify object files and interpret their contents i
common way. Remaining data in an object file use the encoding of the target proce
regardless of the machine on which the file was created. See Table 22-2.

Table 22-1. Object File Format

Linking View Execution View

ELF header ELF header

Program header table
optional

Program header table

Section 1 Segment 1

. . .

Sectionn Segment 2

. . .

.

Section header table Section header table
optional
22-2

Executable and Linking Format (ELF)

n-
dding
of 4,
, for

pro-

ctual
that

tion.
hen
All data structures that the object file format defines follow the “natural” size and alig
ment guidelines for the relevant class. If necessary, data structures contain explicit pa
to ensure 4-byte alignment for 4-byte objects, to force structure sizes to a multiple
and so forth. Data also have suitable alignment from the beginning of the file. Thus
example, a structure containing anElf32_Addr member will be aligned on a 4-byte
boundary within the file.

For portability reasons, ELF uses no bit-fields.

Program Linking 22

This section describes the object file information and system actions that create static
gram representations from relocatable files and shared objects.

ELF Header 22

Some object file control structures can grow, because the ELF header contains their a
sizes. If the object file format changes, a program may encounter control structures
are larger or smaller than expected. Programs might therefore ignore “extra” informa
The treatment of “missing” information depends on context and will be specified w
and if extensions are defined.

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;

Table 22-2. 32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed large integer

Elf32_Word 4 4 Unsigned large integer

unsigned char 1 1 Unsigned small integer
22-3

Compilation Systems Volume 2 (Concepts)

e
the
a-

are
es-

an
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

e_ident The initial bytes mark the file as an object file and provid
machine-independent data with which to decode and interpret
file’s contents. Complete descriptions appear in “ELF Identific
tion” on page 22-6.

e_type This member identifies the object file type.

Values fromET_LOPROCthroughET_HIPROC(inclusive) are
reserved for processor-specific semantics. Other values
reserved and will be assigned to new object file types as nec
sary.

e_machine This member’s value specifies the required architecture for
individual file.

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Name Value Meaning

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100TM

EM_SPARC 2 SPARC®

EM_386 3 Intel 80386TM

EM_68K 4 Motorola 68000TM

EM_88K 5 Motorola 88000TM

EM_860 7 Intel 80860TM
22-4

Executable and Linking Format (ELF)

s as
e to

F

of
y

rst
so-

es.
.

es.

the

o-

der

le,
Other values are reserved and will be assigned to new machine
necessary. Processor-specific ELF names use the machine nam
distinguish them. For example, the flags mentioned in “EL
Header Flags” on page 22-9 use the prefixEF_; a flag named
WI DG E T f o r t h e E M_ X YZ m a ch in e w o u l d b e c a l le d
EF_XYZ_WIDGET.

e_version This member identifies the object file version.

The value1 signifies the original file format; extensions will cre-
a te n ew ver s ion s w i th h ig her nu mbe rs . Th e va lue
EV_CURRENT, though given as1 above, will change as necessar
to reflect the current version number.

e_entry This member gives the virtual address to which the system fi
transfers control, thus starting the process. If the file has no as
ciated entry point, this member holds zero.

e_phoff This member holds the program header table’s file offset in byt
If the file has no program header table, this member holds zero

e_shoff This member holds the section header table’s file offset in byt
If the file has no section header table, this member holds zero.

e_flags This member holds processor-specific flags associated with
file. Flag names take the formEF_machine_flag . See “ELF
Header Flags” on page 22-9 for flag definitions.

e_ehsize This member holds the ELF header’s size in bytes.

e_phentsize This member holds the size in bytes of one entry in the file’s pr
gram header table; all entries are the same size.

e_phnum This member holds the number of entries in the program hea
table. Thus the product ofe_phentsize ande_phnum gives
the table’s size in bytes. If a file has no program header tab
e_phnum holds the value zero.

EM_MIPS 8 MIPS R2000TM

EM_S370 9 AmdahlTM

EM_IBM 11 IBM ® RS/6000TM & PowerPCTM

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT 1 Current version

Name Value Meaning
22-5

Compilation Systems Volume 2 (Concepts)

ion
the

der

ion

try
no
ue
g

es-
ct file
ro-
The
e_shentsize This member holds a section header’s size in bytes. A sect
header is one entry in the section header table; all entries are
same size.

e_shnum This member holds the number of entries in the section hea
table. Thus the product ofe_shentsize ande_shnum gives
the section header table’s size in bytes. If a file has no sect
header table,e_shnum holds the value zero.

e_shstrndx This member holds the section header table index of the en
associated with the section name string table. If the file has
sect ion name string table, th is member holds the val
SHN_UNDEF. See “Section Header” on page 22-9 and “Strin
Table” on page 22-22 for more information.

ELF Identification 22

As mentioned above, ELF provides an object file framework to support multiple proc
sors, multiple data encodings, and multiple classes of machines. To support this obje
family, the initial bytes of the file specify how to interpret the file, independent of the p
cessor on which the inquiry is made and independent of the file’s remaining contents.
initial bytes of an ELF header (and an object file) correspond to thee_ident member.
See Table 22-3.

These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3
A file’s first 4 bytes hold a “magic number,” identifying the file as
an ELF object file.

Table 22-3. e_ident[] Identification Indexes

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_PAD 7 Start of padding bytes

EI_NIDENT 16 Size ofe_ident[]
22-6

Executable and Linking Format (ELF)

ar-
on

asic

the
e
for

gs

ues
ary.
EI_CLASS The next byte,e_ident[EI_CLASS] , identifies the file’s class,
or capacity.

The file format is designed to be portable among machines of v
ious sizes, without imposing the sizes of the largest machine
the smallest. ClassELFCLASS32supports machines with files
and virtual address spaces up to 4 gigabytes; it uses the b
types defined above.

ClassELFCLASS64 is reserved for 64-bit architectures. Its
appearance here shows how the object file may change, but
64-bit format is otherwise unspecified. Other classes will b
defined as necessary, with different basic types and sizes
object file data.

EI_DATA Byte e_ident[EI_DATA] specifies the data encoding of the
processor-specific data in the object file. The following encodin
are currently defined.

More information on these encodings appears below. Other val
are reserved and will be assigned to new encodings as necess

EI_VERSION Byte e_ident[EI_VERSION] specifies the ELF header ver-
sion number. Currently, this value must beEV_CURRENT, as
explained above fore_version .

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

Name Value Position

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See below

ELFDATA2MSB 2 See below
22-7

Compilation Systems Volume 2 (Concepts)

bject

bed
he
in the

te

te
EI_PAD This value marks the beginning of the unused bytes ine_ident .
These bytes are reserved and set to zero; programs that read o
files should ignore them. The value ofEI_PAD will change in the
future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As descri
above, classELFCLASS32 files use objects that occupy 1, 2, and 4 bytes. Under t
defined encodings, objects are represented as shown below. Byte numbers appear
upper left corners.

EncodingELFDATA2LSBspecifies 2’s complement values, with the least significant by
occupying the lowest address.

Figure 22-1. Data Encoding ELFDATA2LSB

EncodingELFDATA2MSBspecifies 2’s complement values, with the most significant by
occupying the lowest address.

Figure 22-2. Data Encoding ELFDATA2MSB

0x01

0x0102

0x01020304

0

0

0

1

1 2 3

02

01 01

04 01 02 01

0x01

0x0102

0x01020304

0

0

0

1

1 2 3

01

01 02

04 02 03 04
22-8

Executable and Linking Format (ELF)

ly
a-
at
ting
wer

h

a

tion
er
ELF Header Flags 22

For file identification ine_ident , PowerUX uses the following values.

Processor identification resides in the ELF header’se_machine member and has the
value11, defined as the nameEM_IBM, or the value5, defined as the nameEM_88K.

The ELF header’se_flags member holds bit flags associated with the file.

EF_PPC_SYSINUSER
This flag is defined by the 88open 88K ABI, but it is not present
used by PowerUX. If this flag is reset, it indicates that the applic
tion wishes full control of the layout of the virtual address space
addresses less than 0x80000000. If this flag is set, the opera
system may place the stack and/or dynamic segments at lo
addresses. This flag may be set for object files of typeET_EXEC.
This flag shall not be set for object files of typeET_REL and
ET_DYN.

EF_PPC_ADA The link editor sets this flag if the program was link edited wit
the-QAda option.

EF_PPC_ARMS The link editor sets this flag if the object was link edited with
map file that defined a Concurrent Ada ARMS segment.

Section Header 22

An object file’s section header table lets one locate all the file’s sections. The sec
header table is an array ofElf32_Shdr structures as described below. A section head
table index is a subscript into this array. The ELF header’se_shoff member gives the
byte offset from the beginning of the file to the section header table;e_shnum tells how
many entries the section header table contains;e_shentsize gives the size in bytes of

Table 22-4. PowerUX Identification, e_ident

Position Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2MSB

Table 22-5. Processor-Specific Flags, e_flags

Name Value

EF_PPC_SYSINUSER 0x2

EF_PPC_ADA 0x40000000

EF_PPC_ARMS 0x80000000
22-9

Compilation Systems Volume 2 (Concepts)

have

ise
ed”

ion
e
in

The

ed

ific

fer-
ber
n.

ls,

ed

e

ram
everal
each entry. Some section header table indexes are reserved; an object file will not
sections for these special indexes.

SHN_UNDEF This value marks an undefined, missing, irrelevant, or otherw
meaningless section reference. For example, a symbol “defin
relative to section numberSHN_UNDEFis an undefined symbol.

Although index 0 is reserved as the undefined value, the sect
header table contains an entry for index 0. That is, if th
e_shnum member of the ELF header says a file has 6 entries
the section header table, they have the indexes 0 through 5.
contents of the initial entry are specified later in this section.

SHN_LORESERVE This value specifies the lower bound of the range of reserv
indexes.

SHN_LOPROCthrough SHN_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

SHN_ABS This value specifies absolute values for the corresponding re
ence. For example, symbols defined relative to section num
SHN_ABShave absolute values and are not affected by relocatio

SHN_COMMON Symbols defined relative to this section are common symbo
such as FortranCOMMONor unallocated C external variables.

SHN_HIRESERVE This value specifies the upper bound of the range of reserv
indexes. The system reserves indexes betweenSHN_LORESERVE
andSHN_HIRESERVE, inclusive; the values do not reference th
section header table. That is, the section header table doesnot
contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the prog
header table, and the section header table. Moreover, object files’ sections satisfy s
conditions.

Table 22-6. Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_HIPROC 0xff1f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_HIRESERVE 0xffff
22-10

Executable and Linking Format (ELF)

an
ng
d

tics.
in

tes.

is
uld

of
,

nd
he

tion
• Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

• Each section occupies one contiguous (possibly empty) sequence of bytes
within a file.

• Sections in a file may not overlap. No byte in a file resides in more than
one section.

• An object file may have inactive space. The various headers and the sec-
tions might not “cover” every byte in an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

sh_name This member specifies the name of the section. Its value is
index into the section header string table section (see “Stri
Table” on page 22-22), giving the location of a null-terminate
string.

sh_type This member categorizes the section’s contents and seman
Section types and their descriptions are listed in Table 22-7 and
the paragraphs forSHT_SYMTABandSHT_DYNSYNimmediately
following Table 22-7.

sh_flags Sections support 1-bit flags that describe miscellaneous attribu
Flag definitions are given in Table 22-9.

sh_addr If the section will appear in the memory image of a process, th
member gives the address at which the section’s first byte sho
reside. Otherwise, the member contains 0.

sh_offset This member’s value gives the byte offset from the beginning
the file to the first byte in the section. One section type
SHT_NOBITSdescribed below, occupies no space in the file, a
its sh_offset member locates the conceptual placement in t
file.

sh_size This member gives the section’s size in bytes. Unless the sec
type isSHT_NOBITS, the section occupiessh_size bytes in the
file. A section of typeSHT_NOBITSmay have a non-zero size,
but it occupies no space in the file.
22-11

Compilation Systems Volume 2 (Concepts)

er-
the

n
.

le, if
ord

d.

bol
of

ld a
sh_link This member holds a section header table index link, whose int
pretation depends on the section type. Table 22-10 describes
values.

sh_info This member holds extra information, whose interpretatio
depends on the section type. Table 22-10 describes the values

sh_addralign Some sections have address alignment constraints. For examp
a section holds a doubleword, the system must ensure doublew
alignment for the entire section. That is, the value ofsh_addr
must be congruent to 0, modulo the value ofsh_addralign .
Currently, only 0 and positive integral powers of two are allowe
Values 0 and 1 mean the section has no alignment constraints.

sh_entsize Some sections hold a table of fixed-size entries, such as a sym
table. For such a section, this member gives the size in bytes
each entry. The member contains 0 if the section does not ho
table of fixed-size entries.

A section header’ssh_type member specifies the section’s semantics.

Table 22-7. Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_VENDOR 0x80000000

SHT_HIUSER 0xffffffff
22-12

Executable and Linking Format (ELF)

ave
have

r-

ay
be

.
c-

so

on

le
ls.

as

n

file
ed

n
n

ge

y.

se

-

s,

a-

ific

es
SHT_NULL This value marks the section header as inactive; it does not h
an associated section. Other members of the section header
undefined values.

SHT_PROGBITS The section holds information defined by the program, whose fo
mat and meaning are determined solely by the program.

SHT_SYMTABandSHT_DYNSYM
These sections hold a symbol table. Currently, an object file m
have only one section of each type, but this restriction may
relaxed in the future. Typically,SHT_SYMTABprovides symbols
for link editing, though it may also be used for dynamic linking
As a complete symbol table, it may contain many symbols unne
essary for dynamic linking. Consequently, an object file may al
contain aSHT_DYNSYMsection, which holds a minimal set of
dynamic linking symbols, to save space. See “Symbol Table”
page 22-23 for details.

SHT_STRTAB The section holds a string table. An object file may have multip
string table sections. See “String Table” on page 22-22 for detai

SHT_RELA The section holds relocation entries with explicit addends, such
type Elf32_Rela for the 32-bit class of object files. An object
file may have multiple relocation sections. See “Relocation” o
page 22-27 for details.

SHT_HASH The section holds a symbol hash table. Currently, an object
may have only one hash table, but this restriction may be relax
in the future. See “Hash Table” on page 22-59 for details.

SHT_DYNAMIC The section holds information for dynamic linking. Currently, a
object file may have only one dynamic section, but this restrictio
may be relaxed in the future. See “Dynamic Section” on pa
22-47 for details.

SHT_NOTE The section holds information that marks the file in some wa
See “Note Section” on page 22-41 for details.

SHT_NOBITS A section of this type occupies no space in the file but otherwi
resemblesSHT_PROGBITS. Although this section contains no
bytes, thesh_offset member contains the conceptual file off
set.

SHT_REL The section holds relocation entries without explicit addend
such as typeElf32_Rel for the 32-bit class of object files. An
object file may have multiple relocation sections. See “Reloc
tion” on page 22-27 for details.

SHT_SHLIB This section type is reserved but has unspecified semantics.

SHT_LOPROCthroughSHT_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

SHT_LOUSER This value specifies the lower bound of the range of index
reserved for application programs.
22-13

Compilation Systems Volume 2 (Concepts)

es
en
,
n

or

index
This

’s

e

ess
SHT_HIUSER This value specifies the upper bound of the range of index
reserved for application programs. Section types betwe
SHT_LOUSERandSHT_HIUSERmay be used by the application
without conflicting with current or future system-defined sectio
types. PowerUX reserves the low value,SHT_VENDOR, for ven-
dor section information. See “Vendor Section” on page 22-18 f
more information.

Other section type values are reserved. As mentioned before, the section header for
0 (SHN_UNDEF)exists, even though the index marks undefined section references.
entry holds the following.

A section header’ssh_flags member holds 1-bit flags that describe the section
attributes. See Table 22-9 for defined values; other values are reserved.

If a flag bit is set insh_flags , the attribute is “on” for the section. Otherwise, th
attribute is “off” or does not apply. Undefined attributes are set to zero.

SHF_WRITE The section contains data that should be writable during proc
execution.

Table 22-8. Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

Table 22-9. Section Attribute Flags, sh_flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MASKPROC 0xf0000000
22-14

Executable and Linking Format (ELF)

me
ct

fic

used
SHF_ALLOC The section occupies memory during process execution. So
control sections do not reside in the memory image of an obje
file; this attribute is off for those sections.

SHF_EXECINSTR The section contains executable machine instructions.

SHF_MASKPROC All bits included in this mask are reserved for processor-speci
semantics.

Two members in the section header,sh_link andsh_info , hold special information,
depending on section type.

Special Sections 22

Various sections hold program and control information. Sections in the list below are
by the system and have the indicated types and attributes.

Table 22-10. sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the string table
used by entries in the section.

0

SHT_HASH The section header index of the symbol table to
which the hash table applies.

0

SHT_REL
SHT_RELA

The section header index of the associated
symbol table.

The section header index of the section to
which the relocation applies.

SH T_ SY M TA B
SHT_DYNSYM

The section header index of the associated
string table.

One greater than the symbol table index of
th e l a s t l o c a l s y mb o l (b in d i n g
STB_LOCAL).

SHT_VENDOR The section header index of the associated
symbol table.

The section header index of the associated
text section.

other SHN_UNDEF 0

Table 22-11. Special Sections

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.debug_abbrev SHT_PROGBITS none

.debug_arranges SHT_PROGBITS none

.debug_info SHT_PROGBITS none
22-15

Compilation Systems Volume 2 (Concepts)

o-
e
cu-

ro-
.bss This section holds uninitialized data that contribute to the pr
gram’s memory image. By definition, the system initializes th
data with zeros when the program begins to run. The section oc
pies no file space, as indicated by the section type,SHT_NOBITS.

.comment This section holds version control information.

.data and.data1 These sections hold initialized data that contribute to the p
gram’s memory image.

.debug_abbrev This section holds DWARF abbreviation tables.

.debug_arranges This section holds DWARF address ranges tables.

.debug_info This section holds DWARF debugging information entries.

.debug_line SHT_PROGBITS none

.debug_loc SHT_PROGBITS none

.debug_pubnames SHT_PROGBITS none

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS see below

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.interp SHT_PROGBITS none

.note SHT_NOTE none

.plt SHT_PROGBITS see below

.relname SHT_REL see below

.relaname SHT_RELA see below

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.tdesc SHT_PROGBITS SHF_ALLOC

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

$0001300 SHT_VENDOR see below

Table 22-11. Special Sections (Cont.)

Name Type Attributes
22-16

Executable and Linking Format (ELF)

c

m-
bol
n

-

the
lly,

et

age

the
un,
call-

ee

n

ure

n
hat
e

ly.

a
m

.debug_line This section holds DWARF line number information.

.debug_loc This section holds DWARF location lists information.

.debug_pubname This section holds DWARF name lookup tables.

.dynamic This section holds dynamic linking information. See “Dynami
Linker” on page 22-46 for more information.

.dynstr This section holds strings needed for dynamic linking, most co
monly the strings that represent the names associated with sym
table entries. See the section starting with “Dynamic Linker” o
page 22-46 for more information.

.dynsym This section holds the dynamic linking symbol table. See “Sym
bol Table” on page 22-23.

.fini This section holds executable instructions that contribute to
process termination code. That is, when a program exits norma
the system arranges to execute the code in this section.

.got This section holds the global offset table. See “Global Offs
Table” on page 22-54 for more information.

.hash This section holds a symbol hash table. See “Hash Table” on p
22-59 for more information.

.init This section holds executable instructions that contribute to
process initialization code. That is, when a program starts to r
the system arranges to execute the code in this section before
ing the main program entry point (calledmain for C programs).

.interp This section holds the path name of a program interpreter. S
“Program Interpreter” on page 22-45 for more information.

.note This section holds information as described in “Note Section” o
page 22-41.

.plt This section holds the procedure linkage table. See “Proced
Linkage Table” on page 22-58 for more information.

.rel nameand.rela name
These sections hold relocation information, as “Relocation” o
page 22-27 describes. If the file has a loadable segment t
includes relocation, the sections’ attributes will include th
SHF_ALLOCbit; otherwise, that bit will be off. Conventionally,
nameis supplied by the section to which the relocations app
Thus a relocation section for.text normally would have the
name.rel.text or .rela.text .

.rodata and.rodata1
These sections hold read-only data that typically contribute to
non-writable segment in the process image. See “Progra
Header” on page 22-35 for more information.

.shstrtab This section holds section names.
22-17

Compilation Systems Volume 2 (Concepts)

re-
has
ec-

ge
des
e

e

o-

s
re

ay
ames
ne

with

a-
n

e
us
.strtab This section holds strings, most commonly the strings that rep
sent the names associated with symbol table entries. If the file
a loadable segment that includes the symbol string table, the s
tion’s attributes will include theSHF_ALLOCbit; otherwise, that
bit will be off.

.symtab This section holds a symbol table, as “Symbol Table” on pa
22-23 describes. If the file has a loadable segment that inclu
the symbol table, the section’s attributes will include th
SHF_ALLOCbit; otherwise, that bit will be off.

.tdesc This section holds “text description” (tdesc) information. Se
Chapter 23 for more information.

.text This section holds the “text,” or executable instructions, of a pr
gram.

$0001300 This section holds “vendor” information specific to application
built on PowerUX. See “Vendor Section” on page 22-18 for mo
information.

Section names with a dot (.) prefix are reserved for the system, although applications m
use these sections if their existing meanings are satisfactory. Applications may use n
without the prefix to avoid conflicts with system sections. The object file format lets o
define sections not in the list above. An object file may have more than one section
the same name.

Vendor Section 22

A PowerUX-specific vendor section has the following structure.

struct {
unsigned long magic;
unsigned long text_reloc;
unsigned char round_mode;
unsigned char fp_except_kind;
unsigned char float_exceptions;
unsigned char IBM_mode;
unsigned char float_precision;
unsigned char ppdp_used;
unsigned char fp_spec_exec;
char filler[21];

};

magic This member specifies the magic number. It is currently zero.

text_reloc This member provides the virtual address of relocation inform
tion pertaining to the “text” section, if there is any relocatio
information. This information is used by theanalyze(1) util-
ity.

round_mode This member specifies the IEEE floating-point rounding mod
under which the program should begin execution. The vario
rounding modes and their values appear in Table 22-12.
22-18

Executable and Linking Format (ELF)

r-
and

ns
he

res
es

E,
ar

pri-
by

at-
is
fp_except_kind This member specifies whether floating-point exceptions inte
rupts should be enabled when the program begins execution
whether enabled exceptions should be precise or imprecise.

float_exceptions This member specifies the mask of the floating-point exceptio
which should be enabled when the program begins execution. T
various exceptions and their values appear in Table 22-14.

IBM_mode This member indicates whether the program uses any featu
unique to members of the PowerPC family. The various mod
and their values appear in Table 22-15.

float_precision This member specifies whether or not the program uses IEE
80-bit floating-point precision. The values for this member appe
in Table 22-16.

ppdp_used This member indicates whether the program uses the process
vate data pointer (i.e., register r31). This information is used
the analyze(1) utility. The values for this member appear in
Table 22-16.

fp_spec_exec This member indicates whether the program contains flo
ing-point code that is executed speculatively. This information
used by theld(1) utility. The values for this member appear in
Table 22-16.

Table 22-12. Vendor Section Rounding Modes, round_mode

Name Value Meaning

_VND_RND_IEEENEAR 0 Round to nearest

_VND_RND_IEEEZERO 1 Round to zero

_VND_RND_IEEEPINF 2 Round to positive infinity

_VND_RND_IEEENINF 3 Round to negative infinity

_VND_RND_IEEECOMP 4 This value indicates that the object file is com-
patible with object files of any other rounding
mode. It is typically used in object files of sys-
tem archives.

Table 22-13. Vendor Section Floating-Point Exceptions Kind,
fp_except_kind

Name Value Meaning

_VND_FPE_IMPRECISE 0 Enable imprecise floating-point exceptions

_VND_FPE_PRECISE 1 Enable precise floating-point exceptions

_VND_FPE_DISABLED 2 Disable floating-point exceptions interrupt
22-19

Compilation Systems Volume 2 (Concepts)
Table 22-14. Vendor Section Enabled Exceptions,
float_exceptions

Name Value Meaning

_VND_FPX_INV 16 Invalid operation

_VND_FPX_DZ 8 Divide-by-zero

_VND_FPX_UFL 4 Underflow

_VND_FPX_OFL 2 Overflow

_VND_FPX_IMP 1 Imprecise (inexact)

Table 22-15. Vendor Section PowerPC Features, IBM_mode

Name Value Meaning

_VND_MODE_POWERPC 0 This value indicates that the program does not
contain features unique to any of the PowerPC
architectures.

_VND_MODE_601 1 This value indicates that the program contains
features unique to the PowerPC 601 architec-
ture only.

_VND_MODE_603 2 This value indicates that the program contains
features unique to the PowerPC 603 architec-
ture only.

_VND_MODE_604 4 This value indicates that the program contains
features unique to the PowerPC 604 architec-
ture only.

_VND_MODE_620 8 This value indicates that the program contains
features unique to the PowerPC 620 architec-
ture only.

_VND_MODE_604_620 0xc This value indicates that the program contains
features unique to the PowerPC 604 and the
620 architectures only.

_VND_MODE_N603 0xd This value indicates that the program contains
features not on the PowerPC 603 architecture.

_VND_MODE_N601 0xe This value indicates that the program contains
features not on the PowerPC 601 architecture.
22-20

Executable and Linking Format (ELF)
_VND_MODE_POWERPCX0xf This value indicates that the program contains
a mixture of features unique to particular Pow-
erPC architectures.

_VND_MODE_604E 0x10 This value indicates that the program contains
features unique to the PowerPC 604e architec-
ture only.

_VND_MODE_601_604E 0x11 This value indicates that the program contains
features unique to the PowerPC 601 and the
604e architectures only.

Table 22-16. Vendor Section Extended Double-Precision Use,
float_precision

Name Value Meaning

_VND_FLOAT_NOT_EXT_DBL 0 Extended double-precision floating-point
is not used

_VND_FLOAT_EXT_DBL 1 Extended double-precision floating-point
is used.

Table 22-17. Vendor Section Process Private Data Pointer Use,
ppdp_used

Name Value Meaning

_VND_PPDP_NOT_USED 0 Extended double precision floating-point
is not used

_VND_PPDP_USED 1 Extended double-precision floating-point
is used.

Table 22-15. Vendor Section PowerPC Features, IBM_mode

Name Value Meaning
22-21

Compilation Systems Volume 2 (Concepts)

rings.
nces a
, is
null
ifies
ion is
s

ble

es.
String Table 22

String table sections hold null-terminated character sequences, commonly called st
The object file uses these strings to represent symbol and section names. One refere
string as an index into the string table section. The first byte, which is index zero
defined to hold a null character. Likewise, a string table’s last byte is defined to hold a
character, ensuring null termination for all strings. A string whose index is zero spec
either no name or a null name, depending on the context. An empty string table sect
permitted; its section header’ssh_size member would contain zero. Non-zero indexe
are invalid for an empty string table.

A section header’ssh_name member holds an index into the section header string ta
section, as designated by thee_shstrndx member of the ELF header. The following
figures show a string table with 25 bytes and the strings associated with various index

Table 22-18. Vendor Section FP Speculative Execution Use, fp_spec_exec

Name Value Meaning

_VND_FP_NOT_SPEC_EXEC 0 Floating-point speculative execution not
done.

_VND_FP_SPEC_EXEC 1 Floating-point speculative execution done.

Table 22-19. String Table

Index + 0 + 1 + 2 + 3 + 4 + 4 + 6 + 7 + 8 + 9

0 \0 n a m e . \0 V a r

10 i a b l e \0 a b l e

20 \0 \0 x x \0

Table 22-20. String Table Indexes

Index String

0 none

1 name.

7 Variable

11 able

16 able

24 null string
22-22

Executable and Linking Format (ELF)

tring
ay be

m’s
ray.
mbol

g
bol
ex

has

ing
d so

ct’s
ber

. A
fol-

led
As the example shows, a string table index may refer to any byte in the section. A s
may appear more than once; references to substrings may exist; and a single string m
referenced multiple times. Unreferenced strings also are allowed.

Symbol Table 22

An object file’s symbol table holds information needed to locate and relocate a progra
symbolic definitions and references. A symbol table index is a subscript into this ar
Index 0 both designates the first entry in the table and serves as the undefined sy
index. The contents of the initial entry are specified later in this section.

A symbol table entry has the following format.

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

st_name This member holds an index into the object file’s symbol strin
table, which holds the character representations of the sym
names. If the value is non-zero, it represents a string table ind
that gives the symbol name. Otherwise, the symbol table entry
no name.

st_value This member gives the value of the associated symbol. Depend
on the context, this may be an absolute value, an address, an
forth; details appear below.

st_size Many symbols have associated sizes. For example, a data obje
size is the number of bytes contained in the object. This mem
holds 0 if the symbol has no size or an unknown size.

st_info This member specifies the symbol’s type and binding attributes
list of the values and meanings appears in Table 22-21. The
lowing code shows how to manipulate the values.

#define ELF32_ST_BIND(i) ((i)>>4)
#define ELF32_ST_TYPE(i) ((i)&0xf)
#define ELF32_ST_INFO(b,t) \

(((b)<<4)+((t)&0xf))

st_other This member indicates whether or not the symbol was assemb
with the -A option to as . A value of 0 indicates that the-A

Name Value

STN_UNDEF 0
22-23

Compilation Systems Volume 2 (Concepts)

n;
me

g
in

ne

ve

ific

l

option was not used. A value of 1 indicates that the-A option was
used.

st_shndx Every symbol table entry is “defined” in relation to some sectio
this member holds the relevant section header table index. So
section indexes indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

STB_LOCAL Local symbols are not visible outside the object file containin
their definition. Local symbols of the same name may exist
multiple files without interfering with each other.

STB_GLOBAL Global symbols are visible to all object files being combined. O
file’s definition of a global symbol will satisfy another file’s unde-
fined reference to the same global symbol.

STB_WEAK Weak symbols resemble global symbols, but their definitions ha
lower precedence.

STB_LOPROCthrough STB_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

Global and weak symbols differ in two major ways.

• When the link editor combines several relocatable object files, it does not
allow multiple definitions ofSTB_GLOBALsymbols with the same name.
On the other hand, if a defined global symbol exists, the appearance of a
weak symbol with the same name will not cause an error. The link editor
honors the global definition and ignores the weak ones.

• When the link editor searches archive libraries, it extracts archive members
that contain definitions of undefined global symbols. The member’s defini-
tion may be either a global or a weak symbol. The link editor does not
extract archive members to resolve undefined weak symbols. Unresolved
weak symbols have a zero value.

In each symbol table, all symbols withSTB_LOCALbinding precede the weak and globa
symbols. As “Section Header” on page 22-9 describes, a symbol table section’ssh_info
section header member holds the symbol table index for the first non-local symbol.

Table 22-21. Symbol Binding, ELF32_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOPROC 13

STB_HIPROC 15
22-24

Executable and Linking Format (ELF)

, an

de.

of
e

rce

ific

r-
ti-
ed

k-

n,

he
A symbol’s type provides a general classification for the associated entity.

STT_NOTYPE The symbol’s type is not specified.

STT_OBJECT The symbol is associated with a data object, such as a variable
array, and so forth.

STT_FUNC The symbol is associated with a function or other executable co

STT_SECTION The symbol is associated with a section. Symbol table entries
this type exist primarily for relocation and normally hav
STB_LOCALbinding.

STT_FILE Conventionally, the symbol’s name gives the name of the sou
file associated with the object file. A file symbol hasSTB_LOCAL
binding, its section index isSHN_ABS, and it precedes the other
STB_LOCALsymbols for the file, if it is present.

STT_LOPROCthrough STT_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

STT_PPC_FCOMM The symbol represents a FortranCOMMONblock.

Function symbols (those with typeSTT_FUNC) in shared object
files have special significance. When another object file refe
ences a function from a shared object, the link editor automa
cally creates a procedure linkage table entry for the referenc
symbol. Shared object symbols with types other thanSTT_FUNC
will not be referenced automatically through the procedure lin
age table.

If a symbol’s value refers to a specific location within a sectio
its section index member,st_shndx , holds an index into the sec-
tion header table. As the section moves during relocation, t

Table 22-22. Symbol Types, ELF32_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_LOPROC 13

STT_PPC_FCOMM 13

STT_HIPROC 15
22-25

Compilation Systems Volume 2 (Concepts)

on-
ial

e of

llo-
o a

iple
e

the
e
e

ns
symbol’s value changes as well, and references to the symbol c
tinue to “point” to the same location in the program. Some spec
section index values give other semantics.

SHN_ABS The symbol has an absolute value that will not change becaus
relocation.

SHN_COMMON The symbol labels a common block that has not yet been a
cated. The symbol’s value gives alignment constraints, similar t
section’ssh_addralign member. That is, the link editor will
allocate the storage for the symbol at an address that is a mult
of st_value . The symbol’s size tells how many bytes ar
required.

SHN_UNDEF This section table index means the symbol is undefined. When
link editor combines this object file with another that defines th
indicated symbol, this file’s references to the symbol will b
linked to the actual definition.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved; it
holds the following.

Symbol Values 22

Symbol table entries for different object file types have slightly different interpretatio
for thest_value member.

• In relocatable files,st_value holds alignment constraints for a symbol
whose section index isSHN_COMMON.

• In relocatable files,st_value holds a section offset for a defined symbol.
That is,st_value is an offset from the beginning of the section that
st_shndx identifies.

• In executable and shared object files,st_value holds a virtual address.
To make these files’ symbols more useful for the dynamic linker, the sec-
tion offset (file interpretation) gives way to a virtual address (memory
interpretation) for which the section number is irrelevant.

Table 22-23. Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0 (no ‘other’ information)

st_shndx SHN_UNDEF No section
22-26

Executable and Linking Format (ELF)

data

ns.
nsfer
files
ing
ram

on
he
ca-
ir-

to
to

ld
e
n
pe-
xt
le

the

e
the
. Con-
Although the symbol table values have similar meanings for different object files, the
allow efficient access by the appropriate programs.

Relocation 22

Relocation is the process of connecting symbolic references with symbolic definitio
For example, when a program calls a function, the associated call instruction must tra
control to the proper destination address at execution. In other words, relocatable
must have information that describes how to modify their section contents, thus allow
executable and shared object files to hold the right information for a process’s prog
image.Relocation entriesare these data.

deputed struct {
Elf32_Addrr_offset;
Elf32_Wordr_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

r_offset This member gives the location at which to apply the relocati
action. For a relocatable file, the value is the byte offset from t
beginning of the section to the storage unit affected by the relo
tion. For an executable file or a shared object, the value is the v
tual address of the storage unit affected by the relocation.

r_info This member gives both the symbol table index with respect
which the relocation must be made, and the type of relocation
apply. For example, a call instruction’s relocation entry wou
hold the symbol table index of the function being called. If th
index isSTN_UNDEF, the undefined symbol index, the relocatio
uses 0 as the “symbol value.” Relocation types are processor-s
cific; descriptions of their behavior appear below. When the te
below refers to a relocation entry’s relocation type or symbol tab
index, it means the result of applyingELF32_R_TYPE or
ELF32_R_SYM, respectively, to the entry’sr_info member.

#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) \

((unsigned char)(i))
#define ELF32_R_INFO(s,t) \

(((s)<<8)+(unsigned char)(t))

r_addend This member specifies a constant addend used to compute
value to be stored into the relocatable field.

As shown above, onlyElf32_Rela entries contain an explicit addend. Entries of typ
Elf32_Rel store an implicit addend in the location to be modified. Depending on
processor architecture, one form or the other might be necessary or more convenient
22-27

Compilation Systems Volume 2 (Concepts)

ly or

dify.
”
have

.

um-
.

sequently, an implementation for a particular machine may use one form exclusive
either form depending on context.

A relocation section references two other sections: a symbol table and a section to mo
The section header’ssh_info andsh_link members, described in “Section Header
on page 22-9, specify these relationships. Relocation entries for different object files
slightly different interpretations for ther_offset member.

• In relocatable files,r_offset holds a section offset. That is, the reloca-
tion section itself describes how to modify another section in the file; relo-
cation offsets designate a storage unit within the second section.

• In executable and shared object files,r_offset holds a virtual address.
To make these files’ relocation entries more useful for the dynamic linker,
the section offset (file interpretation) gives way to a virtual address (mem-
ory interpretation).

Although the interpretation ofr_offset changes for different object files to allow effi-
cient access by the relevant programs, the relocation types’ meanings stay the same

Relocation Types 22

Relocation entries describe how to alter the following instruction and data fields (bit n
bers appear in the lower box corners; byte numbers appear in the upper box corners)
22-28

Executable and Linking Format (ELF)

se

se
Figure 22-3. Relocatable Fields

byte8 This specifies an 8-bit field occupying 1 byte with arbitrary alignment.

half16 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment.

word32 This specifies a 32-bit field occupying 4 bytes with 4-byte alignment. The
values use the byte order illustrated below.

uawd32 This specifies a 32-bit field occupying 4 bytes with arbitrary alignment. The
values use the same byte order as forword32.

7

16

31

31

31

31

0

0

0

0

0

0

15

25

byte8

half16

word32

uawd32

low16

low26

16

31

31 25

15
low14

low24

0

0

1

1

26

16

26

0 1

01 020x0102
22-29

Compilation Systems Volume 2 (Concepts)

i-

i-

its
e

its
e

er an
relo-
iles,
ied to

tions

d into
ner-

tion
ore

ntry
a-

oce-
re

table
l to
ge
ro-

relo-

tion
low16 This specifies a 16-bit field occupying the least significant bits of a field sim
lar to word32.These bits represent values in the same byte order asword32.

low26 This specifies a 26-bit field occupying the least significant bits of a field sim
lar to word32.These bits represent values in the same byte order asword32.

low14 This specifies a 14-bit field occupying the least significant bits (except for b
1 and 0) of a field similar toword32.These bits represent values in the sam
byte order asword32.

low24 This specifies a 24-bit field occupying the least significant bits (except for b
1 and 0) of a field similar toword32.These bits represent values in the sam
byte order asword32.

Calculations below assume the actions are transforming a relocatable file into eith
executable or a shared object file. Conceptually, the link editor merges one or more
catable files to form the output. It first decides how to combine and locate the input f
then updates the symbol values, and finally performs the relocation. Relocations appl
executable or shared object files are similar and accomplish the same result. Descrip
below use the following notation.

A This means the addend used to compute the value of the relocatable field.

AB This means the addressing base for the object.

B This means the base address at which a shared object has been loade
memory during execution. The base address for an executable file is 0. Ge
ally, a shared object file is built with a 0 base virtual address, but the execu
address will be different. See “Program Header” on page 22-35 for m
information about the base address.

G This means the place (section offset or address) of a global offset table e
for the symbol. See “Global Offset Table” on page 22-54 for more inform
tion.

GP This means the place (section offset or address) of a global offset table pr
dure entry for the symbol. See “Global Offset Table” on page 22-54 for mo
information.

L This means the place (section offset or address) of the procedure linkage
entry for a symbol. A procedure linkage table entry redirects a function cal
the proper destination. The link editor builds the initial procedure linka
table, and the dynamic linker modifies the entries during execution. See “P
cedure Linkage Table” on page 22-58 for more information.

P This means the place (section offset or address) of the storage unit being
cated (computed usingr_offset).

S This means the value of the symbol whose index resides in the reloca
entry.

0 1

01 020x01020304

2 3

03 04
22-30

Executable and Linking Format (ELF)

of
w to

the

wn
Relocation entries apply to bytes (byte8), halfwords (half16), or words (the others). A relo-
cation entry’sr_offset value designates the offset or virtual address of the first byte
the affected storage unit. The relocation type specifies which bits to change and ho
calculate their values. Because PowerUX uses onlyElf32_Rela relocation entries with
explicit addends, ther_added member serves as the relocation addend. In all cases,
addend and the computed result use the same byte order.

The following general rules apply to the interpretation of the relocation types sho
below.

• “+” and “- ” denote 32-bit modulus addition and subtraction, respectively.
“ >>” denotes arithmetic right shifting of the value of the left operand by
the number of bits given by the right operand.

• For relocation types whose names end in “_DISP14 ” or “ _DISP16 ”, the
upper 15 bits of the value computed before shifting must all be the same.
For relocation types whose names end in “_DISP24 ” or “ _DISP26 ”, the
upper 5 bits of the value computed before shifting must all be the same.
For relocation types whose names end in either “_DISP16 ” or
“_DISP26 ”, the low 2 bits of the value computed before shifting must all
be zero.

• A relocation type whose name ends in “_DISP14 ”, “ _DISP16 ”,
“ _DISP24 ”, or “ _DISP26 ” must be used only in an instruction context,
that is, where the target address computed from the relocated field is used
as the destination of a transfer of control.

• For relocation types whose names end in “_8”, the upper 24 bits of the
computed value must all be zero. For relocation types whose names end in
“_8S”, the upper 25 bits of the computed value must all be the same. For
relocation types whose names end in “_14 ” or “ _16 ”, the upper 16 bits of
the computed value must all be zero. For relocation types whose names
end in “_16S”, the upper 17 bits of the computed value must all be the
same.

• uhi16(value) , hi16(value) and lo16(value) denote the high, high,
and low 16 bits, respectively, of the indicated value. The difference
betweenuhi16() andhi16() is explained below.

• Reference in a calculation to the value “G” implicitly creates a global offset
table entry for the indicated symbol. Reference in a calculation to the
value “GP” implicitly creates a global offset table procedure entry for the
indicated symbol. Reference in a calculation to the value “L” may implic-
itly create a procedure linkage table entry for the indicated symbol.

• For relocation types whose names begin with “R_PPC_ABDIFF_”,
“ R_PPC_ABREL_”, or “ R_PPC_SREL_”, the address represented by the
symbol’s value and the address of the storage unit affected by the reloca-
tion must both be in the same shared object, or both must be in an execut-
able file.

• Where a relocation type does not use the associated symbol, the symbol
index in the relocation entry must be zero.
22-31

Compilation Systems Volume 2 (Concepts)
• The link editor detects and reports violations of restrictions described
above.

Table 22-24. Relocation Types

Name Value Field Calculation

R_PPC_NONE 0 none none

R_PPC_COPY 1 none see below

R_PPC_GOTP_ENT 2 word32 see below

R_PPC_8 4 byte8 S + A

R_PPC_8S 5 byte8 S + A

R_PPC_16S 7 half16 S + A

R_PPC_14 8 low14 S + A

R_PPC_DISP16 8 low16 (S + A - P) >> 2

R_PPC_DISP14 9 low14 (S + A - P) >> 2

R_PPC_24 10 low24 S + A

R_PPC_DISP24 11 low24 (S + A - P) >> 2

R_PPC_PLT_DISP24 14 low24 (L + A - P) >> 2

R_PPC_BBASED_16HU 15 half16 uhi16(B + A)

R_PPC_BBASED_32 16 word32 B + A

R_PPC_BBASED_32UA 17 uawd32 B + A

R_PPC_BBASED_16H 18 half16 hi16(B + A)

R_PPC_BBASED_16L 19 half16 lo16(B + A)

R_PPC_ABDIFF_16HU 23 half16 uhi16(AB - S + A)

R_PPC_ABDIFF_32 24 word32 AB - S + A

R_PPC_ABDIFF_32UA 25 uawd32 AB - S + A

R_PPC_ABDIFF_16H 26 half16 hi16(AB - S + A)

R_PPC_ABDIFF_16L 27 half16 lo16(AB - S + A)

R_PPC_ABDIFF_16 28 half16 AB - S + A

R_PPC_16HU 31 half16 uhi16(S + A)

R_PPC_32 32 word32 S + A

R_PPC_32UA 33 uawd32 S + A

R_PPC_16H 34 half16 hi16(S + A)

R_PPC_16L 35 half16 lo16(S + A)

R_PPC_16 36 half16 S + A

R_PPC_GOT_16HU 39 half16 uhi16(G + A)

R_PPC_GOT_32 40 word32 G + A
22-32

Executable and Linking Format (ELF)
R_PPC_GOT_32UA 41 uawd32 G + A

R_PPC_GOT_16H 42 half16 hi16(G + A)

R_PPC_GOT_16L 43 half16 lo16(G + A)

R_PPC_GOT_16 44 half16 G + A

R_PPC_GOTP_16HU 47 half16 uhi16(GP + A)

R_PPC_GOTP_32 48 word32 GP + A

R_PPC_GOTP_32UA 49 uawd32 GP + A

R_PPC_GOTP_16H 50 half16 hi16(GP + A)

R_PPC_GOTP_16L 51 half16 lo16(GP + A)

R_PPC_GOTP_16 52 half16 GP + A

R_PPC_PLT_16HU 55 half16 uhi16(L + A)

R_PPC_PLT_32 56 word32 L + A

R_PPC_PLT_32UA 57 uawd32 L + A

R_PPC_PLT_16H 58 half16 hi16(L + A)

R_PPC_PLT_16L 59 half16 lo16(L + A)

R_PPC_PLT_16 60 half16 L + A

R_PPC_ABREL_16HU 63 half16 uhi16(S + A - AB)
(See text below)

R_PPC_ABREL_32 64 word32 S + A - AB
(See text below)

R_PPC_ABREL_32UA 65 uawd32 S + A - AB
(See text below)

R_PPC_ABREL_16H 66 half16 hi16(S + A - AB)
(See text below)

R_PPC_ABREL_16L 67 half16 lo16(S + A - AB)
(See text below)

R_PPC_ABREL_16 68 half16 S + A - AB
(See text below)

R_PPC_GOT_ABREL_16HU 71 half16 uhi16(G + A - AB)

R_PPC_GOT_ABREL_32 72 word32 G + A - AB

R_PPC_GOT_ABREL_32UA 73 uawd32 G + A - AB

R_PPC_GOT_ABREL_16H 74 half16 hi16(G + A - AB)

R_PPC_GOT_ABREL_16L 75 half16 lo16(G + A - AB)

R_PPC_GOT_ABREL_16 76 half16 G + A - AB

R_PPC_GOTP_ABREL_16HU 79 half16 uhi16(GP + A - AB)

Table 22-24. Relocation Types (Cont.)

Name Value Field Calculation
22-33

Compilation Systems Volume 2 (Concepts)

f the

er
ex
ile
p-

tion

et
he
end

an
, it

e of

w-
The semantics ofhi16() are different from those of uhi16() . Forhi16() , if bit 16 of
the 32-bit operand value is set, then a value of 1 is added to the high-order 16 bits o
32-bit operand.

Some relocation types have semantics beyond simple calculation.

R_PPC_COPY This relocation type assists dynamic linking. Its offset memb
refers to a location in a writable segment. The symbol table ind
specifies a symbol that should exist both in the current object f
and in a shared object. During execution, the dynamic linker co
ies data associated with the shared object’s symbol to the loca
specified by the object.

R_PPC_GOTP_ENT This relocation type assists dynamic linking. The relocation offs
gives the location of a global offset table procedure entry. T
relocation symbol names the procedure. The relocation add
gives the address of the associated GOTP binding entry. For
executable file, this address is absolute; for a shared object file
is relative to the base address for the shared object. The us
relocation types whose names end in “_16 ” is generally subject to
failure, because the value computed may not fit in 16 bits. Ho
ev er, th e u s e o f t h eR _P P C _ G O T _ A B R E L _ 1 6a n d

R_PPC_GOTP_ABREL_32 80 word32 GP + A - AB

R_PPC_GOTP_ABREL_32UA 81 uawd32 GP + A - AB

R_PPC_GOTP_ABREL_16H 82 half16 hi16(GP + A - AB)

R_PPC_GOTP_ABREL_16L 83 half16 lo16(GP + A - AB)

R_PPC_GOTP_ABREL_16 84 half16 GP + A - AB

R_PPC_PLT_ABREL_16HU 87 half16 uhi16(L + A - AB)

R_PPC_PLT_ABREL_32 88 word32 L + A - AB

R_PPC_PLT_ABREL_32UA 89 uawd32 L + A - AB

R_PPC_PLT_ABREL_16H 90 half16 hi16(L + A - AB)

R_PPC_PLT_ABREL_16L 91 half16 lo16(L + A - AB)

R_PPC_PLT_ABREL_16 92 half16 L + A - AB

R_PPC_SREL_16HU 95 half16 uhi16(S + A - P)

R_PPC_SREL_32 96 word32 S + A - P

R_PPC_SREL_32UA 97 uawd32 S + A - P

R_PPC_SREL_16H 98 half16 hi16(S + A - P)

R_PPC_SREL_16L 99 half16 lo16(S + A - P)

R_PPC_REL_EXT_1 254 word32 See text below

R_PPC_REL_EXT_2 255 word32 See text below

Table 22-24. Relocation Types (Cont.)

Name Value Field Calculation
22-34

Executable and Linking Format (ELF)

ut-
her
s

data

he
. In
P
pri-

ing

on

g
i-
is
-

st
of

n the

ning

pro-
rocess

each
m for
R_PPC_GOTP_ABREL_16relocation types does not fail unless
the total number of distinct GOT and GOTP entries for the exec
able or shared object being link edited exceeds 16,380. In ot
words, the link editor is obliged to favor GOT and GOTP entrie
when choosing an addressing base and laying out the private
of either the executable or shared object file.

R_PPC_GOT_ABREL_16andR_PPC_GOTP_ABREL_16relocation types do not fail
unless the total number of distinct GOT and GOTP entries for t
executable or shared object being link edited exceeds 16,380
other words, the link editor is obliged to favor GOT and GOT
entries when choosing an addressing base and laying out the
vate data of either the executable or shared object file.

The relocation types that typically remain after link editing and which require process
by the dynamic linker includeR_PPC_COPY, R_PPC_GOTP_ENT, theR_PPC_BBASED
family, andR_PPC_32. However, the dynamic linker is prepared to handle all relocati
types except those whose calculations involve any of the values “G”, “ GP”, and “L”.

R_PPC_REL_EXT_1 The PowerUX implementation of DWARF symbolic debuggin
information requires an ability to subtract two symbolic defin
tions to obtain a single symbolic reference. This relocation type
equivalent toR_PPC_32, for the minuend. The subtrahend is rep
resented in the next relocation entry.

R_PPC_REL_EXT_2 This relocation type identifies a relocation entry which mu
appear immediately after the corresponding relocation entry
type R_PPC_REL_EXT_1. This relocation entry pertains to the
subtrahend.

The R_PPC_ABREL_* relocation types have a different calculation when theld(1)
-QAda option is used. In this case, the base address of the shared object, rather tha
addressing base, is used in the calculations.

Program Execution 22

This section describes the object file information and system actions that create run
programs.

Executable and shared object files statically represent programs. To execute such
grams, the system uses the files to create dynamic program representations, or p
images.

Program Header 22

An executable or shared object file’s program header table is an array of structures,
describing a segment or other information the system needs to prepare the progra
execution. An object filesegmentcontains one or moresectionsas “Segment Contents” on
page 22-40 describes.
22-35

Compilation Systems Volume 2 (Concepts)

peci-

nt
n.

at

of

m-
ow-
is
red

he

of

al-

ss

ue
al-

nd do
ept as
Program headers are meaningful only for executable and shared object files. A file s
fies its own program header size with the ELF header’se_phentsize ande_phnum
members (see “ELF Header” on page 22-3).

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

p_type This member tells what kind of segment this array eleme
describes or how to interpret the array element’s informatio
Type values and their meanings appear below.

p_offset This member gives the offset from the beginning of the file
which the first byte of the segment resides.

p_vaddr This member gives the virtual address at which the first byte
the segment resides in memory.

p_paddr On systems for which physical addressing is relevant, this me
ber is reserved for the segment’s physical address. Because P
erUX ignores physical addressing for application programs, th
member has unspecified contents for executable files and sha
objects.

p_filesz This member gives the number of bytes in the file image of t
segment; it may be zero.

p_memsz This member gives the number of bytes in the memory image
the segment; it may be zero.

p_flags This member gives flags relevant to the segment. Defined flag v
ues appear in Table 22-25.

p_align As “Program Linking” on page 22-3 describes, loadable proce
segments must have congruent values forp_vaddr and
p_offset , modulo the page size. This member gives the val
to which the segments are aligned in memory and in the file. V
ues 0 and 1 mean no alignment is required. Otherwise,p_align
should be a positive, integral power of 2, andp_vaddr should
equalp_offset , modulop_align .

Some entries describe process segments; others give supplementary information a
not contribute to the process image. Segment entries may appear in any order, exc
22-36

Executable and Linking Format (ELF)

ure

de-
ed

by

ry

g-
he
der

e

i-
e is
r
is
ro-

ry
explicitly noted below. Defined type values follow; other values are reserved for fut
use.

PT_NULL The array element is unused; other members’ values are un
fined. This type lets the program header table have ignor
entries.

PT_LOAD The array element specifies a loadable segment, described
p_filesz andp_memsz. The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memo
size (p_memsz) is larger than the file size (p_filesz), the
“extra” bytes are defined to hold the value 0 and to follow the se
ment’s initialized area. The file size may not be larger than t
memory size. Loadable segment entries in the program hea
table appear in ascending order, sorted on thep_vaddr member.

PT_DYNAMIC The array element specifies dynamic linking information. Se
“Dynamic Section” on page 22-47 for more information.

PT_INTERP The array element specifies the location and size of a null-term
nated path name to invoke as an interpreter. This segment typ
meaningful only for executable files (though it may occur fo
shared objects); it may not occur more than once in a file. If it
present, it must precede any loadable segment entry. See “P
gram Interpreter” on page 22-45 for further information.

PT_NOTE The array element specifies the location and size of auxilia
information. See “Note Section” on page 22-41 for details.

PT_SHLIB This segment type is reserved but has unspecified semantics.

Table 22-25. Segment Types, p_type

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_LOPROC 0x70000000

PT_PPC_DEBINFADDR 0x70000001

PT_PPC_VENDOR 0x7fffffff

PT_HIPROC 0x7fffffff
22-37

Compilation Systems Volume 2 (Concepts)

the
ry
re

is
ro-

ific

ext

dor

ional.
con-

64K
able
esses,
6M

s not

0000.

per-

lica-
ni-
pre-

t

ase
exe-

val-
PT_PHDR The array element, if present, specifies the location and size of
program header table itself, both in the file and in the memo
image of the program. This segment type may not occur mo
than once in a file. Moreover, it may occur only if the program
header table is part of the memory image of the program. If it
present, it must precede any loadable segment entry. See “P
gram Interpreter” on page 22-45 for further information.

PT_LOPROCthroughPT_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

PT_PPC_DEBINFADDR
The array element, if present, specifies the address of the “t
description” (tdesc)debug infoprotocol.

PT_PPC_VENDOR The array element, if present, specifies the address of the ven
section.

Unless specifically required elsewhere, all program header segment types are opt
That is, a file’s program header table may contain only those elements relevant to its
tents.

No two loadable segments in an executable or shared object file occupy the same
region. More precisely, given the virtual addresses of any two bytes in different load
segments of an executable or shared object file, the integer quotients of those addr
upon division by 64, differ. Executable and writable sections must occupy different 25
regions.

For every loadable segment in an executable or shared object file, if that segment doe
have write permission, then either the segment’sp_filesz value is zero, or the seg-
ment’sp_memszandp_filesz values are the same.

No segment defined in an executable file occupies space at or above address 0x8000

An executable file defines at least one writable segment, that is, a segment with write
mission.

Thebreak areais a writable area of memory whose size can be increased by the app
tion. (Seebrk(2) .) Thebreakvalue defines the current extent of the break area. The i
tial break value is the end of the highest writable segment in the executable file. More
cisely, the initial break value is the sum of thep_vaddr andp_memsz values for the
executable file’s writable segment with largestp_vaddr value. The break value is not se
lower than its initial value.

If the program header in a shared object file contains aPT_INTERP array element, then it
also contains aPT_PHDRarray element.

Base Address 22

Executable and shared object files have abase addresswhich is the lowest virtual address
associated with the memory image of the program’s object file. One use of the b
address is to relocate the memory image of the program during dynamic linking. An
cutable or shared object file’s base address is calculated during execution from three
22-38

Executable and Linking Format (ELF)

s of a
irtual

of the
mory

of the
em-

hough
em-

pend
ugh
In no
The
eta-
ues: the memory load address, the maximum page size, and the lowest virtual addres
program’s loadable segment. As “Program Loading” on page 22-42 describes, the v
addresses in the program headers might not represent the actual virtual addresses
program’s memory image. To compute the base address, one determines the me
address associated with the lowestp_vaddr value for aPT_LOADsegment. One then
obtains the base address by truncating the memory address to the nearest multiple
maximum page size. Depending on the kind of file being loaded into memory, the m
ory address might or might not match thep_vaddr values.

Segment Permissions 22

A program to be loaded by the system must have at least one loadable segment (alt
this is not required by the file format). When the system creates loadable segments’ m
ory images, it gives access permissions as specified in thep_flags member. All bits
included in thePF_MASKPROCmask are reserved for processor-specific semantics.

If a permission bit is 0, that type of access is denied. Actual memory permissions de
on the memory management unit, which may vary from one system to another. Altho
all flag combinations are valid, the system may grant more access than requested.
case, however, will a segment have write permission unless it is specified explicitly.
following table shows both the exact flag interpretation and the allowable flag interpr
tion.

Table 22-26. Segment Flag Bits, p_flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

Table 22-27. Segment Permissions

Flags Value Exact Allowable

none 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute
22-39

Compilation Systems Volume 2 (Concepts)

ions.

nt to
mate-
ution,
eral

, pro-

ing
e seg-
nts.

ing
For example, typical text segments have read and execute - but not write - permiss
Data segments normally have read, write, and execute permissions.

Segment Contents 22

An object file segment comprises one or more sections, though this fact is transpare
the program header. Whether the file segment holds one or many sections also is im
rial to program loading. Nonetheless, various data must be present for program exec
dynamic linking, and so on. The diagrams below illustrate segment contents in gen
terms. The order and membership of sections within a segment may vary; moreover
cessor-specific constraints may alter the examples below.

Text segments contain read-only instructions and data, typically including the follow
sections described earlier in this chapter. Other sections may also reside in loadabl
ments; these examples are not meant to give complete and exclusive segment conte

Data segments contain writable data and instructions, typically including the follow
sections.

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute

Table 22-28. Text Segment

.text

.rodata

.hash

.dynsym

.dynstr

.plt

.rel.got

Table 22-29. Data Segment

.data

Table 22-27. Segment Permissions

Flags Value Exact Allowable
22-40

Executable and Linking Format (ELF)

roces-
age

t’s
ent,
-

rma-
ons

mber
ssor.
rt of

no
n,
y,”

the
A PT_DYNAMICprogram header element points at the.dynamic section, explained in
“Dynamic Section” on page 22-47. The.got and.plt sections also hold information
related to position-independent code and dynamic linking. Although the.plt appears in
a text segment above, it may reside in a text or a data segment, depending on the p
sor. See “Global Offset Table” on page 22-54 and “Procedure Linkage Table” on p
22-58 for details.

As described in “Section Header” on page 22-9, the.bss section has the type
SHT_NOBITS. Although it occupies no space in the file, it contributes to the segmen
memory image. Normally, these uninitialized data reside at the end of the segm
thereby makingp_memsz larger thanp_filesz in the associated program header ele
ment.

Note Section 22

Sometimes a vendor or system builder needs to mark an object file with special info
tion that other programs will check for conformance, compatibility, and so forth. Secti
of typeSHT_NOTEand program header elements of typePT_NOTEcan be used for this
purpose. The note information in sections and program header elements holds any nu
of entries, each of which is an array of 4-byte words in the format of the target proce
Labels in Table 22-30 help explain note information organization, but they are not pa
the specification.

namesz andname The first namesz bytes inname contain a null-terminated char-
acter representation of the entry’s owner or originator. There is
formal mechanism for avoiding name conflicts. By conventio
vendors use their own name, such as “XYZ Computer Compan
as the identifier. If no name is present,namesz contains 0. Pad-
ding is present, if necessary, to ensure 4-byte alignment for
descriptor. Such padding is not included innamesz .

.dynamic

.got

.bss

Table 22-30. Note Information

namesz

descsz

type

name
...

desc
...

Table 22-29. Data Segment
22-41

Compilation Systems Volume 2 (Concepts)

f
uch

a-
e
me
be

at

nt to a
s on
uire a

com-
ently
exe-
irtual
descsz anddesc The first descsz bytes indesc hold the note descriptor. If no
descriptor is present,descsz contains 0. Padding is present, i
necessary, to ensure 4-byte alignment for the next note entry. S
padding is not included indescsz .

type This word gives the interpretation of the descriptor. Each origin
tor controls its own types; multiple interpretations of a single typ
value may exist. Thus, a program must recognize both the na
and the type to “understand” a descriptor. Types currently must
non-negative.

To illustrate, the following note segment holds two entries.

The system reserves note information with no name (namesz==0) and with a zero-length
name (name[0]==’\0’) but currently defines no types. All other names must have
least one non-null character.

Program Loading 22

As the system creates or augments a process image, it logically copies a file’s segme
virtual memory segment. When--and if--the system physically reads the file depend
the program’s execution behavior, system load, and so forth. A process does not req
physical page unless it references the logical page during execution, and processes
monly leave many pages unreferenced. Therefore, delaying physical reads frequ
obviates them, improving system performance. To obtain this efficiency in practice,
cutable and shared object files must have segment images whose file offsets and v
addresses are congruent, modulo the page size.

Table 22-31. Example Note Segment

+ 0 + 1 + 2 + 3

namesz 7

descsz 0 No descriptor

type 1

name X Y Z

C o \0 pad

namesz 7

descsz 8

type 3

name X Y Z

C o \0 pad

desc word 0

word 1
22-42

Executable and Linking Format (ELF)

,
r
64K

64K
on
The virtual address (p_vaddr) and file offset (p_vaddr) for segments are congruent
modulo 64K (0x10000). The value of thep_align member of each program heade
element in an executable or shared object file is 64K. The following examples show
alignment.

Although the example’s file offsets and virtual addresses are congruent modulo
for both text and data, up to four file pages hold impure text or data (depending
page size and file system block size).

Table 22-32. Executable File

File Offset File Virtual Address

0 ELF Header

Program Header Table

Other Information

0x1000 Text Segment
...

size = 0xaf48 bytes

0x10001000

0xc000 RO Data Segment
...

size = 0x430 bytes

0x1003c000

0xd000 Data Segment
...

size = 0x113c bytes

0x3000d000

0xe13c Other Information
...

Table 22-33. Program Header Segments

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x10100 0x4bf00

p_paddr unspecified unspecified

p_filesz 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W

p_align 0x10000 0x10000
22-43

Compilation Systems Volume 2 (Concepts)

were
al page
region
: at

hich
des

zero,
ee
them
B

• The first text page contains the ELF header, the program header
table, and other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the
running process.

Logically, the system enforces the memory permissions as if each segment
complete and separate; segments’ addresses are adjusted to ensure each logic
in the address space has a single set of permissions. In the example above, the
of the file holding the end of text and the beginning of data will be mapped twice
one virtual address for text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data, w
the system defines to begin with zero values. Thus if a file’s last data page inclu
information not in the logical memory page, the extraneous data must be set to
not the unknown contents of the executable file. “Impurities” in the other thr
pages are not logically part of the process image; whether the system expunges
is unspecified. The memory image for this program follows, assuming 4 K
(0x1000) pages.

Table 22-34. Process Image Segments

Virtual Address Contents

0x20000 Header Padding
0xe0 zero bytes

0x200e0 Text Segment
. . .

0x6458 bytes

0x26538 RO Data Padding
0xac8 zero bytes

0x46000 Text Padding
0x538 zero bytes

0x46538 RO Data Segment
.. .

0x18 bytes

0x46550 Data Padding
0xab0 zero bytes

0x56000 RO Data Padding
0x550 zero bytes

0x56550 Data Segment
. . .

0x5884 bytes
22-44

Executable and Linking Format (ELF)

ound-

jects.
cute
ecut-

s.

dent
eg-
exe-
pro-
t
irtual

in the
ents
llus-

l
ginal
inter-
pro-
Hardware requires that pages be “pure”; thus sections always start on a page b
ary.

One aspect of segment loading differs between executable files and shared ob
Executable file segments typically contain absolute code. To let the process exe
correctly, the segments must reside at the virtual addresses used to build the ex
able file. Thus the system uses thep_vaddr values unchanged as virtual addresse

On the other hand, shared object segments typically contain position-indepen
code. (For background, see Chapter 4 (“Link Editor and Linking”).) This lets a s
ment’s virtual address change from one process to another, without invalidating
cution behavior. Though the system chooses virtual addresses for individual
cesses, it maintains the segments’relative positions.Because position-independen
code uses relative addressing between segments, the difference between v
addresses in memory must match the difference between virtual addresses
file. The following table shows possible shared object virtual address assignm
for several processes, illustrating constant relative positioning. The table also i
trates the base address computations.

Program Interpreter 22

An executable file may have onePT_INTERP program header element. Duringexec() ,
the system retrieves a path name from thePT_INTERP segment and creates the initia
process image from the interpreter file’s segments. That is, instead of using the ori
executable file’s segment images, the system composes a memory image for the
preter. It then is the interpreter’s responsibility to receive control from the system and
vide an environment for the application program.

0x574c0 Uninitialized Data
0x4914 zero bytes

0x5bdd4 Page Padding
0x230 zero bytes

Table 22-35. Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x200 0x2a400 0x0

Process 1 0xc0000200 0xc002a400 0xc0000000

Process 2 0xc0010200 0xc003a400 0xc0010000

Process 3 0xd0020200 0xd004a400 0xd0020000

Process 4 0xd0030200 0xd005a400 0xd0030000

Table 22-34. Process Image Segments (Cont.)

Virtual Address Contents
22-45

Compilation Systems Volume 2 (Concepts)

ptor
or to
n the
d of
file
ould
reter

ram
e

table
ide in
The interpreter receives control in one of two ways. First, it may receive a file descri
to read the executable file, positioned at the beginning. It can use this file descript
read and/or map the executable file’s segments into memory. Second, depending o
executable file format, the system may load the executable file into memory instea
giving the interpreter an open file descriptor. With the possible exception of the
descriptor, the interpreter’s initial process state matches what the executable file w
have received. The interpreter itself may not require a second interpreter. An interp
may be either a shared object or an executable file.

• A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used bymmap() and related ser-
vices. Consequently, a shared object interpreter typically will not conflict
with the original executable file’s original segment addresses.

• An executable file is loaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
quently, an executable file interpreter’s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving con-
flicts.

• The default program interpreter on PowerUX is
/usr/lib/libc.so.1 .

Dynamic Linker 22

When building an executable file that uses dynamic linking, the link editor adds a prog
header element of typePT_INTERP to an executable file, telling the system to invoke th
dynamic linker as the program interpreter.exec() and the dynamic linker cooperate to
create the process image for the program, which entails the following actions:

• Adding the executable file’s memory segments to the process image;

• Adding shared object memory segments to the process image;

• Performing relocations for the executable file and its shared objects;

• Closing the file descriptor that was used to read the executable file, if one
was given to the dynamic linker;

• Transferring control to the program, making it look as if the program had
received control directly fromexec() .

The link editor also constructs various data that assist the dynamic linker for execu
and shared object files. As shown in “Program Header” on page 22-35, these data res
loadable segments, making them available during execution.

• A .dynamic section with typeSHT_DYNAMICholds various data. The
structure residing at the beginning of the section holds the addresses of
other dynamic linking information.

• The .hash section with typeSHT_HASHholds a symbol hash table.

• The .got and .plt sections with typeSHT_PROGBITShold two sepa-
rate tables: the global offset table and the procedure linkage table. Sections
22-46

Executable and Linking Format (ELF)

tual
gram
lute

alues
ram

pro-

In
zily,
lled.

le-

c-

ta-

n-
ir-

in the
d on

s do
re.
below explain how the dynamic linker uses and changes the tables to create
memory images for object files.

As explained in “Program Loading” on page 22-42, shared objects may occupy vir
memory addresses that are different from the addresses recorded in the file’s pro
header table. The dynamic linker relocates the memory image, updating abso
addresses before the application gains control. Although the absolute address v
would be correct if the library were loaded at the addresses specified in the prog
header table, this normally is not the case.

If the process environment contains a variable namedLD_BIND_NOWwith a non-null
value, the dynamic linker processes all relocations before transferring control to the
gram. For example, all the following environment entries would specify this behavior.

• LD_BIND_NOW=1

• LD_BIND_NOW=on

• LD_BIND_NOW=off

Otherwise,LD_BIND_NOWeither does not occur in the environment or has a null value.
this case, dynamic linker is permitted to evaluate procedure linkage table entries la
thus avoiding symbol resolution and relocation overhead for functions that are not ca
See “Procedure Linkage Table” on page 22-58 for more information.

Dynamic Section 22

If an object file participates in dynamic linking, its program header table will have an e
ment of typePT_DYNAMIC. This “segment” contains the.dynamic section. A special
symbol,_DYNAMIC, labels the section, which contains an array of the following stru
tures.

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];

For each object with this type,d_tag controls the interpretation ofd_un .

d_val TheseElf32_Word objects represent integer values with various interpre
tions.

d_ptr TheseElf32_Addr objects represent program virtual addresses. As me
tioned previously, a file’s virtual addresses might not match the memory v
tual addresses during execution. When interpreting addresses contained
dynamic structure, the dynamic linker computes actual addresses, base
the original file value and the memory base address. For consistency, file
not contain relocation entries to “correct” addresses in the dynamic structu
22-47

Compilation Systems Volume 2 (Concepts)

bject
y of
ed.
The following table summarizes the tag requirements for executable and shared o
files. If a tag is marked “mandatory,” then the dynamic linking array must have an entr
that type. Likewise, “optional” means an entry for the tag may appear but is not requir

Table 22-36. Dynamic Array Tags, d_tag

Name Value d_un Executable Shared Object

DT_NULL 0 ignored mandatory mandatory

DT_NEEDED 1 d_val optional optional

DT_PLTRELSZ 2 d_val optional optional

DT_PLTGOT 3 d_ptr optional optional

DT_HASH 4 d_ptr mandatory mandatory

DT_STRTAB 5 d_ptr mandatory mandatory

DT_SYMTAB 6 d_ptr mandatory mandatory

DT_RELA 7 d_ptr mandatory optional

DT_RELASZ 8 d_val mandatory optional

DT_RELAENT 9 d_val mandatory optional

DT_STRSZ 10 d_val mandatory mandatory

DT_SYMENT 11 d_val mandatory mandatory

DT_INIT 12 d_ptr optional optional

DT_FINI 13 d_ptr optional optional

DT_SONAME 14 d_val ignored optional

DT_RPATH 15 d_val optional ignored

DT_SYMBOLIC 16 ignored ignored optional

DT_REL 17 d_ptr mandatory optional

DT_RELSZ 18 d_val mandatory optional

DT_RELENT 19 d_val mandatory optional

DT_PLTREL 20 d_val optional optional

DT_DEBUG 21 d_ptr optional ignored

DT_TEXTREL 22 ignored optional optional

DT_JMPREL 23 d_ptr optional optional

DT_LOPROC 0x70000000 unspecified unspecified unspecified

DT_PPC_ADDRBASE 0x70000001 d_ptr optional required

DT_PPC_PLTSTART 0x70000002 d_ptr optional optional

DT_PPC_PLTEND 0x70000003 d_ptr optional optional

DT_PPC_TDESC 0x70000004 d_ptr optional optional
22-48

Executable and Linking Format (ELF)

d
ex

ut
ith

eir

ies
n-

ro-
in

the
tes
n-

r a
nd

rd

.
at

le,

the
er

in

d in
it
DT_NULL An entry with aDT_NULLtag marks the end of the_DYNAMIC
array.

DT_NEEDED This element holds the string table offset of a null-terminate
string, giving the name of a needed library. The offset is an ind
into the table recorded in theDT_STRTABentry. See “Shared
Object Dependencies” on page 22-52 for more information abo
these names. The dynamic array may contain multiple entries w
this type. These entries’ relative order is significant, though th
relation to entries of other types is not.

DT_PLTRELSZ This element holds the total size, in bytes, of the relocation entr
associated with the global offset table. This relocation table co
tains all relocation entries of typeR_PPC_GOTP_ENT, and only
those entries. In particular, relocation entries applying to the p
cedure linkage table are found with all other relocation entries
the relocation table specified by theDT_RELA, DT_RELASZ, and
DT_RELAENTentries.

DT_PLTGOT This element holds an address of three consecutive words in
private data of an executable or shared object file. These 12 by
are 4-byte aligned. The first word is set by the link editor and co
tains the address of the symbol_DYNAMIC; the address is abso-
lute for an executable file and relative to the base address fo
shared object. The second word is set by the dynamic linker a
points to the link map entry for the object (see below). The thi
word is used to support lazy binding. TheDT_PLTGOTentry is
required in every object file that participates in dynamic linking
The link editor chooses where to locate the three words, usually
the beginning of the global offset table.

DT_HASH This element holds the address of the symbol hash tab
described in “Hash Table” on page 22-59.

DT_STRTAB This element holds the address of the string table, described in
first part of this chapter. Symbol names, library names, and oth
strings reside in this table.

DT_SYMTAB This element holds the address of the symbol table, described
the first part of this chapter, withElf32_Sym entries for the
32-bit class of files.

DT_RELA This element holds the address of a relocation table, describe
the first part of this chapter. Entries in the table have explic
addends, such asElf32_Rela for the 32-bit file class. An object

DT_PPC_ARMS 0x70000100 d_val optional optional

DT_PPC_BIND_SYM 0x70000101 d_ptr optional optional

DT_HIPROC 0x7fffffff unspecified unspecified unspecified

Table 22-36. Dynamic Array Tags, d_tag (Cont.)

Name Value d_un Executable Shared Object
22-49

Compilation Systems Volume 2 (Concepts)

e
nk
ugh

ic
the
the

sso-
re

is-
e

is-
e

d
ex

ut

d
ect
ble

the
s
e
ct

ol,
her
file may have multiple relocation sections. When building th
relocation table for an executable or shared object file, the li
editor concatenates those sections to form a single table. Altho
the sections remain independent in the object file, the dynam
linker sees a single table. When the dynamic linker creates
process image for an executable file or adds a shared object to
process image, it reads the relocation table and performs the a
ciated actions. If this element is present, the dynamic structu
must also haveDT_RELASZandDT_RELAENTelements. When
relocation is “mandatory” for a file, eitherDT_RELAor DT_REL
may occur (both are permitted but not required).

DT_RELASZ This element holds the total size, in bytes, of theDT_RELArelo-
cation table.

DT_RELAENT This element holds the size, in bytes, of theDT_RELArelocation
entry.

DT_STRSZ This element holds the size, in bytes, of the string table.

DT_SYMENT This element holds the size, in bytes, of a symbol table entry.

DT_INIT This element holds the address of the initialization function, d
cussed in “Initialization and Termination Functions” on pag
22-60.

DT_FINI This element holds the address of the termination function, d
cussed in “Initialization and Termination Functions” on pag
22-60.

DT_SONAME This element holds the string table offset of a null-terminate
string, giving the name of the shared object. The offset is an ind
into the table recorded in theDT_STRTABentry. See “Shared
Object Dependencies” on page 22-52 for more information abo
these names.

DT_RPATH This element holds the string table offset of a null-terminate
search library search path string, discussed in “Shared Obj
Dependencies” on page 22-52. The offset is an index into the ta
recorded in theDT_STRTABentry.

DT_SYMBOLIC This element’s presence in a shared object library alters
dynamic linker’s symbol resolution algorithm for reference
within the library. Instead of starting a symbol search with th
executable file, the dynamic linker starts from the shared obje
itself. If the shared object fails to supply the referenced symb
the dynamic linker then searches the executable file and ot
shared objects as usual.

DT_REL This element is not used on PowerUX.

DT_RELSZ This element is not used on PowerUX.

DT_RELENT This element is not used on PowerUX.
22-50

Executable and Linking Format (ELF)

he
a-

ge
n

uld
by
m-
di-

an

ies
n-

ro-
in

ific

ct
in

f
n

of
n

f

e
y

-
in
ct
f

DT_PLTREL This member specifies the type of relocation entry to which t
global offset table refers. This relocation table contains all reloc
tion entries of typeR_PPC_GOTP_ENT, and only those entries. In
particular, relocation entries applying to the procedure linka
table are found with all other relocation entries in the relocatio
ta b l e sp e c i f ie d b y t h eDT _R EL A, D T _R EL AS Z, a n d
DT_RELAENTentries.

DT_DEBUG This member is used for debugging.

DT_TEXTREL This member’s absence signifies that no relocation entry sho
cause a modification to a non-writable segment, as specified
the segment permissions in the program header table. If this me
ber is present, one or more relocation entries might request mo
fications to a non-writable segment, and the dynamic linker c
prepare accordingly.

DT_JMPREL This element holds the total size, in bytes, of the relocation entr
associated with the global offset table. This relocation table co
tains all relocation entries of typeR_PPC_GOTP_ENT, and only
those entries. In particular, relocation entries applying to the p
cedure linkage table are found with all other relocation entries
the relocation table specified by theDT_RELA, DT_RELASZ, and
DT_RELAENTentries.

DT_LOPROCthroughDT_HIPROC
Values in this inclusive range are reserved for processor-spec
semantics.

DT_PPC_ADDRBASEThis entry’sd_ptr member gives the address base for the obje
file. If this entry is missing for an executable that participates
dynamic linking, the addressing base is 0.

DT_PPC_PLTSTART This entry’sd_ptr member gives the low address (inclusive) o
the PLT region in an object file. If this entry is present, the
DT_PPC_PLTENDis also present.

DT_PPC_PLTEND This entry’sd_ptr member gives the high address (exclusive)
the PLT region in an object file. If this entry is present, the
DT_PPC_PLTSTARTis also present.

DT_PPC_TDESC This entry’sd_ptr member gives the low address (inclusive) o
the “text description” (tdesc) information in an object file.

Except for theDT_NULLelement at the end of the array, and th
relative order ofDT_NEEDEDelements, entries may appear in an
order. Tag values not appearing in the table are reserved.

ThePLT region is that portion of an object file that is made exe
cutable by the dynamic linker after relocations are performed
the region. The PLT region includes all PLT entries for the obje
file that require relocation by the dynamic linker. The region o
memory between (((DT_PPC_PLTSTARTvalue) / 64K) * 64K)
(inclusive) and ((((DT_PPC_PLTENDvalue) + 64K - 1) / 64K) *
22-51

Compilation Systems Volume 2 (Concepts)

he

le

e
se
ker
er

pies
ecu-
the

xecu-

den-
ts
hared
age.
with
ram

d

, the

itor

h

64K) (exclusive) is subject to being made executable by t
dynamic linker.

DT_PPC_ARMS This entry is present if the object was link edited with a map fi
that defined a Concurrent Ada ARMS segment.

DT_PPC_BIND_SYM This entry is present if a function is to be non-lazily bound to th
shared object during dynamic linking. One or more of the
entries may be present in a shared object. The dynamic lin
fully binds each named symbol to the shared object, even if oth
symbols are lazily bound.

Shared Object Dependencies 22

When the link editor processes an archive library, it extracts library members and co
them into the output object file. These statically linked services are available during ex
tion without involving the dynamic linker. Shared objects also provide services, and
dynamic linker must attach the proper shared object files to the process image for e
tion. Thus executable and shared object files describe their specific dependencies.

When the dynamic linker creates the memory segments for an object file, the depen
cies (recorded inDT_NEEDEDentries of the dynamic structure) tell what shared objec
are needed to supply the program’s services. By repeatedly connecting referenced s
objects and their dependencies, the dynamic linker builds a complete process im
When resolving symbolic references, the dynamic linker examines the symbol tables
a breadth-first search. That is, it first looks at the symbol table of the executable prog
itself, then at the symbol tables of theDT_NEEDEDentries (in order), then at the secon
level DT_NEEDEDentries, and so on.

Even when a shared object is referenced multiple times in the dependency list
dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either of theDT_SONAMEstrings or the path
names of the shared objects used to build the object file. For example, if the link ed
builds an executable file using one shared object with aDT_SONAMEentry of lib1 and
another shared object library with the path name/usr/lib/lib2 , the executable file
will contain lib1 and/usr/lib/lib2 in its dependency list.

If a shared object name has one or more slash (/) characters anywhere in the name, suc
as/usr/lib/lib2 above ordirectory/file , the dynamic linker uses that string
directly as the path name. If the name has no slashes, such aslib1 above, three facilities
specify shared object path searching, with the following precedence.

• First, the dynamic array tagDT_RPATHmay give a string that holds a list
of directories, separated by colons (:). For example, the string
/home/dir/usr/lib:/home/dir2/usr/lib: tells the dynamic
l i nk er to se ar ch f i r s t th e di r ec t or y/h ome/d i r / l ib , th en
/home/dir2/usr/lib , and then the current directory to find dependen-
cies.

• Second, a variable calledLD_LIBRARY_PATHin the process environment
may hold a list of directories as above, optionally followed by a semicolon
(;) and another directory list. The following values would be equivalent to
the previous example:
22-52

Executable and Linking Format (ELF)

r the
ker

h as
rch

the
s the

. The
go-
ble
ing

ject
e

ld is

ject

the

ect
LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:
LD_LIBRARY_PATH=/home/dir/usr/lib;/home/dir2/usr/lib:
LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:;

All LD_LIBRARY_PATHdirectories are searched after those fromDT_RPATH.
Although some programs (such as the link editor) treat the lists before and afte
semicolon differently, the dynamic linker does not. Nevertheless, the dynamic lin
accepts the semicolon notation, with the semantics described above.

• Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searches/usr/lib .

For security, the dynamic linker ignores environmental search specifications (suc
LD_LIBRARY_PATH) for set-user and set-group ID programs. It does, however, sea
DT_RPATHdirectories and/usr/lib .

Link Map 22

The dynamic linker creates and maintains a linked list of link map entries to describe
address space of a program using dynamic linking. The first entry in the list describe
executable file; subsequent entries describe the shared objects used by the program
order of the link map entries is the result of performing the following conceptual al
rithm. The list of link map entries is initialized to contain only the entry for the executa
file. For each entry on the list (in order), the dynamic linker scans the correspond
object’s_DYNAMICsection (in order) and, for each previously unreferenced shared ob
named by aDT_NEEDEDentry, appends a link map entry for that object to the list. Th
result is a breadth-first linearization of the graph of shared object dependencies.

The structure of a link map entry is as follows.

struct link_map {
unsigned long l_addr;
char *l_name;
Elf32_Dyn *l_ld;
struct link_map *l_next;
struct link_map *l_prev;

};

l_addr For a shared object, this is the base address of the shared object. This fie
zero for an executable file.

l_name For a shared object, this is the virtual address of the path name of that ob
(e.g.,/usr/lib/libc.so.1).

l_name This is the virtual address of the_DYNAMICstructure of the object.

l_next This is the virtual address of the next link map entry. For the last object on
chain, this field contains a null pointer.

l_prev This is the virtual address of the previous link map entry. For the first obj
on the chain, this field contains a null pointer.
22-53

Compilation Systems Volume 2 (Concepts)

lobal
ailable
t. A

see
or a
glo-
lates
er val-
bject
alcu-

l will
sepa-
amic
e in
ion.

nced
ts
spe-
n

bol,
le file
everal
ntrol
during
Global Offset Table 22

Position-independent code cannot, in general, contain absolute virtual addresses. G
offset tables hold absolute addresses in private data, thus making the addresses av
without compromising the position-independence and “sharability” of a program’s tex
program can reference its global offset table in several ways:

• An executable file can reference its global offset table absolutely, as it
would any data, because the address of the global offset table is known to
the link editor.

• A shared object can reference its global offset table with position-indepen-
dent references, because all of the text and data of a shared object file
remains fixed relative to itself no matter where the shared object segments
are assigned in memory.

• A shared object typically references its global offset table relative to the
shared object’s addressing base. The link editor establishes the addressing
base and the location of the global offset table, so it can calculate constant
offsets to global offset table entries. The addressing base value can be
computed by a function in a shared object in a position-independent man-
ner.

• References from a shared object’s procedure linkage table to the global off-
set table procedure entries are made absolutely. This is possible because
the procedure linkage table is private to the shared object.

Initially, the global offset table holds information as required by its relocation entries (
“Relocation” on page 22-27). After the dynamic linker creates memory segments f
loadable object file, it processes the relocation entries, some of which will refer to the
bal offset table. The dynamic linker determines the associated symbol values, calcu
their absolute addresses, and sets the appropriate memory table entries to the prop
ues. Although the absolute addresses are unknown when the link editor builds an o
file, the dynamic linker knows the addresses of all memory segments and can thus c
late the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbo
have a global offset table entry. Because the executable file and shared objects have
rate global offset tables, a symbol’s address may appear in several tables. The dyn
linker processes all the global offset table relocations before giving control to any cod
the process image, thus ensuring the absolute addresses are available during execut

The table’s entry zero is reserved to hold the address of the dynamic structure, refere
with the symbol_DYNAMIC. This allows a program, such as the dynamic linker, to find i
own dynamic structure without having yet processed its relocation entries. This is e
cially important for the dynamic linker, because it must initialize itself without relying o
other programs to relocate its memory image.

A global offset table entry provides direct access to the absolute address of a sym
without compromising position independence and sharability. Because the executab
and shared objects have separate global offset tables, a symbol may appear in s
tables. The dynamic linker processes all the global offset table relocations giving co
to any code in the process image, thus ensuring the absolute addresses are available
execution.
22-54

Executable and Linking Format (ELF)

hared
rent
resses
ments

e of
d in
the
its
pre-
PLT
PLT
LT

bal
d by
-byte
file,
ay

hich
ssoci-
uring
TP
es to

he

TP
on

all-
the
era-
le

e the
n,
of
e
er.

sym-
lazy
bject
e call
d, if
will

nce
ing,
The dynamic linker may choose different memory segment addresses for the same s
object in different programs; it may even choose different library addresses for diffe
executions of the same program. Nonetheless, memory segments do not change add
once the process image is established. As long as a process exists, its memory seg
reside at fixed virtual addresses.

Global offset table (“GOT”) entries are created by the link editor in response to the us
certain relocation types. A GOT entry is 4 bytes long and 4-byte aligned and is allocate
writable memory private to the executable or shared object file. After relocation by
link editor, the dynamic linker, or both, a GOT entry generally contains the value of
associated symbol, which is usually the address of the entity (object or function) re
sented by the symbol. The one exception is the case of a function for which there is a
entry in the executable file. In this case the GOT entry contains the address of that
entry. In this way, the address by which the executable file knows the function (its P
entry address) is also the address by which all shared objects know the function.

More efficient access to functions is provided by special GOT entries known as “glo
offset table procedure” (“GOTP”) entries. Like GOT entries, GOTP entries are create
the link editor in response to use of certain relocation types, are 4 bytes long and 4
aligned, are allocated in writable memory private to the executable or shared object
and are relocated by the link editor, dynamic linker, or both. A GOTP entry, however, m
only refer to a function. During execution, the GOTP entry contains an address to w
control can be transferred in order to reach the function represented by the symbol a
ated with the GOTP entry. Moreover, the contents of the GOTP entry may change d
execution. This is “lazy binding”, described below. Although the contents of a GO
entry may change during execution, every value contained in a GOTP entry serv
transfer control correctly to the associated function.

A GOTP entry has an associated relocation of typeR_PPC_GOTP_ENT. The relocation
informat ion and the in i t ia l contents o f the entry are descr ibed under t
R_PPC_GOTP_ENTrelocation type.

The dynamic linker may perform one of two separate relocation operations for a GO
entry. The first, called “pre-binding,” is performed during the dynamic linker’s relocati
phase when lazy binding is in effect (when theLD_BIND_NOWenvironment variable is
missing or null). In pre-binding, the dynamic linker rewrites the GOTP entry so that c
ing through it invokes the dynamic linker. When the first invocation is made through
GOTP entry, the dynamic linker gains control and performs the second relocation op
tion on the GOTP entry, called “binding.” Binding involves locating the relocation tab
entry associated with the GOTP entry, looking up the associated symbol to find wher
function resides in memory, rewriting the GOTP entry to point directly to the functio
and finally transferring control to the function. If lazy binding is not in effect (the value
the LD_BIND_NOWenvironment is non-null), the dynamic linker simply performs th
binding operation during its relocation phase, bypassing the pre-binding step altogeth

Lazy binding generally improves overall application performance, because unused
bols do not incur the dynamic linking overhead. Nevertheless, two situations make
binding undesirable for some applications. First, the initial reference to a shared o
function takes longer than subsequent calls, because the dynamic linker intercepts th
to resolve the symbol. Some applications cannot tolerate this unpredictability. Secon
an error occurs and the dynamic linker cannot resolve the symbol, the dynamic linker
terminate the program. Under lazy binding, this might occur at arbitrary times. O
again, some applications cannot tolerate this unpredictability. By turning off lazy bind
the dynamic linker forces the failure to occur during process initialization.
22-55

Compilation Systems Volume 2 (Concepts)

ach
that
the
The
The
the

hree

ed in
l-

TP

ind-
ss in
iption

sible

n
with
The link editor and the dynamic linker collaborate to support lazy binding. For e
GOTP entry, the link editor creates a “GOT binding” entry, a sequence of instructions
serves to transfer control to the dynamic linker. When lazy binding is in effect,
dynamic linker stores the address of the GOTP binding entry in the GOTP entry. (
addend in the relocation entry for the GOTP entry locates the GOTP binding entry.)
dynamic linker also stores a word identifying the executable or shared object file and
address of its binding routine in the second and third words, respectively, of the t
words located by theDT_PLTGOTvalue for the executable or shared object file.

The GOTP binding entry is responsible for transferring control to the address contain
the word at “DT_PLTGOTvalue”+8, having extended the stack by 16 bytes with the fo
lowing values:

Thereloc_off value is the offset, in bytes, from theDT_JMPRELvalue for the execut-
able or shared object file containing the GOTP entry, to the relocation entry for the GO
entry.

The GOTP binding entry may destroy the contents of certain registers. The GOTP b
ing entry, in transferring to the dynamic linker, must place an appropriate return addre
the return address register, to maintain a proper return address chain for text descr
information purposes.

There are many ways for the link editor to satisfy the above requirements. One pos
implementation of the GOTP binding entry is:

whereGOTP_binding_helper is a sequence of instructions particular to the give
executable or shared object file. A GOTP binding helper routine that cooperates
GOTP binding entries as shown above could be:

Table 22-37. GOTP Binding Entry Stack Frame

r31 Offset Contents

12 return address value at time of call

8 reloc_off value

4 word at “DT_PLTGOTvalue” + 4

0 the value 0

Table 22-38. GOTP Binding Entry

addis r13,r0,uhi16(reloc_off)

ori r13,r13,lo16(reloc_off)

b GOTP_binding_helper
22-56

Executable and Linking Format (ELF)

r rou-
n be

long
e a
LT

jects
ared
nc-
red
nk-

ref-
f the
The
rch-
The expression “DT_PLTGOT-here ” represents the distance from labelhere to the
DT_PLTGOT-specified value.

The example sequences shown for the GOTP binding entry and GOTP binding helpe
tine are designed not to require any relocation by the dynamic linker. Hence, they ca
part of the normal text of a shared object. In particular, they don’t need to reside a
with PLT entries in the PLT region. However, it is convenient for the link editor to creat
procedure linkage table consisting of the GOTP binding helper routine followed by P
and GOTP binding entries for each GOTP entry.

Function Addresses 22

References to the address of a function from an executable file and the shared ob
associated with it might not resolve to the same value. References from within sh
objects will normally be resolved by the dynamic linker to the virtual address of the fu
tion itself. References from within the executable file to a function defined in a sha
object will normally be resolved by the link editor to the address of the procedure li
age table entry for that function within the executable file.

To allow comparisons of function addresses to work as expected, if an executable file
erences a function defined in a shared object, the link editor will place the address o
procedure linkage table entry for that function in its associated symbol table entry.
dynamic linker treats such symbol table entries specially. If the dynamic linker is sea

Table 22-39. GOTP Binding Helper

addic r1,r1,-16

mfspr r14,LR

stw r14,12(r1)

stw r13,8(r1)

bl here

here: addis r13,r0,uhi16(DT_PLTGOT-here)

ori r13,r13,lo16(DT_PLTGOT-here)

mfspr r14,LR

add r13,r13,r14

lwz r14,4(r13)

stw r14,4(r1)

lwz r13,8(r13)

stw 0,0(r1)

mtspr CTR,r13

bctr
22-57

Compilation Systems Volume 2 (Concepts)

able

es are
relo-

linker

onve-
e of
ntry.
tion)

LT
ing for a symbol, and it encounters a symbol table entry for that symbol in the execut
file, it normally follows the rules below.

• If the st_shndx member of the symbol table entry is notSHN_UNDEF,
the dynamic linker has found a definition for the symbol and uses its
st_value member as the symbol’s address.

• If the st_shndx member isSHN_UNDEFand the symbol is of type
STT_FUNCand thest_value member is not zero, the dynamic linker
recognizes this entry as special and uses thest_value member as the
symbol’s address.

• Otherwise, the dynamic linker considers the symbol to be undefined within
the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These entri
used for direct function calls rather than for references to function addresses. These
cations are not treated in the special way described above because the dynamic
must not redirect procedure linkage table entries to point to themselves.

Procedure Linkage Table 22

The procedure linkage table is a repository for short sequences of code that provide c
nient access to GOTP entries. A procedure linkage table (“PLT”) entry is a sequenc
instructions that passes control on to a procedure identified by a particular GOTP e
The benefit of a PLT entry is that it provides an address (the address of its first instruc
to which control can simply be transferred (as by absr instruction, for example) in order
to invoke a GOTP entry with the appropriate protocol.

It is usually better to access a GOTP entry directly rather than indirectly through a P
entry. However, there are some situations in which a PLT entry can be useful.

• When code is compiled for inclusion in an executable file (and, in particu-
lar, not for inclusion in a shared object), it is generally best to compile a
call into simply absr instruction, under the assumption that most calls
from outside of all shared objects will be to procedures that are not in a
shared object. If it turns out for such a call that the procedure being called
is in a shared object, a PLT entry can be created by the link editor, and the
bsr instruction can simply be adjusted to reference the PLT entry.

• When code is compiled for inclusion in a shared object, the compiler can
emit instructions to access the GOTP entry directly. It may be useful, how-
ever, for either convenience of the compiler or compactness of the call
(when many are made statically to the same GOTP entry), to use simply a
bsr instruction and a PLT entry. The procedure linkage table is unlike a
normal table in one respect--its entries are not necessarily all the same size.
(Nevertheless, typically the entries will all be the same size.) The form of a
typical PLT entry, for a hypothetical procedure named “name”, is shown
below, as if it were written in assembly language.
22-58

Executable and Linking Format (ELF)

nces,

s they
r can
relo-
s exe-
ure

offset
until

object
tially
the

, then
ble
from
h end

in
ifica-
Although the instruction sequence shown above is only one of many possible seque
the following points will invariably be true:

• The GOTP entry for the procedure is referenced absolutely. Because the
global offset table for a shared object may reside at different locations in
different processes, the PLT entry code cannot be shared by different pro-
cesses.

• Registerr13 is used to load the contents of the GOTP entry.

• No general purpose register other thanr13 or r11 is changed by the PLT
entry sequence.

Executable files and shared object files have separate procedure linkage tables, just a
have separate global offset tables. The treatment by the link editor and dynamic linke
vary in two different cases. The procedure linkage table in an executable file can be
cated by the link editor, so it can be placed in the text area and shared by all processe
cuting that file. Note that, in this case, the dynamic linker doesn’t act on the proced
linkage table at all. Because the PLT entry refers to absolute addresses in the global
table, however, the procedure linkage table in a shared object file cannot be relocated
the shared object has had its memory assigned by the dynamic linker. In the shared
case, the link editor constructs the procedure linkage table in a segment that is ini
writable but not executable. The link editor records the extent of the PLT region with
DT_PPC_PLTSTARTandDT_PPC_PLTENDinformation. The dynamic linker loads the
shared object, performs relocations (including those on the procedure linkage table)
usesmprotect(KE_OS) to change the segment containing the procedure linkage ta
from writable to executable. Note that the area of memory subject to being changed
writable to executable is the area containing the PLT region, rounded outward on eac
to a 64K boundary.

Hash Table 22

A hash table ofElf32_Word objects supports symbol table access. Labels
Table 22-41 help explain the hash table organization, but they are not part of the spec
tion.

Table 22-40. PLT Entry

name: addis r13,r0,hi16(name@gotp)

lwz r13,lo16(name@gotp)(r13)

mtspr CTR,r13

bctr
22-59

Compilation Systems Volume 2 (Concepts)

qual
tion
pute a

.

each
ation
pen
tion
s

their
The bucket array containsnbucket entries, and thechain array containsnchain
entries; indexes start at 0. Bothbucket andchain hold symbol table indexes. Chain
table entries parallel the symbol table. The number of symbol table entries should e
nchain ; so symbol table indexes also select chain table entries. A hashing func
(shown below) accepts a symbol name and returns a value that may be used to com
bucket index. Consequently, if the hashing function returns the valuex for some name,
bucket[x%nbucket] gives an index,y into both the symbol table and the chain table
If the symbol table entry is not the one desired,chain[y] gives the next symbol table
entry with the same hash value. One can follow thechain links until either the selected
symbol table entry holds the desired name or thechain entry contains the value
STN_UNDEF.

unsigned long
elf_hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

}
return h;

}

Initialization and Termination Functions 22

After the dynamic linker has built the process image and performed the relocations,
shared object gets the opportunity to execute some initialization code. These initializ
functions are called in no specified order, but all shared object initializations hap
before the executable file gains control. Similarly, shared objects may have termina
functions, which are executed with theatexit() mechanism after the base proces
begins its termination sequence. (Seeatexit(3C) .) Once again, the order in which the
dynamic linker calls termination functions is unspecified. Shared objects designate
initialization and termination functions through theDT_INIT andDT_FINI entries in the

Table 22-41. Symbol

nbucket

nchain

bucket[0]
...
bucket[nbucket - 1]

chain[0]
...
chain[nchain - 1]
22-60

Executable and Linking Format (ELF)

for
”

n-
te the
g-

ys-
, For-
ibed
ng

These

ven-
pro-
-
),

the
his
dynamic structure, described in “Dynamic Section” on page 22-47. Typically, the code
these functions resides in the.init and.fini sections, mentioned in “Section Header
on page 22-9.

Although theatexit() termination processing normally will be done, it is not guara
teed to have executed upon process death. In particular, the process will not execu
termination processing if it calls_exit() or if the process dies because it received a si
nal that it neither caught nor ignored.

Symbolic Debugging Information 22

ELF does not specify a format for representation of symbolic debugging information. S
tems vendors are free to provide a representation of their choice. The Concurrent C
tran, and Ada compilers produce DWARF symbolic debugging information as descr
in the DWARF version 2 draft 6 specification (See Chapter 24 (“DWARF Debuggi
Information Format”).) with the exceptions noted below.

Several attributes have been added to support Concurrent Fortran 77 extensions.
attributes are described below.

AT_datapool The presence of an AT_datapool flag in a
TA G_ c om mo n_ b lo ck D I E i n d i ca t e s th a t th e
TAG_common_block DIE is actually a data pool. The DIEs
owned by that data pool areTAG_variable DIEs rather than
TAG_memberDIEs.

AT_pointer_block (SeeAT_pointer_base below)

AT_pointer_base The presence of an AT_pointer_block flag in a
TA G_ c om mo n_ b lo ck D I E i n d i ca t e s th a t th e
TAG_common_block DIE is actually a pointer block. Each
pointer block DIE also contains anAT_pointer_base attribute
which is a reference to theTAG_variable or TAG_member
which holds the block’s base address. EachTAG_memberDIE
ow n e d by t h e p o i n te r b l o c k c o n ta i n s a n
AT_data_member_location which evaluates to the offset of
the member from the base address.

To facilitate the access of DWARF symbolic debugging information, some systems
dors provide a library of routines which may be used by a user’s program. PowerUX
vides/usr/ccs/lib/libdwarf.a , which complies to DWARF Access Library spec
ification, version 1, draft 1. (See Chapter 25 (“DWARF Access Library (libdwarf)”).
with the following exceptions.

The type information query operations have been modified to more closely map to
DWARF version 2 draft 6 specification. The functions described in section 5.5 of t
specification have been replaced with the following:

5.5 Type Information Query Operations

These operations return information concerning data types.
22-61

Compilation Systems Volume 2 (Concepts)

e

e

of

se
Dwarf_Signed dwarf_modtags (
Dwarf_Type typ,
Dwarf_Half **tagbuf,
Dwarf_Error *error)

The functiondwarf_modtags() setstagbuf to point to an array of modifier tags rep-
resented by theDwarf_Type descriptortyp and returns the number of elements in th
array; DLV_NOCOUNTis returned on error. The storage pointed to bytagbuf after a suc-
cessful return ofdwarf_modtags() should be free’d when no longer of interest (se
dwarf_dealloc()).

Dwarf_Bool dwarf_isbasetype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_isbasetype() returns non-zero if theDwarf_Type descriptor
typ represents a base type; zero is returned otherwise.

Dwarf_Die dwarf_basetype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_basetype() returns aDwarf_Die descriptor that represents the
base type of the type represented by the descriptortyp ; NULL is returned if type does not
represent a base type or an error occurred.

char* dwarf_base_name (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base_name() returns a pointer to aNULL terminated string of
characters that represents the name of the base type represented by theDwarf_Die
descriptor base;NULL is returned on error.

Dwarf_Small dwarf_base_encoding (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base_encoding() returns a code representing the encoding
the base type represented by theDwarf_Die descriptor base; 0 is returned on error.

Dwarf_Signed dwarf_base_size (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base_size() returns an integer representing the size of the ba
type represented by theDwarf_Die descriptor base;DLV_NOCOUNTis returned on error.

Dwarf_Die dwarf_udtype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_udtype() returns theDwarf_Die descriptor representing the
user-defined type given by theDwarf_Type descriptortyp ; NULL is returned on error
or if typ is not a user-defined type.
22-62

-1
2
3-10
13
23
tdesc Information

Introduction . 23
tdesc Chunks . .. 23-
tdesc in Executable Programs and Shared Objects . 2
Examples . 23-

Compilation Systems Volume 2 (Concepts)

these
e

r-
ard-

mat-
sem-
link
esc

eed
the

he

ve
23
Chapter 23tdesc Information

23
23
23

Introduction 23

In order to obtain meaningful stack walkbacks (traces) when debugging programs,
programs need information describing the textof the various modules in the program. Th
88open Object Compatibility Standard (OCS) defines this information, calling ittext
description(or tdesc) information. This information also permits an Ada program to pe
form correct exception handling. Concurrent compilation systems for the supporting h
ware platforms produce and use this information.

Every module of code has one or more accompanying blocks of information calledtdesc
chunks. These chunks will be described below. Compilers--C, Fortran, and Ada--auto
ically produce these chunks. Assembly writers must provide these chunks in their as
bly code. The link editor combines the tdesc chunks from the various modules to be
edited, and the link edited executable program contains the final collection of td
chunks. The portion of text described by atdesc chunkis known as atext chunk.

A body of code consists of three general parts:

prologue Establishes the stack frame pointer, saves any registers that n
to be saved in the stack frame, and saves the return address in
stack frame, when necessary.

epilogue Adjusts the stack pointer to its incoming value and returns to t
caller.

procedure body Is the unchanging part of the code (with respect to the abo
actions).

Figure 23-1 illustrates these parts.

Figure 23-1. The Parts of a Body of Code

Prologue Procedure
Body

Epilogue Procedure
Body

Epilogue

tdesc
Chunk

tdesc
Chunk

...
23-1

Compilation Systems Volume 2 (Concepts)

can
cribed
hunk
the
esc
more

t over-

o-

ol
Currently, tdesc information is meaningful only for the procedure body. Epilogue code
be interspersed through the procedure body, however, so the tdesc information des
below is usually adequate for covering epilogue code as well. Often, a single tdesc c
describes an entire function or module. If epilogue code (or any code which modifies
stack frame pointer) is placed in the middle of the procedure body, then multiple td
chunks are needed to ensure none of their coverages include the epilogue code. No
than one tdesc chunk may describe the same piece of code. (I.e., text chunks may no
lap.)

tdesc information is specified in assembly language as part of the.tdesc section. The
assembly syntax for assembling into this section is:

section .tdesc,"x"

A series of words is assembled into this section to define the chunk.

tdesc Chunks 23

The header filetdesc.h provides declarations and definitions for the various comp
nents of tdesc information. The C structure definition for a tdesc chunk is as follows.

struct __tdesc_chunk {
unsigned int zeroes:8; /* zeroes */
unsigned int length:22; /* info length */
unsigned int alignment:2; /* alignment exponent */
int protocol_number; /* protocol number */
int *start; /* start address of text chunk */
int *end; /* end address of text chunk */

};

tdesc Chunk Declaration:

Field Name Contents

zeroes This member contains a zero.

length This member gives the length in bytes of the tdesc chunk.

alignment This member gives the required alignment of the info protoc
contained in the chunk.

Value Byte Alignment

0 1

1 2

2 4

3 8
23-2

tdesc Information

s

g

e
e

xt

n

ive)
ue

ive)
fter

n for
protocol_number This member identifies the protocol associated with the chunk.

Substrings in the preceding names identify the kind of protocol.

GENERAL This is the standard protocol. The following protocol
are extensions to this protocol.

PIC This protocol provides position-independent startin
and ending addresses, for use in shared objects.

EXTENDED This protocol provides information on features uniqu
to particular systems. Presently, this includes th
floating-point registers which are saved by the te
chunk.

EXCEPTION This protocol provides a pointer to an Ada exceptio
table.

start This member contains a pointer to the starting address (inclus
of the corresponding text chunk. The address is after the prolog
code and at the start of the procedure body.

end This member contains a pointer to the ending address (exclus
of the corresponding text chunk. The address is immediately a
the procedure body.

Following these initial four words of the tdesc chunk is the data for the chunk’sinfo proto-
col. Some protocols may have more than one variant. The C union/structure definitio
the various info protocols is as follows.

Name Value

_INFO_GENERAL_PROTOCOL_NUMBER 1

_INFO_PIC_PROTOCOL_NUMBER 2

_INFO_EXTENDED_PROTOCOL_NUMBER 3

_INFO_PIC_EXTENDED_PROTOCOL_NUMBER 4

_INFO_EXCEPTION_PROTOCOL_NUMBER 0x7f

_INFO_PIC_EXCEPTION_PROTOCOL_NUMBER 0x7e

_INFO_EXTENDED_EXCEPTION_PROTOCOL_NUMBER 0x7d

_INFO_PIC_EXTENDED_EXCEPTION_PROTOCOL_NUMBER0x7c
23-3

Compilation Systems Volume 2 (Concepts)
union ___info_protocol {

struct __general_protocol {

unsigned int variant:8; /* info variant */

unsigned int unused_1:5; /* reserved for future use */

unsigned int save_mask:13; /* register save mask */

unsigned int discriminant:1; /* return address info

discriminant */

unsigned int frame_register:5; /* frame address register */

int frame_offset; /* frame address offset */

int return_info; /* return address info */

int save_offset; /* register save offset */

} general;

struct __extended_protocol {

unsigned int variant:8; /* info variant */

unsigned int unused_1:5; /* reserved for future use */

unsigned int save_mask:13; /* register save mask */

unsigned int discriminant:1; /* return address info

discriminant*/

unsigned int frame_register:5; /* frame address register */

int frame_offset; /* frame address offset */

int return_info; /* return address info */

int save_offset; /* register save offset */

unsigned int extended_save_mask:10;/* floating register

save mask */

unsigned int unused_2:22; /* reserved for future use*/

} extended;

struct __exception_protocol {

unsigned int variant:8; /* info variant */

unsigned int unused_1:5; /* reserved for future use */

unsigned int save_mask:13; /* register save mask */

unsigned int discriminant:1; /* return address info

discriminant */

unsigned int frame_register:5; /* frame address register */

int frame_offset; /* frame address offset */

int return_info; /* return address info */

int save_offset; /* register save offset */

int *ada_entry; /* start of prologue pointer*/

int *ada_exception; /* Ada exception pointer */

} exception;

struct __extended_exception_protocol {

unsigned int variant:8; /* info variant */

unsigned int unused_1:5; /* reserved for future use */

unsigned int save_mask:13; /* register save mask */

unsigned int discriminant:1; /* return address info

discriminant */

unsigned int frame_register:5; /* frame address register */

int frame_offset; /* frame address offset */

int return_info; /* return address info */

int save_offset; /* register save offset */

int *ada_entry; /* start of prologue pointer*/
23-4

tdesc Information

e
e
k.
int *ada_exception; /* Ada exception pointer */

unsigned int extended_save_mask:10;/* floating register

save mask */

unsigned int unused_2:22; /* reserved for future use */

} extended_exception;

struct __full_save_protocol {

unsigned int variant:8; /* info variant */

unsigned int frame_register:5; /* frame address register */

unsigned int indirect:1; /* interpretation of

save_offset */

unsigned int mask ; /* mask defining saved

registers */

int frame_offset; /* frame address offset */

int save_offset; /* register save offset */

int *ada_exception; /* pointer to exception handler */

} ;

struct __info_indirect_protocol {

unsigned int variant:8; /* info variant */

int *alternate_pc ; /* alternate PC address */

} ;

}

Info Protocols Declaration:

Field Name Contents

variant This member identifies the variant of the info protocol.

_INFO_GENERAL_VARIANT
This is the standard variant. Most of the following
variants are extensions to this variant.

_INFO_EXTENDED_VARIANT
This variant provides information on features uniqu
to particular systems. Presently, this includes th
extended registers which are saved by the text chun

Name Value

_INFO_GENERAL_VARIANT 1

_INFO_EXTENDED_VARIANT 3

_INFO_EXCEPTION_VARIANT 0x7f

_INFO_EXTENDED_EXCEPTION_VARIANT 0x7d

_INFO_SIGACTHANDLER_VARIANT 0x7b

_INFO_FULL_SAVE_VARIANT 0x71

_INFO_INDIRECT_VARIANT 0x70
23-5

Compilation Systems Volume 2 (Concepts)

n

e
e
k.

p-

xt

r-

ich
_INFO_EXCEPTION_VARIANT
This variant provides a pointer to an Ada exceptio
table.

_INFO_EXTENDED_EXCEPTION_VARIANT
This variant provides information on features uniqu
to particular systems. Presently, this includes th
extended registers which are saved by the text chun
This variant also provides a pointer to an Ada exce
tion table.

_INFO_SIGACTHANDLER_VARIANT
This variant indicates that the corresponding te
chunk is in the C librarysigacthandler() func-
tion. The prototype for this function is:

void _sigacthandler(int sig, siginfo_t *sip,
ucontext_t *ucp, void (*handler)())

Walkback information for identifying the approximate
location where the signal was raised can be dete
mined as follows:

• The value ofucp is at:

stack pointer + info_protocol.general.frame_offset + 8

• The approximate address of the instruction where the signal
was raised is at:

ucp->uc_mcontext.gregs[R_SRR0]

• The address of the stack pointer for the text chunk of the rou-
tine where the signal was raised is at:

ucp->uc_mcontext.gregs[R_R1]

save_mask This mask generally identifies the general-purpose registers wh
are preserved by the corresponding text chunk in the currentstack
frame. A bit is on in save_mask if the corresponding register is
preserved.

zero This field contains a zero bit.

Bit in
Word

Register

18 r2

17 r16

16 r17

... . . .

6 r27
23-6

tdesc Information

rn

ose

rd

ter
r is

eg-
de

he
the

is

ion
, as

ress
e
e-

r. In

re
se

he
gis-

s
in
c-
vely
discriminant This member provides information on how to determine the retu
address from the corresponding text chunk. Ifdiscriminant is
0, then the return register is the general-purpose register wh
number is contained in thereturn_info member. Ifdis-
criminant is 1, then the return address is the value of the wo
at the stack frame position specified by thereturn_info mem-
ber.

frame_register This member gives the number of the general-purpose regis
which is used to locate the current stack frame. This registe
often the stack pointer itself, but it need not be. In the prologue:

addi r1,r1,-40

frame_register is r1.

frame_offset This member provides the value which is added to the frame r
ister to locate the current stack frame. Often, the prologue co
decrements the incoming stack pointer, providing room on t
stack for local variables and arguments to functions called by
current procedure. The frame offset is usually the value that
subtracted from the incoming stack pointer. In the prologue:

addi r1,r1,-40

frame_offset is 40.

return_info This member identifies the return-address register or the locat
where the return address resides within the current stack frame
described above. Upon entry to the procedure, the return add
is in registerlr . If no other procedure calls are made from th
current procedure, and if that register is not modified in the proc
dure body, then the return address can be found in that registe
this case,discriminant is 0, andreturn_info is 65 (for
lr). If the return-address register is modified in the procedu
body, then the prologue code will save it on the stack. In this ca
discriminant is 1, andreturn_info provides an offset
from (frame_register + frame_offset) at which the
return address can be obtained. For the prologue:

addi r1,r1,-40
mflr r13
stw r13,48(r1)

discriminant is 1 andreturn_info is +8 or +48, relative
to the caller’s frame.

save_offset For most variants, this member gives the base offset within t
current stack frame of the start of the general-purpose saved re
ters. It provides an of fse t f rom(f rame_register +
frame_offset) at which the first general-purpose register i
preserved. General ly, on ly those registers speci f ied
save_mask are saved in this area. For r16-r27, inclusive, su
cessively higher-numbered registers are stored at successi
23-7

Compilation Systems Volume 2 (Concepts)

re-
oup.

is-

ble

h
ack
e-

re-
t to
ly
her

e.
d.
higher addresses within the register save area, and r2 (if it is p
served) is saved at the next higher address after the r16-r27 gr

For the_INFO_FULL_SAVE_VARIANT, this member gives the
base offset within the current stack frame of the start of the reg
ter save area. See the discussion ofindirect (below) for the
interpretation ofsave_offset . See the discussion ofmask
(below) for information about the register save area.

ada_entry This member provides the address of the start of the prologue.

ada_exception This member provides the address of an Ada exception ta
pointer.

extended_save_mask
This mask generally identifies the floating-point registers whic
are preserved by the corresponding text chunk in the current st
frame. A bit is on in the mask if the corresponding register is pr
served.

. Generally, the preserved floating-point registers immediately p
cede the preserved general-purpose registers, with alignmen
the next 16-byte boundary. For all variants, successive
higher-numbered registers are stored at successively hig
addresses within the register save area.

unused_1 This member is reserved for future use.

unused_2 This member is reserved for future use.

indirect This member indicates howsave_offset is to be interpreted. If
in d i re c t i s 0 , sa ve _ of fs et i s th e o f f se t f r o m
(frame_register + frame_offset) of the register save
area. If indirect is 1, save_offset is the offset from
(frame_register + frame_offset) of the word contain-
ing a byte pointer to the register save area.

mask This mask identifies which registers are saved in the stack fram
A bit is on in mask if the corresponding register(s) is/are save
The bits are

Bit in
Word

Register

31 f22

30 f23

... ...

22 f31
23-8

tdesc Information

ol-
g-

sed
The register save area for the full-save protocol is laid out as f
lows. Note that even if optional registers do not contain meanin
ful information, they still have space allocated for them.

alternate_pc This member identifies an alternate PC value that should be u
for locating the actual tdesc information for this code.

Name Value Registers

_INFO_FULL_SAVES_FPSCR 0x1 floating-point status and
control register

(fpscr)

_INFO_FULL_SAVES_FPREGS 0x2 floating-point registers
(f0-f31)

_INFO_FULL_SAVES_CR 0x4 condition register
(cr)

_INFO_FULL_SAVES_XER 0x8 integer exception
register

(xer)

_INFO_FULL_SAVES_LR 0x10 link register
(lr)

_INFO_FULL_SAVES_CTR 0x20 count register
(ctr)

r0-r31

f0-f31 (optional)

cr (optional)

reserved word

pc

xer (optional)

ctr (optional)

lr (optional)

reserved word

fpscr (optional)
23-9

Compilation Systems Volume 2 (Concepts)

ro-
the
sists
ore
xecu-
ut-
nd

ject,
cate-

st is

e

ext

in

ata

rds

ction
tdesc in Executable Programs and Shared Objects 23

PowerUX provides facilities for the creation and execution of both statically linked p
grams and dynamically linked programs. A statically linked program contains all of
code and data in the on-disk image of the program. A dynamically linked program con
of a statically linked portion, which is the on-disk image of the program, and one or m
shared objects which are dynamically linked into the process’ address space during e
tion of the program. (See Chapter 4 (“Link Editor and Linking”) and Chapter 22 (“Exec
able and Linking Format (ELF)”) for additional information on shared objects a
dynamic linking.)

The link editor concatenates tdesc chunks from the object files which constitute an ob
whether it be the statically linked portion of a program or a shared object. These con
nated tdesc chunks reside in a separate.tdesc section of the object.

Two linker-provided protocols describe and locate the body of tdesc chunks. The fir
thedebug info protocol. A C structure definition for it is as follows.

struct __debug_info_protocol {
int protocol_number; /* protocol number */
int tdesc; /* pointer to map protocol */
int number_text; /* number of text words */
int *text_words; /* pointer to text words */
int number_data; /* number of data words */
int *data_words; /* pointer to data words */

};

Debug Info Protocol Declaration:

Field Name Contents

protocol_number This member identifies the particular debug info protocol. Th
_DEBUG_INFO_PROTOCOL_NUMBERprotocol has the value 1.

tdesc This member provides the virtual address of the map protocol.

number_text This member indicates how many words are available in the t
segment for use by debuggers.

text_words This member provides the virtual address of the available words
the text segment.

number_data This member indicates how many words are available in the d
segment for use by debuggers.

data_words This member provides the virtual address of the available wo
in the data segment.

If the symbol table is present in the program, the value of the symbol_debug_info is
the virtual address of the debug info protocol. Both the program header and the se
header provide this address.
23-10

tdesc Information

ncur-
efi-

are
the

an
to

ing
the
sc

sc
ext
rt-

ture
Themap protocollocates and gives the lengths of the concatenated tdesc chunks. Co
rent compilation systems provide two different map protocols. The C union/structure d
nition for them is as follows.

union __map_protocol {
struct __minimal_protocol {

int protocol_number; /* protocol number */
int tdesc_end; /* address beyond end

of tdesc chunks */
} minimal ;

struct __pointer_protocol {
int protocol_number; /* protocol number */
int tdesc_end; /* address beyond end

of tdesc chunks */
int pointer_array_length; /* length of pointer

array */
int filler; /* filler for 8-byte

boundary alignment */
} pointer ;

};

Map Protocols Declaration:

Field Name Contents

protocol_number This member identifies the particular map protocol.

_MAP_MINIMAL_PROTOCOL_NUMBER
This is the standard protocol. In this protocol, the tdesc chunks
concatenated together in an arbitrary order immediately after
map protocol.

_MAP_POINTER_PROTOCOL_NUMBER
In this protocol, the tdesc chunks are concatenated together in
arbitrary order, but a sorted array of pointers allows debuggers
locate a particular tdesc chunk through a binary search of start
addresses. The sorted array of pointers immediately follows
first four words of this protocol, and the concatenated tde
chunks immediately follow the array.

An array element provides both the virtual address of a tde
chunk and the virtual starting address of the corresponding t
chunk. The array is sorted in increasing order of the virtual sta
ing addresses of the corresponding text chunks. The C struc
definition of an array element is as follows.

Name Value

_MAP_MINIMAL_PROTOCOL_NUMBER 1

_MAP_POINTER_PROTOCOL_NUMBER 0x10001
23-11

Compilation Systems Volume 2 (Concepts)

ly

nt-

n.

ma-
s the

tatic
rds:

tic

here
in the

d the
s are

ous
ter 22
d

struct __tdesc_pointer {
int *start; /* start address of

text chunk */
int *tdesc; /* address of

tdesc chunk */
};

Pointer Array Declaration :

start This member provides the virtual starting
address of the text chunk.

tdesc This member provides the virtual starting
address of the corresponding tdesc chunk.

tdesc_end This member gives the virtual address of the byte immediate
after the last byte of the concatenated tdesc chunks.

pointer_array_length
This member provides the byte length of the sorted array of poi
ers.

filler This member merely forces alignment of succeeding informatio

Dynamically Linked Programs:

For a dynamically linked program, a linked list of tdesc maps identifies the tdesc infor
tion for each object (static or shared) which makes up the program. A tdesc map ha
following format:

word 0: 2 (the version number)

word 1: The address of the byte immediately beyond the end of this tdesc map

words 2 through end-of-map:
An array of pointers, where an array element corresponds to an object (s
or shared) which makes up the program. Each array element is a pair of wo

word i: The virtual address of the map protocol for the object

word i+1: The virtual address of the base of the object (or 0, for the sta
object in the program)

In the last element of a tdesc map, word i may or may not be zero. If it is zero, then t
are no more tdesc maps. If it is nonzero, then it is the address of the next tdesc map
linked list.

The first tdesc map in the list corresponds to the.tdesc_map2 section in the static por-
tion of the program. The contents of this tdesc map are supplied by the link editor an
system program interpreter (dynamic linker). The contents of any other tdesc map
supplied by the dynamic linker, typically through invocation ofdlopen(3X) ,

When dynamic linking takes place for ELF programs, the link maps identify the vari
objects, and their base addresses, which comprise the running program. See Chap
(“Executable and Linking Format (ELF)”) for more information on dynamic linking an
link maps.
23-12

tdesc Information

l be

of
tic
ol
he

-
l
of

r the
Special Symbols:

If a symbol table is present in an object (static or shared), the following symbols wil
present:

_tdesc : In a statically linked program and in a shared object, the value
this symbol is the virtual address of the map protocol. In the sta
portion of a dynamically linked program, the value of this symb
is the virtual address of the beginning of the contents of t
.tdesc_map2 section.

_debug_info : In a statically linked program and in the static portion of a dynam
ically linked program, the value of this symbol is the virtua
address of the debug info protocol. In a shared object, the value
this symbol is 0.

Examples 23

The examples that follow show C functions and corresponding assembly code fo
.text and the.tdesc sections.

Examples:

func (a, b, c, d, e)
double a, b, c, d, e;
{

printf (" %e ", d+e);
proc ();
printf (" %e ", d+e);

}

23-13

Compilation Systems Volume 2 (Concepts)
addi r1,r1,-96 frame_offset = 96

stfd
stfd
mflr
stw
fmr
fmr

f22,64(r1)
f23,72(r1)
r13
r13,104(r1)
f23,f4
f22,f5

fp save_mask =
1100000000
save_offset = 64-96 =
-32
return_info = 104-96 = 8
return discriminant = 1

@LSTART: start of procedure body
(start of text chunk)

lis
ori
fadd
bl
bl
lis
ori
fadd
bl
lfd
lfd
lwz
mtlr
addi

r3,uhi16(@L10)
r3,r3,lo16(@L10)
f1,f23,f22
printf
proc
r3,uhi16(@L11)
r3,r3,lo16(@L11)
f1,f23,f22
printf
f22,64(r1)
f23,72(r1)
r13,104(r1)
r13
r1,r1,96

lr is modified

start of epilogue

end of procedure body
end of epilogue

@LEND: (end of text chunk)

section
word
word
word
word
word
word
word
word
word
text

.tdesc,"x"
0x52
0x3
@LSTART
@LEND
0x30000021
96
8
-32
0x300

start of tdesc chunk

end of tdesc chunk
change back to text section
23-14

tdesc Information
sub (a, b, c)
{

int i;
i = a + b + c;

}

func ()
{

int a[70000];
int b[70000];
a[3] = 4;
b[3] = 4;
proc (&a, &b);

}

no prologue code
no frame pointer needed
no registers saved
returndiscriminant = 0
return_info = r1

@LSTART: text chunk = entire module

add
add
blr

r3,r3,r4
r3,r3,r5

@LEND:

section
word
word
word
word
word
word
word
word

.tdesc,"x"
0x42
0x1
@LSTART
@LEND
0x1000001
0
1
0

23-15

Compilation Systems Volume 2 (Concepts)
addi
stw
mflr
stw
mr
addis
addi
subfc
lis
ori
add

r1,r1,-16
r2,0(r1)
r13
r13,24(r1)
r2,r1
r13,r0,9
r13,r13,35776
r1,r13,r1
r3,uhi16(0xfff77480)
r3,r3,lo16(0xfff77480)
r3,r2,r3

frame_offset = 16
save_offset = -16
return_info = 8
stack frame pointer = r2

@LSTART: start of procedure body
(start of text chunk)

li
stw
li
lis
ori
stwx
mr
lis
ori
add
mr
bl
mr
lwz
lwz
mtlr
addi
blr

r4,lo16(4)
r4,12(r3)
r5,lo16(4)
r4,uhi16(0x445cc)
r4,r4,lo16(0x445cc)
r5,r3,r4
r5,r3
r4,uhi16(0x445cc)
r4,r4,lo16(0x445cc)
r4,r3,r4
r3,r5
proc
r1,r2
r2,0(r1)
r13,24(r1)
r13
r1,r1,16

begin epilogue

end of procedure body
end of epilogue

@LEND: (end of text chunk)

section
word
word
word
word
word
word
word
word
text

.tdesc,"x"
0x42
0x1
@LSTART
@LEND
0x1040022
16
8
-16
23-16

-1
4-2
-2
-3
-3
-4

-4
-5

-7
-8

4-8
-8
9
10
10
1
3

13
-13
14
5
16
6

6
7
7
17
18
19

19
-19
0

22
23
23
-23
24
-24
4
25
26
26
27
27
28
9

24
DWARF Debugging Information Format

Introduction . 24
Purpose and Scope . 2
Overview . 24
Vendor Extensibility . 24
Changes from Version 1 . 24

General Description . 24
The Debugging Information Entry . 24
Attribute Types . 24
Relationship of Debugging Information Entries. 24-7
Location Descriptions. 24

Location Expressions . 24
Register Name Operators . 2
Addressing Operations . 24

Literal Encodings . 24-
Register Based Addressing . 24-
Stack Operations . 24-
Arithmetic and Logical Operations . 24-1
Control Flow Operations . 24-1
Special Operations . 24-

Sample Stack Operations . 24
Example Location Expressions . 24-
Location Lists . 24-1

Types of Declarations . 24-
Accessibility of Declarations . 24-1
Visibility of Declarations . 24-1
Virtuality of Declarations . 24-1
Artificial Entries . 24-1
Target-Specific Addressing Information . 24-
Non-Defining Declarations . 24-
Declaration Coordinates . 24-
Identifier Names . 24-

Program Scope Entries . 24
Compilation Unit Entries . 24-2
Module Entries . 24-
Subroutine and Entry Point Entries . 24-

General Subroutine and Entry Point Information . 24-
Subroutine and Entry Point Return Types. 24
Subroutine and Entry Point Locations . 24-
Declarations Owned by Subroutines and Entry Points 24
Low-Level Information . 24-2
Types Thrown by Exceptions . 24-
Function Template Instantiations . 24-
Inline Subroutines . 24-

Abstract Instances . 24-
Concrete Inlined Instances . 24-
Out-of-Line Instances of Inline Subroutines . 24-

Lexical Block Entries . 24-2

Compilation Systems Volume 2 (Concepts)

29
30
30
-31
31
33
33
33
34
34
5

36
6

-37
38
-38
9

39
41
-41
2
43
44
44
45
-45
46
47
47
-47

9
9

-50
-51

-53
53
54
55
6
7

57
7
8

58
-58

8
-58
9

60
62
64
Label Entries . 24-
With Statement Entries . 24-
Try and Catch Block Entries. 24-

Data Object and Object List Entries . 24
Data Object Entries . 24-
Common Block Entries. 24-
Imported Declaration Entries . 24-
Namelist Entries . 24-

Type Entries . 24-
Base Type Entries . 24-
Type Modifier Entries . 24-3
Typedef Entries . 24-
Array Type Entries . 24-3
Structure, Union, and Class Type Entries . 24

General Structure Description . 24-
Derived Classes and Structures . 24
Friends . 24-3
Structure Data Member Entries . 24-
Structure Member Function Entries . 24-
Class Template Instantiations . 24
Variant Entries . 24-4

Enumeration Type Entries. 24-
Subroutine Type Entries . 24-
String Type Entries . 24-
Set Entries . 24-
Subrange Type Entries . 24
Pointer to Member Type Entries . 24-
File Type Entries . 24-

Other Debugging Information . 24-
Accelerated Access . 24

Lookup by Name. 24-48
Lookup by Address . .. 24-48

Line Number Information. 24-4
Definitions . 24-4
State Machine Registers . 24
Statement Program Instructions. 24
The Statement Program Prologue 24-51
The Statement Program . 24

Special Opcodes . 24-
Standard Opcodes. 24-
Extended Opcodes . 24-

Macro Information . 24-5
Macinfo Types . 24-5

Define and Undefine Entries . 24-
Start File Entries . 24-5
End File Entries . 24-5
Vendor Extension Entries . 24-

Base Source Entries . 24
Macinfo Entries for Command Line Options . 24-5
General Rules and Restrictions . 24

Call Frame Information . 24-5
Structure of Call Frame Information . 24-
Call Frame Instructions . 24-
Call Frame Instruction Usage . 24-

-64
4
65
-65

65
65
6

7
7

71
74
74
7

-77
78
8
9

-79
-79
80
80
80
1
1

1
-82
2
3
3

-84
85
85

-99
24-

4-
Data Representation. 24
Vendor Extensibility . 24-6
Reserved Error Values . 24-
Executable Objects and Shared Objects . 24
File Constraints. 24-
Format of Debugging Information . 24-

Compilation Unit Header . 24-6
Debugging Information Entry. 24-66
Abbreviation Tables . 24-6
Attribute Encodings. 24-6

Variable Length Data . 24-
Location Descriptions. 24-

Location Expressions . 24-
Location Lists . 24-7

Base Type Encodings . 24
Accessibility Codes . 24-
Visibility Codes . 24-7
Virtuality Codes . 24-7
Source Languages. 24
Address Class Encodings . 24
Identifier Case . 24-
Calling Convention Encodings. 24-
Inline Codes . 24-
Array Ordering . 24-8
Discriminant Lists . 24-8
Name Lookup Table. 24-8
Address Range Table . 24
Line Number Information. 24-8
Macro Information . 24-8
Call Frame Information . 24-8
Dependencies . 24

Future Directions . 24-
Appendix 1 -- Current Attributes by Tag Value . 24-
Appendix 2 -- Organization of Debugging Information. 24-96
Appendix 3 -- Statement Program Examples . 24
Appendix 4 -- Encoding and decoding variable length data
100
Appendix 5 -- Call Frame Information Examples . 2
102

Compilation Systems Volume 2 (Concepts)

Pro-

and
cop-
doc-

icity
IX
r any

tes

blers
gging
, the
am to
tain-

tion
ilities
24
Chapter 24DWARF Debugging Information Format

24
24
24

The material in this document represents work in progress of the UNIX International
gramming Languages SIG, unapproved Revision: Version 2, Draft 6 (April 12, 1993).

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose
without fee is hereby granted, provided that the above copyright notice appears in all
ies and that both that copyright notice and this permission notice appear in supporting
umentation, and that the name UNIX International not be used in advertising or publ
pertaining to distribution of the software without specific, written prior permission. UN
International makes no representations about the suitability of this documentation fo
purpose. It is provided “as is” without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS. IN NO EVENT SHALL UNIX INTERNATIONAL
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS DOCUMENTATION.

Trademarks:

Intel386 is a trademark of Intel Corporation.

UNIX® is a registered trademark of UNIX System Laboratories in the United Sta
and other countries.

Introduction 24

This document defines the format for the information generated by compilers, assem
and linkage editors that is necessary for symbolic, source-level debugging. The debu
information format does not favor the design of any compiler or debugger. Instead
goal is to create a method of communicating an accurate picture of the source progr
any debugger in a form that is economically extensible to different languages while re
ing backward compatibility.

The design of the debugging information format is open-ended, allowing for the addi
of new debugging information to accommodate new languages or debugger capab
while remaining compatible with other languages or different debuggers.
24-1

Compilation Systems Volume 2 (Concepts)

t the
n by
dual
y cre-
ram-
nfor-

rma-
ing
2 is
asic
n is
more
com-
been

and
ory

Ver-
ke
the

con-
tools

The
s the

and
ies.
age
tion
am to
rma-

g of

ec-

RF
mat
Purpose and Scope 24

The debugging information format described in this document is designed to mee
symbolic, source-level debugging needs of different languages in a unified fashio
requiring language independent debugging information whenever possible. Indivi
needs, such as C++ virtual functions or Fortran common blocks are accommodated b
ating attributes that are used only for those languages. The UNIX International Prog
ming Languages SIG believes that this document sufficiently covers the debugging i
mation needs of C, C++, FORTRAN77, Fortran90, Modula2 and Pascal.

This document describes DWARF Version 2, the second generation of debugging info
tion based on the DWARF format. While DWARF Version 2 provides new debugg
information not available in Version 1, the primary focus of the changes for Version
the representation of the information, rather than the information content itself. The b
structure of the Version 2 format remains as in Version 1: the debugging informatio
represented as a series of debugging information entries, each containing one or
attributes (name/value pairs). The Version 2 representation, however, is much more
pact than the Version 1 representation. In some cases, this greater density has
achieved at the expense of additional complexity or greater difficulty in producing
processing the DWARF information. We believe that the reduction in I/O and in mem
paging should more than make up for any increase in processing time.

Because the representation of information has changed from Version 1 to Version 2,
sion 2 DWARF information is not binary compatible with Version 1 information. To ma
it easier for consumers to support both Version 1 and Version 2 DWARF information,
Version 2 information has been moved to a different object file section,.debug_info.

The intended audience for this document are the developers of both producers and
sumers of debugging information, typically language compilers, debuggers and other
that need to interpret a binary program in terms of its original source.

Overview 24

There are two major pieces to the description of the DWARF format in this document.
first piece is the informational content of the debugging entries. The second piece i
way the debugging information is encoded and represented in an object file.

“General Description” on page 24-4 describes the overall structure of the information
attributes that are common to many or all of the different debugging information entr
“Program Scope Entries” on page 24-19, “Data Object and Object List Entries” on p
24-31, and “Type Entries” on page 24-34 describe the specific debugging informa
entries and how they communicate the necessary information about the source progr
a debugger. “Other Debugging Information” on page 24-47 describes debugging info
tion contained outside of the debugging information entries, themselves. The encodin
the DWARF information is presented in “Data Representation” on page 24-64.

“Future Directions” on page 24-85 describes some future directions for the DWARF sp
ification.

In the following sections, text in normal font describes required aspects of the DWA
format. Text in italics is explanatory or supplementary material, and not part of the for
definition itself.
24-2

DWARF Debugging Information Format

all of
++,

ors a
loca-
s by
r spe-
d for
ow-
page

ion
not
Vendor Extensibility 24

This document does not attempt to cover all interesting languages or even to cover
the interesting debugging information needs for its primary target languages (C, C
FORTRAN77, Fortran90, Modula2, Pascal). Therefore the document provides vend
way to define their own debugging information tags, attributes, base type encodings,
tion operations, language names, calling conventions and call frame instruction
reserving a portion of the name space and valid values for these constructs for vendo
cific additions. Future versions of this document will not use names or values reserve
vendor specific additions. All names and values not reserved for vendor additions, h
ever, are reserved for future versions of this document. See “Data Representation” on
24-64 for details.

Changes from Version 1 24

The following is a list of the major changes made to the DWARF Debugging Informat
Format since Version 1 of the format was published (January 20, 1992). The list is
meant to be exhaustive.

• Debugging information entries have been moved from the .debug to the
.debug_info section of an object file.

• The tag, attribute names and attribute forms encodings have been moved
out of the debugging information itself to a separate abbreviations table.

• Explicit sibling pointers have been made optional. Each entry now speci-
fies (through the abbreviations table) whether or not it has children.

• New more compact attribute forms have been added, including a variable
length constant data form. Attribute values may now have any form within
a given class of forms.

• Location descriptions have been replaced by a new, more compact and
more expressive format. There is now a way of expressing multiple loca-
tions for an object whose location changes during its lifetime.

• There is a new format for line number information that provides informa-
tion for code contributed to a compilation unit from an included file. Line
number information is now in the .debug_line section of an object file.

• The representation of the type of a declaration has been reworked.

• A new section provides an encoding for pre-processor macro information.

• Debugging information entries now provide for the representation of
non-defining declarations of objects, functions or types.

• More complete support for Modula2 and Pascal has been added.

• There is now a way of describing locations for segmented address spaces.

• A new section provides an encoding for information about call frame acti-
vations.
24-3

Compilation Systems Volume 2 (Concepts)

nta-
ying
entry

tries
and

the
• The representation of enumeration and array types has been reworked so
that DWARF presents only a single way of representing lists of items.

• Support has been added for C++ templates and exceptions.

General Description 24

The Debugging Information Entry 24

DWARF uses a series of debugging information entries to define a low-level represe
tion of a source program. Each debugging information entry is described by an identif
tag and contains a series of attributes. The tag specifies the class to which an
belongs, and the attributes define the specific characteristics of the entry.

The set of required tag names is listed in Table 24-1. The debugging information en
they identify are described in “Program Scope Entries” on page 24-19, “Data Object
Object List Entries” on page 24-31, and “Type Entries” on page 24-34.

The debugging information entries in DWARF Version 2 are intended to exist in
.debug_info section of an object file.

Table 24-1. Tag Names

DW_TAG_access_declaration DW_TAG_array_type

DW_TAG_base_type DW_TAG_catch_block

DW_TAG_class_type DW_TAG_common_block

DW_TAG_common_inclusion DW_TAG_compile_unit

DW_TAG_const_type DW_TAG_constant

DW_TAG_entry_point DW_TAG_enumeration_type

DW_TAG_enumerator DW_TAG_file_type

DW_TAG_formal_parameter DW_TAG_friend

DW_TAG_imported_declaration DW_TAG_inheritance

DW_TAG_inlined_subroutine DW_TAG_label

DW_TAG_lexical_block DW_TAG_member

DW_TAG_module DW_TAG_namelist

DW_TAG_namelist_item DW_TAG_packed_type

DW_TAG_pointer_type DW_TAG_ptr_to_member_type

DW_TAG_reference_type DW_TAG_set_type

DW_TAG_string_type DW_TAG_structure_type

DW_TAG_subprogram DW_TAG_subrange_type
24-4

DWARF Debugging Information Format

es is

alue
some
ss of
nstant
pre-
e as

try.
Attribute Types 24

Each attribute value is characterized by an attribute name. The set of attribute nam
listed in Table 24-2.

The permissible values for an attribute belong to one or more classes of attribute v
forms. Each form class may be represented in one or more ways. For instance,
attribute values consist of a single piece of constant data. “Constant data” is the cla
attribute value that those attributes may have. There are several representations of co
data, however (one, two, four, eight bytes and variable length data). The particular re
sentation for any given instance of an attribute is encoded along with the attribute nam
part of the information that guides the interpretation of a debugging information en
Attribute value forms may belong to one of the following classes.

DW_TAG_subroutine_type DW_TAG_template_type_param

DW_TAG_template_value_param DW_TAG_thrown_type

DW_TAG_try_block DW_TAG_typedef

DW_TAG_union_type DW_TAG_unspecified_parameters

DW_TAG_variable DW_TAG_variant

DW_TAG_variant_part DW_TAG_volatile_type

DW_TAG_with_stmt

Table 24-2. Attribute Names

DW_AT_abstract_origin DW_AT_accessibility

DW_AT_address_class DW_AT_artificial

DW_AT_base_types DW_AT_bit_offset

DW_AT_bit_size DW_AT_byte_size

DW_AT_calling_convention DW_AT_common_reference

DW_AT_comp_dir DW_AT_const_value

DW_AT_containing_type DW_AT_count

DW_AT_data_member_location DW_AT_decl_column

DW_AT_decl_file DW_AT_decl_line

DW_AT_declaration DW_AT_default_value

DW_AT_discr DW_AT_discr_list

DW_AT_discr_value DW_AT_encoding

DW_AT_external DW_AT_frame_base

DW_AT_friend DW_AT_high_pc

Table 24-1. Tag Names (Cont.)
24-5

Compilation Systems Volume 2 (Concepts)

pro-

ata
ee

an

tion
fer-
la-
try
is
e

nt

ata
re-
et
address Refers to some location in the address space of the described
gram.

block An arbitrary number of uninterpreted bytes of data.

constant One, two, four or eight bytes of uninterpreted data, or d
encoded in the variable length format known as LEB128 (s
“Variable Length Data” on page 24-71).

flag A small constant that indicates the presence or absence of
attribute.

reference Refers to some member of the set of debugging informa
entries that describe the program. There are two types of re
ence. The first is an offset relative to the beginning of the compi
tion unit in which the reference occurs and must refer to an en
within that same compilation unit. The second type of reference
the address of any debugging information entry within the sam
executable or shared object; it may refer to an entry in a differe
compilation unit from the unit containing the reference.

string A null-terminated sequence of zero or more (non-null) bytes. D
in this form are generally printable strings. Strings may be rep
sented directly in the debugging information entry or as an offs
in a separate string table.

DW_AT_identifier_case DW_AT_import

DW_AT_inline DW_AT_is_optional

DW_AT_language DW_AT_location

DW_AT_low_pc DW_AT_lower_bound

DW_AT_macro_info DW_AT_name

DW_AT_namelist_item DW_AT_ordering

DW_AT_priority DW_AT_producer

DW_AT_prototyped DW_AT_return_add

DW_AT_segment DW_AT_sibling

DW_AT_specification DW_AT_start_scope

DW_AT_static_link DW_AT_stmt_list

DW_AT_stride_size DW_AT_string_length

DW_AT_type DW_AT_upper_bound

DW_AT_use_location DW_AT_variable_parameter

DW_AT_virtuality DW_AT_visibility

DW_AT_vtable_elem_location

Table 24-2. Attribute Names (Cont.)
24-6

DWARF Debugging Information Format

ion
pear

y to
bug-
try.
urce
with

e the
gging

gging

tion
tion
suc-
the
of
s is

on-
ren
ing

ntry

ram
d the
urther-
s, the
tion

ns.

s
p-
There are no limitations on the ordering of attributes within a debugging informat
entry, but to prevent ambiguity, no more than one attribute with a given name may ap
in any debugging information entry.

Relationship of Debugging Information Entries 24

A variety of needs can be met by permitting a single debugging information entr
“own” an arbitrary number of other debugging entries and by permitting the same de
ging information entry to be one of many owned by another debugging information en
This makes it possible to describe, for example, the static block structure within a so
file, show the members of a structure, union, or class, and associate declarations
source files or source files with shared objects.

The ownership relation of debugging information entries is achieved naturally becaus
debugging information is represented as a tree. The nodes of the tree are the debu
information entries themselves. The child entries of any node are exactly those debu
information entries owned by that node.1

The tree itself is represented by flattening it in prefix order. Each debugging informa
entry is defined either to have child entries or not to have child entries (see “Abbrevia
Tables” on page 24-67). If an entry is defined not to have children, the next physically
ceeding entry is the sibling of the prior entry. If an entry is defined to have children,
next physically succeeding entry is the first child of the prior entry. Additional children
the parent entry are represented as siblings of the first child. A chain of sibling entrie
terminated by a null entry.

In cases where a producer of debugging information feels that it will be important for c
sumers of that information to quickly scan chains of sibling entries, ignoring the child
of individual siblings, that producer may attach an AT_sibling attribute to any debugg
information entry. The value of this attribute is a reference to the sibling entry of the e
to which the attribute is attached.

Location Descriptions 24

The debugging information must provide consumers a way to find the location of prog
variables, determine the bounds of dynamic arrays and strings and possibly to fin
base address of a subroutine's stack frame or the return address of a subroutine. F
more, to meet the needs of recent computer architectures and optimization technique
debugging information must be able to describe the location of an object whose loca
changes over the object's lifetime.

Information about the location of program objects is provided by location descriptio
Location descriptions can be either of two forms:

1. While the ownership relation of the debugging information entries is represented as a tree, other relation
among the entries exist, for example, a pointer from an entry representing a variable to another entry re
resenting the type of that variable. If all such relations are taken into account, the debugging entries form
a graph, not a tree.
24-7

Compilation Systems Volume 2 (Concepts)

bute,
nt off-

this

with
ut not
s fall
lways
ister.
s are

rands.

o the
timal
Lan-
e for

. Each
top of
ss of
se of
1. Location expressions which are a language independent representation of
addressing rules of arbitrary complexity built from a few basic building
blocks, or operations. They are sufficient for describing the location of any
object as long as its lifetime is either static or the same as the lexical block
that owns it, and it does not move throughout its lifetime.

2. Location lists which are used to describe objects that have a limited life-
time or change their location throughout their lifetime. Location lists are
more completely described below.

The two forms are distinguished in a context sensitive manner. As the value of an attri
a location expression is encoded as a block and a location list is encoded as a consta
set into a location list table.

Note: The Version 1 concept of “location descriptions” was replaced in Version 2 with
new abstraction because it is denser and more descriptive.

Location Expressions 24

A location expression consists of zero or more location operations. An expression
zero operations is used to denote an object that is present in the source code b
present in the object code (perhaps because of optimization). The location operation
into two categories, register names and addressing operations. Register names a
appear alone and indicate that the referred object is contained inside a particular reg
Addressing operations are memory address computation rules. All location operation
encoded as a stream of opcodes that are each followed by zero or more literal ope
The number of operands is determined by the opcode.

Register Name Operators 24

The following operations can be used to name a register.

Note that the register number represents a DWARF specific mapping of numbers ont
actual registers of a given architecture. The mapping should be chosen to gain op
density and should be shared by all users of a given architecture. The Programming
guages SIG recommends that this mapping be defined by the ABI authoring committe
each architecture.

1. DW_OP_reg0, DW_OP_reg1, ...,DW_OP_reg31
The DW_OP_regn operations encode the names of up to 32 registers, num-
bered from 0 through 31, inclusive. The object addressed is in register n.

2. DW_OP_regx
The DW_OP_regx operation has a single unsigned LEB128 literal operand
that encodes the name of a register.

Addressing Operations 24

Each addressing operation represents a postfix operation on a simple stack machine
element of the stack is the size of an address on the target machine. The value on the
the stack after “executing” the location expression is taken to be the result (the addre
the object, or the value of the array bound, or the length of a dynamic string). In the ca
24-8

DWARF Debugging Information Format

ress of
essing
locations used for structure members, the computation assumes that the base add
the containing structure has been pushed on the stack before evaluation of the addr
operation.

Literal Encodings 24

The following operations all push a value onto the addressing stack.

1. DW_OP_lit0, DW_OP_lit1, ...,DW_OP_lit31
The DW_OP_litn operations encode the unsigned literal values from 0
through 31, inclusive.

2. DW_OP_addr
The DW_OP_addr operation has a single operand that encodes a machine
address and whose size is the size of an address on the target machine.

3. DW_OP_const1u
The single operand of the DW_OP_const1uoperation provides a 1-byte
unsigned integer constant.

4. DW_OP_const1s
The single operand of the DW_OP_const1soperation provides a 1-byte
signed integer constant.

5. DW_OP_const2u
The single operand of the DW_OP_const2uoperation provides a 2-byte
unsigned integer constant.

6. DW_OP_const2s
The single operand of the DW_OP_const2soperation provides a 2-byte
signed integer constant.

7. DW_OP_const4u
The single operand of the DW_OP_const4uoperation provides a 4-byte
unsigned integer constant.

8. DW_OP_const4s
The single operand of the DW_OP_const4soperation provides a 4-byte
signed integer constant.

9. DW_OP_const8u
The single operand of the DW_OP_const8u operation provides an 8-byte
unsigned integer constant.

10. DW_OP_const8s
The single operand of the DW_OP_const8soperation provides an 8-byte
signed integer constant.

11. DW_OP_constu
The single operand of the DW_OP_constu operation provides an unsigned
LEB128 integer constant.

12. DW_OP_consts
The single operand of the DW_OP_consts operation provides a signed
LEB128 integer constant.
24-9

Compilation Systems Volume 2 (Concepts)

con-

dex
dex 0.
Register Based Addressing 24

The following operations push a value onto the stack that is the result of adding the
tents of a register with a given signed offset.

1. DW_OP_fbreg
The DW_OP_fbreg operation provides a signed LEB128 offset from the
address specified by the location descriptor in the DW_AT_frame_base
attribute of the current function. (This is typically a “stack pointer” register
plus or minus some offset. On more sophisticated systems it might be a
location list that adjusts the offset according to changes in the stack pointer
as the PC changes.)

2. DW_OP_breg0, DW_OP_breg1, ...,DW_OP_breg31
The single operand of the DW_OP_bregn operations provides a signed
LEB128 offset from the specified register.

3. DW_OP_bregx
The DW_OP_bregx operation has two operands: a signed LEB128 offset
from the specified register which is defined with an unsigned LEB128
number.

Stack Operations 24

The following operations manipulate the “location stack.” Location operations that in
the location stack assume that the top of the stack (most recently added entry) has in

1. DW_OP_dup
The DW_OP_dup operation duplicates the value at the top of the location
stack.

2. DW_OP_drop
The DW_OP_drop operation pops the value at the top of the stack.

3. DW_OP_pick
The single operand of the DW_OP_pick operation provides a 1-byte index.
The stack entry with the specified index (0 through 255, inclusive) is
pushed on the stack.

4. DW_OP_over
The DW_OP_over operation duplicates the entry currently second in the
stack at the top of the stack. This is equivalent to an DW_OP_pick opera-
tion, with index 1.

5. DW_OP_swap
The DW_OP_swap operation swaps the top two stack entries. The entry at
the top of the stack becomes the second stack entry, and the second entry
becomes the top of the stack.

6. DW_OP_rot
The DW_OP_rot operation rotates the first three stack entries. The entry at
the top of the stack becomes the third stack entry, the second entry becomes
the top of the stack, and the third entry becomes the second entry.

7. DW_OP_deref
The DW_OP_deref operation pops the top stack entry and treats it as an
address. The value retrieved from that address is pushed. The size of the
24-10

DWARF Debugging Information Format

er-
sized
data retrieved from the dereferenced address is the size of an address on the
target machine.

8. DW_OP_deref_size
The DW_OP_deref_size operation behaves like the DW_OP_deref opera-
tion: it pops the top stack entry and treats it as an address. The value
retrieved from that address is pushed. In the DW_OP_deref_size operation,
however, the size in bytes of the data retrieved from the dereferenced
address is specified by the single operand. This operand is a 1-byte
unsigned integral constant whose value may not be larger than the size of
an address on the target machine. The data retrieved is zero extended to the
size of an address on the target machine before being pushed on the expres-
sion stack.

9. DW_OP_xderef
The DW_OP_xderef operation provides an extended dereference mecha-
nism. The entry at the top of the stack is treated as an address. The second
stack entry is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements are
popped, a data item is retrieved through an implementation-defined address
calculation and pushed as the new stack top. The size of the data retrieved
from the dereferenced address is the size of an address on the target
machine.

10. DW_OP_xderef_size
The DW_OP_xderef_size operation behaves like the DW_OP_xderef oper-
ation: the entry at the top of the stack is treated as an address. The second
stack entry is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements are
popped, a data item is retrieved through an implementation-defined address
ca l c u la t i o n an d p u s h ed a s t h e n ew st a ck t o p . I n th e
DW_OP_xderef_sizeoperation, however, the size in bytes of the data
retrieved from the dereferenced address is specified by the single operand.
This operand is a 1-byte unsigned integral constant whose value may not be
larger than the size of an address on the target machine. The data retrieved
is zero extended to the size of an address on the target machine before
being pushed on the expression stack.

Arithmetic and Logical Operations 24

The following provide arithmetic and logical operations. The arithmetic operations p
form “addressing arithmetic,” that is, unsigned arithmetic that wraps on an address-
boundary. The operations do not cause an exception on overflow.

1. DW_OP_abs
The DW_OP_abs operation pops the top stack entry and pushes its absolute
value.

2. DW_OP_and
The DW_OP_and operation pops the top two stack values, performs a bit-
wise and operation on the two, and pushes the result.

3. DW_OP_div
The DW_OP_div operation pops the top two stack values, divides the
24-11

Compilation Systems Volume 2 (Concepts)
former second entry by the former top of the stack using signed division,
and pushes the result.

4. DW_OP_minus
The DW_OP_minus operation pops the top two stack values, subtracts the
former top of the stack from the former second entry, and pushes the result.

5. DW_OP_mod
The DW_OP_mod operation pops the top two stack values and pushes the
result of the calculation: former second stack entry modulo the former top
of the stack.

6. DW_OP_mul
The DW_OP_mul operation pops the top two stack entries, multiplies them
together, and pushes the result.

7. DW_OP_neg
The DW_OP_neg operation pops the top stack entry, and pushes its nega-
tion.

8. DW_OP_not
The DW_OP_not operation pops the top stack entry, and pushes its bitwise
complement.

9. DW_OP_or
The DW_OP_or operation pops the top two stack entries, performs a bit-
wise or operation on the two, and pushes the result.

10. DW_OP_plus
The DW_OP_plus operation pops the top two stack entries, adds them
together, and pushes the result.

11. DW_OP_plus_uconst
The DW_OP_plus_uconst operation pops the top stack entry, adds it to the
unsigned LEB128 constant operand and pushes the result. This operation is
supplied specifically to be able to encode more field offsets in two bytes
than can be done with “DW_OP_litn DW_OP_add”.

12. DW_OP_shl
The DW_OP_shl operation pops the top two stack entries, shifts the former
second entry left by the number of bits specified by the former top of the
stack, and pushes the result.

13. DW_OP_shr
The DW_OP_shr operation pops the top two stack entries, shifts the former
second entry right (logically) by the number of bits specified by the former
top of the stack, and pushes the result.

14. DW_OP_shra
The DW_OP_shra operation pops the top two stack entries, shifts the
former second entry right (arithmetically) by the number of bits specified
by the former top of the stack, and pushes the result.

15. DW_OP_xor
The DW_OP_xor operation pops the top two stack entries, performs the
logical exclusive-or operation on the two, and pushes the result.
24-12

DWARF Debugging Information Format

nal,
Control Flow Operations 24

The following operations provide simple control of the flow of a location expression.

1. Relational operators
The six relational operators each pops the top two stack values, compares
the former top of the stack with the former second entry, and pushes the
constant value 1 onto the stack if the result of the operation is true or the
constant value 0 if the result of the operation is false. The comparisons are
done as signed operations. The six operators are DW_OP_le (less than or
equal to), DW_OP_ge (greater than or equal to), DW_OP_eq (equal to),
DW_OP_lt (less than), DW_OP_gt (greater than) and DW_OP_ne (not
equal to).

2. DW_OP_skip
DW_OP_skip is an unconditional branch. Its single operand is a 2-byte
signed integer constant. The 2-byte constant is the number of bytes of the
location expression to skip from the current operation, beginning after the
2-byte constant.

3. DW_OP_bra
DW_OP_bra is a conditional branch. Its single operand is a 2-byte signed
integer constant. This operation pops the top of stack. If the value popped is
not the constant 0, the 2-byte constant operand is the number of bytes of the
location expression to skip from the current operation, beginning after the
2-byte constant.

Special Operations 24

There are two special operations currently defined:

1. DW_OP_piece
Many compilers store a single variable in sets of registers, or store a vari-
able partially in memory and partially in registers.DW_OP_pieceprovides a
way of describing how large a part of a variable a particular addressing
expression refers to.

DW_OP_piece takes a single argument which is an unsigned LEB128
number. The number describes the size in bytes of the piece of the object
referenced by the addressing expression whose result is at the top of the
stack.

2. DW_OP_nop
The DW_OP_nop operation is a place holder. It has no effect on the loca-
tion stack or any of its values.

Sample Stack Operations 24

The stack operations defined in “Stack Operations” on page 24-10 are fairly conventio
but the following examples illustrate their behavior graphically.
24-13

Compilation Systems Volume 2 (Concepts)

tes the
, or

sions:

c.
Example Location Expressions 24

The addressing expression represented by a location expression, if evaluated, genera
run-t ime address of the value of a symbol except where the DW_OP_regn
DW_OP_regx operations are used.

Here are some examples of how location operations are used to form location expres

DW_OP_reg3
The value is in register 3.

DW_OP_regx 54
The value is in register 54.

DW_OP_addr 0x80d0045c
The value of a static variable is at machine address 0x80d0045

Before Operation After

0 17 DW_OP_dup 0 17

1 29 1 17

2 1000 2 29

3 1000

0 17 DW_OP_drop 0 29

1 29 1 1000

2 1000

0 17 DW_OP_pick 2 0 1000

1 29 1 17

2 1000 2 29

3 1000

0 17 DW_OP_over 0 29

1 29 1 17

2 1000 2 29

3 1000

0 17 DW_OP_swap 0 29

1 29 1 17

2 1000 2 1000

0 17 DW_OP_rot 0 29

1 29 1 1000

2 1000 2 17
24-14

DWARF Debugging Information Format

to-

is
tes

he

32

re
ack.

se

loca-
ined
tion
f the

bject
loca-

is
s not

0 for
h a 0
ram.
DW_OP_breg11 44
Add 44 to the value in register 11 to get the address of an au
matic variable instance.

DW_OP_fbreg -50
Given an DW_AT_frame_base value of “OPBREG31 64,” th
example computes the address of a local variable that is -50 by
from a logical frame pointer that is computed by adding 64 to t
current stack pointer (register 31).

DW_OP_bregx 54 32 DW_OP_deref
A call-by-reference parameter whose address is in the word
bytes from where register 54 points.

DW_OP_plus_uconst 4
A structure member is four bytes from the start of the structu
instance. The base address is assumed to be already on the st

DW_OP_reg3 DW_OP_piece 4 DW_OP_reg10 DW_OP_piece 2
A variable whose first four bytes reside in register 3 and who
next two bytes reside in register 10.

Location Lists 24

Location lists are used in place of location expressions whenever the object whose
tion is being described can change location during its lifetime. Location lists are conta
in a separate object file section called.debug_loc. A location list is indicated by a loca
attribute whose value is represented as a constant offset from the beginning o
.debug_loc section to the first byte of the list for the object in question.

Each entry in a location list consists of:

1. A beginning address. This address is relative to the base address of the
compilation unit referencing this location list. It marks the beginning of the
address range over which the location is valid.

2. An ending address, again relative to the base address of the compilation
unit referencing this location list. It marks the first address past the end of
the address range over which the location is valid.

3. A location expression describing the location of the object over the range
specified by the beginning and end addresses.

Address ranges may overlap. When they do, they describe a situation in which an o
exists simultaneously in more than one place. If all of the address ranges in a given
tion list do not collectively cover the entire range over which the object in question
defined, it is assumed that the object is not available for the portion of the range that i
covered.

The end of any given location list is marked by a 0 for the beginning address and a
the end address; no location description is present. A location list containing only suc
entry describes an object that exists in the source code but not in the executable prog
24-15

Compilation Systems Volume 2 (Concepts)

s a
tion
ed in

ucture
tant,

bing
on
s and

bject
pro-

ute,

ich

lue
Types of Declarations 24

Any debugging information entry describing a declaration that has a type ha
DW_AT_type attribute, whose value is a reference to another debugging informa
entry. The entry referenced may describe a base type, that is, a type that is not defin
terms of other data types, or it may describe a user-defined type, such as an array, str
or enumeration. Alternatively, the entry referenced may describe a type modifier: cons
packed, pointer, reference or volatile, which in turn will reference another entry descri
a type or type modifier (using a DW_AT_type attribute of its own). See “Type Entries”
page 24-34 for descriptions of the entries describing base types, user-defined type
type modifiers.

Accessibility of Declarations 24

Some languages, notably C++ and Ada, have the concept of the accessibility of an o
or of some other program entity. The accessibility specifies which classes of other
gram objects are permitted access to the object in question.

The accessibility of a declaration is represented by a DW_AT_accessibility attrib
whose value is a constant drawn from the set of codes listed in Table 24-3.

Visibility of Declarations 24

Modula2 has the concept of the visibility of a declaration. The visibility specifies wh
declarations are to be visible outside of the module in which they are declared.

The visibility of a declaration is represented by a DW_AT_visibility attribute, whose va
is a constant drawn from the set of codes listed in Table 24-4.

Table 24-3. Accessibility Codes

DW_ACCESS_public

DW_ACCESS_private

DW_ACCESS_protected

Table 24-4. Visibility Codes

DW_VIS_local

DW_VIS_exported

DW_VIS_qualified
24-16

DWARF Debugging Information Format

vir-

se

that
ram-
as

rtifi-
have

han as

t or
tion.

entry
pc
resent

rent
ing
exist
on-
ress

the way
Virtuality of Declarations 24

C++ provides for virtual and pure virtual structure or class member functions and for
tual base classes.

The virtuality of a declaration is represented by a DW_AT_virtuality attribute, who
value is a constant drawn from the set of codes listed in Table 24-5.

Artificial Entries 24

A compiler may wish to generate debugging information entries for objects or types
were not actually declared in the source of the application. An example is a formal pa
eter entry to represent the hiddenthis parameter that most C++ implementations pass
the first argument to non-static member functions.

Any debugging information entry representing the declaration of an object or type a
cially generated by a compiler and not explicitly declared by the source program may
a DW_AT_artificial attribute. The value of this attribute is a flag.

Target-Specific Addressing Information 24

In some systems, addresses are specified as offsets within a given segment rather t
locations within a single flat address space.

Any debugging information entry that contains a description of the location of an objec
subroutine may have a DW_AT_segment attribute, whose value is a location descrip
The description evaluates to the segment value of the item being described. If the
containing the DW_AT_segment attribute has a DW_AT_low_pc or DW_AT_high_
attribute, or a location description that evaluates to an address, then those values rep
the offset portion of the address within the segment specified by DW_AT_segment.

If an entry has no DW_AT_segment attribute, it inherits the segment value from its pa
entry. If none of the entries in the chain of parents for this entry back to its contain
compilation unit entry have DW_AT_segment attributes, then the entry is assumed to
within a flat address space. Similarly, if the entry has a DW_AT_segment attribute c
taining an empty location description, that entry is assumed to exist within a flat add
space.

Some systems support different classes of addresses. The address class may affect
a pointer is dereferenced or the way a subroutine is called.

Table 24-5. Virtuality Codes

DW_VIRTUALITY_none

DW_VIRTUALITY_virtual

DW_VIRTUALITY_pure_virtual
24-17

Compilation Systems Volume 2 (Concepts)

tine
stant.
alue
class

ents
gger
lso a

g is

ram
Any debugging information entry representing a pointer or reference type or a subrou
or subroutine type may have a DW_AT_address_class attribute, whose value is a con
The set of permissible values is specif ic to each target architecture. The v
DW_ADDR_none, however, is common to all encodings, and means that no address
has been specified.

For example, the Intel386Sprocessor might use the following values:

Non-Defining Declarations 24

A debugging information entry representing a program object or type typically repres
the defining declaration of that object or type. In certain contexts, however, a debu
might need information about a declaration of a subroutine, object or type that is not a
definition to evaluate an expression correctly.

As an example, consider the following fragment of C code:

void myfunc()
{

int x;
{

extern float x;
g(x);

}
}

ANSI-C scoping rules require that the value of the variable x passed to the function
the value of the global variable x rather than of the local version.

Debugging information entries that represent non-defining declarations of a prog
object or type have a DW_AT_declaration attribute, whose value is a flag.

Table 24-6. Example Address Class Codes

Name Value Meaning

DW_ADDR_none 0 no class specified

DW_ADDR_near16 1 16-bit offset, no segment

DW_ADDR_far16 2 16-bit offset, 16-bit segment

DW_ADDR_huge16 3 16-bit offset, 16-bit segment

DW_ADDR_near32 4 32-bit offset, no segment

DW_ADDR_far32 5 32-bit offset, 16-bit segment
24-18

DWARF Debugging Information Format

ccur-

sub-
d

ate-
on
mber
fied.

hich
ates

er at
indi-

en a
name
ame

a sin-

s they
e form
form

pro-
y be
Declaration Coordinates 24

It is sometimes useful in a debugger to be able to associate a declaration with its o
rence in the program source.

Any debugging information entry representing the declaration of an object, module,
p r o g r a m o r ty p e ma y h ave DW _ AT_ d e c l _ f i l e , DW _ AT _ d e c l_ l i n e a n
DW_AT_decl_column attributes, each of whose value is a constant.

The value of the DW_AT_decl_file attribute corresponds to a file number from the st
ment information table for the compilation unit containing this debugging informati
entry and represents the source file in which the declaration appeared (see “Line Nu
Information” on page 24-49). The value 0 indicates that no source file has been speci

The value of the DW_AT_decl_line attribute represents the source line number at w
the first character of the identifier of the declared object appears. The value 0 indic
that no source line has been specified.

The value of the DW_AT_decl_column attribute represents the source column numb
which the first character of the identifier of the declared object appears. The value 0
cates that no column has been specified.

Identifier Names 24

Any debugging information entry representing a program entity that has been giv
name may have a DW_AT_name attribute, whose value is a string representing the
as it appears in the source program. A debugging information entry containing no n
attribute, or containing a name attribute whose value consists of a name containing
gle null byte, represents a program entity for which no name was given in the source.

Note that since the names of program objects described by DWARF are the names a
appear in the source program, implementations of language translators that use som
of mangled name (as do many implementations of C++) should use the unmangled
of the name in the DWARFDW_AT_name attribute, including the keywordoperator , if
present. Sequences of multiple whitespace characters may be compressed.

Program Scope Entries 24

This section describes debugging information entries that relate to different levels of
gram scope: compilation unit, module, subprogram, and so on. These entries ma
thought of as bounded by ranges of text addresses within the program.
24-19

Compilation Systems Volume 2 (Concepts)

tion
g

by a
ing
Compilation Unit Entries 24

An object file may be derived from one or more compilation units. Each such compila
u n i t w i l l b e d e sc r i b ed b y a d ebu g g in g i n f o r m a t io n e n t r y w i t h t h e ta
DW_TAG_compile_unit.

A compilation unit typically represents the text and data contributed to an executable
single relocatable object file. It may be derived from several source files, includ
pre-processed “include files.”

The compilation unit entry may have the following attributes:

1. A DW_AT_low_pc attribute whose value is the relocated address of the
first machine instruction generated for that compilation unit.

2. A DW_AT_high_pc attribute whose value is the relocated address of the
first location past the last machine instruction generated for that compila-
tion unit.

The address may be beyond the last valid instruction in the executable, of
course, for this and other similar attributes.

The presence of low and high pc attributes in a compilation unit entry
imply that the code generated for that compilation unit is contiguous and
exists totally within the boundaries specified by those two attributes. If that
is not the case, no low and high pc attributes should be produced.

3. A DW_AT_name attribute whose value is a null-terminated string contain-
ing the full or relative path name of the primary source file from which the
compilation unit was derived.

4. A DW_AT_language attribute whose constant value is a code indicating the
source language of the compilation unit. The set of language names and
their meanings are given in Table 24-7.

5. A DW_AT_stmt_list attribute whose value is a reference to line number
information for this compilation unit.

This information is placed in a separate object file section from the debug-
ging information entries themselves. The value of the statement list

Table 24-7. Language Names

DW_LANG_C Non-ANSI C, such as K&R

DW_LANG_C89 ISO/ANSI C

DW_LANG_C_plus_plus C++

DW_LANG_Fortran77 FORTRAN77

DW_LANG_Fortran90 Fortran90

DW_LANG_Modula2 Modula2

DW_LANG_Pascal83 ISO/ANSI Pascal
24-20

DWARF Debugging Information Format

this
s in

hey
iden-

this
ame

. The
attribute is the offset in the .debug_line section of the first byte of the line
number information for this compilation unit. See “Line Number Informa-
tion” on page 24-49.

6. A DW_AT_macro_info attribute whose value is a reference to the macro
information for this compilation unit.

This information is placed in a separate object file section from the debug-
ging information entries themselves. The value of the macro information
attribute is the offset in the .debug_macinfo section of the first byte of the
macro information for this compilation unit. See “Macro Information” on
page 24-56.

7. A DW_AT_comp_dir attribute whose value is a null-terminated string con-
taining the current working directory of the compilation command that pro-
duced this compilation unit in whatever form makes sense for the host sys-
tem.

The suggested form for the value of the DW_AT_comp_dir attribute on
UNIX systems is “hostname:pathname”. If no hostname is available, the
suggested form is “:pathname”.

8. A DW_AT_producer attribute whose value is a null-terminated string con-
taining information about the compiler that produced the compilation unit.
The actual contents of the string will be specific to each producer, but
should begin with the name of the compiler vendor or some other identify-
ing character sequence that should avoid confusion with other producer
values.

9. A DW_AT_identifier_case attribute whose constant value is a code
describing the treatment of identifiers within this compilation unit. The set
of identifier case codes is given in Table 24-8.

DW_ID_case_sensitive is the default for all compilation units that do not have
attribute. It indicates that names given as the values of DW_AT_name attribute
debugging information entries for the compilation unit reflect the names as t
appear in the source program. The debugger should be sensitive to the case of
tifier names when doing identifier lookups.

DW_ID_up_case means that the producer of the debugging information for
compilation unit converted all source names to upper case. The values of the n
attributes may not reflect the names as they appear in the source program
debugger should convert all names to upper case when doing lookups.

Table 24-8. Identifier Case Codes

DW_ID_case_sensitive

DW_ID_up_case

DW_ID_down_case

DW_ID_case_insensitive
24-21

Compilation Systems Volume 2 (Concepts)

this
ame

. The

t the
hould

lara-

ag
rib-

e is a
m.

pc
ed for
elo-

itial-

The
ng a
f the

g a
DW_ID_down_case means that the producer of the debugging information for
compilation unit converted all source names to lower case. The values of the n
attributes may not reflect the names as they appear in the source program
debugger should convert all names to lower case when doing lookups.

DW_ID_case_insensitive means that the values of the name attributes reflec
names as they appear in the source program but that a case insensitive lookup s
be used to access those names.

10. A DW_AT_base_types attribute whose value is a reference. This attribute
points to a debugging information entry representing another compilation
unit. It may be used to specify the compilation unit containing the base type
entries used by entries in the current compilation unit (see “Base Type
Entries” on page 24-34).

This attribute provides a consumer a way to find the definition of base
types for a compilation unit that does not itself contain such definitions.
This allows a consumer, for example, to interpret a type conversion to a
base type correctly.

A compilation unit entry owns debugging information entries that represent the dec
tions made in the corresponding compilation unit.

Module Entries 24

Several languages have the concept of a “module.”

A mo dule is rep resented by a debu ggin g in for mat ion en t ry w i th the t
DW_TAG_module. Module entries may own other debugging information entries desc
ing program entities whose declaration scopes end at the end of the module itself.

If the module has a name, the module entry has a DW_AT_name attribute whose valu
null-terminated string containing the module name as it appears in the source progra

If the module contains initialization code, the module entry has a DW_AT_low_
attribute whose value is the relocated address of the first machine instruction generat
that initialization code. It also has a DW_AT_high_pc attribute whose value is the r
cated address of the first location past the last machine instruction generated for the in
ization code.

If the module has been assigned a priority, it may have a DW_AT_priority attribute.
value of this attribute is a reference to another debugging information entry describi
variable with a constant value. The value of this variable is the actual constant value o
module's priority, represented as it would be on the target architecture.

A Modula2 definition module may be represented by a module entry containin
DW_AT_declaration attribute.
24-22

DWARF Debugging Information Format

and

.

is a
the

m is
al

ed in

the
ill not
ot be

is a
then
f the
ant
may

ntry
“main
ling
call-

not

for-
.

e

Subroutine and Entry Point Entries 24

The following tags exist to describe debugging information entries for subroutines
entry points:

DW_TAG_subprogram A global or file static subroutine or function.

DW_TAG_inlined_subroutine A particular inlined instance of a subroutine or function

DW_TAG_entry_point A Fortran entry point.

General Subroutine and Entry Point Information 24

The subroutine or entry point entry has a DW_AT_name attribute whose value
null-terminated string containing the subroutine or entry point name as it appears in
source program.

If the name of the subroutine described by an entry with the tag DW_TAG_subprogra
visible outside of its containing compilation unit, that entry has a DW_AT_extern
attribute, whose value is a flag.

Additional attributes for functions that are members of a class or structure are describ
“Structure Member Function Entries” on page 24-41.

A common debugger feature is to allow the debugger user to call a subroutine within
subject program. In certain cases, however, the generated code for a subroutine w
obey the standard calling conventions for the target architecture and will therefore n
safe to call from within a debugger.

A subroutine entry may contain a DW_AT_calling_convention attribute, whose value
constant. If this attribute is not present, or its value is the constant DW_CC_normal,
the subroutine may be safely called by obeying the “standard” calling conventions o
target architecture. If the value of the calling convention attribute is the const
DW_CC_nocall, the subroutine does not obey standard calling conventions, and it
not be safe for the debugger to call this subroutine.

If the semantics of the language of the compilation unit containing the subroutine e
distinguishes between ordinary subroutines and subroutines that can serve as the
program,” that is, subroutines that cannot be called directly following the ordinary cal
conventions, then the debugging information entry for such a subroutine may have a
ing convention attribute whose value is the constant DW_CC_program.

The DW_CC_program value is intended to support Fortran main programs. It is
intended as a way of finding the entry address for the program.

Subroutine and Entry Point Return Types 24

If the subroutine or entry point is a function that returns a value, then its debugging in
mation entry has a DW_AT_type attribute to denote the type returned by that function

Debugging information entries for Cvoid functions should not have an attribute for th
return type.
24-23

Compilation Systems Volume 2 (Concepts)

tion

e a

ss of
_pc

chine

mp-
em-

f the

class
des in

does

gging
pre-
er as

utine
eter

ch as

gging

child
s a
entry

alue
s for
In ANSI-C there is a difference between the types of functions declared using func
prototype style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may hav
DW_AT_prototyped attribute, whose value is a flag.

Subroutine and Entry Point Locations 24

A subroutine entry has a DW_AT_low_pc attribute whose value is the relocated addre
the first machine instruction generated for the subroutine. It also has a DW_AT_high
attribute whose value is the relocated address of the first location past the last ma
instruction generated for the subroutine.

Note that for the low and high pc attributes to have meaning, DWARF makes the assu
tion that the code for a single subroutine is allocated in a single contiguous block of m
ory.

An entry point has a DW_AT_low_pc attribute whose value is the relocated address o
first machine instruction generated for the entry point.

Subroutines and entry points may also have DW_AT_segmentand DW_AT_address_
attributes, as appropriate, to specify which segments the code for the subroutine resi
and the addressing mode to be used in calling that subroutine.

A subroutine entry representing a subroutine declaration that is not also a definition
not have low and high pc attributes.

Declarations Owned by Subroutines and Entry Points 24

The declarations enclosed by a subroutine or entry point are represented by debu
information entries that are owned by the subroutine or entry point entry. Entries re
senting the formal parameters of the subroutine or entry point appear in the same ord
the corresponding declarations in the source program.

There is no ordering requirement on entries for declarations that are children of subro
or entry point entries but that do not represent formal parameters. The formal param
entries may be interspersed with other entries used by formal parameter entries, su
type entries.

The unspecified parameters of a variable parameter list are represented by a debu
information entry with the tag DW_TAG_unspecified_parameters.

The entry for a subroutine or entry point that includes a Fortran common block has a
entry with the tag DW_TAG_common_inclusion. The common inclusion entry ha
DW_AT_common_reference attribute whose value is a reference to the debugging
for the common block being included (see “Common Block Entries” on page 24-33).

Low-Level Information 24

A subroutine or entry point entry may have a DW_AT_return_addr attribute, whose v
is a location description. The location calculated is the place where the return addres
the subroutine or entry point is stored.
24-24

DWARF Debugging Information Format

ose
ntry

it of
e can

erence
he
this

ose
of the

alue

sting
the
hen

te or

es,
tag
rou-
ing
l vari-
ns a
f the
A subroutine or entry point entry may also have a DW_AT_frame_base attribute, wh
value is a location description that computes the “frame base” for the subroutine or e
point.

The frame base for a procedure is typically an address fixed relative to the first un
storage allocated for the procedure's stack frame. The DW_AT_frame_base attribut
be used in several ways:

1. In procedures that need location lists to locate local variables, the
DW_AT_frame_base can hold the needed location list, while all variables'
location descriptions can be simpler location expressions involving the
frame base.

2. It can be used as a key in resolving “up-level” addressing with nested rou-
tines. (See DW_AT_static_link, below)

Some languages support nested subroutines. In such languages, it is possible to ref
the local variables of an outer subroutine from within an inner subroutine. T
DW_AT_static_link and DW_AT_frame_base attributes allow debuggers to support
same kind of referencing.

If a subroutine or entry point is nested, it may have a DW_AT_static_link attribute, wh
value is a location description that computes the frame base of the relevant instance
subroutine that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the DW_AT_frame_base attribute v
should obey the following constraints:

1. It should compute a value that does not change during the life of the proce-
dure, and

2. The computed value should be unique among instances of the same subrou-
tine. (For typical DW_AT_frame_base use, this means that a recursive sub-
routine's stack frame must have non-zero size.)

If a debugger is attempting to resolve an up-level reference to a variable, it uses the ne
structure of DWARF to determine which subroutine is the lexical parent and
DW_AT_static_link value to identify the appropriate active frame of the parent. It can t
attempt to find the reference within the context of the parent.

Types Thrown by Exceptions 24

In C++ a subroutine may declare a set of types for which that subroutine may genera
“throw” an exception.

If a subroutine explicitly declares that it may throw an exception for one or more typ
each such type is represented by a debugging information entry with the
DW_TAG_thrown_type. Each such entry is a child of the entry representing the sub
tine that may throw this type. All thrown type entries should follow all entries represent
the formal parameters of the subroutine and precede all entries representing the loca
ables or lexical blocks contained in the subroutine. Each thrown type entry contai
DW_AT_type attribute, whose value is a reference to an entry describing the type o
exception that may be thrown.
24-25

Compilation Systems Volume 2 (Concepts)

er-
eric

tag
me

utine

ing
t is
lic-
t of
Function Template Instantiations 24

In C++ a function template is a generic definition of a function that is instantiated diff
ently when called with values of different types. DWARF does not represent the gen
template definition, but does represent each instantiation.

A template instantiation is represented by a debugging information entry with the
DW_TAG_subprogram. With three exceptions, such an entry will contain the sa
attributes and have the same types of child entries as would an entry for a subro
defined explicitly using the instantiation types. The exceptions are:

1. Each formal parameterized type declaration appearing in the template defi-
nition is represented by a debugging information entry with the tag
DW_TAG_template_type_parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the
formal type parameter as it appears in the source program. The template
type parameter entry also has a DW_AT_type attribute describing the
actual type by which the formal is replaced for this instantiation. All tem-
plate type parameter entries should appear before the entries describing the
instantiated formal parameters to the function.

2. If the compiler has generated a special compilation unit to hold the tem-
plate instantiation and that compilation unit has a different name from the
compilation unit containing the template definition, the name attribute for
the debugging entry representing that compilation unit should be empty or
omitted.

3. If the subprogram entry representing the template instantiation or any of its
child entries contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not to any source gen-
erated artificially by the compiler for this instantiation.

Inline Subroutines 24

A declaration or a definition of an inlinable subroutine is represented by a debugg
information entry with the tag DW_TAG_subprogram. The entry for a subroutine tha
explicitly declared to be available for inline expansion or that was expanded inline imp
itly by the compiler has a DW_AT_inline attribute whose value is a constant. The se
values for the DW_AT_inline attribute is given in Table 24-9.

Table 24-9. Inline Codes

Name Meaning

DW_INL_not_inlined Not declared inline nor inlined by the compiler

DW_INL_inlined Not declared inline but inlined by the compiler

DW_INL_declared_not_inlined Declared inline but not inlined by the compiler

DW_INL_declared_inlined Declared inline and inlined by the compiler
24-26

DWARF Debugging Information Format

ned
he
ine
ot.”
) of
tract

not
r,

such
ist at

actly
that

nting
Also,
pply

rma-
rect

the
ined
of the

ned
g

ry.”
ete
ren
oot

stract

ssoci-
with

soci-
there

ntries
Abstract Instances 24

For the remainder of this discussion, any debugging information entry that is ow
(either directly or indirectly) by a debugging information entry that contains t
DW_AT_inline attribute will be referred to as an “abstract instance entry.” Any subrout
entry that contains a DW_AT_inline attribute will be known as an “abstract instance ro
Any set of abstract instance entries that are all children (either directly or indirectly
some abstract instance root, together with the root itself, will be known as an “abs
instance tree.”

A debugging information entry that is a member of an abstract instance tree should
contain a DW_AT_high_pc, DW_AT_low_pc, DW_AT_location, DW_AT_return_add
DW_AT_start_scope, or DW_AT_segment attribute.

It would not make sense to put these attributes into abstract instance entries since
entries do not represent actual (concrete) instances and thus do not actually ex
run-time.

The rules for the relative location of entries belonging to abstract instance trees are ex
the same as for other similar types of entries that are not abstract. Specifically, the rule
requires that an entry representing a declaration be a direct child of the entry represe
the scope of the declaration applies equally to both abstract and non-abstract entries.
the ordering rules for formal parameter entries, member entries, and so on, all a
regardless of whether or not a given entry is abstract.

Concrete Inlined Instances 24

Each inline expansion of an inlinable subroutine is represented by a debugging info
tion entry with the tag DW_TAG_inlined_subroutine. Each such entry should be a di
child of the entry that represents the scope within which the inlining occurs.

Each inlined subroutine entry contains a DW_AT_low_pc attribute, representing
address of the first instruction associated with the given inline expansion. Each inl
subroutine entry also contains a DW_AT_high_pc attribute, representing the address
first location past the last instruction associated with the inline expansion.

For the remainder of this discussion, any debugging information entry that is ow
(either directly or indirectly) by a debugging information entry with the ta
DW_TAG_inlined_subroutinewill be referred to as a “concrete inlined instance ent
Any entry that has the tag DW_TAG_inlined_subroutinewill be known as a “concr
inlined instance root.” Any set of concrete inlined instance entries that are all child
(either directly or indirectly) of some concrete inlined instance root, together with the r
itself, will be known as a “concrete inlined instance tree.”

Each concrete inlined instance tree is uniquely associated with one (and only one) ab
instance tree.

Note, however, that the reverse is not true. Any given abstract instance tree may be a
ated with several different concrete inlined instance trees, or may even be associated
zero concrete inlined instance trees.

Also, each separate entry within a given concrete inlined instance tree is uniquely as
ated with one particular entry in the associated abstract instance tree. In other words,
is a one-to-one mapping from entries in a given concrete inlined instance tree to the e
in the associated abstract instance tree.
24-27

Compilation Systems Volume 2 (Concepts)

ciated
ore

t for
,
ally

has a
tion
rigin

both
tag

e tag
ete
ly be

e tag

ectly
re are

lined
nding
lined
of the
y for

ecla-
col-
d.

ces of
or the
erred

sitate

e is
bed in

akes
for a
Note, however, that the reverse is not true. A given abstract instance tree that is asso
with a given concrete inlined instance tree may (and quite probably will) contain m
entries than the associated concrete inlined instance tree (see below).

Concrete inlined instance entries do not have most of the attributes (excep
DW_AT_low_pc, DW_AT_high_pc, DW_AT_location, DW_AT_return_addr
DW_AT_start_scope and DW_AT_segment) that such entries would otherwise norm
have. In place of these omitted attributes, each concrete inlined instance entry
DW_AT_abstract_origin attribute that may be used to obtain the missing informa
(indirectly) from the associated abstract instance entry. The value of the abstract o
attribute is a reference to the associated abstract instance entry.

For each pair of entries that are associated via a DW_AT_abstract_origin attribute,
members of the pair will have the same tag. So, for example, an entry with the
DW_TAG_local_variable can only be associated with another entry that also has th
DW_TAG_local_variable. The only exception to this rule is that the root of a concr
instance tree (which must always have the tag DW_TAG_inlined_subroutine) can on
associated with the root of its associated abstract instance tree (which must have th
DW_TAG_subprogram).

In general, the structure and content of any given concrete instance tree will be dir
analogous to the structure and content of its associated abstract instance tree. The
two exceptions to this general rule however.

1. No entries representing anonymous types are ever made a part of any con-
crete instance inlined tree.

2. No entries representing members of structure, union or class types are ever
made a part of any concrete inlined instance tree.

Entries that represent members and anonymous types are omitted from concrete in
instance trees because they would simply be redundant duplicates of the correspo
entries in the associated abstract instance trees. If any entry within a concrete in
instance tree needs to refer to an anonymous type that was declared within the scope
relevant inline function, the reference should simply refer to the abstract instance entr
the given anonymous type.

If an entry within a concrete inlined instance tree contains attributes describing the d
ration coordinates of that entry, then those attributes should refer to the file, line and
umn of the original declaration of the subroutine, not to the point at which it was inline

Out-of-Line Instances of Inline Subroutines 24

Under some conditions, compilers may need to generate concrete executable instan
inline subroutines other than at points where those subroutines are actually called. F
remainder of this discussion, such concrete instances of inline subroutines will be ref
to as “concrete out-of-line instances.”

In C++, for example, taking the address of a function declared to be inline can neces
the generation of a concrete out-of-line instance of the given function.

The DWARF representation of a concrete out-of-line instance of an inline subroutin
essentially the same as for a concrete inlined instance of that subroutine (as descri
the preceding section). The representation of such a concrete out-of-line instance m
use of DW_AT_abstract_origin attributes in exactly the same way as they are used
24-28

DWARF Debugging Information Format

ssoci-
ymous

of a
brou-

mber
locks

ag

ted
lock

first

ond-
ted

tions
cal

rget

The
the
rce
concrete inlined instance (that is, as references to corresponding entries within the a
ated abstract instance tree) and, as for concrete instance trees, the entries for anon
types and for all members are omitted.

The differences between the DWARF representation of a concrete out-of-line instance
given subroutine and the representation of a concrete inlined instance of that same su
tine are as follows:

1. The root entry for a concrete out-of-line instance of a given inline subrou-
tine has the same tag as does its associated (abstract) inline subroutine
entry (that is, it does not have the tag DW_TAG_inlined_subroutine).

2. The root entry for a concrete out-of-line instance tree is always directly
owned by the same parent entry that also owns the root entry of the associ-
ated abstract instance.

Lexical Block Entries 24

A lexical block is a bracketed sequence of source statements that may contain any nu
of declarations. In some languages (C and C++) blocks can be nested within other b
to any depth.

A lexical block is represented by a debugging information entry with the t
DW_TAG_lexical_block.

The lexical block entry has a DW_AT_low_pc attribute whose value is the reloca
address of the first machine instruction generated for the lexical block. The lexical b
entry also has a DW_AT_high_pc attribute whose value is the relocated address of the
location past the last machine instruction generated for the lexical block.

If a name has been given to the lexical block in the source program, then the corresp
ing lexical block entry has a DW_AT_name attribute whose value is a null-termina
string containing the name of the lexical block as it appears in the source program.

This is not the same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that describe the declara
within that lexical block. There is one such debugging information entry for each lo
declaration of an identifier or inner lexical block.

Label Entries 24

A label is a way of identifying a source statement. A labeled statement is usually the ta
of one or more “go to” statements.

A label is represented by a debugging information entry with the tag DW_TAG_label.
entry for a label should be owned by the debugging information entry representing
scope within which the name of the label could be legally referenced within the sou
program.
24-29

Compilation Systems Volume 2 (Concepts)

f the
urce
rmi-

ent
riable

tag
lue
with

s the
r the

ose
lso
cord

tion
tch

ag
ith
a

ine
_pc
chine

xcep-
gs
the
The label entry has a DW_AT_low_pc attribute whose value is the relocated address o
first machine instruction generated for the statement identified by the label in the so
program. The label entry also has a DW_AT_name attribute whose value is a null-te
nated string containing the name of the label as it appears in the source program.

With Statement Entries 24

Both Pascal and Modula support the concept of a “with” statement. The with statem
specifies a sequence of executable statements within which the fields of a record va
may be referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the
DW_TAG_with_stmt. A with statement entry has a DW_AT_low_pc attribute whose va
is the relocated address of the first machine instruction generated for the body of the
statement. A with statement entry also has a DW_AT_high_pc attribute whose value i
relocated address of the first location after the last machine instruction generated fo
body of the statement.

The with statement entry has a DW_AT_type attribute, denoting the type of record wh
fields may be referenced without full qualification within the body of the statement. It a
has a DW_AT_location attribute, describing how to find the base address of the re
object referenced within the body of the with statement.

Try and Catch Block Entries 24

In C++ a lexical block may be designated as a “catch block.” A catch block is an excep
handler that handles exceptions thrown by an immediately preceding “try block.” A ca
block designates the type of the exception that it can handle.

A t ry b lock is represented by a debugging information entry w ith the t
DW_TAG_try_block. A catch block is represented by a debugging information entry w
the tag DW_TAG_catch_block. Both t ry and catch block entr ies contain
DW_AT_low_pc attribute whose value is the relocated address of the first mach
instruction generated for that block. These entries also contain a DW_AT_high
attribute whose value is the relocated address of the first location past the last ma
instruction generated for that block.

Catch block entries have at least one child entry, an entry representing the type of e
tion accepted by that catch block. This child entry will have one of the ta
DW_TAG_formal_parameter or DW_TAG_unspecified_parameters, and will have
same form as other parameter entries.

The first sibling of each try block entry will be a catch block entry.
24-30

DWARF Debugging Information Format

data
rouped

infor-
nd

s that

tant
Data Object and Object List Entries 24

This section presents the debugging information entries that describe individual
objects: variables, parameters and constants, and lists of those objects that may be g
in a single declaration, such as a common block.

Data Object Entries 24

Program variables, formal parameters and constants are represented by debugging
mation entries with the tags DW_TAG_variable, DW_TAG_formal_parameter a
DW_TAG_constant, respectively.

The tag DW_TAG_constant is used for languages that distinguish between variable
may have constant value and true named constants.

The debugging information entry for a program variable, formal parameter or cons
may have the following attributes:

1. A DW_AT_name attribute whose value is a null-terminated string contain-
ing the data object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name attribute is
omitted or consists of a single zero byte.

2. If the name of a variable is visible outside of its enclosing compilation unit,
the variable entry has a DW_AT_external attribute, whose value is a flag.

The definitions of C++ static data members of structures or classes are rep-
resented by variable entries flagged as external. Both file static and local
variables in C and C++ are represented by non-external variable entries.

3. A DW_AT_location attribute, whose value describes the location of a vari-
able or parameter at run-time.

A data object entry representing a non-defining declaration of the object
will not have a location attribute, and will have the DW_AT_declaration
attribute.

In a variable entry representing the definition of the variable (that is, with
no DW_AT_declaration attribute) if no location attribute is present, or if
the location attribute is present but describes a null entry (as described in
“Location Descriptions” on page 24-7), the variable is assumed to exist in
the source code but not in the executable program (but see number 9,
below).

Th e lo c at io n o f a var i ab le m ay b e f u r t h er spe c i f ie d w i th a
DW_AT_segment attribute, if appropriate.

4. A DW_AT_type attribute describing the type of the variable, constant or
formal parameter.
24-31

Compilation Systems Volume 2 (Concepts)
5. If the variable entry represents the defining declaration for a C++ static
da ta m emb er of a s t r u c tu re , c l ass o r un io n , th e e nt ry h as a
DW_AT_specification attribute, whose value is a reference to the debug-
ging information entry representing the declaration of this data member.
The referenced entry will be a child of some class, structure or union type
entry.

Variable entries containing the DW_AT_specification attribute do not need
to duplicate information provided by the declaration entry referenced by
the specification attribute. In particular, such variable entries do not need to
contain attributes for the name or type of the data member whose definition
they represent.

6. Some languages distinguish between parameters whose value in the calling
function can be modified by the callee (variable parameters), and parame-
ters whose value in the calling function cannot be modified by the callee
(constant parameters).

If a formal parameter entry represents a parameter whose value in the call-
ing function may be modified by the callee, that entry may have a
DW_AT_variable_parameter attribute, whose value is a flag. The absence
of this attribute implies that the parameter's value in the calling function
cannot be modified by the callee.

7. Fortran90 has the concept of an optional parameter.

If a parameter ent ry represents an optional parameter, i t has a
DW_AT_is_optional attribute, whose value is a flag.

8. A formal parameter entry describing a formal parameter that has a default
value may have a DW_AT_default_value attribute. The value of this
attribute is a reference to the debugging information entry for a variable or
subroutine. The default value of the parameter is the value of the variable
(which may be constant) or the value returned by the subroutine. If the
value of the DW_AT_default_value attribute is 0, it means that no default
value has been specified.

9. An entry describing a variable whose value is constant and not represented
by an object in the address space of the program, or an entry describing a
named constant, does not have a location attribute. Such entries have a
DW_AT_const_value attribute, whose value may be a string or any of the
constant data or data block forms, as appropriate for the representation of
the variable's value. The value of this attribute is the actual constant value
of the variable, represented as it would be on the target architecture.

10. If the scope of an object begins sometime after the low pc value for the
scope most closely enclosing the object, the object entry may have a
DW_AT_start_scope attribute. The value of this attribute is the offset in
bytes of the beginning of the scope for the object from the low pc value of
the debugging information entry that defines its scope.

The scope of a variable may begin somewhere in the middle of a lexical
block in a language that allows executable code in a block before a variable
declaration, or where one declaration containing initialization code may
24-32

DWARF Debugging Information Format

ari-
han
lara-

tag
ute
rs in

s the
ing

made

tag
s a
f the
The

ence
.

dered
ed as

ag
change the scope of a subsequent declaration. For example, in the follow-
ing C code:

float x = 99.99;

int myfunc()
{

float f = x;
float x = 88.99;

return 0;
}

ANSI-C scoping rules require that the value of the variable x assigned to the v
able f in the initialization sequence is the value of the global variable x, rather t
the local x, because the scope of the local variable x only starts after the full dec
tor for the local x.

Common Block Entries 24

A Fortran common block may be described by a debugging information entry with the
DW_TAG_common_block. The common block entry has a DW_AT_name attrib
whose value is a null-terminated string containing the common block name as it appea
the source program. It also has a DW_AT_location attribute whose value describe
location of the beginning of the common block. The common block entry owns debugg
information entries describing the variables contained within the common block.

Imported Declaration Entries 24

Some languages support the concept of importing into a given module declarations
in a different module.

An imported declaration is represented by a debugging information entry with the
DW_TAG_imported_declaration. The entry for the imported declaration ha
DW_AT_name attribute whose value is a null-terminated string containing the name o
entity whose declaration is being imported as it appears in the source program.
imported declaration entry also has a DW_AT_import attribute, whose value is a refer
to the debugging information entry representing the declaration that is being imported

Namelist Entries 24

At least one language, Fortran90, has the concept of a namelist. A namelist is an or
list of the names of some set of declared objects. The namelist object itself may be us
a replacement for the list of names in various contexts.

A namel ist is represented by a debugging informat ion entry w ith the t
DW_TAG_namelist.
24-33

Compilation Systems Volume 2 (Concepts)

hose
ource

entry
and
mes

ref-
hose

: base

e for
ve a
gin-
tion

ram-
ge.

tag
is a
ram-

pe is
alues
If the namelist itself has a name, the namelist entry has a DW_AT_name attribute, w
value is a null-terminated string containing the namelist’s name as it appears in the s
program.

Each name that is part of the namelist is represented by a debugging information
with the tag DW_TAG_namelist_item. Each such entry is a child of the namelist entry,
all of the namelist item entries for a given namelist are ordered as were the list of na
they correspond to in the source program.

Each namelist item entry contains a DW_AT_namelist_item attribute whose value is a
erence to the debugging information entry representing the declaration of the item w
name appears in the namelist.

Type Entries 24

This section presents the debugging information entries that describe program types
types, modified types and user-defined types.

If the scope of the declaration of a named type begins sometime after the low pc valu
the scope most closely enclosing the declaration, the declaration may ha
DW_AT_start_scope attribute. The value of this attribute is the offset in bytes of the be
ning of the scope for the declaration from the low pc value of the debugging informa
entry that defines its scope.

Base Type Entries 24

A base type is a data type that is not defined in terms of other data types. Each prog
ming language has a set of base types that are considered to be built into that langua

A base type is represented by a debugging information ent ry with the
DW_TAG_base_type. A base type entry has a DW_AT_name attribute whose value
null-terminated string describing the name of the base type as recognized by the prog
ming language of the compilation unit containing the base type entry.

A base type entry also has a DW_AT_encoding attribute describing how the base ty
encoded and is to be interpreted. The value of this attribute is a constant. The set of v
and their meanings for the DW_AT_encoding attribute is given in Table 24-10.

Table 24-10. Encoding Attribute Values

Name Meaning

DW_ATE_address linear machine address

DW_ATE_boolean true or false

DW_ATE_complex_float complex floating-point number

DW_ATE_float floating-point number
24-34

DWARF Debugging Information Format

ribing

ibed
nd a

bute
offset
rom

ted
bute

s. A
the

ence
other
All encodings assume the representation that is “normal” for the target architecture.

A base type entry has a DW_AT_byte_size attribute, whose value is a constant, desc
the size in bytes of the storage unit used to represent an object of the given type.

If the value of an object of the given type does not fully occupy the storage unit descr
by the byte size attribute, the base type entry may have a DW_AT_bit_size attribute a
DW_AT_bit_offset attribute, both of whose values are constants. The bit size attri
describes the actual size in bits used to represent a value of the given type. The bit
attribute describes the offset in bits of the high order bit of a value of the given type f
the high order bit of the storage unit used to contain that value.

For example, the C typeint on a machine that uses 32-bit integers would be represen
by a base type entry with a name attribute whose value was “int,” an encoding attri
whose value was DW_ATE_signed and a byte size attribute whose value was4.

Type Modifier Entries 24

A base or user-defined type may be modified in different ways in different language
type modifier is represented in DWARF by a debugging information entry with one of
tags given in Table 24-11.

Each of the type modifier entries has a DW_AT_type attribute, whose value is a refer
to a debugging information entry describing a base type, a user-defined type or an
type modifier.

DW_ATE_signed signed binary integer

DW_ATE_signed_char signed character

DW_ATE_unsigned unsigned binary integer

DW_ATE_unsigned_char unsigned character

Table 24-11. Type Modifier Tags

Tag Meaning

DW_TAG_const_type C or C++ const qualified type

DW_TAG_packed_type Pascal packed type

DW_TAG_pointer_type The address of the object whose
type is being modified

DW_TAG_reference_type A C++ reference to the object
whose type is being modified

DW_TAG_volatile_type C or C++ volatile qualified type

Table 24-10. Encoding Attribute Values (Cont.)

Name Meaning
24-35

Compilation Systems Volume 2 (Concepts)

a
efer-

ype,
e or

d in

is is

ntry
ose

the

at is

enti-

tag

nding
con-
A modif ied type entry descr ib ing a pointer or reference type may have
DW_AT_address_class attribute to describe how objects having the given pointer or r
ence type ought to be dereferenced.

When multiple type modifiers are chained together to modify a base or user-defined t
they are ordered as if part of a right-associative expression involving the bas
user-defined type.

As examples of how type modifiers are ordered, take the following C declarations:

const char * volatile p;

which represents a volatile pointer to a constant character. This is encode
DWARF as:

DW_TAG_volatile_type -->
DW_TAG_pointer_type -->

DW_TAG_const_type -->
DW_TAG_base_type

volatile char * const p;

on the other hand, represents a constant pointer to a volatile character. Th
encoded as:

DW_TAG_const_type -->
DW_TAG_pointer_type -->

DW_TAG_volatile_type -->
DW_TAG_base_type

Typedef Entries 24

Any arbitrary type named via a typedef is represented by a debugging information e
with the tag DW_TAG_typedef. The typedef entry has a DW_AT_name attribute wh
value is a null-terminated string containing the name of the typedef as it appears in
source program. The typedef entry also contains a DW_AT_type attribute.

If the debugging information entry for a typedef represents a declaration of the type th
not also a definition, it does not contain a type attribute.

Array Type Entries 24

Many languages share the concept of an “array,” which is a table of components of id
cal type.

An array type is represented by a debugging information entry with the
DW_TAG_array_type.

If a name has been given to the array type in the source program, then the correspo
array type entry has a DW_AT_name attribute whose value is a null-terminated string
taining the array type name as it appears in the source program.
24-36

DWARF Debugging Information Format

ring
ajor

If no
indi-
) is

be

t of

type
ual
size

y.

type
total

alue
each

tag
chil-

ons in

ay,”
en-

types
alled
rent

ory.
The array type entry describing a multidimensional array may have a DW_AT_orde
attribute whose constant value is interpreted to mean either row-major or column-m
ordering of array elements. The required attribute names are listed in Table 24-12.
ordering attribute is present, the default ordering for the source language (which is
cated by the DW_AT_language attribute of the enclosing compilation unit entry
assumed.

The ordering attribute may optionally appear on one-dimensional arrays; it will
ignored.

An array type entry has a DW_AT_type attribute describing the type of each elemen
the array.

If the amount of storage allocated to hold each element of an object of the given array
is different from the amount of storage that is normally allocated to hold an individ
object of the indicated element type, then the array type entry has a DW_AT_stride_
attribute, whose constant value represents the size in bits of each element of the arra

If the size of the entire array can be determined statically at compile time, the array
entry may have a DW_AT_byte_size attribute, whose constant value represents the
size in bytes of an instance of the array type.

Note that if the size of the array can be determined statically at compile time, this v
can usually be computed by multiplying the number of array elements by the size of
element.

Each array dimension is described by a debugging information entry with either the
DW_TAG_subrange_type or the tag DW_TAG_enumeration_type. These entries are
dren of the array type entry and are ordered to reflect the appearance of the dimensi
the source program (i.e. leftmost dimension first, next to leftmost second, and so on).

In languages, such as ANSI-C, in which there is no concept of a “multidimensional arr
an array of arrays may be represented by a debugging information entry for a multidim
sional array.

Structure, Union, and Class Type Entries 24

The languages C, C++, and Pascal, among others, allow the programmer to define
that are collections of related components. In C and C++, these collections are c
“structures.” In Pascal, they are called “records.” The components may be of diffe
types. The components are called “members” in C and C++, and “fields” in Pascal.

The components of these collections each exist in their own space in computer mem
The components of a C or C++ “union” all coexist in the same memory.

Table 24-12. Array Ordering

DW_ORD_col_major

DW_ORD_row_major
24-37

Compilation Systems Volume 2 (Concepts)

ord.”
value

+. A
ns”

with
pe,
pro-

as a
ame

eter-
con-
n, or

cture,
as a

ation
entry
m.

lass
++

clos-
truc-
lso

ithin
crib-

he
and

nced
pc
ve a

owns
rived

tag
Pascal and other languages have a “discriminated union,” also called a “variant rec
Here, selection of a number of alternative substructures (“variants”) is based on the
of a component that is not part of any of those substructures (the “discriminant”).

Among the languages discussed in this document, the “class” concept is unique to C+
class is similar to a structure. A C++ class or structure may have “member functio
which are subroutines that are within the scope of a class or structure.

General Structure Description 24

Structure, union, and class types are represented by debugging information entries
the tags DW_TAG_structure_type, DW_TAG_union_type and DW_TAG_class_ty
respectively. If a name has been given to the structure, union, or class in the source
gram, then the corresponding structure type, union type, or class type entry h
DW_AT_name attribute whose value is a null-terminated string containing the type n
as it appears in the source program.

If the size of an instance of the structure type, union type, or class type entry can be d
mined statically at compile time, the entry has a DW_AT_byte_size attribute whose
stant value is the number of bytes required to hold an instance of the structure, unio
class, and any padding bytes.

For C and C++, an incomplete structure, union or class type is represented by a stru
union or class entry that does not have a byte size attr ibute and that h
DW_AT_declaration attribute.

The members of a structure, union, or class are represented by debugging inform
entries that are owned by the corresponding structure type, union type, or class type
and appear in the same order as the corresponding declarations in the source progra

Data member declarations occurring within the declaration of a structure, union or c
type are considered to be “definitions” of those members, with the exception of C
“static” data members, whose definitions appear outside of the declaration of the en
ing structure, union or class type. Function member declarations appearing within a s
ture, union or class type declaration are definitions only if the body of the function a
appears within the type declaration.

If the definition for a given member of the structure, union or class does not appear w
the body of the declaration, that member also has a debugging information entry des
ing its definition. That entry will have a DW_AT_specification attribute referencing t
debugging entry owned by the body of the structure, union or class debugging entry
representing a non-defining declaration of the data or function member. The refere
entry will not have information about the location of that member (low and high
attributes for function members, location descriptions for data members) and will ha
DW_AT_declaration attribute.

Derived Classes and Structures 24

The class type or structure type entry that describes a derived class or structure
debugging information entries describing each of the classes or structures it is de
from, ordered as they were in the source program. Each such entry has the
DW_TAG_inheritance.
24-38

DWARF Debugging Information Format

bug-
re or
tion
g of
nning

lity
by the
as a

ility of
cla-

ay be
tion.

rmi-
luding

the

ebug-
nd

ging

orma-
as a
ber

ymous

f that

a
that
nion,
An inheritance entry has a DW_AT_type attribute whose value is a reference to the de
ging information entry describing the structure or class from which the parent structu
class of the inheritance entry is derived. It also has a DW_AT_data_member_loca
attribute, whose value is a location description describing the location of the beginnin
the data members contributed to the entire class by this subobject relative to the begi
address of the data members of the entire class.

An inheritance entry may have a DW_AT_accessibility attribute. If no accessibi
attribute is present, private access is assumed. If the structure or class referenced
inher itance entry serves as a virtual base class, the inheritance entry h
DW_AT_virtuality attribute.

In C++, a derived class may contain access declarations that change the accessib
individual class members from the overall accessibility specified by the inheritance de
ration. A single access declaration may refer to a set of overloaded names.

If a derived class or structure contains access declarations, each such declaration m
represented by a debugging information entry with the tag DW_TAG_access_declara
Each such entry is a child of the structure or class type entry.

An access declaration entry has a DW_AT_name attribute, whose value is a null-te
nated string representing the name used in the declaration in the source program, inc
any class or structure qualifiers.

An access declaration entry also has a DW_AT_accessibility attribute describing
declared accessibility of the named entities.

Friends 24

Each “friend” declared by a structure, union or class type may be represented by a d
ging information entry that is a child of the structure, union or class type entry; the frie
entry has the tag DW_TAG_friend.

A friend entry has a DW_AT_friend attribute, whose value is a reference to the debug
information entry describing the declaration of the friend.

Structure Data Member Entries 24

A data member (as opposed to a member function) is represented by a debugging inf
tion entry with the tag DW_TAG_member. The member entry for a named member h
DW_AT_name attribute whose value is a null-terminated string containing the mem
name as it appears in the source program. If the member entry describes a C++ anon
union, the name attribute is omitted or consists of a single zero byte.

The structure data member entry has a DW_AT_type attribute to denote the type o
member.

I f t h e me mb e r en t r y i s d ef i n ed i n t h e s t r u c t u r e o r c l a ss b od y, i t h a s
DW_AT_data_member_location attribute whose value is a location description
describes the location of that member relative to the base address of the structure, u
or class that most closely encloses the corresponding member declaration.
24-39

Compilation Systems Volume 2 (Concepts)

data
ession

em-

con-
ost
ct is

nif-
of

both

, m
(In the
e lit-
yout
f the
The addressing expression represented by the location description for a structure
member expects the base address of the structure data member to be on the expr
stack before being evaluated.

The location description for a data member of a union may be omitted, since all data m
bers of a union begin at the same address.

If the member entry describes a bit field, then that entry has the following attributes:

1. A DW_AT_byte_size attribute whose constant value is the number of bytes
that contain an instance of the bit field and any padding bits.

The byte size attribute may be omitted if the size of the object containing
the bit field can be inferred from the type attribute of the data member con-
taining the bit field.

2. A DW_AT_bit_offset attribute whose constant value is the number of bits
to the left of the leftmost (most significant) bit of the bit field value.

3. A DW_AT_bit_size attribute whose constant value is the number of bits
occupied by the bit field value.

The location description for a bit field calculates the address of an anonymous object
taining the bit field. The address is relative to the structure, union, or class that m
closely encloses the bit field declaration. The number of bytes in this anonymous obje
the value of the byte size attribute of the bit field. The offset (in bits) from the most sig
icant bit of the anonymous object to the most significant bit of the bit field is the value
the bit offset attribute.

For example, take one possible representation of the following structure definition in
big and little endian byte orders:

struct S {
int j:5;
int k:6;
int m:5;
int n:8;

};

In both cases, the location descriptions for the debugging information entries for j, k
and n describe the address of the same 32-bit word that contains all three members.
big-endian case, the location description addresses the most significant byte, in th
tle-endian case, the least significant). The following diagram shows the structure la
and lists the bit offsets for each case. The offsets are from the most significant bit o
object addressed by the location description.
24-40

DWARF Debugging Information Format

ma-
tain
ntries

s a

ose
ithin

and
tion,
fer-
tion

to
tion
eturn

ntly
class
does

tag
utes
Structure Member Function Entries 24

A member function is represented in the debugging information by a debugging infor
tion entry with the tag DW_TAG_subprogram. The member function entry may con
the same attributes and follows the same rules as non-member global subroutine e
(see “Subroutine and Entry Point Entries” on page 24-23).

If the member function entry describes a virtual function, then that entry ha
DW_AT_virtuality attribute.

An entry for a virtual function also has a DW_AT_vtable_elem_location attribute wh
value contains a location description yielding the address of the slot for the function w
the virtual function table for the enclosing class or structure.

If the member function entry represents the defining declaration of a member function
that definition appears outside of the body of the enclosing class or structure declara
the member function entry has a DW_AT_specification attribute, whose value is a re
ence to the debugging information entry representing the declaration of this func
member. The referenced entry will be a child of some class or structure type entry.

Member function entries containing the DW_AT_specification attribute do not need
duplicate information provided by the declaration entry referenced by the specifica
attribute. In particular, such entries do not need to contain attributes for the name or r
type of the function member whose definition they represent.

Class Template Instantiations 24

In C++ a class template is a generic definition of a class type that is instantiated differe
when an instance of the class is declared or defined. The generic description of the
may include both parameterized types and parameterized constant values. DWARF
not represent the generic template definition, but does represent each instantiation.

A class template instantiation is represented by a debugging information with the
DW_TAG_class_type. With four exceptions, such an entry will contain the same attrib

Bit Offsets:
j:0
k:5
m:11
n:16

Big-Endian

0

31 26 20 15 7 0
padj k m n

Bit Offsets:
j:27
k:21
m:16
n:8

Little-Endian

31 23 15 10 4 0
jn m k

0

pad
24-41

Compilation Systems Volume 2 (Concepts)

xplic-

tag

ebug-
of
ute

as a

ntry
hat

may
value
e for

tag
and have the same types of child entries as would an entry for a class type defined e
itly using the instantiation types and values. The exceptions are:

1. Each formal parameterized type declaration appearing in the template defi-
nition is represented by a debugging information entry with the tag
DW_TAG_template_type_parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the
formal type parameter as it appears in the source program. The template
type parameter entry also has a DW_AT_type attribute describing the
actual type by which the formal is replaced for this instantiation.

2. Each formal parameterized value declaration appearing in the templated
definition is represented by a debugging information entry with the tag
DW _TAG_ temp la te_ va lue_p ar ameter. Each such ent ry has a
DW_AT_name attribute, whose value is a null-terminated string containing
the name of the formal value parameter as it appears in the source program.
The template value parameter entry also has a DW_AT_type attribute
describing the type of the parameterized value. Finally, the template value
parameter entry has a DW_AT_const_value attribute, whose value is the
actual constant value of the value parameter for this instantiation as repre-
sented on the target architecture.

3. If the compiler has generated a special compilation unit to hold the tem-
plate instantiation and that compilation unit has a different name from the
compilation unit containing the template definition, the name attribute for
the debugging entry representing that compilation unit should be empty or
omitted.

4. If the class type entry representing the template instantiation or any of its
child entries contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not to any source gen-
erated artificially by the compiler.

Variant Entries 24

A variant part of a structure is represented by a debugging information entry with the
DW_TAG_variant_part and is owned by the corresponding structure type entry.

If the variant part has a discriminant, the discriminant is represented by a separate d
ging information entry which is a child of the variant part entry. This entry has the form
a structure data member entry. The variant part entry will have a DW_AT_discr attrib
whose value is a reference to the member entry for the discriminant.

If the variant part does not have a discriminant (tag field), the variant part entry h
DW_AT_type attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging information e
with the tag DW_TAG_variant and is a child of the variant part entry. The value t
selects a given variant may be represented in one of three ways. The variant entry
have a DW_AT_discr_value attribute whose value represents a single case label. The
of this attribute is encoded as an LEB128 number. The number is signed if the tag typ
the variant part containing this variant is a signed type. The number is unsigned if the
type is an unsigned type.
24-42

DWARF Debugging Information Format

lue
rms
fixed
sin-

er as
two
fol-
stant

list
ri-

ation
e cor-

val-

tag

corre-
l-ter-
gram.
mber

tag
the

literals

ated
ram.
ctual
Alternatively, the variant entry may contain a DW_AT_discr_list attribute, whose va
represents a list of discriminant values. This list is represented by any of the block fo
and may contain a mixture of case labels and label ranges. Each item on the list is pre
with a discriminant value descriptor that determines whether the list item represents a
gle label or a label range. A single case label is represented as an LEB128 numb
defined above for the DW_AT_discr_value attribute. A label range is represented by
LEB128 numbers, the low value of the range followed by the high value. Both values
low the rules for signedness just described. The discriminant value descriptor is a con
that may have one of the values given in Table 24-13.

If a variant entry has neither a DW_AT_discr_value attribute nor a DW_AT_discr_
attribute, or if it has a DW_AT_discr_list attribute with 0 size, the variant is a default va
ant.

The components selected by a particular variant are represented by debugging inform
entries owned by the corresponding variant entry and appear in the same order as th
responding declarations in the source program.

Enumeration Type Entries 24

An “enumeration type” is a scalar that can assume one of a fixed number of symbolic
ues.

An enumeration type is represented by a debugging information entry with the
DW_TAG_enumeration_type.

If a name has been given to the enumeration type in the source program, then the
sponding enumeration type entry has a DW_AT_name attribute whose value is a nul
minated string containing the enumeration type name as it appears in the source pro
These entries also have a DW_AT_byte_size attribute whose constant value is the nu
of bytes required to hold an instance of the enumeration.

Each enumeration literal is represented by a debugging information entry with the
DW_TAG_enumerator. Each such entry is a child of the enumeration type entry, and
enumerator entries appear in the same order as the declarations of the enumeration
in the source program.

Each enumerator entry has a DW_AT_name attribute, whose value is a null-termin
string containing the name of the enumeration literal as it appears in the source prog
Each enumerator entry also has a DW_AT_const_value attribute, whose value is the a
numeric value of the enumerator as represented on the target system.

Table 24-13. Discriminant Descriptor Values

DW_DSC_label

DW_DSC_range
24-43

Compilation Systems Volume 2 (Concepts)

e. In
turn
such
.

tag
urce

ibute
pears

type
f the
spond-
ents.
ment

tion

e a

value

t sep-
type.

ag
ram,

is a
ram.

oca-
ro-
Subroutine Type Entries 24

It is possible in C to declare pointers to subroutines that return a value of a specific typ
both ANSI C and C++, it is possible to declare pointers to subroutines that not only re
a value of a specific type, but accept only arguments of specific types. The type of
pointers would be described with a “pointer to” modifier applied to a user-defined type

A subroutine type is represented by a debugging information entry with the
DW_TAG_subroutine_type. If a name has been given to the subroutine type in the so
program, then the corresponding subroutine type entry has a DW_AT_name attr
whose value is a null-terminated string containing the subroutine type name as it ap
in the source program.

If the subroutine type describes a function that returns a value, then the subroutine
entry has a DW_AT_type attribute to denote the type returned by the subroutine. I
types of the arguments are necessary to describe the subroutine type, then the corre
ing subroutine type entry owns debugging information entries that describe the argum
These debugging information entries appear in the order that the corresponding argu
types appear in the source program.

In ANSI-C there is a difference between the types of functions declared using func
prototype style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may hav
DW_AT_prototyped attribute, whose value is a flag.

Each debugging information entry owned by a subroutine type entry has a tag whose
has one of two possible interpretations.

1. Each debugging information entry that is owned by a subroutine type entry
and that defines a single argument of a specific type has the tag
DW_TAG_formal_parameter.

The formal parameter entry has a type attribute to denote the type of the
corresponding formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a
debugging information entry owned by the subroutine type entry with the
tag DW_TAG_unspecified_parameters.

String Type Entries 24

A “string” is a sequence of characters that have specific semantics and operations tha
arate them from arrays of characters. Fortran is one of the languages that has a string

A string type is represented by a debugging information entry with the t
DW_TAG_string_type. If a name has been given to the string type in the source prog
then the corresponding string type entry has a DW_AT_name attribute whose value
null-terminated string containing the string type name as it appears in the source prog

The string type entry may have a DW_AT_string_length attribute whose value is a l
tion description yielding the location where the length of the string is stored in the p
24-44

DWARF Debugging Information Format

stant
y the
eved

size

type.

e. If
tribute
in the

e set.

pe is
ject
bute,

n rep-
resent.
.

tag
sub-

tring

ct of

ange
ual
_size
brange

n d
f the
unt

an the
epre-

nstant
gram. The string type entry may also have a DW_AT_byte_size attribute, whose con
value is the size in bytes of the data to be retrieved from the location referenced b
string length attribute. If no byte size attribute is present, the size of the data to be retri
is the same as the size of an address on the target machine.

If no string length attribute is present, the string type entry may have a DW_AT_byte_
attribute, whose constant value is the length in bytes of the string.

Set Entries 24

Pascal provides the concept of a “set,” which represents a group of values of ordinal

A set is represented by a debugging information entry with the tag DW_TAG_set_typ
a name has been given to the set type, then the set type entry has a DW_AT_name at
whose value is a null-terminated string containing the set type name as it appears
source program.

The set type entry has a DW_AT_type attribute to denote the type of an element of th

If the amount of storage allocated to hold each element of an object of the given set ty
different from the amount of storage that is normally allocated to hold an individual ob
of the indicated element type, then the set type entry has a DW_AT_byte_size attri
whose constant value represents the size in bytes of an instance of the set type.

Subrange Type Entries 24

Several languages support the concept of a “subrange” type object. These objects ca
resent a subset of the values that an object of the basis type for the subrange can rep
Subrange type entries may also be used to represent the bounds of array dimensions

A subrange type is represented by a debugging information entry with the
DW_TAG_subrange_type. If a name has been given to the subrange type, then the
range type entry has a DW_AT_name attribute whose value is a null-terminated s
containing the subrange type name as it appears in the source program.

The subrange entry may have a DW_AT_type attribute to describe the type of obje
whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of the given subr
type is different from the amount of storage that is normally allocated to hold an individ
object of the indicated element type, then the subrange type entry has a DW_AT_byte
attribute, whose constant value represents the size in bytes of each element of the su
type.

Th e su b r an g e en tr y may h ave t h e at t r i but es DW _ AT _ low e r_ b o u nd a
DW_AT_upper_bound to describe, respectively, the lower and upper bound values o
subrange. The DW_AT_upper_bound attribute may be replaced by a DW_AT_co
attribute, whose value describes the number of elements in the subrange rather th
value of the last element. If a bound or count value is described by a constant not r
sented in the program's address space and can be represented by one of the co
24-45

Compilation Systems Volume 2 (Concepts)

one
ibute

und

umed

al-

pe is
refer-
t, the
t). If
pe is
g the

achine.

.

to a

s a
ame

class
ntry
ging

may

is a
ure to

mon
type.
f the

st be
ven
The
pres-
shed
hould
whose
attribute forms, then the value of the lower or upper bound or count attribute may be
of the constant types. Otherwise, the value of the lower or upper bound or count attr
is a reference to a debugging information entry describing an object containing the bo
value or itself describing a constant value.

If either the lower or upper bound or count values are missing, the bound value is ass
to be a language-dependent default constant.

The default lower bound value for C or C++ is 0. For Fortran, it is 1. No other default v
ues are currently defined by DWARF.

If the subrange entry has no type attribute describing the basis type, the basis ty
assumed to be the same as the object described by the lower bound attribute (if it
ences an object). If there is no lower bound attribute, or it does not reference an objec
basis type is the type of the upper bound or count attribute (if it references an objec
there is no upper bound or count attribute or it does not reference an object, the ty
assumed to be the same type, in the source language of the compilation unit containin
subrange entry, as a signed integer with the same size as an address on the target m

Pointer to Member Type Entries 24

In C++, a pointer to a data or function member of a class or structure is a unique type

A debugging information entry representing the type of an object that is a pointer
structure or class member has the tag DW_TAG_ptr_to_member_type.

If the pointer to member type has a name, the pointer to member entry ha
DW_AT_name attribute, whose value is a null-terminated string containing the type n
as it appears in the source program.

The pointer to member entry has a DW_AT_type attribute to describe the type of the
or structure member to which objects of this type may point. The pointer to member e
also has a DW_AT_containing_type attribute, whose value is a reference to a debug
information entry for the class or structure to whose members objects of this type
point.

Finally, the pointer to member entry has a DW_AT_use_location attribute whose value
location description that computes the address of the member of the class or struct
which the pointer to member type entry can point.

The method used to find the address of a given member of a class or structure is com
to any instance of that class or structure and to any instance of the pointer or member
The method is thus associated with the type entry, rather than with each instance o
type.

The DW_AT_use_locationexpression, however, cannot be used on its own, but mu
used in conjunction with the location expressions for a particular object of the gi
pointer to member type and for a particular structure or class instance.
DW_AT_use_location attribute expects two values to be pushed onto the location ex
sion stack before the DW_AT_use_locationexpression is evaluated. The first value pu
should be the value of the pointer to member object itself. The second value pushed s
be the base address of the entire structure or union instance containing the member
address is being calculated.
24-46

DWARF Debugging Information Format

ag
me
rs in

on-

epre-

bug-

ject
ped.
find
RF

es at
ne, a
ickly
e text

arch
r dif-
So, for an expression like

object.*mbr_ptr

where mbr_ptr has some pointer to member type, a debugger should:

1. Push the value of mbr_ptr onto the location expression stack.

2. Push the base address of object onto the location expression stack.

3. Evaluate the DW_AT_use_locationexpression for the type of mbr_ptr.

File Type Entries 24

Some languages, such as Pascal, provide a first class data type to represent files.

A f i le type is represented by a debugging informat ion ent ry wi th the t
DW_TAG_file_type. If the file type has a name, the file type entry has a DW_AT_na
attribute, whose value is a null-terminated string containing the type name as it appea
the source program.

The file type entry has a DW_AT_type attribute describing the type of the objects c
tained in the file.

The file type entry also has a DW_AT_byte_size attribute, whose value is a constant r
senting the size in bytes of an instance of this file type.

Other Debugging Information 24

This section describes debugging information that is not represented in the form of de
ging information entries and is not contained within the .debug_info section.

Accelerated Access 24

A debugger frequently needs to find the debugging information for a program ob
defined outside of the compilation unit where the debugged program is currently stop
Sometimes it will know only the name of the object; sometimes only the address. To
the debugging information associated with a global object by name, using the DWA
debugging information entries alone, a debugger would need to run through all entri
the highest scope within each compilation unit. For lookup by address, for a subrouti
debugger can use the low and high pc attributes of the compilation unit entries to qu
narrow down the search, but these attributes only cover the range of addresses for th
associated with a compilation unit entry.

To find the debugging information associated with a data object, an exhaustive se
would be needed. Furthermore, any search through debugging information entries fo
24-47

Compilation Systems Volume 2 (Concepts)

s of

ARF
the
on-

lled
cribing
ebug-
ader
gth

n of
f the
wed

egin-
for-
ent-
ced

ture,
name
the

alled
cribing
unit.

riptor
ome

hat
ferent compilation units within a large program would potentially require the acces
many memory pages, probably hurting debugger performance.

To make lookups of program objects by name or by address faster, a producer of DW
information may provide two different types of tables containing information about
debugging information entries owned by a particular compilation unit entry in a more c
densed format.

Lookup by Name 24

For lookup by name, a table is maintained in a separate object file section ca
.debug_pubnames. The table consists of sets of variable length entries, each set des
the names of global objects whose definitions or declarations are represented by d
ging information entries owned by a single compilation unit. Each set begins with a he
containing four values: the total length of the entries for that set, not including the len
field itself, a version number, the offset from the beginning of the .debug_info sectio
the compilation unit entry referenced by the set and the size in bytes of the contents o
.debug_info section generated to represent that compilation unit. This header is follo
by a variable number of offset/name pairs. Each pair consists of the offset from the b
ning of the compilation unit entry corresponding to the current set to the debugging in
mation entry for the given object, followed by a null-terminated character string repres
ing the name of the object as given by the DW_AT_name attribute of the referen
debugging entry. Each set of names is terminated by zero.

In the case of the name of a static data member or function member of a C++ struc
class or union, the name presented in the .debug_pubnames section is not the simple
given by the DW_AT_name attribute of the referenced debugging entry, but rather
fully class qualified name of the data or function member.

Lookup by Address 24

For lookup by address, a table is maintained in a separate object file section c
.debug_aranges. The table consists of sets of variable length entries, each set des
the portion of the program's address space that is covered by a single compilation
Each set begins with a header containing five values:

1. The total length of the entries for that set, not including the length field
itself.

2. A version number.

3. The offset from the beginning of the .debug_info section of the compilation
unit entry referenced by the set.

4. The size in bytes of an address on the target architecture. For segmented
addressing, this is the size of the offset portion of the address.

5. The size in bytes of a segment descriptor on the target architecture. If the
target system uses a flat address space, this value is 0.

This header is followed by a variable number of address range descriptors. Each desc
is a pair consisting of the beginning address of a range of text or data covered by s
entry owned by the corresponding compilation unit entry, followed by the length of t
24-48

DWARF Debugging Information Format

g the
ug-

files
r the
ssible
state-
ning

s of

or-
f an

tion

tion
itted

es.
tion
for a
lan-
ment
om-
for

s that

mber
a

pre-
range. A particular set is terminated by an entry consisting of two zeroes. By scannin
table, a debugger can quickly decide which compilation unit to look in to find the deb
ging information for an object that has a given address.

Line Number Information 24

A source-level debugger will need to know how to associate statements in the source
with the corresponding machine instruction addresses in the executable object o
shared objects used by that executable object. Such an association would make it po
for the debugger user to specify machine instruction addresses in terms of source
ments. This would be done by specifying the line number and the source file contai
the statement. The debugger can also use this information to display locations in term
the source files and to single step from statement to statement.

As mentioned in “Compilation Unit Entries” on page 24-20, above, the line number inf
mation generated for a compilation unit is represented in the .debug_line section o
object file and is referenced by a corresponding compilation unit debugging informa
entry in the .debug_info section.

If space were not a consideration, the information provided in the .debug_line sec
could be represented as a large matrix, with one row for each instruction in the em
object code. The matrix would have columns for:

• the source file name

• the source line number

• the source column number

• whether this instruction is the beginning of a source statement

• whether this instruction is the beginning of a basic block.

Such a matrix, however, would be impractically large. We shrink it with two techniqu
First, we delete from the matrix each row whose file, line and source column informa
is identical with that of its predecessors. Second, we design a byte-coded language
state machine and store a stream of bytes in the object file instead of the matrix. This
guage can be much more compact than the matrix. When a consumer of the state
information executes, it must “run” the state machine to generate the matrix for each c
pilation unit it is interested in. The concept of an encoded matrix also leaves room
expansion. In the future, columns can be added to the matrix to encode other thing
are related to individual instruction addresses.

Definitions 24

The following terms are used in the description of the line number information format:

state machine The hypothetical machine used by a consumer of the line nu
information to expand the byte-coded instruction stream into
matrix of line number information.

statement program A series of byte-coded line number information instructions re
senting one compilation unit.
24-49

Compilation Systems Volume 2 (Concepts)

uc-
re

pila-
ns

gth

truc-

r-

re
in

ine.

rce
is
of

ing

ing

first

ers is:
basic block A sequence of instructions that is entered only at the first instr
tion and exited only at the last instruction. We define a procedu
invocation to be an exit from a basic block.

sequence A series of contiguous target machine instructions. One com
tion unit may emit multiple sequences (that is, not all instructio
within a compilation unit are assumed to be contiguous).

sbyte Small signed integer.

ubyte Small unsigned integer.

uhalf Medium unsigned integer.

sword Large signed integer.

uword Large unsigned integer.

LEB128 Variable length signed and unsigned data. See “Variable Len
Data” on page 24-71.

State Machine Registers 24

The statement information state machine has the following registers:

address The program-counter value corresponding to a machine ins
tion generated by the compiler.

file An unsigned integer indicating the identity of the source file co
responding to a machine instruction.

line An unsigned integer indicating a source line number. Lines a
numbered beginning at 1. The compiler may emit the value 0
cases where an instruction cannot be attributed to any source l

column An unsigned integer indicating a column number within a sou
line. Columns are numbered beginning at 1. The value 0
reserved to indicate that a statement begins at the “left edge”
the line.

is_stmt A boolean indicating that the current instruction is the beginn
of a statement.

basic_block A boolean indicating that the current instruction is the beginn
of a basic block.

end_sequence A boolean indicating that the current address is that of the
byte after the end of a sequence of target machine instructions.

At the beginning of each sequence within a statement program, the state of the regist

address 0
file 1
line 1
column 0
24-50

DWARF Debugging Information Format

ries:

f the

zero
r
the
ro-

ach

next
tes
e

the
ation
mpi-
pro-

ining

urce
ent
is_stmt determined by default_is_stmt in the
statement program prologue

basic_block "false"
end_sequence "false"

Statement Program Instructions 24

The state machine instructions in a statement program belong to one of three catego

special opcodes These have a ubyte opcode field and no arguments. Most o
instructions in a statement program are special opcodes.

standard opcodes These have a ubyte opcode field which may be followed by
o r mo r e L EB 1 2 8 a rg u m e n ts (ex c ep t f o
DW_LNS_fixed_advance_pc, see below). The opcode implies
number of arguments and their meanings, but the statement p
gram prologue also specifies the number of arguments for e
standard opcode.

extended opcodes These have a multiple byte format. The first byte is zero; the
bytes are an unsigned LEB128 integer giving the number of by
in the instruction itself (does not include the first zero byte or th
size). The remaining bytes are the instruction itself.

The Statement Program Prologue 24

The optimal encoding of line number information depends to a certain degree upon
architecture of the target machine. The statement program prologue provides inform
used by consumers in decoding the statement program instructions for a particular co
lation unit and also provides information used throughout the rest of the statement
gram. The statement program for each compilation unit begins with a prologue conta
the following fields in order:

1. total_length(uword)
The size in bytes of the statement information for this compilation unit (not
including the total_length field itself).

2. version(uhalf)
Version identifier for the statement information format.

3. prologue_length(uword)
The number of bytes following the prologue_length field to the beginning
of the first byte of the statement program itself.

4. minimum_instruction_length(ubyte)
The size in bytes of the smallest target machine instruction. Statement pro-
gram opcodes that alter the address register first multiply their operands by
this value.

5. default_is_stmt(ubyte)
The initial value of the is_stmt register.

A simple code generator that emits machine instructions in the order implied by the so
program would set this to “true,” and every entry in the matrix would represent a statem
24-51

Compilation Systems Volume 2 (Concepts)

spe-
ndary.
boundary. A pipeline scheduling code generator would set this to “false” and emit a
cific statement program opcode for each instruction that represented a statement bou

6. line_base(sbyte)
This parameter affects the meaning of the special opcodes. See below.

7. line_range(ubyte)
This parameter affects the meaning of the special opcodes. See below.

8. opcode_base(ubyte)
The number assigned to the first special opcode.

9. standard_opcode_lengths(array of ubyte)
This array specifies the number of LEB128 operands for each of the stan-
dard opcodes. The first element of the array corresponds to the opcode
whose value is 1, and the last element corresponds to the opcode whose
value is opcode_base - 1. By increasing opcode_base, and adding elements
to this array, new standard opcodes can be added, while allowing consum-
ers who do not know about these new opcodes to be able to skip them.

10. include_directories(sequence of path names)
The sequence contains an entry for each path that was searched for
included source files in this compilation. (The paths include those directo-
ries specified explicitly by the user for the compiler to search and those the
compiler searches without explicit direction). Each path entry is either a
full path name or is relative to the current directory of the compilation. The
current directory of the compilation is understood to be the first entry and
is not explicitly represented. Each entry is a null-terminated string contain-
ing a full path name. The last entry is followed by a single null byte.

11. file_names(sequence of file entries)
The sequence contains an entry for each source file that contributed to the
statement information for this compilation unit or is used in other contexts,
such as in a declaration coordinate or a macro file inclusion. Each entry has
a null-terminated string containing the file name, an unsigned LEB128
number representing the directory index of the directory in which the file
was found, an unsigned LEB128 number representing the time of last mod-
ification for the file and an unsigned LEB128 number representing the
length in bytes of the file. A compiler may choose to emit LEB128(0) for
the time and length fields to indicate that this information is not available.
The last entry is followed by a single null byte.

The directory index represents an entry in the include_directories section.
The index is LEB128(0) if the file was found in the current directory of the
compilation, LEB128(1) if it was found in the first directory in the
include_directories section, and so on. The directory index is ignored for
file names that represent full path names.

The statement program assigns numbers to each of the file entries in order,
beginning with 1, and uses those numbers instead of file names in the file
register.

A compiler may generate a single null byte for the file names field and
define file names using the extended opcode DEFINE_FILE.
24-52

DWARF Debugging Information Format

one
truc-
ase in

ly in

uses
asons
m 10
s, the
ecial
t archi-
eaves
dd a
been
rs, it

pcode
add

state-
ich a
ge of

he line
of the
se +
nt, a
calcu-

field
The Statement Program 24

As stated before, the goal of a statement program is to build a matrix representing
compilation unit, which may have produced multiple sequences of target-machine ins
tions. Within a sequence, addresses may only increase. (Line numbers may decre
cases of pipeline scheduling.)

Special Opcodes 24

Each 1-byte special opcode has the following effect on the state machine:

1. Add a signed integer to the line register.

2. Multiply an unsigned integer by theminimum_instruction_length field of
the statement program prologue and add the result to the address register.

3. Append a row to the matrix using the current values of the state machine
registers.

4. Set the basic_block register to “false.”

All of the special opcodes do those same four things; they differ from one another on
what values they add to thelineandaddressregisters.

Instead of assigning a fixed meaning to each special opcode, the statement program
several parameters in the prologue to configure the instruction set. There are two re
for this. First, although the opcode space available for special opcodes now ranges fro
through 255, the lower bound may increase if one adds new standard opcodes. Thu
opcode_base field of the statement program prologue gives the value of the first sp
opcode. Second, the best choice of special-opcode meanings depends on the targe
tecture. For example, for a RISC machine where the compiler-generated code interl
instructions from different lines to schedule the pipeline, it is important to be able to a
negative value to the line register to express the fact that a later instruction may have
emitted for an earlier source line. For a machine where pipeline scheduling never occu
is advantageous to trade away the ability to decrease the line register (a standard o
provides an alternate way to decrease the line number) in return for the ability to
larger positive values to the address register. To permit this variety of strategies, the
ment program prologue defines a line_base field that specifies the minimum value wh
special opcode can add to the line register and a line_range field that defines the ran
values it can add to the line register.

A special opcode value is chosen based on the amount that needs to be added to t
and address registers. The maximum line increment for a special opcode is the value
line_base field in the prologue, plus the value of the line_range field, minus 1 (line ba
line range - 1). If the desired line increment is greater than the maximum line increme
standard opcode must be used instead of a special opcode. The “address advance” is
lated by dividing the desired address increment by the minimum_instruction_length
from the prologue. The special opcode is then calculated using the following formula:

opcode = (desired line increment - line_base) +
(line_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used instead.
24-53

Compilation Systems Volume 2 (Concepts)

mount
. The
code

4. This
x have
f the
in the

ltiple

may
value
To decode a special opcode, subtract the opcode_base from the opcode itself. The a
to increment the address register is the adjusted opcode divided by the line_range
amount to increment the line register is the line_base plus the result of the adjusted op
modulo the line_range. That is,

line increment = line_base + (adjusted opcode % line_range)

As an example, suppose that the opcode_base is 16,line_baseis -1 and line_range is
means that we can use a special opcode whenever two successive rows in the matri
source line numbers differing by any value within the range [-1, 2] (and, because o
limited number of opcodes available, when the difference between addresses is with
range [0, 59]).

The opcode mapping would be:

There is no requirement that the expression255 - line_base + 1be an integral mu
ofline_range.

Standard Opcodes 24

There are currently 9 standard ubyte opcodes. In the future additional ubyte opcodes
be defined by setting the opcode_base field in the statement program prologue to a
greater than 10.

1. DW_LNS_copy
Takes no arguments.Append a row to the matrix using the current values of
the state-machine registers. Then set the basic_block register to “false.”

2. DW_LNS_advance_pc
Takes a single unsigned LEB128 operand, mult ipl ies it by the
minimum_instruction_length field of the prologue, and adds the result to
the address register of the state machine.

Opcode Line advance Address advance

16 -1 0

17 0 0

18 1 0

19 2 0

20 -1 1

21 0 1

22 1 1

23 2 1

253 0 59

254 1 59

255 2 59
24-54

DWARF Debugging Information Format

ngth
3. DW_LNS_advance_line
Takes a single signed LEB128 operand and adds that value to the line regis-
ter of the state machine.

4. DW_LNS_set_file
Takes a single unsigned LEB128 operand and stores it in the file register of
the state machine.

5. DW_LNS_set_column
Takes a single unsigned LEB128 operand and stores it in the column regis-
ter of the state machine.

6. DW_LNS_negate_stmt
Takes no arguments.Set the is_stmt register of the state machine to the log-
ical negation of its current value.

7. DW_LNS_set_basic_block
Takes no arguments.Set the basic_block register of the state machine to
“true.”

8. DW_LNS_const_add_pc
Takes no arguments.Add to the address register of the state machine the
address increment value corresponding to special opcode 255.

The motivation for DW_LNS_const_add_pc is this: when the statement
program needs to advance the address by a small amount, it can use a sin-
gle special opcode, which occupies a single byte.When it needs to advance
the address by up to twice the range of the last special opcode, it can use
DW_LNS_const_add_pc followed by a special opcode, for a total of two
bytes. Only if it needs to advance the address by more than twice that range
will it need to use both DW_LNS_advance_pc and a special opcode,
requiring three or more bytes.

9. DW_LNS_fixed_advance_pc
Takes a single uhalf operand. Add to the address register of the state
machine the value of the (unencoded) operand. This is the only extended
opcode that takes an argument that is not a variable length number.

The motivation for DW_LNS_fixed_advance_pc is this: existing assem-
blers cannot emit DW_LNS_advance_pc or special opcodes because they
cannot encode LEB128 numbers or judge when the computation of a spe-
cial opcode overflows and requires the use of DW_LNS_advance_pc.
Such assemblers, however, can use DW_LNS_fixed_advance_pcinstead,
sacrificing compression.

Extended Opcodes 24

There are three extended opcodes currently defined. The first byte following the le
field of the encoding for each contains a sub-opcode.

1. DW_LNE_end_sequence
Set the end_sequence register of the state machine to “true” and append a
row to the matrix using the current values of the state-machine registers.
Then reset the registers to the initial values specified above.

Ev er y s ta t em e n t p r o g r a m s eq u e n c e m u st en d w i t h a
24-55

Compilation Systems Volume 2 (Concepts)

tate-

gram
rce

fficult
The
ition
table

r a
The
fo”

nds.
ode
DW_LNE_end_sequence instruction which creates a row whose address is
that of the byte after the last target machine instruction of the sequence.

2. DW_LNE_set_address
Takes a single relocatable address as an operand. The size of the operand is
the size appropriate to hold an address on the target machine. Set the
address register to the value given by the relocatable address.

All of the other statement program opcodes that affect the address register
add a delta to it. This instruction stores a relocatable value into it instead.

3. DW_LNE_define_file
Takes 4 arguments. The first is a null terminated string containing a source
file name. The second is an unsigned LEB128 number representing the
directory index of the directory in which the file was found. The third is an
unsigned LEB128 number representing the time of last modification of the
file. The fourth is an unsigned LEB128 number representing the length in
bytes of the file. The time and length fields may contain LEB128(0) if the
information is not available.

The directory index represents an entry in the include_directories section of
the statement program prologue. The index is LEB128(0) if the file was
found in the current directory of the compilation, LEB128(1) if it was
found in the first directory in the include_directories section, and so on.
The directory index is ignored for file names that represent full path names.

The files are numbered, starting at 1, in the order in which they appear; the
n am e s i n t h e p r o l o g u e c o me b e f o r e n a me s d e f i n e d by th e
DW_LNE_define_fileinstruction. These numbers are used in the file regis-
ter of the state machine.

“Appendix 3 -- Statement Program Examples” on page 24-99 gives some sample s
ment programs.

Macro Information 24

Some languages, such as C and C++, provide a way to replace text in the source pro
with macros defined either in the source file itself, or in another file included by the sou
file. Because these macros are not themselves defined in the target language, it is di
to represent their definitions using the standard language constructs of DWARF.
debugging information therefore reflects the state of the source after the macro defin
has been expanded, rather than as the programmer wrote it. The macro information
provides a way of preserving the original source in the debugging information.

As described in “Compilation Unit Entries” on page 24-20, the macro information fo
given compilation unit is represented in the .debug_macinfo section of an object file.
macro information for each compilation unit is represented as a series of “macin
entries. Each macinfo entry consists of a “type code” and up to two additional opera
The series of entries for a given compilation unit ends with an entry containing a type c
of 0.
24-56

DWARF Debugging Information Format

ot

he
g or

of a
e

of
edi-
case
r-

fini-

pear
, no
formal
mas.)

inates

ar-
t.

des
rred.

a file
dex
ec-
Macinfo Types 24

The valid macinfo types are as follows:

DW_MACINFO_define A macro definition.

DW_MACINFO_undef A macro un-definition.

DW_MACINFO_start_file The start of a new source file inclusion.

DW_MACINFO_end_file The end of the current source file inclusion.

DW_MACINFO_vendor_ext Vendor specific macro information directives that do n
fit into one of the standard categories.

Define and Undefine Entries 24

All DW_MACINFO_define and DW_MACINFO_undef entries have two operands. T
first operand encodes the line number of the source line on which the relevant definin
undefining pre-processor directives appeared.

The second operand consists of a null-terminated character string. In the case
DW_MACINFO_undef entry, the value of this string will be simply the name of th
pre-processor symbol which was undefined at the indicated source line.

In the case of a DW_MACINFO_define entry, the value of this string will be the name
the pre-processor symbol that was defined at the indicated source line, followed imm
ately by the macro formal parameter list including the surrounding parentheses (in the
of a function-like macro) followed by the definition string for the macro. If there is no fo
mal parameter list, then the name of the defined macro is followed directly by its de
tion string.

In the case of a function-like macro definition, no whitespace characters should ap
between the name of the defined macro and the following left parenthesis. Also
whitespace characters should appear between successive formal parameters in the
parameter list. (Successive formal parameters should, however, be separated by com
Also, exactly one space character should separate the right parenthesis which term
the formal parameter list and the following definition string.

In the case of a “normal” (i.e. non-function-like) macro definition, exactly one space ch
acter should separate the name of the defined macro from the following definition tex

Start File Entries 24

Each DW_MACINFO_start_file entry also has two operands. The first operand enco
the line number of the source line on which the inclusion pre-processor directive occu

The second operand encodes a source file name index. This index corresponds to
number in the statement information table for the relevant compilation unit. This in
indicates (indirectly) the name of the file which is being included by the inclusion dir
tive on the indicated source line.
24-57

Compilation Systems Volume 2 (Concepts)

the

sec-
per-

t it

d
ing
ource

is
the

this
e

h e
file

or
pro-
ch

via a
ssor
ons
ine

pi-
m-

uld

er as
com-
n
pro-
End File Entries 24

A DW_MACINFO_end_file entry has no operands. The presence of the entry marks
end of the current source file inclusion.

Vendor Extension Entries 24

A DW_MACINFO_vendor_ext entry has two operands. The first is a constant. The
ond is a null-terminated character string. The meaning and/or significance of these o
ands is intentionally left undefined by this specification.

A consumer must be able to totally ignore all DW_MACINFO_vendor_ext entries tha
does not understand.

Base Source Entries 24

In addi t ion to producing a matched pair of DW_MACINFO_star t_ f i le an
DW_MACINFO_end_file entries for each inclusion directive actually processed dur
compilation, a producer should generate such a matched pair also for the “base” s
file submitted to the compiler for compilation. If the base source file for a compilation
submitted to the compiler via some means other than via a named disk file (e.g. via
standard input stream on a UNIX system) then the compiler should still produce
matched pair of DW_MACINFO_start_file and DW_MACINFO_end_file entries for th
b a se s o u r c e f i l e , h ow eve r, t h e f i l e n am e i n d i c a t e d (in d i r e c t l y) b y t
DW_MACINFO_start_file entry of the pair should reference a statement information
name entry consisting of a null string.

Macinfo Entries for Command Line Options 24

In addition to producing DW_MACINFO_define and DW_MACINFO_undef entries f
each of the define and undefine directives processed during compilation, the DWARF
ducer should generate a DW_MACINFO_define or DW_MACINFO_undef entry for ea
pre-processor symbol which is defined or undefined by some means other than
define or undefine directive within the compiled source text. In particular, pre-proce
symbol definitions and un-definitions which occur as a result of command line opti
(when invoking the compiler) should be represented by their own DW_MACINFO_def
and DW_MACINFO_undef entries.

All such DW_MACINFO_define and DW_MACINFO_undef entries representing com
lation options should appear before the first DW_MACINFO_start_file entry for that co
pilation unit and should encode the value 0 in their line number operands.

General Rules and Restrictions 24

All macinfo entries within a.debug_macinfo section for a given compilation unit sho
appear in the same order in which the directives were processed by the compiler.

All macinfo entries representing command line options should appear in the same ord
the relevant command line options were given to the compiler. In the case where the
piler itself implicitly supplies one or more macro definitions or un-definitions in additio
to those which may be specified on the command line, macinfo entries should also be
24-58

DWARF Debugging Information Format

also
ions

ation

ishes
rame
forms
s the

ogue
.

the
of
n it
e pre-
rrent
tack
state

te the
t way
duced for these implicit definitions and un-definitions, and these entries should
appear in the proper order relative to each other and to any definitions or undefinit
given explicitly by the user on the command line.

Call Frame Information 24

Debuggers often need to be able to view and modify the state of any subroutine activ
that is on the call stack. An activation consists of:

• A code location that is within the subroutine. This location is either the
place where the program stopped when the debugger got control (e.g. a
breakpoint), or is a place where a subroutine made a call or was interrupted
by an asynchronous event (e.g. a signal).

• An area of memory that is allocated on a stack called a “call frame.” The
call frame is identified by an address on the stack. We refer to this address
as the Canonical Frame Address or CFA.

• A set of registers that are in use by the subroutine at the code location.

Typically, a set of registers are designated to be preserved across a call. If a callee w
to use such a register, it saves the value that the register had at entry time in its call f
and restores it on exit. The code that allocates space on the call frame stack and per
the save operation is called the subroutine's prologue, and the code that perform
restore operation and deallocates the frame is called its epilogue. Typically, the prol
code is physically at the beginning of a subroutine and the epilogue code is at the end

To be able to view or modify an activation that is not on the top of the call frame stack,
debugger must “virtually unwind” the stack of activations until it finds the activation
interest. A debugger unwinds a stack in steps. Starting with the current activatio
restores any registers that were preserved by the current activation and computes th
decessor's CFA and code location. This has the logical effect of returning from the cu
subroutine to its predecessor. We say that the debugger virtually unwinds the s
because it preserves enough information to be able to “rewind” the stack back to the
it was in before it attempted to unwind it.

The unwinding operation needs to know where registers are saved and how to compu
predecessor's CFA and code location. When considering an architecture-independen
of encoding this information one has to consider a number of special things.

• Prologue and epilogue code is not always in distinct blocks at the begin-
ning and end of a subroutine. It is common to duplicate the epilogue code
at the site of each return from the code. Sometimes a compiler breaks up
the register save/unsave operations and moves them into the body of the
subroutine to just where they are needed.

• Compilers use different ways to manage the call frame. Sometimes they
use a frame pointer register, sometimes not.

• The algorithm to compute the CFA changes as you progress through the
prologue and epilogue code. (By definition, the CFA value does not
change.)

• Some subroutines have no call frame.
24-59

Compilation Systems Volume 2 (Concepts)

for
basis
ither
pro-
ter.”

e:

ram.
rtual
the

her to

s that
r regis-
aug-
been

me.

(By
not

+N

ster
• Sometimes a register is saved in another register that by convention does
not need to be saved.

• Some architectures have special instructions that perform some or all of the
register management in one instruction, leaving special information on the
stack that indicates how registers are saved.

• Some architectures treat return address values specially. For example, in
one architecture, the call instruction guarantees that the low order two bits
will be zero and the return instruction ignores those bits. This leaves two
bits of storage that are available to other uses that must be treated specially.

Structure of Call Frame Information 24

DWARF supports virtual unwinding by defining an architecture independent basis
recording how procedures save and restore registers throughout their lifetimes. This
must be augmented on some machines with specific information that is defined by e
an architecture specific ABI authoring committee, a hardware vendor, or a compiler
ducer. The body defining a specific augmentation is referred to below as the “augmen

Abstractly, this mechanism describes a very large table that has the following structur

LOC CFA R0 R1 ... RN
L0
L1
...
LN

The first column indicates an address for every location that contains code in a prog
(In shared objects, this is an object-relative offset.) The remaining columns contain vi
unwinding rules that are associated with the indicated location. The first column of
rules defines the CFA rule which is a register and a signed offset that are added toget
compute the CFA value.

The remaining columns are labeled by register number. This includes some register
have special designation on some architectures such as the PC and the stack pointe
ter. (The actual mapping of registers for a particular architecture is performed by the
menter.) The register columns contain rules that describe whether a given register has
saved and the rule to find the value for the register in the previous frame.

The register rules are:

undefined A register that has this rule has no value in the previous fra
(By convention, it is not preserved by a callee.)

same value This register has not been modified from the previous frame.
convention, it is preserved by the callee, but the callee has
modified it.)

offset(N) The previous value of this register is saved at the address CFA
where CFA is the current CFA value and N is a signed offset.

register(R) The previous value of this register is stored in another regi
numbered R.
24-60

DWARF Debugging Information Format

g-

the
e can
nning

me.
me in
).
ed in
ns”

me
CIE
architectural The rule is defined externally to this specification by the au
menter.

This table would be extremely large if actually constructed as described. Most of
entries at any point in the table are identical to the ones above them. The whole tabl
be represented quite compactly by recording just the differences starting at the begi
address of each subroutine in the program.

The virtual unwind information is encoded in a self-contained section called.debug_fra
Entries in a.debug_frame section are aligned on an addressing unit boundary and co
two forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE
Sizes of data objects used in the encoding of the .debug_frame section are describ
terms of the same data definitions used for the line number information (see “Definitio
on page 24-49).

A Common Information Entry holds information that is shared among many Fra
Descriptors. There is at least one CIE in every non-empty.debug_frame section. A
contains the following fields, in order:

1. length
A uword constant that gives the number of bytes of the CIE structure, not
including the length field, itself (length mod<addressing unit size>== 0).

2. CIE_id
A uword constant that is used to distinguish CIEs from FDEs.

3. version
A ubyte version number. This number is specific to the call frame informa-
tion and is independent of the DWARF version number.

4. augmentation
A null terminated string that identifies the augmentation to this CIE or to
the FDEs that use it. If a reader encounters an augmentation string that is
u n ex p e ct e d , t h e n o n l y t h e f o l l ow i n g f i e l d s c a n b e r e ad :
CIE:length,CIE_id,version,augmentation; FDE:length, CIE_pointer,
initial_location, address_range. If there is no augmentation, this value is a
zero byte.

5. code_alignment_factor
An unsigned LEB128 constant that is factored out of all advance location
instructions (see below).

6. data_alignment_factor
A signed LEB128 constant that is factored out of all offset instructions (see
below.)

7. return_address_register
A ubyte constant that indicates which column in the rule table represents
the return address of the function. Note that this column might not corre-
spond to an actual machine register.

8. initial_instructions
A sequence of rules that are interpreted to create the initial setting of each
column in the table.
24-61

Compilation Systems Volume 2 (Concepts)

ands
. The
9. padding
Enough DW_CFA_nop instructions to make the size of this entry match the
length value above.

An FDE contains the following fields, in order:

1. length
A uword constant that gives the number of bytes of the header and instruc-
tion stream for this function (not including the length field itself) (length
mod<addressing unit size>==0).

2. CIE_pointer
A uword constant offset into the .debug_frame section that denotes the CIE
that is associated with this FDE.

3. initial_location
An addressing-unit sized constant indicating the address of the first loca-
tion associated with this table entry.

4. address_range
An addressing unit sized constant indicating the number of bytes of pro-
gram instructions described by this entry.

5. instructions
A sequence of table defining instructions that are described below.

Call Frame Instructions 24

Each call frame instruction is defined to take 0 or more operands. Some of the oper
may be encoded as part of the opcode (see “Call Frame Information” on page 24-83)
instructions are as follows:

1. DW_CFA_advance_loctakes a single argument that represents a constant
delta. The required action is to create a new table row with a location value
that is computed by taking the current entry's location value and adding
(delta *code_alignment_factor). All other values in the new row are ini-
tially identical to the current row.

2. DW_CFA_offset takes two arguments: an unsigned LEB128 constant rep-
resenting a factored offset and a register number. The required action is to
change the rule for the register indicated by the register number to be an
offset(N) rule with a value of (N = factored offset *data_alignment_factor).

3. DW_CFA_restore takes a single argument that represents a register num-
ber. The required action is to change the rule for the indicated register to
the rule assigned it by the initial_instructions in the CIE.

4. DW_CFA_set_loc takes a single argument that represents an address. The
required action is to create a new table row using the specified address as
the location. All other values in the new row are initially identical to the
current row. The new location value should always be greater than the cur-
rent one.

5. DW_CFA_advance_loc1takes a single ubyte argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.
24-62

DWARF Debugging Information Format
6. DW_CFA_advance_loc2takes a single uhalf argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.

7. DW_CFA_advance_loc4takes a single uword argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.

8. DW_CFA_offset_extended takes two unsigned LEB128 arguments repre-
senting a register number and a factored offset. This instruction is identical
to DW_CFA_offset except for the encoding and size of the register argu-
ment.

9. DW_CFA_restore_extended takes a single unsigned LEB128 argument
that represents a register number. This instruction is identical to
DW_CFA_restore except for the encoding and size of the register argu-
ment.

10. DW_CFA_undefined takes a single unsigned LEB128 argument that repre-
sents a register number. The required action is to set the rule for the speci-
fied register to “undefined.”

11. DW_CFA_same_value takes a single unsigned LEB128 argument that rep-
resents a register number. The required action is to set the rule for the spec-
ified register to “same value.”

12. DW_CFA_register takes two unsigned LEB128 arguments representing
register numbers. The required action is to set the rule for the first register
to be the same as the rule for the second register.

13. DW_CFA_remember_state

14. DW_CFA_restore_state
These instructions define a stack of information. Encountering the
DW_CFA_remember_stateinstruction means to save the rules for every
r eg i s t er o n t h e cu r r en t r ow o n t h e s t ack . E nc o u nt er i n g t he
DW_CFA_restore_state instruction means to pop the set of rules off the
stack and place them in the current row. (This operation is useful for com-
pilers that move epilogue code into the body of a function.)

15. DW_CFA_def_cfa takes two unsigned LEB128 arguments representing a
register number and an offset. The required action is to define the current
CFA rule to use the provided register and offset.

16. DW_CFA_def_cfa_register takes a single unsigned LEB128 argument rep-
resenting a register number. The required action is to define the current
CFA rule to use the provided register (but to keep the old offset).

17. DW_CFA_def_cfa_offset takes a single unsigned LEB128 argument repre-
senting an offset. The required action is to define the current CFA rule to
use the provided offset (but to keep the old register).

18. DW_CFA_nop has no arguments and no required actions. It is used as pad-
ding to make the FDE an appropriate size.
24-63

Compilation Systems Volume 2 (Concepts)

ugh
con-

2.

tself,

r use
ames,
d call

ecific
P,
le,
s in
ndor
rent

ames,
fix
so as
Call Frame Instruction Usage 24

To determine the virtual unwind rule set for a given location (L1), one searches thro
the FDE headers looking at theinitial_locationandaddress_range values to see if L1 is
tained in the FDE. If so, then:

1. Initialize a register set by reading theinitial_instructionsfield of the associ-
ated CIE.

2. Read and process the FDE’s instruction sequence until a
DW_CFA_advance_loc, DW_CFA_set_loc, or the end of the instruction
stream is encountered.

3. If a DW_CFA_advance_loc or DW_CFA_set_loc instruction was encoun-
tered, then compute a new location value (L2). If L1>= L2 then process the
instruction and go back to step 2.

4. The end of the instruction stream can be thought of as a DW_CFA_set_loc(
initial_location + address_range) instruction. Unless the FDE is
ill-formed, L1 should be less than L2 at this point.

The rules in the register set now apply to location L1.

For an example, see “Appendix 5 -- Call Frame Information Examples” on page 24-10

Data Representation 24

This section describes the binary representation of the debugging information entry i
of the attribute types and of other fundamental elements described above.

Vendor Extensibility 24

To reserve a portion of the DWARF name space and ranges of enumeration values fo
for vendor specific extensions, special labels are reserved for tag names, attribute n
base type encodings, location operations, language names, calling conventions an
frame instructions.

The labels denoting the beginning and end of the reserved value range for vendor sp
extensions consist of the appropriate prefix (DW_TAG DW_AT, DW_ATE, DW_O
DW_LANG, or DW_CFA respectively) followed by _lo_user or _hi_user. For examp
for entry tags, the special labels are DW_TAG_lo_user and DW_TAG_hi_user. Value
the range between prefix _lo_user and prefix _hi_user inclusive, are reserved for ve
specific extensions. Vendors may use values in this range without conflicting with cur
or future system-defined values. All other values are reserved for use by the system.

Vendor defined tags, attributes, base type encodings, location atoms, language n
calling conventions and call frame instructions, conventionally use the form pre
_vendor_id_name, where vendor_id is some identifying character sequence chosen
to avoid conflicts with other vendors.
24-64

DWARF Debugging Information Format

rs that

the
tions,
repre-
ese
hould

irtual
ject are

pen-
o the
-time

red

is
of a
the
do
form
To ensure that extensions added by one vendor may be safely ignored by consume
do not understand those extensions, the following rules should be followed:

1. New attributes should be added in such a way that a debugger may recog-
nize the format of a new attribute value without knowing the content of that
attribute value.

2. The semantics of any new attributes should not alter the semantics of previ-
ously existing attributes.

3. The semantics of any new tags should not conflict with the semantics of
previously existing tags.

Reserved Error Values 24

As a convenience for consumers of DWARF information, the value 0 is reserved in
encodings for attribute names, attribute forms, base type encodings, location opera
languages, statement program opcodes, macro information entries and tag names to
sent an error condition or unknown value. DWARF does not specify names for th
reserved values, since they do not represent valid encodings for the given type and s
not appear in DWARF debugging information.

Executable Objects and Shared Objects 24

The relocated addresses in the debugging information for an executable object are v
addresses and the relocated addresses in the debugging information for a shared ob
offsets relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position inde
dent. Virtual addresses in a shared object may be calculated by adding the offset t
base address at which the object was attached. This offset is available in the run
linker's data structures.

File Constraints 24

All debugging information entries in a relocatable object file, executable object or sha
object are required to be physically contiguous.

Format of Debugging Information 24

For each compilation unit compiled with a DWARF Version 2 producer, a contribution
made to the .debug_info section of the object file. Each such contribution consists
compilation unit header followed by a series of debugging information entries. Unlike
information encoding for DWARF Version 1, Version 2 debugging information entries
not themselves contain the debugging information entry tag or the attribute name and
24-65

Compilation Systems Volume 2 (Concepts)

code
tly by
s the
om-
ion

ce a
the
ss the

mpi-

ing
ard

ning
ation
e is

ake it
iation
tion
encodings for each attribute. Instead, each debugging information entry begins with a
that represents an entry in a separate abbreviations table. This code is followed direc
a series of attribute values. The appropriate entry in the abbreviations table guide
interpretation of the information contained directly in the .debug_info section. Each c
pilation unit is associated with a particular abbreviation table, but multiple compilat
units may share the same table.

This encoding was based on the observation that typical DWARF producers produ
very limited number of different types of debugging information entries. By extracting
common information from those entries into a separate table, we are able to compre
generated information.

Compilation Unit Header 24

The header for the series of debugging information entries contributed by a single co
lation unit consists of the following information:

1. A 4-byte unsigned integer representing the length of the .debug_info con-
tribution for that compilation unit, not including the length field itself.

2. A 2-byte unsigned integer representing the version of the DWARF informa-
tion for that compilation unit. For DWARF Version 2, the value in this field
is 2.

3. A 4-byte unsigned offset into the .debug_abbrev section. This offset associ-
ates the compilation unit with a particular set of debugging information
entry abbreviations.

4. A 1-byte unsigned integer representing the size in bytes of an address on
the target architecture. If the system uses segmented addressing, this value
represents the size of the offset portion of an address.

The compilation unit header does not replace the DW_TAG_compile_unit debugg
information entry. It is additional information that is represented outside the stand
DWARF tag/attributes format.

Debugging Information Entry 24

Each debugging information entry begins with an unsigned LEB128 number contai
the abbreviation code for the entry. This code represents an entry within the abbrevi
table associated with the compilation unit containing this entry. The abbreviation cod
followed by a series of attribute values.

On some architectures, there are alignment constraints on section boundaries. To m
easier to pad debugging information sections to satisfy such constraints, the abbrev
code 0 is reserved. Debugging information entries consisting of only the 0 abbrevia
code are considered null entries.
24-66

DWARF Debugging Information Format

sec-
the

tion
m of
ber
of a

evia-
e is
dings

nfor-
is

tion
w-
ed-

the
for
of

ated

ute
pre-
enting
ng 0

the
ber

utes

for

ic-

rms

target
ble
Abbreviation Tables 24

The abbreviation tables for all compilation units are contained in a separate object file
tion called.debug_abbrev. As mentioned before, multiple compilation units may share
same abbreviation table.

The abbreviation table for a single compilation unit consists of a series of abbrevia
declarations. Each declaration specifies the tag and attributes for a particular for
debugging information entry. Each declaration begins with an unsigned LEB128 num
representing the abbreviation code itself. It is this code that appears at the beginning
debugging information entry in the .debug_info section. As described above, the abbr
tion code 0 is reserved for null debugging information entries. The abbreviation cod
followed by another unsigned LEB128 number that encodes the entry's tag. The enco
for the tag names are given in Table 24-14 and Table 24-15.

Following the tag encoding is a 1-byte value that determines whether a debugging i
mation entry using this abbreviation has child entries or not. If the value
DW_CHILDREN_yes, the next physically succeeding entry of any debugging informa
entry using this abbreviation is the first child of the prior entry. If the 1-byte value follo
ing the abbreviation's tag encoding is DW_CHILDREN_no, the next physically succe
ing entry of any debugging information entry using this abbreviation is a sibling of
prior entry. (Either the first child or sibling entries may be null entries). The encodings
the child determination byte are given in Table 24-16. (As mentioned in “Relationship
Debugging Information Entries” on page 24-7, each chain of sibling entries is termin
by a null entry).

Finally, the child encoding is followed by a series of attribute specifications. Each attrib
specification consists of two parts. The first part is an unsigned LEB128 number re
senting the attribute's name. The second part is an unsigned LEB128 number repres
the attribute's form. The series of attribute specifications ends with an entry containi
for the name and 0 for the form.

The attribute form DW_FORM_indirect is a special case. For attributes with this form,
attribute value itself in the .debug_info section begins with an unsigned LEB128 num
that represents its form. This allows producers to choose forms for particular attrib
dynamically, without having to add a new entry to the abbreviation table.

The abbreviations for a given compilation unit end with an entry consisting of a 0 byte
the abbreviation code.

See “Appendix 2 -- Organization of Debugging Information” on page 24-96 for a dep
tion of the organization of the debugging information.

Attribute Encodings 24

The encodings for the attribute names are given in Table 24-17 and Table 24-18.

The attribute form governs how the value of the attribute is encoded. The possible fo
may belong to one of the following form classes:

address Represented as an object of appropriate size to hold an address on the
machine (DW_FORM_addr). This address is relocatable in a relocata
object file and is relocated in an executable file or shared object.
24-67

Compilation Systems Volume 2 (Concepts)

0
n-

tes
block Blocks come in four forms. The first consists of a 1-byte length followed by
to 255 contiguous information bytes (DW_FORM_block1). The second co
sists of a 2-byte length followed by 0 to 65,535 contiguous information by
(DW_FORM_block2). The third consists of a 4-byte

Table 24-14. Tag Encodings (Part 1)

Tag name Value

DW_TAG_array_type 0x01

DW_TAG_class_type 0x02

DW_TAG_entry_point 0x03

DW_TAG_enumeration_type 0x04

DW_TAG_formal_parameter 0x05

DW_TAG_imported_declaration 0x08

DW_TAG_label 0x0a

DW_TAG_lexical_block 0x0b

DW_TAG_member 0x0d

DW_TAG_pointer_type 0x0f

DW_TAG_reference_type 0x10

DW_TAG_compile_unit 0x11

DW_TAG_string_type 0x12

DW_TAG_structure_type 0x13

DW_TAG_subroutine_type 0x15

DW_TAG_typedef 0x16

DW_TAG_union_type 0x17

DW_TAG_unspecified_parameters 0x18

DW_TAG_variant 0x19

DW_TAG_common_block 0x1a

DW_TAG_common_inclusion 0x1b

DW_TAG_inheritance 0x1c

DW_TAG_inlined_subroutine 0x1d

DW_TAG_module 0x1e

DW_TAG_ptr_to_member_type 0x1f

DW_TAG_set_type 0x20

DW_TAG_subrange_type 0x21

DW_TAG_with_stmt 0x22

DW_TAG_access_declaration 0x23
24-68

DWARF Debugging Information Format

es
ed
s,
ay

other

spec-
d

length fo l lowed by 0 to 4,294,967,295 cont iguous information byt
(DW_FORM_block4). The fourth consists of an unsigned LEB128 length follow
by the number of bytes specified by the length (DW_FORM_block). In all form
the length is the number of information bytes that follow. The information bytes m
contain any mixture of relocated (or relocatable) addresses, references to
debugging information entries or data bytes.

constant There are six forms of constants: one, two, four and eight byte values (re
tively, DW_FORM_data1, DW_FORM_data2, DW_FORM_data4, an
DW_FORM_data8). There are also variable

DW_TAG_base_type 0x24

DW_TAG_catch_block 0x25

DW_TAG_const_type 0x26

DW_TAG_constant 0x27

DW_TAG_enumerator 0x28

DW_TAG_file_type 0x29

Table 24-15. Tag Encodings (Part 2)

Tag name Value

DW_TAG_friend 0x2a

DW_TAG_namelist 0x2b

DW_TAG_namelist_item 0x2c

DW_TAG_packed_type 0x2d

DW_TAG_subprogram 0x2e

DW_TAG_template_type_param 0x2f

DW_TAG_template_value_param 0x30

DW_TAG_thrown_type 0x31

SDW_TAG_try_block 0x32

DW_TAG_variant_part 0x33

DW_TAG_variable 0x34

DW_TAG_volatile_type 0x35

DW_TAG_lo_user 0x4080

DW_TAG_hi_user 0xffff

Table 24-14. Tag Encodings (Part 1) (Cont.)

Tag name Value
24-69

Compilation Systems Volume 2 (Concepts)

Both
gth

ag
s a

byte
r-

nit.
yte
4,
fset

tion
in a
of

rchi-
cut-

of

ma-
length constant data forms encoded using LEB128 numbers (see below).
signed (DW_FORM_sdata) and unsigned (DW_FORM_udata) variable len
constants are available.

flag A flag is represented as a single byte of data (DW_FORM_flag). If the fl
has value zero, it indicates the absence of the attribute. If the flag ha
non-zero value, it indicates the presence of the attribute.

reference There are two types of reference. The first is an offset relative to the first
of the compilation unit header for the compilation unit containing the refe
ence. The offset must refer to an entry within that same compilation u
There are five forms for this type of reference: one, two, four and eight b
offsets (respectively, DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref
and DW_FORM_ref8). There are is also an unsigned variable length of
encoded using LEB128 numbers (DW_FORM_ref_udata).

The second type of reference is the address of any debugging informa
entry within the same executable or shared object; it may refer to an entry
different compilation unit from the unit containing the reference. This type
reference (DW_FORM_ref_addr) is the size of an address on the target a
tecture; it is relocatable in a relocatable object file and relocated in an exe
able file or shared object.

The use of compilation unit relative references will reduce the number
link-time relocations and so speed up linking.

The use of address-type references allows for the commonization of infor
tion, such as types, across compilation units.

Table 24-16. Child Determination Encodings

Child determination name Value

DW_CHILDREN_no 0

DW_CHILDREN_yes 1

Table 24-17. Attribute Encodings (Part 1)

Attribute name Value Classes

DW_AT_sibling 0x01 reference

DW_AT_location 0x02 block, constant

DW_AT_name 0x03 string

DW_AT_ordering 0x09 constant

DW_AT_byte_size 0x0b constant

DW_AT_bit_offset 0x0c constant

DW_AT_bit_size 0x0d constant

DW_AT_stmt_list 0x10 constant
24-70

DWARF Debugging Information Format

yte.
try

o a
ile

oded
ing
itude.
string A string is a sequence of contiguous non-null bytes followed by one null b
A string may be represented immediately in the debugging information en
itself (DW_FORM_string), or may be represented as a 4-byte offset int
str ing table contained in the .debug_str section of the object f
(DW_FORM_strp).

The form encodings are listed in Table 24-19.

Variable Length Data 24

The special constant data forms DW_FORM_sdata and DW_FORM_udata are enc
using “Little Endian Base 128” (LEB128) numbers. LEB128 is a scheme for encod
integers densely that exploits the assumption that most integers are small in magn

DW_AT_low_pc 0x11 address

DW_AT_high_pc 0x12 address

DW_AT_language 0x13 constant

DW_AT_discr 0x15 reference

DW_AT_discr_value 0x16 block

DW_AT_visibility 0x17 constant

DW_AT_import 0x18 reference

DW_AT_string_length 0x19 block, constant

DW_AT_common_reference 0x1a reference

DW_AT_comp_dir 0x1b string

DW_AT_const_value 0x1c string, constant, block

DW_AT_containing_type 0x1d reference

DW_AT_default_value 0x1e reference

DW_AT_inline 0x20 constant

DW_AT_is_optional 0x21 flag

DW_AT_lower_bound 0x22 constant, reference

DW_AT_producer 0x25 string

DW_AT_prototyped 0x27 flag

DW_AT_return_addr 0x2a block, constant

DW_AT_start_scope 0x2c constant

DW_AT_stride_size 0x2e constant

DW_AT_upper_bound 0x2f constant, reference

Table 24-17. Attribute Encodings (Part 1) (Cont.)

Attribute name Value Classes
24-71

Compilation Systems Volume 2 (Concepts)

s data
ing
es or
(This encoding is equally suitable whether the target machine architecture represent
in big-endian or little-endian order. It is “little endian” only in the sense that it avoids us
space to represent the “big” end of an unsigned integer, when the big end is all zero
sign extension bits).

Table 24-18. Attribute Encodings (Part 2)

Attribute name Value Classes

DW_AT_abstract_origin 0x31 reference

DW_AT_accessibility 0x32 constant

DW_AT_address_class 0x33 constant

DW_AT_artificial 0x34 flag

DW_AT_base_types 0x35 reference

DW_AT_calling_convention 0x36 constant

DW_AT_count 0x37 constant, reference

DW_AT_data_member_location 0x38 block, reference

DW_AT_decl_column 0x39 constant

DW_AT_decl_file 0x3a constant

DW_AT_decl_line 0x3b constant

DW_AT_declaration 0x3c flag

DW_AT_discr_list 0x3d block

DW_AT_encoding 0x3e constant

DW_AT_external 0x3f flag

DW_AT_frame_base 0x40 block, constant

DW_AT_friend 0x41 reference

DW_AT_identifier_case 0x42 constant

DW_AT_macro_info 0x43 constant

DW_AT_namelist_item 0x44 block

DW_AT_priority 0x45 reference

DW_AT_segment 0x46 block, constant

DW_AT_specification 0x47 reference

DW_AT_static_link 0x48 block, constant

DW_AT_type 0x49 reference

DW_AT_use_location 0x4a block, constant

DW_AT_variable_parameter 0x4b flag

DW_AT_virtuality 0x4c constant
24-72

DWARF Debugging Information Format

low
o the
ard
high
byte

ase is

ilar,
, but
The
t it as
DW_FORM_udata(unsigned LEB128) numbers are encoded as follows: start at the
order end of an unsigned integer and chop it into 7-bit chunks. Place each chunk int
low order 7 bits of a byte. Typically, several of the high order bytes will be zero; disc
them. Emit the remaining bytes in a stream, starting with the low order byte; set the
order bit on each byte except the last emitted byte. The high bit of zero on the last
indicates to the decoder that it has encountered the last byte.

The integer zero is a special case, consisting of a single zero byte.

Table 24-20 gives some examples of DW_FORM_udata numbers. The0x80in each c
the high order bit of the byte, indicating that an additional byte follows:

The encoding for DW_FORM_sdata (signed, 2s complement LEB128) numbers is sim
except that the criterion for discarding high order bytes is not whether they are zero
whether they consist entirely of sign extension bits. Consider the 32-bit integer-2.
three high level bytes of the number are sign extension, thus LEB128 would represen
a single byte

DW_AT_vtable_elem_location 0x4d block, reference

DW_AT_lo_user 0x2000 --

DW_AT_hi_user 0x3fff --

Table 24-19. Attribute Form Encodings

Form name Value Class

DW_FORM_addr 0x01 address

DW_FORM_blocK2 0x03 block

DW_FORM_blocK4 0x04 block

DW_FORM_data2 0x05 constant

DW_FORM_data4 0x06 constant

DW_FORM_data8 0x07 constant

DW_FORM_string 0x08 string

DW_FORM_block 0x09 block

DW_FORM_block1 0x0a block

DW_FORM_data1 0x0b constant

DW_FORM_flag 0x0c flag

DW_FORM_sdata 0x0d constant

DW_FORM_strp 0x0e string

DW_FORM_udata 0x0f constant

Table 24-18. Attribute Encodings (Part 2) (Cont.)

Attribute name Value Classes
24-73

Compilation Systems Volume 2 (Concepts)

the
ates
pe of

lgo-

t of
pera-
ion.
loca-
containing the low order 7 bits, with the high order bit cleared to indicate the end of
byte stream. Note that there is nothing within the LEB128 representation that indic
whether an encoded number is signed or unsigned. The decoder must know what ty
number to expect.

Table 24-21 gives some examples of DW_FORM_sdata numbers.

“Appendix 4 -- Encoding and decoding variable length data” on page 24-100 gives a
rithms for encoding and decoding these forms.

Location Descriptions 24

Location Expressions 24

A location expression is stored in a block of contiguous bytes. The bytes form a se
operations. Each location operation has a 1-byte code that identifies that operation. O
tions can be followed by one or more bytes of additional data. All operations in a locat
expression are concatenated from left to right. The encodings for the operations in a
tion expression are described in Table 24-22 and Table 24-23.

DW_FORM_ref_addr 0x10 reference

DW_FORM_ref1 0x11 reference

DW_FORM_ref2 0x12 reference

DW_FORM_ref4 0x13 reference

DW_FORM_ref8 0x14 reference

DW_FORM_ref_udata 0x15 reference

DW_FORM_indirect 0x16 (se e “A b b r ev i a t i o n
Tables” on page 24-67)

Table 24-20. Examples of unsigned LEB128 Encodings

Number First byte Second byte

2 2 --

127 127 --

128 0+0x80 1

129 1+0x80 1

130 2+0x80 1

12857 57+0x80 100

Table 24-19. Attribute Form Encodings (Cont.)

Form name Value Class
24-74

DWARF Debugging Information Format
Table 24-21. Examples of signed LEB128 Encodings

Number First byte Second byte

2 2 --

-2 0x7e --

127 127+0x80 0

-127 1+0x80 0x7f

128 0+0x80 1

-128 0+0x80 0x7f

129 1+0x80 1

-129 0x7f+0x80 0x7e

Table 24-22. Location Operation Encodings (Part 1)

Operation Code No. of Operands Notes

DW_OP_addr 0x03 1 constant address
(size targ et spe-
cific)

DW_OP_deref 0x06 0

DW_OP_const1u 0x08 1 1-byte constant

DW_OP_const1s 0x09 1 1-byte constant

DW_OP_const2u 0x0a 1 2-byte constant

DW_OP_const2s 0x0b 1 2-byte constant

DW_OP_const4u 0x0c 1 4-byte constant

DW_OP_const4s 0x0d 1 4-byte constant

DW_OP_const8u 0x0e 1 8-byte constant

DW_OP_const8s 0x0f 1 8-byte constant

DW_OP_constu 0x10 1 ULEB128 constant

DW_OP_consts 0x11 1 SLEB128 constant

DW_OP_dup 0X12 0

DW_OP_drop 0X13 0

DW_OP_over 0X14 0

DW_OP_pick 0X15 1 1-byte stack index

DW_OP_swap 0X16 0

DW_OP_rot 0X17 0
24-75

Compilation Systems Volume 2 (Concepts)
DW_OP_xderef 0x18 0

DW_OP_abs 0X19 0

DW_OP_and 0X1a 0

DW_OP_div 0X1b 0

DW_OP_minus 0x1c 0

DW_OP_mod 0X1d 0

DW_OP_mul 0X1e 0

DW_OP_neg 0X1f 0

DW_OP_not 0X20 0

DW_OP_or 0X21 0

DW_OP_plus 0X22 0

DW_OP_plus_uconst 0x23 1 ULEB128 addend

DW_OP_shl 0X24 0

DW_OP_shr 0X25 0

DW_OP_shra 0X26 0

Table 24-23. Location Operation Encodings (Part 2)

Operation Code
No. of
Operands

Notes

DW_OP_xor 0X27 0

DW_OP_skip 0X2f 1 signed 2-byte constant

DW_OP_bra 0X28 1 signed 2-byte constant

DW_OP_eq 0X29 0

DW_OP_ge 0X2A 0

DW_OP_gt 0X2B 0

DW_OP_le 0X2C 0

DW_OP_lt 0X2D 0

DW_OP_ne 0X2E 0

DW_OP_lit0 0X30 0 l i t e r a l s 0 . . 3 1 =
(DW_OP_LIT0|literal)

DW_OP_lit1 0X31 0

...

DW_OP_lit31 0x4f 0

Table 24-22. Location Operation Encodings (Part 1) (Cont.)

Operation Code No. of Operands Notes
24-76

DWARF Debugging Information Format

gth,
the

dr on

n in
Location Lists 24

Each entry in a location list consists of two relative addresses followed by a 2-byte len
followed by a block of contiguous bytes. The length specifies the number of bytes in
block that follows. The two addresses are the same size as used by DW_FORM_ad
the target machine.

Base Type Encodings 24

The values of the constants used in the DW_AT_encoding attribute are give
Table 24-24.

DW_OP_reg0 0X50 0 reg 0..31 = (DW_OP_REG0|reg-
num)

DW_OP_reg1 0X51 0

...

DW_OP_reg31 0x6f 0

DW_OP_breg0 0x70 1 SLEB128 offset

DW_OP_breg1 0x71 1 b as e r eg 0 . . 3 1 =
(DW_OP_BREG0|regnum)

...

DW_OP_breg31 0x8f 1

DW_OP_regx 0X90 1 ULEB128 register

DW_OP_fbreg 0x91 1 SLEB128 offset

DW_OP_bregx 0x92 2 ULEB128 register followed by
SLEB128 offset

DW_OP_piece 0x93 1 U LE B 1 2 8 s i ze o f p i e ce
addressed

DW_OP_deref_size 0X94 1 1-byte size of data retrieved

DW_OP_xderef_size 0X95 1 1-byte size of data retrieved

DW_OP_nop 0X96 0

DW_OP_lo_user 0xe0

DW_OP_hi_user 0xff

Table 24-23. Location Operation Encodings (Part 2) (Cont.)

Operation Code
No. of
Operands

Notes
24-77

Compilation Systems Volume 2 (Concepts)

n in

in
Accessibility Codes 24

The encodings of the constants used in the DW_AT_accessibility attribute are give
Table 24-25.

Visibility Codes 24

The encodings of the constants used in the DW_AT_visibility attribute are given
Table 24-26.

Table 24-24. Base Type Encoding Values

Base type encoding name Value

DW_ATE_address 0x1

DW_ATE_boolean 0x2

DW_ATE_complex_float 0x3

DW_ATE_float 0x4

DW_ATE_signed 0x5

DW_ATE_signed_char 0x6

DW_ATE_unsigned 0x7

DW_ATE_unsigned_char 0x8

DW_ATE_lo_user 0x80

DW_ATE_hi_user 0xff

Table 24-25. Accessibility Encodings

Accessibility code name Value

DW_ACCESS_public 1

DW_ACCESS_protected 2

DW_ACCESS_private 3

Table 24-26. Visibility Encodings

Visibility code name Value

DW_VIS_local 1

DW_VIS_exported 2

DW_VIS_qualified 3
24-78

DWARF Debugging Information Format

in

? and
orted in
Virtuality Codes 24

The encodings of the constants used in the DW_AT_virtuality attribute are given
Table 24-27.

Source Languages 24

The encodings for source languages are given in Table 24-28. Names marked with ??
their associated values are reserved, but the languages they represent are not supp
DWARF Version 2.

Address Class Encodings 24

The value of the common address class encoding DW_ADDR_none is 0.

Table 24-27. Virtuality Encodings

Virtuality code name Value

DW_VIRTUALITY_none 0

DW_VIRTUALITY_virtual 1

DW_VIRTUALITY_pure_virtual 2

Table 24-28. Language Encodings

Language name Value

DW_LANG_C89 0x0001

DW_LANG_C 0x0002

DW_LANG_Ada83??? 0x0003

DW_LANG_C_plus_plus 0x0004

DW_LANG_Cobol74??? 0x0005

DW_LANG_Cobol85??? 0x0006

DW_LANG_Fortran77 0x0007

DW_LANG_Fortran90 0x0008

SDW_LANG_Pascal83 0x0009S

DW_LANG_Modula2 0x000a

DW_LANG_lo_user 0x8000

DW_LANG_hi_user 0xffff
24-79

Compilation Systems Volume 2 (Concepts)

en in

n in

in
Identifier Case 24

The encodings of the constants used in the DW_AT_identifier_case attribute are giv
Table 24-29.

Calling Convention Encodings 24

The encodings for the values of the DW_AT_calling_convention attribute are give
Table 24-30.

Inline Codes 24

The encodings of the constants used in the DW_AT_inline attribute are given
Table 24-31.

Table 24-29. Identifier Case Encodings

Identifier Case Name Value

DW_ID_case_sensitive 0

DW_ID_up_case 1

DW_ID_down_case 2

DW_ID_case_insensitive 3

Table 24-30. Calling Convention Encodings

Calling Convention Name Value

DW_CC_normal 0x1

DW_CC_program 0x2

DW_CC_nocall 0x3

DW_CC_lo_user 0x40

DW_CC_hi_user 0xff

Table 24-31. Inline Encodings

Inline Code Name Value

DW_INL_not_inlined 0
24-80

DWARF Debugging Information Format

nts.

ection
t of
n-
fo
_info
es of
rmi-
.

Array Ordering 24

The encodings for the values of the order attributes of arrays is given in Table 24-32.

Discriminant Lists 24

The descriptors used in the DW_AT_dicsr_list attribute are encoded as 1-byte consta

The defined values are presented in Table 24-33.

Name Lookup Table 24

Each set of entries in the table of global names contained in the .debug_pubnames s
begins with a header consisting of: a 4-byte length containing the length of the se
entries for this compilation unit, not including the length field itself; a 1-byte version ide
tifier containing the value 2 for DWARF Version 2; a 4-byte offset into the .debug_in
section; and a 4-byte length containing the size in bytes of the contents of the .debug
section generated to represent this compilation unit. This header is followed by a seri
tuples. Each tuple consists of a 4-byte offset followed by a string of non-null bytes te
nated by one null byte. Each set is terminated by a 4-byte word containing the value 0

DW_INL_inlined 1

DW_INL_declared_not_inlined 2

DW_INL_declared_inlined 3

Table 24-32. Ordering Encodings

Ordering name Value

DW_ORD_row_major 0

DW_ORD_col_major 1

Table 24-33. Discriminant Descriptor Encodings

Descriptor Name Value

DW_DSC_label 0

DW_DSC_range 1

Table 24-31. Inline Encodings (Cont.)

Inline Code Name Value
24-81

Compilation Systems Volume 2 (Concepts)

section
t of
n-
fo

offset
-byte
stem.

and a
tuple

a sin-
to the
or the

re as

The
oded
he
Address Range Table 24

Each set of entries in the table of address ranges contained in the .debug_aranges
begins with a header consisting of: a 4-byte length containing the length of the se
entries for this compilation unit, not including the length field itself; a 2-byte version ide
tifier containing the value 2 for DWARF Version 2; a 4-byte offset into the .debug_in
section; a 1-byte unsigned integer containing the size in bytes of an address (or the
portion of an address for segmented addressing) on the target system; and a 1
unsigned integer containing the size in bytes of a segment descriptor on the target sy
This header is followed by a series of tuples. Each tuple consists of an address
length, each in the size appropriate for an address on the target architecture. The first
following the header in each set begins at an address that is a multiple of the size of
gle tuple (that is, twice the size of an address). The header is padded, if necessary,
appropriate boundary. Each set of tuples is terminated by a 0 for the address and 0 f
length.

Line Number Information 24

The sizes of the integers used in the line number and call frame information sections a
follows:

sbyte Signed 1-byte value.

ubyte Unsigned 1-byte value.

uhalf Unsigned 2-byte value.

sword Signed 4-byte value.

uword Unsigned 4-byte value.

The version number in the statement program prologue is 2 for DWARF Version 2.
boolean values “true” and “false” used by the statement information program are enc
as a single byte containing the value 0 for “false,” and a non-zero value for “true.” T
encodings for the pre-defined standard opcodes are given in Table 24-34.

Table 24-34. Standard Opcode Encodings

Opcode Name Value

DW_LNS_copy 1

DW_LNS_advance_pc 2

DW_LNS_advance_line 3

DW_LNS_set_file 4

DW_LNS_set_column 5

DW_LNS_negate_stmt 6
24-82

DWARF Debugging Information Format

ction
in an
The

n

oded
or
The encodings for the pre-defined extended opcodes are given in Table 24-35.

Macro Information 24

The source line numbers and source file indices encoded in the macro information se
are represented as uns igned LEB12 8 numbers as are the cons tants
DW_MACINFO_vend_ext entry. The macinfo type is encoded as a single byte.
encodings are given in Table 24-36.

Call Frame Information 24

The value of the CIE id in the CIE header is0xffffffff. The initial value of the CIE versio
number is 1.

Call frame instructions are encoded in one or more bytes. The primary opcode is enc
in the high order two bits of the first byte (that is, opcode = byte>>6). An operand

DW_LNS_set_basic_block 7

DW_LNS_const_add_pc 8

DW_LNS_fixed_advance_pc 9

Table 24-35. Extended Opcode Encodings

Opcode Name Value

DW_LNE_end_sequence 1

DW_LNE_set_address 2

DW_LNE_define_file 3

Table 24-36. Macinfo Type Encodings

Macinfo Type Name Value

DW_MACINFO_define 1

DW_MACINFO_undef 2

DW_MACINFO_start_file 3

DW_MACINFO_end_file 4

DW_MACINFO_vend_ext 255

Table 24-34. Standard Opcode Encodings (Cont.)

Opcode Name Value
24-83

Compilation Systems Volume 2 (Concepts)

oded

rev,
cinfo,
not
and
te a

s, the
extended opcode may be encoded in the low order 6 bits. Additional operands are enc
in subsequent bytes.

The instructions and their encodings are presented in Table 24-37.

Dependencies 24

The debugging information in this format is intended to exist in the .debug_abb
.debug_aranges, .debug_frame, .debug_info, .debug_line, .debug_loc, .debug_ma
.debug_pubnames and .debug_str sections of an object file. The information is
word-aligned, so the assembler must provide a way for the compiler to produce 2-byte
4-byte quantities without alignment restrictions, and the linker must be able to reloca
4-byte reference at an arbitrary alignment. In target architectures with 64-bit addresse
assembler and linker must similarly handle 8-byte references at arbitrary alignments.

Table 24-37. Call Frame Instruction Encodings

Instruction
High
2 Bits

Low 6 Bits Operand 1 Operand 2

DW_CFA_advance_loc 0x1 delta

DW_CFA_offset 0x2 register ULEB128offset

DW_CFA_restore 0x3 register

DW_CFA_set_loc 0 0x01 address

DW_CFA_advance_loc1 0 0x02 1-byte delta

DW_CFA_advance_loc2 0 0x03 2-byte delta

DW_CFA_advance_loc4 0 0x04 4-byte delta

DW_CFA_offset_extended 0 0x05 ULEB128 register ULEB128 offset

DW_CFA_restore_extended 0 0x06 ULEB128 register

DW_CFA_undefined 0 0x07 ULEB128 register

DW_CFA_same_value 0 0x08 ULEB128 register

DW_CFA_register 0 0x09 ULEB128 register ULEB128 register

DW_CFA_remember_state 0 0x0a

DW_CFA_restore_state 0 0x0b

DW_CFA_def_cfa 0 0x0c ULEB128 register ULEB128 offset

DW_CFA_def_cfa_register 0 0x0d ULEB128 register

DW_CFA_def_cfa_offset 0 0x0e ULEB128 offset

DW_CFA_nop 0 0

DW_CFA_lo_user 0 0x1c

DW_CFA_hi_user 0 0x3f
24-84

DWARF Debugging Information Format

r a
nta-
will

it
on 2

o-
ux.

gging
tion
free

e to a
itly
r in a
con-
Future Directions 24

The UNIX International Programming Languages SIG is working on a specification fo
set of interfaces for reading DWARF information, that will hide changes in the represe
tion of that information from its consumers. It is hoped that using these interfaces
make the transition from DWARF Version 1 to Version 2 much simpler and will make
easier for a single consumer to support objects using either Version 1 or Versi
DWARF.

A draft of this specification is available for review from UNIX International. The Pr
gramming Languages SIG wishes to stress, however, that the specification is still in fl

Appendix 1 -- Current Attributes by Tag Value 24

The list below enumerates the attributes that are most applicable to each type of debu
information entry. DWARF does not in general require that a given debugging informa
entry contain a particular attribute or set of attributes. Instead, a DWARF producer is
to generate any, all, or none of the attributes described in the text as being applicabl
given entry. Other attributes (both those defined within this document but not explic
associated with the entry in question, and new, vendor-defined ones) may also appea
given debugging entry. Therefore, the list may be taken as instructive, but cannot be
sidered definitive.

Table 24-38. Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES

DW_TAG_access_declaration DECL???

DW_AT_accessibility

DW_AT_name

DW_AT_sibling

DW_TAG_array_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_ordering

DW_AT_sibling

DW_AT_start_scope

DW_AT_stride_size

DW_AT_type
24-85

Compilation Systems Volume 2 (Concepts)
DW_AT_visibility

DW_TAG_base_type DW_AT_bit_offset

DW_AT_bit_size

DW_AT_byte_size

DW_AT_encoding

DW_AT_name

DW_AT_sibling

DW_TAG_catch_block DW_AT_abstract_origin

DW_AT_high_pc

DW_AT_low_pc

DW_AT_segment

DW_AT_sibling

DW_TAG_class_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_visibility

DW_TAG_common_block DECL

DW_AT_declaration

DW_AT_location

DW_AT_name

DW_AT_sibling

DW_AT_visibility

DW_TAG_common_inclusion DECL

DW_AT_common_reference

DW_AT_declaration

DW_AT_sibling

DW_AT_visibility

DW_TAG_compile_unit DW_AT_base_types

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-86

DWARF Debugging Information Format
DW_AT_comp_dir

DW_AT_identifier_case

DW_AT_high_pc

DW_AT_language

DW_AT_low_pc

DW_AT_macro_info

DW_AT_name

DW_AT_producer

DW_AT_sibling

DW_AT_stmt_list

DW_TAG_const_type DW_AT_sibling

DW_AT_type

DW_TAG_constant DECL

DW_AT_accessibility

DW_AT_constant_value

DW_AT_declaration

DW_AT_external

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_type

DW_AT_visibility

DW_TAG_entry_point DW_AT_address_class

DW_AT_low_pc

DW_AT_name

DW_AT_return_addr

DW_AT_segment

DW_AT_sibling

DW_AT_static_link

DW_AT_type

DW_TAG_enumeration_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-87

Compilation Systems Volume 2 (Concepts)
DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_visibility

DW_TAG_enumerator DECLS

DW_AT_const_value

DW_AT_name

DW_AT_sibling

DW_TAG_file_type DECL

DW_AT_abstract_origin

DW_AT_byte_size

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_type

DW_AT_visibility

DW_TAG_formal_parameter DECL

DW_AT_abstract_origin

DW_AT_artificial

DW_AT_default_value

DW_AT_is_optional

DW_AT_location

DW_AT_name

DW_AT_segment

DW_AT_sibling

DW_AT_type

DW_AT_variable_parameter

DW_TAG_friend DECL

DW_AT_abstract_origin

DW_AT_friend

DW_AT_sibling

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-88

DWARF Debugging Information Format
DW_TAG_imported_declaration DECL

DW_AT_accessibility

DW_AT_import

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_TAG_inheritance DECL

DW_AT_accessibility

DW_AT_data_member_location

DW_AT_sibling

DW_AT_type

DW_AT_virtuality

DW_TAG_inlined_subroutine DECL

DW_AT_abstract_origin

DW_AT_high_pc

DW_AT_low_pc

DW_AT_segment

DW_AT_sibling

DW_AT_return_addr

DW_AT_start_scope

DW_TAG_label DW_AT_abstract_origin

DW_AT_low_pc

DW_AT_name

DW_AT_segment

DW_AT_start_scope

DW_AT_sibling

DW_TAG_lexical_block DW_AT_abstract_origin

DW_AT_high_pc

DW_AT_low_pc

DW_AT_name

DW_AT_segment

DW_AT_sibling

DW_TAG_member DECL

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-89

Compilation Systems Volume 2 (Concepts)
DW_AT_accessibility

DW_AT_byte_size

DW_AT_bit_offset

DW_AT_bit_size

DW_AT_data_member_location

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_type

DW_AT_visibility

DW_TAG_module DECL

DW_AT_accessibility

DW_AT_declaration

DW_AT_high_pc

DW_AT_low_pc

DW_AT_name

DW_AT_priority

DW_AT_segment

DW_AT_sibling

DW_AT_visibility

DW_TAG_namelist DECL

DW_AT_accessibility

DW_AT_abstract_origin

DW_AT_declaration

DW_AT_sibling

DW_AT_visibility

DW_TAG_namelist_item DECL

DW_AT_namelist_item

DW_AT_sibling

DW_TAG_packed_type DW_AT_sibling

DW_AT_type

DW_TAG_pointer_type DW_AT_address_class

DW_AT_sibling

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-90

DWARF Debugging Information Format
DW_AT_type

DW_TAG_ptr_to_member_type DECL

DW_AT_abstract_origin

DW_AT_address_class

DW_AT_containing_type

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_type

DW_AT_use_location

DW_AT_visibility

DW_TAG_reference_type DW_AT_address_class

DW_AT_sibling

DW_AT_type

DW_TAG_set_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_start_scope

DW_AT_sibling

DW_AT_type

DW_AT_visibility

DW_TAG_string_type DECL

DW_AT_accessibility

DW_AT_abstract_origin

DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_segment

DW_AT_sibling

DW_AT_start_scope

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-91

Compilation Systems Volume 2 (Concepts)
DW_AT_string_length

DW_AT_visibility

DW_TAG_structure_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_visibility

DW_TAG_subprogram DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_address_class

DW_AT_artificial

DW_AT_calling_convention

DW_AT_declaration

DW_AT_external

DW_AT_frame_base

DW_AT_high_pc

DW_AT_inline

DW_AT_low_pc

DW_AT_name

DW_AT_prototyped

DW_AT_return_addr

DW_AT_segment

DW_AT_sibling

DW_AT_specification

DW_AT_start_scope

DW_AT_static_link

DW_AT_type

DW_AT_visibility

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-92

DWARF Debugging Information Format
DW_AT_virtuality

DW_AT_vtable_elem_location

DW_TAG_subrange_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_count

DW_AT_declaration

DW_AT_lower_bound

DW_AT_name

DW_AT_sibling

DW_AT_type

DW_AT_upper_bound

DW_AT_visibility

DW_TAG_subroutine_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_address_class

DW_AT_declaration

DW_AT_name

DW_AT_prototyped

DW_AT_sibling

DW_AT_start_scope

DW_AT_type

DW_AT_visibility

DW_TAG_template_type_param DECL

DW_AT_name

DW_AT_sibling

DW_AT_type

DW_TAG_template_value_param DECL

DW_AT_name

DW_AT_const_value

DW_AT_sibling

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-93

Compilation Systems Volume 2 (Concepts)
DW_AT_type

DW_TAG_thrown_type DECL

DW_AT_sibling

DW_AT_type

DW_TAG_try_block DW_AT_abstract_origin

DW_AT_high_pc

DW_AT_low_pc

DW_AT_segment

DW_AT_sibling

DW_TAG_typedef DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_declaration

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_type

DW_AT_visibility

DW_TAG_union_type DECL

DW_AT_abstract_origin

DW_AT_accessibility

DW_AT_byte_size

DW_AT_declaration

DW_AT_friends

DW_AT_name

DW_AT_sibling

DW_AT_start_scope

DW_AT_visibility

DW_TAG_unspecified_parameters DECL

DW_AT_abstract_origin

DW_AT_artificial

DW_AT_sibling

DW_TAG_variable DECL

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-94

DWARF Debugging Information Format
DW_AT_accessibility

DW_AT_constant_value

DW_AT_declaration

DW_AT_external

DW_AT_location

DW_AT_name

DW_AT_segment

DW_AT_sibling

DW_AT_specification

DW_AT_start_scope

DW_AT_type

DW_AT_visibility

DW_TAG_variant DECL

DW_AT_accessibility

DW_AT_abstract_origin

DW_AT_declaration

DW_AT_discr_list

DW_AT_discr_value

DW_AT_sibling

DW_TAG_variant_part DECL

DW_AT_accessibility

DW_AT_abstract_origin

DW_AT_declaration

DW_AT_discr

DW_AT_sibling

DW_AT_type

DW_TAG_volatile_type DW_AT_sibling

DW_AT_type

DW_TAG_with_statement DW_AT_accessibility

DW_AT_address_class

DW_AT_declaration

DW_AT_high_pc

DW_AT_location

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-95

Compilation Systems Volume 2 (Concepts)

the
s are
??? - DW_AT_decl_column, DW_AT_decl_file, DW_AT_decl_line.

Appendix 2 -- Organization of Debugging Information 24

The following diagram depicts the relationship of the abbreviation tables contained in
.debug_abbrev section to the information contained in the .debug_info section. Value
given in symbolic form, where possible.

DW_AT_low_pc

DW_AT_segment

DW_AT_sibling

DW_AT_type

DW_AT_visibility

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES
24-96

DWARF Debugging Information Format
Compilation Unit 1 - .debug_info

length

2

a1 (abbreviation table offset)

4

1

"myfile.c"

"Best Compiler Corp: Version 1.3"

"mymachine:/home/mydir/src:"

DW_LANG_C89

0x0

0x55

DW_FORM_data4

0x0

e1: 2

"char"

DW_ATE_unsigned_char

1

e2: 3

e1

4

"POINTER"

e2

0

24-97

Compilation Systems Volume 2 (Concepts)
Compilation Unit 2 - .debug_info

Abbreviation Table - .debug_abbrev

length

2

a1 (abbreviation table offset)

4

...

4

"strp"

e2

...

a1: 1

DW_TAG_compile_unit

DW_CHILDREN_yes

DW_AT_name DW_FORM_string

DW_AT_producer DW_FORM_string

DW_AT_ compdir DW_FORM_string

DW_AT_language DW_FORM_data1

DW_AT_low_poc DW_FORM_addr

DW_AT_high_pc DW_FORM_addr

DW_AT_stmt_list DW_FORM_indirect

0 0

2

DW_TAG_base_type

DW_CHILDREN_no

DW_AT_name DW_FORM_string

DW_AT_encoding DW_FORM_data1

DW_AT_byte_size DW_FORM_data1

0 0

3

DW_TAG_pointer_type

DW_CHILDREN_no

DW_AT_type DW_FORM_ref4
24-98

DWARF Debugging Information Format

ces-

SPE-
an
Appendix 3 -- Statement Program Examples 24

Consider this simple source file and the resulting machine code for the Intel 8086 pro
sor:

1: int
2: main()

0x239: push pb
0x23a: mov bp,sp

3: {
4: printf("Omit needless words\n");

0x23c: mov ax,0xaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5: exit(0);
0x244: xor ax,ax
0x246: push ax
0x247: call _exit
0x24a: pop cx

6: }
0x24b: pop bp
0x24c: ret

7:
0x24d:

If the statement program prologue specifies the following:

minimum_instruction_length 1
opcode_base 10
line_base 1
line_range 15

Then one encoding of the statement program would occupy 12 bytes (the opcode
CIAL(m, n) indicates the special opcode generated for a line increment of m and
address increment of n):

0 0

4

DW_TAG_typedef

DW_CHILDREN_no

DW_AT_name DW_FORM_string

DW_AT_type DW_FORM_ref4

0 0

0

24-99

Compilation Systems Volume 2 (Concepts)

e pro-

ed and
An alternate encoding of the same program using standard opcodes to advance th
gram counter would occupy 22 bytes:

Appendix 4 -- Encoding and decoding variable length data 24

Here are algorithms expressed in a C-like pseudo-code to encode and decode sign
unsigned numbers in LEB128:

Opcode Operand Byte Stream

DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04

SPECIAL(2, 0) 0xb

SPECIAL(2, 3) 0x38

SPECIAL(1, 8) 0x82

SPECIAL(1, 7) 0x73

DW_LNS_advance_pc LEB128(2) 0x2, 0x2

DW_LNE_end_sequence 0x0, 0x1, 0x1

Opcode Operand Byte Stream

DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2

SPECIAL(2, 0) 0xb

DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0

SPECIAL(2, 0) 0xb

DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, 0x0

SPECIAL(1, 0) 0xa

DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, 0x0

SPECIAL(1, 0) 0xa

DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0

DW_LNE_end_sequence 0x0, 0x1, 0x1
24-100

DWARF Debugging Information Format
Encode an unsigned integer:

do
{

byte = low order 7 bits of value;
value >>= 7;
if (value != 0) /* more bytes to come */

set high order bit of byte;
emit byte;

} while (value != 0);

Encode a signed integer:

more = 1;
negative = (value < 0);
size = no. of bits in signed integer;
while(more)
{

byte = low order 7 bits of value;
value >>= 7;
/* the following is unnecessary if the

* implementation of >>= uses an arithmetic
* rather than logical shift for a signed
* left operand
*/

if (negative)
/* sign extend */
value |= - (1 << (size - 7));

/* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||

(value == -1 && sign bit of byte is set))
more = 0;

else
set high order bit of byte;

emit byte;
}

Decode unsigned LEB128 number:

result = 0;
shift = 0;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)

break;
shift += 7;

}

24-101

Compilation Systems Volume 2 (Concepts)

rola

ame
Decode signed LEB128 number:

result = 0;
shift = 0;
size = no. of bits in signed integer;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
/* sign bit of byte is 2nd high order bit (0x40) */
if (high order bit of byte == 0)

break;
}
if ((shift < size) && (sign bit of byte is set))

/* sign extend */
result |= - (1 << shift);

Appendix 5 -- Call Frame Information Examples 24

The following example uses a hypothetical RISC machine in the style of the Moto
88000.

• Memory is byte addressed.

• Instructions are all 4-bytes each and word aligned.

• Instruction operands are typically of the form:

<destination reg> <source reg> <constant>

• The address for the load and store instructions is computed by adding the
contents of the source register with the constant.

• There are 8 4-byte registers:

R0 always 0
R1 holds return address on call
R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call
R7 stack pointer.

• The stack grows in the negative direction.

The following are two code fragments from a subroutine called foo that uses a fr
pointer (in addition to the stack pointer.) The first column values are byte addresses.
24-102

DWARF Debugging Information Format

ag-
The table for the foo subroutine is as follows. It is followed by the corresponding fr
ments from the .debug_frame section.

;; start prologue

foo sub R7, R7, <fsize> ; Allocate frame

foo+4 store R1, R7, (<fsize>-4) ; Save the return address

foo+8 store R6, R7, (<fsize>-8) ; Save R6

foo+12 add R6, R7, 0 ; R6 is now the Frame ptr

foo+16 store R4, R6, (<fsize>-12) ; Save a preserve reg.

;; This subroutine does not change R5

...

;; Start epilogue (R7 has been returned to entry value)

foo+64 load R4, R6, (<fsize>-12) ; Restore R4

foo+68 load R6, R7, (<fsize>-8) ; Restore R6

foo+72 load R1, R7, (<fsize>-4) ; Restore return address

foo+76 add R7, R7, <fsize> ; Deallocate frame

foo+80 jump R ; Return

foo+84

Loc CFA R0 R1 R2 R3 R4 R5 R6 R7 R8

foo [R7]+0 s u u u s s s s

foo+4 [R7]+fsize s u u u s s s s r1

foo+8 [R7]+fsize s u u u s s s s c4

foo+12 [R7]+fsize s u u u s s c8 s c4

foo+16 [R6]+fsize s u u u s s c8 s c4

foo+20 [R6]+fsize s u u u c12 s c8 s c4

foo+64 [R6]+fsize s u u u c12 s c8 s c4

foo+68 [R6]+fsize s u u u s s c8 s c4

foo+72 [R7]+fsize s u u u s s s s c4

foo+76 [R7]+fsize s u u u s s s s r1

foo+80 [R7]+0 s u u u s s s s s
24-103

Compilation Systems Volume 2 (Concepts)
NOTES

1. R8 is the return address

2. s = same_value rule

3. u = undefined rule

4. rN = register(N) rule

5. cN = offset(N) rule

Common Information Entry (CIE):

cie 32 ; length

cie+4 0xffffffff ; CIE_id

cie+8 1 ; version

cie+9 0 ; augmentation

cie+10 4 ; code_alignment_factor

cie+11 4 ; data_alignment_factor

cie+12 8 ; R8 is the return addr.

cie+13 DW_CFA_def_cfa (7, 0) ; CFA = [R7]+0

cie+16 DW_CFA_same_value (0) ; R0 not modified (=0)

cie+18 DW_CFA_undefined (1) ; R1 scratch

cie+20 DW_CFA_undefined (2) ; R2 scratch

cie+22 DW_CFA_undefined (3) ; R3 scratch

cie+24 DW_CFA_same_value (4) ; R4 preserve

cie+26 DW_CFA_same_value (5) ; R5 preserve

cie+28 DW_CFA_same_value (6) ; R6 preserve

cie+30 DW_CFA_same_value (7) ; R7 preserve

cie+32 DW_CFA_register (8, 1) ; R8 is in R1

cie+35 DW_CFA_nop ; padding

cie+36 DW_CFA_nop ; padding

cie+37
24-104

DWARF Debugging Information Format
Frame Description Entry (FDE):

fde 44 ; length

fde+4 cie ; CIE_ptr

fde+8 foo ; initial_location

fde+12 84 ; address_range

fde+16 DW_CFA_advance_loc(1) ; instructions

fde+17 DW_CFA_def_cfa_offset(<fsize>/4) ; assuming <fsize> < 512

fde+19 DW_CFA_advance_loc(1)

fde+20 DW_CFA_offset(8,1)

fde+23 DW_CFA_advance_loc(1)

fde+24 DW_CFA_offset(6,2)

fde+27 DW_CFA_advance_loc(1)

fde+28 DW_CFA_def_cfa_register(6)

fde+30 DW_CFA_advance_loc(1)

fde+31 DW_CFA_offset(4,3)

fde+34 DW_CFA_advance_loc(12)

fde+35 DW_CFA_restore(4)

fde+36 DW_CFA_advance_loc(1)

fde+37 DW_CFA_restore(6)

fde+38 DW_CFA_def_cfa_register(7)

fde+40 DW_CFA_advance_loc(1)

fde+41 DW_CFA_restore(8)

fde+42 DW_CFA_advance_loc(1)

fde+43 DW_CFA_def_cfa_offset(0)

fde+45 DW_CFA_nop ; padding

fde+46 DW_CFA_nop ; padding

fde+47 DW_CFA_nop ; padding

fde+48
24-105

Compilation Systems Volume 2 (Concepts)
24-106

-1
5-1
2

-2
-2
-2
-3
-3

-4
-4
-4

-5
-5

-6
-8
-8
-8
-9

-9

15
16
16
18
-20
0
2

25
DWARF Access Library (libdwarf)

Introduction . 25
Purpose and Scope . 2
Definitions . 25-
Overview . 25

Type Definitions . 25
General Description . 25
Scalar Types . 25
Aggregate Types . 25

Location Record . 25
Location Description . 25
Element List . 25
Subscript Bounds Information 25-5
Data Block. 25

Opaque Types . 25
Error Handling . 25
Memory Management . 25

Read-only Properties . 25
Storage Deallocation . 25

Functional Interface. 25
Initialization Operations . 25
Debugging Information Entry Delivery Operations 25-10
Debugging Information Entry Query Operations. 25-12
Array Subscript Query Operations . 25-
Type Information Query Operations . 25-
Attribute Form Queries. 25-
Line Number Operations . 25-
Global Name Space Operations . 25
Utility Operations . 25-2
Appendix1--libdwarf.h . 25-2

Compilation Systems Volume 2 (Concepts)

Pro-

and
cop-
doc-

icity
IX
r any

tes

ss to

to
nship
nt is

the
u-
will
25
Chapter 25DWARF Access Library (libdwarf)

25
25
25

The material in this document represents work in progress of the UNIX International
gramming Languages SIG.

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose
without fee is hereby granted, provided that the above copyright notice appears in all
ies and that both that copyright notice and this permission notice appear in supporting
umentation, and that the name UNIX International not be used in advertising or publ
pertaining to distribution of the software without specific, written prior permission. UN
International makes no representations about the suitability of this documentation fo
purpose. It is provided “as is” without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS DOCUMENTATION.

Trademarks:

UNIX ® is a registered trademark of UNIX System Laboratories in the United Sta
and other countries.

Introduction 25

This document describes the libdwarf interface, a library of functions to provide acce
DWARF debugging information records and DWARF line number information.

Purpose and Scope 25

As the DWARF information format evolves, the need exists for a functional interface
insulate client programs from the representation changes while preserving the relatio
and semantics of current DWARF debugging information. The purpose of this docume
to specify such an interface that shields DWARF consumers from the changes to
on-disk layout of DWARF debugging information. There is no effort made in this doc
ment to address the creation of DWARF debugging information records as that issue
be addressed in subsequent specifications.
25-1

Compilation Systems Volume 2 (Concepts)

ple-

d in
with

docu-
te

their
ing

t by
age-

are
a-

and
con-
ced
Additionally, the focus of this document is the functional interface, and as such, im
mentation as well as optimization issues are intentionally ignored.

Definitions 25

DWARF debugging information entries (DIE) are the segments of information place
the .debug* section by compilers, assemblers, and linkage editors that, in conjunction
line number entries, are necessary for symbolic source-level debugging. Refer to the
ment “DWARF Debugging Information Format” from UIPLSIG for a more comple
description of these entries.

Line number entries are the information that is used to map executable statements to
corresponding location in the source file of their origin. Further information concern
line number entries can be found in the document cited above.

Overview 25

The remaining sections of this document describe the interface to libdwarf, firs
describing the additional types defined by the interface, error handling, memory man
ment, and finally descriptions of the functional interface. This document assumes you
thoroughly familiar with the information contained in the DWARF Debugging Inform
tion Format document.

Type Definitions 25

General Description 25

The libdwarf.h header file contains typedefs and preprocessor definitions of types
symbolic names used to reference objects of libdwarf. The types defined by typedefs
tained in libdwarf.h all use the convention of adding Dwarf_ as a prefix and can be pla
in three categories:

• Scalar types: The scalar types defined in libdwarf.h are defined primarily
for notational convenience and identification. Depending on the individual
definition, they are interpreted as a value, a pointer, or as a flag.

• Aggregate types: Some values cannot be represented by a single scalar
type; they must be represented by a collection of, or as a union of, scalar
and/or aggregate types.

• Opaque types: The complete definition of these types is intentionally omit-
ted; their use is as handles for query operations, which will yield either an
instance of another opaque type to be used in another query, or an instance
of a scalar or aggregate type, which is the actual result.
25-2

DWARF Access Library (libdwarf)

2.

sc,
A complete listing of libdwarf.h can be found in “Appendix1--libdwarf.h” on page 25-2

Scalar Types 25

The following scalar types are defined by libdwarf.h:

A description of these scalar types is given in Table 25-1.

Aggregate Types 25

The following aggregate types are defined by libdwarf.h: Dwarf_Loc, Dwarf_Locde
Dwarf_Ellist, Dwarf_Bounds, and Dwarf_Block.

typedef int Dwarf_Bool;

typedef unsigned long Dwarf_Off;

typedef unsigned long Dwarf_Unsigned;

typedef unsigned short Dwarf_Half;

typedef unsigned char Dwarf_Small;

typedef signed long Dwarf_Signed;

typedef void* Dwarf_Addr;

typedef void (*Dwarf_Handler)(Dwarf_Error*error, Dwarf_Addr errarg);

Table 25-1. Scalar Types

NAME SIZE
ALIGN-
MENT

PURPOSE

Dwarf_Bool 2|4|8 2|4|8 Boolean states

Dwarf_Off 4|8 4|8 Unsigned file offset

Dwarf_Unsigned 4|8 4|8 Unsigned large integer

Dwarf_Half 2 2 Unsigned medium integer

Dwarf_Small 1 1 Unsigned small integer

Dwarf_Signed 4|8 4|8 Signed large integer

Dwarf_Addr 4|8 4|8 Unsigned program address

Dwarf_Handler 4|8 4|8 Pointer to libdwarf error handler
function
25-3

Compilation Systems Volume 2 (Concepts)

res-

d it

tom

cal-
ed at

iptor
the

the

e of
Location Record 25

The Dwarf_Loc type identifies a single atom of a location description or a location exp
sion.

typedef struct {
Dwarf_Small lr_atom;
Dwarf_Unsigned lr_number;

} Dwarf_Loc;

The lr_atom identifies the atom corresponding to the OP_* definition in dwarf.h an
represents the operation to be performed in order to locate the item in question.

The lr_number field is the operand to be used in the calculation specified by the lr_a
field; not all atoms use this field.

Location Description 25

The Dwarf_Locdesc type represents an ordered list of Dwarf_Loc records used in the
culation to locate an item. Note that in many cases, the location can only be calculat
run time of the associated program.

typedef struct {
Dwarf_Addr ld_lopc;
Dwarf_Addr ld_hipc;
Dwarf_Unsigned ld_cents;
Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc and ld_hipc fields provide an address range for which this location descr
is valid. Both of these fields are set to zero if the location descriptor is valid throughout
scope of the item it is associated with.

The ld_cents field contains a count of the number of Dwarf_Loc entries pointed to by
ld_s field.

The ld_s field points to an array of Dwarf_Loc records.

Element List 25

The Dwarf_Ellist type describes an element of an enumerated type.

typedef struct {
Dwarf_Signed el_value;
char* el_name;

} Dwarf_Ellist;

The el_value field is the value associated with the corresponding element.

The el_name field is a pointer to a NULL terminated character string giving the nam
the element.
25-4

DWARF Access Library (libdwarf)

d is a
e of

ifies

ther
an

.

dwarf
type

ee'd
ibd-

ll to
ation
Subscript Bounds Information 25

The Dwarf_Bounds type describes an upper or lower bound of an array subscript.

typedef struct {
Dwarf_Bool bo_isconst;
union {

Dwarf_Signed constant;
Dwarf_Locdesc locdesc;

}bo_;
} Dwarf_Bounds;

The bo_isconst field is non-zero if the bound is a constant value; otherwise, the boun
location description or expression, which implies that it must be calculated at run tim
its associated program.

The bo_ field is a union of either a constant value or a location description that spec
the upper or lower bound of the subscript.

Data Block 25

The Dwarf_Block type is used to contain the value of an attribute whose form is ei
FORM_BLOCK2 or FORM_BLOCK4; its intended use is to deliver the value for
attribute of either of these two forms.

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Addr* bl_data;

} Dwarf_Block;

The bl_len field contains the length in bytes of the data pointed to by the bl_data field

The bl_data field contains a pointer to the uninterpreted data.

Opaque Types 25

The opaque types declared in libdwarf.h are used as descriptors for queries against
information stored in various debugging sections. Each time an instance of an opaque
is returned as a result of a libdwarf operation (Dwarf_Debug excepted), it should be fr
using dwarf_dealloc() When it's no longer of use. The list of opaque types defined in l
warf.h and their intended use is described below.

typedef struct Debug* Dwarf_Debug;

An instance of the Dwarf_Debug type is created as a result of a successful ca
dwarf_init() and is used as a descriptor for subsequent access to debugging inform
entries and/or line number entries.

typedef struct Die* Dwarf_Die;
25-5

Compilation Systems Volume 2 (Concepts)

for-
con-

liv-
line

ute

l to

) or

ob()

aced
rror

s to

ss of
are
noti-

rip-
the
ter-

r at
an
rror
An instance of a Dwarf_Die type is returned from a successful call to a debugging in
mation delivery operation and is used as a descriptor for queries about information
tained in that entry.

typedef struct Line* Dwarf_Line;

An instance of a Dwarf_Line type is returned from a successful call to a line number de
ery operation and is used asa descriptor for queries about information contained in
number entries.

typedef struct Attribute* Dwarf_Attribute;

An instance of a Dwarf_Attribute type is returned from a successful call to an attrib
delivery operation and is used as a descriptor for queries about attribute values.

typedef struct Subscript* Dwarf_Subscript;

An instance of a Dwarf_Subscript type is returned from a successful cal
dwarf_nthsubscr() and is used as a descriptor for queries about array subscripts.

typedef struct Type* Dwarf_Type;

An instance of a Dwarf_Type type is returned from a successful call to dwarf_typeof(
dwarf_subscrtype() and is used as a descriptor for queries concerning data types.

typedef struct Global* Dwarf_Global;

An instance of a Dwarf_Global type is returned from a successful call to dwarf_nextgl
and is used as a descriptor for queries concerning items in the global name space.

typedef struct Error* Dwarf_Error;

For functions which accept an error argument, an instance the Dwarf_Error type is pl
in the space pointed to by this argument if supplied by the client program and an e
occurred within the libdwarf function. This type is used as a descriptor for querie
obtain more information concerning the error.

Error Handling 25

The method for detection and disposition of error conditions that arise during acce
debugging information via libdwarf is consistent across all libdwarf functions that
capable of producing an error. This section describes the method used by libdwarf in
fying client programs of error conditions.

Most functions within libdwarf accept as an argument a pointer to a Dwarf_Error desc
tor where error information is stored if an error is detected by the function. Routines in
client program that provide this argument can query the Dwarf_Error descriptor to de
mine the nature of the error and perform appropriate processing.

A client program can also specify a function to be invoked upon detection of an erro
the time the library is initialized (see dwarf_init()). When a libdwarf routine detects
error, this function is called with two arguments: a code indicating the nature of the e
25-6

DWARF Access Library (libdwarf)

ter
es of

unc-
nd

d no
cu-

ler at
ot

tic-
),

e turn
lied
exe-

.

ctu-
ents
pro-
and a pointer provided by the client at initialization (again see dwarf_init()). This poin
argument can be used to relay information between the error handler and other routin
the client program. A client program can specify or change both the error handling f
tion and the pointer argument after initialization using dwarf_seterrhand() a
dwarf_seterrarg().

In the case where libdwarf functions are not provided an error number parameter an
error handling function was provided at initialization, libdwarf functions terminate exe
tion by calling abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, allocate and initialize a
Dwarf_Error descriptor with information describing the error, place this
descriptor in the area pointed to by error, and return a value indicating an
error condition.

2. If an errhand argument was provided to dwarf_init() at initialization, call
errhand() passing it the error descriptor and the value of the errarg argu-
ment provided to dwarf_init(). If the error handling function returns, return
a value indicating an error condition.

3. Terminate program execution by calling abort(3C).

As can be seen from the above steps, the client program can provide an error hand
initialization, and still provide an error argument to libdwarf functions when it is n
desired to have the error handler invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In par
ular, supplying a NULL pointer to a libdwarf function (except where explicitly permitted
or pointers to invalid addresses or uninitialized data causes undefined behavior; ther
value in such cases is undefined, and the function may fail to invoke the caller supp
error handler or to return a meaningful error number. Implementations also may abort
cution for such cases.

Values returned by libdwarf functions to indicate errors are enumerated in Table 25-2

It is important to note that some functions can return NULL though an error did not a
ally occur. For example, dwarf_nextdie() returns NULL when its die argument repres
the last debugging information entry to indicate that there are no further records to be
cessed.

Table 25-2. Error Indications

SYMBOLIC NAME VALUE USED BY

NULL 0 Functions returning a pointer

DLV_NOCOUNT ((Dwarf_Signed)-1) Functions returning a count

DLV_BADADDR ((Dwarf_Addr) 0) Functions returning an address

DLV_BADOFFSET ((Dwarf_Off)0) Functions returning an offset
25-7

Compilation Systems Volume 2 (Concepts)

cally
tion
unc-

nag-

t to
to a

e by
ci-

ll to

ld be
ent
n be

t be
or-

ed in
Memory Management 25

Several of the functions that comprise libdwarf return values that have been dynami
allocated by the library. To aid in the management of dynamic memory, the func
dwarf_dealloc() is provided to free storage allocated asa result of a call to a libdwarf f
tion. This section describes the strategy that should be taken by a client program in ma
ing dynamic storage.

Read-only Properties 25

All pointers returned by or as a result of a libdwarf call should be assumed to poin
read-only memory. The results are undefined for libdwarf clients that attempt to write
region pointed to by a return value from a libdwarf call.

Storage Deallocation 25

For most storage allocated by libdwarf, the client can simply free the storage for reus
calling dwarf_dealloc(), providing it with a pointer to the area and an identifier that spe
fies what the pointer points to. For example, to free a Dwarf_Die allocated by a ca
dwarf_nextdie(), the call to dwarf_dealloc() would be:

dwarf_dealloc(die, DLA_DIE);

To free storage allocated in the form of a list of pointers, each member of the list shou
deallocated, followed by deallocation of the actual list itself. The following code fragm
uses an invocation of dwarf_attrlist() as an example to illustrate a technique that ca
used to free storage from any libdwarf routine that returns a list:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;

if ((atcnt = dwarf_attrlist(adie,&atlist, &error))
!= DLV_NOCOUNT) {
for (i = 0; i< atcnt; ++i) {

/* use atlist[i] */
dwarf_dealloc(atlist[i], DLA_ATTR);

}
dwarf_dealloc(atlist, DLA_LIST);

}

The Dwarf_Debug returned from dwarf_init() is the only dynamic storage that canno
free'd using dwarf_dealloc(); the function dwarf_finish() will deallocate all dynamic st
age associated with an instance of a Dwarf_Debug type.

The codes that identify the storage pointed to in calls to dwarf_dealloc() are describ
Table 25-3.
25-8

DWARF Access Library (libdwarf)

ion
per-

ging
ns,

que-

by the
.

Functional Interface 25

This section describes the functions available in the libdwarf library. Each funct
description includes its definition, followed by a paragraph describing the function's o
ation.

The functions may be categorized into nine groups: initialization operations, debug
information entry delivery operations, debugging information entry query operatio
array subscript query operations, type information query operations, attribute form
ries, line number operations, global name space operations, and utility operations.

The following sections describe these functions.

Initialization Operations 25

These functions are concerned with preparing an object file for subsequent access
functions in libdwarf and with releasing allocated resources when access is complete

Table 25-3. Allocation/Deallocation Identifiers

IDENTIFIER USED TO FREE

DLA_STRING char*

DLA_LOC Dwarf_Loc*

DLA_LOCDESC Dwarf_Locdesc*

DLA_ELLIST Dwarf_ELlist*

DLA_BOUNDS Dwarf_Bounds*

DLA_BLOCK Dwarf_Block*

DLA_DIE Dwarf_Die

DLA_LINE Dwarf_Line

DLA_LINEBUF Dwarf_Line*

DLA_ATTR Dwarf_Attribute

DLA_TYPE Dwarf_Type

DLA_SUBSCR Dwarf_Subscript

DLA_GLOBAL Dwarf_Global

DLA_ERROR Dwarf_Error

DLA_LIST all other lists
25-9

Compilation Systems Volume 2 (Concepts)

for
rned
cess
AD

ary,
to a
era-
e file
ipe,
ecified
m calls
ted
rror
cli-

uring

the

or
s

or
e
d

Dwarf_Debug dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Addr errarg,
Dwarf_Error *error)

The function dwarf_init() returns a Dwarf_Debug descriptor that represents a handle
accessing debugging records associated with the open file descriptor fd; NULL is retu
if the object does not contain debugging information or an error occurred. The ac
argument indicates what access is allowed for the section. Currently, only the DLC_RE
parameter is valid, but once libdwarf creation routines are added to the libr
DLC_RDWR and DLC_WRITE will be supported. The errhand argument is a pointer
function that will be invoked whenever an error is detected as a result of a libdwarf op
tion; the errarg argument is passed as an argument to the errhand function. Th
descriptor associated with the fd argument must refer to an ordinary file (i.e. not a p
socket, device, /proc entry, etc.), be opened with the same access permissions as sp
by the access argument, and cannot be closed or used as an argument to any syste
by the client until after dwarf_finish() is called; the seek position of the file associa
with fd is undefined upon return of dwarf_init(). Since dwarf_init() uses the same e
handling processing as other libdwarf functions (see “Error Handling” on page 25-6),
ent programs will generally supply an error parameter to bypass the default actions d
initialization unless the default actions are appropriate.

void dwarf_finish(
Dwarf_Debug dbg)

The function dwarf_finish() releases all libdwarf internal resources associated with
descriptor dbg and invalidates dbg.

Debugging Information Entry Delivery Operations 25

These functions are concerned with accessing debugging information entries.

Dwarf_Die dwarf_nextdie(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_nextdie() returns the next Dwarf_Die descriptor following die
NULL if die is the last entry or an error occurred. If die is NULL, the first entry i
returned.

Dwarf_Die dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_sibling of() returns the Dwarf_Die descriptor of the sibling of die
NULL if die is the last entry of a sibling chain or an error occurred. If die is NULL, th
f irs t entry is re turned. N ote that dwarf_nextd ie(dbg, NU LL, &error) an
dwarf_siblingof(dbg, NULL, &error) are equivalent.
25-10

DWARF Access Library (libdwarf)

a-
ff-

nit
ntry
are

ug-
red.
g of:

for-
if no
e are
iates
one

or
on
hil-
Dwarf_Die dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Error *error)

The function dwarf_offdie() returns the Dwarf_Die descriptor of the debugging inform
tion entry at offset in the section containing debugging information entries or NULL if o
set is not the start of a valid debugging information entry.

Dwarf_Die dwarf_pcfile(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcfile() returns the Dwarf_Die descriptor of the compilation u
debugging information entry that contains the address of pc; NULL is returned if no e
exists or an error occurred. Currently compilation unit debugging information entries
defined as those having a tag of: TAG_compile_unit.

Dwarf_Die dwarf_pcsubr(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcsubr() returns the Dwarf_Die descriptor of the subroutine deb
ging entry that contains the address of pc, or NULL if no entry exists or an error occur
Currently subroutine debugging information entries are defined as those having a ta
TAG_subroutine, TAG_inlined_subroutine,or TAG_global_subroutine.

Dwarf_Die dwarf_pcscope(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcscope() returns the Dwarf_Die descriptor for the debugging in
mation entry that represents the inner most enclosing scope containing pc, or NULL
entry exists or an error occurred. Debugging information entries that represent a scop
those containing a low pc attribute and either a high pc or byte size attribute that delin
a range. For example: a debugging information entry for a lexical block is considered
having a scope whereas a debugging information entry for a label is not.

Dwarf_Die dwarf_child(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_child() returns the Dwarf_Die descriptor of the first child of die
NULL if die does not have any children or an error occurred. The functi
dwarf_siblingof() can be used with the return value of dwarf_child() to access other c
dren of die.
25-11

Compilation Systems Volume 2 (Concepts)

or a
riptor.
epre-
for-
me()
ere

ion
the
bug-

ug-

ters
te or
me()
Debugging Information Entry Query Operations 25

These queries return specific information about debugging information entries
descriptor that can be used on subsequent queries when given a Dwarf_Die desc
Note that some operations are specific to debugging information entries that are r
sented by a Dwarf_Die descriptor of a specific type. For example, not all debugging in
mation entries contain an attribute having a name, so consequently, a call to dwarf_na
using a Dwarf_Die descriptor that does not have a name attribute will return NULL. Th
are three methods that can be used:

1. Call dwarf_hasattr() to determine if the debugging information entry has
the attribute of interest prior to issuing the query for information about the
attribute.

2. Supply an error argument and check its value after a call to a query indi-
cates an unsuccessful return to determine the nature of the problem.

3. Arrange to have an error handling function invoked upon detection of an
error (see dwarf_init()).

Dwarf_Signed dwarf_childcnt(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_childcnt() returns the number of children debugging informat
entries of die or DLV_NOCOUNT if an error occurred. The return value represents
number of debugging information entries that exist between die and its next sibling de
ging information entry.

Dwarf_Half dwarf_tag(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_tag() returns the tag of die.

Dwarf_Off dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_dieoffset() returns the position of die in the section containing deb
ging information entries; DLV_BADOFFSET is returned on error.

char* dwarf_diename(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_diename() returns a pointer to a NULL terminated string of charac
that represents the name of die; NULL is returned if die does not have a name attribu
an error occurred. The storage pointed to by a successful return of dwarf_diena
should be free'd when no longer of interest (see dwarf_dealloc()).

Dwarf_Bool dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error *error)
25-12

DWARF Access Library (libdwarf)

ther-

ute
is

e of
the

Type

nd
The
e'd

ted,
tain
eturn
.

ned

s the
e 1 is
rror
The function dwarf_hasattr() returns non-zero if die has the attribute attr and zero o
wise.

Dwarf_Attribute dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error *error)

The function dwarf_attr() returns an Dwarf_Attribute descriptor of die having the attrib
name attr if die represents a debugging information entry with that attribute; NULL
returned if attr is not contained in die or an error occurred.

Dwarf_Type dwarf_typeof(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_typeof() returns a Dwarf_Type descriptor that describes the typ
die; NULL is returned if die does not contain a type attribute or an error occurred. In
case where die represents an array type debugging information entry, the Dwarf_
descriptor returned by dwarf_typeof() applies to the element type of the array.

Dwarf_Signed dwarf_loclist(
Dwarf_Die die,
Dwarf_Locdesc **llbuf,
Dwarf_Error *error)

The function dwarf_loclist() sets llbuf to point atan array of Dwarf_Locdesc pointers a
returns the number of elements in the array; DLV_NOCOUNT is returned on error.
storage pointed to by llbuf after a successful return of dwarf_loclist() should be fre
when no longer of interest (see dwarf_dealloc()).

Dwarf_Locdesc* dwarf_stringlen(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_stringlen() returns a pointer to a Dwarf_Locdesc that when evalua
yields the length of the string represented by die; NULL is returned if die does not con
a string length attribute or an error occurred. The storage pointed to by a successful r
of dwarf_stringlen() should be free'd when no longer of interest (see dwarf_dealloc())

Dwarf_Signed dwarf_subscrcnt(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_subscrcnt() returns the number of subscript attributes that are ow
by the array type represented by die; DLV_NOCOUNT is returned on error.

Dwarf_Subscript dwarf_nthsubscr(
Dwarf_Die die,
Dwarf_Unsigned ssndx,
Dwarf_Error *error)

The function dwarf_nthsubscr() returns a Dwarf_Subscript descriptor that represent
ssndx member of the array type debugging information entry represented by die wher
the first member; NULL is returned if die does not have an ssndx member or an e
occurred.
25-13

Compilation Systems Volume 2 (Concepts)

die
te;

the
ute;

nd
The
ee'd

tance
does

ing
oci-

; -1

ant
an
Dwarf_Addr dwarf_lowpc(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_lowpc() returns the low program counter value associated with the
descriptor if die represents a debugging information entry having this attribu
DLV_BADADDR is returned if die does not have this attribute or an error occurred.

Dwarf_Addr dwarf_highpc(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_highpc() returns the high program counter value associated with
die descriptor if die represents a debugging information entry having this attrib
DLV_BADADDR is returned if die does not have this attribute or an error occurred.

Dwarf_Signed dwarf_elemlist(
Dwarf_Die die,
Dwarf_Ellist** elbuf,
Dwarf_Error *error)

The function dwarf_elemlist() sets elbuf to point at an array of Dwarf_Ellist pointers a
returns the number of elements in the array; DLV_NOCOUNT is returned on error.
storage pointed to by elbuf after a successful return of dwarf_elemlist() should be fr
when no longer of interest (see dwarf_dealloc()).

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bytesize() returns the number of bytes needed to contain an ins
of the aggregate debugging information entry represented by die; -1 is returned if die
not contain a byte size attribute or an error occurred.

Dwarf_Bool dwarf_isbitfield(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_isbitfield() returns non-zero if die is a descriptor for a debugg
information entry that represents a bit field member; zero is returned if die is not ass
ated with a bit field member.

Dwarf_Signed dwarf_bitsize(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bitsize() returns the number of bits occupied by the bit field value
is returned if die does not contain a bit size attribute or an error occurred.

Dwarf_Signed dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bitoffset() returns the number of bits to the left of the most signific
bit of the bit field value; -1 is returned if die does not contain a bit offset attribute or
error occurred.
25-14

DWARF Access Library (libdwarf)

mpi-
nt a

pre-
, the
type

tor
rror.
d be

type
r ss.

that
cript

rn of
Dwarf_Signed dwarf_srclang(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_srclang() returns a code indicating the source language of the co
lation unit represented by the descriptor die; -1 is returned if die does not represe
source file debugging information entry or an error occurred.

Dwarf_Signed dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_arrayorder() returns a code indicating the ordering of the array re
sented by the descriptor die; if die represents an array without an ordering attribute
code indicating row major is returned; -1 is returned if die does not represent an array
debugging information entry or an error occurred.

Dwarf_Signed dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Error *error)

The function dwarf_attrlist() sets attrbuf to point at an array of Dwarf_Attribute descrip
and returns the number of elements in the array; DLV_NOCOUNT is returned on e
The storage pointed to by attrbuf after a successful return of dwarf_attrlist() shoul
free'd when no longer of interest (see dwarf_dealloc()).

Array Subscript Query Operations 25

These operations return information concerning array subscripts.

Dwarf_Type dwarf_subscrtype(
Dwarf_Subscript ss,
Dwarf_Error *error)

The function dwarf_subscrtype() returns a Dwarf_Type descriptor that represents the
information for the subscript element represented by the Dwarf_Subscript descripto
NULL is returned on error.

Dwarf_Bounds* dwarf_lobounds(
Dwarf_Subscript ss,
Dwarf_Error *error)

The function dwarf_lobounds() returns a pointer to a Dwarf_Bounds structure
describes the lower bound of the array subscript represented by the Dwarf_Subs
descriptor ss; NULL is returned on error. The storage pointed to by a successful retu
dwarf_lobounds() should be free'd when no longer of interest (see dwarf_dealloc()).

Dwarf_Bounds* dwarf_hibounds(
Dwarf_Subscriptss,
Dwarf_Error *error)
25-15

Compilation Systems Volume 2 (Concepts)

that
script
n of

re-
rray;
ess-
ee

re-

f the
e that

bug-
LL

reted
off
all

ys
ould
The function dwarf_hibounds() returns a pointer to a Dwarf_Bounds structure
describes the upper bound of the array subscript represented by the Dwarf_Sub
descriptor; NULL is returned on error. The storage pointed to by a successful retur
dwarf_hibounds() should be free'd when no longer of interest (see dwarf_dealloc()).

Type Information Query Operations 25

These operations return information concerning data types.

Dwarf_Signed dwarf_modlist(
Dwarf_Type typ,
Dwarf_Small** modbuf,
Dwarf_Error *error)

The function dwarf_modlist() sets modbuf to point to an array of type modifiers rep
sented by the Dwarf_Type descriptor typ and returns the number of elements in the a
DLV_NOCOUNT is returned on error. The storage pointed to by modbuf after a succ
ful return of dwarf_modlist() should be free'd when no longer of interest (s
dwarf_dealloc()).

Dwarf_Bool dwarf_isfundtype(
Dwarf_Type typ,
Dwarf_Error *error)

The function dwarf_isfundtype() returns non-zero if the Dwarf_Type descriptor typ rep
sents a fundamental type; zero is returned otherwise.

Dwarf_Half dwarf_fundtype(
Dwarf_Type typ,
Dwarf_Error *error)

The function dwarf_fundtype() returns a code that indicates the fundamental type o
type represented by the descriptor typ; zero is returned if typ does not represent a typ
is fundamental or an error occurred.

Dwarf_Die dwarf_udtype(
Dwarf_Type udt,
Dwarf_Error *error)

The function dwarf_udtype() returns a Dwarf_Die descriptor that represents the de
ging information entry for the user defined type represented by the descriptor udt; NU
is returned if typ does not represent a type that is user defined or an error occurred.

Attribute Form Queries 25

Based on the attribute's form, these operations are concerned with returning uninterp
attribute data. For compatibility with future DWARF versions, these functions mask
the attribute form from the name in deciding what attribute is intended. This applies to
Attribute Form Queries with the exception of dwarf_hasform(). Since it is not alwa
obvious from the return value of these functions if an error occurred or not, one sh
25-16

DWARF Access Library (libdwarf)

ction
any

y the

the
se.

d by

d by

pre-
ither
g

nted
her
g
d is
always supply an error parameter or have arranged to have an error handling fun
invoked (see dwarf_init()) to determine the validity of the return and the nature of
errors that may have occurred.

Dwarf_Half dwarf_atname(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_atname() returns the attribute name of the attribute represented b
Dwarf_Attribute descriptor attr. A zero is returned on error.

Dwarf_Bool dwarf_hasform(
Dwarf_Attributeattr,
Dwarf_Half form,
Dwarf_Error *error)

The function dwarf_hasform() returns non-zero if the attribute represented by
Dwarf_Attribute descriptor attr has the data format of form. A zero is returned otherwi

Dwarf_Off dwarf_formref(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formref() returns the reference value of the attribute represente
the descriptor attr.

Dwarf_Addr dwarf_formaddr(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formaddr() returns the address value of the attribute represente
the descriptor attr.

Dwarf_Unsigned dwarf_formudata(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formudata() returns a Dwarf_Unsigned value of the attribute re
sented by the descriptor attr. This can be used for attributes having the form of e
FORM_DATA2 or FORM_DATA4 and also FORM_DATA8 for machines supportin
Dwarf_Unsigned types of 8 bytes or larger.

Dwarf_Signed dwarf_formsdata(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formsdata() returns a Dwarf_Signed value of the attribute represe
by the descriptor attr. This can be used or attributes having the form of eit
FORM_DATA2 or FORM_DATA4 and also FORM_DATA8 for machines supportin
Dwarf_Signed types of 8 bytes or larger. If the size of the data attribute reference
smaller than the size of the Dwarf_Signed type, its value is sign extended.

Dwarf_Block* dwarf_formblock(
Dwarf_Attributeattr,
Dwarf_Error *error)
25-17

Compilation Systems Volume 2 (Concepts)

ing
d for
ge
er of

ing
to by
(see

gging
nism

or
s

LL

the
ber
unt

mon
pc.

in the
ment
The function dwarf_formblock() returns a pointer to a Dwarf_Block structure contain
the block value of the attribute represented by the descriptor attr. This can be use
attributes having the form of either FORM_BLOCK2or FORM_BLOCK4. The stora
pointed to by a successful return of dwarf_formblock() should be free'd when no long
interest (see dwarf_dealloc()).

char* dwarf_formstring(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formstring() returns a pointer to a null-terminated string contain
the string value of the attribute represented by the descriptor attr. The storage pointed
a successful return of dwarf_formstring() should be free'd when no longer of interest
dwarf_dealloc()).

Line Number Operations 25

These functions are concerned with accessing line number entries, mapping debu
information entry objects to their corresponding source lines, and providing a mecha
for obtaining information about line number entries.

Dwarf_Line dwarf_nextline(
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_nextline() returns the next line number descriptor following line
NULL if line is the last entry or an error occurred. If line is NULL, the first entry i
returned.

Dwarf_Line dwarf_prevline(
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_prevline() returns the line number descriptor preceding line or NU
if line is the first entry or an error occurred. If line is NULL, the first entry is returned.

Dwarf_Signed dwarf_pclines(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Line **linebuf,
Dwarf_Signed slide,
Dwarf_Error *error)

The function dwarf_pclines() places all line number descriptor that correspond to
value of pc into a single block and sets linebuf to point to that block; a count of the num
of Dwarf_Line descriptor that are in this block is returned. For most cases, the co
returned will be one, though this count may be higher if optimizations such as com
subexpression elimination result in multiple line number entries for a given value of
The slide argument specifies the direction to search for the nearest line number entry
event that there is no line number entry that contains an exact match for pc. This argu
ma y b e o n e o f : D LS _BAC K WA R D , D L S _ N O S LI D E , D L S _ F O RWA R D .
25-18

DWARF Access Library (libdwarf)

sful
rest.

the
ed.

tion
r of
ust
ock
lloc()

that
rn

tor

g to

in
state-
DLV_NOCOUNT is returned on error. Each entry in the block pointed to by a succes
return of dwarf_pc lines should be free'd using dwarf_dealloc() when no longer of inte

Dwarf_Line dwarf_dieline(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_dieline() returns the line number descriptor that corresponds to
low pc value of die or NULL if die does not contain a low pc attribute or an error occurr

Dwarf_Signed dwarf_srclines(
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Error *error)

The function dwarf_srclines() places all line number descriptor for a single compila
unit into a single block, sets linebuf to point to that block, and returns the numbe
descriptor in this block; DLV_NOCOUNT is returned on error. The die argument m
represent a debugging information entry for a compilation unit. Each entry in the bl
pointed to by a successful return of dwarf_srclines should be free'd using dwarf_dea
when no longer of interest.

Dwarf_Bool dwarf_is1stline(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_is1stline() returns non-zero if line represents a line number entry
is the first of a block of line number entries for a given compilation unit. A non-zero retu
from dwarf_is1stline() implies that a call to dwarf_lineaddr() giving line as a descrip
will return an address that represents the base address for the source file.

Dwarf_Unsigned dwarf_lineno(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineno() returns the source statement line number correspondin
the descriptor line.

Dwarf_Addr dwarf_lineaddr(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineaddr() returns the address associated with the descriptor line.

Dwarf_Signed dwarf_lineoff(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineoff() returns the off set in bytes from the beginning of the line
which the statement appears. If the generator of line number information represents
ments in terms of source lines only, a-1isreturned.

char* dwarf_linesrc(
Dwarf_Line line,
Dwarf_Error *error)
25-19

Compilation Systems Volume 2 (Concepts)

ters
d on
ee'd

the
n
r-

ing a

rac-
to by
(see

a-

ns in
.

ing to
ing
The function dwarf_linesrc() returns a pointer to a NULL terminated string of charac
that represents the name of the compilation unit where line appears; NULL is returne
error. The storage pointed to by a successful return of dwarf_linesrc() should be fr
when no longer of interest (see dwarf_dealloc()).

Global Name Space Operations 25

Dwarf_Global dwarf_nextglob(
Dwarf_Debug dbg,
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_nextglob() returns the next Dwarf_Global descriptor representing
next global entry following glob; NULL is returned if glob is the last global entry or a
error occurred. If glob is NULL, the first global entry is returned. A global entry is cu
rently defined as an entry that is associated with a debugging information entry hav
d_tag value of: TAG_global_variable or TAG_global_subroutine.

char* dwarf_globname(
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_globname() returns a pointer to a NULL terminated string of cha
ters that represents the name of glob; NULL is returned on error. The storage pointed
a successful return of dwarf_globname() should be free'd when no longer of interest
dwarf_dealloc()).

Dwarf_Die dwarf_globdie(
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_globdie() returns the Dwarf_Die descriptor of the debugging inform
tion entry associated with the global entry glob; NULL is returned on error.

Utility Operations 25

These functions aid with the management of errors encountered when using functio
the libdwarf library and releasing memory allocated as a result of a libdwarf operation

Dwarf_Unsigned dwarf_errno(
Dwarf_Error error)

dwarf_errno() returns the error number corresponding to the error specified by error.

const char* dwarf_errmsg(
Dwarf_Error error)

The function dwarf_errmsg() returns a pointer to an error message string correspond
the error specified by error or NULL if the error is out of bounds. Note that the str
returned by dwarf_errmsg() should not be deallocated using dwarf_dealloc().
25-20

DWARF Access Library (libdwarf)

unc-
ple-

err-

tion
The minimum set of errors are enumerated in Table 25-4.

This list of errors is not necessarily complete; additional errors might be added when f
tionality to create debugging information entries are added to libdwarf and by the im
mentors of libdwarf to describe internal errors not addressed by the above list.

Dwarf_Handler dwarf_seterrhand(
Dwarf_Debug dbg,
Dwarf_Handler errhand)

The function dwarf_seterrhand() replaces the error handler (see dwarf_init()) with
hand; the old error handler is returned.

Dwarf_Addr dwarf_seterrarg(
Dwarf_Debug dbg,
Dwarf_Addr errarg)

The function dwarf_seterrarg() replaces the pointer to the error handler communica
area (see dwarf_init()) with errarg; a pointer to the old area is returned.

Table 25-4. Error Codes

SYMBOLIC NAME DESCRIPTION

DLE_NE No error (0)

DLE_VMM Version of DWARF information newer than libdwarf

DLE_MAP Memory map failure

DLE_LEE Propagation of libelf error

DLE_NDS No debug section

DLE_NLS No line section

DLE_ID Requested information not associated with descriptor

DLE_IOF I/O failure

DLE_MAF Memory allocation failure

DLE_IA Invalid argument

DLE_MDE Mangled debugging entry

DLE_MLE Mangled line number entry

DLE_FNO File descriptor does not refer to an open file

DLE_FNR File is not a regular file

DLE_FWA File is opened with wrong access

DLE_NOB File is not an object file

DLE_MOF Mangled object file header

DLE_LAST Upper bound of libdwarf errors

DLE_LO_USER Lower bound of implementation specific codes
25-21

Compilation Systems Volume 2 (Concepts)

o by
space
ory
void dwarf_dealloc(
void* space,
Dwarf_Unsigned typ)

The function dwarf_dealloc frees all dynamic storage allocated to area pointed t
space. The argument typ. is an integer code that specifies the type pointed to by the
argument. Refer to “Memory Management” on page 25-8 for details on libdwarf mem
management.

Appendix1--libdwarf.h 25

#ifndef _LIBDWARF_H

#define _LIBDWARF_H

typedef int Dwarf_Bool; /* boolean type*/

typedef unsigned long Dwarf_Off; /* 4 or8 byte file offset */

typedef unsigned long Dwarf_Unsigned; /* 4 or8 byte unsigned value */

typedef unsigned short Dwarf_Half; /* 2 byte unsigned value */

typedef unsigned char Dwarf_Small; /* 1 byte unsigned value */

typedef signed long Dwarf_Signed; /* 4 or8 byte signed value */

typedef void* Dwarf_Addr; /* memory address */

/* uninterpreted block of data

*/

typedef struct {

Dwarf_Unsigned bl_len; /*length of block */

Dwarf_Addr bl_data; /*uninterpreted data */

} Dwarf_Block;

/* location record

*/

typedef struct {

Dwarf_Small lr_atom; /*location operation */

Dwarf_Unsigned lr_number; /*operand */

} Dwarf_Loc;

/* location description

*/

typedef struct {

Dwarf_Addr ld_lopc; /*beginning ofactive range */

Dwarf_Addr ld_hipc; /*end ofactive range */

Dwarf_Half ld_cents; /*count oflocation records */

Dwarf_Loc* ld_s; /*pointer tolist ofsame */

} Dwarf_Locdesc;

/* element list

*/

typedef struct {

Dwarf_Signed el_value; /*value ofelement */

char* el_name; /*name of element */

} Dwarf_Ellist;

/* subscript bounds information

*/

typedef struct {

Dwarf_Bool bo_isconst;

union {

Dwarf_Signed constant;
25-22

DWARF Access Library (libdwarf)
Dwarf_Locdesc* locdesc;

} bo_;

} Dwarf_Bounds;

/* opaque types

*/

typedef struct Debug* Dwarf_Debug;

typedef struct Die* Dwarf_Die;

typedef struct Line* Dwarf_Line;

typedef struct Attribute* Dwarf_Attribute;

typedef struct Subscript* Dwarf_Subscript;

typedef struct Type* Dwarf_Type;

typedef struct Global* Dwarf_Global;

typedef struct Error* Dwarf_Error;

/* error handler function

*/

typedef void (*Dwarf_Handler)(Dwarf_Error error, Dwarf_Addr errarg);

/* dwarf_dealloc() typ arguments

*/

#define DLA_STRING 0x01 /* argument points to char* */

#define DLA_LOC 0x02 /* argument points to Dwarf_Loc */

#define DLA_LOCDESC 0x03 /* argument points to Dwarf_Locdesc */

#define DLA_ELLIST 0x04 /* argument points to Dwarf_Ellist */

#define DLA_BOUNDS 0x05 /* argument points to Dwarf_Bounds */

#define DLA_BLOCK 0x06 /* argument points to Dwarf_Block */

#define DLA_DEBUG 0x07 /* argument points to Dwarf_Debug */

#define DLA_DIE 0x08 /* argument points to Dwarf_Die */

#define DLA_LINE 0x09 /* argument points to Dwarf_Line */

#define DLA_ATTR 0x0a /* argument points to Dwarf_Attribute */

#define DLA_TYPE 0x0b /* argument points to Dwarf_Type */

#define DLA_SUBSCR 0x0c /* argument points to Dwarf_Subscr */

#define DLA_GLOBAL 0x0d /* argument points to Dwarf_Global */

#define DLA_ERROR 0x0e /* argument points to Dwarf_Error */

#define DLA_LIST 0x0f /* argument points to a list */

/* dwarf_openscn() access arguments

*/

#define DLC_READ 0 /* readonly access */

#define DLC_WRITE 1 /* write only access */

#define DLC_RDWR 2 /* read/write access */

/* dwarf_pcline() slide arguments

*/

#define DLS_BACKWARD -1 /* slide backward tofind line*/

#define DLS_NOSLIDE 0 /* match exactly without sliding */

#define DLS_FORWARD 1 /* slide forward to findline */

/* libdwarf error numbers

*/

#define DLE_NE 0x00 /* noerror */

#define DLE_VMM 0x01 /* dwarf format/library version mismatch */

#define DLE_MAP 0x02 /* memory map failure */

#define DLE_LEE 0x03 /* libelf error */

#define DLE_NDS 0x04 /* nodebug section */

#define DLE_NLS 0x05 /* noline section */

#define DLE_ID 0x06 /* invalid descriptor for query */

#define DLE_IOF 0x07 /* I/O failure */
25-23

Compilation Systems Volume 2 (Concepts)
#define DLE_MAF 0x08 /* memory allocation failure */

#define DLE_IA 0x09 /* invalid argument */

#define DLE_MDE 0x0a /* mangled debugging entry */

#define DLE_MLE 0x0b /* mangled line number entry */

#define DLE_FNO 0x0c /* filenot open */

#define DLE_FNR 0x0d /* filenot a regular file*/

#define DLE_FWA 0x0e /* fileopen with wrong access */

#define DLE_NOB 0x0f /* not anobject file */

#define DLE_MOF 0x10 /* mangled object file header */

#define DLE_LAST DLE_MOF

#define DLE_LO_USER 0x10000

/* error return values

*/

#define DLV_BADADDR ((Dwarf_Addr) 0) /* for functions returning address */

#define DLV_NOCOUNT ((Dwarf_Signed)-1) /* for functions returning count */

#define DLV_BADOFFSET ((Dwarf_Off)0) /* for functions returning offset */

/* initialization and termination operations

*/

Dwarf_Debug dwarf_init (

int fd,

Dwarf_Unsigned access,

Dwarf_Handler errhand,

Dwarf_Addr errarg,

Dwarf_Error *error

);

void dwarf_finish (

Dwarf_Debug dbg

);

/* DIE delivery operations

*/

Dwarf_Die dwarf_nextdie (

Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Die dwarf_siblingof (

Dwarf_Debug dbg,

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Die dwarf_offdie (

Dwarf_Debug dbg,

Dwarf_Off offset,

Dwarf_Error* error

);

Dwarf_Die dwarf_pcfile (

Dwarf_Debug dbg,

Dwarf_Addr pc,

Dwarf_Error* error

);

Dwarf_Die dwarf_pcsubr (

Dwarf_Debug dbg,

Dwarf_Addr pc,
25-24

DWARF Access Library (libdwarf)
Dwarf_Error* error

);

Dwarf_Die dwarf_pcscope (

Dwarf_Debug dbg,

Dwarf_Addr pc,

Dwarf_Error* error

);

Dwarf_Die dwarf_child (

Dwarf_Die die,

Dwarf_Error* error

);

/* query operations for DIEs

*/

Dwarf_Signed dwarf_childcnt (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Half dwarf_tag (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Off dwarf_dieoffset (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Attribute dwarf_attr (

Dwarf_Die die,

Dwarf_Half attr,

Dwarf_Error* error

);

char* dwarf_diename (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Bool dwarf_hasattr (

Dwarf_Die die,

Dwarf_Half attr,

Dwarf_Error* error

);

Dwarf_Type dwarf_typeof (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_loclist (

Dwarf_Die die,

Dwarf_Locdesc **llbuf,

Dwarf_Error* error

);

Dwarf_Locdesc* dwarf_stringlen (

Dwarf_Die die,

Dwarf_Error *error

);

Dwarf_Signed dwarf_subscrcnt (

Dwarf_Die die,
25-25

Compilation Systems Volume 2 (Concepts)
Dwarf_Error* error

);

Dwarf_Subscript dwarf_nthsubscr (

Dwarf_Die die,

Dwarf_Unsigned ssndx,

Dwarf_Error* error

);

Dwarf_Addr dwarf_lowpc (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Addr dwarf_highpc (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_elemlist (

Dwarf_Die die,

Dwarf_Ellist** elbuf,

Dwarf_Error* error

);

Dwarf_Signed dwarf_bytesize (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Bool dwarf_isbitfield (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_bitsize (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_bitoffset (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_srclang (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_arrayorder (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_attrlist (

Dwarf_Die die,

Dwarf_Attribute** attrbuf,

Dwarf_Error* error

);

/* query operations for subscripts

*/

Dwarf_Type dwarf_subscrtype (

Dwarf_Subscript ss,

Dwarf_Error* error
25-26

DWARF Access Library (libdwarf)
);

Dwarf_Bounds* dwarf_lobounds (

Dwarf_Subscript ss,

Dwarf_Error* error

);

Dwarf_Bounds* dwarf_hibounds (

Dwarf_Subscript ss,

Dwarf_Error* error

);

/* query operations for types

*/

Dwarf_Signed dwarf_modlist (

Dwarf_Type typ,

Dwarf_Small** modbuf,

Dwarf_Error* error

);

Dwarf_Bool dwarf_isfundtype (

Dwarf_Type typ,

Dwarf_Error* error

);

Dwarf_Half dwarf_fundtype (

Dwarf_Type typ,

Dwarf_Error* error

);

Dwarf_Die dwarf_udtype (

Dwarf_Type udt,

Dwarf_Error* error

);

/* query operations for attributes

*/

Dwarf_Half dwarf_atname (

Dwarf_Attribute attr,

Dwarf_Error* error

);

Dwarf_Bool dwarf_hasform (

Dwarf_Attribute attr,

Dwarf_Half form,

Dwarf_Error* error

);

Dwarf_Off dwarf_formref (

Dwarf_Attribute attr,

Dwarf_Error* error

);

Dwarf_Addr dwarf_formaddr (

Dwarf_Attribute attr,

Dwarf_Error* error

);

Dwarf_Unsigned dwarf_formudata (

Dwarf_Attribute attr,

Dwarf_Error* error

);

Dwarf_Signed dwarf_formsdata (

Dwarf_Attribute attr,

Dwarf_Error* error
25-27

Compilation Systems Volume 2 (Concepts)
);

Dwarf_Block* dwarf_formblock (

Dwarf_Attribute attr,

Dwarf_Error* error

);

char* dwarf_formstring (

Dwarf_Attribute attr,

Dwarf_Error* error

);

/* line number operations

*/

Dwarf_Line dwarf_nextline (

Dwarf_Debug dbg,

Dwarf_Line line,

Dwarf_Error* error

);

Dwarf_Line dwarf_prevline (

Dwarf_Debug dbg,

Dwarf_Line line,

Dwarf_Error* error

);

Dwarf_Signed dwarf_pclines (

Dwarf_Debug dbg,

Dwarf_Addr pc,

Dwarf_Line **linebuf,

Dwarf_Signed slide,

Dwarf_Error* error

);

Dwarf_Line dwarf_dieline (

Dwarf_Die die,

Dwarf_Error* error

);

Dwarf_Signed dwarf_srclines (

Dwarf_Die die,

Dwarf_Line **linebuf,

Dwarf_Error* error

);

Dwarf_Bool dwarf_is1stline (

Dwarf_Line line,

Dwarf_Error* error

);

Dwarf_Unsigned dwarf_lineno (

Dwarf_Line line,

Dwarf_Error* error

);

Dwarf_Addr dwarf_lineaddr (

Dwarf_Line line,

Dwarf_Error* error

);

Dwarf_Signed dwarf_lineoff (

Dwarf_Line line,

Dwarf_Error* error

);

char* dwarf_linesrc (
25-28

DWARF Access Library (libdwarf)
Dwarf_Line line,

Dwarf_Error* error

);

/* global name space operations

*/

Dwarf_Global dwarf_nextglob (

Dwarf_Debug dbg,

Dwarf_Global glob,

Dwarf_Error *error

);

char* dwarf_globname (

Dwarf_Global glob,

Dwarf_Error *error

);

Dwarf_Die dwarf_globdie (

Dwarf_Global glob,

Dwarf_Error *error

);

/* utility operations

*/

Dwarf_Unsigned dwarf_errno (

Dwarf_Error error

);

const char* dwarf_errmsg (

Dwarf_Error error

);

Dwarf_Handler dwarf_seterrhand (

Dwarf_Debug dbg,

Dwarf_Handler errhand

);

Dwarf_Addr dwarf_seterrarg (

Dwarf_Debug dbg,

Dwarf_Addr errarg

);

void dwarf_dealloc (

void* space,

Dwarf_Unsigned typ

);

#endif /*_LIBDWARF_H */
25-29

Compilation Systems Volume 2 (Concepts)
25-30

9,

Index
Symbols

#pragma 4-23
.align directive 2-12
.ascii directive 2-16
.asciiz directive 2-16
.bss directive 2-17
.bss section 2-1, 2-11, 2-17
.byte directive 2-14
.comm directive 2-17
.comment section 2-18, 2-19
.data directive 2-13
.data section 2-1, 2-3, 2-11, 2-13
.def directive 2-16
.double directive 2-16
.extern directive 2-16
.file directive 2-18
.float directive 2-15
.globl directive 2-16
.int directive 2-15
.long directive 2-15
.org directive 2-12
.rela_* section 2-2
.set directive 2-16
.short directive 2-14
.space directive 2-12
.symtab section 2-2
.text directive 2-13
.text section 2-1, 2-5, 2-11, 2-13
.vbyte directive 2-14
.word directive 2-14
/etc/group file 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow file 16-15
/etc/vfstab 16-13
/tmp directory 2-2
/usr

lib 4-15, 4-16
/var/adm/utmp 16-16
/var/adm/utmpx 16-16
/var/adm/wtmp 16-16
/var/adm/wtmpx 16-16
/var/tmp directory 2-2

A

Access control list functions 16-51
acpp(1) 1-4
Ada 2-3
Ada compiler 1-4
Ada programming language 1-2
ada(1) 1-4
adb(1) 1-4
Address mode determination 20-16, 20-17
Address modes 20-17
admin(1) 14-2, 14-9, 14-19-14-21, 14-28-14-29
Algebraic simplification 20-16, 20-17
align directive 2-12, 2-17
Alphanumeric labels 2-4
Alternate math library 16-2
Analyze

detecting references to reserved registers 20-25
optimizing programs during post-linking stage

20-25
analyze(1) 1-4
ar(1) 1-4, 4-11
Archive 1-3
archive libraries 4-9

implementation 4-17
linking with 4-9, 4-15, 4-35

archive libraries, creating
creating 4-11

archive libraries, maintaining 13-11-13-12
Archiver 1-3, 1-4
Arithmetic functions 16-41
as

invocation 2-2
as(1) 1-4
Assembler 1-2, 1-4
Assembler directive 2-6
Assembly language 1-2, 2-1, 2-2, 2-4, 2-5, 2-6, 2-8, 2-

2-10, 2-11, 2-12, 2-15, 2-17, 2-19, 2-20, 2-21
Alphanumeric labels 2-4
Assembler directives 2-12, 2-17, 2-19
Assembler invocation 2-2
Assembly syntax 2-21
Character constants 2-9
Character set 2-4
Index-1

Compilation Systems Volume 2 (Concepts)

,

Constants 2-8, 2-9
Directives mnemonics 2-19
Expression operators 2-10
Expression types 2-10, 2-11
Expression values 2-11
Expressions 2-9, 2-10, 2-11
Floating point constants 2-8
Identifiers 2-6, 2-8
identifiers 2-5
Integer constants 2-8
Location counter control 2-12
Null statements 2-4
Numeric (local) labels 2-5
Operator precedence 2-10
Position-independent code 2-21
Predefined symbols 2-5, 2-6
Source statements 2-4, 2-5
Symbol attributes 2-17
User-defined symbols 2-8
Using the assembler 2-2, 2-20

Assembly language, Comments
Comments 2-5

Auditing functions 16-51

B

Back end 1-3
Backward reference 2-5
base address 22-38
Bessel Functions 16-37
Bessel functions 16-37
Binary tree functions 16-32
Binary Tree Management 16-32
bit-fields 10-4
Branch displacement optimization 2-20
Branch optimizations 20-10, 20-11, 20-12
Browser

C 1-5
bss directive 2-17
byte directive 2-14

C

C code browser 1-5
C code checkter 1-5
C compiler 1-4
C library 16-1, 16-2

linking with 4-9, 4-11
C preprocessor 1-4
C programming language 1-2

CC(1)
creating shared objects 4-13

cc(1) 1-4
creating shared objects 4-12, 4-18, 4-21, 4-22
library linking option 4-9, 4-16, 4-35
library search option 4-16, 4-36
static linking options 4-10, 4-11, 4-14, 4-15, 4-35

cc(1), 4-13
CCG 1-3
cdc(1) 14-9, 14-24
cflow(1) 1-5
Character Manipulation 16-22, 16-25, 16-26
Character test functions 16-25
Character Translation Functions 16-26
Character translation functions 16-26
Code checker

C 1-5
Code motion 20-16, 20-17
COFF 1-5
comb(1) 14-9, 14-25-14-26
comm directive 2-17
Comment 2-5
Common code generator 1-3
Common Object File Format 1-5
Common subexpression elimination 20-16, 20-17
Compilation system 1-2
Compiler 1-2

Ada 1-4
C 1-4
Fortran 1-4

Compiler optimization classes 20-10, 20-11, 20-12,
20-14, 20-15, 20-16, 20-17, 20-18, 20-19,
20-20, 20-21, 20-22, 20-24, 20-26, 20-27,
20-28, 20-29

Branch optimizations 20-10, 20-11, 20-12
Expression optimizations 20-10, 20-16, 20-17
Inline expansion of subprograms 20-10, 20-26
Instruction scheduling 20-10, 20-24
Loop optimizations 20-10, 20-18, 20-19, 20-20,

20-21, 20-22
Optimization of constraints 20-10, 20-27, 20-28,

20-29
Register allocation 20-10, 20-24
Variable optimizations 20-10, 20-12, 20-14, 20-15

20-16
Compiler optimization levels 20-2
Compiler optimization options 20-2

O 20-2
Q 20-2, 20-3, 20-8

Compiler options, Verbose
Verbose 20-10

Compiler technology 20-1
Compiler-compiler 1-4
Compressor 1-5
Index-2

Index
const 4-20
Constant propagation 20-11
Control functions 16-46
Control level functions 16-51
Controlling compiler optimizations 20-3, 20-8
Copy propagation 20-12, 20-14, 20-15, 20-16

Expression 20-14
Copy propagation, Constant

Constant 20-14
Copy propagation, Variable

Variable 20-14
Copy variables 20-12, 20-15, 20-16
cpp(1) 1-4
cprs(1) 1-5
Cross reference 1-5
cscope(1) 1-5, 9-1-9-19
cscope(1), command line 9-2, 9-10-9-13
cscope(1), environment setup 9-2, 9-18-9-19
cscope(1), environment variable 9-13
cscope(1), usage examples 9-1-9-10, 9-14-9-18
ctrace(1) 1-4
cxref(1) 1-5

D

data directive 2-11, 2-13
data representation 22-2
data segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Data structures functions 16-31
Date and time functions 16-34
Dead code elimination 20-12, 20-13, 20-14
Debugger

object 1-4
symbolic 1-3, 1-4

Debugging optimized code 20-32, 20-33, 20-34, 20-35
Debugging with arbitrary record format 1-5, 1-6
def directive 2-8, 2-16
Delimeter

comment 2-5
delta(1) 14-3, 14-8, 14-17-14-19
DES Algorithm Access 16-41, 16-52
Devices functions 16-12
Directive 2-1

.align 2-12

.ascii 2-16

.asciiz 2-16

.bss 2-17

.byte 2-14

.comm 2-17

.data 2-13

.def 2-16

.double 2-16

.extern 2-16

.file 2-18

.float 2-15

.globl 2-16

.int 2-15

.long 2-15

.org 2-12

.set 2-16

.short 2-14

.space 2-12

.text 2-13

.vbyte 2-14

.word 2-14
align 2-12, 2-17
byte 2-14
comm 2-17
data 2-11, 2-13
def 2-8, 2-16
double 2-16
extern 2-16
file 2-8, 2-18
float 2-15
gloabl 2-16
half 2-14
ident 2-18, 2-19
local 2-17
previous 2-14
sbyte 2-14
section 2-13
set 2-16
shalf 2-15
short 2-14
size 2-18
string 2-16
text 2-13
type 2-18
uahalf 2-15
uaword 2-15
ubyte 2-14
uhalf 2-15
vbyte 2-14
version 2-4, 2-6, 2-7, 2-18
weak 2-17
zero 2-12

directive
bss 2-17
word 2-15

Directory
/tmp 2-2
/var/tmp 2-2

Directory functions 16-7
Directory Use Functions 16-7
Diretive
Index-3

Compilation Systems Volume 2 (Concepts)
assembler 2-6
dis(1) 1-5
Disassembler 1-5
double directive 2-16
dump(1) 1-5
Dumper 1-5
Duplicating loop exit tests 20-18, 20-22
Duplicating partially-constant conditional branches

20-11, 20-12
DWARF 1-5, 1-6
DWARF Access Library 22-61
DWARF address ranges tables 22-16
DWARF debugging 22-16
DWARF line number information 22-16
DWARF name lookup tables 22-17
DWARF version 2 draft 5 specification 22-61
Dwarf_base_encoding() 22-62
dwarf_dealloc() 22-62
Dwarf_Error *error 22-62
Dwarf_Half** tagbuf 22-62
dwarf_isbasetype() 22-62
Dwarf_Signed dwarf_modtags 22-62
Dwarf_Type 22-62
Dwarf_Type typ 22-62
Dynamic link 1-6
dynamic linking 4-8

implementation 4-17, 4-18, 22-27, 22-45

E

EDITOR environment variable 9-2, 9-18
ELF 1-5, 1-6, 2-1
ELF (see also object files) 22-1
ELF file functions 16-17, 16-18
ELF library 16-3
Eliminating unreachable code 20-10, 20-11
Encryption functions 16-52
Environment variable

EDITOR 9-2, 9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5, 13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 2-2, 9-13
VIEWER 9-2
VPATH 9-2, 9-13

exceptions 22-61
Executable and linking format 1-5, 1-6, 2-1
executable files 22-1

Executable program 1-3
Expression optimizations 20-10, 20-16, 20-17
Expressions

Optimizing 20-16
Propagating 20-14
Simplifying 20-16

extensions 22-61
extern directive 2-16

F

f77(1) 1-4
FIle

/var/adm/utmpx 16-16
File

/etc/group 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow 16-15
/etc/vfstab 16-13
/var/adm/utmp 16-16
/var/adm/wtmp 16-16
/var/adm/wtmpx 16-16
common object format 1-5
object 1-5
relocatable object 1-3, 2-1, 2-2

File Access Functions 16-5, 16-11, 16-12
File and I/O status functions 16-6
file directive 2-8, 2-18
File functions 16-7
File Status Functions 16-6
File systems tables file functions 16-13
File tree functions 16-32
float directive 2-15
Floating point 1-7
Floating-point functions 16-41
Floating-point operations 17-1, 17-12

compares 17-12
control bits 17-7
data representation 17-1, 17-6
data types and formats 17-2
denormalized numbers 17-3
double-extended 17-11
double-precision 17-2
exception handling 17-7, 17-9
exceptions 17-7
floating point to integer conversion 17-11
IEEE requirements 17-11
infinities 17-5
infinities I/O 17-12
language mappings 17-3
maximum and minimum values 17-4
Index-4

Index
NaNs 17-5
NaNs I/O 17-12
normalized numbers 17-3
rounding 17-6
single-precision 17-2, 17-9, 17-11
single-precision functions 17-11
special-case values 17-4
square root 17-12
status bits 17-7
unordered condition 17-12

Floating-point register name 2-6
Flow functions 16-44
Flow grapher 1-5
Folding conditional tests 20-10, 20-11
Format

DWARF 1-5, 1-6
ELF 1-5, 1-6, 2-1

Fortran compiler 1-4
Fortran programming language 1-2
Forward reference 2-5
Frame

stack 1-6
Function

message queue 16-32
function prototypes, lint(1) 10-2
function prototypes, lint(1) checks for 10-7
Functions

access control lists 16-51
arithmetic 16-41
auditing 16-51
bessel 16-37
binary tree 16-32
character test 16-25
character translation 16-26
control 16-46
control levels 16-51
data structures 16-31
devices 16-12
directory 16-7
ELF files 16-17, 16-18
encryption 16-52
file 16-7
file and I/O status 16-6
file systems tables file 16-13
file tree 16-32
floating-point 16-41
flow 16-44
general date and time 16-34
general input 16-8
general output 16-9
group file 16-15
hash table 16-31
hyperbolic 16-38
I/O control 16-4

internationalization 16-35
interval timer 16-35
loadable kernel modules 16-53
locales 16-36
LWP 16-49
mathematic 16-38
mathematic and numeric 16-36
memory 16-28
memory allocation 16-29
memory control 16-30
memory manipulation 16-28
message catalog 16-36
mount table file 16-14
multibyte and wide characters 16-27
numeric conversion 16-39
other security 16-52
parameter 16-45
password file 16-14
pipes and FIFOs 16-12
POSIX timer 16-35
processes 16-45
profile 16-44
program 16-44
queues 16-33
random number 16-42
regular expression and pattern matching 16-27
security 16-50
semaphores 16-33
shadow password file 16-15
shared memory 16-30
shared object 16-22
signal 16-47
special files 16-12
STREAMS 16-11
string and characters 16-22
string manipulation 16-23
system environment 16-53
tables 16-31
temporary file 16-22
terminal I/O 16-10
trees 16-31
trigonometric 16-37
user and accounting files 16-16
user-level interrupt 16-49
wide character test 16-26
wide string manipulation 16-24

G

gdb(1) 1-4
General input functions 16-8
General output functions 16-9
Index-5

Compilation Systems Volume 2 (Concepts)
General register name 2-6
General-purpose library 16-3
get(1) 14-2-14-4, 14-8, 14-9-14-17
global directive 2-16
global symbols 4-22
Grapher 1-5
Group file functions 16-15

H

half directive 2-14
Hash table functions 16-31
Hash Table Management 16-31
header files, lint(1)ing 10-6-10-7
help(1) 14-5, 14-9, 14-23
High-level language 1-2
Hyperbolic Functions 16-38
Hyperbolic functions 16-38

I

I/O control functions 16-4
ident directive 2-18, 2-19
Identifier

ordering 1-5
predefined 2-6
user-defined 2-6

Identifiers 2-5
ifiles 4-23
Induction variable 20-20
Inline expansion 20-11, 20-26
Inline expansion of subprograms 20-10, 20-26
Input Functions 16-8
Inserting zero trip tests 20-11, 20-12
Instruction mnemonic 2-1
Instruction mnemonics 2-6
Instruction scheduling 20-10, 20-24
Instruction set

PowerPC 3-2
Internal table

Table
internal 2-1

Internationalization functions 16-35
Interpreter 1-2

program 1-6
Interval timer functions 16-35
Invocation

as 2-2

L

Label
numeric 2-5

Labels
alphanumeric 2-4

Language
high-level 1-2
low-level 1-2
machine 2-1
processor 1-2
programming 1-1

ld(1) 1-4
LD_BIND_NOW 4-16, 22-47
LD_BIND_NOW environment variable 4-16, 22-47,

22-55
LD_LIBRARY_PATH 4-14, 4-16
LD_LIBRARY_PATH environment variable 4-7, 4-14,

4-36, 22-52
LD_RUN_PATH 4-15, 4-16
LD_RUN_PATH environment variable 4-7, 4-15, 4-36
ldd(1) 4-16
lex(1) 1-4, 6-1-6-19
lex(1), command line 6-1-6-2
lex(1), definitions 6-12-6-14, 6-17
lex(1), disambiguating rules 6-9
lex(1), how to write source 6-3-6-15
lex(1), library 6-2, 6-17
lex(1), operators 6-4-6-6
lex(1), quick reference 6-18-6-19
lex(1), routines 6-7, 6-10-6-12
lex(1), source format 6-3, 6-18-6-19
lex(1), start conditions 6-13-6-14
lex(1), use with yacc(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-

7-8, 7-22-7-23
lex(1), user routines 6-10-6-11, 6-14-6-15
lex(1), yylex() 6-2, 6-15
Lexical analyzer 1-4
lexical analyzer (see lex(1)) 6-2
libraries

archive 4-9
creating 4-11, 4-13, 4-18, 4-22
libc 4-9, 4-11
libdl 4-10, 4-11, 4-17
libelf 22-1
libm 4-11
linking with 4-35
naming conventions 4-35
shared object 4-8, 22-27, 22-45
standard place 4-11

libraries, lint(1) 10-7-10-8
libraries, maintaining 13-11-13-12
Library 1-3
Index-6

Index

-

alternate math 16-2
C 16-1, 16-2
DWARF Access Library 22-61
ELF 16-3
general-purpose 16-3
math 16-2
shared 1-6
system 16-1

Link
dynamic 1-6
static 1-6

link editing 22-23, 22-45
library linking options 4-9, 4-16, 4-35
multiply defined symbols 4-22, 4-23
quick reference 4-35
undefined symbols 4-8

link editing, dynamic
dynamic 4-8, 22-27, 22-45

link editing, static
static 4-8

Link editor 1-3, 1-4
Linking 4-1
lint(1) 1-5, 10-1-10-38
lint(1), command line 10-6-10-8
lint(1), consistency checks 10-2-10-3
lint(1), filters 10-8
lint(1), libraries 10-7-10-8
lint(1), message formats 10-2
lint(1), messages 10-12-10-38
lint(1), options and directives 10-1-10-2, 10-8-10-12
lint(1), portability checks 10-3-10-5
lint(1), suspicious constructs 10-5-10-6
Lister

name 1-5
Loadable kernel module functions 16-53
local directive 2-17
Locale functions 16-36
Locale Information 16-36
Location counter 2-5
Loop optimizations 20-10, 20-18, 20-19, 20-20, 20-21,

20-22
Loop unrolling 20-18, 20-22
Loops

Forward branch into 20-19
Optimizing 20-17, 20-18, 20-19, 20-20, 20-21,

20-22
Test replacement 20-21
Unrolling 20-22
With multiple entries 20-19, 20-20

lorder(1) 1-5
Low-level language 1-2
LWP functions 16-49

M

m4(1) 1-5, 2-2, 2-3, 5-1-5-10
m4(1), argument handling 5-5-5-7
m4(1), arithmetic capabilities 5-7
m4(1), command line 5-1-5-2
m4(1), conditional preprocessing 5-8-5-9
m4(1), defining macros 5-2-5-5
m4(1), file manipulation 5-7-5-8
m4(1), quoting 5-3-5-5
m4(1), string handling 5-9-5-10
Machine language 2-1
Macro preprocessor 1-5
make(1) 13-1-13-24
make(1), command line 13-16-13-18
make(1), environment variables 13-18-13-19
make(1), how to write source 13-2-13-8
make(1), macros 13-3-13-8, 13-10, 13-12
make(1), maintaining libraries 13-11-13-12
make(1), makefile convention 13-1
make(1), sample output 13-4-13-5
make(1), source format 13-6
make(1), suffix transformation rules 13-9-13-11, 13-19

13-24
make(1), usage example 13-4-13-5
make(1), use with SCCS 13-13-13-14
MAKEFLAGS environment variable 13-18
Manipulator 1-5
mapfiles 4-35

defaults 4-30
error messages 4-34
example 4-29
map structure 4-31
mapping directives 4-27
segment declarations 4-25
size-symbol declarations 4-28
structure 4-24
syntax 4-24
usage 4-24

Math library 16-2
math library, linking with

linking with 4-11
Mathematic and numeric functions 16-36
Mathematic functions 16-38
mcs(1) 1-5
Memory Allocation 16-29, 16-30
Memory allocation functions 16-29
Memory control functions 16-30
Memory functions 16-28
Memory Manipulation Functions 16-28
Memory manipulation functions 16-28
Message catalog functions 16-36
Message queue functions 16-32
Index-7

Compilation Systems Volume 2 (Concepts)

9

Messages
About copy variables 20-15
About forward branch into loop 20-19
About loop exits 20-22
About loop unrolling 20-23, 20-24
About optimizing variables 20-13
About uninitialized variables 20-35
About zero trip tests 20-11
at unknown line 20-19

Miscellaneous Functions 16-10, 16-12, 16-27, 16-38,
16-44, 16-45, 16-51, 16-52, 16-53

Mnemonic
instruction 2-1, 2-6

Mount table file functions 16-14
Multibyte and wide character functions 16-27
multiply defined symbols 4-22, 4-23

N

Name lister 1-5
NightTrace(1) 1-4
NightView(1) 1-4
nm(1) 1-5
Null statement 2-4
Numeric conversion functions 16-39
Numeric Conversions 16-39

O

O option 20-2
Object

shared 1-6
Object debugger 1-4
Object file 1-5

relocatable 1-3, 2-1, 2-2
Object File Library 16-2, 16-17, 16-18, 16-35, 16-36
Object files

80-bit precision 22-21, 22-22
FP rounding modes 22-19

object files 22-1
data representation 22-2
function addresses 22-57
global offset table 22-54
procedure linkage table 22-58
program header 22-35
program interpreter 22-45
program linking 22-3
program loading 22-42
section alignment 22-12
section attributes 22-14

section header 22-9
segment contents 22-40
segment permissions 22-39
tools for manipulating 22-1

object files, base address
base address 22-38

object files, ELF header
ELF header 22-3

Object files, FP exceptions
FP exceptions 22-19

object files, hash table
hash table 22-59

object files, libelf
libelf 22-1

object files, note section
note section 22-41

object files, relocation
relocation 22-27, 22-54

object files, section names
section names 22-18

object files, section types
section types 22-12

object files, segment types
segment types 22-36

Object files, string table
string table 22-22

object files, symbol table
symbol table 22-23

Object files, zero page
zero page 22-21, 22-22

Optimization
during post-linking stage 20-25
longjmp routine 20-25
setjmp routine 20-25

Optimization of constraints 20-10, 20-27, 20-28, 20-2
Optimization programming techniques 20-30, 20-31,

20-32
Coding tips 20-30, 20-31
Performance analysis techniques 20-30, 20-32

Optimizations, Safe
Safe 20-2

Optimizations, Unsafe
Unsafe 20-2

Optimize 1-2
Optimizer 1-4
Options

O 20-2
Q 20-13, 20-15, 20-18, 20-20, 20-22

Ordering identifier 1-5
Other security functions 16-52
Output Functions 16-9
Index-8

Index
P

paging 4-18, 4-20, 4-21, 22-42
PARALLEL environment variable 13-5, 13-17
Parameter functions 16-45
parser (see yacc(1)) 7-1
Password File Access 16-13, 16-14, 16-15, 16-16
Password file functions 16-14
pctolf(1) 1-5
Performance analysis 11-1
Performance analyzer 1-4
Pipe and FIFO functions 16-12
portability, lint(1) checks for 10-3-10-5
position-independent code 4-18, 22-45, 22-54
POSIX timer functions 16-35
Post-Linker Optimization 20-25
PowerPC

condition codes 3-25
implementation-specific instructions 3-31
operand abbreviations 3-26
optional instructions 3-31
special-purpose registers 3-28
time base registers 3-31
trap operand 3-26

PowerPC instructions 3-1
Precprocessor

macro 1-5
Predefined identifer 2-6
Preprocessor

C 1-4
previous directive 2-14
Process functions 16-45
Processor

language 1-2
prof(1) 1-4
Profile functions 16-44
Profiler 1-4
Profiling 1-3
Program

executable 1-3
Program counter 1-5, 2-5
Program functions 16-44
Program interpreter 1-6
Program Monitoring 16-44
Program optimization 20-1, 20-2
Programming language 1-1

Ada 1-2
assembly 1-2
C 1-2

Proramming language
Fortran 1-2

prs(1) 14-9, 14-21-14-22
Pseudo-op 2-1

Pseudo-random number functions 16-42
Pseudo-random Number Generation 16-42

Q

Q option 20-3, 20-8, 20-18
benchmark 20-8
block_limit= 20-8
fast_math 20-8
growth_limit= 20-11, 20-20, 20-22
loops= 20-15
objects= 20-13
opt_class= 20-2
optimize_for_space 20-8
variable_limit= 20-8

-Qalign_double
see Table 2-1 20-3

-Qavoid_overflow
see Table 2-1 20-3

-Qinline_divide
see Table 2-1 20-3

-Qinvert_divides
see Table 2-1 20-3

-Qnotic
see Table 2-1 20-3

-Qschedule_tn_window
see Table 2-1 20-3

-Qskew_large_arrays
see Table 2-1 20-3

-Qtic
see Table 2-1 20-3

query operations 22-61
Queue functions 16-33
Queue Management 16-32, 16-33
-Qunaligned_args

see Table 2-1 20-3

R

Random number functions 16-42
Reference

backward 2-5
forward 2-5

Region constant 20-20
Register allocation 20-10, 20-24
Register name

floating-point 2-6
general 2-6
special-purpose 2-6

Regular expression and pattern matching functions
Index-9

Compilation Systems Volume 2 (Concepts)
16-27
regular expressions 6-4-6-6
relocatable files (see also object files) 4-9, 22-1
Relocatable object file 1-3, 2-1, 2-2
relocation 22-27
report(1) 1-4
rmdel(1) 14-9, 14-23-14-24

S

sact(1) 14-9, 14-23
sbyte directive 2-14
SCCS 14-1-14-29
SCCS, auditing files 14-28-14-29
SCCS, changing comments 14-24
SCCS, changing file parameters 14-19, 14-20-14-21
SCCS, commands 14-7-14-26
SCCS, creating files 14-2, 14-19-14-21
SCCS, file format 14-27-14-28
SCCS, file protection 14-26-14-27
SCCS, ID keywords 14-10
SCCS, marking differences 14-19, 14-25
SCCS, printing files 14-21-14-23
SCCS, removing versions 14-23-14-24
SCCS, retrieving files 14-2-14-3, 14-9-14-17
SCCS, updating files 14-3, 14-17-14-19
SCCS, usage example 14-2-14-4
SCCS, use with make(1) 13-13-13-14
SCCS, version numbering 14-5-14-7
sccsdiff(1) 14-9, 14-25
Section

.bss 2-1, 2-11, 2-17

.comment 2-18, 2-19

.data 2-1, 2-3, 2-11, 2-13

.rela_* 2-2

.symtab 2-2

.text 2-1, 2-5, 2-11, 2-13
section directive 2-13
Security functions 16-50
Selecting compiler optimization levels 20-2
Semaphore functions 16-33
Separate lifetimes 20-12, 20-15
set directive 2-16
Shadow password file functions 16-15
shalf directive 2-15
Shared library 1-6
Shared memory functions 16-30
Shared object 1-6
Shared object functions 16-22
shared objects 4-8

guidelines for building 4-18, 4-22
implementation 4-17, 4-18, 22-27, 22-45

linking with 4-9, 4-16, 4-35
shared objects, creating

creating 4-12, 4-13, 4-18
short directive 2-14
Signal functions 16-47
Signal Handling Functions 16-47
size directive 2-18
size(1) 1-5
Sizer 1-5
Sorter

topological 1-5
Special files functions 16-12
Special-purpose register name 2-6
Stack 1-6
Stack frame 1-6
Statement

null 2-4
Static link 1-6
static linking 4-8

implementation 4-17
STATIC_LINK environment variable 4-8
Straightening blocks 20-10, 20-11
STREAMS functions 16-11
Strength reduction 20-13, 20-18, 20-20, 20-21
String and characters functions 16-22
string directive 2-16
String Manipulation Functions 16-22
String manipulation functions 16-23
strip(1) 1-5
Stripper 1-5
Subprograms

inline expansion 20-26
Symbol table 1-5, 2-1

Table
symbol 1-6

Symbolic debugger 1-3, 1-4
Symbols 2-2, 2-6
System environment functions 16-53
System libraries 16-1

T

Table
symbol 1-5, 2-1

Table functions 16-31
Table Management 16-31
tdesc 1-6
tdesc (text description) 23-1
Temporary file functions 16-22
TERM environment variable 9-2
Terminal I/O functions 16-10
Test replacement 20-18, 20-21
Index-10

Index
Text description (tdesc) 23-1
Text description information 1-6
text directive 2-13
text segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Time Functions 16-33
TMPDIR environment variable 2-2, 9-13
Topological sorter 1-5
Translator 1-5
Tree functions 16-31
Trigonometric Functions 16-37
Trigonometric functions 16-37
Trigonometric identities 20-17
tsort(1) 1-5
type directive 2-18
type information 22-61

U

uahalf directive 2-15
uaword directive 2-15
ubyte directive 2-14
uhalf directive 2-15
undefined symbols 4-8
unget(1) 14-8, 14-13
Unreachable code 20-11
Unsafe optimizations 20-21
User and accounting file functions 16-16
User-defined identifier 2-6
User-level interrupt functions 16-49

V

val(1) 14-9, 14-26
Variable

EDITOR 9-2, 9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5, 13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 9-13
VIEWER 9-2
VPATH 9-2, 9-13

Variable length displacements 2-20
Variable optimizations 20-10, 20-12, 20-14, 20-15,

20-16
Variables

Copy 20-15, 20-16
Number to optimize 20-13
Optimizing 20-12
Separate lifetimes 20-15

vbyte directive 2-14
version directive 2-4, 2-6, 2-7, 2-18
Version number

assembler 2-3
VIEWER environment variable 9-2
virtual addressing 22-42
VPATH environment variable 9-2, 9-13

W

weak directive 2-17
weak symbols 4-22, 4-23
what(1) 14-9, 14-24-14-25
Wide character test functions 16-26
Wide string manipulation functions 16-24
word directive 2-15

Y

yacc(1) 1-4, 7-1-7-39
yacc(1), definitions 7-7-7-8
yacc(1), disambiguating rules 7-12-7-20
yacc(1), error handling 7-20-7-22
yacc(1), how to write source 7-3-7-7
yacc(1), library 6-17, 7-22-7-23
yacc(1), parser actions 7-9-7-12
yacc(1), routines 7-26
yacc(1), source format 7-3
yacc(1), symbols 7-3-7-7
yacc(1), typing 7-27-7-28
yacc(1), usage examples 7-29-7-39
yacc(1), use with lex(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-

7-8, 7-22-7-23
yacc(1), yylex() 7-22
yacc(1), yyparse() 7-22-7-23

Z

zero directive 2-12
Zero-trip test 20-11
Index-11

Compilation Systems Volume 2 (Concepts)
Index-12

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
O

S

Compilaton Systems
Volume 2 (Concepts)

0890460

Programmer

	Compilation Systems Volume 2 (Concepts)
	Preface
	Contents
	Part 4 - Environments
	Introduction to Environments
	Introduction

	Run-Time Libraries
	Introduction
	System Libraries
	C Library
	Alternate C Library
	Math Library
	Alternate Math Library
	ELF Library
	DWARF Library
	General-Purpose Library

	Including Functions and Data
	Including Declarations

	Listing of Functions
	Input/Output Control
	File and I/O Control and Access
	File and I/O Status
	Directories
	File Systems
	General Input
	General Output
	Terminal I/O
	STREAMS
	Pipes and FIFOs
	Devices

	Special Files
	File Systems Table File
	File Systems Mount Table File
	Password File
	Shadow Password File
	Group File
	User and Accounting Information Files
	ELF Files
	DWARF Debugging Information
	Shared Objects
	Temporary Files

	Strings and Characters
	String Manipulation
	Wide String Manipulation
	Character Test
	Wide Character Test
	Character Translation
	Multibyte and Wide Characters
	Regular Expression and Pattern Matching

	Memory
	Memory Manipulation
	Memory Allocation
	Memory Control
	Shared Memory

	Data Structures
	Tables
	Hash Tables
	File Trees
	Binary Trees
	Message Queues
	Queues
	Semaphores

	Date and Time
	General Date and Time
	Interval Timer
	POSIX Timer

	Internationalization
	Locales
	Message Catalogs

	Mathematic and Numeric
	Trigonometric
	Bessel
	Hyperbolic
	Miscellaneous Mathematic Functions
	Numeric Conversion
	Other Arithmetic
	Floating-Point Environment
	Pseudo-Random Number Generation Functions

	Programs
	Flow
	Profile
	Parameters

	Processes
	Control
	Signals
	User-Level Interrupts
	Lightweight Processes

	Security
	Access Control Lists
	Auditing
	Levels
	Other Security
	Encryption and Decryption

	System Environment
	Loadable Kernel Modules
	Other System Environment

	Floating-Point Operations
	Introduction
	IEEE Arithmetic
	Data Types and Formats
	Single-Precision
	Double-Precision
	Language Mappings

	Normalized Numbers
	Denormalized Numbers
	Maximum and Minimum Representable Floating-Point Values
	Special-Case Values
	NaNs and Infinities
	Rounding Control

	Floating-Point Exceptions
	Exceptions, Status Bits, and Control Bits
	Exception Handling

	Single-Precision Floating-Point Operations
	Single-Precision Functions

	Double-Extended-Precision
	IEEE Requirements
	Conversion of Floating-Point Formats to Integer
	Square Root
	Compares and Unordered Condition
	NaNs and Infinities in Input/Output

	Inter-Language Interfacing
	Introduction
	Subroutine Linkage
	The Stack Frame
	Parameters
	Return Values
	Prologue and Epilogue
	Register Usage

	External Names
	Data Types
	Scalar Types
	Structures
	Common Blocks

	Part 5 - Program Optimization
	Introduction to Program Optimization
	Introduction

	Program Optimization
	Introduction to Compiler Technology
	Compiler Optimization Options
	Setting the Compiler Optimization Level
	Controlling Compiler Optimizations
	Giving Hints to Compiler Optimizations (C++ only)
	Obtaining Optimization Messages

	Classes of Optimizations
	Branch Optimizations
	Straightening Blocks
	Folding Conditional Tests
	Eliminating Unreachable Code
	Inserting Zero Trip Tests
	Duplicating Partially-Constant Conditional Branches

	Variable Optimizations
	Dead Code Elimination
	Copy Propagation
	Separate Lifetimes
	Copy Variables

	Expression Optimizations
	Algebraic Simplification
	Address Mode Determination
	Common Subexpression Elimination
	Code Motion

	Loop Optimizations
	Loops with Multiple Entry Points
	Strength Reduction
	Test Replacement
	Duplicating Loop Exit Tests
	Loop Unrolling and Software Pipelining

	Register Allocation
	Instruction Scheduling
	Post-Linker Optimization
	Inline Expansion of Subprograms (Ada only)
	Optimization of Constraints (Ada only)
	Inline Expansion of Subprograms (C++ only)
	Precise Alias Analysis (C++ Only)

	Programming Techniques
	Coding Tips
	Identifying Performance Problems

	Debugging Optimized Code
	Understanding Optimization’s Effects on Debugging
	Examining Your Program

	Part 6 - Formats
	Introduction to Formats
	Introduction

	Executable and Linking Format (ELF)
	Introduction
	File Format
	Data Representation

	Program Linking
	ELF Header
	ELF Identification
	ELF Header Flags

	Section Header
	Special Sections
	Vendor Section

	String Table
	Symbol Table
	Symbol Values

	Relocation
	Relocation Types

	Program Execution
	Program Header
	Base Address

	Segment Permissions
	Segment Contents
	Note Section

	Program Loading
	Program Interpreter
	Dynamic Linker
	Dynamic Section
	Shared Object Dependencies
	Link Map
	Global Offset Table
	Function Addresses
	Procedure Linkage Table
	Hash Table
	Initialization and Termination Functions

	Symbolic Debugging Information

	tdesc Information
	Introduction
	tdesc Chunks
	tdesc in Executable Programs and Shared Objects
	Examples

	DWARF Debugging Information Format
	Introduction
	Purpose and Scope
	Overview
	Vendor Extensibility
	Changes from Version 1

	General Description
	The Debugging Information Entry
	Attribute Types
	Relationship of Debugging Information Entries
	Location Descriptions
	Location Expressions
	Register Name Operators
	Addressing Operations
	Literal Encodings
	Register Based Addressing
	Stack Operations
	Arithmetic and Logical Operations
	Control Flow Operations
	Special Operations

	Sample Stack Operations
	Example Location Expressions
	Location Lists

	Types of Declarations
	Accessibility of Declarations
	Visibility of Declarations
	Virtuality of Declarations
	Artificial Entries
	Target-Specific Addressing Information
	Non-Defining Declarations
	Declaration Coordinates
	Identifier Names

	Program Scope Entries
	Compilation Unit Entries
	Module Entries
	Subroutine and Entry Point Entries
	General Subroutine and Entry Point Information
	Subroutine and Entry Point Return Types
	Subroutine and Entry Point Locations
	Declarations Owned by Subroutines and Entry Points
	Low-Level Information
	Types Thrown by Exceptions
	Function Template Instantiations
	Inline Subroutines
	Abstract Instances
	Concrete Inlined Instances
	Out-of-Line Instances of Inline Subroutines

	Lexical Block Entries
	Label Entries
	With Statement Entries
	Try and Catch Block Entries

	Data Object and Object List Entries
	Data Object Entries
	Common Block Entries
	Imported Declaration Entries
	Namelist Entries

	Type Entries
	Base Type Entries
	Type Modifier Entries
	Typedef Entries
	Array Type Entries
	Structure, Union, and Class Type Entries
	General Structure Description
	Derived Classes and Structures
	Friends
	Structure Data Member Entries
	Structure Member Function Entries
	Class Template Instantiations
	Variant Entries

	Enumeration Type Entries
	Subroutine Type Entries
	String Type Entries
	Set Entries
	Subrange Type Entries
	Pointer to Member Type Entries
	File Type Entries

	Other Debugging Information
	Accelerated Access
	Lookup by Name
	Lookup by Address

	Line Number Information
	Definitions
	State Machine Registers
	Statement Program Instructions
	The Statement Program Prologue
	The Statement Program
	Special Opcodes
	Standard Opcodes
	Extended Opcodes

	Macro Information
	Macinfo Types
	Define and Undefine Entries
	Start File Entries
	End File Entries
	Vendor Extension Entries

	Base Source Entries
	Macinfo Entries for Command Line Options
	General Rules and Restrictions

	Call Frame Information
	Structure of Call Frame Information
	Call Frame Instructions
	Call Frame Instruction Usage

	Data Representation
	Vendor Extensibility
	Reserved Error Values
	Executable Objects and Shared Objects
	File Constraints
	Format of Debugging Information
	Compilation Unit Header
	Debugging Information Entry
	Abbreviation Tables
	Attribute Encodings

	Variable Length Data
	Location Descriptions
	Location Expressions
	Location Lists

	Base Type Encodings
	Accessibility Codes
	Visibility Codes
	Virtuality Codes
	Source Languages
	Address Class Encodings
	Identifier Case
	Calling Convention Encodings
	Inline Codes
	Array Ordering
	Discriminant Lists
	Name Lookup Table
	Address Range Table
	Line Number Information
	Macro Information
	Call Frame Information
	Dependencies

	Future Directions
	Appendix 1 -- Current Attributes by Tag Value
	Appendix 2 -- Organization of Debugging Information
	Appendix 3 -- Statement Program Examples
	Appendix 4 -- Encoding and decoding variable length data
	Appendix 5 -- Call Frame Information Examples

	DWARF Access Library (libdwarf)
	Introduction
	Purpose and Scope
	Definitions
	Overview

	Type Definitions
	General Description
	Scalar Types
	Aggregate Types
	Location Record
	Location Description
	Element List
	Subscript Bounds Information
	Data Block

	Opaque Types

	Error Handling
	Memory Management
	Read-only Properties
	Storage Deallocation

	Functional Interface
	Initialization Operations
	Debugging Information Entry Delivery Operations
	Debugging Information Entry Query Operations
	Array Subscript Query Operations
	Type Information Query Operations
	Attribute Form Queries
	Line Number Operations
	Global Name Space Operations
	Utility Operations
	Appendix1--libdwarf.h

	Index

