
User’s Guide

0890428-010

 February 1997

Copyright 1997 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent Computer Corporation personnel, customers, and end–
users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation
2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope“Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- July 28, 1994 000 PowerUX 1.1

Reissue 1 -- February 1997 010 PowerMAX OS 4.1

Contents

iii

Contents

Chapter 1 Introduction

Introduction . 1-1
Contents of this Guide . 1-1

Secure Facility User's Guide . 1-1
System Overview . 1-2
UNIX System Tutorials. 1-2
Reference Information. 1-3

Syntax Notation . 1-4
Referenced Documentation . 1-5

Chapter 2 What Is the UNIX System?

Overview of the UNIX Operating System. 2-1
The Kernel . 2-2
UNIX System Commands . 2-3

Command Functions . 2-4
Executing Commands . 2-4

The File System . 2-6
Ordinary Files . 2-7
Directories . 2-7
Special Files . 2-8
Symbolic Links . 2-8
System Layout. 2-8

Security Concepts . 2-10
System Security Officer . 2-10
Protecting Information . 2-10
Basic Security. 2-11
Enhanced Security . 2-11

Security Policy. 2-13
Subjects, Objects, and Access Types . 2-13
Discretionary Access Control (DAC). 2-14

Basic ACL Entries. 2-15
ACL Generation for Files . 2-16
DAC Access Check Algorithm . 2-18

Mandatory Access Control (MAC) . 2-19
MAC Concepts and Definitions . 2-19
MAC Access Rules . 2-20

Rules for Objects . 2-20
Establishing the Levels of Objects and Subjects 2-21

The Kernel, Access Control, and Security. 2-21
User Level . 2-24
System Calls . 2-25
Processes. 2-25

Interprocess Communication (IPC). 2-27
Signals . 2-28

User’s Guide

iv

Chapter 3 Basics for UNIX System Users

Introduction . 3-1
The Terminal . 3-1

Required Terminal Settings. 3-2
Keyboard Characteristics . 3-2
Typing Conventions . 3-3

The Command Prompt. 3-4
Correcting Typing Errors. 3-4

Deleting the Current Line: The @ Sign . 3-4
Deleting Last Characters Typed:<CTRL><h> & <BACKSPACE> 3-5
Reassigning the Delete Functions . 3-5

Using Special Characters as Literal Characters. 3-6
Typing Speed . 3-6
Stopping Commands . 3-6
Using Control Characters . 3-7

Obtaining a Login Name . 3-7
Communicating with the UNIX System . 3-8

Getting a Login Prompt with the Secure Attention Key. 3-9
Login Procedure . 3-10
Problems When Logging In . 3-14
Simple Commands . 3-15
Logging Off . 3-16

Chapter 4 Using the File System

Introduction . 4-1
File System Structure . 4-1
Your Place in the File System . 4-3

Home Directory . 4-3
Current Directory . 4-4
Pathnames . 4-5

Full Pathnames. 4-5
Relative Pathnames . 4-7
Directory and File Names . 4-10

Security and Files. 4-11
Organizing a Directory. 4-12

Creating Directories: The mkdir Command . 4-12
Listing the Contents of a Directory: The ls Command. 4-13

Listing All Files in a Directory . 4-15
Listing Contents in Short Format . 4-15
Listing Contents in Long Format. 4-16

Changing the Current Directory: The cd Command. 4-17
Removing Directories: The rmdir Command . 4-19

Protecting Files . 4-20
Overview. 4-21
Types of Access . 4-22
Access Control Lists and Permission Bits . 4-22

Minimal ACL. 4-23
Additional ACL Entries. 4-24

Displaying a File's Permission Bits and ACL. 4-24
Changing the Access Control List of a File . 4-27
Determining Access . 4-28
Assigning Permissions: The chmod Command . 4-30

Contents

v

Permissions and Directories . 4-33
Default Access Control Lists . 4-33

File Access and Manipulation . 4-35
Displaying a File's Contents: The cat, pg, and pr Commands 4-36

Concatenating and Printing the Contents of a File: The cat Command . . . 4-36
Paging through the Contents of a File: The pg Command 4-38
Printing Files: The pr Command. 4-42

Making a Duplicate Copy of a File: The cp Command 4-43
Moving and Renaming a File: The mv Command . 4-46
Removing a File: The rm Command . 4-47
Counting Lines, Words, and Characters in a File: The wc Command 4-48

Changing Existing File Permissions . 4-50
Setting Directory Permissions. 4-52

File Ownership: The chown, id, and groups Commands 4-53
Advanced File Manipulation: The diff, grep, and sort Commands 4-54

Identifying Differences between Files: The diff Command 4-55
Searching a File for a Pattern: The grep Command 4-55
Sorting and Merging Files: The sort Command . 4-57

Chapter 5 Overview of the Tutorials

Introduction . 5-1
Using the Text Editors . 5-1

Text Editing Tasks . 5-1
Text Editing Buffers . 5-2
Modes of Operation . 5-3
Line Editor . 5-3
Screen Editor . 5-3

Using the Shell. 5-5
Using the Print Services. 5-6
Communicating Electronically . 5-7

Chapter 6 Line Editor (ed) Tutorial

Introduction . 6-1
Using the Line Editor (ed) Tutorial . 6-1
Getting Started with ed . 6-2

Entering ed . 6-2
Creating Text Using ed. 6-3
Displaying Text with ed . 6-4
Deleting a Line of Text with ed . 6-5
Moving Up or Down in a File Using ed . 6-6
Saving the Buffer Contents in a File . 6-6
Leaving ed . 6-7
Getting Started with ed: Exercises . 6-8
Getting Started with ed: Answers for Exercises. 6-9

General Format of ed Commands . 6-10
Line Addressing with ed . 6-11

Numerical Address . 6-11
Symbolic Address of the Current Line. 6-12
Symbolic Address of the Last Line . 6-13
Symbolic Address of the Set of All Lines . 6-13
Symbolic Address of Current Line through the Last Line 6-13

User’s Guide

vi

Addresses Relative to the Current Line . 6-14
Character String Address . 6-15
Range of Lines . 6-17
Global Search with ed. 6-18
Line Addressing with ed: Exercises . 6-20
Line Addressing with ed: Answers for Exercise. 6-21

Displaying and Creating Text with ed . 6-22
Displaying Text Alone: The p Command . 6-22
Displaying Text with Line Numbers: The n Command 6-23
Appending Text: The a Command . 6-24
Inserting Text: The i Command . 6-25
Changing Text: The c Command . 6-26
Displaying and Creating Text with ed: Exercises . 6-27
Displaying and Creating Text with ed: Answers for Exercises 6-30

Deleting Text and Undoing Changes with ed . 6-32
 Deleting Lines in Command Mode: The d Command. 6-33
Undoing Changes in Command Mode: The u Command. 6-34

Substituting Text with ed . 6-35
Substituting Text on the Current Line. 6-36
Substituting Text on One Line . 6-36
Substituting Text on a Range of Lines . 6-37
Substituting Text Globally . 6-38
Substituting Text with ed: Exercises. 6-40
Substituting Text with ed: Answers for Exercises . 6-41

Pattern-Matching Characters in ed. 6-42
Pattern-Matching Characters in ed: Exercises . 6-49
Pattern-Matching Characters in ed: Answers for Exercises 6-50

Moving and Copying Text with ed. 6-52
Moving Lines of Text: The m Command . 6-52
Copying Lines of Text: The t Command . 6-54
Joining Contiguous Lines: The j Command . 6-55
Writing Lines of Text to a File: The w Command . 6-56
Reading in Files: The r Command . 6-57
Moving and Copying Text with ed: Exercises . 6-58
Moving and Copying Text with ed: Answers for Exercises 6-59

Other Useful ed Commands and Files . 6-60
Getting Help: The h and H Commands. 6-60
Displaying Nonprinting Characters: The l Command . 6-62
Displaying the Current Filename: The f command. 6-62
Escaping to the Shell: The ! Command . 6-64
Recovering from Hangups: The ed.hup File. 6-64
Other Useful ed Commands and Files: Exercises. 6-65
Other Useful ed Commands and Files: Answers for Exercises 6-66

Chapter 7 Screen Editor (vi) Tutorial

Introduction . 7-1
Getting Started with vi . 7-2

Setting the Terminal Type for a Single Login Session . 7-3
Setting the Terminal Type for All Sessions . 7-3
Entering vi. 7-4
vi Operating Modes. 7-4

Insert Mode: Creating and Adding Text with vi . 7-5

Contents

vii

Leaving Insert Mode . 7-5
Command Mode: Editing Text in vi . 7-5
Command Mode: Moving the Cursor . 7-6
Command Mode: Deleting Text . 7-9
Command Mode: Adding Text . 7-10

Leaving vi . 7-11
Getting Started with vi: Exercises . 7-13
Getting Started with vi: Answers for Exercises . 7-13

Positioning the Cursor and Scrolling with vi. 7-14
Positioning the Cursor on a Character . 7-15

Moving to the Beginning or End of a Line . 7-15
Searching for a Character on a Line . 7-17

Positioning the Cursor on a Line . 7-18
Moving Up One or More Lines. 7-18
Moving Down One or More Lines . 7-18

Positioning the Cursor on a Word. 7-19
Positioning the Cursor by Sentences . 7-21
Positioning the Cursor by Paragraphs . 7-22
Positioning the Cursor in the Window . 7-23
Displaying Text Not Shown in the Current Editing Window. 7-26

Scrolling Text . 7-26
Scrolling Forward One Screen: The Control-f Command 7-26
Scrolling Down a Half Screen: The Control-d Command. 7-27
Scrolling Back a Full Screen: The Control-b Command 7-27
Scrolling Back a Half Screen: The Control-u Command 7-28

Moving to a Specified Line: The G Command . 7-28
Searching for Character Patterns: The / and ? Commands 7-29

Positioning the Cursor and Scrolling with vi: Exercises 7-32
Positioning the Cursor and Scrolling with vi: Answers for Exercises 7-33

Creating Text with vi . 7-34
Appending Text with vi . 7-35
Inserting Text with vi . 7-35
Opening a New Line with vi . 7-36
Creating Text with vi: Exercises. 7-38
Creating Text with vi: Answers for Exercises . 7-38

Deleting Text with vi . 7-39
Deleting Text in Insert Mode . 7-39
Undoing Changes in Command Mode: The u and U Commands 7-41
Deleting Text in Command Mode . 7-41

Deleting Words: The dw Command . 7-41
Deleting Paragraphs: The d{ and d} Commands . 7-42
Deleting Lines: The dd Command . 7-43
Deleting Text after the Cursor: The d and D Commands 7-43

Deleting Text with vi: Exercises. 7-44
Deleting Text with vi: Answers for Exercises . 7-45

Modifying Text with vi . 7-45
Replacing Text: The r and R Commands . 7-46
Substituting Text: The s and S Commands. 7-46
Changing Text: The c, cw, cc, and C Commands. 7-47

Cutting and Pasting Text with vi . 7-50
Pasting Text: The p and P Commands . 7-50
Fixing Transposed Letters: The xp Command . 7-50
Copying Text: The y and yy Commands . 7-51
Copying or Moving Text Using Registers . 7-52

User’s Guide

viii

Cutting and Pasting Text with vi: Exercises . 7-52
Cutting and Pasting Text with vi: Answers for Exercises. 7-53

Using Other vi Commands. 7-54
Repeating the Last Command: The . Command. 7-54
Joining Two Lines: The j and J Commands . 7-54
Clearing and Redrawing the Window. 7-55
Changing Lowercase to Uppercase and Vice Versa: The ~ Command 7-55

Using Line Editor (ex) Commands in vi . 7-56
Returning to the Shell: The :sh and :! Commands . 7-56
Writing Text to a New File: The :w Command. 7-56
Moving to a Specified Line: The : Command. 7-57
Deleting the Rest of the Buffer: The :.,$d Command . 7-57
Reading a File into the Buffer: The :r Command . 7-57
Making Global Changes: The :g Command . 7-58

Quitting vi . 7-60
Using vi Command Line Options . 7-61

Recovering a Lost File: The-r Option . 7-61
Editing Multiple Files . 7-62
Viewing a File: Using view. 7-62
Using vi Command Line Options: Exercises . 7-63
Using vi Command Line Options: Answers for Exercises 7-64

Displaying and Setting Environment Options . 7-65
Frequently Used ex Options . 7-67

The autowrite Option. 7-67
The ignorecase Option. 7-67
The list Option . 7-68
The number Option . 7-68
The term Option. 7-68
The wrapmargin Option. 7-69
The wrapscan Option. 7-69

Setting and Displaying Options During a vi Session: The :set Command 7-69
Setting Options for a Single Login Session . 7-70
Setting vi Environment Options for All Login Sessions 7-70

Defining EXINIT in Your .profile . 7-70
Creating a .exrc File. 7-71

Chapter 8 LP Print Service Tutorial

Introduction . 8-1
Providing Your Own Print Specifications. 8-1
Components of the LP Printing Process . 8-2
LP Security . 8-3
About This Chapter. 8-4

Enabling and Disabling a Printer . 8-4
Controlling the Printing Process . 8-6

Selecting a Print Destination. 8-6
Security Considerations . 8-6
Using a Server Printer . 8-7

Controlling Priorities in the Job Queue . 8-7
Requesting Messages from the Print Service . 8-8
Requesting Status Reports on Printers . 8-8

What Is the Status of the Printers?. 8-9
Which Forms Are Available? . 8-10

Contents

ix

Which Character Sets or Print Wheels Are Available?. 8-10
What Is the Security Level of a Print Job? . 8-11

Changing a Print Request . 8-11
Canceling a Request: The cancel Command . 8-12

Customizing Printed Output with the lp Command . 8-12
Selecting the Content Type. 8-13
Defining the Page Size and Pitch Settings . 8-14
Removing Breaks between Files . 8-15
Eliminating the Banner Page . 8-15
Controlling Security Labeling of the Output . 8-15
Using Pre-printed Forms . 8-16
Using a Character Set or Print Wheel. 8-16
Special Printing Modes. 8-16
Copies to Be Printed. 8-17
Requesting Multiple Copies . 8-18
Using PostScript Printers . 8-18

Support of Non-PostScript Print Requests . 8-19
Additional PostScript Capabilities Provided by Filters. 8-19
How to Use PostScript Fonts . 8-21

Downloading Host-Resident Fonts . 8-21
Summary of the LP Print Service Commands. 8-22

Chapter 9 Programming with the UNIX System Shell

Introduction . 9-1
Shell Command Language. 9-1

Filename Generation . 9-2
Matching All Characters with the Asterisk . 9-3
Matching One Character with the Question Mark 9-4
Matching One of a Set with Brackets . 9-5

Special Characters . 9-6
Running a Command in Background with the Ampersand. 9-6
Executing Commands Sequentially with the Semicolon 9-7
Turning Off Special Meanings with the Backslash. 9-7
Turning Off Special Meanings with Quotation Marks 9-8
Turning Off the Meaning of a Space with Quotes 9-8

Input and Output Redirection . 9-9
Redirecting Input with the < Sign . 9-9
Redirecting Output with the > Sign. 9-10
Appending Output to an Existing File with the >> Symbol 9-10
Useful Applications of Output Redirection. 9-11

The spell Command . 9-11
The sort Command. 9-12

Combining Background Mode and Output Redirection 9-12
Redirecting Output to a Command with the Pipe . 9-12
A Pipeline Using the cut and date Commands . 9-13
Substituting Output for an Argument . 9-14

Executing, Stopping, and Restarting Processes . 9-14
Running Commands at a Later Time with the batch and at Commands. . . 9-15
Obtaining the Status of Running Processes. 9-17
Terminating Active Processes . 9-18
Restarting a Stopped Process . 9-19
Using the nohup Command. 9-19

User’s Guide

x

Command Language Exercises . 9-19
Shell Programming . 9-20

Shell Programs . 9-21
Creating a Simple Shell Program . 9-21
Executing a Shell Program . 9-21
Creating a bin Directory for Executable Files . 9-22
Warnings about Naming Shell Programs. 9-22

Variables . 9-23
Positional Parameters. 9-23
Special Parameters. 9-25
Named Variables . 9-26
Assigning a Value to a Variable . 9-27

Using the read Command . 9-28
Substituting Command Output for the Value of a Variable 9-29
Assigning Values with Positional Parameters 9-30

Shell Programming Constructs . 9-31
Comments . 9-31
The Here Document. 9-32
Using ed in a Shell Program . 9-32
Return Codes . 9-34

Checking Return Codes . 9-34
Using Return Codes with the exit Command. 9-34

Looping . 9-34
The for Loop. 9-34
The while Loop. 9-36

The Shell's Garbage Can: /dev/null . 9-38
Conditional Constructs . 9-38

if . . . then . 9-38
if . . . then . . . else. 9-39
The test Command for Loops . 9-40
case . . . esac . 9-42

Unconditional Control Statements: the break and continue Commands. . . 9-44
Functions. 9-45

Defining a Function . 9-45
Executing a Function . 9-46
Examples . 9-46

Debugging Programs . 9-47
Modifying Your Login Environment . 9-49

Adding Commands to Your .profile . 9-50
Setting Terminal Options . 9-50
Using Shell Variables . 9-51

Shell Programming Exercises . 9-53
Answers To Exercises . 9-54

Command Language Exercises. 9-54
Shell Programming Exercises. 9-55

Summary of Shell Command Language . 9-57
The Vocabulary of Shell Command Language . 9-57

Special Characters in the Shell . 9-57
Redirecting Input and Output . 9-57
Executing and Terminating Processes . 9-58
Making a File Accessible to the Shell . 9-58
Variables . 9-58
Variables Used in the System . 9-59

Shell Programming Constructs . 9-59

Contents

xi

Here Document . 9-59
For Loop . 9-59
While Loop . 9-60
If...Then . 9-60
If...Then...Else . 9-60
Case Construction . 9-61
Break and Continue Statements . 9-61

Chapter 10 Electronic Mail Tutorial

Introduction . 10-1
Exchanging Messages . 10-1
mail . 10-2

Sending Messages . 10-2
Undeliverable Mail . 10-3
Sending Mail to One Person . 10-4
Sending Mail to Several People Simultaneously . 10-5

Sending Mail to Remote Systems: The uname and uuname Commands. 10-5
Looking up SMTP Names. 10-7
Domain-Style Addresses . 10-8

Managing Incoming Mail . 10-10
Forwarding Mail . 10-11
The vacation, notify, and mailproc Commands. 10-12

mailx .10-14
mailx Overview . 10-15
Command Line Options . 10-16
How to Send Messages: The Tilde Escapes . 10-16

Editing the Message . 10-18
Incorporating Existing Text into Your Message . 10-19

Reading a File into a Message . 10-19
Incorporating a Message from Your Mailbox into a Reply 10-20

Sending Enhanced Text . 10-20
Changing Parts of the Message Header. 10-22
Adding Your Signature . 10-23
Keeping a Record of Messages You Send. 10-23
Exiting from mailx . 10-25
Summary . 10-25

How to Manage Incoming Mail . 10-25
The msglist Argument . 10-26
Commands for Reading and Deleting Mail. 10-27

Reading Mail . 10-27
Scanning Your Mailbox . 10-28
Switching to Other Mail Files . 10-28
Deleting Mail . 10-29

Commands for Saving Mail . 10-29
Commands for Replying to Mail. 10-30
Commands for Getting out of mailx . 10-30
mailx Command Summary . 10-31

The .mailrc File . 10-31
Using Mail in a Secure Environment. 10-34

Checking for Mail: The mailcheck Command . 10-34
Saving Mail in Multiple Levels . 10-35
Getting around the System . 10-35

User’s Guide

xii

Mail Forwarding, Vacation and notify . 10-36

Chapter 11 Remote Services Tutorial

Introduction . 11-1
Overview of Remote Commands . 11-1
Terminology . 11-2
Conventions . 11-2

Copying Files between Machines . 11-2
Copying from Another Machine to Your Machine Using rcp 11-3
Copying from Your Machine to Another Machine Using rcp 11-3
Copying Directories with rcp . 11-4
Expanding Shell Metacharacters During rcp . 11-4
Error Messages . 11-4

Executing Commands Remotely . 11-5
Expanding Shell Metacharacters During rsh . 11-5
Calling rsh with No Commands . 11-6
Calling rsh by a Different Name. 11-6

Logging in on Remote UNIX Machines with rlogin . 11-6
Aborting an rlogin Connection . 11-7
Getting rlogin Access . 11-8
Suspending an rlogin Connection . 11-8

Logging in to a Machine Running Another Operating System with telnet 11-9
Suspending a telnet Connection . 11-9
Aborting a telnet Connection . 11-10

Transferring Files between Machines with ftp. 11-11
Getting a Listing of Files on the Remote Machine. 11-13
Copying Files with ftp Using get and put . 11-13
Copying Multiple Files Using mget and mput . 11-13
Quitting an ftp Session . 11-14

Aborting ftp While Transferring a File . 11-14
What Happens If There Is No Daemon Present?. 11-14

Transferring Files Non-Interactively Using tftp. 11-15
Copying Files with tftp Files Using get and put . 11-15
Quitting a tftp Session. 11-15

Displaying User Information with finger . 11-15
Determining If a Machine Is Alive on the Network Using ping 11-16

Chapter 12 Communication Tutorial

Introduction . 12-1
Basic Networking Utilities. 12-1

Transferring a File: The uucp Command . 12-2
Syntax for the uucp Command . 12-2
Using the uucp Command: Example . 12-3
How uucp Works . 12-4

Sending Files to the Public Directory: The uuto Command. 12-6
Syntax for the uuto Command. 12-6
Using the uuto Command: Example . 12-6

Checking a Job's Status: The uustat Command . 12-8
Using the uustat Command: Example . 12-8

Retrieving a File: The uupick Command . 12-9
Using the uupick Command: Example . 12-9

Contents

xiii

Connecting a Remote Terminal: The ct Command . 12-10
Syntax for the ct Command. 12-11
Examples for Using the ct Command . 12-11

Calling Another UNIX System: The cu Command . 12-12
Syntax for the cu Command . 12-13
Using the cu Command: Example. 12-14

Working on a Remote System: The uux Command . 12-16
Syntax for the uux Command . 12-16
Using the uux Command: Example . 12-16

The Remote Execution Facility: REXEC . 12-16
Using REXEC Services . 12-18

Using the rquery Service . 12-19
Using REXEC: Example . 12-20

Using the rx Service . 12-20
Syntax of the rx Service . 12-21
Using the rx Service: Example. 12-21

Using the rl Service . 12-21
Syntax for the rl Service. 12-22
Using the rl Service: Example . 12-22

Passing Environment Variables . 12-22
Syntax for Passing Environment Variables . 12-22
Passing Environment Variables: Example. 12-23

Chapter 13 Programming with awk

Introduction . 13-1
Basic awk. 13-1

Program Structure. 13-1
Usage . 13-2
Fields . 13-3
Printing . 13-4
Formatted Printing . 13-5
Simple Patterns. 13-5
Simple Actions . 13-6

Built-in Variables. 13-7
User-defined Variables . 13-7
Functions . 13-7

A Handful of Useful One-liners . 13-7
Error Messages . 13-8

Patterns . 13-9
BEGIN and END . 13-9
Relational Expressions . 13-10
Regular Expressions . 13-11
Combinations of Patterns . 13-14
Pattern Ranges . 13-14

Actions. 13-15
Built-in Variables . 13-15
Arithmetic. 13-15
Strings and String Functions . 13-18
Field Variables . 13-21
Number or String? . 13-21
Control Flow Statements . 13-23
Arrays . 13-25

User’s Guide

xiv

User-defined Functions . 13-27
Some Lexical Conventions . 13-27

Output. .13-28
The print Statement. 13-28
Output Separators . 13-28
The printf Statement . 13-29
Output to Files . 13-30
Output to Pipes . 13-31

Input . 13-31
Files and Pipes . 13-32
Input Separators . 13-32
Multi-line Records . 13-32
The getline Function . 13-33
Command-line Arguments . 13-35

Using awk with Other Commands and the Shell . 13-36
The system Function. 13-36
Cooperation with the Shell . 13-36

Example Applications . 13-38
Generating Reports . 13-38
Additional Examples. 13-39

Word Frequencies . 13-39
Accumulation. 13-40
Random Choice . 13-40
Shell Facility . 13-40
Form-letter Generation . 13-41

awk Summary . 13-42
Command Line . 13-42
Patterns . 13-42
Control Flow Statements . 13-42
Input-Output . 13-42
Functions. 13-43
String Functions . 13-43
Arithmetic Functions . 13-44
Operators (Increasing Precedence) . 13-44
Regular Expressions (Increasing Precedence) . 13-45
Built-in Variables . 13-45
Limits . 13-46
Initialization, Comparison, and Type Coercion . 13-46

Chapter 14 Managing File Systems Securely

Introduction . 14-1
Mandatory Access Control. 14-1

Subjects and Objects . 14-2
Security Levels . 14-3
Comparing Security Levels. 14-6
MAC Security Policy . 14-7
Displaying Login and File Levels. 14-10
Organizing Files at Multiple Levels . 14-11
Managing Your Home Directory . 14-12

Multilevel Directories . 14-13
Accessing Devices . 14-16

Contents

xv

Appendix A Summary of the File System

UNIX System Files . A-1
File System Structure . A-1

UNIX System Directories . A-2

Appendix B Summary of UNIX System Commands

Basic UNIX System Commands . B-1

Appendix C Quick Reference to ed Commands

ed Quick Reference . C-1
Overview of Commands for Getting Started with ed. C-1
Overview of ed Line Addressing Commands . C-2

Overview of ed Display Commands . C-2
Overview of ed Text Input Commands . C-2
Overview of ed Delete Text Commands . C-3
Overview of ed Substitute Text Commands . C-3
Overview of ed Special Pattern-matching Characters. C-3
Overview of ed Text Movement Commands . C-3

Overview of Other Useful ed Commands and Information C-4

Appendix D Quick Reference to vi Commands

vi Quick Reference . D-1
Overview of Shell Commands Used with vi . D-1
Overview of Basic vi Commands. D-2
Overview of vi Commands for Positioning by Character D-2
Overview of vi Commands for Positioning by Line . D-3
Overview of vi Commands for Positioning by Word . D-3
Overview of vi Commands for Positioning by Sentence D-3
Overview of vi Commands for Positioning by Paragraph D-4
Overview of vi Commands for Positioning in the Window D-4
Overview of vi Commands for Scrolling . D-4
Overview of vi Commands for Positioning on a Numbered Line D-4
Overview of vi Commands for Searching for a Pattern D-4
Overview of vi Commands for Inserting Text . D-5
Overview of vi Commands for Deleting Text . D-5
Overview of vi Commands for Modifying Text. D-6
Overview of Cutting and Pasting Text with vi . D-6
Overview of Special vi Commands . D-7
Overview of ex Line Editor Commands Used with vi . D-7
Overview of Commands for Quitting vi. D-8
Overview of Special Options for vi . D-8

Appendix E Summary of Shell Command Language

Summary of Shell Command Language . E-1
The Vocabulary of Shell Command Language. E-1

Special Characters in the Shell . E-1
Redirecting Input and Output . E-1
Executing and Terminating Processes. E-2

User’s Guide

xvi

Making a File Accessible to the Shell . E-2
Variables . E-2
Variables Used in the System . E-3

Appendix F Setting up the Terminal

Setting the TERM Variable . F-1
Acceptable Terminal Names . F-1

Appendix G Glossary

Glossary . G-1

Illustrations

Figure 2-1. Model of the UNIX System . 2-2
Figure 2-2. Functional View of the Kernel . 2-3
Figure 2-3. Execution of a UNIX System Command . 2-6
Figure 2-4. The Hierarchical Structure of the File System 2-7
Figure 2-5. Example of a File System . 2-9
Figure 2-6. DAC Access Check Algorithm . 2-18
Figure 2-7. Kernel Architecture . 2-22
Figure 2-8. User and Kernel Level . 2-26
Figure 4-1. A Sample File System . 4-2
Figure 4-2. Directory of Home Directories . 4-4
Figure 4-3. Pathname Elements . 4-6
Figure 4-4. Full Pathname of the /home/starship Directory 4-7
Figure 4-5. Relative Pathname of the draft Directory . 4-8
Figure 4-6. Relative Pathname from starship to outline . 4-9
Figure 4-7. Description of Output Produced by the ls-l Command 4-17
Figure 7-1. Displaying a File with a vi Window . 7-1
Figure 7-2. Keys That Move the Cursor . 7-6
Figure 8-1. Main Components of a Print Job . 8-3
Figure 13-1. awk Program Example . 13-2
Figure 14-1. Directory Structure with Several Levels . 14-9
Figure 14-2. Directory Structure after Using mkdir-l . 14-13
Figure 14-3. Structure of a Multilevel Directory . 14-14
Figure A-1. Directory Tree from root . A-1

Screens

Screen 4-1. A simple ACL . 4-26
Screen 4-2. A Complex ACL . 4-27
Screen 4-3. Effect of class entry on an ACL. 4-29
Screen 4-4. An ACL with default entries . 4-34
Screen 4-5. Effect of default entries on a file . 4-34
Screen 4-6. Effect of default entries on a directory . 4-35
Screen 9-1. Format of a Here Document . 9-32
Screen 10-1. Sample .mailrc File . 10-32
Screen 14-1. Example of Levels, Classifications, and Categories 14-5
Screen 14-2. Example of Displaying Process Levels with ps. 14-10
Screen 14-3. Displaying File and Directory Levels with ls 14-11

Contents

xvii

Screen 14-4. Creating a Directory at a Different Level . 14-13
Screen 14-5. Accessing a Multilevel Directory from Different Levels 14-15
Screen 14-6. Accessing a Multilevel Directory in a Read-only or Full File System 14-15

Tables

Table 2-1. Command Line Syntax Sequence and Spacing . 2-5
Table 3-1. UNIX System Typing Conventions. 3-3
Table 3-2. Troubleshooting Problems When Logging In . 3-15
Table 4-1. Summary of the pwd Command . 4-5
Table 4-2. Example Pathnames. 4-10
Table 4-3. Summary of the mkdir Command . 4-13
Table 4-4. Summary of the ls Command . 4-18
Table 4-5. Summary of the cd Command. 4-19
Table 4-6. Summary of the rmdir Command . 4-20
Table 4-7. Summary of the getacl Command . 4-26
Table 4-8. Summary of the setacl Command . 4-28
Table 4-9. Summary of the chmod Command . 4-33
Table 4-10. Basic Commands for Using Files . 4-36
Table 4-11. Summary of the cat Command . 4-39
Table 4-12. Summary of Commands Used with pg . 4-39
Table 4-13. Summary of the pg Command. 4-41
Table 4-14. Summary of the pr Command . 4-44
Table 4-15. Summary of the cp Command. 4-46
Table 4-16. Summary of the mv Command . 4-48
Table 4-17. Summary of the rm Command . 4-49
Table 4-18. Summary of the wc Command . 4-51
Table 4-19. Summary of the chmod Command . 4-53
Table 4-20. Summary of the diff Command. 4-56
Table 4-21. Summary of the grep Command . 4-57
Table 4-22. Summary of the sort Command. 4-59
Table 5-1. Comparison of Line and Screen Editors (ed and vi) 5-4
Table 6-1. Summary of ed Editor Commands . 6-8
Table 6-2. Summary of ed Line Addressing. 6-19
Table 6-3. Sample Addresses for Displaying Text . 6-23
Table 6-4. Append Commands . 6-24
Table 6-5. Summary of ed Commands for Displaying and Creating Text 6-28
Table 6-6. Summary of ed Commands for Deleting Text. 6-35
Table 6-7. ed Special Characters and Their Meanings . 6-43
Table 6-8. Summary of ed Commands for Moving Text . 6-58
Table 6-9. Summary of Other Useful ed Commands and Files 6-65
Table 7-1. Cursor Movement Keys. 7-7
Table 7-2. Summary of vi Editor Commands. 7-12
Table 7-3. Summary of vi Motion Commands . 7-24
Table 7-4. Line Positioning Commands . 7-25
Table 7-5. Word Positioning Commands . 7-25
Table 7-6. Sentence Positioning Commands . 7-25
Table 7-7. Paragraph Positioning Commands . 7-25
Table 7-8. Window Positioning Commands . 7-26
Table 7-9. Summary of Additional vi Motion Commands . 7-32
Table 7-10. Summary of vi Create Text Commands . 7-37
Table 7-11. CTRL-w, kill, and CTRL-v Editing Keys . 7-40
Table 7-13. Summary of vi Change Text Commands. 7-49

User’s Guide

xviii

Table 7-14. Summary of the Yank Command. 7-51
Table 7-15. Summary of vi Cut and Paste Commands . 7-53
Table 7-16. Special vi Commands . 7-54
Table 7-17. Summary of Special vi Commands . 7-55
Table 7-18. Summary of Using ex Line Editor Commands with vi 7-59
Table 7-19. Commands to Quit the vi Editor . 7-60
Table 7-20. Summary of vi Quit Commands . 7-61
Table 7-21. Summary of vi Command Line Options . 7-63
Table 7-22. Summary of vi Environment Options . 7-65
Table 8-1. LP Command Options . 8-20
Table 8-2. Print Commands and Their Functions . 8-22
Table 8-3. Summary of the lp Command . 8-23
Table 8-4. Summary of the lpstat Command . 8-25
Table 8-5. Summary of the cancel Command. 8-26
Table 8-6. Summary of the enable Command. 8-27
Table 8-7. Summary of the disable Command . 8-27
Table 9-1. Characters with Special Meanings in the Shell Language. 9-2
Table 9-2. Summary of Filename Generation Characters. 9-6
Table 9-3. Test Command Options . 9-40
Table 10-1. Summary of the uname Command . 10-7
Table 10-2. Summary of the uuname Command . 10-7
Table 10-3. Summary of Sending Messages with the mail Command 10-9
Table 10-4. Summary of Reading Messages with the mail Command. 10-12
Table 11-1. User Commands. 11-1
Table 11-2. Directory and File Requirements for ftp . 11-11
Table 12-1. Summary of the uucp Command . 12-5
Table 12-2. Command Example . 12-6
Table 12-3. Summary of the uuto Command . 12-7
Table 12-4. Summary of the uustat Command . 12-8
Table 12-5. Summary of the uupick Command . 12-11
Table 12-6. Summary of the ct Command . 12-12
Table 12-7. Command Strings Used with the cu Command. 12-14
Table 12-8. Summary of the cu Command . 12-15
Table 12-9. Summary of the uux Command . 12-17
Table 13-1. The Sample Input File countries . 13-3
Table 13-2. awk Comparison Operators . 13-10
Table 13-3. C Programming Language Escape Sequences. 13-12
Table 13-4. awk Regular Expressions. 13-13
Table 13-5. awk Built-in Variables . 13-15
Table 13-6. awk Built-in Arithmetic Functions . 13-17
Table 13-7. awk Built-in String Functions . 13-18
Table 13-8. awk printf Conversion Characters . 13-29
Table 13-9. getline Function . 13-35
Table 13-10. Input Output Functions . 13-42
Table 13-11. String Functions . 13-43
Table 13-12. Arithmetic Functions . 13-44
Table 13-13. awk Operators . 13-44
Table 13-14. Regular Expressions. 13-45
Table 13-15. Built-in Variables . 13-45
Table C-1. ed Command Overview. C-1
Table D-1. Basic vi Commands . D-2
Table D-2. vi Cursor Positioning Commands . D-2
Table D-3. vi Line Positioning Commands. D-3
Table D-4. vi Scrolling Commands. D-4

Contents

xix

Table D-5. vi Text Insertion Commands. D-5
Table D-6. vi Deleting Commands . D-5
Table D-7. Special vi Commands . D-7
Table D-8. ex Commands Used with vi . D-7
Table D-9. Commands for Quitting vi . D-8
Table D-10. Special Options for vi . D-8

User’s Guide

xx

1
Introduction

Introduction . 1-1
Contents of this Guide . 1-1

Secure Facility User's Guide . 1-1
System Overview . 1-2
UNIX System Tutorials. 1-2
Reference Information. 1-3

Syntax Notation . 1-4
Referenced Documentation . 1-5

User’s Guide

1-1

1
Chapter 1Introduction

1
1
1

Introduction 1

This introduction describes each of the chapters and appendixes in this guide, and
describes the notation conventions used throughout.

Contents of this Guide 1

This guide contains three major parts:

• overview of the UNIX operating system

• tutorials on the main tools available on the UNIX® system

• reference section.

This guide also contains the security-related information that comprises theSecure Facil-
ity User's Guide.

Secure Facility User's Guide 1

TheSecure Facility User's Guide meets the standards for this type of document described
in theTrusted Computer System Evaluation Criteria (DoD 5200.28.STD, 1985). It shows
the intended use of the features available to all users and describes the overall design of
the system.

To effectively use the security features of the system, you must read at least the following
sections of this guide:

• “What is the UNIX System?”

• “Basics for UNIX System Users”

• “Using the File System”

• “Managing Files Securely.”

Chapter 8, “LP Print Service Tutorial” and Chapter 10,“Electronic Mail Tutorial” may
also be useful.

User’s Guide

1-2

System Overview 1

The three chapters of theUser's Guide introduce you to the basic principles of the UNIX
operating system. Each chapter builds on information presented in preceding chapters, so
it is important to read them in sequence.

• What Is the UNIX System? provides an overview of the operating system

• Basics for UNIX System Users discusses the general rules and guidelines
for using the UNIX system, including:

- using your terminal

- obtaining a system account

- establishing contact with the UNIX system

• Using the File System gives a working perspective of the file system,
including:

- commands for building your own directory structure

- accessing and manipulating the subdirectories and files

- examining the contents of other directories in the system.

UNIX System Tutorials 1

The second part of theUser's Guide contains tutorials. The tutorials assume you
understand the concepts introduced in the beginning chapters. They also provide hands-on
exercises designed to give you a more thorough understanding of the information.

• “Overview of the Tutorials” highlights UNIX system capabilities includ-
ing:

- command execution

- text editing

- electronic communication.

• “Line Editor (ed) Tutorial” shows how to use theed text editor to create
and modify text on a video display terminal or paper printing terminal

• “Screen Editor (vi) Tutorial” shows how to use the visual text editor to
create and modify text on a video display terminal.

NOTE

The visual editor,vi , is based on software developed by The
University of California, Berkeley, California; Computer Science
Division, Department of Electrical Engineering and Computer
Science. This software is owned and licensed by the Regents of
the University of California

Introduction

1-3

• Chapter 8, “LP Print Service Tutorial” shows how to print hard copies of
files using the LP print service and provides instructions for other print ser-
vices including:

- enabling and disabling a printer

- modifying the format mode of printed pages

- controlling the printing process

• Chapter 9, “Programming with the UNIX System Shell” shows how to use
the shell as a command interpreter.

• Chapter 10,“Electronic Mail Tutorial” shows how to use electronic mail
and its associated commands.

• Chapter 11, “Remote Services Tutorial” shows how to perform operations
on a remote host.

• Chapter 12, “Communication Tutorial” shows how to send messages and
files to users of both your UNIX system and other UNIX systems

• Chapter 13, “Programming with awk” describes a programming language
that enables you to handle easily the tasks associated with data processing
and information retrieval

• Chapter 14,“Managing Files Securely” describes security levels and how
to manage your work efficiently and securely in a multi-level environment.

Reference Information 1

Several appendixes and a glossary of UNIX system terms are also provided for reference:

• Appendix A, “Summary of the File System,” shows how information is
stored in the UNIX operating system.

• Appendix B, “Summary of UNIX System Commands,” describes, in alpha-
betical order, each UNIX system command discussed in theUser's Guide.

• Appendix C, “Quick Reference to ed Commands,” summarizes commands
for the line editor,ed.

• Appendix D, “Quick Reference to vi Commands,” summarizes commands
for the full screen editor,vi

• Appendix E, “Summary of Shell Command Language,” summarizes the
shell command language, and notation.

• Appendix F, “Setting Up the Terminal,” explains how to configure your ter-
minal for use with the UNIX system, and create multiple windows on the
screens of terminals with windowing capability.

• The Glossary provides definitions of the UNIX system terminology used in
this book.

User’s Guide

1-4

Syntax Notation 1

The following notation is used throughout this guide:

• User input (commands, options and arguments for commands, environment
variable names, and directory and file names files) and UNIX system
output (prompt signs and responses to commands) appear in aconstant
width font .

• Names of variables to which values must be assigned (password) and
names of books appear initalic.

• Keyboard keys and ASCII graphic input are shown in a key format, for
example, <RETURN>, <TAB>, and <!>

• Control characters are shown as a key because they do not appear on the
screen when typed. The control key, which appears on many keyboards, is
represented by the string <CTRL>. To type a control character, hold down
the control key while you type the character specified bychar.

For example, the notation <CTRL><d> means to hold down the control
key while typing a lowercase d; the letter d will not appear on the screen.

• Command options and arguments that are optional, such as[-msCj], are
enclosed in brackets.

• The vertical bar (|) separates optional arguments, from which you may
choose one. For example, when a command line has the following format:

command [arg1 | arg2]

You may use eitherarg1 or arg2 when you issue thecommand.

• Ellipses (...) after an argument mean that more than one argument may
be used on a single command line.

• Arrows (↑) on the screen (shown in examples in the “Screen Editor (vi)
Tutorial” chapter, represent the cursor.

• A parenthetical number immediately after the name of a command refers to
the part of a UNIX system reference manual where the command is
documented in the manual pages. There are three online reference manuals:

- Command Reference

- Operating System API Reference

- System Files and Devices

For example, the notationcat(1) refers to the manual page in Section 1
of the onlineCommand Reference that documents thecat command.
Online manual pages (man pages) can be viewed using theman command.
For example, entering “man cat ” will display thecat man page on your
screen.

Although it may not be the actual prompt for all systems, in sample commands, the$ sign
is used as the shell command prompt. You are not meant to type prompts; they are

Introduction

1-5

produced by the system. (The$ sign is also used to reference the value of positional
parameters and named variables.)

In all chapters, full and partial screens are used to display examples of how your terminal
screen will look when you interact with the UNIX system. The input (characters typed by
you) and output (characters printed by the UNIX system) are shown in these screens using
the conventions listed above.

The commands discussed in each section of a chapter are reviewed at the end of that
section. At the end of some sections, exercises are also provided so you can experiment
with the commands. The answers to all the exercises in a chapter are at the end of that
chapter.

Referenced Documentation 1

The following manuals are referenced in this manual:

PowerMAX OS Programming Guide 0890423

Device Driver Programming 0890425

System Administration Volume 1 0890429

System Administration Volume 2 0890430

Network Administration 0890432

Compilation Systems Volume 1 (Tools) 0890459

Compilation Systems Volume 2 (Concepts) 0890460

Trusted Computer System Evaluation DoD 5200.28.STD, 1985
Criteria

User’s Guide

1-6

2
What Is the UNIX System?

Overview of the UNIX Operating System. 2-1
The Kernel . 2-2
UNIX System Commands . 2-3

Command Functions . 2-4
Executing Commands . 2-4

The File System . 2-6
Ordinary Files . 2-7
Directories . 2-7
Special Files . 2-8
Symbolic Links . 2-8
System Layout. 2-8

Security Concepts . 2-10
System Security Officer . 2-10
Protecting Information . 2-10
Basic Security. 2-11
Enhanced Security . 2-11

Security Policy. 2-13
Subjects, Objects, and Access Types . 2-13
Discretionary Access Control (DAC). 2-14

Basic ACL Entries. 2-15
ACL Generation for Files . 2-16
DAC Access Check Algorithm . 2-18

Mandatory Access Control (MAC) . 2-19
MAC Concepts and Definitions . 2-19
MAC Access Rules . 2-20

Rules for Objects . 2-20
Establishing the Levels of Objects and Subjects 2-21

The Kernel, Access Control, and Security. 2-21
User Level . 2-24
System Calls . 2-25
Processes. 2-25

Interprocess Communication (IPC). 2-27
Signals . 2-28

User’s Guide

2-1

2
Chapter 2What Is the UNIX System?

2
2
2

Overview of the UNIX Operating System 2

The UNIX operating system is a set of programs (or software) that controls the computer,
acts as the link between you and the computer and provides tools to help you do your
work. Designed to provide an uncomplicated, efficient, and flexible computing environ-
ment, the UNIX system offers several advantages:

• a general purpose system that performs a wide variety of jobs or
applications

• an interactive environment that allows you to communicate directly with
the computer and receive immediate responses to your requests and
messages

• a multi-user environment that allows you to share the resources of the
computer with other users without sacrificing productivity

NOTE

This technique is called timesharing. The UNIX system interacts
with users on a rotating basis so quickly that it appears to be
interacting with all users simultaneously.

• a multi-tasking environment that enables you to execute more than one
program at the same time.

The UNIX system has four major components:

kernel The kernel is a program that makes up the core of the operating system; it
coordinates the internal functions of the computer (such as allocating system
resources). The kernel works invisibly; you are never aware of it while you
are doing your work.

shell The shell is a program that acts as a liaison between you and the kernel by
interpreting and executing your commands. Because it reads your input and
sends you messages, it is described as interactive.

commandsCommands are the names of programs that you request the computer to
execute. Packages of programs are called tools. The system provides tools for
jobs such as creating and changing text, writing programs, developing
software tools, and exchanging information with others via the computer.

User’s Guide

2-2

file system The file system is the collection of all the files available on your computer. It
allows you to store and retrieve information easily.

Figure 2-1 is a model of the UNIX system. Each circle represents one of the main compo-
nents: the kernel, the shell, and the commands (user programs). The arrows suggest the
shell's role as the medium through which you and the kernel communicate. The remainder
of this chapter describes each of these components, along with another important feature,
the file system.

Figure 2-1. Model of the UNIX System

The Kernel 2

The nucleus of the UNIX system is called the kernel. The kernel

• controls access to the computer

• manages computer memory

• maintains the file system

• allocates computer resources among users.

Figure 2-2 shows a functional view of the kernel.

User Programs

Shell

Programming
Environment

Electronic
Communication

Text
Processing

Information
Management

Additional
Utility

Programs

Kernel

162720

What Is the UNIX System?

2-3

Figure 2-2. Functional View of the Kernel

UNIX System Commands 2

A program is a set of instructions to the computer. Programs that can be executed by the
computer without the need for translation are called executable programs or commands.
As a typical user, you have many standard programs and tools available to you. If you use
the system to write programs and develop software, you can also employ system calls,
subroutines, and other tools. (Of course, any programs you write will also be available to
you.)

This chapter introduces many of the UNIX system programs and tools you will use
regularly. If you need additional information on these or other standard programs, refer to
the manual pages available in the onlineCommand Reference.

For information on tools and routines related to programming and software development,
refer to the manual pages in the onlineOperating System API Reference.

The reference manuals may also be available online. (On-line documents are stored in
your computer's file system.) You can see pages from the on-line manuals by executing the
man (short for manual page) command. For details on how to use theman command refer
to theman(1) page in the onlineCommands Reference.

Kernel

Allocates
system

resources

Manages
memory

Maintains
file system

Controls
access to
computer

162730

User’s Guide

2-4

Command Functions 2

The outer circle of the UNIX system model in Figure 2-1 organizes the system programs
and tools into functional categories:

programming environment
Several UNIX system programs establish a friendly
programming environment by providing interfaces
between the UNIX system and programming languages
and by supplying utility programs.

text processing The system provides programs such as line and screen
editors for creating and changing text, a spelling checker
for locating spelling errors, and optional text formatters
for producing high-quality paper copies suitable for
publication.

information management
The system provides programs that allow you to create,
organize, and remove files and directories.

additional utility programs
Other tools generate graphics and perform calculations.

electronic communication
Several programs, such asmail, enable you to transmit
information to other users and to other UNIX systems.

Executing Commands 2

To make your requests comprehensible to the UNIX system, each command must be
presented in the correct format, or command line syntax. The command line syntax
defines the order in which you enter the components of a command line. Just as you must
put the subject of a sentence before the verb in an English sentence, you must put the parts
of a command line in the order required by the command line syntax. Otherwise, the
UNIX system shell will not be able to interpret your request. The following is an example
of command line syntax:

command option(s) argument(s) < RETURN>

You must type at least two components on every UNIX system command line

• command name of the program you want to run

• <RETURN> key.

A command line may also contain either options or arguments, or both:

• anoption modifies how the command runs

• anargument specifies data that the command processes, usually the name
of a directory or file.

In command lines that include options and/or arguments, the component words are
separated by at least one blank space. (Insert a blank by pressing the space bar.)

What Is the UNIX System?

2-5

If an argument name contains a blank, enclose that name in double quotation marks. For
example, if the argument to your command issample 1 , you must type it as follows:
“sample 1” . If you forget the double quotation marks, the shell will interpretsample
and1 as two separate arguments.

Some commands allow you to specify multiple options and/or arguments on a command
line.

Consider the following command line:

In this example, thels command is used with two options,-l and-i , to list information
aboutfile1, file2, andfile3.

The -l option displays information in a long format, including such things as mode,
owner, and size. The-i option prints the inode number. (The UNIX system usually
allows you to group options such as these to read-li if you prefer, and to enter them in
any order.) In addition, three files (file1, file2, and file3) are specified as arguments.
Although most options can be grouped together, arguments cannot.

See Table 2-1 for an example of proper sequence and spacing in command line syntax

Regardless of the number of components, you must end every command line by pressing
the <RETURN> key.

Figure 2-3 shows the flow of control when the UNIX system executes a command.

Table 2-1. Command Line Syntax Sequence and Spacing

Incorrect Correct

ls file ls file

ls-l file ls -l file

ls -l i file ls -li file

or

ls -l -i file

ls file1file2 ls file1 file2

ls -l -i file1 file2 file3

 options

 arguments command

User’s Guide

2-6

Figure 2-3. Execution of a UNIX System Command

To execute a command:

1. Enter a command line when a prompt (such as a$ sign) appears on your
screen.

2. The shell takes your command as input, searches through one or more
directories to retrieve the program you specified, and conveys your request,
along with the program requested, to the kernel.

3. The kernel then follows the instructions in the program and executes the
command you requested.

4. After the program has finished running, the shell signals that it is ready for
your next command by printing another prompt.

The File System 2

The file system provides a logical method of organizing, retrieving, and managing
information. The structure of the file system is hierarchical; if you could see it, it might
look like an organization chart or an inverted tree Figure 2-4.

Your
Request

INPUT
SHELL

(Command
Language
Interpreter)

Program
Execution

Program
Execution

Files

OUTPUT Program
Retrieval

162740

Source

Data

Text

Executable
Programs

What Is the UNIX System?

2-7

Figure 2-4. The Hierarchical Structure of the File System

The file, is the basic unit of the UNIX system. A file can be any of the following:

• ordinary file

• directory

• special file

• symbolic link.

(See Chapter 4,Using the File System.)

Ordinary Files 2

An ordinary file is a collection of characters that are treated as a unit by the system.
Ordinary files are used to store any information you want to save. They may contain text
for letters or reports, code for the programs you write, or commands to run your programs.
After you have created a file, you can add to it, delete from it, or remove it entirely when
you no longer need it.

Directories 2

A directory is a super-file that may contain files and other directories.

Usually the files it contains are related in some way. For example, a directory called
sales may hold files containing monthly sales figures calledjan , feb , mar, and so on.

= Directories

= Ordinary Files

= Special Files

= Branch 162750

User’s Guide

2-8

You can create directories, add or remove files from them, or remove directories
themselves at any time.

All the directories that you create and own will be located in your home directory. This is
a directory assigned to you by the system when you receive a recognized login.

You have control over your home directory; no one else except a privileged user can read
or write files in it without your explicit permission, and you determine its structure.

The system also maintains several directories for its own use. The structure of these
directories is much the same on all UNIX systems. These directories, which include
several important system directories, are located directly under the root directory in the
file hierarchy.

The root directory (designated by/) is the source of the UNIX operating system file
structure; all directories and files are arranged hierarchically under it.

Special Files 2

Special files constitute the most unusual feature of the file system. A special file represents
a physical device such as a terminal, disk drive, magnetic tape drive, or communication
link. The system reads and writes to special files in the same way it does to ordinary files.
However, the system read and write requests do not activate the normal file access mecha-
nism; instead, they activate the device handler associated with the file, perhaps making the
disk head move or the tape fast-forward.

Symbolic Links 2

Symbolic links are files that point to other files. For more information about them and
their uses, see the “Symbolic Links” chapter of theCompilation System Manual.

System Layout 2

To the UNIX system, all files are alike. It does not require you to define the type of file you
have and to use it in a specified way or to consider how the files are stored (sequential,
random-access, or binary files).

This makes the UNIX system file structure easy to use and simplifies your interaction with
the system. For example, you need not specify memory requirements for your files, since
the system automatically does this for you. If you or a program you write needs to access a
certain device, such as a printer, you specify the device just as you would another one of
your files.

Figure 2-5 shows an example of a typical file system. Notice that the root directory
contains several important system directories.

What Is the UNIX System?

2-9

Figure 2-5. Example of a File System

/stand contains bootable programs and data files used in the booting process

/sbin contains essential executables used in the booting process and in manual
system recovery

/dev contains special files that represent peripheral devices such as the console, line
printers, user terminals, and disks

/etc contains machine-specific administrative configuration files and system
administration databases

/home the root of a subtree for user directories

/tmp contains temporary files

/var the root of a subtree for varying files such as log files

/usr contains other directories, includinglib andbin

The directories and files you create comprise the portion of the file system that is
controlled by you. Other parts of the file system are provided and maintained by the
operating system, such as/sbin , /dev , /etc , /tmp , and/usr , and have much the
same structure on all UNIX systems.

= Directories

/
(root)

stand

unix
console

sbin dev

term

11 23

etc

ls cat

home tmp var

bin lib sbin

usr

= Ordinary Files

= Special Files

= Branch 162760

User’s Guide

2-10

Chapter 4,Using the File System, shows how to organize a file system directory structure,
and access and manipulate files. Chapter 6,Line Editor (ed) Tutorial, and Chapter 7,
Visual Editor (vi) Tutorial, teach you how to create and edit files.

Security Concepts 2

A computer user is any person who interacts directly with a computer system. As a user,
you should know how you are affected by security. You also need to understand the differ-
ence between basic security and enhanced security.

The UNIX system with the Enhanced Security Utilities installed includes special software
that protects information on the system. This protective software is part of the Trusted
Computing Base (TCB).

The TCB includes all software, firmware, and hardware that enforces security.

System Security Officer 2

Access to the TCB is determined by an administrator called the System Security Officer.

Users must contact the System Security Officer when they want to change their security
level, privileges, or other TCB interactions.

Users can also contact the System Security Officer when they have difficulty interacting
with the TCB.

Protecting Information 2

Security for a computing system means that the information on the system is protected
from unauthorized disclosure or modification. If each user had a personal non-networked
computing system that was kept locked up, each user's files would be secure. But isolation
and physical security are not practical in most circumstances.

On a computer system that many people share, the simplest security mechanism would be
to allow only the owner of a file to access that file. That would be inconvenient, however,
because it would not take advantage of shared resource capabilities. For example, it would
be wasteful for each user to have a private copy of each command. Commands are usually
shared, but users often want to restrict access to the contents of files.

On a secure system, each user has a unique identity and a level of authorization associated
with that identity. The computer system must have some way of identifying users, their
level of authorization, and their files.

For the most part, while you are logged in, all data you enter, create, and process belongs
to you. Data is stored in named files on the computer system. Each file you own is kept
separate from the rest of your files and from the files belonging to other users.

What Is the UNIX System?

2-11

A secure computer system must have a mechanism that decides access permissions based
upon user identity and authorization.

There are many ways in which the security of a computer system can be violated. Unau-
thorized access to read or write files can be the result of

• abuse of privileges by administrators

• malicious programs (viruses) that gain privileges or access to files

• idle browsing of files that are inadequately protected.

Most computer systems provide some degree of basic security. However, the mechanisms
supplied by the UNIX system Trusted Computing Base and the Enhanced Security
Utilities provide specific, enhanced protection against these and other potential security
hazards.

A review of basic security will provide a background for understanding the enhanced
security available with the UNIX system.

Basic Security 2

A computer system enforces basic security by making access decisions, that is, by
deciding who can access what. In order to make access decisions, a computer system
uniquely identifies each user on the system and stores information in named files, each of
which belongs to a single user on the system. It would be a potential violation of security
if users could access any files at will.

Basic security is supplied through the use of thelogin andpasswd (password)
mechanisms, which identify you to the system and put you in control of your data.

Also included in basic security are access mode bits, which give users some control over
which users can access their files.

Enhanced Security 2

The mechanisms available with the UNIX system enhanced security are designed to
protect sensitive information.

Sensitive information must be specially protected according to the rules of a security
policy because its unauthorized disclosure, loss, or alteration will cause damage or harm.
The enhanced security mechanisms that protect sensitive information are part of the TCB.

Because the information on a computer system can be easily shared and potentially stolen,
the TCB has mechanisms that restrict the sharing of information. By controlling access,
the TCB protects your files and programs from being seen or accessed by other computer
users.

The security policy for the UNIX system requires a relationship between access rules and
access attributes:

User’s Guide

2-12

• access rules allow the TCB to define several distinct levels of authorization

• access attributes provide the mechanism for the TCB to prevent unautho-
rized access to sensitive information.

NOTE

The levels of authorization defined by the TCB are more
complicated and restrictive than the access control provided by
the access mode bits.

More specifically, the security policy for a computing system running the UNIX system
with enhanced security describes the relationships among five elements.

subject Subjects cause information to flow among objects or they
change the system status. Subjects are represented on the
system by processes.

Typically, subjects create, read, or write objects.

object Objects are the parts of a computing system that contain or
receive information. Examples of objects are data files,
program files, memory, terminals, line printers, disks,
tapes, and processes.

A process is a subject when it requests an action.

access attribute The access attributes of a subject or object define its
position within the separation scheme that the TCB uses to
segregate computer users and information on the computer
system.

access rule The access rules contain the policy that segregates infor-
mation for the system.

The TCB determines whether a subject can access a given
object by comparing the access attributes of the subject
with the access attributes that are required to access the
object.

A subject can access an object only when it passes all
relevant access checks.

process privileges Process privileges determine if a subject can perform
certain restricted system calls, commands, and functions.

Privileges also allow some system calls to override access
checks.

Enhanced security is set up hierarchically. A subject can read an object if and only if the
subject's level is equal to or higher than the level of the object. A subject can write to an
object if and only if the subject's level is equal to the level of the object.

What Is the UNIX System?

2-13

In enforcing the security policy, the TCB assigns access permissions to subjects and
objects according to the local security policy instituted by the system administrators, and
then uses the access rules to ensure that subjects do not access objects for which the
subjects do not have the proper access attributes.

The TCB further restricts the use of certain commands and system calls to subjects (pro-
cesses) that have the proper privileges.

This limits the ability of users to allow access; the TCB makes access decisions. Security
is enhanced because the ability to grant access is enforced by the TCB, not by individual
users.

The following sections discuss in more detail the security policy and the access
mechanisms that the TCB uses to enforce that policy.

Security Policy 2

The system's security policy is designed to meet the B2 security criteria established in the
“Trusted Computer System Evaluation Criteria” (DoD 5200.28.STD, 1985). It consists of
the access rules that the system follows, and the exceptions to those rules allowed by priv-
ileged processes in the system.

The access rules dictate the limits on non-privileged users of the system; the system's
access mechanisms implement the various rules.

The access mechanisms in the UNIX system control the access of subjects to objects,
determining whether or not a subject may access a given object, and how. The two access
control mechanisms in a UNIX system are

• Discretionary Access Control (DAC), implemented by adding Access
Control Lists to the UNIX system file mode mechanism

• Mandatory Access Control (MAC)

When performing access checks, MAC checks are performed first, followed by DAC
checks. (Whether or not the checks are satisfied can be modified by the presence of privi-
leges.)

Subjects, Objects, and Access Types 2

A subject is an active entity that causes information to flow between objects or changes
the state of the system or an object. The only subjects in the UNIX system are processes.
Since all users are represented in the system as processes, controls on users (subjects) are
implemented as controls on processes.

An object is a passive entity that contains or receives information. Objects in a UNIX sys-
tem are:

• file system entities

User’s Guide

2-14

- files

- directories

- device special files

- other special files

• processes

• pipes

• IPC structures

- messages

- semaphores

- shared memory

The access types for a subject to an object fall into three categories:

• read access to an object does not modify the object, but causes information
to flow from the object to the subject

• write results in a change to the object, and/or information flow from the
subject to the object

• execute/search does not modify the object, but causes information to flow
to the subject (as in the results of the search of directory) or causes the
creation of a new subject (as in the execution of a file that results in a new
process)

Discretionary Access Control (DAC) 2

Discretionary Access Control is a way of controlling access to objects that is exercised at
the discretion of the owner of the object and is enforced by the TCB. For each object
owned by a user, the user can designate the access type for other users on the system.

The UNIX system provides the file permission bits (or file mode) mechanism, through
which users can grant and deny access to themselves, a group of users to which they
belong, and all others on the system. With administrative assistance, users can utilize the
group mechanism to effectively grant and deny access to individual users (seeSystem
Administrations’, “User Account and Group Management”chapter, for more details). The
UNIX system with the Enhanced Security Utilities installed adds the flexibility of Access
Control Lists (ACLs), through which access can be granted and denied to individual users.

ACLs are designed to be compatible with the UNIX file mode scheme. This ACL scheme
supports finer control than file permissions by providing the ability for the owner of an
object to grant or deny access by other users to the granularity of a single user, while
maintaining compatibility with the file permission mechanism. A combination of
permission mode bits can be directly translated into an ACL that provides identical
protection.

All DAC information may be changed in one atomic operation with the command
setacl , avoiding the possibility of an intermediate insecure state.

What Is the UNIX System?

2-15

ACLs also allow specification of access rights to members of groups as defined to the
system in the administrative file/etc/group .

The number of ACL entries is not limited by the system. The system administrator can set
the maximum number of entries per ACL by setting a tunable parameter. (As ACLs get
larger, processing gets slower, which induces a practical limit on the number of ACL
entries.)

• ACLs are associated with each file system object and IPC object

• ACLs for file system objects are stored in the associated inode

• ACLs for IPC objects are stored in an internal structure associated with the
installation of the IPC object.

Thegetacl command reports that each ACL has entries corresponding to the file mode
permissions for owner, group, and other. ACL entries are described in greater detail in the
next section.

A summary of the DAC access check algorithm plus some background ACL information
and definitions required to understand the algorithm is presented here.

Basic ACL Entries 2

An ACL contains all the DAC access information for its associated object. File
permission bits are translated into and stored as ACL entries. When a file is created, the
permission mode bits and the basic ACL are generated. The basic ACL generated at time
of file creation has four entries:

• user

• group

• class

• other.

Theowner mode bits are always equal to auser ACL entry for the object's owner.

Theother mode bits are always equal to theother ACL entry, of which there is only
one in any ACL.

Thegroup mode bits are initially equal to theclass ACL entry, of which there is only
one in any ACL and to thegroup ACL entry for the owning group.

Theclass entry is discussed later in this section.

The basic or initial ACL can be extended by specifying additionalgroup anduser
entries. Permissions for multiple groups can be specified ingroup entries, while
additionaluser entries can be used to grant or deny access for specific logins.

The ACL can have additional entries based on thedefault ACL entries associated with
the directory in which a file is created. Thesedefault directory ACL entries indicate the
ACL entries that are added to any file created in that directory.

User’s Guide

2-16

ACL Generation for Files 2

The following describes how an ACL for a file is generated. Whenever a file is created,
the system initializes an ACL for the file that contains

• auser entry for the owner permissions

• agroup entry for the owning group permissions

• aclass entry for the owning group permissions

• another entry for the other group permissions.

Additional entries may be added by the user, or as a result of default entries specified on
the parent directory.

Thegetacl command reports the entries in the ACL. Each ACL has at least four entries,
one each corresponding to the file mode permissions for owner, group, class, and other.

File permission bits for user and group are translated into special cases of these entries:

• the bits representing owner permissions are represented by auser entry
without a specified user ID

• the bits representing group permissions are represented by agroup entry
without a specified group ID.

In an ACL, there must be one each of these special user and group entries. There may be
any number of additionaluser entries andgroup entries, but these must all contain a
user ID or group ID, respectively.

There is only oneother entry in an ACL, representing the permission bits for
permissions to be granted to other users. The following is an example of the output of the
getacl command for a file namedjunk owned byuser_1 in group_1 whose
permission mode bits are-rw-r--r-- :

If user_2 anduser_3 andgroup_2 are added to the ACL by using thesetacl
command,getacl would produce the following output:

file: junk
owner: user_1
group: group_1
user::rw-
group::r--
class:r--
other:r--

What Is the UNIX System?

2-17

The mode bits on the ACLclass entry are significant. Theclass entry mode bits are
determined by thegroup mode bits for the file. Thegroup entry for the owning group
and theclass entry in the basic ACL are identical.

When only a basic ACL exists for the file, thegroup andclass bits are the same.

When additional users and groups are added to the ACL, the owninggroup bits take on a
separate identity from theclass bits.

If the chmod command is used to modify DAC permission bits when additional ACL
entries exist, it modifies theowner , class , andother mode bits.

In the case of the DAC group permission bits, it is theclass bits that are modified and
not the owninggroup bits in the ACL entry. The only way to change ACL entries (except
for the ones representingowner andother) is by using thesetacl command.

The purpose of theclass entry bits is to define the maximum permissions available to
the users and groups that may be added to the ACL. For example, if the group permission
bits for a file arer--, the output of thegetacl command would show aclass entry in
the ACL with those same permissions associated with it. All additional users and groups
will effectively have no permissions in excess ofr-- regardless of what permissions are
indicated in their ACL entry. The specified permissions in the ACL entry for a user or
group can only serve to further restrict permissions since theclass entry derived from
the group permission bits effectively sets the upper bound for the permissions on
additional users and groups.

In this example of an ACL with additional entries, ifuser_2 were added to the ACL with
r-x permission bits, the ACL displayed by thegetacl would look as follows:

file: junk
owner: user_1
group: group_1
user::rw-
user:user_2:r--
user:user_3:r--
group::r--
group:group_2:r--
class:r--
other:r--

User’s Guide

2-18

However, the effective permissions foruser_2 would ber-- as determined by the mode
bits in theclass entry.

DAC Access Check Algorithm 2

The DAC check algorithm is shown in Figure 2-6.

if effective uid of process matches owner id on object
 if requested access mode matches bits set in
 the user entry representing the owner
 then the requested access is granted

else if effective uid of process matches the uid in an
 additional user entry
 if requested access mode matches bits set in that
user entry
 and matches bits set in the class entry
 then the requested access is granted

else if any group in the group set of process matches
the owner gid or

the gid of any additional group entry
 if requested access mode matches bits set in any
 combination
 of one or more group entries
 and matches bits set in the class entry
 then the requested access is granted

else if requested access mode matches a bit set in the
other entry
 then the requested access is granted
 else the requested access is denied.

Figure 2-6. DAC Access Check Algorithm

In the step that checks for a match against the group, the permissions for allgroup entries
areOR'd together. For example, if a user is a member of groups A and B, and requests
read/write access to a file which allows read access to group A and write access to group
B, the requested read/write access will be granted.

file: junk
owner: user_1
group: group_1
user::rw-
user:user_2:r-x #effective:r--
user:user_3:r--
group::r--
group:group_2:r--
class:r--
other:r--

What Is the UNIX System?

2-19

Mandatory Access Control (MAC) 2

Mandatory Access Control is a means of controlling access to objects that is controlled by
the administrator of the system and is enforced by the TCB. A non-privileged user cannot
affect or bypass this control. It is independent of the object owner's ability to grant
discretionary access.

MAC Concepts and Definitions 2

The UNIX system MAC associates a label with each object and subject in the system.
Labels contain a sensitivity level or just level, indicating the sensitivity of the data in the
object or the clearance of the associated subject.

An ASCII name, defined by the system administrator, is associated with each
classification and each category for easier use and recognition by administrators and
general users. Classification names may be something like “top_secret” or “unclassified.”
Categories, which are analogous to need-to-know areas, might have names such as
“nuclear” or “salaries.” The system supports 256 classifications and 1024 categories.

A unique association of a named classification with zero or more named categories is
called a fully qualified level. For easier reference, an alias for the fully qualified level can
be defined. To be recognized and used on the system, the set of all fully qualified levels
must be defined to the system by associating a unique numerical identifier with each fully
qualified level to be recognized by the system. This is known as a level identifier, or LID.

The mappings of fully qualified levels to LIDs to aliases are kept in an administrative
database file. As delivered, the UNIX system with the Enhanced Security Utilities
installed has several reserved alias names, some of which have pre-defined fully qualified
levels associated with them. The reserved alias names with which there are associated pre-
defined fully qualified levels are shown below:

• USER_PUBLIC

• USER_LOGIN

• SYS_PRIVATE

• SYS_PUBLIC

• SYS_OPERATOR

• SYS_AUDIT

• SYS_RANGE_MIN

• SYS_RANGE_MAX

USER_LOGIN defines a default login level for users of the system; this may be changed as
appropriate for a given installation of the system.

USER_PUBLIC provides a level for public user commands and files.

SYS_PRIVATE, SYS_PUBLIC, SYS_OPERATOR, andSYS_AUDIT are reserved for
administrative users and programs and help protect the UNIX system TCB.

User’s Guide

2-20

SYS_RANGE_MIN andSYS_RANGE_MAX are the low and high level bounds for the
system. No users log in at these levels; they are only for system use.

Reserved alias names without associated pre-defined fully qualified levels are
SYS_LOGIN_HIGH and SYS_LOGIN_LOW. These are to be set by the system
administrator and establish the high and low bounds for the system's login level range.

MAC Access Rules 2

The objects under MAC control are:

• File system objects

- regular files

- device special files

- links

- FIFOs (named pipes)

- regular and multilevel directories

• unnamed pipes

• IPC objects

- shared memory

- semaphores

- message queues

• processes.

Multilevel directories and device special files require special handling for MAC. They are
discussed separately in subsequent subsections of this document.

Rules for Objects 2

The following general rules apply for all other objects.

• To read an object, the subject's clearance must dominate the level of the
object.

• For one level to dominate another, two conditions must be met:

- the classification of the first must be at the same or a higher
hierarchical level; and

- the set of categories of the first must be a superset of the set of
categories of the other.

• IPC objects and pipes obey a more restrictive dominance rule; for IPC
objects and pipes, the level of the subject must equal that of the object
before read is allowed.

• To write an object, the subject's level must be equal to that of the object.

What Is the UNIX System?

2-21

• To search/execute an object, the subject's clearance need only dominate
that of the object. This is implemented following the same rules as read.
Search/execute access does not apply to pipes or IPC objects.

• To access objects contained in multilevel directories, the subject's
clearance must equal that of the object for all forms of access.

Establishing the Levels of Objects and Subjects 2

There are two situations in which the level of an object may be set:

• creating an object

• administrative change.

Creating and object is a special case of write. The level of a newly-created object is set
equal to that of the process that creates it.

An administrator with appropriate privileges can change the level of an existing object.
The administrator must take care that, when changing the level of an object, information is
not unwittingly being downgraded.

The level of a subject (that is, process) is generally set by the parent process. The two gen-
eral cases are:

• At login, the user's process is created on behalf of the user by the login
system process. The user's level is determined by the login process: it is
either explicitly specified tologin by the user as part of thelogin
command, or, if the user chooses not to specify a level,login takes it
from a system database containing default levels for all users of the system.

After this and all other user parameters are established,login provides a
process for the user with the correct level. If either the specified or default
level is outside of the system's current login level range, the login fails.
(Checks against login level range are only made at login time.) If the
specified or default level is not a level that is authorized for that user, the
login fails.

• A child process (created byfork /exec sequence) or a new process image
(created byexec) of an existing process takes the level of the parent or
invoking process. The only exception is in the case of an appropriately
privileged process, which may create a new process at a different level than
itself (as inlogin).

An appropriately privileged process may change its own level. Only processes that are
part of the TCB are trusted do this.

The Kernel, Access Control, and Security 2

The following sections discuss the architecture of the UNIX system kernel and how the
Enhanced Security Utilities fit into the architecture of the kernel.

User’s Guide

2-22

The UNIX system kernel defines an interface between user applications and the system
hardware including functions that supply system services to users and functions for
internal housekeeping, hardware management, and all the activities shown in Figure 2-7.

The entire kernel is included in the TCB. The kernel mediates all security-relevant
decisions on the system in accordance with the security policy. The kernel implements the
reference monitor concept defined in theTrusted Computer System Evaluation Criteria.

The kernel is organized into distinct modular service areas that enhance the security of the
kernel code and facilitate testing of the kernel.

Kernel code is compiled into a single executable file, named/stand/unix by default,
that is loaded and run at boot time. The entire kernel is always resident in primary
memory, runs in its own address space, and is protected from all access by user processes.
Kernel code runs in a mode that allows it to execute privileged hardware instructions.

The following figure shows the major subsystems of the kernel. Note some functionality
provided by each subsystem may actually be executed in another subsystem.

Figure 2-7. Kernel Architecture

• The process management subsystem manages programs in execution
(processes). The process is the only subject in the UNIX system.

• Protection of the TCB software is through the appropriate use of the access
controls and privilege mechanisms.

Users

Hardware

File
Management

System Services

Kernel Utilities

I/O
Management

Access
Control

Memory
Management

Process
Management

162770

What Is the UNIX System?

2-23

• The access control subsystem provides control and monitoring of access to
files, processes, and privileged operations. It provides the discretionary
and mandatory access control, privilege control, and auditing functionality.

• The I/O management subsystem manages input and output. It includes the
STREAMS mechanism (seeDevice Driver Programming: STREAMS I/O
Modules and Drivers) and device drivers.

Device drivers may be classified into two basic types:

- Character drivers read/write a character at a time (for example,
terminal drivers). Such drivers typically use the STREAMS
mechanism.

- Block drivers read and write in chunks (for example, disk drivers).
Disk drivers might read and write in chunks of 512 bytes, for
example

In the UNIX system, I/O devices are file system objects; from user level,
devices are treated like files for basic I/O functions such as open, close,
read, and write.

• The memory management subsystem manages virtual and physical
memory. It presents a virtual memory (VM) interface to programmers. It
protects users from each other and protects kernel address space from all
access by user processes, thus making the kernel tamper resistant.

• The VM system uses demand paging to make efficient use of physical
memory. It also unifies common memory and I/O operations by allowing
memory-mapped files: a mapping can be established between a file and an
area of primary memory; after the mapping is set up, standard memory
operations such as assignment and bit sets and clears can be used.

Memory mapping allows both a conceptual simplification of some
programs as well as a large performance improvement for some devices
(for example, bit-map terminals). The VM system ensures that areas of
memory are cleared upon allocation for use by processes.

• This subsystem provides functionality needed by user programs but not
necessarily used directly by the kernel. The system services subsystem
manages system initialization and termination, clock and timer services,
trap handling, and customized local system call dispatching, support for
system dumps, and declarations supporting system calls, stubs, kernel
debugging, and system-specific character strings.

• The kernel utilities subsystem controls the interaction of the hardware and
the kernel and provides other miscellaneous utilities used by other
subsystems, such as: double precision arithmetic operations used by the
high-resolution timers in the System Services Subsystem; math accelerator
interface routines; recording of significant system events; bitmap
operations; system error message support; kernel performance statistics;
machine dependent routines (for example, DMA access, memory
allocation); and, other miscellaneous subroutines.

User’s Guide

2-24

User Level 2

All user code and UNIX System code that is not part of the kernel runs at user level. This
includes all commands, including administrative commands and command interpreters
(“shells”). User-level code also includes all library functions, which are described in
Section 3 of the onlineOperating System API Reference.

Some of this code is considered part of the TCB (though not part of the kernel). These
user-level program and data files on the system that are part of the TCB have associated
properties that allow the kernel to control both their run-time behavior and the ability of
users to access them.

Every command and data file included in the TCB has appropriate discretionary and
mandatory access controls, and process privilege requirements associated with it that
prevent unauthorized use or modification.

The following attributes are given to user-level TCB files:

• appropriate privileges required for executing the file (commands and shell
scripts only); programs that execute sensitive system calls have associated
privileges that can be inherited by a privileged process

• MAC label for all commands, data files, and the directories that contain
them; programs, data fi les, and directories that are strictly for
administrative use are given a label ofSYS_PRIVATE; programs, data
files and directories for use by both administrators and users are given a
label of SYS_PUBLIC; a l l mount points are given the label
SYS_PUBLIC.

• DAC controls; all binary programs with a label ofSYS_PRIVATE are not
given write permissions; all files/directories withSYS_PRIVATE or
SYS_PUBLIC labels are not given write permission for other.

All users, including administrators, log in as unprivileged users; the initial user process
has no privilege associated with it. Some users designated as administrators or operators
must execute commands that require one or more process privileges. User (unprivileged)
processes gain appropriate privilege through thetfadmin command and the Trusted
Facility Management database.

Several distinct levels of authorization are created through the proper assignment of
process privileges according to the least privilege rule and the separation of duties that is
accomplished through the TFM database. This ensures both that privileged processes run
only with the privilege(s) required for the actions they are authorized to perform, and that
unprivileged processes cannot perform privileged actions. Users acquire privilege in one
of three ways:

• logging in to the system using the privileged user ID, usuallyroot , but
configurable by the administrator

• by spawning a process with an effective user ID equal to the privileged
user ID; this is usually done by executing a file owned by the privileged
user ID that has the setuid-on-execution bit of the file mode set

• by executing a file with privileges set on it.

What Is the UNIX System?

2-25

System Calls 2

System calls form the interface between user level and the kernel. The system calls are the
only way of requesting a service from the kernel. All user and administrative programs
must eventually make system calls to perform security-relevant functions such as a file
operation or I/O request. Many system calls can be made indirectly through the libraries.

In the C language, there is no syntactic way to distinguish a system call from any other
function call. Neither system calls or library routines are known to the C compiler.

What distinguishes the system calls is that the code that implements them is part of the
kernel and runs in kernel mode; a process must undergo a fundamental change of
environments (also called a context switch) when it begins a system call. The compilation
system knows how to initiate the change of environments. It arranges the arguments to be
passed into the kernel, then executes the instruction that traps into the kernel. Note,
however, that compilers are not part of the TCB or kernel; they only know how to set up
for a context switch and execute the instruction that traps into the kernel, which then
performs the environment change.

System call arguments are put on a stack in user address space; these might be data or
pointers to data. When control is passed to the kernel, it knows how many arguments to
take off the stack and copies them to kernel address space. The kernel then performs the
operation(s) indicated by the system call on behalf of the user.

Kernel entry points are defined in the software in the kernel structuresysent and
described in Section 2 (System Calls) of the onlineOperating System API Reference.

Processes 2

A process is a program in execution. A compiled program typically has atext section to
hold its executable code, adata section to hold its initialized data, and abss section to
hold its uninitialized data. The program begins execution in user space. When the program
is executed, the kernel loads the program's sections as it needs them and creates a stack in
user space to manage the process' subroutine calls. (The kernel keeps its own stack to
manage its function calls.)

A process has a unique ID number (its process ID or PID), a sensitivity level, and other
attributes (such as the user ID and group ID of the process) that the kernel uses to make
access control decisions. The kernel compares these attributes to an object's access control
attributes to determine access.

If a program calls a system library function, execution branches to the text segment of that
function. All operations take place in user address space; that is, no objects (such as files,
and so on) are maintained in the libraries.

Library functions are typically held in a shared library, which is loaded once and can then
be used by any program that calls its functions. Shared libraries save space in primary
memory because a function is loaded once in the entire system instead of once for each
program that calls it. Most, but not all, library functions perform system calls.

The library object file(s) are protected with appropriate discretionary and mandatory
access controls to prevent tampering by unauthorized users. No privileges are set on the

User’s Guide

2-26

library files; if a piece of library code makes a system call that requires privilege, the user
process running the library code must have appropriate privilege to perform the requested
operation, or the call will fail.

If a program (or library function) makes a system call, execution branches to a small piece
of library code that knows how to set up for an execution switch and trap into the kernel.
The kernel then performs a context switch on the process, after which the process is
executing in kernel mode. In kernel mode, the process is executing kernel code on behalf
of the user that made the system call.

Figure 2-8. User and Kernel Level

The fork(2) andexec(2) system calls start new processes. Thefork system call
creates a copy of the calling process and puts it into execution. The calling process is
known as the parent process; the new process is known as the child.

Theexec system call overlays the calling process and replaces it with a new process. The
following is the algorithm for process creation:

. . .
if (fork ()) {

/* child returns here */
exec (new_program_name . . .) /* start new program */
/* this location is never reached */

}
/* parent continues here */
. . .

Before thefork , this code executes in a single process. If thefork succeeds, a new
process is created and begins executing the code following theif statement; at this point
the code is being executed in two processes. Theexec transforms the child process into a
new one; at this point the parent continues executing the code at the point indicated and
the child is executing the new program.

user
program

shared
library

unix
kernel

User Level Kernel Level

library
call

system
call

162780

What Is the UNIX System?

2-27

The child process inherits the parent process' security level and the privilege sets
associated with the parent.

Every process has both a maximum set and working set of privileges associated with it.
Similarly, every executable file has both a fixed set and inheritable set of privileges
associated with it.

The working and maximum privilege sets of the parent are replicated in the child.
However, once the new process begins execution (that is, thefork succeeds), changes to
the privilege sets of the parent do not affect the child.

Upon executing theexec system call, the working set of the new child is initialized to the
maximum set. The new process's maximum and working sets are determined by taking the
logical intersection of the maximum set of the old process and the inheritable set of the
executable file; the logical union of this resulting set and the fixed set of the executable file
form the new maximum set of the new process.

Privileges will be added to and removed from the new process's working set as the process
executes and performs operations requiring one or more of the privileges in the maximum
set. The new process's maximum and working sets are determined by taking the logical
union of the maximum set of the old process and the fixed set on the executable file.

Privileges will be added to and removed from the new process's working set as the process
executes and performs operations requiring one or more of the privileges in the maximum
set.

The label of the process remains the same across theexec system call, that is, the new
process has the same label as the old process.

Interprocess Communication (IPC) 2

Interprocess communication (IPC) allows a process to set up a memory region that can be
used to communicate with other cooperating processes. These memory regions have user
IDs, group IDs, permissions, ACLs, and levels just like file system objects.

There are three types of IPC objects:

• shared memory

• messages

• semaphores.

The interface to these objects allows the user to treat them like file system objects, but
they are not part of any file system. That is, IPC objects are accessed through identifiers
(as in a flat file system), but do not have inodes like files. IPC objects are maintained
entirely in the kernel.

Most IPC access requires both read and write. For example, when a message is read, it is
destroyed, access checks are made appropriately, and the mandatory access policy for
writing is enforced for the operation.

While setting up and accessing IPC objects may require privilege, there are no privileges
associated directly with IPC objects. Privileges are handled at the command and system
call level. This is analogous to the way privileges are handled by commands and system

User’s Guide

2-28

calls for creating, modifying, and deleting file system objects; similar access restrictions
apply to IPC objects.

Note that although pipes provide a kind of inter-process communication facility, they are
not considered IPC objects in the same sense as the above-described mechanisms, since
the functionality they provide is more limited.

Signals 2

Signals provide a means of communication between a sending process acting as a subject
and a receiving process, the object. Sending a signal is regarded as a write operation: for
unprivileged processes, the level of the subject process must equal the level of the object
process. An appropriately privileged process may bypass the MAC restriction.

This chapter has described some basic principles of the UNIX operating system. The
following chapters in this manual will help you apply these principles.

3
Basics for UNIX System Users

Introduction . 3-1
The Terminal . 3-1

Required Terminal Settings . 3-2
Keyboard Characteristics . 3-2
Typing Conventions . 3-3

The Command Prompt . 3-4
Correcting Typing Errors. 3-4

Deleting the Current Line: The @ Sign . 3-4
Deleting Last Characters Typed:<CTRL><h> & <BACKSPACE> 3-5
Reassigning the Delete Functions . 3-5

Using Special Characters as Literal Characters . 3-6
Typing Speed. 3-6
Stopping Commands . 3-6
Using Control Characters . 3-7

Obtaining a Login Name . 3-7
Communicating with the UNIX System . 3-8

Getting a Login Prompt with the Secure Attention Key 3-9
Login Procedure . 3-10
Problems When Logging In . 3-14
Simple Commands . 3-15
Logging Off . 3-16

User’s Guide

3-1

3
Chapter 3Basics for UNIX System Users

3
3
3

Introduction 3

This chapter describes how to use the UNIX system. Specifically, it lists the required
terminal settings, and explains how to use the keyboard, obtain a login, log on and off the
system, and enter simple commands.

To establish contact with the UNIX system, you need:

• a terminal

• a login name that identifies you as an authorized user

• a password that verifies your identity

• instructions for dialing in and accessing the UNIX system if your terminal
is not directly connected to the computer

• the Secure Attention Key (SAK) from the system administrator.

This chapter follows the notation conventions used throughout this guide. For a
description of them, see Chapter 1, “Introduction.”

The Terminal 3

A terminal is an input/output device. You use it to enter requests to the UNIX system; the
system uses it to send its responses to you. There are two basic types of terminals:

• video display terminals

• printing terminals.

The video display terminal shows input and output on a display screen; the printing
terminal, on continuously fed paper. In most respects, this difference has no effect on the
user's actions or the system's responses. Instructions throughout this book that refer to the
terminal screen apply in the same way to the paper in a printing terminal, unless noted
otherwise.

User’s Guide

3-2

Required Terminal Settings 3

Regardless of the type of terminal you use, you must configure it properly to communicate
with the UNIX system. If you have not set terminal options before, you might feel more
comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are using:

• some terminals are configured with switches

• others are configured directly from the keyboard by using a set of function
keys.

To determine how to configure your terminal, consult the owner's manual provided by the
manufacturer.

The following is a list of configuration checks you should perform on any terminal before
trying to log on the UNIX system.

1. Turn on the power.

2. Set the terminal to on-line or remote operation to ensure the terminal is
under the direct control of the computer.

3. Set the terminal to full duplex mode. Full duplex is a communication
protocol in which both sides send and receive simultaneously. The UNIX
system operates in full duplex. A full duplex connection lets you send
information to the UNIX system even while it is sending data to you.

4. If your terminal is not directly connected to the computer, make sure the
modem you are using is set to the full duplex mode.

5. Set character generation to lowercase.

6. Set the terminal to no parity. Parity is used by some systems to do error
checking. The UNIX system does not use parity.

7. Set the baud rate. This is the speed at which the computer communicates
with the terminal, measured in characters per second. For example, a
terminal set at a baud rate of 4800 sends and receives approximately 480
characters per second (cps).

Depending on the computer and the terminal, baud rates between 300 and 19200 are
available. (Some computers are capable of processing characters at higher speeds.)

Keyboard Characteristics 3

Even though there is no standard layout for terminal keyboards, all terminal keyboards
share a standard set of 128 characters called the ASCII character set. (ASCII is an
acronym for American Standard Code for Information Interchange.) While the keys are
labeled with characters that are meaningful to you (such as the letters of the alphabet),
each one is also associated with an ASCII code that is meaningful to the computer.

Basics for UNIX System Users

3-3

The keyboard of a typical ASCII terminal is similar to that of a typewriter, but contains a
few additional keys for functions such as interrupting programs. The keys may be divided
into the following groups:

• letters of the English alphabet (both uppercase and lowercase)

• numerals (0 through 9)

• symbols (! @ # $ % ^ & * () _ - + = ~ ` { } [] \ : ; “ ' < > , ? /)

• specially defined words (such as<RETURN> and<BREAK>), and
abbreviations (such as for delete<CTRL>, for control, and
<ESC> for escape).

While terminal and typewriter keyboards both have alphanumeric keys, terminal
keyboards also have keys designed for use with a computer. These keys are labeled with
characters or symbols that remind the user of their functions. Their placement may vary
from terminal to terminal because there is no standard keyboard layout.

Typing Conventions 3

To interact with the UNIX system, you must be familiar with its typing conventions. The
UNIX system requires that you enter commands in lowercase letters (unless the command
includes an uppercase letter). Other conventions enable you to perform tasks, such as eras-
ing letters or deleting lines, by pressing one or two keys. Table 3-1 lists these conventions.

Table 3-1. UNIX System Typing Conventions

Key Function

<$> system's command prompt (your cue to issue a command)1

<BACKSPACE> erase a character

<CTRL> used with other characters to perform controlling actions on
lines of typing

<CTRL><h> erase a character

<@> erase an entire line

<BREAK> stop execution of a program or command

 delete the current command line

<ESC> when used with another character, performs a specific function
(escape sequence)

when used with thevi editor, ends text input mode and returns
to the command mode

<RETURN> send the current line to the system for execution

<CTRL><d> stop input to the system or log off2

<CTRL><h> backspace for terminals without a<BACKSPACE> key

User’s Guide

3-4

NOTE

The key(s) associated with each function are default values; in
most cases different keys could be chosen to perform the same
function. Detailed explanations of several of the keys are provided
on the next few pages.

The Command Prompt 3

A command prompt is a character that appears on your screen when the system is waiting
for instructions from you. When a prompt appears, type a command after it and press the
<RETURN> key.

The default command prompt for the UNIX system is the dollar sign ($), but if you prefer
to use another character (or string of characters), you can change your prompt. (Your
system administrator may have already changed this default.)

Correcting Typing Errors 3

There are several methods of deleting text for the purpose of correcting typing errors:

• the@ (at) sign erases the current line

• the<BACKSPACE> key and<CTRL><h> both erase the last charac-
ter typed.

All these signs and keys are defaults; the functions they provide may be reassigned to
other keys. (For instructions, see“Reassigning the Delete Functions”later in this chapter.

Deleting the Current Line: The @ Sign 3

The@ sign deletes the current line. When you press it, an@ sign is added to the end of the
line, and the cursor moves to the next line. The line containing the error is not erased from
the screen, but is ignored; you must retype the correct command on the next line.

1. The prompt character may differ on your system.

2. Characters shown as<CTRL>-char, wherechar is a letter of the alphabet, are called control char-
acters (pronounced “control-char”). To enter a control character, hold down the<CTRL> key and
press the specified character key.

<CTRL><i> horizontal tab for terminals without a key

<CTRL><s> temporarily stop output from printing on the screen

<CTRL><q> resume printing on the screen after it has been stopped by the
<CTRL><s>key

Table 3-1. UNIX System Typing Conventions (Cont.)

Key Function

Basics for UNIX System Users

3-5

The @ sign works only on the current line; be sure to press it before you press the
<RETURN> key if you want to delete a line. In the following example, a misspelled
command is typed on a command line; the command is canceled with the@ sign, and the
correct command is retyped on the next line:

whooo@
who <RETURN>

Deleting Last Characters Typed: <CTRL><h> & <BACKSPACE> 3

The<BACKSPACE> key and <CTRL><h> both delete the character(s) last typed on
the current line. When you type either, the cursor backs up over the last character and lets
you retype it. This is an easy way to correct a typing error.

You can delete as many characters as you like by typing a corresponding number of
<BACKSPACE> keys or<CTRL><h>characters. For example, in the following
command line, two characters are deleted by typing two<BACKSPACE> keys.

dattw <BACKSPACE> <BACKSPACE> e <RETURN>

The UNIX system interprets this as thedate command, typed correctly.

Reassigning the Delete Functions 3

You can change the keys that kill lines and erase characters.

If you want to change these keys for a single working session, you can issue a command to
the shell to reassign them; the delete functions will revert to the default keys as soon as
you log off.

If you want to use other keys regularly, you must specify the reassignment in a file called
.profile.

Remember:

• When you reassign a function to a non-default key, you also take that
function away from the default key. For example, if you reassign the erase
function from the<BACKSPACE> key to the<#> sign, you will no
longer be able to use the<BACKSPACE> key to erase characters. And,
you will not have two keys that perform the same function.

• These reassignments are inherited by any other UNIX system program that
allows you to perform the function you have reassigned. For example, the
interactive text editor calleded (described in the “Line Editor (ed)
Tutorial” later in this book) allows you to delete text with the same key you
use to correct errors on a shell command line (as described in this chapter).
If you reassign the erase function to the# sign, you will have to use the#
sign to erase characters while working in theed editor, as well. The
<BACKSPACE> key will no longer work.

• Any reassignments you have specified in your.profile do not become
effective until after you log in. If you make an error while typing your login
name or password, you must use the<BACKSPACE> key to correct it.

User’s Guide

3-6

Whichever keys you use, remember that they work only on the current line. Be sure to
correct your errors before pressing the<RETURN> key at the end of a line.

Using Special Characters as Literal Characters 3

What happens if you want to use the literal meaning of a special character? Because the
UNIX system's default behavior interprets special characters as commands, you must tell
the system to ignore or escape from a character's special meaning whenever you want to
use it as a literal character.

You can do this with the backslash (\) character. When you type a\ before any special
character, you tell the system to ignore this character's special meaning and treat it as a
literal unit of text.

For example, suppose you want to add the following sentence to a file:

He bought three pounds @ $.05 cents each.

To prevent the UNIX system from interpreting the@ sign as a request to delete a character,
enter a \ in front of the@ sign. If you do not, the system will erase all the words before the
@ sign and print your sentence as follows:

$.05 cents each.

To avoid this, type your sentence as follows:

He bought three pounds \@ $.05 cents each.

Typing Speed 3

After the prompt appears on your terminal screen, you can type as fast as you want, even
when the UNIX system is executing a command or responding to one. Because your input
and the system's output appear on the screen simultaneously, the printout on your screen
will appear garbled. However, while this may be inconvenient for you, it does not interfere
with the UNIX system's work because the UNIX system has read-ahead capability. (It
communicates in full duplex mode.)

This capability allows the system to handle input and output separately. The system takes
and stores input (your next request) while it sends output (its response to your last request)
to the screen.

Stopping Commands 3

To stop the execution of most commands, simply press the<BREAK> or <DELETE>
key.

The UNIX system will stop the program and print a prompt on the screen. This is its signal
that it has stopped the last command from running and is ready for your next command.

Basics for UNIX System Users

3-7

Using Control Characters 3

Locate the control key on your terminal keyboard. (It may be labeled<CTRL> or
<CONTROL> and is probably to the left of the<A> key or below the<Z> key.) The
control key is used in combination with other characters to perform physical controlling
actions on lines of typing. Commands entered in this way are called control characters.

Some control characters perform mundane tasks such as backspacing and tabbing. Others
define commands that are specific to the UNIX system. For example, one control character
(<CTRL><s> by default) temporarily halts output that is being printed on a terminal
screen.

To type a control character, hold down the<CTRL> key while pressing the appropriate
alphabetic key. Because control characters are entered by pressing both keys
simultaneously, they're represented, in this book, by the <CTRL>-char icon, wherechar
is the appropriate letter of the alphabet. For example,<CTRL><s>is an instruction to
press the<CTRL> and<s> keys simultaneously.

The two functions for which control characters are most often used are to control the
scrolling of output on the screen and to log off the system. To prevent information from
scrolling off the top of the screen on a video display terminal, type<CTRL><s>; the
scrolling will stop.

When you are ready to read more output, type<CTRL><q>and the scrolling will
resume.

To log off the UNIX system, type<CTRL><d>.

It is important that you log off whenever your terminal is going to be unattended. If you
fail to do this, anyone with access to your terminal can use your login session to read or
write any files that you can read or write. (See“Logging Off” later in this chapter for a
detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide capabilities that some
terminals fail to make available through function specific keys. For example, if your
keyboard does not have a<BACKSPACE> key, you can enter<CTRL><h> instead.
Or, if you don't have a<TAB> key, you can insert a tab by typing<CTRL><i>. (See
“Problems When Logging In”for information on how to set the<TAB> key.)

Obtaining a Login Name 3

Now that you've configured the terminal and inspected the keyboard, one step remains
before you can establish communication with the UNIX system: you must obtain a login
name.

A login name is the name by which the UNIX system verifies that you are an authorized
user of the system. You must enter it every time you want to log in. (The expression
“logging in” is used because the system keeps a log of dates and times when users request
access to the system.)

User’s Guide

3-8

To get a login name, set up a UNIX system account through your local system
administrator. There are few rules governing your choice of a login name:

• It should be three to eight characters long.

• It can consist of uppercase and lowercase letters, numbers, and the
underscore character (_), but it cannot start with a number.

When selecting your login name, keep in mind that UNIX is case-sensitive and, therefore,
distinguishes between uppercase and lowercase letters. Popular choices for login names
include initials, last names, and nicknames.

Your login name will have a default MAC level assigned to it. Some users will have
additional security levels that they can access. If you have access to security levels other
than your default level, your system administrator will tell you what they are. Complete
information on the implications of using more than one security level can be found in
Chapter 14, “Managing Files Securely”.

Communicating with the UNIX System 3

NOTE

This section assumes you will be using a terminal that is wired
directly to a computer or one that communicates with a computer
over a telephone line. Although it describes a typical procedure
for logging in, the instructions it gives may not apply to your
system since there are many ways to log in to a UNIX system over
a telephone line. For example, security precautions on your
system may require that you use a special telephone number or
other security code. For instructions on logging in to your UNIX
system from outside your computer installation site, consult your
system administrator.

To log in, you must:

1. Turn on your terminal. If you are directly connected, skip the next step.

2. If you are going to communicate with the computer over a telephone line,
you must establish a connection by entering the telephone number that
connects you to the UNIX system.

You'll see one of three messages on your screen:

BUSY The circuits are busy; try dialing again.

NO ANSWER This usually means the system is inoperable
because of mechanical failure or electronic prob-
lems. Check the connections between your termi-
nal, modem, and phone line and try dialing again.

ONLINE The system is accessible.

Basics for UNIX System Users

3-9

If you are not accessing the computer via telephone line, ask your system
administrator how to gain access.

3. If accessing your computer requires that you enter a Secure Attention Key
(SAK), see “Getting a Login Prompt with the Secure Attention Key” later in
this chapter for more information. Otherwise, go to the next step.

4. Thelogin: should appear.

If the login: prompt is not on your screen, press the<RETURN> key
and try again.

A series of meaningless characters may appear on your screen. This
means the telephone number you called serves more than one baud rate;
the UNIX system is trying to communicate with your terminal, but is
using the wrong speed. Press the <BREAK> or <RETURN> key; this
signals the system to try another speed. If the UNIX system does not dis-
play thelogin: prompt within a few seconds, press the<BREAK> or
<RETURN> key again.

NOTE

Don't press the<BREAK> key, if this is your SAK. Instead, just
press the<RETURN> key.

Getting a Login Prompt with the Secure Attention Key 3

On many computer systems, a user's password is vulnerable whenever it is typed. Because
passwords are typed over ordinary, insecure data channels, malicious users can steal pass-
words by using a spoofing program. A spoofing program is a program created by a mali-
cious user of the system to trick other users into believing that it is the system's login pro-
gram. When passwords are entered by unsuspecting users, the spoofing program records
them and passes them on to the user who wrote the program. With these stolen passwords,
this user can gain access to other users' accounts and files.

To protect passwords, this version of the UNIX operating system uses a secure
communications channel, called a trusted path, whenever users enter their passwords. The
trusted path prevents malicious users from employing spoofing programs or other devices
to gain users' passwords.

You can get a login prompt only after entering the Secure Attention Key (SAK) to
establish a trusted path between your terminal and the main computer. The trusted path is
in place only during login processing. Whenever you want to log on, you must enter the
SAK and obtain a new trusted path. (Remember that you can change your password only
during login. This ensures that your password is protected when you change it.)

User’s Guide

3-10

NOTE

If you ever get a login or password prompt without entering the
SAK or if you notice any other unusual behavior, report the
incident to your system administrator. Your system may not be
configured correctly, or there may be a spoofing program on the
system. Do not log in unti l you have talked with your
administrator.

To get alogin: prompt by using the line drop signal as a SAK, either turn the terminal
off and then back on, or press a combination of keys. On AT&T 630 terminals, for
example, pressing<CTRL><SHIFT><BREAK> sends a line drop signal from your
terminal to the host computer.

Once the login prompt appears, you have a limited amount of time in which to log in.
There is usually enough time for a second login attempt if you make a mistake the first
time. If you mistype your login name or password, you should be able to get a new login
prompt by typing<RETURN>, because the trusted path is still in effect for the terminal.

If you do not complete the login process while the trusted path is in effect, you will not get
a response from the computer when you type<RETURN>. You must then enter the SAK
again to get another login prompt.

If you enter the SAK while you are logged on to the system, your current login session is
ended. All currently open connections to the terminal can no longer be used for I/O or
control options to the terminal. You can use the terminal only by starting a new login
session. Be careful not to enter the SAK by mistake.

The SAK may also be the break signal or a control character; your system administrator
can tell you what the SAK is for your terminal. (Different terminals may have different
SAKs and the administrator can redefine the SAK for a terminal; if you don't get a login
prompt when you enter a SAK, see your administrator.)

CAUTION

Do not attempt to guess the SAK; if you do, you'll be vulnerable
to spoofing programs and other attacks on your password. If you
forget the SAK or have not been told what it is, see your system
administrator.

Be sure you get any information about the SAK from a reliable
source. If a malicious user gives you incorrect information about
the SAK, your password can be stolen.

Login Procedure 3

When the login: prompt appears, always enter the SAK before logging in, even if the
login: prompt is already displayed on the terminal. Entering the SAK ensures that you

Basics for UNIX System Users

3-11

are not subject to a spoofing program. When thelogin: prompt appears after you enter
the SAK,

1. Type your login name and press the<RETURN> key. For example, if
your login name isstarship, your login line will look like this:

login: starship <RETURN>

2. If you make a mistake while typing your login name, you may correct it
with the<BACKSPACE> key or the@ character, as discussed earlier.

NOTE

Remember to type in lowercase letters. If you use uppercase when
you log in, the UNIX system will expect you to continue using
uppercase characters exclusively for the rest of your login session
and it will produce output only in uppercase.

3. This will begin the process to log you in at your default security level. You
may be authorized to log in at security levels other than your default. There
are many implications to using more than a single security level; complete
information can be found in Chapter 14, “Managing Files Securely”. If you
are authorized to log in at several security levels, you may specify, with the
-h option, the level to be assigned to your login process. For example, if
blue is one of the levels to which you are allowed access, you can log in
at that level by typing:

login: -h blue starship <RETURN>

4. You can also change your default level to any level for which you are
authorized. You do this by specifying the-v option. For example, ifblue
is one of the levels to which you are allowed access, you can change your
default level (so that all subsequent logins will default to that security
level) by typing:

login: -v blue starship <RETURN>

5. Next, the system prompts you for your password. Type your password and
press the<RETURN> key.

For security reasons, the UNIX system does not echo (that is, print) your
password on the screen.

6. If you make a mistake while typing your password, you may correct it with
the<BACKSPACE> key or the@ character, as discussed earlier.

7. If both your login name and password are acceptable to the UNIX system,
the system may print the message of the day and/or current news items and
then the default command prompt ($). (The message of the day might
include a schedule for system maintenance; news items might include
announcements of new system tools.)

8. The system will print the date and time of your last login, together with the
level at which you logged in and an indication of what terminal you used.
You should check this information. If it does not agree with your

User’s Guide

3-12

recollection, it may be a sign that someone else has used your login. In that
case, you should immediately change your password (as described below)
and inform the login administrator.

When you have logged in, your screen will look something like this:

*

9. If you make a typing mistake when logging in, the UNIX system prints the
messagelogin incorrect on your screen. Then it gives you a second
chance to log in by printing anotherlogin: prompt.

login: starship <RETURN>
password:
login incorrect
login:

If you have never logged in on the UNIX system, your login procedure may differ from
the one just described. This is because some system administrators follow the optional
security procedure of assigning temporary passwords to new users when they set up their
accounts. If you have a temporary password the system will force you to choose a new
password before it allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step helps to ensure
a system's security. Protection of system resources and your personal files depends on
your keeping your password private.

The actual procedure you follow will be determined by the administrative procedures at
your computer installation site. However, it will probably be similar to the following
example of a first-time login procedure.

1. You establish contact and enter the SAK. The UNIX system displays the
login: prompt. Type your login name and press the<RETURN> key.

2. The UNIX system displays thepassword: prompt. Type your temporary
password and press the<RETURN> key.

3. The system tells you your temporary password has expired and you must
select a new one.

4. The system asks you to type your old password again. Type your temporary
password.

5. The system prompts you to type your new password. Type the password
you have chosen.

Passwords should be constructed to meet the following requirements:

login: starship <RETURN>
password:
Last login: Wed Dec 4 11:14:22 on term/21 at level blue
UNIX system news
$

Basics for UNIX System Users

3-13

• Each password must have from three to eight characters; the length
of your password will be defined by your system administrator. If no
specific length is assigned, the length defaults to six characters. The
system ignores any characters that exceed the eight-character limit.

• Each password must contain at least two alphabetic characters and at
least one numeric or special character. Alphabetic characters can be
uppercase or lowercase letters.

• Each password must differ from your login name and any reverse or
circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are
equivalent.

• A new password must differ from the old by at least three characters.
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

Examples of valid passwords are:mar84ch, Jonath0n, andBRAV3S.

NOTE

The UNIX system you are using may have different requirements
to consider when choosing a password. Ask your system
administrator for details.

6. To verify that your password has been entered correctly, the system asks
you to reenter your new password. Type your new password again.

7. If you do not reenter the new password exactly as typed the first time, the
system tells you the passwords do not match and asks you to try the
procedure again. On some systems, however, the communication link may
be dropped if you do not reenter the password exactly as typed the first
time. If this happens, you must return to Step 1 and begin the login
procedure again. When the passwords match, the system displays the
prompt.

The following screen summarizes this procedure (Steps 1 through 6) for first-time UNIX
system users.

User’s Guide

3-14

In addition to having temporary passwords that expire immediately, your system
administrator can arrange for all passwords to “age” and eventually expire. If that
happens, you must select a new password as in the example above.

Even if password aging is not used on your system, it is a good security practice to change
your password whenever you think someone might have learned what it is. To change
your password:

1. Type-p at thelogin: prompt, before your login name. Your login line
will look like this:

login: -p starship <RETURN>

2. Once again, the system will ask for your old password to verify who you
are and then ask you to type your new password twice.

Problems When Logging In 3

A terminal may act peculiar when it is not configured properly. For example, the carriage
return may not work properly. Some problems can be corrected simply by logging off the
system and logging in again. If logging in a second time does not remedy the problem,
check the following and then try logging in again:

keyboard keys labeled<CAPS>, <LOCAL>, <BLOCK>, and so on
should not be enabled (put into the locked position); disable these
keys by pressing them.

modem if your terminal is connected to the computer via telephone lines,
verify that the baud rate and duplex settings are correctly set.

switches some terminals have several switches that must be set to be
compatible with the UNIX system; be sure these switches are set
properly.

Refer to“Required Terminal Settings”(in this chapter) if you need information to verify
the terminal configuration. If you need additional information about the keyboard, termi-
nal, or modem, check the owner's manuals for the appropriate equipment.

Table 3-2 presents a list of procedures you can follow to detect, diagnose, and correct
some problems you may experience when logging in. If you need further help, contact
your system administrator.

login: starship <RETURN>
password: <RETURN>
Your password has expired.
Choose a new one.
Old password: <RETURN>
New password: <RETURN>
Re-enter new password: <RETURN>
$

Basics for UNIX System Users

3-15

Simple Commands 3

When the prompt appears on your screen, the UNIX system has recognized you as an
authorized user and is waiting for you to request a program by entering a command.

For example, try running thedate command. After the prompt, type the command and
press the<RETURN> key. The UNIX system accesses a program calleddate, exe-
cutes it, and prints its results on the screen, as shown below.

1. Some problems may be specific to your terminal or modem. Check the owner's manual for the ap-
propriate equipment if suggested actions do not remedy the problem.

2. Typingstty -tabs corrects the tab setting only for your current computing session. To ensure a
correct tab setting for all sessions, add the linestty -tabs to your.profile .

Table 3-2. Troubleshooting Problems When Logging In

Problem1 Possible Cause Action/Remedy

Meaningless characters UNIX system at wrong
speed

Press < R E T U R N > or
<BREAK>

Input/output appears in
UPPERCASE letters

Terminal configuration
includesUPPERCASE,
setting

Log off and set character genera-
tion to lowercase

Inpu t appears in
UPPERCASE, output
in lowercase

Key labeled<CAPS>
(or <CAPSLOCK>)
is enabled

Press< C A P S L O C K > (o r
<LOCK>) key to disable set-
ting

Input is printed twice Termina l i s se t to
HALF DUPLEX mode

Change se t t ing toFULL
DUPLEX mode

Tab key does not work
properly

Tabs are not set cor-
rectly

Typestty -tabs 2

Communication l ink
cannot be established
although high pitched
tone is heard when dial-
ing in

Termina l i s se t to
LOCAL or OFF-LINE
mode

Set terminal toON-LINE mode
and try logging in again

Communication l ink
(connection to UNIX
system) is repeatedly
dropped

Bad telephone line or
bad communications
port

Call system administrator

Cannot get login prompt
after making connec-
tion and pressing the
<RETURN> key

Did not enter SAK Enter SAK; if SAK is unknown,
call system administrator

User’s Guide

3-16

$ date <RETURN>
Thu Jul 18 14:49:07 EDT 1991
$

As you can see, thedate command prints the date and time, using the 24-hour clock.

Now type thewho command and press the<RETURN> key. Your screen will look
something like this:

Thewho command lists the login names of everyone currently working on your system.
The tty designations refer to the special files that correspond to each user's terminal. The
date and time at which each user logged in are also shown.

Logging Off 3

When you have completed a session with the UNIX system, type <CTRL><d> after the
prompt. (Remember that control characters such as<CTRL><d> are typed by holding
down the control key and pressing the appropriate alphabetic key; because they are
nonprinting characters, they do not appear on your screen.) After several seconds, the
UNIX system may display thelogin: prompt again.

$<CTRL><d>
login:

This shows that you have logged off successfully and the system is ready for someone else
to log in.

NOTE

Always log off the UNIX system by typing<CTRL><d> before
you turn off the terminal or hang up the telephone. If you do not,
you may not really be logged off the system.

If you enter the SAK after you log off, the UNIX system will display thelogin: prompt
again. The following example assumes you have a direct connection to your terminal and
that<CTRL><SHIFT><BREAK> is the SAK.

$<CTRL><d>
$<CTRL><SHIFT><BREAK>
login:

$ who <RETURN>
starshipterm/00Jul 188:53
mlf term/02Jul 188:56
jro term/05Jul 188:54
ral term/06Jul 188:56
$

Basics for UNIX System Users

3-17

This shows that you have logged off successfully and started a new login session.

If you do not have a direct connection to your terminal (you may communicate with your
terminal via modem), pressing<CTRL><d> or <CTRL><SHIFT><BREAK> will
terminate your login session. To log in again, see the section, “Login Procedure” in this
chapter.

NOTE

Always log off the UNIX system by typing<CTRL><d>
followed by the SAK before you turn off the terminal or hang up
the telephone. If you do not, you may not really be logged off the
system. Because anyone who gains access to your login session
can use the system as if they were you, it is extremely important
that you log off whenever you are going to leave your terminal
unattended. To ensure that you're logged off, it's a good practice to
enter the SAK.

User’s Guide

3-18

4
Using the File System

Introduction . 4-1
File System Structure. 4-1
Your Place in the File System . 4-3

Home Directory . 4-3
Current Directory . 4-4
Pathnames. 4-5

Full Pathnames . 4-5
Relative Pathnames . 4-7
Directory and File Names . 4-10

Security and Files . 4-11
Organizing a Directory . 4-12

Creating Directories: The mkdir Command. 4-12
Listing the Contents of a Directory: The ls Command. 4-13

Listing All Files in a Directory . 4-15
Listing Contents in Short Format . 4-15
Listing Contents in Long Format . 4-16

Changing the Current Directory: The cd Command . 4-17
Removing Directories: The rmdir Command. 4-19

Protecting Files . 4-20
Overview . 4-21
Types of Access . 4-22
Access Control Lists and Permission Bits . 4-22

Minimal ACL . 4-23
Additional ACL Entries . 4-24

Displaying a File's Permission Bits and ACL . 4-24
Changing the Access Control List of a File . 4-27
Determining Access . 4-28
Assigning Permissions: The chmod Command . 4-30
Permissions and Directories . 4-33
Default Access Control Lists . 4-33

File Access and Manipulation . 4-35
Displaying a File's Contents: The cat, pg, and pr Commands 4-36

Concatenating and Printing the Contents of a File: The cat Command . . . 4-36
Paging through the Contents of a File: The pg Command 4-38
Printing Files: The pr Command. 4-42

Making a Duplicate Copy of a File: The cp Command 4-43
Moving and Renaming a File: The mv Command . 4-46
Removing a File: The rm Command . 4-47
Counting Lines, Words, and Characters in a File: The wc Command 4-48

Changing Existing File Permissions . 4-50
Setting Directory Permissions. 4-52

File Ownership: The chown, id, and groups Commands 4-53
Advanced File Manipulation: The diff, grep, and sort Commands 4-54

Identifying Differences between Files: The diff Command 4-55
Searching a File for a Pattern: The grep Command 4-55
Sorting and Merging Files: The sort Command . 4-57

User’s Guide

4-1

4
Chapter 4Using the File System

4
4
4

Introduction 4

To use the UNIX system effectively you must be familiar with file system structure, know
something about your relationship to this structure, and understand how the relationship
changes as you move around within it. This chapter prepares you to use file systems.

The first two sections (“File System Structure”and“Your Place in the File System”)offer
a working perspective of the file system.

The rest of the chapter introduces UNIX system commands that allow you to build your
own directory structure, access and manipulate the subdirectories and files you organize
within it, and examine the contents of other directories in the system for which you have
access permission.

Each command is discussed in a separate subsection. Tables at the end of these
subsections summarize the features of each command so that you can later review a
command's syntax and capabilities quickly.

Many of the commands presented in this section have additional, sophisticated uses.
These, however, are left for more experienced users and are described in other UNIX
system documentation. All the commands presented here are basic to using the file system
efficiently and easily.

File System Structure 4

The file system is made up of a set of ordinary files, special files, symbolic links, and
directories. These components provide a way to organize, retrieve, and manage
information electronically. Chapter 2 “What Is the UNIX System?“ chapter introduced the
properties of directories and files; this section will review them briefly before discussing
how to use them.

• An ordinary file is a collection of characters stored on a disk. It may
contain text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A symbolic link is a file that points to another file.

• A directory is a collection of files and other directories (sometimes called
subdirectories).

User’s Guide

4-2

Use directories to group files together on the basis of any criteria you
choose. For example, you might create a directory for each product that
your company sells or for each of your student's records.

The set of all the directories and files is organized into a hierarchical tree structure.
Figure 4-1 shows a sample file structure with a directory called root (/) as its source. By
moving down the branches extending from root, you can reach several other major system
directories. By branching down from these, you can, in turn, reach all the directories and
files in the file system.

In this hierarchy, files and directories that are subordinate to a directory have what is
called a parent/child relationship. This type of relationship is possible for many layers of
files and directories. There is no limit to the number of files and directories you may create
in any directory that you own. Nor is there a limit to the number of layers of directories
that you may create. You can organize your files in a variety of ways, as shown in
Figure 4-1.

Figure 4-1. A Sample File System

= Directories

/
(root)

stand

unix
console

sbin dev

term

11 23

etc

date cat

home tmp var

bin lib sbin

usr

= Ordinary Files

= Special Files

= Branch 162760

Using the File System

4-3

Your Place in the File System 4

Whenever you interact with the UNIX system, you do so from a location in its file system
structure. You are automatically placed at a specific point in the file system structure every
time you log in. From that point, you can move through the hierarchy to work in any of
your directories and files and to access those belonging to others that you have permission
to use.

The following sections describe your position in the file system structure and how this
position changes as you move through the file system.

Home Directory 4

When you successfully complete the login procedure, you are placed at a specific point in
the file system structure called your home directory (login directory). The login name
assigned to you when your account was set up is usually the name of this home directory.
Every user with an authorized login name has a unique home directory in the file system.

The UNIX system is able to keep track of all these home directories by maintaining one or
more system directories that organize them. For example, the home directories of the login
namesstarship , mary2 , andjmrs are contained in a system directory calledhome.
Figure 4-2 shows the position of a system directory such ashome in relation to the other
important directories discussed in Chapter 2, “What Is the UNIX System”.

Within your home directory, you can create files and additional directories in which to
group them, move and delete your files and directories, and control access to them. You
have full responsibility for everything you create in your home directory because you own
it. Your home directory is a vantage point from which to view all the files and directories it
holds, and the rest of the file system, all the way up to root.

User’s Guide

4-4

Figure 4-2. Directory of Home Directories

Current Directory 4

While you continue to work in your home directory, it is considered your current working
directory. If you move to another directory, that directory becomes your new current
directory.

The commandpwd (short for print working directory) prints the name of the directory in
which you are now working. For example, if your login name isstarship and you
execute thepwd command in response to the first prompt after logging in, the UNIX
system will respond as follows:

$ pwd <RETURN>
/home/starship
$

The system response gives you both the name of the directory in which you are working
(starship) and the location of that directory in the file system.

= Directories

/
(root)

stand

unix
console

sbin dev

term

23 12

etc

date cat

list mbox

outline table sanders johnson display list

home tmp var

bin lib sbin

starship mary2 jmrs

usr

= Ordinary Files

= Special Files

= Branch

draft letters bin

tools
162790

Using the File System

4-5

The name/home/starship tells you that the root directory (shown by the leading /
in the line) contains the directoryhome which, in turn, contains the directorystarship .
(All other slashes in the pathname other than root are used to separate the names of
directories and files, and to show the position of each directory relative to root.)

A directory name that shows the directory's location in this way is called a full or complete
directory name or pathname. In the next few pages we will analyze and trace this
pathname so you can start to move around in the file system.

Remember, you can determine your position in the file system at any time by issuing a
pwd command. This is especially helpful if you want to read or copy a file and the UNIX
system tells you the file you are trying to access does not exist. You may be surprised to
find you are in a different directory than you thought.

Table 4-1 provides a summary of the syntax and capabilities of thepwd command.

Pathnames 4

Every file and directory in the UNIX system is identified by a unique pathname. The
pathname shows the location of the file or directory, and provides directions for reaching
it. Knowing how to follow the directions given by a pathname is your key to moving
around the file system successfully. The first step is to learn about the two types of
pathnames: full and relative.

Full Pathnames 4

A full pathname (sometimes called an absolute pathname) gives directions that start in the
root directory and lead you down through a unique sequence of directories to a particular
directory or file. You can use a full pathname to reach any file or directory in the UNIX
system in which you are working.

Because a full pathname always starts at the root of the file system, its leading character is
always a/ (slash). The final name in a full pathname can be either a file name or a
directory name. All other names in the path must be directories.

To understand how a full pathname is constructed and how it directs you, consider the
following example. Suppose you are working in thestarship directory, located in

Table 4-1. Summary of the pwd Command

Command Recap

pwd - print full name of working directory

command options arguments

pwd none none

Description: pwd prints the full pathname of the directory in
which you are currently working.

User’s Guide

4-6

/home . You issue thepwd command and the system responds by printing the full
pathname of your working directory:/home/starship .

Analyze the elements of this pathname using the diagram and key in Figure 4-3.

Figure 4-3. Pathname Elements

Now follow the dashed lines in Figure 4-4 to trace the full path to/home/starship .

/home/starship

root

system
directory delimiter

home
directory

/ (leading) = the slash that appears as the first character in the path-
name is the root of the file system

home = system directory one level below root in the hierarchy
to which root points or branches

/ (subsequent) = the next slash separates or delimits the directory names
home andstarship

starship = current working directory

Using the File System

4-7

Figure 4-4. Full Pathname of the /home/starship Directory

Relative Pathnames 4

A relative pathname gives directions that start in your current working directory and lead
you up or down through a series of directories to a particular file or directory.

By moving down from your current directory, you can access files and directories you
own.

By moving up from your current directory, you pass through layers of parent directories to
the grandparent of all system directories, root. From there you can move anywhere in the
file system.

A relative pathname begins with one of the following: a directory or file name; a.
(pronounced dot), which is a shorthand notation for your current directory; or a..
(pronounced dot dot), which is a shorthand notation for the directory immediately above
your current directory in the file system hierarchy. The directory represented by.. (dot
dot) is called the parent directory of. (your current directory).

= Directories

/
(root)

stand

unix
console

sbin dev

term

23 11

etc

date cat

list mbox

outline table sanders johnson display list

home tmp var

bin lib sbin

starship mary2 jmrs

usr

= Ordinary Files

= Special Files

= Branch

draft letters bin

tools
162800

User’s Guide

4-8

For example, suppose you are in the directorystarship in the sample system and
starship contains directories nameddraft , letters , andbin and a file named
mbox. The relative pathname to any of these is simply its name, such asdraft or mbox.
Figure 4-5 traces the relative path fromstarship to draft .

Figure 4-5. Relative Pathname of the draft Directory

Thedraft directory belonging tostarship contains the filesoutline andtable .
The relative pathname fromstarship to the fileoutline is draft/outline .

Figure 4-6 traces this relative path. Notice that the slash in this pathname separates the
directory nameddraft from the file namedoutline . Here, the slash is a delimiter
showing thatoutline is subordinate todraft ; outline is a child of its parent,
draft .

list mbox

outline table sanders johnson display list

starship mary2 jmrs

home

draft letters bin

tools

= Directories

= Ordinary Files

162810

Using the File System

4-9

Figure 4-6. Relative Pathname from starship to outline

So far, the discussion of relative pathnames has covered how to specify names of files and
directories that belong to, or are children of, your current directory. You now know how to
move down the system hierarchy level by level until you reach your destination. You can
also ascend the levels in the system structure or ascend and subsequently descend into
other files and directories.

To ascend to the parent of your current directory, you can use the.. notation. This means
that if you are in the directory nameddraft in the sample file system,.. is the pathname
to starship , and../.. is the pathname tostarship 's parent directory,home.

Fromdraft , you can also trace a path to the filesanders by using the pathname..
/letters/sanders . The.. brings you up tostarship . Then the namesletters
andsanders take you down through theletters directory to thesanders file.

You can always use a full pathname in place of a relative one.

Table 4-2 gives examples of full and relative pathnames.

You may need some practice before you can use pathnames such as these to move around
the file system with confidence.

list mbox

outline table sanders johnson display list

starship mary2 jmrs

home

draft letters bin

tools

= Directories

= Ordinary Files

162820

User’s Guide

4-10

Directory and File Names 4

You can give your directories and files any names you want, as long as you observe the
following rules:

• All characters other than/ are legal.

• Some characters are best avoided, such as a space, tab, backspace, and the
following:

? @ # $ ^ & * () ` [] \ | ; ' “ < >

If you use a blank or tab in a directory or file name, you must enclose the
name in quotation marks on the command line.

• Avoid using a+, - or . as the first character in a file name.

• Upper case and lower case characters are distinct. For example, the system
considers a directory (or file) nameddraft to be different from one
namedDRAFT.

The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3+4 item1-10 outline

The rest of this chapter introduces commands that enable you to examine the file system.

Table 4-2. Example Pathnames

Pathname Meaning

/ full pathname of the root directory.

/usr/bin full pathname of thebin directory that
belongs to theusr directory that belongs to
root (contains most executable programs and
utilities).

/home/starship/bin/tools full pathname of thetools directory belong-
ing to thebin directory that belongs to the
starship directory belonging tohome that
belongs to root.

bin/tools relative pathname to the file or directory
tools in the directorybin.

If the current directory is/usr , then the UNIX
system searches for/usr/bin/tools , but if
the current directory isstarship , then the
system searches the full path/home/star-
ship/bin/tools .

tools relative pathname of a file or directorytools
in the current directory.

Using the File System

4-11

Security and Files 4

The security policy for the UNIX system with enhanced security installed requires that
access to files be controlled by the Trusted Computing Base (TCB). The TCB keeps track
of all files and makes all access control decisions accordingly.

The UNIX system uses the following kinds of files:

• An ordinary or regular file is a one-dimensional array of bytes. The UNIX
system imposes no other constraint on the format of regular files; the kernel
never changes regular file contents except as specified by user programs.
This protects the contents of those files. Any structure or constraints on
ordinary files are imposed by the programs that use the files.

• A special file (also called a device special file or device) represents an I/O
device such as a terminal or disk, or a pseudo-device such as primary
memory. Special files reside in the directory/dev . A device interface typi-
cally is partly conventional (most devices allow read, write, open, and
close) and partly device-dependent (many devices have control operations
specific to the device).

• A symbolic link allows a link between files that exist on different file
systems. A symbolic link file is essentially a regular file with a unique type
identifier; the data of the symbolic link file is the pathname of the file to
which it is linked. Seeln(1) in the onlineCommand Reference.

• A directory organizes files, including other directories. The files in a
running system form a hierarchy that begins at the root directory, which is
denoted by a slash (/). Unlike regular files, user programs are not allowed
to change the internal structure of directories; directories are maintained
solely by the operating system.

• A pipe is a communication path set up by the kernel that can be used to
pass data between processes. Users create pipes by using the| character to
use the output from one program as the input to another, for example,cat
file | sort.

As a user, you will need to use ordinary files and be aware of the directory structure of
files in your day-to-day tasks. You may use symbolic links and pipes, and if you write any
programs, may also make use of device special files.

Refer to Figure 4-1 for a sample file tree. Each file has an absolute or full pathname, which
starts at root, ends with the file, and includes every directory on the path from the root to
the file. For example,/usr/bin/date is the full pathname of the filedate .
/usr/bin is the full pathname of the directorybin .

A file can always be referenced by its full pathname.

Part of the information the TCB keeps about a process is its current working directory.
Given a particular current working directory, each file below that directory has a relative
pathname. A relative pathname starts with reference to the current directory, ends with the
file, and includes every directory in between. For example, if the current working
directory is/usr/bin , thendate can be referenced by using the relative pathname
date .

User’s Guide

4-12

Remember that all files are assigned security levels by the TCB. Only processes that pass
Mandatory and Discretionary access control checks are allowed to access any given file.

Organizing a Directory 4

This section introduces four commands that enable you to organize and use a directory
structure:

mkdir enables you to make new directories and subdirectories within your current
directory.

ls lists the names of all the subdirectories and files in a directory.

cd enables you to change your location in the file system from one directory to
another.

rmdir enables you to remove an empty directory.

These commands can be used with either full or relative pathnames. Two of the com-
mands,ls andcd, can also be used without a pathname. Each command is described
more fully in the four sections that follow.

Creating Directories: The mkdir Command 4

You should create subdirectories in your home directory according to a logical and
meaningful scheme that will facilitate the retrieval of information from your files. If you
put all files about one subject together in a directory, you will know where to find them
later.

To create a directory, use the commandmkdir (short for make directory). Simply enter
the command name, followed by the name you are giving your new directory or file. For
example, in the sample file system, the owner of thedraft subdirectory createddraft
by issuing the following command from the home directory (/home/starship):

$ mkdir draft <RETURN>
$

The second prompt shows that the command has succeeded; the subdirectorydraft has
been created.

This example shows that other subdirectories were created in the home directory, such as
letters andbin , in the same way.

$ mkdir letters <RETURN>
$ mkdir bin <RETURN>
$

All three subdirectories (draft , letters , andbin) could have been created simulta-
neously by listing them all on a single command line.

Using the File System

4-13

$ mkdir draft letters bin <RETURN>
$

You can also move to a subdirectory you created and build additional subdirectories
within it. When you build directories or create files, you can name them anything you
want as long as you follow the guidelines listed earlier under“Directory and File
Names.”

 Table 4-3 summarizes the syntax and capabilities of themkdir command.

Listing the Contents of a Directory: The ls Command 4

All directories in the file system have information about the files and directories they
contain, such as name, size, and the date last modified. You can obtain this information
about the contents of your current directory and other system directories by executing the
commandls (short for list).

The ls command lists the names of all files and subdirectories in a specified directory. If
you do not specify a directory,ls lists the names of files and directories in your current
directory. To understand how thels command works, consider the file system in
Figure 4-2 once again.

Suppose you are logged in to the UNIX system asstarship and you run thepwd
command. The system will respond with the pathname/home/starship . To display
the names of files and directories in this current directory, you then typels and press the
<RETURN> key. After this sequence, your terminal will read:

Table 4-3. Summary of the mkdir Command

Command Recap

mkdir - make a new directory

command options arguments

mkdir available directoryname(s)

Description: mkdir creates a new directory (subdirectory).

Remarks: The system returns a prompt ($ by default) if the
directory is successfully created.

User’s Guide

4-14

The system responds by listing, in alphabetical order, the names of files and directories in
the current directorystarship . (If the first character of any of the file or directory
names had been a number or an upper case letter, it would have been printed first.)

To print the names of files and subdirectories in a directory other than your current
directory without moving from your current directory, you must specify the name of that
directory as follows:

ls pathname<RETURN>

The directory name can be either the full or relative pathname of the desired directory. For
example, you can list the contents ofdraft while you are working instarship by
enteringls draft and pressing the<RETURN> key. Your screen will look like this:

$ ls draft <RETURN>
outline
table

$

Here,draft is a relative pathname from a parent (starship) to a child (draft)
directory.

You can also use a relative pathname to print the contents of a parent directory when you
are located in a child directory. The.. (dot dot) notation provides an easy way to do this.
For example, the following command line specifies the relative pathname fromstar-
ship to home:

$ ls .. <RETURN>
jmrs
mary2
starship

$

You can get the same results by using the full pathname from root tohome.

If you type ls /home and press the<RETURN> key, the system will respond by
printing the same list.

Similarly, you can list the contents of any system directory that you have permission to
access by executing thels command with a full or relative pathname.

The ls command is useful if you have a long list of files and you are trying to determine
whether one of them exists in your current directory. For example, if you are in the

$ pwd <RETURN>
/home/starship
$ ls <RETURN>
bin
draft
letters
list
mbox
$

Using the File System

4-15

directorydraft and you want to determine if the files namedoutline andnotes are
there, use thels command as follows:

$ ls outline notes < RETURN>
outline
notes: No such file or directory

$

The system acknowledges the existence ofoutline by printing its name, and indicates
that the filenotes is not found.

The ls command does not print the contents of a file. If you want to see what a file
contains, use thecat, pg, or pr command. These commands are described in“File
Access and Manipulation”later in this chapter.

The ls command also accepts options that cause specific attributes of a file or
subdirectory to be listed. There are more than a dozen available options for thels
commands. Of these, the-a and-l will probably be most valuable in your basic use of
the UNIX system. Refer to thels(1) page in the onlineCommand Reference for details
about other options.

Listing All Files in a Directory 4

Some important file names in your home directory, such as.profile (pronounced dot-
profile), begin with a period. (As you can see from this example, when a period is used as
the first character of a file name it is pronounced dot.) When a file name begins with a dot,
it is not included in the list of files reported by thels command. If you want thels to
include these files, use the-a option on the command line.

For example, to list all the files in your current directory (starship), including those
that begin with a. (dot), typels -a and press the<RETURN> key.

Listing Contents in Short Format 4

The -C and-F options for thels command are frequently used. Together, these options
list a directory's subdirectories and files in columns, and identify executable files (with an
*), directories (with a/), and symbolic links (with an@). You can list all files in your
working directorystarship by executing the command line shown here:

$ ls -a <RETURN>
.
..
.profile
bin
draft
letters
list
mbox
$

User’s Guide

4-16

$ ls -CF <RETURN>
bin/letters/mbox
draft/list*

$

Listing Contents in Long Format 4

Probably the most informativels option is-l , which displays the contents of a directory
in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file. For example, suppose you run thels -l command while in
thestarship directory.

The first line of output (total 30) shows the amount of disk space used, measured in
blocks. Each of the rest of the lines comprises a report on a directory or file instarship .
The first character in each line tells you the type of file as indicated above.

Using this key to interpret the previous screen, you can see that thestarship directory
contains three directories and two ordinary disk files.

The next nine characters, which are either letters or hyphens, possibly followed by a plus
sign (+), identify who has permission to read and use the file or directory. Permissions are
discussed in the description of thechmod command under later in this chapter. The
presence of a plus sign after the nine permission characters indicates additional
permissions are granted and/or denied in the file's Access Control List (ACL). An ACL
may further restrict access to the file beyond the restrictions specified by the permission
characters. Permissions and ACLs are discussed in the section“Protecting Files” later in
this chapter.

The following number is the link count. For a file, this equals the number of users linked
to that file. For a directory, this number shows the number of directories immediately
under it plus two (for the directory itself and its parent directory).

$ ls -l <RETURN>
total 30
drwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
-rwx------+ 2 starship project 12301 Nov 2 10:15 list
-rw------- 1 starship project 40 Oct 27 10:00 mbox
$

d = directory

- = ordinary disk file

l = symbolic link file

b = block special file

c = character special file

Using the File System

4-17

Next, the login name of the file's owner appears (here it isstarship), followed by the
group name of the file or directory (project).

The following number shows the length of the file or directory entry measured in units of
information (or memory) called bytes. The month, day, and time the file was last modified
is given next. Finally, the last column shows the name of the directory or file.

Figure 4-7 identifies each column in the rows of output from thels -l command.

Figure 4-7. Description of Output Produced by the ls-l Command

Two other options of thels command,-z and-Z , allow you to display a file's Mandatory
Access Control level, also called a security level. (These options are only available with
the enhanced security package.)

Table 4-4 summarizes the syntax and capabilities of thels command and two available
options.

Changing the Current Directory: The cd Command 4

When you first log in, you are placed in your home directory. As long as you do work in it,
it is also your current working directory. By using thecd command (short for change
directory) you can work in other directories as well. To use this command, entercd, fol-
lowed by a pathname to the directory to which you want to move.

cd pathname_of_newdirectory<RETURN>

Any valid pathname (full or relative) can be used as an argument to thecd command. If
you do not specify a pathname, the command will move you to your home directory. Once
you have moved to a new directory, it becomes your current directory.

number of
blocks used

owner
name

length of
file in bytes

number
of links

group
name name

total 30

d rwxr-xr-x 3 starship project 96 Oct 27 08:16 bib
d rwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
d rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
- rw-------+ 2 starship project 12301 Nov 2 10:15 list
- rw-------- 1 starship project 40 Oct 27 10:10 mbox

File
type

permissions time / date last
modified

User’s Guide

4-18

For example, to move from thestarship directory to its child directorydraft (in the
sample file system), typecd draft and press the<RETURN> key. (Heredraft is the
relative pathname to the desired directory.) When you get a prompt, you can verify your
new location by typingpwd and pressing the<RETURN> key. Your terminal screen will
look like this:

$ cd draft <RETURN>
$ pwd <RETURN>
/home/starship/draft
$

Now that you are in thedraft directory you can create subdirectories in it by using the
mkdir command, and new files, by using theed andvi editors. (See Chapter 6, the
“Line Editor (ed) Tutorial” and Chapter 7, the “Screen Editor (vi) Tutorial” for tutorials on
theed andvi commands, respectively.)

It is not necessary to be in thedraft directory to access files within it. You can access a
file in any directory by specifying a full or relative pathname for it. For example, tocat
thesanders file in theletters directory (/home/starship/letters) while you
are in thedraft directory (/home/starship/draft), specify the full pathname of
sanders on the command line.

cat /home/starship/letters/sanders <RETURN>

1. See thels(1) man page in the online Command Reference for all available
options and an explanation of their capabilities.

Table 4-4. Summary of the ls Command

Command Recap

ls - list contents of a directory

command options arguments

ls -a , -l , and others1 directoryname(s)

Description: ls lists the names of the files and subdirectories in the
specified directories. If no directory name is given as
an argument, the contents of your working directory
are listed.

Options: -a Lists all entries, including those beginning
with . (dot).

-l Lists contents of a directory in long format
furnishing mode, permissions, size in bytes, and time
of last modification.

Remarks: If you want to read the contents of a file, use thecat
command.

Using the File System

4-19

You may also use full pathnames with thecd command. For example, to move to the
letters directory from thedraft directory, specify/home/starship/letters
on the command line, as follows:

cd /home/starship/letters <RETURN>

Also, becauseletters anddraft are both children ofstarship , you can use the
relative pathname../letters with thecd command. The .. notation moves you
to the directorystarship , and the rest of the pathname moves you toletters .

Table 4-5 summarizes the syntax and capabilities of thecd command.

Removing Directories: The rmdir Command 4

If you no longer need a directory, you can remove it with the commandrmdir (short for
remove a directory). The standard syntax for this command is:

rmdir directoryname(s)<RETURN>

You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner of it or if the
directory is not empty. If you want to remove a file in another user's directory, the owner
must give you write permission for the parent directory of the file you want to remove.

If you try to remove a directory that still contains subdirectories and files (the directory is
not empty), thermdir command prints the messagedirectorynamenot empty . You
must remove all subdirectories and files; only then will the command succeed.

For example, suppose you have a directory calledmemos that contains one subdirectory,
tech , and two files,june.30 and july.31 . (Create this directory in your home

Table 4-5. Summary of the cd Command

Command Recap

cd - change your working directory

command options arguments

cd none directoryname

Description: cd changes your position in the file system from
the current directory to the directory specified. If no
directory name is given as an argument, thecd
command places you in your home directory.

Remarks: When the shell places you in the directory speci-
fied, the prompt ($ by default) is returned to you.
To access a directory that is not in your working
directory, you must use the full or relative path-
name in place of a simple directory name.

User’s Guide

4-20

directory now so you can see how thermdir command works.) If you try to remove the
directorymemos (by issuing thermdir command from your home directory), the
command responds as follows:

$ rmdir memos <RETURN>
UX:rmdir: ERROR:memos:Directory not empty

$

To remove the directorymemos, you must first remove its contents: the subdirectory
tech , and the filesjune.30 andjuly.31 . You can remove thetech subdirectory by
executing thermdir command. For instructions on removing files, see“File Access and
Manipulation” later in this chapter.

Once you have removed the contents of thememos directory,memos itself can be
removed. First, you must move to its parent directory (your home directory). Thermdir
command will not work if you are still in the directory you want to remove. From your
home directory, type:

rmdir memos <RETURN>

If memos is empty, the command will remove it and return a prompt.

Table 4-6 summarizes the syntax and capabilities of thermdir command.

Protecting Files 4

Because the UNIX operating system is a multi-user system, you usually do not work alone
in the file system. System users can follow pathnames to various directories and read and
use files belonging to one another, as long as they have permission to do so. Access to a
file is controlled by two mechanisms: Discretionary Access Control (DAC) and Manda-
tory Access Control (MAC).

Table 4-6. Summary of the rmdir Command

Command Recap

rmdir - remove a directory

command options arguments

rmdir available directoryname(s)

Description: rmdir removes specified directories if they do not
contain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the system
returns a prompt. If the directory contains files or sub-
directories, the command returns the message,
rmdir: directoryname not empty.

Using the File System

4-21

DAC allows you to grant or deny permission for other users to access your files. This
feature is called discretionary access control because the owner has the discretion to grant
or deny access. This chapter explains DAC, and how to use the DAC commands
setacl, getacl, andchmod to control access to files you own.

NOTE

It is important to understand that a user who has been given
permission to read a file is allowed to make copies of that file.
Those copies will be owned (and access to them controlled) by
that user.

MAC is controlled by the system (as configured by the System Administrator), and
restricts a user's access to data based on the sensitivity and topics associated with the data
and the user. The owner of a file has no control over the MAC restrictions on the file. Man-
datory Access Controls are explained in Chapter 14, “Managing Files Securely” of this
guide.

You must pass both sets of access checks to read or modify a file or to execute a program.
Throughout the discussion of DAC, it is assumed that the user has MAC access to the files
or directories involved.

Overview 4

If you own a file, DAC allows you to decide who has the right to read it, write in it (make
changes to it), or, if it is a program, to execute it. You can also restrict permissions for
directories. When you grant execute permissions for a directory, you allow the specified
users to change directory to it. Discretionary access to any file, directory, or device is
controlled by the owner or an administrator with the appropriate privilege.

DAC permissions for a file are stored in two kinds of file attributes. A file's Access Con-
trol List (ACL) contains one-line entries naming specific users and groups and indicating
what access is to be granted to each. A file's permission bits represent in a shorthand fash-
ion ACL entries for the file's owner and group, and for “other” (anyone who is not specifi-
cally granted or denied access by other ACL entries).

Using thesetacl command you can selectively grant or deny any user or group of users
access to your files. Thechmod command provides a limited subset of the functions of the
setacl command, manipulating only the ACL entries represented in the permission bits.
Thechgrp andchown commands also affect the DAC information on a file.

The following sections explain types of file access, access control lists, and permission
bits in more detail. This is followed by detailed discussions of how to display ACLs and
permission bits using thegetacl andls commands, and how to control access to your
files usingsetacl andchmod.

User’s Guide

4-22

Types of Access 4

Three specific types of access to a file are controlled by the owner of a file or directory:

read For a file, read access allows a user to see the contents of the file. For a
directory, read access allows a user to access files within the directory.

write For a file, write access allows a user to change the contents of the file. For a
directory, write access allows a user to create new files, append to existing
files, and remove existing files.

execute If a file is a program or a shell script, execute access allows a user to execute
it. For a directory, execute permission allows a user to make the directory the
current directory and to obtain information on the attributes of files within the
directory.

When displayed using thels -l command, access permissions are written out as a
sequence of nine characters, divided logically into three sets of three characters each.
There is one set for the permissions to be granted to the file's owner, members of the file
owner's group, and all others, displayed in that order.

Each set contains three characters, withr standing for read permission,w standing for
write permission, andx standing for execute permission. The characters are displayed in
this order for each set, with a dash (-) indicating that a particular permission is not
granted. Refer to Screen 4-3 for an example of displaying permissions.

Because of the way permissions map onto individual bits in the operating system code, a
set of permissions are often referred to as permission bits or mode bits.

The next section explains how to interpret permission bits as displayed byls -l , and
how Access Control Lists can modify the permissions granted to particular users and
groups.

Access Control Lists and Permission Bits 4

Permission bits provide an easy-to-use mechanism for controlling access to a file. They
are limited, however, because there are only three sets of permissions.

The permission bits appear in three sets of three characters, in the orderowner, group,
andother. For example, in Screen 4-3, only the owner of the file has read and write
access to the filembox. No one in the groupproject , nor anyone else, has access to the
file. Permissions that would grant yourself read and write access to the file, members of
your group read-only access, and no access at all to others would appearrw-r-----.
Thegroup permissions would apply to all users in the groupproject , theother per-
missions to everyone else on the system that is not in the groupproject .

The permission bits cannot grant and deny access to specific other users. There is no way
to give another user who is not in the file's owning group access to the file without giving
access to all users on the system. In order to grant and deny access to specific users, you
need to add entries to the file's Access Control List (ACL).

Using the File System

4-23

Every file on the system has an ACL. An ACL consists of a series of one-line entries nam-
ing specific users or groups and indicating exactly what access is to be granted to each.

There are always at least four entries in an ACL, auser entry, agroup entry, aclass
entry, and another entry. When an ACL contains only four entries, the permissions it
grants are exactly the same as the permissions represented by the permission bits.

While having such an ACL (we will call it a minimal ACL) provides no greater
functionality than the permission bits alone, we will start by describing a minimal ACL,
and augment it with additional entries to show how the DAC mechanism works.

Minimal ACL 4

The first entry in a minimal ACL indicates the permissions that the owner of the file gets,
and maps directly to theowner permission bits. Because it applies to the owner of the
file, no indication of the user's name is needed. An ACL entry that grants read and write
access to the file's owner would look like this:

user::rw-

The second and third entries in a minimal ACL specify the permission granted to members
of the file's owning group; the permissions specified in these entries are exactly equal. For
example, ACL entries granting read-only access to the file's owning group would look like
this:

group::r--
class::r--

The fourth and last entry in a minimal ACL is a catch-all entry that specifies the
permissions for anyone who isn't granted or denied permission by any other entry. An
other entry that denies access to all users not the owner of the file nor in the file's owning
group would look like this:

other:---

The minimal ACL described above would look like this in its entirety:

user::rw-
group::r--
class::r--
other:---

The permission bits displayed byls -l for this file would look like this:

rw-r-----

In the case of a minimal ACL, there is a clear correspondence between the ACL entries
and the permission bits.

The next section describes how additional ACL entries affect file access and the
interpretation of the permission bits.

User’s Guide

4-24

Additional ACL Entries 4

If you want to specifically grant and/or deny access to specific users and/or groups on the
system, you can add moreuser andgroup entries to the four minimal entries described
in the previous section.

Additional user entries grant and deny access to specific user IDs on your system. For
example, the following entry in the ACL of a file grants read, write, and execute access to
a user logged in asarcher:

user:archer:rwx

Similarly, additionalgroup entries grant and deny access to specific group IDs on your
system. For example, an ACL with the following entry would deny access to a user in the
groupspies:

group:spies:---

In an ACL that contains more than onegroup entry and/or more than oneuser entry, the
class entry specifies the maximum permissions that can be granted by any of the
additionaluser andgroup entries. If a particular permission is not granted in theclass
entry, it cannot be granted by any ACL entries (except for the firstuser (owner) entry
and theother entry). Any permission can be denied to a particular user or group. The
class entry functions as an upper bound for file permissions.

When an ACL contains more than onegroup and/oruser entry, the collection of
additionaluser andgroup entries are referred to as thegroup class entries, since
the effective permission granted by any of these additional entries is limited by theclass
entry.

If there are additional entries in the ACL, theclass ACL entry will no longer necessarily
equal the value of the permissions for the owning group reported byls -l . This feature
is useful, because it means that thechmod command can usefully affect the permissions
of a file that has additional ACL entries.

For example, by changing the permission bits of a file torwx------ , theclass entry in
the ACL is set to--- . This means that any additionalgroup entries in the ACL cannot
grant any access to the file. If the permission bits were set torwxr----- , theclass
ACL entry would ber-- , and anygroup entries would be able to grant read access, but
not write or execute access.

Theclass entry does not limit the access that can be granted by the firstuser (owner)
entry or theother entry.

Displaying a File's Permission Bits and ACL 4

You can display the permission bits of a file with the-l option of thels command, or
display the complete ACL with thegetacl command.

For example, typingls -l and pressing the<RETURN> key while in the directory
namedstarship/bin in the sample file system produces the following output:

Using the File System

4-25

Permissions for thedisplay andlist files and thetools directory are shown on the
left of the screen under the linetotal 35 .

The initial character describes the file type; for example, a dash (-) indicates a regular file,
and ad a directory. The next nine characters are the three sets of permission bits, as
described previously. The first set refers to permissions for the owner, the second set to the
maximum group class permissions, and the last set to permissions for all other system
users. Within each set of characters, ther , w, andx show the permissions currently
granted to each category. If a dash appears instead of anr , w, or x , permission to read,
write, or execute is denied.

At the end of these characters you may also see a plus sign indicating the presence of
additional ACL entries. This indicates that additional permissions, beyond those indicated
by the three sets of three bits, have been granted or denied by additional ACL entries. In
the example, only the file namedlist has additional ACL entries.

The following diagram summarizes the breakdown of permissions for the file named
display .

As shown, the owner hasr , w, andx permissions and members of the group and other
system users haver andx permissions.

There are several exceptions to this notation system. Occasionally other letters such ass
or l may appear in the permission bits, instead of anr , w or x .

$ ls -l <RETURN>
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r--r--+ 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

rwxr-xr-x

user group others

permission to write to
the file denied to
group and others

read write execute

User’s Guide

4-26

The letters means that the file will execute with an effective user or group ID of the
owning user or group. It appears where you normally see anx (or -) for the user or group
(the first and second sets of permissions).

The letterl indicates that locking will occur when the file is accessed. It does not mean
that the file has been locked. See thels(1) andchmod(1) manual pages in the online
Command Reference for more information on variation of the standardrwx permissions.

To view the ACL on a file, use thegetacl command, which prints a file's DAC
information to standard output. In addition to the ACL, it prints the file name and
information on the owning user and group. An example of using thegetacl command
on a file with only the four basic ACL entries is shown in Screen 4-1.

Screen 4-1. A simple ACL

Userfletcher has read and write permissions, as does anyone in the grouptourney.
No one else has any access to the file.

Since the file in the above example has only the basic four ACL entries, you can get the
same information using either the-l option of ls or thegetacl command. For a file
with additional ACL entries, only thegetacl command displays complete DAC
information.

Table 4-7 summarizes the syntax and capabilities of thegetacl command.

1. See thegetacl(1) page in the onlineCommand Reference for all available options and an explana-
tion of their capabilities.

Table 4-7. Summary of the getacl Command

Command Recap
getacl - display Access Control Lists for files (and directories)

command options arguments

getacl
available1 file(s) or directories

Description: getacl displays the Access Control Lists of files and directories.

Remarks: The ls -l command displays the owner, group, and basic ACL
entries in a shorter format.

$ getacl sago <RETURN>
file: sago
owner: fletcher
group: tourney
user::rw-
group::rw-
class:rw-
other:---

Using the File System

4-27

Changing the Access Control List of a File 4

If you arefletcher (the owner of the file), you can provide read access to an additional
user by adding an entry to the ACL naming that user and specifying read access. For
example, the following command gives userarcher read-only access to the file:

setacl -r -m u:archer:r-- sago

The -m option indicates that you are adding an entry to the ACL. The-r automatically
recalculates theclass entry for you, so that any permissions that you specify will
actually be granted.

You can add group-specific entries in just the same way. For example, to grant read and
write access to everyone in the groupjudges, type the following:

setacl -r -m g:judges:rw- sago

The-m (modify) option can be used to change an existing entry as well as add a new one.
If an entry already exists for the specified user or group, the permissions for that entry are
set to the values specified on the command line.

There is also a-d option, to delete an entry. When the-d option is specified, you do not
specify any permissions in the ACL entry. For example, the following command deletes
an entry for the groupjudges:

setacl -r -d g:judges

Any number of entries may be added using the-m option.

If you are adding or changing several entries, you will probably want to use a different
procedure. You can save the ACL to a file, edit it, adding, changing, or deleting entries to
produce whatever ACL you want, and then apply this new ACL to the file. For example,
you could save the ACL to a file with this command:

getacl sago > sago.acl

Then you could edit it so that it appeared as in Screen 4-2.

Screen 4-2. A Complex ACL

file: sago
owner: fletcher
group: tourney
user::rw-
user:archer:rw-
user:bowman:rw-
user:hunter:---
group::rw-
group:audit:r--
group:fencers:---
group:judges:rw-
class:rw-
other:r--

User’s Guide

4-28

This ACL can now be applied to the file by using the-f option of thesetacl command
as follows:

setacl -r -f sago.acl sago

In this example several changes have been made. In particular, the other permissions,
which apply to everyone not mentioned in the ACL now grant read access. While before
the ACL entries only granted access to people, now they are also used to deny access as
well. Note specifically the entries for userhunter and groupfencers.

Table 4-8 summarizes the syntax and capabilities of thesetacl command.

The following section presents cautions on interpreting complex ACLs.

Determining Access 4

In a complex ACL, it sometimes requires a moment's thought to see what access any
particular user would receive. The user-specific entries are all checked before the group-
specific entries; if a user appears in a user-specific entry, group-specific entries have no
effect on the permissions granted.

If a user is granted permission by any group-specific entry, or any combination of group-
specific entries, other group-specific entries cannot take that permission away. Only if no
user- or group- specific ACL entries apply to a user are the permissions of theother
entry used.

Table 4-8. Summary of the setacl Command

Command Recap
setacl - Modify the Access Control Lists for files (and directories)

command instruction arguments

setacl -r -m type:id:permission filename(s)

directoryname(s)

setacl -r -d type:id:permission filename(s)

directoryname(s)

setacl -r -f aclfile filename(s)

directoryname(s)

Description: setacl changes the Access Control Lists of files and
directories.

Remarks: Use the-m option to add an ACL entry, or the-d option
to delete an entry. Use the-f entry to specify a file con-
taining a complete ACL to be assigned to files or directo-
ries.

Using the File System

4-29

In the ACL shown in Screen 4-2, access is determined as follows:

• Userfletcher, as file owner, gets read and write access to the file.

• Usersarcher andbowman get read and write access to the file.

• Userhunter gets no access to the file. This is true even ifhunter is in
groupjudges, audit, or tourney.

• Members of grouptourney get read and write access to the file.

• Members of groupjudges get read and write access to the file.

• Members of groupaudit get read only access to the file, but others in
groupjudges or tourney still get read and write access.

• Members of groupfencers get no access to the file, but members of the
groups judges, audit, or tourney, and usersarcher,
fletcher, andbowman are not affected by this entry.

• Other users of the system get read-only access to the file.

Remember that theclass entry limits the permissions that can be granted by the group
class entries. If a particular permission is not granted in theclass entry, it cannot be
granted by the ACL, except through the first (owner)user entry owner or theother
entry. When an additionaluser or group entry specifies greater permission than the
limit specified by theclass entry, thegetacl command indicates this with a line in the
form

#effective:---

as in Screen 4-3.

Screen 4-3. Effect of class entry on an ACL

In the example, the permissions specified for userarcher (rw-) is greater than the
permissions specified by theclass entry (---); hence, the effective permissions granted
to userarcher is --- .

The additionaluser andgroup ACL entries remain; however, they grant no access
because of the limiting affect of theclass entry.

file: sago
owner: fletcher
group: tourney
user::rw-
user:archer:rw- #effective:---
user:bowman:rw- #effective:---
user:hunter:---
group::rw- #effective:---
group:audit:r-- #effective:---
group:fencers:---
group:judges:rw- #effective:---
class:---
other:---

User’s Guide

4-30

It is always a good idea to display an ACL withgetacl after you alter it, to make sure
that the ACL grants and denies access as you intend. This is particularly true when you
use the-r option tosetacl to recalculate theclass entry.

For example, assume the following ACL:

user::rw-
user:archer:rw-
group::rw-
group:audit:r--
class:---
other:r--

Access is denied to userarcher and groupaudit by theclass entry, despite the
access specified in their entries. If you execute the following command:

setacl -r -m g:steno:r file

The resulting ACL looks like this:

user::rw-
user:archer:rw-
group::rw-
group:audit:r--
group:steno:r--
class:r--
other:r--

The recalculatedclass entry now gives read access to both userarcher and group
audit , as well as the group you just added,steno . If you still want to deny access to
audit andarcher, you should change their ACL entries to--- with setacl.

Assigning Permissions: The chmod Command 4

Thechmod command provides an alternative method to modify the user, group class, or
other permissions on a file or files. To assign these types of permissions with thechmod
command use the following three symbols:

r allows system users to read a file or to copy its contents.

w allows system users to write changes into a file (or a copy of it).

x allows system users to run an executable file.

To specify the users to whom you are granting (or denying) these types of permission, use
these three symbols:

u you, the owner of your files and directories (u is short for user).

g members of the group to which you belong (the group could consist of team
members working on a project, members of a department, or a group arbi-
trarily designated by the person who set up your UNIX system account).

o all other system users.

Using the File System

4-31

After you have determined what permissions are in effect, you can change them by exe-
cuting thechmod command in the following format:

chmod who+permission file(s)<RETURN>

or

chmod who- permission file(s)<RETURN>

The following list defines each component of this command line.

chmod/ name of the program

who one of three user groups (u, g, oro)

u = user

g = group

o = others

+ or - instruction that grants (+) or denies (-) permission

permissionany combination of three authorizations (r , w, andx)

r = read

w= write

x = execute

file(s) file (or directory) name(s) listed; assumed to be branches from your current
directory, unless you use full pathnames.

NOTE

The chmod command will not work if you type a space(s)
betweenwho, the instruction that gives (+) or denies (-)
permission, and thepermission.

The following examples show a few possible ways to use thechmod command. As the
owner ofdisplay , you can read, write, and run this executable file. You can protect the
file against being accidentally changed by denying yourself write permission. To do this,
type the command line:

chmod u-w display <RETURN>

After receiving the prompt, typels -l and press the<RETURN> key to verify that this
permission has been changed, as shown in the following screen.

User’s Guide

4-32

As you can see, you no longer have permission to write changes into the file. You will not
be able to change this file until you restore write permission for yourself.

Now consider another example. Permission to write into the filedisplay has been
denied to members of your group and other system users, but not read permission. This
means they can copy the file into their own directories and then make changes to it. To
prevent all system users from copying this file, you can deny them read permission by
typing:

chmod go -r display <RETURN>

Theg ando stand for group members and all other system users, respectively, and the-r
denies them permission to read or copy the file. Check the results with thels -l com-
mand.

There are two methods by which thechmod command can be executed:

• The method described above, in which symbols such asr , w, andx are
used to specify permissions, is called the symbolic method.

• An alternative method is the octal method. Its format requires you to
specify permissions using three octal numbers, ranging from 0 to 7. (The
octal number system is different from the decimal system.)

In the octal method, the first digit represents theowner permissions, the second the
class entry, (which is equal to the owning group's permissions), and the thirdother
permissions. The digit is constructed by treating the three types of permissions as bits,
with read having a value of 4, write having a value of 2, and execute having a value of 1.
A digits value is calculated by summing the values of permissions which are granted.
Thus,rwxrwxrwx would be indicated as777 andrw-r----- would be indicated as
640. To learn how to use the octal method, see thechmod(1) entry in the online
Command Reference.

Table 4-9 summarizes the syntax and capabilities of thechmod command.

$ chmod u -w display <RETURN>
$ ls -l <RETURN>
total 35
-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

$ chmod go -r display <RETURN>
$ ls -l <RETURN>
total 35
-rwx--x- -x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

Using the File System

4-33

Permissions and Directories 4

You can use thechmod or setacl commands to grant or deny permission for directories
as well as files by specifying a directory name instead of a file name on the command line.

Consider the impact on various system users of changing permissions for directories. For
example, suppose you grant read permission for a directory to yourself (u), members of
your group (g), and other system users (o). Every user who has access to the system will
be able to read the names of the files contained in that directory by running thels -l
command. Similarly, granting write permission allows the designated users to create new
files in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their current
directory) by using thecd command.

Default Access Control Lists 4

Often, you will want all the files created in a directory to have certain ACL entries. For
example, you might want to allow another person to write to any file in a directory of
yours where the two of you are working on something together.

You can put an ACL entry granting the desired access on every file in the directory, but
every time you create a new file you will have to add that entry again. Using default ACL
entries, you can get the system to do this for you automatically every time a file is created.

A default ACL entry looks like this:

default:user:archer:rw-

Table 4-9. Summary of the chmod Command

Command Recap
chmod - change permission modes for files (and directories)

command instruction arguments

chmod who + - permission
filename(s)
directoryname(s)

Description: chmod gives (+) or removes (-) permission to read, write, and exe-
cute files for three categories of system users:user (you),group
(members of your group), andother (all other users able to access
the system on which you are working).

Remarks: The instruction set can be represented in either octal or symbolic
terms.

User’s Guide

4-34

It can be placed only on a directory, never on an ordinary file. It never has any influence on
what access is granted to a user for the directory it is placed on. All it does is cause the
specified entry to be included in the ACL of any file created in the directory.

If the newly created file is a directory, the default ACL entries have two effects. First, the
corresponding non-default ACL entries are created, so that the desired permissions are
granted and denied for the directory, just as for any file created in the directory. Second,
the default entries themselves are copied, so that new sub-directory has the same default
ACL as the parent directory.

For example, if you want any files created in the directorypoentkarto to be readable
by certain users, you could create the appropriate default entries as shown in Screen 4-4.

Screen 4-4. An ACL with default entries

With these entries in place, any new file created in the directorypoentkarto would
have an ACL like that shown in Screen 4-5.

Screen 4-5. Effect of default entries on a file

If the newly created file is a directory, the same ACL entries are generated, but in addition
the default entries themselves are also placed in the ACL, as shown in Screen 4-6.

file: poentkarto
owner: fletcher
group: tourney
user::rw-
user:archer:rw-
user:bowman:rw-
user:hunter:---
group::rw-
group:judges:rw-
class:rw-
other:---
default:user:archer:r--
default:user:bowman:r--
default:group:judges:r--

file: poentaro1
owner: fletcher
group: tourney
user::rw-
user:archer:r--
user:bowman:r--
group::rw-
group:judges:r--
class:rw-
other:---

Using the File System

4-35

Screen 4-6. Effect of default entries on a directory

There is another mechanism, calledumask for controlling the DAC permissions of newly
created files. Unlike a default ACL entry, theumask value affects the permissions of any
file created, regardless of the directory it is created in. Theumask consists of three octal
digits, much like the permission bits. Rather than granting permission, they act as a mask,
indicating permissions that are not to be granted. Thus, aumask value of022 indicates
that write permission should not be granted to anyone except the owner of any newly
created files.

The system administrator defines a defaultumask that applies to files and directories
created by any user. You can override this defaultumask by modifying your environment
(see Chapter 9, “Shell Tutorial” in this guide, and theumask(1) manpage in the online
Command Reference for details).

It is important to understand that many commands specifically modify the permissions of
files that they create. For example, if you copy a file with thecp command, the command
will also copy the permissions. In this case, neither the default ACL entries nor theumask
value will have any effect on the permissions of the new file.

Regardless of how the permissions are granted when a file is created, as the owner of the
file or directory you always have the option of changing them.

File Access and Manipulation 4

This section discusses commands that are necessary for accessing and using the files in the
directory structure. Table 4-10 lists basic commands for using files; other, more advanced
file manipulation commands are found further on in this section.

Each command is discussed in detail and summarized in a table that you can easily
reference later. These tables will enable you to review the syntax and capabilities of these
commands at a glance.

file: subpoento
owner: fletcher
group: tourney
user::rw-
user:archer:r--
user:bowman:r--
group::rw-
group:judges:r--
class:rw-
other:---
default:user:archer:r--
default:user:bowman:r--
default:group:judges:r--

User’s Guide

4-36

Displaying a File's Contents: The cat, pg, and pr Commands 4

The UNIX system provides three commands for displaying and printing the contents of a
file or files: cat, pg, andpr. Thecat command (short for concatenate) outputs the
contents of the file(s) specified. This output is displayed on your terminal screen unless
you tellcat to direct it to another file or a new command.

Thepg command is useful when you want to read the contents of a long file because it
displays the text of a file in pages a screenful at a time.

Thepr command formats specified files and displays them on your terminal, or directs the
formatted output to a printer (see thelp command in Chapter 8, the “LP Print Service
Tutorial” chapter).

The following sections describe how to use thecat , pg, andpr commands.

Concatenating and Printing the Contents of a File: The cat Command 4

Thecat command displays the contents of a file or files. For example, suppose you are
located in the directoryletters (in the sample file system) and you want to display the
contents of the filejohnson .

Type the command line shown on the screen and you will receive the following output:

Table 4-10. Basic Commands for Using Files

Command Function

cat prints the contents of a specified file on a terminal

pg prints the contents of a specified file on a terminal in chunks
or pages

pr prints a partially formatted version of a specified file on the
terminal

cp makes a duplicate copy of an existing file

mv moves and renames a file

rm removes a file

wc reports the number of lines, words, and characters (bytes) in
a file

chmod changes access permissions for a file (or a directory)

setacl sets the access control lists for a file (or a directory)

Using the File System

4-37

To display the contents of two (or more) files, type the names of the files you want to see
on the command line. For example, to display the contents of the filesjohnson and
sanders , type:

$ cat johnson sanders <RETURN>

The cat command readsjohnson andsanders and displays their contents in that
order on your terminal.

$ cat johnson <RETURN>
March 5, 1994

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company's plans to automate
your business.
Enclosed please find
the material you requested
about AB&C's line of computers
and office automation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

John Howe
$

User’s Guide

4-38

To direct the output of thecat command to another file or to a new command, see the
section that discusses input and output redirection in Chapter 9, the “Shell Tutorial”.

Table 4-11 summarizes the syntax and capabilities of thecat command.

Paging through the Contents of a File: The pg Command 4

The commandpg (short for page) allows you to examine the contents of a file or files,
page by page, on a terminal. Thepg command displays the text of a file in pages (chunks)
followed by a colon prompt (:), a signal that the program is waiting for your instructions.
Possible instructions you can issue include requests for the command to continue
displaying the file's contents a page at a time, and a request that the command search
through the file(s) to locate a specific character pattern. Table 4-12 summarizes some of
the available instructions.

Thepg command is useful when you want to read a long file or a series of files because
the program pauses after displaying each page, allowing time to examine it. The size of
the page displayed depends on the terminal. For example, on a terminal capable of
displaying twenty-four lines, one page is defined as twenty-three lines of text and a line
containing a colon.

If a file is less than twenty-three lines long, its page size will be the number of lines in the
file plus one (for the colon).

$ cat johnson sanders <RETURN>
March 5, 1994

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
.
.

Yours truly,

John Howe

March 5, 1994

Mrs. D.L. Sanders
Sanders Research, Inc.
43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest,
.
.

Sincerely,

John Howe
$

Using the File System

4-39

1. See thecat(1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities.

1. Most commands can be typed with a number preceding them. For example, +1 <RE-
TURN> (display next page), -1 <RETURN> (display previous page), or 1 <RE-
TURN> (display first page of text).

2. See the onlineCommand Reference for a detailed explanation of all availablepg com-
mands.

Table 4-11. Summary of the cat Command

Command Recap

cat - concatenate and print a file's contents

command options arguments

cat available1 filename(s)

Description: The cat command reads the name of each file
specified on the command line and displays its con-
tents.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen; otherwise, the
messagecat: cannot open filename appears
on the screen.

To display the contents of a directory, use thels
command.

Table 4-12. Summary of Commands Used with pg

Command1 Function

h help; display list of availablepg2 commands

q or Q quit pg perusal mode

<RETURN> display next page of text

l display next line of text

d or ^d display additional half page of text

. or ^l redisplay current page of text

f skip next page of text and display following one

n begin displaying next file you specified on command line

p display previous file specified on command line

$ display last page of text in file currently displayed

/ pattern search forward in file for specified character pattern

?pattern search backward in file for specified character pattern

User’s Guide

4-40

To look at the contents of a file withpg, use the following command line format:

pg filename(s)<RETURN>

For example, to display the contents of the fileoutline from the directorydraft in the
sample file system, type:

pg outline <RETURN>

The first page of the file will appear on the screen. Because the file has more lines in it
than can be displayed on one page, a colon appears at the bottom of the screen. This is a
reminder to you that there is more of the file to be seen. When you are ready to read more,
press the<RETURN> key andpg will print the next page of the file.

The following screen summarizes our discussion of thepg command this far.

After you press the<RETURN> key,pg will resume printing the file's contents on the
screen.

Notice the line at the bottom of the screen containing the string(EOF): . This expression
(EOF) means you have reached the end of the file. The colon prompt is a cue for you to
issue another command.

When you have finished examining the file, press the<RETURN> key; a prompt will
appear on your terminal. (Typingq or Q and pressing the<RETURN> key also gives
you a prompt.) Or you can use one of the other available commands, depending on your

$ pg outline <RETURN>
After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

.

.

.
An outline is an effective method of
organizing the material. The outline
is a type of blueprint or skeleton,
a framework for you the builder-writer
of the report; in a sense it is a recipe
: <RETURN>

that contains the names of the
ingredients and the order in which
to use them.

.

.

.
Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.
(EOF):

Using the File System

4-41

needs. In addition, there are a number of options that can be specified on thepg command
line (see thepg(1) page in the onlineCommand Reference).

Proper execution of thepg command depends on specifying the type of terminal you are
using. This is because thepg program was designed to be flexible enough to run on many
different terminals; how it is executed differs from terminal to terminal. By specifying one
type, you are telling this command:

• how many lines to print

• how many columns to print

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line.

To specify a terminal type, assign the code for your terminal to theTERM variable in your
.profile file. (For more information aboutTERM and .profile , see the “Shell
Tutorial” chapter; for instructions on setting theTERM variable, see the “Summary of
Shell Command Language” appendix.)

Table 4-13 summarizes the syntax and capabilities of thepg command.

1. See thepg(1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 4-13. Summary of the pg Command

Command Recap

pg - display a file's contents in chunks or pages

command options arguments

pg available1 filename(s)

Description: Thepg command displays the contents of the spec-
ified file(s) in pages.

Remarks: After displaying a page of text, thepg command
awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit thepg perusal mode. In
addition, a number of options are available. For
example, you can display a section of a file begin-
ning at a specific line or at a line containing a cer-
tain sequence or pattern. You can also opt to go
back and review text that has already been dis-
played.

User’s Guide

4-42

Printing Files: The pr Command 4

Thepr command is used to format and print the contents of a file. It supplies titles and
headings, paginates, and prints a file on your terminal screen in any of various page
lengths and widths.

You have the option of requesting that the command print its output on another device,
such as a line printer (read the discussion of thelp command in Chapter 8, the “LP Print
Service Tutorial”). You can also direct the output ofpr to a different file (see Chapter 9,
the “Shell Tutorial” chapter).

If you do not specify any of the available options, thepr command produces output in a
single column that contains sixty-six lines per page and is preceded by a short heading.

The heading consists of five lines: two blank lines; a line containing the date, time, file
name, and page number; and two more blank lines.

The formatted file is followed by five blank lines. (Complete sets of text formatting tools
are available on UNIX systems equipped with the DOCUMENTER'S WORKBENCH
Software. Check with your system administrator to see if this software is available to you.)

Thepr command is often used together with thelp command to provide a paper copy of
text as it was entered into a file.

You can also use thepr command to format and print the contents of a file on your
terminal. For example, to review the contents of the filejohnson in the sample file
system, type:

$ pr johnson <RETURN>

The following screen gives an example of output from this command.

Using the File System

4-43

The blank lines after the last line in the file represent the remaining lines (all blank in this
case) thatpr adds to the output so each page contains a total of sixty-six lines. If you are
working on a video display terminal, which allows you to view twenty-four lines at a time,
the entire sixty-six lines of the formatted file will be printed rapidly without pause. This
means that the first forty-two lines will roll off the top of your screen, making it
impossible for you to read them unless you have the ability to roll back a screen or two.

If the file you are examining is particularly long, even this ability may not be sufficient to
allow you to read the file. In these cases, type <CTRL><s> to interrupt the flow of
printing on your screen. When you are ready to continue, type <CTRL><q> to resume
printing.

Table 4-14 summarizes the syntax and capabilities of thepr command.

Making a Duplicate Copy of a File: The cp Command 4

When using the UNIX system, you may want to make a copy of a file. For example, you
might want to revise a file while leaving the original version intact. The commandcp
(short for copy) copies the complete contents of one file into another. Thecp command
also allows you to copy one or more files from one directory into another while leaving the
original file or files in place.

$ pr johnson <RETURN>

Mar 5 15:43 1994 johnson Page 1

March 5, 1994

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company's plans to automate
your business.
Enclosed please find
the material you requested
about AB&C's line of computers
and office automation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

John Howe

$

User’s Guide

4-44

To copy the file namedoutline to a file namednew.outline in thedraft directory,
simply typecp outline new.outline and press the<RETURN> key. The system
returns the prompt when the copy is made. To verify the existence of the new file, you can
type ls and press the<RETURN> key. This command lists the names of all files and
directories in the current directory, in this casedraft . The following screen summarizes
these activities.

The UNIX system does not allow you to have two files with the same name in a directory.
In this case, because there was no file callednew.outline when thecp command was
issued, the system created a new file with that name.

1. See thepr page in the onlineCommand Reference for all available options
and an explanation of their capabilities.

Table 4-14. Summary of the pr Command

Command Recap

pr - print formatted contents of a file

command options arguments

pr available1 filename(s)

Description: Thepr command produces a formatted copy of a
file(s) on your terminal screen unless you specify
otherwise. It prints the text of the file(s) on sixty-
six line pages, and places five blank lines at the bot-
tom of each page and a five-line heading at the top
of each page. The heading includes: two blank
lines; a line containing the date, time, file name,
and page number; and two additional blank lines.

Remarks: If a specified file exists, its contents are formatted
and displayed; if not, the messagepr: can't
open filename is printed.

Thepr command is often used with thelp com-
mand to produce a paper copy of a file. It can also
be used to review a file on a video display terminal.
To stop and restart the printing of a file on a termi-
nal, type <CTRL><s> and <CTRL><q> ,
respectively.

$ cp outline new.outline <RETURN>
$ ls <RETURN>
new.outline
outline
table
$

Using the File System

4-45

If a file callednew.outline had already existed, it would have been replaced by a copy
of the fileoutline ; the previous version ofnew.outline would have been deleted.

If you had tried to copy the fileoutline to another file namedoutline in the same
directory, the system would have told you the file names were identical and returned the
prompt to you. If you had then listed the contents of the directory to determine exactly
how many copies ofoutline existed, you would have received the following output on
your screen:

The UNIX system does allow you to have two files with the same name as long as they are
in different directories. For example, the system would let you copy the fileoutline
from thedraft directory to another file namedoutline in theletters directory. If
you were in thedraft directory, you could use any one of four command lines. In the
first two command lines, you specify the name of the new file you are creating by making
a copy.

• cp outline /home/starship/letters/outline <RETURN>
(full pathname specified)

• cp outline ../letters/outline <RETURN> (relative
pathname specified)

Thecp command does not require that you specify the name of the new file. If you do not
include a name for it on the command line,cp gives your new file the same name as the
original one, by default. You could also use either of these command lines:

• cp outline /home/starship/letters <RETURN> (full
pathname specified)

• cp outline ../letters <RETURN> (relative pathname specified)

In any of these four cases,cp will make a copy of theoutline file in the letters
directory and call itoutline , too.

Of course, if you want to give your new file a different name, you must specify it. For
example, to copy the fi leoutline in the draft directory to a fi le named
outline.vers2 in the letters directory, you can use either of the following
command lines:

• cp outline /home/starship/letters/outline.vers2
<RETURN> (full pathname)

• cp outline ../letters/outline.vers2 <RETURN> (relative
pathname)

$ cp outline outline <RETURN>
cp: outline and outline are identical
$ ls <RETURN>
outline
table
$

User’s Guide

4-46

When assigning new names, keep in mind the conventions for naming directories and files
described in“Directory and File Names”in this chapter.

Table 4-15 summarizes the syntax and capabilities of thecp command.

Moving and Renaming a File: The mv Command 4

Themv (short for move) command allows you to rename a file in the same directory or to
move a file from one directory to another. If you move a file to a different directory, the
file can be renamed or it can retain its original name.

To rename a file within one directory, follow this format:

mv file1 file2 <RETURN>

Themv command changes a file's name fromfile1 to file2 and deletesfile1. Remember that
the namesfile1 andfile2 can be any valid names, including pathnames.

For example, if you are in the directorydraft in the sample file system and you would
like to rename the filetable to new.table , simply typemv table new.table and
press the<RETURN> key. If the command executes successfully, you will receive a
prompt. To verify that the filenew.table exists, you can list the contents of the
directory by typingls and pressing the<RETURN> key. The screen shows your input
and the system's output as follows:

Table 4-15. Summary of the cp Command

Command Recap

cp - make a copy of a file

command options arguments

file1 file2

cp available file(s) directory

Description: The cp command allows you to make a copy of
file1 and call itfile2 leavingfile1 intact or to copy
one or more files into a different directory.

Remarks: When you are copyingfile1 to file2 and a file called
file2 already exists, thecp command overwrites the
first version offile2 with a copy offile1 and calls it
file2. The first version offile2 is deleted.

If the arguments to thecp command arefile(s) and
directory, thecp command copies thefile(s) into
directory.

You cannot copy directories with thecp command.

Using the File System

4-47

You can also move a file from one directory to another, keeping the same name or
changing it to a different one. To move the file without changing its name, use the
following command line:

mv file(s) directory <RETURN>

The file and directory names can be any valid names, including pathnames.

For example, suppose you want to move the filetable from the current directory named
draft (whose full pathname is/home/starship/draft) to a file with the same
name in the directoryletters (whose relative pathname fromdraft is ../letters
and whose full pathname is/home/starship/letters), you can use any one of sev-
eral command lines, including the following:

mv table /home/starship/letters <RETURN>
mv table /home/starship/letters/table <RETURN>
mv table ../letters <RETURN>
mv table ../letters/table <RETURN>
mv /home/starship/draft/table /home/starship/letters/table <RETURN>

Now suppose you want to rename the filetable astable2 when moving it to the direc-
tory letters . Use any of these command lines:

mv table /home/starship/letters/table2 <RETURN>
mv table ../letters/table2 <RETURN>
mv /home/starship/draft/table2 /home/starship/letters/table2 <RETURN>

You can verify that the command worked by using thels command to list the contents of
the directory.

Table 4-16 summarizes the syntax and capabilities of themv command

Removing a File: The rm Command 4

When you no longer need a file, you can remove it from your directory by executing the
rm command (short for remove). The basic format for this command is:

rm file(s) <RETURN>

You can remove more than one file at a time by specifying those files you want to delete
on the command line with a space separating each filename:

rm file1 file2 file3 <RETURN>

The system does not save a copy of a file it removes; once you have executed this com-
mand, your file is removed permanently.

$ mv table new.table <RETURN>
$ ls <RETURN>
new.table
outline
$

User’s Guide

4-48

After you have issued therm command, you can verify its successful execution by
running thels command. Becausels lists the files in your directory, you'll immediately
be able to see whether or notrm has executed successfully.

For example, suppose you have a directory that contains two files,outline andtable .
You can remove both files by issuing therm command once. Ifrm is executed
successfully, your directory will be empty. Verify this by running thels command.

$ rm outline table <RETURN>
$ ls
$

The prompt shows thatoutline andtable were removed.

Table 4-17 summarizes the syntax and capabilities of therm command.

Counting Lines, Words, and Characters in a File: The wc Command 4

The commandwc (short for word count) reports the number of lines, words, and
characters there are in the file(s) named on the command line. Character counts are
provided in bytes. If you name more than one file, thewc command counts the number of
lines, words, and characters in each specified file and then totals the counts. In addition,
you can direct thewc command to give you only a line, a word, or a character count by
using the-l , -w, or -c options, respectively.

To determine the number of lines, words, and characters in a file, use the following format
on the command line:

Table 4-16. Summary of the mv Command

Command Recap

mv - move or rename files

command options arguments

file1 file2

mv available file(s) directory

Description: Themv command allows you to change the name
of a file or to move a file(s) into another directory.

Remarks: When you are movingfile1 to file2, if a file called
file2 already exists, themv command overwrites the
first version offile2 with file1 and renames itfile2.
The first version offile2 is deleted. If the arguments
to the command arefile(s) anddirectory, mv moves
file(s) to directory.

Using the File System

4-49

wc file1 <RETURN>

The system responds with a line in the following format:

l w c file1

where

• l represents the number of lines infile1

• w represents the number of words infile1

• c represents the number of characters (bytes) infile1

For example, to count the lines, words, and characters in the filejohnson (located in the
current directory,letters), type the following command line:

$ wc johnson <RETURN>
24 66 406 johnson

$

The system response means that the filejohnson has twenty-four lines, sixty-six words,
and 406 characters.

To count the lines, words, and characters in more than one file, use this format:

wc file1 file2 <RETURN>

The system responds in the following format:

l w c file1
l w c file2
l w c total

Line, word, and character counts forfile1 andfile2 are displayed on separate lines and the
combined counts appear on the last line beside the wordtotal . For example, ask thewc

1. See therm (1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 4-17. Summary of the rm Command

Command Recap

rm - remove a file

command options arguments

rm available1 file(s)

Description: The rm command allows you to remove one or
more files.

Remarks: Files specified as arguments to therm command
are removed permanently.

User’s Guide

4-50

command to count the lines, words, and characters in the filesjohnson andsanders in
the current directory.

$ wc johnson sanders <RETURN>
24 66 406 johnson
28 92 559 sanders
52 158 965 total

$

The first line reports that thejohnson file has twenty-four lines, sixty-six words, and 406
characters. The second line reports twenty-eight lines, ninety-two words, and 559
characters in thesanders file. The last line shows that these two files together have a
total of fifty-two lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate command line for-
mat from the following:

For example, if you use the-l option, the system reports only the number of lines in
sanders .

$ wc -l sanders <RETURN>
28 sanders

$

If the -w or -c option had been specified instead, the command would have reported the
number of words or characters (bytes), respectively, in the file.

Table 4-18 summarizes the syntax and capabilities of thewc command.

See the System Administration for details about setting the user or group ID.) The letterl
indicates that locking will occur when the file is accessed. It does not mean that the file has
been locked.

Changing Existing File Permissions 4

After you have determined what permissions are in effect, you can change them by exe-
cuting thechmod command in the following format:

chmod who+permission file(s)<RETURN>

or

chmod who=permission file(s)<RETURN>

wc -l file1 <RETURN> (line count)

wc -w file1 <RETURN> (word count)

wc -c file1 <RETURN> (character/byte count)

Using the File System

4-51

The following list defines each component of this command line.

NOTE

The chmod command will not work if you type a space(s)
betweenwho, the instruction that gives (+) or denies (-) permis-
sion, and thepermission.

Table 4-18. Summary of the wc Command

Command Recap

wc - count lines, words, and characters (bytes) in a file

command options arguments

wc -l, -w, -c file(s)

Description: wc counts lines, words, and characters in the speci-
fied file(s), keeping a total count of all tallies when
more than one file is specified. Character counts are
provided in bytes.

Options: -l counts the number of lines in the specified
file(s)

-w counts the number of words in the specified
file(s)

-c counts the number of characters (bytes) in the
specified file(s)

Remarks: When a file name is specified in the command line,
it is printed with the count(s) requested.

chmod name of the program

who one of three user groups (u, g, oro)

u = user

g = group

o = others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r , w, andx)

r = read

w= write

x = execute

file(s) file (or directory) name(s) listed; assumed to be branches
from your current directory, unless you use full pathnames

User’s Guide

4-52

The following examples show a few possible ways to use thechmod command. As the
owner ofdisplay , you can read, write, and run this executable file. You can protect the
file against being accidentally changed by denying yourself write (w) permission. To do
this, type the command line:

chmod u -w display <RETURN>

After receiving the prompt, typels -l and press the<RETURN> key to verify that this
permission has been changed, as shown in the following screen.

As you can see, you no longer have permission to write changes into the file. You will not
be able to change this file until you restore write permission for yourself.

Now consider another example. Notice that permission to write into the filedisplay has
been denied to members of your group and other system users, but they do have read
permission. This means they can copy the file into their own directories and then make
changes to it.

To prevent all system users from copying this file, you can deny them read permission by
typing:

chmod go -r display <RETURN>

Theg ando stand for group members and all other system users, respectively, and the-r
denies them permission to read or copy the file. Check the results with thels -l
command.

Setting Directory Permissions 4

You can use thechmod command to grant or deny permission for directories as well as
files. Simply specify a directory name instead of a file name on the command line.

$ chmod u -w display <RETURN>
$ ls -l <RETURN>
total 35
-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

$ chmod go -r display <RETURN>
$ ls -l <RETURN>
total 35
-rwx--x- -x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

Using the File System

4-53

Consider the impact on various system users of changing permissions for directories. For
example, suppose you grant read permission for a directory to yourself (u), members of
your group (g), and other system users (o). Every user who has access to the system will
be able to read the names of the files contained in that directory by running thels -l
command. Similarly, granting write permission allows the designated users to create new
files in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their current
directory) by using thecd command.

There are two methods by which thechmod command can be executed.

• The method described above, in which symbols such asr , w, andx are
used to specify permissions, is called the symbolic method.

• An alternative method is the octal method. Its format requires you to
specify permissions using three octal numbers, ranging from 0 to 7. (The
octal number system is different from the decimal system that we typically
use on a day-to-day basis.)

To learn how to use the octal method, see thechmod(1) entry in the onlineCommand
Reference.

Table 4-19 summarizes the syntax and capabilities of thechmod command.

File Ownership: The chown, id, and groups Commands 4

Several other commands are useful when manipulating files. These include thechown,
id, andgroups commands. If you are the owner of a file, your login name is located in
theowner category. Thechown command allows you, the owner of a file, to change your
owner ID to someone else's ID for that file. For example, if you type:

ls -l display <RETURN>

Table 4-19. Summary of the chmod Command

Command Recap

chmod - change permission modes for files (and directories)

command instruction arguments

chmod who+ - permission filename(s)

directoryname(s)

Description: chmod gives (+) or removes (-) permission to read, write, and exe-
cute files for three categories of system users:user (you),group
(members of your group), andother (all other users able to access
the system on which you are working).

Remarks: The instruction set can be represented in either octal or symbolic
terms.

User’s Guide

4-54

the following information will appear on the screen:

-r-xr-xr-x 1 owner group 9346 Nov 1 08:06 display

In order to change the owner ID from yours to, for example, Sara's, whose login name is
sara, you would type:

chown sara display <RETURN>

If you type:

ls -l display <RETURN>

the message on the screen will read:

-r-xr-xr-x 1 sara group 9346 Nov 1 08:06 display

If you use thechown command and an error message is displayed across the screen, this
would indicate that your system administrator has restricted this option when the system
was initially set up.

If you type:

id <RETURN>

the system will display the user's ID (UID) and your effective group ID (GID).

Depending on the initial setup of the system, you may belong to more than one group. In
order to find out which groups you are a member of type:

groups <RETURN>

A list of all groups to which you have membership will appear on the screen. You have
access to files whose group ID matches one from your supplementary group list.

Advanced File Manipulation: The diff, grep, and sort Commands 4

As you become familiar with these commands, your need for more sophisticated
information processing techniques when working with files may increase. This section
introduces three more commands that begin providing just that.

diff finds differences between two files.

grep searches for a pattern in a file.

sort sorts and merges files.

For additional information about these commands refer to the onlineCommand Reference.

Using the File System

4-55

Identifying Differences between Files: The diff Command 4

Thediff command locates and reports all differences between two files and tells you
how to change the first file so that it is a duplicate of the second. The basic format for the
command is:

diff file1 file2 <RETURN>

If file1 andfile2 are identical, the system returns a prompt to you. If they are not, thediff
command instructs you on how to change the first file so it matches the second usinged
(line editor) commands. (See Chapter 6, the “Line Editor (ed) Tutorial” chapter for details
about the line editor.) The UNIX system flags lines infile1 (to be changed) with the< (less
than) symbol, and lines infile2 (the model text) with the> (greater than) symbol.

For example, suppose you execute thediff command to identify the differences between
the filesjohnson andmcdonough . Themcdonough file contains the same letter that is
in the johnson file, with appropriate changes for a different recipient. Thediff
command will identify those changes as follows:

The first line of output fromdiff is:

3,6c3,6

This means that if you wantjohnson to matchmcdonough , you must change (c) lines
3 through 6 injohnson to lines 3 through 6 inmcdonough . Thediff command then
displays both sets of lines.

If you make these changes (using a text editor such ased or vi), thejohnson file will
be identical to thesanders file. Remember, thediff command identifies differences
between specified files. If you want to make an identical copy of a file, use thecp com-
mand.

Table 4-20 summarizes the syntax and capabilities of thediff command.

Searching a File for a Pattern: The grep Command 4

You can instruct the UNIX system to search through a file for a specific word, phrase, or
group of characters by executing the commandgrep (short forglobally search for a

3,6c3,6
< Mr. Ron Johnson
< Layton Printing
< 52 Hudson Street
< New York, N.Y.

> Mr. J.J. McDonough
> Ubu Press
> 37 Chico Place
> Springfield, N.J.
9c9
< Dear Mr. Johnson:

> Dear Mr. McDonough:

User’s Guide

4-56

r egularexpression andprint). Put simply, a regular expression is any pattern of characters
(be it a word, a phrase, or an equation) that you specify.

The basic format for the command line is:

grep pattern file(s) <RETURN>

For example, to locate any lines that contain the word automation in the filejohnson ,
type:

grep automation johnson <RETURN>

The system responds:

$ grep automation johnson <RETURN>
and office automation software.
$

The output consists of all the lines in the filejohnson that contain the pattern for which
you were searching (automation).

If the pattern contains multiple words or any character that conveys special meaning to the
UNIX system, (such as$, | , * , ?, and so on), the entire pattern must be enclosed in single
quotes. (For an explanation of the special meaning for these and other characters see
Chapter 9, the “Shell Tutorial” chapter.) For example, suppose you want to locate the lines
containing the patternoffice automation . Your command line and the system's
response will read:

$ grep ´office automation´ johnson <RETURN>
and office automation software.

$

1. See thediff(1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities

Table 4-20. Summary of the diff Command

Command Recap
diff - finds differences between two files

command options arguments

diff available1 file1 file2

Description: Thediff command reports what lines are differ-
ent in two files and what you must do to make the
first file identical to the second.

Remarks: Instructions on how to change a file to bring it into
agreement with another file are line editor (ed)
commands:a (append),c (change), andd (delete).
Numbers given witha, c , or d show the lines to be
modified. Also used are the symbols< (showing a
line from the first file) and> (showing a line from
the second file).

Using the File System

4-57

But what if you cannot recall which letter contained a reference to office automation; your
letter to Mr. Johnson or the one to Mrs. Sanders? Type the following command line to find
out:

$ grep ´office automation´ johnson sanders <RETURN>
johnson:and office automation software.

$

The output tells you that the patternoffice automation is found once in the
johnson file.

In addition to thegrep command, the UNIX system provides variations of it called
egrep andfgrep, along with several options that enhance the searching powers of the
command. See thegrep(1), egrep(1), and fgrep(1) pages in the online
Command Reference for further information about these commands.

Table 4-21 summarizes the syntax and capabilities of thegrep command.

Sorting and Merging Files: The sort Command 4

The UNIX system provides an efficient tool calledsort for sorting and merging files.
The format for the command line is:

sort file(s) <RETURN>

This command causes lines in the specified files to be sorted and merged in the following
order.

• Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters.

1. See thegrep (1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 4-21. Summary of the grep Command

Command Recap

grep - searches a file for a pattern

command options arguments

grep available1 pattern file(s)

Description: The grep command searches through specified
file(s) for lines containing a pattern and then prints
the lines on which it finds the pattern. If you spec-
ify more than one file, the name of the file in which
the pattern is found is also reported.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in single
quotes on the command line.

User’s Guide

4-58

• Lines beginning with upper case letters are listed before lines beginning
with lower case letters.

• Lines beginning with symbols such as* , %, or @, are sorted on the basis of
the symbol's ASCII representation.

For example, suppose you have two files,group1 andgroup2 , each containing a list of
names. You want to sort each list alphabetically and then interleave the two lists into one.

First, display the contents of the files by executing thecat command on each.

(Instead of printing these two files individually, you could have requested both files on the
same command line. If you had typedcat group1 group2 and pressed the
<RETURN> key, the output would have been the same.)

Now sort and merge the contents of the two files by executing thesort command. The
output of thesort program will be printed on the terminal screen unless you specify oth-
erwise.

In addition to combining simple lists as in the example, thesort command can rearrange
lines and parts of lines (called fields) according to a number of other specifications you
designate on the command line. The possible specifications are complex and beyond the
scope of this text. Refer to the onlineCommand Reference for a full description of
available options.

Table 4-22 summarizes the syntax and capabilities of thesort command.

$ cat group1 <RETURN>
Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert
$ cat group2 <RETURN>
Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine
$

$ sort group1 group2 <RETURN>
Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert
$

Using the File System

4-59

1. See thesort (1) page in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 4-22. Summary of the sort Command

Command Recap

sort - sorts and merges files

command options arguments

sort available1 file(s)

Description: Thesort command sorts and merges lines from a
file or files you specify and displays its output on
your terminal screen.

Remarks: If no options are specified on the command line,
lines are sorted and merged in the order defined by
the ASCII representations of the characters in the
lines.

User’s Guide

4-60

5
Overview of the Tutorials

Introduction . 5-1
Using the Text Editors . 5-1

Text Editing Tasks . 5-1
Text Editing Buffers . 5-2
Modes of Operation . 5-3
Line Editor . 5-3
Screen Editor . 5-3

Using the Shell. 5-5
Using the Print Services. 5-6
Communicating Electronically . 5-7

User’s Guide

5-1

5
Chapter 5Overview of the Tutorials

5
5
5

Introduction 5

This chapter provides a brief description of the tutorials included in the second part of this
book. These tutorials teach you how to do the following:

• edit text (Chapter 6, the “Line Editor (ed) Tutorial” and Chapter 7, the
“Screen Editor (vi) Tutorial”).

• print text (Chapter 8, “LP Print Service Tutorial”).

• communicate electronically (Chapter 10, the “Electronic Mail Tutorial”,
Chapter 11, the “Remote Services Tutorial”, and Chapter 12, the “Commu-
nication Tutorial”).

Using the Text Editors 5

Using the filesystem is a way of life in the UNIX system environment. The section will
teach you how to create and modify files using a software tool called a text editor. The sec-
tion begins by describing a text editor and explaining how it works. Then it introduces two
types of text editors supported on the UNIX system:

• the line editor,ed

• the screen editor,vi (short for visual editor).

A comparison of the two editors is also included. For detailed information abouted and
vi, see Chapter 6, and Chapter 7, for the tutorial chapters in this book.

Text Editing Tasks 5

Whenever you revise a letter, memo, or report, you must perform one or more of the
following tasks:

• insert new or additional material

• delete unneeded material

• transpose material (sometimes called cutting and pasting)

• prepare a clean, corrected copy.

User’s Guide

5-2

Text editors perform these tasks at your direction, making writing and revising text much
easier and quicker than if done by hand.

The UNIX system text editors, like the UNIX system shell, are interactive programs; they
accept your commands and then perform the requested functions. To the shell, the editors
are executable programs.

A major difference between a text editor and the shell, however, is the set of commands
that each recognizes. All the commands introduced up to this point belong to the set of
shell commands. A text editor has its own distinct set of commands that allow you to
create, move, add, and delete text in files, as well as acquire text from other files.

Text Editing Buffers 5

When you use a text editor to create a new file or modify an existing one, you first ask the
shell to put the editor in control of your computing session. As soon as the editor takes
over, it allocates a temporary work space called the editing buffer. Any information you
enter while editing a file is stored in this editing buffer where you can modify it.

Because the buffer is a temporary work space, any text you enter and any changes you
make to it are also temporary. The buffer and its contents exist only as long as you are
editing.

To save your work, you must tell the text editor to write the contents of the buffer into a
file; the file is then stored in computer memory. If you don't do this, the contents of the
buffer will disappear when you leave the editing program. To prevent this from happening,
the text editors send you a reminder to write your file if you attempt to end an editing ses-
sion without doing so.

NOTE

If you have made a mistake or do not want the edited version, you
can choose to leave the editor without writing the file. When you
do this, you leave the original file intact, but the edited copy
disappears.

Regardless of whether you are creating a new file or updating an existing one, the text in
the buffer is organized into lines. A line of text is simply a series of characters that appears
horizontally across the screen and is ended when you press the <RETURN> key.

Occasionally, files may contain a line of text that is too long to fit on the terminal screen.
Some terminals automatically display the continuation of the line on the next row of the
screen; others do not.

Overview of the Tutorials

5-3

Modes of Operation 5

Text editors are capable of operating in two modes of operation:

• command mode

• text input mode.

When you begin an editing session, you will be placed automatically in command mode.
In this mode you can move around in a file, search for patterns in it, or change existing
text. However, you cannot create text while you are in command mode.

To do this, you must be in text input mode. While you are in text input mode, any
characters you type are placed in the buffer as part of your text file. When you have
finished entering text and want to run editing commands again, you must return to
command mode.

Because a typical editing session involves moving back and forth between these two
modes, you may sometimes forget which mode you are working in. You may try to enter
text while in command mode or to enter a command while in input mode. This is
something even experienced users do from time to time. It will not take long to recognize
your mistake and determine the solution after you've performed the text editor exercises in
Chapter 6, “Line Editor (ed) Tutorial”, and Chapter 7, the “Screen Editor (vi) Tutorial.”

Line Editor 5

The line editor, accessed by theed command, is used for preparing text files. It is called a
line editor because it manipulates text on a line-by-line basis. This means you must
specify, by line number, the line containing the text you want to change. Thened prints
the line on the screen where you can modify it.

This text editor provides commands for changing and printing lines, reading and writing
files, and entering text.

You can invoke the line editor from a shell program; something you cannot do with the
screen editor. (See “Compilation Systems” for information on basic shell programming
techniques.)

The line editor (ed) works well on video display terminals and paper printing terminals. It
can also be used across a slow-speed telephone line. (The visual editor,vi, can be used
only on video display terminals.) Refer to Chapter 6, the “Line Editor (ed) Tutorial” for
instructions, and Appendix C, “Quick Reference to ed Commands” for a summary of line
editor commands.

Screen Editor 5

The screen editor, accessed by thevi command, is a display-oriented, interactive software
tool. It allows you to view the file you are editing a page at a time. This editor works most
efficiently when used on a video display terminal operating at 1200 or a higher baud rate.

User’s Guide

5-4

For the most part, you modify a file (by adding, deleting, or changing text) by positioning
the cursor at the point on the screen where the modification is to be made and then making
the change. The screen editor immediately displays the results of your editing; you can see
the change you made in the context of the surrounding text. Because of this feature, the
screen editor is considered more sophisticated than the line editor.

The screen editor offers a choice of commands. For example, a number of screen editor
commands allow you to move the cursor around a file. Other commands scroll the file up
or down on the screen. Still other commands allow you to change existing text or to create
new text. In addition to its own set of commands, the screen editor can access line editor
commands.

The trade-off for the screen editor's speed, visual appeal, efficiency, and power is the
heavy demand it places on computer processing time. Every time you make a change, no
matter how simple,vi must update the screen. See the Chapter 7,“Screen Editor Tutorial”
later in this book, for instructions, and Appendix D, “Quick Reference to vi Commands”
for a summary of screen editor commands.

Table 5-1 compares the features of the line editor (ed) and the screen editor (vi).

Table 5-1. Comparison of Line and Screen Editors (ed and vi)

Feature Line Editor(ed) Screen Editor(vi)

Recommended Video display or Video display

terminal type paper-printing

Speed Accommodates high- and
low-speed data transmission
lines.

Works best via high-speed data
transmission lines (1200+ baud).

Versatility Can be specified to run from
shell scripts as well as used
during editing sessions.

Must be used interactively during
editing sessions.

Sophistication Changes text quickly. Uses
compara t i ve ly sma l l
amounts of processing time.

Changes text easily. However,
can make heavy demands on
computer resources.

Power Provides a full set of editing
commands. Standard UNIX
system text editor.

Provides its own editing com-
mands and recognizes line editor
commands as well.

Advantages There are fewer commands
you must learn to useed.

vi allows you to see the effects
of your editing in the context of a
page of text, immediately. (When
you use theed editor, making
changes and viewing the results
are separate steps.)

Overview of the Tutorials

5-5

Using the Shell 5

Every time you log in to the UNIX system, you start communicating with the shell, and
you continue to do so until you log off the system. However, while you are using a text
editor, your interaction with the shell is suspended; it resumes as soon as you stop using
the editor.

The shell is much like other programs, except that instead of performing one job, ascat
or ls does, it is central to your interactions with the UNIX system. The primary function
of the shell is to act as a command interpreter between you and the computer system. As
an interpreter, the shell translates your requests into language the computer understands,
calls requested programs into memory, and executes them.

Various methods of using the shell enhance your ability to use system features. Besides
using it to run a single program, you can also use the shell to:

• interpret the abbreviated name of a file or a directory

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to meet your individual needs.

In addition to being the command language interpreter, the shell is a programming
language. For detailed information on how to use the shell as a command interpreter and a
programming language, seeCompilation Systems.

The shell can be used to control your environment. When you log in to the UNIX system,
the shell automatically sets up a computing environment for you. The default environment
set up by the shell includes these variables:

HOME your login directory

LOGNAME your login name

PATH route the shell takes to search for executable files or commands
(typically PATH=:/usr/bin:/usr/usr/bin).

ThePATH variable tells the shell where to look for the executable program invoked by a
command. Therefore it is used every time you issue a command. If you have executable
programs in more than one directory, you will want all of them to be searched by the shell
to make sure every command can be found.

You can use the default environment supplied by your system or you can tailor an
environment to meet your needs. If you choose to modify any part of your environment,
you can use either of two methods to do so. If you want to change a part of your
environment only for the duration of your current computing session, specify your
changes in a command line.

If you want to use a different environment (not the default environment) regularly, you can
specify your changes in a file that will set up the desired environment for you
automatically every time you log in. This file must be called.profile and must be
located in your home directory.

User’s Guide

5-6

The.profile typically performs some or all of the following tasks:

• checks for mail

• sets data parameters, terminal settings, and tab stops

• assigns a character or character string as your login prompt

• assigns the erase and kill functions to keys.

You can define as few or as many tasks as you want in your.profile. You can also
change parts of it at any time. (For instructions, seeCompilation Systems.)

To see whether or not you have a.profile:

1. If you are not already in your home directory, use thecd command to get
there.

2. Examine your.profile by issuing this command:

cat .profile

3. If you have a.profile, its contents will appear on your screen.

If you do not have a.profile you can create one with a text editor, such ased or
vi. (SeeCompilation Systems for instructions.)

Using the Print Services 5

After you have created files with a text editor, you may want to print copies on a printer.
The UNIX system provides a print service for

• printing files

• controlling the appearance of a finished document

• selecting a printer

• monitoring the print process

• enabling and disabling printers.

The print service supports many different types of printers. When you submit a job to a
designated printer, the print service send your print request to a print queue. Your print
request is sent to the printer you designate and will be printed using any print options you
specify.

Chapter 8, “LP Print Service Tutorial” describes the printing processes and options avail-
able to you.

Overview of the Tutorials

5-7

Communicating Electronically 5

As a UNIX system user, you can send messages or transmit information stored in files to
other users who work on your system or another UNIX system. Specifically, you can send
and receive messages, exchange files, and form networks with other UNIX systems, as
long as you're logged in on one UNIX system capable of communicating with others.

This guide introduces you to several communication programs available for exchanging
data with other systems. Chapter 10,“Electronic Mail Tutorial”, Chapter 11,“Remote
Services Tutorial”, and Chapter 12, “Communication Tutorial” describe various tools for
electronic communication and provide exercises so you can practice using them.

User’s Guide

5-8

6
Line Editor (ed) Tutorial

Introduction . 6-1
Using the Line Editor (ed) Tutorial . 6-1
Getting Started with ed . 6-2

Entering ed . 6-2
Creating Text Using ed. 6-3
Displaying Text with ed . 6-4
Deleting a Line of Text with ed . 6-5
Moving Up or Down in a File Using ed . 6-6
Saving the Buffer Contents in a File . 6-6
Leaving ed . 6-7
Getting Started with ed: Exercises . 6-8
Getting Started with ed: Answers for Exercises. 6-9

General Format of ed Commands . 6-10
Line Addressing with ed . 6-11

Numerical Address . 6-11
Symbolic Address of the Current Line. 6-12
Symbolic Address of the Last Line . 6-13
Symbolic Address of the Set of All Lines . 6-13
Symbolic Address of Current Line through the Last Line 6-13
Addresses Relative to the Current Line . 6-14
Character String Address . 6-15
Range of Lines . 6-17
Global Search with ed . 6-18
Line Addressing with ed: Exercises . 6-20
Line Addressing with ed: Answers for Exercise . 6-21

Displaying and Creating Text with ed . 6-22
Displaying Text Alone: The p Command. 6-22
Displaying Text with Line Numbers: The n Command 6-23
Appending Text: The a Command . 6-24
Inserting Text: The i Command . 6-25
Changing Text: The c Command . 6-26
Displaying and Creating Text with ed: Exercises. 6-27
Displaying and Creating Text with ed: Answers for Exercises 6-30

Deleting Text and Undoing Changes with ed . 6-32
 Deleting Lines in Command Mode: The d Command 6-33
Undoing Changes in Command Mode: The u Command 6-34

Substituting Text with ed . 6-35
Substituting Text on the Current Line . 6-36
Substituting Text on One Line . 6-36
Substituting Text on a Range of Lines . 6-37
Substituting Text Globally . 6-38
Substituting Text with ed: Exercises . 6-40
Substituting Text with ed: Answers for Exercises . 6-41

Pattern-Matching Characters in ed . 6-42
Pattern-Matching Characters in ed: Exercises . 6-49
Pattern-Matching Characters in ed: Answers for Exercises 6-50

Moving and Copying Text with ed . 6-52

User’s Guide

Moving Lines of Text: The m Command . 6-52
Copying Lines of Text: The t Command . 6-54
Joining Contiguous Lines: The j Command . 6-55
Writing Lines of Text to a File: The w Command . 6-56
Reading in Files: The r Command . 6-57
Moving and Copying Text with ed: Exercises . 6-58
Moving and Copying Text with ed: Answers for Exercises 6-59

Other Useful ed Commands and Files . 6-60
Getting Help: The h and H Commands. 6-60
Displaying Nonprinting Characters: The l Command . 6-62
Displaying the Current Filename: The f command. 6-62
Escaping to the Shell: The ! Command . 6-64
Recovering from Hangups: The ed.hup File. 6-64
Other Useful ed Commands and Files: Exercises. 6-65
Other Useful ed Commands and Files: Answers for Exercises 6-66

6-1

6
Chapter 6Line Editor (ed) Tutorial

6
6
6

Introduction 6

This chapter is a tutorial on the line editor,ed. ed can be used on any type of terminal.
The examples of command lines and system responses described in this chapter will apply
to your terminal, whether it is a video display terminal or a paper printing terminal. The
ed commands can be typed in at your terminal or they can be used in a shell program.

During editing sessions,ed always points to a single line in the file called the current line.
When you access an existing file,ed makes the last line the current line so you can start
appending text easily. Unless you specify a different number or a range of lines,ed will
perform each command you issue on the current line. In addition to letting you change,
delete, or add text on one or more lines,ed allows you to add text from another file to the
buffer.

During an editing session withed, you are altering the contents of a file in a temporary
buffer where you work until you have finished creating or correcting your text. When you
edit an existing file, a copy of that file is placed in the buffer and your changes are made to
this copy. The changes have no effect on the original file until you instructed, by using
the write command, to move the contents of the buffer into the file.

After you have read this tutorial and tried the examples and exercises, you will know how
to:

• entered (the line editor), create text, write the text to a file, and quited

• address and display particular lines of the file

• delete text

• substitute new text for old text

• use special characters in search and substitution patterns

• move text around in the file.

Using the Line Editor (ed) Tutorial 6

The commands discussed in each section are reviewed at the end of that section. A
summary of alled commands introduced in this chapter is found in Appendix C, “Quick
Reference to ed Commands,”where the commands are listed by topic.

User’s Guide

6-2

At the end of some sections, exercises are given so you can experiment with the
commands. Answers provided for the exercises in this chapter are not the only possible
correct answers. Any method that enables you to perform a task specified in an exercise is
correct, even if it does not match the answer given.

The notation conventions used in this chapter are the same used throughout this guide.
They are described in the “Introduction.”

NOTE

Someed commands, such asG, P, andQ, and the use of the
special pattern matching characters(,) , { , and} , are not
discussed in this tutorial.

These commands are discussed on theed(1) page of the online
Command Reference. Experiment with these commands to see
what tasks they perform.

Getting Started with ed 6

The best way to learned is to log in to the UNIX system and try the examples as you read
this tutorial. Do the exercises; do not be afraid to experiment.

In this section you will learn how to:

• entered

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quit ed.

Entering ed 6

To enter the line editor, typeed and a filename:

ed filename < RETURN>

Choose a name that reflects the contents of the file. If you are creating a new file, the sys-
tem responds with a question mark and the filename:

$ ed new-file <RETURN>
?new-file

Line Editor (ed) Tutorial

6-3

If you are going to edit an existing file,ed responds with the number of bytes in the file:

$ ed old-file <RETURN>
235

Creating Text Using ed 6

The editor receives two types of input, editing commands and text, from your terminal. To
avoid confusing them,ed recognizes two modes of editing work: command mode and text
input mode. When you work in command mode, any characters you type are interpreted
as commands. In input mode, any characters you type are interpreted as text to be added
to a file.

Whenever you entered you are put into command mode. To create text in your file,
change to input mode by typinga (for append) on a line by itself, and pressing the
<RETURN> key:

a <RETURN>

You are now in input mode; any characters you type in this mode will be added to your file
as text. Be sure to typea on a line by itself; if you do not, the editor will not execute your
command.

After you have finished entering text, type a period on a line by itself. This takes you out
of the text input mode and returns you to the command mode. You can then issue othered
commands.

The following example shows how to entered, create text in a new file calledtry-me ,
and quit text input mode with a period.

ed does not give a response to the period; it just waits for a new command. Ifed does not
respond to a command, you may have forgotten to type a period after entering text and
may still be in text input mode.

Type a period and press the<RETURN> key at the beginning of a line to return to
command mode. You can now execute editing commands. For example, if you have added
some unwanted characters or lines to your text, you can delete them once you have
returned to command mode.

$ ed try-me <RETURN>
?try-me
a <RETURN>
This is the first line of text. <RETURN>
This is the second line, <RETURN>
and this is the third line. <RETURN>
. <RETURN>

User’s Guide

6-4

Displaying Text with ed 6

To display a line of a file, typep (for print) on a line by itself. Thep command prints the
current line, that is, the last line on which you worked. Continue with the previous
example. You have just typed a period to exit input mode. Now type thep command to see
the current line.

You can print any line of text by specifying its line number (also known as the address of
the line). The address of the first line is 1; of the second, 2; and so on. For example, to
print the second line in the filetry-me , type:

2p <RETURN>
This is the second line,

You can also use line addresses to print a span of lines by specifying the addresses
(separated by a comma), of the first and last lines of the section you want to see. For exam-
ple, to print the first three lines of a file, type:

1,3p <RETURN>

You can even print the whole file this way. For example, you can display a 20-line file by
typing 1,20p . If you do not know the address of the last line in your file, you can
substitute a$ sign, theed symbol for the address of the last line.

1,$p <RETURN>
This is the first line of text.
This is a second line,
and this is the third line.

If you forget to quit text input mode with a period, you will add text that you do not want.

Try to make this mistake:

1. Add another line of text to yourtry-me file.

2. Use thep command without quitting text input mode.

3. Then quit text input mode and print the entire file.

$ ed try-me <RETURN>
?try-me
a <RETURN>
This is the first line of text. <RETURN>
This is the second line, <RETURN>
and this is the third line. <RETURN>
. <RETURN>
p <RETURN>
and this is the third line.

Line Editor (ed) Tutorial

6-5

What did you get? The next section explains how to delete the unwanted line.

Deleting a Line of Text with ed 6

To delete text, you must be in the command mode ofed . Typingd deletes the current
line; typingd and the line number deletes the specified line. Try this command on the last
example to remove the unwanted line containingp:

1. Display the current line (p command),

2. Delete it (d command),

3. Display the remaining lines in the file (p command). Your screen should
look like this:

ed does not send you any messages to confirm that you have deleted text. The only way
you can verify that thed command has succeeded is by printing the contents of your file
with thep command. To receive verification of your deletion, you can put thed andp
together on one command line. If you repeat the previous example with this command,
your screen should look like this:

p <RETURN>
p
dp <RETURN>
This is the fourth line.

p <RETURN>
and this is the third line.
a <RETURN>
This is the fourth line. <RETURN>
p <RETURN>
. <RETURN>
1,$p <RETURN>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.
p

p <RETURN>
p
d <RETURN>
1,$p <RETURN>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.

User’s Guide

6-6

Moving Up or Down in a File Using ed 6

To display the line below the current line, press the<RETURN> key while in command
mode. If there is no line below the current line,ed responds with a? and continues to treat
the last line of the file as the current line.

To display the line above the current line, press the minus key (-).

The following screen provides examples of how both these commands are used:

Notice that by typing- <RETURN> or <RETURN>, you can display a line of text
without typing thep command. These commands are also line addresses. Whenever you
type a line address and do not follow it with a command,ed assumes you want to see the
line you have specified. Experiment with these commands:

• create some text

• delete a line

• display your file.

Saving the Buffer Contents in a File 6

As discussed earlier, during an editing session, the system holds your text in a temporary
storage area called a buffer. When you have finished editing, you can save your work by
writing it from the temporary buffer to a permanent file in secondary memory.

By writing to a file, you are putting a copy of the contents of the buffer into the file. The
text in the buffer is not disturbed, and you can make further changes to it.

NOTE

You should write the buffer text into your file frequently. If an
interrupt occurs (such as an accidental loss of power to your
terminal), you may lose the material in the buffer, but you will not
lose the copy written to your file.

p <RETURN>
This is the fourth line.
- <RETURN>
and this is the third line.
- <RETURN>
This is the second line,
- <RETURN>
This is the first line of text. <RETURN>
This is the second line, <RETURN>
and this is the third line.

Line Editor (ed) Tutorial

6-7

To write your text to a file, enter thew command. You do not have to specify a filename;
just typew and press the<RETURN> key. If you have just created new text,ed creates a
file for it with the name you specified when you entered the editor. If you have edited an
existing file, thew command writes the contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on thew command
line. Be careful not to use the name of a file that already exists unless you want to replace
its contents with the contents of the current buffer.ed will not warn you about an existing
file; it will simply overwrite that file with your buffer contents.

For example, if you decide you would prefer thetry-me file to be calledstuff , you can
rename it:

w stuff <RETURN>
110

Notice the last line of the screen. This is the number of characters in your text. When the
editor reports the number of characters in this way, the write command has succeeded.

Leaving ed 6

When you have completed editingtry-me , write it from the buffer into a file with thew
command. Then leave the editor and return to the shell by typingq (for quit).

w <RETURN>
110
q <RETURN>
$

The system responds with a shell prompt. At this point the editing buffer is discarded. If
you have not executed the write command, your text in the buffer has also vanished. If you
have not made any changes to the text during your editing session, no harm is done. How-
ever, if you have made changes, you can lose your work in this way. Therefore, if you type
q after changing the file without writing it,ed warns you with a?. You then have a chance
to write and quit.

If, instead of writing, you typeq a second time,ed assumes you do not want to write the
contents of the buffer to your file and returns you to the shell. Your file is left unchanged
and the contents of the buffer are wiped out.

You now know the basic commands needed to create and edit a file usinged.

Table 6-1 summarizes these commands.

q <RETURN>
?
w <RETURN>
110
q <RETURN>
$

User’s Guide

6-8

Getting Started with ed: Exercises 6

Exercise 1-1:

1. Entered with a file namedjunk .

2. Create a line of text containingHello World.

3. Write it to the file.

4. Quited.

5. Useed to create a file calledstuff .

6. Create a line of text containing two words,Good-bye world.

7. Write this text to the file.

8. Quited.

Exercise 1-2:

1. Entered again with the file namedjunk . What was the program
response? Was the character count for it the same as the character count
reported by thew command in Exercise 1-1?

2. Display the contents of the file. Is that your filejunk ?

3. How can you return to the shell? Tryq without writing the file. Why do
you think the editor allowed you to quit without writing to the buffer?

Exercise 1-3:

1. Entered with the filejunk .

Table 6-1. Summary of ed Editor Commands

Command Function

ed file Entered to edit file.

a Append text after the current line.

. Quit text input mode and return toed command mode.

p Print text on the terminal screen.

d Delete text.

<RETURN> Display the next line in the buffer (similar to a carriage return).

- Display the previous line in the buffer.

w Write the contents of the buffer to the file.

q Quit ed and return to the shell.

Line Editor (ed) Tutorial

6-9

2. Add a line:

Wendy's horse came through the window.

Because you did not specify a line address, where do you think the line was added to
the buffer?

3. Display the contents of the buffer.

4. Try quitting the buffer without writing to the file.

5. Try writing the buffer to a different file calledstuff . Notice thated does
not warn you that a file calledstuff already exists. You have erased the
contents ofstuff and replaced them with new text.

6. Now typeq to quit. Notice thated does not give the? warning, even
though you typedq without writing the changes tojunk . The reason for
this is that once you write the buffer to a file—any file—ed no longer con-
siders the buffer modified.

Getting Started with ed: Answers for Exercises 6

Answers for Exercise 1-1:

$ ed junk <RETURN>
?junk
a <RETURN>
Hello world. <RETURN>
. <RETURN>
w <RETURN>
13
q <RETURN>
$

$ ed stuff <RETURN>
?stuff
a <RETURN>
Goodbye world. <RETURN>
. <RETURN>
w <RETURN>
15
q <RETURN>
$

User’s Guide

6-10

Answers for Exercise 1-2:

The system did not respond with the warning question mark because you did not make any
changes to the buffer.

Answers for Exercise 1-3:

General Format of ed Commands 6

ed commands have a simple and regular format:

[address1[,address2]]command[argument]<RETURN>

The brackets aroundaddress1, address2, andargument show that these are optional. The
brackets are not part of the command line.

address1,address2 The addresses give the position of lines in the buffer.Address1
throughaddress2 gives you a range of lines that will be affected
by thecommand. If address2 is omitted, the command will affect
only the line specified byaddress1.

command The command is one character and tells the editor what task to
perform.

argument Thearguments to acommand are those parts of the text that will
be modified, or a filename, or another line address.

$ ed junk <RETURN>
13
1,$p <RETURN>
Hello world.
q <RETURN>
$

$ ed junk <RETURN>
13
a <RETURN>
Wendy's horse came through the window. <RETURN>
. <RETURN>
1,$p <RETURN>
Hello world.
Wendy's horse came through the window.
q <RETURN>
?
w stuff <RETURN>
52
q <RETURN>
$

Line Editor (ed) Tutorial

6-11

This format will become clearer to you when you begin to experiment with theed
commands.

Line Addressing with ed 6

A line address is a character or group of characters that identifies a line of text. Beforeed
can execute commands that add, delete, move, or change text, it must know the line
address of the affected text. Type the line address before the command:

[address1[, address2]] command<RETURN>

Both address1 andaddress2 are optional. Specifyaddress1 alone to request action on a
single line of text; specify bothaddress1 andaddress2 to request a span of lines. If you do
not specify anyaddress, ed assumes that the line address is the current line.

The most common ways to specify a line address ined are:

• by entering line numbers (assuming that the lines of the files are
consecutively numbered from 1 ton, beginning with the first line of the
file)

• by entering special symbols for the current line, last line, or a span of lines

• by adding or subtracting lines from the current line

• by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all lines containing
a specified character string. (A character string is a set of successive characters, such as a
word.)

Numerical Address 6

ed gives a numerical address to each line in the buffer. The first line of the buffer is 1, the
second line is 2, and so on, for each line in the buffer. Any line can be accessed byed with
its line address number. To see how line numbers address a line, entered with the file
try-me and type a number.

User’s Guide

6-12

Remember thatp is the default command for a line address specified without a command.
Because you gave a line address,ed assumes you want that line displayed on your termi-
nal.

Numerical line addresses frequently change in the course of an editing session. Later in
this chapter you will create lines, delete lines, or move lines to different positions. This
will change the line address numbers of some lines.

The number of a specific line is always the current position of that line in the editing
buffer. For example, if you add five lines of text between lines 5 and 6, line 6 becomes line
11. If you delete line 5, line 6 becomes line 5.

Symbolic Address of the Current Line 6

The current line is the line most recently acted on by anyed command. If you have just
entereded with an existing file, the current line is the last line of the buffer. The symbol
for the address of the current line is a period. Therefore you can display the current line by
typing a period (.) and pressing the<RETURN> key.

Use this command in the filetry-me :

$ ed try-me <RETURN>
110

. <RETURN>
This is the fourth line.

The. is the address. Because a command is not specified after the period,ed executes the
default commandp and displays the line found at this address.

To get the line number of the current line, type the following command:

.= <RETURN>

ed responds with the line number. For example, in thetry-me file, the current line is 4.

. <RETURN>
This is the fourth line.

.= <RETURN>
4

$ ed try-me <RETURN>
110
1 <RETURN>
This is the first line of text.
3 <RETURN>
and this is the third line.

Line Editor (ed) Tutorial

6-13

Symbolic Address of the Last Line 6

The symbolic address for the last line of a file is the$ sign. To verify that the$ sign
accesses the last line, access thetry-me file with ed and specify this address on a line by
itself. (Keep in mind that when you first access a file, your current line is always the last
line of the file.)

Remember that the$ address withined is not the same as the$ prompt from the shell.

Symbolic Address of the Set of All Lines 6

When used as an address, a comma (,) refers to all the lines of a file from the first through
the last line. It is an abbreviated form of the string mentioned earlier that represents all
lines in a file,1,$. Use this shortcut to print the contents oftry-me :

Symbolic Address of Current Line through the Last Line 6

The semi-colon (;) represents a set of lines beginning with the current line and ending
with the last line of a file. It is equivalent to the symbolic address.,$. Use it with the file
try-me :

$ ed try-me <RETURN>
110
. <RETURN>
This is the fourth line.
$ <RETURN>
This is the fourth line.

,p <RETURN>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.

User’s Guide

6-14

Addresses Relative to the Current Line 6

You may often want to address lines in relation to the current line. You can do this by
adding or subtracting a number of lines from the current line with a plus (+) or a minus (-)
sign. An address derived in this way is called a relative address. To experiment with
relative line addresses, add several more lines to your filetry-me , as shown in the
following screen. Also, write the buffer contents to the file so your additions will be saved:

Now try adding and subtracting line numbers from the current line.

What happens if you ask for a line address that is greater than the last line, or if you try to
subtract a number greater than the current line number?

2p <RETURN>
This is the second line,
;p <RETURN>
This is the second line,
and this is the third line.
This is the fourth line.

$ ed try-me <RETURN>
110
. <RETURN>
This is the fourth line.
a <RETURN>
five <RETURN>
six <RETURN>
seven <RETURN>
eight <RETURN>
nine <RETURN>
ten <RETURN>
. <RETURN>
w <RETURN>
140

4 <RETURN>
This is the fourth line.
+3 <RETURN>
seven
-5 <RETURN>
This is a second line,

Line Editor (ed) Tutorial

6-15

Notice that the current line remains at line 5 of the buffer. The current line changes only if
you giveed a correct address. The? response indicates an error. To get a help message
that describes the error, see the instructions in“Other Useful ed Commands and Files”at
the end of this chapter.

Character String Address 6

You can search forward or backward in the file for a line containing a particular character
string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they telled where a string starts and
ends. The most common delimiter is a/ (slash), used in the following format:

/ pattern

When you specify a pattern preceded by a/ , ed begins at the current line and searches
forward (that is, through subsequent lines in the buffer) for the next line containing the
pattern. When the search reaches the last line of the buffer,ed wraps around to the
beginning of the file and continues its search from line 1.

The following rectangle represents the editing buffer. The path of the arrows shows the
search initiated by a/ :

5 <RETURN>
five
-6 <RETURN>
?
.= <RETURN>
5
+7 <RETURN>
?

User’s Guide

6-16

Another useful delimiter is?. If you specify a pattern preceded by a? (?pattern), ed
begins at the current line and searches backward (up through previous lines in the buffer)
for the next line containing the pattern. If the search reaches the first line of the file, it
wraps around and continues searching upward from the last line of the file.

The following rectangle represents the editing buffer. The path of the arrows shows the
search initiated by a?.

Experiment with these two methods of requesting address searches on the filetry-me .
What happens ifed does not find the specified character string?

first line

current line

last line

.

.

.

.

first line

current line

last line

.

.

.

.

Line Editor (ed) Tutorial

6-17

In this example,ed found the specified stringsfirst andfourth . Then, because no
command was given with the address, it executed thep command by default, displaying
the lines it had found. Whened cannot find a specified string (such asjunk), it responds
with a?.

You can also use the/ (slash) to search for multiple occurrences of a pattern without
typing it more than once. First, specify the pattern by typing/ pattern, as usual. Aftered
prints the first occurrence, it waits for another command. Type/ and press the
<RETURN> key;ed will continue to search forward through the file for the last pattern
specified. Use this command by searching for the wordline in the filetry-me :

Notice that aftered has found all occurrences of the pattern between the line where you
requested a search and the end of the file, it wraps around to the beginning of the file and
continues searching.

Range of Lines 6

There are two ways to request a group of lines. You can specify a range of lines, such as
address1 throughaddress2, or you can specify a global search for all lines containing a
specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the first and last
lines of the range, separated by a comma. Place this address before the command. For
example, if you want to display lines 2 through 7 of the editing buffer, give2 asaddress1
and7 asaddress2 in the following format:

2,7p <RETURN>

$ ed try-me <RETURN>
140
. <RETURN>
ten
?first <RETURN>
This is the first line of text.
/fourth <RETURN>
This is the fourth line.
/junk <RETURN>
?

. <RETURN>
This is the first line of text.
/line <RETURN>
This is the second line,
/ <RETURN>
and this is the third line.
/ <RETURN>
This is the fourth line.
/ <RETURN>
This is the first line of text.

User’s Guide

6-18

Use this method on the filetry-me :

Did you try typing2,7 without thep? What happened? If you do not add thep command,
ed prints onlyaddress2, the last line of the range of addresses.

You can also use relative line addresses to request a range of lines. Be sure thataddress1
precedesaddress2 in the buffer. Relative addresses are calculated from the current line, as
the following example shows:

Global Search with ed 6

Two commands do not follow the general format ofed commands:g andv. These are
global search commands that specify addresses with a character string (pattern). Theg
command searches for all lines containing the stringpattern and performs the command
on those lines. Thev command searches for all lines that do not containpattern and
performs the command on those lines.

The general format for these commands is:

g/ pattern/ command<RETURN>
v/ pattern/ command<RETURN>

Try these commands by using them to search for the wordline in try-me :

2,7p <RETURN>
This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

4 <RETURN>
This is the fourth line
-2,+3p <RETURN>
This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

Line Editor (ed) Tutorial

6-19

Notice the function of thev command: it finds all the lines that do not contain the word
specified in the command line (line).

Once again, the default command for the lines addressed byg or v is p; you do not have to
include ap as the last delimiter on your command line.

However, if you are giving line addresses to be used by othered commands, you must
include beginning and ending delimiters. You can use any of the methods discussed in this
section to specify line addresses fored commands. Table 6-2 summarizes the symbols
and commands available for addressing lines.

Table 6-2. Summary of ed Line Addressing

Address Description

n . . . the number of a line in the buffer

. the current line (the line most recently acted on by aned
command)

.= the command used to request the line number of the current line

$ the last line of the file

, the set of lines from line 1 through the last line

; the set of lines from the current line through the last line

g/line/p <RETURN>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

v/line/p <RETURN>
five
six
seven
eight
nine
ten

g/line <RETURN>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

User’s Guide

6-20

Line Addressing with ed: Exercises 6

Exercise 2-1:

1. Create a file calledtowns with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost $$ in
Las Vegas

2. Display line 3.

3. If you specify a range of lines with the relative address-2,+3p , what lines
are displayed?

4. What is the current line number? Display the current line.

5. What does the last line say?

6. What line is displayed by the following request for a search?

?town <RETURN>

After ed responds, type this command alone on a line:

? <RETURN>

What happened?

7. Search for all lines that contain the patternin . Then search for all lines that
do not contain the patternin .

+ n the line that is locatedn lines after the current line

- n the line that is locatedn lines before the current line

/ abc the command used to search forward in the buffer for the first
line that contains the patternabc

?abc the command used to search backward in the buffer for the first
line that contains the pattern abc

g/ abc the set of all lines that contain the patternabc

v/ abc the set of all lines that do not contain the patternabc

Table 6-2. Summary of ed Line Addressing (Cont.)

Address Description

Line Editor (ed) Tutorial

6-21

Line Addressing with ed: Answers for Exercise 6

Answers for Exercise 2-1:

$ ed towns <RETURN>
?towns
a <RETURN>
My kind of town is <RETURN>
Chicago <RETURN>
Like being no where at all in <RETURN>
Toledo <RETURN>
I lost those little town blues in <RETURN>
New York <RETURN><RETURN>
I lost my heart in <RETURN>
San Francisco <RETURN>
I lost $$ in <RETURN>
Las Vegas <RETURN>
. <RETURN>
w <RETURN>
163

3 <RETURN>
Like being no where at all in

-2,+3p <RETURN>
My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York

.= <RETURN>
6
6 <RETURN>
New York

$ <RETURN>
Las Vegas

User’s Guide

6-22

Displaying and Creating Text with ed 6

The followinged commands display lines of text in the editing buffer:

• p

• n

ed also has three basic commands for creating new lines of text:

• a

• i

• c

Displaying Text Alone: The p Command 6

You have already used thep command in several examples. You are probably now famil-
iar with its general format:

[address1, address2]p <RETURN>

p does not take arguments. However, it can be combined with a substitution command
line. This will be discussed later in this chapter.

?town <RETURN>
I lost those little town blues in
? <RETURN>
My kind of town is

g/in <RETURN>
My kind of town is
Like being no where at all in
I lost those little town blues in
I lost my heart in
I lost $$ in

v/in <RETURN>
Chicago
Toledo
New York
San Francisco
Las Vegas

Line Editor (ed) Tutorial

6-23

Experiment with the line addresses shown in Table 6-3 on a file in your home directory.
Try thep command with each address and see ifed responds as described in the figure.

Displaying Text with Line Numbers: The n Command 6

Then command displays text and precedes each line with its numerical line address. It is
helpful when you are deleting, creating, or changing lines. The general command line for-
mat forn is the same as that forp.

[address1, address2]n <RETURN>

Like p, n does not take arguments, but it can be combined with the substitute command.

Usen on thetry-me file:

Table 6-3. Sample Addresses for Displaying Text

Specify This
Address

Check for This Response

1,$p
<RETURN>

ed should display the entire file on your terminal.

-5p
<RETURN>

ed should move backward five lines from the current line
and display the line found there.

+2p
<RETURN>

ed should move forward two lines from the current line and
display the line found there.

1,/ x/p
<RETURN>

ed should display the set of lines from line 1 through the
first line after the current line that contains the characterx. It
is important to enclose the letterx between slashes soed can
distinguish between the search pattern address (x) and the
ed command (p).

$ ed try-me <RETURN>
140
1,$n <RETURN>
1 This is the first line of text.
2 This is the second line,
3 and this is the third line.
4 This is the fourth line.
5 five
6 six
7 seven
8 eight
9 nine
10 ten

User’s Guide

6-24

Appending Text: The a Command 6

The append command,a, allows you to add text after the current line or a specified
address in the file. You have already used this command earlier in this tutorial. The general
format for the append command line is:

[address1]a <RETURN>

Specifying an address is optional. The default value ofaddress1 is the current line.

In previous exercises, you used this command with the default address. Now try using
different line numbers foraddress1. In the following example, a new file callednew-
file is created. In the first append command line, the default address is the current line.
In the second append command line, line 1 is specified asaddress1. The lines are
displayed withn so you can see their numerical line addresses. Remember, the append
mode is ended by typing a period (.) on a line by itself.

Notice that after you append the two new lines, the line that was originally line 2 (of
text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text by combining
the append command with symbolic addresses. The following three command lines in
Table 6-4 allow you to move through and add to the text quickly in this way.

Table 6-4. Append Commands

.a <RETURN> Append text after the current line.

$a <RETURN> Append text after the last line of the file.

0a <RETURN> Append text before the first line of the file

(at a symbolic address called line 0),

$ ed new-file <RETURN>
?new-file
a <RETURN>
Create some lines <RETURN>
of text in <RETURN>
this file. <RETURN>
. <RETURN>
1,$n <RETURN>
1 Create some lines
2 of text in
3 this file.
1a <RETURN>
This will be line 2 <RETURN>
This will be line 3 <RETURN>
. <RETURN>
1,$n <RETURN>
1 Create some lines
2 This will be line 2
3 This will be line 3
4 of text in
5 this file.

Line Editor (ed) Tutorial

6-25

To use these addresses, create a one-line file calledlines and type the examples shown
in the following screens. (The examples appear in separate screens for easy reference
only; it is not necessary to access thelines file three times to try each append symbol.
You can accesslines once and try all three consecutively.)

Because the append command creates text after a specified address, the last example refers
to the line before line 1 as the line after line 0. To avoid such ambiguous references, use
another command provided by the editor: the insert command,i .

Inserting Text: The i Command 6

The insert command,i , allows you to add text before a specified line in the editing buffer.
The general command line format fori is the same as that fora.

[address1]i <RETURN>

$ ed lines <RETURN>
?lines
a <RETURN>
This is the current line. <RETURN>
. <RETURN>
p <RETURN>
This is the current line.
.a <RETURN>
This line is after the current line. <RETURN>
. <RETURN>
-1,.p <RETURN>
This is the current line.
This line is after the current line.

$a <RETURN>
This is the last line now. <RETURN>
. <RETURN>
$ <RETURN>
This is the last line now.

0a <RETURN>
This is the first line now. <RETURN>
This is the second line now. <RETURN>
The line numbers change <RETURN>
as lines are added. <RETURN>
. <RETURN>
1,4n <RETURN>
1 This is the first line now.
2 This is the second line now.
3 The line numbers change
4 as lines are added.

User’s Guide

6-26

As with the append command, you can insert one or more lines of text. To quit input
mode, you must type a period (.) alone on a line.

Create a file calledinsert in which you can try the insert command (i):

Now insert one line of text above line 2 and another above line 1. Use then command to
display all the lines in the buffer:

Experiment with the insert command by combining it with symbolic line addresses, as
follows:

.i <RETURN>
or
$i <RETURN>

Changing Text: The c Command 6

The change text command,c , erases all specified lines and allows you to create one or
more lines of text in their place. Becausec can erase a range of lines, the general format
for the command line includes two addresses.

$ ed insert <RETURN>
?insert
a <RETURN>
Line 1 <RETURN>
Line 2 <RETURN>
Line 3 <RETURN>
Line 4 <RETURN>
. <RETURN>
w <RETURN>
28

2i <RETURN>
This is the new line 2. <RETURN>
. <RETURN>
1,$n <RETURN>
1 Line 1
2 This is the new line 2.
3 Line 2
4 Line 3
5 Line 4
1i <RETURN>
This is the beginning. <RETURN>
. <RETURN>
1,$n <RETURN>
1 This is the beginning.
2 Line 1
3 This is the new line 2.
4 Line 2
5 Line 3
6 Line 4

Line Editor (ed) Tutorial

6-27

[address1, address2]c <RETURN>

The change command puts you in the text input mode. To leave the input mode, type a
period alone on a line.

Address1 is the first line andaddress2 is the last line of the range of lines to be replaced by
new text. To erase one line of text, specify onlyaddress1. If you do not specify an address,
ed assumes the current line is the line to be changed.

Now create a file calledchange in which you can try this command. After entering the
text shown in the screen, change lines 1 through 4 by typing1,4c :

Now experiment withc and try to change the current line:

If you are not sure whether you have left the text input mode, it is a good idea to type
another period. If the current line is displayed, you know you are in the command mode of
ed.

Table 6-5 summarizes theed commands for creating text.

Displaying and Creating Text with ed: Exercises 6

Exercise 3-1: Create a new file calledex3 . Instead of using the append command to create
new text in the empty buffer, try the insert command.

1,5n <RETURN>
1 line 1
2 line 2
3 line 3
4 line 4
5 line 5
1,4c <RETURN>
Change line 1 <RETURN>
and lines 2 through 4 <RETURN>
. <RETURN>
1,$n <RETURN>
1 change line 1
2 and lines 2 through 4
3 line 5

. <RETURN>
line 5
c <RETURN>
This is the new line 5. <RETURN>
. <RETURN>
. <RETURN>
This is the new line 5.

User’s Guide

6-28

Table 6-5. Summary of ed Commands for Displaying and Creating Text

Command Function

p Display specified lines of text in the editing buffer on the
terminal screen.

n Display specified lines of text in the editing buffer with their
numerical line addresses on the terminal screen.

a Append text after the specified line in the buffer.

i Insert text before the specified line in the buffer.

c Change the text on the specified line(s) to new text.

. Quit text input mode and return toed command mode.

Line Editor (ed) Tutorial

6-29

Exercise 3-2

1. Entered with the filetowns . What is the current line?

2. Insert above the third line:

Illinois <RETURN>

3. Insert above the current line:

or <RETURN>
Naperville <RETURN>

4. Insert before the last line:

hotels in <RETURN>

5. Display the text in the buffer preceded by line numbers.

Exercise 3-3:

1. In the filetowns , display lines 1 through 5 and replace lines 2 through 5
with:

London <RETURN>

2. Display lines 1 through 3.

Exercise 3-4:

1. After you have completed exercise 3-3, what is the current line?

2. Find the line of text containing:

Toledo

3. Replace

Toledo

with

Peoria

Exercise 3-5:

1. Display the current line.

2. With one command line search for

New York

and replace it with

Iron City

User’s Guide

6-30

Displaying and Creating Text with ed: Answers for Exercises 6

Answers for Exercise 3-1:

The? after thei means there is an error in the command. There is no current line before
where text can be inserted.

$ ed ex3 <RETURN>
?ex3
i <RETURN>
?
q <RETURN>

Line Editor (ed) Tutorial

6-31

Answers for Exercise 3-2:

$ ed towns <RETURN>
163
.n <RETURN>
10 Las Vegas
3i <RETURN>
Illinois <RETURN>
. <RETURN>
.i <RETURN>
or <RETURN>
Naperville <RETURN>
. <RETURN>
$i <RETURN>
hotels in <RETURN>
. <RETURN>
1,$n <RETURN>
1 my kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
6 Like being no where at all in
7 Toledo
8 I lost those little town blues in
9 New York
10 I lost my heart in
11 San Francisco
12 I lost $$ in
13 hotels in
14 Las Vegas

User’s Guide

6-32

Answers for Exercise 3-3:

Answers for Exercise 3-4:

Answers for Exercise 3-5:

Your search string need not be the entire word or line. It only needs to be unique.

Deleting Text and Undoing Changes with ed 6

This section discusses commands for deleting text and undoing changes ined. You may
use them only when you are working in command mode. The commandd deletes lines
andu undoes the changes made by the last command.

1,5n <RETURN>
1 My kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
2,5c <RETURN>
London <RETURN>
. <RETURN>
1,3n <RETURN>
1 My kind of town is
2 London
3 Like being nowhere at all in

. <RETURN>
Like being nowhere at all in
/Tol <RETURN>
Toledo
c <RETURN>
Peoria <RETURN>
. <RETURN>
. <RETURN>
Peoria

. <RETURN>
/New Y/c <RETURN>
Iron City <RETURN>
. <RETURN>
. <RETURN>
Iron City

Line Editor (ed) Tutorial

6-33

 Deleting Lines in Command Mode: The d Command 6

You have already deleted lines of text with the delete command (d) earlier in this tutorial.

The general format for thed command line is:

[address1, address2]d <RETURN>

You can delete a range of lines (address1 throughaddress2) or you can delete one line only
(address1). If no address is specified,ed deletes the current line.

The next example displays lines 1 through 5 and then deletes lines 2 through 4:

How can you delete only the last line of a file? Using a symbolic line address makes this
easy:

$d <RETURN>

How can you delete the current line? Because one of the most common errors ined is
forgetting to type a period to leave the text input mode, unwanted text may be added to the
buffer. In the next example, a line containing a print command (1,$p) is accidentally
added to the text before the user leaves input mode. Because this line was the last one
added to the text, it becomes the current line. The symbolic address. is used to delete it.

Before experimenting with the delete command, you may first want to learn about the
undo command,u.

1,5n <RETURN>
1 1 horse
2 2 chickens
3 3 ham tacos
4 4 cans of mustard
5 5 bails of hay
2,4d <RETURN>
1,$n <RETURN>
1 1 horse
2 5 bails of hay

a <RETURN>
Last line of text <RETURN>
1,$p <RETURN>
. <RETURN>
p <RETURN>
1,$p
.d <RETURN>
p <RETURN>
Last line of text.

User’s Guide

6-34

Undoing Changes in Command Mode: The u Command 6

The commandu (short for undo) nullifies the last command and restores any text changed
or deleted by that command. It takes no addresses or arguments. The format is:

u <RETURN>

One purpose for which theu command is useful is to restore text you have mistakenly
deleted. If you delete all the lines in a file and then typep, ed responds with a? because
no more lines are in the file. Use theu command to restore them.

Now experiment withu; use it to undo the append command.

NOTE

u cannot be used to undo the write command (w) or the quit
command (q). However,u can undo an undo command (u).

Table 6-6 summarizes theed commands and keys used to delete text ined.

1,$p <RETURN>
This is the first line.
This is the middle line.
This is the last line.
1,$d <RETURN>
p <RETURN>
?
u <RETURN>
p <RETURN>
This is the last line.

. <RETURN>
This is the only line of text
a <RETURN>
Add this line <RETURN>
. <RETURN>
1,$p <RETURN>
This is the only line of text
Add this line
u <RETURN>
1,$p <RETURN>
This is the only line of text

Line Editor (ed) Tutorial

6-35

Substituting Text with ed 6

You can modify your text with the substitute command. This command replaces the first
occurrence of a string of characters with new text. The general command line format is

[address1, address2]s/ old_text/ new_text/[command] <RETURN>

Each component of the command line is described below.

address1,address2 The range of lines being addressed bys . The address can be one
line (address1), a range of lines (address1 throughaddress2), or a
global search address. If no address is given,ed makes the substi-
tution on the current line.

s The substitute command.

/old_text The argument specifying the text to be replaced is usually
delimited by slashes, but can be delimited by other characters
such as a? or a period. It consists of the words or characters to be
replaced. By default, if an addressed line contains more than one
occurrence ofold_text, only the first occurrence on that line is
replaced.

/new_text The argument specifying the text to replaceold_text. It is
delimited by slashes or by the same delimiters used to specify the
old_text. It consists of the words or characters that are to replace
theold_text.

/command Any one of the following four commands:

g Change every occurrence ofold_text on each specified line.

l Display the last line of substituted text, including nonprinting
characters. (See the last section of this chapter,“Other Useful ed
Commands and Files.”)”

n Display the last line of the substituted text preceded by its numerical
line address.

p Display the last line of substituted text.

Table 6-6. Summary of ed Commands for Deleting Text

Command Function

d Delete one or more lines of text.

u Undo the previous command.

User’s Guide

6-36

Substituting Text on the Current Line 6

The simplest example of the substitute command is making a change to the current line.
You do not have to give a line address for the current line.

s/ old_text/ new_text/ <RETURN>

The next example contains a typing error. While the line that contains it is still the current
line, you make a substitution to correct it. The old text is theai of airor and the new
text iser .

ed gives no response to the substitute command. To verify that the command has
succeeded in this case, you either have to display the line withp or n, or includep or n as
part of the substitute command line. In the following example,n is used to verify that the
word file has been substituted for the wordtoad .

However,ed allows you a shortcut; it prints the results of the command automatically, if
you omit the last delimiter after thenew_text argument:

Substituting Text on One Line 6

To substitute text on a line that is not the current line, include an address in the command
line, as follows:

[address1]s/ old_text/ new_text<RETURN>

a <RETURN>
In the beginning, I made an airor. <RETURN>
. <RETURN>
.p <RETURN>
In the beginning, I made an airor.
s/ai/er/ <RETURN>

.p <RETURN>
This is a test toad
s/toad/file/n <RETURN>
1 This is a test file

.p <RETURN>
This is a test file
s/file/frog <RETURN>
This is a test frog

Line Editor (ed) Tutorial

6-37

For example, in the following screen the command line includes an address for the line to
be changed (line 1) because the current line is line 3:

As you can see,ed printed the new line automatically after the change was made, because
the last delimiter was omitted.

Substituting Text on a Range of Lines 6

You can make a substitution on a range of lines by specifying the first address (address1)
through the last address (address2).

[address1, address2]s/ old_text/ new_text<RETURN>

If ed does not find the pattern to be replaced on a line, it makes no changes to that line.

In the following example, all the lines in the file are addressed for the substitute command.
However, only the lines that contain the stringes (theold_text argument) are changed.

When you specify a range of lines and includep or n at the end of the substitute line, only
the last line changed is printed.

To display all the lines in which text was changed, use then or p command with the
address1,$.

1,3p <RETURN>
This is a pest toad
testing testing
come in toad
. <RETURN>
come in toad
1s/pest/test <RETURN>
This is a test toad

1,$p <RETURN>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
1,$s/es/ES/n <RETURN>
4 tESting 1, 2, 3

User’s Guide

6-38

Notice that only the first occurrence ofes (on line 2) has been changed. To change every
occurrence of a pattern, use theg command, described in the next section.

Substituting Text Globally 6

One of the most versatile tools ined is global substitution. By placing theg command
after the last delimiter on the substitute command line, you can change every occurrence
of a pattern on each specified line. Try changing every occurrence of the stringes in the
last example. If you are following along, doing the examples as you read this, remember
that you can useu to undo the last substitute command.

Another method is to use a global search pattern as an address instead of the range of lines
specified by1,$.

1,$n <RETURN>
1 This is a tESt toad
2 tESting testing
3 come in toad
4 tESting 1, 2, 3

u <RETURN>
1,$p <RETURN>
This is a test toad
testing, testing
come in toad
testing 1, 2, 3
1,$s/es/ES/g <RETURN>
1,$p <RETURN>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

Line Editor (ed) Tutorial

6-39

If the global search pattern is unique and matches the argumentold_text (text to be
replaced), you can use aned shortcut: specify the pattern once as the global search
address, and do not repeat it as anold_text argument.ed will remember the pattern from
the search address and use it again as the pattern to be replaced.

g/ old_text/s// new_text/g <RETURN>

NOTE

Whenever you use this shortcut, be sure to include two slashes (/)
after thes .

Experiment with other search pattern addresses:

/ pattern <RETURN>
?pattern <RETURN>
v/ pattern <RETURN>

See what they do when combined with the substitute command. In the following example,
the v/ pattern search format is used to locate lines that do not contain the pattern
testing . Then the substitute command (s) is used to replace the existing pattern (in)
with a new pattern (out) on those lines.

v/testing/s/in/out <RETURN>
This is a test toad
come out toad

1,$p <RETURN>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
g/test/s/es/ES/g <RETURN>
1,$p <RETURN>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

1,$p <RETURN>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
g/es/s//ES/g <RETURN>
1,$p <RETURN>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

User’s Guide

6-40

Notice that the lineThis is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, all lines found with the
search address are printed, regardless of whether or not substitutions have been made on
them.

Now search for lines that do contain the patterntesting with theg command.

g/testing/s//jumping <RETURN>
jumping testing
jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of the pattern
(testing) in each line. Once again, the lines are displayed on your terminal because the
last delimiter has been omitted.

Substituting Text with ed: Exercises 6

Exercise 4-1:

1. In your file towns changetown to city on all lines but the line with
little town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

2. Try using? as a delimiter. Change the current line

Las Vegas
to
Toledo

Because you are changing the whole line, you can also do this by using the change
command,c .

3. Try searching backward in the file for the word

lost
and substitute
found
using ? as a delimiter. Did it work?

Line Editor (ed) Tutorial

6-41

4. Search forward in the file for

no
and substitute
NO

for it. What happens if you try to use? as a delimiter?

5. Experiment with the various command combinations available for
addressing a range of lines and doing global searches.

What happens if you try to substitute something for the$$? Try to substituteBig
$ for $ on line 9 of your file. Type:

9s/$/Big $ <RETURN>

What happened?

Substituting Text with ed: Answers for Exercises 6

Answers for Exercise 4-1:

The line

I lost those little town blues in

was not printed because it was not addressed by thev command.

v/little town/s/town/city <RETURN>
My kind of city is
London
Like being no where at all in
Peoria
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

User’s Guide

6-42

You cannot mix delimiters such as/ and? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the$ sign is a special character ined.

Pattern-Matching Characters in ed 6

If you try to substitute the$ sign in the line

I lost my $ in Las Vegas

Instead of replacing the$, the new text is placed at the end of the line. The$ is a special
character ined that represents the end of the line.

ed assigns special meanings to several characters as a way of providing a shorthand for
search and substitution patterns; these characters are not interpreted literally by the shell.
If you specify a special character in a search or substitution pattern, without understanding
its special meaning, you will not get the expected results.

Table 6-7 summarizes the special characters for search or substitution patterns.

In the following example,ed searches for any three-character sequence ending in the pat-
ternat.

. <RETURN>
Las Vegas
s?Las Vegas?Toledo <RETURN>
Toledo

?lost?s??found <RETURN>
I found $$ in

/no?s??NO <RETURN>
?
/no/s//NO <RETURN>
Like being NO where at all in

Line Editor (ed) Tutorial

6-43

The wordgoat is included because the stringoat matches the pattern.at .

The * (asterisk) represents zero or more occurrences of a specified character in a search or
substitute pattern. This can be useful in deleting repeated occurrences of a character that
have been inserted by mistake. For example, suppose you hold down the <r > key too long
while typing the wordbroke. You can use the * to delete every unnecessaryr with one
substitution command.

Table 6-7. ed Special Characters and Their Meanings

Character Meaning

. Match any one character.

* Match zero or more occurrences of the preceding character or
expression in brackets.

.* Match zero or more occurrences of any character.

^ Match the beginning of the line.

$ Match the end of the line.

\ Take away the meaning of the special character that follows.

% Substitute the last replacement pattern.

& Substitute the text matched by the substitution pattern in the
replacement string.

[. . .] Match the first occurrence of any character in the brackets.

[^ . . .] Match the first occurrence of any character that is not in the
brackets.

1,$p <RETURN>
rat
cat
turtle
cow
goat
g/.at <RETURN>
rat
cat
goat

User’s Guide

6-44

The substitution pattern includes theb before the firstr. If theb were not included in the
search pattern, the * would interpret it, during the search, as a zero occurrence ofr, make
the substitution on it, and quit. (Remember, only the first occurrence of a pattern is
changed in a substitution, unless you request a global search withg.) The following screen
shows how the substitution would be made if you did not specify both theb and ther
before the *.

If you combine the period and the *, the combination will match all characters. With this
combination you can replace all characters in the last part of a line:

The .* can also replace all characters between two patterns.

If you want to insert a word at the beginning of a line, use the^ (circumflex) for the old
text to be substituted. This is particularly helpful when you want to insert the same pattern
at the beginning of several lines. The next example places the wordall at the beginning
of each line:

p <RETURN>
brrroke
s/br*/br <RETURN>
broke

p <RETURN>
brrroke
s/r*/r <RETURN>
rbrrroke

p <RETURN>
Toads are slimy, cold creatures
s/are.*/are wonderful and warm <RETURN>
Toads are wonderful and warm

p <RETURN>
Toads are slimy, cold creatures
s/are.*cre/are wonderful and warm cre <RETURN>
Toads are wonderful and warm creatures

Line Editor (ed) Tutorial

6-45

The$ sign is useful for adding characters at the end of a line or a range of lines:

In these examples, you must remember to put a space after the wordall or before the
word money becauseed adds the specified characters to the very beginning or the very
end of the sentence. If you forget to leave a space before the wordmoney, your file will
look like this:

The$ sign also provides a handy way to add punctuation to the end of a line:

1,$p <RETURN>
creatures great and small
things wise and wonderful
things bright and beautiful
1,$s/^/all / <RETURN>
1,$p <RETURN>
all creatures great and small
all things wise and wonderful
all things bright and beautiful

1,$p <RETURN>
I love
I need
I use
The IRS wants my
1,$s/$/ money. <RETURN>
1,$p <RETURN>
I love money.
I need money.
I use money.
The IRS wants my money.

1,$s/$/money/ <RETURN>
1,$p <RETURN>
I lovemoney
I needmoney
I usemoney
The IRS wants mymoney

User’s Guide

6-46

Because. is not matching a character (old text), but replacing a character (new text), it
does not have a special meaning. To change a period in the middle of a line, you must take
away the special meaning of the period in the old text. To do this, simply precede the
period with a backslash (\). This is how you take away the special meaning of some
special characters that you want to treat as normal text characters in search or substitute
arguments. For example, the following screen shows how to take away the special
meaning of the period:

The same method can be used with the backslash character itself. If you want to treat a \ as
a normal text character, be sure to precede it with a \. For example, if you want to replace
the \ symbol with the wordbackslash , use the substitute command line shown in the
following screen:

If you want to change text without repeating the text in the replacement string, the&
(ampersand) provides a useful shortcut. The & is replaced with the text matching the
pattern, so you do not have to type the pattern twice. For example:

1,$p <RETURN>
I love money
I need money
I use money
The IRS wants my money
1,$s/$/./ <RETURN>
1,$p/ <RETURN>
I love money.
I need money.
I use money.
The IRS wants my money.

p <RETURN>
Way to go. Wow!
s/\./! <RETURN>
Way to go! Wow!

1,2p <RETURN>
This chapter explains
how to use the \.
s/\\/backslash <RETURN>
how to use the backslash.

Line Editor (ed) Tutorial

6-47

ed automatically remembers the last string of characters in a search pattern or the old text
in a substitution. However, you must prompted to repeat the replacement characters in a
substitution by using the% sign. The% sign allows you to make the same substitution on
multiple lines without requesting a global substitution. For example, to change the word
money to the wordgold, repeat the last substitution from line 1 on line 3, but not on line
4.

ed automatically remembers the wordmoney (the old text to be replaced), so that string
does not have to be repeated between the first two delimiters. The% sign tellsed to use the
last replacement pattern,gold .

ed tries to match the first occurrence of one of the characters enclosed in brackets and
substitute the specified old text with new text. The brackets can be at any position in the
pattern to be replaced.

In the following example,ed changes the first occurrence of the numbers6, 7, 8, or 9
to 4 on each line in which it finds one of those numbers:

p <RETURN>
The neanderthal skeletal remains
s/thal/& man's/ <RETURN>
p <RETURN>
The neanderthal man's skeletal remains

1,$n <RETURN>
 1 I love money
 2 I need food
 3 I use money
 4 The IRS wants my money
 1s/money/gold <RETURN>
 I love gold
 3s//% <RETURN>
 I use gold
 1,$n <RETURN>
 1 I love gold
 2 I need food
 3 I use gold
 4 The IRS wants my money

User’s Guide

6-48

The next example deletes theMr or Ms from a list of names:

If a ^ (circumflex) is the first character in brackets,ed interprets it as an instruction to
match characters that are not within the brackets. However, if the circumflex is in any
other position within the brackets,ed interprets it literally; that is, as a circumflex.

Whenever you use special characters in substitution patterns, use a distinctive pattern of
characters. In the above example, if you had used only

1,$s/[^AB]/A <RETURN>

you would have changed theg in the wordgrade to A on every line. Try it.

1,$p <RETURN>
Monday33,000
Tuesday75,000
Wednesday88,000
Thursday62,000
1,$s/[6789]/4 <RETURN>
Monday33,000
Tuesday45,000
Wednesday48,000
Thursday42,000

1,$p <RETURN>
Mr Arthur Middleton
Mr Matt Lewis
Ms Anna Kelley
Ms M. L. Hodel
1,$s/M[rs] // <RETURN>
1,$p <RETURN>
Arthur Middleton
Matt Lewis
Anna Kelley
M. L. Hodel

1,$p <RETURN>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging
grade C Tennis
1,$s/grade [^AB]/grade A <RETURN>
1,$p <RETURN>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogging
grade A Tennis

Line Editor (ed) Tutorial

6-49

Experiment with these special characters. Find out what happens when you use them in
different combinations.

Table 6-7 summarizes the special characters for search or substitution patterns.

Pattern-Matching Characters in ed: Exercises 6

Exercise 5-1:

1. Create a file containing the following lines of text.

A Computer Science
D Jogging
C Tennis

2. What happens if you enter this command:

1,$s/[^AB]/A/ <RETURN>

3. Undo the above command. How can you make theC andD unique? (Hint:
They are at the beginning of the line, in the position shown by the^ .) Do
not be afraid to experiment!

4. Insert the following line above line 2:

These are not really my grades.

5. Using brackets and thê character, create a search pattern you can use to
locate the line you inserted. There are several ways to address a line. When
you edit text, use the way that is quickest and easiest for you.

Exercise 5-2:

1. Create a file containing the following lines:

I love money
I need money
The IRS wants my money

2. Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

3. Using two command lines, do the following:

a. change the word on the first line frommoney to gold .

b. Change the last two lines frommoney to gold without using the
wordsmoney or gold themselves.

4. How can you change the line

1020231020

to

User’s Guide

6-50

10202031020

without repeating the old digits in the replacement pattern?

Exercise 5-3:

1. Create a line of text containing the following characters.

* . \ & % ^ *

2. Substitute a different letter for each character. Do you have to use a
backslash for every substitution?

Pattern-Matching Characters in ed: Answers for Exercises 6

Answers for Exercise 5-1:

$ ed file1 <RETURN>
?file1
a <RETURN>
A Computer Science <RETURN>
D Jogging <RETURN>
C Tennis <RETURN>
. <RETURN>
1,$s/[^AB]/A/ <RETURN>
1,$p <RETURN>
AA Computer Science
A Jogging
A Tennis
u <RETURN>

1,$s/^[^AB]/A/ <RETURN>
1,$p <RETURN>
A Computer Science
A Jogging
A Tennis

2i <RETURN>
These are not really my grades. <RETURN>
. <RETURN>
1,$p <RETURN>
A Computer Science
These are not really my grades.
A Tennis
A Jogging
/^[^A] <RETURN>
These are not really my grades
?^[T] <RETURN>
These are not really my grades

Line Editor (ed) Tutorial

6-51

Answers for Exercise 5-2:

Answers for Exercise 5-3:

Because there were no preceding characters,* substituted for itself.

1,$p <RETURN>
I love money
I need money
The IRS wants my money
g/^I/s/I.* m/It's my m <RETURN>
It's my money
It's my money

1s/money/gold <RETURN>
It's my gold
2,$s//% <RETURN>
The IRS wants my gold

s/10202/&0 <RETURN>
10202031020

a <RETURN>
* . \ & % ^ * <RETURN>
. <RETURN>
s/*/a <RETURN>
a . \ & % ^ *
s/*/b <RETURN>
a . \ & % ^ b

User’s Guide

6-52

The& and% are special characters only in the replacement text.

Moving and Copying Text with ed 6

You have now learned to address lines, create and delete text, and make substitutions.ed
has one more set of versatile and important commands. You can move, copy, or join lines
of text in the editing buffer. You can also read in text from a file that is not in the editing
buffer, or write lines of the file in the buffer to another file in the current directory. The
commands that move text are:

m Move lines of text.

t Copy lines of text.

j Join contiguous lines of text.

w Write lines of text to a file.

r Read in the contents of a file.

Moving Lines of Text: The m Command 6

Them command allows you to move blocks of text to another place in the file. The general
format is:

[address1, address2]m[address3] <RETURN>

The components of this command line include:

address1,address2 The range of lines to be moved. If only one line is moved, only
address1 is given. If no address is given, the current line is moved.

s/ \./c <RETURN>
a c \ & % ^ b
s/ \\/d <RETURN>
a c d & % ^ b
s/&/e <RETURN>
a c d e % ^ b
s/%/f <RETURN>
a c d e f ^ b

s/ \^/g <RETURN>
a c d e f g b

Line Editor (ed) Tutorial

6-53

m The move command.

address3 The line after which the text will appear after it has been moved.

Try the following example to see how the command works. Create a file that contains
these three lines of text:

I want to move this line.
I want the first line
below this line.

Type:

1m3 <RETURN>

ed will move line 1 below line 3.

The next screen shows how this will appear on your terminal:

If you want to move a paragraph of text, haveaddress1 andaddress2 define the range of
lines of the paragraph.

In the following example, a block of text (lines 8 through 12) is moved below line 65.
Notice then command that prints the line numbers of the file:

I want the first line
below this line.
I want to move this line.

I want to move this line.

1,$p <RETURN>
I want to move this line.
I want the first line
below this line.
1m3 <RETURN>
1,$p <RETURN>
I want the first line
below this line.
I want to move this line.

User’s Guide

6-54

How can you move lines above the first line of the file? Try the following command.

3,4m0 <RETURN>

Whenaddress3 is 0, the lines are placed at the beginning of the file.

Copying Lines of Text: The t Command 6

The copy commandt (transfer) acts like them command except that the block of text is
not deleted at the original address of the line. A copy of that block of text is placed after a
specified line of text.

The general format of thet command resembles that of them command.

[address1, address2]t[address3] <RETURN>

address1,address2 The range of lines to be copied. If only one line is copied, only
address1 is given. If no address is given, the current line is copied.

t The copy command.

address3 The line after which the text will appear after it has been moved.

The next example shows how to copy three lines of text below the last line.

8,12n <RETURN>
8 This is line 8.
9 It is the beginning of a
10 very short paragraph.
11 This paragraph ends
12 on this line.
64,65n <RETURN>
64 Move the block of text
65 below this line.
8,12m65 <RETURN>
59,65n <RETURN>
59 Move the block of text
60 below this line.
61 This is line 8.
62 It is the beginning of a
63 very short paragraph.
64 This paragraph ends
65 on this line.

Line Editor (ed) Tutorial

6-55

The commands anded 's responses to them are displayed in the next screen. Again, then
command displays the line numbers:

The text in lines 6 through 8 remains in place. A copy of those three lines is placed after
line 50.

Experiment withm andt on one of your files.

Joining Contiguous Lines: The j Command 6

The j command joins contiguous lines. The general format is:

[address1, address2]j <RETURN>

The components of this command line include:

Break glass of nearest alarm.
Pull lever
Locate and use fire extinguisher.

Break glass of nearest alarm.
Pull lever
Locate and use fire extinguisher.

.

.

.
A chemical fire in the lab requires that you:

5,8n <RETURN>
5 Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm.
7 Pull lever.
8 Locate and use fire extinguisher.
30n <RETURN>
30 A chemical fire in the lab requires that you:
6,8t30 <RETURN>
30,$n <RETURN>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm
32 Pull lever
33 Locate and use fire extinguisher
6,8n <RETURN>
6 Break glass of nearest alarm
7 Pull lever
8 Locate and use fire extinguisher

User’s Guide

6-56

address1,address2
The range of lines to be joined. If no address is given, the current line is joined
with the following line. If exactly one address is given, the command does
nothing.

j The join command.

The next example shows how to join two lines.

Notice that there is no space between the last word (join) and the first word of the next
line (the). You must place a space between them by using thes command.

Writing Lines of Text to a File: The w Command 6

Thew command writes text from the buffer into a file. The general format is:

[address1, address2]w [filename] <RETURN>

address1,address2
The range of lines to be placed in another file. If you do not useaddress1 or
address2, the entire file is written into a new file.

w The write command.

filename The name of the new file that contains a copy of the block of text.

In the following example, several lines of a letter are saved in a file calledmemo.

1,2p <RETURN>
Now is the time to join
the team.
1,2j <RETURN>
1p <RETURN>
Now is the time to jointhe team.

Line Editor (ed) Tutorial

6-57

The w command places a copy of lines 3 through 5 into a new file calledmemo. ed
responds with the number of characters in the new file.

Thew command overwrites preexisting files; it erases the current file and puts the new text
in the file without warning you. If, in our example, a file calledmemo had existed before
we wrote our new file to that name, the original file would have been erased.

In “Other Useful ed Commands and Files”later in this chapter, you will learn how to
execute shell commands fromed. Then you can list the filenames in the directory to make
sure you are not overwriting a file.

Another potential problem is that you cannot write other lines to the filememo. If you try
to add lines 13 through 16, the existing lines (3 through 5) will be erased and the file will
contain only the new lines (13 through 16). However, you can use theW command to solve
this problem. It will write the currented buffer to the end of the file.

Reading in Files: The r Command 6

The r (read) command can be used to append text from a file to the buffer. The general
format for the read command is:

[address1]r filename <RETURN>

address1 The line after which the text is added. Ifaddress1 is not given, the
file is added to the end of the buffer.

r The read command.

filename The name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file being edited and
new text being read into it.

1,$n <RETURN>
1 March 20, 1991
2 Dear Kelly,
3 There will be a meeting in the
4 green room at 4:30 P.M. today.
5 Refreshments will be served.
6 Please plan to attend.
7 Other divisions and locations
8 will also be represented.
9 We will discuss plans
10 for marketing several
11 new products during the
12 coming fiscal year,
13 as well as long range
14 research activities that
15 should yield profitable products
16 during the next decade.
3,5w memo <RETURN>
91

User’s Guide

6-58

ed responds to the read command with the number of characters in the file being added to
the buffer (in the example,memo).

It is a good idea to display new or changed lines of text to be sure they are correct.

Table 6-8 summarizes theed commands for moving text.

Moving and Copying Text with ed: Exercises 6

Exercise 6-1:

1. There are two ways to copy lines of text in the buffer:

• by issuing the copy command

• by using the write and read commands to write text to a file first and
then read the file into the buffer

Writing to a file and then reading the file into the buffer is a longer process.
Can you think of an example where this method would be more practical?

2. What commands can you use to copy lines 10 through 17 of fileexer into
a file calledexer6 at line 7?

Table 6-8. Summary of ed Commands for Moving Text

Command Function

m Move lines of text.

t Copy lines of text.

j Join contiguous lines.

w Write text into a new file.

W Append text to an existing file.

r Read in text from another file.

1,$n <RETURN>
1 March 20, 1991
2 Dear Michael,
3 Are you free later today?
4 Hope to see you there.
3r memo <RETURN>
91
3,$n <RETURN>
3 Are you free later today?
4 There will be a meeting in the
5 green room at 4:30 P.M. today.
6 Refreshments will be served.
7 Hope to see you there.

Line Editor (ed) Tutorial

6-59

3. Lines 33 through 46 give an example that you want placed after line 3, and
not after line 32. What command performs this task?

4. Say you are on line 10 of a file and you want to join lines 13 and 14. What
commands can you issue to do this?

Moving and Copying Text with ed: Answers for Exercises 6

Answers for Exercise 6-1:

Any time you have lines of text that must appear in several places in the same file, you can
save time by writing those lines to a separate file and reading in that file at the appropriate
points in the file you're editing.

Similarly, if you want to copy a set of lines from the current file to another one, write the
desired lines to a separate file and then read that file into the buffer containing the other
file.

In this example, the temporary file happens to be calledtemp.

ed exer <RETURN>
725
10,17 w temp <RETURN>
210
q <RETURN>
ed exer6 <RETURN>
305
7r temp <RETURN>
210

33,46m3 <RETURN>

13,14j <RETURN>

User’s Guide

6-60

Other Useful ed Commands and Files 6

Four other commands and a special file may be useful to you during editing sessions.

h,H Access the help commands, which provide error messages.

l Display characters that are not normally displayed.

f Display the current filename.

! Temporarily escapeed to execute a shell command.

ed.hup A special file in which the contents of the buffer are saved ifed is
interrupted.

Getting Help: The h and H Commands 6

You may notice, when editing a file, thated responds to some of your commands with a?.
The ? is a diagnostic message issued byed when it has found an error. Two help
commands allow you to request brief explanations when you get a diagnostic message.

h Display a short error message that explains the reason for the most recent?.

H Placeed in help mode so a short error message will be displayed every time
the? appears. (To cancel this command, typeH again.)

You know that if you try to quited without writing the changes in the buffer to a file, you
will get a?. Do this now. When the? appears, typeh:

The? is also displayed when you specify a new filename on theed command line. Give
ed a new filename. When the? appears, typeh to find out what the error message means.

This message means one of two things: either there is no file callednewfile or there is
such a file buted is not allowed to read it.

q <RETURN>
?
h <RETURN>
UX: ed: WARNING: expecting `w'

ed newfile <RETURN>
?newfile
h <RETURN>
UX: ed: ERROR:Cannot open input file

Line Editor (ed) Tutorial

6-61

As explained earlier, theH command responds to the? and then turns on the help mode of
ed , so thated gives you a diagnostic explanation every time the? is displayed
subsequently. To turn off help mode, typeH again. The next screen showsH used to turn
on the help mode. Sample error messages are also displayed in response to some common
mistakes:

Some of the most common error messages you may encounter during editing sessions are:

search string not found
ed cannot find an occurrence of the search patternhello .

line out of range ed cannot print any lines because the buffer is empty or
the line specified is not in the buffer.

A line of text is appended to the buffer to show you some error messages associated with
thes command.

illegal or missing delimiter
The delimiter between the old text to be replaced and the
new text is missing.

unknown command address1 was not typed in before the comma;ed does not
recognize,$.

Help mode is then turned off, andh is used to determine the meaning of the last?. While
you are learninged , you may want to leave help mode turned on. If so, use theH
command. However, once you become adept at usinged , you will need to see error
messages only occasionally. Then you can use theh command.

$ ed newfile <RETURN>
H <RETURN>
UX:ed:ERROR:Cannot open input file
/hello <RETURN>
?
UX:ed:ERROR:Search string not found
1,22p <RETURN>
?
UX:ed:ERROR:Line out of range
a <RETURN>
I am appending this line to the buffer. <RETURN>
. <RETURN>
s/$ tea party <RETURN>
?
UX:ed:ERROR:Illegal or missing delimiter
,$s/$/ tea party <RETURN>
?
UX:ed:ERROR:Unknown command
H <RETURN>
q <RETURN>
?
h <RETURN>
UX:ed:WARNING:Expecting `w'

User’s Guide

6-62

Displaying Nonprinting Characters: The l Command 6

Control characters usually do not appear on the terminal screen. For example,
<CTRL><g> (control-g) rings the terminal bell but does not appear on the screen.

If you enter a <TAB> character, the terminal normally displays up to eight spaces
covering the space up to the next tab setting. (Your tab setting may be fewer or more than
eight spaces. For details, see the discussion ofstty in Compilation Systems Manual.)

If you want to see how many tabs or control characters you have inserted into your text,
use thel (list) command. The general format for thel command is the same as forn and
p.

[address1, address2]l <RETURN>

The components of this command line are:

address1,address2 The range of lines to be displayed. If no address is given,
the current line is displayed. If onlyaddress1 is given,
only that line is displayed.

l The command that displays the nonprinting characters
along with the text.

The l command displays tabs with a> (greater than) character. To enter a control
character, hold down the <CTRL> (control) key and press the appropriate alphabetic key.
The key that sounds the bell is <CTRL><g> (control-g). It is displayed as\007 which is
the octal representation (the computer code) for control-g.

Type in two lines of text that contain a control-g and a tab. Then use thel command to
display the lines of text on your terminal.

Did the bell sound when you typed <CTRL><g> ?

Displaying the Current Filename: The f command 6

In a long editing session, you may forget the filename. Thef command will remind you
which file is currently in the buffer. Or, you may want to preserve the file you're now
editing as it existed at the beginning of your editing session, and write the contents of the
buffer to a new file. To avoid accidentally overwriting the original file with the customary
w andq command sequence, you can tell the editor to associate the contents of the buffer

a <RETURN>
Add a control-g to this line. <RETURN>
Add a tab to this line. <RETURN>
. <RETURN>
1,2l <RETURN>
Add a \007 (control-g) to this line.
Add a > (tab) to this line.

Line Editor (ed) Tutorial

6-63

with a new filename while you are in the middle of the editing session. Do this with thef
command and a new filename.

The format for displaying the current filename isf alone on a line:

f <RETURN>

To see howf works, entered with a file. For example, if your file is calledoldfile , ed
will respond as shown in the following screen:

To associate the contents of the editing buffer with a new filename use this general format:

f newfile <RETURN>

If you do not specify a filename with the write command,ed remembers the filename
given at the beginning of the editing session and writes to that file. If you do not want to
overwrite the original file, you must either use a new filename with the write command, or
change the current filename using thef command, followed by the new filename. Because
you can usef at any point in an editing session, you can change the filename immediately.
You can then continue with the editing session without worrying about overwriting the
original file.

The next screen shows the commands for entering the editor witholdfile and then
changing its name tonewfile . A line of text is added to the buffer and then the write and
quit commands are issued.

Once you have returned to the shell, you can list your files and verify the existence of the
new file,newfile . newfile should contain a copy of the contents ofoldfile plus the
new line of text.

ed oldfile <RETURN>
323
f <RETURN>
oldfile

ed oldfile <RETURN>
323
f <RETURN>
oldfile
f newfile <RETURN>
newfile
a <RETURN>
Add a line of text. <RETURN>
. <RETURN>
w <RETURN>
343
q <RETURN>

User’s Guide

6-64

Escaping to the Shell: The ! Command 6

How can you make sure you are not overwriting an existing file when you write the
contents of the editor to a new filename? You must return to the shell to list your files. The
! allows you to return temporarily to the shell, execute a shell command, and then return
to the current line of the editor.

The general format for the escape sequence is:

! shell command line<RETURN>
shell response to the command line
!

When you type the! as the first character on a line, the shell command must follow on
that same line. The program response to your command will appear as the command is
running. When the command has finished executing, the! will appear alone on a line.
This means that you are back in the editor at the current line.

For example, if you want to return to the shell to find out the correct date, type! and the
shell commanddate .

The screen first displays the current line. Then the command is given to temporarily leave
the editor and display the date. After the date is displayed, you are returned to the current
line of the editor.

If you want to execute more than one command on the shell command line, see the
discussion on“;” in theCompilation Systems Manual.

Recovering from Hangups: The ed.hup File 6

What happens if you are creating text ined and the line connecting your terminal to the
computer is disconnected, or your terminal is unplugged? When a hangup occurs, the
UNIX system tries to save the contents of the editing buffer in a special file named
ed.hup . Later you can retrieve your text from this file in one of two ways. First, you can
use a shell command to moveed.hup to another filename, such as the name the file had
while you were editing it (before the hangup). Second, you can entered and use thef
command to rename the contents of the buffer. An example of the second method is shown
in the following screen:

p <RETURN>
This is the current line
! date <RETURN>
Mon Apr 1 14:24:22 EST 1991
!
p <RETURN>
This is the current line.

Line Editor (ed) Tutorial

6-65

If you use the second method to recover the contents of the buffer, be sure to remove the
ed.hup file afterward.

Table 6-9 summarizes the functions of the commands and the special file introduced in
this section.

Other Useful ed Commands and Files: Exercises 6

Exercise 7-1:

1. Create a new file callednewfile1 .

2. Accessed and change the name of the file tocurrent1 .

3. Create some text and write and quited.

4. Run thels command to verify that a file callednewfile1 does not exist
in your directory.

Exercise 7-2:

1. Create a file calledfile1 .

2. Append some lines of text to the file.

Table 6-9. Summary of Other Useful ed Commands and Files

Command Function

h Display a short error message for the preceding diagnostic?.

H Turn on help mode so an error message is given for each
diagnostic? WhenH is entered a second time: Turn off help
mode.

l Display nonprinting characters in the text.

f Display the current filename.

f newfile Change the current filename associated with the editing buffer to
newfile.

! cmd Temporarily escape to the shell to execute a shell commandcmd.

ed.hup A special file in which buffer contents are saved whened is
interrupted.

ed ed.hup <RETURN>
928
f myfile <RETURN>
myfile

User’s Guide

6-66

3. Leave append mode, but do not write the file.

4. Turn off your terminal. Then turn on your terminal and log in again.

5. Issue thels command in the shell. Is there a new file calleded.hup ?

6. Edit ed.hup usinged . How can you change the current filename to
file1 ?

7. Display the contents of the file. Are the lines the same lines you created
before you turned off your terminal?

Exercise 7-3:

While you are ined, temporarily escape to the shell and send a mail message to yourself.

Other Useful ed Commands and Files: Answers for Exercises 6

Answers for Exercise 7-1:

Answers for Exercise 7-2:

Turn off your terminal.

Log in again.

$ ed newfile1 ?newfile1
f current1 <RETURN>
current1
a <RETURN>
This is a line of text <RETURN>
Will it go into newfile1 <RETURN>
or into current1 <RETURN>
. <RETURN>
w <RETURN>
66
q <RETURN>
$ ls <RETURN>
bin
current1

ed file1 <RETURN>
?file1
a <RETURN>
I am adding text to this file. <RETURN>
Will it show up in ed.hup? <RETURN>
. <RETURN>

Line Editor (ed) Tutorial

6-67

Answers for Exercise 7-3:

ed ed.hup <RETURN>
58
f file1 <RETURN>
file1
1,$p <RETURN>
I am adding text to this file.
Will it show up in ed.hup?

$ ed file1 <RETURN>
58
! mail mylogin <RETURN>
You will get mail when <RETURN>
you are done editing! <RETURN>
. <RETURN>
!

User’s Guide

6-68

7
Screen Editor (vi) Tutorial

Introduction . 7-1
Getting Started with vi. 7-2

Setting the Terminal Type for a Single Login Session . 7-3
Setting the Terminal Type for All Sessions . 7-3
Entering vi . 7-4
vi Operating Modes . 7-4

Insert Mode: Creating and Adding Text with vi . 7-5
Leaving Insert Mode . 7-5
Command Mode: Editing Text in vi . 7-5
Command Mode: Moving the Cursor . 7-6
Command Mode: Deleting Text . 7-9
Command Mode: Adding Text . 7-10

Leaving vi . 7-11
Getting Started with vi: Exercises . 7-13
Getting Started with vi: Answers for Exercises . 7-13

Positioning the Cursor and Scrolling with vi. 7-14
Positioning the Cursor on a Character . 7-15

Moving to the Beginning or End of a Line . 7-15
Searching for a Character on a Line . 7-17

Positioning the Cursor on a Line . 7-18
Moving Up One or More Lines. 7-18
Moving Down One or More Lines . 7-18

Positioning the Cursor on a Word. 7-19
Positioning the Cursor by Sentences . 7-21
Positioning the Cursor by Paragraphs . 7-22
Positioning the Cursor in the Window . 7-23
Displaying Text Not Shown in the Current Editing Window. 7-26

Scrolling Text . 7-26
Scrolling Forward One Screen: The Control-f Command 7-26
Scrolling Down a Half Screen: The Control-d Command. 7-27
Scrolling Back a Full Screen: The Control-b Command 7-27
Scrolling Back a Half Screen: The Control-u Command 7-28

Moving to a Specified Line: The G Command . 7-28
Searching for Character Patterns: The / and ? Commands 7-29

Positioning the Cursor and Scrolling with vi: Exercises 7-32
Positioning the Cursor and Scrolling with vi: Answers for Exercises 7-33

Creating Text with vi . 7-34
Appending Text with vi . 7-35
Inserting Text with vi . 7-35
Opening a New Line with vi . 7-36
Creating Text with vi: Exercises. 7-38
Creating Text with vi: Answers for Exercises . 7-38

Deleting Text with vi . 7-39
Deleting Text in Insert Mode . 7-39
Undoing Changes in Command Mode: The u and U Commands 7-41
Deleting Text in Command Mode . 7-41

Deleting Words: The dw Command . 7-41

User’s Guide

Deleting Paragraphs: The d{ and d} Commands. 7-42
Deleting Lines: The dd Command. 7-43
Deleting Text after the Cursor: The d and D Commands 7-43

Deleting Text with vi: Exercises . 7-44
Deleting Text with vi: Answers for Exercises . 7-45

Modifying Text with vi . 7-45
Replacing Text: The r and R Commands . 7-46
Substituting Text: The s and S Commands . 7-46
Changing Text: The c, cw, cc, and C Commands . 7-47

Cutting and Pasting Text with vi . 7-50
Pasting Text: The p and P Commands . 7-50
Fixing Transposed Letters: The xp Command . 7-50
Copying Text: The y and yy Commands . 7-51
Copying or Moving Text Using Registers . 7-52
Cutting and Pasting Text with vi: Exercises . 7-52
Cutting and Pasting Text with vi: Answers for Exercises. 7-53

Using Other vi Commands. 7-54
Repeating the Last Command: The . Command. 7-54
Joining Two Lines: The j and J Commands . 7-54
Clearing and Redrawing the Window. 7-55
Changing Lowercase to Uppercase and Vice Versa: The ~ Command 7-55

Using Line Editor (ex) Commands in vi . 7-56
Returning to the Shell: The :sh and :! Commands . 7-56
Writing Text to a New File: The :w Command. 7-56
Moving to a Specified Line: The : Command. 7-57
Deleting the Rest of the Buffer: The :.,$d Command . 7-57
Reading a File into the Buffer: The :r Command . 7-57
Making Global Changes: The :g Command . 7-58

Quitting vi . 7-60
Using vi Command Line Options . 7-61

Recovering a Lost File: The-r Option . 7-61
Editing Multiple Files . 7-62
Viewing a File: Using view. 7-62
Using vi Command Line Options: Exercises . 7-63
Using vi Command Line Options: Answers for Exercises 7-64

Displaying and Setting Environment Options . 7-65
Frequently Used ex Options . 7-67

The autowrite Option. 7-67
The ignorecase Option. 7-67
The list Option . 7-68
The number Option . 7-68
The term Option. 7-68
The wrapmargin Option. 7-69
The wrapscan Option. 7-69

Setting and Displaying Options During a vi Session: The :set Command 7-69
Setting Options for a Single Login Session . 7-70
Setting vi Environment Options for All Login Sessions 7-70

Defining EXINIT in Your .profile . 7-70
Creating a .exrc File. 7-71

7-1

7
Chapter 7Screen Editor (vi) Tutorial

7
7
7

Introduction 7

This chapter is a tutorial on the screen editor,vi (visual). Thevi editor is a powerful and
sophisticated tool for creating and editing files. It is designed for use with a video display
terminal which is used as a window through which you can view the text of a file. A few
simple commands allow you to make changes to the text that are quickly reflected on the
screen.

Thevi editor displays from one to many lines of text. It allows you to move the cursor to
any point on the screen or in the file (by specifying places such as the beginning or end of
a word, line, sentence, paragraph, or file) and create, change, or delete text from that point.
You can also useex line editor commands, such as the powerful global commands that
allow you to change multiple occurrences of the same character string by issuing one
command.

To move through the file, you can scroll the text forward or backward, revealing the lines
below or above the current window, as shown in Figure 7-1.

Figure 7-1. Displaying a File with a vi Window

TEXT FILE

You are in the screen editor.

This part of the file is above the display
window. You can place it on the screen
by scrolling backward.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

This part of the file is
in the display window.

You can edit it.

User’s Guide

7-2

NOTE

Not all terminals have text scrolling capability; whether or not
you can take advantage of thevi scrolling feature depends on the
type of terminal you have.

There are more than 100 commands withinvi . This chapter covers the basic commands
that will enable you to usevi simply but effectively. Specifically, it explains how to do
the following tasks:

• change your shell environment to set the configuration of your terminal

• enable automatic carriage return

• entervi , create text, delete mistakes, write the text to a file, and quit

• move text within a file

• electronically cut and paste text

• use special commands and shortcuts

• useex line editing commands from withinvi

• temporarily escape to the shell to execute shell commands

• recover a file lost by an interruption to an editing session

• edit several files in the same session.

As you read this tutorial, keep in mind the notation conventions described in
“Introduction.” In the screens shown in this chapter, arrows are used to show the position
of the cursor.

The commands discussed in each section are reviewed at the end of the section. A
summary ofvi commands is found in Appendix D “Quick Reference to vi Commands”,
where they are listed by topic.

At the end of some sections, exercises are given so you can experiment. The best way to
learnvi is by following the examples and doing the exercises as you read the tutorial. The
answers given for the exercises are suggested ways of doing the exercises. Keep in mind
that there is often more than one way to perform a task invi . If your method works, it is
correct.

Log in on the UNIX system when you are ready to read this chapter.

Getting Started with vi 7

Before you entervi , you must set your terminal configuration. Because the software for
thevi editor is executed differently on different terminals, you must tell the UNIX system
what type of terminal you are using.

Screen Editor (vi) Tutorial

7-3

Each type of terminal has several code names that are recognized by the UNIX system. In
the appendix, “Setting Up the Terminal” tells you how to find a recognized name for your
terminal. Keep in mind that many computer installations add terminal types to the list of
terminals supported on your UNIX system. It is a good idea to check with your local
system administrator for the most up-to-date list of available terminal types.

There are two different options for specifying the terminal type:

• if you use different terminals to get access to the UNIX system, you will
need to set the terminal (TERM) environment variable every time you log in

• if you always use the same terminal type, you can set theTERM variable in
a file in your login directory once, not every time you log on.

Setting the Terminal Type for a Single Login Session 7

To set your terminal configuration, immediately after you log on type:

$ TERM=terminal_name < RETURN>
$ export TERM < RETURN>
$ tput init < RETURN>

The first line puts a value (a terminal type) in a variable calledTERM. The second line
exports this value; it conveys the value to all UNIX system programs whose execution
depends on the type of terminal being used.

The tput command on the third line initializes (sets up) the software in your terminal so
that it functions properly with the UNIX system. It is essential to run thetput init
command when you are setting your terminal configuration; if you don't, terminal
functions such as tab settings may not work properly.

For example, if your terminal is an AT&T 630 this is how your commands will appear on
the screen.

$ TERM=630 < RETURN>
$ export TERM < RETURN>
$ tput init < RETURN>

Do not experiment by entering names for terminal types other than your terminal. This
may causevi to display the screen incorrectly.

Setting the Terminal Type for All Sessions 7

If you are going to use the same terminal type regularly, you should change your login
environment permanently so you do not have to configure your terminal each time you log
in. Your login environment is controlled by a file in your home directory called
.profile .

If you specify the setting for your terminal configuration in your.profile , your
terminal will be configured automatically every time you log in. You can do this by adding
the three lines shown in the last screen (theTERM assignment,export command, and

User’s Guide

7-4

tput command) to your.profile . For detailed instructions, see Chapter 9, the “Shell
Tutorial” chapter.

Entering vi 7

First, enter the editor; typevi and the name of the file you want to create or edit.

vi filename <RETURN>

For example, suppose you want to create a file calledstuff . When you type thevi com-
mand with the filenamestuff , vi clears the screen and displays a window in which you
can enter and edit text.

The __ (underscore) on the top line shows the cursor. On video display terminals, the
cursor may be a blinking underscore or a reverse color block. Every other line is marked
with a~ (tilde), the symbol for an empty line.

If you forgot to set your terminal configuration or you set it to the wrong type of terminal
before enteringvi , you will see an error message instead.

$ vi stuff < RETURN>
terminal_name: Unknown terminal type
I don’t know what kind of terminal you are on - All I have is “unknown”
[Using open mode]
“stuff” [New file]

You cannot set the terminal configuration while you are in the editor; you must be in the
shell. Leave the editor by typing

:q <RETURN>

Then set the correct terminal configuration.

vi Operating Modes 7

Thevi editor operates in two modes:

• insert (text input) mode

__
~
~
~
~
~
~
~
~
~
“stuff” [New file]

Screen Editor (vi) Tutorial

7-5

• command mode.

In the insert mode you can add and modify text; in the command mode you can:

• edit and change existing text

• delete, move, and copy text

• move around in the file

• perform other tasks.

Insert Mode: Creating and Adding Text with vi 7

If you have successfully enteredvi , you are in the command mode andvi is waiting for
your commands. To create text

1. Type ana to enter the insert mode ofvi . Do not press the<RETURN>
key. Thea is not printed on the screen.

2. You can now add text to the file. Type some text.

Leaving Insert Mode 7

When you finish creating text, press the <ESC> key to leave the insert mode and return to
the command mode. Then you can edit any text you have created or write the text in the
buffer to a file.

If you press the <ESC> key and a bell sounds, you are already in the command mode.
Pressing the <ESC> key while you are in the command mode does not affect the text in
the file, even if you do it several times.

NOTE

On some types of terminals,vi flashes the screen instead of
sounding the bell.

Command Mode: Editing Text in vi 7

To edit an existing file you must be able to add, change, and delete text. However, before
you can perform those tasks you must be able to move to the part of the file you want to

Create some text <RETURN>
in the screen editor <RETURN>
and return to <RETURN>
command mode. <ESC>
~
~

User’s Guide

7-6

edit. vi offers an array of commands for moving from page to page, between lines, and
between specified points inside a line. These commands, along with commands for
deleting and adding text, are introduced in this section.

Command Mode: Moving the Cursor 7

To edit your text, you need to move the cursor to the point on the screen where you will
begin the correction. This is easily done with four keys that are grouped together on the
keyboard:h, j , k , andl . See Figure 7-2.

h Move the cursor one character to the left.

j Move the cursor down one line.

k Move the cursor up one line.

l Move the cursor one character to the right.

The j andk commands maintain the column position of the cursor. For example, if the
cursor is on the seventh character from the left, when you typej or k it goes to the seventh
character on the new line. If there is no seventh character on the new line, the cursor
moves to the last character.

Many people who usevi find it helpful to mark these four keys with arrows showing the
direction in which each key moves the cursor.

Figure 7-2. Keys That Move the Cursor

NOTE

Some terminals have special cursor control keys that are marked
with arrows. Use them in the same way you use theh, j , k , andl
commands.

LKJH

162830

Screen Editor (vi) Tutorial

7-7

Watch the cursor on the screen while you press theh, j , k , andl keys. Instead of pressing
a motion command key a number of times to move the cursor a corresponding number of
spaces or lines, you can precede the command with the desired number. For example, to
move two spaces to the right, you can pressl twice or enter2l . To move up four lines,
pressk four times or enter4k . If you cannot go any farther in the direction you have
requested,vi sounds a bell.

Now experiment with thej andk motion commands. First, move the cursor up seven
lines. Type:

7k

The cursor will move up seven lines above the current line. If there are fewer than seven
lines above the current line, a bell will sound and the cursor will remain on the current
line.

Now move the cursor down 35 lines. Type:

35j

vi will clear and redraw the screen. The cursor will be on the thirty-fifth line below the
current line, appearing in the middle of the new window. If there are fewer than 35 lines
below the current line, the bell will sound and the cursor will remain on the current line.
Watch what happens when you type the next command.

35k

Like mostvi commands, theh, j , k , andl motion commands are silent; they do not
appear on the screen as you enter them. The only time you should see characters on the
screen is when you are in insert mode and are adding text to your file. If the motion
command letters appear on the screen, you are still in the insert mode. Press the <ESC>
key to return to the command mode and try the commands again.

In addit ion to the motion command keysh and l , the <SPACEBAR> and
<BACKSPACE> keys can be used to move the cursor right or left to a character on the
current line. Refer to the following table.

Try typing a number before the command key. Notice that the cursor moves the specified
number of characters to the left or right. In the example below, the cursor movement is
shown by the arrows.

To move the cursor quickly to the right or left, type a number before the command. For
example, suppose you want to create four columns on your screen and after you finish
typing the headings for the first three columns, you notice a typing mistake, as shown in
the screen below.

Table 7-1. Cursor Movement Keys

<SPACEBAR> Move the cursor one character to the right

n <SPACEBAR> Move the cursorn characters to the right

<BACKSPACE> Move the cursor one character to the left

n <BACKSPACE> Move the cursorn characters to the left

User’s Guide

7-8

You want to correct your mistake now, before you continue typing. Exit the insert mode
and return to the command mode by pressing the <ESC> key; the cursor will move to the
n.

<ESC>

Then use theh command to move back five spaces.

5h

Erase thec by typingx . Then change to insert mode (withi), enter aC, and press the
<ESC> key.

xiC <ESC>

Use thel motion command to return to your earlier position.

5l

Column 1 Column 2 column
↑

~
~
~

Column 1 Column 2 column
↑

~
~
~

Column 1 Column 2 column
↑

~
~
~

Column 1 Column 2 Column
↑

~
~
~

Screen Editor (vi) Tutorial

7-9

Thex andi commands are discussed in detail below.

Command Mode: Deleting Text 7

If you want to delete a character, move the cursor to that character and press thex . Watch
the screen as you do so; the character will disappear and the line will readjust to the
change. To erase three characters in a row, pressx three times. In the following example,
the arrows under the letters show the positions of the cursor.

x Delete one character.

nx Deleten characters, wheren is the number of characters you want to delete.

x

Now try precedingx with the number of characters you want to delete. For example,
delete the second occurrence of the worddeep from the text shown in the following
screen. Put the cursor on the first letter of the string you want to delete, and delete five
characters (for the four letters ofdeep plus an extra space).

Column 1 Column 2 Column
↑

~
~
~

Hello wurld!
↑

~
~
~

Hello wrld!
↑

~
~
~

User’s Guide

7-10

5x

Notice thatvi adjusts the text so that no gap appears in place of the deleted string. If, as in
this case, the string you want to delete happens to be a word, you can also use thevi com-
mand for deleting a word. This command is described later in the section“Positioning the
Cursor on a Word”.

Command Mode: Adding Text 7

There are two basic commands for adding text: the insert (i) and append (a) commands.
To add text with the insert command at a point in your file that is visible on the screen,
move the cursor to that point by using theh, j , k , andl commands. Then pressi and start
entering text. As you type, the new text will appear on the screen to the left of the charac-
ter on which you put the cursor. That character and all characters to the right of the cursor
will move right to make room for your new text. Thevi editor will continue to accept the
characters you type until you press the <ESC> key. If necessary, the original characters
will even wrap around onto the next line.

io

Tomorrow the Loch Ness monster
shall slither forth from
the deep dark deep depths of the lake.

↑
~
~
~

Tomorrow the Loch Ness monster
shall slither forth from
the deep dark depths of the lake.

↑
~
~
~

 Hello Wrld!
↑

~
~
~

Screen Editor (vi) Tutorial

7-11

To leave insert mode, press

<ESC>

You can use the append command in the same way. The only difference is that the new
text will appear to the right of the character on which you put the cursor.

Later in this tutorial you will learn how to move around on the screen or scroll through a
file to add or delete characters, words, or lines.

Leaving vi 7

When you have finished your text, you will want to write the buffer contents to a file and
return to the shell. To do this, hold down the <SHIFT> key and pressZ twice (ZZ). The
editor remembers the filename you specified with thevi command at the beginning of the
editing session, and moves the buffer text to the file of that name. A notice at the bottom of
the screen gives the filename and the number of lines and characters in the file. Then the
shell gives you a prompt.

You can also use the:w and:q line editor (ex) commands for writing and quitting a file.
Line editor (ex) commands begin with a colon and appear on the bottom line of the
screen. The:w command writes the buffer to a file. The:q command leaves the editor
and returns you to the shell. You can type these commands separately or combine them
into the single command:wq .

 Hello World!
↑

~
~
~

aThis is a test file. <RETURN>
I am adding text to <RETURN>
a temporary buffer and <RETURN>
now it is perfect. <RETURN>
I want to write this file, <RETURN>
and return to the shell. <ESC> zz ~
~
~
~
“stuff” [New file] 6 lines, 135 characters
$

User’s Guide

7-12

Table 7-2 summarizes the basic commands you need to enter and usevi .

Table 7-2. Summary of vi Editor Commands

Command Function

TERM=terminal_name
export TERM

Set the terminal configuration.

tput init Initialize the terminal as defined byterminal_name.

vi filename Entervi editor to edit the file calledfilename.

a Add text after the cursor.

h Move one character to the left.

j Move down one line.

k Move up one line.

l Move one character to the right.

x Delete a character.

<RETURN> Enter a newline (carriage return).

<ESC> Leave insert mode and return tovi command mode.

:w Write to a file.

:q Quit vi .

:wq Write to a file and quitvi .

ZZ Write changes to a file and quitvi .

aThis is a test file. <RETURN>
I am adding text to <RETURN>
a temporary buffer and <RETURN>
now it is perfect. <RETURN>
I want to write this file, <RETURN>
and return to the shell. <ESC>
~
~
~
~
:wq <RETURN>
“stuff” [New file] 6 lines, 135 characters
$

Screen Editor (vi) Tutorial

7-13

Getting Started with vi: Exercises 7

Exercise 1-1:

As you give commands in the following exercises, watch the screen to see how it changes
or how the cursor moves.

1. If you have not logged in yet, do so now. Then set your terminal
configuration.

2. Entervi and append the following five lines of text to a new file called
exer1 .

This is an exercise!
Up, down,
left, right,
build your terminal's
muscles bit by bit

3. Move the cursor to the first line of the file and the seventh character from
the right. Notice that as you move up the file, the cursor moves in to the last
letter of the file, but it does not move out to the last letter of the next line.

4. Delete the seventh and eighth characters from the right.

5. Move the cursor to the last character on the last line of the text.

6. Append the following new line of text:

and byte by byte

7. Write the buffer to a file and quitvi .

Exercise 1-2:

1. Reentervi and append two more lines of text to the fileexer1 .

2. What does the notice at the bottom of the screen say once you have
reenteredvi to editexer1 ?

Getting Started with vi: Answers for Exercises 7

Answers for Exercise 1-1:

Ask your system administrator for your terminal's system name. Type:

TERM=terminal_name<RETURN>
export TERM <RETURN>
tput init <RETURN>

Enter thevi command for a file calledexer1 :

vi exer1 <RETURN>

Then use thea (append) command to enter the following text in your file:

User’s Guide

7-14

Use thek andh commands.

Use thex command.

Use thej andl commands.

Use thea (append) command to enter the following text:

<RETURN>
and byte by byte <ESC>

Type:

ZZ

Answers for Exercise 1-2:

Type:

vi exer1 <RETURN>

Notice the system response:

“exer1” 6 lines, 100 characters

Positioning the Cursor and Scrolling with vi 7

Until now you have been moving the cursor with theh, j , k , andl commands, the
<BACKSPACE> key, and the <SPACEBAR>. There are several other commands that
can help you move the cursor quickly around the screen. This section explains how to
position the cursor by

• characters on a line

• lines

• text objects

- words

- sentences

- paragraphs

This is an exercise! <RETURN>
Up, down, <RETURN>
left, right, <RETURN>
build your terminal's <RETURN>
muscles bit by bit <RETURN>
~
~

Screen Editor (vi) Tutorial

7-15

• window.

There are also commands that position the cursor within parts of thevi editing buffer that
are not visible on the screen. These commands will be discussed in the next section.

To follow this section of the tutorial, you should entervi with a file that contains at least
forty lines. If you do not have a file of that length, create one now. Remember, to execute
the commands described here, you must be in command mode ofvi . Press the <ESC>
key to make sure you are in command mode rather than insert mode.

Positioning the Cursor on a Character 7

Three ways to position the cursor on a character in a line are by

• moving the cursor right or left to a character

• specifying the character at either end of the line

• searching for a character on a line.

The first method was discussed earlier in this chapter. The following sections describe the
other two methods.

Moving to the Beginning or End of a Line 7

The second method of positioning the cursor on a line is by using one of three commands
that put the cursor on the first or last character of a line.

$ Put the cursor on the last character of a line.

0 (zero) Put the cursor on the first character of a line.

^ (circumflex) Put the cursor on the first nonblank character of a line.

The following examples show the movement of the cursor produced by each of these three
commands.

• Example 1:

$

Go to the end of the line!
↑

~
~
~

User’s Guide

7-16

• Example 2:

0

• Example 3:

^

Go to the end of the line!
↑

~
~
~

Go to the beginning of the line!
↑

~
~
~

Go to the beginning of the line!
↑
~
~
~

Go to the first character
of the line
 that is not blank!

↑
~
~
~

Screen Editor (vi) Tutorial

7-17

Searching for a Character on a Line 7

The third way to position the cursor on a line is to search for a specific character on the
current line. If the character is not found on the current line, a bell sounds and the cursor
does not move. There is also a command that searches a file for patterns. This will be
discussed in the next section. You can use six commands to search within a line:f , F, t , T,
; , and. . You must specify a character after all of them except the; and. commands.

f x Move the cursor to the right to the specified characterx.

Fx Move the cursor to the left to the specified characterx.

t x Move the cursor right to the character just before the specified characterx.

Tx Move the cursor left to the character just after the specified characterx.

; Continue the search specified in the last command, in the same direction. The
; remembers the character and seeks out the next occurrence of that character
on the current line. (Works only with f and t.).

, Continue the search specified in the last command, in the opposite direction.
The , remembers the character and seeks out the previous occurrence of that
character on the current line. (Works only with f and t.).

For example, in the following screenvi searches to the right for the first occurrence of the
letterA on the current line.

fA

Go to the first character
of the line
 that is not blank!

↑
~
~

Go forward to the letter A on this line.
 ↑

~
~
~

User’s Guide

7-18

Try the search commands on one of your files.

Positioning the Cursor on a Line 7

Besides thej andk keys, which you've already used, the+, - , and<RETURN> keys can
be used to move the cursor to other lines.

Moving Up One or More Lines 7

The- command moves the cursor up a line, positioning it at the first nonblank character, if
there is one, on the line. To move more than one line at a time, specify the number of lines
you want to move before the- command. For example, to move the cursor up 13 lines,
type:

13-

The cursor will move up 13 lines. If some of those lines are above the current window, the
window will scroll up to reveal them. This is a rapid way to move quickly up a file.

Now try to move up 100 lines. Type:

100-

What happened to the window? If there are fewer then 100 lines above the current line, a
bell will sound telling you that you have made a mistake, and the cursor will remain on the
current line.

Moving Down One or More Lines 7

The plus sign (+) or <RETURN> key moves the cursor down a line to the first non-blank
character. Specify the number of lines you want to move before the+ command. For
example, to move the cursor down nine lines, type:

9+

The cursor will move down nine lines. If some of those lines are below the current screen,
the window will scroll down to reveal them.

Now try to do the same thing by pressing the<RETURN> key. Are the results the same
as they were when you pressed the+ key?

Go forward to the letter A on this line.
 ↑

~
~
~

Screen Editor (vi) Tutorial

7-19

Positioning the Cursor on a Word 7

The vi editor considers a word to be a string of characters that may include letters,
numbers, or underscores. There are six commands for positioning words:w, b, e, W, B, and
E. The lowercase commands (w, b, ande) treat any character other than a letter, digit, or
underscore as a delimiter, signifying the beginning or end of a word. Punctuation before or
after a white space is considered a word. The beginning or end of a line is also a delimiter.

The uppercase commands (W, B, andE) treat punctuation as part of the word; words are
delimited by white space, which can be created by entering spaces, tabs, or newlines.

The following is a summary of the word positioning commands.

w Move the cursor forward to the first character in the next word. You may press
w as many times as you want to reach the word you want, or you can prefix the
necessary number to thew command.

nw Move the cursor forwardn number of words to the first character of that word.
The end of the line does not stop the movement of the cursor; instead, the
cursor wraps around and continues counting words from the beginning of the
next line.

Usage of word positioning commands is shown in the following examples:

• Example 1:

6w

W Ignore all punctuation and move the cursor forward to the word after the
next blank.

e Move the cursor forward in the line to the last character in the next
word.

The w command
leaps word by word through the
file. Move from THIS word forward

 ↑
six words to THIS word.
~
~

The w command
leaps word by word through the
file. Move from THIS word forward
six words to THIS word.

 ↑
~
~

User’s Guide

7-20

• Example 2:

e

• Example 3:

3e

E Ignore all punctuation except white space, delimiting words only by
white space.

b Move the cursor backward in the line to the first character of the
previous word.

nb Move the cursor backwardn number of words to the first character of
thenth word. Theb command does not stop at the beginning of a line,
but moves to the end of the line above and continues moving backward.

B Can be used just like theb command, except that it delimits the word
only by blank spaces and new lines. It treats all other punctuation as
letters of a word.

Go forward one word to the end of
the next word in this line

↑
~
~

Go forward one word to the end of
the next word in this line

 ↑
~
~

Go to the end of the third word after the current word.
↑

~
~

Go to the end of the third word after the current word.
↑

~
~

Screen Editor (vi) Tutorial

7-21

• Example 4:

4B or 4b

Positioning the Cursor by Sentences 7

Thevi editor also recognizes sentences. Invi a sentence ends in ! or . or ?. If these
delimiters appear in the middle of a line, they must be followed by two spaces forvi to
recognize them. You should get used to the convention of typing two spaces after a period
as the end of a sentence, because it is often useful to be able to operate on a sentence as a
unit.

You can move the cursor from sentence to sentence in the file with the((open
parenthesis) and) (close parenthesis) commands.

(Move the cursor to the beginning of the current sentence.

n(Move the cursor to the beginning of thenth sentence above the current
sentence.

) Move the cursor to the beginning of the next sentence.

n) Move the cursor to the beginning of thenth sentence following the current
sentence.

The example in the following screens shows how the open parenthesis moves the cursor
around the screen.

Leap backward word by word through
the file. Go back four words from here.

↑
~
~

Leap backward word by word through
the file. Go back four words from here.

↑
~
~
~

User’s Guide

7-22

(

Now repeat the command, preceding it with a number. For example, type:

3(

or

5)

Did the cursor move the correct number of sentences?

Positioning the Cursor by Paragraphs 7

Paragraphs are recognized byvi if they begin after a blank line. If you want to be able to
move the cursor to the beginning of a paragraph (or later in this tutorial, to delete or
change a whole paragraph), then make sure each paragraph ends in a blank line.

{ Move the cursor to the blank line beginning of the current paragraph, which is
delimited by a blank line above it.

n{ Move the cursor to the beginning of thenth paragraph above the current
paragraph.

} Move the cursor to the blank line ending this paragraph.

n} Move the cursor to thenth paragraph below the current line.

The following two screens show how the cursor can be moved to the beginning of another
paragraph.

Suddenly we spotted whales in the
distance. Daniel was the first to see them.

↑
~
~

Suddenly we spotted whales in the
distance. Daniel was the first to see them.

↑
~
~
~

Screen Editor (vi) Tutorial

7-23

}

Positioning the Cursor in the Window 7

The vi editor also provides three commands that help you position yourself in the
window. Try out each command. Be sure to type them in uppercase.

H Move the cursor to the first line on the screen.

M Move the cursor to the middle line on the screen.

L Move the cursor to the last line on the screen.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

↑

“Hey look! Here come the whales!“ he cried excitedly.
~
~

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

“Hey look! Here come the whales!“ he cried excitedly.
~
~

User’s Guide

7-24

Table 7-3 summarizes thevi commands for moving the cursor by positioning it on a
character, line, word, sentence, paragraph, or position on the screen. Additionalvi
commands for moving the cursor are summarized in Table 7-9, which appears later in the
chapter.

Table 7-3. Summary of vi Motion Commands

Positioning on a Character

h Move the cursor one character to the left.

l Move the cursor one character to the right.

<BACKSPACE> Move the cursor one character to the left.

<SPACEBAR> Move the cursor one character to the right.

f x the specified characterx.

Fx Move the cursor to the left to the specified characterx.

t x Move the cursor to the right, to the character just before the
specified characterx.

Tx Move the cursor to the left, to the character just after the
specified characterx.

; Continue searching in the same direction on the line for the last
character requested withf , or t . The; remembers the character
and finds the next occurrence of it on the current line.

, Continue searching in the opposite direction on the line for the
last character requested withf or t . The, remembers the char-
acter and finds the next occurrence of it on the current line.

k Move the cursor up to the same column in the previous line (if a
character exists in that column).

j Move the cursor down to the same column in the next line (if a
character exists in that column).

This part of the file is above the display
window.

This part of the file is below
the display window.

Type H (HOME) to move the cursor here.
↑
Type M (MIDDLE) to move the cursor here.
↑
Type L (LAST) to move the cursor here.
↑

Screen Editor (vi) Tutorial

7-25

- Move the cursor up to the beginning of the previous line.

+ Move the cursor down to the beginning of the next line.

<RETURN> Move the cursor down to the beginning of the next line.

Table 7-4. Line Positioning Commands

Positioning on a Line

$ Move the cursor to the last character on the line.

0 (zero) Move the cursor to the first character on the line.

^ (circumflex) Move the cursor to the first nonblank character on the line.

Table 7-5. Word Positioning Commands

Positioning on a Word

w Move the cursor forward to the first character in the next word.

W Ignore all punctuation and move the cursor forward to the next
word delimited only by white space.

b Move the cursor backward one word to the first character of that
word.

B Move the cursor backward one word, which is delimited only by
white space.

e Move the cursor to the end of the current word.

E Delimit the words by white space only. The cursor is placed on
the last character before the next white space, or end of the line.

Table 7-6. Sentence Positioning Commands

Positioning on a Sentence

(Move the cursor to the beginning of the current sentence.

) Move the cursor to the beginning of the next sentence.

Table 7-7. Paragraph Positioning Commands

Positioning on a Paragraph

{ Move the cursor to the beginning of the current paragraph.

} Move the cursor to the beginning of the next paragraph.

Table 7-3. Summary of vi Motion Commands (Cont.)

Positioning on a Character

User’s Guide

7-26

Displaying Text Not Shown in the Current Editing Window 7

How do you move the cursor to text that is not shown in the current editing window? One
option is to use the20j or 20k command. However, if you are editing a large file, you
need to move quickly to another place in the file. This section covers those commands that
can help you move around within the file by:

• scrolling forward or backward in the file

• moving to a specified line in the file

• searching for a pattern in the file.

Scrolling Text 7

Four commands allow you to scroll the text of a file. The <CTRL><f> (control-f) and
<CTRL><d> (control-d) commands scroll the screen forward. The <CTRL>
(control-b) and <CTRL><u> (control-u) commands scroll the screen backward.

Scrolling Forward One Screen: The Control-f Command 7

The <CTRL><f> command scrolls the text forward one full window of text below the
current window. To do this,vi clears the screen and redraws the window. The two lines
that were at the bottom of the current window are placed at the top of the new window. If
too few lines are left in the file to fill the window, the screen displays a~ (tilde) to show
that there are empty lines.

vi clears and redraws the screen as follows:

Table 7-8. Window Positioning Commands

Positioning in the Window

H Move the cursor to the first line on the screen (the home position).

M Move the cursor to the middle line on the screen.

L Move the cursor to the last line on the screen.

Screen Editor (vi) Tutorial

7-27

Scrolling Down a Half Screen: The Control-d Command 7

The <CTRL><d> command scrolls down a half screen to reveal text below the window.
When you enter <CTRL><d>, the text appears to be rolled up at the top and unrolled at
the bottom. This allows the lines below the screen to appear on the screen, while the lines
at the top of the screen disappear. If the cursor is on the last line of the file and you enter
<CTRL><d>, a bell will sound.

Scrolling Back a Full Screen: The Control-b Command 7

The <CTRL> command scrolls the screen back a full window to reveal the text
above the current window. To do this,vi clears the screen and redraws the window with
the text that is above the current screen. The <CTRL> command leaves two
reference lines from the previous window at the bottom of the screen. If not enough lines
are above the current window to fill a full new window, a bell will sound and the current
window will remain on the screen.

You can still scroll forward
so that this text appears in
the display window.

This part of the file is below
the display window.

The last two lines of the current
window become the first two lines
of the new window

User’s Guide

7-28

Now try scrolling backward. Type:

<CTRL>

vi clears the screen and draws a new screen. Any text that was in the display window is
placed below the current window.

Scrolling Back a Half Screen: The Control-u Command 7

The <CTRL><u> command scrolls up a half screen of text to reveal the lines just above
the window. The lines at the bottom of the window are erased. Now scroll up in the text,
moving the portion above the screen into the window. Type:

<CTRL><u>

When the cursor reaches the top of the file, a bell will sound to notify you that the file
cannot scroll further.

Moving to a Specified Line: The G Command 7

TheG command positions the cursor on a specified line in the window; if that line is not
currently on the screen,G clears the screen and redraws the window around it. If you do
not specify a line, theG command sends the cursor to the last line of the file.

G Go to the last line of the file.

nG Go to thenth line of the file.

You can still scroll backward
so that this text appears in
the display window.

This part of the file is above
the display window.

The first two lines of the current
window become the last two lines
of the new window

Screen Editor (vi) Tutorial

7-29

Each line of the file has a line number corresponding to its position in the buffer. To get the
number of a particular line, position the cursor on the line and type <CTRL><g>. The
<CTRL><g> command gives you a status notice at the bottom of the screen which tells
you:

• the name of the file

• whether the buffer has been modified since it was last written to a file

• the line number on which the cursor rests

• the total number of lines in the buffer

• the percentage of the total lines in the buffer represented by the current
line.

<CTRL><g>

Searching for Character Patterns: The / and ? Commands 7

The fastest way to reach a specific place in your text is to use one of the search commands:
n or N. These commands allow you to search forward or backward in the buffer for the
next occurrence of a specified character pattern. The/ and? commands are not silent;
they appear as you type them, along with the search pattern, on the bottom of the screen.
Then andN commands allow you to repeat the previous search.

The / , followed by a pattern (/ pattern), searches forward in the buffer for the next
occurrence of the characters in the pattern, and puts the cursor on the first of those
characters. For example, the command line

This line is the 35th line of the buffer.
The cursor is on this line.

 ↑

There are several more lines in the buffer.
The last line of the buffer is line 116.
~
~

This line is the 35th line of the buffer.
The cursor is on this line.

 ↑

There are several more lines in the
buffer.
The last line of the buffer is line 116.
~
~
“file.name” [modified] line 36 of 116 --34%--

User’s Guide

7-30

/Hello world <RETURN>

finds the next occurrence in the buffer of the wordsHello world and puts the cursor
under theH.

The ?, followed by a pattern (?pattern), searches backward in the buffer for the first
occurrence of the characters in the pattern, and puts the cursor on the first of those
characters. For example, the command line

?data set design <RETURN>

finds the previous occurrence in the buffer of the wordsdata set design and puts the
cursor under thed in data .

These search commands do not wrap around the end of a line while searching for two
words. For example, you are searching for the wordsHello world . If Hello is at the
end of one line andworld is at the beginning of the next, the search command will not
find that occurrence ofHello world .

However, the search commands do wrap around the end or the beginning of the buffer to
continue a search. For example, if you are near the end of the buffer and the pattern for
which you are searching (with the/pattern command) is at the top of the buffer, the
command will find the pattern.

Then andN commands allow you to continue searches you have requested with/ pattern
or ?pattern without retyping them.

n Repeat the last search command.

N Repeat the last search command in the opposite direction.

For example, you want to search backward in the file for the three-letter patternthe .
Initiate the search with?the and continue it withn. The following screens offer a step-
by-step illustration of how then command searches backward through the file and finds
four occurrences of the character stringthe .

↓
Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

“Hey look! Here come the whales!“ he cried excitedly.
~
~
~
?the

Screen Editor (vi) Tutorial

7-31

n

n

n

The / and? search commands do not allow you to specify particular occurrences of a
pattern with numbers. You cannot, for example, request the third occurrence (after your
current position) of a pattern.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

“Hey look! Here come the whales!“ he cried excitedly.
 ↑

~
~
~

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

↑

“Hey look! Here come the whales!“ he cried excitedly.
~
~
~

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

 ↑

“Hey look! Here come the whales!“ he cried excitedly.
~
~

↓
Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

“Hey look! Here come the whales!“ he cried excitedly.
~
~

User’s Guide

7-32

Table 7-9 summarizes thevi commands for moving the cursor by scrolling the text,
specifying a line number, and searching for a pattern.

Positioning the Cursor and Scrolling with vi: Exercises 7

Exercise 2-1:

1. Create a file calledexer2 .

2. Type a number on each line, numbering the lines sequentially from 1 to 50.
Your file should look similar to the following:

Table 7-9. Summary of Additional vi Motion Commands

Scrolling

Command Function

<CTRL><f> Scroll the screen forward a full window, revealing the
window of text below the current window.

<CTRL><d> Scroll the screen down a half window, revealing lines below
the current window.

<CTRL> Scroll the screen back a full window, revealing the window
of text above the current window.

<CTRL><u> Scroll the screen up a half window, revealing the lines of
text above the current window.

Positioning on a Numbered Line.

Command Function

1G Go to the first line of the file.

G Go to the last line of the file.

<CTRL><g> Give the line number and file status.

Searching for a Pattern

Command Function

/ pattern Search forward in the buffer for the next occurrence of the
pattern. Position the cursor on the first character of the
pattern.

?pattern Search backward in the buffer for the first occurrence of the
pattern. Position the cursor under the first character of the
pattern.

n Repeat the last search command.

N Repeat the search command in the opposite direction.

Screen Editor (vi) Tutorial

7-33

3. Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

<CTRL><f> <CTRL> <CTRL><u> <CTRL><d>

4. Go to the end of the file.

5. Append the following line of text.

123456789 123456789

6. What number does the command7h place the cursor on?

7. What number does the command3l place the cursor on?

8. Try the command$ and the command0 (zero).

9. Go to the first character on the line that is not a blank.

10. Move to the first character in the next word.

11. Move back to the first character of the word to the left.

12. Move to the end of the word.

13. Go to the first line of the file. Try the commands that place the cursor in the
middle of the window, on the last line of the window, and on the first line of
the window.

14. Search for the number 8. Find the next occurrence of the number 8. Find
48.

Positioning the Cursor and Scrolling with vi: Answers for Exercises 7

Answers for Exercise 2-1

Type:

vi exer2 <RETURN>
a1 <RETURN>
2 <RETURN>
3 <RETURN>

.

.

 1
 2
 3
 .
 .
 .

48
49
50

User’s Guide

7-34

.
48 <RETURN>
49 <RETURN>
50 <ESC>

Type:

<CTRL><f> <CTRL> <CTRL><u> <CTRL><d>

Notice the line numbers as the screen changes.

Type:

G
$
a<RETURN>
123456789 123456789 <ESC>
7h
3l

Typing 7h puts the cursor on the2 in the second set of numbers. Typing3l puts the
cursor on the5 in the second set of numbers.

$ = end of line
0 = first character in the line

Type:

^
w
b
e

Type:

1G
M
L
H

Type:

/8 <RETURN>
n
/48 <RETURN>

Creating Text with vi 7

Three basic commands enable you to create text:

a Append text.

i Insert text.

Screen Editor (vi) Tutorial

7-35

o Open a new line on which text can be entered.

After you finish creating text with any one of these commands, you can return to the
command mode ofvi by pressing the <ESC> key.

Appending Text with vi 7

a Append text after the cursor.

A Append text at the end of the current line.

You have already experimented with thea command in the“Creating Text with vi”
section. Make a new file namedjunk2 . Append some text using thea command. To
return to the command mode ofvi , press the <ESC> key. Then compare thea command
to theA command.

Inserting Text with vi 7

i Insert text before the cursor.

I Insert text at the beginning of the current line before the first character that is
not a blank.

To return to the command mode ofvi , press the <ESC> key.

In the following examples you can compare the append and insert commands. The arrows
show the position of the cursor, where new text will be added.

• Example 1:

a <SPACEBAR> <SPACEBAR> <SPACEBAR>

• Example 2:

Append three spaces AFTER the H of Here.
 ↑

~
~
~

Append three spaces AFTER the H of H ere.
↑

~
~
~

User’s Guide

7-36

i <SPACEBAR> <SPACEBAR> <SPACEBAR>

Notice that, in both cases, the user has left text insert mode by pressing the <ESC> key.

Opening a New Line with vi 7

o Create text from the beginning of a new line below the current line. You can
issue this command from any point in the current line.

O Create text from the beginning of a new line above the current line. This
command can also be issued from any position in the current line.

The open command creates a line directly above or below the current line, and puts you
into the insert mode. For example, in the following screens theO command opens a line
above the current line, and theo command opens a line below the current line. In both
cases, the cursor waits for you to enter text from the beginning of the new line, as shown
in the following examples:

• Example 1:

O

Insert three spaces BEFORE the H of Here.
 ↑

Insert three spaces BEFORE the H of Here.
 ↑

~
~
~

Create text ABOVE the current line.
 ↑

~
~

Screen Editor (vi) Tutorial

7-37

• Example 2

o

 Table 7-10 summarizes the commands for creating and adding text with thevi editor.

Table 7-10. Summary of vi Create Text Commands

Command Function

a Create text after the cursor.

A Create text at the end of the current line.

i Create text in front of the cursor.

I Create text before the first character that is not a blank on the cur-
rent line.

o Create text at the beginning of a new line below the current line.

O Create text at the beginning of a new line above the current line.

<ESC> Returnvi to command mode from insert mode.

↓
 Create text ABOVE the current line.
~
~

Now create text BELOW the current line.
 ↑

~
~

Now create text BELOW the current line.

↑
~
~

User’s Guide

7-38

Creating Text with vi: Exercises 7

Exercise 3-1:

1. Create a text file calledexer3 .

2. Insert the following four lines of text.

Append text
Insert text
a computer's
job is boring.

3. Add the following line of text above the last line:

financial statement and

4. Using a text insert command, add the following line of text above the third
line:

Delete text

5. Add the following line of text below the current line:

byte of the budget

6. Using an append command, add the following line of text below the last
line:

But, it is an exciting machine.

7. Move to the first line and add the wordsome before the wordtext .

Practice using each of the six commands for creating text.

Leavevi and go on to the next section to find out how to delete any mistakes you
made in creating text.

Creating Text with vi: Answers for Exercises 7

Answers for Exercise 3-1:

1. Type:

vi exer3 <RETURN>

2. Type:

aAppend text <RETURN>
Insert text <RETURN>
a computer's <RETURN>
job is boring. <ESC>

3. Type:

financial statement and <ESC>

Screen Editor (vi) Tutorial

7-39

4. Type:

3G
iDelete text <RETURN>
<ESC>

The text in your file now reads:

Append text
Insert text
Delete text
a computer's
financial statement and
job is boring.

5. The current line isa computer's . To create a line of text below that
line, use theo command.

6. The current line isbyte of the budget .
G puts you on the bottom line.
A lets you begin appending at the end of the line.
<RETURN> creates the new line.
Add the sentence:But, it is an exciting machine.
<ESC> leaves insert mode.

7. Type:

1G
/text
i
some<SPACEBAR> <ESC>

ZZ writes the buffer toexer3 and returns you to the shell.

Deleting Text with vi 7

You can delete text with various commands in the command mode, and undo the entry of
small amounts of text in insert mode. In addition, you can entirely undo the effects of your
most recent command.

Deleting Text in Insert Mode 7

To delete a character at a time when you are in insert mode, use the<BACKSPACE>
key; the cursor will move backward, silently “marking” each character it touches to be
deleted. These characters are not actually erased from the screen, however, until you type
over them or press the <ESC> key to return to the command mode.

In the following example, the arrows represent the cursor.

User’s Guide

7-40

<BACKSPACE> <BACKSPACE>

<ESC>

Notice that the characters were not erased from the screen until the <ESC> key was
pressed.

Two other keys can also delete text in insert mode. Although you may not use them often,
you should be aware that they are available. To remove the special meanings of these keys
so they can be typed as text, precede the key with <CTRL><v>. Refer to the following
table.

When you type <CTRL><w>, the cursor backs up over the word last typed and waits on
the first character of that word. It does not erase the word from the screen until you press
the <ESC> key or enter new characters over the old ones. The “kill” character behaves in
a similar manner, except that it removes all text you have typed on the current line since
you last entered the insert mode.

Table 7-11. CTRL-w, kill, and CTRL-v Editing Keys

<CTRL><w> Undo the entry of the current word.

kill Your terminal's “kill” character deletes all the text on the
current line entered in insert mode. Type “stty” to display
terminal settings. The @ is the default kill character.

<CTRL><v> Remove the special meaning, if any, of the following
character.

Mary had a litttl
 ↑

~
~

Mary had a litttl
↑

~
~

Mary had a litt
↑

~
~
~

Screen Editor (vi) Tutorial

7-41

Undoing Changes in Command Mode: The u and U Commands 7

Before trying the delete commands, you should experiment with the undo command,u.
This command undoes the last command you issued.

u Undo the last command.

U Restore the current line to its state before you changed it.

If you delete lines by mistake, typeu; your lines will reappear on the screen. If you type
the wrong command, typeu and it will be nullified. TheU command will nullify all
changes made to the current line as long as the cursor has not been moved from it.

If you typeu twice in a row, the second command will undo the first; your undo will be
undone! For example, if you delete a line by mistake and restore it by typingu, typingu a
second time will delete the line again. Knowing this command can save you a lot of
trouble.

Deleting Text in Command Mode 7

You know that you can precede a command by a number. Many of the commands invi ,
such as the delete and change commands, also allow you to enter a cursor movement
command after another command. The cursor movement command can specify a text
object such as a word, line, sentence, or paragraph. The general format of avi command
is:

[number][command] text_object

The brackets around some components of the command format show that those
components are optional.

All delete commands issued in the command mode immediately remove unwanted text
from the screen and, on most terminals, redraw the affected part of the screen.

The delete command follows the general format of avi command.

[number]d text_object

Deleting Words: The dw Command 7

You can delete a word or part of a word with thedw command. Move the cursor to the first
character to be deleted and typedw. The character under the cursor and all subsequent
characters in that word are erased.

User’s Guide

7-42

2dw

Thedw command deletes one word or punctuation mark and the space(s) that follow it.
You can delete several words or marks at once by specifying a number before the
command. For example, to delete three words and two commas, type5dw.

5dw

Deleting Paragraphs: The d{ and d} Commands 7

To delete paragraphs, use the following commands:

d{ or d}

Observe what happens to your file. Remember, you can restore the deleted text withu.

the deep dark depths of the lake.
↑

~
~

the depths of the lake.
↑

~
~

the deep, deep, dark depths of the lake
 ↑

~
~

the depths of the lake
↑

~
~
~

Screen Editor (vi) Tutorial

7-43

Deleting Lines: The dd Command 7

To delete a line, typedd. To delete multiple lines, specify a number before the command.
For example, typing

10dd

erases ten lines. If you delete more than five lines,vi displays the following notice on the
bottom of the screen:

10 lines deleted

If fewer than ten lines are below the current line in the file, a bell sounds and no lines are
deleted.

Deleting Text after the Cursor: The d and D Commands 7

To delete all text on a line after the cursor, put the cursor on the first character to be deleted
and type:

D or d$

Neither of these commands allows you to specify a number of lines; they can be used only
on the current line.

Table 7-12 summarizes thevi commands for deleting text.

Table 7-12. Summary of vi Delete Text Commands

For Command Mode:

Command Function

u

U

x

ndx

dw

dW

dd

D

d)

d}

Undo the last command.

Restore current line to its previous state.

Delete the current character.

Deleten number of text objects of typex.

Delete the word at the cursor through the next space or to the next punctuation mark.

Delete the word and punctuation at the cursor through the next space.

Delete the current line.

Delete the portion of the line to the right of the cursor.

Delete from the current position to the end of the current sentence.

Delete from the current position to the end of the current paragraph

User’s Guide

7-44

Table 7-12. Summary of vi Delete Text Commands (Cont.)

Deleting Text with vi: Exercises 7

Exercise 4-1:

1. Create a file calledexer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

2. Move the cursor to line two and append to the end of that line:

, tedious, and unsavory

Delete the wordunsavory while you are in insert mode.

Delete the wordboring while you are in command mode.

What is another way you could have deleted the wordboring ?

3. Insert at the beginning of line four:

congenial and computerized

Delete the line.

How can you delete the contents of the line without removing the line itself?

Delete all the lines with one command.

4. Leave the screen editor and remove the empty file from your directory.

For Insert Mode:

Command Function

<BACKSPACE> <ESCAPE>

<CTRL><w> <ESCAPE>

@ (Kill Character) <ESCAPE>

Delete the current character.

Delete the current word.

Delete the current line of new text or delete all new text on the cur-
rent line. (Note that the “kill Character” (i.e., @) is defined under
stty in your .login file.)

Screen Editor (vi) Tutorial

7-45

Deleting Text with vi: Answers for Exercises 7

Answers for Exercise 4-1:

1. Type:

vi exer4 <RETURN>
aWhen in the course of human events <RETURN>
there are many repetitive, boring <RETURN>
chores, then one ought to get a <RETURN>
robot to perform those chores. <ESC>

2. Type:

2G
A
, tedious, and unsavory <CTRL><w> <ESC>

PressFb to get to theb of boring . Then type:

dw or 6x

3. You are at the second line. Type:

2j
I congenial and computerized <ESC>
dd

To delete the line and leave it blank, type in:

u (to undo the dd)
0 (zero moves the cursor to the beginning of the line)
D
d1G

4. Write and quitvi :

ZZ

Remove the file:

rm exer4 <RETURN>

Modifying Text with vi 7

The delete commands and text input commands provide one way for you to modify text.
Another way you can change text is by using a command that lets you delete and create
text simultaneously. There are three basic change commands:r , s , andc .

User’s Guide

7-46

Replacing Text: The r and R Commands 7

r x Replace the current character (the character shown by the cursor) withx. This
command does not start insert mode, and so does not have to be followed by
pressing the <ESC> key.

nr x Replacen characters on the current line withx. This command automatically
terminates after thenth character is replaced. It does not have to be followed
by pressing the <ESC> key.

R Replace only those characters typed over until the <ESC> command is given.
If the end of the line is reached, this command appends the input as new text.

The r command replaces the current character with the next character typed in. For
example, suppose you want to change the wordacts to ants in the following sentence:

The circus has many acts.

Place the cursor under thec of acts and type:

rn

The sentence becomes

The circus has many ants.

To changemany to 7777 , place the cursor under them of many and type:

4r7

Ther command changes the four letters ofmany to four occurrences of the number7.

The circus has 7777 ants.

Substituting Text: The s and S Commands 7

The substitute command replaces characters, but then allows you to continue to insert text
from that point until you press the <ESC> key.

s Delete the character shown by the cursor and append text. End insert mode by
pressing the <ESC> key.

ns Deleten characters and append text. End insert mode by pressing the <ESC>
key.

S Replace all the characters in the line.

When you enter thes command, the last character in the string of characters to be
replaced is overwritten by a$ sign. The characters are not erased from the screen until you
type over them, or leave insert mode by pressing the <ESC> key.

Notice that you cannot use a text-object argument with eitherr or s . Did you try?

Screen Editor (vi) Tutorial

7-47

Suppose you want to substitute the word million for the word hundred in the sentenceMy
salary is one hundred dollars. Put the cursor under theh of hundred and
type7s . Notice where the$ sign appears.

7smillion <ESC>

Changing Text: The c, cw, cc, and C Commands 7

The substitute command replaces characters. The change command replaces text-objects,
and then continues to append text from that point until you press the <ESC> key. To end
the change command, press the <ESC> key.

The change command can take a text-object argument. You can replace a character, word,
an entire line, and so on, with new text.

ncx Replace n text-objects of typex, such as sentences and paragraphs (shown by
) and} , respectively).

cw Replace a word or the remaining characters in a word with new text. Thevi
editor prints a$ sign to show the last character to be changed.

ncw Replacen words.

cc Replace all the characters in the line.

ncc Replace all characters in the current line and up ton lines of text.

C Replace the remaining characters in the line, from the cursor to the end of the
line.

nC Replace the remaining characters from the cursor in the current line and
replace all the lines following the current line up ton lines.

The change command,c , uses a$ sign to mark the last letter to be replaced. Notice how
this works in the following example:

My salary is one hundred dollars.
 ↑

~
~
~

My salary is one million dollars.
↑

~
~
~

User’s Guide

7-48

cw

Wednesday <ESC>

Notice that the new word (Wednesday) has more letters than the word it replaced
(Tuesday). Once you have executed the change command, you are in insert mode and
can enter as much text as you want. The buffer will accept text until you press the <ESC>
key.

TheC command, when used to change the remaining text on a line, works in the same
way. When you enter the command it uses a$ sign to mark the end of the text that will be
deleted, puts you in insert mode, and waits for you to type new text over the old. The
following screens show the use of theC command.

C

They are now due to arrive on Tuesday.
↑

~
~

They are now due to arrive on Tuesda$.
↑

~
~

They are now due to arrive on Wednesday.
↑

~
~
~

This is line 1.
Oh, I must have the wrong number.
↑
This is line 3.
This is line 4.

~
~

Screen Editor (vi) Tutorial

7-49

This is line 2. <ESC>

Now try combining arguments. For example, type:

c{

Because you know the undo command, do not hesitate to experiment with different
arguments or to precede the command with a number. You must press the <ESC> key
before using theu command, because thec command places you in insert mode.

Compare theS andcc commands. Both produce the same results.

Table 7-13 summarizes thevi commands for changing text.

Table 7-13. Summary of vi Change Text Commands

Command Function

r Replace the current character.

R Replace only those characters typed over with new characters until
the <ESC> key is pressed.

s Delete the character the cursor is on and append text. End insert mode
by pressing the <ESC> key.

S Replace all the characters in the line.

cc Replace all the characters in the line.

ncx Replacen number of text objects of typex, such as sentences (shown
by)) and paragraphs (shown by}).

cw Replace a word or the remaining characters in a word with new text.

C Replace the remaining characters in the line, from the cursor to the
end of the line.

This is line 1.
Oh, I must have the wrong number$
↑
This is line 3.
This is line 4.
~
~

This is line 1.
This is line 2.

↑
This is line 3.
This is line 4.
~
~

User’s Guide

7-50

Cutting and Pasting Text with vi 7

vi provides a set of commands that cut and paste text in a file. Another set of commands
copies a portion of text and places it in another section of a file.

Pasting Text: The p and P Commands 7

You can move text from one place to another in thevi buffer by deleting the lines and
then placing them at the required point. The last text that was deleted is stored in a
temporary buffer. If you move the cursor to the part of the file where you want the deleted
lines to be placed and press thep key, the deleted lines will be added below the current
line.

p Place the contents of the temporary buffer after the cursor or below the current
line.

P Place the contents of the temporary buffer before the cursor or above the
current line.

A partial line that was deleted by theD command can be placed in the middle of another
line. Position the cursor in the space between two words, then press thep key. The partial
line is placed after the cursor.

Characters deleted bynx also go into a temporary buffer. Any text object that was just
deleted can be placed somewhere else in the text with thep command.

The p command should be used right after a delete command because the temporary
buffer stores the results of only one command at a time. Thep command is also used to
copy text placed in the temporary buffer by the yank command. The yank command (y) is
discussed later in this section.

Fixing Transposed Letters: The xp Command 7

A quick way to fix transposed letters is to combine thex andp commands asxp . Thex
deletes the letter, and thep places it after the next character.

Notice the error in the following line:

A line of tetx

This error can be changed quickly by placing the cursor under the t in tx and then
pressing thex andp keys, in that order. The result is:

A line of text

Try this. Make a typing error in your file and use thexp command to correct it. Why does
this command work?

Screen Editor (vi) Tutorial

7-51

Copying Text: The y and yy Commands 7

You can yank (copy) one or more lines of text into a temporary buffer, and then put a copy
of that text anywhere in the file. To put the text in a new position, typep; the text will
appear on the next line.

The yank command follows the general format of avi command.

[number]y[text_object]

Yanking lines of text does not delete them from their original position in the file. If you
want the same text to appear in more than one place, this provides a convenient way to
avoid typing the same text several times. However, if you do not want the same text in
multiple places, be sure to delete the original text after you have put the text into its new
position.

Table 7-14 summarizes the ways you can use the yank command.

Notice that this command allows you to specify the number of text objects to be yanked.

Try the following command lines and see what happens on your screen. Remember, you
can always undo your last command. Type:

5yw

Move the cursor to another spot. Type:

p

Now try yanking a paragraph (by typingy}) and placing it after the current paragraph.
Then move to the end of the file (by typingG) and place that same paragraph at the end of
the file.

Table 7-14. Summary of the Yank Command

Command Function

nyx Yank n number of text-objects of typex (such as sentences,
shown by) , and paragraphs, shown by}).

yw Yank a copy of a word.

yy Yank a copy of the current line.

nyy Yankn lines.

y) Yank all text up to the end of the sentence.

y} Yank all text up to the end of the paragraph.

User’s Guide

7-52

Copying or Moving Text Using Registers 7

As you edit a file you may want to rearrange parts of your text or include the same text
more than once in the file.vi provides a simple two-step procedure for moving or
copying multiple lines of text: you store some text in a temporary file or “register,” and
then copy the contents of the register into the file being edited.

1. Store the text to be moved (or copied) in a register, using either of two
commands:y (short for “yank”) ord (short for “delete”). To do this, you
must specify: (a) the number of text objects (such as lines or paragraphs)
you want; (b) a double quote sign (”), the prefix for the name of a register;
(c) a single-letter (lowercase) name (of your choice) for the register; (d) the
appropriate command for extracting text (eithery or d); and (e) the type of
text object you want to extract. Enter the command as follows:

[number][“ x] command[text_object]

The extracted text stays in the specified register until you either end the
editing session or add more text (via yank or delete) to that register.

2. Copy the contents of the register into the file being edited with thep
command. Enter the command as follows:

[“ x]p

For example, suppose you want to copy the first three lines of a file to the end of that file.
You can do this by storing the three lines in a register calleda and then copyinga at the
end of the file. Because you are copying (rather than moving) text, use the yank command,
as follows:

3“ayy

Notice that the text object in this example is specified by a secondy (after they
command). When the command character (eithery or d) is duplicated in this way, the text
object being requested is a line. Thus, in the above command line, you are yanking three
lines and storing them in a register calleda.

Now move the cursor to the end of the file. Type:

“ap

Did the lines you saved in registera appear at the end of the file?

Table 7-15 summarizes the cut and paste commands.

Cutting and Pasting Text with vi: Exercises 7

Exercise 5-1:

1. Entervi with the file calledexer2 that you created earlier in this chapter.

Go to line 8 and change its contents toEND OF FILE .

Screen Editor (vi) Tutorial

7-53

2. Yank the first eight lines of the file and place them in registerz . Put the
contents of registerz after the last line of the file.

3. Go to line 8 and change its contents toeight is great .

4. Go to the last line of the file. SubstituteEXERCISE for FILE . ReplaceOF
with TO.

Cutting and Pasting Text with vi: Answers for Exercises 7

Exercise 5-1:

1. Type:

vi exer2 <RETURN>
8G
cc
END OF FILE <ESC>

2. Type:

1G
8“zyy
G
“zp

3. Type:

8G
cc
8 is great <ESC>

Table 7-15. Summary of vi Cut and Paste Commands

Command Function

p Place the contents of the register containing the text
obtained from the most recent delete or yank command
into the text after the cursor.

yy Yank a line of text and place it into a temporary buffer.

nyx Yank a copy ofn number of text objects of typex and
place them in a temporary buffer.

” ryx Place a copy of a text object of typex in the registerr.

” rp Place the contents of the registerr after the cursor.

User’s Guide

7-54

4. Type:

G
2w
cw
EXERCISE <ESC>
2b
cw
TO <ESC>

Using Other vi Commands 7

The following table contains some special commands you may find useful:

Repeating the Last Command: The . Command 7

The . (period) repeats the last command to create, delete, or change text in the file. It is
often used with the search command.

For example, suppose you forget to capitalize theS in “United States.” You want to
correct your error, but you do not want to capitalize thes in the phrase “chemical states.”
One way to solve this problem is by searching for the wordstates . The first time you
find it in the expression “United States,” you can change thes to S. Then continue your
search. When you find another occurrence, you can simply type a period;vi will
remember your last command and repeat the substitution ofS for s .

Experiment with this command. For example, if you try to add a period at the end of a sen-
tence while in command mode, the last text change will suddenly appear on the screen.
Watch the screen to see how the text is affected.

Joining Two Lines: The j and J Commands 7

TheJ command joins lines. To enter this command, place the cursor on the current line,
and press the <SHIFT> andJ keys simultaneously. The current line is joined with the
line that follows it.

For example, suppose you have the following two lines of text:

Table 7-16. Special vi Commands

. Repeat the last command.

J Join two lines together.

<CTRL><l> Clear the screen and redraw it.

~ Change lowercase to uppercase and vice versa.

Screen Editor (vi) Tutorial

7-55

Dear Mr.
Smith:

To join these two lines into one, place the cursor under any character in the first line and
type:

J

You will immediately see the following on your screen:

Dear Mr. Smith:

Notice thatvi automatically places a space between the last word on the first line and the
first word on the second line.

Clearing and Redrawing the Window 7

If another UNIX system user sends you a message using the write command while you are
editing withvi , the message will appear in your current window, over part of the text you
are editing. To restore your text after you have read the message, you must be in the
command mode. If you are in insert mode, press the <ESC> key to return to the
command mode. Then type <CTRL><l> (control-l).vi erases the message and redraws
the window exactly as it appeared before the message arrived.

Changing Lowercase to Uppercase and Vice Versa: The ~ Command 7

A quick way to change any lowercase letter to uppercase, or vice versa, is to put the cursor
on the letter to be changed and type a~ (tilde). For example, to change the lettera to A,
press~. You can change several letters by typing~ several times, or you can precede the
command with a number to change several letters with that one command.

Table 7-17 summarizes the special commands.

Table 7-17. Summary of Special vi Commands

Command Function

. Repeat the last command.

J Join the line below the current line with the current line.

<CTRL><l> Clear and redraw the current window.

~ Change lowercase to uppercase, or vice versa.

User’s Guide

7-56

Using Line Editor (ex) Commands in vi 7

Thevi editor has access to many of the commands provided by a line editor calledex .
For a complete list ofex commands see the ex(1) page in the onlineCommand
Reference. This section discusses some of those most commonly used.

Theex commands are very similar to theed commands discussed in the “Line Editor (ed)
Tutorial” chapter.

Line editor commands begin with a: (colon). After you type the colon, the cursor drops
to the bottom of the screen and displays the colon. The remainder of the command also
appears at the bottom of the screen as you type it.

Returning to the Shell: The :sh and :! Commands 7

When you entervi , the contents of the buffer fills your screen, making it impossible to
issue any shell commands. However, you may want to do so. For example, you may want
to get information from another file to incorporate into your current text. You could get
that information by running one of the shell commands that displays the text of a file on
your screen, such as thecat or pg command. However, quitting and reentering the editor
is time consuming and tedious. vi offers two methods of escaping the editor temporarily
so that you can issue shell commands (and even edit other files) without having to write
your buffer and quit. These temporary escape commands are the:! command and the
:sh command.

The :! command allows you to escape the editor and run a shell command on a single
command line. From the command mode ofvi , type:! . These characters are printed at
the bottom of your screen. Type a shell command immediately after the! . The shell will
run your command, give you output, and print the message[Hit return to
continue] . When you press the<RETURN> key vi refreshes the screen and the
cursor reappears exactly where you left it.

Theex command:sh allows you to do the same thing, but behaves differently on the
screen. From the command mode ofvi type:sh and press the<RETURN> key. A shell
command prompt appears on the next line. Type your command(s) after the prompt, as
you would normally do while working in the shell. When you are ready to return tovi ,
type <CTRL><d> or exit ; your screen is refreshed with the contents of your buffer and
the cursor appears where you left it.

Even changing directories while you are temporarily in the shell will not prevent you from
returning to thevi buffer where you were editing your file when you typeexit or
<CTRL><d>.

Writing Text to a New File: The :w Command 7

The :w (for write) command allows you to create a file by copying lines of text from the
file you are currently editing into a file that you specify. To create your new file, you must

Screen Editor (vi) Tutorial

7-57

specify a line or range of lines (with their line numbers), along with the name of the new
file, on the command line. You can write as many lines as you like. The general format is:

: line_number[, line_number]w filename

For example, to write the third line of the buffer to a line namedthree , type:

:3w three <RETURN>

vi reports the successful creation of your new file with the following information:

“three” [New file] 1 line, 20 characters

To write your current line to a file, you can use a. (period) as the line address:

:.w junk <RETURN>

A new file calledjunk is created. It will contain only the current line in thevi buffer.

You can also write a whole section of the buffer to a new file by specifying a range of
lines. For example, to write lines 23 through 37 to a file, type the following:

:23,37w newfile <RETURN>

Moving to a Specified Line: The : Command 7

You can move the cursor to any line in the buffer by typing: and the line number. The
command line

: n <RETURN>

means to go to thenth line of the buffer.

Deleting the Rest of the Buffer: The :.,$d Command 7

One of the easiest ways to delete all the lines between the current line and the end of the
buffer is by using the line editor commandd with the special symbols for the current and
last lines.

:.,$d <RETURN>

• . (period) represents the current line

• $ (dollar sign) represents the last line.

Reading a File into the Buffer: The :r Command 7

To add text from a file below a specific line in the editing buffer, use the:r (read)
command. For example, to put the contents of a file calleddata into your current file,
place the cursor on the line above the place where you want it to appear. Type:

User’s Guide

7-58

:r data <RETURN>

You may also specify the line number instead of moving the cursor. For example, to insert
the filedata below line 56 of the buffer, type:

:56r data <RETURN>

Do not be afraid to experiment; you can use theu command to undoex commands, too.

Making Global Changes: The :g Command 7

One of the most powerful commands inex is the global command. The global command
is given here to help those users who are familiar with a line editor. Even if you are not
familiar with a line editor, you may want to try the command on a test file.

For example, say you have several pages of text about the DNA molecule in which you
refer to its structure as a helix. Now you want to change every occurrence of the word
helix to the words double helix. Theex editor's global command allows you to do this
with one command line. First, you have to understand a series of commands.

:g/ pattern/command<RETURN>

For each line containing pattern,
execute the ex command named command.
For example,
type: :g/helix/p <RETURN>.
The line editor prints all lines that contain
the pattern helix.

:s/ pattern/new_words/ <RETURN>

This is the substitute command.
The line editor searches for the first instance of the
characters pattern on the current
line and changes them to new_words.

:s/ pattern/new_words/g <RETURN>

If you add the letter g after the last
delimiter of this command line,
ex changes every occurrence of pattern
on the current line.
If you do not add the letter g,
ex changes only the first occurrence.

:g/helix/s//double helix/g < RETURN>

This command line searches for the word helix.
Each time the word helix is found,
the substitute command substitutes two words,
double helix, for every instance of
helix on that line.
The delimiters after the s command do not require

Screen Editor (vi) Tutorial

7-59

that the word helix be typed in again.
The command remembers the word from the delimiters
after the global command g.
This is a powerful command.
For a more detailed explanation of global
and substitution commands,
see the ex(1) page in the onlineCommand Reference
and Chapter 6, “Line Editor (ed) Tutorial” .

Table 7-18 summarizes theex line editor commands used withvi .

Table 7-18. Summary of Using ex Line Editor Commands with vi

Command Function

: Indicate that the commands following are
ex commands.

:sh < RETURN> Temporarily return to the shell to perform
shell commands.

<CTRL><d> Escape the temporary shell and return to
the current window ofvi to continue
editing.

: n <RETURN> Go to thenth line of the buffer.

: x,yw file <RETURN> Write lines from the numberx through the
numbery into a new file (file).

:$ < RETURN> Go to the last line of the buffer.

:.,$d < RETURN> Delete all the lines in the buffer from the
current line to the last line.

:r shell.file<RETURN> Insert the contents ofshell.file after the
current line of the buffer.

:s/ text/new_words/ <RETURN> Replace the first instance of the characters
text on the current line withnew_words.

:s/ text/new_words/g <RETURN> Replace every occurrence oftext on the
current line withnew_words.

:g/ text/s//new_words/g <RETURN> Replace every occurrence oftext in the file
with new_words.

User’s Guide

7-60

Quitting vi 7

Five basic command sequences can be used to quit thevi editor. Commands that are
preceded by a colon (:) areex commands. (Refer to the following table).

The:wq command and theZZ command, under the circumstances explained above, write
the contents of the buffer to a file, quitvi , and return you to the shell. You have tried the
ZZ command. Now try to exitvi with :wq . vi remembers the name of the file currently
being edited, so you do not have to specify it when you want to write the contents of the
buffer back into the file. Type:

:wq <RETURN>

Thevi editor tells you the name of the file and reports the number of lines and characters
in the file.

What must you do to give the file a different name? For example, suppose you want to
write to a new file calledjunk . Type:

:w junk <RETURN>

After you write to the new file, leavevi . Type:

:q <RETURN>

If you try to write to an existing file, you will receive a warning. For example, if you try to
write to a file calledjohnson , the system responds with:

“johnson” File exists - use “w! johnson” to overwrite

Table 7-19. Commands to Quit the vi Editor

:wq < RETURN> Write the contents of thevi buffer to the UNIX file
currently being edited and quitvi .

ZZ Write the buffer only if the contents of the buffer
changed since the last write command and quitvi .

:w filename
<RETURN>
:q < RETURN>

Write the temporary buffer to a new file named
filename, and quitvi .

:w! filename
<RETURN>
:q < RETURN>

Overwrite an existing file calledfilename with the
contents of the buffer and quitvi .

:q! < RETURN> Quit vi without writing the buffer to a file, and discard
all changes made to the buffer.

:q < RETURN> Quit vi without writing the buffer to a UNIX file. This
works only if you have made no changes to the buffer;
otherwisevi warns you that you must either save the
buffer or use the:q! < RETURN> command to
terminate.

Screen Editor (vi) Tutorial

7-61

If you want to replace the contents of the existing file with the contents of the buffer, use
the:w! command to overwritejohnson .

:w! johnson <RETURN>

Your new file will overwrite the existing one.

If you edit a file calledmemo, make some changes to it, and then decide you don't want to
keep the changes, leavevi without writing to the file. Type:

:q! <RETURN>

Table 7-20 summarizes the quit commands.

Using vi Command Line Options 7

Several command line options are available when invokingvi . These options allow you
to:

• recover a file lost ifvi is interrupted

• place several files in the editing buffer and edit each in sequence

• view a file without risk of accidentally changing the file.

Recovering a Lost File: The -r Option 7

If an interrupt or disconnect occurs,vi exits without writing the text in the buffer back to
its file. However,vi stores a copy of the buffer for you. When you log back in to the

Table 7-20. Summary of vi Quit Commands

Command Function

ZZ Write the file if it has changed since the last write
command and quitvi .

:wq < RETURN> Write the file and quitvi

:w filename<RETURN>
:q < RETURN>

Write the editing buffer to a new file (filename) and
quit vi .

:w! filename<RETURN>
:q < RETURN>

Overwrite an existing file (filename) with the contents
of the editing buffer and quitvi .

:q! < RETURN> Quit vi without writing the buffer to a file even if the
buffer changed.

:q < RETURN> Quit vi without writing the buffer to a file only if the
buffer has not changed.

User’s Guide

7-62

UNIX system, you will receive a system message that indicates that you can recover the
file with the-r option of thevi command.

Type:

vi -r filename <RETURN>

All or most of the changes you made tofilename before the interrupt occurred are now in
thevi buffer. You can continue editing the file, or you can write the file and quitvi . The
vi editor will remember the filename and write to that file.

Editing Multiple Files 7

If you want to edit more than one file in the same editing session, issue thevi command,
specifying each filename. Type:

vi file1 file2 <RETURN>

vi responds by telling you how many files you are going to edit. For example:

2 files to edit

After you have edited the first file, write your changes (in the buffer) to the file (file1).
Type

:w <RETURN>

The system response to the:w < RETURN> command is a message at the bottom of the
screen giving the name of the file and the number of lines and characters in that file. Then
you can edit the next file by using the:n command. Type:

:n <RETURN>

The system responds by printing a notice at the bottom of the screen, telling you the name
of the next file to be edited and the number of characters and lines in that file.

Select two of the files in your current directory; then entervi and place the two files in the
editing buffer at the same time. Notice the system responses to your commands at the
bottom of the screen.

Viewing a File: Using view 7

It is often convenient to be able to inspect a file by using the powerful search and scroll
capabilities ofvi . However, you might want to protect yourself against accidentally
changing a file during an editing session. The read-only option prevents you from writing
in a file. To avoid accidental changes, you can set this option by invoking the editor as
view rather thanvi .

Table 7-21 summarizes the command line options forvi .

Screen Editor (vi) Tutorial

7-63

Using vi Command Line Options: Exercises 7

Exercise 6-1:

1. Try to restore a file lost by an interrupt.

Entervi , create some text in a file calledexer6 .

2. Turn off your terminal without writing to a file or leavingvi .

3. Turn your terminal back on, and log in again.

4. Try to get back intovi and editexer6 .

Exercise 6-2:

1. Placeexer1 andexer2 in thevi buffer to be edited.

2. Writeexer1 and call in the next file in the buffer,exer2 .

3. Writeexer2 to a file calledjunk .

4. Quitvi .

Exercise 6-3:

1. Try out the command:

vi exer* <RETURN>

What happens?

2. Try to quit all the files as quickly as possible.

Exercise 6-4:

1. Look atexer4 in read-only mode.

2. Scroll forward.

3. Scroll down.

Table 7-21. Summary of vi Command Line Options

Option Function

vi file1 file2 file3
<RETURN>

Enter three files (file1, file2, andfile3) into thevi
buffer to be edited.

:w < RETURN>
:n < RETURN>

Write the current file and start editing the next file.

vi -r file1 <RETURN> Recover the changes made tofile1.

view file <RETURN> Inspect file with the read-only option set, prevent-
ing accidental changes tofile.

User’s Guide

7-64

4. Scroll backward.

5. Scroll up.

6. Quit and return to the shell.

Using vi Command Line Options: Answers for Exercises 7

Answers for Exercise 6-1:

Type:

vi exer6 <RETURN>
a(append several lines of text)<RETURN>

Turn off the terminal.

Turn on the terminal.

Log in on your UNIX system.

Type:

vi -r exer6 <RETURN>
:wq <RETURN>

Answers for Exercise 6-2:

Type:

vi exer1 exer2 <RETURN>
:w <RETURN>
:n <RETURN>
:w junk <RETURN>
ZZ

Answers for Exercise 6-3:

Type:

vi exer* <RETURN>

vi calls all files with names that begin withexer , so it displays the following message:

8 files to edit

Type

:q!

Screen Editor (vi) Tutorial

7-65

Answers for Exercise 6-4:

Type:

view exer4 <RETURN>
<CTRL><f> <CTRL><d> <CTRL> <CTRL><u> :q <RETURN>

Displaying and Setting Environment Options 7

The ex line editor provides several options to help you customize yourvi editing
environment. These options are listed in Table 7-22.

NOTE

This list may not contain all the options available for your system.

Table 7-22. Summary of vi Environment Options

Option Name Abbreviation Default

autoindent ai noai

autoprint ap ap

autowrite aw noaw

beautify bf nobf

directory dir dir=/tmp

edcompatible ed noed

errorbells eb noeb

exrc ex noex

flash fl fl

hardtabs ht ht=8

ignorecase ic noic

lisp — nolisp

list — nolist

magic — magic

mesg — mesg

modelines ml noml

number nu nonu

novice — nonovice

optimize opt noopt

User’s Guide

7-66

As you can see from Table 7-22, there are three types of options:

on/off these options are turned off by typingno in front of the option name as shown
in the following example for the ignorecase (ic) option:

• ic ignores uppercase and lowercase distinctions

• noic recognizes upper and lowercase distinctions.

numeric these options require a numeric value, as shown in the following examples for
thewrapmargin(wm) option:

paragraphs para para=IPLPPQPP LIpplpipnpb

prompt — prompt

readonly ro noro

redraw — noredraw

remap — remap

report — report=5

scroll scr scr=12

sections sect sect=NHSHH HUuhsh+c

shell sh sh=yourloginshell (e.g.ksh , sh)

shiftwidth sw sw=8

showmatch sm nosm

showmode smd nosmd

slowopen slow noslow

tabstop ts ts=8

taglength tl tl=0

tags — tabs=tags /usr/lib/tags

term term=TERMvalue (e.g.630 , vt100)

terse — noterse

timeout to timeout

ttytype tty tty=machinedependent

warn — warn

window wi wi=24

wrapmargin wm wm=10

wrapscan ws ws

writeany wa nowa

Table 7-22. Summary of vi Environment Options (Cont.)

Option Name Abbreviation Default

Screen Editor (vi) Tutorial

7-67

• wm=10 inserts a<RETURN> (carriage return) on or before
ten spaces from the left of the right edge of the screen.

• wm=8 inserts a<RETURN> (carriage return) on or before
eight spaces from the left of the right edge of the screen.

string these options require a value as shown in the following examples for the
term and shell (sh) options:

• term=xterm

• sh= /bin/csh

Frequently Used ex Options 7

This section describes the following options for customizing yourvi environment:

• autowrite

• ignorecase

• list

• number

• term

• wrapmargin

• wrapscan

The autowrite Option 7

If the autowrite (aw) option is on, a:w command will automatically be performed
whenever you temporarily leave the file, or change the file with anex command (such as
:n , :! , :sh , :tag , and:rew).

Any changes that you made to a file will automatically be written to the file.

• to turn on this option with the:set command, type

:set aw <RETURN>

• to turn off this option with the:set command, type

:set noaw <RETURN>

The ignorecase Option 7

The ignorecase (ic) option is very useful for searches. When turned on, this option
makes no distinctions between uppercase and lowercase letters during searches. When
turned off, it distinguishes between uppercase and lowercase. For example, if you type

/REturn

User’s Guide

7-68

• to find all instances ofReturn , return , and<RETURN>, use the fol-
lowing :set command

:set ic <RETURN>

• to find all instances ofREturn in the text to correct a typographical error,
use the following:set command

:set noic <RETURN>

The list Option 7

The list option is very useful for finding characters that don't normally print on the
screen. When turned on, tab characters are marked by a^I character and the end of each
line is marked by a$ character. For example,

• when this option is turned on,

:set list <RETURN>

you can see the hidden space and tab characters and the end of the line is marked:

chicks^Iducks^Igeese^Ibetter scurry $

• when this option is turned off,

:set nolist <RETURN>

the same line looks like this

chicks ducks geese better scurry

This is option particularly useful fortroff (text formatting tool) tables.

The number Option 7

The number option is used to display line numbers in a file. This is useful forvi
commands that use line addressing such as theG command.

• to turn on this option with the:set command, type

:set nu <RETURN>

• to turn off this option with the:set command, type

:set nonu <RETURN>

The term Option 7

Occasionally, you may findvi operating oddly. Often, this is due to your terminal setting
being incorrectly defined. You can use theterm option to set the correct terminal type. To
do this with the:set command, type

:set term= terminal_type<RETURN>

Screen Editor (vi) Tutorial

7-69

The wrapmargin Option 7

If you want your text to be a certain width on the screen, you can use thewrapmargin
(wm) option to set the right margin. To do this with the:set command type

:set wm= n <RETURN>

n represents the number of characters from the right side of the screen where you want an
automatic carriage return to occur.vi automatically breaks lines by inserting a
<RETURN> character between words. An automatic return will be entered only between
words, not between syllables of a word.

The<RETURN> is inserted as close as possible to the new right margin. For example, if
you want a carriage return at ten characters from the right side of the screen, type:

:set wm=10 <RETURN>

The new right margin will be ten spaces to the left of the right edge of the screen.

The wrapscan Option 7

Thewrapscan option is useful for searches. When this option is turned off, searches stop
at the end of a file. When this option is turned on, searches continue from the start of the
search, through the end of the file, and back through the beginning of the file to the start of
the search. Withwrapscan turned on, searches are continuous around the end (or begin-
ning) of the buffer.

• to turn on this option with the:set command, type

:set ws <RETURN>

• to turn off this option with the:set command, type

:set nows <RETURN>

Setting and Displaying Options During a vi Session: The :set
Command 7

To display current option settings, when you are invi :

• type the following command to display the settings of all options you
changed

- during an editing session

- with theEXINIT environment variable

- in your .profile file

:set <RETURN>

• type the following command to display the settings of all options

:set all <RETURN>

User’s Guide

7-70

You can also use the:set command to create or change the environment options during
single editing session, as shown below:

:set option
:set nooption
:set option=number
:set option=string

For example, if you are working invi want to distinguish between uppercase and
lowercase letters during a search, type

:set noic <RETURN>

This will set theignorecase option tonoignorecase for a singlevi session. If you
leavevi and then return tovi , the options will return to the defaults that are set by the
EXINIT environment variable discussed later in this section.

Setting Options for a Single Login Session 7

You can set environment options for a single login session by setting and exporting the
EXINIT environment variable at the shell prompt. Separate each environment option by a
space and enclose them in quotes as shown in the following example:

$ EXINIT=“set ic wm=10 sh=/bin/ksh”
$ export EXINIT

Setting vi Environment Options for All Login Sessions 7

If you want your options to be set automatically every time you usevi , you can

• set theEXINIT environment variable in your.profile file

• list :set commands in a file called.exrc in your home directory.

NOTE

TheEXINIT environment variable overrides the options set in a
.exrc file. If the EXINIT environment variable is present, the
UNIX system will not check for a.exrc file.

Defining EXINIT in Your .profile 7

If you want to set your environment options for all your login session, edit your
.profile and include and export theEXINIT variable as shown in the following
example:

EXINIT=“set ic wm=10 sh=/bin/ksh”
export EXINIT

Screen Editor (vi) Tutorial

7-71

Creating a .exrc File 7

You can use a.exrc file to set options.

• a .exrc file in your home directory will set options for all your files in all
your directories .

• a .exrc file in subdirectory will only set options for files in that directory.

To create a.exrc file

1. Enter an editor with a.exrc filename:

$ vi .exrc < RETURN>

2. Type one line of text for each option as shown in the following example:

:set wm=10 <RETURN>
:set ic <RETURN>
:set sh=/bin/ksh <RETURN>

3. Finally, write the contents of the buffer to the file and quit the editor.

4. The next time you usevi , .exrc the options you set will be used.

NOTE

The options set using theEXINIT environment variable override
options set in the.exrc file. If EXINIT is present,.exrc
options are not used.

EXINIT and.exrc may include otherex commands such as
:map and :abbrev; see theex(1) page in the online
Command Reference.

User’s Guide

7-72

8
LP Print Service Tutorial

Introduction . 8-1
Providing Your Own Print Specifications. 8-1
Components of the LP Printing Process. 8-2
LP Security . 8-3
About This Chapter . 8-4

Enabling and Disabling a Printer. 8-4
Controlling the Printing Process . 8-6

Selecting a Print Destination . 8-6
Security Considerations. 8-6
Using a Server Printer . 8-7

Controlling Priorities in the Job Queue . 8-7
Requesting Messages from the Print Service . 8-8
Requesting Status Reports on Printers . 8-8

What Is the Status of the Printers? . 8-9
Which Forms Are Available? . 8-10
Which Character Sets or Print Wheels Are Available?. 8-10
What Is the Security Level of a Print Job? . 8-11

Changing a Print Request . 8-11
Canceling a Request: The cancel Command . 8-12

Customizing Printed Output with the lp Command . 8-12
Selecting the Content Type. 8-13
Defining the Page Size and Pitch Settings . 8-14
Removing Breaks between Files . 8-15
Eliminating the Banner Page . 8-15
Controlling Security Labeling of the Output . 8-15
Using Pre-printed Forms . 8-16
Using a Character Set or Print Wheel. 8-16
Special Printing Modes. 8-16
Copies to Be Printed. 8-17
Requesting Multiple Copies . 8-18
Using PostScript Printers . 8-18

Support of Non-PostScript Print Requests . 8-19
Additional PostScript Capabilities Provided by Filters. 8-19
How to Use PostScript Fonts . 8-21

Downloading Host-Resident Fonts . 8-21
Summary of the LP Print Service Commands. 8-22

User’s Guide

8-1

8
Chapter 8LP Print Service Tutorial

8
8
8

Introduction 8

The LP print service is a set ofUNIX system programs that help you print files on paper.
The name“LP” stands for “line printer,” the type of printing device for which the
print.service was designed originally. Now, however, because the print service can
accommodate many types of printing devices, the name“LP” is more historical than
descriptive.

The simplest way to use this print service is by running thelp command and specifying
the name of the file you want to print. Thelp command routes a job request to a
destination (such as a line printer or a laser printer) where it is placed in a queue to await
printing. The destination may be a printer or a class of printers. If you don't specify a
destination, the request is routed to the default destination.

When you enter such a command line, the system responds with a message that (a)
confirms the name of the printer doing the job, (b) assigns anID number to your print
request, and (c) acknowledges the number of files you've asked to have printed.

$ lp filename
request id is laser-9885 (1 file)

The system response shows that your job will be printed on a printer namedlaser (the
default printer for your system) and consists of one file. The string (set of characters)
laser-9885 is called a “request-ID”; use it to refer to a job when you are checking its
status.

If you print a file with this simple command, you don't need to make decisions about
issues such as the size of the paper; you can assume that when your system administrator
set up the print service he or she chose default values for specifications such as paper size.
(If you are the administrator of the print service for your computer, see the “LP Print
Service Administration” chapter inSystem Administration.) You are not limited to the use
of these default values, however. The following section explains how you can customize
your print job.

Providing Your Own Print Specifications 8

TheLP print service allows you to provide your own specifications for many aspects of a
print job.

• Do you want your file to be printed by a particular printer or a particular
type of printer?

User’s Guide

8-2

Default: assigned by the print service administrator.

• Do you want to print your file on plain paper (the stock selected by the
administrator)? Or do you want to use pre-printed forms, such as invoices
or invitations?

Default: plain paper.

• Do you want a particular font?

Default: assigned by the print service administrator.

• Do you want pages of a particular size?

Default: assigned by the print service administrator.

• Do you want to increase or decrease the number of lines of text that appear
in each inch on the page?

Default: assigned by the print service administrator.

Do you want a “banner page” to be printed along with your file? If the Enhanced
Security Utilities are installed, a banner page is always printed, even if you specify
otherwise.

• Do you want the security level of the data printed on every page of the out-
put?

Default: the security level is printed.

• If you're printing more than one file, do you want them to be printed as one
job (so there are no page breaks to mark separate files) or do you want them
to be printed in discrete segments, so each file begins on a new page?

Default: files are printed separately.

• Do you want more than one copy?

Default: one copy is printed.

If you specify only a filename when you run thelp command (as discussed above), you
do not need to answer any of these questions; your administrator will have answered them
when setting up the print service on your system. If you want “non-default” specifications
for your job, however, you will have to provide them on the command line.

There are several options you can include on your command line that will let you provide
your own job specifications. To understand these options, a brief look at the main compo-
nents of a print job will help you.

Components of the LP Printing Process 8

Printing a document with thelp command requires the interaction of five key
components: (1) your electronic file, (2) thelp program, (3) any filters your administrator
has installed (and you have requested), (4) any character sets (CS) or print wheels your

LP Print Service Tutorial

8-3

administrator has installed (and you have requested), and (5) the paper on which your file
is printed. The role of each component in the printing process is summarized in
Figure 8-1.

Figure 8-1. Main Components of a Print Job

In the example shown in Figure 8-1, the person printing the file has selected type C
character set and type A forms. Both of these selections are made when you request a print
job.

LP Security 8

NOTE

This section assumes you understand Mandatory Access Control
(MAC) and security levels. If you do not, read the“Mandatory
Access Control”section of Chapter 14, “Managing Files
Securely” of this guide before reading this section.

All items that contain data (such as files or pipes) have a security level associated with
them. These security levels reflect the sensitivity of the data; a higher security level
means the data is more sensitive to disclosure. Each user of the system also has a security
level. The computer system compares the user's security level with the security level of
the data to determine if the user can access the data.

The LP system uses security level checks to determine if you can print a file. You are
allowed to print a file only if you have MAC read access to it.

Once a file is printed, the computer system can no longer maintain access control of the
data. Unless the printed copy indicates the sensitivity of the data, access to the data cannot
be controlled properly. Therefore, the LP system automatically prints security level infor-

File

Output

Printer

2

4

5

1

3

lp

Computer

CS
C

CS
B

CS
A

A B C

Filer
Reformatted

File

162840

User’s Guide

8-4

mation on each page of paginated output and on the banner and trailer pages for each job.
(A banner page is a page the system prints to mark the beginning of a print job; the trailer
page marks the end.)

You can override the printing of security level information on the printed output, but not
on the banner and trailer pages. In addition, it is not possible to cancel the banner and
trailer pages. Thus, every print job always has complete security level information
associated with it.

Each printer on your system has a security level range associated with it. The printer can
print a file only if the file's security level is within the security level range of the device.
The security level range of the printer should reflect the physical security of the printer
itself. For example, if the printer is in an open location, it should not be used to print
sensitive information.

About This Chapter 8

This chapter describes three functions you may do while printing files:

• enabling and disabling a printer.

• controlling the process of printing by selecting a printer, monitoring the
printing process through messages and status reports, and, when necessary,
changing and canceling requests.

• controlling the appearance of the finished document by providing print
specifications such as fonts and the page size.

Enabling and Disabling a Printer 8

NOTE

Theenable anddisable commands are not always available
to users. Because enabling and disabling printers is an
administrative function, it is left to the discretion of the system
administrator to decide who should have access to these
commands. If you have access to these commands, you can enable
or disable a printer only if your security level is within the range
of the printer.

Before a printer is able to start printing files requested through thelp command, it must
be activated. You can activate a printer by issuing theenable command with one
argument: one printer or a list of printers.

$ enable printer_1 printer_2 printer_3 <RETURN>

You can verify that you have enabled a printer by requesting a status report for it (see
“Requesting Status Reports on Printers” later in this chapter).

LP Print Service Tutorial

8-5

There may be times when you want a printer to stop printing jobs. For example, hardware
malfunctions, paper jams, running out of paper, and shutdowns at the end of the day are all
situations that may require stopping the printer. To stop printing, deactivate the printer by
issuing thedisable command.

$ disable printer_1 <RETURN>

The printer will stop printing the current job and save it to complete later (when the printer
has been enabled again).

There are other ways to have the current job handled, however. You may have the current
job completed immediately, before the printer is disabled, by using the-W option.

On the other hand, you may not care whether or not it is completed at all. For example, if
the output being produced is full of printing errors (such as parts of the text being illegible
because of a lack of toner in the printer), you'll have to start the job over from the
beginning anyway, once you have resolved the problem. In cases such as this, you'll want
to disable the printer and cancel the job at the same time. To do so, specify the-c option;
the job currently being printed will be thrown out as the printer is disabled. The-W and
-c options are mutually exclusive.

NOTE

The -c and-W options will not work for jobs being sent to a
printer on a server system. This is because theenable anddis-
able commands do not actually activate or deactivate printers on
server systems; instead, they activate or deactivate the transfer of
files to a server system. As a result, the-c and-W options are
ignored when requested with thedisable command for a server
printer.

Finally, when you disable a printer, it is a good idea to record the reason for your action so
other users may understand why a particular printer is unavailable. To record your reason,
add the-r option, followed by a reason, to the command line. Be sure to enclose your
reason in double quotes, so it will be treated as a single argument.

$ disable -r “disabling for reconfiguration” printer4
<RETURN>

The reason you provide will be displayed by thelpstat command when a user requests
a status report on that printer. For example, if you specifypaper jam as the reason
when you disable printerprinter_1 , a user who later runslpstat to determine the
status ofprinter_1 will receive the response shown below:

$ lpstat -p printer_1
printer printer_1 disabled since July 18 10:15-
paper jam

$

If you disable a printer without supplying a reason, subsequent output from thedisable
command will include the messageunknown reason.

User’s Guide

8-6

Controlling the Printing Process 8

The LP print service allows you to monitor and control the printing process by doing the
following:

• specifying a printer for your job

• identifying high priority jobs that need to be “pushed to the front” of the
job queue

• requesting status reports about printers, print service resources (such as
forms and character sets), and jobs in progress

• changing the specifications of a job request already submitted

• canceling a job in progress.

This section explains how to do these tasks.

Selecting a Print Destination 8

The term “print destination” refers to any device your system administrator has defined to
be a printer or a class of printers. A class is a set of printers grouped together by an admin-
istrator for convenience. For example, one administrator might group together all printers
of a similar type (such as laser printers or line printers) into a class. Another administrator
might assign all the printers on the second floor of a building to the same class. A class can
be defined in any way that is convenient for the administrator and/or the users of a print
service; the LP print service does not require a printer to meet any prerequisites before it is
assigned to a class. In this sense, a class is an arbitrary grouping.

The -d dest (short for destination) option on the command line causes your file to be
printed at the destination specified in thedest argument, as long as a printer is available to
you and capable of meeting your specifications for the job. (Although a printer may be
reported bylpstat as being available, whether or not it's available to you depends on
your level and the level range of the printer.) In the following example, a request is made
to have a file calledmemo printed onprinter_3 .

$ lp -d printer_3 memo <RETURN>

Security Considerations 8

NOTE

This section assumes you understand Mandatory Access Control
(MAC) and security levels. If you are not familiar with MAC and
security levels, see the“Mandatory Access Control”section of
Chapter 14, “Managing Files Securely” of this guide before
reading this section.

LP Print Service Tutorial

8-7

On your system, each printer will have a range of security levels associated with it. This
security level range is intended to keep sensitive information safe and is based on the
physical security of the printer. If a printer is accessible to everyone, it should obviously
not be used to print sensitive material, because someone could easily see or acquire the
material. When configuring the printer system, your system administrator will have
assigned appropriate security levels to each printer.

If you submit a print job that is not within the printer's security level range, the LP system
rejects the job. In that case, you should choose another printer as the destination for your
print job. Your system administrator can give you information on the level ranges assigned
to your site's printers.

Using a Server Printer 8

NOTE

If your system is being run in compliance with B1- or B2-level
security, the following does not apply; all printers in a B2
operating environment must be directly connected.

The LP print service allows computers connected through a network to share printing
tasks. If the printer you choose is connected to a server computer, there may be some
delays in having files printed, and in receiving responses to queries about job and printer
status from a server machine. Otherwise, however, the location of a printer to which you
are sending print requests and related commands should not be obvious to you: follow the
same procedures every time you use the print service, regardless of whether the printer
being used is a client or a server.

Controlling Priorities in the Job Queue 8

As you and other users send requests for print jobs to the printers on your system, your
requests are arranged in a queue that determines the order of printing. Highest priority is
given to requests that have been assigned level 0 priority; lowest priority to requests with
a level of 39. Whether your job is assigned high or low priority depends on several factors.

First, the default value for job priority on your system is 20, unless your system
administrator has defined it otherwise. Every job you submit to a printer will be given this
medium-level priority. If your administrator has redefined the default priority level so that
it is now, for example, 10, all jobs that you send to the printer will be given this higher
priority.

You can change this priority level, however, by requesting a level other than the default; to
do so, use the-q option to thelp command. For example, if you need a memo printed
immediately, you can send it to the front of the queue by assigning it the highest priority:
0.

$ lp -d printer_3 -q 0 urgent.memo <RETURN>

User’s Guide

8-8

Note that the system administrator can limit the priority level you can use. If your
administrator has limited the priority level available to you and you request a priority
higher than that, the priority level will remain, by default, at the level set by the
administrator. Check with your system administrator to find out what the default priority
level is and whether there is a limit on the priority level you can request.

Requesting Messages from the Print Service 8

The LP print service does not automatically notify you when your job has been printed.
To make sure you will be notified, list the-w option on thelp command line, as follows:

$ lp -d printer_3 -w filename <RETURN>

The print service will display a message on your terminal screen to let you know when
your file has been printed. If you are not logged in when the message is ready to be sent,
the message will be sent to you via electronic mail instead.

If you want to be notified through electronic mail that your file has been printed, include
the-m option after thelp command, as follows:

$ lp -d printer_3 -m filename <RETURN>

Requesting Status Reports on Printers 8

At some time after issuing a request for a print job, you may want to find out whether it is
proceeding properly or if problems have arisen. You can check the status of all print
requests by executing thelpstat command. When issued alone (without any options),
this command will tell you the status of all requests you have made to the LP print service,
as shown in the following example:

If you do not want to know about all print requests, you can specify a subset of requests by
listing the request ID numbers for those jobs on the command line. (Whenever a print
request is issued, a request ID number for it is displayed on the screen.)

$ lpstat laser-6885 printer_1 <RETURN>

In this example, you are asking for the status of two print requests with the ID numbers
laser-6885 andprinter_1 .

In addition, by using various options, you can request the following types of information
from lpstat :

$lpstat
printer_1-25pr2cms1942July 19 13:09
printer_1-26pr2cms3893July 19 13:15
printer_1-27pr2cms 942July 19 14:09

LP Print Service Tutorial

8-9

• the status of client printers

• a list of available pre-printed forms

• a list of available character sets and print wheels

• a list of available printers

• the security levels of jobs submitted to the printers.

The rest of this section contains instructions for getting these types of information by
issuing the options tolpstat .

NOTE

The lpstat command reports information only on jobs at a
security level dominated by your current login level. If you submit
a job, log out, and log in at a different level, you may not be able
to get a report on the status of your job by runninglpstat .

What Is the Status of the Printers? 8

First, if you do not already know them, you may want to find out the names of the printers
in your system. Which printers are available to you depends on yourUNIX system facility.
Ask your system administrator for the names of available printers, or type the following
command line:

$ lpstat -p all <RETURN>

A list of printers will be displayed, showing which printers are enabled and which are
disabled, as follows:

printer printer_1 enabled since Aug 22 16:00. available.
printer printer_1 disabled since Aug 26 22:00. available.

If you already have the names of the printers on your system, you can get a status report
on one or more of them by listing the appropriate names in place of the argumentall in
the preceding example.

$ lpstat -p printer_1,printer_3 <RETURN>

More detailed status reports can be obtained by adding the-l option to thelpstat
command line, as follows:

$ lpstat -p printer_1,printer_3 -l <RETURN>

For each printer you have specified, a status report will be displayed. Each report will
include the following: the printer type, the types of forms allowed and mounted on it,
acceptable content types, the names of users allowed to use the printer, the default
dimensions for page size and character pitch, and so on.

The system administrator may restrict access to certain printers. If you are not allowed
access to a printer for this reason, the phrasenot available will appear.

User’s Guide

8-10

Which Forms Are Available? 8

To find out which pre-printed forms are available on your system, issue thelpstat
command with the-f option and the argumentall , as follows:

$ lpstat -f all <RETURN>

The command prints a list of all the forms your system recognizes and can handle. Forms
mounted on printers in your system are identified as follows:

form payroll_check is available to you, mounted on
printer4

Forms that are recognized and can be handled by your system but that are not mounted on
printers are listed as follows:

form payroll_check is available to you

The system administrator may restrict access to certain forms. If you are not allowed
access to a form for this reason, the phraseis not available to you will appear.

If you want to know whether specific forms are available on your system, list them after
the-f option in place of the argumentall , as in this example:

$ lpstat -f laser2,laser2 <RETURN>

If you want detailed information about any or all of the available forms, use the-l option
with lpstat -f , as follows:

$ lpstat -f all -l <RETURN>

A description of each form, including page length, page width, number of pages, ribbon
color, and so on, will be displayed.

Which Character Sets or Print Wheels Are Available? 8

First, you may want to find out which character sets and/or print wheels are available on
your LP print service. Issue thelpstat command with the-S option and the argument
all, as follows:

$ lpstat -S all <RETURN>

A list of all character sets and print wheels that can be used on printers in your system will
be displayed. If you want to know whether one or more specific character sets or print
wheels are available, list them on the command line in place of the argumentall .

$ lpstat -S “charset_1 wheel_3” <RETURN>

The double quotes that appear around the two arguments(charset_1 andwheel_3)
to the-S option are necessary because these arguments are separated by a space. (If the
arguments are separated by commas, double quotes are not required.)

To obtain detailed output from thelpstat command, add the-l option to the command
line. The output will include the following information about each item specified: a list of

LP Print Service Tutorial

8-11

the printers on which each character set or print-wheel is available, whether the character
set or print-wheel is mounted, and what built-in character set it maps.

What Is the Security Level of a Print Job? 8

If you need to see the security level of a print job, use the-z and-Z options oflpstat.
The -z makeslpstat print the security level alias name of the level of the print jobs,
while -Z prints the fully qualified level name.

Changing a Print Request 8

Suppose you have just noticed that when submitting a request to the print service a little
while ago, you forgot to request a longer than usual page length for the job, as you had
originally planned to do. Don't worry; it may not be too late to change your request! As
long as the job has not actually been printed, you may submit changes to your original
request. Simply execute thelp command again, this time including the-i option,
followed by the request-ID assigned to your request. The-i option signals your intent to
change the previous request to the printer.

For example, suppose your original request was for a page length of 50, a width of 70, no
banner, and three copies:

$ lp -d printer_2 -o “length=50 width=70 nobanner” -n
3 july.report
request id is printer_2-23

(The second line in the above example is the response from the system to your command
line.) When you later remembered to request a longer page, you reissued the command as
follows:

$ lp -i printer_2-23 -o “length=60 width=70 nobanner”
<RETURN>

Notice that although there were two options in the original command line (-o and-n),
only one of them (-o) is included in the change request. A change request should specify
only those options from the original command line that you want to change.

However, as this example also shows, when changing the values in a-o option, you must
not only request additional arguments or request different arguments in place of existing
ones, you must also repeat those arguments you want to preserve. (This requirement also
applies to the-y option.) Look again at the command lines in the preceding example.
Notice that three arguments are given for the-o option: length, width, and
nobanner. Although only one argument to-o is being changed (from“length=50”
to “length=60”), all three arguments are listed in the change request. Repeating the
width andnobanner arguments is necessary; they are not otherwise preserved from the
original command line.

User’s Guide

8-12

Canceling a Request: The cancel Command 8

You can cancel a print request that has already been submitted to the print service as long
as you are the person who submitted the print request, your current login security level is
the same as the level of the print job, and you request the cancellation on the same system
or a network server where the print request was submitted. To stop a request, run the
cancel command.

You can execute thecancel command with either of two types of arguments: request IDs
or printer names. To cancel one print request, runcancel request_ID. To cancel only the
job that is currently printing, runcancel printer_name; no other requests in the queue for
the named printer will be canceled. Arguments of both types may be intermixed.

To cancel a request to a printer, type the commandcancel and specify a request ID. For
example, to cancel the printing of the fileletters (request IDlaser-6885), type:

$ cancel laser-6885 <RETURN>

If you want to cancel more than one print request, use the-u option (followed by your
login name) after thecancel command. To cancel all the requests you submitted to a
particular printer, type the following:

cancel -u login_name printer

To cancel all the requests you submitted to all printers, type the following:

cancel -u login_nameall

Once thecancel command has been run, the specified job is removed from the queue.

You can invoke this command anytime before a print job has been completed.

NOTE

Your current login security level must be the same as the level of
the print job for you to cancel it successfully. If you submit a job,
log out, and then log in again at a different security level, you will
not be able to cancel the job you submitted earlier.

Customizing Printed Output with the lp Command 8

The LP print service allows you to determine the appearance of your printed output by
using any of numerous options to thelp command. This section describes those
parameters for which you can specify values:

• content type

• page size and pitch settings

• whether to have breaks between multiple files

LP Print Service Tutorial

8-13

• whether to have a “banner” page printed with your output

• whether to have your text printed on plain paper or on pre-printed forms
(such as invoices or invitations)

• a non-standard character set or print wheel

• miscellaneous job specifications (such as one-sided or two-sided printing)
known as “special modes”

• number of copies.

Selecting the Content Type 8

To print a file, a printer must be capable of correctly interpreting the file's contents.
Different printers have different capabilities in this sense; not every printer is able to print
every type of content. You can make sure theLP print service assigns your request to a
printer capable of printing it by using the-T option to thelp command.

The-T option allows you to specify the format of the content of the file to be printed. For
example, suppose you want to print a file containing your monthly report for July
(july.report). The contents of this file are arranged in a 455 type format, which
means they can be interpreted by anAT&T Model 455 printer. You know your system has
several 455 printers but you don't know the names of any of them. The-T option lets you
request a Model 455 printer without specifying one by name, as follows:

$ lp -T 455 -d any july.report <RETURN>

The -T option instructs the print service to select any printer that can print a file with
contents of type 455. If you want a particular printer to be used—even if it is the default
printer—use the-d option to identify the printer.

What happens if there are no Model 455 printers? The answer depends on whether any
filters have been defined for your system. (Your system administrator can tell you whether
any filters are available.) A filter is a program that converts data from one format to
another; in this case, from the format in which it was typed in the file to a format that can
be “read” by a printer. If there are no printers that can handle the content type of your file,
and some filters have been defined for your system, your print request will be sent to a
filter. (If necessary, your file will be sent to multiple filters. For example, your file could be
sent through atroff filter, apostscript filter, apage selection filter, and a filter
for downloading fonts, all of which perform different operations on your file.) The con-
tents of the file will be converted, by the filter, to a content type the printer can handle. If,
however, there is no printer that can handle the content type of your file, and there is no
filter that will convert the file, your print request will be rejected.

Filters make it possible to have files printed by a variety of printers. There may be
situations, however, in which the content type is a critical factor of the job. In such a case
you do not want to have a file printed unless it can be printed with the original content
type. If your system supports filters and you do not want your print request to be sent to
one, specify the-r option after the-T option to thelp command, as follows:

$ lp -T 455 -r july.report <RETURN>

User’s Guide

8-14

Note that with the-r option, if your print request cannot be handled by any printer on
your system (because of content type), your print request will be rejected.

NOTE

Filters are installed and maintained on yourLP print service by
your system administrator. Ask your administrator for a list of
content types available to your system.

Defining the Page Size and Pitch Settings 8

Page size consists of two measurements: length and width. Pitch settings are specifications
for the number of lines per inch (vertical measurement) and the number of characters per
inch (horizontal measurement). When a file is printed, these dimensions may be deter-
mined in one of the following four ways:

• by the printer's default dimensions

• by the default dimensions established by your system administrator

• by the dimensions provided with a particular form you have selected

• by your specification for that particular job.

To request your own specification for a print job, use the-o option tolp , and specify the
desired sizes in “scaled decimal numbers.”

The term “scaled-decimal-number” refers to a non-negative number used to show a unit of
size. (The type of unit is shown by a “trailing” letter attached to the number.) Three types
of scaled decimal numbers are discussed for theLP print service: numbers that show sizes
in centimeters (marked with a trailing “c”), numbers that show sizes in inches (marked
with a trailing “i”), and numbers that show sizes in units appropriate to use (without a
trailing letter), such as lines, columns, lines per inch, or characters per inch.

The following command line shows how to request a print job with your own
specifications for page size and pitch settings. (Specifications are shown insdn or scaled
decimal numbers.)

$ lp -d any -o “length= sdn width= sdn lpi= sdn\
cpi= sdn” filename <RETURN>

Your job will be printed according to the default dimensions for the type of printer you are
using under either of two circumstances: (1) if you do not specify page dimensions for
your print request; or (2) if you do not use a printer for which specific dimensions have
been defined by an administrator. These default dimensions are listed in a database called
Terminfo; your system administrator is responsible for maintaining this database and can
give you details about it.

For example, if you are using an AT&T Model 455 printer, the default dimensions for your
printer will be as follows:

Page length: 66 lines
Page width: 132 columns

LP Print Service Tutorial

8-15

Line pitch: 6 lines per inch
Character pitch: 12 characters per inch

If, however, you are using an AT&T Model 470 printer, the default dimensions will be
slightly different:

Page length: 66 lines
Page width: 80 columns
Line pitch: 6 lines per inch
Character pitch: 10 characters per inch

Removing Breaks between Files 8

Your print request may consist of more than one file. By default, theLP print service will
assume you want each file to be printed separately. If you want the set of files to be
printed continuously, without having each file begin on a new page, specify the-o option,
as follows:

$ lp -d any -o nofilebreak filenames<RETURN>

Eliminating the Banner Page 8

On a system that supports Mandatory Access Control, it is not possible to cancel the
banner page. The-o nobanner option is ignored.

Controlling Security Labeling of the Output 8

The banner and trailer pages for each job contain complete information on the security
level of the data printed. If the fully qualified level name is too long to fit on a single page,
it is printed on two (or more) banner and trailer pages. The LP system also adds a
randomly generated number to the banner and trailer pages of each job. This number,
which is not the same as the print job ID, is used to ensure that the printer operator can
always distinguish the start and the end of each job. It is not possible to remove security
level information from the banner and trailer pages or to eliminate the printing of banner
and trailer pages.

In addition to the security level information on the banner and trailer pages, the LP
system, by default, prints the security level of the data in the header and footer on each
page of paginated output. (If the security information does not fit on one line, it is
truncated.) If you do not want this information printed on your output, use the-o option,
as follows:

$ lp -d any -o nolabels filename <RETURN>

Use of this option is audited.

User’s Guide

8-16

Using Pre-printed Forms 8

Many companies frequently need to issue specialized documents, such as payroll checks
and invoices. TheLP print service allows you to print your files on pre-printed forms that
your administrator loads on your printer. To find out which, if any, special forms are
available on your printer, ask your system administrator. If you want to use a particular
form and you know it's available, include the-f option on thelp command line,
followed by the name of the form. For example, say you want to have a file called
april.payroll printed on a type of form calledpaycheck by a printer called
“printer4.” Enter the following:

$ lp -d printer4 -f paycheck april.payroll <RETURN>

If the printer you have requested is not capable of handling this form, your request will be
rejected. To make sure your request is accepted by any printer on which the desired form
can be mounted, include the-d option, followed by the argumentany , as shown in the
following command line:

$ lp -d any -f form_name filename<RETURN>

TheLP print service will then send your request to any printer capable of handling the type
of form required for your job. If yourLP print service contains both client and server
printers, the command will try to send your job to a client printer before sending it to a
server printer.

Using a Character Set or Print Wheel 8

The lp command allows you to select a character set or print wheel with which your job
will be printed. To find out which character sets and print wheels are available on your
system, run the commandlpstat -S .

To request a character set or print wheel for your print job, include the-S option on the
lp command line, as follows:

$ lp -d any -S character_set filename<RETURN>

If you have no preference, and if you haven't chosen a form that requires a particular
character set or print wheel, you can skip this option.

Special Printing Modes 8

The final appearance of the document you are printing depends not only on its content, but
also on certain other features that affect the composition of the page. For example, you
might want to have an unusual font used in your document. The number of special
printing modes available to you depends on the available printer(s).

To request special printing modes for your print job, include the-y option on the
command line, as follows:

$ lp -d any -y list_of_modes filename<RETURN>

LP Print Service Tutorial

8-17

Each item in the list of modes must be a one-word name consisting of any combination of
letters and numbers.

The printer will accept your request if all the modes you requested in the list are known by
the “filter” being used as an interface between your print request and the printer. To find
out which filters are available on your system, and which-y options are allowed, check
with your system administrator.

Depending on the print request, one or more filters are used to convert the content type of
a file submitted for printing into a type accepted by the printer. Any modes given in the
print request are mapped into options understood by the filters. If all modes given in the
print request are mapped, the print request is accepted and the LP print service assumes
that the filter takes care of invoking the modes on the printer. If one or more modes are
not mapped, the print request is rejected.

In choosing qualified printers, the LP print service will ensure that all modes are mapped
for the filters needed by each printer, if possible. If more than one printer qualifies on
other print request needs, a request is rejected only if one or more modes cannot be
mapped on each of those printers.

Each mode is named with a single word, chosen from the set of letters and numbers. No
other restrictions are placed on the allowable mode names.

Copies to Be Printed 8

Some filters allow you to specify a list of pages to have printed, so that you need not print
an entire file to obtain a subset of it. Perhaps you want to proofread a section you have
edited, give an excerpt of a file to someone, or print the portion of a file that remains
unprinted after a print job has been interrupted. With the proper filter, you can limit the
printing of a file to a subset of pages by using the-P option tolp .

For example, suppose you have a thirty-page business report in a file called
july.sales . Your boss wants to include a copy of the summary and a few of the charts
from your report in a package of materials she's putting together for a new director in your
division. Because the charts and summary appear on a total of five pages, you don't want
to print a copy of the entire thirty-page report. Fortunately, your printer has a filter that
allows you to specify a list of pages to be printed. You request only pages 4-6 (for the
charts) and 28-29 (for the summary).

$ lp -P 4-6,28,29 july.sales <RETURN>

If you do not have any filters, or if your filters do not accept a list of pages to print, any
requests you make with the-P option will be rejected and you will be notified of the
failure.

NOTE

Your system administrator installs and maintains filters for your
system. Check with your administrator to find out if filters are
available and whether they will accept the-P option and lists of
pages to be printed.

User’s Guide

8-18

By specifying a list of pages with-P, you can request that printing be started in the middle
of a file and that certain pages be skipped. You can present your list of pages in any order;
the pages will be printed in order of ascending page number. Also, the LP print system
will drop any duplicate requests for pages so that only one copy of each page will be
printed.

If you do not include the-P option on the command line, the entire file will be printed.

Requesting Multiple Copies 8

If you want to have more than one copy made, you can request a multiple printing by
issuing the-n (“number”) option. For example, to have four copies made, enter a
command line such as the following:

$ lp -d any -n 4 filename <RETURN>

When you do not use this option, only one copy is made by default.

Using PostScript Printers 8

PostScript® is a general purpose programming language, like C or Pascal. In addition to
providing the usual features of a language, however, PostScript allows you to specify the
appearance of both text and graphics on a page in ways that are more sophisticated than
those allowed by other printers. For example, you can create geometric figures and place
them anywhere on a page in any size, arranged at any angle. For your text, you can use a
variety of fonts in any position, size, or orientation on a page. Graphics and text can be
combined easily. In addition, PostScript files can be printed on either low-resolution or
high-resolution printers. In short, PostScript printers allow you to produce more varied
and sophisticated looking documents than other printers.

PostScript files can be printed only on PostScript printers. These printers are actually
special purpose computers capable of interpreting PostScript language files. Unless
special provisions have been made by a printer manufacturer, files submitted to a
PostScript printer must be written in the PostScript language. However, it is not necessary
for you to write files in PostScript.

NOTE

Many popular software packages, including word-processing,
spreadsheet, desktop publishing, and computer-aided design
packages, support PostScript. If your computer runs one of these
packages, you need only create a file in the usual way; the
software will translate it into PostScript. To find out whether your
software supports PostScript, ask your system administrator.

Once the PostScript printers and filters have been installed,LP manages PostScript files
like any others. To request that a PostScript file be printed on a PostScript printer, simply

LP Print Service Tutorial

8-19

specify the appropriate printer on the command line, and identify the file content type, as
follows:

$ lp -d ps_printer -T postscript ps_file

As long as the printer (ps_printer) has been defined with theLP print service as a
PostScript printer, the print service will schedule your request and transmit it to the printer.

Support of Non-PostScript Print Requests 8

TheLP print service offers a “translation service”: you can create a file in the format you
usually use, and the print service will translate it into PostScript language before sending
it to a PostScript printer. The print service does this by passing your file through a filter
that translates from the “content type” (the formatting language) used in your file to
PostScript. Having these filters available means you can use PostScript printers while con-
tinuing to write files with your usual formats.

Because each content type requires a separate filter, andUNIX system users create files
with many different content types, the print service has many filters for translating files to
PostScript. Therefore, if you want to have a file translated, you must request a translation
and specify the content type of your file when you submit your print request (that is, when
you issue thelp command). The following is a list of content types that require
translation before they can be handled by a PostScript printer.

troff Print the output fromtroff.

simple Print anASCII (“simple”) text file.

dmd Print the contents of a bit-mapped display from a terminal such as
anAT&T 630.

tek4014 Print files formatted for a Tektronix 4014 device.

daisy Print files intended for a Diablo 630 (“daisy-wheel”) printer.

plot Print plot-formatted files.

For example, to convert a file containingASCII to PostScript code, the filter takes that text
and writes a program around it, specifying printing parameters such as fonts and the
layout of the text on a page.

The filters that do these translations are invoked automatically byLP when a user specifies
one of the content-types listed above for a print request with the-T option. For example,

$ lp -d postprinter -T simple report2

automatically converts theASCII file report2 (a file with anASCII or “simple” format) to
PostScript (as long as the destination printerpostprinter has been defined to the
system as a PostScript printer). The default content-type issimple .

Additional PostScript Capabilities Provided by Filters 8

The filters previously described also take advantage of PostScript capabilities to provide
additional printing flexibility. Most of these features may be accessed through the “mode

User’s Guide

8-20

option” (invoked by the-y option) to thelp command. These filters allow you to use sev-
eral unusual options for your print job. Table 8-1 describes these options and shows the
option you should include on thelp command line for each one.

NOTE

If these filters are to be used with an application that creates
PostScript output, make sure the application conforms to the
PostScript file structuring comments. In particular, the beginning
of each PostScript page must be marked by the comment
“%%Page:label ordinal” whereordinal is a positive integer that
specifies the position of the page in the sequence of pages in the
document.

For example, say you have a file calledreport2 that has a content typesimple
(meaning the content of this file is inASCII format). You want to print six pages of this file
(pages 4-9) with two logical pages on each physical page. Because one of the printers on
your system (postprinter) is a PostScript printer, you can do this by entering the
following command:

$ lp -d postprinter -T simple -P 4-9 -y group=2 myfile

The filter that groups these logical pages tries to position the pages on the physical page to
maximize space utilization. Thus, the pages are printed side by side, so the physical page
appears in landscape mode. Landscape mode, which controls the orientation of the logical
page rather than the physical page, causes the logical pages to be positioned one on top of
the other.

In addition, theLP print service offers a special filter that can print a gray-scale
representation of a matrix. (A gray-scale representation of a matrix is a picture in which
each cell is colored one of seven shades of gray to show the value of the cell. Darker

Table 8-1. LP Command Options

Content Type Type of Print Request

-y reverse Reverse the order in which pages are printed.

-y landscape Change the orientation of a logical page from
portrait to landscape.

-y x=xnumber,y=ynumber Change the default position of a logical page on a
physical page by moving the origin.

-y group=number Group multiple logical pages on a single physical
page.

-y magnify=number Increase or decrease the size of the logical page.

-P number Select, by page numbers, a subset of a document to
be printed.

-n number Print multiple copies of a document.

LP Print Service Tutorial

8-21

shades correspond to larger values.) To print a gray-scale representation, specifymatrix
as the content type of your source file by giving the-T option (-T matrix).

The dimension of the matrix is assumed to be the square root of the number of elements in
the matrix unless you specify the number of rows and columns in it by using the-y
dimen=nrowsxncols option. The cell values represented by each level of gray may be spec-
ified by -y interval=slash-separated list. The default list is-1/0/1 . This separates the
elements of the matrix into seven regions:x<-1 , x=-1 , -1<x<0 , x=0 , 0<x<1 , x=1 ,
x>1 . The list may contain a maximum of three numbers.

How to Use PostScript Fonts 8

One of the advantages of PostScript is that it allows you to manage fonts. Fonts are stored
in outline form, either on a printer or on a computer that communicates with a printer.
When a document is printed, the PostScript interpreter generates each character as needed
(in the appropriate size) from the outline description of it. If a font required for a
document is not stored on the printer being used, it must be transmitted to that printer
before the document can be printed. This transmission process is called “downloading
fonts.”

Fonts are stored and accessed in several ways.

• Fonts may be stored on a printer. The fonts may reside permanently on the
printer's disk, or they may be loaded by the administrator into the printer's
memory each time the printer is turned on. Ask your print service
administrator for a list of fonts available on your printers.

• Fonts may be stored in your own directory, so they're available for your
print requests. When you issue a print request that requires a font from
your own directory, the font will be transmitted to the printer, along with
the source file, as part of your request. This arrangement is preferable for
fonts that are not used frequently. Generally, the application program that
creates the PostScript file will prepend the font to your PostScript file
before delivering it to the print service.

• Fonts may be stored in a public directory on a system shared by many
users. These fonts are described as “host-resident.” To access these fonts, a
user requests fonts to be printed through an application program that
creates a PostScript document. When the application program creates a
PostScript document file, it must include requests for any desired fonts.
This method is useful when the number of fonts is too large to store on the
printer.

TheLP print service allows you to manage fonts with any of these methods.

The LP print service provides a special download filter to manage fonts using the last
method described above. The print service manages this process for you automatically.

Downloading Host-Resident Fonts 8

The filter that downloads host-resident fonts performs the following tasks:

User’s Guide

8-22

• It searches the PostScript document to determine which fonts have been
requested. Font requests appear in the header comments in the format of
PostScript structuring comments:

%%DocumentFonts: font1 font2 . . .

• It searches the list of fonts resident on the destination printer to see if the
requested font must be downloaded. If the font is not resident on that
printer, the filter searches the directory containing host-resident fonts to see
if the requested font is available. If it is, the filter takes the file for that font
and prepends it to the file to be printed.

NOTE

The download filter relies on the PostScript structuring comments
to determine which fonts must be downloaded. If you plan to use
this downloading option, make sure the font requests in your
application program conform to the PostScript structuring
conventions.

Summary of the LP Print Service Commands 8

 Table 8-2l lists the print commands and their functions.

Table 8-3 through Table 8-7 summarize the syntax and capabilities of each of these
commands.

Table 8-2. Print Commands and Their Functions

Command Function

lp Request paper copies of files from a printer.

cancel Cancel requests for paper copies of files.

lpstat Display information on the screen about the current
status of the LP print service.

enable Activate the printers specified so jobs requested through
the lp command can be printed.

disable Deactivate the printers specified so jobs requested
through thelp command can no longer be printed.

LP Print Service Tutorial

8-23

Table 8-3. Summary of the lp Command

Command Recap

lp - request paper copies of files from a printer

command options arguments

lp (as listed) file(s)

Description: The lp command requests that specified files be printed by a printer,
thus providing paper copies of the contents.

Options: -d dest Usedest as the printer or class of printers to
produce the paper copy. You do not have to use
this option if the administrator has set a default
destination or if you have set the LPDEST
environment variable.

-f form Print files on the specified pre-printed form.

-H special-handling Print the request according to the value ofspe-
cial-handling. Acceptable values forspecial-
handling include:

hold : Don't print the request until notified. If
printing has already begun, stop it. Other print
requests will go ahead of a held request until it
is resumed. If the Auditing Util it ies are
installed, the use of this option is an auditable
event.

resume : Resume a held request. If it had been
printing when held, it will be the next request
printed, unless subsequently bumped by an
immediate request. If the Auditing Utilities
are installed, the use of this option is an audit-
able event. The-i option (followed by a
request-ID) must be used whenever this argu-
ment is specified.

immediate : (Available only to LP adminis-
trators) Print the request next. If more than one
request is assignedimmediate , the most
recent request will be printed first. If another
request is currently printing, it must be put on
hold to allow this immediate request to print.

-i req_ID Change specifications for a print request issued
but not yet printed.

-m Send mail when the print job is complete.

-n copies Print the specified number of copies.

User’s Guide

8-24

Options: -o option Define page dimensions (length and width,
character pitch, and line pitch) as specified.
[-o performs other tasks, too. Seelp(1) in
the onlineCommand Reference.]

-P pages Print the specified subset of pages. (This
option requires a special filter; check with your
system administrator to find out whether your
system has an appropriate filter.)

-q level Print the requested job at the specified priority
level.

-S char_set Use the specified character set or print wheel.

-T type Print the specified content type.

-w Display a message on the screen when the print
job is complete.

-y mode Use special printing modes, such as portrait or
landscape. (This option requires a special fil-
ter; check with your system administrator to
find out whether your system has one.)

Remarks: You can cancel a request to the printer by typingcancel and the
request ID given to you by the system when the request was acknowl-
edged. Check with your system administrator for information on
additional and/or different commands for printers that may be avail-
able at your location.

Table 8-3. Summary of the lp Command (Cont.)

Command Recap

lp - request paper copies of files from a printer

command options arguments

lp (as listed) file(s)

LP Print Service Tutorial

8-25

Table 8-4. Summary of the lpstat Command

Command Recap

lpstat - display information about the status of theLP print service

command options arguments

lpstat (as listed)

Description: The lpstat command reports the status of print requests, printers,
and the LP request scheduler, and provides other information related to
the status of the print service.

Options: -a list Report whether print requests are being accepted
by specified printers or classes of printers.

-c list Display, for each class in the list, members (print-
ers) of the class.

-d Show the default destination for the LP print ser-
vice.

-f list [-l] Show whether the forms named inlist are available
and where they are mounted. The-l option lists
the form descriptions.

-o list [-l] Report the status of print requests. list may include
the names of printers or printer classes, or request
IDs.

-p list [-D] [-l] Report the status of the printers named inlist. The
-D option shows a description of each printer, and
-l displays a full description of each printer's con-
figuration.

-R Show the rank of all print requests in the queue.

-r Report the status of the LP request scheduler.

-s Print a status summary of the whole LP print ser-
vice.

-S list [-l] Show whether the character sets or print wheels
named inlist are available and, for print wheels,
where they are mounted. The-l option requests a
list of printers that can handle each character set
and print wheel.

-t Print all status information.

-u list Report the status of users' print requests. list is a list
of login names.

-v list List printers and the pathnames of the devices asso-
ciated with them. List is a list of printer names.

User’s Guide

8-26

Options: -Z Print the fully qualified level name of the security
level of each print job. (Valid only if the Enhanced
Security Utilities are installed.)

-z Print the security level alias name of the level of
each print job. (Valid only if the Enhanced Secu-
rity Utilities are installed.)

Remarks: In each case wherelist is specified, you have the choice of providing a
list or specifying all. If you do not specify any options, the -o option is
assumed.

Table 8-5. Summary of the cancel Command

Command Recap

cancel - cancel print requests made bylp

command options arguments

cancel (as listed)

Description: The cancel command cancels print requests made by
the lp command.

Options: [request-ID . . .] Cance l p r in t reques ts
already issued, as specified
by the ID numbers of those
requests.

[printers] Cancel whatever pr in t
request has been submitted
that is current ly being
printed on the printer speci-
fied.

[-u login_name] [printers] Cancel all jobs submitted
by login_name. If printers
are specified, cancel all
j obs submi t ted by
login_name for theprinters
specified. (Requests sub-
mitted to other printers
remain unchanged.)

Table 8-4. Summary of the lpstat Command (Cont.)

Command Recap

lpstat - display information about the status of theLP print service

command options arguments

lpstat (as listed)

LP Print Service Tutorial

8-27

Table 8-6. Summary of the enable Command

Command Recap

enable - activates any printers in anLP print service

command options arguments

enable (as listed) printer(s)

Description: Theenable command activates a printer that is part of the
LP print service. Your system administrator may or may not
authorize users on your system to execute this command.

Options: none.

Remarks: Run lpstat to determine the status of printers.

Table 8-7. Summary of the disable Command

Command Recap

disable - deactivate any printers in theLP print service

command options arguments

disable (as listed) printer(s)

Description: Thedisable command deactivates a printer that is part
of the LP print service. Your system administrator may
or may not authorize users on your system to execute this
command.

Options: -c Cancel any requests cur-
rently printing on any of
the designated printers.
(This option cannot be
used with the-W option.)

-r reason Assign areason for the dis-
abling of the printers. This
reason applies to all print-
ers mentioned up to the
next -r option. Thisrea-
son i s repor ted by
lpstat . If the -r option
is no t p resent , then a
default reason will be used.

-W Wait until the request cur-
rently being printed is fin-
ished before disabling the
specified printer. (This
opt ion cannot be used
with the-c option.)

User’s Guide

8-28

9
Programming with the UNIX System Shell

Introduction . 9-1
Shell Command Language. 9-1

Filename Generation . 9-2
Matching All Characters with the Asterisk . 9-3
Matching One Character with the Question Mark 9-4
Matching One of a Set with Brackets . 9-5

Special Characters . 9-6
Running a Command in Background with the Ampersand. 9-6
Executing Commands Sequentially with the Semicolon 9-7
Turning Off Special Meanings with the Backslash. 9-7
Turning Off Special Meanings with Quotation Marks 9-8
Turning Off the Meaning of a Space with Quotes 9-8

Input and Output Redirection . 9-9
Redirecting Input with the < Sign . 9-9
Redirecting Output with the > Sign. 9-10
Appending Output to an Existing File with the >> Symbol 9-10
Useful Applications of Output Redirection. 9-11

The spell Command . 9-11
The sort Command. 9-12

Combining Background Mode and Output Redirection 9-12
Redirecting Output to a Command with the Pipe . 9-12
A Pipeline Using the cut and date Commands . 9-13
Substituting Output for an Argument . 9-14

Executing, Stopping, and Restarting Processes . 9-14
Running Commands at a Later Time with the batch and at Commands. . . 9-15
Obtaining the Status of Running Processes. 9-17
Terminating Active Processes . 9-18
Restarting a Stopped Process . 9-19
Using the nohup Command. 9-19

Command Language Exercises . 9-19
Shell Programming . 9-20

Shell Programs . 9-21
Creating a Simple Shell Program . 9-21
Executing a Shell Program . 9-21
Creating a bin Directory for Executable Files. 9-22
Warnings about Naming Shell Programs . 9-22

Variables . 9-23
Positional Parameters . 9-23
Special Parameters . 9-25
Named Variables . 9-26
Assigning a Value to a Variable. 9-27

Using the read Command. 9-28
Substituting Command Output for the Value of a Variable 9-29
Assigning Values with Positional Parameters 9-30

Shell Programming Constructs. 9-31
Comments . 9-31
The Here Document . 9-32

User’s Guide

Using ed in a Shell Program . 9-32
Return Codes . 9-34

Checking Return Codes . 9-34
Using Return Codes with the exit Command. 9-34

Looping . 9-34
The for Loop. 9-34
The while Loop. 9-36

The Shell's Garbage Can: /dev/null . 9-38
Conditional Constructs . 9-38

if . . . then . 9-38
if . . . then . . . else. 9-39
The test Command for Loops . 9-40
case . . . esac . 9-42

Unconditional Control Statements: the break and continue Commands. . . 9-44
Functions. 9-45

Defining a Function . 9-45
Executing a Function . 9-46
Examples . 9-46

Debugging Programs . 9-47
Modifying Your Login Environment . 9-49

Adding Commands to Your .profile . 9-50
Setting Terminal Options . 9-50
Using Shell Variables . 9-51

Shell Programming Exercises . 9-53
Answers To Exercises . 9-54

Command Language Exercises. 9-54
Shell Programming Exercises. 9-55

Summary of Shell Command Language . 9-57
The Vocabulary of Shell Command Language . 9-57

Special Characters in the Shell . 9-57
Redirecting Input and Output . 9-57
Executing and Terminating Processes . 9-58
Making a File Accessible to the Shell . 9-58
Variables . 9-58
Variables Used in the System . 9-59

Shell Programming Constructs . 9-59
Here Document. 9-59
For Loop . 9-59
While Loop . 9-60
If...Then . 9-60
If...Then...Else . 9-60
Case Construction . 9-61
Break and Continue Statements. 9-61

9-1

9
Chapter 9Programming with the UNIX System Shell

9
9
9

Introduction 9

This chapter shows you how the UNIX system shell can help you do routine tasks. For
example, it tells you how to use the shell to manage your files, to manipulate file contents,
and to group commands together in programs.

The chapter is organized in two major sections. The first section,“Shell Command
Language,”describes the use of the shell as a command interpreter. It tells you how to use
shell commands and characters with special meanings to manage files, redirect standard
input and output, and execute and terminate processes. The second section,“Shell Pro-
gramming,” details the use of the shell as a programming language. It tells you how to
create, execute, and debug programs made up of commands, variables, and programming
constructs such as loops and case statements. Finally, it tells you how to modify your login
environment.

To get the most benefit from this tutorial you should log in to your UNIX system and
recreate the examples as you read the text. Keep in mind that throughout this book,italic
andconstant width are used to distinguish substitutable text from literal input and
output. For details see“Notation Conventions”in Chapter 1, “Introduction” in this book.

Exercises are provided after the“Shell Command Language”and“Shell Programming”
sections. Answers are listed at the end of the chapter.

NOTE

Your UNIX system might not have all the commands referenced
in this chapter. If you cannot access a command, check with your
system administrator to find out whether it's available.

Normally typical users are logged in under the Korn Shell (ksh)
and system administrators under the Bourne shell.

Shell Command Language 9

This section introduces commands and, more importantly, special characters that let you

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

User’s Guide

9-2

• run a group of commands sequentially

• redirect standard input and output (of files and other commands)

• terminate running programs.

Table 9-1 summarizes the characters that have special meanings in the shell.

Filename Generation 9

The shell recognizes three of the special characters listed in Table 9-1—the asterisk (*),
the question mark (?), and the set of brackets ([])—as symbols for patterns that are
parts of filenames. By substituting one or more of these characters for the name (or partial
name) of an existing file (or group of files), you can reduce the amount of typing you must
do to specify filenames on a command line.

Table 9-1. Characters with Special Meanings in the Shell Language

Character Function

* ? [] The asterisk, question mark, and brackets allow you to
specify Filenames by pattern matching.

& The ampersand places commands in background mode,
leaving your terminal free for other tasks.

; The semicolon separates multiple commands on one
command line.

\ The backslash turns off the meaning of special characters
such as *,?, [], &, ;, >, <, and| .

'. . .' Single quotes turn off the delimiting meaning of a space and
the special meaning of all special characters.

”...” Double quotes turn off the delimiting meaning of a space
and the special meaning of all special characters except$
and` .

> The greater than sign redirects the output of a command into
a file (replacing the existing contents).

< The less than sign redirects the input for a command to come
from a file.

>> Two greater than signs redirect the output of a command to
be added to the end of an existing file.

| The vertical bar, or pipe, makes the output of one command
the input of another command.

‘...` A pair of grave accents around a command embedded on a
command line makes the output of the embedded command
an argument on the larger command line.

$ The dollar sign retrieves the value of positional parameters
and user-defined variables. It's also the default shell prompt.

Programming with the UNIX System Shell

9-3

The process by which the shell interprets these characters as the full filenames they
represent is known as filename expansion. File name expansion is a useful mechanism
when you want to specify many files on a single command line. For example, you might
want to print a group of files containing records for the month of December, all of which
begin with the lettersdec . By using one of these special characters to represent the parts
of the filenames that vary, you can type one print command and specify all the files that
begin withdec , thus avoiding the need to type the full names of all the desired files on the
command line.

This section explains how to use the asterisk, question mark, and brackets for filename
expansion.

Matching All Characters with the Asterisk 9

The asterisk (*) matches any string of characters, including a null (empty) string. You can
use the* to specify a full or partial filename. The* alone matches all the file and directory
names in the current directory, except those starting with a. (dot). To see the effect of the
* , try it as an argument to theecho(1) command. Type:

echo * < RETURN>

The echo command displays its arguments on your screen. Notice that the system
response toecho * is a listing of all the filenames in your current directory.

CAUTION

The* is a character that matches everything. For example, if you
typerm * you will erase all the files in your current directory. Be
very careful how you use the asterisk!

For another example, say you have written several reports and have named them
report, report1, report1a, report1b.01, report25, and
report316. By typing report1* you can refer to all files that are part ofreport1,
collectively. To find out how many reports you have written, you can use thels command
to list all files that begin with the stringreport , as shown in the following example.

The * matches any characters after the stringreport , including no letters at all. Notice
that * matches the files in numerical and alphabetical order. A quick and easy way to
display the contents of your report files in order on your screen is by typing the following
command:

pr report* < RETURN>

$ ls report* <RETURN>
report report1 report1a report1b.01 report25 report316
$

User’s Guide

9-4

Now try another exercise. Suppose you have a current directory calledappraisals that
contains fi les calledAndrew_Adams, Paul_Lang, Jane_Peters , and
Fran_Smith , choose a character that all the filenames in your directory have in
common, such as a lowercase “a.” Then request a listing of those files by referring to that
character. For example, if you choose a lowercase “a,” type the following command line:

ls *a* < RETURN>

The system responds by printing the names of all the files in your current directory that
contain a lowercase “a.”

The* can represent characters in any part of a filename. For example, if you know the first
and last letters are the same in several files, you can request a list of them on that basis. If,
for example, you had a directory containing files namedFATE, FE, FADED_LINE,
F123E, Fig3.4E, FIRE_LANE, FINE_LINE, FREE_ENTRY, and
FAST_LANE, you could use this command to obtain a list of files starting with “F” and
ending with “E.” For such a request, your command line might look like this:

ls F*E < RETURN>

The system response will be a list of filenames that begin withF, end withE, and are in the
following order:

F123E
FADED_LINE
FAST_LANE
FATE
FE
FINE_LINE
FIRE_LANE
Fig3.4E

The order is determined by the collating sequences of the language being used, in this
case, English: (1) numbers, (2) uppercase letters, (3) lowercase letters.

The * is even more powerful; it can help you find all files namedmemo in any directory
one level below the current directory:

ls */memo

Matching One Character with the Question Mark 9

The question mark (?) matches any single character of a filename except a leading period
(.). Let's suppose you have written several chapters in a book that has 12 chapters, and
you want a list of those you have finished through Chapter 9. If your directory contains the
following files:

chapter1
chapter2
chapter5
chapter9
chapter11

Programming with the UNIX System Shell

9-5

use thels command with the? to list all chapters that begin with the string “chapter ”
and end with any single character, as shown below:

The system responds by printing a list of all filenames that match.

Although? matches any one character, you can use it more than once in a filename. To list
the rest of the chapters in your book, type:

ls chapter?? < RETURN>

Of course, if you want to list all the chapters in the current directory, use the* (asterisk):

ls chapter*

Matching One of a Set with Brackets 9

Use brackets ([]) when you want the shell to match any one of several possible
characters that may appear in one position in the filename. Suppose your directory
contains the following files:cat, fat, mat, rat. If you include[crf] as part of a
filename pattern, the shell will look for filenames that have the letter “c ,” the letter “r ,” or
the letter “f ” in the specified position, as the following example shows.

This command displays all filenames that begin with the letter “c ,” “ r ,” or “ f ,” and end
with the letters “at .” Characters that can be grouped within brackets in this way are
collectively called a “character class.”

Brackets can also be used to specify a range of characters, whether numbers or letters.
Suppose you have a directory containing the following files:chapter1, chapter2,
chapter3, chapter4, chapter5 and chapter6. If you specify

chapter[1-5]

the shell will match the files namedchapter1 throughchapter5 . This is an easy way
to handle only a few chapters at a time.

Try thepr command with an argument in brackets:

$ pr chapter[2-4] <RETURN>

$ ls chapter? <RETURN>
chapter1 chapter2 chapter5 chapter9
$

$ ls [crf]at <RETURN>
cat fat rat
$

User’s Guide

9-6

This command displays the contents ofchapter2, chapter3, andchapter4 , in
that order, on your terminal.

A character class may also specify a range of letters. If you specify[A-Z] , the shell will
look only for uppercase letters; if[a-z] , only lowercase letters.

The functions of these special characters are summarized in Table 9-2. Try to use them on
the files in your current directory.

Special Characters 9

The shell language has other special characters that perform a variety of useful functions.
Some of these additional special characters are discussed in this section; others are
described in the next section,“Input and Output Redirection.”

Running a Command in Background with the Ampersand 9

Some shell commands take a long time to execute. The ampersand (&) is used to execute
commands in background mode, thus freeing your terminal for other tasks. The general
format for running a command in background mode is

command& < RETURN>

NOTE

You should not run interactive shell commands, such asread , in
the background.

In the example below, the shell is performing a long search in background mode.
Specifically, thegrep(1) command is searching for the string “delinquent ” in the
file accounts . Notice the& is the last character of the command line:

$ grep delinquent accounts & <RETURN>
21940

$

Table 9-2. Summary of Filename Generation Characters

Character Function

* Match any string of characters (including an empty, or null string)
except a leading period.

? Match any single character, except a leading period.

[xyz] Match one of the characters specified within the brackets.

[a-z] Match one of the range of characters specified.

Programming with the UNIX System Shell

9-7

When you run a command in the background, the UNIX system outputs a process number;
21940 is the process number associated with thegrep command in the example. You
can use this number to terminate the execution of a background command. (Stopping the
execution of processes is discussed under“Executing, Stopping and Restarting
Processes.”) The prompt on the last line means that the terminal is free and waiting for
your commands;grep has started running in background mode.

Running a command in background mode affects only the availability of your terminal; it
does not affect the output of the command. Whether or not a command is run in
background, it prints its output on your terminal screen, unless you redirect it to a file.
(See“Redirecting Output,”in this chapter, for details.)

If you want a command to continue running in background after you log out, you can
execute it with thenohup(1) command. (This is discussed under“Using the nohup
Command”later in this chapter.)

Executing Commands Sequentially with the Semicolon 9

You can type two or more commands on one line as long as each is separated by a semico-
lon (;) or an ampersand (&), as follows:

command1; command2; command3 < RETURN>

The UNIX system executes the commands in the order that they appear in the line and
prints all output on the screen. This process is called sequential execution.

Try this exercise to see how the; works. First, type:

cd; pwd; ls < RETURN>

The shell executes these commands sequentially:

1. cd changes your location to your login directory

2. pwd prints the full pathname of your current directory

3. ls lists the files in your current directory.

If you want to save the system responses to these commands, (or prevent them from
appearing on your screen), you can redirect them to a file. See“Input and Output Redirec-
tion,” later in this chapter, for instructions.

Turning Off Special Meanings with the Backslash 9

The shell interprets the backslash (\) as an escape character that allows you to turn off
any special meaning of the character immediately after it. To see how this works, try the
following exercise. Create a two-line file calledtrial that contains the following text:

The all * game
was held in Summit.

Use thegrep command to search for the asterisk in the file, as shown in the following
example:

User’s Guide

9-8

$ grep * trial <RETURN>
The all * game

$

The grep command finds the* in the text and displays the line in which it appears.
Without the \ (backslash), the* would be expanded by the shell to match all filenames in
the current directory.

Turning Off Special Meanings with Quotation Marks 9

Another way to escape the meaning of a special character is to use quotation marks. Single
quotes (' . . . ') turn off the special meaning of any character except single quotes.
Double quotes (” . . . ”) turn off the special meaning of all characters except double
quotes, the$ and thè (grave accent), which retain their special meanings within double
quotes. An advantage of using quotes is that numerous special characters can be enclosed
in the quotes; this can be more concise than using the backslash.

For example, if your file namedtrial also contained the line:

He really wondered why? Why???

you could use thegrep command to match the line with the three question marks as fol-
lows:

$ grep '???' trial <RETURN>
He really wondered why? Why???

$

If file trial contained the line

trial

then

grep ????? trial

would find the stringtrial in the filetrial .

Turning Off the Meaning of a Space with Quotes 9

Quotes, like backslashes, are commonly used as escape characters for turning off the
special meaning of the blank space. The shell interprets a space on a command line as a
delimiter between the arguments of a command. Both single and double quotes allow you
to escape that meaning.

For example, to locate two or more words that appear together in text, make the words a
single argument (to thegrep command) by enclosing them in quotes. To find the two
words “The all ” in your file trial , enter the following command line:

$ grep ´The all´ trial <RETURN>
The all * game

$

Programming with the UNIX System Shell

9-9

grep finds the stringThe all and prints the line that contains it. What would happen if
you did not put quotes around that string?

The ability to escape the special meaning of a space is especially helpful when you're
using thebanner(1) command. This command prints a message across a terminal
screen in large, poster-size letters.

To executebanner, specify a message consisting of one or more arguments (in this case,
usually words), separated on the command line by spaces.banner will use these spaces
to delimit the arguments and print each argument on a separate line.

To print more than one argument on the same line, enclose the words, together, in double
quotes. For example, to print a birthday greeting, type:

banner happy birthday to you < RETURN>

The command prints your message as a four-line banner. Now print the same message as a
three-line banner. Type:

banner happy birthday “to you” < RETURN>

Notice that the wordsto andyou now appear on the same line. The space between them
has lost its meaning as a delimiter.

Input and Output Redirection 9

In the UNIX system, some commands expect to receive their input only from the
keyboard (standard input) and most commands display their output at the terminal
(standard output). However, the UNIX system lets you redirect both input and output to
other files and programs. With such redirection, you can tell the shell to

• take its input from a file rather than from the keyboard

• send its output to a file rather than to the terminal

• use a program as the source of data for another program.

To redirect input and output, you use a set of operators: the less than sign (<), the greater
than sign (>), two greater than signs (>>), and the pipe (|).

Redirecting Input with the < Sign 9

To redirect input, specify a filename after a less than sign (<) on a command line:

command < file<RETURN>

When is this mechanism useful? A typical example is when you want to send someone—
via themail command—a message or file you've already created. By default, themail
command expects input from standard input (that is, the keyboard). But suppose you have
already entered the information to be sent (to a user with the login namejim) in a file
calledreport . Rather than retype that information, you can simply redirect input to
mail as follows:

User’s Guide

9-10

mail jim < report < RETURN>

Redirecting Output with the > Sign 9

To redirect output (from standard output) to a file, specify a filename after the greater than
sign (>) on a command line:

command > file < RETURN>

CAUTION

If you redirect output to a file that already exists, the output of
your command will overwrite the contents of the existing file.

Before redirecting the output of a command to a particular file, make sure a file by that
name does not already exist, unless you do not mind overwriting it. The shell does not
allow you to have two files of the same name in one directory. Therefore if you redirect
the output of a command to a file with the same name as an existing file, the shell will
overwrite the contents of the existing file with the output of your command. Keep this in
mind when redirecting output; the shell does not warn you when it is about to overwrite a
file.

To make sure that no file exists with the name you plan to use, run thels command,
specifying your proposed filename as an argument. If a file with that name exists,ls will
list it; if not, you will receive a message that the file was not found in the current directory.
For example, checking for the existence of the filestemp andjunk would give you the
following output:

This means you can name your new output filejunk , but you cannot name ittemp unless
you no longer want the contents of the existingtemp file.

Appending Output to an Existing File with the >> Symbol 9

To keep from destroying an existing file, you can also use the double greater than symbol
(>>), as follows:

command >> file<RETURN>

This appends the output of a command to the end of the filefile. If file does not exist, it is
created when you use the>> symbol this way.

$ ls temp <RETURN>
temp
$ ls junk <RETURN>
UX:ls:ERROR: Cannot access junk: No such file or directory
$

Programming with the UNIX System Shell

9-11

The following example shows how to append the output of thecat command, (described
in the“Shell Programming”section) to an existing file. Thecat command prints the con-
tents of the files to the standard output. If it has no arguments, it prints its standard input to
the standard output. First, thecat command is executed on both files without output redi-
rection to show their respective contents. Then the contents oftrial2 are added after the
last line oftrial1 by executing thecat command ontrial2 and redirecting the out-
put totrial1 .

Useful Applications of Output Redirection 9

Redirecting output is useful when you do not want it to appear on your screen immediately
or when you want to save it. Output redirection is also especially useful when you run
commands that perform clerical chores on text files. Two such commands arespell and
sort.

The spell Command 9

Thespell program compares every word in a file against its internal vocabulary list and
prints a list of all potential misspellings on the screen. Ifspell does not have a listing for
a word (such as a person's name), it will report that as a misspelling, too.

Runningspell on a lengthy text file can take a long time and may produce a list of
misspellings that is too long to fit on your screen.spell prints all its output at once; if it
does not fit on the screen, the command scrolls it continuously off the top until it has all
been displayed. A long list of misspellings will roll off your screen quickly and may be
difficult to read.

You can avoid this problem by redirecting the output ofspell to a file. In the following
example,spell searches a file namedmemo and places a list of misspelled words in a file
namedmisspell :

$ spell memo > misspell <RETURN>

$ cat trial1 <RETURN>
This is the first line of trial1.
Hello.
This is the last line of trial1.
$
$ cat trial2 <RETURN>
This is the beginning of trial2.
Hello.
This is the end of trial2.
$
$ cat trial2 >> trial1 <RETURN>
$ cat trial1 <RETURN>
This is the first line of trial1.
Hello.
This is the last line of trial1.
This is the beginning of trial2.
Hello.
This is the end of trial2.
$

User’s Guide

9-12

See thespell(1) manual page for all available options and an explanation of the
capabilities of each.

The sort Command 9

The sort command arranges the lines of a specified file in alphabetical or numerical
order Because users generally want to keep a file that has been alphabetized, output
redirection greatly enhances the value of thesort command.

Be careful to choose a new name for the file that will receive the output of thesort
command (the alphabetized list). Whensort is executed, the shell first empties the file
that will accept the redirected output. Then it performs the sort and places the output in the
blank file. If you type

sort list > list < RETURN>

the shell will emptylist and then sort nothing intolist .

Combining Background Mode and Output Redirection 9

Running a command in background does not affect the output of the command; unless it is
redirected, output is always printed on the terminal screen. If you are using your terminal
to perform other tasks while a command runs in background, you will be interrupted when
the command displays its output on your screen. However, if you redirect that output to a
file, you can work undisturbed, except when an error occurs.

For example, in the section titled“Special Characters,”you learned how to execute the
grep command in background with&. Now suppose you want to find occurrences of the
word “test ” in a file namedschedule . Run thegrep command in background and
redirect its output to a file calledtestfile :

$ grep test schedule > testfile & <RETURN>

You can then use your terminal for other work and examinetestfile when you have
finished it.

Redirecting Output to a Command with the Pipe 9

The | character is called a pipe. Pipes are powerful tools that allow you to take the output
of one command and use it as input for another command without creating temporary
files. A multiple command line created in this way is called a pipeline.

The general format for a pipeline is:

command1 | command2 | command3. . . < RETURN>

The output ofcommand1 is used as the input ofcommand2. The output ofcommand2 is
then used as the input forcommand3.

To understand the efficiency and power of a pipeline, consider the contrast between two
methods that achieve the same results.

Programming with the UNIX System Shell

9-13

• To use the input/output redirection method, run one command and redirect
its output to a temporary file. Then run a second command that takes the
contents of the temporary file as its input. Finally, remove the temporary
file after the second command has finished running.

• To use the pipeline method, run one command and pipe its output directly
into a second command.

For example, suppose you want to mail a happy birthday message in a banner to the owner
of the logindavid . Doing this without a pipeline is a three-step procedure. You must:

1. Enter thebanner command and redirect its output to a temporary file:

banner happy birthday > message.tmp

2. Enter themail command usingmessage.tmp as its input:

mail david < message.tmp

3. Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday | mail david < RETURN>

A Pipeline Using the cut and date Commands 9

Thecut anddate commands provide a good example of how pipelines can increase the
versatility of individual commands. Thecut command allows you to extract part of each
line in a file. It looks for characters in a specified part of the line and prints them. To
specify a position in a line, use the-c option and identify the part of the file you want by
the numbers of the spaces it occupies on the line, counting from the left-hand margin.

For example, suppose you want to display only the dates from a file calledbirthdays .
The file contains the following list:

The birthdays appear between the ninth and thirteenth spaces on each line. To display
them, type:

cut -c2-13 birthdays < RETURN>

The output is shown below:

Anne 12/26
Klaus 7/4
Mary 10/18
Peter 11/9
Nandy 4/23
Sam 8/12

User’s Guide

9-14

Thecut command is usually executed on a file; however, piping makes it possible to run
this command on the output of other commands, too. This is useful if you want only part
of the information generated by another command. For example, you may want to have
the time printed. Thedate command prints the day of the week, date, and time, as
follows:

$ date <RETURN>
Tue Dec 24 13:12:32 EST 1991
$

Notice that the time is given between spaces 12 and 19 of the line. You can display the
time (without the date) by piping the output ofdate into cut, specifying spaces12-19
with the-c option. Your command line and its output will look like this:

$ date | cut -c12-19 <RETURN>
13:14:56

$

See the date(1) manual page for all available options and an explanation of the
capabilities of each.

Substituting Output for an Argument 9

The output of most commands may be captured and used as arguments on a command
line. Do this by enclosing the command in grave accents (` . . . `) and placing it on the
command line in the position where the output should be treated as arguments. This is
known as command substitution.

For example, you can substitute the output of thedate andcut pipeline command used
previously for the argument in abanner printout by typing the following command line:

$ banner date | cut -c12-19` <RETURN>

Notice the results: the system prints a banner with the current time.

The section of this chapter titled“Shell Programming”shows you how you can also use
the output of a command line as the value of a variable.

Executing, Stopping, and Restarting Processes 9

This section discusses the following topics:

12/26
7/4
10/18
11/9
4/23
8/12

Programming with the UNIX System Shell

9-15

• how to queue commands to run at a later time with thebatch andat
commands

• how to obtain the status of running processes

• how to terminate active processes

• how to restart a stopped process

• how to keep background processes running after you have logged out

• how to move processes in foreground to background, and processes in
background to foreground.

Running Commands at a Later Time with the batch and at Commands 9

The batch andat commands allow you to specify a command or sequence of
commands to be run at a later time. With thebatch command, the system determines
when the commands run; with theat command, you determine when the commands run.
Both commands expect input from standard input (the terminal); the list of commands
entered as input from the terminal must be ended by pressing<CTRL><d> (control-d).

Thebatch command is useful if you are running a process or shell program that uses a
large amount of system time. Thebatch command submits a batch job (containing the
commands to be executed) to the system. The job is put in a queue, and runs when the sys-
tem load falls to an acceptable level. This frees the system to respond rapidly to other
input and is a courtesy to other users.

The general format forbatch is:

batch < RETURN>
first command < RETURN>

.

.

.
last command < RETURN> <CTRL><d>

If there is only one command to be run withbatch, you can enter it as follows:

batch command_line < RETURN> <CTRL><d>

The next example usesbatch to execute thegrep command at a convenient time. Here
grep searches all files in the current directory and redirects the output to the file
dol.file .

User’s Guide

9-16

After you submit a job withbatch, the system responds with a job number, date, and
time. This job number is not the same as the process number that the system generates
when you run a command in the background.

The at command allows you to specify an exact time to execute the commands. The
general format for theat command is:

at time < RETURN>
first command < RETURN>

.

.

.
last command < RETURN> <CTRL><d>

The timeargument consists of the time of day and, if the date is not today, the date.

The following example shows how to use theat command to mail a happy birthday
banner to the user with the login nameemily on her birthday:

$ at 8:15am Feb 27 <RETURN>
banner happy birthday | mail emily < RETURN> <CTRL><d>
job 453400603.a at Sat Feb 23 08:15:00 1991
$

Notice that theat command, like thebatch command, responds with the job number,
date, and time.

If you decide you do not want to execute the commands currently waiting in abatch or
at job queue, you can erase those jobs by using the-r option of theat command with
the job number or you can save the job number by redirecting it. The general format is

at -r job_number< < RETURN>

Try erasing the previousat job for the happy birthday banner. Type:

at -r 453400603.a < RETURN>

If you have forgotten the job number, theat -l command will give you a list of the
current jobs in thebatch or at queue, as the following screen shows:

$ at -l <RETURN>
168302040.a Mon Nov 25 13:00:00 1991
453400603.a Sun Dec 08 08:15:00 1991
$

$ batch <RETURN>
grep dollar * > dol.file <RETURN> <CTRL><d>
UX: At: WARNING: Commands will be executed using /usr/bin/sh
UX; At: INFO: Job 155223141.b at Tue Dec 8 14:24:52 1994
UX: At: WARNING: This job may not be executed at the proper time.
$

Programming with the UNIX System Shell

9-17

Notice that the system displays the job number and the time the job will run.

Using theat command, mail yourself the filememo at noon, to tell you it is lunch time.
(You must redirect the file intomail unless you use a “here document,” described in the
section titled“Shell Programming.”)” Then try theat command with the-l option.

Obtaining the Status of Running Processes 9

The ps command gives you the status of all the processes currently being run. For
example, you can use theps command to show the status of all the processes you run in
the background mode using& (described earlier in the section titled“Special
Characters”).”

The next section,“Terminating Active Processes,”discusses how you can use the PID
(process identification) number to stop a command from executing. A PID is a unique
number that the UNIX system assigns to each active process.

In the following example,grep is run in the background, and then theps command is
issued. The system responds with the process identification (PID) and the terminal
identification (TTY) number. It also gives the cumulative execution time for each process
(TIME), and the name of the command that is being executed (COMMAND).

Notice that the system reports a PID number for thegrep command, as well as for the
other processes that are running: theps command itself, and thesh (shell) command that
runs throughout the time you are logged in. (The shell programsh interprets—that is,
passes on to the computer—shell commands.)

See theps (1) manual page for all available options and an explanation of the
capabilities of each.

You can suspend and restart programs if your login has been configured for job control.
See your system administrator to have your login set up to include job control. Thejobs
command also gives you a listing of current background processes, running or stopped.

$ at 12:00pm <RETURN>
mail mylogin < memo <RETURN> <CTRL><d>
job 263131754.a at Jun 25 12:00:00 1991
$ at -l <RETURN>
263131754.a at Jun 25 12:00:00 1991
$

$ grep word * > temp & <RETURN>
28223
$ ps <RETURN>
 PID CLS PRI TTY TIME COMD
20723 TS 70 pts000 0:01 sh
20803 TS 59 pts000 0:00 ps
20823 TS 59 pts000 0:01 grep
$

User’s Guide

9-18

However, in addition to the PID, thejobs command gives you a number called the “job
identifier” (JID) and the original command typed to initiate the job (job_name). You need
to know the JID of a process whenever you want to restart a stopped job or resume a
background process in foreground. The JID is printed on the screen when you enter a
command to start or stop a process. To obtain information about your stopped or
background jobs, type:

jobs < RETURN>

The system will respond by displaying information such as the following:

[JID] - Stopped(signal) job_name
or

[JID] + Running job_name

Terminating Active Processes 9

Thekill command terminates active shell processes in background mode and thestop
command temporarily suspends the process if job control is active. The general format for
these commands is:

kill PID < RETURN>
or

stop %JID < RETURN>

Note that you cannot terminate background processes by pressing the <BREAK> or
<DELETE> key. The following example shows how you can terminate thegrep
command that you started executing in background mode in the previous example.

$ kill 28223 <RETURN>
[JID] + Terminated job_name

$

Notice that the system responds with a message and a$ prompt, showing that the process
has been killed. If the system cannot find the PID number you specify, it responds with an
error message:

UX:sh:ERROR:kill:28223:no such process

To suspend a foreground process in the job shell (only when job control is active), type:

<CTRL><z>

A message appears on the screen resembling the following:

[JID] Stopped(user) job_name

See thekill (1) manual page for all available options and an explanation of the
capabilities of each.

Programming with the UNIX System Shell

9-19

Restarting a Stopped Process 9

When job control is active you can restart a suspended process. To restart a process with
thestop command, you must first determine the JID by using thejobs command. You
can then use the JID with the following commands:

fg %JID Resume a stopped or background job in foreground.
bg %JID Restart a stopped job in background.

Using the nohup Command 9

All processes, except theat and batch requests, are killed when you log out. If you want a
background process to continue running after you log out, you must use thenohup
command to submit that background command.

To execute thenohup command, use the following format:

nohup command & < RETURN>

Notice that you place thenohup command before the command you intend to run as a
background process.

For example, suppose you want thegrep command to search all the files in your current
directory for the stringword and redirect the output to a file calledword.list , and you
want to log out immediately afterward. Type the command line as follows:

nohup grep word * > word.list & <RETURN>

You can terminate thenohup command by using thekill command. Now that you have
mastered these basic shell commands and notations, use them in your shell programs! The
exercises that follow will help you practice using the shell command language. Answers
to the exercises appear at the end of the chapter.

Command Language Exercises 9

1-1. What happens if you use an * (asterisk) at the beginning of a filename? Try to
list some of the files in a directory using the * with the last letter of one of
your filenames. What happens?

1-2. Try to enter the following two commands:

cat [0-9] * < RETURN>
echo * < RETURN>

1-3. Is it acceptable to use a? at the beginning or in the middle of a pattern? Try
it.

1-4. Do you have any files that begin with a number? Can you list them without
listing the other files in your directory? Can you list only those files that begin
with a lowercase letter between a and m? (Hint: Use a range of numbers or
letters in[]).

User’s Guide

9-20

1-5. Is it acceptable to place a command in background mode on a line that is
executing several other commands sequentially? Try it. What happens? (Hint:
Use ; and&.) Can the command in background mode be placed in any
position on the command line? Try placing it in various positions. Experiment
with each new character that you learn to see the full power of the character.

1-6. Redirect the output ofpwd andls into a file by using the following command
line:

cd; pwd> trial; ls >> trial < RETURN>

Remember, if you want to redirect both commands to the same file, you have
to use the>> (append) sign for the second redirection. If you do not, you will
wipe out the information from thepwd command.

1-7. Instead of cutting the time out of thedate response, try redirecting only the
date, without the time, intobanner. What is the only part you need to
change in the following command line?

banner `date | cut -c12-19` < RETURN>

Shell Programming 9

You can use the shell to create programs—new commands. Such programs are also called
shell procedures. This section tells you how to create and execute shell programs using
commands, variables, positional parameters, return codes, and basic programming control
structures.

The examples of shell programs in this section are shown two ways. First, thecat
command is used in a screen to display the contents of a file containing a shell program:

Second, the results of executing the shell program appear after a command line:

$ testfile <RETURN>
program_output

$

You should be familiar with an editor before you try to create shell programs.

$ cat testfile <RETURN>
first_command<RETURN>
 .
 .
 .
last_command<RETURN>
$

Programming with the UNIX System Shell

9-21

Shell Programs 9

Creating a Simple Shell Program 9

We'll begin by creating a simple shell program that will do the following tasks, in order:

• print the current directory

• list the contents of that directory

• display this message on your terminal:

This is the end of the shell program.

Create a file calleddl (short for directory list) using your editor of choice, and enter the
following:

pwd < RETURN>
ls < RETURN>
echo This is the end of the shell program. < RETURN>

Now write and quit the file. You have just created a shell program! You cancat the file to
display its contents, as the following screen shows:

Executing a Shell Program 9

One way to execute a shell program is to use thesh command. Type:

sh dl < RETURN>

Thedl command is executed bysh, and the pathname of the current directory is printed
first, then the list of files in the current directory, and finally, the commentThis is the
end of the shell program. Thesh command provides a good way to test your
shell program to make sure it works.

If dl is a useful command, you can use thechmod command to make it an executable file;
then you can typedl by itself to execute the command it contains. The following example
shows how to use thechmod command to make a file executable and then run thels -l
command to verify the changes you have made in the permissions.

$ cat dl <RETURN>
pwd
ls
echo This is the end of the shell program.
$

User’s Guide

9-22

Notice thatchmod turns on permission to execute (+x) for the user (u). Now dl is an
executable program. Try to execute it. Type:

dl < RETURN>

You get the same results as before, when you enteredsh dl to execute it.

Creating a bin Directory for Executable Files 9

To make your shell programs accessible from all your directories, you can make abin
directory from your login directory and move the shell files to yourbin.

You must also set your shell variablePATH to include yourbin directory:

PATH=$PATH:$HOME/bin

See“Variables” and“Using Shell Variables”in this chapter for more information about
PATH.

The following example reminds you which commands are necessary. In this example,dl
is in the login directory. Type these command lines:

cd < RETURN>
mkdir bin < RETURN>
mv dl bin/dl < RETURN>

Move to thebin directory and type thels -l command. Doesdl still have execute
permission?

Now move to a directory other than the login directory, and type the following command:

dl < RETURN> What happened?

It is possible to give thebin directory another name; if you do so, you must change your
shell variablePATH again.

Warnings about Naming Shell Programs 9

You can give your shell program any appropriate filename; however, you should not give
your program the same name as a system command. Depending on your path, the system
may execute your command instead of the system command. For example, if you had
named yourdl programmv, each time you tried to move a file, the system might have
executed your directory list program instead ofmv.

$ chmod u+x dl <RETURN>
$ ls -l <RETURN>
total 2
-rw-------1login login 3661Nov 210:28 mbox
-rwx------1login login 48 Nov 1510:50 dl
$

Programming with the UNIX System Shell

9-23

Another problem can occur if you name thedl file ls, and then try to execute the file.
You would create an infinite loop, since your program executes thels command. After
some time, the system would give you the following error message:Too many
processes, cannot fork What happened? You typed in your new command,ls.
The shell read and executed thepwd command. Then it read thels command in your pro-
gram and tried to execute yourls command. This formed an infinite loop. For this reason,
the UNIX system limits the number of times an infinite loop can execute. One way to
prevent such looping is to give the pathname for the systemls command,
/usr/bin/ls , when you write your own shell program.

The followingls shell program would work:

$ cat ls <RETURN>
pwd
/usr/bin/ls
echo This is the end of the shell program

If you name your commandls, then you can only execute the systemls command by
using its full pathname,/usr/bin/ls .

Variables 9

Variables are the basic data objects that, in addition to files, shell programs manipulate.
Here we discuss three types of variables and how to use them:

• positional parameters

• special parameters

• named variables.

Positional Parameters 9

A positional parameter is a variable within a shell program; its value is set from an
argument specified on the command line that invokes the program. Positional parameters
are numbered and are referred to with a preceding$: $1, $2, $3, and so on.

A shell program may reference up to nine positional parameters. If a shell program is
invoked with a command line that appears like this:

shell.prog pp1 pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9 < RETURN>

then positional parameter$1 within the program is assigned the valuepp1 , positional
parameter$2 within the program is assigned the valuepp2 , and so on, at the time the
shell program is invoked.

To practice positional parameter substitution, create a file calledpp (short for positional
parameters). (Remember, the directory in which these example files reside must be in
$PATH.) Then enter theecho commands shown in the following screen. Enter the
command lines so that running thecat command on your completed file will produce the
following output:

User’s Guide

9-24

If you execute this shell program with the arguments one, two, three, andfour ,
you will obtain the following results (but first you must make the shell programpp
executable using thechmod command):

Another example of a shell program isbbday , which mails a greeting to the login entered
in the command line. Thebbday program contains one line:

banner happy birthday | mail $1

Try sending yourself a birthday greeting. If your login name issue , your command line
will be:

bbday sue < RETURN>

Thewho command lists all users currently logged in on the system. How can you make a
simple shell program calledwhoson , that will tell you if the owner of a particular login is
currently working on the system?

Type the following command line into a file calledwhoson :

who | grep $1 < RETURN>

Thewho command lists all current system users, andgrep searches that output for a line
with the string contained as a value in the positional parameter$1.

Now try using your login as the argument for the new programwhoson . For example,
suppose your login issue . When you issue thewhoson command, the shell program
substitutessue for the parameter$1 in your program and executes as if it were:

who | grep sue < RETURN>

The output appears on your screen as follows:

$ cat pp <RETURN>
echo The first positional parameter is: $1 <RETURN>
echo The second positional parameter is: $2 <RETURN>
echo The third positional parameter is: $3 <RETURN>
echo The fourth positional parameter is: $4 <RETURN>
$

$ chmod u+x pp <RETURN>
$
$ pp one two three four <RETURN>
The first positional parameter is: one
The second positional parameter is: two
The third positional parameter is: three
The fourth positional parameter is: four
$

Programming with the UNIX System Shell

9-25

$ whoson sue <RETURN>
sue tty26 Jan 24 13:35
$

If the owner of the specified login is not currently working on the system,grep fails and
thewhoson prints no output.

The shell allows a command line to contain at least 128 arguments; however, a shell
program is restricted to referencing only nine positional parameters,$1 through$9, at a
given time. You can work around this restriction by using theshift command. See
sh(1) for details. The special parameter$* (described in the next section) can also be
used to access the values of all command line arguments.

Special Parameters 9

$# This parameter, when referenced in a shell program, contains the number of
arguments with which the shell program was invoked. Its value can be used
anywhere in the shell program.

Enter the command line, shown in the following screen, in the executable shell program
calledget.num . Then run thecat command on the file:

The program simply displays the number of arguments with which it is invoked. For
example:

You can write a simple shell program to demonstrate$* . Create a shell program called
show.param that will echo all the parameters. Use the command line shown in the fol-
lowing completed file:

$ cat get.num <RETURN>
echo The number of arguments is: $#
$

$ get.num test out this program <RETURN>
The number of arguments is: 4
$

User’s Guide

9-26

The programshow.param will echo all the arguments you give the command. Make
show.param executable and try it using these parameters:

Notice that show.param echoesHello. How are you? Now try show.param
using more than nine arguments:

Once again, show.param echoes all the arguments you give. The$* parameter can be
useful if you use filename expansion to specify arguments to the shell command.

Use the filename expansion feature with yourshow.param command. For example,
suppose you have three files in your directory named for the first three chapters of a book.
Theshow.param command prints a list of all those files.

Named Variables 9

Another form of variable that you can use in a shell program is a named variable. You
assign values to named variables yourself. The format for assigning a value to a named
variable is:

named_variable=value < RETURN>

$ cat show.param <RETURN>
echo The parameters for this command are: $*
$

Hello. How are you?
$ show.param Hello. How are you? <RETURN>
The parameters for this command are: Hello. How are you?
$

$ show.param a b c d e f g h i j <RETURN>
The parameters for this command are: a b c d e f g h i j
$

$ show.param chap? <RETURN>
The parameters for this command are: chap1 chap2 chap3
$

Programming with the UNIX System Shell

9-27

Notice that there are no spaces on either side of the equals (=) sign.

In the following example,var1 is a named variable, andmyname is the value or
character string assigned to that variable:

var1=myname < RETURN>

A $ is used in front of a variable name in a shell program to reference the value of that
variable. Using the example above, the reference$var1 tells the shell to substitute the
valuemyname (assigned tovar1), for any occurrence of the character string$var1 .

The first character of a variable name must be a letter or an underscore. The rest of the
name can consist of letters, underscores, and digits. Like shell program filenames, variable
names should not be shell command names. Also, the shell reserves some variable names
that you should not use for your variables. The following list provides brief descriptions of
some of the most important of these reserved shell variable names.

• CDPATH defines the search path for thecd command.

• HOMEis the default variable for thecd command (home directory).

• IFS defines the internal field separators (normally the <SPACE>, the
<TAB>, and the<RETURN>)

• OFS defines the output field separators.

• LOGNAME is your login name.

• MAIL names the file that contains your electronic mail.

• PATH determines the search path used by the shell to find commands.

• PS1 defines the primary prompt (default is$).

• PS2 defines the secondary prompt (default is>).

• TERM identifies your terminal type. It is important to set this variable if you
are editing withvi.

• TERMINFO identifies the directory to be searched for information about
your terminal, for example, its screen size.

• TZ defines the time zone (default isEST5EDT).

Many of these variables are explained in“Modifying Your Login Environment”later in
this chapter.

You can see the value of these variables in your shell in two ways. First, you can type

echo $ variable_name

The system outputs the value ofvariable_name. Second, you can use theenv(1)
command to print out the value of all defined variables in the shell. To do this, typeenv
on a line by itself; the system outputs a list of the variable names and values.

Assigning a Value to a Variable 9

You can set theTERM variable by entering the following command line:

User’s Guide

9-28

TERM=terminal_name < RETURN>
export TERM

This is the simplest way to assign a value to a variable. However, there are several other
ways to do this:

• Use theread command to assign input to the variable.

• Redirect the output of a command into a variable by using command sub-
stitution with grave accents (` . . . `).

• Assign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command 9

The read command used within a shell program allows you to prompt the user of the
program for the values of variables. The general format for theread command is:

read variable < RETURN>

The values assigned byread to variable will be substituted for$variable wherever it is
used in the program. If a program executes theecho command just before theread
command, the program can display directions such asType in Theread command
will wait until you type a character string, followed by a<RETURN>, and then make
that string the value of the variable.

The following example shows how to write a simple shell program callednum.please
to keep track of your telephone numbers. This program uses the following commands for
the purposes specified.

echo Prompt you for a person's last name.

read Assign the input value to the variablename.

grep Search the filelist for this variable.

Your finished program should look like the one displayed here:

Create a file calledlist that contains several last names and telephone numbers. Then
try runningnum.please .

The next example is a program calledmknum, which creates a list.mknum includes the
following commands for the purposes shown.

• echo prompts for a person's name.

$ cat num.please <RETURN>
echo Type in the last name:
read name
grep $name home/list
$

Programming with the UNIX System Shell

9-29

• read assigns the person's name to the variablename.

• echo asks for the person's number.

• read assigns the telephone number to the variablenum.

• echo adds the values of the variablesname andnum to the filelist .

If you want the output of theecho command to be added to the end oflist , you must
use>> to redirect it. If you use>, list will contain only the last telephone number you
added.

Running thecat command onmknum displays the contents of the program. When your
program looks like this, you will be ready to make it executable (with thechmod
command):

Try out the new programs for your telephone list. In the next example,mknum creates a
new listing for Mr. Niceguy. Thennum.please gives you Mr. Niceguy's telephone
number:

Notice that the variablename accepts bothMr. andNiceguy as the value.

Substituting Command Output for the Value of a Variable 9

You can substitute the output of a command for the value of a variable by using command
substitution in the following format:

variable=`command ̀< RETURN>

The output fromcommand becomes the value ofvariable.

$ cat mknum <RETURN>
echo Type in name
read name
echo Type in number
read num
echo $name $num >> list
$ chmod u+x mknum <RETURN>
$

$ mknum <RETURN>
Type in name
Mr. Niceguy <RETURN>
Type in number
668-0007 <RETURN>
$ num.please <RETURN>
Type in last name
Niceguy <RETURN>
Mr. Niceguy 668-0007
$

User’s Guide

9-30

In one of the previous examples on piping, thedate command was piped into thecut
command to get the correct time. That command line was the following:

date | cut -c12-19 < RETURN>

You can put this in a simple shell program calledt that gives you the time.

Remember, there are no spaces on either side of the equal sign. Make the file executable,
and you'll have a program that gives you the time:

$ chmod u+x t <RETURN>
$ t < RETURN>
The time is: 10:36
$

Assigning Values with Positional Parameters 9

You can assign a positional parameter to a named parameter by using the following
format:

var1=$1 < RETURN>

The next example is a simple program calledsimp.p that assigns a positional parameter
to a variable. By running thecat command onsimp.p, you can see the contents of this
program:

$ cat simp.p <RETURN>
var1=$1
echo $var1
$

Of course, you can also assign to a variable the output of a command that uses positional
parameters, as follows:

person=`who | grep $1` < RETURN>

In the next example, the programlog.time keeps track of yourwhoson program
results. The output ofwhoson is assigned to the variableperson , and added to the file
login.file with theecho command. The lastecho displays the value of$person ,
which is the same as the output from thewhoson command:

$ cat log.time <RETURN>
person=`who | grep $1`
echo $person >> $home/login.file
echo $person
$

$ cat t <RETURN>
time=`date | cut -c12-16`
echo The time is: $time
$

Programming with the UNIX System Shell

9-31

If you executelog.time specifyingmaryann as the argument, the system responds as
follows:

$ log.time maryann <RETURN>
maryann tty61 Apr 11 10:26
$

Shell Programming Constructs 9

The shell programming language has several constructs that give added flexibility to your
programs:

• Comments let you document the function of a program.

• The “here document” allows you to include, within the shell program itself,
lines to be redirected as input to some command in the shell program.

• Theexit command lets you terminate a program at a point other than the
end of the program and use return codes.

• The looping constructs,for andwhile , allow a program to iterate
through groups of commands in a loop.

• The conditional control commands,if andcase, execute a group of
commands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a
loop.

Comments 9

When you place comments in a shell program, the shell ignores all text on a line following
a word that begins with a# (pound) sign. If the# sign appears at the beginning of a line,
the comment uses the entire line; if it appears after a command, the command is executed
but the remainder of the line is ignored. The end of a line always ends a comment. The
general format for a comment line is

#comment<RETURN>

For example, a program that contains the following lines will ignore them when it is
executed:

This program sends a generic birthday greeting.
This program needs a login as
the positional parameter.

Comments are useful for documenting the function of a program and should be included
in any program you write.

User’s Guide

9-32

The Here Document 9

A here document allows you to place into a shell program lines that are redirected to be
the input to a command in that program. By using a here document, you can provide input
to a command in a shell program without using a separate file. The notation consists of the
redirection symbol<< and a delimiter that specifies the beginning and end of the lines of
input. The delimiter can be one character or a string of characters; the! is often used.

Screen 9-1 shows the general format for a here document.

command << delimiter < RETURN>
. . . input lines . . . < RETURN>
delimiter < RETURN>

In the next example, the programgbday uses a here document to send a generic birthday
greeting by redirecting lines of input into themail command:

Screen 9-1. Format of a Here Document

When you use this command, you must specify the recipient's login as the argument to the
command. The input included with the use of the here document is:

Best wishes to you on your birthday.

For example, to send this greeting to the owner of loginmary , type:

$ gbday mary <RETURN>

Usermary will receive your greeting the next time she reads her mail messages:

Using ed in a Shell Program 9

The here document offers a convenient and useful way to useed in a shell script. For
example, suppose you want to make a shell program that will enter theed editor, make a
global substitution to a file, write the file, and then quited. The following screen shows
the contents of a program called ch.text which does these tasks.

$ cat gbday <RETURN>
mail $1 <<!
Best wishes to you on your birthday.
!
$

$ mail <RETURN>
From mylogin Mon May 14 14:31 CDT 1991
Best wishes to you on your birthday.
$

Programming with the UNIX System Shell

9-33

Notice the- (minus) option to theed command. This option prevents the character count
from being displayed on the screen. Notice, also, the format of theed command for global
substitution:

g/ old_text/s// new_text/g < RETURN>

The program uses three variables:file1, old_text, andnew_text.When the program is run, it
uses theread command to obtain the values of these variables. The variables provide the
following information:

file the name of the file to be edited

old_text the exact text to be changed

new_text the new text

Once the variables are entered in the program, the here document redirects the global
substitution, the write command, and the quit command into theed command. Try the
newch.text command. The following screen shows sample responses to the program
prompts:

Notice that by running thecat command on the changed file, you could examine the
results of the global substitution.

The stream editorsed can also be used in shell programming.

$ cat ch.text <RETURN>
echo Type in the filename.
read file1
echo Type in the exact text to be changed.
read old_text
echo Type in the exact new text to replace the above.
read new_text
ed - $file1 <<!
g/$old_text/s//$new_text/g
w
q
!
$

$ ch.text <RETURN>
Type in the filename.
memo <RETURN>
Type in the exact text to be changed.
Dear John: <RETURN>
Type in the exact new text to replace the above.
To whom it may concern: <RETURN>
$ cat memo <RETURN>
To whom it may concern:
$

User’s Guide

9-34

Return Codes 9

Most shell commands issue return codes that show whether the command executed
properly. By convention, if the value returned is0 (zero), then the command executed
properly; any other value shows that it did not. The return code is not printed
automatically, but is available as the value of the shell special parameter$?.

Checking Return Codes 9

After executing a command interactively, you can see its return code by typing

echo $?

Consider the following example:

In the first case, the filehi exists in your directory and has read permission for you. The
cat command behaves as expected and outputs the contents of the file. It exits with a
return code of0, which you can see using the parameter$?. In the second case, the file
either does not exist or does not have read permission for you. Thecat command prints a
diagnostic message and exits with a return code of2.

Using Return Codes with the exit Command 9

A shell program normally terminates when the last command in the file is executed.
However, you can use theexit command to terminate a program at some other point.
Perhaps more importantly, you can also use theexit command to issue return codes for a
shell program.

Looping 9

In the previous examples in this chapter, the commands in shell programs have been
executed in sequence. Thefor andwhile looping constructs allow a program to execute
a command or sequence of commands several times.

The for Loop 9

Thefor loop executes a sequence of commands once for each member of a list. It has the
format shown in the following listing.

$ cat hi
This is file hi.
$ echo $?
0
$ cat hello
UX:cat:Error:Cannot open hello: No such file or directory
$ echo $?
2
$

Programming with the UNIX System Shell

9-35

For each iteration of the loop, the next member of the list is assigned to the variable given
in the for clause. References to that variable may be made anywhere in the commands
within thedo clause.

It is easier to read a shell program if the looping constructs are visually clear. Because the
shell ignores spaces at the beginning of lines, each section of a command can be indented
as it was in the above format. Also, if you indent each command section, you can easily
check to make sure eachdo has a correspondingdone at the end of the loop.

The variable can be any name you choose. For example, if you call itvar , then the values
given in the list after the keywordin will be assigned in turn tovar ; references within
the command list to$var will make the value available. If thein clause is omitted, the
values forvar will be the complete set of arguments given to the command and available
in the special parameter$* . The command list between the keywordsdo anddone will
be executed once for each value.

When the commands have been executed for the last value in the list, the program will
execute the next line belowdone . If there is no line, the program will end.

The easiest way to understand a shell programming construct is to try an example. Create
a program that will move files to another directory. Include the following commands for
the purposes shown.

echo Prompt the user for a pathname to the new directory.

read Assign the pathname to the variablepath .

for variable Call the variablefile ; it can be referenced as$file in
the command sequence.

in list_of_values Supply a list of values. If the in clause is omitted, the
list of values is assumed to be$* (all the arguments
entered on the command line).

do command_sequence Provide a command sequence. The construct for this
program will be:

for variable<RETURN>

in a_list_of_values<RETURN>

do <RETURN>

command_1<RETURN>

command_2<RETURN>

 .

 .

 .

last_command<RETURN>

done <RETURN>

User’s Guide

9-36

do
mv $file $path/$file<RETURN>

done

The following screen shows the text for the shell programmv.file :

In this program the values for the variablefile are already in the program. To change the
files each time the program is invoked, assign the values using positional parameters or
theread command. When positional parameters are used, thein keyword is not needed,
as the next screen shows:

You can move several files at once with this command by specifying a list of filenames as
arguments to the command. (This can be done most easily using the filename expansion
mechanism described earlier).

The while Loop 9

Another loop construct, thewhile loop, uses two groups of commands. It will continue
executing the sequence of commands in the second group, thedo . . .done list, as long as
the final command in the first group, thewhile list, returns a status of (true), meaning the
statements after thedo can be executed.

The general format of thewhile loop is shown in the following listing.

while <RETURN>

command_1<RETURN>

 .

 .

$ cat mv.file <RETURN>
echo Please type in the directory path
read path
for file
 in memo1 memo2 memo3
do
 mv $file $path/$file
done
$

$ cat mv.file <RETURN>
echo type in the directory path
read path
for file
do
 mv $file $path/$file
done
$

Programming with the UNIX System Shell

9-37

For example, a program calledenter.name uses awhile loop to enter a list of names
into a file. The program consists of the following command lines:

With some added refinements, the program becomes:

Notice that, after the loop is completed, the program executes the commands below the
done .

You used special characters in the first twoecho command lines, so you must use quotes
to turn off the special meaning. The next screen shows the results ofenter.name :

 .

last_command<RETURN>

do <RETURN>

command_1<RETURN>

 .

 .

 .

last_command<RETURN>

done <RETURN>

$ cat enter.name <RETURN>
while

 read x
do
 echo $x>>xfile
done
$

$ cat enter.name <RETURN>
echo “Please type in each person's name and then a RETURN”
echo “Please end the list of names with a CTRL-d”
while read x
do
 echo $x>>xfile
done
echo xfile contains the following names:
cat xfile
$

User’s Guide

9-38

Notice that after the loop completes, the program prints all the names contained inxfile .

The Shell's Garbage Can: /dev/null 9

The file system has a file called/dev/null where you can have the shell deposit any
unwanted output.

Try /dev/null by ignoring the results of thewho command. First, type in thewho
command. The response tells you who is on the system. Now, try thewho command, but
redirect the output into/dev/null :

who > /dev/null < RETURN>

Notice the system responded with a prompt. The output from thewho command was
placed in/dev/null and was effectively discarded.

Conditional Constructs 9

if . . . then 9

Theif command tells the shell program to execute thethen sequence of commands only
if the final command in theif command list is successful. Theif construct ends with the
keywordfi .

The general format for theif . . . then construct is shown in the following listing.

if <RETURN>

command_1<RETURN>

 .

 .

 .

last_command<RETURN>

then <RETURN>

command_1<RETURN>

.

$ enter.name <RETURN>
Please type in each person's name and then a RETURN
Please end the list of names with a CTRL-d
Mary Lou <RETURN>
Janice <RETURN> <CTRL><d>
xfile contains the following names:
Mary Lou
Janice
$

Programming with the UNIX System Shell

9-39

For example, a shell program calledsearch demonstrates the use of theif . . . then
construct. Thesearch program uses thegrep command to search for a word in a file. If
grep is successful, the programecho s that the word is found in the file. Copy the
search program (shown on the following screen) and try it yourself:

Notice that theread command assigns values to two variables. The first characters you
type, up to a space, are assigned toword . The rest of the characters, including embedded
spaces, are assigned tofile .

A problem with this program is the unwanted display of output from thegrep command.
If you want to dispose of the system response to thegrep command in your program, use
the file/dev/null , changing theif command line to the following:

if grep $ word $file > /dev/null < RETURN>

Now execute yoursearch program. It should respond only with the message specified
after theecho command.

if . . . then . . . else 9

The if . . . then construction can also issue an alternate set of commands with
else , when theif command sequence is false. It has the general format shown in the fol-
lowing listing.

.

.

last_command<RETURN>

fi <RETURN>

if <RETURN>

command_1<RETURN>

 .

 .

 .

last_command<RETURN>

then <RETURN>

command_1<RETURN>

$ cat search <RETURN>
echo Type in the word and the filename.
read word file
if grep $word $file
 then echo $word is in $file
fi
$

User’s Guide

9-40

You can now improve yoursearch command so it will tell you when it cannot find a
word, as well as when it can. The following screen shows how your improved program
will look:

The test Command for Loops 9

The test command, which checks to see if certain conditions are true, is a useful
command for conditional constructs. If the condition is true, the loop will continue. If the
condition is false, the loop will end and the next command will be executed. Some of the
useful options for thetest command are listed in Table 9-3:

 .

 .

 .

last_command<RETURN>

else <RETURN>

command_1<RETURN>

 .

 .

 .

last_command<RETURN>

fi <RETURN>

Table 9-3. Test Command Options

test -r file <RETURN> true if the file exists and is readable

test -w file <RETURN> true if the file exists and has write permission

test -x file <RETURN> true if the file exists and is executable

$ cat search <RETURN>
echo Type in the word and the filename.
read word file
if
 grep $word $file >/dev/null
then
 echo $word is in $file
else
 echo $word is NOT in $file
fi
$

Programming with the UNIX System Shell

9-41

You may want to create a shell program to move all the executable files in the current
directory to yourbin directory. You can use thetest -x command to select the
executable files. Review the example of thefor construct that occurs in themv.file
program, shown in the following screen:

Create a program called mv.ex that includes anif test -x statement in the
do . . . done loop to move executable files only. Your program will be as follows:

The directory path is the path from the current directory to thebin directory. However, if
you use the value for the shell variableHOME, you will not need to type in the path each
time. $HOME gives the path to the login directory.$HOME/bin gives the path to your
bin .

In the following example,mv.ex does not prompt you to type in the directory name, and
therefore, does not read thepath variable:

test -s file <RETURN> true if the file exists and has at least one
character

test var1 -eq var2<RETURN> true if var1 equalsvar2

test var1 -ne var2<RETURN> true if var1 does not equalvar2

Table 9-3. Test Command Options (Cont.)

$ cat mv.file <RETURN>
echo type in the directory path
read path
for file
do
 mv $file $path/$file
done
$

$ cat mv.ex <RETURN>
echo type in the directory path
read path
for file
 do
 if test -x $file
 then
 mv $file $path/$file
 fi
 done
$

User’s Guide

9-42

Test the command, using all the files in the current directory, specified with the* special
character as the command argument. The command lines shown in the following example
execute the command from the current directory and then changes tobin and lists the
files in that directory. All executable files should be there.

$ mv.ex * <RETURN>
$ cd; cd bin; ls < RETURN>
list_of_executable_files
$

case . . . esac 9

The case . . . esac construction has a multiple choice format that allows you to
choose one of several patterns and then execute a list of commands for that pattern. The
pattern statements must begin with the keywordin , and a) must be placed after the last
character of each pattern. The command sequence for each pattern is ended with;; . The
case construction must be ended withesac (the letters of the word case reversed).

The general format for thecase construction is shown in the following listing:

case word<RETURN>

in <RETURN>

pattern_1) <RETURN>

command_line_1<RETURN>

.

.

.

last_command_line<RETURN>

 ;; <RETURN>

pattern_2) <RETURN>

command_line_1<RETURN>

.

.

.

$ cat mv.ex <RETURN>
for file
 do
 if test -x $file
 then
 mv $file $HOME/bin/$file
 fi
 done
$

Programming with the UNIX System Shell

9-43

Thecase construction tries to match theword following the wordcase with thepattern
in the first pattern section. If a match exists, the program executes the command lines after
the first pattern and up to the corresponding;; .

If the first pattern is not matched, the program proceeds to the second pattern. Once a
pattern is matched, the program does not try to match any more of the patterns, but goes to
the command followingesac .

The* used as a pattern matches anyword, and so allows you to give a set of commands to
be executed if no other pattern matches. To do this, it must be placed as the last possible
pattern in thecase construct, so that the other patterns are checked first. This helps you
detect incorrect or unexpected input.

The patterns that can be specified in thepattern part of each section may use the special
characters*,?, and[] for filename expansion, as described earlier in this chapter. This
provides useful flexibility.

Theset.term program contains a good example of thecase... esac construction.
This program sets the shell variableTERM according to the type of terminal you are using.
It uses the following command line:

TERM=terminal_name < RETURN>

In the following example, assume the terminal is a Teletype 4420, Teletype 5410, or
Teletype 5420.

Theset.term program first checks to see whether the value ofterm is 4420. If it is, the
program makesT4 the value ofTERM, and terminates. If the value ofterm is not 4420,

last_command_line<RETURN>

 ;; <RETURN>

pattern_3) <RETURN>

command_line_1<RETURN>

.

.

.

last_command_line<RETURN>

 ;;<RETURN>

*) <RETURN>

command_1<RETURN>

.

.

.

last_command<RETURN>

;; <RETURN>

esac <RETURN>

User’s Guide

9-44

the program checks for other possible values: 5410 and 5420. It executes the commands
under the first pattern it finds, and then goes to the first command after theesac
command.

The pattern* , meaning everything else, is included at the end of the terminal patterns. It
warns that you do not have a pattern for the terminal specified and it allows you to exit the
case construct:

Notice the use of theexport command in the preceding screen. You useexport to
make a variable available within your environment and to other shell procedures. What
would happen if you placed the * pattern first? Theset.term program would never
assign a value toTERM, since it would always match the first pattern *, which means
everything.

Unconditional Control Statements: the break and continue Commands 9

The break command unconditionally stops the execution of any loop in which it is
encountered, and goes to the next command after the done, fi, or esac statement. If
no commands follow that statement, the program ends.

In the example forset.term, you could have used thebreak command instead of
echo to leave the program, as the next example shows:

$ cat set.term <RETURN>
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

in
4420)

TERM=T4
;;
5410)

TERM=T5
;;
5420)

TERM=T7
;;
*)
echo not a correct terminal type
;;

esac
export TERM
echo end of program
$

Programming with the UNIX System Shell

9-45

Thecontinue command causes the program to go immediately to the next iteration of a
while or for loop without executing the remaining commands in the loop.

Functions 9

Functions provide a convenient and efficient means of coding and executing simple
programs (more complex programs should remain as shell programs). Functions are
similar to shell programs except for the fact that they are stored in memory and therefore,
execute faster than a program. Another exception is that functions only operate in the
current shell process.

Defining a Function 9

There are two formats that can be used in defining a function:

Format 1

name () { command; command; ... command; }

In this format,name is the name of the function. The parentheses is an indication to the
shell that a function is being defined. The body of the function (which is delimited by the
curly braces) contains the commands to be executed. Each command is separated by a
semi-colon and a space. The last command ends with a semi-colon, and the curly braces
are separated from the body of the function by a space.

$ cat set.term <RETURN>
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

in
4420)
TERM=T4

;;
5410)

TERM=T5
;;
5420)

TERM=T7
;;
*)

break
;;

esac
export TERM
echo end of program
$

User’s Guide

9-46

Format 2

name ()
> {
> command
> command
> command
> }

In this format,name () is the same as informat 1. However, upon pressing the
<RETURN> key, a> prompt will replace your regular shell prompt. The body of the
function is coded at this point, starting with the left curly brace. After the last command
has been entered, the body of the function is closed with a right curly brace. It is not
necessary to use semi-colons in this format.

Just as theexit statement is used within shell programs, thereturn statement is
provided for use within functions. This statement will terminate the function, but not the
shell program that called the function. The format of the return statement is:

return n

wheren is the return status of the function. Ifn is omitted, or if areturn statement is not
coded within the function, then the return status is that of the last command executed
within the function.

Once the function has been defined, you can display it by using the shellset statement
(without arguments) which displays all of your current environment variable settings. At
the end of the variable list, any functions you have defined will be displayed.

If you find it necessary to remove a function during a session, theunset command can be
used.

The format is:

unset function

wherefunction is the name of the function to be removed.

Executing a Function 9

To execute a function, enter the name of the function at your regular shell prompt. Any
arguments listed after the name of the function replace the positional parameters coded
within the function (the same as in any other shell program).

After a function has executed, you can display the return status by issuing the following:

echo $?

Examples 9

The following defines a function that displays login information for a particular user
(notice thatformat 1 is used in this case):

whoon () { who | grep $1; }

Programming with the UNIX System Shell

9-47

The next example searches for a file in the current directory. Notice thatformat 2 is used in
this case. Also, the return statement is used. A return status of 1 indicates that the search
did not find the file in question (a message is also displayed to that effect). A return status
of 0 indicates that the file exists.

isthere ()
> {
> if [! -f $1]
> then
> echo “$1 was not created”
> return 1
> fi
> return 0
> }

Debugging Programs 9

At times you may need to debug a program to find and correct errors. Two options to the
sh command can help you debug a program:

sh -v shell_program_namePrint the shell input lines as they are read by the system.

sh -x shell_program_namePrint commands and their arguments as they are executed.

To try these two options, create a shell program that has an error in it. For example, create
a file calledbug that contains the following list of commands:

Notice thattoday equals the output of thedate command, which must be enclosed in
grave accents for command substitution to occur.

The mail message sent to Tom at logintommy ($1) should look like the following screen:

$ cat bug <RETURN>
today=`date`
echo enter person
read person
mail $1
$person
When you log off come into my office please.
$today.
MLH
$

User’s Guide

9-48

To executebug , you have to press the <BREAK> or <DELETE> key to end the
program.

To debug this program, try executingbug usingsh -v . This will print the lines of the file
as they are read by the system, as shown below:

Notice the output stops on themail command, since there is a problem withmail . You
must use the here document to redirect input intomail .

Before you fix thebug program, try executing it withsh -x , which prints the commands
and their arguments as they are read by the system.

Once again, the program stops at themail command. Notice that the substitutions for the
variables have been made and are displayed.

The correctedbug program is as follows:

$ mail <RETURN>
From mlh Wed Apr 10 11:36 CST 1991
Tom
When you log off come into my office please.
Wed Apr 10 11:36:32 CST 1991
MLH
?
.

$ sh -v bug tommy <RETURN>
today=`date`
echo enter person
enter person
read person
tom
mail $1

$ sh -x bug tommy <RETURN>
+date
today=Wed Apr 10 11:07:23 CST 1991
+ echo enter person
enter person
+ read person
tom
+ mail tommy
$

Programming with the UNIX System Shell

9-49

The tee command is helpful for debugging pipelines. While simply passing its standard
input to its standard output, it also saves a copy of its input into the file whose name is
given as an argument.

The general format of thetee command is:

command_1| tee saverfile | command_2 < RETURN>

saverfile is the file in which the output ofcommand_1 is saved for you to study.

For example, suppose you want to check on the output of thegrep command in the
following command line:

who | grep $1 | cut -c1-9 < RETURN>

You can usetee to copy the output ofgrep into a file calledcheck , without disturbing
the rest of the pipeline.

who | grep $1 | tee check | cut -c1-9 < RETURN>

The filecheck contains a copy of thegrep output:

$ who | grep mlhmo | tee check | cut -c1-9 <RETURN>
mlhmo
$ cat check < RETURN>
mlhmo tty61 Apr 10 11:30
$

Modifying Your Login Environment 9

The UNIX system lets you modify your login environment in several ways. For example,
users frequently want to change the default values of the erase and line kill characters,
<CTRL><h> and@, respectively.

When you log in, the shell first examines a file in your login directory named.profile
(pronounced “dot profile”). This file contains commands that control your shell
environment.

$ cat bug <RETURN>
today=`date`
echo enter person
read person
mail $1 <<!
$person
When you log off come into my office please.
$today
MLH
!
$

User’s Guide

9-50

Because the.profile is a shell script, it can be edited and changed to suit your needs.
On some systems you can edit this file yourself, whereas on others, the system
administrator must do this for you. To see whether you have a.profile in your home
directory, type:

ls -al $HOME <RETURN>

If you can edit the file yourself, you may want to be cautious the first few times. Before
making any changes to your.profile , make a copy of it in another file called
safe.profile . Type:

cp .profile safe.profile < RETURN>

You can add commands to your.profile just as you add commands to any other shell
program. You can also set some terminal options with thestty command, and set some
shell variables.

Adding Commands to Your .profile 9

Practice adding commands to your.profile. Edit the file and add the followingecho
command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your.profile and you want to initiate them in the
current work session, you may cause the commands in.profile to be executed directly,
using the. (dot) shell command. The shell reinitializes your environment by executing
the commands in your.profile. Try this now. Type:

. .profile < RETURN>

The system should respond with the following:

Good Morning! I am ready to work for you.
$

Setting Terminal Options 9

The stty command can make your shell environment more convenient. You can use
these options withstty : -tabs andechoe .

stty -tabs This option preserves tabs when you are printing. It expands the
tab setting to eight spaces, which is the default. The number of
spaces for each tab can be changed. (See stty(1) for details.)

stty echoe If you have a terminal with a screen, this option erases characters
from the screen as you erase them with the <BACKSPACE>
key.

Programming with the UNIX System Shell

9-51

If you want to use these options for thestty command, you can create those command
lines in your.profile just as you would create them in a shell program. If you use the
tail command, which displays the last few lines of a file, you can see the results of
adding those three command lines to your.profile:

Using Shell Variables 9

Several of the variables reserved by the shell are used in your.profile. You can
display the current value for any shell variable by entering the following command:

echo $ variable_name < RETURN>

Four of the most basic of these variables are discussed next.

HOME This variable gives the pathname of your login directory. Use thecd
command to go to your login directory and type:

pwd <RETURN>

What was the system response? Now type:

echo $HOME <RETURN>

Was the system response the same as the response topwd?

$HOME is the default argument for thecd command. If you do not specify a
directory,cd will move you to$HOME.

LANG For many commands, this variable gives the language (such as French,
German, and so on) in which messages from the system are displayed on your
screen. It also specifies the language and cultural conventions the commands
will use to process and sort characters, display the date and time, and interpret
numeric and monetary values. The default language is English. If you prefer
to work in another language, and if your system supports non-English usage,
you can specify the desired language with this variable by assigning an
appropriate value to it. For example, for German usage, you might enter

LANG=de1[utsche]

Ask your system administrator which languages are available on your
computer, and what values you must assign toLANG to access them. Not all
system commands support non-English usage. Checkintro(1) for the
ones that do. For details ofLANG usage, seeenviron(5).

$ tail -3 .profile <RETURN>
echo Good Morning! I am ready to work for you
stty -tabs
stty echoe
$

User’s Guide

9-52

PATH This variable gives the search path for finding and executing commands. To
see the current values for yourPATH variable type:

echo $PATH <RETURN>

The system will respond with your currentPATH value.

$ echo $PATH < RETURN>
:/mylogin/bin:/bin:/usr/bin
$

The colon (:) is a delimiter between pathnames in the string assigned to the
$PATH variable. When nothing is specified before a: , the current directory is
understood. Notice how, in the last example, the system looks for commands
in the current directory first, then in/mylogin/bin , then in/bin , and
finally in /usr/bin .

If you are working on a project with several other people, you may want to set
up a groupbin , a directory of special shell programs used only by your
project members. The path might be named/project1/bin . Edit your
.profile, and add:/project1/bin to the end of yourPATH, as in the
next example.

PATH=“$PATH:/project1/bin” < RETURN>

TERM This variable tells the shell what kind of terminal you are using. To assign a
value to it, you must execute the following three commands in this order:

TERM=terminal_name<RETURN>
export TERM < RETURN>
tput init

The first two lines, together, are necessary to tell the computer what type of
terminal you are using. The last line, containing thetput command, tells the
terminal that the computer is expecting to communicate with the type of
terminal specified in theTERM variable. Therefore, this command must
always be entered after the variable has been exported.

If you do not want to specify theTERM variable each time you log in, add
these three command lines to your.profile; they will be executed
automatically whenever you log in.

If you log in on more than one type of terminal, it would also be useful to have
yourset.term command in your.profile .

PS1 This variable sets the primary shell prompt string (the default is the$ sign).
You can change your prompt by changing thePS1 variable in your
.profile .

Try the following example. Note that to use a multi-word prompt, you must
enclose the phrase in quotes. Type the following variable assignment in your
.profile .

PS1=“Your command is my wish” < RETURN>

Programming with the UNIX System Shell

9-53

Now execute your .profile (with the . command) and watch for your
new prompt sign.

$. .profile < RETURN>
Your command is my wish

The$ sign is gone forever, or at least until you delete thePS1 variable from
your .profile.

Shell Programming Exercises 9

2-1. Create a shell program calledtime from the following command line:

banner `date | cut -c12-19` < RETURN>

2-2. Write a shell program that gives only the date in a banner display. Be careful
not to give your program the same name as a UNIX system command.

2-3. Write a shell program that sends a note to several people on your system.

2-4. Redirect thedate command without the time into a file.

2-5. Echo the phrase “Dear colleague” in the same file as the previous exercise,
without erasing the date.

2-6. Using the above exercises, write a shell program that sends a memo to the
same people on your system mentioned in Exercise 2-3. Include in your
memo:

• lines at the top that include the current date and the words
“Dear colleague”

• the body of the memo (stored in an existing file)

• a closing statement.

2-7. How can youread variables into themv.file program?

2-8. Use afor loop to move a list of files in the current directory to another
directory. How can you move all your files to another directory?

2-9. How can you change the programsearch , so that it searches through several
files?

Hint:

for file
in $*

2-10. Set thestty options for your environment.

2-11. Change your prompt to the wordHello .

User’s Guide

9-54

2-12. Check the settings of the variables$HOME, $TERM, and $PATH in your
environment.

Answers To Exercises 9

Command Language Exercises 9

1-1. The * at the beginning of a filename refers to all files that end in that filename,
including that filename.

$ ls *t < RETURN>
cat
123t
new.t
t

$

1-2. The commandcat [0-9]* produces the following output:

1memo
100data
9
05name

The commandecho * produces a list of all the files in the current directory.

1-3. You can place? in any position in a filename.

1-4. The commandls [0-9]* lists only those files that start with a number.

The commandls [a-m]* lists only those files that start with the letters “a”
through “m.”

1-5. If you placed the sequential command line in the background mode, the
immediate system response was the PID number for the job.

No, the& (ampersand) must be placed at the end of the command line.

1-6. The command line would be:

cd; pwd > junk; ls >> junk < RETURN>

1-7. Change the-c option of the command line to read:

banner `date | cut -c1-10` < RETURN>

Programming with the UNIX System Shell

9-55

Shell Programming Exercises 9

2-1. $
$ cat time <RETURN>

banner `date | cut -c12-19`
$
$ chmod u+x time < RETURN>

2-2. $ cat mydate <RETURN>

banner `date | cut -c1-10`
$

2-3. $ cat tofriends <RETURN>

echo Type in the name of the file containing
the note.
read note
mail janice marylou bryan < $note

$

Or, if you used parameters for the logins (instead of the logins themselves)
your program may have looked like this:

$ cat tofriends < RETURN>
echo Type in the name of the file containing
the note.
read note
mail $* < $note

$

2-4. date | cut -c1-10 > file1 <RETURN>

2-5. echo Dear colleague >> file1 <RETURN>

2-6. $ cat send.memo <RETURN>

date | cut -c1-10 > memo1
echo Dear colleague >> memo1
cat memo >> memo1
echo A memo from M. L. Kelly >> memo1
mail janice marylou bryan < memo1

$

2-7. $ cat mv.file <RETURN>

echo type in the directory path
read path
echo type in filenames, end with < CTRL><d>
 while
 read file
 do
 mv $file $path/$file

User’s Guide

9-56

 done
echo all done

$

2-8. $ cat mv.file <RETURN>

echo Please type in directory path
read path
for file in $*
 do
 mv $file $path/$file
 done

$

The command line for moving all files in the current directory is:

$ mv.file * < RETURN>

2-9. See the hint provided with exercise 2-9.

$ cat search < RETURN>

for file
 in $*
 do
 if grep $word $file >/dev/null
 then echo $word is in $file
 else echo $word is NOT in $file
 fi
 done

$

2-10. Add the following lines to your.profile :

stty -tabs < RETURN>
stty erase <CTRL><h> < RETURN>
stty echoe < RETURN>

2-11. Add the following command lines to your.profile :

PS1=Hello < RETURN>
export PS1

2-12. Enter the following commands to check the values of theHOME, TERM, and
PATH variables in your home environment:

• $ echo $HOME<RETURN>

• $ echo $TERM<RETURN>

• $ echo $PATH<RETURN>

Programming with the UNIX System Shell

9-57

Summary of Shell Command Language 9

This appendix is a summary of the shell command language and programming constructs.
The first section reviews metacharacters, special characters, input and output redirection,
variables, and processes. These are arranged by topic in the order that they were
discussed. The second section contains models of the shell programming constructs.

The Vocabulary of Shell Command Language 9

Special Characters in the Shell 9

*\ ?\ [] Metacharacters; used to provide a shortcut to referencing
filenames, through pattern matching.

& Executes commands in the background mode.

; Sequentially executes several commands typed on one line, each
pair separated by; .

\ Turns off the meaning of the immediately following special
character.

´...´ Enclosing single quotes turn off the special meaning of all
characters except single quotes.

“...” Enclosing double quotes turn off the special meaning of all
characters except $, single quotes, and double quotes.

Redirecting Input and Output 9

< Redirects the contents of a file into a command.

> Redirects the output of a command into a new file, or replaces the
contents of an existing file with the output.

>> Redirects the output of a command so that it is appended to the
end of a file.

| Directs the output of one command so that it becomes the input of
the next command.

`command` Substitutes the output of the enclosed command in place of
`command.̀

User’s Guide

9-58

Executing and Terminating Processes 9

batch Submits the following commands to be processed at a time when
the system load is at an acceptable level.<CTRL><d> ends the
batch command.

at Submits the following commands to be executed at a specified
time.<CTRL><d> ends theat command.

at -l Reports which jobs are currently in theat or batch queue.

at -r Removes theat or batch job from the queue.

ps Reports the status of the shell processes.

kill PID Terminates the shell process with the specified process ID (PID).

nohup command list &Continues background processes after logging out.

Making a File Accessible to the Shell 9

chmod u+x filenameGives the user permission to execute the file (useful for shell
program files).

mv filename$HOME/bin/ filename
Moves your file to thebin directory in your home directory. This
bin holds executable shell programs that you want to be
accessible. Make sure thePATH variable in your.profile file
specifies thisbin . If it does, the shell will search in$HOME/bin
for your file when you try to execute it. If yourPATH variable
does not include yourbin , the shell will not know where to find
your file and your attempt to execute it will fail.

filename The name of a file that contains a shell program becomes the com-
mand that you type to run that shell program.

Variables 9

positional parameter
A numbered variable used within a shell program to reference
values automatically assigned by the shell from the arguments of
the command line invoking the shell program.

echo A command used to print the value of a variable on your terminal.

$# A special parameter that contains the number of arguments with
which the shell program has been executed.

$* A special parameter that contains the values of all arguments with
which the shell program has been executed.

named variable A variable to which the user can give a name and assign values.

Programming with the UNIX System Shell

9-59

Variables Used in the System 9

HOME Denotes your home directory; the default variable for thecd
command.

PATH Defines the path your login shell follows to find commands.

MAIL Gives the name of the file containing your electronic mail.

PS1, PS2 Defines the primary and secondary prompt strings, respectively.

TERM Defines the type of terminal.

LOGNAME Login name of the user.

IFS Defines the internal field separators (normally the space, the tab,
and the carriage return).

TERMINFO Allows you to request that thecurses and terminfo
subroutines search a specified directory tree before searching the
default directory for your terminal type.

TZ Sets and maintains the local time zone.

Shell Programming Constructs 9

Here Document 9

The format of the Here document is shown in the following listing:

For Loop 9

The format of the for loop is shown in the following listing:

command<<!

input lines

!

for variable

in this list of values

do the following commands

command 1

command 2

 .

User’s Guide

9-60

While Loop 9

The format of the while loop is shown in the following listing:

If...Then 9

The format of the if. . . then command is shown in the following listing:

If...Then...Else 9

The format of the if . . . then . . . else format is shown in the following listing:

 .

last command

done

while command list

do

command 1

command 2

 .

 .

last command

done

if this command list is successful

then command 1

command 2

 .

 .

last command

fi

if command list

then command list

else command list

fi

Programming with the UNIX System Shell

9-61

Case Construction 9

The format of the case construction is shown in the following listing:

Break and Continue Statements 9

A break or continue statement forces the program to leave any loop and execute the
command following the end of the loop.

case word

in

 pattern1)

command line 1

.

.

last command line

;;

 pattern2)

command line 1

.

.

last command line

;;

 pattern3)

command line 1

.

.

last command line

;;

esac

User’s Guide

9-62

10
Electronic Mail Tutorial

Introduction . 10-1
Exchanging Messages . 10-1
mail . 10-2

Sending Messages . 10-2
Undeliverable Mail . 10-3
Sending Mail to One Person . 10-4
Sending Mail to Several People Simultaneously . 10-5

Sending Mail to Remote Systems: The uname and uuname Commands. 10-5
Looking up SMTP Names. 10-7
Domain-Style Addresses . 10-8

Managing Incoming Mail . 10-10
Forwarding Mail . 10-11
The vacation, notify, and mailproc Commands. 10-12

mailx .10-14
mailx Overview . 10-15
Command Line Options . 10-16
How to Send Messages: The Tilde Escapes . 10-16

Editing the Message . 10-18
Incorporating Existing Text into Your Message . 10-19

Reading a File into a Message . 10-19
Incorporating a Message from Your Mailbox into a Reply 10-20

Sending Enhanced Text . 10-20
Changing Parts of the Message Header. 10-22
Adding Your Signature . 10-23
Keeping a Record of Messages You Send. 10-23
Exiting from mailx . 10-25
Summary . 10-25

How to Manage Incoming Mail . 10-25
The msglist Argument . 10-26
Commands for Reading and Deleting Mail. 10-27

Reading Mail . 10-27
Scanning Your Mailbox . 10-28
Switching to Other Mail Files . 10-28
Deleting Mail . 10-29

Commands for Saving Mail . 10-29
Commands for Replying to Mail. 10-30
Commands for Getting out of mailx . 10-30
mailx Command Summary . 10-31

The .mailrc File . 10-31
Using Mail in a Secure Environment. 10-34

Checking for Mail: The mailcheck Command . 10-34
Saving Mail in Multiple Levels . 10-35
Getting around the System . 10-35
Mail Forwarding, Vacation and notify . 10-36

User’s Guide

10-1

10
Chapter 10Electronic Mail Tutorial

10
10
10

Introduction 10

The UNIX system offers a choice of commands that enable you to communicate with
other UNIX system users. Specifically, they allow you to: send and receive messages from
other users (on either your system or another UNIX system); exchange files; and form
networks with other systems. Through networking, a user on one system can exchange
messages and files between computers, and execute commands on remote computers.

To help you take advantage of these capabilities, this chapter will teach you how to use the
following commands:mail , mailx , uname, anduuname commands to exchange
messages.

The chapter will also show you how to use themailcheck command to check if you
have mail at various levels, and thevacation , notify andmailproc for managing
your incoming messages.

To help you exchange files, and for further information on networking, see Chapter 12, the
Communication Tutorial in this guide.

Exchanging Messages 10

To send messages you can use either themail or mailx command. These commands
deliver your message to a file belonging to the recipient. When the recipient logs in (or
while already logged in), he or she receives a message that saysyou have mail . The
recipient can use either themail or mailx command to read your message and reply at
his or her leisure.

The main difference betweenmail andmailx is that onlymailx offers the following
features:

• a choice of text editors (ed or vi) for handling incoming and outgoing
messages

• a better understanding of mail header fields

• the ability to tailor the mail environment

• the ability to create enhanced text, multimedia, and multi-part messages
using the Multi-purpose Internet Mime Extensions (MIME) standard.

User’s Guide

10-2

You can also usemail or mailx to send files containing memos, reports, and so on.
However, if you want to send someone a file that is over a page long, it is probably better
to use one of the commands designed for transferring files:uuto or uucp . (See“Sending
Files to the Public Directory: The uuto Command”in Chapter 12, the “Communication
Tutorial” for descriptions of these commands.) These commands are also preferred for
sending files which contain non-text characters to a system running an earlier release of
the UNIX system.

mail 10

This section presents themail command. It discusses the basics of sending mail to one
or more people simultaneously, whether they are working on the local system (the same
system as you) or on a remote system. It also covers receiving and handling incoming
mail.

Sending Messages 10

The basic command line format for sending mail is

mail login <RETURN>

wherelogin is the recipient's login name on a UNIX system. This login name can be one
of the following:

• a login name if the recipient is on your system (for example,bob)

• a system name and login name if the recipient is on another system that can
communicate with yours (for example,sys2!bob or bob@sys2)

• a system-wide alias name which has been established by your system
administrator.

For the moment, assume that the recipient is on the local system. (We will deal with
sending mail to users on remote systems later.) Type themail command at the system
prompt, type the recipient's login id, press the<RETURN> key, and start typing the text
of your message on the next line. When you have finished typing it, send the message by
typing a period (.) and<RETURN> or a<CTRL><d> at the beginning of a new line.

The following example shows how this procedure will appear on your screen.

Electronic Mail Tutorial

10-3

The prompt on the last line means that your message has been queued (placed in a waiting
line of messages) and will be sent.

Undeliverable Mail 10

If you make an error when typing the recipient's login, themail command will not be
able to deliver your mail. Instead, it will print two messages telling you that it has failed
and that it is returning your mail. Then it will return your mail in a message that includes
the system name and login name of both the sender and intended recipient, and an error
message stating the reason for the failure.

For example, suppose you (owner of the loginkol) want to send a message to a user with
the loginchris . Your message saysThe meeting has been changed to
2:00. Failing to notice that you have incorrectly typed the login ascris , you try to send
your message.

The messageyou have mailed is presented by the shell; different shells may use
slightly different wordings for this message.

The mai l that is wait ing for you in your mai lbox, which may be found in
/var/mail/ your-user-id, will be useful if you do not know why themail command has
failed, or if you want to retrieve your mail so that you can resend it without typing it in
again. It contains the following:

$ mail phyllis <RETURN>
My meeting with Smith's <RETURN>
group tomorrow has been moved <RETURN>
up to 3:00 so I won't be able to <RETURN>
see you then. Could we meet <RETURN>
in the morning instead? <RETURN>
. <RETURN>
$

$ mail cris <RETURN>
The meeting has been changed to 2:00. <RETURN>
. <RETURN>
UX:mail:ERROR:Can't send to cris
UX:mail:ERROR:Return to kol
you have mail in /var/mail/kol
$

User’s Guide

10-4

To learn how to display and handle this message see“Managing Incoming Mail” later in
this chapter.

Sending Mail to One Person 10

The following screen shows a typical message.

When Tom logs in at his terminal (or while he is already logged in), he receives a message
that tells him he has mail waiting:

you have mail

To find out how he can read his mail, see the section“Managing Incoming Mail” in this
chapter.

You can practice using themail command by sending mail to yourself. Type in themail
command and your login ID, and then write a short message to yourself. When you type
the final period or<CTRL><d>, the mail will be sent to a file named after your login ID
in the/var/mail directory, and you will receive a notice that you have mail.

$ mail <RETURN>
From postmaster Mon Jan 23 16:00 EST 1993
To: kol@xquartet
Date: Mon Jan 23 21:00:01 GMT 1993
Original-Date: Mon Jan 23 15:59 EST 1993
Not-Delivered-To: !recipients due to 02 Invalid/Ambiguous Originator/
Recipient Name
 ORIGINAL MESSAGE ATTACHED
 (mail: Error # 8 'Invalid recipient')
En-Route-To: cris
Content-Length: 177

From kol@xquartet Mon Jan 23 16:00 EST 1993
Date: Mon, 23 Jan 93 16:00 EST
To: cris
Content-Length: 38
Content-Type: text/plain
Message-ID: <2c976ef10.3af7@xquartet>

The meeting has been changed to 2:00.

?

$mail tommy <RETURN>
Tom, <RETURN>
There's a meeting of the review committee <RETURN>
at 3:00 this afternoon. D.F. wants your <RETURN>
comments and an idea of how long you think <RETURN>
the project will take to complete. <RETURN>
B.K. <RETURN>
. <RETURN>
$

Electronic Mail Tutorial

10-5

Sending mail to yourself can also serve as a handy reminder system. For example, suppose
you (login IDbob) want to call someone the next morning. Send yourself a reminder in a
mail message.

The mail will be delivered immediately and remain there until you delete it. When you
log in the next day, a notice will appear on your screen informing you that you have mail
waiting to be read.

Sending Mail to Several People Simultaneously 10

You can send a message to several people by including all their login names, separated by
white space, on themail command line. For example:

Sending Mail to Remote Systems: The uname and uuname Commands 10

Until now we have assumed that you are sending messages to users on the local UNIX
system. However, your company may have three separate computer systems, each in a
different part of a building, or you may have offices in several locations, each with its own
system.

If your system has the Basic Networking Utilities or SMTP packages installed, you can
send mail to users on other systems simply by adding the name of the recipient's system
before the login ID on the command line.

mail sys2!bob <RETURN>

Notice that the system name and the recipient's login ID are separated by an exclamation
mark.

Before you can run this command, however, you need three pieces of information:

• the name of the remote system

$ mail bob <RETURN>
Call Accounting and find out <RETURN>
why they haven't returned my 1992 figures! <RETURN>
. <RETURN>
$

$ mail tommy jane wombat dave <RETURN>
Diamond cutters, <RETURN>
The game is on for tonight at diamond three. <RETURN>
Don't forget your gloves! <RETURN>
Your Manager <RETURN>
. <RETURN>
$

User’s Guide

10-6

• whether or not your system and the remote system communicate

• the recipient's login name.

Theuname anduuname commands allow you to find the system names, but you will
have to get the recipient's login name from the recipient. If you can, also get the name of
the remote system from the recipient.

If the recipient does not know the system name, have him or her issue the following
command on the remote system:

uname -n <RETURN>

The command will respond with the name of the system. For example:

$ uname -n <RETURN>
dumbo
$

Once you know the remote system name, theuuname command can help you verify that
your system can communicate with the remote system. At the prompt, type:

uuname <RETURN>

This generates a list of remote systems with which your system can communicate. If the
recipient's system is on that list, you can send messages to it bymail .

You can simplify this step by using thegrep command to search through theuuname
output. At the prompt, type:

uuname | grep system<RETURN>

(Heresystem is the recipient's system name.) Ifgrep finds the specified system name, it
prints it on the screen. For example:

$ uuname | grep dumbo <RETURN>
dumbo
$

This means thatdumbo can communicate with your system. Ifdumbo does not
communicate with your system, a prompt is returned.

$ uuname | grep dumbo <RETURN>
$

To summarize our discussion ofuname anduuname, consider an example. Suppose you
want to send a message to loginsarah on the remote systemjumbo . Verify thatjumbo
can communicate with your system and send your message. The following screen shows
both steps.

Electronic Mail Tutorial

10-7

Table 10-1 and Table 10-2 summarize the syntax and capabilities of theuname and
uuname commands, respectively.

Looking up SMTP Names 10

In addition to the Basic Networking Utilities package, your system may have the SMTP
package installed. To determine if mail would be able to deliver mail to the remote system
using SMTP, use grep from the file/etc/inet/hosts :

1. Seeuname(1) in the onlineCommand Reference for all available options and an explanation of
their capabilities.

Table 10-1. Summary of the uname Command

Command Recap

uname - displays the system name

command options arguments

uname -n and others1 none

Description: uname -n displays the name of the system you are logged into.

Table 10-2. Summary of the uuname Command

Command Recap

uuname - displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that can communicate with
your system.

$ uuname | grep jumbo <RETURN>
jumbo
$ mail jumbo!sarah <RETURN>
Sarah, <RETURN>
The final counts for the writing seminar <RETURN>
are as follows: <RETURN> <RETURN>
Our department - 18 <RETURN>
Your department - 20 <RETURN> <RETURN>
Tom <RETURN>
. <RETURN>
$

User’s Guide

10-8

If this does not list the system, SMTP may still be able to deliver the mail by using the
network itself to look up the system. Use thenslookup command to determine this. In
the following examples, the network is asked if the systemdumbo exists anywhere. If so,
you will be shown an address for that system.

In this example, the network is asked to use any Message Exchangers (MX's) that may be
available. The greater than sign (>) is nslookup 's prompt.

Domain-Style Addresses 10

In addition to the addressing style described above, usingremote_system!recipient, another
addressing syntax known as domain-style addressing is supported. Here the address would
be in the form

recipient@remote_system

or

recipient@remote_system.domain_info

The above two addresses are equivalent to the addresses

remote_system! recipient

$ grep dumbo /etc/inet/hosts <RETURN>
123.45.67.89 dumbo
$

$ nslookup dumbo <RETURN>
. . .

Non-authoritative answer:
Name: dumbo
Address: 123.45.67.89

. . .
$

$ nslookup <RETURN>
> set q=mx <RETURN>
> dumbo <RETURN>

. . .
Non-authoritative answer:
dumbo preference = 0, mail exchanger = dumbo
dumbo preference = 5, mail exchanger = jumbo.you.com

. . .

Electronic Mail Tutorial

10-9

or

remote_system.domain_info! recipient

NOTE

Your local system administrator can set up other addressing
schemes which make i t unnecessary to ver i fy d i rec t
communication with a remote system. This means that if the
remote system cannot be contacted directly, your message will be
automatically forwarded through a system that can contact the
indicated remote system. Check with your local administrator.

Other addressing syntaxes may be set up by your local System Administrator. Your local
System Administrator may also have set it up (check with your local System
Administrator to be sure), such that it may not be necessary to verify that your local
system can directly communicate with the remote system. If the remote system cannot be
contacted directly, the message may be automatically forwarded to another system that
can service the indicated remote system.

Table 10-3 summarizes the syntax and capabilities of themail command.

1. See themail(1) manual page in the onlineCommand Reference for all available options and an
explanation of their capabilities.

Table 10-3. Summary of Sending Messages with the mail Command

Command Recap

mail - sends a message to another user’s login

command options1 arguments

mail none required login

mail none required system_name!login

mail none required login@system_name

Description: Typing mail followed by one or more login names (which may
include a system name), sends the message typed on the lines
following the command line to the specified login(s).

Remarks: Typing a period (.) (followed by the<RETURN> key) or a
<CTRL><d> at the beginning of a new line sends the message.

User’s Guide

10-10

Managing Incoming Mail 10

As stated earlier, themail command also allows you to display on your screen messages
sent to you by other users so you can read them. If you are logged in when someone sends
you mail, the following message is printed on your screen:

you have mail

This means that one or more messages are being held for you in a file called
/var/mail/ your_login, usually referred to as your mailbox. To display these messages
on your screen, type themail command without any arguments:

mail <RETURN>

The messages will be displayed one at a time, beginning with the one most recently
received. A typicalmail message display looks like this:

The first set of lines, called the message header, provides information about the message:
the login name of the sender, the date and time the message was sent, and how many
characters are in the message. The lines after the first blank line (up to the line containing
the?) comprise the contents of the message.

If a long message is being displayed on your terminal screen, you may not be able to read
it all at once. You can pause the printing by typing<CTRL><s>. This will freeze the
screen, giving you a chance to read. When you are ready to continue, type<CTRL><q>
and the printing will resume.

After displaying each message, themail command prints a? prompt and waits for a
response. You have many options: for example, you can leave the current message in your
mailbox while you read the next message; you can delete the current message; or you can
save the current message for future reference. For a list ofmail 's available options, type a
? at the? prompt and then press the<RETURN> key.

? ? <RETURN>

To display the next message without deleting the current message, press the<RETURN>
key after the question mark.

? <RETURN>

The current message remains in your mailbox and the next message is displayed. If you
have read all the messages in your mailbox, the shell prompt appears.

$ mail <RETURN>
From tommy Wed May 21 15:33 CST 1993
Content-Length: 104

Bob,
Looks like the meeting has been canceled.
Do you still want the material for the technical review?
Tom

?

Electronic Mail Tutorial

10-11

To delete a message, type ad after the question mark:

? d <RETURN>

The message is deleted from your mailbox. If there is another message, it is then
displayed.

To save a message for later reference, type ans after the question mark:

? s <RETURN>

This saves the message in a file calledmbox in your home directory. To save the message
in another file, type the name of that file after thes command. The message is also deleted
from your mailbox.

For example, to save a message in a file calledmailsave (in your current directory),
enter the response shown after the question mark:

? s mailsave <RETURN>

If mailsave is an existing file, themail command appends the message to it. If there is
no file by that name, themail command creates one and stores your message in it. You
can later verify the existence of the new file by using thels command. (ls lists the
contents of a directory.)

You can also save the message in a file in a different directory by specifying a path name.
For example:

? s project1/memo <RETURN>

This is a relative path name that identifies a file calledmemo (where your message will be
saved) in a subdirectory (project1) of your current directory. You can use either
relative or full path names when saving mail messages. (For instructions on using path
names, see Chapter 4,“Using the File System”.)

To quit reading messages, enter aq followed by a<RETURN>:

? q <RETURN>

Any messages that you have not read are kept in your mailbox until the next time you use
themail command.

To stop the printing of a message entirely, press the<BREAK> key. Themail command
will stop the display, print a? prompt, and wait for a response from you.

Table 10-4 summarizes the syntax and capabilities of themail command for reading
messages.

Forwarding Mail 10

It is possible for you to have all of your mail messages forwarded from your login ID to
another login ID. This is done by using the-F option tomail . The following command
says that your mail needs to be forwarded to the two usersbob andcarol :

mail -F “bob carol”

User’s Guide

10-12

To remove the forwarding, use the-F option with an empty argument:

mail -F ““

The vacation, notify, and mailproc Commands 10

Three other programs related to managing incoming messages arenotify(1),
vacation(1) , and mailproc(1) . Thenotify command provides a mechanism
for receiving immediate notification of messages as they arrive. To establish notification,
issue the command

notify -y

To turn off notification, issue the command

notify -n

Thevacation command provides a way to automatically answer incoming messages
with a response while also saving the incoming messages for later perusal. To turn on the
vacation processing, issue the command

vacation

Various options are available which allow you to specify the message which will be sent
back, and whether the messages will be stored in the normal mailbox or under your home
directory. The mail messages can even be split apart into separate sets of messages for
each day.

To turn off vacation processing, issue the command

vacation -n

See the onlineCommand Reference for additional details.

1. See themail(1) manual page in the online Command Reference for all available options and an
explanation of their capabilities.

Table 10-4. Summary of Reading Messages with the mail Command

Command Recap

mai l - read messages sent to your login

command options arguments

mail many1 none

Description: When issued without options, themail command displays any mes-
sages waiting in your mailbox (the file/var/mail/ your_login).

Remarks: A question mark (?) at the end of a message means that a response is
expected. A full list of possible responses is given in the online
Command Reference.

Electronic Mail Tutorial

10-13

Thenotify andvacation commands both use a feature of the mail system known as
personal mail surrogates. Using a personal mail surrogate is similar to forwarding your
message to another user, except that of the mail going to another person, the mail is
instead sent to a program. Thevacation andnotify programs use personal mail
surrogates to perform their processing: when you turn on notification orvacation
processing, a personal mail surrogate does the work.

Bothvacation and notification processing use a single command to perform their work,
but both these commands cannot be active at the same time.

Themailproc command is useful because it lets you process your mail using multiple
commands. For example, you can write all messages from your boss to a separate file after
sending a message to your terminal, send messages from the trouble reporting system
directly to the printer, forward messages that contain the word “help” to the userjoe , and
write the rest to your mailbox.

To use themailproc command, you must first create a$HOME/.mailprocrc file,
containing lines which indicate how to process each message delivered to your mailbox.
Each line of the$HOME/.mailprocrc file contains four fields separated by colons (:):

user: test: disposition: action

user is a regular expression pattern which is matched against the return
address of the mail message; this lets you select mail messages
from a particular user.

test is an arbitrary test which can be used to select mail messages
based on a regular expression match against header field values or
by running UNIX commands; this lets you select mail messages
based on any criteria you choose.

action specifies what to do when a match is successful in the first two
fields; this may be writing the message to a file, or running a
UNIX command.

disposition field specifies what to do with the message after the action is com-
pleted successfully or unsuccessfully; it lets you say that the mes-
sage should be considered successfully delivered and nothing
more is to be done with it; that the message was successfully
handled, but should be kept in the mailbox; or that the message
should be processed by further commands.

For the example above, to capture a message from your boss, use a line similar to the
following:

boss:::%M>>boss.mail

This uses an empty test, which is always true, and the default disposition, which is to
consider the mail to be successfully delivered.

To send a message to your terminal telling you that the mail arrived, the following
command line would be placed before the previous line (it should be run first):

boss::C=*;:echo Your boss sent you mail! | write your-id

User’s Guide

10-14

The disposition fieldC=*; indicates that all exit codes from the UNIX command should
be treated such that processing will be continued.

To send all messages from the trouble reporting system, which all have the login id
troubles, directly to the printer, use a line like this:

troubles::S=0;K=*;:lp

All mail from thetroubles login will be sent to thelp command. TheS=0; says that if
the lp command succeeds, the message has been successfully delivered. TheK=*; says
that if thelp command failed for any reason, the message is to be kept in your mailbox.

To forward all other mail messages that contain the word “help” in the subject, you would
use the test field with a regular expression match against the subject. Regular expression
matches are given surrounded with tildes (~), and the subject text can be extracted using
the escape sequence%s.

:~help~%s~::rmail joe

The test~help~%s~ does the match of the subject against the patternhelp, and the action
is to invoke thermail command again to deliver the message tojoe .

The complete sample$HOME/.mailprocrc file would look like this:

boss::C=*;:echo Your boss sent you mail! | write your-id
boss:::%M>>boss.mail
troubles::S=0;K=*;:lp
:~help~%s~::rmail Joe

All messages not handled by one of these commands will be delivered to your mailbox as
usual.

To installmailproc processing, you run the command

mailproc -y

mailx 10

This section introduces themailx facility. It explains how to set up yourmailx
environment, send messages with themailx command, and handle messages that have
been sent to you. The material is presented in four parts:

• mailx Overview

• Sending Messages

• Managing Incoming Mail

• The.mailrc File.

Electronic Mail Tutorial

10-15

mailx Overview 10

The mailx(1) command is an enhanced version of themail(1) command. There are
many options tomailx that are not available inmail for sending and reading mail. For
example, you can define an alias for a single login or for a group. This allows you to send
mail to an individual using a name or word other than their login ID, and to sendmail to
a whole group of people using a single name or word. Or you can create a multipart
message, or create a message which uses enhanced text features such as bold or italics.
When you usemailx to read incoming mail you can save it in various files, edit it,
forward it to someone else, respond to the person who originated the message, and so
forth. By usingmailx environment variables you can develop an environment to suit
your individual tastes.

If you type themailx command with one or more logins as arguments,mailx decides
you are sending mail to the named users, prompts you for a summary of the subject, and
then waits for you to type in your message or issue a command. The section“How to Send
Messages”describes features that are available to you for editing, incorporating other
files, adding names to copy lists, and more.

If you enter themailx command with no arguments,mailx checks incoming mail for
you in a file named/var/mail/ your_login. If there is mail for you in that file, you are
shown a list of the items and given the opportunity to read, store, remove or transfer each
one to another file. The section entitled“How to Manage Incoming Mail”provides some
examples and describes the options available.

If you choose to customizemailx , you should create a start-up file in your home
directory called.mailrc . The section on“The .mailrc File” describes variables you can
include in your start-up file.

mailx has two modes of functioning: input mode and command mode. You must be in
input mode to create and send messages. Command mode is used to read incoming mail.
You can use any of the following methods to control the waymailx works for you:

• by entering options on the command line. (See themailx(1) manual
page in the onlineCommand Reference.)

• by issuing commands when you are in input mode, for example, creating a
message to send. These commands are normally preceded by a tilde (~)
and are referred to as tilde escapes. (See the mailx(1) manual page in
the onlineCommand Reference.)

• by issuing commands when you are in command mode, for example,
reading incoming mail.

• by storing commands and environment variables in a start-up file in your
home directory called$HOME/.mailrc .

Tilde escapes are discussed in“How to Send Messages: The Tilde Escapes,”command
mode commands in“How to Manage Incoming Mail,”and the.mailrc file in “The
.mailrc File.”

User’s Guide

10-16

Command Line Options 10

In this section, we will look at command line options.

The syntax for themailx command is:

mailx [options] [name . . .] <RETURN>

Theoptions are flags that control the action of the command, andname. . . represents the
intended recipients.

Anything on the command line other than an option preceded by a hyphen is read by
mailx as aname; for example, the login or alias of a person to whom you are sending a
message.

One valuable command line option that is also available inmail , is

How to Send Messages: The Tilde Escapes 10

To send a message to another UNIX system user, enter the following command:

The login name specified belongs to the person who is to receive the message. The system
puts you into input mode and prompts you for the subject of the message. (You may have
to wait a few seconds for theSubject: prompt if the system is very busy.) This is the
simplest way to run themailx command; it differs little from the way you run themail
command.

The following examples show how you can edit messages you are sending, incorporate
existing text into your messages, change the header information, and do other tasks that
take advantage of themailx command's capabilities. Each example is followed by an
explanation of the key points illustrated in the example.

-f [filename]: Allows you to read messages fromfilename instead of your mailbox.

Becausemailx lets you store messages in any file you name, you
may use the-f option to review these stored messages. The default
storage fi le is$HOME/mbox, so the commandmailx -f
<RETURN> is used to review messages stored there.

$ mailx login <RETURN>
Subject:

Electronic Mail Tutorial

10-17

Whether to include a subject or not is optional. If you elect not to, press the<RETURN>
key. The cursor moves to the next line and the program waits for you to enter the text of
the message.

There are two important things to notice about the above example:

• You break up the lines of your message by pressing the<RETURN> key
at the end of each line. This makes it easier for the recipient to read the
message, and prevents you from overflowing the line buffer.

• You end the text and send the message by entering a tilde, a period and a
<RETURN> together (\~.), or a<CTRL><d>, at the beginning of a
line. (If the proper option is set, the message may be ended by entering a
period and a<RETURN> together (.) at the beginning of a line.) The
system responds with an end-of-text notice (EOT) and a prompt.

There are several commands available to you when you are in input mode. Each of the
options consists of a tilde (\~), followed by an alphabetic character, entered at the
beginning of a line. Together they are known as tilde escapes. (See themailx(1)
manual page in the onlineCommand Reference.) Most of them are used in the examples in
this section.

You can include the subject of your message on the command line by using the-s option.
For example, the command line:

$ mailx -s “meeting notice” sms <RETURN>

is equivalent to:

$ mailx sms <RETURN>
Subject: meeting notice <RETURN>

The subject line will look the same to the recipient of the message. Notice that when
putting the subject on the command line, you must enclose a subject that has more than
one word in quotation marks.

$ mailx sms <RETURN>
Subject:

$ mailx sms <RETURN>
Subject: meeting notice <RETURN>
We're having a meeting for novice mailx users in <RETURN>
the auditorium at 9:00 tomorrow. <RETURN>
Would you be willing to give a demonstration? <RETURN>
Bob <RETURN>
<CTRL><d> EOT
$

User’s Guide

10-18

Editing the Message 10

When you are in the input mode ofmailx , you can invoke an editor by entering the~e
(tilde e) escape at the beginning of a line. The following example shows how to use tilde:

Notice that you have misspelled a word in your message. To correct the error, use\~e to
invoke the editor, in this case the default editor,ed(1).

In this example theed editor was used. The environment variable$EDITOR or a
.mailrc file controls which editor will be invoked when you issue a\~e escape
command. The\~v (tilde v) escape invokes an alternate editor (most commonly,vi) as
specified by the environment variable$VISUAL.

When you exited fromed (by typingq), themailx command returned you to input mode
and prompted you to continue your message. At this point you may want to preview your
corrected message by entering a\~p (tilde p) escape. The\~p escape prints out the entire
message up to the point where the\~p was entered. Thus, at any time during text entry,
you can review the current contents of your message.

$ mailx sms <RETURN>
Subject: Testing my tilde <RETURN>
When entering the text of a message <RETURN>
that has somehow gotten grabled <RETURN>
you may invoke your favorite editor <RETURN>
by means of a <tilde e> (~e). <RETURN>

.

.

.

.

.

.
\~e <RETURN>
132
/grabled/p <RETURN>
that has somehow gotten grabled
s/gra/gar/p <RETURN>
that has somehow gotten garbled
w <RETURN>
132
q <RETURN>
(continue)
What more can I tell you? <RETURN>

.

.

.

Electronic Mail Tutorial

10-19

Incorporating Existing Text into Your Message 10

mailx provides four ways to incorporate material from another source into the message
you are creating. You can:

• read a file into your message

• read a message you have received into a reply

• incorporate the value of a named environment variable into a message

• execute a shell command and incorporate the output of the command into a
message.

The following examples show the first two of these functions. These are the most
commonly used of these four functions. For information about the other two, see the
mailx(1) manual page of the onlineCommand Reference.

Reading a File into a Message 10

As the example shows, the\~r (tilde r) escape is followed by the name of the file you
want to include. The system displays the file name and the number of lines and characters
it contains. You are still in input mode and can continue with the rest of the message.

.

.

.
\~p <RETURN>
Message contains:
To: sms
Subject: Testing my tilde

When entering the text of a message
that has somehow gotten garbled
you may invoke your favorite editor
by means of a <tilde e> (~e).
What more can I tell you?
(continue)
~. <RETURN>
EOT
$

$ mailx sms <RETURN>
Subject: Work Schedule <RETURN>
As you can see from the following <RETURN>
\~r letters/file1 <RETURN>
“letters/file1” 10/725
we have our work cut out for us. <RETURN>
Please give me your thoughts on this. <RETURN>
- Bob <RETURN>
~. <RETURN>
EOT
$

User’s Guide

10-20

When the recipient gets the message, the text ofletters/file1 is included. (You can,
of course, use the\~p (tilde p) escape to preview the contents before sending your
message.)

Incorporating a Message from Your Mailbox into a Reply 10

There are several important points illustrated in this example:

• The sequence begins in command mode, where you read and respond to
your incoming mail. Then you switch into input mode by issuing the
command\m jones (meaning send a message tojones).

• The \~f escape is used in input mode to forward a message in your
mailbox and make it part of the outgoing message. The number2 after the
~f means message 2 is to be interpolated (read in).

• mailx tells you that message 2 is being interpolated and then tells you to
continue.

• When you finish creating and sending the message, you are back in
command mode, shown by the? prompt. You may now do something else
in command mode, or quitmailx by typingq.

An alternate command, the\~m (tilde m) escape, works the way that\~f does except the
read-in message is indented one tab stop. Both the\~m and\~f commands work only if
you start out in command mode and then enter a command that puts you into input mode.
Other commands that work this way will be covered in the section“How to Manage
Incoming Mail.”

Sending Enhanced Text 10

mailx also supports the creation of enhanced text, in particular, it allows you to create
mail which uses thetext/enriched format. For example, mail can be created which
includes words in bold oritalic. When you read the mail message, bothmail andmailx
invoke a program known asmetamail to interpret the enhanced mail.metamail
invokes other programs, as necessary, to present the enhanced mail to you on the screen in

$ mailx <RETURN>
mailx version 4.0 Type ? for help.
“/var/mail/roberts”: 2 messages 1 new
>N 1 abc Mon Apr 30 16:57 8/155 Meeting Notice
 2 hqtrs Tue May 1 08:09 4/127 Schedule
? m jones <RETURN>
Subject: Hq Schedule <RETURN>
Here is a copy of the schedule from headquarters... <RETURN>
\~f 2 <RETURN>
Interpolating: 2
(continue)
As you can see, the boss will be visiting our district on <RETURN>
the 14th and 15th. <RETURN>
- Robert <RETURN>
~. <RETURN>
EOT
?

Electronic Mail Tutorial

10-21

a suitable fashion. For example, you can send yourself some enhanced mail, and then read
it. The bold and italic words will be presented to you in another font to distinguish them
from the rest of the text.

mailx provides other tilde escapes for creatingtext/enriched mail. Typing the help
tilde escape\~? will show you the complete list.

mailx also has the capability of adding attachments to your mail message by using the
\~** tilde escape.

$ mailx your-id <RETURN>
Subject: enhanced text <RETURN>
Here is some mail using <RETURN>
\~Tb <RETURN>
Beginning bold
some bold words <RETURN>
\~Tb <RETURN>
and
\~Ti <RETURN>
some italic words. <RETURN>
How do you like it? <RETURN>
~. <RETURN>
EOT
$ mail <RETURN>
Subject: enhanced text

--- invoking richtext
Here is some mail using some bold words and some italic
words. How do you like it?
$

User’s Guide

10-22

Changing Parts of the Message Header 10

The header of amailx message has four components:

• subject

• recipient(s)

• copy-to list

• blind-copy list (a list of intended recipients that is not shown on the copies
sent to other recipients).

When you enter themailx command followed by a login or an alias you are put into
input mode and prompted for the subject of your message. Once you end the subject line
by pressing the<RETURN> key,mailx expects you to type the text of the message. If,
at any point in input mode, you want to change or supplement some of the header
information, there are five tilde escapes that you can use:\~h , \~t , \~c , \~b and\~s .

$ mailx roger <RETURN>
Subject: spread sheet <RETURN>
I'm sending you the latest figures on the merger. Let <RETURN>
me know what you think. <RETURN>
-- Sue <RETURN>
~**
If you want to include non-textual data from a file, enter the file name.
If not, just press ENTER (<RETURN>): figures.lot <RETURN>
Please choose which kind of data you wish to insert:

0: A raw file, possibly binary, of no particular data type.
1: Raw data from a file, with you specifying the content-type by hand.
Enter your choice as a number from 0 to 1: 0 <RETURN>
Type a description to include with the file, <RETURN> to skip: latest figures
<RETURN>
Included data in 'application/octet-stream' format
~. <RETURN>
EOT
$ mail <RETURN>
From: sue@your.company.com
To: roger
Subject: spread sheet

I'm sending you the latest figures on the merger. Let
me know what you think.
-- Sue
Content-Description: latest figures

This message contains raw digital data, which can either be viewed as text
or written to a file.

What do you want to do with the raw data?
1 -- See it as text
2 -- Write it to a file
3 -- Just skip it

2 <RETURN>
Please enter the name of a file to which the data should be written
(Default: /tmp/mm.a0056l) > figures.lot <RETURN>
Wrote file figures.lot
?

Electronic Mail Tutorial

10-23

\~h displays all the header fields: subject, recipient, copy-to list, and blind copy
list, with their current values. You can change a current value, add to it, or, by
pressing the<RETURN> key, accept it.

\~t lets you add names to the list of recipients. Names can be either login names
or aliases.

\~c lets you create or add to a copy-to list for the message. Enter either login
names or aliases of those to whom a copy of the message should be sent.

\~b lets you create or add to a blind-copy list for the message.

\~s lets you change the subject line for the message.

All tilde escapes must be in the first position on a line. For the\~t , \~c or \~b , any
additional material on the line is taken to be input for the list in question. The argument
for \~s replaces the current subject. Entering the\~h tilde escape will display each of
the header lines, allowing you to backspace and make changes. Any additional material
on the\~h line is ignored.

Adding Your Signature 10

If you want, you can establish two different signatures with thesign andSign
environment variables. These can be invoked with the\~a (tilde a) or\~A (tilde A)
escape, respectively. Assume you have set the value of theSign variable toSupreme
Commander to be called by the\~A escape. Here's how it would work:

Having both escapes (\~a and\~A) allows you to set up two forms for your signature.
However, because the sender's login automatically appears in the message header when
the message is read, no signature is required to identify you.

Keeping a Record of Messages You Send 10

Themailx command offers several ways to keep copies of outgoing messages. Two that
you can use without setting any special environment variables are the\~w (tilde w)
escape and the-F option on the command line.

The\~w followed by a file name causes the text of the message to be written to the named
file (the file must not already exist.) For example:

$ mailx -s orders bll <RETURN>
Be ready to move out at 0400 hours. <RETURN>
~A <RETURN>
Supreme Commander
~. <RETURN>
EOT
$

User’s Guide

10-24

If you now display the contents ofsavemail , you will see this:

The drawback to this method, as you can see, is that none of the header information is
saved.

The -F option appends the text of the message to a file named after the first recipient. If
you have used an alias for the recipient(s) the alias is first converted into the appropriate
login(s) and the first login is used as the file name. If you have a file by that name in your
current directory, the text of the message is appended to it.

Using the-F option on the command line does preserve the header information. It works
as follows:

We can check the results by looking at the filebdr .

$ mailx bdr <RETURN>
Subject: Saving Copies <RETURN>
When you want to save a copy of <RETURN>
the text of a message, use the tilde w. <RETURN>
\~w savemail <RETURN>
“savemail” 2/71
~. <RETURN>
EOT
$

$ cat savemail <RETURN>
When you want to save a copy of
the text of a message, use the tilde w.
$

$ mailx -F bdr <RETURN>
Subject: Savings <RETURN>
This method appends this message to a <RETURN>
file in my current directory named bdr. <RETURN>
~. <RETURN>
EOT
$

Electronic Mail Tutorial

10-25

Exiting from mailx 10

When you have finished composing your message, you can leavemailx by typing any of
the following three commands:

\~. a tilde and a period (\~.) followed by<RETURN>, or <CTRL><d>, are
the standard ways of leaving input mode. They also send the message. (If the
proper option is set, the message may also be ended by entering a period and a
<RETURN> together (.) at the beginning of a line.) If you entered input
mode from the command mode ofmailx , you now return to the command
mode (shown by the? prompt you receive after typing this command). If you
started out in input mode, you now return to the shell (shown by the shell
prompt).

\~q tilde q (\~q) quits sending the mail message. If you have entered text for a
message, it will be appended to the file calleddead.letter in your home
directory.

\~x tilde x (\~x) quits sending the mail message without saving anything.

Summary 10

In the preceding paragraphs we have described and shown examples of some of the tilde
escape commands available when sending messages via themailx command. (See the
mailx(1) manual page in the onlineCommand Reference.)

How to Manage Incoming Mail 10

mailx has over fifty commands that help you manage your incoming mail. See the
mailx(1) manual page in the onlineCommand Reference for a list of all of them (and
their synonyms) in alphabetic order. The most commonly used commands (and
arguments) are described in the following subsections:

• themsglist argument

• commands for reading and deleting mail

• commands for saving mail

$ cat bdr <RETURN>
From kol Fri May 2 11:14 EST 1993
To: bdr
Subject: Savings

This method appends this message to a
file in my current directory named bdr.
$

User’s Guide

10-26

• commands for replying to mail

• commands for getting out ofmailx.

The msglist Argument 10

Many commands inmailx take amsglist argument. This argument provides a command
with a list of messages on which to operate. If a command expects amsglist argument and
you do not provide one, the command is performed on the current message. Any of the
following formats can be used for amsglist:

. the current message

n message numbern

^ the first undeleted message

$ the last undeleted message

* all undeleted messages

n-m an inclusive range of message numbers

user all messages fromuser

/string All messages withstring in the subject line (case is ignored)

: c all messages of typec wherec is:

d - deleted messages
n - new messages
o - old messages
r - read messages
s - saved messages
u - unread messages

The context of the command determines whether this type of specification makes sense.
For theundelete command, themsglist̂ , $ and* commands refer to deleted messages.

Here are two examples (the? is the command mode prompt). The first command deletes
messages 1, 2 and 3. The second command saves all messages from userbdr in a file
namedbdrmail .

Additional examples may be found throughout the next three subsections.

? d 1-3 <RETURN>
? s bdr bdrmail <RETURN>
?

Electronic Mail Tutorial

10-27

Commands for Reading and Deleting Mail 10

When a message arrives in your mailbox, the following notice appears on your screen:

you have mail

The notice appears when you log in or when you return to the shell from another
procedure.

Reading Mail 10

To read your mail, enter themailx command without arguments. Execution of the
command places you in the command mode ofmailx . Your screen will look something
like this:

The first line identifies the version ofmailx used on your system, and reminds you that
help is available by typing a question mark (?). The second line shows the path name of
the file used as input to the display (the file name is normally the same as your login name)
together with a count of the total number of messages and their status. The rest of the
display is header information from the incoming messages. The messages are numbered in
sequence with the last one received having the highest number. To the left of the numbers
there may be a status indicator; N for new, U for unread. A greater than sign (>) points to
the current message. Other fields in the header line show the login of the originator of the
message, the day, date and time it was sent, the number of lines and characters in the
message, and the message subject. The last field may be blank.

When the header information is displayed on your screen, you can print messages either
by pressing the<RETURN> key or entering a command followed by amsglist argument.
If you enter a command with nomsglist argument, the command acts on the message
pointed to by the greater than sign (>). Pressing the<RETURN> key is equivalent to
typing then (for next) command. Typing thep (for print) command without amsglist
argument displays the message pointed at by the> sign. To read some other message (or
several others in succession), enter ap (for print) ort (for type) followed by the message
number(s). (The commandt (for type) is a synonym ofp (for print).) Here are some
examples, which print the current message, print message number 2, and print all
messages from usersms.

mailx version 4.0 Type ? for help.
“/var/mail/bdr”: 3 messages 3 new
> N 1 rbt Thu Apr 30 14:20 8/190 Review Session
 N 2 admin Thu Apr 30 15:56 5/84 New printer
 N 3 sms Fri May 1 08:39 64/1574 Reorganization
?

User’s Guide

10-28

Scanning Your Mailbox 10

The mailx command lets you look through the messages in your mailbox while you
decide which ones need your immediate attention.

When you first enter themailx command mode, the banner tells you how many messages
you have and displays the header lines for up to twenty messages. If you are connected to
the computer over a slow communication line, only the header lines for up to five (below
1200 baud) or ten messages (at 1200 baud) are displayed. If the total number of messages
exceeds one screenful, you can display the next screen by entering thez command.
Typing z- causes the previous screen (if there is one) to be displayed. If you want to see
the header information for a specific group of messages, enter thef (for from) command
followed by themsglist argument.

Here are examples of those commands, which scroll forward one screenful of header lines,
scroll backward one screenful, and display headers of all messages from usersms.

Switching to Other Mail Files 10

When you entermailx by issuing the command:

$ mailx <RETURN>

you are looking at the file/var/mail/ your_login.

mailx lets you switch to other mail files and use any of themailx commands on their
contents. (You can even switch to a non-mail file, but if you try to usemailx commands
you are toldNo applicable messages .) The switch to another file is done with the
fi or fold command (they are synonyms) followed by thefilename. The following
special characters work in place of thefilename argument:

% your default mailbox (/var/mail/ your_login)

%login the mailbox of the owner oflogin (if you have the required permissions)

the previous file

& your mbox

? <RETURN>
? p 2 <RETURN>
? p sms <RETURN>

? z <RETURN>
? z- <RETURN>
? f sms <RETURN>

Electronic Mail Tutorial

10-29

Here is an example of how this might look on your screen:

Deleting Mail 10

To delete a message, enter ad followed by amsglist argument. If themsglist argument is
omitted, the current message is deleted. The messages are not deleted until you leave the
mailbox file you are processing. Until you do, theu (for undelete) gives you the
opportunity to change your mind. Once you have issued the quit command (q) or switched
to another file, however, the deleted messages are gone.

mailx permits you to combine the delete and print command and enter adp. This is like
saying, “Delete the message I just read and show me the next one.” Here are some
examples of the delete command: delete all my messages, delete all messages that have
been read, delete the current message and print the next one, and delete messages 2
through 5.

Commands for Saving Mail 10

All messages not specifically deleted are saved when you quitmailx . Messages that
have been read are saved in a file in your home directory calledmbox. Messages that
have not been read are held in your mailbox (/var/mail/ your_login).

The command to save messages comes in two forms: with an upper case or a lower cases .
The syntax for the upper case version is:

S [msglist]

Messages specified by themsglist argument are saved in a file in the current directory
named for the login of the first message in the list.

$ mailx <RETURN>
mailx version 4.0 Type ? for help.
“/var/mail/sms”: 3 messages 2 new 3 unread
 U 1 jaf Sat May 9 07:55 7/137 test25
> N 2 todd Sat May 9 08:59 9/377 UNITS requirements
 N 3 has Sat May 9 11:08 29/1214 access to bailey? fi & <RETURN>
 [Enter this command to transfer to your mbox.] Held 3 messages in /var/
mail/sms
“+mbox”: 74 messages 10 unread
 . [Enter any commands for your mbox.]
 .
 .
? q <RETURN>
$

? d * <RETURN>
? d :r <RETURN>
? dp <RETURN>
? d 2-5 <RETURN>

User’s Guide

10-30

The syntax for the lower case version is:

s [msglist] filename or
s

Messages specified by themsglist argument are saved in the file named in thefilename
argument. If you omit themsglist argument, the current message is saved. Finally, if both
themsglist and thefilename are omitted, the mail is saved in a file calledmbox in your
home directory.

Commands for Replying to Mail 10

The command for replying to mail comes in two forms: with an upper case or a lower case
r . The difference between the two forms is that the upper case form (R) causes your
response to be sent only to the originator of the message, while the lower case form (r)
causes your response to be sent not only to the originator but also to all other recipients.

When you reply to a message, the original subject line is picked up and used as the subject
of your reply. Here's an example of the way it looks:

Assuming the message about “UNITS requirements” had been sent to some additional
people, and the lower caser had been used, the header might have appeared like this:

Commands for Getting out of mailx 10

There are two standard ways of leavingmailx : with a q or with anx . If you leave
mailx with aq, you see messages that summarize what you did with your mail. They
look like this:

$ mailx <RETURN>
mailx version 4.0 Type ? for help.
“/var/mail/sms”: 3 messages 2 new 3 unread
 U 1 jaf Wed May 9 07:55 7/137 test25
> N 2 todd Wed May 9 08:59 9/377 UNITS requirements
 N 3 has Wed May 9 11:08 29/1214 access to bailey
? R 2 <RETURN>
To: todd
Subject: Re: UNITS requirements

? r 2 <RETURN>
To: todd, eg, has, jcb, bdr
Subject: Re: UNITS requirements

Electronic Mail Tutorial

10-31

From the example, we can surmise that userbdr had at least two messages, read one and
either left the other unread or issued a command asking that i t be held in
/var/mail/bdr . If there were more than two messages, the others were deleted or
saved in other files.

If you leavemailx with anx , it is almost as if you had never entered. Mail read and
messages deleted are retained in your mailbox. However, if you have saved messages in
other files, that action has already taken place and is not undone by thex .

mailx Command Summary 10

In the preceding subsections we have described some of the most frequently usedmailx
commands. (See the mailx(1) manual page in the onlineCommand Reference for a
complete list.) If you need help while you are in the command mode ofmailx , type either
a ? or help at the? prompt. A list ofmailx commands and what they do will be
displayed on your terminal screen.

The .mailrc File 10

The.mailrc file contains commands to be executed when you invokemailx .

There may be a system-wide start-up file (/etc/mail/mailx.rc) on your system. If it
exists, it is used by the system administrator to set common variables. Variables set in your
.mailrc file take precedence over those inmailx.rc.

Most mailx commands are legal in the.mailrc file. However, the following
commands arenot legal entries:

! (or) shell escape to the shell

Copy save messages inmsglist in a file whose name is derived
from the author

edit invoke the editor on a text message

bedit invoke the editor on a binary message

visual invoke the visual editor on a text message

bvisual invoke the visual editor on a binary message

followup respond to a message

? q <RETURN>
Saved 1 message in /fs1/bdr/mbox
Held 1 message in /var/mail/bdr
$

User’s Guide

10-32

Followup respond to a message, sending a copy to the author of each
message inmsglist

hold (or) preserve hold (preserve) a message in the mailbox

mail switch into input mode

reply respond to a message

Reply respond to the author of each message inmsglist

You can create your own.mailrc with any editor. Screen 10-1 shows a sample
.mailrc file.

Screen 10-1. Sample .mailrc File

The example in Screen 10-1 includes the commands you are most likely to find useful: the
set command and thealias or group commands.

Theset command is used to establish values for environment variables. The command
syntax is:

set
set name
set name=string
set name=number
set no name

When you issue theset command without any arguments,set produces a list of all
defined variables and their values. The argumentname refers to an environmental
variable. More than onename can be entered after theset command. Some variables take
a string or numeric value. String values are enclosed in single quotes.

When you put a value in an environment variable by making an assignment such as
HOME=my_login, you are telling the shell how to interpret that variable. However, this type
of assignment in the shell does not make the value of the variable accessible to other

if r
cd $HOME/mail

endif
set allnet append asksub askcc autoprint dot
set metoo quiet save showto header hold keep keepsave
set outfolder
set folder='mail'
set record='outbox'
set crt=24
set EDITOR='/bin/ed'
set sign='Roberts'
set Sign='Jackson Roberts, Supervisor'
set toplines=10
alias fred fjs
alias bob rcm
alias alice ap
alias donna dr
group robertsgrp fred bob alice mark pat
group accounts robertsgrp donna

Electronic Mail Tutorial

10-33

UNIX system programs that need to reference environment variables. To make it
accessible, you must export the variable. If you set theTERM variable in your
environment, (see Chapter 7, “Screen Editor (vi) Tutorial” and Chapter 9, “Programming
with the UNIX System Shell”) you will remember using theexport command shown in
the following example:

$ TERM=wyse150
$ export TERM

When you export variables from the shell in this way, programs that reference
environment variables are said to import them. Some of these variables (such asEDITOR
andVISUAL) are not specific tomailx , but may be specified as general environment
variables and imported from your execution environment. If a value is set in.mailrc for
an imported variable it overrides the imported value. There is anunset command, but it
works only against variables set in.mailrc ; it has no effect on imported variables.
Usingset no name is the same asunset name.

There are too many environment variables that can be defined in your.mailrc to be
fully described in this document. For complete information, consult the mailx(1)
manual page in the onlineCommand Reference.

Three variables used in the example in Screen 10-1 deserve special attention because they
show how to organize the filing of messages. These variables are:folder , record , and
outfolder . All three are interrelated and control the directories and files in which
copies of messages are kept.

To put a value into thefolder variable, use the following format:

set folder= directory

This specifies the directory in which you want to save standard mail files. If the directory
name specified does not begin with a/ (slash), it is presumed to be relative to$HOME. If
folder is an exported shell variable, you can specify file names (in commands that call
for a filename argument) with a/ before the name; the name will be expanded so that the
file is put into thefolder directory.

To put a value in therecord variable, use the following format:

set record= filename

This directsmailx to save a copy of all outgoing messages in the specified file. The
header information is saved along with the text of the message. By default, recording is
disabled.

Theoutfolder variable causes the file in which you store copies of outgoing messages
(enabled by therecord variable) to be located in thefolder directory. It is established
by being named in aset command. The default isnooutfolder .

Thealias andgroup commands are synonyms. In Screen 10-1, thealias command
is used to associate a name with a single login; thegroup command is used to specify
multiple names that can be referred to by one pseudonym. This is a nice way to distinguish
between single and group aliases, but if you want, you can treat the commands as exact
equivalents. Notice, too, that aliases can be nested.

In the.mailrc file shown in Screen 10-1, the aliasrobertsgrp represents five users;
four of them are specified by previously defined aliases and one,mark , is specified by a

User’s Guide

10-34

login. The next group command in the example,accounts , uses the group
robertsgrp plus the aliasdonna . It expands to six logins.

The .mailrc file in Screen 10-1 includes anif-endif command. The full syntax of
that command is:

if s | r | t
mail_commands

else
mail_commands

endif

The s , r andt stand for send, receive and terminal. You can cause some initializing
commands to be executed according to whethermailx is entered in input mode (send), in
command mode (receive), and whether the input is coming from a terminal. In the
preceding example, the command is issued to change directory to$HOME/mail if
reading mail. Here, the user elected to set up a subdirectory to handle incoming mail.

The environment variables shown in this section are those most commonly included in the
.mailrc file. You can, however, specify any of them for one session only whenever you
are in command mode. For a complete list of the environment variables you can set in
mailx , see the mailx(1) manual page in the onlineCommand Reference.

Using Mail in a Secure Environment 10

In a secure environment with the Enhanced Security package installed, mail is run at
multiple levels. See Chapter 14, “Managing Files Securely” for a complete explanation of
security levels.

All mail is sent and received within a security level; mail never crosses security levels.
Mail sent from a user logged in at one security level will arrive to the other user at the
same security level. In order for that other user to read and manipulate that mail message,
they must also log in to that security level. This is all made possible through the use of a
Multi-Level Directory (MLD) for /var/mail . Even though it is not normally visible,
there actually are separate instances of/var/mail at each of the different security
levels.

Checking for Mail: The mailcheck Command 10

Since the shell normally only informs you of mail arriving at the security level at which
you are logged in, a command is provided,mailcheck , which checks to see if mail
exists at other security levels. Note that it only checks for mail at levels dominated by the
current login security level. A useful addition to your$HOME/.profile would be:

Electronic Mail Tutorial

10-35

This informs you of mail when you log in, but says nothing if there is no mail. For
example, you might see the message

Note that to check to see if you have mail at all levels at which you can log in, you must
log in at yourhighest security level, the level that dominates all other valid login levels for
your login, and runmailcheck .

Saving Mail in Multiple Levels 10

Another consequence of having mail at different levels is that you will not be able to save
the mail from different levels into the same file. By default, the mail programs will save
mail into the file$HOME/mbox. Saving mail into this file from one level will prevent that
file from being written to from another level. One solution is to choose a different filename
for different security levels when saving mail. A simpler solution is to make
$HOME/mbox into a Multi-Level Directory using the command

The mail command will automatically use the filename$HOME/mbox/mbox if it finds
that$HOME/mbox is a directory. In this fashion, there will be a separate mbox file for
each security level.

Getting around the System 10

Note that it is still possible to read mail messages at dominated security levels by using
real mode. Once real mode has been set, all dominated mail boxes will be accessible
directly as regular files and may be viewed using such commands aspg . Note that you
will not be able to make any changes to any mail files not at your current level.

mailcheck 2>/dev/null

You have mail at level: Top Secret
You have mail at level: Unclassified

mkdir -M $HOME/mbox

User’s Guide

10-36

Mail Forwarding, Vacation and notify 10

Because there is a separate mailbox for each security level at which you can log in, mail
forwarding processing must be established separately for each level. Because of this, you
can use different forwarding lists for each security levels; the people to whom mail should
be forwardedTop Secret will not necessarily be the same people to whom mail should be
forwarded atUnclassified.

Forwarding processing affects not only forwarding mail to other users, but also the
programsvacation andnotify . If you go on vacation and wish to use thevacation
program, you will have to log into each of your accessible security levels and run the
vacation at each level.

11
Remote Services Tutorial

Introduction . 11-1
Overview of Remote Commands . 11-1
Terminology . 11-2
Conventions . 11-2

Copying Files between Machines . 11-2
Copying from Another Machine to Your Machine Using rcp 11-3
Copying from Your Machine to Another Machine Using rcp 11-3
Copying Directories with rcp . 11-4
Expanding Shell Metacharacters During rcp . 11-4
Error Messages . 11-4

Executing Commands Remotely . 11-5
Expanding Shell Metacharacters During rsh . 11-5
Calling rsh with No Commands . 11-6
Calling rsh by a Different Name. 11-6

Logging in on Remote UNIX Machines with rlogin . 11-6
Aborting an rlogin Connection. 11-7
Getting rlogin Access . 11-8
Suspending an rlogin Connection. 11-8

Logging in to a Machine Running Another Operating System with telnet 11-9
Suspending a telnet Connection . 11-9
Aborting a telnet Connection . 11-10

Transferring Files between Machines with ftp . 11-11
Getting a Listing of Files on the Remote Machine. 11-13
Copying Files with ftp Using get and put. 11-13
Copying Multiple Files Using mget and mput . 11-13
Quitting an ftp Session . 11-14

Aborting ftp While Transferring a File . 11-14
What Happens If There Is No Daemon Present? . 11-14

Transferring Files Non-Interactively Using tftp . 11-15
Copying Files with tftp Files Using get and put. 11-15
Quitting a tftp Session . 11-15

Displaying User Information with finger. 11-15
Determining If a Machine Is Alive on the Network Using ping 11-16

User’s Guide

11-1

11
Chapter 11Remote Services Tutorial

11
11
11

Introduction 11

The UNIX system includes various user programs that enable you to perform operations
on remote hosts using the TCP/IP networking software. This chapter covers many of the
most frequently used commands.

This chapter is not intended to be a replacement for the remote services manual pages. It
does not cover all user level network commands, nor does it discuss all applications of the
commands that are covered.

Remote commands are used with the TCP/IP networking software, which is part of the
UNIX system. TCP/IP must be running for any of the commands to work.

If you have any trouble with these commands, or if TCP/IP is not running and you want to
use these commands, talk to your system administrator.

Overview of Remote Commands 11

A remote command is a command which runs on a different machine than the one you are
using. Remote commands allow you to access machines of different architectures, or even
machines which are not running the same operating system.

User commands such as those in the following table

let you log in, create and use a shell, get information, and copy files on a remote machine.
Thefinger command is useful to display information on any user you specify.

Before you can use it,finger service should be enabled must be enabled on the remote
machine. You can then use thetelnet command to log in to other machines, whether or
not they run the UNIX operating system.

Table 11-1. User Commands

rlogin (remote login)

rsh (remote shell)

rcp (remote copy)

ftp (file transfer program)

User’s Guide

11-2

Terminology 11

In reading the description of some of the commands, you may encounter terms which are
unfamiliar to you. Most of the new terms used in this chapter are explained here. If you
find a term with which you are unfamiliar and which is not listed here, ask your system
administrator.

abort Discontinuing a process in the middle without waiting for the normal exit.
Aborting is normally achieved by sending an interrupt signal to the program
you are running.

daemon A program that handles jobs automatically. Many remote commands get
information from a remote machine by exchanging data with daemons
running on the remote machine. An example of a daemon is the mail service,
which processes mail automatically and routes it to the intended recipient.

local The machine you are currently logged in to. It is contrasted with the term
“remote” machine (see below).

remote The machine to which you are connected across the network. You interact
with the remote machine by using the commands shown in this chapter.

shell The program that you use to interface with your machine. A local shell is the
shell you are running on the local machine, and a remote shell is the shell that
runs on the machine to which you are connected. The Bourne Shell normally
generates a dollar sign ($) prompt to show that it is ready to accept a
command.

suspend To halt temporarily whatever program you are running. You can return to a
suspended program at any time and resume exactly where you left off.

Conventions 11

In this chapter, prompts in screens are shown in the formhostname$, to make clear
whether the shell is a local or a remote shell. You can set your terminal to include the host
name in the prompt by adding the following line to your$HOME/.profile file:

PS1=“`hostname`$PS1”

Copying Files between Machines 11

The rcp program lets you copy files from your machine to another one, and vice versa.
The basic syntax ofrcp is:

rcp source destination

Remote Services Tutorial

11-3

where thesource is where the file is coming from, anddestination is where it is going. The
specific form that the two arguments take for different types of transfers are shown in the
following sections.

Copying from Another Machine to Your Machine Using rcp 11

To copy a file from another machine to your machine withrcp , use the following syntax:

rcp machinename:file directory

wheremachinename is the name of the machine you want to copy from;file is the file you
want to copy; anddirectory is where you want to put the file on your system.

For example, to copy a file called/home/charon/new.toy from the machine called
pluto to the directory called/home/medici/toys on your machine,venus , type

rcp pluto:/home/charon/new.toy /home/medici/toys

You can use normal shorthand for directories (such as$HOME for your home directory
when using the Bourne shell,. for the current directory and.. for the parent directory).

When you want to call the file by a different name on your own machine, specify a
destinationfilename at the end of the destination directory on your machine. For example,
you could copy the filenew.toy from machinepluto to your home directory and
rename itmy.toy by typing

rcp pluto:/home/charon/new.toy $HOME/my.toy

Copying from Your Machine to Another Machine Using rcp 11

To rcp a file from your machine onto another machine, reverse the syntax described in
the preceding section:

rcp file machinename:directory

wherefile is the file on your machine you want to copy;machinename is name of the
machine you want to copy to; anddirectory is the place you want to send the file to.

For example, to copy a file called/home/medici/old.toy from your machine to the
directory called/home/charon/trash on the machinepluto type

rcp /home/medici/old.toy pluto:/home/charon/trash

When you want to call the file by a different name on the other machine, specify a
destination file at the end of the destination directory on that machine. For example, typing

rcp /home/medici/old.toy pluto:/home/charon/trash/toy

will copy the fileold.toy from medici's home directory to the file namedtoy in the
directory/home/charon/trash in the machinepluto.

User’s Guide

11-4

Copying Directories with rcp 11

To copy a directory and its contents from another machine to your machine, or vice versa,
usercp with the-r option. Then, follow the steps for copying files; replace the filenames
with the appropriate directory names.

NOTE

Copying directories withrcp doesn't preserve ownership
settings, nor does it necessarily preserve permissions.

To copy a directory and its contents from another machine to your machine, the syntax is

rcp -r machinename: directory local_directory

wheremachinename is the name of the remote machine;directory is the directory on that
machine that you want to copy; andlocal_directory is the directory on your machine you
want to copy to.

To copy a directory and its contents from your machine to another machine, the syntax is

rcp -r local_directory machinename: directory

wherelocal_directory is the directory on your machine you want to copy, anddirectory is
the place on the other machine you want to copy to.

Expanding Shell Metacharacters During rcp 11

Any shell metacharacters that are not escaped or quoted result in their expansion at the
local level, not at the level of the remote machine.

This applies also to the redirection characters,>, <, and|.

Error Messages 11

An error message you commonly get when trying to do a remote copy is

...Permissiondenied”

This error message may indicate that

• You do not have read permission on the file you want to copy.

• You do not have write permission on the directory you want to copy to.

• You do not have permission to access files in the remote machine because
your machine's name is not in the remote machine's list of trusted hosts.

Remote Services Tutorial

11-5

If you receive the message

Login incorrect

you do not have permission to access files in the remote machine because your name is not
in that machine's password database.

In all cases when you receive an error message, consult with your system administrator.

Executing Commands Remotely 11

The rsh command allows you to execute a single command on another machine without
having to log in formally (rsh stands forr emoteshell, that is, an interpreter capable of
executing commands on another machine).rsh can save time when you know you only
want to do one thing on the remote machine.

To execute a command on another machine, typersh followed by the machine's name
and the command. For example, if you want to see the contents of the directory
/home/fresno/crops on the machinefresno, type

rsh fresno ls -C /home/fresno/crops

When you execute a command on another machine usingrsh , rsh doesn't log in; it talks
to a daemon that spawns a shell for you and executes the command on the other machine.
The type of shell spawned depends on the configuration of the entry for you in the remote
machine's password database.

Like rlogin andrcp,rsh uses the other machine's password database and the files
/etc/hosts.equiv and .rhosts to determine whether you have unchallenged
access privileges.

Expanding Shell Metacharacters During rsh 11

As in the case ofrcp, any shell metacharacters that are not escaped or quoted result in
their expansion at the local level, not at the level of the remote machine.

This applies also to the redirection characters,>, <, and|. For instance, if you were to
enter on machineoak the command

rsh willow ls /etc > /tmp/list

the output of thels command on machinewillow would be redirected to a file
/tmp/list on machineoak; but if you enter the command

rsh willow ls /etc '>' /tmp/list

the output would now be redirected to a file/tmp/list on machinewillow, because
the redirection would not happen now at the local level.

User’s Guide

11-6

Calling rsh with No Commands 11

If you call rsh using the syntax

rsh machinename

that is, with no arguments after the name of the remote machine,rsh will behave exactly
as if you had entered

rlogin machinename

and you will be logged in at the remote machine (assuming you have permission).

Calling rsh by a Different Name 11

The commandrsh can be called under a different name, by making a symbolic link
between the file/usr/bin/rsh and a file called by the name of the remote host.

For example, to create a symbolic link betweenrsh and a remote host calledwillow ,
you would enter the command

ln -s /usr/bin/rsh /usr/hosts/willow

Now, provided the directory/usr/hosts is in your search path, you can enter the
command

willow

on your machine to log in to machinewillow.

If you want to obtain a listing of the directory/etc on machinewillow, you can enter

willow ls /etc

You can repeat the linking process for all the machines that you frequently access
remotely. Note that making the symbolic links in the directory/usr/hosts is a
convention; you can make them in any directory, as long as you have permission to create
files in the directory and it is in your search path.

Logging in on Remote UNIX Machines with rlogin 11

Therlogin command logs you in to other UNIX system machines on a network. To log
in to a UNIX system machine on a network, typerlogin and themachine name of the
other machine. If your machine's name is in the other machine's/etc/hosts.equiv
file, or in the.rhosts file in your remote home directory, then the other machine trusts
your machine name and won't require you to type your password. Otherwise, a password
prompt will appear. Type your password for that machine followed by <RETURN>. If
you have an entry in the password database of the other machine, and you entered the

Remote Services Tutorial

11-7

correct password, you will be logged into the other machine as if you had just physically
logged in to it.

Aborting an rlogin Connection 11

To abort anrlogin connection, type a tilde character followed by a period (~.) at the
beginning of a line. The login connection to the other machine aborts, and you find
yourself back at your original machine.

NOTE

Usually you abort anrlogin connection only when you can't
terminate the connection usingexit or logout at the end of the
work session.

When you log in to a series of machines, accessing each machine through another
machine, and you use~. to abort the connection to any of the machines in the series, you
return to the machine where you started; all the intermediate connections are severed.

To disconnect to an intermediaterlogin, use two tildes followed by a period (~~.), as
shown in the example below:

venus% rlogin comet
comet% rlogin jupiter
jupiter% ~~. (Sometimes ~~ doesn't echo.)
comet%

venus$ rlogin jupiter
Password: (Here you type your password.)
Last login: Mon Oct 20 00:30:52 from venus
jupiter$ pwd
/home/medici
jupiter$ exit
Connection closed.
venus$

venus$ rlogin comet
Last login: Thu Nov 21 05:04:03 from venus
comet% ~. (Sometimes ~ doesn't echo.)
Closed connection.
venus$

User’s Guide

11-8

Getting rlogin Access 11

A remote user who has no entry in the password database of a given machine is
automatically denied permission to log in to it.

If a user is in the password database, the user will be asked for a password. If the password
matches the one stored in the password database, the user will be granted permission to
log in to the machine.

If the machine is listed in/etc/hosts.equiv on the remote host, or if the user has a
.rhosts file located in his or her remote home directory with the machine name listed in
it, the user can log in without first supplying a password.

If you cannotrlogin to a remote machine because you are asked for a password which
the machine identifies as incorrect, see your system administrator.

From time to time you may want to log in as someone else, so that you can fully
manipulate files on the remote machine. One example of this would be when you are
working on someone else's machine (and using their username) and you want to log in to
your own machine as yourself. The-l option torlogin allows you to do this. The
format is as follows:

rlogin machinename-l username

However, a number of restrictions apply to the-l option; for information, see the
rlogin(1) manual page.

Suspending an rlogin Connection 11

If you are using a job control shell (jsh or ksh), you can suspend anrlogin
connection, then return to it later. To do so, type the tilde character (~) followed by
<CTRL><Z>. The rlogin connection becomes a stopped process, and you are put
back into the machine you logged in from. To reactivate the connection, typefg , or %
followed by the job number of the stopped process (the default job number for% is the job
you most recently stopped or put in the background).

venus$ rlogin animation
Last login: Thu Nov 21 07:07:07 from venus
animation$ ~ (Sometimes ^Z doesn't echo on the screen.)

(1) + Stopped (usn) rlogin animation
venus$ pwd
/home/medici
venus$ fg
rlogin animation (Type<RETURN> here to get the command prompt.)

animation$ logout
Connection closed.
venus%

Remote Services Tutorial

11-9

As is the case with abortingrlogin with ~~., using two tildes and a <CTRL><Z>
will suspend you to an intermediaterlogin. For example, if fromoak you rlogin to
willow and from there tocypress, entering~. will bring you back tooak, but enter-
ing ~~. will bring you back towillow.

Logging in to a Machine Running Another Operating System
with telnet 11

Because you can log in from one UNIX system machine to another usingrlogin , you
need to usetelnet only when you want to log in to a machine running a different
operating system.

Imagine that you want to log in to machinetops20, running the TOPS20™ operating
system. To log in totops20, type telnet , followed by its machine name.telnet
notifies you of the connection with the other machine, then identifies your escape
character. Now you log in to the machine as you ordinarily would.

NOTE

If you attempt to log in to a machine that isn't a part of your
network,telnet displays a notification and a prompt. Exit from
telnet by typingquit , or the abbreviationq.

Suspending a telnet Connection 11

If you are using a job control shell (jsh or ksh), you can suspend atelnet connection,
then return to it later. To do so, type the standard escape character (usually <CTRL><]>),
followed byz at thetelnet> prompt. Thetelnet program becomes a background
process. To reactivate the connection, typefg , or % followed by the job number of the
background process (the default job number for% is the job you most recently put in the
background).

venus$ telnet tops20
Trying...
Connected to tops20.
Escape character is '^]'.

Yoyodyne Corp., TOPS-20 Monitor 6.1 (6762)-4
@LOG MEDICI

...

User’s Guide

11-10

Aborting a telnet Connection 11

Just as withrlogin , you should abort atelnet connection only when you can't
terminate the connection usingexit or logout at the end of the work session.

If you have to abort atelnet connection, type thetelnet escape character (usually
<CTRL><]>, followed byquit at thetelnet> prompt. The login connection to the
other machine aborts, and you find yourself back at your original machine.

NOTE

When you log in to a series of machines, accessing each machine
through another machine, and you abort the connection to any of
the machines in the series, you return to the machine where you
originally started.

venus% telnet tops20
Trying...
Connected to tops20.
Escape character is '^]'.

Yoyodyne Corp., TOPS-20 Monitor 6.1 (6762)-4
@LOG MEDICI

...
@ (Type <CTRL><]> to get telnet> prompt.) telnet> z

Stopped venus% fg telnet tops20 (Type<RETURN> twice to get command prompt of other system.)

@exit
Connection closed by foreign host.
venus%

venus$ telnet tops20
Trying...
Connected to tops20.
Escape character is '^]'.

Yoyodyne Corp., TOPS-20 Monitor 6.1 (6762)-4
@LOG MEDICI

...
@ (Type <CTRL><]> to get telnet> prompt.)
telnet> quit
venus$

Remote Services Tutorial

11-11

Transferring Files between Machines with ftp 11

The ftp program is used to copy files to and from machines on a network. ftp is
somewhat different fromrcp in that it is not necessary to be a user on the remote
machine, nor does the remote machine need to be running the same operating system. This
command is also useful when you are trying to transfer files with unknown filenames, as
ftp allows you to list directory contents on remote machines.

When you startftp , you are placed in an interactive session with the daemon on the
remote machine. The daemon is the part of theftp program on the remote machine that
handles all that needs to be done on that end. Once you are connected, the daemon reports
that the connection is established, and then asks for a login. If you have an entry in the
password database on the remote machine, you can just press <RETURN> to take the
default answer, which is your own username. When you enter the correct password, you
will then be given access to files on that machine. Here is a sample of such a login:

As you can see, the password does not echo on the screen when it is entered. When you
want to transfer files between a machine on which you do not have an entry in the
password database, files can still be accessed if the machine is set up for “anonymous”
ftp . To set up a machine for anonymousftp :

1. Create a login forftp in your/etc/passwd file.

2. Make sure you have the directories and files listed in the following table on
your system:

Table 11-2. Directory and File Requirements for ftp

File or Directory Permissions Owner

/home/ftp dr-x--x--x ftp

/home/ftp/bin d--x--x--x root

/home/ftp/bin/ls ---x--x--x root

/home/ftp/dev d--x--x--x root

/home/ftp/dev/tcp crw-rw-rw- root

/home/ftp/dev/zero crw-rw-rw- root

/home/ftp/etc d--x--x--x root

venus$ ftp dinger
Connected to dinger.
220 dinger FTP server ready.
Name (dinger:stein): < RETURN>
331 Password required for stein.
Password: (Here you type your password.)
230 User stein logged in.
ftp>

User’s Guide

11-12

• The/home/ftp/bin/ls file should be a copy of/bin/ls .

• The /home/ftp/etc/group fi le should be a copy of
/etc/group .

• The /home/ftp/etc/netconfig file should be a copy of
etc/netconfig .

3. The /home/ftp/l ib/l ibc.so.1 fi le should be a copy of
/lib/libc.so.1 .

Thepasswd file above should only have entries for theftp user androot .

This will hide the names of real users from anyone using anonymousftp . If a file is
owned by a user not listed in thepasswd file, ls will display the uid instead of the name.
The tcp andzero device nodes should be made with the mknod(1M) command using
the same values that are in/dev/tcp and/dev/zero .

A session using anonymous ftp might look like this:

Notice the request forsend ident as password. This is saying that there is no
specific password, but that you should send some sort of identification as a password (your
name, for example). After connection has been established, you are then given theftp
prompt that tells you thatftp is ready to accept transfer commands.

/home/ftp/etc/group -r--r--r-- root

/home/ftp/etc/netconfig -r--r--r-- root

/home/ftp/etc/passwd -r--r--r-- root

/home/ftp/pub drwxrwxrwx ftp

/home/ftp/usr d--x--x--x root

/home/ftp/usr/lib d--x--x--x root

/home/ftp/usr/lib/libc.so.1 -r-xr-xr-x root

Table 11-2. Directory and File Requirements for ftp (Cont.)

File or Directory Permissions Owner

venus$ ftp berg
Connected to berg.
220 berg FTP server ready.
Name (berg:stein): anonymous
331 Guest login ok, send ident as password.
Password: (Here you type some identification string.)
User anonymous logged in.
ftp>

Remote Services Tutorial

11-13

Getting a Listing of Files on the Remote Machine 11

Once you are connected to a remoteftp daemon, you can get a listing of the files on the
remote machine by using the commandls. All of the files accessible to you in that
directory will then be listed. It is possible to move from one directory to another on the
remote machine by means of thecd command, but it should be noted that unless you have
access to those files, you will not be able to transfer them.

Copying Files with ftp Using get and put 11

The two commands that are used most withftp areget andput. These commands get
a copy of a file from the remote machine, or put a copy onto the remote machine,
respectively. To use either command, enter the command followed byfilename, which is
the file to be copied. Theftp program will report that the transfer has begun, and then
when the transfer is complete, along with diagnostic data on how long the transfer took.

Copying Multiple Files Using mget and mput 11

You can “get” and “put” more than one file at a time. This is done by using the commands
mget andmput , along with using metacharacters (for example,* and?). The
metacharacter* will match anything, while? will match any one character. As withget
andput , ftp will report when transfer begins. Before each file is transferred, you are
asked whether or not you want to transfer it. At this point you answery and the file is
transferred, orn and the file is skipped. After all matching files have been transferred, you
are given theftp prompt again.

ftp> get lab1.results
200 PORT command successful.
150 ASCII data connection for lab1.results (129.144.60.88,1163).
226 ASCII Transfer complete.
local: lab1.results remote: lab1.results
1162 bytes received in 0.08 seconds (14 Kbytes/s)
ftp>
ftp> put lab5.data
200 PORT command successful.
150 ASCII data connection for lab5.data (129.144.60.88,1165).
226 Transfer complete.
local: lab5.data remote: lab5.data
1162 bytes sent in 0.04 seconds (28 Kbytes/s)
ftp>

User’s Guide

11-14

Quitting an ftp Session 11

When you are finished withftp, you can quit by entering the commandquit at the
prompt. The connection to the remote daemon will be dropped, and you will be returned to
your local shell.

Aborting ftp While Transferring a File 11

If you are transferring files to or from a remote machine and it goes down, you need to
abort the transfer. To abortftp when transferring a file, press the interrupt key—usually
<BREAK>. You are notified that the transfer was aborted, and then given anftp prompt
again.

What Happens If There Is No Daemon Present? 11

Sometimes there is noftp daemon running on the remote machine. This can happen if
the daemon dies for any reason, or the machine never started one in the first place. If there
is no daemon, you can still useftp, but the session is non-interactive. When this
situation arises,ftp behaves liketftp (see the following section).

ftp> mput lab*
mput lab1.results? y
200 PORT command successful.
150 ASCII data connection for lab1.results (129.144.60.88,1180).
226 Transfer complete.
local: lab1.results remote: lab1.results
31 bytes sent in 0.02 seconds (1.5 Kbytes/s)
mput lab2.data? n
mput lab3.results? y
200 PORT command successful.
150 ASCII data connection for lab3.results (129.144.60.88,1181).
226 Transfer complete.
local: lab3.results remote: lab3.results
75 bytes sent in 1e-06 seconds (7.3e+04 Kbytes/s)
ftp>
ftp> mget report?.final
mget report1.final? y
200 PORT command successful.
150 ASCII data connection for report1.final (129.144.60.88,1195).
226 ASCII Transfer complete.
local: report1.final remote: report1.final
2605 bytes received in .44 seconds (5.8 Kbytes/s)
mget report2.final? n
ftp>

Remote Services Tutorial

11-15

Transferring Files Non-Interactively Using tftp 11

Thetftp program is very much likeftp , except that it is not an interactive process. This
means thattftp does not require that you connect to the remote machine. Rather, when
you begin atftp session, you are able to issue commands that directly copy files to and
from the remote machine, as long as you have an entry in the password database on the
remote machine. However, since connection is not maintained between file transfers, you
cannot get any directory information from the remote machine.

To usetftp , enter the command

tftp

When you see the prompttftp> , you are ready to begin transferring files.

Copying Files with tftp Files Using get and put 11

In order to copy a file from the remote machine, you must use the commandget . The
syntax is

get machinename: file file2 . . . fileN

wheremachinename is the machine you want to get files from, andfile is the name of the
file you want to get. More than one file can be placed on the command line, with spaces
separating the file names.

In order to copy a file to the remote machine, you must use the commandput . The syntax
for put is

put machinename: file file2 . . . fileN [remote_directory]

wheremachinename is the machine you want to transfer files to,file is the file or a space-
separated list of files that you want to transfer, andremote_directory is an optional
argument showing the specific directory on the remote machine into which you want the
files to be placed.

Quitting a tftp Session 11

When you are finished withftp , you can quit by entering the commandquit at the
prompt.

Displaying User Information with finger 11

The finger command displays information about any user you specify.finger does
not give you information about other machines. It tells you only about other users. In fact,

User’s Guide

11-16

finger is so user-oriented that it accepts people's real names, as well as their usernames,
as arguments.

This is whatfinger tells you:

• the user's login name

• his or her real name

• his or her home directory and login shell

• the last time he or she logged in to the machine from which you are issuing
the command

• the last time he or she received mail, and the last time he or she read it

• the name of his or her terminal(s), and how long it's been idle.

Here is a slightly simplified example of two typicalfinger requests. Your output may
vary somewhat.

The finger command is useful to make sure that the user you are looking for is still
active.

Determining If a Machine Is Alive on the Network Using ping 11

From time to time you will find that a remote machine is not answering your requests.
This may indicate network-wide problems or simply that the host is down or disconnected
from the network. Theping command offers the simplest way to find out if a host on
your network is down. Its basic syntax is:

/usr/sbin/ping host [timeout]

wherehost is the name of the machine in question. The optionaltimeout argument
indicates the time in seconds forping to keep trying to reach the machine—20 seconds
by default. Theping(1) manual page describes additional details.

venus$ finger moby@sea
[sea]
Login name: moby In real life: Ishmael Wong
Directory: /home/shipwreck/moby Shell: /usr/bin/sh
On since Nov 14 06:33:41 on console 4 days 14 hours Idle Time
New mail received Wed Nov 18 20:34:02 1987;
 unread since Wed Nov 18 16:20:24 1987
venus$ finger Henry Stamper
Login name: hank In real life: Henry Stamper, Jr
Directory: /home/oregon/hank Shell: /usr/bin/sh
Last login Wed Oct 21 16:16 on ttyp0 from cairo
No unread mail

Remote Services Tutorial

11-17

If you type, for instance,

ping elvis

you will receive the following message, if hostelvis is up:

elvis is alive

indicating thatelvis has responded to yourping. If, however, hostelvis is down or
disconnected from the network, you will receive the following message after the specified
(or default) timeout has elapsed:

no answer from elvis

User’s Guide

11-18

12
Communication Tutorial

Introduction . 12-1
Basic Networking Utilities . 12-1

Transferring a File: The uucp Command . 12-2
Syntax for the uucp Command . 12-2
Using the uucp Command: Example. 12-3
How uucp Works . 12-4

Sending Files to the Public Directory: The uuto Command. 12-6
Syntax for the uuto Command . 12-6
Using the uuto Command: Example . 12-6

Checking a Job's Status: The uustat Command . 12-8
Using the uustat Command: Example. 12-8

Retrieving a File: The uupick Command . 12-9
Using the uupick Command: Example . 12-9

Connecting a Remote Terminal: The ct Command . 12-10
Syntax for the ct Command. 12-11
Examples for Using the ct Command . 12-11

Calling Another UNIX System: The cu Command . 12-12
Syntax for the cu Command . 12-13
Using the cu Command: Example. 12-14

Working on a Remote System: The uux Command . 12-16
Syntax for the uux Command . 12-16
Using the uux Command: Example . 12-16

The Remote Execution Facility: REXEC . 12-16
Using REXEC Services . 12-18

Using the rquery Service . 12-19
Using REXEC: Example . 12-20

Using the rx Service . 12-20
Syntax of the rx Service . 12-21
Using the rx Service: Example. 12-21

Using the rl Service . 12-21
Syntax for the rl Service. 12-22
Using the rl Service: Example . 12-22

Passing Environment Variables . 12-22
Syntax for Passing Environment Variables . 12-22
Passing Environment Variables: Example. 12-23

User’s Guide

12-1

12
Chapter 12Communication Tutorial

12
12
12

Introduction 12

The UNIX system offers a choice of commands that enable you to communicate with
other UNIX system users. Specifically, they allow you to: send and receive messages from
other users (on either your system or another UNIX system); exchange files; and form net-
works with other UNIX systems. Through networking, a user on one system can exchange
messages and files between computers, and execute commands on remote computers.

This chapter contains two sections. The first section describes the Basic Networking
Utilities (BNU) software that is the basic communications and networking package that
comes withUNIX System V and is available to allUNIX users. BNU commands allow users
to send and receive files and directories as well as to access networks.

Section two discusses the REXEC software that also is part of the basic UNIX
communications and networking package. REXEC lets you log on to a remote machine,
execute a command that resides on a remote machine, and run an application or service
installed on the remote machine.

To help you take advantage of these capabilities, this chapter will teach you how to use the
following commands:

ct
cu
rexec
rquery
rx
rl
uucp
uuname
uupick
uustat
uuto
uux

Basic Networking Utilities 12

Basic Networking Utilities (BNU) provides you with a set of commands that allows you to
transfer files to a remote machine on a network, check the status of a file transfer, and
retrieve files sent by a remote system to a public directory. The commands that send a file
on its way to a remote system, or to a specific user on the remote system, are theuucp and

User’s Guide

12-2

uuto commands. The command that monitors and traces the progress of your file
transfers is theuustat command. The command that lets you collect a file from a public
directory, once you have been notified of its arrival, is theuupick command.

In addition to file transfer commands, BNU also provides you with a set of commands that
allows you to use other machines on the network while logged in to your local system.
The ct command allows you to connect your computer to a remote terminal that is
equipped with a modem. Thecu command enables you to connect your computer to a
remote computer. Theuux command lets you run commands on a remote system without
being logged in to it.

This section tells you how to use all the BNU commands, beginning withuucp. In all the
examples in this chapter, it is assumed that the machines can communicate with each
other.

Transferring a File: The uucp Command 12

Keeping the overall process in mind, let's begin with the first step - the command to send a
file to a remote system. The commanduucp (short for UNIX-to-UNIX system copy)
allows you to copy files between computers. It is not an interactive command. It performs
its work silently, invisible to the user. Once you issue this command, you may run other
processes.

Theuucp command allows you to transfer files to a remote computer without knowing
anything except the name of the remote computer and, possibly, the login ID of the remote
user(s) to whom the file is being sent.

Syntax for the uucp Command 12

uucp allows you to send:

• one file to a file or a directory

• multiple files to a directory.

To deliver your file(s),uucp must know the full pathname of both thesourcefile and the
destinationfile. However, this does not mean you must type out the full pathname of both
files every time you use theuucp command. You can use several abbreviations once you
become familiar with their formats;uucp will expand them to full pathnames.

To specify yoursourcefile anddestinationfile, begin by identifying the location of your
sourcefile, relative to your own current location in the file system. If thesourcefile is in
your current directory, you can specify it by its name alone (without a path). If the
sourcefile is not in your current directory, you must specify its full or relative pathname.

How do you specify thedestinationfile? Because it is on a remote system, the
destinationfile must always be specified with a pathname that begins with the name of the
remote system. After that, however,uucp gives you a choice of formats:

• systemname!fullpathname

• systemname!~/[pathname]

Communication Tutorial

12-3

Here , fu l lpathname i s an exp l i c i t pa thname. ~/ t rans la tes to
/var/spool/uucppublic/ , uucp 's public directory on the remote system.pathname
is a sub-directory, typically having the same name as the recipient's user id.

By de fau l t , the on ly d i rec to ry to wh ich you can wr i te fi l es i s
/var/spool/uucppublic . To write to directories belonging to another user, you must
receive write permission from that user or from the administrator.

Until now we have described what to do when you want to send a file from your local
system to a remote system. However, it is also possible to useuucp to send a file from a
remote system to your local system. In either case, you can use the formats described
above to specify eithersourcefiles or destinationfiles. The important distinction in choosing
one of these formats is not whether a file is asourcefile or adestinationfile, but where you
are currently located in the file system relative to the files you are specifying.

For example, let's say you are loginkol on a system calledmickey . Your home directory
is /home/kol and you want to send a file calledchap1 (in a directory calledtext in
your home directory) to loginwsm on a system calledminnie . You are currently working
in /home/kol/text , so you can specify thesourcefile with its relative pathname,
chap1 . You can specify thedestinationfile like this:

• Specify thedestinationfile with its full pathname:

uucp chap1 minnie!/home/wsm/receive/chap1

Specify thedestinationfile with ~/ pathname. This expands to the recipient's subdi-
rectory in the public directory on the remote system.

uucp chap1 minnie!~/wsm/chap1

(The file will go tominnie!/var/spool/uucppublic/wsm/chap1)

NOTE

The same results can be obtained by omittingchap1 at the end of
the previous command line.

Using the uucp Command: Example 12

Suppose you want to send a file calledminutes to a remote computer namedeagle .
Enter the following command line:

$ uucp -m -j minutes eagle!/home/gws/minutes < RETURN>
eagleN3f45

$

This sends the fileminutes (located in your current directory on your local computer) to
the remote computereagle , and places it under the pathname/home/gws in a file
namedminutes . When the transfer is complete, you, the sender, are notified bymail .

The -m option ensures that you, the sender, are notified bymail as to whether or not the
transfer has succeeded. The job ID (eagleN3f45) is displayed in response to the-j
option.

User’s Guide

12-4

Even ifuucp does not notify you of a successful transfer soon after you send a file, do not
assume that the transfer has failed. Not all systems equipped with networking software
have the hardware needed to call other systems. Files being transferred from these so
called passive systems must be collected periodically by active systems equipped with the
required hardware (see“How It Works” for details). Therefore, if you are transferring files
from a passive system, you may experience some delay. Check with your system
administrator to find out whether your system is active or passive.

The previous example uses a full pathname to specify thedestinationfile. There are two
other ways to specifydestinationfile:

• The login directory ofgws can be specified through use of the~ (tilde), as
shown below:

eagle!~gws/minutes

This is interpreted as:

eagle!/home/gws/minutes

• Theuucppublic area is referenced by a similar use of the tilde prefix to
the pathname. For example:

eagle!~/gws/minutes

This is interpreted as:

/var/spool/uucppublic/gws/minutes

How uucp Works 12

This section is an overview of what happens automatically when you issue theuucp
command. An understanding of the processes involved may help you be aware of the
limitations and requirements of the command. For further details, see the System
Administration Manual and the onlineCommand Reference.

When you enter auucp command, theuucp program creates a work file and usually a
data file for the requested transfer. (uucp does not create a data file when you use the-c
option.) The work file contains information required for transferring the file(s). The data
file is a copy of the specified source file. After these files are created in the spool directory,
theuucico daemon is started.

Theuucico daemon attempts to establish a connection to the remote computer that is to
receive the file(s). It first gathers the information required for establishing a link to the
remote computer from theSystems file. This is howuucico knows what type of device
to use in establishing the link. Thenuucico searches theDevices file looking for the
devices that match the requirements listed in theSystems file. After uucico finds an
available device, it attempts to establish the link and log in on the remote computer.

Whenuucico logs in on the remote computer, it starts theuucico daemon on the
remote computer. The twouucico daemons then negotiate the line protocol to be used in
the file transfer(s). The localuucico daemon then transfers the file(s) that you are
sending to the remote computer; the remoteuucico places the file in the specified
pathname(s) on the remote computer. After your local computer completes the transfer(s),
the remote computer may send files that are queued for your local computer. The remote

Communication Tutorial

12-5

computer can be denied permission to transfer these files with an entry in the
Permissions file. If this is the case, the remote computer must establish a link to your
local computer to perform the transfers.

If the remote computer or the device selected to make the connection to the remote
computer is unavailable, the request remains queued in the spool directory. Twice an hour
(th i s i s a de fau l t , o ther in te rva ls can be spec i fi ed) ,cron s ta r ts
uudemon.hour . uudemon.hour , in turn, then starts theuusched daemon. When the
uusched daemon starts, it searches the spool directory for the remaining work files, gen-
erates the random order in which these requests are to be processed, and then starts the
transfer process (uucico) described in the preceding paragraphs.

The transfer process described generally applies to an active computer (one with calling
hardware and networking software). An active computer can be set up to poll a passive
computer. Because it has networking software, a passive computer can queue file
transfers. However, it cannot call the remote computer because it does not have the
required hardware. ThePoll file (/etc/uucp/Poll) contains a list of computers that
are to be polled in this manner.

Table 12-1 summarizes the syntax and capabilities of theuucp command.

1. See theuucp(1C) entry in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 12-1. Summary of the uucp Command

Command Recap

uucp - copies a file from one computer to another

command options arguments

uucp -j , -m, -s and others1 sourcefile,destinationfile

Description: uucp performs preliminary tasks required to copy
a file from one computer to another, and calls
uucico , the daemon (background process) that
transfers the file. The user need only issue the
uucp command for a file to be copied.

Remarks: By default, the only directory to which you can
write files is /var/spool/uucppublic . To
write to directories belonging to another user, you
must receive write permission from that user and
from the administrator. Although there are several
ways of representing pathnames as arguments, we
recommend that you type full pathnames to avoid
confusion.

User’s Guide

12-6

Sending Files to the Public Directory: The uuto Command 12

Theuuto command is a simplified interface touucp . It allows you to more easily send
files to the public directory (/var/spool/uucppublic/) of a remote system.

Syntax for the uuto Command 12

The basic format for theuuto command is:

uuto filename(s) system! login < RETURN>

wherefilename is the name of the file to be sent,system is the recipient's system, andlogin
is the recipient's login name. It should be noted thatuuto can also route files through
intermediate systems on route to the final destination system, providing the intermediate
systems permit it. For example,system!login can be expressed assystem1!system2!...!login

If you send a file to someone on your local system, you may omit the system name and use
the following format:

uuto filename ! login < RETURN>

Using the uuto Command: Example 12

Let's take an example and see how this works.

The process of sending a file byuuto is called a job. When you issue auuto command,
your job is not sent immediately. First, the file is stored in a queue (a waiting line of jobs)
and assigned a job number. When the number of the job comes up, the file is transmitted to
the remote system and placed in a public directory there. The recipient is notified by a
mail message and can use theuupick command (discussed later in this chapter) to
retrieve the file.

For the following discussions, assume the information in Table 12-2 is valid:

Also assume that the two systems can communicate with each other. To send the file
money to loginmarie on systemsys2 , enter the following:

$ uuto money sys2!marie <RETURN>
$

Table 12-2. Command Example

wombat your login name

sys1 the name of your local system

marie the recipient's login name

sys2 the name of the remote system

money file to be sent

Communication Tutorial

12-7

The prompt on the second line is a signal that the file has been sent to a job queue. The job
is now out of your hands; all you can do is wait for confirmation that the job reached its
destination.

How do you, the sender, know when the job has arrived? The easiest method is to alter the
uuto command line by adding a-m option, as follows:

$ uuto -m money sys2!marie <RETURN>
$

This option sends amail message back to you, the sender, when the job has reached the
remote system. It is your formal notification that you have indeed successfully transferred
the file to the remote system. The message may look something like this:

Table 12-3 is a summary of the syntax and capabilities of theuuto command.

1. See the uuto(1C) entry in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 12-3. Summary of the uuto Command

Command Recap

uuto - sends files to another login

command options arguments

uuto -m and others1 file system!login

Description: uuto sends a specified file to the public directory
of a specified system, and notifies the intended
recipient (bymail addressed to his or her login)
that the file has arrived there.

Remarks: You must have read permission for the file(s) you
want to send; the file's parent directory must have
read and execute permissions for others.

The-m option notifies the sender bymail when
the file has arrived at its destination.

$ mail <RETURN>
>From uucp Fri Feb 3 11:53 EST 1992 remote from sys1
REQUEST: sys1!wombat/money --> sys2!~/receive/marie/sys1/ (marie)
(SYSTEM sys2) copy succeeded
?

User’s Guide

12-8

Checking a Job's Status: The uustat Command 12

Now that you have sent the file, you can go to the next step -- checking the job status. If
you would like to determine whether the job has left your system, you can use the
uustat command. This command keeps track of all theuucp anduuto jobs you submit
and reports their status.

Using the uustat Command: Example 12

For example:

$ uustat <RETURN>
sys1N2f01 02/03-16:06 S sys2 wombat 10 money
$

The elements of the line of this sample status message are as follows:

• sys1N2f01 is the job number assigned to the job by your host machine.

• 02/03-16:06 is the date and time the job was queued.

• S says that this request is to send a file (R means to receive a file).

• sys2 is the destination machine where the file will be transferred.

• wombat is the login name of the person requesting the job.

• 10 is the number of bytes in the file to be transferred.

• money is the file to be transferred.

Other status messages and options for theuustat command are described in the online
Command Reference.

That is all there is to sending files and checking the progress of the job. A summary of the
syntax and capabilities of theuustat command appears in Table 12-4.

1. See theuustat(1C) entry in the onlineCommand Reference for all
available options and an explanation of their capabilities.

Table 12-4. Summary of the uustat Command

Command Recap

uustat - checks job status of a uucp or uuto job

command options arguments

uustat -k and others1 none

Description: uustat reports the status of alluucp anduuto
jobs you have requested.

Remarks: The -k option, followed by a job number, allows
you to cancel the specified job.

Communication Tutorial

12-9

Retrieving a File: The uupick Command 12

Now that you know how to send a file and check the progress of the job, let's continue the
process from the viewpoint of the user who will be receiving a file. When a file sent by
uuto reaches the public directory on your UNIX system, you receive amail message.
This is your formal notification that you have received a file.

Using the uupick Command: Example 12

To continue the previous example, the owner of loginmarie receives the followingmail
message when the filemoney has arrived in the public directory of her system:

The message contains the following information:

• The first line tells you, the receiver, when the file arrived at its destination.

• The first portion of the second line (up to the word “money”) gives the
pathname of the public directory where the filemoney has been stored.

• The rest of the line (after the word “from”) gives the name of the remote
system, the remote sender (user), and a status of the file transfer
(“arrived”).

Once you have disposed of themail message, you can use theuupick command to
store the file where you want it. Type the following command after the system prompt:

uupick < RETURN>

The command searches the public directory for any files sent to you. If it finds any, it
reports the filename(s). It then prints a? prompt as a request for further instructions from
you.

For example, if the owner of loginmarie issues theuupick command to retrieve the
money file, the command will respond as follows:

$ uupick <RETURN>
from system sys1: file money ?

There are several responses; here are the most common responses and what they do.

The first thing you should do is move the file from the public directory and place it in your
current directory. To do so, type anm after the question mark:

? m < RETURN>
$

$ mail <RETURN>
>From uucp Fri Feb 3 16:05 EST 1992 remote from sys2
/var/spool/uucppublic/receive/wombat/sys1/money from sys1!wombat arrived
$

User’s Guide

12-10

This response moves the file into your current directory. If you want to put it in some other
directory instead, follow them response with the directory name:

? m other_directory < RETURN>

If other files are waiting to be moved, the next one is displayed, followed by the question
mark. If not,uupick exits and the system returns a prompt.

If you do not want to do anything to that file now, press the<RETURN> key after the
question mark:

? < RETURN>

The current file remains in the public directory until the next time you use theuupick
command. If there are no more messages, the system returns a prompt.

If you already know that you do not want to save the file, you can delete it by typingd
after the question mark:

? d < RETURN>

This response deletes the current file from the public directory and displays the next
message (if there is one). If there are no additional messages about waiting files, the
system returns a prompt.

Finally, to stop theuupick command, type aq after the question mark:

? q < RETURN>

Any unmoved or undeleted files will wait in the public directory until the next time you
use theuupick command.

Other available responses are listed in the onlineCommand Reference.

You now know how to send a file to a remote system, monitor the progress of the job, and
retrieve the file from the public directory. Table 12-5 summarizes the syntax and capabili-
ties of theuupick command.

Connecting a Remote Terminal: The ct Command 12

Thect command connects your computer to a remote terminal equipped with a modem,
and allows a user at that terminal to log in. To do this, the command dials the telephone
number of the modem. The modem must be able to answer the call. Whenct detects that
the call has been answered, it issues a login prompt.

This command can be useful when issued from the opposite end, that is, from the remote
terminal itself. If you are using a remote terminal that is far from your computer and want
to avoid long distance charges, you can usect to have the computer place a call to your
terminal. Simply call the computer, log in, and issue thect command. The computer will
hang up the current line and call your (remote) terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy and asks if it
should wait until one becomes available. If you answer yes, it asks how long (in minutes)
it should wait for one.

Communication Tutorial

12-11

Syntax for the ct Command 12

To execute thect command, use this format:

ct [options] telno < RETURN>

The argumenttelno is the telephone number of the remote terminal.

Examples for Using the ct Command 12

Suppose you are logged in on a computer through a local terminal and you want to
connect a remote terminal to your computer. Assuming you need to dial a9 to get an
outside telephone line, and the telephone number of the modem on the remote terminal is
555-3497, enter this command line:

ct -h -w5 -s1200 9=5553497 < RETURN>

NOTE

The equal sign (=) represents a secondary dial tone.

ct will call the modem, using a dialer operating at a speed of 1200 baud. If a dialer is not
available, the-w5 option will causect to wait for a dialer for five minutes before
quitting. The-h option tellsct not to disconnect the local terminal (the terminal on
which the command was issued) from the computer.

Now imagine that you want to log in on the computer from home. To avoid long distance
charges, usect to have the computer call your terminal:

Table 12-5. Summary of the uupick Command

Command Recap

uupick - searches for files sent by uuto or uucp

command options arguments

uupick -ssystem

Description: uupick searches the public directory of your sys-
tem for files sent byuuto or uucp . If any are
found, the command displays information about the
file and prompts you for a response.uupick
invoked with the-ssystem option will search
the public directory for files sent only fromsystem.

Remarks: The question mark (?) at the end of the message
shows that a response is expected. A complete list
of responses appears in the onlineCommand
Reference.

User’s Guide

12-12

ct -s1200 9=5553497 < RETURN>

Because you did not specify the-w option, if no device is available,ct will send you the
following message:

1 busy dialer at 1200 baud Wait for dialer?

If you typen (no), thect command will exit. If you typey (yes),ct will prompt you to
specify how long it should wait:

Time, in minutes?

If a dialer is available,ct responds with:

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case,ct asks if you want the line connect-
ing your remote terminal to the computer to be dropped:

Confirm hangup?

If you typey (yes), you are logged off andct calls your remote terminal back when a
dialer is available. If you typen (no), thect command exits, leaving you logged in on the
computer, and does not attempt to call you back.

Table 12-6 summarizes the syntax and capabilities of thect command.

Calling Another UNIX System: The cu Command 12

The cu command connects a remote computer to your computer and allows you to be
logged in on both computers simultaneously. This means that you can move back and
forth between the two computers, transferring files and executing commands on both,
without dropping the connection.

1. See the ct(1C) entry in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 12-6. Summary of the ct Command

Command Recap

ct - connect computer to remote terminal

command options arguments

ct -h , -w, -s and others1 telno

Description: ct connects the computer to a remote terminal and
allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem capable
of answering phone calls automatically.

Communication Tutorial

12-13

The method used by thecu command depends on the information you specify on the
command line. You must specify the telephone number or system name of the remote
computer. If you specify a telephone number, it is passed on to the automatic dial modem.
If you specify a system name,cu obtains the phone number from theSystems file. If an
automatic dial modem is not used to establish the connection, the line (port) associated
with the direct link to the remote computer can be specified on the command line.

Once the connection is made, the remote computer prompts you to log in on it. When you
have finished working on the remote terminal, log off it and terminate the connection by
typing <~.>. You will still be logged in on the local computer.

NOTE

Thecu command is not capable of detecting or correcting errors;
data may be lost or corrupted during file transfers. You can check
for loss of data by using thesum command. Before transferring
file from your local system, issue thesum command, usingfile as
an argument. Repeat the command on the remote system whenfile
is received. The resultant outputs should match, to indicate accu-
rate file transmission.

Syntax for the cu Command 12

To execute thecu command, follow this format:

cu [options] telno | systemname < RETURN>

The components of the command line are:

telno the telephone number of a remote computer.

Equal signs (=) represent secondary dial tones and dashes (-) represent
four-second delays.

systemname a system name that is listed in theSystems file.

Thecu command obtains the telephone number and baud rate from the
Systems file and searches for a dialer. The-s , -n , and-l options
should not be used together withsystemname. (To see the list of
computers in theSystems file, use theuuname command.)

Once your terminal is connected and you are logged in on the remote computer, all
standard input (input from the keyboard) is sent to the remote computer, with the
exception of tilde (~) commands. Table 12-7 and Table 12-8 show the commands you can
execute while connected to a remote computer throughcu .

NOTE

The use of~%put requiresstty and cat on the remote
computer. It also requires that the current erase and kill characters
on the remote computer be identical to the current ones on the
local computer.

User’s Guide

12-14

The use of~%take requires the existence of theecho andcat
commands on the remote computer. Also,stty tabs mode
should be set on the remote computer if tabs are to be copied
without expansion.

Using the cu Command: Example 12

Suppose you want to connect your computer to a remote computer calledeagle .
Assuming you need to dial a9 to get an outside telephone line, and the telephone number
for eagle is 555-7867, enter the following command line:

Table 12-7. Command Strings Used with the cu Command

String Interpretation

~. Terminate the link.

~! Escape to the local computer without dropping the link. To
return to the remote computer, type<^d> (control-d).

~! command Executecommand on the local computer.

~$command Run command locally and send its output to the remote
system.

~%cdpath Change the directory on the local computer wherepath is the
pathname or directory name.

~%take from [to] Copy a file namedfrom (on the remote computer) to a file
namedto (on the local computer). Ifto is omitted, thefrom
argument is used in both places.

~%put from [to] Copy a file namedfrom (on the local computer) to a file
namedto (on the remote computer). Ifto is omitted, thefrom
argument is used in both places.

~~... Send the line~... to the remote computer.

~%break Transmit a <BREAK> to the remote computer (can also be
specified as~%b).

~%ifc Toggles the input flow control setting. When enabled,
incoming data may be flow controlled by the local terminal
(can also be specified as~%nostop).

~%ofc Toggles the output flow control setting. When enabled,
outgoing data may be flow controlled by the remote host
(can also be specified as~%noostop).

~%debug Turn the-d debugging option on or off (can also be speci-
fied as~%d).

~t Display the values of the terminal I/O (input/output) struc-
ture variables for your terminal (useful for debugging).

~l Display the values of the termio structure variables for the
remote communication line (useful for debugging).

Communication Tutorial

12-15

cu -s2400 9=5557867 < RETURN>

If you do not need to access an outside telephone line, the9= characters in the command
line are unnecessary. The-s2400 option causescu to use a 2400 baud dialer to call
eagle . If the -s option is not specified,cu uses a dialer at the default speed, 1200 baud.

Wheneagle answers the call,cu notifies you that the connection has been made, and
passeseagle 's login prompt to you:

Connected
login:

Enter your login ID and password.

The take command allows you to copy files from the remote computer to the local
computer. Suppose you want to make a copy of a file namedproposal for your local
computer. The following command copiesproposal from your current directory on the
remote computer and places it in your current directory on the local computer. If you do
not specify a file name for the new file, it will also be calledproposal .

~%take proposal < RETURN>

Theput command allows you to do the opposite: copy files from the local computer to
the remote computer. If you want to copy a file namedminutes from your current
directory on the local computer to the remote computer, type:

~%put minutes minutes.9-18 < RETURN>

In this case, you specified a different name for the new file (minutes.9-18). Therefore,
the copy of theminutes file that is made on the remote computer will be called
minutes.9-18 .

Table 12-8 summarizes the syntax and capabilities of thecu command.

1. See thecu(1C) entry in the onlineCommand Referencefor all available
options and an explanation of their capabilities.

Table 12-8. Summary of the cu Command

Command Recap

cu - connects computer to remote computer

command options arguments

cu -s and others1 telno (or) systemname

Description: cu connects your computer to a remote computer
and allows you to be logged in on both simulta-
neously. Once you are logged in, you can move
between computers to execute commands and
transfer files on each without dropping the link.

User’s Guide

12-16

Working on a Remote System: The uux Command 12

The commanduux (short for UNIX-to-UNIX system command execution) allows you to
execute UNIX system commands on remote computers. It can gather files from various
computers, execute a command on a specified computer, and send the standard output to a
file on a specified computer. The execution of certain commands may be restricted on the
remote machine. You will be notified bymail if the command you have requested is not
allowed to execute (restricted).

Syntax for the uux Command 12

To execute theuux command, follow this format:

uux [options] commandstring < RETURN>

The commandstring is made up of one or more arguments. All shell special characters
(such as “<>”) must be quoted either by quoting the entirecommand-stringor quoting the
character as a separate argument. Within thecommand-stringthe command and file names
may contain asystemname! prefix. All arguments that do not contain asystemname are
interpreted as command arguments. A file name may be either a full pathname or the name
of a file under the current directory (on the local computer).

Using the uux Command: Example 12

If your computer is hardwired to a larger host computer, you can useuux to get printouts
of files that reside on your computer by entering:

pr minutes | uux -p host!lp < RETURN>

This command line queues the fileminutes to be printed on the area printer of the
computerhost . The -p option tells the process to use standard output from
pr minutes as input tolp onhost .

See theuux(1C) manual page in the onlineCommand Reference for details. Table 12-9
summarizes the syntax and capabilities of theuux command.

The Remote Execution Facility: REXEC 12

REXEC is a service-based remote execution facility that allows users to execute services
on a remote machine. REXEC allows you to do such things as

• log in to a remote machine

• execute a command that resides on a remote machine

• run an application or service installed on the remote machine.

Once you enter an REXEC command and access the remote machine, the process you're
running appears to you just as it would if it were running on your local system.

Communication Tutorial

12-17

The services available to you through REXEC are determined by the administrator of the
remote machine. Administrators set up and maintain a database of services that can be
executed remotely.

Generally, three standard services will be available to you through REXEC. These
standard services are defined on the remote machine by default when the REXEC software
is installed. The services are

rx which allows you to execute a command or shell script that
resides on the remote machine.

rl which allows you to log in to the remote machine from your local
machine, provided you have a login on the remote machine and an
entry in the remote machine's/etc/passwd file.

rquery which allows you to display a list of services that are available to
you on the remote machine.

NOTE

Although these standard services are defined by default when
REXEC is installed on the remote machine, the remote machine's
administrator can choose to remove them from the database of
available services. Most likely, however, therquery service will
always be defined so that you can check the availability of the
other standard services.

1. See the uux(1C) entry in the onlineCommand Reference for all available
options and an explanation of their capabilities.

Table 12-9. Summary of the uux Command

Command Recap

uux - executes commands on a remote computer

command options arguments

uux -p , and others1 commandstring

Description: uux allows you to run UNIX system commands on
remote computers. It can gather files from various
computers, run a command on a speci fied
computer, and send the standard output to a file on
a specified computer.

Remarks: By default, theuux command can only run the
mail command. Check wi th your system
administrator to find out if other commands are
executable viauux .

User’s Guide

12-18

In addition to the standard services, the administrator of a remote machine may define
other services and make them available to you.

The following section tells you how to use the REXEC facility to execute a process on the
remote machine. It then provides you with instructions for using the standard REXEC ser-
vices.

Using REXEC Services 12

The user interface to REXEC is therexec command. By specifying a remote machine
name and a service name as arguments to therexec command, a user can execute a
process on the remote machine from his or her local system. When the process executes, it
appears to the user as if it is running locally. To the remote application or process, the user
appears to be on the remote machine.

The syntax of therexec command depends on the way your local system is
administered. The administrator of the local machine has the option to create a link from
an REXEC service to therexec command. If the service you want to execute is linked to
therexec command, you can use an abbreviated command syntax to execute the service.

If no links have been created, therexec command has the syntax

rexec host service[parameters]

wherehost is the name of the remote machine on which the service resides,service is the
service name, andparameters is the command, including arguments, that you want to run
on the remote machine. For example, if you want to see who is logged in to the local
system, you enter thewho command. If you want to determine who is logged in to the
remote systemstrider, you enter therexec command, as follows:

rexec strider rx who

If a link between the service and therexec command has been created, you can enter an
abbreviated command with the following syntax:

service host[parameters]

Again,service is the name of the REXEC service you want to run,host is the name of the
remote machine, andparameters is the command, including arguments, that you want to
run on the remote machine. If you want to run thewho command on the remote machine
strider, for example, andrx is linked to therexec command, you could enter

rx strider who

The standard services—those defined on the remote machine by default—are linked
automatically to therexec command. Therefore, you'll most likely use the abbreviated
syntax when using therx, rl, andrquery services. Remember, however, that the
administrator of the local machine has the option to remove the links.

Before you can take advantage of the REXEC facility, you must have logins on both the
local and the remote systems. The remote machine's administrator creates your remote
login, then maps your login on the local machine to it, using a mechanism called ID
Mapping. Your login on the remote system is set up as if it were the login of a local user

Communication Tutorial

12-19

with an entry in/etc/passwd, a home directory, a.profile, and so on. For conve-
nience, your remote login and the user account on the remote system associated with that
login are referred to throughout this documentation as the “mapped user.”

NOTE

If the REXEC facility is protected by the cr1 authentication
scheme, you also need a key associated with your login in the cr1
key database. If you fail to connect to a remote machine when
REXEC is protected by the cr1 scheme, see your system
administrator.

When you execute a service on a remote machine, the process runs as the mapped user.
When you execute a shell script on the remote machine, for example, the script is executed
by the shell associated with your login on the remote machine, which may not be the same
shell you use on your local system.

A remotely executed process cannot access the file system tree on your local system. The
working directory associated with the process is the home directory of the mapped user.
All files referenced when the service is invoked are relative to the remote machine. For
example, if your local machine issfzip and you execute the command

rx strider cat \$HOME/.profile

the.profile of the mapped user is displayed, not your.profile onsfzip.

Access to files and subdirectories is controlled on the server side, using the standard
UNIX System V permissions scheme. The administrator of your local system controls
access to the REXEC facility itself. If REXEC is installed on the local system but you can-
not run therexec command, see your local administrator. If you are denied access to spe-
cific commands or services on the remote machine, contact the remote machine's adminis-
trator.

To some extent, you can control the environment in which you execute a remote process
by passing environment variables to the remote machine. Passing environment variables is
discussed at the end of this section, following instructions for using the standard REXEC
services.

Using the rquery Service 12

The rquery service allows you to display the services on a remote machine that are
available to you through the REXEC facility. When you execute therquery service and
specify a remote machine name,rquery runs a command on the remote machine called
rxlist. rxlist displays all the services that you can access through REXEC.

The output ofrxlist does not necessarily include all services in the remote machine's
REXEC database; becauserxlist runs on the remote machine as the mapped user, it
lists only those services that you, personally, can execute.

To display the available services, you can enter therexec command with the following
syntax:

User’s Guide

12-20

rexec host rquery

Becauserquery is linked to therexec command, you can also use an abbreviated
syntax, as follows:

rquery host

In both commands,host is the name of the remote machine.

Using REXEC: Example 12

To list the available services on a remote machine namedaslan, using the abbreviated
syntax, you would enter

rquery aslan

NOTE

When you request a display of services available on a remote
machine, you do not specify therxlist command explicitly.
REXEC translatesrquery into rxlist on the specified host.

When the command executes, a two-column table similar to the following is displayed on
the local system.

rx Remote execution
rl Remote login
rquery List available services

The first column contains the names of the services on the server that are available to you
for remote execution. The second column contains descriptions of the services, as entered
by the administrator of the remote machine when the services were defined.

NOTE

Generally, therl service will be defined such thatutmp entries
are created for mapped users. Ifutmp entries are created, then the
local logins of mapped users are included in the listing when the
who command is executed. Ifutmp entries are not created, the
mapped users' logins do not appear in thewho command's output.

Column 4 of therquery display contains the service definition. The service definition is
the command that has been made available for remote execution, plus any macros that
define the arguments that the command accepts when it is executed remotely.

Using the rx Service 12

The rx service allows you to execute commands and shell scripts on a remote machine.
The arguments passed to therx service are executed by the mapped user's shell; therefore,

Communication Tutorial

12-21

they can be shell scripts, executable commands, or UNIX built-in commands (such as
cd).

Syntax of the rx Service 12

Becauserx is linked to therexec command by default, generally you will use the
following syntax

rx host command arguments

wherehost is the name of the remote machine,command is the name of the command on
the remote machine that you want to run, andarguments is the same arguments you could
pass to the command, were you running the command locally.

Using the rx Service: Example 12

Assume, for example, that you want to run thecat command on a file in the mapper
user's home directory on a remote machine nameddopey. The filename of the file you
want tocat is readme . You would enter

rx dopey cat readme

When the command executes, thereadme file scrolls across your screen, as if you had
run thecat command on a file locally.

Since therx service runs a shell on the remote machine, all special quoting and shell
metacharacters are handled correctly. For example, suppose you typed the following:

rx strider who | fgrep marcus

In this case, thewho command runs on the remote machinestrider and thefgrep
command runs on the local machine. Suppose, however, that you typed the following:

rx strider 'who | fgrep marcus'

In this case, the stringwho | fgrep marcus executes on the remote machine
strider.

Similarly, the command

rx strider cat readme > readme2

creates thereadme2 file in the current working directory on the local machine. The
command

rx strider 'cat readme > readme2'

creates thereadme2 file in the mapped user's home directory on the remote machine.

Using the rl Service 12

rl lets you connect to a remote machine and execute the login shell of the mapped user.
When you runrl, rl first executes the remote machine's/etc/profile. It then

User’s Guide

12-22

executes the.profile of your login on the remote machine and runs the shell specified
in the.profile.

Syntax for the rl Service 12

Becauserl is linked to therexec command by default, you'll runrl using the syntax

rl host

wherehost is the name of the remote machine you want to access.

Using the rl Service: Example 12

If you want to log in to a remote machine nameddoc, for example, you would enter

rl doc

When you make the connection to the remote machine, you are not prompted for a
password. Instead, you effectively change machines and continue as the mapped user on
the remote machine. The home directory of the mapped user becomes your current
working directory.

Passing Environment Variables 12

REXEC gives you some control of the environment in which you execute a remote
process by allowing you to pass environment variables to the remote machine.

The environment variablesSHELL, HOME, andLOGNAME are set for the mapped user by
the REXEC facility on the remote machine. The values of these variables are obtained
from the/etc/passwd file on the remote machine.

In addition, the variablesPATH andTZ may be set for the mapped user by the listener
process on the remote machine, if they were not previously specified for the listener.PATH
is set to the value of/sbin:/usr/sbin:/etc:/usr/bin. TZ is set to the time zone
of the remote machine. If the listener has a value forPATH or TZ, or both, the value is
inherited. The values ofPATH andTZ can be changed by the system administrator of the
remote machine.

Other environment variables can be passed from the local system to the remote system
when you enter a remote command. The additional variables are specified by assigning a
comma-separated list of the variable names to theRXPORT variable.

Syntax for Passing Environment Variables 12

If the RXPORT variable has been exported, setRXPORT on one line, using the following
syntax:

RXPORT=variable1, variable2, . . .

Then press the<RETURN> key and enter therexec command, using the syntax

Communication Tutorial

12-23

rexec host service [parameters]

or the abbreviated syntax

service host[parameters]

depending on whether or not the service you want to invoke has been linked to therexec
command.

Passing Environment Variables: Example 12

Assume you want to executevi on the remote machinestrider, and you may need to
set theTERM andEXINIT variables on the remote machine. To do this, enter the
following:

RXPORT=TERM,EXINIT
rx strider vi

WhenRXPORT is set and exported in the current shell environment, the values ofTERM
andEXINIT on the local system will be passed to the remote machinestrider when
rx is executed.

User’s Guide

12-24

13
Programming with awk

Introduction . 13-1
Basic awk. 13-1

Program Structure. 13-1
Usage . 13-2
Fields . 13-3
Printing . 13-4
Formatted Printing . 13-5
Simple Patterns. 13-5
Simple Actions . 13-6

Built-in Variables. 13-7
User-defined Variables . 13-7
Functions . 13-7

A Handful of Useful One-liners . 13-7
Error Messages . 13-8

Patterns . 13-9
BEGIN and END . 13-9
Relational Expressions . 13-10
Regular Expressions . 13-11
Combinations of Patterns . 13-14
Pattern Ranges . 13-14

Actions. 13-15
Built-in Variables . 13-15
Arithmetic. 13-15
Strings and String Functions . 13-18
Field Variables . 13-21
Number or String? . 13-21
Control Flow Statements . 13-23
Arrays . 13-25
User-defined Functions. 13-27
Some Lexical Conventions. 13-27

Output . 13-28
The print Statement . 13-28
Output Separators . 13-28
The printf Statement . 13-29
Output to Files . 13-30
Output to Pipes . 13-31

Input. 13-31
Files and Pipes . 13-32
Input Separators . 13-32
Multi-line Records . 13-32
The getline Function. 13-33
Command-line Arguments . 13-35

Using awk with Other Commands and the Shell. 13-36
The system Function. 13-36
Cooperation with the Shell . 13-36

Example Applications . 13-38
Generating Reports. 13-38

User’s Guide

Additional Examples. 13-39
Word Frequencies . 13-39
Accumulation. 13-40
Random Choice . 13-40
Shell Facility . 13-40
Form-letter Generation . 13-41

awk Summary . 13-42
Command Line . 13-42
Patterns . 13-42
Control Flow Statements . 13-42
Input-Output . 13-42
Functions. 13-43
String Functions . 13-43
Arithmetic Functions . 13-44
Operators (Increasing Precedence) . 13-44
Regular Expressions (Increasing Precedence) . 13-45
Built-in Variables . 13-45
Limits . 13-46
Initialization, Comparison, and Type Coercion . 13-46

13-1

13
Chapter 13Programming with awk

13
13
13

Introduction 13

This chapter describes a programming language that enables you to handle easily the tasks
associated with data processing and information retrieval. Withawk, you can tabulate
survey results stored in a file, print various reports summarizing these results, generate
form letters, count the occurrences of a string in a file, or reformat a data file used for one
application package so it can be used for another application package.

The nameawk is an acronym formed from the initials of its developers. The nameawk
denotes both the language and the UNIX system command you use to run anawk
program.

awk is an easy language to learn. It automatically does many things that in other
languages you have to program yourself. As a result, many usefulawk programs are only
one or two lines long. Becauseawk programs are usually smaller than equivalent
programs in other languages, and because they are interpreted, not compiled,awk is also a
good language for prototyping.

The first part of this chapter introduces you to the basics ofawk and is intended to make it
easy for you to start writing and running your ownawk programs. The rest of the chapter
describes the complete language and is somewhat less tutorial. If you are an experienced
awk user, you will find the skeletal summary of the language at the end of the chapter
particularly useful.

You should be familiar with the UNIX system and shell programming to use this chapter.
Although you don't need other programming experience, some knowledge of the C
programming language is beneficial because many constructs found inawk are also found
in C.

Basic awk 13

This section provides enough information for you to write and run some of your own
programs. Each topic presented in this section is discussed in more detail in later sections.

Program Structure 13

The basic operation ofawk is to scan a set of input lines one after another, searching for
lines that match any of a set of patterns or conditions you specify. For each pattern, you

User’s Guide

13-2

can specify an action; this action is performed on each line that matches the pattern.
Accordingly, anawk program is a sequence of pattern-action statements, as Figure 13-1
shows.

Structure:
pattern {action }
pattern { action }
. . .

Example:
$1 == “address” { print $2, $3 }

Figure 13-1. awk Program Example

The example in Figure 13-1 is a typicalawk program, consisting of one pattern-action
statement. The program prints the second and third fields of each input line whose first
field isaddress . In general,awk programs work by matching each line of input against
each of the patterns in turn. For each pattern that matches, the associated action (which
may involve multiple steps) is executed. Then the next line is read and the matching starts
again. This process typically continues until all the input has been read.

Either the pattern or the action in a pattern-action statement may be omitted. If there is no
action with a pattern, as in

$1 == “name”

the matching line is printed. If there is no pattern with an action, as in

{ print $1, $2 }

the action is performed for every input line. Since patterns and actions are both optional,
actions are enclosed in braces to distinguish them from patterns.

Usage 13

You can run anawk program two ways. First, you can enter the command

$ awk ' pattern-action statements' optional list of input files<RETURN>

to execute the pattern-action statements on the set of named input files. For example, you
could say

$ awk '{ print $1, $2 }' file1 file2 <RETURN>

Notice that the pattern-action statements are enclosed in single quotes. This protects
characters like$ from being interpreted by the shell and also allows the program to be
longer than one line.

If no files are mentioned on the command line,awk reads from the standard input. You
can also specify that input comes from the standard input by using the hyphen (-) as one
of the input files.

Programming with awk

13-3

 For example,

$ awk '{ print $3, $4 }' file1 - <RETURN>

says to read input first fromfile1 and then from the standard input.

The arrangement above is convenient when theawk program is short (a few lines). If the
program is long, it is often more convenient to put it into a separate file and use the-f
option to fetch it:

$ awk -f program_file optional list of input files<RETURN>

For example, the following command line says to fetch and executemyprogram on input
from the filefile1 :

$ awk -f myprogram file1 <RETURN>

Fields 13

Normally, awk reads its input one line, or record, at a time; a record is, by default, a
sequence of characters ending with a newline. Thenawk splits each record into fields,
where, by default, a field is a string of non-blank, non-tab characters.

As input for many of theawk programs in this chapter, we use a file calledcountries ,
which contains information about the ten largest countries in the world. (See Table 13-1)
Each record contains the name of a country, its area in thousands of square miles, its
population in millions, and the continent on which it is located. (Data are from 1978; the
U.S.S.R. has been arbitrarily placed in Asia.) The white space between fields is a tab in the
original input; a single blank separatesNorth andSouth from America .

This file is typical of the kind of dataawk is good at processing—a mixture of words and
numbers separated into fields by blanks and tabs.

Table 13-1. The Sample Input File countries

USSR 8650 262 Asia

Canada 3852 24 North America

China 3692 866 Asia

USA 3615 219 North America

Brazil 3286 116 South America

Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26 South America

Sudan 968 19 Africa

Algeria 920 18 Africa

User’s Guide

13-4

The number of fields in a record is determined by the field separator. Fields are normally
separated by sequences of blanks and/or tabs, so that the first record ofcountries
would have four fields, the second five, and so on. It's possible to set the field separator to
just tab, so each line would have four fields, matching the meaning of the data; we'll show
how to do this shortly. For the time being, we'll use the default: fields separated by blanks
and/or tabs. The first field within a line is called$1, the second$2, and so forth. The
entire record is called$0.

Printing 13

If the pattern in a pattern-action statement is omitted, the action is executed for all input
lines. The simplest action is to print each line; you can accomplish this with anawk
program consisting of a singleprint statement

{ print }

so the command line

awk '{ print }' countries

prints each line ofcountries, copying the file to the standard output. Theprint
statement can also be used to print parts of a record; for instance, the program

{ print $1, $3 }

prints the first and third fields of each record. Thus

awk '{ print $1, $3 }' countries

produces as output the following sequence of lines:

When printed, items separated by a comma in theprint statement are separated by the
output field separator which, by default, is a single blank. Each line printed is terminated
by the output record separator which, by default, is a newline.

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

Programming with awk

13-5

NOTE

In the remainder of this chapter, we only showawk programs,
without the command line that invokes them. Each complete
program can be run either by enclosing it in quotes as the first
argument of theawk command, or by putting it in a file and
invoking awk with the-f flag, as discussed earlier in the section
titled “Usage.” For example, if no input is mentioned, the input is
assumed to be the filecountries.

Formatted Printing 13

For more carefully formatted output,awk provides a C-likeprintf statement

printf format, expr1, expr2, . . ., exprn

which prints theexpri's according to the specification in the stringformat. For example, the
awk program

{ printf “%10s %6d\n”, $1, $3 }

prints the first field ($1) as a string of 10 characters (right-justified), then a space, then the
third field ($3) as a decimal number in a six-character field, then a newline (\n). With
input from the filecountries, this program prints an aligned table:

With printf, no output separators or newlines are produced automatically; you must
create them yourself by using\n in the format specification. The section “The printf
Statement” in this chapter contains a full description ofprintf.

Simple Patterns 13

You can select specific records for printing or other processing by using simple patterns.
awk has three kinds of patterns. First, you can use patterns called relational expressions
that make comparisons. For example, the operator== tests for equality. To print the lines
for which the fourth field equals the stringAsia , we can use the program consisting of the
single pattern

$4 == “Asia”

 USSR 262
 Canada 24
 China 866
 USA 219
 Brazil 116
 Australia 14
 India 637
 Argentina 26
 Sudan 19
 Algeria 18

User’s Guide

13-6

With the filecountries as input, this program yields

USSR 8650 262 Asia
China 3692 866 Asia
India 1269 637 Asia

The complete set of comparisons is >, >=, <, <=, == (equal to) and!= (not equal
to). These comparisons can be used to test both numbers and strings. For example,
suppose we want to print only countries with a population greater than 100 million. The
program

$3 > 100

is all that is needed. It prints all lines in which the third field exceeds 100. (Remember that
the third field in the filecountries is the population in millions.)

Second, you can use patterns called regular expressions that search for specified characters
to select records. The simplest form of a regular expression is a string of characters
enclosed in slashes:

/US/

This program prints each line that contains the (adjacent) lettersUS anywhere; with the
file countries as input, it prints

USSR 8650 262 Asia
USA 3615 219 North America

We will have a lot more to say about regular expressions later in this chapter.

Third, you can use two special patterns,BEGIN andEND, that match before the first
record has been read and after the last record has been processed. This program uses
BEGIN to print a title:

BEGIN { print “Countries of Asia:“ }
/Asia/ { print “ “, $1 }

The output is

Countries of Asia:
 USSR
 China
 India

Simple Actions 13

We have already seen the simplest action of anawk program: printing each input line.
Now let's consider how you can use built-in and user-defined variables and functions for
other simple actions in a program.

Programming with awk

13-7

Built-in Variables 13

Besides reading the input and splitting it into fields,awk counts the number of records
read and the number of fields within the current record; you can use these counts in your
awk programs. The variableNR is the number of the current record, andNF is the number
of fields in the record. So the program

{ print NR, NF }

prints the number of each line and how many fields it has, while

{ print NR, $0 }

prints each record preceded by its record number.

User-defined Variables 13

Besides providing built-in variables likeNF andNR, awk lets you define your own
variables, which you can use for storing data, doing arithmetic, and the like. To illustrate,
consider computing the total population and the average population represented by the
data in the filecountries:

{ sum = sum + $3 }
END { print “Total population is”, sum, “million”
 print “Average population of”, NR, “countries is”,
 sum/NR }

NOTE

awk initializessum to zero before using it.

The first action accumulates the population from the third field; the second action, which
is executed after the last input, prints the sum and average:

Total population is 2201 million
Average population of 10 countries is 220.1

Functions 13

Built-in functions ofawk handle common arithmetic and string operations for you. For
example, one of the arithmetic functions computes square roots; a string function
substitutes one string for another.awk also lets you define your own functions. Functions
are described in detail in the section titled“Actions” in this chapter.

A Handful of Useful One-liners 13

Althoughawk can be used to write large programs of some complexity, many programs
are not much more complicated than what we've seen so far. Here is a collection of other

User’s Guide

13-8

short programs that you may find useful and instructive. Although these programs are not
explained here, new constructs they may contain are discussed later in this chapter.

Print last field of each input line:

{ print $NF }

Print 10th input line:

NR == 10

Print last input line:

{ line = $0}
END { print line }

Print input lines that don't have four fields:

NF != 4 { print $0, “does not have 4 fields” }

Print input lines with more than four fields:

NF > 4

Print input lines with last field more than 4:

$NF > 4

Print total number of input lines:

END { print NR }

Print total number of fields:

{ nf = nf + NF }
END { print nf }

Print total number of input characters:

{ nc = nc + length($0) }
END { print nc + NR }(AddingNR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:

/Asia/{ nlines++ }
END { print nlines } (nlines

++ has the same effect asnlines = nlines + 1 .)

Error Messages 13

If you make an error in yourawk program, you generally get an error message. For
example, trying to run the program

$3 < 200 { print ($1 }

Programming with awk

13-9

generates the error messages

Some errors may be detected while your program is running. For example, if you try to
divide a number by zero,awk stops processing and reports the input record number (NR)
and the line number in the program.

Patterns 13

In a pattern-action statement, the pattern is an expression that selects the records for which
the associated action is executed. This section describes the kinds of expressions that may
be used as patterns.

BEGIN and END 13

BEGIN andEND are two special patterns that give you a way to control initialization and
wrap-up in anawk program.BEGIN matches before the first input record is read, so any
statements in the action part of aBEGIN are done once, before theawk command starts to
read its first input record. The patternEND matches the end of the input, after the last
record has been processed.

The followingawk program usesBEGIN to set the field separator to tab () and to pu t
column headings on the output. The field separator is stored in a built-in variable called
FS. AlthoughFS can be reset at any time, usually the only sensible place is in aBEGIN
section, before any input has been read. The secondprintf statement of the program
which is executed for each input line, formats the output into a table, neatly aligned under
the column headings. TheEND action prints the totals. (Notice that a long line can be con-
tinued after a comma.)

With the filecountries as input, this program produces

awk: syntax error at source line 1
 context is
 $3 < 200 { print (>>> $1 } <<<
awk: illegal statement at source line 1
 1 extra (

BEGIN { FS = “\t”
 printf “%10s %6s %5s %s\n”,
 “COUNTRY”, “AREA”, “POP”, “CONTINENT” }
 { printf “%10s %6d %5d %s\n”, $1, $2, $3, $4
 area = area + $2; pop = pop + $3 }
END { printf “\n%10s %6d %5d\n”, “TOTAL”, area, pop }

User’s Guide

13-10

Relational Expressions 13

An awk pattern can be any expression involving comparisons between strings of
characters or numbers. awk has six relational operators, and two regular expression
matching operators,~ (tilde) and!~ , which are discussed in the next section, for making
comparisons. Table 13-2 lists and describes these operators:

In a comparison, if both operands are numeric, a numeric comparison is made; otherwise,
the operands are compared as strings. (Every value might be either a number or a string;
usuallyawk can tell what is intended. The section“Number or String?“contains more
information about this.) Thus, the pattern$3>100 selects lines where the third field
exceeds 100, and the program

$1 >= “S”

selects lines that begin with the letters S through Z, namely,

Table 13-2. awk Comparison Operators

Operator Meaning

< less than

<= less than or equal to

== equal to

!= not equal to

>= greater than or equal to

> greater than

~ matches

!~ does not match

 COUNTRY AREA POP CONTINENT
 USSR 8650 262 Asia
 Canada 3852 24 North America
 China 3692 866 Asia
 USA 3615 219 North America
 Brazil 3286 116 South America
 Australia 2968 14 Australia
 India 1269 637 Asia
 Argentina 1072 26 South America
 Sudan 968 19 Africa
 Algeria 920 18 Africa

 TOTAL 30292 2201

Programming with awk

13-11

USSR 8650 262 Asia
USA 3615 219 North America
Sudan 968 19 Africa

In the absence of any other information,awk treats fields as strings, so the program

$1 == $4

compares the first and fourth fields as strings of characters, and with the filecountries
as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

Regular Expressions 13

awk provides more powerful patterns for searching for strings of characters than the
comparisons illustrated in the previous section. These patterns are called regular
expressions, and are like those in egrep(1) and lex(1). The simplest regular
expression is a string of characters enclosed in slashes, like

/Asia/

This program prints all input records that contain the substringAsia . (If a record contains
Asia as part of a larger string likeAsian or Pan-Asiatic , it is also printed.) In gen-
eral, if re is a regular expression, then the pattern

/ re/

matches any line that contains a substring specified by the regular expressionre.

To restrict a match to a specific field, you use the matching operators~ (matches) and!~
(does not match). The program

$4 ~ /Asia/ { print $1 }

prints the first field of all lines in which the fourth field matchesAsia , while the program

$4 !~ /Asia/ { print $1 }

prints the first field of all lines in which the fourth field does not matchAsia .

In regular expressions, the symbols

\ ^ $. [] * + ? () |

are metacharacters with special meanings like the metacharacters in the UNIX shell. For
example, the metacharacters^ and$ match the beginning and end, respectively, of a
string, and the metacharacter. (“dot”) matches any single character. Thus,

/^.$/

matches all records that contain exactly one character.

User’s Guide

13-12

A group of characters enclosed in brackets matches any one of the enclosed characters; for
example,/ [ABC] / matches records containing any one ofA, B, or C anywhere.
Ranges of letters or digits can be abbreviated within brackets:/[a-zA-Z]/ matches any
single letter.

If the first character after the[is a^ , this complements the class so it matches any
character not in the set:/[^a-zA-Z]/ matches any non-letter. The character+ means
“one or more.” Thus, the program

$2 !~ /^[0-9]+$/

prints all records in which the second field is not a string of one or more digits (^ for
beginning of string,[0-9]+ for one or more digits, and $ for end of string). Programs of
this type are often used for data validation.

Parentheses() are used for grouping and the character| is used for alternatives. The
program

/(apple|cherry) (pie|tart)/

matches lines containing any one of the four substringsapple pie, apple tart,
cherry pie, or cherry tart.

To turn off the special meaning of a metacharacter, precede it by a\ (backslash). Thus, the
program

/b\$/

prints all lines containingb followed by a dollar sign.

In addition to recognizing metacharacters,awk recognizes the C programming language
escape sequences within regular expressions and strings in the following table:

For example, to print all lines containing a tab, use the program

/\t/

awk interprets any string or variable on the right side of a~ or !~ as a regular expression.
For example, we could have written the program

Table 13-3. C Programming Language Escape Sequences

\b backspace

\f formfeed

\n newline

\r carriage return

\t tab

\ddd octal valueddd

\“ quotation mark

\c any other characterc literally

Programming with awk

13-13

$2 !~ /^[0-9]+$/

as

BEGIN { digits = “^[0-9]+$“ }
$2 !~ digits

Suppose you want to search for a string of characters like^[0-9]+$. When a literal
quoted string like”^ [0-9]+$“ is used as a regular expression, one extra level of
backslashes is needed to protect regular expression metacharacters. This is because one
level of backslashes is removed when a string is originally parsed. If a backslash is needed
in front of a character to turn off its special meaning in a regular expression, then that
backslash needs a preceding backslash to protect it in a string.

For example, suppose you want to match strings containingb followed by a dollar sign.
The regular expression for this pattern isb\$. If you want to create a string to represent
this regular expression, you must add one more backslash:“b\\$“ . The two regular
expressions on each of the following lines are equivalent:

x ~ “b\\$“ x ~ /b\$/
x ~ “b\$“ x ~ /b$/
x ~ “b$“ x ~ /b$/
x ~ “\\t” tx ~ /\t/

The precise form of regular expressions and the substrings they match is shown in
Table 13-4. The unary operators *, +, and? have the highest precedence, then
concatenation, and then alternation| . All operators are left associative. r stands for any
regular expression.

Table 13-4. awk Regular Expressions

Expression Matches

c any non-metacharacterc

\c characterc literally

^ beginning of string

$ end of string

. any character but newline

[s] any character in sets

[^s] any character not in sets

r* zero or morer's

r+ one or morer's

r? zero or oner

(r) r

r1r2 r1 thenr2 (concatenation)

r1|r2 r1 or r2 (alternation)

User’s Guide

13-14

Combinations of Patterns 13

A compound pattern combines simpler patterns with parentheses and the logical operators
|| (or), && (and), and! (not). For example, suppose you want to print all countries in
Asia with a population of more than 500 million. The following program does this by
selecting all lines in which the fourth field isAsia and the third field exceeds 500:

$4 == “Asia” && $3 > 500

The program

$4 == “Asia” || $4 == “Africa”

selects lines withAsia or Africa as the fourth field. Another way to write the latter
query is to use a regular expression with the alternation operator| :

$4 ~ /^(Asia|Africa)$/

The negation operator! has the highest precedence, then&&, and finally ||. The
operators&& and|| evaluate their operands from left to right; evaluation stops as soon as
truth or falsehood is determined.

Pattern Ranges 13

A pattern range consists of two patterns separated by a comma, as in

pat1, pat2 { . . . }

In this case, the action is performed for each line between an occurrence ofpat1 and the
next occurrence ofpat2 (inclusive). For example, the pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string Canada up through the next
occurrence of the string Brazil:

Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America

Similarly, sinceFNR is the number of the current record in the current input file (and
FILENAME is the name of the current input file), the program

FNR == 1, FNR == 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the current input file
prepended.

Programming with awk

13-15

Actions 13

In a pattern-action statement, the action determines what is to be done with the input
records that the pattern selects. Actions frequently are simple printing or assignment state-
ments, but they may also be a combination of one or more statements. This section
describes the statements that can make up actions.

Built-in Variables 13

Table 13-5 lists the built-in variables thatawk maintains. You have already learned some
of these; others appear in this and in later sections.

Arithmetic 13

Actions can use conventional arithmetic expressions to compute numeric values. As a
simple example, suppose you want to print the population density for each country in the
file countries . Since the second field is the area in thousands of square miles and the
third field is the population in millions, the expression1000 * $3 / $2 gives the
population density in people per square mile. The program

{ printf “%10s %6.1f\n”, $1, 1000 * $3 / $2 }

Table 13-5. awk Built-in Variables

Variable Meaning Default

ARGC number of command-line arguments -

ARGV array of command-line arguments -

FILENAME name of current input file -

FNR record number in current file -

FS input field separator blank&tab

NF number of fields in current record -

NR number of records read so far -

OFMT output format for numbers %.6g

OFS output field separator blank

ORS output record separator newline

RS input record separator newline

RSTART index of first character matched bymatch -

RLENGTH length of string matched bymatch -

SUBSEP subscript separator “\034“

User’s Guide

13-16

when applied to the filecountries, prints the name of each country and its population
density:

Arithmetic is done internally in floating point. The arithmetic operators are +, -, *,
/, % (remainder) and̂ (exponentiation;** is a synonym). Arithmetic expressions can
be created by applying these operators to constants, variables, field names, array elements,
functions, and other expressions, all of which are discussed later. Note thatawk
recognizes and produces scientific (exponential) notation:1e6, 1E6, 10e5, and
1000000 are numerically equal.

awk has assignment statements like those found in the C programming language. The sim-
plest form is the assignment statement

v = e

wherev is a variable or field name, ande is an expression. For example, to compute the
number of Asian countries and their total population, you could write

$4 == “Asia” { pop = pop + $3; n = n + 1 }
END { print “population of”, n,
 “Asian countries in millions is”, pop }

Applied tocountries, this program produces

population of 3 Asian countries in millions is 1765

The action associated with the pattern$4 == “Asia” contains two assignment
statements, one to accumulate population and the other to count countries. The variables
are not explicitly initialized, yet everything works properly becauseawk initializes each
variable with the string value”“ and the numeric value0.

The assignments in the previous program can be written more concisely using the
operators+= and++:

$4 == “Asia”{ pop += $3; ++n }

The operator+= is borrowed from the C programming language; therefore,

pop += $3

has the same effect as

pop = pop + $3

 USSR 30.3
 Canada 6.2
 China 234.6
 USA 60.6
 Brazil 35.3
 Australia 4.7
 India 502.0
 Argentina 24.3
 Sudan 19.6
 Algeria 19.6

Programming with awk

13-17

but the+= operator is shorter and runs faster. The same is true of the++ operator, which
adds one to a variable.

The abbreviated assignment operators are+=, -=, *=, /=, %=, and^=. Their
meanings are similar:

v op= e

has the same effect as

v = v op e.

The increment operators are++ and-- . As in C, they may be used as prefix (++x) or
postfix (x++) operators. Ifx is 1, theni=++x incrementsx, then setsi to 2, while
i=x++ setsi to 1, then incrementsx. An analogous interpretation applies to prefix and
postfix--.

Assignment and increment and decrement operators may all be used in arithmetic
expressions.

We use default initialization to advantage in the following program, which finds the
country with the largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END { print country, maxpop }

Note, however, that this program would not be correct if all values of$3 were negative.

awk provides the built-in arithmetic functions listed in Table 13-6.

x andy are arbitrary expressions. The functionrand returns a pseudo-random floating
point number in the range (0,1), andsrand(x) can be used to set the seed of the
generator. Ifsrand has no argument, the seed is derived from the time of day.

Table 13-6. awk Built-in Arithmetic Functions

Function Value Returned

atan2(y,x) arctangent ofy/x in the range-p to p

cos(x) cosine ofx, with x in radians

exp(x) exponential function ofx

int(x) integer part ofx truncated towards 0

log(x) natural logarithm ofx

rand() random number between 0 and 1

sin(x) sine ofx, with x in radians

sqrt(x) square root ofx

srand(x) x is new seed forrand

User’s Guide

13-18

Strings and String Functions 13

A string constant is created by enclosing a sequence of characters inside quotation marks,
as in “abc” or “hello, everyone” . String constants may contain the C
programming language escape sequences for special characters listed in the“Regular
Expressions”section in this chapter.

String expressions are created by concatenating constants, variables, field names, array
elements, functions, and other expressions. The program

{ print NR “:“ $0 }

prints each record preceded by its record number and a colon, with no blanks. The three
strings representing the record number, the colon, and the record are concatenated and the
resulting string is printed. The concatenation operator has no explicit representation other
than juxtaposition.

awk provides the built-in string functions listed and described in Table 13-7. In this table,
r represents a regular expression (either as a string or as/ r/), s andt string expressions,
andn andp integers.

The functionssub andgsub are patterned after the substitute command in the text editor
ed(1). The functiongsub (r,s,t) replaces successive occurrences of substrings matched
by the regular expressionr with the replacement strings in the target stringt. (As in ed,
the leftmost match is used, and is made as long as possible.) It returns the number of
substitutions made. The functiongsub (r, s) is a synonym forgsub(r, s,$0) . For
example, the program

{ gsub(/USA/, “United States”); print }

Table 13-7. awk Built-in String Functions

Function Description

gsub(r,s) substitutes for r globally in current record, return number of substitutions

gsub(r,s,t) substitutes for r globally in stringt, return number of substitutions

index(s,t) return position of stringt in s, 0 if not present

length(s) return length ofs

match(s,r) return the position ins wherer occurs, 0 if not present

split(s,a) split s into arraya on FS, return number of fields

split(s,a,r) split s into arraya on r, return number of fields

sprintf(fmt,exprlist) returnexprlist formatted according to format string fmt

sub(r,s) substitutes for first r in current record, return number of substitutions

sub(r,s,t) substitutes for first r in t, return number of substitutions

substr(s,p) return substring ofs starting at positionp

substr(s,p,n) return substring ofs of lengthn starting at position p

Programming with awk

13-19

transcribes its input, replacing occurrences ofUSA by United States . Thesub
functions are similar, except that they only replace the first matching substring in the
target string.

The functionindex(s,t) returns the leftmost position where the stringt begins ins, or
zero if t does not occur ins. The first character in a string is at position 1. For example,

index(“banana”, “an”)

returns 2.

The length function returns the number of characters in its argument string; thus,

{ print length($0), $0 }

prints each record, preceded by its length. ($ 0 does not include the input record
separator.) The program

length($1) > max { max = length($1); name = $1 }
END { print name }

when applied to the filecountries, prints the longest country name:
Australia .

Thematch (s,r) function returns the position in strings where regular expressionr occurs,
or 0 if it does not occur. This function also sets two built-in variablesRSTART and
RLENGTH. RSTART is set to the starting position of the match in the string; this is the
same value as the returned value.RLENGTH is set to the length of the matched string. (If a
match does not occur,RSTART is 0, andRLENGTH is -1.) For example, the following pro-
gram finds the first occurrence of the letteri followed by at most one character followed
by the lettera in a record:

{ if (match($0, /i.?a/))
 print RSTART, RLENGTH, $0 }

It produces the following output on the filecountries :

NOTE

match matches the leftmost longest matching string. For
example, with the record

17 2 USSR8650 262 Asia
26 3 Canada3852 24 North America
3 3 China3692 866 Asia
24 3 USA3615 219 North America
27 3 Brazil3286 116 South America
8 2 Australia2968 14 Australia
4 2 India1269 637 Asia
7 3 Argentina1072 26 South America
17 3 Sudan968 19 Africa
6 2 Algeria920 18 Africa

User’s Guide

13-20

 AsiaaaAsiaaaaan

as input, the program

 { if (match($0, /a+/)) print RSTART,
RLENGTH, $0 }

matches the first string ofa's and setsRSTART to 4 andRLENGTH
to 3.

The functionsprintf (format, expr1, expr2, . . ., exprn) returns (without printing) a string
containingexpr1, expr2, . . . ,exprn formatted according to the printf specifications in
the stringformat. The section titled“The printf Statement”in this chapter contains a
complete specification of the format conventions.

The statement

x = sprintf(“%10s %6d”, $1, $2)

assigns tox the string produced by formatting the values of$1 and$2 as a ten-character
string and a decimal number in a field of width at least six;x may be used in any
subsequent computation.

The functionsubstr (s,p,n) returns the substring ofs that begins at positionp and is at
mostn characters long. Ifsubstr (s,p) is used, the substring goes to the end ofs; that is,
it consists of the suffix ofs beginning at positionp. For example, we could abbreviate the
country names incountries to their first three characters by invoking the program

{ $1 = substr($1, 1, 3); print }

on this file to produce

Note that setting$1 in the program forcesawk to recompute$0 and, therefore, the fields
are separated by blanks (the default value ofOFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after another in an
expression. For example, when invoked on the filecountries,

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Programming with awk

13-21

{ s = s substr($1, 1, 3) “ “ }
END { print s }

prints

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by buildings up a piece at a time from an initially empty string.

Field Variables 13

The fields of the current record can be referred to by the field variables$1, $2, . .
., $NF. Field variables share all of the properties of other variables—they may be used
in arithmetic or string operations, and they may have values assigned to them. So, for
example, you can divide the second field of the filecountries by 1000 to convert the
area from thousands to millions of square miles:

{ $2 /= 1000; print }

or assign a new string to a field:

BEGIN { FS = OFS = “” }
$4 == “North America” { $4 = “NA” }
$4 == “South America” { $4 = “SA” }
 { print }

TheBEGIN action in this program resets the input field separatorFS and the output field
separatorOFS to a tab. Notice that theprint in the fourth line of the program prints the
value of$0 after it has been modified by previous assignments.

Fields can be accessed by expressions. For example,$(NF-1) is the second to last field
of the current record. The parentheses are needed: the value of$NF-1 is 1 less than the
value in the last field.

A field variable referring to a nonexistent field, for example,$(NF+1), has as its initial
value the empty string. A new field can be created, however, by assigning a value to it.
For example, the following program invoked on the filecountries creates a fifth field
giving the population density:

BEGIN { FS = OFS = “\t”
 { $5 = 1000 * $3 / $2; print }

The number of fields can vary from record to record, but usually the implementation limit
is 100 fields per record.

Number or String? 13

Variables, fields and expressions can have both a numeric value and a string value. They
take on numeric or string values according to context. For example, in the context of an
arithmetic expression like

User’s Guide

13-22

pop += $3

pop and$3 must be treated numerically, so their values will be coerced to numeric type if
necessary.

In a string context like

print $1 “:“ $2

$1 and$2 must be strings to be concatenated, so they will be coerced if necessary.

In an assignmentv = e or v op= e, the type ofv becomes the type ofe. In an ambiguous
context like

$1 == $2

the type of the comparison depends on whether the fields are numeric or string, and this
can only be determined when the program runs; it may well differ from record to record.

In comparisons, if both operands are numeric, the comparison is numeric; otherwise,
operands are coerced to strings, and the comparison is made on the string values. All field
variables are of type string; in addition, each field that contains only a number is also
considered numeric. This determination is done at run time. For example, the comparison
”$1 == $2” will succeed on any pair of the inputs

1 1.0 +1 0.1e+1 10E-1 001

but will fail on the inputs

(null) 0
(null) 0.0
0a 0
1e50 1.0e50

There are two idioms for coercing an expression of one type to the other:

number concatenate a null string to anumber to coerce it to type string

string + 0 add zero to astring to coerce it to type numeric

Thus, to force a string comparison between two fields, use

$1 ““ == $2 ““

The numeric value of a string is the value of any prefix of the string that looks numeric;
thus the value of12.34x is 12.34, while the value ofx12.34 is zero. The string value
of an arithmetic expression is computed by formatting the string with the output format
conversionOFMT.

Uninitialized variables have numeric value 0 and string value”“ . Nonexistent fields and
fields that are explicitly null have only the string value”“ ; they are not numeric.

Programming with awk

13-23

Control Flow Statements 13

awk provides if-else, while, do-while, andfor statements, and statement
grouping with braces, as in the C programming language.

The if statement syntax is

if (expression) statement1else statement2

Theexpression acting as the conditional has no restrictions; it can include the relational
operators<, <=, >, >=, ==, and!=; the regular expression matching operators~
and !~; the logical operators||, &&, and!; juxtaposition for concatenation; and
parentheses for grouping.

In the if statement,awk first evaluates theexpression. If it is non-zero and non-null,
statement1 is executed; otherwisestatement2 is executed. Theelse part is optional.

A single statement can always be replaced by a statement list enclosed in braces. The
statements in the statement list are terminated by newlines or semicolons.

Rewriting the maximum population program from the“Arithmetic Functions” section
with anif statement results in

Thewhile statement is exactly that of the C programming language:

while (expression) statement

Theexpression is evaluated; if it is non-zero and non-null thestatement is executed and the
expression is tested again. The cycle repeats as long as theexpression is non-zero. For
example, to print all input fields one per line,

Thefor statement is like that of the C programming language:

for (expression1; expression; expression2) statement

{ if (maxpop < $3) {
 maxpop = $3
 country = $1
 }
}
END { print country, maxpop }

{ i = 1
 while (i <= NF) {
 print $i
 i++
 }
}

User’s Guide

13-24

It has the same effect as

so

{ for (i = 1; i <= NF; i++) print $i }

does the same job as thewhile example shown above. An alternate version of thefor
statement is described in the next section.

Thedo statement has the form

do statement while (expression)

The statement is executed repeatedly until the value of theexpression becomes zero.
Because the test takes place after the execution of thestatement (at the bottom of the loop),
it is always executed at least once. As a result, thedo statement is used much less often
thanwhile or for , which test for completion at the top of the loop.

The following example of ado statement prints all lines except those betweenstart and
stop .

Thebreak statement causes an immediate exit from an enclosingwhile or for; the
continue statement causes the next iteration to begin. Thenext statement causesawk
to skip immediately to the next record and begin matching patterns starting from the first
pattern-action statement.

Theexit statement causes the program to behave as if the end of the input had occurred;
no more input is read, and theEND action, if any, is executed. Within theEND action,

exit expr

causes the program to return the value ofexpr as its exit status. If there is noexpr, the exit
status is zero.

expression1
while (expression) {

statement
expression2

}

/start/ {
 do {
 getline x
 } while (x !~ /stop/)
 }
 { print }

Programming with awk

13-25

Arrays 13

awk provides one-dimensional arrays. Arrays and array elements need not be declared;
like variables, they spring into existence by being mentioned. An array subscript may be a
number or a string.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to theNRth element of the arrayx . In fact, it is possible in
principle (though perhaps slow) to read the entire input into an array with theawk
program

 { x[NR] = $0 }
END { . . . processing . . . }

The first action merely records each input line in the arrayx , indexed by line number;
processing is done in theEND statement.

Array elements may also be named by nonnumeric values. For example, the following
program accumulates the total population of Asia and Africa into the associative array
pop . TheEND action prints the total population of these two continents.

On the filecountries, this program generates

Asian population in millions is 1765
African population in millions is 37

In this program if you had usedpop[Asia] instead ofpop[“Asia”] the expression
would have used the value of the variableAsia as the subscript, and since the variable is
uninitialized, the values would have been accumulated inpop[““] .

Suppose your task is to determine the total area in each continent of the filecountries.
Any expression can be used as a subscript in an array reference. Thus

area[$4] += $2

uses the string in the fourth field of the current input record to index the arrayarea and,
in that entry, accumulates the value of the second field:

BEGIN { FS = “\t” }
 { area[$4] += $2 }
END { for (name in area)
 print name, area[name] }

/Asia/{ pop[“Asia”] += $3 }
/Africa/{ pop[“Africa”] += $3 }
END { print “Asian population in millions is”, pop[“Asia”]

 print “African population in millions is”, pop[“Africa”]
}

User’s Guide

13-26

Invoked on the filecountries, this program produces

This program uses a form of thefor statement that iterates over all defined subscripts of
an array:

for (i in array) statement

executes statement with the variablei set in turn to each value ofi for whicharray[i] has
been defined. The loop is executed once for each defined subscript, which is chosen in a
random order. Results are unpredictable wheni or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a list of subscripts.
They are combined into a single subscript with the values separated by an unlikely string
(stored in the variableSUBSEP).

For example,

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

 arr[i,j] = ...

creates an array which behaves like a two-dimensional array; the subscript is the
concatenation ofi, SUBSEP, andj.

You can determine whether a particular subscripti occurs in an arrayarr by testing the
conditioni in arr, as in

if (“Africa” in area) ...

This condition performs the test without the side effect of creatingarea[“Africa”] ,
which would happen if you used

if (area[“Africa”] != ““) ...

Note that neither is a test of whether the arrayarea contains an element with the value
“Africa” .

It is also possible to split any string into fields in the elements of an array using the built-in
functionsplit. The function

split(“s1:s2:s3”, a, “:“)

splits the strings1:s2:s3 into three fields, using the separator: , and storess1 in a[1] ,
s2 in a[2], ands3 in a[3] . The number of fields found, here three, is returned as the
value ofsplit. The third argument ofsplit is a regular expression to be used as the
field separator. If the third argument is missing,FS is used as the field separator.

Africa 1888
South America 4358
North America 7467
Australia 2968
Asia 13611

Programming with awk

13-27

An array element may be deleted with thedelete statement:

delete arrayname[subscript]

User-defined Functions 13

awk provides user-defined functions. A function is defined as

function name(argument-list) {
statements

}

The definition can occur anywhere a pattern-action statement can. The argument list is a
list of variable names separated by commas; within the body of the function these
variables refer to the actual parameters when the function is called. No space must be left
between the function name and the left parenthesis of the argument list when the function
is called; otherwise it looks like a concatenation. For example, the following program
defines and tests the usual recursive factorial function (of course, using some input other
than the filecountries):

Array arguments are passed by reference, as in C, so it is possible for the function to alter
array elements or create new ones. Scalar arguments are passed by value, however, so the
function cannot affect their values outside. Within a function, formal parameters are local
variables, but all other variables are global. (You can have any number of extra formal
parameters that are used only as local variables.) Thereturn statement is optional, but
the returned value is undefined if it is not included.

Some Lexical Conventions 13

Comments may be placed inawk programs; they begin with the character# and end at the
end of the line, as in

print x, y # this is a comment

Statements in anawk program normally occupy a single line. Several statements may
occur on a single line if they are separated by semicolons. A long statement may be
continued over several lines by terminating each continued line by a backslash. (It is not
possible to continue a “...” string.) This explicit continuation is rarely necessary, however,
since statements continue automatically if the line ends with a comma. (For example, this
might occur in aprint or printf statement) or after the operators&& and|| .

function fact(n) {
 if (n <= 1)
 return 1
 else
 return n * fact(n-1)
}
{ print $1 “! is “ fact($1) }

User’s Guide

13-28

Several pattern-action statements may appear on a single line if separated by semicolons.

Output 13

Theprint andprintf statements are the two primary constructs that generate output.
The print statement is used to generate simple output;printf is used for more
carefully formatted output. Like the shell,awk lets you redirect output, so that output from
print andprintf can be directed to files and pipes. This section describes the use of
these two statements.

The print Statement 13

The statement

print expr1, expr2,..., exprn

prints the string value of each expression separated by the output field separator followed
by the output record separator. The statement

print

is an abbreviation for

print $0

To print an empty line, use

print ““

Output Separators 13

The output field separator and record separator are held in the built-in variablesOFS and
ORS. Initially, OFS is set to a single blank andORS to a single newline, but these values
can be changed at any time. For example, the following program prints the first and
second fields of each record with a colon between the fields and two newlines after the
second field:

BEGIN { OFS = “:“; ORS = “\n\n” }
 { print $1, $2 }

Notice that

{ print $1 $2 }

prints the first and second fields with no intervening output field separator because$1 $2
is a string consisting of the concatenation of the first two fields.

Programming with awk

13-29

The printf Statement 13

awk's printf statement is the same as that in C except that the* format specifier is not
supported. Theprintf statement has the general form

printf format, expr1, expr2, . . ., exprn

whereformat is a string that contains both information to be printed and specifications on
what conversions are to be performed on the expressions in the argument list, as in
Table 13-8. Each specification begins with a%, ends with a letter that determines the
conversion, and may include:

- Left-justify expression in its field.

width Pad field to this width as needed; fields that begin with a leading 0 are padded
with zeros.

.prec Specify maximum string width or digits to right of decimal point.

Table 13-8 lists theprintf conversion characters.

Below are some examples ofprintf statements along with the corresponding output:

Table 13-8. awk printf Conversion Characters

Character Prints Expression as

c single character

d decimal number

e [-] d.ddddddE[+-]dd

f [-] ddd.dddddd

g e or f conversion, whichever is shorter, with nonsignificant
zeros suppressed

o unsigned octal number

s string

x unsigned hexadecimal number

% print a%; no argument is converted

User’s Guide

13-30

The default output format of numbers is%.6g; this can be changed by assigning a new
value toOFMT. OFMT also controls the conversion of numeric values to strings for
concatenation and creation of array subscripts.

Output to Files 13

You can print output to files instead of to the standard output by using the> and>>
redirection operators. For example, the following program invoked on the file
countries prints all lines where the population (third field) is bigger than 100 into a file
calledbigpop, and all other lines into a file calledsmallpop :

$3 > 100 { print $1, $3 >“bigpop” }
$3 <= 100 { print $1, $3 >“smallpop” }

Notice that the filenames have to be quoted; without quotes,bigpop andsmallpop are
merely uninitialized variables. If the output filenames were created by an expression, they
would also have to be enclosed in parentheses:

$4 ~ /North America/ { print $1 > (“tmp” FILENAME) }

because the> operator has higher precedence than concatenation; without parentheses, the
concatenation oftmp andFILENAME would not work.

NOTE

Files are opened once in anawk program. If> is used to open a
file, its original contents are overwritten. But if>> is used to
open a file, its contents are preserved and the output is appended
to the file. Once the file has been opened, the two operators have
the same effect.

printf “%d”, 99/249
printf “%e”, 99/24.950000e+01
printf “%f”, 99/249.500000
printf “%6.2f”, 99/249.50
printf “%g”, 99/249.5
printf “%o”, 99143
printf “%06o”, 99000143
printf “%x”, 9963
printf “|%s|“, “January”|January|
printf “|%10s|“, “January”| January|
printf “|%-10s|“, “January”|January |
printf “|%.3s|“, “January”|Jan|
printf “|%10.3s|“, “January”| Jan|
printf “|%-10.3s|“, “January”|Jan |
printf “%%“%

Programming with awk

13-31

Output to Pipes 13

You can also direct printing to a pipe with a command on the other end, instead of to a file.
The statement

print | “command-line”

causes the output ofprint to be piped into thecommand-line.

Although they are shown here as literal strings enclosed in quotes, thecommand-line and
filenames can come from variables and the return values from functions.

Suppose you want to create a list of continent-population pairs, sorted alphabetically by
continent. Theawk program below accumulates the population values in the third field
for each of the distinct continent names in the fourth field in an array calledpop . Then it
prints each continent and its population, and pipes this output into thesort command.

BEGIN { FS = “\t” }
 { pop[$4] += $3 }
END { for (c in pop)
 print c “:“ pop[c] | “sort” }

Invoked on the filecountries, this program yields

In all theseprint statements involving redirection of output, the files or pipes are
identified by their names (that is, the pipe above is literally namedsort), but they are
created and opened only once in the entire run. So, in the last example, for allc in pop ,
only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously. The statement
close (file) closes a file or pipe;file is the string used to create it in the first place, as in

close(“sort”)

When opening or closing a file, different strings are different commands.

Input 13

The most common way to give input to anawk program is to name on the command line
the file(s) that contains the input. This is the method used in this chapter; however, several
other methods can be used. Each of these is described in this section.

Africa:37
Asia:1765
Australia:14
North America:243
South America:142

User’s Guide

13-32

Files and Pipes 13

You can provide input to anawk program by putting the input data into a file, sayawk
data, and then executing

$ awk ' program' awkdata <RETURN>

If no filenames are given,awk reads its standard input; thus, a second common
arrangement is to have another program pipe its output intoawk. For example,
egrep(1) selects input lines containing a specified regular expression, but it can do so
faster thanawk, since this is the only thing it does. We could, therefore, invoke the pipe

$ egrep 'Asia' countries | awk ' . . . ' <RETURN>

egrep quickly finds the lines containingAsia and passes them on to theawk program
for subsequent processing.

Input Separators 13

With the default setting of the field separatorFS, input fields are separated by blanks or
tabs, and leading blanks are discarded, so each of these lines has the same first field:

 field1 field2
 field1
field1

When the field separator is a tab, however, leading blanks are not discarded.

The field separator can be set to any regular expression by assigning a value to the built-in
variableFS. For example,

BEGIN { FS = “,[\t]*|([\t]+)” }

makes into field separators every string consisting of a comma followed by blanks or tabs
and every string of blanks or tabs with no comma.FS can also be set on the command line
with the-F argument:

$ awk -F'(,[\t]*)|([\t]+)' '. . .' <RETURN>

behaves the same as the previous example. Regular expressions used as field separators
match the leftmost longest occurrences (as insub), but do not match null strings.

Multi-line Records 13

Records are normally separated by newlines, so that each line is a record; but this too can
be changed, though only in a limited way. If the built-in record separator variableRS is
set to the empty string, as in

BEGIN { RS = ““ }

Programming with awk

13-33

then input records can be several lines long; a sequence of empty lines separates records.
A common way to process multiple-line records is to use

BEGIN { RS = ““; FS = “\n” }

to set the record separator to an empty line and the field separator to a newline. Each line
is then one field. However, the length of a record is limited; it is usually about 2500
characters.“The getline Function” and“Cooperation with the Shell”sections in this
chapter show other examples of processing multi-line records.

The getline Function 13

awk's facility for automatically breaking its input into records that are more than one line
long is not adequate for some tasks. For example, if records are not separated by blank
lines, but by something more complicated, merely settingRS to null doesn't work. In such
cases, the program must manage the splitting of each record into fields. Here are some
suggestions.

The functiongetline can be used to read input either from the current input or from a
file or pipe, by redirection analogous toprintf. By itself, getline fetches the next
input record and performs the normal field-splitting operations on it. It setsNF, NR, and
FNR. getline returns 1 if there was a record present, 0 if the end-of-file was
encountered, and -1 if some error occurred (such as failure to open a file).

To illustrate, suppose you have input data consisting of multi-line records, each of which
begins with a line beginning withSTART and ends with a line beginning withSTOP. The
following awk program processes these multi-line records, a line at a time, putting the
lines of the record into consecutive entries of an array

f[1] f[2] ... f[nf]

Once the line containingSTOP is encountered, the record can be processed from the data
in thef array:

Notice that this code uses the fact that&& evaluates its operands left to right and stops as
soon as one is true.

The same job can also be done by the following program:

/^START/ {
 f[nf=1] = $0
 while (getline && $0 !~ /^STOP/)
 f[++nf] = $0
 # now process the data in f[1]...f[nf]
 ...
}

User’s Guide

13-34

The statement

getline x

reads the next record into the variablex . No splitting is done;NF is not set. The statement

getline <“file”

reads fromfile instead of the current input. It has no effect onNR or FNR, but field
splitting is performed andNF is set.

The statement

getline x <“file”

gets the next record fromfile into x ; no splitting is done, and NF, NR andFNR are
untouched.

If a filename is an expression, it should be in parentheses for evaluation:

while (getline x < (ARGV[1] ARGV[2])) { ... }

because the< has precedence over concatenation. Without parentheses, a statement such
as

getline x < “tmp” FILENAME

setsx to read the filetmp and nottmp <value of FILENAME>. Also, if you use this
getline statement form, a statement like

while (getline x < file) { ... }

loops forever if the file cannot be read becausegetline returns -1, not zero if an error
occurs. A better way to write this test is

while (getline x < file > 0) { ... }

You can also pipe the output of another command directly intogetline. For example,
the statement

while (“who” | getline)
 n++

executeswho and pipes its output intogetline. Each iteration of thewhile loop reads
one more line and increments the variablen, so after thewhile loop terminates,n
contains a count of the number of users. Similarly, the statement

/^START/ && nf==0{ f[nf=1] = $0 }
nf > 1{ f[++nf] = $0 }
/^STOP/{ # now process the data in f[1]...f[nf]

 ...
 nf = 0

}

Programming with awk

13-35

“date” | getline d

pipes the output ofdate into the variabled, thus settingd to the current date. Table 13-9
summarizes thegetline function.

Command-line Arguments 13

The command-line arguments are available to anawk program: the arrayARGV contains
the elements ARGV[0],... , ARGV[ARGC-1]; as in C,ARGC is the count.
ARGV[0] is the name of the program (generallyawk); the remaining arguments are
whatever was provided (excluding the program and any optional arguments) whenawk is
invoked. The following command line contains anawk program that echoes the
arguments that appear after the program name:

The arguments may be modified or added to;ARGC may be altered. As each input file
ends,awk treats the next non-null element ofARGV (up to the current value ofARGC-1)
as the name of the next input file.

One exception to the rule that an argument is a filename is when it is in the form

var=value

Then the variablevar is set to the valuevalue, as if by assignment. Such an argument is not
treated like a filename. Ifvalue is a string, no quotes are needed.

Table 13-9. getline Function

Form Sets

getline $0, NF, NR, FNR

getlinevar var, NR, FNR

getline <file $0, NF

getline var <file var

cmd | getline $0, NF

cmd |getlinevar var

awk '
BEGIN {
 for (i = 1; i < ARGC; i++)
 printf “%s “, ARGV[i]
 printf “\n“
} ' $*

User’s Guide

13-36

Using awk with Other Commands and the Shell 13

awk is most powerful when it is used in conjunction with other programs. This section
discusses some of the ways in whichawk programs cooperate with other commands.

The system Function 13

The built-in functionsystem (command-line) executes the commandcommand-line,
which may be a string computed by, for example, the built-in functionsprintf. The
value returned bysystem is the return status of the command executed.

For example, the program

$1 == “#include” { gsub(/[<>“]/, ““, $2);
 system(“cat “ $2) }

calls the commandcat to print the file named in the second field of every input record
whose first field is#include, after stripping any <, >, or ” that might be present.

Cooperation with the Shell 13

In all the examples thus far, theawk program was in a file and was fetched from there
using the-f flag, or it appeared on the command line enclosed in single quotes, as in

awk '{ print $1 }' . . .

Sinceawk uses many of the same characters as the shell does, such as$ and ” ,
surrounding theawk program with single quotes ensures that the shell will pass the entire
program unchanged to theawk interpreter.

Now, consider writing a commandaddr that will search a fileaddresslist for name,
address and telephone information. Suppose thataddresslist contains names and
addresses in which a typical entry is a multi-line record such as

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

You want to search the address list by issuing commands like

addr Emlin

That is easily done by a program of the form

Programming with awk

13-37

awk '
BEGIN{ RS = ““ }
/Emlin/
' addresslist

The problem is how to get a different search pattern into the program each time it is run.

There are several ways to do this. One way is to create a file calledaddr that contains

awk '
BEGIN{ RS = ““ }
/'$1'/
' addresslist

The quotes are critical here. Theawk program is only one argument, even though there are
two sets of quotes because quotes do not nest. The$1 is outside the quotes, visible to the
shell, which therefore replaces it by the patternEmlin when the commandaddr Emlin
is invoked. On a UNIX system,addr can be made executable by changing its mode with
the following command:

chmod +x addr

A second way to implementaddr relies on the fact that the shell substitutes for$
parameters within double quotes:

awk “
BEGIN{ RS = \\’ \\’ }
/$1/
“ addresslist

Therefore, you must protect the quotes definingRS with backslashes, so that the shell
passes them on toawk without interpretation.$1 is recognized as a parameter, however,
so the shell replaces it by the pattern when the commandaddr pattern is invoked.

A third way to implementaddr is to useARGV to pass the regular expression to anawk
program that explicitly reads through the address list withgetline:

All processing is done in theBEGIN action.

Notice that any regular expression can be passed toaddr; in particular, it is possible to
retrieve by parts of an address or telephone number as well as by name.

awk '
BEGIN { RS = ““
 while (getline < “addresslist”)
 if ($0 ~ ARGV[1])
 print $0
} ' $*

User’s Guide

13-38

Example Applications 13

awk has been used in surprising ways: to implement database systems and a variety of
compilers and assemblers, in addition to the more traditional tasks of information
retrieval, data manipulation, and report generation. Invariably, theawk programs are
significantly shorter than equivalent programs written in more conventional programming
languages such as Pascal or C. This section presents a few more examples to illustrate
some additionalawk programs.

Generating Reports 13

awk is especially useful for producing reports that summarize and format information.
Suppose you want to produce a report from the filecountries in which the continents
are listed alphabetically, and the countries on each continent are listed after in decreasing
order of population:

As with many data processing tasks, it is much easier to produce this report in several
stages. First, create a list of continent-country-population triples, in which each field is
separated by a colon. This can be done with the following programtriples, which
uses an arraypop indexed by subscripts of the formcontinent:country to store the
population of a given country. The print statement in theEND section of the program
creates the list of continent-country-population triples that are piped to thesort routine.

BEGIN { FS = “\t” }
 { pop[$4 “:“ $1] += $3 }
END { for (cc in pop)
 print cc “:“ pop[cc] | “sort -t : +0 -1 +2nr” }

The arguments forsort deserve special mention. The-t : argument tellssort to use:
as its field separator. The+0 -1 arguments make the first field the primary sort key. In
general, +i -j makes fieldsi+1, i+2, . . ., j the sort key. If-j is omitted, the fields from
i+1 to the end of the record are used. The+2nr argument makes the third field,

Africa:
Sudan 19
Algeria 18

Asia:
China 866
India 637
USSR 262

Australia:
Australia 14

North America:
USA 219
Canada 24

South America:
Brazil 116
Argentina 26

Programming with awk

13-39

numerically decreasing, the secondary sort key (n is for numeric,r for reverse order).
Invoked on the filecountries, this program produces as output

This output is in the right order but the wrong format. To transform the output into the
desired form, run it through a secondawk programformat:

This is a control-break program that prints only the first occurrence of a continent name
and formats the country-population lines associated with that continent in the desired
manner. The command line

$ awk -f triples countries | awk -f format <RETURN>

gives the desired report. As this example suggests, complex data transformation and
formatting tasks can often be reduced to a few simpleawk commands andsort s.

Additional Examples 13

Word Frequencies 13

Our first example illustrates associative arrays for counting. Suppose you want to count
the number of times each word appears in the input, where a word is any contiguous
sequence of non-blank, non-tab characters. The following program prints the word
frequencies, sorted in decreasing order.

{ for (w = 1; w <= NF; w++) count[$w]++ }
END { for (w in count) print count[w], w | “sort -nr” }

Africa:Sudan:19
Africa:Algeria:18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia:14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

BEGIN { FS = “:“ }
{ if ($1 != prev) {
 print “\n” $1 “:“
 prev = $1
 }
 printf “\t%-10s %6d\n”, $2, $3
}

User’s Guide

13-40

The first statement uses the arraycount to accumulate the number of times each word is
used. Once the input has been read, the secondfor loop pipes the final count along with
each word into thesort command.

Accumulation 13

Suppose we have two files,deposits andwithdrawals, of records containing a
name field and an amount field. For each name we want to print the net balance
determined by subtracting the total withdrawals from the total deposits for each name. The
net balance can be computed by the following program:

The first statement uses the arraybalance to accumulate the total amount for each name
in the filedeposits. The second statement subtracts associated withdrawals from each
total. If only withdrawals are associated with a name, an entry for that name is created by
the second statement. TheEND action prints each name with its net balance.

Random Choice 13

The following function prints (in order)k random elements from the firstn elements of
the arrayA. In the program,k is the number of entries that still need to be printed, andn
is the number of elements yet to be examined. The decision of whether to print theith
element is determined by the testrand() < k/n.

Shell Facility 13

The followingawk program roughly simulates the history facility of the UNIX system
shell. A line containing only= re-executes the last command executed. A line beginning
with = cmd re-executes the last command whose invocation included the stringcmd.
Otherwise, the current line is executed.

awk '
FILENAME == “deposits” { balance[$1] += $2 }
FILENAME == “withdrawals” { balance[$1] -= $2 }
END { for (name in balance)
 print name, balance[name]
} ' deposits withdrawals

function choose(A, k, n, i) {
 for (i = 1; n > 0; i++)
 if (rand() < k/n--) {
 print A[i]
 k--
 }
 }
}

Programming with awk

13-41

Form-letter Generation 13

The following program generates form letters, using a template stored in a file called
form.letter:

This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

and replacement text of this form:

field 1|field 2|field 3
one|two|three
a|b|c

The BEGIN action stores the template in the arraytemplate ; the remaining action
cycles through the input data, usinggsub to replace template fields of the form$n with
the corresponding data fields.

In all such examples, a prudent strategy is to start with a small version and expand it,
trying out each aspect before moving on to the next.

$1 == “=“ { if (NF == 1)
 system(x[NR] = x[NR-1])
 else
 for (i = NR-1; i > 0; i--)
 if (x[i] ~ $2) {
 system(x[NR] = x[i])
 break
 }
 next }

/./ { system(x[NR] = $0) }

BEGIN {FS = “|“
 while (getline <“form.letter”)
 line[++n] = $0
}
{ for (i = 1; i <= n; i++) {
 s = line[i]
 for (j = 1; j <= NF; j++)
 gsub(“\\$“j, $j, s)
 print s
 }
}

User’s Guide

13-42

awk Summary 13

Command Line 13

awk program filenames
awk -f program-file filenames
awk -F s sets field separator to string s;-Ft sets separator to tab

Patterns 13

BEGINEND
/ regular expression/
relational expression
pattern && pattern
pattern || pattern
(pattern)
!pattern
pattern, pattern

Control Flow Statements 13

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var in array) statement
do statement while (expr)
break
continue
next
exit [expr]
return [expr]

Input-Output 13

Table 13-10 lists and describes the Input/Output functions:

Table 13-10. Input Output Functions

close(filename) close file

getline set$0 from next input record; set NF, NR, FNR

getline <file set$0 from next record offile; setNF

Programming with awk

13-43

In print andprintf in Table 13-10, >>file appends to the file, and| command writes
on a pipe. Similarly,command| getline pipes intogetline. getline returns 0 on
end of file, and -1 on error.

Functions 13

func name(parameter list) { statement }
function name(parameter list) { statement }
 function-name(expr, expr, . . .)

String Functions 13

Table 13-11 lists and describes the string functions:

getlinevar setvar from next input record; setNR, FNR

getlinevar <file setvar from next record offile

print print current record

print expr-list print expressions

print expr-list >file print expressions onfile

printf fmt, expr-list format and print

printf fmt, expr-list >file format and print onfile

system(cmd-line) execute commandcmd-line , return status

Table 13-11. String Functions

gsub (r,s,t) substitute strings for each substring matching regular expressionr in stringt,
return number of substitutions; ift omitted, use$0

index (s,t) return index of stringt in strings, or 0 if not present

length (s) return length of strings

match (s,r) return position ins where regular expressionr occurs, or 0 ifr is not present

split (s,a,r) split strings into arraya on regular expressionr, return number of fields; ifr
omitted,FS is used in its place

sprintf(fmt, expr-list) print expr-list according tofmt, return resulting string

sub (r,s,t) like gsub except only the first matching substring is replaced

substr (s,i,n) returnn-char substring ofs starting ati ; if n omitted, use rest ofs

Table 13-10. Input Output Functions (Cont.)

User’s Guide

13-44

Arithmetic Functions 13

Table 13-12 lists and describes the arithmetic functions:

Operators (Increasing Precedence) 13

Table 13-13 lists and describes the awk operators:

Table 13-12. Arithmetic Functions

atan2(y,x) arctangent ofy/x in radians

cos(expr) cosine (angle in radians)

exp(expr) exponential

int(expr) truncate to integer

log(expr) natural logarithm

rand() random number between 0 and 1

sin(expr) sine (angle in radians)

sqrt(expr) square root

srand(expr) new seed for random number generator; use time of day if no expr

Table 13-13. awk Operators

= += -= *= /= %= ^= assignment

?: conditional expression

|| logical OR

&& logical AND

~ !~ regular expression match, negated match

< <= > >= != == relationals

blank string concatenation

+ - add, subtract

* / % multiply, divide, mod

+ - ! unary plus, unary minus, logical negation

^ exponentiation (** is a synonym)

++ -- increment, decrement (prefix and postfix)

$ field

Programming with awk

13-45

Regular Expressions (Increasing Precedence) 13

Table 13-14 lists and describes the regular expressions:

Built-in Variables 13

Table 13-15 lists and describes the built-in variables:

Table 13-14. Regular Expressions

c matches non-metacharacterc

\c matches literal characterc

. matches any character but newline

^ matches beginning of line or string

$ matches end of line or string

[abc...] character class matches any ofabc...

[^abc...] negated class matches any butabc... and newline

r1|r2 matches eitherr1 or r2

r1r2 concatenation: matchesr1, thenr2

r+ matches one or morer's

r* matches zero or morer's

r? matches zero or oner's

(r) grouping: matchesr

Table 13-15. Built-in Variables

ARGC number of command-line arguments

ARGV array of command-line arguments (0..ARGC-1)

FILENAME name of current input file

FNR input record number in current file

FS input field separator (default blank)

NF number of fields in current input record

NR input record number since beginning

OFMT output format for numbers (default%.6g)

OFS output field separator (default blank)

ORS output record separator (default newline)

RS input record separator (default newline)

User’s Guide

13-46

Limits 13

 Any particular implementation ofawk enforces some limits. Here are typical values:

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per printf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the
local machine, for example, 1e-38..1e+38

Initialization, Comparison, and Type Coercion 13

Each variable and field can potentially be a string or a number or both at any time. When
a variable is set by the assignment

var = expr

its type is set to that of the expression. (Assignment includes +=, -=, and so on.) An
arithmetic expression is of type number, a concatenation is of type string, and so on. If the
assignment is a simple copy, as in

v1 = v2

then the type ofv1 becomes that ofv2 .

In comparisons, if both operands are numeric, the comparison is made numerically.
Otherwise, operands are coerced to string if necessary, and the comparison is made on
strings. The type of any expression can be coerced to numeric by subterfuges such as

expr + 0

and to string by

expr ““

(that is, concatenation with a null string).

RSTART index of first character matched bymatch() ; 0 if no match

RLENGTH length of string matched bymatch() ; -1 if no match

SUBSEP separates multiple subscripts in array elements; default\034

Table 13-15. Built-in Variables (Cont.)

Programming with awk

13-47

Uninitialized variables have the numeric value0 and the string value”“ . Accordingly, if
x is uninitialized,

if (x) ...

is false, and

if (!x) ...
if (x == 0) ...
if (x == ““) ...

are all true. But the following is false:

if (x == “0”) ...

The type of a field is determined by context when possible; for example,

$1++

clearly implies that$1 is to be numeric, and

$1 = $1 “,” $2

implies that$1 and $2 are both to be strings. Coercion is done as needed.

In contexts where types cannot be reliably determined, for example,

if ($1 == $2) ...

the type of each field is determined on input. All fields are strings; in addition, each field
that contains only a number is also considered numeric.

Fields that are explicitly null have the string value”“ ; they are not numeric. Non-existent
fields (that is, fields pastNF) are treated this way, too.

As it is for fields, so it is for array elements created bysplit.

Mentioning a variable in an expression causes it to exist, with the value”“ as described
above. Thus, ifarr[i] does not currently exist,

if (arr[i] == ““) ...

causes it to exist with the value”“ so theif is satisfied. The special construction

if (i in arr) ...

determines ifarr[i] exists without the side effect of creating it if it does not.

User’s Guide

13-48

14
Managing File Systems Securely

Introduction . 14-1
Mandatory Access Control . 14-1

Subjects and Objects. 14-2
Security Levels . 14-3
Comparing Security Levels . 14-6
MAC Security Policy . 14-7
Displaying Login and File Levels . 14-10
Organizing Files at Multiple Levels . 14-11
Managing Your Home Directory . 14-12

Multilevel Directories . 14-13
Accessing Devices . 14-16

User’s Guide

14-1

14
Chapter 14Managing File Systems Securely

14
14
14

Introduction 14

This chapter describes the access control mechanisms used to provide security for data
contained in files. Because almost all of your activities on the system involve access to
files or directories, you will deal with these access control mechanisms any time you use
the computer system.

Because the UNIX operating system is a multi-user system, you usually do not work alone
in the file system. All users of the system can follow path names to various directories and
read and use files belonging to one another, as long as they have permission to do so.
Without some form of access control all users could read all files, and it would be
impossible to maintain the security of the data in the files. To provide data security, the
operating system contains two access control mechanisms: Discretionary Access Control
(DAC) and Mandatory Access Control (MAC). You must pass both sets of access checks
to read or modify a file or to execute a program.

If you own a file, DAC allows you to decide who has the right to read it, write in it (make
changes to it), or, if it is a program, to execute it. You can also restrict permissions for
directories. When you grant execute permissions for a directory, you allow the specified
users to change directory to it. An administrator with the appropriate privilege can
override the DAC restrictions set by the owner of a file.

MAC is controlled by the system (as configured by the system administrator), and restricts
a user's access to data based on the sensitivity and topics associated with the data and the
user. The owner of a file has no control over the MAC restrictions on the file.

This chapter describes how MAC works for files, directories, and devices. DAC is
described in detail in Chapter 4, “Using the File System” of this guide.

Mandatory Access Control 14

Mandatory Access Control (MAC) is a security mechanism enforced by the Trusted
Computing Base (TCB). (See the preface to this guide for a discussion of the TCB.) It is
based on security levels (defined below) which are assigned to user processes and to
objects such as files and directories. The system administrator assigns allowable login lev-
els to users. The system compares your login level to the levels of the files and directories
you try to access to decide which ones you can read or change. Thus it provides a way for
the system to automatically restrict access to data.

User’s Guide

14-2

While you set the Discretionary Access Controls (DAC) for your own files, MAC, as the
name implies, is a mandatory control. The TCB, rather than the owner, sets the security
level of a file or other object when the object is created. Only an administrator can change
an object's level.

When you try to read, execute, or modify a file, the system enforces both MAC and DAC.
It grants you access only if you pass both sets of controls.

The system administrator may assign you a single security level or several. Each time you
log in, you work at only one of your levels. To change levels, you need to log out and log
in again.

Since MAC is controlled by the TCB rather than the user, this section mainly explains
how MAC limits what you can do on the system. If you have been assigned a single level,
you may just want to skim this chapter to understand these limitations. If you are
authorized to log in at more than one level, you will need to understand MAC in some
detail to help you organize your files at different levels.

This section begins with definitions and examples of basic MAC concepts. This is
followed by an overview of the MAC policies the TCB applies when comparing levels.
The final section contains some suggestions for handling your files and directories if you
are authorized to log in at multiple levels.

Subjects and Objects 14

The TCB uses MAC to control access toobjects by subjects.

An object is something that contains or receives information. The system contains the
following types of objects:

• files

• directories

• named pipes

• device special files

• symbolic links

• shared memory

• message queues

• semaphores

• processes (as targets of signals).

This section discusses MAC in terms of your access to files and directories. MAC access
restrictions on other objects are similar, and differences will be noted in the following
sections.

A subject is something that causes information to flow within the system. Loosely
speaking, you can think of users and the programs they run as subjects. Technically, all

Managing File Systems Securely

14-3

subjects areprocesses . Each time you log in to the system or run a program, you create
a process that is considered a subject by MAC.

Each subject and object has a label indicating its security level. MAC decides whether to
grant or deny you access to a file, directory, or other object by comparing subject and
object security levels. The next section defines security level.

Security Levels 14

A securitylevel is a combination of a hierarchicalclassification and a set of zero
or more non-hierarchicalcategories .

A classification indicates degree of sensitivity, with classifications going from lower
degrees of sensitivity to higher ones. A few standard classifications are predefined on the
system. The system administrator defines additional classifications. In one organization,
material might have classifications such as Restricted (lowest), Secret (middle), and Top
Secret (highest). At another site, there might be numerous distinct classifications, ranging
from Open (lowest) through Confidential (middle) to Proprietary (highest). In each case,
classifications are ordered from low to high.

A category is a grouping by topic. Several categories are predefined on the system. The
system administrator defines additional categories reflecting the types of data stored on the
system. For example, an organization could have categories for management, engineering,
and sales. Another might define MiddleEast, EastBlock, and CommonMarket as catego-
ries. At some sites, the topics themselves might be confidential information, and catego-
ries would be given code names like Sundance or ProjectX.

Categories are unordered. They serve to keep information separated by topic. You can
read and write data only in the categories you are authorized to access, as you will see in
the “MAC Security Policy” section of this chapter. The administrator assigns each
category a number for the system to use, but these numbers are arbitrary.

The administrator defines levels as combinations of classifications and categories; in
addition, several levels are predefined. Each level has one classification, and may or may
not contain one or more categories. The name of a level is written in the format

classification:category1,category2,...category n

For example, the following would be a valid level name:

Secret:Management,Sales

The administrator defines levels based on how the system is used. For example, if both
proprietary and open sales data are kept on the system, the levels defined might include:

Proprietary:Sales

and

Open:Sales

There is a predefined level for files all users of the system need to read or execute:

SYS_PUBLIC

User’s Guide

14-4

This level consists of one of the lowest defined classifications,system . It contains no
categories, since categories are used to limit which users can access data.

Some projects require users to combine data from two or more categories. To allow this,
the administrator will define one or more levels with appropriate sensitivity classifications
and combinations of categories. For example, a user who logs in at the following level:

Proprietary:Engineering,Management,Sales

can read data at or below theProprietary classification in each or any combination of the
listed categories, but can write data only at the specified login level.

Only the classification/category combinations that have been predefined or specified by
the system administrator are valid levels. Possible combinations that have not been
defined are not valid. For example, the level

Open:Engineering,Management,Sales

would probably not be defined as a level if the system will not be used for data of low
sensitivity that involves all three categories or if no one requires access to all three
categories at the same time.

A level name that contains several categories can be quite lengthy, and therefore difficult
to remember or to type. An administrator can assign alevel alias as a shorthand level
name to make it easier for you to specify a level.

To display a list of the security levels, classifications, and categories on your system, use
the lvlprt command. The command displays three lists:

1. Under the heading Levels:, each level that is defined on the system is
listed on a separate line. The level's alias, if it has one, appears at the begin-
ning of the line, followed by two colons. Then the level's full name is dis-
played (the classification and optional list of categories, separated by a
colon).

2. Under the headingClassifications:, each classification that is defined on
the system is listed on a separate line. The classification number is
displayed, followed by a colon and the classification name. Classifications
are displayed in order, from lowest to highest.

3. Under the headingCategories:, the categories are displayed, one per
line. Categories are displayed in the same format as classifications; that is,
the category number is displayed followed by the category name. In the
case of categories, the numbers do not indicate any hierarchical
relationship.

Screen 14-1 shows an example of the output displayed bylvlprt .

Managing File Systems Securely

14-5

Screen 14-1. Example of Levels, Classifications, and Categories

Thirteen levels are shown in Screen 14-1. The first eight are the predefined levels that
come with the system, while the last five levels have been defined by the administrator.

The first level defined by the administrator,NotSecret, consists of a classification with
no categories. Since the full name of theNotSecret level is short, the administrator has
chosen not to assign it an alias.

Each remaining level has been assigned an alias. The aliases in Screen 14-1 are
SYS_PUBLIC, SYS_PRIVATE, SYS_MAX_RANGE, USER_PUBLIC, USER_LOGIN,
SYS_AUDITOR, SYS_OPERATOR, SYS_RANGE_MIN, Green , Red , Blue , and
Yellow. For each of these levels, the alias is displayed at the beginning of a line and
separated from the full level name by two colons.

Except for the levelsSYS_PUBLIC, USER_PUBLIC, SYS_RANGE_MIN, and
NotSecret, which contain no categories, each level name is in the format

Classification[:category1[,category2[,...category n]]]

For example,

NotSecret:proj43,syseng

is the full name of the level with the aliasGreen.

$ lvlprt
Levels:
SYS_PUBLIC::system
SYS_PRIVATE::system:private
SYS_RANGE_MAX::range_max:ALL
USER_PUBLIC::user
USER_LOGIN::user:login
SYS_AUDIT::system:private,audit
SYS_OPERATOR::system:private,operator
SYS_RANGE_MIN::range_min
NotSecret
Green::NotSecret:proj_43,syseng
Red::NotSecret:proj_43
Blue::TopSecret:proj_43
Yellow::NotSecret:syseng

Classifications:
1:range_min
2:system
4:user
100:NotSecret
250:TopSecret
256:range_max

Categories:
1:private
2:audit
3:login
4:operator
100:syseng
143:proj_43
$

User’s Guide

14-6

Not all combinations of valid classifications and valid categories are defined as levels. In
the system represented by Screen 14-1,TopSecret:syseng is not defined as a level and
cannot be assigned to users or files.

The list of levels in Screen 14-1 is followed by the list of classifications ordered from least
sensitive to most sensitive. For each classification,lvlprt displays the classification
number, a colon, and the name. Six classifications are defined;range_min is the least
sensitive andrange_max is the most sensitive.

The numbers displayed with the classification indicate a hierarchical order, with lower
numbers indicating less sensitivity and higher numbers more sensitivity. On the system
shown in Screen 14-1, the administrator could use a number from 101 to 249 to add a
classification intermediate in sensitivity betweenNotSecret andTopSecret.

The last part of thelvlprt display shown in Screen 14-1 is the list of categories. There
are six categories:private, audit, login, operator, syseng, andproj43. For each
category, its number is displayed, followed by a colon and the category name. Unlike clas-
sification numbers, categorynumbers are arbitrary. There is no hierarchical relationship
among categories.

For more information on usinglvlprt , see thelvlprt (1) page in the online
Command Reference.

Comparing Security Levels 14

As was mentioned earlier, the system decides whether or not to grant you MAC access to
a file, directory, or other object by comparing the level of the subject (that is, the process
you are running) with that of the object. For write access, MAC requires that the subject's
and object's levels be equal. For read or execute access, the subject's level must
dominate that of the object. This section explains what it means for the subject's level to
equal or dominate the object's. The following section,“MAC Security Policy,”explains
how MAC controls what you can do on the system based on security levels.

The subject's level is equal to the object's only if both consist of the same classification
and identical lists of categories. For example, if a user process and a file are both at the
level TopSecret:proj43, then the level of the process is equal to that of the file.
Similarly, an alias is equal to the level it is assigned to. In Figure 14-1, for example,Blue
is equal toTopSecret:proj43. Both are names of the same level; the first is its alias, the
second its full name. Each level is equal only to itself.

The concept of domination is more complex. Two things must be true for one level to
dominate another. First, the classification of the dominating level must be equal or higher
than the dominated level's. Second, the set of categories for the dominating level must
include all the categories of the dominated level. In other words, the dominated level's cat-
egories are a subset (not necessarily aproper subset as defined in set theory) of the
dominating level's categories.

For example, compare the levelsRed andBlue in Screen 14-1.Blue is the alias for a
level with the classificationTopSecret, the most sensitive classification on this system.
Red has a less sensitive classification level,NotSecret . So Blue has a higher
classification thanRed, and fulfills the first criterion for domination.

Managing File Systems Securely

14-7

To determine ifBlue dominatesRed, you also need to compare the two levels' sets of
categories.Red contains only one category,proj43. This category is also included in the
set forBlue; it happens to be the only category in the set. SoBlue also fulfills the second
criterion, and dominatesRed.

Similarly, Green (NotSecret:proj43,syseng) also dominatesRed. In this case, the
two levels have the same classification,NotSecret, satisfying the first part of the
definition. Green's set of categories,proj43,syseng, includesRed's only category,
proj43.

Now compare the leve lsB l u e (To p S e c r e t : p r o j 4 3) and G r e e n
(NotSecret:proj43,syseng) in Screen 14-1.Blue has a higher classification (TopSe-
cret) thanGreen, butBlue does not dominateGreen. This is becauseGreen contains
a category,syseng, which is not part ofBlue's set of categories. The levelsBlue and
Green aredisjoint ; that is, neither dominates the other.

Notice that by the definition, each level dominates itself. Each level has the same
classification as itself, satisfying part one of the definition. It contains all of its own
categories, satisfying part two of the definition.

What about the levelSYS_RANGE_MIN which does not contain any categories? It is
dominated by all of the levels shown in Screen 14-1. Since the classificationrange_min
is the least sensitive of the defined classifications, every level defined on the system has an
equal or higher classification. Since this level has no categories, any possible level would
satisfy the second criterion for domination.

MAC Security Policy 14

The system compares your security level to that of each object you try to access. You will
be granted or denied requested types of access depending on whether your level equals or
dominates the object's level.

Your security level is set when you log in. The administrator assigns one or more
allowable security levels to each user. In any login session, you will be identified with
only one of the levels you are authorized to use.

If you have been assigned more than one level, one is designated as your default level.
Alternatively, you can specify one of your assigned levels when you log in. The level you
specify, or your default level if you do not specify a level, is called yourlogin level. (See
the “Login Procedure” subsection of Chapter 3, “Basics for UNIX System Users” for
specific directions for logging in.)

Your login level determines the level of objects that you create. Files, directories,
processes and other objects you create inherit your login level. You should be careful to
create files only at the appropriate level. If you create a file at the wrong level, only an
administrator can change the level of a file or directory.

Your login level restricts what information you can read and modify and what programs
you can run. You can modify (or write) only objects at a level equal to your login level and
can read or execute only those at levels dominated by your login level. There is one excep-
tion to this rule: to send a signal to a process (for example with thekill command), the
level of the receiving process must dominate that of the sending process. In all cases, you
must also have appropriate DAC permissions.

User’s Guide

14-8

For example, on a system with the levels shown in Screen 14-1, if you are logged in at the
levelBlue (TopSecret:proj43) you can edit only those files at that level. Any new files
you create will also be at theBlue level.

You can read only those files with levels dominated byBlue. This includes files at the
levelsBlue, Red (NotSecret:proj43), and NotSecret. You can run a program only
if the program file is at a level dominated byBlue.

While you are logged in at theBlue level, MAC will not allow you to access any files
with levels not dominated byBlue. For example, you can neither read nor edit a file at the
levelNotSecret:proj43,syseng, even if you have DAC permissions to do so.

Because almost anything you do on the system involves reading, writing, or executing
objects, most of your actions are controlled by MAC. For example, to copy the file
/file1 into a file namednewfile in the /usr/mydir directory, you can use the
following command:

$ cp /file1 /usr/mydir/newfile <RETURN>

You need to pass a series of MAC checks for this command to succeed.

1. To execute thecp command, you need to have execute permission on the
executable file for the command,/usr/bin/cp. To have MAC execute
access, your level must dominate the levels of/, /usr, /usr/bin, and
/usr/bin/cp.

2. First,cp searches the root directory for the filefile1 . Searching a
directory requires the same permissions as executing a program file, so
your level must dominate that of the root directory for MAC to allow the
search.

3. Your level must dominate the level offile1 so thatcp can read and copy
the file.

4. Nowcp searches the root directory for theusr subdirectory, and theusr
directory for themydir subdirectory. You need MAC search permission
on each directory in the path, so your level must dominate the levels of the
root and/usr directories.

Your MAC level must also be within thelevel range of the file system that
will contain the file that's to be created. The file system level ranges are set
by the system administrator.

5. If these checks succeed,cp is ready to create/usr/mydir/newfile.
Adding a file to a directory changes the directory's contents, and therefore
is a write operation on the directory. Your level must be equal to that of
/usr/mydir for MAC to allow this.

Your new copy of/file1, /usr/mydir/newfile, will inherit your login level.

Figure 14-1 shows part of a file system with directories and files at several levels. (The
section“Organizing Files at Multiple Levels,”later in this chapter, explains how to create
a subdirectory at a different level from the parent directory.)

To clarify how MAC controls your access to files and directories, let's look at what you
can and cannot do at various login levels. To simplify, the example assumes that you have
DAC read, write, and execute permissions on all the files and directories in the diagram.

Managing File Systems Securely

14-9

Figure 14-1. Directory Structure with Several Levels

Figure 14-1 shows the path to a directory (/projects/project43 at level
NotSecre t :p ro j43) which contains a subdirectory (nego t ia t ions at level
TopSecret:proj43) and a file (schedule at levelNotSecret:proj43). Theroot
andprojects directories are at levelNotSecret.

If you are logged in atNotSecret:proj43, you can modify only the files and directories
at that level. You can edit the fileschedule and can modify the directoryproject43 by
creating a new file in that directory. You can't create a new file or subdirectory in
projects, since your login level is not equal to its level.

You can read or execute a file or search or list a directory only if your level dominates its
level. Since a level dominates itself, you can read theschedule file, which is at your
login level. In Figure 14-1, your login level dominates the levels of all of the files and
directories except thenegotiations directory, which is atTopSecret:proj43.

Since your level does not dominate that of thenegotiations directory, you can't display
a list of the files in it or make it your current directory. You also can't read or modify any
file in the negotiations directory, even if an administrator has changed its level to

root
NotSecret

projects
NotSecret

project43
NotSecret:proj43

negotiations
TopSecret:proj43

schedule
NotSecret:proj43

= Directory

= Ordinary File

User’s Guide

14-10

NotSecret:proj43. This is because to read a file, you first have to search the directory
the file is in.

If you log out and log in again atTopSecret:proj43, your new login level dominates the
levels of all files and directories in the diagram. You now can search or list any directory
and read any file shown in Figure 14-1. The only object shown that you can modify is the
negotiations directory, since it is the only one at levelTopSecret:proj43.

MAC prevents you from modifying objects at any level but your login level to keep you
from accidentally making information available to unauthorized users. Any data that you
enter when logged in atTopSecret:proj43 should be seen only by users whose login
levels dominate that level. The MAC restriction protects both against users transferring
information out of the appropriate security level and against “Trojan Horse” programs
making sensitive data available to unauthorized users.

MAC restrictions also apply to files and other objects you create. Files you create inherit
your login security level, as do processes you run. If you create a file, then log out and log
in at a different security level, the MAC restrictions still apply to the file you created. You
will not be able to modify it from a different security level. You can read it only if your
new login level dominates the level at which you created it. If you give other users DAC
permission to access your files, only those at appropriate security levels can do so.

Displaying Login and File Levels 14

If you forget at which level you are logged in, you can find out using the-z or -Z options
of theps command. This command displays information about processes which are
dominated by your login level. Your login process is one of the processes displayed.

The -Z option displays the full level name for each displayed process. The-z option
displays the level's alias if one has been assigned. If a level has no alias, the level identifier
(LID), a number the system uses to identify the level, is displayed. For a detailed descrip-
tion of theps command and its options, see theps(1) page of the onlineCommand Ref-
erence.

 Screen 14-2 shows an example of the output ofps using the-z and-Z options.

Screen 14-2. Example of Displaying Process Levels with ps

$ ps -z
 PID TTY TIME COMMAND LEVEL

 9980 tty12 0:00 ps Blue
 9900 tty12 0:00 ksh Blue
$ ps -Z
 PID TTY TIME COMMAND LEVEL

 9980 tty12 0:00 ps TopSecret:syseng
 9900 tty12 0:00 ksh TopSecret:syseng
$

Managing File Systems Securely

14-11

To display the level of a file or directory, use the-z option or the-Z option of thels
command. These are similar to the-z and-Z options ofps .

Screen 14-3 shows an example of displaying file levels. This is what thels command
would display if you were logged in at theTopSecret:proj43 level and working in the
/projects/project43 directory of the file system shown in Figure 14-1.

Screen 14-3. Displaying File and Directory Levels with ls

You can display this information only for files and directories at levels dominated by your
login level. If you log in atNotSecret:proj43, for example,ls will not display the level
information for thenegotiations directory.

Organizing Files at Multiple Levels 14

If you are authorized to log in at more than one security level, you should take special care
to make sure that you are at the appropriate level for the data in the file when you create a
file. Remember that the file will inherit your login level and that MAC protection depends
on the file's security level.

NOTE

MAC protection of data depends on the level at which file
containing the data is created. If you create a file while logged in
at an inappropriate level for the data in that file, unintended users
may be able to access the data, and intended users may be denied
access.

If you accidentally create a file at the wrong security level, only an administrator can
change the file's level. If the intended level dominates that at which you created the file,
you can make a copy of the file at the correct level by logging in at that level, copying the
file, then deleting the original file.

You should take into account the security levels available to you when organizing your
subdirectories. Because you can only write in a directory at your login level and because
files you create inherit your login level, each file you create will be at the same level as its
parent directory. So you will need at least one directory for each login level at which you
expect to create files.

$ ls -z
negotiations Blue
schedule Red
$ ls -Z
negotiations TopSecret:proj43
schedule NotSecret:proj43
$

User’s Guide

14-12

Because of the tree structure of the file system, in order to have directories at the different
login levels you are authorized to use, you need some way to create a subdirectory at a
different level from its parent. You can do this with the-l option of themkdir
command, which lets you create a directory that is not at your login level.

To use this option, you must first log in at the level of the parent directory. You will
modify the parent directory by adding the new subdirectory, and MAC requires that your
login level be equal to the level of the object you modify.

For example, if you want to add a new subdirectory for sensitive data to the
/projects/project43 directory shown in Figure 14-1, log in atNotSecret:proj43.
Now use thecd command to make/projects/project43 your working directory.

MAC imposes two restrictions on the level of your new subdirectory:

• The new directory's level must dominate the level of the parent directory.

• The new directory's level must dominate your current login level.

When usingmkdir -l , you should only create directories at levels at which you can log
in. Otherwise, you will not be able to access the directory you create.

For example, if you are authorized to log in atTopSecret:proj43, you can create a
subdirectorynewdir atTopSecret:proj43 in /projects/project43.

Once you have created your new directory, the usual MAC restrictions apply. Since the
new directory's level is not equal to or dominated by your login level, you need to logout
and log in again atTopSecret:proj43 to create files in your new directory or display
information about it.

Screen 14-4 shows the steps for creating a directory at a different level from its parent.
Figure 14-2 shows the resulting directory structure.

Be careful in choosing a name for your new directory. If you are using the directory to
keep files about a secret plan, you don't want the title to give away the plan. While only
users at levels that dominateTopSecret:proj43 can access files within your new
directory, anyone with access to the parent directory can see your directory's name. For
example, if you create a directoryMergerProposals at a level different from the
parent directory's, users with access to the parent directory will know that a merger is
being considered.

Managing Your Home Directory 14

If one of your login levels is dominated by all your other levels and if the administrator
has given you a home directory at that level, you can usemkdir -l to set up your home
directory. Following the instructions described in the previous section, you can create a
subdirectory at each of your login levels in your home directory. If your login levels are
disjoint (that is, if no one level is dominated by all others), you may need a system
administrator's help in setting up your home directory.

Managing File Systems Securely

14-13

Screen 14-4. Creating a Directory at a Different Level

Figure 14-2. Directory Structure after Using mkdir -l

Multilevel Directories 14

The Mandatory Access Control (MAC) restrictions on the creation of files require that the
user be at the same level as the directory in which the file is created. But there are some

login: -h NotSecret:proj43 user1
Password:
$ cd /projects/project43
$ pwd
/projects/project43
$ ls -Z
UX:ls:ERROR:cannot get level for file ./negotiations
schedule NotSecret:proj43
$ mkdir -l TopSecret:proj43 newdir
$ ls -Z
UX:ls:ERROR:cannot get level for file ./negotiations
UX:ls:ERROR:cannot get level for file ./newdir
schedule NotSecret:proj43
$ cd newdir
UX:cd:ERROR:newdir:Permission Denied
$ logout
login: -h TopSecret:proj43 user1
Password:
$ cd /projects/project43
$ ls -Z
negotiationsTopSecret:proj43
schedule NotSecret:proj43
newdir TopSecret:proj43
$

newdir

project43

negotiations schedule

= Directory

= Ordinary

User’s Guide

14-14

directories in which all users need to create files. For example,/tmp is used by editors
and compilers to store temporary files. The editors and compilers run by users at different
levels would need to create temporary files at different levels in violation of MAC
restrictions on directories.

To solve this problem, the multilevel directory (MLD) is provided, in which any user can
create files but files created by users logged in at other levels are “invisible.” In fact, it's
possible for users at different levels to create and use different files with the same name.

For example, a user at level A can create a temporary file/tmp/file1 , and a user at
level B can create a file with the same name. It is possible that the users will never know
that there are two files named/tmp/file1 .

The system transparently maps access to the multilevel directory to a subdirectory, called
an effective directory, based on the user's level. The two users in the example above are
actually creating files in different directories. The effective directories are individually
created by the system when each one is initially accessed: the creation of an effective
directory is automatic and transparent to the user.

The structure of multilevel directories is shown in Figure 14-3.

Figure 14-3. Structure of a Multilevel Directory

Associated with each process is a multilevel directorymode that determines the type of
access to multilevel directories. This mode, which can be eitherreal or virtual , is
inherited from the parent process. The kernel uses the multilevel directory mode to
determine how an access attempt to a multilevel directory should be handled.

Normally, user processes are in virtual mode. In virtual mode, if you try to access a
multilevel directory, the system will bypass the directory and access the effective directory
for your level.

Multilevel
Directory

Effective
Directory
Level A

levelA File levelA File levelN File levelN File

Effective
Directory
Level N

Managing File Systems Securely

14-15

If you log in at different MAC security levels at different times, files in a multilevel
directory may seem to appear and disappear, or change contents as you change levels,
because you will be accessing directories at different levels in the multilevel directory.
Screen 14-5 shows an example of this.

Screen 14-5. Accessing a Multilevel Directory from Different Levels

If an effective directory does not exist at your level, then the kernel creates it
automatically. This can cause error messages that seem odd if you try to access a
multilevel directory that is in a full file system or in one that is mounted read-only.
Examples are shown in Screen 14-6.

Screen 14-6. Accessing a Multilevel Directory in a Read-only or Full File
System

In real mode, the system treats a multilevel directory like a normal directory and the
effective directories as normal subdirectories. If you need to see files in an MLD at a level
other than your login level, you will need to change to real mode. The process in real
mode can see all effective directories in the multilevel directory. The process can access

login: -h LEVEL1 user1
Password:
$ echo foo > /multilevel/bar
$ ls /multilevel/bar
/multilevel/bar
$ logout
login: -h LEVEL2 user1
Password:
$ ls /multilevel/bar
/multilevel/bar: No such file or directory
$ echo bar > /multilevel/bar
$ ls /multilevel/bar
/multilevel/bar
$ cat /multilevel/bar
bar
$ logout
login: -h LEVEL1 user1
Password:
$ ls /multilevel/bar
/multilevel/bar
$ cat /multilevel/bar
foo
$

$ cd /read-only
/read-only: cannot create
$ ls /read-only
/read-only: cannot create
$
$ cd /tmp
/tmp: No space left on device
$ ls /tmp
/tmp: No space left on device
$

User’s Guide

14-16

all files in the effective directories, if the process passes the usual MAC and DAC checks
(see the“Mandatory Access Control”and“Discretionary Access Control”sections in this
chapter).

Themldmode command and themldmode shell builtin let you switch between real and
virtual mode, perform a single command in a specified mode, or find out the multilevel
directory mode of your current process. For a detailed description of the command, see the
mldmode(1) page of the onlineCommand Reference. For a description of the shell
builtin, see thesh(1) page of the onlineCommand Reference.

Accessing Devices 14

The access restrictions that apply to files and directories (MAC and DAC) also apply to
devices. However, an additional access control is placed on devices. This restriction
requires that a device beallocated for public use before a non-privileged process can
use it. Only privileged processes can allocate a device.

Some devices are usually allocated for general use when the system is initialized:null ,
zero , andtty . These devices can be accessed by all unprivileged processes that pass the
MAC and DAC restrictions.

Other devices, such as tape drives, can be allocated for you by an administrator when
appropriate. Check with your system administrator if you need to use a device that is not
allocated for general use.

The tty device associated with your login session is allocated for you by the system
during the login process.

Detailed information on device allocation can be found in the “Security” chapter of the
System Administrator's Guide, and the “Security Considerations” chapter of the
Programming With UNIX System Calls and Application Release Notes.

A-1

A
Summary of the File System

1
1
1

UNIX System Files 1

This appendix summarizes the description of the file system given in “What Is the UNIX
System” chapter, and reviews the major system directories in the root directory.

File System Structure 1

UNIX system files are organized in a hierarchy; their structure is often described as an
inverted tree. At the top of this tree is the root directory, the source of the entire file
system. It is designated by a/ (slash). All other directories and files descend and branch
out from root, as shown in Figure A-1.

Figure A-1. Directory Tree from root

= Directories

/
(root)

stand

unix
console

sbin dev

term

11 23

etc

date cat

home tmp var

bin lib sbin

usr

= Ordinary Files

= Special Files

= Branch
162760

User’s Guide

A-2

One path from root leads to your home directory. You can organize and store information
in your own hierarchy of directories and files under your home directory.

Other paths lead from root to system directories that are available to all users. The system
directories described in this book are common to all UNIX System V Release 4 installa-
tions and are provided and maintained by the operating system.

In addition to this standard set of directories, your UNIX system may have other system
directories. To obtain a listing of the directories and files in the root directory on your
UNIX system, enter the following command line:

$ ls -l / RETURN

To move around in the file structure, you can use pathnames. For example, you can move
to the directory/usr/bin (which contains UNIX system executable files) by entering
the following command line:

$ cd /usr/bin RETURN

To list the contents of a directory, enter

$ ls RETURN

for the short format listing, or

$ ls -l RETURN

for the long format listing

To list the contents of a directory in which you are not located, say/usr/bin , enter

$ ls /usr/bin RETURN

for the short format listing, or

$ ls -l /usr/bin RETURN

for the long format listing

The following section provides brief descriptions of the root directory and the system
directories under it, as shown in Figure A-1.

UNIX System Directories 1

/ the source of the file system (called the root directory).

/stand contains programs and data files used in the booting process.

/sbin contains essential executables used in the booting process and in
manual system recovery.

Summary of the File System

A-3

/dev contains special files that represent peripheral devices, such as:

console console
lp line printer
term/* user terminal(s)
dsk/* disks

/etc contains machine-specific administrative configuration files and
system administration databases.

/home the root of a subtree for user directories.

/tmp contains temporary files, such as the buffers created for editing a
file.

/var the root of a subtree for varying files such as log files.

/usr contains other directories, includinglib andbin.

/usr/bin contains many executable programs and utilities, including the
following:

cat
date
login
grep
mkdir
who

/usr/lib contains libraries for programs and languages.

User’s Guide

A-4

B-1

B
Summary of UNIX System Commands

2
2

Basic UNIX System Commands 2

at Request that a command be run in background mode at a time you
specify on the command line.

A sample format is:

at 8:45am Jun 09<RETURN>
command1<RETURN>
command2<RETURN>
<CTRL><d>

If you use theat command without the date, the command
executes within twenty-four hours of the time specified.

banner Display a message (in words up to ten characters long) in large
letters on the standard output.

batch Submit command(s) to be processed when the system load is at an
acceptable level. A sample format of this command is:

batch<RETURN>
command1<RETURN>
command2<RETURN>
<CTRL><d>

You can use a shell script for a command inbatch(1) . This
may be useful and timesaving if you have a set of commands you
frequently submit using this command.

cat Display the contents of a specified file at your terminal. To halt the
output on anASCII terminal temporarily, use<CTRL><s>; type
<CTRL><q> to restart the output. To interrupt the output and
return to the shell on anASCII terminal, press the <BREAK> or
<DELETE> key.

cd Change directory from the current one to your home directory. If
you include a directory name, this command changes from the
current directory to the directory specified. By using a path name
in place of the directory name, you can jump several levels with
one command.

chmod Set the mode of a file(s) or directory. You must be the file owner.
You can set additional access permissions with thesetacl
command.

User’s Guide

B-2

cp Copy a specified file into a new file, leaving the original file intact.

cut Cut out specified fields from each line of a file. This command
can be used to cut columns from a table, for example.

date Display the current date and time.

diff Compare two files. The diff(1) command reports which lines
are different and what changes should be made to the second file
to make it the same as the first file.

echo Display input on the standard output (the terminal), including the
<RETURN>, and returns a prompt.

ed Edit a specified file using the line editor. If there is no file by the
name specified, theed(1) command creates one. See Chapter 6,
the “Line Editor (ed) Tutorial” for detailed instructions on using
theed(1) editor.

find Search for files below a specified path which meet specified
criteria. See thefind(1) page of theCommand Reference for
details.

getacl Display the owner, group, and Access Control List of files or
directories. For a directory, the default ACL for files created in the
directory is also displayed.

grep Search a specified file(s) for a specified pattern and print those
lines that contain the pattern. If you name more than one file,
grep(1) prints the file that contains the pattern.

kill Terminate a background process specified by its process
identification number (PID). You can obtain a PID by running the
ps(1) command.

lex Generate programs to be used in simple lexical analysis of text,
perhaps as a first step in creating a compiler. See theCompilation
Systems Manual for details.

lp Print the contents of a specified file on a line printer, giving you a
paper copy of the file.

lpstat Display the status of any requests made to the line printer. Options
are available for requesting more detailed information.

ls List the names of all files and directories except those whose
names begin with a dot (.). Options are available for listing more
detailed information about the files in the directory. (See the
ls(1) page in theCommand Reference for details.)

lvlprt Display a list of the security levels, categories, and classifications
defined on the system.

mail Display any electronic mail you may have received at your
terminal, one message at a time. Only messages at your current
security level will be displayed. Each message ends with?

Summary of UNIX System Commands

B-3

prompt;mail(1) waits for you to request an option such as
saving, forwarding, or deleting a message. To obtain a list of the
available options, type?.

When followed by a login name,mail(1) sends a message to
the owner of that name. The message will inherit your current
security level. You can type as many lines of text as you want.
Then type<CTRL><d> to end the message and send it to the
recipient. Press the <BREAK> key to interrupt the mail session.

mailcheck Check if you have mail at levels dominated by your current level.

mailx mailx(1) is a more sophisticated, expanded version of
electronic mail.

make Maintain and support large programs or documents on the basis of
smaller ones. See themake(1) page in the onlineOperating
System API Reference for details.

mkdir Make a new directory. The new directory becomes a subdirectory
of the directory in which you issue themkdir command. To
create subdirectories or files in the new directory, it is convenient
to move into the new directory with thecd command.

mldmode Display or change themultilevel directory mode of
your current process. When you access a multilevel directory in
virtual mode, you see only the contents of theeffective
directory at your current security level. Inreal mode, you
can see any effective directories at levels you dominate. Normally,
you should operate invirtual mode.

mv Move a file to a new location in the file system. You can move a
file to a new file name in the same directory or to a different
directory. If you move a file to a different directory, you can use
the same file name or choose a new one.

nohup Place execution of a command in the background, so it will
continue executing after you log off of the system. Error and
output messages are placed in a file callednohup.out .

pg Display the contents of a specified file on your terminal, a page at
a time. After each page, the system pauses and waits for your
instructions before proceeding.

pr Display a partially formatted version of a specified file at your
terminal. Thepr(1) command shows page breaks, but does not
implement any macros supplied for text formatter packages.

ps The ps(1) command does not show the status of jobs in the
at(1) or batch(1) queues, but it includes these jobs when
they are executing.

pwd Display the full path name of the current working directory.

User’s Guide

B-4

rm Remove a file from the file system. You can use metacharacters
with the rm(1) command but should use them with caution; a
removed file cannot be recovered easily.

rmdir Remove a directory. You cannot be in the directory you want to
delete. Also, the command will not delete a directory unless it is
empty. Therefore, you must remove any subdirectories and files
that remain in a directory before running this command on it.
(See the-r option of rm(1) in theCommand Reference for
removing directories that are not empty.)

setacl Create or change the Access Control List of a file or directory, or
the default ACL of a directory. You can use thesetacl
command only for files and directories you own.

sort Sort a file inASCII order and display the results on your terminal.
ASCII order is as follows:

1. special characters
2. numbers before letters
3. upper case before lower case
4. alphabetical order

There are other options for sorting a file. For a complete list of
sort(1) options, see thesort(1) page in theCommand
Reference.

spell Collect words from a specified file and check them against a
spelling list. Words not on the list or not related to words on the
list (with suffixes, prefixes, and so on) are displayed.

stty Report the settings of certain input/output options for your
terminal. When issued with the appropriate options and
arguments,stty(1) also sets these input/output options. (See
the stty(1) page in theCommand Reference.)

tcpio Backup files to an archive on removable media and restore files
from the archive. (See thetcpio(1) page in theCommand
Reference for details.) For security reasons, some sites restrict
access to archive devices to administrators.

uname Display the name of the UNIX system on which you are currently
working.

uucp Send a specified file to another UNIX system. (See theuucp(1)
page in the onlineCommand Reference for details.)

uuname List the names of remote UNIX systems that can communicate
with your UNIX system.

uupick Search the public directory for files sent to you by the uuto(1)
command. If a file is found, uupick(1) displays its name and
the system it came from, and prompts you (with a?) to take
action.

Summary of UNIX System Commands

B-5

uustat Report the status of the uuto(1) command you issued to send
files to another user.

uuto Send a specified file to another user. Specify the destination in the
format system!login. Thesystem must be on the list of systems
generated by the uuname(1C) command.

vi Edit a specified file using the vi(1) screen editor. If there is no
file by the name you specify,vi(1) creates one. (See Chapter 7,
the “Screen Editor (vi) Tutorial” chapter for detailed information
on using thevi(1) editor.)

wc Count the number of lines, words, and characters in a specified
file and display the results on your terminal. Character counts are
provided in bytes.

who Display the login names of the users currently logged in on your
UNIX system. List the terminal address for each login and the
time each user logged in.

yacc Impose a structure on the input of a program. See theCompilation
Systems Manual for details.

User’s Guide

B-6

C-1

C
Quick Reference to ed Commands

3
2
3

ed Quick Reference 3

The general format fored commands is:

[address1, address2] command[parameter]. . . < RETURN>

whereaddress1 andaddress2 denote line addresses and theparameters show the data on
which the command operates. The commands appear on your terminal as you type them.
You can find complete information on usinged commands in the “Line Editor (ed)
Tutorial” chapter.

The following is a glossary ofed commands. The commands are grouped according to
function. Refer to the following table:

Overview of Commands for Getting Started with ed 3

Table C-1. ed Command Overview

edfilename Accesses theed line editor to edit a specified file.

a Appends text after the current line.

. Ends the text input mode and returns to the command mode.

p Displays the current line.

d Deletes the current line.

<RETURN> Moves down one line in the buffer.

- Moves up one line in the buffer.

w Writes the buffer contents to the file currently associated with the
buffer.

q Ends an editing session. If changes to the buffer are not written to
a file, a warning (?) is issued. Typingq a second time ends the
session without writing to a file.

User’s Guide

C-2

Overview of ed Line Addressing Commands 3

1, 2, 3... Denotes line addresses in the buffer.

. Denotes address of the current line in the buffer.

.= Displays the current line address.

$ Denotes the last line in the buffer.

, Addresses the first through the last line.

; Addresses the current line through the last line.

+x Relative address, determined by addingx to the current line
number.

-x Relative address, determined by subtractingx from the current
line number.

/abc Searches forward in the buffer and addresses the first line after the
current line that contains the patternabc.

?abc Searches backward in the buffer and addresses the first line before
the current line that contains the patternabc.

g/abc Addresses all lines in the buffer that contain the pattern abc.

v /abc Addresses all lines in the buffer that do not contain the pattern
abc.

Overview of ed Display Commands 3

p Displays the specified lines in the buffer.

n Displays the specified lines preceded by their line addresses and a
tab space.

Overview of ed Text Input Commands 3

a Enters text after the specified line in the buffer.

i Enters text before the specified line in the buffer.

c Replaces text in the specified lines with new text.

. When typed on a line by itself, ends the text input mode and
returns to the command mode.

Quick Reference to ed Commands

C-3

Overview of ed Delete Text Commands 3

d Deletes one or more lines of text (command mode).

u Undoes the last command given (command mode).

Overview of ed Substitute Text Commands 3

address1,address2s/old_text/new_text/command
Substitutesnew_text for old_text within the range of lines denoted
by address1,address2 (which may be numbers, symbols, or text).
Thecommand may beg, l , n, p, orgp.

Overview of ed Special Pattern-matching Characters 3

. Matches any single character.

* Matches zero or more occurrences of the preceding character.

[...] Matches any character that is in the brackets.

[^...] Matches any character that is not in the brackets.

.* Matches zero or more occurrences of any character.

^ Matches the beginning of the line.

$ Matches the end of the line.

\ Takes away the meaning of the special character that follows.

& Substitutes the text matched by the substitution pattern in the
replacement string.

% Repeats the last replacement string.

Overview of ed Text Movement Commands 3

m Moves the specified lines of text after a destination line; deletes
the lines at the old location.

t Copies the specified lines of text and places the copied lines after
a destination line.

j Joins contiguous lines.

w Copies (writes) the buffer contents into a file.

r Reads in text from another file and appends it to the buffer.

W Appends text to an existing file.

User’s Guide

C-4

Overview of Other Useful ed Commands and Information 3

h Displays a short explanation for the preceding diagnostic response
(?).

H Turns on the help mode, which automatically displays an
explanation for each diagnostic response (?) during the editing
session.

l Displays nonprinting characters in the text.

f Displays the current file name.

f newfile Changes the current file name associated with the buffer to
newfile.

! command Allows you to escape, temporarily, to the shell to execute a shell
command.

ed.hup Saves the buffer in a special file calleded.hup if ed is
interrupted.

D-1

D
Quick Reference to vi Commands

4
4

vi Quick Reference 4

This appendix is a glossary of commands for the screen editor,vi . The commands are
grouped according to function.

The general format of avi command is:

[x][command]text-object

wherex denotes a number andtext-object shows the portion of text on which the command
operates. For an introduction to the use ofvi commands, see Chapter 7, the “Screen
Editor (vi) Tutorial” chapter.

Overview of Shell Commands Used with vi 4

TERM=code Puts a code name for your terminal into the variableTERM.

export TERM Conveys the value ofTERM (the terminal code) to any UNIX
system program that is terminal dependent.

tput init Initializes the terminal so that it will function properly with
various UNIX system programs.

NOTE

Before you can usevi , you must complete the first three steps
represented by the above lines: setting theTERM variable,
exporting the value ofTERM, and running thetput init
command.

vi filename Accesses thevi screen editor so that you can edit a specified file.

User’s Guide

D-2

Overview of Basic vi Commands 4

Table D-1 lists and describes the basic vi commands:

Overview of vi Commands for Positioning by Character 4

Table D-2 lists and describes the vi cursor positioning commands.

Table D-1. Basic vi Commands

a Enters text input mode and appends text after the cursor.

<ESC> Escape; leaves text input mode and returns to command mode.

h Moves the cursor one character to the left.

j Moves the cursor down one line in the same column.

k Moves the cursor up one line in the same column.

l Moves the cursor one character to the right.

x Deletes the current character.

<RETURN> Moves the cursor down to the beginning of the next line.

ZZ Writes to the file those changes made to the buffer that have not
already been written and quitsvi .

:w Writes to the file those changes made to the buffer.

:q Quits vi if changes made to the buffer have been written to a
file.

Table D-2. vi Cursor Positioning Commands

h Moves the cursor one character to the left.

<BACKSPACE> Backspace; moves the cursor one character to the left.

l Moves the cursor one character to the right.

<SPACEBAR> Moves the cursor one character to the right.

fx Moves the cursor right to the specified characterx.

Fx Moves the cursor left to the specified characterx.

tx Moves the cursor right to the character just before the specified
characterx.

Quick Reference to vi Commands

D-3

Overview of vi Commands for Positioning by Line 4

Table D-3 lists and describes the vi line positioning commands.

Overview of vi Commands for Positioning by Word 4

w Moves the cursor to the right to the first character in the next
word.

b Moves the cursor back to the first character of the previous word.

e Moves the cursor to the end of the current word.

Overview of vi Commands for Positioning by Sentence 4

(Moves the cursor to the beginning of the sentence.

) Moves the cursor to the beginning of the next sentence.

Tx Moves the cursor left to the character just after the specified
characterx.

; Continues the search for the character specified by thef , F, t , or
T commands. The; remembers the character specified and
searches for the next occurrence of it on the current line.

, Continues the search for the character specified by thef , F, t , or
T commands. The, remembers the character specified and
searches for the previous occurrence of it on the current line.

Table D-3. vi Line Positioning Commands

j Moves the cursor down in the same column one line from its
present position.

k Moves the cursor up in the same column one line from its present
position.

+ Moves the cursor down to the beginning of the next line.

<RETURN> Moves the cursor down to the beginning of the next line

- Moves the cursor up to the beginning of the next line.

Table D-2. vi Cursor Positioning Commands (Cont.)

User’s Guide

D-4

Overview of vi Commands for Positioning by Paragraph 4

{ Moves the cursor to the beginning of the paragraph.

} Moves the cursor to the beginning of the next paragraph.

Overview of vi Commands for Positioning in the Window 4

H Moves the cursor to the first line on the screen, or “home.”

M Moves the cursor to the middle line on the screen.

L Moves the cursor to the last line on the screen.

Overview of vi Commands for Scrolling 4

Table D-4 lists and describes the vi scrolling commands.

Overview of vi Commands for Positioning on a Numbered Line 4

G Moves the cursor to the beginning of the last line in the buffer.

nG Moves the cursor to the beginning of thenth line of the file
(n = line number).

Overview of vi Commands for Searching for a Pattern 4

/ pattern Searches forward in the buffer for the next occurrence of the
pattern of text. Positions the cursor under the first character of the
pattern.

Table D-4. vi Scrolling Commands

<CTRL><f > Scrolls the screen forward a full window, revealing the window
of text below the current window.

<CTRL><d> Scrolls the screen down a half window, revealing lines of text
below the current window.

<CTRL> Scrolls the screen back a full window, revealing the window of
text above the current window.

<CTRL><u> Scrolls the screen up a half window, revealing the lines of text
above the current window.

Quick Reference to vi Commands

D-5

?pattern Searches backward in the buffer for the first occurrence of pattern
of text. Positions the cursor under the first character of the pattern.

n Repeats the last search command.

N Repeats the search command in the opposite direction.

Overview of vi Commands for Inserting Text 4

Table D-5 lists and describes the vi text insertion commands.

Overview of vi Commands for Deleting Text 4

Table D-6 lists and describes the vi deleting commands.

Command Mode:

x Deletes the current character.

dw Deletes a word (or part of a word) from the cursor through the
next space or to the next punctuation.

dd Deletes the current line.

ndx Deletesn number of text objects of typex, wherex may be as a
word, line, sentence, or paragraph.

Table D-5. vi Text Insertion Commands

a Enters text input mode and appends text after the cursor.

i Enters text input mode and inserts text before the cursor.

o Enters text input mode by opening a new line immediately below
the current line.

O Enters text input mode by opening a new line immediately above
the current line.

<ESC> Escape; returns to command mode from text input mode (entered
with any of the above commands).

Table D-6. vi Deleting Commands

Text Input Mode:

<BACKSPACE> <ESC> Backspace; deletes the current character.

<CTRL> <w> <ESC> Deletes the current word delimited by blanks.

@ (Kill Character)<ESC> Erases the current line of text.

User’s Guide

D-6

D Deletes the current line from the cursor to the end of the line.

Overview of vi Commands for Modifying Text 4

r Replaces the current character.

s Deletes the current character and appends text until the <ESC>
command is typed.

S Replaces all the characters in the current line.

~ Changes uppercase to lowercase or lowercase to uppercase.

cw Replaces the current word or the remaining characters in the
current word with new text, from the cursor to the next space or
punctuation.

cc Replaces all the characters in the current line.

ncx Replacesn number of text objects of typex, wherex may be a
word, line, sentence, or paragraph.

C Replaces the remaining characters in the current line, from the
cursor to the end of the line.

Overview of Cutting and Pasting Text with vi 4

p Places the contents of the temporary buffer (containing the output
of the last delete or yank command) into the text after the cursor
or below the current line.

yy Yanks (extracts) a specified line of text and puts it into a
temporary buffer.

nyx Extracts a copy ofn number of text objects of typex and puts it
into a temporary buffer.

Places a copy of text object x into a register named
by a letterl. x may be a word, line, sentence, or paragraph.

Places the contents of register x after the cursor or
below the current line.

Quick Reference to vi Commands

D-7

Overview of Special vi Commands 4

Table D-7 lists and describes special vi commands.

Overview of ex Line Editor Commands Used with vi 4

 Table D-8 lists and describes ex commands used with vi.

Table D-7. Special vi Commands

<CTRL><q> Gives the line number of current cursor position in the buffer and modi-
fication status of the file.

. Repeats the action performed by the last command.

u Undoes the effects of the last command.

U Restores the current line to its state prior to present changes.

J Joins the line immediately below the current line with the current line.

<CTRL><l> Clears and redraws the current window.

Table D-8. ex Commands Used with vi

: Tells vi that the next commands you issue will be line editor
commands.

:sh Temporarily returns to the shell to perform some shell commands
without leavingvi .

<CTRL><d> Escapes the temporary return to the shell and returns tovi so
you can edit the current window.

:n Goes to thenth line of the buffer.

:x,zw filename Writes lines from the numberx through the numberz into a new
file calledfilename.

:$ Moves the cursor to the beginning of the last line in the buffer.

:.,$d Deletes all the lines from the current line to the last line.

:r filename Inserts the contents of the filefilename under the current line of
the buffer.

:s /text/new_text/ Replaces the first instance oftext on the current line with
new_text.

:s /text/new_text/g Replace every occurrence oftext on the current line with
new_text.

:g /text/s//new_text/g Changes every occurrence oftext in the buffer tonew_text.

User’s Guide

D-8

Overview of Commands for Quitting vi 4

Table D-9 lists and describes ex commands for quitting vi.

Overview of Special Options for vi 4

Table D-10 lists and describes special options for vi.

Table D-9. Commands for Quitting vi

ZZ Writes the buffer to the file if you haven't already done so, and
quitsvi .

:wq Writes the buffer to the file and quitsvi

:w filename
:q

Writes the buffer to the new filefilename and quitsvi .

:w! filename
:q

Overwrites the existing filefilename with the contents of the
buffer and quitsvi .

:q! Quitsvi whether or not changes made to the buffer were written
to a file. Does not incorporate changes made to the buffer since
the last write (:w) command.

:q Quitsvi if changes made to the buffer were written to a file.

Table D-10. Special Options for vi

vi file1 file2 file3 Enters three files into thevi buffer to be edited. Those files are
file1, file2, andfile3.

:w
:n

When more than one file has been called on a singlevi
command line, writes the buffer to the file you are editing and
then calls the next file in the buffer (use:n only after:w).

vi -r file1 Restores the changes made tofile1 that were lost because of an
interrupt in the system.

view file1 Displaysfile1 in the read-only mode ofvi . Any changes made to
the buffer will not be allowed to be written to the file.

E-1

E
Summary of Shell Command Language

5
3
5

Summary of Shell Command Language 5

This appendix is a summary of the shell command language discussed in Chapter 9,
“Programming with the UNIX System Shell”. The first section reviews metacharacters,
special characters, input and output redirection, variables, and processes. These are
arranged by topic in the order that they were discussed in the chapter. The second section
contains models of the shell programming constructs.

The Vocabulary of Shell Command Language 5

Special Characters in the Shell 5

*\ ?\ [] Metacharacters; used to provide a shortcut to referencing
filenames, through pattern matching.

& Executes commands in the background mode.

; Sequentially executes several commands typed on one line, each
pair separated by; .

\ Turns off the meaning of the immediately following special
character.

´...´ Enclosing single quotes turn off the special meaning of all charac-
ters except single quotes.

“...” Enclosing double quotes turn off the special meaning of all
characters except$, single quotes, and double quotes.

Redirecting Input and Output 5

< Redirects the contents of a file into a command.

> Redirects the output of a command into a new file, or replaces the
contents of an existing file with the output.

>> Redirects the output of a command so that it is appended to the
end of a file.

User’s Guide

E-2

| Directs the output of one command so that it becomes the input of
the next command.

`command` Substitutes the output of the enclosed command in place of
`command.̀

Executing and Terminating Processes 5

batch Submits the following commands to be processed at a time when
the system load is at an acceptable level. <CTRL>-<d> ends the
batch command.

at Submits the following commands to be executed at a specified
time. <CTRL>-<d> ends theat command.

at -l Reports which jobs are currently in theat or batch queue.

at -r Removes theat or batch job from the queue.

ps Reports the status of the shell processes.

kill PID Terminates the shell process with the specified process ID (PID).

nohup command list & Continues background processes after logging out.

Making a File Accessible to the Shell 5

chmod u+x filename Gives the user permission to execute the file (useful for shell
program files).

mv filename $HOME/bin/filename
Moves your file to thebin directory in your home directory. This
bin holds executable shell programs that you want to be
accessible. Make sure thePATH variable in your.profile file
specifies thisbin . If it does, the shell will search in$HOME/bin
for your file when you try to execute it. If yourPATH variable
does not include yourbin , the shell will not know where to find
your file and your attempt to execute it will fail.

filename The name of a file that contains a shell program becomes the
command that you type to run that shell program.

Variables 5

positional parameter
A numbered variable used within a shell program to reference
values automatically assigned by the shell from the arguments of
the command line invoking the shell program.

echo A command used to print the value of a variable on your terminal.

Summary of Shell Command Language

E-3

$# A special parameter that contains the number of arguments with
which the shell program has been executed.

$* A special parameter that contains the values of all arguments with
which the shell program has been executed.

named variable A variable to which the user can give a name and assign values.

Variables Used in the System 5

HOME Denotes your home directory; the default variable for thecd
command.

PATH Defines the path your login shell follows to find commands.

MAIL Gives the name of the file containing your electronic mail.

PS1, PS2 Defines the primary and secondary prompt strings, respectively.

TERM Defines the type of terminal.

LOGNAME Login name of the user.

IFS Defines the internal field separators (normally the space, the tab,
and the carriage return).

TERMINFO Allows you to request that thecurses and terminfo
subroutines search a specified directory tree before searching the
default directory for your terminal type.

TZ Sets and maintains the local time zone.

User’s Guide

E-4

F-1

F
Setting up the Terminal

6
4
6

Setting the TERM Variable 6

Because some commands are terminal dependent, the system must know what type of
terminal you are using whenever you log in. The system determines the characteristics of
your terminal by checking the value of a variable calledTERM which holds the name of a
terminal. If you have put the name of your terminal into this variable, the system will be
able to execute all programs in a way that is suitable for your terminal.

This method of telling the UNIX system what type of terminal you are using is called
setting the terminal configuration. To set your terminal configuration, enter the command
lines shown, substituting the name of your terminal forterminal_name:

$ TERM=terminal_name<RETURN>
$ export TERM <RETURN>
$ tput init <RETURN>

These lines must be executed in the order shown; otherwise, they will not work. Also, this
procedure must be repeated every time you log in. Therefore, most users put these lines
into a file called.profile that is automatically executed every time they log in.

The first two lines of input tell the UNIX system shell what type of terminal you are using.
The tput init command line instructs your terminal to behave in ways that the UNIX
system expects a terminal of that type to behave. For example, it sets the terminal's left
margin and tabs, if those capabilities exist for the terminal.

The tput(1) command uses the entry corresponding to your terminal in its database to
make terminal dependent capabilities and information available to the shell. Because the
values of these capabilities differ for each type of terminal, you must execute thetput
init command line every time you change theTERM variable.

For each terminal type, a set of capabilities is defined in a database. This database is
usually found in the/usr/share/lib/terminfo directory, depending on the system.

The following sections describe how you can determine whatterminal_names are
acceptable. Further information about the capabilities in theterminfo database can be
found on theterminfo(4) manual page in the onlineOperating System API Reference.

Acceptable Terminal Names 6

The UNIX system recognizes a wide range of terminal types. Before you put a terminal
name into theTERM variable, you must make sure that your terminal type is recognized by
the system.

User’s Guide

F-2

You must also verify that the name you put into theTERM variable is a recognized
terminal name. There are usually at least two recognized names: the name of the
manufacturer and the model number. However, there are several ways to represent these
names: by varying the use of uppercase and lowercase, using abbreviations, and so on. Do
not put a terminal name in theTERM variable until you have verified that the system
recognizes it.

The tput command provides a quick way to make sure your terminal is supported by
your system. Enter

$tput -T terminal_name longname <RETURN>

If your system supports your terminal it will respond with the complete name of your
terminal. Otherwise, you will get an error message.

To find an acceptable name that you can put in theTERM variable, find a listing for your
terminal in the/usr/share/lib/terminfo directory. This directory contains a
collection of files with single-character names.

Each file, in turn, holds a list of terminal names that all begin with the name of the file.
(This name can be either a letter, such as the initial A in AT&T, or a number, such as the
initial 5 in 5425.)

Find the file whose name matches the first character of the name of your terminal. Then
list the contents of the file and look for your terminal.

You can also check with your system administrator for a list of terminals supported by
your system, and the acceptable names you can put in theTERM variable.

For example, suppose your terminal is a Model wyse150. Your login isjim and you are
currently in your home directory.

1. First, verify that your system supports your terminal by running thetput
command.

2. Nex t , fi nd an accep tab le name fo r i t i n the
/usr/share/lib/terminfo/a directory.

The following screen shows which commands you need to do this:

Setting up the Terminal

F-3

Now you are ready to put the name you found,wyse150 , in theTERM variable.
Whenever you do this, you must also exportTERM and executetput init .

$ TERM=wyse150 <RETURN>
$ export TERM <RETURN>
$ tput init <RETURN>

The UNIX system now knows what type of terminal you are using and will execute
commands appropriately.

$ tput -wyse150 longname <RETURN>
wyse150
$ cd /usr/share/lib/terminfo/a <RETURN>
$ ls *150 <RETURN>
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150
wyse150

User’s Guide

F-4

G-1

7
5

G
Glossary

8
6
7

Glossary 7

address Generally, a number that indicates the location of information in
the computer's memory. In the UNIX system, the address is part
of an editor command that specifies a line number or range.

append mode A text editing mode in which the characters you type are entered
as text into the text editor's buffer. In this mode you enter
(append) text after the current position in the buffer. See “text
input mode,” compare with “command mode” and “insert mode.”

argument The element of a command line that specifies data on which a
command is to operate. Arguments follow the command name
and can include numbers, letters, or text strings. For instance, in
the commandlp -m myfile, lp is the command andmyfile is
the argument. See “option.”

associative array A collection of data (an array) where individual items may be
indexed (accessed) by a string, rather than by an integer as is
common in most programming languages. The data item is said to
be “associated” with the pairarray-name: string, wherestring is
the index.

ASCII (pronounced “as'-kee”) American Standard Code for Information
Interchange, a standard for data transmission that is used in the
UNIX system. ASCII assigns sets of 0s and 1s to represent 128
characters, including alphabetical characters, numerals, and
standard special characters, such as #, $, %, and &.

background A type of program execution where you request the shell to run a
command away from the interaction between you and the
computer (“in the background”). While this command runs, the
shell prompts you to enter other commands through the terminal.
Compare with “foreground.”

baud rate A measure of the speed of data transfer from a computer to a
peripheral device (such as a terminal) or from one device to
another. Common baud rates are 300, 1200, 4800, and 9600. As a
general guide, divide a baud rate by 10 to get the approximate
number of English characters transmitted each second.

buffer A temporary storage area of the computer used by text editors to
make changes to a copy of an existing file. When you edit a file,

User’s Guide

G-2

its contents are read into a buffer, where you make changes to the
text. For the changes to become a part of the permanent file, you
must write the buffer contents back into the file. See “permanent
file.”

child directory See “subdirectory.”

coerce To force a data object to be treated a particular way.

command The name of a file that contains a program that can be executed by
the computer on request. Compiled programs and shell programs
are forms of commands.

command file See “executable file.”

command language interpreter
A program that acts as a direct interface between you and the
computer. In the UNIX system, a program called the shell takes
commands and translates them into a language understood by the
computer.

command line A line containing one or more commands, ended by typing a
RETURN. The line may also contain options and arguments for
the commands. You type a command line to the shell to instruct
the computer to perform one or more tasks.

command mode A text editing mode in which the characters you type are
interpreted as editing commands. This mode permits actions such
as moving around in the buffer, deleting text, or moving lines of
text. See “text input mode,” compare with “append mode” and
“insert mode.”

concatenate To combine two strings into one that comprises the characters of
the first followed by the characters of the second.

context search A technique for locating a specified pattern of characters (called a
string) when in a text editor. Editing commands that cause a
context search scan the buffer, looking for a match with the string
specified in the command. See “string.”

control character A nonprinting character that is entered by holding down the
control key and typing a character. Control characters are often
used for special purposes. For instance, when viewing a long file
on your screen with thecat command, typing control-s
<CTRL><s>) stops the display so you can read it, and typing
control-q <CTRL><q>) continues the display.

current directory The directory in which you are presently working. You have direct
access to all files and subdirectories contained in your current
directory. The shorthand notation for the current directory is a dot
(.).

cursor A cue printed on the terminal screen that indicates the position at
which you enter or delete a character. It is usually a rectangle or a
blinking underscore character.

Glossary

G-3

Discretionary Access Control (DAC)
If you own a file, DAC allows you to decide who has the right to
read it, write in it (make changes to it), or, if it is a program, to
execute it. You can also restrict permissions for directories. When
you grant execute permissions for a directory, you allow the
specified users to change directory to it. An administrator with the
appropriate privilege can override the DAC restrictions set by the
owner of a file. For more detail, see Chapter 4,“Using the File
System”. Compare with “Mandatory Access Control (MAC).”

default An automatically assigned value or condition that exists unless
you explicitly change it. For example, the shell prompt string has
a default value of$ unless you change it.

delimiter A character that logically separates words or arguments on a
command line. Two frequently used delimiters in the UNIX
system are the space and the tab.

diagnostic A message printed at your terminal to indicate an error
encountered while trying to execute some command or program.
Generally, you need not respond directly to a diagnostic message.

directory A type of file used to group and organize other files or directories.
You cannot directly enter text or other data into a directory. (For
more detail, see Appendix A, “Summary of the File System.”)

disk A magnetic data storage device consisting of several round plates
similar to phonograph records. Disks store large amounts of data
and allow quick access to any piece of data.

electronic mail The feature of an operating system that allows computer users to
exchange written messages via the computer. The UNIX system
mail andmailx commands provides electronic mail in which
the addresses are the login names of users.

environment The conditions under which you work while using the UNIX
system. Your environment includes those things that personalize
your login and allow you to interact in specific ways with the
UNIX system and the computer. For example, your shell
environment includes such things as your shell prompt string,
specifics for backspace and erase characters, and commands for
sending output from your terminal to the computer.

erase character The character you type to delete the previous character you typed.
The UNIX system default erase character is#; some users set the
erase character to the <BACKSPACE> key.

escape A means of getting into the shell from within a text editor or other
program.

execute The computer's action of running a program or command and
performing the indicated operations.

executable file A file that can be processed or executed by the computer without
any further translation. When you type in the file name, the
commands in the file are executed. See “shell procedure.”

User’s Guide

G-4

file A collection of information in the form of a stream of characters.
Files may contain data, programs, or other text. You access UNIX
system files by name. See “ordinary file,” “permanent file,” and
“executable file.”

file name A sequence of characters that denotes a file. (In the UNIX system,
a slash character (/) cannot be used as part of a file name.)

file system A collection of files and the structure that links them together. The
UNIX file system is a hierarchical structure. (For more detail, see
Appendix A, “Summary of the File System.”)

filter A command that reads the standard input, acts on it in some way,
and then prints the result as standard output.

final copy The completed, printed version of a file of text.

foreground The normal type of command execution. When executing a
command in foreground, the shell waits for one command to end
before prompting you for another command. In other words, you
enter something into the computer and the computer “replies”
before you enter something else. Compare with “background.”

full duplex A type of data communication in which a computer system can
transmit and receive data simultaneously. Terminals and modems
usually have settings for half duplex (one-way) and full duplex
communication; the UNIX system uses the full-duplex setting.

full pathname A pathname that originates at the root directory of the UNIX
system and leads to a specific file or directory. Each file and
directory in the UNIX system has a unique full pathname,
sometimes called an absolute pathname. See “pathname,”
compare with “relative pathname.”

global A term that indicates the complete or entire file. While normal
editor commands commonly act on only the first instance of a
pattern in the file, global commands can perform the action on all
instances in the file.

hardware The physical machinery of a computer and any associated
devices.

hidden character One of a group of characters within the standard ASCII character
set that are not printable. Characters such as backspace, escape,
and control-d are examples.

home directory The directory in which you are located when you log in to the
UNIX system; also known as your login directory.

input/output The path by which information enters a computer system (input)
and leaves the system (output). An input device that you use is
the terminal keyboard and an output device is the terminal display.

insert mode A text editing mode in which the characters you type are entered
as text into the text editor's buffer. In this mode you enter (insert)

Glossary

G-5

text before the current position in the buffer. See “text input
mode,” compare with “append mode” and “command mode.”

interactive Describes an operating system (such as the UNIX system) that
can handle immediate-response communication between you and
the computer. In other words, you interact with the computer
from moment to moment.

job identifiers A value assigned to components of a remote administrative
activity or to the entire remote task; there are three types of job
identifiers: service job identifiers representing an application view
of a remote operation, administrative job identifiers representing
the invocation of an administrative command per destination
machine, and primitive job identifiers representing the invocation
of a remote administration primitive to or at a single destination
machine.

line editor An editing program in which text is operated upon on a line-by-
line basis in a file. Commands for creating, changing, and
removing text use line addresses to determine where in the file the
changes are made. Changes can be viewed after they are made by
displaying the lines changed. See “text editor,” compare with
“screen editor.”

login The procedure used to gain access to the UNIX operating system.

login directory See “home directory.”

login name A string of characters used to identify a user. Your login name is
different from other login names.

log off The procedure used to exit from the UNIX operating system.

machine alias An abbreviated notation for a collection of remote machines;
machine aliases can be used on command lines to facilitate the
specifications of many destination machines.

Mandatory Access Control (MAC)
MAC is controlled by the system (as configured by the system
administrator), and restricts a user's access to data based on the
sensitivity and topics associated with the data and the user. The
owner of a file has no control over the MAC restrictions on the
file. For more detail, see Chapter 14, “Managing Files Securely”.
Compare with “Discretionary Access Control (DAC).”

metacharacter A subset of the set of special characters that have special meaning
to the shell. The metacharacters are* , ?, and the pair[] .
Metacharacters are used in patterns to match file names.

mode In general, a particular type of operation (for example, an editor's
append mode). In relation to the file system, a mode is an octal
number used to determine who can have access to your files and
what kind of access they can have. See “permissions.”

modem A device that connects a terminal and a computer by way of a
telephone line. A modem converts digital signals to tones and

User’s Guide

G-6

converts tones back to digital signals, allowing a terminal and a
computer to exchange data over standard telephone lines.

multitasking The ability of an operating system to execute more than one
program at a time.

multilevel directory (MLD)
A directory in which any user can create files under the
“Mandatory Access Control (MAC)” mechanism, but files created
by users logged in at other levels are “invisible.” For more detail,
see Chapter 14, “Managing Files Securely”.

multiuser The ability of an operating system to support several users on the
system at the same time.

operating system The software system on a computer under which all other
software runs. The UNIX system is an operating system.

option Special instructions that modify how a command runs. Options
are a type of argument that follow a command and usually precede
other arguments on the command line. By convention, an option is
preceded by a minus sign (-); this distinguishes it from other
arguments. You can specify more than one option for some
commands given in the UNIX system. For example, in the
commandls -l -a directory , -l and-a are options that
modify thels command. See “argument.”

ordinary file A file, containing text or data, that is not executable. See
“executable file.”

output Information processed in some fashion by a computer and
delivered to you by way of a printer, a terminal, or a similar
device.

parameter A type of variable used in shell programs to access values related
to the arguments on the command line or the environment in
which the program is executed. See “positional parameter.”

parent directory The directory immediately above a subdirectory or file in the file
system organization. The shorthand notation for the parent
directory is two dots (..).

parity A method used by a computer for checking that the data received
matches the data sent.

password A code word known only to you that is called for in the login
process. The computer uses the password to verify that you may
indeed use the system.

pathname A sequence of directory names separated by the slash character
(/) and ending with the name of a file or directory. The pathname
defines the connection path between some directory and the
named file.

Glossary

G-7

peripheral device Auxiliary devices under the control of the main computer, used
mostly for input, output, and storage functions. Some examples
include terminals, printers, and disk drives.

permanent file The data stored permanently in the file system structure. To
change a permanent file, you can make use of a text editor, which
maintains a temporary work space, or buffer, apart from the
permanent files. Once changes have been made to the buffer, they
must be written to the permanent file to make the changes
permanent. See “buffer.”

permissions Access modes, associated with directories and files, that permit or
deny system users the ability to read, write, and/or execute the
directories and files. You determine the permissions for your
directories and files by changing the mode for each one with the
chmod command.

pipe A method of redirecting the output of one command to be the
input of another command. It is named for the character| that
redirects the output. For example, the shel l command
who | wc -l pipes output from thewho command to thewc
command, telling you the total number of people logged into your
UNIX system.

pipeline A series of filters separated by| (the pipe character). The output
of each filter becomes the input of the next filter in the line. The
last filter in the pipeline writes to its standard output, or may be
redirected to a file. See “filter.”

positional parametersNumbered variables used within a shell procedure to access the
strings specified as arguments on the command line invoking the
shell procedure. The name of the shell procedure is positional
parameter$0. See “variable” and “shell procedure.”

primitives A primitive operation that is the result of the decomposition of a
remote administrative task for execution over a network service;
examples are file transfer (ft), directory transfer (dt), and remote
execution (re).

printer An output device that prints the data it receives from the computer
on paper.

process Generally a program that is at some stage of execution. In the
UNIX system, it also refers to the execution of a computer
environment, including contents of memory, register values, name
of the current directory, status of files, information recorded at
login time, and various other items.

program The instructions given to a computer on how to do a specific task.
Programs are user-executable software.

prompt A cue displayed at your terminal by the shell, telling you that the
shell is ready to accept your next request. The prompt can be a
character or a series of characters. The UNIX system default
prompt is the dollar sign character ($).

User’s Guide

G-8

read-ahead capabilityThe ability of the UNIX system to read and interpret your input
while sending output information to your terminal in response to
previous input. The UNIX system separates input from output
and processes each correctly.

relative pathname The pathname to a file or directory which varies in relation to the
directory in which you are currently working. See “pathname,”
compare with “full pathname.”

remote system A system other than the one on which you are working.

root The source directory of all files and directories in the file system;
designated by the slash character (/).

screen editor An editing program in which text is operated on relative to the
position of the cursor on a visual display. Commands for entering,
changing, and removing text involve moving the cursor to the area
to be altered and performing the necessary operation. Changes are
viewed on the terminal display as they are made. See “text editor,”
compare with “line editor.”

search pattern See “string.”

search string See “string.”

secondary prompt A cue displayed at your terminal by the shell to tell you that the
command typed in response to the primary prompt is incomplete.
The UNIX system default secondary prompt is the “greater than”
character (>).

service identifier A string supplied by an administrative command when it requests
a remote operation primitive that associates the primitive with
administrative services; a service identifier determines default file
locations in the remote administration directory structure.

shell A UNIX system program that handles the communication
between you and the computer. The shell is also known as a
command language interpreter because it translates your
commands into a language understandable by the computer. The
shell accepts commands and causes the appropriate program to be
executed. Thesh(1) andksh(1) entries in onlineCommand
Reference describe two of the available shells.

shell procedure An executable file that is not a compiled program. A shell
procedure calls the shell to read and execute commands contained
in a file. This lets you store a sequence of commands in a file for
repeated use. It is also called a shell program or command file.
See “executable file.”

silent character See “hidden character.”

software Instructions and programs that tell the computer what to do.
Contrast with “hardware.”

source code The uncompiled version of a program written in a language such
as C or Pascal. The source code must be translated to machine

Glossary

G-9

language by a program known as a compiler before the computer
can execute the program.

special character A character having special meaning to a program. Shell special
characters are used for common shell functions such as file
redirection, piping, background execution, and file name
expansion. Shell special characters include<, >, |, ;, &,
*, ?, [, and] . Editors such ased andvi also have special
characters.

special file A file (called a device driver) used as an interface to an
input/output device, such as a user terminal, a disk drive, or a line
printer.

standard error An open file that is normally connected directly to a primary
output device, such as a terminal printer or screen. Error messages
and other diagnostic output normally goes to this file and then to
the output device. You can redirect the standard error output into
another file instead of to the printer or screen; use an argument in
the form2> file. Error output will then go to the specified file.

standard input An open file that is normally connected directly to the keyboard.
Standard input to a command normally goes from the keyboard to
this file and then into the shell. You can redirect the standard
input to come from another file instead of from the keyboard; use
an argument in the form< file. Input to the command will then
come from the specified file.

standard output An open file that is normally connected directly to a primary
output device, such as a terminal printer or screen. Standard
output from the computer normally goes to this file and then to the
output device. You can redirect the standard output into another
file instead of to the printer or screen; use an argument in the form
> file. Output will then go to the specified file.

string Designation for a particular group or pattern of characters, such as
a word or phrase, that may contain special characters. In a text
editor, a context search interprets the special characters and
attempts to match the specified pattern with a string in the editor
buffer.

string variable A sequence of characters that can be the value of a shell variable.
See “variable.”

subdirectory A directory pointed to by a directory one level above it in the file
system organization; also called a child directory.

system administrator The person who monitors and controls the computer on which
your UNIX system runs; sometimes referred to as a super-user.

terminal An input/output device connected to a computer system, usually
consisting of a keyboard with a video display or a printer. A
terminal allows you to give the computer instructions and to
receive information in response.

User’s Guide

G-10

text editor Software for creating, changing, or removing text with the aid of a
computer. Most text editors have two modes—an input mode for
typing in text and a command mode for moving or modifying text.
Two examples are the UNIX system editorsed andvi . See “line
editor” and “screen editor.”

text formatter A program that prepares a file of text for printed output. To make
use of a text formatter, your file must also contain some special
commands for structuring the final copy. These special commands
tell the formatter to justify margins, start new paragraphs, set up
lists and tables, place figures, and so on. Two text formatters
available on the UNIX system arenroff andtroff .

text input mode A text editing mode in which the characters you type are entered
as text into the text editor's buffer. To execute a command, you
must leave text input mode. See “command mode,” compare with
“append mode” and “insert mode.”

timesharing A method of operation in which several users share a common
computer system seemingly simultaneously. The computer
interacts with each user in sequence, but the high-speed operation
makes it seem that the computer is giving each user its complete
attention.

tool A package of software programs.

Trusted Computing Base (TCB)
The totality of the software, firmware, and hardware that enforces
a security policy. For more detail, see Chapter 2, “What Is the
UNIX System?“ chapter.

tty Historically, the abbreviation for a Teletype® terminal. Today, it is
generally used to denote any user terminal.

UNIX system A general-purpose, multiuser, interactive, time-sharing operating
system developed by AT&T Bell Laboratories. The UNIX system
allows limited computer resources to be shared by several users
and efficiently organizes the user's interface to a computer system.

user Anyone who uses a computer or an operating system.

user-defined Something determined by the user.

user-defined variable A named variable given a value by the user. See “variable.”

utility Software used to carry out routine functions or to assist a
programmer or system user in establishing routine tasks.

variable A symbol whose value may change. In the shell, a variable is a
symbol representing some string of characters. Variables may be
used in an interactive shell as well as within a shell procedure.
Within a shell procedure, positional parameters and keyword
parameters are two forms of variables.

Glossary

G-11

video display terminal
A terminal that uses a television-like screen (a monitor) to display
information. A video display terminal can display information
much faster than printing terminals.

visual editor See “screen editor.”

working directory See “current directory.”

User’s Guide

G-12

Index-1

Symbols

. (see current directory) 4-7

. . (see parent directory) 4-7

.exrc file, creating 7-71

.mailrc 10-31-10-34

.profile 5-5

.profile file, defining EXINIT 7-70
/dev, null 9-38

A

abort 11-2
absolute pathname (see pathname) 4-5
Access Control List (ACL) 4-20, 4-22, 4-35
access permission bits 4-22
access permissions 2-13
aliases 11-5
arithmetic, awk(1) 13-15
ASCII (American Standard Code for Information

Interchange) G-1
at(1) 9-16, 9-17
at(1) command B-1
audit 2-23
awk(1) 13-1-13-47
awk(1), arithmetic 13-15
awk(1), arrays 13-25
awk(1), built-in arithmetic functions 13-15, 13-44
awk(1), built-in string functions 13-18, 13-43
awk(1), built-in variables 13-15, 13-45
awk(1), command line arguments 13-35
awk(1), control flow 13-23, 13-42
awk(1), cooperation with the shell 13-36
awk(1), error messages 13-8
awk(1), field variable 13-21
awk(1), fields 13-3
awk(1), input 13-31-13-35, 13-42
awk(1), input from files and pipes 13-32
awk(1), multi-line record 13-32
awk(1), operators 13-44
awk(1), output 13-28-13-31, 13-42
awk(1), output to files and pipes 13-30-13-31

awk(1), patterns 13-5, 13-9, 13-14, 13-42
awk(1), regular expressions 13-11-13-13, 13-45
awk(1), relational expressions 13-10
awk(1), sample applications 13-38-13-41
awk(1), strings and string functions 13-18
awk(1), type coercion 13-21
awk(1), user-defined functions 13-27

B

background execution 9-6, 9-7, G-1
background process 11-8, 11-9
backslash () 3-6, 9-7
BACKSPACE key 3-5
banner page 8-15
banner(1) 9-9, 9-13
banner(1) command B-1
batch(1) 9-15
batch(1) command B-1
baud rate 3-2, 3-9, G-1
bin directory 9-22
boot 2-9, 2-22
BREAK key 3-6

C

call terminal (see ct) 12-1
call UNIX computer (see cu) 12-1
cancel command 8-12, 8-22
cat(1) 4-35, 4-36-4-38, 9-11
cd(1) 4-12, 4-17-4-19, B-1
child directory 4-2
chmod(1) 4-20, 4-33, 4-35, 4-53, 9-21
chown(1) 4-53, 4-54
command prompt 3-4
command substitution 9-14
commands 2-3-2-6
commands, background execution 9-6, 9-7
commands, cancel 8-12
commands, definition of 2-1
commands, executing 9-15-9-19

Index

User’s Guide

Index-2

commands, flow of control 2-5
commands, how to execute 2-4-2-6
commands, lp(1) 8-11, 8-22
commands, lpstat(1) 8-8-8-11, 8-22
commands, purpose of 2-3
commands, run at a later time 9-15, 9-16
commands, sequential execution 9-7
commands, simple 3-15
commands, stopping 3-6
commands, summary B-1-B-5
commands, syntax 2-4-2-6
commands, vi(1) 7-12, 7-24, 7-32, 7-37, 7-49, 7-52, 7-

59, 7-61
commands, what they do 2-4
communicating, electronically 5-7
communicating, with the UNIX system 3-8-3-17
communication tutorial 12-1-12-23
communication, remote machine (see remote machine

communication) 12-1
concatenating files 4-36-4-38
control character G-2
control keys, how to use 3-7
copy directories, using rcp 11-4
copying files 4-43-4-46
copying files, between machines (rcp) 11-2, 11-3
copying files, using ftp 11-11, 11-13
copying files, using rcp 11-3
copying files, using tftp 11-15
cp 4-35, 4-43-4-46
ct(1C) 12-10-12-12
cu(1C) 12-12-12-15
current directory 4-7, G-2
cursor G-2
cursor movement, vi(1) 7-6-7-9
cut(1) 9-13
cut(1) command B-2

D

daemon 11-2
daemons (network), remote 11-5
date(1) 9-14
date(1) command 3-15, B-2
delete functions, reassigning the 3-5
deleting, current line 3-4
deleting, last character typed 3-5
Devices file (BNU), and uucp command 12-4
dial terminal (see ct) 12-1
dial UNIX computer (see cu) 12-1
diff(1) 4-54, 4-55, B-2
directories 4-1
directories, changing 4-17-4-19

directories, creating 4-12-4-13
directories, current 4-4-4-5
directories, home 4-3, 4-4
directories, listing contents of 4-13-4-17
directories, naming 4-10
directories, organizing 4-12-4-20
directories, purpose of 2-7
directories, removing 4-19-4-20
directories, root 2-8-2-9
directories, tree structure 4-1
directory, bin 9-22
Discretionary Access Control (DAC) 2-13, 2-14, 14-1
displaying non-printing characters ed(1) 6-62
domain-style addressing 10-8, 10-9
dot 4-7
dot dot 4-7

E

echo(1) 9-3, 9-34
ed(1) 5-3, 6-1
ed(1), adding text 6-23-6-27
ed(1), changing text 6-26, 6-35-6-40
ed(1), command mode 6-3
ed(1), commands 6-7, 6-10-6-11, 6-27, C-1-C-4
ed(1), copying text 6-54
ed(1), creating text 6-3, 6-23
ed(1), definition of 6-1
ed(1), deleting text 6-5, 6-33, C-3
ed(1), delimiters 6-40
ed(1), displaying non-printing characters 6-62
ed(1), displaying text 6-4, 6-22-6-23, C-2
ed(1), entering 6-2
ed(1), global search 6-18, 6-19
ed(1), global substitution 6-38-6-40
ed(1), help commands 6-60-6-61
ed(1), input mode 6-3
ed(1), inserting text 6-25, C-2
ed(1), joining lines 6-55
ed(1), line addressing 6-11-6-19, C-2
ed(1), moving text 6-6, 6-52-6-58, C-3
ed(1), numerical address 6-11
ed(1), pattern matching 6-42-6-49
ed(1), patterns 6-15-6-17, 6-19
ed(1), print current filename 6-62-6-63
ed(1), quitting 6-7
ed(1), reading in contents of a file 6-57
ed(1), recovering from hangup 6-64-6-65
ed(1), regular expressions 6-42-6-49
ed(1), relative addressing 6-14-6-15
ed(1), saving files 6-6-6-7
ed(1), search for text 6-15-6-17, 6-18, 6-19, 6-42-6-49

Index

Index-3

ed(1), shell escape 6-64
ed(1), special characters 6-42-6-49
ed(1), substituting text 6-35-6-40, C-3
ed(1), symbolic address 6-12
ed(1), undo previous command 6-34
ed(1), writing text to a file 6-56
editing text (see also ed(1) and vi(1)) 5-1-5-4
enable(1M) 8-4-8-5, 8-22
environment variable, CDPATH 9-27
environment variable, HOME 9-27, 9-51
environment variable, IFS 9-27
environment variable, LANG 9-51
environment variable, LC_MESSAGES 9-51
environment variable, LOGNAME 9-27
environment variable, MAIL 9-27
environment variable, PATH 9-22, 9-27, 9-52
environment variable, PS1 9-27, 9-52-9-53
environment variable, PS2 9-27
environment variable, TERM 9-27, 9-52
environment variable, TERMINFO 9-27
environment variable, TZ 9-27
environment, login 5-5-5-6, 9-49-9-53, G-3
error messages 14-15
errors, correcting 3-4
escape character, telnet(1) 11-10
escape special character 3-6
EXINIT environment variable, defining 7-70
export shell command 9-44

F

file system 2-6-2-10
file system, definition of 2-2
file system, directories 2-7, A-2
file system, example 2-8, 4-2
file system, hierarchical structure of 2-6
file system, how to use 4-1
file system, ordinary 2-7
file system, special 2-8
file system, structure A-1-A-3
file system, structure of 4-1-4-2
file system, symbolic links 2-8
file system, system layout 2-8
file transfer, aborting 11-14
file transfer, getting a listing of remote files 11-13
file transfer, preparing the connection 11-11, 11-12
file transfer, quitting 11-14
file transfer, using ftp 11-13
files, advanced commands 4-53-4-59
files, basic commands 4-35-4-53
files, change ownership 4-53, 4-54
files, comparing contents 4-55

files, concatenating 4-36-4-38
files, counting lines, words, characters in 4-48-4-50
files, create in ed(1) 6-2, 6-3
files, creating in vi(1) 7-4
files, displaying contents 4-36-4-43
files, making a copy 4-43-4-46
files, merging 4-57-4-59
files, moving 4-46-4-47
files, naming 4-10
files, ordinary 4-1
files, paging through 4-38-4-41
files, permissions 4-20, 4-33, 4-53
files, printing 4-42-4-43, 8-1
files, protecting 4-20, 4-33, 4-53
files, removing 4-47-4-48
files, renaming 4-46-4-47
files, retrieve from public directory (see uupick) 12-1
files, searching for a pattern 4-55-4-57
files, sorting 4-57-4-59
files, special 2-8-2-10, 4-1, G-9
files, transfer (see send files) 12-1
finger(1) 11-15
foreground execution G-4
form-letter generation, awk(1) 13-41
ftp(1) 11-11
full duplex 3-2, 3-6, G-4
full pathname (see pathname) 4-5

G

get 11-13, 11-15
getacl(1) 4-20-4-30
global search (ed(1)) 6-18
grep(1) 4-54, 4-55-4-57, 9-7, 9-8, 9-15
group, ID 4-54
group, permissions 4-30
groups(1) 4-54

H

half duplex G-4
home directories 4-3
home directory 2-8
HOME environment variable 5-5

I

id(1M) 4-54

User’s Guide

Index-4

input redirection 9-9, 9-14
inserting text, ed(1) 6-25, 6-26, C-2
inserting text, vi(1) 7-35, D-5

J

job number 11-8, 11-9

K

kernel 2-2-2-3
kernel, definition of 2-1
kernel, function of 2-2
keyboard layout 3-2-3-3
keyboard/keys, characteristics 3-2
kill(1) 9-18

L

label 2-24, 2-27, 14-3
LC_MESSAGES 9-51
line editor (see ed(1)) 5-3, 6-1
local 11-2
logging in, obtaining a name 3-7
logging in, procedure 3-10, 3-12, 3-13, 3-14
logging off 3-16
login 2-8, 2-11, 2-21
login, directories 4-3
login, problems 3-14-3-15
LOGNAME environment variable 5-5
lp(1) 8-1-8-3, 8-8, 8-11, 8-22
lp(1), customizing output 8-12-8-18
lp(1), default values for 8-2
lpstat(1) 8-8-8-11, 8-22
ls(1) 4-12, 4-13-4-17

M

mail 2-4
mail(1) 10-2-10-12
mail(1), command summary 10-11
mail(1), delete message 10-11
mail(1), incoming 10-10-10-11
mail(1), quit 10-11
mail(1), reading 10-10-10-11
mail(1), save message 10-11

mail(1), sending messages 10-2-10-9
mail(1), sending to remote systems 10-5
mail(1), undeliverable 10-3
mail, forwarding 10-11-10-12
mailproc(1) command 10-12-10-14
mailx(1) 10-15, 10-31
mailx(1), adding your signature 10-23
mailx(1), changing message header 10-22
mailx(1), command line options 10-16, 10-17
mailx(1), deleting mail 10-29
mailx(1), editing messages 10-18
mailx(1), end message 10-17
mailx(1), incoming 10-25-10-31
mailx(1), incorporating existing text 10-19
mailx(1), incorporating message from mailbox 10-20
mailx(1), msglist argument 10-26
mailx(1), overview 10-15
mailx(1), quit 10-25, 10-30
mailx(1), reading 10-25-10-31
mailx(1), reading a file in 10-19
mailx(1), reading mail 10-27
mailx(1), record of messages 10-23, 10-24
mailx(1), replying to mail 10-30
mailx(1), saving mail 10-29
mailx(1), scanning mailbox 10-28
mailx(1), sending messages 10-16-10-25
mailx(1), switching to other mail files 10-28
man 2-3
Mandatory Access Control (MAC) 2-19, 14-1, 14-7, 14-

13
memory management 2-23
messages, non-English 9-51
metacharacters G-5
metamail(1) 10-20
mget 11-13
mkdir(1) 4-12-4-13
modem G-5
moving files 4-46-4-47
mput 11-13
msglist (see mailx(1)) 10-26
mv(1) 4-35, 4-46-4-47

N

naming, files and directories 4-10
nohup(1) 9-19
notify(1) command 10-12
numerical address 6-11

Index

Index-5

O

ordinary file 4-1
other, permissions 4-30
output redirection 9-9, 9-10, 9-12, 9-14
output redriection 9-12

P

parent directory 4-2, 4-7
parity 3-2, G-6
password 2-11, 3-11-3-14, G-6
password, rules for 3-12
PATH environment variable 5-5, 9-52
pathname 4-5-4-10
pathname, absolute G-4
pathname, example of 4-9
pathname, full 4-5-4-7, G-4
pathname, relative 4-7-4-10, G-8
patterns, awk(1) 13-5, 13-9, 13-14
patterns, ed(1) 6-15-6-17, 6-42-6-49
patterns, vi(1) 7-29-7-32
permissions 4-20, 4-33, 4-53, G-7
permissions, change existing 4-30-4-32, 4-50-4-52
permissions, display 4-24, 4-26, 4-50
permissions, group 4-30
permissions, impact on directories 4-33, 4-52-4-53
permissions, octal 4-32, 4-53
permissions, other 4-30
permissions, read 4-25, 4-31, 4-32, 4-33, 4-51, 4-52, 4-

53
permissions, user 4-30
permissions, write 4-25, 4-31, 4-32, 4-33, 4-51, 4-52, 4-

53
pg(1) 4-35, 4-38-4-41
ping 11-16
pipes 9-12, G-7
Poll file (BNU), and uucp command 12-5
PostScript, fonts 8-21-8-22
PostScript, printers 8-18
pr(1) 4-35, 4-42-4-43
printer, check status of 8-9-8-22
printer, disable 8-4-8-5, 8-22
printer, enable 8-4-8-5, 8-22
printer, PostScript 8-18-8-21
printer, use of server 8-7
printing, banner page with 8-13
printing, cancel (in progress) 8-6
printing, cancel request for 8-12, 8-22
printing, change request for 8-11, 8-23
printing, change specifications for 8-6

printing, character sets for 8-3, 8-10-8-11, 8-13, 8-16, 8-
24, 8-25

printing, check status of 8-6, 8-8-8-22
printing, components of the lp process 8-2
printing, content type for 8-12, 8-24
printing, continuous (between files) 8-15
printing, controlling the process 8-6
printing, custom specifications for 8-1-8-3
printing, default printer for 8-25
printing, default specifications for 8-1-8-2
printing, filters for 8-3, 8-13-8-14, 8-17, 8-24
printing, forms for 8-10, 8-13, 8-16, 8-23, 8-25
printing, notification of 8-8, 8-23, 8-24
printing, number of copies 8-13, 8-23
printing, own specifications 8-1
printing, page size for 8-12, 8-14-8-15, 8-24
printing, pitch settings for 8-12, 8-14-8-15, 8-24
printing, print wheels for 8-3, 8-10-8-11, 8-13, 8-16, 8-

24, 8-25
printing, prioritize requests for 8-6, 8-7-8-8, 8-24
printing, requesting multiple copies 8-18
printing, selecting content type 8-13-8-14
printing, special modes for 8-13, 8-16-8-17, 8-24
printing, specify printer for 8-6, 8-6-8-7, 8-13-8-14, 8-

23
process G-7
profile(4) 5-6
profile(4), user 5-5, 9-50
ps(1) 9-17-9-18
public directory, retrieve files (uupick) 12-9-12-10
public directory, uucppublic 12-9-12-10
put 11-13, 11-15
pwd (print working directory) 4-4

R

rcp command, copying files between machines 11-2-11-
4

rcp(1) 11-3
read-ahead 3-6, G-8
redirect input or output 9-9-9-14
reference monitor concept 2-22
regular expressions 4-56
regular expressions, awk(1) 13-11-13-13
regular expressions, ed(1) 6-42-6-49
relative pathname (see pathname) 4-7
remote commands 11-1
remote file copy 11-3
remote file copy, copying directories from local to

remote 11-4
remote file copy, copying files from local to remote 11-3
remote file copy, copying files from remote to local 11-2

User’s Guide

Index-6

remote file copy, error messages 11-4
remote login 11-7, 11-9, 11-15
remote login, aborting a connection 11-7, 11-10
remote login, non-existent machine 11-9
remote login, problems 11-9
remote login, suspending a connection 11-8, 11-9
remote login, to different operating system 11-9
remote machine communication, administration (see

BNU) 12-1
remote machine communication, call up terminal (see ct)

12-1
remote machine communication, connect to remote (see

cu) 12-1
remote machine communication, execute commands on

remote (see uux) 12-1
remote machine communication, remote execution 11-5
remote machine communication, send files 12-6-12-7
remote machine communication, uucp(1C) 12-2
remote machine communication, uupick(1C) 12-9-12-

10
remote machine communication, uustat(1C) 12-8
remote machine communication, uuto(1C) 12-6-12-7
remote services, copying directories 11-4
remote services, copying files between machines 11-2
remote services, definition of 11-2
remote services, error messages 11-4
remote services, executing commands 11-5, 11-6
remote services, logging in 11-6-11-10
remote services, transferring files between machines 11-

11-11-15
renaming files 4-46-4-47
report generation, awk(1) 13-38
REXEC services, rl 12-21
REXEC services, rquery 12-19
REXEC services, rx 12-20
rexec(1) 12-18
REXEC, environment variables 12-22
REXEC, using services 12-16-12-23
rl, REXEC service 12-21
rlogin(1) 11-7
rm(1) 4-35, 4-47-4-48
rmdir(1) 4-12, 4-19-4-20
root, directories 2-8-2-9, G-8
rquery, REXEC service 12-19
rsh(1) 11-5
rx, REXEC service 12-20

S

screen editor (see vi) 5-3
Secure Mail 10-34-10-36
security 4-11

security level 2-10, 2-27, 14-1, 14-3, 14-4, 14-6, 14-7,
14-10

security policy 2-11, 2-13, 2-22
send files, to a local user 12-2-12-7
send files, to a remote machine 12-2-12-7
send files, to local from remote machine 12-2-12-5
send files, uucp(1C) 12-2
send files, uupick(1C) 12-9-12-10
send files, uustat(1C) 12-8
send files, uuto(1C) 12-6-12-7
send mail (see mail(1), mailx(1)) 10-1
setacl(1) 4-20-4-30, 4-35
sh(1) 9-1
sh(1), append to a file 9-10
sh(1), break command 9-44-9-45
sh(1), case command 9-42-9-44
sh(1), command language 9-1-9-20
sh(1), command substitution 9-29-9-30
sh(1), comments 9-31
sh(1), continue command 9-45
sh(1), debugging 9-47-9-49
sh(1), environment 9-49-9-53
sh(1), exit command 9-34
sh(1), export command 9-44
sh(1), filename generation in the 9-2-9-6
sh(1), for command 9-34
sh(1), here document 9-17, 9-32-9-33
sh(1), if command 9-38-9-40
sh(1), in-line input 9-32-9-33
sh(1), input and output redirection E-1
sh(1), input redirection 9-9, 9-14
sh(1), kill process 9-18
sh(1), loops 9-34-9-38
sh(1), output redirection 9-9, 9-14
sh(1), pipes 9-12
sh(1), positional parameters 9-23-9-25, 9-30-9-31
sh(1), pre-defined parameters 9-25-9-26
sh(1), process control 9-14-9-19
sh(1), process status 9-17-9-18
sh(1), programming 9-20-9-49
sh(1), quick reference 9-57-9-61
sh(1), quotes 9-8-9-9
sh(1), read command 9-28
sh(1), restart process 9-19
sh(1), return codes 9-34
sh(1), special characters 9-2, 9-6-9-9, E-1
sh(1), stopping E-2
sh(1), summary of E-1-E-3
sh(1), test command 9-40-9-42
sh(1), user-defined variables 9-26-9-27
sh(1), variables 9-23-9-31, 9-51-9-53, E-2
sh(1), while command 9-36
shell (see also sh(1) or csh(1) or ksh(1)) 2-1
shell scripts 9-20-9-49

Index

Index-7

shell, definition of 2-1
shell, using the 5-5
SMTP 10-7-10-8
sort(1) 4-54, 4-57-4-59, 9-12
special characters 3-6, G-9
special characters,

! (escape shell, vi(1)) 7-56
special characters, / command 7-29
special characters, ? command 7-29
special characters, @ sign 3-4
special characters, sh(1) 9-2, 9-6-9-9
special file 4-1, G-9
special pattern-matching characters, ed C-3
spell(1) 9-11
standard error G-9
standard input 9-9, G-9
standard output 9-9, G-9
strings, and string functions, awk(1) 13-18
stty(1) 3-15, 9-50-9-51
subdirectory 4-1
suspend 11-2
symbolic links 4-1
syntax, command line 2-4-2-6
Systems file (BNU), and cu(1C) 12-12-12-13
Systems file (BNU), and uucp command 12-4

T

TCB 2-10
telnet(1) 11-9-11-10, 11-15
telnet(1), escape character 11-10
TERM environment variable 4-41, 9-52, F-1
terminal, call (see ct) 12-1
terminal, configuration 9-50-9-51
terminal, keyboard characteristics 3-2
terminal, options 9-50-9-51
terminal, purpose of 3-1
terminal, required settings for 3-2
terminal, special keys 3-4-3-6
terminal, type 4-41, F-1-F-2
terminfo(4), use by LP 8-14
test(1) 9-40-9-42
text editing (see also ed(1) and vi(1)), command mode 5-

3
text editing (see also ed(1) and vi(1)), input mode 5-3
text editor, buffers 5-2
text editor, definition of 5-1
text editor, line editor 5-3
text editor, modes of operation 5-3
text editor, screen editor 5-3
tftp(1) 11-15
time of day 3-15

transfer files (see send files) 12-1
Trusted Computing Base 2-10
Trusted Computing Base (TCB) 14-1
typing conventions 3-3-3-7

U

uname(1) 10-6, 10-7
UNIX system account 3-7
UNIX system, components 2-1
UNIX system, how it works 2-2-2-28
UNIX system, model of 2-2
UNIX system, overview 2-1
UNIX-to-UNIX copy (see uucp) 12-1
UNIX-to-UNIX execution (see uux) 12-1
user, ID 4-54
user, permissions 4-30
uucico(1M) 12-4-12-5
uucp(1C) 12-2
uucppublic directory 12-9-12-10
uuname(1C) 10-6
uupick(1C) 12-9-12-10
uusched(1M) 12-5
uustat(1C) 12-8
uuto(1C) 12-6-12-7
uux(1C) 12-16

V

vacation(1) command 10-12
vi(1) 5-3, 7-1-7-2
vi(1), adding text 7-10-7-11, 7-34-7-37
vi(1), changing text 7-45-7-49
vi(1), character positioning D-2
vi(1), command mode 7-4
vi(1), commands 7-37, D-1-D-8
vi(1), copying text 7-51-7-52
vi(1), creating text 7-4-7-5
vi(1), cursor movement 7-6-7-9, 7-14-7-24
vi(1), cutting and pasting 7-50-7-52
vi(1), deleting text 7-9-7-10, 7-39-??, 7-57, D-5
vi(1), editing multiple files 7-62
vi(1), editing text in command mode 7-5
vi(1), environment 7-3
vi(1), global substitute 7-58-7-59
vi(1), insert mode 7-4, 7-5
vi(1), inserting text 7-35, D-5
vi(1), join lines 7-54
vi(1), line addressing 7-57
vi(1), line editing mode 7-56

User’s Guide

Index-8

vi(1), line numbers 7-28, 7-29
vi(1), line positioning 7-18, D-3
vi(1), modifying text D-6
vi(1), move around in file 7-26-7-32
vi(1), moving text 7-50
vi(1), opening a line for text 7-36
vi(1), paragraph positioning D-4
vi(1), quitting 7-11-7-12, 7-60-7-61, D-8
vi(1), read file 7-57-7-58
vi(1), read-only mode 7-62
vi(1), recovering from hangup 7-61
vi(1), redraw screen 7-55
vi(1), repeat last command 7-54
vi(1), replacing text 7-45-7-49
vi(1), scrolling text 7-26-7-28, D-4
vi(1), search for text 7-29-7-32
vi(1), searching for a character on a line 7-17-7-18
vi(1), searching for a pattern of characters 7-29-7-32, D-

4
vi(1), sentence positioning D-3
vi(1), setting environment options 7-65-7-71
vi(1), shell escape 7-56
vi(1), special commands D-7
vi(1), substitute text 7-58-7-59
vi(1), substituting text 7-45-7-49
vi(1), terminal configuration 7-2-7-3
vi(1), transpose characters 7-50
vi(1), undo previous command 7-41
vi(1), upper-case, lower-case change 7-55
vi(1), window positioning D-4
vi(1), word positioning 7-19-7-21, D-3
vi(1), writing text to a file 7-56-7-57
vi(1), yanking text 7-51-7-52
vi,

set command 7-65, 7-69
vi, command line options 7-61-7-65
vi, EXINIT environment variable, defining 7-69

W

wc(1) 4-35, 4-48-4-50
who(1) 3-16, 9-24

Y

yank command 7-51

Spine for 2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
 O

S

User’s Guide

0890428

User/Administrator

