
Power Hawk Series 700
Diskless Systems Administrator’s Guide

0891086-040

November 2004

Copyright 2004 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive Pompano Beach, FL 33069. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

UNIX is a registered trademark of the Open Group.
Ethernet is a trademark of Xerox Corporation.
PowerMAX OS is a registered trademark of Concurrent Computer Corporation.
Power Hawk and PowerStack II/III are trademarks of Concurrent Computer Corporation.

Other products mentioned in this document are trademarks, registered trademarks, or trade names of the
manufactures or marketers of the product with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:

Original issue June 2001 000 PowerMAX OS Release 5.1

Previous issue August 2001 020 General Update

Previous issue September 2001 030 Release 5.1SR3 Update

Current issue November 2004 040 Release 6.2 Update

iii

Preface

Scope of Manual

Intended for system administrators responsible for configuring and administering diskless
sys tem configurat ions. A companion manual , the Power Hawk Series 700
Closely-Coupled Programming Guide, is intended for programmers writing applications
which are distributed across multiple single board computers (SBCs).

Structure of Manual

This manual consists of a title page, this preface, a master table of contents, nine chapters,
local tables of contents for the chapters, three appendices, glossary of terms, and an index.

• Chapter 1, Introduction, contains an overview of Diskless Topography,
Diskless boot basics, configuration toolsets, definition of terms, hardware
overview, diskless implementation, configuring diskless systems and
licensing details.

• Chapter 2, SBC Hardware Considerations, provides equipment specifica-
tions, hardware preparation, installation instruction and general operating
data.

• Chapter 3, Netboot System Administration, provides an overview of the
steps that must be followed in configuring a loosely-coupled system (LCS)
configuration.

• Chapter 4, VME Boot System Administration, provides an overview of the
steps that must be followed in configuring a closely-coupled system (CCS)
configuration.

• Chapter 5, Flash Boot System Administration, This chapter is a guide to
configuring a diskless single board computer (SBC) to boot PowerMAX
OS from flash memory.

• Chapter 6, Modifying VME Space Allocation. describes how a system
administrator can modify the default VME space configuration on Closely-
Coupled systems (CCS).

• Chapter 7, Debugging Tools, covers the tools available for system debug-
ging on a diskless client. The tools that are available to debug a diskless
client depend on the diskless system architecture.

• Appendix A, Backplane P0 Bridge Board Cluster Configuration,
describes the various cluster configurations that are supported when a
Backplane P0 (BPP0) Bridge Board is present. This Appendix also
describes the additional limitations that are associated with some of the
BPP0 configurations.

Power Hawk Series 700 Diskless Systems Administrator’s Guide

iv

• Appendix B, Adding a Local Disk, provides instructions on how to add a
local disk to a client.

• Appendix C, Make Client System Run in NFS File Server Mode, provides
instructions on how to make a client system run in NFS File Server mode.

• The Glossary explains the abbreviations, acronyms, and terms used
throughout the manual.

• The Index contains an alphabetical list of all paragraph formats, character
formats, cross reference formats, table formats, and variables.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

v

Referenced Publications

Concurrent Computer Corporation Manuals

Vendor Manuals

Related Specifications

 Title Pubs No.

System Administration Manual (Volume 1) 0890429

System Administration Manual (Volume 2) 0890430

Power Hawk Series 700 Closely-Coupled Programming Guide 0891087

Power Hawk Series 700 PowerMAX OS Version x.x Release Notes 0891084-reln
(reln = release number)

Title
Synergy

Document
 Number

VGM5
Single

Processor
SBC

VGM5
Dual

Processor
SBC

VSS4
Quad

Processor
SBC

VGM5 VMEbus Dual G3/G4 PowerPC
Single Board Computer User Guide

98-0317/UG-VGM5-01 X X -

VSS4 Quad 750 PowerPC VMEbus Single
Board Computer for DSP User Guide

99-0062/UG-VSS4-01 - - X

SMon PowerPC Series SBCs Developers
Application & Debugger User Guide

99-0041/UG-PPSM-01 X X X

 Title Pubs No.

IEEE - Common Mezzanine Card Specification (CMC) P1386 Draft 2.0

IEEE - PCI Mezzanine Card Specification (CMC) P1386.1 Draft 2.0

Compact PCI Specification CPCI Rev 2.1 Dated 9/2/97

Power Hawk Series 700 Diskless Systems Administrator’s Guide

vi

vii

Chapter 0

Contents

Preface . iii

Chapter 1 Introduction

Overview . 1-1
Diskless Topography . 1-1
Diskless Boot Basics . 1-3
Configuration Toolsets . 1-5

Definitions . 1-6
Hardware Overview. 1-9

Series 700 Hardware Features . 1-9
Diskless Implementation . 1-10

Virtual Root . 1-10
Boot Image Creation and Characteristics . 1-10
MEMFS Root Filesystem. 1-11
Booting . 1-12

VME Boot . 1-13
Net Boot . 1-13
Flash Boot . 1-14

P0Bus Networking . 1-15
Remote File Sharing . 1-17
Shared Memory . 1-20
Swap Space. 1-20

Configuring Diskless Systems. 1-22
Closely-Coupled System Hardware Prerequisites . 1-22
Loosely-Coupled System Hardware Prerequisites . 1-23
Disk Space Requirements. 1-23
Software Prerequisites . 1-24

Licensing Information . 1-24

Chapter 2 SBC Hardware Considerations

Introduction . 2-1
Unpacking Instructions . 2-2
Board Jumpers . 2-2
VGM5 Reset/SMI Toggle Switch . 2-3
VSS4 Reset/SMI Toggle Switch . 2-4

Chapter 3 Netboot System Administration

Configuration Overview . 3-1
Installing a Loosely-Coupled System. 3-1
Installing Additional Boards . 3-3

SBC Client Board Configuration. 3-3
Client Configuration . 3-8

The Client Profile File . 3-8

Power Hawk 700 Series Diskless Systems Administrator’s Guide

viii

Required Parameters . 3-9
Required NFS-Related Parameters . 3-9
Hosts Tables. 3-11

Configuring Clients Using netbootconfig. 3-11
Creating and Removing a Client Configuration . 3-11
Subsystem Support . 3-13

Customizing the Basic Client Configuration . 3-13
Modifying the Kernel Configuration . 3-14

kernel.modlist.add . 3-14
mknetbstrap . 3-15
config utility . 3-15
idtuneobj . 3-15

Custom Configuration Files . 3-16
S25client and K00client rc Scripts . 3-18
memfs.inittab and inittab Tables . 3-19
vfstab Table . 3-20
kernel.modlist.add Table . 3-20
memfs.files.add Table . 3-21
vroot.files.add Table . 3-22

Modifying the Client Profile Parameters . 3-24
Launching Applications . 3-25

Launching an Application for Embedded Clients . 3-25
Launching an Application for NFS Clients . 3-25

Booting and Shutdown. 3-26
The Boot Image . 3-27
Creating the Boot Image . 3-28

Examples on Creating the Boot Image . 3-28
Net Booting. 3-28

Netboot Using SMon . 3-29
Verifying Boot Status . 3-30
Shutting Down the Client . 3-30

Chapter 4 VME Boot System Administration

Overview . 4-1
Cluster Configuration Overview . 4-1

Installing the Cluster . 4-2
How To Boot the Cluster . 4-4
Installing Additional Boards in a Cluster . 4-5

SBC Cluster Configuration . 4-6
Board Jumpers . 4-6
Installing the P0Bus Overlay . 4-7
File Server Board Configuration. 4-7
Client Board Configuration . 4-11

Cluster Configuration. 4-18
The Profile Files . 4-18

The cluster.profile File. 4-19
The Client Profile File . 4-26
Networking Hostname Naming Conventions . 4-31

Node Configuration . 4-33
Creating and Removing a Client . 4-34
Subsystem Support . 4-35
Slave Shared Memory Support . 4-36

ix

System Tunables Modified . 4-39
Customizing the Basic Configuration . 4-40

Modifying the Kernel Configuration . 4-40
kernel.modlist.add . 4-41
mkvmebstrap . 4-42
config Utility . 4-42
idtuneobj . 4-42

Custom Configuration Files . 4-43
S25client and K00client rc Scripts . 4-45
Memfs.inittab and Inittab Tables. 4-46
vfstab Table . 4-47
kernel.modlist.add Table . 4-47
memfs.files.add Table . 4-48
vroot.files.add Table . 4-49

Modifying Profile Parameters . 4-51
Cluster.profile File. 4-51
Modifying Client Profile Settings . 4-54

Launching Applications . 4-55
Launching an Application (Embedded Client) . 4-55
Launching an Application (NFS Client) . 4-55

Booting and Shutdown . 4-56
The Boot Image . 4-57
Booting Options . 4-58
Creating the Boot Image. 4-60
VME Booting . 4-61
Net Booting . 4-62
Flash Booting . 4-62
Verifying Boot Status . 4-62
Shutting Down the Client . 4-63

Chapter 5 Flash Boot System Administration

Introduction . 5-1
User Flash Hardware Characteristics . 5-2
Booting a Netbootable Client from Flash . 5-2
Burning a Netboot Client’s User Flash . 5-3
Burning and Booting from Flash for VMEBus Bootable Clients 5-4

Chapter 6 Modifying VME Space Allocation

Overview . 6-1
Default VME Configuration . 6-1
Reasons to Modify Defaults . 6-2
Limitations. 6-3
Changing The Default VME Configuration . 6-3

VME A32 Window. 6-3
Closely-Coupled VME A32 Window Considerations . 6-4

Example Configuration . 6-4

Chapter 7 Debugging Tools

System Debugging Tools . 7-1
kdb . 7-2

Power Hawk 700 Series Diskless Systems Administrator’s Guide

x

crash . 7-2
savecore . 7-3
sbcmon . 7-3

Appendix A Backplane P0 Bridge Board Cluster Configuration . A-1

Appendix B Adding a Local Disk . B-1

Appendix C Make Client System Run in NFS File Server Mode . C-1

Glossary . Glossary-1

Index . Index-1

List of Illustrations

Figure 1-1. Loosely-Coupled System Configuration . 1-2
Figure 1-2. Closely-Coupled Cluster of Single Board Computers 1-3
Figure 1-3. Power Hawk Networking Structure . 1-16
Figure 2-1. VMG5 Motherboard RESET and SMI Toggle Switch 2-3
Figure 2-2. VSS4 Motherboard Reset and SMI Toggle Switch 2-4

List of Tables

Table 3-1. Boot Image Dependencies . 3-27
Table 4-1. Boot Image Dependencies . 4-58
Table 6-1. Default Processor/PCI/VME Configuration . 6-2

 1
Introduction

1.1. Overview . 1-1
 1.1.1. Diskless Topography . 1-1
 1.1.2. Diskless Boot Basics . 1-3
 1.1.3. Configuration Toolsets . 1-5

1.2. Definitions . 1-6
1.3. Hardware Overview . 1-9

 1.3.1. Series 700 Hardware Features . 1-9
1.4. Diskless Implementation . 1-10

 1.4.1. Virtual Root . 1-10
 1.4.2. Boot Image Creation and Characteristics . 1-10
 1.4.3. MEMFS Root Filesystem. 1-11
 1.4.4. Booting . 1-12

 1.4.4.1 VME Boot . 1-13
 1.4.4.2 Net Boot . 1-13
 1.4.4.3 Flash Boot . 1-14

 1.4.5. P0Bus Networking . 1-15
 1.4.6. Remote File Sharing . 1-17
 1.4.7. Shared Memory . 1-20
 1.4.8. Swap Space. 1-20

1.5. Configuring Diskless Systems . 1-22
 1.5.1. Closely-Coupled System Hardware Prerequisites 1-22
 1.5.2. Loosely-Coupled System Hardware Prerequisites 1-23
 1.5.3. Disk Space Requirements. 1-23
 1.5.4. Software Prerequisites . 1-24

1.6. Licensing Information . 1-24

1-1

1
Chapter 1Introduction

1
1
1

1.1. Overview

This manual is a guide to diskless operation of PowerMAX OS. Diskless operation
encompasses the ability to configure, boot, administer and debug systems that do not have
attached system disks. It should be noted that such a system might have attached non-sys-
tem disks. Each diskless system runs its own copy of the PowerMAX operating system.
The Power Hawk Series 700 Closely-Coupled Programming Guide is a companion to this
manual and contains information on the programming interfaces for inter-process commu-
nication between processes that are resident on separate single board computers (SBCs)
in diskless configurations where all SBCs share a single VME backplane.

1.1.1. Diskless Topography

There are two basic topographies for configuring a set of single board computers for disk-
less operation. The topography defines the way that the File Server and diskless client
SBCs are connected. The fileserver is an SBC which has attached a system disk that
stores the boot images that define the software that is downloaded and runs on a diskless
system.

The two basic diskless topologies, Loosely-Coupled Systems (LCS) and Closely-Coupled
Systems (CCS), are described below:

Loosely-Coupled - This configuration (see Figure 1-1) is supported when the only attach-
ment between the fileserver and the diskless system is from an ethernet network. Inter-
process communication between processes running on separate single board computers is
limited to standard networking protocols across ethernet.

Closely-Coupled - This configuration (see Figure 1-2) is supported when the fileserver
and the diskless SBC share the same VMEbus and PCI-to-PCI (P0) bus (hereafter referred
to as a cluster). Often multiple diskless clients will be loaded into the same cluster. This
configuration makes use of the P0Bus to emulate the system bus of a symmetric
multiprocessing system. Many forms of inter-process communication between processes
that are running on separate single board computers are provided. See the Power Hawk
Series 700 Closely-Coupled Programming Guide for detailed information on these
interfaces.

1-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Figure 1-1. Loosely-Coupled System Configuration

There are two possible ways of configuring a diskless client system. The difference
between these client configurations is whether the client system maintains an NFS
connection to the fileserver after boot such that file system space is available for the client
system on the File Server. It is important to note that the type of client system
configuration selected will impact the resource requirements of the File Server as will be
explained in more detail later.

The two client configurations are:

Embedded client - Embedded clients are either stand-alone systems which have no attach-
ments to other SBCs or they are not configured with networking and therefore do not use
existing network attachments once the system is up and running. The embedded applica-

SYSTEM DISK

SYSTEM CONSOLE

FAST/WIDE SCSI-2

RS-232 PORT

E
T
H
E
R
N
E
T

SBC

 N

SBC

 1

SBC

 2

NETBOOT CLIENTS

FILE SERVER (HOST)

SBC

Introduction

1-3

tions must be a part of the original boot image which is downloaded onto the client system
and those applications begin execution at the end of the boot sequence.

Figure 1-2. Closely-Coupled Cluster of Single Board Computers

NFS client - In an NFS client configuration, the File Server provides UNIX file systems
for the client system. A client system operates as an NFS client of the File Server. This
configuration allows substantially more file system space to be available to the client sys-
tem for storing an application and application data than an embedded configuration.

Note that it is possible to combine the above topographies and configurations in various
ways. For example, one could have a Closely-Coupled system where some of the client
SBCs are embedded clients and some are NFS clients.

1.1.2. Diskless Boot Basics

The first step in creating a diskless system is to create a boot image which contains both
the operating system and a file system that contains at a minimum the executable needed
to boot the PowerMAX OS. This file system, which is bundled into the boot image, can
also be used to store application programs and data, UNIX commands and libraries or any
other file that might live in a disk-based partition. The size of this file system is limited,
since it must either be copied into memory or must reside in flash ROM.

The File Server is an SBC with attached disks where the boot image and a virtual root par-
tition for each configured diskless system is created. The virtual root is both the environ-

SBCSBC

 1

 (CLUSTER 0)

FILE SERVER
 (HOST)

SBC

SYSTEM DISK

SYSTEM CONSOLE

DISKLESS CLIENTS

OTHER BOARDS

A/D
D/A
1553

0 N

FAST/WIDE SCSI-2

RS-232D PORT

VME CHASSIS

1-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

ment used to build the boot image and it is also mounted by diskless systems that maintain
an NFS connection to the File Server. Note that embedded diskless configurations do not
maintain such an NFS connection. When the virtual root is mounted by the diskless
system, it is used to hold system commands and utilities as well as user-defined files and
application programs. The virtual root can be viewed as a resource for additional disk
space for a diskless system.

Once a boot image is created, it must be copied from the File Server to the diskless
system. There are three supported mechanisms for transferring a boot image to a diskless
system:

1. A diskless system that is configured to boot from the network will read the
boot image via an ethernet network connection to the File Server. The
firmware uses the Trivial File Transfer Protocol (TFTP) over an ethernet
connection to download the boot image.

2. When the diskless system shares the VMEbus with the File Server, the boot
image can be downloaded from the File Server, across the VMEbus,
directly into the memory of the diskless system.

3. The boot image may have already been burned into flash ROM. In this
case, the board’s firmware (SMon) is configured to execute the boot image
from flash ROM.

Closely related to the technique for copying a boot image to a diskless SBC, is the tech-
nique for initiating the boot sequence on the diskless SBC. There are four techniques for
initiating the boot sequence on a diskless system. Note that in some cases, the loading of
the boot image cannot be separated from the initiation of execution within that image.

1. To boot from the ethernet network, the board's firmware (SMon) must be
configured to boot from the network. The boot sequence is initiated either
by resetting the board, by cycling the power on the board, or by manually
issuing the SMon command to execute a TFTP boot. Note that the manual
SMon method is only available when a console terminal is connected to the
diskless system.

2. To boot over the VMEbus, the boot sequence is initiated by executing the
sbcboot command on the File Server. This command causes the diskless
system to be reset, the boot image downloaded over the VMEbus into the
diskless system's memory, and execution of the downloaded boot image is
then initiated.

3. To boot from flash ROM, the board's firmware (SMon) must be configured
to boot from flash, through the use of a SMon startup script. The boot
sequence will be initiated whenever the board is reset, cycling the power on
the board or manually executing the SMon startup script or flash boot
commands. Note that the manual SMon method is only available when a
console terminal is connected to the diskless system.

4. If a diskless system with a flash ROM boot image shares the same VME-
bus with the File Server, then a sbcboot command can be executed on the
File Server that will initiate the boot process for the diskless system, if the
diskless system is properly configured via a SMon startup script to execute
a flash ROM boot after a reset. Note that in this case, the bootserver can
initiate the boot sequence because the client system can be remotely reset
by the File Server from across the VMEbus.

Introduction

1-5

1.1.3. Configuration Toolsets

Two sets of tools are provided for creating the diskless configuration environment on the
File Server and for creating boot images. The diskless configuration environment
includes the generation of the virtual root as well as the creation and modification of rele-
vant system configuration files. The virtual root serves as the environment for config-
uring a client’s kernel, building the boot image and as one of the partitions which is NFS
mounted by an NFS client. The tools that comprise both toolsets are executed on the File
Server. One toolset is used for configuring closely-coupled systems while the other
toolset is used for configuring loosely-coupled systems.

The closely-coupled toolset consists of the tools vmebootconfig and mkvmebstrap.
The closely-coupled or VME toolset must be used if the single board computers in the
configuration share a VMEbus and that VMEbus is going to be used for any type of inter-
SBC communication. There are instances where clients in a closely-coupled VME
configuration may wish to boot from an ethernet connection to the File Server or from
flash ROM. The VME toolset provides support for such booting. Because these clients
are part of a VME cluster, the VME toolset must be used to configure them.

The Net Boot toolset consists of the tools netbootconfig and mknetbstrap. These
tools handle the simpler case of loosely-coupled systems that boot via an ethernet network
or from flash ROM, where no VMEbus-based communication will be utilized on the client
system.

The netbootconfig and vmebootconfig tools are used to create the diskless
configuration environment for a diskless client. The mknetbstrap and mkvmebstrap
tools are used for creating a diskless client’s boot image. More information is provided on
these tools in Chapter 3, “Netboot System Administration” and in Chapter 4, “VME Boot
System Administration”.

1-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

1.2. Definitions

Loosely-Coupled System
(LCS)

A Loosely-Coupled System (LCS) is a network of Single-Board
Computers (SBCs). One of the SBCs must have a system disk and is
referred to as the File Server and all other SBCs are generally referred
to as clients. An ethernet connection between the File Server and the
client systems provides the means for inter-board communication.

Closely-Coupled System
(CCS)

A Closely-Coupled System (CCS) is a set of Single Board Computers
(SBCs) which share the same VMEbus and also additionally share a
common PCI-to-PCI (P0) bus. The first board must have an attached
system disk and acts as the File Server for the other boards in the
rack. The VMEbus can be used to download boot images for the
diskless SBCs from the File Server SBC, and the P0Bus can be used
for various types of inter-board communications.

Cluster A cluster is one or more SBC(s) which reside on the same VMEbus
and also share a common P0Bus. In general, a cluster may be viewed
as a number of SBCs which reside in the same VME chassis. Note
that “cluster” and “Closely-Coupled system” are synonymous.

Board ID (BID) All SBCs in the cluster are assigned a unique board identifier or BID.
The BIDs range from 0 to 7 in any given cluster. Every cluster must
have the server SBC as BID 0. Additional SBCs installed in a cluster
may use any of the remaining unused BID. By convention, BIDs are
usually allocated sequentially [1,2,3] but this is not mandatory.

There are additional considerations and restrictions that apply to BID
assignments when a Backplane P0 Bridge Board (BPP0) is used to
connect two P0Bus overlays together in a given cluster. See
A p p e n d ix A “ B a c k p la n e P0 B r i d g e B o a r d C lu s t e r
ConfigurationBackplane P0 Bridge Board Cluster Configuration” for
more details.

Host Generic term used to describe Board ID 0 in the cluster (see definition
of File Server immediately below).

File Server The File Server has special significance in Loosely-Coupled and
Closely-Coupled systems as it is the only system with physically
attached disk(s) that contain file systems and directories essential to
running the PowerMAX OSTM (/etc, /sbin, /usr, /var, /tmp,
and /dev).

The File Server boots from a locally attached SCSI disk and provides
disk storage space for configuration and system files for all clients. In
a Closely-Coupled System it is the SBC that downloads a boot image
to all other clients in the same cluster across the VMEbus. There is
only one File Server in a Loosely-coupled or Closely-Coupled sys-
tem. The File Server must be configured as BID 0 for Closely-Cou-
pled Systems.

All clients depend on the File Server for booting since all the boot
images are stored on the File Server’s disk.

Introduction

1-7

Client All SBCs, except for the File Server are considered clients. Clients do
not have their own “system” disk. Clients must rely on the File Server
for such support. However, clients may have local, non-system disk
drives configured.

The two client configurations, embedded and NFS, are described
below:

 1) Embedded Client An embedded client runs self-contained from an internal memory-
based file system; they do not offer console or network services.
There is no swap space, because there is no media that can be used for
swapping pages out of main memory. Applications run in single user
mode (init state 1).

 2) NFS Client NFS clients are diskless SBCs that are configured with networking
and NFS. Most directories are NFS mounted from the File Server. In
addition to NFS, all standard PowerMAX OSTM network protocols
are available. Swap space is configured to be remote and is accessed
over NFS. Applications run in multi-user mode (init state 3).

System Disk The PowerMAX OSTM requires a number of “system” directories to
be available in order for the operating system to function properly.
These directories include: /etc, /sbin, /dev, /usr, /var and
/opt.

The File Server is configured so that these directories are available on
one, or more, locally attached SCSI disk drives.

Since clients do not have locally attached system disk(s), they will
NFS mount these directories from the File Server (an “NFS Client”),
or create them in a memory file system which is loaded with the ker-
nel (an “Embedded Client”).

VME Boot A master/slave kernel boot method by which the File Server resets,
downloads and starts an operating system kernel on a client which is
attached to the same VMEbus. Note that the client does not initiate
the boot sequence.

Net Boot
(or Network Boot)

A client/server kernel boot method that uses standard TFTP protocols
for kernel loading from the File Server. Any client can be configured
to initiate a net boot operation from the File Server.

Flash Boot A client boot method where the boot image executed comes from the
client’s own Flash memory.

Boot Image This is the object that is downloaded into the memory of a diskless
client. It contains a UNIX kernel image and a memory-based root file
system. The memory-based file system must contain the utilities and
files needed to boot the kernel. In the case of an NFS client, booting
must proceed to the point that remote file systems can be mounted.
For an embedded kernel, the memory-based file system is the only
file system space that is available on the diskless system. Users may
add their own files to the memory-based file system.

Synergy Monitor
(SMon)

A board-resident ROM monitor utility that provides a basic I/O
system (BIOS), a boot ROM, and system diagnostics for Power Hawk
Series 700 single board computers (SBCs).

1-8

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Trivial File Transfer
Protocol(TFTP)

Internet standard protocol for file transfer with minimal capability
and minimal overhead. TFTP depends on the “connectionless”
datagram delivery service (UDP).

System Run Level
Init Level

A term used in UNIX-derived systems indicating the level of services
available in the system. Those at “init level 1” are single user
systems which in turn is typical of embedded systems running on cli-
ent SBCs. Those at “init level 3” have full multi-user, networking,
and NFS features enabled, and is typical of client SBCs that run as
netboot clients. See init(1M) for complete details.

P0Bus Networking In a Closely-Coupled system, all SBCs within the same cluster may
be transparently networked together using a P0Bus-based point-to-
point network. This inter-SBC network provides a high speed TCP/IP
connection between SBCs which reside on the same P0Bus (i.e. are in
the same cluster).

swap space Swap reservation space, referred to as ‘virtual swap’ space, is made
up of the number of real memory pages that may be used for user
space translations, plus the amount of secondary storage (disk) swap
space available. Clients in the NFS configuration utilize a file
accessed over NFS as their secondary swap space.

Embedded clients, which are usually also Flashboot clients, generally
do not utilize a swap device, but if a local disk is available then they
too may be configured with a swap device.

Introduction

1-9

1.3. Hardware Overview

Diskless capabilities are available on all Power Hawk Series 700 platforms.

The Power Hawk Model 710 platform is supported only as a loosely-coupled client.

The Power Hawk Model 720 and 740 platforms may be used in either loosely-coupled or
closely-coupled configurations.

1.3.1. Series 700 Hardware Features

Motherboard
Designation

System Platform
Number
of CPUs

Form Factor Netboot VMEboot Flashboot

VGM5 Power Hawk 710 1 VME 6U yes no yes

VGM5 Power Hawk 720 2 VME 6U yes yes yes

VSS4 Power Hawk 740 4 VME 6U yes yes yes

Features Power Hawk 710 Power Hawk 720 Power Hawk 740

SBC Processor Single G4
PowerPC Processor

Dual G4
PowerPC Processors

Four G4
PowerPC Processors

Ports Two RS-232D
Serial Ports

Two RS-232D
Serial Ports

Four RS-232D
Serial Ports

CPU Interrupts One 8-bit
CPU Mailbox

Two 8-bit
CPU Mailboxes

Four 8-bit
CPU Mailboxes

Flash Memory 4/8/16/32/64 MB
8-bit wide user
flash memory

4/8/16/32/64MB
8-bit wide user
flash memory

4/16 MB 8-bit wide
user flash memory

Cache Memory 2 MB L2 Backside Cache

DRAM 64 MB to 512 MB SDRAM with Parity

Ethernet Fast Ethernet 10Base-T/100Base-T

SCSI-2 Fast-20 SCSI (8/16-bit wide)

Onboard Real-Time
Clocks (RTCs)

Three 32-bit Counter/Timers

I/O Buses A32/D32/BLT64 VMEbus with Master/Slave controller functions.
PMC Compliant slot. Optional 6U expansion board provides up to three
additional PMC slots. A 64 bit wide PCI-to-PCI (P0) bus for inter-SBC

communications.

1-10

Power Hawk Series 700 Diskless Systems Administrator’s Guide

1.4. Diskless Implementation

1.4.1. Virtual Root

The virtual root directory is created on the File Server for each client when the client is
configured. The virtual root directory is used to store the kernel build environment, clus-
ter configuration and device files. In addition, for clients configured with NFS, the client’s
/etc, /var, /tmp and /dev directories are created here and NFS mounted on the
client during system initialization. Note that each configured client has its own, unique
virtual root on the File Server which is used as the configuration environment for that
client.

A client’s virtual root directory may be generated in any file system partition on the file
server except for those used for the / (root) and /var file systems.

Virtual roots are created on the host for all clients. Clients running embedded systems will
utilize their virtual root for configuring the clients’s kernel and building the boot image.

1.4.2. Boot Image Creation and Characteristics

One of the primary functions of the virtual root is as the development environment for
building the boot image that will be downloaded to diskless client systems. After a
client’s virtual root development environment has been created, users have the opportunity
to tune the development environment in various ways, including that of adding in their
own applications and data.

The boot image file, known as unix.bstrap, is composed primarily of two intermedi-
ate files: unix, and memfs.cpio. These are located in the same directory as
unix.bstrap. unix is the client’s kernel as built by idbuild(1M). memfs.cpio
is a compressed cpio archive of all the files which are to be the contents of that client’s
memfs root filesystem. This archive was compressed using the tool rac(1).
Conversely, if the user wants to examine the contents, rac(1) must be used to decom-
press it.

The final boot image, unix.bstrap, will contain a compressed version of the text and
data regions of the unix kernel. These were extracted from the unix file. It will also con-
tain bootstrap code, which decompresses the kernel and sets up its execution environment
when the boot image is executed on the client, a copy of the compressed cpio image
from memfs.cpio, and a bootstrap record used to communicate information about the
client to the kernel and its bootstrap.

At the time of booting, boot files are created as needed based on dependencies established
by t h e ma ke f i l e “bstrap.makefile” u n d e r t h e /usr/etc/disk-
less.d/sys.conf/bin.d directory (see table below).

Introduction

1-11

1.4.3. MEMFS Root Filesystem

A memory-based filesystem, called the memfs filesystem, becomes the root filesystem of
a client as part of its booting process. As the client completes its boot, it may mount other
filesystems that are available to it, perhaps those on local disks or from across the net-
work.
These other filesystems do not replace the original memfs root filesystem but instead
augment it with their extra directories and files. Files needed by diskless applications can
be located either in the memfs root filesystem of a client or on the File Server in the
client’s virtual root directory.

For embedded systems, all user applications and data must be placed into the memfs root
filesystem, since by definition no other filesystems are available to such clients.

The tools used to build boot images provide a mechanism for adding user-defined files to
the memfs filesystem contents and wraps those contents into the boot image that will be
later downloaded into the client. When the boot image is downloaded into a diskless cli-
ent system, it is resident in memory whether or not the files are being used. This means
that the number and size of files that can be placed into the memfs file system is thus lim-
ited. This effect is minimized when the boot image is loaded into Flash. When the boot
image resides in Flash, only those files actually in use will reside in (be copied into) phys-
ical memory at any time. In this mode of operation, the root filesystem behaves more like
a normal filesystem: pages are automatically fetched from the Flash as needed, and, if not
modified by applications, are automatically released when other needs for the space
become more urgent.

It is possible for applications running on the client to write to memfs files; however, there
not being a disk associated with these files, the changes will be lost on the next reboot of
that client. Moreover, such pages remain permanently in memory until the files contain-
ing
them are deleted or truncated. This ties up precious physical memory. This can be
alleviated only by the addition of a swap device to the system, to which the system can
write these dirty pages to as necessary, or by careful consideration and minimization of
how much file writing is done by embedded applications into the memfs root filesystem.

Memfs filesystems stored in Flash will be in a compressed format, in order to make
maximum use of this relatively tiny device.

Boot File Description Dependencies

unix unix kernel kernel.modlist.add

memfs.cpio cpio image of all files to be loaded in the
client’s memory-based root file system

unix ,
memfs.files.add,
system configuration
files

unix.bstrap bootstrap image unix, memfs.cpio

1-12

Power Hawk Series 700 Diskless Systems Administrator’s Guide

1.4.4. Booting

Once a bootstrap image is generated, it must be loaded and started on the client for which
it was built. Three methods of booting are provided: VME Boot, Net Boot and Flash Boot.
All three methods are supported in closely-coupled configurations while only net boot and
flash boot are supported in loosely-coupled configurations. (These methods are explained
in more detail in the following sub-sections.)

In configuring a diskless configuration, the user must decide which method of booting will
be used for each diskless client. Booting of a diskless client consists of two distinct
operations. First, the boot image must be downloaded to the diskless client. Downloading
can be performed over the VMEbus (supported only in closely-coupled configurations) or
across an ethernet network (supported in both closely-coupled and loosely-coupled
configurations). Downloading using these two mechanisms differs in that a VME down-
load is a ‘push’ operation, while an ethernet download is a ‘pull’ operation. That is, the
VME download is initiated by commands that are executed on the File Server, which
cause the boot image to be written to the client’s DRAM. An ethernet download is initi-
ated by a SMon command, either automatically, via a SMon startup script, or manually at
the attached console terminal. Once executed on the diskless client. this SMon command
will cause the boot image to be read from the File Server and downloaded into the client’s
DRAM.

The second phase of the boot operation is to initiate execution within the downloaded
image. Like the download of the boot image, initiation of execution may be controlled
either remotely from the VMEBus, or locally by SMon commands that are executed on the
client systems. In managing a diskless configuration, the user will generally be unaware
of the distinction between the two phases of the boot process. This is because both the
VME download and the ethernet download methods actually perform both phases of the
boot operation. The distinction between these two phases of booting is made here to better
understand the third boot mechanism: booting from flash.

The boot image can be burned into flash on the diskless client. Once burned into flash, the
complete image no longer needs to be downloaded into DRAM. The operating system is
copied from flash into DRAM, the compressed cpio file system is left in flash and only
copied into memory as needed. This means that booting from flash doesn’t require phase
one of the boot process - the download of the boot image. The method used to initiate
execution within the boot image for a flash boot system depends upon the connection
between the File Server and the client. If the diskless client and the File Server are located
in the same VMEbus, then a remote reset of the diskless client (from across the VMEbus)
can be issued on the File Server which will cause the flash boot sequence on the client to
occur, if the client is properly configured to execute a flash boot SMon startup script after
a reset. If the client has only a network connection to the File Server, or has no connection
at all the File Server, then the boot sequence must be initiated by using a SMon startup
script, which will be executed after any reset or power cycle.

Booting from flash is significantly faster than other boot mechanisms and is recommended
for final deployed environments. While actively testing and modifying the application
and the boot image, downloading the boot image can be performed via the VMEbus or via
an ethernet connection. The final version of the boot image can then be burned into flash
when the application is deployed.

Introduction

1-13

1.4.4.1. VME Boot

In a Closely-Coupled configuration, the File Server (board ID 0 of cluster) is capable of
downloading a boot image to all other clients in the same cluster across the VMEbus.
VME booting (or VMEbus booting) uses the VMEbus to transfer the PowerMAX OSTM

bootstrap image from the File Server’s disk to the client’s DRAM (memory).

A VME boot will result in the hardware reset of the boot client. This stops execution of
any code running on the boot client. It is suggested that when rebooting any client that is
currently running a PowerMAX OSTM bootstrap image, that it be shutdown (e.g. using
shutdown(1M)) prior to rebooting (if possible).

Once the client is reset, the File Server’s on-board DMA Controller transfers the bootstrap
image from the File Server’s disk to the client. A command, sent over the VMEbus to a
special memory location on the client, starts execution of the bootstrap image.

1.4.4.2. Net Boot

Net Boot (or Network booting) is an alternative method of loading and executing a kernel
image to a client over Ethernet. Note that the SMon resident monitor supports booting via
ethernet but not other networking media. This method is distinguished by the fact that the
host cannot actively force a client to accept and boot an image; rather, the client must ini-
tiate the transfer with the host and cooperate with the host to complete the transfer. This
client initiation may take one of two forms: SMon command(s) executed on the client
console by an operator, or an automatic execution of the same SMon command(s) by the
client SBC whenever it is powered up, or reset through the use of a SMon startup script.

Net booting is performed by SMon using the TFTP (Trivial File Transfer Protocol,
RFC783). This is a standard protocol that is supported by the PowerMAX OSTM and is
explained in more detail in the Network Administration manual (Pubs No. 0890432).

Any client can be net booted as long as the SBC is physically connected to the same
Ethernet as the File Server.

Whether manually booting or autobooting a client, that client must first be set up with the
information it needs to do net booting. This is accomplished with the SMon
smonconfig command. Once this is done, the client should not ever need to be
reconfigured unless one or more of these parameters change, as the information is saved in
NVRAM and thus will be preserved across reboots and power down cycles.

The following information is required by the SMon smonconfig command to configure
each client that will be performing a net boot:

What should the Ethernet host address be?

IP address for the File Server which should have already been
defined in the /etc/hosts file. You must use the address
which defines the Ethernet interface, not the P0Bus network inter-
face.

What should the Ethernet target address be?

1-14

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The local client SBC’s IP address which SMon will use as the
return address for TFTP data transfer. For NFS clients, this is the
Ethernet IP Address of this client SBC. You may also net boot an
Embedded Client. Since this client kernel does not support
networking, no IP address has yet been defined for it .
In this situation, select a unique IP address to use. An address
should be selected that decodes to the same local subnet, and does
not conflict with any other IP addresses used in the network.

What should the Ethernet mask be?

Subnet mask used for this interface. It is usually 255.255.255.0.

What should the Ethernet gateway address be?

If the client SBC’s access to the File Server is through a gateway,
then that system’s gateway address should be entered here.

After the SMon has been initialized with the network parameters, a net boot may be
initiated via the SMon TftpBoot command. Refer to Chapter 3, “Netboot System
Administration”, for more information on net booting.

1.4.4.3. Flash Boot

Flash Boot or flash booting, is a method of loading and executing a kernel image from
Flash ROM. Flash booting is the preferred method of booting a diskless client in the pro-
duction or deployed phase of an application. There are two advantages in booting from
flash. First, flash boot allows very fast boot times because there are no rotational delays
that would normally be associated with reading from disk. Second, the root file system is
maintained as a read-only image in flash freezing memory that would otherwise have to be
used to maintain an in-memory root filesystem, and thus provide greater system stability
because the root file system cannot be corrupted by unexpected system crashes which
might leave a writable file system in an inconsistent state.

The boot image that is downloaded into flash is the same boot image that can be down-
loaded via the VME backplane or via an ethernet network connection. Therefore a devel-
oper can use one of the other download/boot techniques while actively modifying the boot
image during the development phase, and then use the same final boot image in the flash
when in the deployed phase of the application. There are no tools specifically targeted
towards creating boot images for flash booting. Instead, either the loosely-coupled or
closely-coupled configuration tools are used for building the image, depending on whether
the client system will be used in a shared VME backplane configuration.

The first step in preparing an SBC for flash boot is to load the boot image into flash ROM
on the board. Once the boot image is burned into Flash and a SMon startup script has been
configured to execute after reset on the netboot client, then the same utilities can be used
to initiate a download of the boot image from Flash to memory and begin execution within
the downloaded boot image.

If the File Server is only connected to the client system via an ethernet network, then the
Flash must be burned via a process known as “network loading”. Preparation for loading
the boot image into flash is the same method used above for net booting, by configuring
the networking addresses with the SMon smonconfig command. Then the SMon

Introduction

1-15

load command is used to load the boot image into memory without executing that image.
The boot image is then burned into Flash from memory with the SMon fp uf command.

Once the image is burned into User Flash, then all subsequent booting can be done from
the image stored in User Flash by setting up a SMon startup script to read from User Flash
and execute the Flash boot image. Refer to Chapter 5, “Flash Boot System Administra-
tion”, for more information.

1.4.5. P0Bus Networking

For closely-coupled configurations, the cluster software package provides the capability
of networking between clients and the File Server, utilizing the P0Bus for data transfers.
Figure 1-3 illustrates the streams networking model, which includes interface modules to
enable standard networking across the P0Bus. This P0Bus network connection is a point-
to-point link and is analogous to a SLIP or PPP connection. A point-to-point P0Bus
connection is established via the busdlpiattach(1M) command. This command is
executed at boot time by the File Server and clients to establish connections with the other
Power Hawk boards in the same cluster. The netstat(1M) command shows the P0Bus
point-to-point connections:

netstat -i

The interface bus0 represents one P0Bus point-to-point connection with another Power
Hawk board.

When configuring a cluster, the IP addresses of the Power Hawk systems that are used on
the P0Bus are defined based upon the busdlpi/BUSNET IP Base Address of the cluster,
and the appropriate entries must be added to the /etc/hosts file. Required kernel
device drivers for P0Bus networking are configured, and applicable P0Bus network
related tunable parameters are initialized to reflect the configured IP address during
vmebootconfig(1M) processing.

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis

lo0 8231 127.0.0.0 localhost 78 0 78 0 0

sym0 1500 129.1.34.32 astro 461 0 28 0 0

bus0 8320 129.1.34.0 astro-p0 8764 0 9364 0 0

1-16

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Figure 1-3. Power Hawk Networking Structure

SYMLoopback

Kernel

User

Device Drivers

 Protocols

 Interface Modules

IP

TCP UDP RAWIP

ICMP

APP
ARP

TIMOD SOCKMOD

libnsl.so libsocket.so

RPC/XDRRFS

NFS YP RPC Services telnet
ftp
tftp

rlogin
rsh
rcp

Ethernet

BUSDLPI

BUSMSG

Network

 P0BUS

SYM_MM

SYM_DMA
 OR
 NCR

SBC

P0Bus

Introduction

1-17

1.4.6. Remote File Sharing

Clients configured as “Embedded Clients” must have in their memory-based root file
system all the files needed for booting and all the files needed to run applications. This is
because Embedded Clients do not have networking by definition and therefore will not
have access to remote files on the File Server.

The memfs root file system of a client configured with NFS, need only contain the files
required for booting. When the client system reaches init state 3 it is able to NFS mount
and access the File Server’s directories. The NFS mounts are executed from a start-up
script in /etc/rc3.d.

Two different inittab files are used in booting an NFS configuration. When the etc
directory in a client’s virtual root is NFS mounted, the original inittab file is overlaid
with the one in the virtual root. The directory etc/rc3.d is then re-scanned to execute
start-up scripts in the virtual root.

The directories /usr, /sbin and /opt are completely shared with the server, while
/etc and /var are shared on a file-by-file basis.

Listed below is the NFS mount scheme in use:

The /etc and /var directories under the client’s virtual root contain some files that are
client-specific and therefore these files cannot be shared. These directories also contain
files which have the same content for the File Server and all client virtual roots on the File
Server, these files are shared. Because the /etc and /var directories contain both
shared and non-shared files, yet all files must reside in this directory (because the standard
utilities expect them to be in those directories), these directories require special treatment
in the client’s virtual root.

The files /etc/nodename (not shared) and /etc/chroot (shared) will be used to
illustrate how shared and non-shared files are handled in /etc and /var.

Path on File Server Mount Point on Client

/usr /usr

/sbin /sbin

/opt /opt

<virtual_rootpath>/etc /etc

<virtual_rootpath>/var /var

<virtual_rootpath>/dev /dev

<virtual_rootpath>/tmp /tmp

virtual_rootpath>/users /users

/etc /shared/etc

/var /shared/var

/dev /shared/dev

1-18

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The /etc/nodename file is simply created as a real file in the client’s virtual root under
the <virtual_rootpath>/etc directory. The <virtual_rootpath>/etc
directory is mounted on the diskless client under the /etc directory.

The /etc/chroot file is created in the client’s virtual root not as a real file, but as a
symbolic link to the file name /shared/etc/chroot. On the File Server there is no
such directory as /shared. On the client system, /shared is used as the mount point
for mounting the File Server’s actual /etc/ directory. Thus any reference on the diskless
client to /etc/chroot will actually be referencing the /etc/chroot file that exists in
the File Server’s /etc directory.

As new files are added and removed from the File Server’s /etc and /var directories,
the symbolic links under the client’s virtual root may become stale. The configuration util-
ities mkvmebstrap and mknetbstrap can be used to update the links in these directo-
ries to match the current state of the File Server.

The directories /dev and /tmp are also created under the client’s virtual root but do not
share any files with the File Server. Device files may have kernel dependencies and so
these files are not shared. The directory /tmp is created as an empty directory. The
directory /users is also empty and may be used to access user files across NFS.

Once the client system is up and running, the files in the memory-based root file system
required for booting are no longer needed and are removed to free up memory.

Permission to access remote files on the File Server is automatically granted. During client
con f i gu ra t i on , t h e /etc/dfs/dfstab (s ee dfstab(4)) an d

 File Server System

/
(root)

/etc < virtual_root >

etc

nodename chroot /shared/etc/chroot

/
(root)

/etc (server: < virtual_root >/etc) /shared

etc (server: /etc)

Client System

chroot chroot nodename

Introduction

1-19

/usr/etc/diskless.d/cluster.conf/dfstab.diskless tables are modi-
fied to allow a client either read or read/write access to files which reside on the File
Server.

The dfstab.diskless file is generated when the first client is configured. Sample
entries from this file are listed below. These entries should not be modified.

The dfstab.diskless file is referenced from a command line entry in dfstab,
generated when the first client is configured. For every client configured thereafter, the
client’s name is added to the CLIENTS variable. For example, after configuring two clients,
named client1 and client2, whose P0Bus networking nodenames are client1-p0
and client2-p0, respectively, the following line appears in the dfstab table.

CLIENTS=client1:client1-p0:client2:client2-p0 /usr/sbin/shareall \
-F nfs /usr/etc/diskless.d/cluster.conf/dfstab.diskless

In addition, an entry to make each client’s virtual root directory accessible is generated at
configuration time. If a parent directory of the client’s virtual root directory is already
currently shared (has an entry in sharetab(4)), then the matching entry in
dfstab(4), if found, is modified to include the client in its rw= and root= attribute
specifications. For example, if the virtual root directory for the client named client1 is
in /home/vroots/client1 and the /home/vroots directory is currently shared;
then the sample entry below would be changed as shown below, assuming that the P0Bus
network nodename for client1 is client1-p0.

from:

/usr/sbin/share -F nfs -d “/home/vroots” /home/vroots vroots

to:

/usr/sbin/share -F nfs -o root=client1:client1-p0 -d \
“/home/vroots” /home/vroots vroots

Note that there is no need to add an rw= attribute since, when not specified, it defaults to
read/write access permissions to all.

If no entry is currently shared that covers the client’s virtual root directory, then a specific
entry for each client is appended to the dfstab.diskless file. For example, for the
client named client1, whose virtual root directory is /home/vroots/client1, the
following entry is generated, assuming that the P0Bus networking nodename for
client1 is client1-p0.

/usr/sbin/share -F nfs -o rw=client1:client1-p0,root=client1:client1-p0 \ -
d “/home/vroots/client1” /home/vroots/client1 vroot

share
share
share
share
share
share

-F
-F
-F
-F
-F
-F

nfs
nfs
nfs
nfs
nfs
nfs

-o
-o
-o
-o
-o
-o

ro,root=$CLIENTS
ro,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS
ro,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS
rw=$CLIENTS,root=$CLIENTS

-d
-d
-d
-d
-d
-d

“/etc/”
“/dev/”
“/var/”
“/sbin/”
“/usr/”
“/opt/”

/etc
/dev
/var
/sbin
/usr
/opt

/shared/etc
/shared/dev
/shared/var
/sbin
/usr
/opt

1-20

Power Hawk Series 700 Diskless Systems Administrator’s Guide

After the files are updated, the “shareall -F nfs” command is executed to update the
File Server’s shared file system table.

When a client’s configuration is removed, all references to the client and it’s virtual root
directory are removed from both the dfstab and dfstab.diskless files and the
unshare(1M)command is executed to update the shared file system table.

1.4.7. Shared Memory

Closely-Coupled systems can be configured such that SBCs within the same cluster can
share memory with each other. This capability, called Slave MMap shared memory, is
explained briefly below. Refer to Chapter 3 Shared Memory, located in the Power Hawk
Series 700 Closely-Coupled Programmers Guide, for additional information.

The Slave MMap interface provides mmap(2), shmbind(2), read(2) and
write(2) access to a configurable user-accessible shared memory area on each SBC.

Each SBC maps its own contiguous Slave MMap memory area into a predefined P0Bus
physical address range with a downstream P0Bus-to-PCI window. All memory mapped in
this way is remotely accessible simultaneously by all other SBCs in the cluster from
across the P0Bus. Local SBC access out to the P0Bus is provided through a local
upstream PCI-to-P0Bus window, which passes local PCI bus access requests through the
upstream window and out onto the P0Bus.

1.4.8. Swap Space

Embedded systems generally do not have swap space. Nevertheless, some aspects of
swap space configuration do affect even embedded systems, so this section should be read
even for these users.

Normal systems have a disk partition reserved for swap space. For diskless nfs clients,
swap space is implemented using a regular file created in the client’s virtual root directory
and accessed over NFS. The size of the swap file is user-configurable.

Swap reservation space, referred to as ‘virtual swap’ space, is made up of the number of
real memory pages that may be used for user space translations, plus the amount of
secondary storage (disk) swap space available. Note that if no secondary storage swap
space is available, then the amount of virtual swap space degenerates to the number of real
memory pages available for user address space.

A virtual swap space reservation is made by decrementing the amount of available virtual
swap space. If no virtual swap space is available, then the reservation will fail, and
subsequently, either the page fault or segment create operation will not succeed. Virtual
swap reservations are made so that as real memory becomes low, the pageout and process
swap daemons can guarantee that there will be an appropriate number of user pages that
can be swapped out to secondary storage and subsequently freed, in order to maintain an
adequate level of free memory pages for new page allocations.

Even when there is no swap space configured into the kernel, the virtual swap reservations
will prevent the kernel from overcommitting real memory to user pages that cannot be

Introduction

1-21

swapped and freed if and when the number of free real memory pages becomes low. If
these daemons did not maintain an adequate number of free memory pages for page
allocations, then applications might become blocked forever in the kernel, waiting for
their page allocation requests (or internal kernel memory page allocation requests) to
complete.

There are a number of possible swap space configurations on client systems:

1. no swap space typically, this would be a client configured in Embedded
mode

2. remote swap space client would be configured as a NFS diskless system with
the swap space accessed through the NFS subsystem

3. local disk swap space client configured in either NFS or Embedded mode, client
configured to use a local disk for swap space

When there is no swap space, or a small amount of swap space, it may be necessary to
modify the default values of certain system tunables in order to maximize system
performance and user virtual space capacities.

The following are some of the system tunables that are relevant to system swap space
management in a system with little or no secondary storage swap space.

1. Systems with no swap space should be tuned such that process swapping
does not become aggressively active before process growth is limited by
virtual swap reservations, as this will impact system performance without
providing significant amounts of additional free memory. The address
space aging interval should also be increased.

System tunables that govern the address space aging interval are:

INIT_AGEQUANTUM
MIN_AGEQUANTUM
MAX_AGEQUANTUM
LO_GROW_RATE
HI_GROW_RATE

In order to ensure longer address space aging intervals, all of these tunables
may be set to a higher than default value.

2. The GPGSLO tunable value can be decreased in order to lower the free
memory level at which process swapping will become aggressively active.

3. The DISSWAPRES tunable disables virtual swap reservations by setting the
amount of available virtual swap space to an artificially large value.

The DISSWAPRES tunable allows more user page identities/objects to be
created than what can be accommodated for in virtual swap space. Since
typically, applications do not tend to access all the pages that may
potentially be considered writable (and therefore require a virtual swap
reservation), this tunable may allow for a larger number of applications to
run simultaneously on a system by not requiring virtual swap space for
every potentially writable user page.

However, when the DISSWAPRES tunable is enabled, it becomes possible

1-22

Power Hawk Series 700 Diskless Systems Administrator’s Guide

for page allocations to block forever, since the pageout and process swap
daemons may not be able to swap out an adequate number of user pages in
order to free up pages for additional allocations. At this point, the system
will enter a state where little or no useful work is being accomplished.
Therefore, caution is advised when using the DISSWAPRES tunable.

The DISSWAPRES tunable may be useful when a fixed set of applications
and their corresponding virtual address space working sets are known to fit
into the amount of available real memory (and secondary storage swap
space, if any), even though their total virtual swap space requirements
exceed the system’s virtual swap space capacity.

1.5. Configuring Diskless Systems

1.5.1. Closely-Coupled System Hardware Prerequisites

A Closely-Coupled VME cluster requires the following hardware:

• VME card chassis

• One Power Hawk 720 or 740 single board computer, with a
minimum of 64 MB of DRAM for use as the server SBC.

• One Power Hawk 720 or 740 single board computer, with a
minimum of 64 MB of DRAM for each client SBC.

• All SBCs must be connected to either a single P0Bus with a single
P0Bus overlay board, or to one of two P0Bus overlay boards, where
the two P0Bus overlays are connected together with one Backplane
P0 (BPP0) bridge board. (See the VGM5 or VSS4 User Guide for a
more detailed description of the P0Bus Overlay board.)

• One SCSI 2 GB (4 GB or higher is preferred) disk drive for
PowerMAX OSTM software installation, connected to the internal
NCR/Symbios SCSI controller on the server SBC.

• One supported SCSI CD-ROM device, connected to the internal
NCR/Symbios SCSI controller, for installation of system software on
the server SBC.

• At least one system console terminal, which may be a video display
terminal such as a Wyse 150, vt100, or comparable device connected
to Serial Port A on the server SBC. Additional system console
terminals may be attached to any client SBC’s Serial Port A, for
debug purposes.

Introduction

1-23

1.5.2. Loosely-Coupled System Hardware Prerequisites

A loosely-coupled configuration requires the following hardware:

• At least one VME card chassis.

• One Power Hawk 710, 720 or 740 single board computer, with a
minimum of 64 MB of DRAM, for use as the server SBC.

• One Power Hawk 710, 720 or 740 single board computer, with a
minimum of 64 MB of DRAM, for each client SBC.

• One SCSI 2 GB (4 GB or higher is preferred) disk drive for
PowerMAX OSTM software installation, connected to the internal
NCR/Symbios SCSI controller on the server SBC.

• One supported SCSI CD-ROM device, connected to the internal
NCR/Symbios SCSI controller for installation of system software on
the server SBC.

• At least one system console terminal, which may be a video display
terminal such as a Wyse 150, vt100, or comparable device connected
to Serial Port A on the server SBC. Additional system console
terminals may be attached to any client SBC’s Serial Port A, for
debug purposes.

• The server SBC must be accessible from all client SBCs via an
Ethernet LAN. The on-board Symbios Ethernet controller (Symbios
SYM53C885) should be used for this connection.

1.5.3. Disk Space Requirements

The table below details the amount of available disk space required per client single board
computer for the virtual root partition. These values are for the default shipped
configuration. Added applications may increase disk space requirements. Values in this
table do not include swap space for the diskless system. The amount of swap space is con-
figurable, but should be at least one and one-half times the size of physical memory on the
single board computer.

A client’s virtual root directory can be generated in any disk partition on the File Server.
The /(root) and /var file systems are not recommended for use as client virtual
partitions.

Client Configuration Disk Space

NFS 25 Megabytes

Embedded 15 Megabytes

1-24

Power Hawk Series 700 Diskless Systems Administrator’s Guide

1.5.4. Software Prerequisites

The following software packages must be installed on the host system prior to installing
the diskless package (prerequisite packages listed alphabetically by package name):

1.6. Licensing Information

The system installed on the File Server carries a license for the number of processors
allowed to be booted. The license also carries a limit for the number of users allowed to
log on to the File Server. All diskless client SBCs are limited to a maximum of 2 users
each.

To print the processor and user limits set for your machine, use the -g option of the
keyadm(1M) command.

Package
Name

Package Description
Package Dependencies
 (See Note)

base Base System (Release 5.1 or later)

cmds Advanced Commands lp, nsu

sym Symbios 53C885 Fast Ethernet Driver nsu

dfs Distributed File System Utilities inet

inet Internet Utilities nsu

lp Printer Support

ncr Internal NCR SCSI Driver

netcmds Commands Networking Extension lp, inet

nfs Network File System Utilities nsu, inet, rpc, dfs

nsu Network Support Utilities

rpc Remote Procedure Call Utilities inet

Note: All packages are dependent on base package

 2
SBC Hardware Considerations

2.1. Introduction . 2-1
2.2. Unpacking Instructions. 2-2
2.3. Board Jumpers . 2-2
2.4. VGM5 Reset/SMI Toggle Switch. 2-3
2.5. VSS4 Reset/SMI Toggle Switch. 2-4

2-1

2
Chapter 2SBC Hardware Considerations

2
2
2

2.1. Introduction

This chapter provides hardware preparation, installation instructions and general operating
information. The Single Board Computers (SBCs) including other VME modules, can be
packaged in various VME chassis configurations depending on end-user application
requirements. The chassis can vary in the number of slots available, and also, may be
either rack-mount or desk top versions.

Refer to either the Synergy Microsystems VSS4 VMEbus Quad G3/G4 PowerPC Single
Board Computer for DSP User Guide, or the Synergy Microsystems VGM5 Dual G3/G4
PowerPC Single Board Computer User Guide for more detailed information on hardware
considerations that may be applicable to your particular hardware configuration. Refer to
the Preface of this manual for specific manual titles and document numbers.

NOTE

Unless otherwise stated, this chapter applies to both the VGM5
(single and dual CPU models) and VSS4 SBCs.

CAUTION

Avoid touching areas of integrated circuitry; static discharge can
damage circuits.

Concurrent strongly recommends that you use an antistatic wrist
strap and a conductive foam pad when installing or upgrading a
system. Electronic components, such as disk drive, computer
boards, and memory modules, can be extremely sensitive to
Electrostatic Discharge (ESD). After removing the component
from the system or its protective wrapper, place the component
flat on a grounded, static-free surface (and in the case of a board,
component side up). Do not slide the component over any surface.

If an ESD station is not available, you can avoid damage resulting
from ESD by wearing an antistatic strap (available at electronic
stores) that is attached to an unpainted metal part of the system
chassis.

2-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

2.2. Unpacking Instructions

NOTE

If the shipping container is damaged upon receipt, request that the
carrier’s agent be present during unpacking and inspection of the
equipment.

Unpack the equipment from the shipping container. Refer to the packing list and verify
that all items are present. Save the packing material for storing and reshipping of the
equipment.

2.3. Board Jumpers

There are no jumper setup requirements for SBC boards whether they are used in closely-
coupled, loosely-coupled or flash boot configurations.

However, the user should verify that the following jumpers, located on connector J02N
(VGM5) or J02L (VSS4), are not installed:

Note that the Slot number jumper (9 & 10) is not used; in closely-coupled systems, the
SBC board ID of the server SBC is always 0, and the SBC board ID of a client SBC is
determined from a client board's SMon startup script, and not from its slot number
value.

Note

For more information on the J02N/J02L jumpers, see the subsec-
tion entitled “Jumpers” in “Section 2, Getting Started” of the
VGM5 or VSS4 SBC User Guide.

Jumper
Pins

Function Remarks

5 & 6 VME System Controller. No jumper should be installed.

7 & 8 VME64 Auto-System Controller Disable No jumper should be installed.

9 & 10 User Defined Slot Number No jumper should be installed.

SBC Hardware Considerations

2-3

2.4. VGM5 Reset/SMI Toggle Switch

The VMG5 motherboard has a RESET and SMI toggle switch for each CPU. See
Figure 2-1.

Figure 2-1. VMG5 Motherboard RESET and SMI Toggle Switch

RESET Assert either a CPU or board-level RESET as described below.

Pushing a switch to the right asserts a CPU-level RESET to the cor-
responding CPU. The CPU-X (top) switch asserts a reset to the CPU
on single CPU models and to CPU-X on the dual CPU models. The
CPU-Y switch (bottom) asserts a reset to CPU-Y which has an effect
only on dual CPU models.

Pushing both switches to the right at the same time asserts a board-
level reset on all VGM Series models:

• Resets the CPU(s).

• Resets all on-board components that have such a function
and clears all on-board control registers.

• Asserts a VME RESET if the board is serving as the Sys-
tem Controller.

SMI Pushing a switch to the left asserts an SMI interrupt to the respective
CPU.

Pushing the bottom switch to the left has no effect on single processor
boards.

2-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

2.5. VSS4 Reset/SMI Toggle Switch

The VSS4 motherboard is provided with a toggle switch for RESET and SMI interrupts.
See Figure 2-2.

Figure 2-2. VSS4 Motherboard Reset and SMI Toggle Switch

RESET Pushing a switch to the right asserts a board-level RESET which:

• Resets the CPUs.

• Resets all on-board components that have such a function
and clears all on-board control registers.

• Asserts a VME RESET if the board is serving as the Sys-
tem Controller.

SMI Pushing the toggle switch to the left asserts an SMI interrupt to all
CPUs on the board.

 3
Netboot System Administration

3.1. Configuration Overview . 3-1
 3.1.1. Installing a Loosely-Coupled System. 3-1
 3.1.2. Installing Additional Boards . 3-3

3.2. SBC Client Board Configuration . 3-3
3.3. Client Configuration . 3-8

 3.3.1. The Client Profile File . 3-8
 3.3.1.1 Required Parameters . 3-9
 3.3.1.2 Required NFS-Related Parameters . 3-9
 3.3.1.3 Hosts Tables . 3-11

 3.3.2. Configuring Clients Using netbootconfig . 3-11
 3.3.2.1 Creating and Removing a Client Configuration 3-11
 3.3.2.2 Subsystem Support . 3-13

3.4. Customizing the Basic Client Configuration . 3-13
 3.4.1. Modifying the Kernel Configuration . 3-14

 3.4.1.1 kernel.modlist.add . 3-14
 3.4.1.2 mknetbstrap . 3-15
 3.4.1.3 config utility . 3-15
 3.4.1.4 idtuneobj . 3-15

 3.4.2. Custom Configuration Files . 3-16
 3.4.2.1 S25client and K00client rc Scripts . 3-18
 3.4.2.2 memfs.inittab and inittab Tables . 3-19
 3.4.2.3 vfstab Table . 3-20
 3.4.2.4 kernel.modlist.add Table . 3-20
 3.4.2.5 memfs.files.add Table . 3-21
 3.4.2.6 vroot.files.add Table . 3-22

 3.4.3. Modifying the Client Profile Parameters . 3-24
 3.4.4. Launching Applications . 3-25

 3.4.4.1 Launching an Application for Embedded Clients 3-25
 3.4.4.2 Launching an Application for NFS Clients. 3-25

3.5. Booting and Shutdown . 3-26
 3.5.1. The Boot Image . 3-27
 3.5.2. Creating the Boot Image. 3-28

 3.5.2.1 Examples on Creating the Boot Image 3-28
 3.5.3. Net Booting . 3-28

 3.5.3.1 Netboot Using SMon. 3-29
 3.5.4. Verifying Boot Status . 3-30
 3.5.5. Shutting Down the Client . 3-30

3-1

3
Chapter 3Netboot System Administration

3
3
3

3.1. Configuration Overview

This is a overview of the steps that must be followed in configuring a loosely-coupled
configuration. Some of these steps are described in more detail in the sections that follow.

A loosely-coupled system consists of a File Server and one or more diskless clients which
download their private boot image, which resides on the File Server. A loosely-coupled
system uses an ethernet network connection between each diskless client and the File
Server for communication. There is no sharing of a VME bus or a P0Bus in this
configuration.

The following instructions assume that all the prerequisite hardware has been installed and
each netboot client’s on-board Symbios Ethernet controller is attached to a subnet on
which the File Server system may be accessed, either directly on the same subnet, or
through a gateway. For details, see “Loosely-Coupled System Hardware Prerequisites” on
page 1-23, and refer to Chapter 2 for hardware setup considerations.

NOTE

Loosely-coupled diskless clients may be Power Hawk Model 710,
720, 740, 910, 920, or 940 systems. However, note that the Model
710 system and the Power Hawk 900 Series are not supported as a
Closely-coupled diskless client. (See Chapter 4, “VME Boot Sys-
tem Administration” for more information about closely-coupled
diskless clients.) Refer to Power Hawk 900 Series Diskless Sys-
tem Administrators Manual for Series 900 information.

3.1.1. Installing a Loosely-Coupled System

Follow these steps to configure a loosely-coupled system.

1. Install the File Server with the prerequisite software packages, the diskless
package and all patches. Refer to the “Software Prerequisites” section on
page 1-24 and the applicable system release notes for more information.

2. On the File Server system, configure and mount file system(s) (other than
/ (root) or /var) that can be used to store the virtual root directories for
each client. If not already present, an entry for this file system must be
added to /etc/vfstab(4). An existing file system can be used, but
there must be sufficient file space to hold the client virtual root files.

3-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Note that the boot images for each netboot client are placed into the
/tftpboot directory by mknetbstrap(1M). Since these images tend
to be large in size, the system administrator may want to mount a
sufficiently large filesystem at the /tftpboot mount point, if the File
Server’s / root partition is not able to accommodate the projected client
boot image disk space requirements.

See the “Disk Space Requirements” section on page 1-23 for details of the
amount of file space required for the client virtual root directories and
/tftpboot boot images.

3. On the File Server system in the /etc/profiles directory, create a
client profile file for each netboot client.

You can use netbootconfig(1M) to print out a template of a netboot
client profile. The client profile file name must be equivalent to the client's
Ethernet hostname. For example, to create a netboot client profile for a
client with a hostname of ‘wilma’, do the following:

netbootconfig -P > /etc/profiles/wilma
vi /etc/profiles/wilma

Edit the resulting client profile file to be relevant to the specific
characteristics of the client SBC. The parameters listed in the client profile
are described in the section “The Client Profile File” on page 3-8, and there
is also an online description of these parameters in the file /usr/etc
/diskless.d/profiles.conf/netboot.client.profile.README.

NOTE

Be careful NOT to use vmebootconfig(1M) to create the
initial client profile file. The vmebootconfig(1M) -P client
option will output the contents for a closely-coupled client profile
file, and this CCS version of a client profile file is NOT suitable
for configuring netboot clients.

4. Update the /etc/hosts file on the File Server SBC with the hostnames
of all the netboot clients. The hostname(s) added to the hosts file should
match the filename(s) of the client profile file(s). The IP addresses for each
client should correspond to the IP address of their embedded Symbios
Ethernet controller.

5. On the File Server system, execute netbootconfig(1M) to configure
the build environment of each diskless client to be configured. See
“Configuring Clients Using netbootconfig” on page 3-11" for more
information.

6. On the File Server system, execute mknetbstrap(1m) to create the boot
images of each diskless client. See “Booting and Shutdown” on page 3-26
for more information.

Netboot System Administration

3-3

7. On each client, connect a console terminal and power up the netboot client.
Use SMon to set the hardware clock, to setup the SMon networking
configuration, and to optionally configure a SMon netboot startup
script. See “SBC Client Board Configuration” on page 3-3 for more
details.

8. On each client, either:

- manually execute a SMon tftpboot command to boot the client, or

- reset or power-cycle the client board, if the client is configured with an
SMon netboot/tftpboot startup script.

See “Net Booting” on page 3-28 for more details on booting up the client.

9. On the File Server system, customize the client's virtual root configuration
as needed and then run mknetbstrap(1m) to process the changes. If a
new boot image is created as a result of the changes, shutdown the client
and then reboot it. See “Booting and Shutdown” on page 3-26 for more
information.

3.1.2. Installing Additional Boards

To add additional boards after the initial configuration, follow procedural steps 2-8
described above.

3.2. SBC Client Board Configuration

This section describes the procedure for configuring a SBC board as a client SBC in a
loosely-coupled system.

The user should also refer to the SMon PowerPC Series SBCs Application Developer &
Debugger User Guide for additional information regarding SMon commands and features.

The following steps should be followed in order to set up a board as a client SBC:

1. Connect a terminal to Serial UART Port A/Console if one is not already
connected.

2. The client SBC board must be setup to execute SMon after power-on or
after reset. However, if the board is setup to execute the fdiag diagnostic
program after power-up or reset, then this must be modified as follows:

NOTE

In the following discussion, <cr> stands for hitting the
Return/Enter key on the keyboard.

3-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Power-up or reset the board and watch for the resulting input prompt:

a. If the:

SMon0>

prompt appears, skip the rest of this step and go to step #3 below.

b. If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.
Skip the rest of this step and go to step #3 below.

c. If the:

fdiag0>

prompt appears after the initial power-on/reset information is
displayed, then the board is currently setup to execute the fdiag
diagnostic program instead of SMon. To change this, enter:

config<cr>, and then enter <cr>

to step through this command prompts/questions until the:

SMon boot enabled [Y]:

prompt appears. Answer Y<cr> to this prompt. Enter <cr> until
the rest of the prompts/questions are completed for the config
command. Now enter reboot<cr> to reboot the board into SMon.

If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

3. Now that the SBC board executes SMon by default, make sure that the post
script is not enabled. To disable execution of the post script,

enter:

config <cr>

and enter <cr> to step through this command’s prompts/questions until
the:

post script enabled [N]:

prompt appears. Answer N <cr> to this prompt.

Enter <cr> until the rest of the prompts/questions are completed for the
config command.

Netboot System Administration

3-5

Now enter reboot<cr> to reboot the board into SMon.

If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

4. This step describes how to configure the IP address networking parameters
that will be used by the embedded Symbios Ethernet controller when
executing under SMon.

To set up these parameters, type smonconfig<cr> and then hit <cr> to
step through the other prompts until the Ethernet parameters appear:

ETHERNET PARAMETERS:

What is the board’s serial number? [1014042]

What should the Ethernet host address be? [129.134.30.26]

What should the Ethernet target address be?

[129.134.32.79]

What should the Ethernet mask be? [255.255.255.0]

What should the Ethernet gateway address be?

[129.134.32.196]

The ‘Ethernet host address’ should be set to the IP address of the File
Server for this client SBC. This IP address should be the same IP address
of the File Server that is located in the File Server's /etc/hosts file.

The ‘Ethernet target address’ should be set to the IP address of this
client SBC. This IP address should be the Symbios Ethernet address of this
client SBC that is already in the File Server SBC's /etc/hosts file.

If the File Server and this client SBC are not connected to the same ether-
net subnetwork, then the ‘Ethernet gateway address’ address must
be set to a gateway system that provides access to the File Server’s
subnetwork.

Hit <cr> to step through all the other smonconfig parameter prompts
until this command completes.

5. The netboot client's hardware clock must be updated to match the date on
the system designated as the File Server.

Use the ‘SMon 'date' command to display and/or set the current date and
time.

To display the date/time values, enter the ‘date’ command with no
arguments:

SMon0> date<cr>

Mar 7 01:02:05 1996

3-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

To set the date and time to a value that matches the File Server’s date and
time (displayed via a date(1) command), use the SMon ‘date’
command, where the new date and time values are specified in the
following format:

date month day hour min sec year

You must use a ‘#’ prefix when entering decimal values. For example, to
set the date to August 22, 1996 and the time to 14:55:30:

SMon0> date 8 #22 #14 #55 #30 #96

6. This step will configure the board for either manual or automatic down-
loading and booting of the client.

a. If you want to always manually boot the client, then configure SMon
so that it will NOT execute the startup script after power-on or reset:
type smonconfig<cr> and answer 1<cr> at the prompt below to
change the configuration to SMon without a startup script.

The SMon ROM can be used in several ways:
(1) ROM-boot SMon Stand-alone
(2) ROM-boot SMon with startup script
Which one do you want? [1]:1<cr>

Then hit <cr> to step through other prompts.

b. If you want the board to automatically attempt a tftp download and
boot from the File Server after the client is powered-cycled or reset,
then first create the following SMon startup script:

vi “startup” 1

NOTE

While SMon provides a subset of vi commands for editing the
startup script, be careful when exiting the vi editor. Be sure to
type :q when exiting vi, and not :w. Typing :w will cause the
contents of the startup script to be lost and for all SMon
configuration settings to be reset back to their factory default
values.

The required contents of the client netboot startup script is
shown below:

-------------------------Startup Script ----------------------------

tftpboot “<client>.bstrap”

------------------------End of Startup Script ---------------------

where the <client> value above should be replaced by the

Netboot System Administration

3-7

actual hostname of this client system. For example, if this client’s
hostname is ‘wilma’, then the following one line startup script
will download and boot this client from the File Server:

tftpboot “wilma.bstrap”

NOTE

The hostname of this loosely-coupled client MUST be equal to
the name of the client profile file that is located on the File Server
SBC in the /etc/profiles directory.

After exiting the vi editor with the :q command, then SMon
must be configured to execute this startup script after a power-
cycle or reset. Type smonconfig<cr> and answer 2<cr> at
the prompt below to change the configuration to SMon with a
startup script.

The SMon ROM can be used in several ways:
(1) ROM-boot SMon Stand-alone
(2) ROM-boot SMon with startup script
Which one do you want? [1]:2<cr>

Then hit <cr> to step through some of the other smonconfig
command prompts, until the following prompt appears:

How long (in seconds) should CPU delay before starting up? [5]

Note that in order to ensure that a client can be successfully download its boot image via
tftpboot, the server system MUST be completely booted into run level 3 before
attempting to tftpboot any clients.

Normally, the default value of 5 seconds for the CPU delay time parameter in the line
above is a sufficient delay time if the netboot client is to be manually reset or power
cycled after the server system is known to have completely finished its boot up sequence
into run level 3.

However, if the netboot clients are located in the same rack as the server, and if it is
desirable to have the netboot clients boot themselves up after a power cycle sequence
without the need for any additional manual resets, then the default SMon delay of 5
seconds must be significantly increased. In this case, the SMon CPU delay time must be
increased to a value that will allow enough time for the server to power up and completely
finish its own boot up sequence into run level 3.

To come up with a reasonable delay time value, it is suggested that you power cycle the
rack and measure how long it takes the server to boot up into run level 3 (until you get
a login prompt at the server’s console terminal). It is recommended that you add
approximately 30 additional seconds to this amount of time, as a safety margin, and then
use this value as the SMon startup delay time value.

Note that this SMon delay before startup parameter value applies to all startup sequences,
including manual resets as well as power cycle situations. However, the user may

3-8

Power Hawk Series 700 Diskless Systems Administrator’s Guide

manually interrupt the startup delay processing by touching any character on the key-
board, if a console terminal is connected to the client board.

After either entering <cr> for using a default value of 5 seconds, or after entering
a new value such as 90 seconds followed by a <cr>, the user should then hit <cr> to step
through the remaining prompts until the smonconfig command has been completed.

3.3. Client Configuration

This section describes the steps using netbootconfig(1m), for creating the
environment on the File Server that are necessary for supporting loosely-coupled netboot
diskless clients. Major topics described are:

• client profile files

• Client Configuration Using netbootconfig (page 3-11)

Information about each client is specified in a client profile file. The system administrator
creates and updates these profile files for each netboot client, and then invokes
netbootconfig(1m) to create, on the File Server system, the file environment
necessary to support a private virtual root directory and a private boot image for each
client.

3.3.1. The Client Profile File

For each client SBC installed in the cluster, a client profile file must be created in the
/etc/profiles directory. This section explains the various parameters that are
contained in a client profile file. Note that all of the parameters located in a client profile
file are specific to that one client SBC.

You should use netbootconfig(1M) to print out a starting template of a client profile
with the “-P option. Note that the client profile file name should be equivalent to the
client's hostname.

So for example, to create a client profile for a client with a hostname of ‘wilma‘, do the
following:

netbootconfig -P > /etc/profiles/wilma
vi /etc/profiles/wilma

You must then update the resulting client profile file, modifying the parameter values in
the file to fit the specific characteristics of that loosely-coupled netboot client SBC.

The client profile file is loaded by the loosely-coupled tools and various start-up scripts.
After the initial client is configured with netbootconfig(1M), this file must not be
modified.

Netboot System Administration

3-9

Each required parameter must be assigned a value in the ksh-loadable format
<parameter=value>. No spaces are allowed on either side of the equal sign.
Parameters specified as optional may be left blank <parameter=>.

An explanation of each of the parameters follows.

3.3.1.1. Required Parameters

The following client profile parameters are required for all loosely-coupled netboot
clients.

VROOT=

This parameter is the directory path name under which the client’s virtual root directory
will be created. The directory will be created if it doesn’t already exist.

Example:

VROOT=/home/vroots/wilma

SYS_CONFIG=

This parameter specifies the client configuration to be either NFS or embedded. An NFS
client is configured with networking, executes in multi-user mode and has the ability to
swap memory pages to a remote swap area on the File Server. An embedded client does
not have networking support, cannot swap out memory pages and runs in single user
mode. This parameter should be set to either ‘nfs’ or ‘emb’.

Example:

SYS_CONFIG=nfs

BOOT_IFACE=net

Specifies the networking interface used for loading a diskless client's boot image. This
parameter is set to ‘net’ by default, and the user should not modify this setting. (This
parameter is used by the diskless tools as a method for differentiating between loosely-
coupled netboot and closely-coupled client profile files.)

3.3.1.2. Required NFS-Related Parameters

The following netboot client profile parameters are required only if the client is a NFS
client (SYS_CONFIG=nfs). Note that the values in these parameters are ignored if the client
is an embedded client (SYS_CONFIG=emb).

AUTOBOOT=

This parameter specifies whether this client should be shutdown whenever the File Server
is shutdown. The value for this parameter should be either ‘y’ or ‘n’. If set to ‘y’, then

3-10

Power Hawk Series 700 Diskless Systems Administrator’s Guide

the client will be shutdown by the File Server when ever the File Server is shutting itself
down.

Example:

AUTOBOOT=y

NOTE When this parameter is set to ‘y’, then a hidden file named .autoboot will
be created by netbootconfig(1M) under this client's virtual root directory
(the VROOT parameter path). This file will serve to indicate that the client
SBC should be automatically shutdown by the File Server SBC whenever the
File Server is shutdown. This .autoboot file may be manually removed or
created in the client's virtual root directory, as needed.

SWAP_SIZE=

This parameter is the size, in megabytes, of remote swap space. Swap space is
implemented as a file named <virtual_root>/dev/swap_file, which resides on
the File Server in the client's virtual root directory, and which is accessed over NFS. The
recommended value for this parameter is 1.5 times the size of the amount of physical
memory located on the client's SBC.

Example:

SWAP_SIZE=192

ETHER_SUBNETMASK=

This parameter specifies the ethernet interface subnetmask in decimal dot notation
(xxx.xxx.xxx.xxx).

Example:

ETHERNET_SUBNETMASK=255.255.255.0

GATEWAY_IPADDR=

The IP address, in decimal dot notation (xxx.xxx.xxx.xxx), of a gateway system that
provides this client with access to the File Server. This parameter is optional, and it is only
necessary to setup this parameter when the File Server and this netboot client do not reside
on the same physical subnetwork.

Example:

GATEWAY_IPADDR=129.158.64.40

Netboot System Administration

3-11

3.3.1.3. Hosts Tables

For each loosely-coupled client profile file created in the /etc/profiles directory, an
entry for that client’s embedded Symbios ethernet networking interface must be added to
the systems hosts(4) file, /etc/hosts.

The client hostname added to the /etc/hosts file must match the client profile
f i lename of the c l ient . For example , i f a new cl ient p rof i le f i le named
/etc/profiles/fred has just been created, then an entry with a hostname of ‘fred’
must be added to the /etc/hosts file.

The corresponding IP address for each new /etc/hosts entry should be chosen based
on local rules for the ethernet subnet. Note that this IP address should match the value
entered for this client SBC under the SMon smonconfig command's “Ethernet
target address” parameter, as described under step #4 in the section “SBC Client
Board Configuration”, beginning on page 3-3.

3.3.2. Configuring Clients Using netbootconfig

The netbootconfig(1M) tool is used to create, remove or update one or more diskless
client configurations. For more details on running this tool, see the manual page available
online.

Netbootconfig(1M) gathers information from the client profile files and stores this
information in a ksh-loadable file, named .client_profile, under the client’s virtual
root directory. The .client_profile is used by netbootconfig(1M), by other
configuration tools and by the client initialization process during system startup. It is
accessible on the client from the path /.client_profile.

Netbootconfig(1M) appends a process progress report and run-time errors to the
client-private log file, /etc/profiles/<client_hostname>.log, on the File
Server, or if invoked with the -t option, to stdout.

With each invocation of the tool, an option stating the mode of execution must be
specified. The modes are create client (-C), remove client (-R) and update client (-U).

3.3.2.1. Creating and Removing a Client Configuration

When creating new client configurations, the client profile parameters must already be
setup in the /etc/profiles client profile files (see “The Client Profile File” on
page 3-8) before using netbootconfig(1M) to create the new client configurations.
The /etc/hosts file should also already contain the appropriate entries for the new
netboot clients (see “Hosts Tables” on page 3-11 for more details).

By default, when run in create mode (-C option), netbootconfig(1M) performs the
following tasks:

- Populates a client-private virtual root directory.

- Modifies client-private configuration files in the virtual root.

3-12

Power Hawk Series 700 Diskless Systems Administrator’s Guide

- Creates the <virtual_rootpath>/.client_profile

- Modifies the dfstab(4C) table and executes the shareall(1M)
command to give the client permission to access, via NFS, its virtual root
directory and system files that reside on the File Server.

- Creates the client-private custom directory -
/etc/clients/<client_hostname>.net/custom.conf, where
the <client_hostname> is equal to the name of the client profile file.

For example, if a client's client profile filename is ‘fred’, then the client's
custom directory would be:

/etc/clients/fred.net/custom.conf

By default, when run in remove mode (-R option), netbootconfig(1M) performs the
following tasks:

- Removes the virtual root directory.

- Removes client's name from the dfstab(4C) tables and executes an
unshare(1M) of the virtual root directory.

- Removes the client-private log file -
/etc/profiles/<client_hostname>.log.

- Removes the client-private custom directory -
/etc/clients/<client_hostname>.net/custom.conf.

The update option (-U) indicates that the client's environment already exists and, by
default, nothing is done. The task to be performed must be indicated by specifying
additional options. For example, one might update the files under the virtual root
directory. Some examples are shown below.

Example 1.

Create the diskless client configurations for all clients that have netboot client
profile files in the /etc/profiles directory. Process at most three clients at the
same time.

netbootconfig -C -p3 all

Example 2.

Remove the client virtual root configuration of netboot client ‘rosie’.
Send the output to stdout instead of to the client's log file.

netbootconfig -R -t rosie

Example 3.

Netboot System Administration

3-13

Update the virtual root directories of netboot clients ‘fred’ and ‘barney’. Process
one client at a time.

netbootconfig -U -v -p 1 fred barney

3.3.2.2. Subsystem Support

A subsystem is a set of software functionality (package) that is optionally installed on the
File Server during system installation or via the pkgadd(1M) utility. Additional
installation steps are sometimes required to make the functionality of a package usable on
a diskless client.

Subsystem support is added to a diskless client configuration via netbootconfig(1M)
options, when invoked in either create or update mode. Subsystem support is added to a
client configuration via the -a option and removed via the -r option. For a list of the
current subsystems supported see the netbootconfig(1M) manual page or invoke
netbootconfig(1M) with the help option (-h).

Note that if the corresponding package software was added on the File Server after the
client's virtual root was created, you must first bring the client's virtual root directory up to
date by using the -v option of netbootconfig(1M) before adding subsystem
support.

Example 1:

Create netboot client ‘wilma’s’ configuration and also add support for the RCFBS
subsystem:

netbootconfig -C -a RCFBS wilma

Example 2:

Remove support for the RCFBS subsystem from netboot clients‘wilma’ and ‘fred’:

netbootconfig -U -r RCFBS wilma fred

3.4. Customizing the Basic Client Configuration

This section contains information on the following major topics:

• Modifying the Kernel Configuration (page 3-14)

• Custom Configuration Files (page 3-16)

• Modifying the Client Profile Parameters ()

• Launching Applications (page 3-25)

• Launching an Application (Embedded Clients) (page 3-25)

• Launching an Application (NFS clients) (page 3-25)

3-14

Power Hawk Series 700 Diskless Systems Administrator’s Guide

3.4.1. Modifying the Kernel Configuration

A diskless client’s kernel configuration directory is resident on the File Server and is a part
of the client’s virtual root partition. Initially, it is a copy of the File Server’s /etc/conf
directory. The kernel object modules are symbolically linked to the File Server’s kernel
object modules to conserve disk space.

By default, a client’s kernel is configured with a minimum set of drivers to support the
chosen client configuration. The set of drivers configured by default for an NFS client and
for an embedded configuration are lis ted in modlist.nfs.netboot and
modlist.emb.netboot r e s p e c t i v e l y, u n d e r t h e d i r e c to r y p a th
/usr/etc/diskless.d/sys.conf/kernel.d. These template files should not be
modified.

Note that for diskless clients, only one copy of the unix file (the kernel object file) is kept
under the virtual root. When a new kernel is built, the current unix file is over-written.
System diagnostic and debugging tools, such as crash(1M) and hwstat(1M), require
access to the unix file that matches the currently running system. Therefore, if the kernel
is being modified while the client system is running and the client is not going to be
immediately rebooted with the new kernel, it is recommended that the current unix file be
saved.

Modifications to a client’s kernel configuration can be accomplished in various ways.
Note that all the commands referenced below should be executed on the file server system.

1. Additional kernel object modules can be automatically configured and a
n e w k e r n e l b u i l t b y s p e c i f y i n g t h e m o d u l e s i n t h e
kernel.modlist.add c u s t o m f i l e a n d th e n in v o k in g
mknetbstrap(1m). The advantage of this method is that the client’s
kerne l configura t ion i s recorded in a f i le tha t i s u t i l ized by
mknetbstrap(1m). This allows the kernel to be easily re-created if
there is a need to remove and recreate the client configuration.

2. Kernel modules may be manually configured or deconfigured using
options to mknetbstrap(1m).

3. All kernel configuration can be done using the config(1M) utility and
then rebuilding the unix kernel.

4. The idtuneobj(1M) utility may be used to directly modify certain
kernel tunables in the specified unix kernel without having to rebuild the
unix kernel.

3.4.1.1. kernel.modlist.add

The kernel.modlist.add custom table is used by the boot image creating tool,
mknetbstrap(1m) for adding user-defined extensions to the standard kernel
configuration of a client system. When mknetbstrap(1m) is run, it compares the
modification date of this file with that of the unix kernel. If mknetbstrap(1m) finds
the file to be newer than the unix kernel, it will automatically configure the modules listed
in the file and rebuild a new kernel and boot image. This file may be used to change the
kernel configuration of one client or all the clients. For more information about this
table, see “Custom Configuration Files” on page 3-16.

Netboot System Administration

3-15

3.4.1.2. mknetbstrap

Kernel modules may be configured or deconfigured via the -k opt ion of
mknetbstrap(1m). A new kernel and boot image is then automatically created. For
more information about mknetbstrap(1m), see the online manual page.

3.4.1.3. config utility

The config(1m) tool, may be used to modify a client’s kernel environment. It can be
used to enable additional kernel modules, configure adapter modules, modify kernel
tunables, or build a kernel. You must use the -r option to specify the root of the client’s
kernel configuration directory.

Note that if you do not specify the -r option, you will modify the File Server’s kernel
configuration instead of the client’s. For example, if the virtual root directory for client
rosie was created under /vroots/rosie, then invoke config(1m) as follows:

config -r /vroots/rosie

After making changes using config(1m), a new kernel and boot image must be built.
There are two ways to build a new boot image:

1. Use the Rebuild/Static menu from within config(1m) to build a new
unix kernel and then invoke mknetbstrap(1m). mknetbstrap(1m)
will find the boot image out-of-date compared to the newly built unix file
and will automatically build a new boot image.

2. Use mknetbstrap(1m) and specify “unix” on the rebuild option (-r).

3.4.1.4. idtuneobj

In situations where only kernel tunables need to be modified for an already built host
and/or client kernel(s), it is possible to directly modify certain kernel tunable values in a
client and/or host unix object files without the need for rebuilding the kernel.

The idtuneobj(1m) utility may be used to directly modify certain kernel tunables in
the specified unix or Dynamically Linked Module (DLM) object files.

The tunables that idtuneobj(1m) supports are contained in the /usr/lib
/idtuneobj/tune_database file and can be listed using the -l option of
idtuneobj(1m).

The idtuneobj(1M) utility can be used interactively, or it can process an ASCII
command file that the user may create and specify.

Note that although the unix kernel need not be rebuilt, the tunable should be modified in
the client’s kernel configuration (see the “config utility” section above) to avoid losing the
update the next time a unix kernel is rebuilt.

Refer to the idtuneobj(1m) online man page for additional information.

3-16

Power Hawk Series 700 Diskless Systems Administrator’s Guide

3.4.2. Custom Configuration Files

The files installed under the /usr/etc/diskless.d/cluster.conf/
custom.conf directory may be used to customize a diskless client system
configuration.

In some cases a client’s configuration on the File Server may need to be removed and
re-created. This may be due to file corruption in the client’s virtual root directory or
because of changes needed to a client’s configuration. In such cases, the client
configuration described by these files may be saved and used again when the client
configuration is re-created. The -s option of netbootconfig(1m) must be specified
when the client configuration is being removed to prevent these files from being deleted.

The custom files listed below and described in-depth later in this section, are initially
ins ta l l ed under the ‘nfs’ and ‘emb’ d i r ec tor ies unde r the /usr/etc/
diskless.d/cluster.conf/custom.conf directory. Some of these files are
installed as empty templates, while others contain the entries needed to generate the basic
diskless system configuration. The files used for client customizing include:

K00client to execute commands during system start-up

S25client to execute commands during system shutdown

memfs.inittab to modify system initialization and shutdown

inittab to modify system initialization and shutdown
(nfs clients only)

vfstab to automatically mount file systems
(nfs clients only)

kernel.modlist.add to configure additional modules into the unix kernel

memfs.files.add to add files to the memfs / (root) file system

vroot.files.add to make a copy of specific non-system files in the client’s
virtual root directory (nfs clients only)

When a client is configured using netbootconfig(1M), a directory is created
specifically for that client under the /etc/clients directory. The client's custom
configuration files are installed under this client's custom.conf directory, /etc
/clients/<client_dir>/custom.conf, and are initially linked to the files in the
cluster's custom.conf directory - /usr/etc/diskless.d/cluster.conf
/custom.conf/nfs|emb.

When the client is a netbooted client, then the name of the <client_dir> will be of the
format:

<client_profile_filename>.net

So for example, if the client profile file named ‘fred’ is for a netbooted client, then the
corresponding private client directory name will be:

Netboot System Administration

3-17

/etc/clients/fred.net/custom.conf

The files in these client-private directories are initially shared with the other embedded or
nfs clients; therefore a change to one of these files will affect all the clients in the loosely-
coupled system.

NOTE

Please note that if the File Server is also supporting closely-
coupled clients, then changes to the shared custom.conf files also
affect the File Server’s closely-coupled clients as well as the File
Server’s loosely-coupled clients.

Under each client’s private custom.conf directory two commands, mkprivate and
mkshared, are available to change the state of a custom file from being shared to being
private. Before creating a new version, mkshared will save the current version to a file
named <customfile>.old, mkprivate will move the current version to a file named
<customfile>.linked.

 To make a change that is private to a client:

1. verify that the custom file is NOT symbolically linked

cd /etc/clients/<client>.net/custom.conf
ls -l <customfile>

2. if the file is currently symbolically linked, first break the link

./mkprivate <customfile>

3. verify that the file is a regular file and edit the file

ls -l <customfile>
vi <customfile>

To make a change that will affect all the diskless clients configured to share this custom
file:

1. make the changes to the shared file (type is either nfs or emb)

vi /etc/clients/cluster.conf/custom.conf/<type> \
/<customfile>

2. for each client to share these changes:

a. verify that the custom file is symbolically linked to the file edited
above.

cd /etc/clients/<client>.net/custom.conf
ls -l <customfile>

b. if the file is not currently symbolically linked, then re-link it

3-18

Power Hawk Series 700 Diskless Systems Administrator’s Guide

 # ./mkshared <customfile>

 c. verify that the file is now symbolically linked

 # ls -l <customfile>

For example, to make private changes to the K00client script for a netboot client
named ‘wilma’:

cd /etc/clients/wilma.net/custom.conf
./mkprivate K00client
vi K00client

Changes to the customization files are processed the next time the boot image generating
utility, mknetbstrap(1m), is invoked. If mknetbstrap(1m) finds that a
customization file is out-of-date compared to a file or boot image component, it will
implement the changes indicated. If applicable (some changes do not affect the boot
image), the boot image component will be rebuilt and a new boot image will be generated.

The customization files are described below in terms of their functionality.

3.4.2.1. S25client and K00client rc Scripts

Commands added to these rc scripts will be executed during system initialization and
shutdown. The scripts must be written in the Bourne Shell (sh(1)) command language.

These scripts are available to both NFS and embedded type client configurations. Since
embedded configurations run in init level 1 and NFS configurations run in init
level 3, the start-up script is executed from a different rc level directory path
depending on the client configuration.

Any changes to these scripts are processed the next time the mknetbstrap(1m) utility
is invoked on the File Server. For embedded clients, a new memfs.cpio image and a
new boot image is generated. An embedded client must be rebooted using the new boot
image in order for these changes to take effect.

For NFS clients, the modified scripts will be copied into the client’s virtual root and are
accessed by the client during the boot process via NFS. Therefore, the boot image does
not need to be rebuilt for an NFS client and the changes will take effect the next time the
system is booted or shutdown.

These scripts may be updated in one of the two subdirectories (nfs or emb) under the
/usr/etc/diskless.d/cluster.conf/custom.conf directory so that the
changes apply globally to all clients. If the customizing is to be applied to a specific
c l i e n t , t he cus t omi zed rc f i l e s h o u ld b e c r e a t e d in th e /etc
/clients/<client_profile_filename>.net/custom.conf directory. Note
that if there is already an existing shared customization file, and those customizations
should also be applied to this client, then a private copy of the shared rc file should be
created with the mkprivate tool script in the clients’s custom.conf directory and
edited there.

K00client Script is executed during system shutdown. It is executed on the
client from the path /etc/rc0.d/K00client. By default this
file is empty.

Netboot System Administration

3-19

S25client Script is executed during system start-up. It is executed on a
c l i e n t c o n f ig u r e d w i t h NF S s u p p o r t f r o m t h e p a th
/etc/rc3.d/S25client. For embedded configurations, it is
executed from /etc/rc1.d/S25client. By default this file
is empty.

3.4.2.2. memfs.inittab and inittab Tables

These tables are used to initiate execution of programs on the client system. Programs
listed in these files are dispatched by the init process according to the init level
specified in the table entry. When the system initialization process progresses to a
particular init level the programs specified to run at that level are initiated. It should be
noted that embedded clients can only execute at init level 1, since an embedded
client never proceeds beyond init level 1. NFS clients can execute at init levels
1, 2 or 3. Init level 0 is used for shutting down the system. See the online man
page for inittab(4) for more information on init levels and for information on
modifying this table.

The memfs.inittab table is a part of the memory-based file system, which is a
component of the boot image. Inside the boot image, the files to be installed in the
memory-based fi le system are stored as a compressed cpio file. When the
memfs.inittab file is modified a new memfs.cpio image and a new boot image will
be created the next time mknetbstrap(1m) is invoked. A client must be rebooted
using the new boot image in order for any changes to take effect.

Any programs to be initiated on an embedded client must be specified to run at init
level 1. NFS clients may use the memfs.inittab table for starting programs at
init levels 1-3. However, part of the standard commands executed at init
level 3 on an NFS client is the mounting of NFS remote disk partitions. At this time,
an NFS client will mount its virtual root. The memfs-based /etc directory is used as the
mount point for the <virtual_root>/etc directory that resides on the File Server.
This causes the memfs.inittab table to be replaced by the inittab file. This means
that any commands to be executed in init state 0 (system shutdown) or commands
which are to be respawned in init state 3, should be added to both the
memfs.inittab and the inittab file if they are to be effective.

Note that after configuring an NFS client system, the inittab table contains entries that
are needed for the basic operation of a diskless system configuration. The default entries
created by the configuration utilities in the inittab file should not be removed or
modified.

Changes to inittab are processed the next time mknetbstrap(1m) is invoked. The
inittab table is copied into the client’s virtual root and is accessed via NFS from the
client system. Therefore, the boot image does not need to be rebuilt after modifying the
initab table and the changes to this table will take effect the next time the system is
booted or shutdown.

Like the other customization files, these tables may be updated in one of the two
s u b d i r e c t o r i e s (nfs o r emb) . C h a n g e s m a d e u n d e r t h e /usr/etc/
diskless.d/cluster.conf/custom.conf directory apply globally to all nfs or
embedded clients that share this File Server. If the changes are specific to a particular
client, then a private copy of the shared file should first be created in that client's private

3-20

Power Hawk Series 700 Diskless Systems Administrator’s Guide

customization directory by using the mkprivate tool, and then edited in that client’s
custom.conf directory.

3.4.2.3. vfstab Table

The vfstab table defines attributes for each mounted file system. The vfstab table
applies only to NFS client configurations. The vfstab(4) file is processed when the
mountall(1m) command is executed during system initialization to run level 3.
See the vfstab(4) online manual page for rules on modifying this table.

Note that configuring an NFS client configuration causes this table to be installed with
entries needed for basic diskless system operation and these entries should not be removed
or modified.

The vfstab table is part of the client’s virtual root and is accessed via NFS. The boot
image does not need to be rebuilt after modifying the vfstab table, the changes will take
effect the next time the system is booted or shutdown.

Like other NSF-only customization files, these tables may be updated in the
client-shared nfs subdirectory. Changes made under the /usr/etc
/diskless.d/cluster.conf/custom.conf/nfs directory apply globally to all
NFS clients that share this File Server. If the changes are specific to a particular client,
then a private copy of the shared file should first be created in that client's private
customization directory by using the mkprivate tool, and then edited in that client’s
custom.conf directory.

3.4.2.4. kernel.modlist.add Table

New kernel object modules may be added to the basic kernel configuration using the
kernel.modlist.add file. One module per line should be specified in this file. The
specified module name must have a corresponding system file installed under the
<virtual_rootpath>/etc/conf/sdevice.d directory. For more information
about changing the basic kernel Configuration, see “Modifying the Kernel Configuration”
on page 3-14.

Changes to this file are processed the next time mknetbstrap(1m) is invoked, causing
the kernel and the boot image to be rebuilt. When modules are specified that are currently
not configured into the kernel (per the module’s System(4) file), those modules will be
enabled and a new unix and boot image will be created. If mknetbstrap(1m) finds
that the modules are already configured, the request will be ignored. A client must be
rebooted using the new boot image in order for these changes to take effect.

Like the other customization files, these tables may be updated in one of the two
s u b d i r e c t o r i e s (nfs o r emb) . C h a n g e s m a d e u n d e r t h e /usr/etc
/diskless.d/custom.conf/client.shared/ directory apply globally to all
NFS or embedded clients that share this File Server. If the changes are specific to a
particular client, then a private copy of the shared file should first be created in the client’s
private customization directory, by using the mkprivate tool, and then edited in that
client’s custom.conf directory.

Netboot System Administration

3-21

3.4.2.5. memfs.files.add Table

When the mknetbstrap(1m) utility builds a boot image, it utilizes several files for
building the compressed cpio file system. The set of files included in the basic diskless
memory-based file system are listed in the files devlist.nfs.netboot and
filelist.nfs.netboot for NFS clients and devlist.emb.netboot and
filelist.emb.netboot fo r embedded c l i en ts unde r the /usr/etc
/diskless.d/sys.conf/memfs.d directory.

Addi t iona l f i l es may be added to the memory-based f i l e sys t em v ia the
memfs.files.add t able loca ted under the /usr/etc/diskless.d
/cluster.conf/custom.conf directory. Like the other customization files, this
tables may be updated in one of the two subdirectories (nfs or emb). Changes made
under the /usr/etc/diskless.d/cluster.conf/custom.conf directory apply
globally to all nfs or embedded clients that share this File Server. If the changes are
speci f ic to a par t icular ne tboo t c l ien t , then a pr iva te copy of the shared
memfs.files.add file should first be created in that client’s private customization
d i r ec to ry, /etc/profiles/<client_profile_filename>.net
/custom.conf, by using the mkprivate tool, and then editing it in that
custom.conf directory.

Guidelines for adding entries to this table are included as comments at the beginning of
the table.

A file may need to be added to the memfs.files.add table if:

1. The client is configured as embedded. Since an embedded client does not
have access to any other file systems, then all user files must be added via
this table.

2. The client is configured with NFS support and:

a. the file needs to be accessed early during a diskless client’s boot,
before run level 3 when the client is able to access the file on the
File Server system via NFS

b. it is desired that the file is accessed locally rather than across NFS.

Note that, for NFS clients, the system directories /etc, /usr, /sbin, /dev, /var,
/opt and /tmp all serve as mount points under which remote file systems are mounted
when the diskless client reaches run level 3. Files added via the memfs.files.add
table should not be installed under any of these system directories if they need to be
accessed in run level 3 as the NFS mounts will overlay the file and render it
inaccessible.

Also note that files added via the memfs.files.add table are memory-resident and
diminish the client’s available free memory. This is not the case for a system where the
boot image is stored in flash, since pages are brought into DRAM memory from flash only
when referenced.

C h an g e s t o t h e memfs.files.add f i l e a r e p roce sse d t h e nex t t i me
mknetbstrap(1m) is invoked. A new memfs image and boot image is then created.
A client must be rebooted using the new boot image in order for these changes to take
effect.

3-22

Power Hawk Series 700 Diskless Systems Administrator’s Guide

You can verify that the file has been added to the memfs.cpio image using the following
command on the File Server:

rac -d < <virtual_rootpath>/etc/conf/cf.d/memfs.cpio \
| cpio -itcv | grep <file>

3.4.2.6. vroot.files.add Table

This custom client configuration table may be used to optionally specify a set of
non-system files that are located on the File Server to be automatically copied by
mknetbstrap(1M) into a a client’s virtual root directory so that they can be
subsequently accessed from the client system.

This custom client configuration file may only be used by NFS netboot clients (the
embedded netboot clients are unable to access their virtual root on the File Server
system).

This table is processed by mknetbstrap(1M) whenever this table has been modified
since the last invocation of mknetbstrap(1M).

Although non-system files can be copied manually into a client’s virtual root directories,
the use of this table provides an automated method that provides the following advan-
tages:

- This file table makes it easier to recreate a client’s virtual root environment
when a client is removed (-R and -s options) and then recreated (-C
option) with netbootconfig(1M).

- Entries in this file table may be setup to have mknetbstrap(1M)
automatically re-copy the specified File Server source files into the client
target virtual root directories every time this table is processed, with the ‘a’
option (see below).

The format for each entry in this file is:

Path_on_server Path_on_client Options

Lines beginning with the pound sign '#' will be ignored. The fields in this table are
described below:

Path_on_server:

This is the pathname of a file or directory located on the File Server
system that is to be copied into the client's virtual root. When the
pathname is a directory, then the contents of this directory will be
recursively copied into the client's vroot directory.

Path_on_client:

This is the pathname of a file or a directory as it will be accessed from
the client system. If a directory in this path does not currently exist in
the client's virtual root directory, then it is created. This path must begin
with one of the system directories already under the client’s vroot:
/users, /dev, /etc, /tmp, or /var. Note that any files in /tmp
and /var/tmp are destroyed when the client system is rebooted. A

Netboot System Administration

3-23

dash “-” in this field may be used to indicate that the path name is the
same as that specified for the “Path on server” field.

Options:

a The always option. Update the file or directory each time
this table is processed.

o The once option. Install the file or directory only if it
doesn't already exist.

Some example vroot.files.add entries are shown below.

Example 1.

Th i s ex a m p l e s p e c i f i e s t h a t t h e f i l e s c o n ta in ed i n t h e d i r ec to ry
/home/me/test.dir on the File Server system should be copied into the client's
virtual root directory: <client_virtual_root>/users/me/test.dir
whenever mknetbstrap(1M) processes this file (the ‘a’ option):

/home/me/test.dir /users/me/test.dir a

Example 2.

This example specifies that the single file /home/me/timer.c, located on the
F i l e S e r v e r s y s t e m , s h o u l d b e c o p i e d i n to
<client_virtual_root>/users/me/timer.c w h ene v e r
mknetbstrap(1M) processes the vroot.files.add file (the ‘a’ option):

/home/me/timer.c /users/me/timer.c a

Example 3.

This example specifies the single file /etc/appl1 on the File Server system
should be copied to the <client_virtual_root>/etc/appl1 if the target
file does not already exist in the client's virtual root directory (‘o’ option):

/etc/appl1 - o

The following are some additional considerations for adding entries to the
vroot.files.add table:

The client's /usr and /sbin system directories are shared completely with the File
Server; hence, these directories do not appear under a client's virtual root and may not be
used in the vroot.files.add table.

The files in the vroot.files.add table are copied into a client's virtual root partition
and therefore require disk space on the File Server system. In some cases it may be more
efficient to NFS mount a user's working directory on the client system instead of
duplicating the files in the client's virtual root directory.

Because of kernel dependencies, device files should be created locally in the client's
virtual root directory; this vroot.files.add file table should NOT be used for this
purpose.

3-24

Power Hawk Series 700 Diskless Systems Administrator’s Guide

To add a device file to a client’s vroot, the corresponding kernel module must be enabled
(config -r <vroot_path>), the corresponding Node(4) file under the client’s
vroot may need to be modified, and the client’s kernel must be rebuilt and rebooted
(mknetbstrap -B -r unix <client_profile_filename>).

3.4.3. Modifying the Client Profile Parameters

To modify the parameter values in a netboot client profile file, the client configuration
must be removed and reconfigured. The only exceptions to this rule are the AUTOBOOT
and SWAP_SIZE parameters (discussed separately below).

It is best that the netboot NFS client be shutdown before modifying any of its client profile
parameters.

As an example, to modify most parameters in netboot client wilma’s client profile file, take
the following steps to remove, modify and re-create and client’s configuration:

1. Remove the current client configuration for wilma, but preserve any client
customization files for client wilma:

netbootconfig -R -s wilma

2. Edit wilma’s client profile file as needed:

vi /etc/profiles/wilma

3. Re-create the configuration for client wilma:

netbootconfig -C wilma

The client profile file parameters that MAY be modified without the need to remove and
reconfigure the client are described below. Note that these parameters only apply to NFS
netboot clients. Also note that for both of these parameters, the actual client profile
parameter value within the client’s profile file are NOT modified; only the actual objects
that these parameters act upon are modified.

AUTOBOOT

This parameter is implemented as a hidden file named .autoboot directly under the
client’s virtual root directory. This hidden file may be created and removed to enable or
disable, respectively, the automatic shutdown of the client when the File Server shuts
down. Note that in this case, it is not necessary to modify the actual client profile file in
order to modify this setting. See the section “The Client Profile File” on page 3-8 for
more details on the AUTOBOOT parameter.

 SWAP_SIZE

For NFS clients, a different sized dev/swap_file file from the one specified in the
client's profile file may be created by invoking the mkswap command:

/usr/etc/diskless.d/sys.conf/bin.d/mkswap <vrootpath> <megabytes>

Netboot System Administration

3-25

NOTE

As previously mentioned, the client should be first shutdown
before issuing the mkswap command, if the NFS client is
currently up and running.

3.4.4. Launching Applications

Following are descriptions on how to launch applications for:

- Embedded Clients

- NFS Clients

3.4.4.1. Launching an Application for Embedded Clients

For diskless embedded clients, all the application programs and files referenced must be
added to the memfs root file system via the memfs.files.add file. See section
“memfs.files.add Table” on page 3-21, for more information on adding files via the
memfs.files.add file.

As an example, the command name myprog resides on the File Server under the path
/home/myname/bin/myprog. We wish to automatically have this command executed
from the path /sbin/myprog when the client boots. This commands reads from a data
file expected to be under /myprog.data. This data file is stored on the File Server
under /home/myname/data/myprog.data.

 The following entries are added to the memfs.files.add table:

f /sbin/myprog 0755 /home/myname/bin/myprog
f /myprog.data 0444 /home/myname/data/myprog.data

The following entry is added to the client’s start-up script:

#
Client’s start-up script
#
/sbin/myprog

See “Custom Configuration Files” on page 3-16 for more information about the
memfs.files.add table and the S25client rc script.

3.4.4.2. Launching an Application for NFS Clients

Clients configured with NFS support may either add application programs to the memfs
root file system or they may access applications that reside on the File Server across NFS.
The advantage to using the memfs root file system is that the file can be accessed locally
on the client system rather than across the network. The disadvantage is that there is only
limited space in the memfs file system. Furthermore, this file system generally uses up
physical memory on the client system. When the client system is booted from an image

3-26

Power Hawk Series 700 Diskless Systems Administrator’s Guide

stored in flash ROM, this is not the case, since the memfs file system remains in flash
ROM until the pages are accessed and brought into memory.

To add files to the memfs root file system follow the procedures for an embedded client
above.

When adding files to the client’s virtual root so that they can be accessed on the client via
NFS, the easiest method is to place the file(s) in one of the directories listed below. This is
because the client already has permission to access these directories and these directories
are automatically NFS mounted during the client’s system initialization.

Storage Path on File Server Access Path on the Client

/usr /usr
/sbin /sbin
/opt /opt
<virtual_root>/etc /etc
<virtual_root>/var /var
<virtual_root>/users /users

As an example , the command name myprog was c rea ted under the pa th
/home/myname/bin/myprog. To have this command be accessible to all the diskless
clients on the File Server we could mv(1) or cp(1) the command to the /sbin
directory.

 mv /home/myname/bin/myprog /sbin/myprog

If only one client needs access to the command, it could be moved or copied to the /etc
directory in that client’s virtual root directory.

mv /home/myname/bin/myprog <virtual_root>/etc/myprog

To access an application that resides in directories other than those mentioned above, the
File Server’s directory must be made accessible to the client by adding it to the
dfstab(4) table and then executing the share(1M) or shareall(1M) command
on the File Server. To automatically have the directories mounted during the client’s
system start-up, an entry must be added to the client’s vfstab file. See “Custom Config-
uration Files” on page 3-16 for more information about editing the vfstab file.

3.5. Booting and Shutdown

This section describes the following major topics:

• The Boot Image (page 3-27)

• Creating the Boot Image (page 3-28)

• Net Booting (page 3-28)

• Verifying Boot Status (page 3-30)

• Shutting Down the Client (page 3-30)

Netboot System Administration

3-27

3.5.1. The Boot Image

The boot image is the file that is loaded from the File Server to a diskless client. The boot
image contains everything needed to boot a diskless client. The components of the boot
image are:

- unix kernel binary

- compressed cpio archive of a memory-based file system

- a bootstrap loader that uncompresses and loads the unix kernel

Each diskless client has a unique virtual root directory. Part of that virtual root is a unique
kernel configuration directory (etc/conf) for each client. The boot image file
(unix.bstrap), in particular two of its components: the kernel image (unix) and a
memory-based file system (memfs.cpio), are created based on configuration files that
are part of the client’s virtual root.

The makefile, /etc/diskless.d/sys.conf/bin.d/bstrap.makefile, is used
by mknetbstrap(1m) to create the boot image. Based on the dependencies listed in
that makefile, one or more of the following steps may be taken by mknetbstrap(1m)
in order to bring the boot image up-to-date.

1. Build the unix kernel image and create new device nodes.

2. Create and compress a cpio image of the files to be copied to the memfs
root file system.

3. Insert the loadable portions of the unix kernel, the bootstrap loader, the
compressed cpio image and certain bootflags into the unix.bstrap file.
The unix kernel portion in unix.bstrap is then compressed.

When mknetbstrap is invoked, updates to key system files on the File Server (i.e.
/etc/inet/hosts) will cause the automatic rebuild of one or more of the boot image
components. In addition, updates to user-configurable files also affect the build of the
boot image. A list of the user-configurable files and the boot image component that is
affected when that file is modified are shown in Table 3-1. These files are explained in
detail under section “Customizing the Basic Client Configuration” on page 3-13.

Table 3-1. Boot Image Dependencies

Boot Image Component User-Configurable File

unix kernel kernel.modlist.add

memfs cpio memfs.files.add

memfs.inittab

K00client
(embedded client configurations only)

KS25client
(embedded client configurations only)

3-28

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The boot image components are created under etc/conf/cf.d in the client’s virtual
root directory. The boot image itself is installed into the /tftpboot directory, under
the name of <client_profile_filename>.bstrap. For example, a netboot client
with a client profile filename of target1 would have a boot image installed with a
pathname of:

/tftpboot/target1.bstrap

3.5.2. Creating the Boot Image

The mknetbstrap(1m) tool is used to build the boot image. This tool gathers
information about the client(s) from each client’s client profile file, located in the
/etc/profiles directory. Some example uses follow. Note that building a boot image
is resource-intensive. When creating the boot image of multiple clients in the same call,
use the -p option of mknetbstrap(1m) to limit the number of client boot images
which are simultaneously processed.

3.5.2.1. Examples on Creating the Boot Image

Example 1.

Update the boot image of all the clients configured with netboot client profile files in the
/etc/profiles directory. Limit the number of clients processed in parallel to 2.

mknetbstrap -p2 all

Example 2.

Update the boot image of clients wilma and fred. Force the rebuild of the unix kernels and
configure the boot images to stop in kdb early during system initialization.

mknetbstrap -r unix -b kdb wilma fred

Example 3.

Update the boot image of all the clients configured with netboot client profile files in the
/etc/profiles directory. Rebuild their unix kernel with the kdb module configured
and the rtc kernel module deconfigured. Limit the number of clients processed in
parallel to 3.

mknetbstrap -p 3 -k kdb -k “-rtc” all

3.5.3. Net Booting

Netboot diskless clients boot from an image downloaded via an ethernet network
connection. Net booting (also referred to as Network booting) is performed by the SMon

Netboot System Administration

3-29

ROM based firmware using the TFTP (Trivial File Transfer Protocol, RFC783) network
protocol.

All netboot diskless clients depend on the File Server for the creation and storage of the
boot image. Once booted, netboot clients configured with NFS support continue to rely
on the File Server for accessing their system files via NFS. Clients configured as embed-
ded do not depend upon the File Server system once they are up and running.

NOTE

A netboot client may download the boot image and, instead of
booting from it, may burn the boot image into its User Flash
Memory for later booting. This is called Flash booting and it is
described in a separate chapter. Refer to Chapter 5, “Flash Boot
System Administration” for more information on Flash Booting.

Prior to net booting, verify that the following steps have been completed:

1. Verify that the SMon networking parameters have been setup on the client
board with the SMon smonconfig command.

Additionally, if the client is to automatically boot up after a reset or power-
cycle, then verify that the SMon startup script has been setup to
tftpboot from the File Server, and verify that SMon is configured to
execute the startup script as part of the SMon boot procedure. See “SBC
Client Board Configuration” on page 3-3 for details.

2. Verify that the boot image has been created. (See “Creating the Boot
Image” on page 3-28.)

3. Verify that the File Server is up and running in run level 3.

3.5.3.1. Netboot Using SMon

Once the boot image is generated and the File Server is accepting network requests (is up
and is at init state 3), you can test the network booting of a client by one of the following
methods:

- If the client is configured to autoboot via a SMon tftpboot startup
script, then test the booting of the client by either resetting or power-
cycling the board.

- If the client is not configured to autoboot, then type the following SMon
command at the client's SMon console terminal:

tftpboot <client_profile_filename>.bstrap

where <client_profile_filename> is equal to the client profile
filename of the client on the File Server system. This command will down-
load and execute the specified bootstrap image from the File Server
system's /tftpboot directory and then execute the image.

3-30

Power Hawk Series 700 Diskless Systems Administrator’s Guide

3.5.4. Verifying Boot Status

If the client is configured with NFS support, you can verify that the client was successfully
booted using any one of the following methods:

• rlogin(1) or telnet(1) from the File Server system, or

• attach a terminal to the console serial port and login.

You can also use the ping(1m) command to verify that the network interface is running.
Note, however, that this does not necessarily mean that the system successfully booted.

If the client does not boot, verify that the NFS daemons are running by executing the
nfsping(1m) command on the File Server. An example run of this command is shown
below.

nfsping -a
nfsping: rpcbind is running
nfsping: nfsd is running
nfsping: biod is running
nfsping: mountd is running
nfsping: lockd is running
nfsping: statd is running
nfsping: bootparamd is running
nfsping: pcnfsd is running
nfsping: The system is running in client, server, bootserver,
 and pc server modes

If there is a console attached to the client and the client appears to boot successfully but
cannot be accessed from any other system, verify that the inetd(1m) daemon is
running on the client.

3.5.5. Shutting Down the Client

From the client’s console, the client may be shutdown using any of the system shutdown
commands, e.g. shutdown(1M) or init(1M).

A client configured with NFS can be shutdown from the File Server using the rsh(1)
command. For example, the following shutdown(1m) command would bring the
system configured with the ethernet hostname ‘fred’ to init state 0 immediately.

rsh fred /sbin/shutdown -g0 -y -i0

By default, clients configured in Embedded mode do not require an orderly shutdown but
an application may initiate it.

 4
VME Boot System Administration

4.1. Overview . 1-1
4.2. Cluster Configuration Overview . 1-1

 4.2.1. Installing the Cluster . 1-2
 4.2.2. How To Boot the Cluster . 1-4
 4.2.3. Installing Additional Boards in a Cluster . 1-5

4.3. SBC Cluster Configuration. 1-6
 4.3.1. Board Jumpers . 1-6
 4.3.2. Installing the P0Bus Overlay . 1-7
 4.3.3. File Server Board Configuration . 1-7
 4.3.4. Client Board Configuration . 1-11

4.4. Cluster Configuration . 1-18
 4.4.1. The Profile Files . 1-18

 4.4.1.1 The cluster.profile File . 1-19
Cluster-wide Parameters . 1-19
File Server SBC Parameters. 1-24

 4.4.1.2 The Client Profile File. 1-26
Required Parameters . 1-26
NFS Related Parameters . 1-29
Shared Memory Parameters . 1-29

 4.4.1.3 Networking Hostname Naming Conventions 1-31
 4.4.2. Node Configuration . 1-33

 4.4.2.1 Creating and Removing a Client . 1-34
 4.4.2.2 Subsystem Support . 1-35
 4.4.2.3 Slave Shared Memory Support . 1-36

Static Memory Allocations . 1-37
Dynamic Memory Allocations. 1-38

 4.4.2.4 System Tunables Modified . 1-39
4.5. Customizing the Basic Configuration. 1-40

 4.5.1. Modifying the Kernel Configuration . 1-40
 4.5.1.1 kernel.modlist.add . 1-41
 4.5.1.2 mkvmebstrap . 1-42
 4.5.1.3 config Utility . 1-42
 4.5.1.4 idtuneobj . 1-42

 4.5.2. Custom Configuration Files . 1-43
 4.5.2.1 S25client and K00client rc Scripts . 1-45
 4.5.2.2 Memfs.inittab and Inittab Tables. 1-46
 4.5.2.3 vfstab Table . 1-47
 4.5.2.4 kernel.modlist.add Table . 1-47
 4.5.2.5 memfs.files.add Table . 1-48
 4.5.2.6 vroot.files.add Table . 1-49

 4.5.3. Modifying Profile Parameters . 1-51
 4.5.3.1 Cluster.profile File. 1-51
 4.5.3.2 Modifying Client Profile Settings . 1-54

 4.5.4. Launching Applications . 1-55
 4.5.4.1 Launching an Application (Embedded Client) 1-55
 4.5.4.2 Launching an Application (NFS Client) 1-55

4.6. Booting and Shutdown . 1-56

 4.6.1. The Boot Image . 1-57
 4.6.2. Booting Options . 1-58
 4.6.3. Creating the Boot Image . 1-60
 4.6.4. VME Booting . 1-61
 4.6.5. Net Booting. 1-62
 4.6.6. Flash Booting . 1-62
 4.6.7. Verifying Boot Status . 1-62
 4.6.8. Shutting Down the Client . 1-63

4-1

4
Chapter 4VME Boot System Administration

4
4
4

4.1. Overview

This chapter describes in detail the following operations and/or procedures:

• Cluster Configuration Overview (below)

• Installing the Cluster (page 4-2)

• Cluster Configuration (page 4-18)

• Customizing the Basic Configuration (page 4-40)

• Booting and Shutdown (page 4-56)

4.2. Cluster Configuration Overview

This is an overview of the steps that must be followed in configuring a closely-coupled
configuration. Each of these steps is described in more detail in the sections that follow.

This section covers the following topics:

• Installing the Cluster (page 4-2)

• How to Boot the Cluster (page 4-4)

• Installing Additional Boards in the Cluster (page 4-5)

A closely-coupled cluster consists of one File Server SBC and one or more diskless client
SBCs.

The standard way of booting clients in a cluster is over the VMEbus. Client SBCs in the
cluster are VME booted from SBC 0, which acts as a boot and File Server for the entire
cluster. The actual commands that cause clients to be booted are run on the File Server
SBC.

Any client within a cluster could be configured to network boot via an ethernet network
connection. This is normally accomplished by using an appropriate Ethernet Multi-Port
Hub (AUI or 10BaseT), or connecting to a 10Base2 (BNC) subnet using an AUI-to-BNC
transceiver. However, when a diskless client is within a cluster configuration, VME
booting is the preferred booting method since it does not require additional hardware
setup.

4-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

4.2.1. Installing the Cluster

Follow these instructions to install a cluster.

Note that symbolic links have been added to allow more convenient access to the
configurat ion f i les. The f i le /etc/profiles is a l ink to the directory
/usr/etc/diskless.d/profiles.conf and /etc/clients is a link to
/usr/etc/diskless.d/client.conf.

1. Install all SBC boards and setup the SMon configuration parameters for all
boards, and set up the SMon startup scripts for each client board. (See
“Client Board Configuration” on page 4-11 for information about setting
up the SMon startup script.)

2. Install the File Server (SBC 0 in the local cluster) with the prerequisite
software packages, the diskless package, and all patches. Refer to
“Chapter 1 Software Prerequisites” and the applicable system release notes
for more information.

3. Configure and mount filesystem(s) other than / (root) or /var that can be
used to store the virtual root directories for each client. Each vroot
directory requires approximately 15-25MB of disk space (see “Disk Space
Requirements” on page 1-23 for more details). This value is for the default
shipped configuration. You must also consider swap space which is imple-
mented as a file under the vroot directory. Adding applications to the vroot
and configuring kernel modules will also increase the disk space require-
ments.

If not already present, an entry for this filesystem must be added to
/etc/vfstab. An existing filesystem can be used, but there must be
sufficient file space to hold the client's virtual root files.

4. Edit the /etc/hosts file on the File Server SBC so that it contains the
networking information for each diskless NFS client SBC. For information
on client hostnames, see “Networking Hostname Naming Conventions” on
page 4-31.

5. Create the cluster.profile file in the /etc/profiles directory.
There are two sections to the cluster.profile configuration file. The
first section describes a closely-coupled cluster as a whole. The second
section has optional parameters that apply to the File Server. A sample
cluster profile can be created with the following command:

vmebootconfig -P cluster > /etc/profiles/cluster.profile

You may then edit this cluster.profile file to suit the particular needs of the
cluster and File Server SBC. See the section “The cluster.profile File” on
page 4-19 for explanations on the parameters located in this file.

VME Boot System Administration

4-3

 NOTE

If shared memory is to be configured for the cluster, the parame-
ters SBC_SLAVE_MMAP_MAXSZ and VME_DRAM_WINDOW should
be assigned appropriately before configuring the SBCs. These
parameters cannot be easily modified after clients are config-
ured. See the section “Cluster-wide Parameters” on page 4-19 for
more information on these parameters.

6. For each client SBC installed, add a client profile file in the same
/etc/profiles directory. You can use vmebootconfig(1M) to
print out a template of a VME boot client profile. The client profile file
name must be equivalent to the client's networking hostname. For
example, to create a client profile for a client with hostname wilma, do the
following:

vmebootconfig -P client > /etc/profiles/wilma
vi /etc/profiles/wilma

Edit the resulting client profile file to be relevant to the specific character-
istics of the client SBC. The parameters listed in the client profile are
described in the section “The Client Profile File” on page 4-26.

7. At this time, the /etc/profiles directory should contain the file
cluster.profile and a client profile file for each of the clients in the
cluster.

The vmebootconfig(1M) command is used to modify the File Server's
kernel configuration to run in closely-coupled mode and to configure the
build environment for each client's boot object. For example, to create a
new build environment for two client SBCs with client profile filenames
wilma and fred, execute the following:

/usr/sbin/vmebootconfig -C wilma fred

The File Server's kernel configuration, if not already modified in a previous
invocation of the tool, will also be modified at this time. See the
vmebootconfig(1M)online man page for details on creating, updat-
ing, and removing client build environments.

8. Build the boot image objects for the client SBCs with
mkvmebstrap(1M). For example, to build the boot objects for the
clients wilma and fred, execute the following:

/usr/sbin/mkvmebstrap wilma fred

See the mkvmebstrap(1M) man page for details on building a boot
image object.

9. Rebuild the File Server's kernel using idbuild(1M) and then reboot the
File Server SBC.

10. First boot the default client configuration before attempting to customize
any client configurations. For example, to boot clients wilma and fred, use

4-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

the command:

/usr/sbin/mkvmebstrap -B wilma fred

See the section “How To Boot the Cluster” on page 4-4 for more
information about various types of client booting scenarios.

As needed, you may customize the client configuration, rebuild boot
images and reboot a client using mkvmebstrap(1M). See Section “Cus-
tomizing the Basic Configuration” on page 4-40 for more information.

NOTE

It is strongly advised that you first boot the default client configu-
ration before attempting to customize any client configuration.

4.2.2. How To Boot the Cluster

The method for booting a client system depends on whether the client boot is initiated via
the VME backplane (VME boot) or is initiated from the client system (self boot). Note
that systems which boot from a boot image that is loaded in flash fall into either the VME
boot or self boot categories depending on whether or not the boot process is initiated over
the VME bus. A client that is booted over ethernet is always self booted. A client that
downloads its boot image over the VME bus is always VME booted.

When a client boot is initialized via the VME backplane, there is the option of automati-
cally booting client systems as part of the File Server’s initialization. Listed below are
three possible scenarios for booting client systems. For full details of the interaction of the
boot interface and automatic booting, see “Booting Options” on page 4-58.

a. VME boot clients with autoboot

When the File Server is booted, the client systems that have autoboot con-
figured will be automatically booted as part of the File Server system
initialization processing. When a client's AUTOBOOT parameter is set to ‘y’
in its profile file, a hidden file named .autoboot will be created under
the client's virtual root directory. This file will serve to indicate that the
client SBC should be automatically booted or shutdown by the File Server
SBC whenever the File Server is booted or shutdown. Note that client
booting in this case is performed by background processes. If a manual
boot of the client is initiated while the background processes are actively
booting the client, then the boot up results will be undefined.

b. VME boot clients with no autoboot

When no hidden .autoboot file exists in a client's virtual root directory,
then this client SBC will not be automatically booted during the File Server
SBC's initialization processing. In this case, the client SBC must be
manually booted by executing the mkvmebstrap(1M) utility with the
proper options (in particular, the -B option which will cause the client SBC
to be booted).

VME Boot System Administration

4-5

See the mkvmebstrap(1M) man page for details on all the options
available for rebuilding client boot images and for booting client SBCs.

c. Netboot clients

These clients are booted via SMon commands. The SMon smonconfig
networking parameters must be setup for netbooting. See “Net Boot” on
page 1-13 for a description of these networking parameters. Use
mkvmebstrap(1M) to create the boot image for the client SBC.
Execute the TftpBoot SMon command manually on the client system's
console, or automatically at reset or power-cycle time, using a SMon
startup script, to Net boot the client from an ethernet connection.

d. Flashboot clients

These clients are booted at reset time from the client's Flash memory
through the use of a Smon startup script, or manually, on the client
system's console.

4.2.3. Installing Additional Boards in a Cluster

Use these instructions when adding additional boards in a cluster, after the initial
configuration of the closely-coupled system.

1. If the board(s) have not yet been installed:

a. Perform an orderly system shutdown of each client running in the
cluster and then shutdown the File Server and power down the entire
cluster.

b. Install all additional SBC boards and initialize the SMon parameters
and SMon startup script on each board. See Section “Client
Board Configuration” on page 4-11 for more information.

2. For each additional client board, add a VME boot client profile file in the
/etc/profiles directory. Use vmebootconfig(1M) to print out a
template of a client profile. For example, to create a client profile for a
client with hostname wilma, do the following:

vmebootconfig -P client > /etc/profiles/wilma
vi /etc/profiles/wilma

Edit the resulting client profile file to be relevant to the specific character-
istics of the new client board. The parameters listed in the client profile are
described in /etc/profiles/client.profile.README, and are
discussed in section “The Client Profile File” on page 4-26.

3. Execute vmebootconfig(1M) to configure the build environment for
the new client(s), specifying each new client's profile filename on the
invocation line.

4. Build the boot image objects and boot the new client SBCs with
mkvmebstrap(1M). For example, to build the boot objects and boot

4-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

two new clients barney and dino, execute the following:

/usr/sbin/mkvmebstrap -b barney dino

See the mkvmebstrap(1M) man page for details on building a boot
image object. As previously mentioned, you are highly encouraged to first
successfully boot a new client board before attempting to customize any
client configuration.

5. As needed, customize the configuration of the new clients and reboot new
clients using mkvmebstrap. See Section “Customizing the Basic Con-
figuration” on page 4-40 for more information.

4.3. SBC Cluster Configuration

This sections covers the Power Hawk 720 and 740 SBC board installation in a closely-
coupled cluster system.

Note

Power Hawk 710 SBCs are NOT supported in a closely-coupled
configuration. However, Power Hawk 710 SBCs are supported in
a loosely-coupled configuration. See Chapter 3 “Netboot System
Administration” for detai ls on loosely-coupled system
configuration.

Major topics covered in this section are:

• Board Jumpers (below)

• Installing the P0Bus Overlay (page 4-7)

• File Server Board Configuration (page 4-7)

• Client Board Configuration (page 4-11)

4.3.1. Board Jumpers

There are no jumper setup requirements for Power Hawk Series 700 boards, whether they
are used in closely-coupled, loosely-coupled, or flash boot configurations. However, the

VME Boot System Administration

4-7

user should verify that the following jumpers, located on connector J02N (VGM5) or J02L
(VSS4), are not installed.

Note that the Slot number jumper (9 & 10) is not used; in closely-coupled systems, the
SBC board ID of the File Server SBC is always 0, and the SBC board ID of a client SBC is
determined from a client board’s SMon startup script, and not from its slot number
value.

4.3.2. Installing the P0Bus Overlay

A Power Hawk Series 700 closely-coupled system requires a P0Bus overlay, which is
used to connect all SBCs in a cluster. The P0Bus is utilized for inter-SBC communica-
tions within the cluster.

The P0Bus is available in either a 4-slot or a 5-slot model. The P0Bus overlay is attached
to the VMEBus backplane and thus each slot of the P0Bus corresponds to a VMEBus slot.
If some VMEBus slots may not be utilized due to attached PMC cards of excess width,
then there will also be corresponding slots on the P0Bus that also may not be utilized.

Additionally, PowerMAX OS also provides support for connecting two P0Bus overlays
together to form a larger P0Bus, by using a single Backplane P0 (BPP0) Bridge board. A
configuration which uses the BPP0 board to attach two P0Bus overlays will have a total of
8, 9, or 10 available P0Bus slots. A maximum of 8 processor boards can be installed in a
single cluster, regardless of whether more P0Bus slots are available. Because of hardware
limitations on the sizes and physical address alignments of the windows that are created
for allowing data to be passed through a BPP0 bridge board, there are some restrictions on
the placement and numbering of SBCs in a cluster that has a P0Bus BPP0 board in it.
These restrictions are described in Appendix A, “Backplane P0 Bridge Board Cluster
ConfigurationBackplane P0 Bridge Board Cluster Configuration”.

For instructions on installing the P0Bus overlay and the Backplane P0 Bridge board, see
the subsection entitled “Installing the P0 overlay” located in Section 2, “Getting Started”,
of the VGM5 or VSS4 SBC User Guide.

4.3.3. File Server Board Configuration

This section describes the procedure for configuring a SBC board as a File Server SBC in
a closely-coupled system. In the event your SBC board was not already configured as a
File Server SBC, or the configuration of the File Server SBC board appears to be cor-

Jumper
Pins

Function Remarks

5 & 6 VME System Controller. No jumper should be installed.

7 & 8 VME64 Auto-System Controller Disable No jumper should be installed.

9 & 10 User Defined Slot Number No jumper should be installed.

4-8

Power Hawk Series 700 Diskless Systems Administrator’s Guide

rupted or lost, follow the procedures provided in this section to configure a SBC board as
a File Server SBC.

Note that the board jumper settings have already been discussed in a previous section,
4.3.1. Board Jumpers on page 4-6.

The user should also refer to the SMon PowerPC Series SBCs Application Developer &
Debugger User Guide for additional information regarding SMon commands and features.

1. The File Server SBC has an implicit SBC Board ID value of 0, and this
SBC must be installed in VME slot 1 in the rack.

2. Connect a terminal to Serial UART Port A/Console if one is not already
connected.

3. The File Server SBC board should be set up to execute the SMon monitor
after power-on or after reset. If the board is configured to execute the
fdiag diagnostic program after power-up or reset, then this must first be
modified as follows:

 NOTE

In the following discussion, <cr> stands for hitting the
Return/Enter key on the keyboard.

Power-up or reset the board and watch for the resulting input prompt:

a. If the:

SMon0>

prompt appears, skip the rest of this step and go to step #4 below.

b. If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon. Skip the
rest of this step and go to step #4 below.

c. If the:

fdiag0>

prompt appears after the initial power-on/reset information is displayed, then
the board is currently setup to execute the fdiag diagnostic program instead
of SMon. To change this, enter config<cr>, and then enter <cr> to step
through this command’s prompts/questions until the:

SMon boot enabled [Y]:

prompt appears.

VME Boot System Administration

4-9

Answer Y<cr> to this prompt.

Enter <cr> until the rest of the prompts/questions are completed for the

config command.

Now enter reboot<cr> to reboot the board into SMon.

d. If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

4. Now that the SBC board executes SMon by default, make sure that the post
script is not enabled. To disable execution of the post script, enter:

config <cr>

and enter <cr> to step through this command’s prompts/questions until the:

post script enabled [Y]:

prompt appears. Answer N <cr> to this prompt.

Enter <cr> until the rest of the prompts/questions are completed for the config
command. Now enter reboot<cr> to reboot the board into SMon.

If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

5. The next step is to set up the networking addresses that the embedded
Symbios Ethernet controller will use. To set up these parameters, type:

smonconfig<cr>

and then enter <cr> to step through other prompts until the Ethernet parameters
appear:

ETHERNET PARAMETERS:
What is the board’s serial number? [1014042]
What should the Ethernet host address be? [129.134.30.26]
What should the Ethernet target address be?
[129.134.32.79]
What should the Ethernet mask be? [255.255.255.0]
What should the Ethernet gateway address be?
[129.134.32.196]

The Ethernet target address should be set to the IP address of this File
Server SBC, as specified in the /etc/hosts file for the Symbios Ethernet inter-
face.

The Ethernet host address can be optionally set to the IP address of a host
that might be used as a tftp host for this File Server SBC.

4-10

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The Ethernet gateway address may be optionally set to a gateway sys-
tem/node that is accessible from this File Server’s Ethernet controller.

Note that the two remote IP addresses above should also be contained in the
/etc/hosts file located on this File Server SBC.

Hit <cr> to step through all the other smonconfig command prompts until this
command completes.

6. The File Server SBC may be optionally setup with a SMon startup
script to load and execute the console processor, or the user may prefer to
manually load and execute the console processor.

a. If the user does NOT want to use a SMon startup script to
automatically enter the console processor after reset/power-up, then
enter smonconfig<cr> and answer 1<cr> to the following
prompt.

b. If a SMon startup script is desired for entering the console pro-
cessor after reset/power-up, then answer 2<cr> to the prompt
below:

The SMon ROM can be used in several ways:
(1) ROM-boot SMon Stand-alone
(2) ROM-boot SMon with startup script
Which one do you want? [1]: 2

Continue to enter <cr> until the prompts for this command is completed. If
you entered 1<cr> to the above prompt, then skip ahead to step #7 below.

To create the startup script that will load and execute the console proces-
sor, enter vi “startup”<cr> and enter the following line as the only line
in the startup script:

scsidiskboot n <== where ‘n’ is equal to the SCSI ID
 of the boot disk device

NOTE

While SMon provides a subset of vi commands for editing the
startup script, be careful when exiting the vi editor. Be sure to
type :q when exiting vi, and not :w. Typing :w will cause the
contents of the startup script to be lost and for all SMon
configuration settings to be reset back to their factory default
values.

For more background information on the SMon startup script,
and on using the SMon built-in editor, see the SMon PowerPC
Series SBCs Application Developer & Debugger User Guide, and
also the Power Hawk Series 700 Console Reference Manual.

VME Boot System Administration

4-11

7. The procedure for setting up the File Server SBC is complete. Enter the
SMon reboot<cr> command to reset the SBC board and have SMon
initialize the SBC board and optionally enter the console processor mode.

4.3.4. Client Board Configuration

This section describes the procedure for configuring a SBC board as a client SBC in a
closely-coupled system. In the event your SBC board was not already configured as a
client SBC, or the configuration of the client board appears to be corrupted or lost, then
follow the procedures provided in this section to configure the board as a client SBC.

The user should also refer to the SMon PowerPC Series SBCs Application Developer &
Debugger User Guide for additional information regarding SMon commands and features.

Note that the board jumper settings have already been discussed in a previous section,
4.3.1. Board Jumpers on page 4-6.

The following steps should be followed in order to set up a board as a client SBC:

1. Connect a terminal to Serial UART Port A/Console if one is not already
connected.

2. The client SBC board should usually be set up to execute SMon after
power-on or after reset. However, if the board was to execute the fdiag
diagnostic program after power-up or reset, then this must first be modified
as follows:

NOTE

In the following discussion, <cr> stands for hitting the
Return/Enter key on the keyboard.

Power-up or reset the board and watch for the resulting input prompt:

a. If the:

SMon0>

prompt appears, skip the rest of this step and go to step #3 below.

b. If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon. Skip the rest of
this step and go to step #3 below.

c. If the:

fdiag0>

4-12

Power Hawk Series 700 Diskless Systems Administrator’s Guide

prompt appears after the initial power-on/reset information is displayed, then the
board is currently setup to execute the fdiag diagnostic program instead of SMon.
To change this, enter:

config<cr>, and then enter <cr>

to step through this command’s prompts/questions until the:

SMon boot enabled [Y]:

prompt appears. Answer Y<cr> to this prompt. Enter <cr> until the rest of the
prompts/questions are completed for the config command.

Now enter reboot<cr> to reboot the board into SMon.

If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

3. Now that the SBC board executes SMon by default, make sure that the post
script is not enabled. To disable execution of the post script, enter:

config <cr>

and enter <cr> to step through this command’s prompts/questions until the:

post script enabled [N]:

prompt appears. Answer N <cr> to this prompt.

Enter <cr> until the rest of the prompts/questions are completed for the config
command.

Now enter reboot<cr> to reboot the board into SMon.

If the:

To change any of this, hit any key...

text appears, then hit any key, and then type X<cr> to enter SMon.

4. This step describes how to configure SMon so that it always executes the
startup script after reset/power-up and how to set up the networking
addresses that the embedded Symbios Ethernet controller will use. To set
up these parameters, type smonconfig<cr> and answer 2<cr> at the
prompt below to change it to SMon with startup script.

The SMon ROM can be used in several ways:
(1) ROM-boot SMon Stand-alone
(2) ROM-boot SMon with startup script
Which one do you want? [1]:2<cr>

Then hit <cr> to step through other prompts until the Ethernet parameters appear:

VME Boot System Administration

4-13

ETHERNET PARAMETERS:
What is the board’s serial number? [1014042]
What should the Ethernet host address be? [129.134.30.26]
What should the Ethernet target address be?
[129.134.32.79]
What should the Ethernet mask be? [255.255.255.0]
What should the Ethernet gateway address be?
[129.134.32.196]

The Ethernet host address should be set to the IP address of the File Server
SBC within this cluster. This IP address should be the same Ethernet address of the
File Server that is located in the File Server’s /etc/hosts file.

The Ethernet target address should be set to the IP address of this client
SBC. This IP address should be the Symbios Ethernet address of this client SBC
that is already in the File Server SBC’s /etc/hosts file.

A gateway address MUST be specified if the File Server’s ethernet interface resides
on a different subnet from this client’s ethernet interface.

Hit <cr> to step through all the other smonconfig parameter prompts until this
command completes.

NOTE

If this client SBC is going to be configured as an embedded client,
or if this client is going to be configured as a NFS client with only
the P0Bus networking interface and no Symbios Ethernet
networking interface, then setting up the ETHERNET PARAMETERS

above is not required. However, even in these cases, these param-
eters should still be setup if the user plans to use a temporary
Ethernet connection to use tftp to download the initial SMon
startup script from the File Server SBC (see the next step #5
below for more details).

5. The client SBC’s VME boot SMon startup script must be setup. This
script provides the File Server SBC with access to this client SBC for the
VME boot support. This script must get executed after every reset or
power-up. To check to see if the startup script is already setup, enter:

vi “startup”<cr>

to examine the contents of the startup script.

NOTE

While SMon provides a subset of vi commands for editing the
startup script, be careful when exiting the vi editor. Be sure to
type :q when exiting vi, and not :w. Typing :w will cause the
contents of the startup script to be lost and for all SMon
configuration settings to be reset back to their factory default
values.

4-14

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The required contents of the client SBC startup script is shown below. A copy of
th i s startup s c r i p t m a y a l s o b e p r i n t e d to s t d o u t b y u s in g
vmebootconfig(1M) with the -P option: “vmebootconfig -P smon ”.

------------------Startup Script --------------------

int sbc_id = REPLACE_ME;
wlle(fec00000, 80008810); wlle(fee00000, 801001);
wlle(fe801348, 0); wlle(fe80134c, getmemsize());
wlle(fe801f74, (effc0000 + (sbc_id * 1000)));
wlle(fe801f70, 80f20000); wl(ffffe4, 0); wl(ffffe8, 0);
printf("Waiting for server download; polling at ffffc0\n");
wl(ffffc0, feedbeef); while (rl(ffffc0) == feedbeef) ;
if (rl(ffffe4) != 0 && rl(ffffe8) != 0)
 printf("Load image at %x:%x\n", rl(ffffe4), rl(ffffe8));
wb(ffeffe50, 80); netstart; if (rl(ffffc0) == beeffedd) {
 printf("Jumping to %x\n", rl(ffffe0)); g rl(ffffe0);
} if (rl(ffffc0) == beefc0de) {
 fp uf erase; fp uf rl(ffffe4) rl(ffffe8); wb(ffeffe50, 80);
} else if (rl(ffffc0) != deadbeef)
 printf("ERROR: unknown command: %x\n", rl(ffffc0));
wl(ffffc0, feedbeef);

--------------- End of Startup Script ---------------

NOTE

If the VME_VRAI_BASEADDR cluster.profile parameter is
modified from its default value, then the 0xeffc0000 value in the
fourth line of the above Smon startup script must be modified
so that is matches the new VME_VRAI_BASEADDR parameter value.
For example, if the VME_VRAI_BASEADDR is set to a non-default
value of 0xa000, then the 0xeffc0000 value in the fourth line of
the above script must be set to a value of 0xa0000000. See the
section Cluster-wide Parameters on page 4-19 for details on the
VME_VRAI_BASEADDR parameter.

If the startup script appears as it does above, with REPLACE_ME set to the desired
sbc_id value that is to be used for this client board, then type :q<cr> to exit the vi
editor and go to step #6 below.

5a. Setting the sbc_id value -

Each client board must have a unique sbc_id value. This is the unique software SBC
ID value that identifies this board within the cluster, and this is the SBC ID value
that the File Server SBC uses to configure, build, probe and boot client SBCs. In
general, the sbc_id value may be any number from 1 to 7 (the File Server SBC is

VME Boot System Administration

4-15

always 0), but based on the maximum amount of memory on any SBC in the cluster,
this value may need to be reduced in range. The table below shows the valid sbc_id
values for each VME_DRAM_WINDOW tunable value:

NOTE

If the cluster contains a Backplane P0 (BPP0) Bridge board with
two P0Bus Overlay boards connected together, then the sbc_id
value may need to be further restricted. If your cluster contains a
BPP0 Bridge board, then refer to Appendix ABackplane P0
Bridge Board Cluster Configuration “Backplane P0 Bridge Board
Cluster ConfigurationBackplane P0 Bridge Board Cluster
Configuration” for information on additional sbc_id value restric-
tions.

If the sbc_id value needs to be modified, or if the startup script below is not set
up or is incorrect, then type:

vi “startup” <cr>

in order to enter or modify the script as shown below. Note that usually only the
REPLACE_ME field needs to be changed in the startup script previously shown
above.

NOTE

Be sure to enter “:q<cr>” to exit vi after this script has been
edited.

For more background information on the SMon startup script, and on using the
SMon built-in vi editor, see the SMon PowerPC Series SBCs Application Developer
& Debugger User Guide, and the Power Hawk Series 700 Console Reference
Manual.

5b. Downloading the SMon Startup Script -

VME_DRAM_WINDOW Maximum DRAM Size sbc_id Values

1 64MB 1-7

2 128MB 1-7

3 256MB 1-7

4 512MB 1-3

5 1GB 1

4-16

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The CCS startup script is somewhat lengthy, and it can be somewhat difficult to
manually type in, especially if multiple client SBC boards need to be setup.

Therefore, as an alternative to manually typing in the entire startup script, this
script may instead be downloaded from the File Server SBC and loaded into the
startup script buffer via tftp. This method requires a Symbios Ethernet
connection on the client SBC that will provide tftp access to the File Server SBC.
Note that this Ethernet connection need only be temporarily installed, if this client
SBC is not using the Symbios Ethernet interface after the client board has been con-
figured. This method also requires the that client SBC’s Ethernet host and target
addresses have already been properly initialized back in step #4 (page 4-12).

To download the startup script contents from the File Server SBC, follow these
steps:

a. If the /tftpboot directory does not already exist on the File
Server SBC, generate it by:

mkdir /tftpboot<cr>

b. On the File Server SBC, place a copy of the Smon startup
script in the /tftpboot directory as follows:

vmebootconfig -P smon > /tftpboot/startup

(Note that this step is only required once, since all clients being
initialized may use this same startup script file.)

c. The File Server’s tftp server (tftpd(1M)) is not enabled
by default. To enable the tftp service, run one of the follow-
ing commands. Note that it is harmless to run this command
even if the daemon is already enabled. Refer to the
tftpd(1M) man page for more information on the -s secure
option.

To start tftpd in non-secure mode:

/usr/etc/diskless.d/sys.conf/bin.d/enable_tftp

To start tftpd in secure mode:

/usr/etc/diskless.d/sys.conf/bin.d/enable_tftp -s

d. On the client SBC, issue the following SMon command to
download the startup script from the File Server SBC via
tftp, and to load the contents of the script into the SMon
startup script buffer:

loadEB “startup”<cr>

e. At this point, only the "REPLACE_ME" sbc_id value needs to be
modified in the startup script. On the client SBC, enter:

vi “startup”<cr>

and change just the sbc_id value on the first line of the script,

VME Boot System Administration

4-17

and then type:

:q<cr>

to update the script and exit the vi editor.

6. This step describes how to configure SMon so that it always executes the
startup script after reset or power-up. Type:

smonconfig<cr>

and answer: 2<cr>

at the prompt below so that SMon will execute the startup script after each
power-cycle or reset:

The SMon ROM can be used in several ways:
 (1) ROM-boot SMon Stand-alone
 (2) ROM-boot SMon with startup script
Which one do you want? [1]: 2<cr>

7. The vmeboot client’s hardware clock must be updated to match the date on
the system designated as the File Server.

Use the SMon ‘date’ command to display and/or set the current date and
time.

To display the date/time values, enter the ‘date’ command with no
arguments:

SMon0> date<cr>
Mar 7 01:02:05 1996

To set the date and time to a value that matches the File Server's date and
time (displayed via a date(1) command), use the SMon ‘date’
command, where the new date and time values are specified in the
following format:

date month day hour min sec year

You must use a ‘#’ prefix when entering decimal values. For example, to
set the date to August 22, 1996 and the time to 14:55:30:

SMon0> date 8 #22 #14 #55 #30 #96

8. Enter the reboot command to reset the SBC board and have SMon
initialize and then execute the new startup script.

reboot<cr>

Then, the

Waiting for server download; polling at 0xffffc0

message should appear on the terminal screen if the startup script has been

4-18

Power Hawk Series 700 Diskless Systems Administrator’s Guide

set up properly. If the script has not been entered correctly, it may be
necessary to reset the board and go back and re-edit the startup script
using the vi editor.

9. After the File Server successfully configures, downloads and boots this
client SBC, then this SBC’s serial terminal should no longer be needed and
it may be removed if the user so desires, or it may alternatively be used as
the client board’s console terminal when running under the PowerMAX
OS.

Similarly, the Symbios Ethernet connection may also be removed at this
point, if the SMon startup script has been successfully downloaded, and
if the Ethernet connection is no longer required.

4.4. Cluster Configuration

This section describes the steps for creating the environment on the File Server that
is necessary for support of diskless client SBCs in greater detail than the “Installing
the Cluster section on page 4-2.

The major topics described in this section are:

• Configuring the cluster.profile file (page 4-19) and client profile file
(page 4-26)

• Creating and removing cluster configurations (page 4-34)

4.4.1. The Profile Files

Information about the File Server and each client in the cluster is specified in profile
files. The administrator creates and updates these profile files and invokes
vmebootconfig(1M) to create on the File Server the environment necessary for
supporting a private virtual root directory, where a private boot image for each client
may be configured, customized and built.

The cluster.profile file and vmebootconfig(1M) are also used to
modify the File Server’s kernel configuration so that it is configured to operate as a
File Server in a closely-coupled system (CCS) environment. After the kernel
configuration is modified, and prior to booting a diskless client SBC, the File
Server’s kernel MUST be rebuilt and the system must be rebooted. After the File
Server is rebooted, it is then able to support the booting of diskless client SBCs that
reside in the same cluster.

VME Boot System Administration

4-19

NOTE

When vmebootconfig(1M) initially modifies the File
Server’s kernel configuration, it will enable the ‘sym_dma’ kernel
module if the ‘ncr’ kernel module is not currently enabled.
These two modules are mutually exclusive, and the ‘sym_dma’
module is not required if the ‘ncr’ kernel module is already
enabled. (The ‘ncr’ or the ‘sym_dma’ kernel modules are used
for DMAing data across the P0Bus.)

Therefore, if the ‘sym_dma’ kernel module is enabled in the File
Server's initial closely-coupled kernel configuration and the
system administrator decides to enable the ‘ncr’ kernel module
at a later point in time, then the ‘sym_dma’ kernel module should
also be disabled.

4.4.1.1. The cluster.profile File

If the cluster.profile file does not already exist in the /etc/profiles
directory, then it must be created. A cluster.profile file can be created with
the following command:

vmebootconfig -P cluster > /etc/profiles/cluster.profile

You should then edit this cluster.profile file to suit the particular needs of the
cluster and File Server SBC. The file
“/etc/profiles/cluster.profile.README”
contains explanations of the various parameters set in the cluster.profile file.

There are two sections to the cluster.profile configuration file. The first
section describes a closely-coupled cluster as a whole, and the second section has
optional parameters that apply specifically to the File Server SBC.

Some parameters are optional, and some parameters are already set to the
recommended default value.

4.4.1.1.1. Cluster-wide Parameters

The first section of the cluster.profile file contain the following cluster-wide
related parameters.

VME_DRAM_WINDOW=2

This parameter specifies the maximum memory size that can be supported on any SBC in
the cluster. It is used to determine the base I/O addresses used by VMEbus and P0 Bus
masters to remotely access each board's DRAM (on-board memory). The window size
must be greater than or equal to the largest DRAM installed on any single board computer
in the cluster. This parameter is used to set the kernel tunable of the same name, and this
corresponding tunable must have the same value on each SBC in the cluster. The value of
this parameter affects the number of boards that can be supported in a cluster.

The valid values for this parameter and the corresponding sizes and number of boards
(clients + File Server) supported are shown in the table below.

4-20

Power Hawk Series 700 Diskless Systems Administrator’s Guide

SBC_SLAVE_MMAP_MAXSZ=1

This parameter defines the largest possible Slave Mmap memory area that can be setup on
any SBC in the cluster. This value is used to set the kernel tunable of the same name and
this tunable value must be the same for each SBC in the cluster.

Note that this parameter defines the maximum size limit of the Slave Mmap area on any
SBC in the cluster; the actual size for each SBC’s Slave Mmap area is defined with the
SBC_SLAVE_MMAP_SIZE parameter (see below for a description of this parameter).

The maximum Slave Mmap area size is always at least 4KB in size, where the first 4KB of
memory is reserved for system-only usage.

NOTE: If this SBC_SLAVE_MMAP_MAXSZ parameter is left set to the default minimum a
value of 1 (4KB), then no user-accessible Slave Mmap shared memory areas
may be configured on ANY SBC in the cluster.

When the maximum Slave Mmap memory area is defined to be larger than 4KB, then this
additional memory space may be optionally allocated on a per-SBC basis for shared
memory usage.

The Slave Mmap area size defined may range from 4KB to 256MB, but the size may
never be larger than one fourth of the amount of memory def ined by the
VME_DRAM_WINDOW parameter. When there is a Backplane P0 (BPP0) Bridge board
installed in the cluster, then the value of this SBC_SLAVE_MMAP_MAXSZ parameter may
need to be further reduced in size (refer to the Note below for information on the
additional BPP0 restrictions).

This value is used to set the system tunable of the same name and must be the same value
on each SBC in the cluster. The valid values for this tunable and the corresponding sizes
(in parentheses) are shown in the table below.

Parameter
Value

Maximum DRAM
Window Size

Maximum Number of Boards
(Including File Server)

1 64MB 8

2 128MB 8

3 256MB 8

4 512MB 4

5 1GB 2

Note that care should be taken to set this parameter to an accurate
value; this parameter cannot be easily modified after the client
SBCs are configured.

VME Boot System Administration

4-21

If Slave Mmap shared memory is to be configured on some or all of the SBCs in the
cluster, then this parameter should be assigned to an appropriate value BEFORE
configuring the client profile files; this parameter cannot be easily modified after the client
SBCs are configured.

NOTE: When a Backplane P0 (BPP0) Bridge board is installed (see the
P0_BPP0_SBC_ID parameter below), additional size restrictions may apply.
In the fo l lo wing two con f ig ura t io ns , t he s i ze de f in ed by th i s
SLAVE_MMAP_MAXSZ parameter may NOT be larger than 1/8 (normally it is
1/4) of the amount of memory defined by VME_DRAM_WINDOW:

Case 1: VME_DRAM_WINDOW = 3 (256B) and P0_BPP0_SBC_ID = 2

Case 2: VME_DRAM_WINDOW = 4 (512 MB) and P0_BPP0_SBC_ID = 1

VME_VRAI_BASEADDR=0xeffc

This parameter defines the upper 16 bits of the base address location on the VMEbus
where a VME Remote Access Image (VRAI) of the PCI-to-VME64 Universe II bridge
registers for each SBC (including the File Server SBC) are configured to reside.

This value is used to set the kernel tunable of the same name and tunable must be the same
value for each SBC in the cluster.

The default value of this parameter is 0xeffc, the minimum value is 0xa000, and the
maximum value is 0xfafc; however, the value for this parameter MUST fall within the
range of the VME_A32_START and VME_A32_END kernel tunables. (The VME_A32_START

kernel tunable has a default value of 0xc000, and the VME_A32_END kernel tunable has a
default value of 0xfaff.)

The default value of 0xeffc (which translates to a VMEbus address value of 0xeffc0000)
should not usually need modification, unless there is a conflict in VMEbus address usage
with another VMEbus I/O device that must be loaded in this address range.

The VRAI area size for each SBC is 4KB. Since each SBC’s VRAI area is placed in this
range of VMEbus addresses, the total amount of VMEbus address space that is used for
this purpose depends upon the maximum possible number of boards in the cluster.

For example, when a possible maximum of eight boards may be placed into the cluster,
then:

8 * 4KB

1 (4KB) 5 (64KB) 9 (1Mb) 13 (16MB) 17 (256MB)

2 (8KB) 6 (128KB) 10 (2MB) 14 (32MB)

3 (16KB) 7 (256KB) 11 (4MB) 15 (64MB)

4 (32KB) 8 (512KB) 12 (8MB 16 (128MB)

4-22

Power Hawk Series 700 Diskless Systems Administrator’s Guide

bytes of VMEbus address space are reserved, and should not be used for any other pur-
pose. For example, using the default VME_VRAI_BASEADDR parameter value of
0xeffc, the total VRAI image space for eight boards would occupy the following VMEbus
address range:

0xeffc0000 - 0xeffc7fff

NOTE: The value assigned here must also match the value assigned in each client’s
SMon startup script. If VME_VRAI_BASEADDR is modified from its default
value, then the SMON startup script for EACH client SBC must also be
modified. See section “Client Board Configuration” (page 4-11) for
information on modifying the SMon startup script due to a change in this
parameter from its default value.

P0_BPP0_SBC_ID=0

This parameter MUST be set to zero unless the P0Bus is composed of two P0Bus overlays
joined by a Backplane P0 (BPP0) Bridge board. (Run-time checks during system
initialization time will be done to validate that no BPP0 bridge board is present in the
cluster.)

This parameter is used to set the kernel tunable of the same name and this tunable value
must be the same for each SBC in the cluster.

When a BPP0 board is present in the system, then this parameter MUST be set to a non-
zero value of the smallest logical SBC board id that is located on the second P0Bus
overlay. All boards located on the second P0Bus overlay must have logical SBC board id
values that are equal to or greater than this tunable value, and all boards located on the first
P0Bus overlay must have logical SBC board id values that are less than this tunable value.
(Note that the lower slots in the VME cardcage are located on the first P0Bus overlay, and
the higher slots in the VME cardcage are located on the second P0Bus overlay.)

The following are some of the guidelines for setting this parameter. For a more complete
explanation on the setting of this parameter, refer to Appendix A, “Backplane P0 Bridge
Board Cluster ConfigurationBackplane P0 Bridge Board Cluster Configuration.

When non-zero, the valid values for this tunable are determined by the setting of the
VME_DRAM_WINDOW parameter that was previously described:

When VME_DRAM_WINDOW is set to value of 1, 2 or 3 (256MB or less), then the valid
values for this tunable are: 2, 4 or 6. Note that If P0_BPP0_SBC_ID is set to 6, then the
logical SBC id value of 4 cannot be used for any client SBC in the cluster.

When VME_DRAM_WINDOW is set to 4 (512MB), then the valid values for this tunable are:
1, 2 or 3.

When VME_DRAM_WINDOW is set to 5 (1GB), then the only valid value for this tunable is
1.

VME Boot System Administration

4-23

These 7 parameters are used to specify on which logical SBC ID the corresponding VME
interrupt request level (IRQ) is enabled. Each parameter must be assigned a valid logical
board id number.

For example, the assignment VME_IRQ3=1 specifies that VMEbus IRQ 3 is to be
reserved and used exclusively by the client SBC whose logical board id is 1. (Note that
the logical SBC ID value of 0 is always reserved for the File Server.)

T h e se s e t t i n g s a r e u s e d to s e t c o r r e s p o n d in g th e k e r n e l t u n a b le s
VME_IRQ[1-7]_ENABLE, and the values for all of these tunables must be the same for
all SBCs in the cluster.

Only one board in the cluster may enable/use a particular IRQ level, but any one board
may enable/use from none, up to all of the possible VME IRQ levels.

CCS_NET=p0

This parameter defines the networking interface to be used to mount, across NFS, the
diskless client’s file systems that reside on the File Server. In addition, this interface may
also be used for general purpose networking. It is required that each client be assigned an
IP address in the /etc/hosts file for the chosen interface. The valid values are ‘p0’ for
the P0Bus networking interface and ‘eth’ for Symbios ethernet networking interface.

See Networking Hostname Naming Conventions on page 4-31 for guidelines in
generating networking hostnames and see the P0_NET_IPADDR parameter description below
for information on P0Bus IP address formulation.

OPT_NET=eth

This parameter is optional and defines a second network interface in addition to the
CCS_NET interface.

This interface will be free of the NFS traffic inherent in the diskless implementation that is
handled by the network assigned in CCS_NET above.

The valid choices are ‘p0’ for the p0 bus networking interface if CCS_NET=eth; and
‘eth’ for ethernet if CCS_NET=p0.

When the optional network is the P0Bus network (‘p0‘), it is required that each client is
assigned an IP address for the p0bus interface in the /etc/hosts file. All the point-to-
point connections will be created during the node system's boot.

When the optional network is Symbios Ethernet (eth), then each client node may
independently chose to configure ethernet by adding an entry for the interface in the
/etc/hosts file and assigning ETHER_SUBNETMASK in the client's profile file (see
section “NFS Related Parameters” on page 4-29). If an entry does not exist in

VME_IRQ1=n VME_IRQ2=n

VME_IRQ3=n VME_IRQ4=n

VME_IRQ5=n VME_IRQ6=n

VME_IRQ7=n

4-24

Power Hawk Series 700 Diskless Systems Administrator’s Guide

/etc/hosts for the client’s ethernet networking interface then it will not be configured,
and a warning message will be output to inform the system administrator that this
interface lacks a corresponding hostname entry.

See Networking Hostname Naming Conventions on page 4-31 for guidelines in
generating networking hostnames and see the P0_NET_IPADDR parameter description below
for information on P0Bus IP address formulation.

P0_NET_IPADDR=192.168.1.1

When either of the parameters CCS_NET or OPT_NET are assigned the value p0, a
P0Bus networking IP address must be defined. This should be an internet address, in
decimal dot notation, of a unique subnet to be used by the cluster for P0 networking. The
P0Bus internet address for each client in the cluster will be generated by adding the
client’s board id number to this address. This parameter is used to set the kernel tunables
BUSNET_IPADDR_HI and BUSNET_IPADDR_LO.

P0Bus IP Address Formulation

When ei ther of the parameters C C S _ N E T or O PT _ N E T are set to ‘p0‘ in the
cluster.profile file, then the cluster will be configured with P0Bus networking.

In this case, a SBC's P0Bus networking IP address is formulated by adding the SBC's
logical SBC ID value to the address defined for this P0_NET_IPADDR parameter.

For example, if P0_NET_IPADDR is set to a value of 192.168.1.1, the following IP addresses
correspond to the File Server and clients that are assigned logical SBC ID values 1 and 2.
(Note that the File Server's logical SBC ID is always 0.)

4.4.1.1.2. File Server SBC Parameters

The second section of the cluster.profile file contains the following parameters
that relate specifically to the File Server SBC, and NOT to the whole cluster. Note that
these same parameters are also contained in the client profile file for defining these same
parameter values for each client SBC (see the section “The Client Profile File” on page
4-26).

SBC_SLAVE_MMAP_SIZE=

This optional parameter is an index value, which defines the amount of local DRAM
memory that will be mapped onto the P0bus for use by the Slave Mmap interface. Note
that the first 4KB is always reserved for internal kernel use. This index parameter specifies
the amount of space (MINUS 4KB) that may be used as the user-accessible Slave Mmap
memory area.

For example, an index value of 5 reserves 64KB of physical memory, 4KB is for kernel
use and 60KB may be used for shared memory.

Logical SBC ID P0Bus IP Address

0 192.168.1.1

1 192.168.1.2

2 192.168.1.3

VME Boot System Administration

4-25

Note that if this parameter is left unspecified (left blank), then a default 4KB size kernel-
accessible Slave Mmap area will be setup. In this case, no user-accessible Slave Mmap
memory area will be available on the File Server SBC.

This parameter value must be less than or equal to the value assigned to the parameter
SBC_SLAVE_MMAP_MAXSZ in this cluster.profile file. This parameter value will be
used to set the kernel tunable of the same name for the File Server’s kernel.

The index values and corresponding sizes, in parenthesis, are shown below. Note that the
specified size is the sum of the kernel (4KB) space, PLUS the shared memory space:

SBC_SLAVE_MMAP_START=

The optional SBC_SLAVE_MMAP_START parameter determines whether the Slave Mmap
area is statically or dynamically allocated. When SBC_SLAVE_MMAP_START is set to zero
or is not specified (left blank), then the Slave Mmap memory area is dynamically allocated
during system initialization. This is the preferred allocation setting, unless a particular
application requires shmbind(2) support for locally accessing this Slave Mmap area
from the same SBC.

When SBC_SLAVE_MMAP_START is non-zero, then this indicates that the Slave MMAP area
is statically allocated. In this case, SBC_SLAVE_MMAP_START must be set to a physical
DRAM address value that is aligned on a boundary that is a multiple of the
SBC_SLAVE_MMAP_SIZE parameter value.

This parameter value will be used to set the kernel tunable of the same name for the File
Server’s kernel.

When SBC_SLAVE_MMAP_START is non-zero, then the kernel will attempt to use the
specified reserved memory area that must also be defined in the res_sects[] array of that
SBC. During system initialization, the kernel will search the res_sects[] array and try to
locate an entry that starts at the SBC_SLAVE_MMAP_START value, with a length equal to the
SBC_SLAVE_MMAP_SIZE tunable value.

For example, if SBC_SLAVE_MMAP_START is set to 0x1400000 and SBC_SLAVE_MMAP_SIZE

is set to a value of 9 (for a 1MB size), then the following res_sects[] entry would reserve
that range of physical DRAM memory:

struct res_sect res_sects[] = {
 /* r_start, r_len, r_flags */
 { 0x1400000, 0x100000, 0 }, /* Slave Mmap area */
 { 0, 0, 0 } /* This must be the last line, DO NOT change
it. */
};

2 (8KB) 6 (128KB) 10 (2MB) 14 (32MB)

3 (16KB) 7 (256KB) 11 (4MB) 15 (64MB)

4 (32KB) 8 (512KB) 12 (8MB) 16 (128MB)

5 (64KB) 9 (1MB) 13 (16MB) 17 (256MB)

4-26

Power Hawk Series 700 Diskless Systems Administrator’s Guide

NOTE On the first invocation of vmebootconfig(1M), the File Server’s
/etc/conf/pack.d/mm/space.c res_sects[] array wil l be
automatically updated with the appropriate Slave Mmap entry if this
pa r ame te r i s s e t t o a non -ze ro v a l u e . Af t e r t h a t po i n t , t h e
mkvmebstrap(1M) -m option may be used to modify the File Server’s
SBC_SLAVE_MMAP_SIZE and SBC_SLAVE_MMAP_START tunables. This -m
option will also automatically modify the res_sects[] array, if needed.

4.4.1.2. The Client Profile File

For each client SBC installed in the cluster, a client profile file must be created in the
/etc/profiles directory. This section explains the various parameters that are
contained in a client profile file. Note that all of the parameters located in a client profile
file are specific to that one client SBC; all cluster-wide parameters are defined in the
cluster.profile file.

You can use vmebootconfig(1M) to print out a starting template of a client profile
with the “-P client” option. Note that the client profile file name should be equivalent to
the client's hostname.

For example, to create a client profile for a client with a hostname of ‘wilma’, do the
following:

vmebootconfig -P client > /etc/profiles/wilma
vi /etc/profiles/wilma

You must then update the resulting client profile file, modifying the parameter values in
the file to fit the specific characteristics of that client SBC.

The parameters contained in a client profile file are described below. Some parameters are
required, and some parameters are optional, depending upon the type of networking
interface(s) being configured.

4.4.1.2.1. Required Parameters

The following parameters in the client profile file are required for all types of client SBCs.

BOARD_ID=

This parameter is the logical SBC ID for this client SBC. (Board id zero is reserved for the
File Server.)

NOTE This parameter value MUST match the value assigned to the variable ‘sbc_id’
in the board's SMon startup script. See the section “Client Board Config-
uration” on page 4-11 for details on the SMon startup script.

The sbc_id value allowed for this parameter usually ranges from 1 to 7. However, this
range may be reduced due to the maximum DRAM memory size that is defined by the
VME_DRAM_WINDOW parameter, which is defined in the cluster.profile file:

VME Boot System Administration

4-27

NOTE When a P0Bus bridge board is installed, additional board id restrictions may
apply. For more information, refer to the P0_BPP0_SBC_ID parameter
documentation in the previous section “The cluster.profile File” on page 4-19,
and also refer to Appendix A, “Backplane P0 Bridge Board Cluster
ConfigurationBackplane P0 Bridge Board Cluster Configuration”.

VROOT=

This parameter defines the pathname of the directory under which the client's virtual root
directory is to be created. The path will be created if it doesn't already exist.

AUTOBOOT=

This parameter indicates whether or not this client should be booted/shutdown whenever
the File Server is booted/shutdown.

This parameter may be set to ‘y’ for yes. In this case this embedded or NFS client will be
automatically booted when the File Server SBC boots up. If the client is a NFS client,
then this client will also be automatically shutdown when ever the File Server SBC exe-
cutes a shutdown operation. Note that the automatic shutdown support does not apply to
embedded clients.

This parameter may be also set to ‘n’ for no. In this case, this client SBC will not be
automatically booted when the File Server SBC boots, nor will this client SBC be auto-
matically shutdown when the File Server SBC executes a shutdown operation.

NOTE When this parameter is set to ‘y‘, then a hidden file named .autoboot will
be created by vmebootconfig(1M) under this client's virtual root directory
(the VROOT parameter path). This file will serve to indicate that the client
SBC should be automatically booted or shutdown by the File Server SBC
whenever the File Server is booted or shutdown. This .autoboot file may
be manually removed or created in the client's virtual root directory, as
needed.

FLASHBOOT=

This parameter, which must be set to either ‘y’ or ‘n’, indicates whether or not this client
should be booted from a boot image that resides in the client’s User Flash, or from a boot
image that resides on the File Server and is downloaded across the VMEBus into the client
board's memory.

VME_DRAM_WINDOW Maximum DRAM Size sbc_id Values

1 64MB 1-7

2 128MB 1-7

3 256MB 1-7

4 512MB 1-3

5 1GB 1

4-28

Power Hawk Series 700 Diskless Systems Administrator’s Guide

When this parameters is set to ‘n’ for no, the client will be booted from the client’s boot
image that resides on the File Server by downloading the client's boot image across the
VMEBus.

When this parameter is set to ‘y’ for yes, then this indicates that the client should be
booted from the boot image that resides in the client’s User Flash.

It is recommended that this parameter be initially set to ‘n’. After a working client
vmeboot configuration and boot image have been created on the File Server and tested on
the client, the user may then optionally choose to set this parameter to ‘y’ in order to
enable User Flash booting.

Note that once this parameter is set to ‘y’, then the AUTOFLASH parameter must also be
set to a valid value (see the AUTOFLASH parameter discussion below).

See Chapter 5 “Flash Boot System Administration” for more information about burning
and booting from User Flash.

AUTOFLASH=

This parameter is ignored unless the FLASHBOOT parameter is set to ‘y’. When
FLASHBOOT=y, then this parameter becomes a required parameter that must be set to either
‘y’ or ‘n’.

When FLASHBOOT=y and this parameter is also set to ‘y’, then the client’s boot image that
resides on the File Server will be automatically burned into the client SBC's User Flash
whenever a new client boot image is generated.

When FLASHBOOT=y and this parameter is set to ‘n’, then the client’s boot image will not
ever be automatically burned into the client’s User Flash.

Note that in this case, the user must manually cause the initial or new versions of the
client’s boot image to be burned into the client board’s User Flash by using the appropriate
mkvmebstrap(1M) or sbcboot(1M) options.

See Chapter 5 “Flash Boot System Administration” for more information about burning
and booting from User Flash.

SYS_CONFIG=

This parameter defines the client SBC's system configuration. The valid values for this
parameter are:

emb Embedded client. This configuration operates only in singleuser mode, has no
networking support, and no swap space.

nfs NFS client. This configuration operates in multiuser mode, contains networking
support, supports remote NFS swap space and remotely mounted (NFS) directories,
including the File Server system directories (such as /bin and /etc).

BOOT_IFACE=vme

This parameter is set to ‘vme’ for all client profile files that are created with the
‘vmebootconfig -P client’ method. This parameter indicates that this client is a
VME boot client, and as such, this parameter should NOT be modified by the user.

VME Boot System Administration

4-29

NOTE In order to create a Net boot client profile file, the netbootconfig(1M)
-P option should be used to create a Net boot client profile file. See the "Net-
boot System Administration" chapter for details on configuring netboot cli-
ents.

4.4.1.2.2. NFS Related Parameters

The following client profile file parameters are only required for NFS clients (those clients
with SYS_CONFIG set to ‘nfs’); clients with SYS_CONFIG set to ‘emb’ may leave these
parameters blank.

SWAP_SIZE=

This parameter defines the size, in megabytes, of a remote NFS swap space area. This
swap space is implemented as a file (dev/swap_file) residing in the client's virtual
root and accessed over NFS.

This parameter is recommended to be 1.5 times the size of the physical memory (DRAM)
located on this client SBC.

ETHER_SUBNETMASK=

This optional parameter specifies the ethernet interface subnetmask in decimal dot
notation (xxx.xxx.xxx.xxx).

For example: 255.255.255.0.

For Symbios Ethernet networking to be configured on a client node, the following must be
true:

• CCS_NET or OPT_NET must be set to ‘eth’ in the
cluster.profile file.

• This parameter must be set to a valid Ethernet subnet mask value.

• An entry in File Server’s /etc/hosts file must exist with a host-
name of <client_profile_filename>-eth. For example, if
a client's client profile filename is ‘wilma’, then a hostname of
‘wilma-eth’ must exist in the /etc/hosts file. See section Net-
working Hostname Naming Conventions on page 4-31 for a more
complete description of CCS networking hostnames.

4.4.1.2.3. Shared Memory Parameters

The following two optional client profile parameters define the Slave Mmap memory area
configuration for this client SBC.

If no user-accessible Slave Mmap shared memory area is required on this client SBC, then
these two parameters may be left blank

SBC_SLAVE_MMAP_SIZE=

This optional parameter is an index value that defines the amount of local DRAM memory
that will be mapped onto the P0bus for use by the Slave Mmap interface.

4-30

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Note that the first 4KB is always reserved for internal kernel use. This index parameter
specifies the amount of space (MINUS 4KB) that may be used as the user-accessible Slave
Mmap memory area.

For example, an index value of 5 reserves 64KB of physical memory, 4KB is for kernel
use and 60KB may be used for shared memory.

Note that if this optional parameter is left unspecified (left blank), then a default 4KB size
kernel-accessible Slave Mmap area will be setup. In this case, no user-accessible Slave
Mmap memory area will be available on this client SBC.

This parameter value must be less than or equal to the value assigned to the parameter
SBC_SLAVE_MMAP_MAXSZ, which is defined in the cluster.profile file (in section
“Cluster-wide Parameters” on page 4-19). This parameter value will be used to set the
kernel tunable of the same name for the client's kernel.

The index values and corresponding sizes, in parenthesis, are shown below. Note that the
specified size is the sum of the kernel (4KB) space, PLUS the shared memory space:

SBC_SLAVE_MMAP_START=

The SBC_SLAVE_MMAP_START parameter determines whether the Slave Mmap area is
statically or dynamically allocated. When SBC_SLAVE_MMAP_START is set to zero, then the
Slave Mmap memory area is dynamically allocated during system initialization. This is
the preferred allocation setting, unless a particular application requires shmbind(2)
support for accessing this Slave Mmap area on the local SBC.

When SBC_SLAVE_MMAP_START is non-zero, then this indicates that the Slave MMAP area
is statically allocated. In this case, SBC_SLAVE_MMAP_START must be set to a physical
DRAM address value that is aligned on a boundary that is a multiple of the
SBC_SLAVE_MMAP_SIZE parameter value.

This parameter value will be used to set the kernel tunable of the same name for the
client's kernel.

When SBC_SLAVE_MMAP_START is non-zero, then the kernel will attempt to use the
reserved memory area that must also be defined in the res_sects[] array of that SBC. At
system initialization time, the kernel will search the res_sects[] array and try to locate an
entry that starts at the SBC_SLAVE_MMAP_START value, with a length equal to the
SBC_SLAVE_MMAP_SIZE tunable value.

For example, is SBC_SLAVE_MMAP_START is set to 0x1400000 and SBC_SLAVE_MMAP_SIZE

is set to a value of 9 (for a 1MB size), then the following res_sects[] entry would reserve
that range of physical DRAM memory:

2 (8KB) 6 (128KB) 10 (2MB) 14 (32MB)

3 (16KB) 7 (256KB) 11 (4MB) 15 (64MB)

4 (32KB) 8 (512KB) 12 (8MB) 16 (128MB)

5 (64KB) 9 (1MB) 13 (16MB) 17 (256MB)

VME Boot System Administration

4-31

--

struct res_sect res_sects[] = {
 /* r_start, r_len, r_flags */
 { 0x1400000, 0x100000, 0 }, /* Slave Mmap area */
 { 0, 0, 0 } /* This must be the last line, DO NOT change
it. */
};

--

NOTE On the first invocation of vmebootconfig(1M), the client’s
<virtual_root>/etc/conf/pack.d/mm/space.c res_sects[] array
will be automatically updated with the appropriate Slave Mmap entry if this
parameter is set to a non-zero value.

After that point, the mkvmebstrap(1M) -m option may be used to modify
the client’s SBC_SLAVE_MMAP_SIZE and SBC_SLAVE_MMAP_START tunables.
This -m option will also automatically modify the res_sects[] array, if needed.

4.4.1.3. Networking Hostname Naming Conventions

This section discusses the hostname name format that must be followed when adding
P0Bus or Symbios Ethernet networking hostnames to the File Server’s /etc/hosts file
for boards that are within a CCS cluster.

Note that this hostname naming convention is required by the diskless utilities, and thus
this convention must be followed in order to successfully configure networking support
within a cluster.

Symbios Ethernet Hostnames

If either the CCS_NET or OPT_NET parameters in the cluster.profile file are set to
‘eth’, then the hostname entries for the boards in the cluster should be one of the follow-
ing formats:

If the board is a client SBC, then the hostname should be of the format:

<client_profile_filename>-eth

For example, if a client's profile filename is ‘wilma’, then the corresponding Symbios
Ethernet hostname that should be added to the /etc/hosts file should be:

wilma-eth

Note that the Symbios Ethernet hostnames that are added to the /etc/hosts file may
also contain additional alias hostnames, if desired.

If the board is the file server SBC, then the ethernet hostname entry was added to the
/etc/hosts file during the software installation phase, therefore, the File Server does
not require any additional entries for its ethernet network interface. It is assumed that the
File Server’s nodename is the same as the Symbios ethernet networking interface name.

4-32

Power Hawk Series 700 Diskless Systems Administrator’s Guide

P0Bus Ethernet Hostnames

If either the CCS_NET or OPT_NET parameters in the cluster.profile file are set to
‘p0’, then the hostname entries for the boards in the cluster should be of the format:

If the board is a client SBC, then the hostname should be of the format:

<client_profile_filename>-p0

For example, if a client's profile filename is ‘wilma’, then the corresponding P0Bus
networking hostname that should be added to the /etc/hosts file should be:

wilma-p0

If the board is the File Server SBC, then the hostname that should be added to the
/etc/hosts file should be of the format:

<server_nodename>-p0

So for example, if the File Server's nodename is ‘fred’, then the following entry should be
added to the /etc/hosts file:

fred-p0

Note that the corresponding IP address that should be used for P0Bus networking entries
in the /etc/hosts file depends upon the board's logical SBC ID value and the
P0_NET_IPADDR cluster.profile parameter value. See “Cluster-wide Parameters” on
page 4-19 for details on the P0Bus networking IP address values.

As is the case for Symbios Ethernet hostnames, the P0Bus networking hostnames that are
added to the /etc/hosts file may also contain additional alias hostnames, if desired.

System Nodename:

In addition to the network interface entries described above, the system nodename must
be added as an alias to the appropriate network interface. When both network interfaces
are configured, it is the administrator's choice to which one should be used for the client's
system nodename. The system nodename must be the same name used for the client
profile filename.

Examples:

The examples entries below assume that the File Server named ‘barney’ and the client
named ‘fred’ are members of a cluster with the following settings in the /etc
/profiles/cluster.profile file:

CCS_NET=p0

OPT_NET=eth

1. Example File Server entries:

192.168.1.1 barney-p0
129.134.32.74 barney

The entry for barney is assumed to have been added during the system installation
phase. The barney-p0 entry must be added prior to invoking vmebootconfig.

VME Boot System Administration

4-33

2. Example client entries:

Assuming client fred’s profile (/etc/profiles/fred) contains the following
setting:

ETHERNET_SUBNETMASK=255.255.255.0

Then, one of the two sets of example entries below must be added to the
/etc/hosts file:

192.168.1.2 fred-p0
129.134.32.76 fred-eth fred

In this example it is desired that the client’s system nodename is assigned to the
Symbios ethernet network interface, therefore, the system nodename (and client
profile name) is added as an alias to the ethernet network interface entry.

192.168.1.2 fred-p0 fred
129.134.32.76 fred-eth

In this example, it is desired that the client’s system nodename is assigned to the
p0Bus network interface, therefore, the system nodename (and client profile name)
is added as an alias to the p0Bus network interface entry.

4.4.2. Node Configuration

The vmebootconfig(1M) tool is used to create, remove or update the diskless client
configuration located on the File Server SBC. It is also used to modify the File Server
SBC’s kernel configuration to run in closely-coupled mode.

Prior to running this tool, configuration information must be specified in the
cluster.profile and client profile file(s). (See “The cluster.profile File” (page 4-19)
and “The Client Profile File” (page 4-26) for more information about setting up these
profile files.)

F o r m o r e d e ta i l s o n r u n n i n g th e vmebootconfig(1M) t o o l , s e e t h e
vmebootconfig(1M) manual page available online.

Vmebootconfig(1M) gathers information from the various tables and stores this infor-
mation into a ksh-loadable file, named .client_profile, under the client's virtual
root directory. The .client_profile is used by vmebootconfig(1M), by other
configuration tools and by the client during system startup. It is accessible on the client
SBC at /.client_profile.

Most of the tasks performed by vmebootconfig(1M) are geared toward configuring a
diskless client; however, some configuration is also done for the File Server. When the
File Server system is specified in the node list argument, options that are not applicable to
the File Server are silently ignored.

Vmebootconfig(1M) appends a process progress report and run-time errors to the
client-private log file,
“/etc/clients/<client_profile_filename>.log”
 on the File Server, or if invoked with the -t option, to stdout.

4-34

Power Hawk Series 700 Diskless Systems Administrator’s Guide

With each invocation of the tool, an option stating the mode of execution must be
specified. The modes are create client (-C), remove (-R) and update client (-U).

4.4.2.1. Creating and Removing a Client

By default, when run in create mode (-C option), vmebootconfig(1M) performs the
following tasks.

For a diskless client:

Populates a client-private virtual root directory.

Modifies client-private configuration files in the virtual root.

Creates the <virtual_rootpath>/.client_profile.

Modifies the dfstab(4) table and executes the shareall(1M)
command to give the client permission to access, via NFS, its virtual root directory and
system files that reside on the File Server.

Modifies the client’s kernel configuration.

For the File Server:

Modifies the File Server’s kernel configuration to run in closely-coupled mode.
(The File Server’s kernel must be rebuilt and rebooted.)

By default, when run in remove mode (-R option), vmebootconfig(1M) performs the
following tasks.

For a diskless client:

Removes the virtual root directory.

Removes client’s name from the dfstab(4) tables and executes an unshare(1M) of
the virtual root directory.

For the File Server:

Removes the closely-coupled tunables from the File Server’s kernel configuration. (The
File Server’s kernel must be rebuilt and rebooted.)

The update option (-U) indicates that the client’s environment already exists and, by
default, nothing is done. The task to be performed must be indicated by specifying addi-
tional options. For example, one might update the files under the virtual root directory or
add in support for one or more subsystems (see “Subsystem Support” on page 4-35 for
more information).

Examples:

Create the diskless client configuration of all vmeboot clients with client profile files
located in the /etc/profiles directory. Process at most three clients at the same
time:

vmebootconfig -C -p3 all

VME Boot System Administration

4-35

Remove the configuration of client ‘rosie’. Send the output to stdout instead of to the
client's log file.

vmebootconfig -R -t rosie

Update the virtual root directories of all the clients with vmeboot client profile files in the
/etc/profiles directory. Process one client at a time:

vmebootconfig -U -v -p1 all

4.4.2.2. Subsystem Support

A subsystem is a set of software functionality (package) that is optionally installed on the
File Server during system installation or using the pkgadd(1M) utility. Additional
installation steps are sometimes required to configure and enable the functionality of a
package on a diskless client.

S u b sy s t em su p p o r t i s a d d e d t o a d i s k l e s s c l i e n t c o n f i g u r a t i o n u s in g
vmebootconfig(1M) options, when invoked in either the create or update mode.

Subsystem support is added to a client configuration via the -a option and removed using
th e -r op t ion . Fo r a l i s t o f t he cu r r en t s u bs ys t ems s uppor t ed see t he
vmebootconfig(1M) manual page or invoke vmebootconfig(1M) with the help
option (-h).

Note that if the corresponding package software was added on the File Server after the
client’s virtual root was created, you must first bring the client’s virtual root directory up
to date using the -v option of vmebootconfig(1M).

Example 1:

Create diskless client wilma's configuration and add subsystem support for remote
message queues and remote semaphores (CCS_IPC) and for the frequency based scheduler
closely-coupled support (CCS_FBS):

vmebootconfig -C -a CCS_FBS -a CCS_IPC wilma

Example 2:

Update the virtual roots of all the clients with client profile files in the /etc/profiles direc-
tory, and add the frequency based scheduler closely-coupled support. Process one client at
a time:

vmebootconfig -U -v -p1 -a CCS_FBS all

Example 3:

Remove the frequency based scheduler closely-coupled support from the clients wilma
and fred:

vmebootconfig -U -r CCS_FBS wilma fred

4-36

Power Hawk Series 700 Diskless Systems Administrator’s Guide

4.4.2.3. Slave Shared Memory Support

The File Server’s and client’s initial Slave Mmap shared memory configuration are
configured through proper setup of the SLAVE_MMAP_SIZE and SLAVE_MMAP_START profile
parameters, which are located in both the /etc/profiles client profile file(s), and the
cluster.profile file (for the File Server).

However, the Slave Mmap shared memory configuration of the File Server or any client
may be modified after the SBC’s configuration has been initially created with the
vmebootconfig(1M) create (-C) option, through the use of the mkvmebstrap(1M)
utility.

See section “The cluster.profile File” on page 4-19 and section “The Client Profile File”
on page 4-26 for more information on these parameters.

The mkvmebstrap(1M) is a utility that is generally used to generate the bootstrap
image that is used in booting a diskless client in a CCS configuration, and to subsequently
boot the client SBC from the File Server.

However, mkvmebstrap(1M) may also be used to modify some of the attributes of a
client's or File Server's kernel configuration. This second capability of mkvmeb-
strap(1M) may be used to modify an already existing client's or the File Server's Slave
Mmap shared memory kernel configuration.

Note that in order to use mkvmebstrap(1M) to modify a client's Slave Mmap shared
memory configuration, the client's virtual root image must already have been created with
a vmebootconfig(1M) create (-C) invocation.

The -m option of mkvmebstrap(1M) may be used to configure a physical memory area
on one or more SBCs which can then be accessed by the other members of the cluster via
the Slave Mmap shared memory interface.

The Slave Mmap memory area may be configured to be dynamically or statically allo-
cated. A dynamic allocation is one in which the kernel dynamically allocates, at system
initialization time, the physical memory for the Slave Mmap memory area. In a static
memory allocation, the administrator specifies the starting address of the statically
allocated physical Slave Mmap memory area.

The Slave Mmap memory areas of both the remote and local SBCs may be accessed
through a process's address space via the mmap(2) interface. The shmbind(2)
interface may also always be used to access a remote SBC's Slave Mmap memory area
through the process's address space. However, note that shmbind(2) may only be used
to access the local SBC's Slave Mmap memory area if it was statically allocated. See the
Power Hawk Series 700 Closely-Coupled Programming Guide for more information on
the Slave Mmap Shared memory (SMAP) interface.

When configuring a statically allocated Slave Mmap memory area, the starting physical
memory address of the area and a size index value are specified as one comma-separated
argument on the -m option:

mkvmebstrap ... -m addr, size_index ...

The size_index of the Slave Mmap shared memory area is specified in a size index value,
and this index value must be less than or equal to the index value that was specified for the
SL AVE_M M AP _ MA X SZ parameter, which is located in the /etc/profiles

VME Boot System Administration

4-37

/cluster.profile file. See section “Cluster-wide Parameters” on page 4-19 for a
discussion of this parameter.

The valid size_index values are shown below:

Note that a Slave Mmap shared memory area index size value of 1 (4KB) is not valid.
This is due to fact that the kernel requires and makes use of the first 4KB of the Slave
Mmap area for internal system purposes. Therefore, no user-accessible shared memory
area would exist for a 4KB Slave Mmap memory area size. Due to the kernel's use of the
first 4KB of the memory area, note that the amount of user-accessible Slave Mmap shared
memory is always the specified size MINUS 4KB. So for example, a size_index value of
8 (512KB), would yield an actual user-accessible Slave Mmap shared memory area size of
512KB - 4KB, or 508KB.

The statically allocated starting physical address, addr, is specified as a hexadecimal
physical address value. Note that this address must be aligned on a boundary that is a mul-
tiple of the actual size that is indicated with the size_index value.

For example, to specify a physical memory area starting at address 0x01000000 and of
size 64KB, one would specify:

mkvmebstrap ... -m 0x01000000,5 ...

When configuring a dynamically allocated Slave Mmap memory area, the starting address
is specified as zero. For example, to specify a dynamically allocated Slave Mmap shared
memory area of size 128KB, one would specify:

mkvmebstrap ... -m 0,6 ...

Only one Slave Mmap shared memory area is allowed per node; therefore, if there is an
existing area allocated when a new area is requested, the existing configuration is first
removed. To remove a reserved memory segment that was previously configured without
adding another, the address and the size value fields are specified as zero. For example, to
remove the regions reserved in the previous examples above:

-m 0,0

4.4.2.3.1. Static Memory Allocations

The allocated memory area is considered statically allocated when the administrator spec-
ifies the starting address of the contiguous physical memory (DRAM) that is to be
reserved. A reasonable start address value to use is 0x02000000 (32MB boundary), if the
board DRAM size is greater than or equal to 64MB.

2 (8KB) 6 (128KB) 10 (2MB) 14 (32MB)

3 (16KB) 7 (256KB) 11 (4MB) 15 (64MB)

4 (32KB) 8 (512KB) 12 (8MB) 16 (128MB)

5 (64KB) 9 (1MB) 13 (16MB) 17 (256MB)

4-38

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Note that the starting physical address must be aligned on a boundary that is a multiple of
the total size of the shared memory area (the size that includes the user-accessible Slave
Mmap shared memory size, plus the 4KB kernel area).

Other reserved memory areas that are contained in the res_sects[] array of the SBC’s
etc/conf/pack.d/mm/space.c file must also be taken into account when selecting
the start address, so that no overlapping areas are configured.

When the shared memory is configured to be statically allocated, then both
vmebootconfig(1M) with the create (-C) option and mkvmebstrap(1M)
wi t h t h e -m o p t i o n w i l l a u t o m a t i c a l l y u p d a te t h e
<client_virtual_root>/etc/conf/mm/pack.d/space.c
res_sects[] array as needed.

Both mmap(2) and shmbind(2) operations are supported on remote and local Slave
Mmap shared memory accesses when the memory is allocated statically.

Examples:

Replace the Slave Mmap shared memory area with a statically allocated area starting at
32MB and of total size 64KB (a user-accessible size of 60KB):

mkvmebstrap -m 0x02000000,5 rosie

Remove the currently configured statically allocated Slave Mmap shared memory area by
specifying zero for the size index:

mkvmebstrap -m 0,0 rosie

4.4.2.3.2. Dynamic Memory Allocations

A dynamic memory allocation lets the operating system choose the starting address for the
Slave Mmap memory area. Dynamic allocation is indicated by specifying zero for the
starting address.

When DRAM is dynamically allocated, the mmap(2) interface may be used for accessing
the local SBC’s Slave Mmap shared memory area, as well as any remote SBC’s Slave
Mmap shared memory area. However, the shmbind(2) interface may only be used for
accessing remote SBC Slave Mmap shared memory areas; the local SBC’s shared memory
area may NOT be accessed with shmbind(2).

Examples:

Update client fred with a dynamically allocated Slave Mmap shared memory area of size
128KB (and a user-accessible shared memory area size of 124KB):

mkvmebstrap -m 0,6 fred

Remove the previously configured dynamically allocated Slave Mmap shared memory
area on fred (by using a 0 size_index value):

mkvmebstrap -m 0,0 fred

VME Boot System Administration

4-39

4.4.2.4. System Tunables Modified

The following tunables may be set by vmebootconfig(1M):

- using predefined settings,

- based on information provided by the user on the invocation line,

- based on information contained in the /etc/profiles/clus-
ter.profile and vmeboot client profile files.

The current settings for these tunables may be displayed using the -d option of
mkvmebstrap.

1. The following cluster-wide tunables are set to the same value for all SBCs
in the cluster (except for VME_UNIV_SYSCON):

2. The following VME Interrupt Request Level (IRQ) tunables are set to
different value for each SBC’s kernel, with only one SBC’s kernel enabling
any single one of these tunables:

Tunable Name Value

VME_CLOSELY_COUPLED 1

IGNORE_BUS_TIMEOUTS 1

VME_DRAM_WINDOW <user-defined>

VME_VRAI_BASEADDR <user-defined>

P0_BPP0_SBC_ID <user-defined>

SBC_SLAVE_MMAP_MAXSZ <user-defined>

VME_UNIV_SYSCON 0 (for all clients)

VME_UNIV_SYSCON 1 (only on File Server)

Tunable Name Value

VME_IRQ1_ENABLE <user-defined>

VME_IRQ2_ENABLE <user-defined>

VME_IRQ3_ENABLE <user-defined>

VME_IRQ4_ENABLE <user-defined>

VME_IRQ5_ENABLE <user-defined>

VME_IRQ6_ENABLE <user-defined>

VME_IRQ7_ENABLE <user-defined>

4-40

Power Hawk Series 700 Diskless Systems Administrator’s Guide

3. System tunables to support Slave Mmap Shared Memory. These values are
unique to each SBC. Note that these Slave Mmap shared memory tunables
may also be modified by mkvmebstrap(1M) during -m option
processing:

4. System tunables that are related to P0Bus Networking. If the P0Bus
networking interface is not configured to be enabled in the cluster, then
these tunables are not used. When the P0Bus networking interface is con-
figured to be enabled for the cluster, then these tunables apply to all SBCs
in the cluster.

The following tunables are set to the same value for all SBC’s kernel
configurations:

4.5. Customizing the Basic Configuration

This section discusses the following major topics dealing with customizing the basic
client configuration:

• Modifying the Kernel Configuration (page 4-40)

• Custom Configuration Files (page 4-43)

• Modifying Profile Parameters (page 4-51

• Launching Applications (page 4-55)

- Embedded Client (page 4-55)

- NFS Client (page 4-55)

4.5.1. Modifying the Kernel Configuration

A diskless client’s kernel configuration directory is resident on the File Server and is a part
of the client’s virtual root partition. Initially, it is a copy of the File Server’s /etc/conf

Tunable Name Value

SBC_SLAVE_MMAP_START <user-defined>

SBC_SLAVE_MMAP_SIZE <user-defined>

Tunable Name Value

BUSNET_IPADDR_LO <user-defined>

BUSNET_IPADDR_HI <user-defined>

VME Boot System Administration

4-41

directory. The kernel object modules are symbolically linked to the File Server’s kernel
object modules to conserve disk space.

By default, a client’s kernel is configured with a minimum set of drivers to support the
chosen client configuration. The set of drivers configured by default for an NFS client and
for an embedded configuration are lis ted in modlist.nfs.vmeboot and
modlist.emb.vmeboot r e s p e c t i v e l y, u n d e r t h e d i r e c to r y p a th
/usr/etc/diskless.d/sys.conf/kernel.d. These template files should not be
modified.

Note that, for diskless clients, only one copy of the unix file (the kernel object file) is kept
under the virtual root. When a new kernel is built, the current unix file is over-written.
System diagnostic and debugging tools, such as crash(1M) and hwstat(1M), require
access to the unix file that matches the currently running system. Therefore, if the kernel
is being modified while the client system is running and the client is not going to be
immediately rebooted with the new kernel, it is recommended that the current unix file be
saved.

Modifications to a client’s kernel configuration can be accomplished in various ways.
Note that all the commands referenced below should be executed on the File Server
system.

a. Additional kernel object modules can be automatically configured and a
n e w k e r n e l b u i l t b y s p e c i f y i n g t h e m o d u l e s i n t h e
kernel.modlist.add custom file and then invoking mkvmeb-
strap(1m). The advantage of this method is that the client’s kernel con-
figuration is recorded in a file that is utilized by mkvmebstrap(1m).
This allows the kernel to be easily re-created if there is a need to remove
and recreate the client configuration.

b. Kernel modules may be manually configured or de-configured using
options to mkvmebstrap(1m).

c. All kernel configuration can be done using the config(1M) utility and
then rebuilding the unix kernel.

d. The idtuneobj(1M) utility may be used to directly modify certain ker-
nel tunables in the specified unix kernel without having to rebuild the unix
kernel. This method is recommended when modifying cluster configura-
tion tunables that would otherwise require the rebuild of all of the kernels
for the clients in a given cluster.

4.5.1.1. kernel.modlist.add

The kernel.modlist.add custom table is used by the boot image creating tool,
mkvmebstrap(1m) for adding user-defined extensions to the standard kernel
configuration of a client system. When mkvmebstrap(1m) is run, it compares the
modification date of this file with that of the unix kernel. If mkvmebstrap(1m) finds
the file to be newer than the unix kernel, it will automatically configure the modules listed
in the file and rebuild a new kernel and boot image. This file may be used to change the
kernel configuration of one client or all the clients. For more information about this
table, see the section on “Custom Configuration Files” on page 4-43.

4-42

Power Hawk Series 700 Diskless Systems Administrator’s Guide

4.5.1.2. mkvmebstrap

Kernel modules may be configured or de-configured via the -k opt ion of
mkvmebstrap(1m). A new kernel and boot image is then automatically created. For
more information about mkvmebstrap(1m), see the manual page which is available
online.

4.5.1.3. config Utility

The config(1m) tool, may be used to modify a client’s kernel environment. It can be
used to enable additional kernel modules, configure adapter modules, modify kernel
tunables, or build a kernel. You must use the -r option to specify the root of the client’s
kernel configuration directory. Note that if you do not specify the -r option, you will
modify the File Server’s kernel configuration instead of the client’s. For example, if the
virtual root directory for client rosie was created under /vroots/rosie, then invoke
config(1m) as follows:

config -r /vroots/rosie

After making changes using config(1m), a new kernel and boot image must be built.
There are two ways to build a new boot image:

a. Use the Rebuild/Static menu from within config(1m) to build a new
u n ix k e r n e l a n d t h e n in v o k e mkvmebstrap(1m) .
mkvmebstrap(1m) will find the boot image out-of-date compared to
the newly built unix file and will automatically build a new boot image.

b. Use mkvmebstrap(1m) and specify “unix” on the rebuild option (-r).

4.5.1.4. idtuneobj

In situations where only kernel tunables need to be modified for an already built host
and/or client kernel(s), it is possible to directly modify certain kernel tunable values in a
client and/or host unix object files without the need for rebuilding the kernel.

The idtuneobj(1m) utility may be used to directly modify certain kernel tunables in
the specified unix or Dynamically Linked Module (DLM) object files.

The tunables that idtuneobj(1m) supports are contained in the /usr/lib
/idtuneobj/tune_database file and can be listed using the -l option of
idtuneobj(1m).

The idtuneobj(1M) utility can be used interactively, or it can process an ASCII
command file that the user may create and specify.

Note that although the unix kernel need not be rebuilt, the tunable should be modified in
the client’s kernel configuration (see config above) to avoid losing the update the next
time a unix kernel is rebuilt.

Refer to the online idtuneobj(1m) man page for additional information.

VME Boot System Administration

4-43

4.5.2. Custom Configuration Files

The fi les instal led under the /usr/etc/diskless.d/cluster.conf
/custom.conf directory may be used to customize a diskless client system configura-
tion.

The custom files listed below and described in-depth later in this section, are initially
installed under the nfs and emb directories under the /usr/etc/diskless.d
/cluster.conf/custom.conf path. Some of these files are installed as empty tem-
plates, while others contain the entries needed to generate the basic diskless system con-
figuration. The files used for client customization include:

The files installed under the custom.conf directory in a client’s configuration directory
may be used to customize a diskless client system configuration. In some cases a client’s
configuration on the File Server may need to be removed and re-created. This may be due
to file corruption in the client’s virtual root directory or because of changes needed to a
client’s configuration. In such cases, the client configuration described by these files may
be saved and used again when the client configuration is re-created. The -s option of
vmebootconfig(1M) must be specified when the client configuration is being
removed to prevent these files from being deleted.

When a client is configured using vmebootconfig(1M), a directory is created
specifically for that client under the /etc/clients directory. The client’s custom
conf igura t ion f i le s a re ins ta l l ed under a c l ien t ’s cus tom.conf d i rec tory,
/etc/clients/<client_dir>/custom.conf, and are initially linked to the files
in t h e c lu s t e r ’s custom.conf d i r e c to r y - /usr/etc/diskless.d
/cluster.conf/custom.conf/nfs|emb.

When the client is a VME booted embedded or NFS client, then the <client_dir>
directory name will be of the format:

<client_profile_filename>_<board_id>.vme

For example, if the VME boot client’s profile name was wilma, and the BOARD_ID
parameter for wilma is set to 2, then the <client_dir> directory name, located in the
/etc/clients directory would be:

wilma_2.vme

K00client to execute commands during system start-up

S25client to execute commands during system shutdown

memfs.inittab to modify system initialization and shutdown

inittab to modify system initialization and shutdown (nfs clients only)

vfstab to automatically mount file systems (nfs clients only)

kernel.modlist.add to configure additional modules into the unix kernel

memfs.files.add to add files to the memfs / (root) file system

vroot.files.add to copy non-system files to a client’s virtual root directory
(nfs clients only)

4-44

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The files in these client-private directories are initially shared such that a change to one of
these files will affect all the clients in the cluster.

 NOTE

Note that if the server is also supporting loosely-coupled clients,
then changes to the custom.conf files also affect the server’s
loosely-coupled clients that may also be sharing these files.

The tools, mkprivate and mkshared, under each client’s private custom.conf
directory are available to change the state of a custom file from shared to private, or from
private to shared, respectively. Before creating a new version, mkshared will save the
current version to a file named <customfile>.old and mkprivate will move the
current version to a file named <customfile>.linked.

To make a change that is private to a client:

1. verify that the custom file is NOT symbolically linked

cd /etc/clients/<client>_<boardid>.vme/custom.conf
ls -l <customfile>

2. if the file is currently symbolically linked, first break the link

./mkprivate <customfile>

3. verify that the file is a regular file and edit the file

ls -l <customfile>
vi <customfile>

To make a change that will affect all the diskless clients configured to share this custom
file:

1. make the changes to the shared file (type is either nfs or emb)

vi /etc/clients/cluster.conf/custom.conf/<type> \
/<customfile>

2. for each client to share these changes:

a. verify that the custom file is symbolically linked to the file edited
above.

cd /etc/clients/<client>_<boardid>.vme \
/custom.conf
ls -l <customfile>

b. if the file is not currently symbolically linked, then re-link it

./mkshared <customfile>

VME Boot System Administration

4-45

c. verify that the file is now symbolically linked

ls -l <customfile>

For example, to make private changes to the K00client script for a VME boot client
named ‘wilma’ (with a BOARD_ID of 1):

cd /etc/clients/wilma_1.vme/custom.conf
./mkprivate K00client
vi K00client

And to share the K00client script previously made private:

cd /etc/clients/wilma_1.vme/custom.conf
./mkshared K00client
vi K00client

Changes to the customization files are processed the next time the boot image generating
utility, mkvmebstrap(1m), is invoked. If mkvmebstrap(1m) finds that a
customization file is out-of-date compared to a file or boot image component, it will
implement the changes indicated. If applicable (some changes do not affect the boot
image), the boot image component will be rebuilt and a new boot image will be generated.

Since a full set of the client custom configuration files exist in each client's private
custom.conf directory, either as a private file or as a link to the shared client
configuration file, mkvmebstrap(1M) uses the custom configuration files in each
client's private directory when building and configuring a specific client's boot image
object.

Note that when a subsystem is configured via the node configurat ion tool
vmebootconfig(1m), the tool may generate a client-private version of the customiza-
tion files to add support required for that subsystem. Before modifying the client-shared
versions, verify that a client-private version does not already exist. If a client-private
version already exists, make the changes to that file, as the client-shared versions will be
ignored for this client.

The customization files are described below in terms of their functionality.

4.5.2.1. S25client and K00client rc Scripts

Commands added to these rc scripts will be executed during system initialization and
shutdown. The scripts must be written in the Bourne Shell (sh(1)) command language.

These scripts are available to both NFS and embedded type client configurations. Since
embedded configurations run in init level 1 and NFS configurations run in init level 3, the
start-up script is executed from a different rc level directory path depending on the client
configuration.

Any changes to these scripts are processed the next time the mkvmebstrap(1m) utility
is invoked on the File Server. For embedded clients, a new memfs.cpio image and a
new boot image is generated. An embedded client must be rebooted using the new boot
image in order for these changes to take effect.

4-46

Power Hawk Series 700 Diskless Systems Administrator’s Guide

For NFS clients, the modified scripts will be copied into the client’s virtual root and are
accessed by the client during the boot process via NFS. Therefore, the boot image does
not need to be rebuilt for an NFS client and the changes will take effect the next time the
system is booted or shutdown.

T h e se s c r ip t s m a y b e e d i t e d u n d e r t h e /usr/etc/diskless.d
/cluster.conf/custom.conf/nfs|emb directories if the changes are to apply
globally to all clients. If the changes are to apply to only one client, then the scripts should
be edited under the client's private /etc/clients/<client_dir>/custom.conf
directory, using the mkprivate tool to create a private copy of the file, if it is still linked
to the shared version of the file.

K00client Script is executed during system shutdown. It is executed on the
client from the path /etc/rc0.d/K00client. By default this
file is empty.

S25client Script is executed during system start-up. It is executed on a
c l i e n t c o n f ig u r e d w i t h NF S s u p p o r t f r o m t h e p a th
/etc/rc3.d/S25client. For embedded configurations, it is
executed from /etc/rc1.d/S25client. By default this file
is empty.

4.5.2.2. Memfs.inittab and Inittab Tables

These tables are used to initiate execution of programs on the client system. Programs
listed in these files are dispatched by the init process according to the init level specified
in the table entry. When the system initialization process progresses to a particular init
level the programs specified to run at that level are initiated. It should be noted that
embedded clients can only execute at init level 1, since an embedded client never pro-
ceeds beyond init level 1. NFS clients can execute at init levels 1, 2 or 3. Init level 0 is
used for shutting down the system. See the on-line man page for inittab(4) for more
information on init levels and for information on modifying this table.

The memfs.inittab table is a part of the memory-based file system, which is a compo-
nent of the boot image. Inside the boot image, the files to be installed in the memory-
based file system are stored as a compressed cpio file. When the memfs.inittab file
is modified a new memfs.cpio image and a new boot image will be created the next
time mknetbstrap(1m) is invoked. A client must be rebooted using the new boot
image in order for any changes to take effect.

Any programs to be initiated on an embedded client must be specified to run at init level
1. NFS clients may use the memfs.inittab table for starting programs at init levels 1-
3. However, part of the standard commands executed at init level 3 on an NFS client is
the mounting of NFS remote disk partitions. At this time, an NFS client will mount its vir-
tual root. The memfs-based /etc directory is used as the mount point for the
<virtual_rootpath>/etc directory that resides on the File Server. This causes the
memfs.inittab table to be replaced by the inittab file. This means that any com-
mands to be executed in init state 0 (system shutdown) or commands which are to be
respawned in init state 3, should be added to both the memfs.inittab and the
inittab file if they are to be effective.

VME Boot System Administration

4-47

Note that after configuring an NFS client system, the inittab table contains entries that
are needed for the basic operation of a diskless system configuration. The default entries
created by the configuration utilities in the inittab file should not be removed or
modified.

Changes to inittab are processed the next time mknetbstrap(1m) is invoked. The
inittab table is copied into the client’s virtual root and is accessed via NFS from the
client system. Therefore, the boot image does not need to be rebuilt after modifying the
inittab table and the changes to this table will take effect the next time the system is
booted or shutdown.

Like the other customiza tion f i les , these tables may be edi ted under the
/usr/etc/diskless.d/cluster.conf/custom.conf/nfs|emb directory if
the changes apply globally to all clients. If the changes are to apply to only one client,
t h e n th e t h e s e t ab l e s s h o u l d b e e d i t e d u n d e r th e c l i e n t ' s p r i v a t e
/etc/clients/<client_dir>/custom.conf directory, using the mkprivate
tool to create a private copy of the file, if it is still linked to the shared version of the file.

4.5.2.3. vfstab Table

The vfstab table defines attributes for each mounted file system. The vfstab table
applies only to NFS client configurations. The vfstab(4) file is processed when the
mountall(1m) command is executed during system initialization to run level 3.
See the vfstab(4) manual page for rules on modifying this table.

Note that configuring an NFS client configuration causes this table to be installed with
entries needed for basic diskless system operation and these entries should not be removed
or modified.

The vfstab table is part of the client’s virtual root and is accessed via NFS. The boot
image does not need to be rebuilt after modifying the vfstab table, the changes will take
effect the next time the system is booted or shutdown.

Like the other customiza tion f i les , these tables may be edi ted under the
/usr/etc/diskless.d/cluster.conf/custom.conf/nfs directory if the
changes apply globally to all clients. If the changes are to apply to only one client, then
th e t h e s e t ab l e s shou ld be ed i t ed unde r t h e c l i e n t ' s p r i v a t e
/etc/clients/<client_dir>/custom.conf directory, using the mkprivate
tool to create a private version of the file, if it is still linked to the shared version of the
file.

4.5.2.4. kernel.modlist.add Table

New kernel object modules may be added to the basic kernel configuration using the
kernel.modlist.add file. One module per line should be specified in this file. The
specified module name must have a corresponding system file installed under the
<virtual_rootpath>/etc/conf/sdevice.d directory. For more information
about changing the basic kernel Configuration, see “Modifying the Kernel Configuration”
on page 4-40.

Changes to this file are processed the next time mkvmebstrap(1m) is invoked, causing
the kernel and the boot image to be rebuilt. When modules are specified that are currently

4-48

Power Hawk Series 700 Diskless Systems Administrator’s Guide

not configured into the kernel (per the module’s System(4) file), those modules will be
enabled and a new unix and boot image will be created. If mkvmebstrap(1m) finds
that the modules are already configured, the request will be ignored. A client must be
rebooted using the new boot image in order for these changes to take effect.

Like the other customiza tion f i les , these tables may be edi ted under the
/usr/etc/diskless.d/cluster.conf/custom.conf/nfs|emb directory if
the changes apply globally to all clients. If the changes are to apply to only one client,
t h e n th e t h e s e t ab l e s s h o u l d b e e d i t e d u n d e r th e c l i e n t ' s p r i v a t e
/etc/clients/<client_dir>/custom.conf directory, using the mkprivate
tool to create a private version of the file, if it is still linked to the shared version of the
file.

4.5.2.5. memfs.files.add Table

When the mkvmebstrap(1m) utility builds a boot image, it utilizes several files for
building the compressed cpio file system. The set of files included in the basic diskless
memory-based file system are listed in the files devlist.nfs.vmeboot and
filelist.nfs.vmeboot for NFS clients and devlist.emb.vmeboot and
filelist.emb.vmeboot fo r embedded c l i en ts unde r the /usr/etc
/diskless.d/sys.conf/memfs.d directory. This set of files should not be
modified by the user.

Note that additional files may be added to the memory-based file system via the
memfs.files.add t ab le loca ted under the /usr/etc/diskless.d
/custom.conf/nfs|emb directory. Guidelines for adding entries to this table are
included as comments at the top of the table.

A file may need to be added to the memfs.files.add table if:

1. The client is configured as embedded. Since an embedded client does not
have access to any other file systems, then all user files must be added via
this table.

2. The client is configured with NFS support and

a. the file needs to be accessed early during a diskless client’s boot,
before run level 3 when the client is able to access the file on the
File Server system via NFS.

b. it is desired that the file is accessed locally rather than across NFS.

Note that, for NFS clients, the system directories /etc, /usr, /sbin, /dev, /var,
/opt and /tmp all serve as mount points under which remote file systems are mounted
when the diskless client reaches run level 3. Files added via the memfs.files.add
table should not be installed under any of these system directories if they need to be
accessed in run level 3 as the NFS mounts will overlay the file and render it inaccessi-
ble.

Also note that files added via the memfs.files.add table are memory-resident and
diminish the client’s available free memory. This is not the case for a system where the
boot image is stored in flash, since pages are brought into DRAM memory from flash only
when referenced.

VME Boot System Administration

4-49

C h an g e s t o t h e memfs.files.add f i l e a r e p roce sse d t h e nex t t i me
mkvmebstrap(1m) is invoked. A new memfs.cpio image and boot image is then
created. A client must be rebooted using the new boot image in order for these changes to
take effect.

You can verify that a file has been added to the memfs.cpio image using the following
command on the File Server:

rac -d < <virtual_rootpath>/etc/conf/cf.d/memfs.cpio | cpio -itcv
| grep <file>

4.5.2.6. vroot.files.add Table

The vroot.files.add custom client configuration table may be used to optionally
specify a set of non-system files that are located on the File Server to be automatically
copied by mkvmebstrap(1M) into a a client’s virtual root directory so that they can be
subsequently accessed from the client system.

This custom client configuration file may only be used by NFS clients (the embedded cli-
ents are unable to access their virtual root on the File Server system). This table is pro-
cessed by mkvmebstrap(1M) whenever this table has been modified since the last invo-
cation of mkvmebstrap(1M).

Although non-system files can be copied manually into a client’s virtual root directories,
the use of this table provides an automated method that provides the following advan-
tages:

- This file table makes it easier to recreate a client’s virtual root environment
when a client is removed (-R and -s options) and then recreated (-C
option) with vmebootconfig(1M).

- This file table can be setup to have mkvmebstrap(1M) automatically
re-copy the specified File Server source files into the client target virtual
root directories every time this table is processed, with the ‘a’ option (see
below).

The format for each entry in this file is:

Path_on_server Path_on_client Options

Lines beginning with the pound sign '#' will be ignored. The fields in this table are
described below:

Path_on_server:

This is the pathname of a file or directory located on the File Server system that is to
be copied into the client's virtual root. When the pathname is a directory, then the
contents of this directory will be recursively copied into the client's vroot directory.

Path_on_client:

This is the pathname of a file or a directory as it will be accessed from the client
system. If a directory in this path does not currently exist in the client's virtual root
directory, then it is created. This path must begin with one of the system directories
already under the client' vroot: /users, /dev, /etc, /tmp, or /var. Note that

4-50

Power Hawk Series 700 Diskless Systems Administrator’s Guide

any files in /tmp and /var/tmp are destroyed when the client system is rebooted.
A dash "-" in this field may be used to indicate that the path name is the same as that
specified for the "Path on server" field.

Options:

a The always option. Update the file or directory each time this table is
processed.

o The once option. Install the file or directory only if it doesn’t already exist.

Some example vroot.files.add entries are shown below.

Examples:

Example 1.

This example specifies that the files contained in the directory /home/me/test.dir
on the File Server system should be copied into the client’s virtual root directory
<client_virtual_root>/users/me/test.dir whenever mkvmebstrap(1M)
processes this file (the ‘a’ option):

/home/me/test.dir /users/me/test.dir a

Example 2.

This example specifies that the single file /home/me/timer.c, located on the File
Server system, should be copied into:

<client_virtual_root>/users/me/timer.c

every time that mkvmebstrap(1M) processes the vroot.files.add file (the ‘a’
option):

/home/me/timer.c /users/me/timer.c a

Example 3.

This example specifies the single file /etc/appl1 on the File Server system should be
copied to the <client_virtual_root>/etc/appl1 if the target file does not
already exist in the client's virtual root directory (‘o’ option).

/etc/appl1 - o

The vroots.files.add table f i le may be edited under the /usr/etc
/diskless.d/cluster.conf/custom.conf/nfs directory if the changes are to
apply globally to all NFS clients. If the changes are to apply to only one client, then the
s c r i p t s s h o u l d b e e d i t e d u n d e r t h e c l i en t ' s p r i v a t e /etc
/clients/<client_dir>/custom.conf directory, using the mkprivate tool to
create a private copy of the file, if it is still linked to the shared version of the file.

The following are some additional considerations for adding entries to the
vroot.files.add table:

- The client's /usr and /sbin system directories are shared completely
with the File Server; hence, these directories do not appear under a client's
virtual root and may not be used in the vroot.files.add table.

VME Boot System Administration

4-51

- The files in the vroot.files.add table are copied into a client’s virtual
root partition and therefore require disk space on the server system. In
some cases it may be more efficient to NFS mount a user’s working
directory on the client system instead of duplicating the files in the client’s
virtual root directory.

- Because of kernel dependencies, device files should be created locally in
the client’s virtual root directory; this vroot.files.add file table
should NOT be used for this purpose. To add a device file to a client’s
vroot, the corresponding kernel module must be enabled (config -r
<vroot_path>), the corresponding Node(4) file under the client’s
vroot may need to be modified, and the client’s kernel must be rebuilt and
rebooted -
(mkvmebstrap -B -r unix <client_profile_filename>).

4.5.3. Modifying Profile Parameters

Once a diskless configuration has been established, it is often necessary to modify some
aspect of the configuration. A client’s configuration is generated based on the parameter
settings in both the cluster.profile and a client’s profile file.

Most parameters in the cluster.profile file may be changed via the -u option of
mkvmebstrap. For those parameters not supported to be modified via this option, all the
client configurations must be removed, the change applied to the cluster.profile
and the configurations then recreated.

Most parameters in a client profile may not be changed after a client is configured. With
few exceptions, the client configuration must be removed, the client profile modified and
then the client configuration recreated.

The next two sections explain in detail how to modify parameters in the cluster and client
profile files.

4.5.3.1. Cluster.profile File

Changes to the /etc/profiles/cluster.profile file may affect every member
of the cluster and require that system tunables and the client’s profile file(s) be modified.
Changes must be applied to all the members of the cluster at the same time. Booting a
client when these parameters are not identical for all clients in a given cluster, may result
in bad system behavior, including panics and hangs on the File Server.

Refer to the section “Node Configuration” using vmebootconfig(1M) on page 4-33
for more information on creating and removing a cluster and the online manual page for
vmebootconfig(1M).

The following techniques can be used to modify settings in the cluster.profile file after the
cluster has been configured:

1. Use the mkvmebstrap -u option to modify the cluster-wide parameters
contained in the cluster.profile file.

In this method, mkvmebstrap(1M) will update the profiles and the

4-52

Power Hawk Series 700 Diskless Systems Administrator’s Guide

kernel tunables and then build a new bootstrap for all clients. In the case of
the VME_IRQ tunables, only the affected board’s kernels are rebuilt.

Except for VME_IRQ parameter changes that do not affect the File Server,
the File Server’s kernel must also be manually rebuilt and subsequently
rebooted before the cluster.profile modifications will take affect.
Note that in these cases, the File Server’s kernel should be rebuilt and
rebooted BEFORE attempting to reboot the clients with their newly
updated bootstrap images.

The cluster.profile parameter name and the new value, separated
by an equal sign (with no spaces), should be specified as the value on the -
u option. For example:

mkvmebstrap -u VME_VRAI_BASEADDR=0x20000

The following parameters may be specified with the -u option:

VME_VRAI_BASEADDR

Changing this parameter also requires modifying the SMon startup script.
The startup script MUST be modified before any client may be booted with a
new updated bootstrap image. See section “Client Board Configuration” on
page 4-11 for details on modifying the SMon startup script.

Note that the File Server's kernel must also be rebuilt and rebooted AFTER
the client's SMon startup scripts have been modified, and subse-
quently executed by SMon, but before any clients have been booted with
the new bootstrap image.

VME_DRAM_WINDOW
SBC_SLAVE_MMAP_MAXSZ

These two parameters apply to all SBCs in the cluster. The File Server's ker-
nel must a lso be rebui l t and rebooted. Note that modifying the
SBC_SLAVE_MMAP_MAXSZ parameter changes the values that are allowed for
the SBC_SLAVE_MMAP_SIZE parameter. Therefore, it may be necessary to
modify the SBC_SLAVE_MMAP_SIZE parameter in some client profile files, and
possibly in the cluster.profile for the File Server. Note that this mod-
ification may be done with the mkvmebstrap -m option. See section
“Slave Shared Memory Support” on page 4-36 for details on the use of this
option.

P0_BPP0_SBC_ID

This parameter applies to all SBCs in the cluster. The File Server's kernel
must also be rebuilt and rebooted, before any client is rebooted with its new
bootstrap image. Note that modifying this parameter may also require chang-
ing one or more client's logical SBC_ID parameters in their client profile
file(s), and the logical SBC_ID in their corresponding SMon startup
script(s).

Also note that modifying this parameter may reduce or increase the allowed
maximum value for the SBC_SLAVE_MMAP_MAXSZ parameter.

VME Boot System Administration

4-53

P0_NET_IPADDR

This parameter applies to all SBCs in the cluster. The File Server’s kernel
must also be rebuilt and rebooted, before any client is rebooted with its new
bootstrap image. Note that modifying this parameter will require also
changing all the <node>-p0 entries in the /etc/hosts file.

VME_IRQ [1-7]

A change to one of the seven IRQ tunables affects at most two systems; the
system that previously had the IRQ enabled and the system that is now
enabling the IRQ. For these parameters, only the systems affected need to be
updated and rebooted. If it is necessary to reboot the File Server system, it
should be rebooted first, before rebooting the clients.

2. Remove the configuration of all the clients in the cluster and recreate the
cluster environment:

a. Perform a shutdown on all the diskless client systems in the cluster.

b. Remove the configuration of all the clients in the cluster using
vmebootconfig(1M) and specifying the all argument and the -R
and -s options, for example:

vmebootconfig -R -s all

c. Change the desired parameter(s) in the
/etc/profiles/cluster.profile.

d. Recreate all the client configurations using vmebootconfig(1M).
Specify the all argument and the -C options to create all the configu-
rations in the cluster, for example:

vmebootconfig -C -p2 all

e. Rebuild the unix kernel and boot images of each client using
mkvmebstrap(1M).

f. Rebuild the File Server’s kernel using idbuild(1M).

g. Reboot the File Server of the cluster.

h. Boot the clients in the cluster.

3. Use the mkvmebstrap(1M) -m option to modify the File Server’s Slave
Mmap parameters, SBC_SLAVE_MMAP_START and SBC_SLAVE_MMAP_SIZE.

These parameters are used to configure Slave Mmap shared memory spe-
cifically for the File Server SBC. These shared memory parameters are
modifiable with the -m option of mkvmebstrap. See section “Slave
Shared Memory Support” on page 4-36 for details on the use of this
mkvmebstrap option.

Note that the rest of the parameters located in the cluster.profile file may NOT be
modified with the mkvmebstrap -u option. For these other parameters, the entire clus-
ter should be removed and reconfigured with the new parameter values. See the previous
method #2 in this section for details on this approach.

4-54

Power Hawk Series 700 Diskless Systems Administrator’s Guide

4.5.3.2. Modifying Client Profile Settings

To modify most of the parameter values in a client profile, a client configuration must be
removed and reconfigured. The client should always first be shutdown before modifying
any of the parameters discussed below.

For example, to modify most parameters in client wilma’s client profile file, take the fol-
lowing steps to remove, modify and re-create a client’s configuration:

1. Remove the current client configuration for wilma:

vmebootconfig -R -s wilma

2. Edit wilma’s client profile file:

vi /etc/profiles/wilma

3. Re-create the configuration for client wilma:

vmebootconfig -C wilma

The client profile file parameters that MAY be modified without the need to remove and
reconfigure the client are described below:

AUTOBOOT

This parameter is implemented as a hidden file named .autoboot directly
under the client’s virtual root directory. This hidden file may be created and
removed to enable or disable, respectively, the automatic boot up and
shutdown support. See the section “The Profile Files” on page 4-18 for more
details on the AUTOBOOT parameter.

SBC_SLAVE_MMAP_START
SBC_SLAVE_MMAP_SIZE

These parameters are used to configure Slave Mmap shared memory. These
shared memory parameters may be modified with the -m option of
mkvmebstrap. See section “Slave Shared Memory Support” on page 4-36
for details on the use of this mkvmebstrap option.

SWAP_SIZE

A different sized dev/swap_file file from the one specified in the client's
profile file may be created by invoking the mkswap command:

/usr/etc/diskless.d/sys.conf/bin.d/mkswap \

<vrootpath> <megabytes>

NOTE As previously mentioned, the client should be first shutdown
before issuing the mkswap command, if the client is currently up
and running.

FLASHBOOT
AUTOFLASH

These two parameters may be directly modified in a client' client profile file.
The new values for these parameters will be used on the very next invocation

VME Boot System Administration

4-55

of mkvmebstrap(1M) that involves the booting of this client. These
parameters control the automatic burning and booting from a client’s User
Flash. See the section “The Client Profile File” on page 4-26 and also
Chapter 5, “Flash Boot System Administration” for more information about
burning and booting from User Flash.

4.5.4. Launching Applications

Following are descriptions of launching applications for:

- Embedded Client

- NFS Client

4.5.4.1. Launching an Application (Embedded Client)

For diskless embedded clients, all the application programs and files referenced must be
added to the memfs root file system via the memfs.files.add f ile. See
“memfs.files.add Table” on page 4-48 for more information on adding files via the
memfs.files.add file.

As an example, the command name myprog resides on the File Server under the path
/home/myname/bin/myprog. We wish to automatically have this command executed
from the path /sbin/myprog when the client boots. This command reads from a data
file expected to be under /myprog.data. This data file is stored on the File Server
under /home/myname/data/myprog.data.

 The following entries are added to the memfs.files.add table:

f /sbin/myprog 0755 /home/myname/bin/myprog
f /myprog.data 0444 /home/myname/data/myprog.data

The following entry is added to the client’s start-up script:

#
Client’s start-up script
#
/sbin/myprog

See “Custom Configuration Files” on page 4-43 above for more information about the
memfs.files.add table and the S25client rc script.

4.5.4.2. Launching an Application (NFS Client)

Clients configured with NFS support may either add application programs to the memfs
root file system or they may access applications that reside on the File Server across NFS.
The advantage to using the memfs root file system is that the file can be accessed locally
on the client system rather than across the network. The disadvantage is that there is only
limited space in the memfs file system. Furthermore, this file system generally uses up
physical memory on the client system. When the client system is booted from an image

4-56

Power Hawk Series 700 Diskless Systems Administrator’s Guide

stored in flash ROM, this is not the case, since the memfs file system remains in flash
ROM until the pages are accessed and brought into memory.

To add files to the memfs root file system follow the procedures for an embedded client
above.

When adding files to the client’s virtual root so that they can be accessed on the client via
NFS, the easiest method is to place the file(s) in one of the directories listed below. This is
because the client already has permission to access these directories and these directories
are automatically NFS mounted during the client’s system initialization.

As an example , the command name myprog was c rea ted under the pa th
/home/myname/bin/myprog. To have this command be accessible to all the diskless
clients, on the File Server we could mv(1) or cp(1) the command to the /sbin
directory.

mv /home/myname/bin/myprog /sbin/myprog

If only one client needs access to the command, it could be added to the virtual root via the
vroot.files.add custom file.

To access an application that resides in directories other than those mentioned above, the
File Server’s directory must be made accessible to the client by adding it to the
dfstab(4) table and then executing the share(1M) or shareall(1M) command
on the File Server. To automatically have the directories mounted during the client’s sys-
tem start-up, an entry must be added to the client’s vfstab file. See Custom Configura-
tion Files” on page 4-43 above for more information about editing the vfstab file.

4.6. Booting and Shutdown

This section deals with the following major topics pertaining to booting and shutdown:

• “The Boot Image” on page 4-57

• “Booting Options” on page 4-58

• “Creating the Boot Image” on page 4-60

• “VME Booting” on page 4-61

Storage Path on File Server Access Path on the Client

/usr /usr

/sbin /sbin

/opt /opt

<virtual_rootpath>/etc /etc

<virtual_rootpath>/var /var

<virtual_rootpath>/users /users

VME Boot System Administration

4-57

• “Net Booting” on page 4-62

• “Flash Booting” on page 4-62

• “Verifying Boot Status” on page 4-62

• “Shutting Down the Client” on page 4-63

4.6.1. The Boot Image

The boot image is the file that is loaded from the File Server to a diskless client. The boot
image contains everything needed to boot a diskless client. The components of the boot
image are:

- unix kernel binary

- compressed cpio archive of a memory-based file system

- a bootstrap loader that uncompresses and loads the unix kernel

Each diskless client has a unique virtual root directory. Part of that virtual root is a unique
kernel configuration directory (etc/conf) for each client. The boot image file
(unix.bstrap), in particular two of its components: the kernel image (unix) and a
memory-based file system (memfs.cpio), are created based on configuration files that
are part of the client’s virtual root.

The makefile, /usr/etc/diskless.d/sys.conf/bin.d/bstrap.makefile,
is used by mkvmebstrap(1m) to create the boot image. Based on the dependencies
listed in that makefile, one or more of the following steps may be taken by
mkvmebstrap(1m) in order to bring the boot image up-to-date.

1. Build the unix kernel image and create new device nodes.

2. Create and compress a cpio image of the files to be copied to the memfs
root file system.

3. Insert the loadable portions of the unix kernel, the bootstrap loader, the
compressed cpio image and certain bootflags into the unix.bstrap file.
The unix kernel portion in unix.bstrap is then compressed.

When mkvmebstrap is invoked, updates to key system files on the File Server (i.e.
/etc/inet/hosts) will cause the automatic rebuild of one or more of the boot image
components. In addition, updates to user-configurable files also affect the build of the
boot image. A list of the user-configurable files and the boot image component that is
affected when that file is modified are listed below in Table 4-1. These files are explained
in detail in “Custom Configuration Files” on page 4-43.

4-58

Power Hawk Series 700 Diskless Systems Administrator’s Guide

.

A diskless client’s boot image is created under etc/conf/cf.d in the client’s virtual
root directory.

4.6.2. Booting Options

The booting method of a diskless client is determined by parameters in the
/etc/profiles client profile file. This section discusses three of the client profile
parameters, BOOT_IFACE, AUTOBOOT and FLASHBOOT.

The BOOT_IFACE parameter specifies the interface used to download the boot image and
initiate the boot sequence on the diskless client:

• When the client profile file has initially created with the
vmebootconfig(1M) -P client method, then the BOOT_IFACE parameter
in the resulting client's profile file will be set to a value of ‘vme’.

• When the client profile file has initially created with the
netbootconfig(1M) -P method, then the BOOT_IFACE parameter in the
resulting client's profile file will be set to a value of ‘net’.

The setting of the BOOT_IFACE parameter also affects whether the client can be automati-
cally restarted from the File Server. When BOOT_IFACE is set to, ‘vme’ then the use of the
VMEbus as the boot interface facilitates the autoboot capability by allowing the File
Server to remotely reset the client SBC from across the VMEbus, and to subsequently ini-
tiate a new download and boot sequence.

For Net boot clients, the AUTOBOOT client profile parameter determines whether the client
should be automatically shutdown when the File Server is shutdown.

For VME boot clients, the AUTOBOOT client profile parameter determines whether the
client should be automatically booted/shutdown when the File Server is booted/shutdown.

Table 4-1. Boot Image Dependencies

Boot Image
Component

 User-Configurable File

unix kernel kernel.modlist.add

memfs cpio memfs.files.add

memfs.inittab

K00client
(embedded client configurations only)

S25client
(embedded client configurations only)

VME Boot System Administration

4-59

The following is a description of how the BOOT_IFACE, AUTOBOOT and FLASHBOOT

parameters specified in the /etc/profiles client profile file affect the boot process.
Note that the FLASHBOOT parameter is only present in the vmeboot client profile file.

BOOT_IFACE=net, AUTOBOOT=n

The ethernet interface is used to download the boot image. The boot sequence will
not be initiated from the File Server SBC, because there is no means to access the
control registers of the client from the File Server. Instead, SMon command(s) must
be executed on the client in order to download the client’s boot image.

After the download is completed, the client may either a) boot from DRAM or b)
burn the boot image into flash and then boot from flash.

Because the File Server cannot initiate a boot directly, the AUTOBOOT parameter has
no effect on the booting of a netboot client. Also, the File Server SBC will not
attempt to shutdown the netboot client during File Server shutdown processing
since the AUTOBOOT parameter is set to ‘n’.

BOOT_IFACE=net, AUTOBOOT=y

This case is the same as the previous description, except for the fact that if the
SYS_CONFIG client profile parameter is set to ‘nfs’, then when the File Server SBC
is in the process of shutting down, it will attempt to remotely shutdown the netboot
client.

As was previously mentioned, because the File Server cannot initiate a boot
sequence directly, the AUTOBOOT parameter has no effect on the booting of netboot
client, even when AUTOBOOT is set to ‘y’.

BOOT_IFACE=vme, AUTOBOOT=y, FLASHBOOT=n

The VMEbus is used to download the image and initiate the boot sequence.
Because the AUTOBOOT parameter set to ‘y’, the client is automatically downloaded
and booted when the File Server SBC is booted. The client may also be manually
booted from either DRAM or FLASH by invoking mkvmebstrap(1m) on the
File Server SBC with the appropriate boot options.

If the SYS_CONFIG client profile parameter is set to ‘nfs’, then when the File Server
SBC is in the process of shutting down, it will attempt to remotely shutdown the
vmeboot client.

BOOT_IFACE=vme, AUTOBOOT=n, FLASHBOOT=n

The VMEbus is used to download the image and initiate the boot sequence.
Because the AUTOBOOT parameter is set to ‘n’, the client must be manually booted
from either DRAM or User Flash by invoking mkvmebstrap(1m) on the File
Server SBC with the appropriate boot options.

The File Server SBC will not attempt to shutdown the client SBC when the File
Server SBC is shutting itself down.

BOOT_IFACE=vme, AUTOBOOT=y, FLASHBOOT=y

The boot sequence is initiated over the VMEbus. The boot loader is executed from
User Flash and causes the kernel to be decompressed and loaded into DRAM.

4-60

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Execution then is initiated in that kernel. Because the AUTOBOOT parameter is set to
‘y’, the client is automatically booted from its User Flash when the File Server SBC
is booted.

Additionally, if the AUTOFLASH client parameter is set to ‘y’, then any newly created
client boot images that are created on the File Server, will be automatically down-
loaded into the client’s memory and burned into the client’s User Flash, before that
client is subsequently booted from User Flash.

The client may also be manually booted from User Flash by invoking
mkvmebstrap(1m) on the File Server with the appropriate boot options.

BOOT_IFACE=vme, AUTOBOOT=n, FLASHBOOT=y

The boot sequence is initiated over the VMEbus. The boot loader is executed from
the client’s board User Flash which causes the kernel to be decompressed and
loaded into DRAM. Execution is then initiated in that kernel. Because the
AUTOBOOT parameter is set to ‘n’, the client must be manually booted from User
Flash by invoking mkvmebstrap(1m) on the File Server SBC with the appropri-
ate boot options. If the AUTOFLASH client parameter is set to ‘y’, then any newly cre-
ated client boot images on the File Server will be automatically downloaded into the
client’s memory and burned into the client's User Flash before that client is subse-
quently booted from User Flash.

If there are client systems that are configured to autoboot, a part of the File Server’s
system initialization is to start a background boot process for each client system that is
configured to autoboot. An administrator should not issue commands that would initiate a
manual boot for clients that are in the process of autobooting. It is likely that this would
cause a failure of the client boot process.

The autoboot process may also cause the boot image to be rebuilt prior to downloading of
the client SBC. The boot image is rebuilt only when one of the dependencies of the boot
image cause the current boot image to be out of date, or if the boot image does not
currently exist.

In the case where the AUTOBOOT=y and FLASHBOOT=y if the boot image is found to be out
of date when the File Server is booted, then the boot image will be automatically rebuilt on
the File Server and then the client will be automatically booted from its own User Flash.
However, the File Server will also automatically download the newly created boot image
and burn this new image into the client's User Flash before the client is booted, only if the
AUTOFLASH parameter is set to ‘y’. If the AUTOFLASH parameter is set to ‘n’, then
the client will still be automatically booted, but it will be booted by using an older version
of the boot image that was not updated in the client's User Flash.

Any client which is configured to autoboot and which is also an NFS client, will be auto-
matically shutdown when the File Server is shutdown.

4.6.3. Creating the Boot Image

The mkvmebstrap(1m) tool is used to build the boot image. This tool gathers
information from the client’s profile file(s) located in the /etc/profiles directory.
See the online manual page for this command. Some example uses follow. Note that
building a boot image is resource-intensive. When creating the boot image of multiple cli-

VME Boot System Administration

4-61

ents in the same invocation, use the -p option of mkvmebstrap(1m) to limit the num-
ber of client boot images which are simultaneously processed.

Examples:

Example 1.

Update the boot image of all the clients with vmeboot client profile files in the
/etc/profiles directory. Limit the number of clients processed in parallel to 2.

mkvmebstrap -p2 all

Example 2.

Update the boot image of clients wilma and fred. Force the rebuild of the unix
kernels and configure the boot images to stop in kdb early during system initializa-
tion.

mkvmebstrap -r unix -b kdb wilma fred

Example 3.

Update the boot image of all the clients with vmeboot client profile files in the
/etc/profiles directory. Rebuild their unix kernel with the kdb module config-
ured and the rtc kernel module de-configured. Limit the number of clients
processed in parallel to 3.

mkvmebstrap -p 3 -k kdb -k -rtc all

4.6.4. VME Booting

VME booting is enabled when the client is configured with the BOOT_IFACE client profile
parameter set to ’vme ' (see “Booting Options” on page 4-58). In this case,
mkvmebstrap(1M) may be used to VME boot a diskless client.

Invoked with the -B option, mkvmebstrap(1M) can be used to both update/create the
boot image and boot the client(s) in the cluster. Mkvmebstrap(1M) must be executed on
the File Server SBC. It calls on sbcboot(1M) to perform the boot operations.

Once the boot image has been created, the sbcboot(1M) tool may be executed on the
File Server SBC of the c lus ter to boot a s ing le c l ient . To boot a c l ient ,
sbcboot(1M)may be executed on the File Server SBC where the boot_image_file
sbcboot(1M)p a r a m e t e r s p e c i f i e s t h e c l i en t ' s b o o t i m a g e (i . e
<vroot_dir>/etc/conf/cf.d/unix.bstrap).

VME boot clients depend on the File Server for the creation and storage of the boot image.
Once booted, clients configured with NFS support continue to rely on the File Server for
accessing their system files across NFS. Clients configured as embedded, once up and
running, do not depend on any other system.

4-62

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Examples:

Example 1.

Update the boot image and boot all the clients in the cluster. Limit the number of clients
processed in parallel to 2.

mkvmebstrap -B -p2 all

Example 2.

Update the boot image and boot the one client with a client profile filename of betty.

mkvmebstrap -B betty

4.6.5. Net Booting

Net booting is supported when the client is configured with "BOOT_IFACE=net" as the boot
interface client profile parameter (see“Booting Options” on page 4-58).

For more information about netboot clients and loosely-coupled configurations, see
Chapter 3 “Netboot System Administration.

4.6.6. Flash Booting

Flash booting is supported in both netboot client (loosely-coupled) and vmeboot client
(closely-coupled) configurations.

For more information about Flash Booting, see Chapter 5, “Flash Boot System Adminis-
tration”.

4.6.7. Verifying Boot Status

If the client is configured with NFS support, you can verify that the client was successfully
booted using any one of the following methods:

a. rlogin(1) or telnet(1) from the File Server or remote File Server
specifying the client’s hostname.

b. attach a terminal to the console serial port and login.

You can also use the ping(1m) command and specify the client’s hostname to verify that
the network interface is running. Note, however, that this does not necessarily mean that
the system successfully booted.

If the client does not boot, verify that the NFS daemons are running by executing the
nfsping(1m) command on the File Server. An example run of this command follows:

VME Boot System Administration

4-63

nfsping -a
nfsping: rpcbind is running
nfsping: nfsd is running
nfsping: biod is running
nfsping: mountd is running
nfsping: lockd is running
nfsping: statd is running
nfsping: bootparamd is running
nfsping: pcnfsd is running
nfsping: The system is running in client, server, bootserver,
and pc server modes

If there is a console attached to the client and the client appears to boot successfully but
cannot be accessed from any other system, verify that the inetd(1m) daemon is running
on the client.

4.6.8. Shutting Down the Client

If a client is configured with NFS and the .autoboot hidden file exists in the client’s
virtual root directory, then the client will automatically be shutdown whenever the File
Server of the cluster is brought down.

A client configured with NFS can also be manually shutdown from the File Server using
the rsh(1) command and specifying the client’s hostname.

For example, if the hostname used for the client is wilma, the following shutdown(1M)
command would bring the system wilma to init state 0 immediately.

rsh wilma /sbin/shutdown -g0 -y -i0

By default, clients configured in Embedded mode do not require an orderly shutdown but
an application may initiate it.

4-64

Power Hawk Series 700 Diskless Systems Administrator’s Guide

 5
Flash Boot System Administration

5.1. Introduction . 1-1
5.2. User Flash Hardware Characteristics . 1-2
5.3. Booting a Netbootable Client from Flash. 1-2
5.4. Burning a Netboot Client’s User Flash. 1-3
5.5. Burning and Booting from Flash for VMEBus Bootable Clients 1-4

5-1

5
Chapter 5Flash Boot System Administration

5

5
5

5.1. Introduction

Power Hawk Series 700 systems support an optional User Flash memory device. This is a
read-mostly memory-mapped device that behaves like normal memory, at least for reads,
and whose contents are not lost across system power cycles. At the time of this writing,
the available User Flash memory sizes for series 700 systems range from 8 to 64
megabytes. On the write function side, all Power Hawk Series 700 systems support a set
of SMon commands that implement bulk erasure and reprogramming of User Flash with
any desired set of user data that can be made to fit onto the device.

For clients with the User Flash option, the client’s boot image can be stored into its User
Flash, and then the client can be configured to be booted henceforth from that device.
This change would typically be done as part of the transition from the software develop-
ment and testing phase of a project to the production or deployed phase. While in devel-
opment, each client would continue to be booted up using the netboot or the VMEBus
boot sequence that is appropriate for that client. When converted to User Flash booting,
the netboot or VMEBus bootup sequence will become slightly modified to avoid the
actual copying of a boot image down from a server, replacing that step with booting the
boot image that is already on that client’s User Flash. All the other steps of the netboot or
VMEBus boot sequence are performed as before. Therefore, User Flash booting should
not be thought of as a totally separate function from netbooting or VMEBus booting, but
thought of instead as a minor parameter or adjustment to the standard netboot or VMEBus
boot sequence that must always occur.

Any boot image which is netbootable or VMEbus bootable can be put into User Flash and
booted from there. No special preparation or treatment of the boot image is needed. Any
technique that the user finds satisfactory for copying a working boot image into the User
Flash will work.

There are several advantages to converting a project over to User Flash. First, it gives a
client some independence from a server. For embedded clients especially, it is possible to
develop a boot image that makes no reference to a server at all, resulting in a client that
can be placed into a standalone configuration during the deployed phase. Second, bootup
times are faster when booting from User Flash as there is no boot image download
occurring. This can be especially important during system startup to ward off the network
congestion that occurs when many clients simultaneously download their boot images
from a common server. Third, a Flashed boot image makes better use of client memory, as
the root filesystem continues to reside in User Flash after booting, thus freeing up the
memory that would otherwise have had to be used to implement a memory-resident root
filesystem.

5-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

5.2. User Flash Hardware Characteristics

The User Flash on Power Hawk Series 700 boards is what is called a paged flash or a
banked flash. The typical User Flash is 64 megabytes. However, the processor physical
address space has only a 128 kilobyte wide window through which the User Flash
contents can been seen or modified. Therefore the User Flash is conceptually broken up
into a series of 128 kilobyte-sized ‘banks’ or ‘page’; only one of these banks can be
mapped into the physical address space at any one time.

The User Flash 128 kilobyte window begins at physical address 0xfff8000.

The byte-wide register that selects which page of the User Flash is to be mapped is located
at physical address 0xffeffe50. The sign bit of the value written to this register must be set
to enable the mapping; the lower seven bits is the numerical id of the User Flash page that
is to be mapped in.

5.3. Booting a Netbootable Client from Flash

Assume at this point that a client and a server have been completely set up and that a
useful boot image has somehow already been burned into the client’s User Flash. Further
assume that the client is a netboot client, because the hand-boot technique shown here is
most useful for that configuration. The example below shows how that client is booted via
SMon commands entered in at the SMon prompt:

SMon> wb ffeffe50 80
SMon> g fff8000

The first command wb, forces the first page of the User Flash to be mapped into the
physical address space. The second command jumps to the first byte of that mapped page.
This jump begins the PowerMAX OS boot sequence.

If these two commands are put into the netboot client’s SMon startup script, then this
client will autoboot from User Flash every time the client is reset or is powered up.

If a client is an embedded system, that is, one that after booting does not attempt to
communicate with the server across the network or VMEBus, then moving its boot image
to User Flash cuts the only required connection the client had with its server - that of
fetching a boot image at boot time. That client now can be disassociated from its server
and moved to a remote site.

For VMEBus bootable clients, it is possible to do these same steps by hand and it is
possible to replace the SMon startup script that VMEBus bootable clients use as well,
but none of this is necessary to do nor even desirable. The standard SMon VMEBus
“startup” script already has these two commands embedded in it, executed as desired
on command from the server.

Flash Boot System Administration

5-3

5.4. Burning a Netboot Client’s User Flash

A netbootable client, before being converted to flashboot, typically has a SMon startup
script which is executed whenever that client powers up or is reset. This script will
contain SMon commands that look similar to the following example and whose job is to
netboot that client. Note that the user, at an SMon prompt on some client, can enter these
commands anytime to initiate a normal netboot - a user does not need to power cycle a
client and have them run from a startup script in order to be able to use them:

SMon> load “miles.bstrap“
SMon> g

or,

SMon> tftpboot “miles.bstrap”

These commands load a boot image from the server across the Ethernet cable via the
tftp protocol, then jumps to the first byte of that boot image to begin the PowerMAX OS
boot sequence. The above example assumes that the client’s name is ‘miles’ and that this
client’s boot image has already been built and installed on the server system under the
/tftpboot directory with the mknetbstrap(1M) utility.

To instead burn a boot image into User Flash, the operator has to type in modified versions
of the above SMon commands. Below is an example of such a command sequence,
intermixed with the screen output that they produce:

SMon> fp uf erase
erasing USER flash: /

SMon> load “miles.bstrap” 1400000
Received 1713842 bytes in 12.2 seconds.
loaded miles.bstrap at 1400000

SMon> fp uf 1400000 #1713842

The SMon output shown above displays two numbers - 1400000 and 17132842. These
two numbers must be specified as arguments to the third SMon command shown above.
Note the pound sign (#) typed as part of the final argument; this tells SMon that the
argument is in decimal notation.

To summarize, the process of burning User Flash consists of 1) loading the client’s boot
image into the client’s global memory, 2) erasing the User Flash, and 3) copying the boot
image in memory to the User Flash.

Note that, when loading up a boot image into memory, the user must take care that the
image is not loaded into any memory location that SMon uses. The load address shown
above, 1400000, is believed to be safe.

Hand burning works best for converting netbootable clients to User Flash boot. For VME-
Bus bootable clients, the SMon commands described here are already embedded in the
standard SMon “startup” script for VMEBus clients that should be already running on
the client. This burn command sequence is triggered from the server, by the user or
automatically by software running on the server, whenever that is desired or necessary.

5-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

5.5. Burning and Booting from Flash for VMEBus Bootable
Clients

Given a working VMEBus bootable client configuration, the user can convert that
configuration to boot from User Flash by setting to ‘y’ the following parameters in the
client’s profile file:

FLASHBOOT=y
AUTOFLASH=y

(/etc/profiles/miles would be the name of the profile file on the server for a client
named ‘miles’).

With these lines in place, flashburning and flashbooting will occur automatically as part of
the normal sequence of operations. Whenever the server tells the client to boot, it will
order that client to boot from its User Flash. Whenever the client is told to boot and the
copy of the boot image in its User Flash is outdated, then the server will burn the latest
boot image into the client’s User Flash before ordering it to reboot.

If the user does not want a client’s User Flash to be automatically burned with new boot
images as needed, then that user should set AUTOFLASH=n in the client’s profile. In that
case, reboot commands issued to the client will continue to use whatever boot image was
last placed into the User Flash.

To force a new boot image to be burned into client ‘miles’:

mkvmebstrap -F miles

To force client ‘miles’ to execute the boot image that is in its User Flash, without consider-
ation as to whether or not what is in the User Flash is the latest and the greatest:

mkvmebstrap -X miles

And finally, the normal client boot command sequence, shown below, will boot the client
with whatever method is specified by the FLASHBOOT and AUTOFLASH variable
values that are in its profile. If FLASHBOOT=n, then this sequence does a normal
VMEBus download and boot. If FLASHBOOT=y and AUTOFLASH=n, then this sequence
will force the client to boot from whatever boot image is already in its User Flash - irre-
spective of whether that image is the latest and greatest or not. If FLASHBOOT=y and
AUTOFLASH=y, then every attempt to boot the client will first burn, if necessary, a fresh
boot image into the client’s User Flash before the client is made to execute the image.

mkvmebstrap -B miles

The sbcboot command is the actual low level command that burns flashes or causes
clients to execute what is in their User Flash. All the above methods eventually result in
calls to sbcboot, executed at the appropriate times with the appropriate options.

To burn the User Flash of the client in vme bus slot #2, execute something like the follow-
ing commands on the server:

TARGET=/dev/vmebus/target2
FILE=/vroots/miles/etc/conf/cf.d/unix.bstrap
sbcboot -F $TARGET $FILE

Flash Boot System Administration

5-5

The /dev/vmebus/target2 argument must be replaced with the device name of the
slot that the desired client is in. The ‘/vroots/...’ argument must be replaced with
the filename containing the boot image that is to be downloaded and burned into that cli-
ent.

To force the client in vme bus slot #2 to boot itself from User Flash, enter on the server
command line:

sbcboot -X /dev/vmebus/target2

NOTE

Burning User Flash of necessity causes the targeted client to go
through a hard reset as part of the burn process. Therefore, a user
should not attempt to burn the User Flash while a client is busy
doing useful work.

5-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

 6
Modifying VME Space Allocation

6.1. Overview . 1-1
6.2. Default VME Configuration . 1-1
6.3. Reasons to Modify Defaults . 1-2
6.4. Limitations . 1-3
6.5. Changing The Default VME Configuration . 1-3

 6.5.1. VME A32 Window. 1-3
 6.5.2. Closely-Coupled VME A32 Window Considerations 1-4

6.6. Example Configuration. 1-4

6-1

6
Chapter 6Modifying VME Space Allocation

6
6
6

6.1. Overview

Material is this chapter is applicable to closely-coupled systems only.

On Power Hawk Series 700 platforms, accesses to VME space that are issued by the pro-
cessor are accomplished through a special range of processor physical addresses. The
hardware on these Power Hawk platforms translates this range of processor physical
addresses into PCI bus addresses that fall into the PCI Memory Space range on the PCI
Bus. Additional hardware on Power Hawk Series 700 platforms is set up to translate these
PCI Memory Space addresses into VMEbus addresses which the hardware will place upon
the VMEbus.

6.2. Default VME Configuration

The Power Hawk Series 700 platforms define a 2GB minus 48MB space that maps
processor bus read and write cycles into PCI memory space. This area is used to allow
master programmed I/O access to

- PMC/PCI devices

- VME A32 devices

- the PCI-to-VME Universe VME Remote Access Image (VRAI) area

- the PCI-to-PCI (P0) upstream window areas for accessing the P0Bus

Note that the VRAI area and the upstream P0Bus windows are both used specifically for
closely-coupled configurations.

The user configurable VME A32 memory space area resides between processor addresses
0xA0000000 and 0xFCAFFFFF, which map directly to the same PCI memory space
addresses ranges, 0xA0000000 to 0xFCAFFFFF.

One set of kernel tunables define this range of PCI Memory space addresses that may be
used for VMEbus A32 space accesses.

Any PCI memory space not mapped to the VMEbus is available for use by PMC/PCI
add-on cards which may be attached to the Power Hawk’s PMC expansion slot, and also
by the upstream P0Bus window areas.

6-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

The default configuration for processor to PCI to VME address translations on Power
Hawk Series 700 platforms is shown in Table 6-1.

6.3. Reasons to Modify Defaults

There are several reasons why a system administrator may want to modify the default
VME A32 address space configuration on Power Hawk Series 700 platforms. Some
possible reasons are listed below:

- There are one or more VME devices configured in the system that have a
large amount of on-board memory and/or require that their VME space be
configured on certain address boundaries. For example, an A32 VME
device might contain 1GB of on-board memory. It would not be possible
to configure this device into the system using the default VME configura-
tion address space (since it has a size of 971MB).

- Although PCI devices can be configured to respond to PCI I/O Space
addresses, PCI devices can also be configured to respond to PCI Memory
Space addresses. Therefore, it is possible that there may be a mix of PCI
and VME devices in the system that both want to share the available PCI
Memory Space.

The P0Bus upstream windows also reside in PCI Memory space, and the
s i z e o f t h e s e u p s t r eam w i n d o ws ca n b e r a th e r l a rg e i f t h e
SBC_SLAVE_MMAP_MAXSZ parameter is set to one of the larger index
values. (See “Cluster-wide Parameters” on page 4-19 for details on this
cluster.profile parameter.)

In these situations, it may be desirable to reduce the amount of VME A32
address space within PCI Memory Space in order to allow more of the PCI
Memory Space to be used for PCI upstream windows and other PCI
devices.

Table 6-1. Default Processor/PCI/VME Configuration

Processor
Address

PCI Address
VME

Address
VME
Type

Window
Size

Description/Tunables

0x80000000
0xBFFFFFFF

0x80000000
0xBFFFFFFF

0x40000000
1GB

PCI/PMC devices and
P0Bus upstream windows -
No VME Tunables

0xC0000000
0xFCAFFFFF

0xC0000000
0xFCAFFFFF

0xC0000000
0xFCAFFFFF

A32 0x3CB00000
971MB

VME_A32_START
VME_A32_END

0xFCC00000
0xFCFEFFFF

0xFCC00000
0xFCFEFFFF

0xC00000
0xFEFFFF

A24 0x003F0000
4 M B m i n u s
64KB

Fixed Mapping
No Tunables

0xFCFF0000
0xFCFFFFFF

0xFCFF0000
0xFCFFFFFF

0x0000
0xFFFF

A16 0x00010000
64KB

Fixed Mapping
No Tunables

Modifying VME Space Allocation

6-3

6.4. Limitations

The Power Hawk Series 700 platform hardware and PowerMAX OS software place
certain restrictions on the configuration of VME address space and its accessibility from
the processor’s point of view. The restrictions on configuring VME space on Power Hawk
Series 700 platforms under PowerMAX OS are:

- The total range of PCI Memory space is 0x80000000 to 0xFCFFFFFF, for
a size of 0x7D000000 (2GB minus 48MB).

- The location and size of the A16 and A24 VME windows shown in
Table 6-1 may not be modified.

- The allowed range of VME A32 addresses is from 0xA0000000 to
0xFCAFFFFF, for a total size of 0x5CB00000 (approximately 1.45 GB).

- If one or more PCI devices have been configured to respond to addresses
within the PCI Memory Space range, then accesses to this PCI address
space must be coordinated between VME and PCI devices, such that the
VME windows and PCI device ranges do not overlap. Note that this con-
figuration coordination is handled automatically by the kernel at system
initialization time.

6.5. Changing The Default VME Configuration

Within the bounds of the restrictions that were mentioned in the previous section on
Limitations, the system administrator may modify certain system defaults involving the
VME to PCI configuration, and the placement of VME A32 window for A32 devices.
This configuration of VME A32 space on Power Hawk platform may be accomplished by
modifying the following tunables via the config(1M) utility:

VME_A32_START
VME_A32_END

As stated earlier, any available PCI Memory space not mapped to the VMEbus is
available for add-on PMC/PCI devices.

6.5.1. VME A32 Window

The VME_A32_START and VME_A32_END tunables define the standard programmed I/O
master window interface to VME A32 space. These tunables define processor local bus
addresses which, when accessed through read/write cycles on the local processor,
generate corresponding read/write cycles on the VMEbus in VME A32 space.

Note that this window cannot be disabled.

6-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

6.5.2. Closely-Coupled VME A32 Window Considerations

When configuring your VME A32 space, you must define the VME_VRAI_BASEADDR

cluster.profile parameter so that it falls completely within the VME A32 window space.

This space is used to hold a set of 4KB sized PCI-to-VME64 Universe bridge hardware
register images, where there is one image for each SBC in the cluster. Therefore, the total
amount of VRAI space taken up by all of the SBC’s VRAI images depends upon the max-
imum number of SBCs allowed in the cluster.

For example, when a possible maximum of eight boards may be placed into the cluster,
then:

8 * 4KB

bytes of VMEbus address space are reserved, and this space should not be used for any
other purpose, even when less than eight SBCs are physically present in the rack, since the
kernel initialization code uses this area to ’probe’ for the existence of other SBCs in the
cluster.

Note that if the VME A32 window is moved such that the VME_VRAI_BASEADDR parame-
ter also requires modification, then the SMon startup script for each client SBC must
also be modified. (See “Cluster-wide Parameters” on page 4-19 for details on this
cluster.profile parameter.)

6.6. Example Configuration

This section provides an example of a non-default VME A32 space configuration. In this
example, an A32 VME memory module with 1GB of on-board memory is being installed.
The module is strapped to respond to addresses 0xA0000000 to 0xDFFFFFF. This
example further assumes that there are no other VME devices on the VMEbus.

By modifying the tunable:

VME_A32_START to 0xA000

then the new VME A32 window area is now large enough to accommodate the 1GB
memory module.

The default value for the VME_A32_END tunable (0xFCAF) does not need to change, and
therefore the closely-coupled VRAI images that must reside in this A32 region (see
“Closely-Coupled VME A32 Window Considerations” section above) may remain set to
their usual default location.

Modifying VME Space Allocation

6-5

The new PCI and VME A32 space configuration is shown below:

Processor
Address

PCI Address
VME

Address
VME
Type

Window
Size

Description/Tunables

0x80000000
0x9FFFFFFF

0x80000000
0x9FFFFFFF

0x20000000
512MB

PCI/PMC devices
No VME Tunables

0xA0000000
0xFCAFFFFF

0xA0000000
0xFCAFFFFF

0xA0000000
0xFCAFFFFF

A32 0x5CB00000
1.448GB

VME_A32_START
VME_A32_END

0xFCC00000
0xFCFEFFFF

0xFCC00000
0xFCFEFFFF

0xC00000
0xFEFFFF

A24 0x003F0000
4MB - 64KB

Fixed Mapping
No Tunables

0xFCFF0000
0xFCFFFFFF

0xFCFF0000
0xFCFFFFFF

0x0000
0xFFFF

A16 0x00010000
64KB

Fixed Mapping
No Tunables

6-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

 7
Debugging Tools

7.1. System Debugging Tools . 1-1
7.2. kdb . 1-2
7.3. crash . 1-2
7.4. savecore . 1-3
7.5. sbcmon . 1-3

7-1

7
Chapter 7Debugging Tools

7
7
7

7.1. System Debugging Tools

This chapter covers the tools available for system debugging on a diskless client. The
tools that are available to debug a diskless client depend on the diskless system
architecture. Tools covered in this include the following:

• kdb

• crash

• savecore

• sbcmon

In a closely-coupled system architecture, members of a cluster, referred to as vmeboot
clients, are connected to a common VME backplane and PCI-to-PCI (P0) bus. Each
client’s memory is accessible to the File Server and to other clients via hardware mappings
in both PCI-to-PCI (P0) and VME space. This inter-SBC remote memory access is
provided through the sbc device driver interface (sbc(7)). A vmeboot client is
configured via a vmeboot client profile in the /etc/profiles directory. For more
information on vmeboot clients, see Chapter 4 “VME Boot System Administration”.

In the loosely-coupled architecture, the only attachment between the file server and the
diskless client is via an ethernet network connection. There is no way to remotely access a
diskless system’s memory in a loosely-coupled configuration. A client is referred to as a
netboot client and is configured via a netboot client profile file in the /etc/profile
directory. For more information on netboot clients, see Chapter 3 “Netboot System
Administration”.

The state of a diskless system may be examined as follows:

vmeboot and netboot clients:

a. Enter kdb by typing a ~k sequence on the client’s console. The
client’s boot image must have been built with kdb support.

vmeboot clients only:

b. create a system dump using savecore(1m) or sbcmon(1m) and
then examine the system dump with crash(1m).

c. examine the client system directly from the File Server system using
crash.

7-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

When kdb is configured into a client’s kernel, the ~k sequence will cause the system to
drop into kdb. The sequences ~b, ~i, and ~h all cause the system to drop into the
board’s SMon firmware.

7.2. kdb

The kdb package is provided with the kernel base package. A client kernel may be
configured with kdb, and its boot image may be configured to enter kdb early in the boot
process. A console terminal must be connected to the client board to interact with kdb.

On client boards, the console debugger support is not present. However, if system level
debugging on a client is desired, then it is possible to use kdb. To use kdb, the kdb and
kdb_util kernel drivers must be configured into the client’s unix kernel. Except for the
kdb consdebug command, which is not available on clients, kdb operates without any
differences from a normal system when executing on a client. A terminal should be con-
nected to the console terminal port on the client being debugged in order to use kdb.

The default client kernel configuration does not have kdb support. The kdb kernel
modules may be configured into the client’s kernel via the -k option and the system may
be programmed to stop in kdb via the -b option. Both these options are supported by the
boot image generating tools mkvmebstrap(1m) for c losely-coupled and
mknetbstrap(1m) for loosely-coupled.

When kdb is configured into a client’s kernel, the ~k sequence will cause the system to
drop into kdb.

7.3. crash

The crash(1m) utility may be run from the file server system to examine the memory of
a client board in the local cluster. Crash(1m) may also be invoked on a diskless client
to examine the memory of another member of the cluster. In the case where crash is
invoked on a diskless client, rather than on the file server, steps must be taken to gain read
access to the unix file of the client whose memory is to be probed.

The crash utility may be run from the file server system to examine the memory of a
client board in the local cluster as follows:

crash -d /dev/target<1-7> -n <VROOT>/etc/conf/cf.d/unix

For example, the following command may be used to run crash on a vmeboot client that
has a BOARD_ID client profile parameter value of 1, and whose VROOT client profile
parameter is set to /vroots/wilma:

crash -d /dev/target1 -n /vroots/wilma/etc/conf/cf.d/unix

Debugging Tools

7-3

7.4. savecore

The savecore(1m) system utility is used to save a memory image of the system after
the system has crashed. Savecore(1m) supports the ‘-t’ option to identify the client
system that should be saved. This option allows savecore(1m) to be run on the file
server, to create a crash file from the memory of a diskless client. Savecore(1m) saves
the core image in the file vmcore.n and the namelist in unix.n under the specified
directory. The trailing ``.n” in the pathnames is replaced by a number which is
incremented every time savecore(1m) is run in that directory.

The savecore(1m) utility may be run from the file server system to create a system
memory dump of a vmeboot client board in the same cluster. The following series of
commands would be used to save a memory image and then analyze that image. The
system dump created by savecore(1m) under the directory <dirname> and given
the numerical suffix <n> may then be examined using crash.

savecore -f -t <board_id> <dirname> <VROOT>/etc/conf/cf.d/unix

cd <dirname>

crash -c <n>

For example, if vmeboot client ‘wilma’ has a BOARD_ID parameter value of 2 and a VROOT
parameter value of /vroot/wilma in it’s client profile file, then the following commands
would be used, assuming that no system dump already exits in the ‘client_savecores’
directory:

savecore -f -t 2 /client_savecores /vroot/wilma/etc/conf/cf.d/unix
cd /client_savecores
crash -c1

7.5. sbcmon

sbcmon(1m) is a utility provided by the diskless package. It enables the host system to
detect when another board in the cluster panics. When a panic is discovered, the
savecore(1m) utility may be used to capture a dump file for future crash analysis or to
shutdown the local system. This utility is documented in the sbcmon(1m) online man
page provided in the diskless package.

7-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

A-1

A
Appendix ABackplane P0 Bridge Board Cluster

Configuration

1
1

1 This appendix describes the various cluster configurations that are supported when a P0Bus bridge board (BPP0) is present. This appendix also describes the additional limitations that are associated with some of the BPP0 configurations.

This Appendix describes the various cluster configurations that are supported when a
Backplane P0 (BPP0) Bridge Board is present. This Appendix also describes the
additional limitations that are associated with some of the BPP0 configurations.

As is the case for clusters configured without a BPP0 bridge board, the following points
are also true for BPP0 clusters:

- The server SBC board must be placed in the first (lowest numbered) slot in
the rack, and the server’s logical SBC board ID is always 0.

- For client SBCs, the logical SBC ID value does NOT indicate the physical
slot number in the rack where that board is located. The local SBC ID
value may be selected independently of the slot where the board is placed.
However, the SBC ID value MUST follow the P0 overlay restrictions that
are discussed below under the description of the P0_BPP0_SBC_ID
parameter.

The are two /etc/profiles/cluster/cluster.profile parameters that
determine which BPP0 cluster configurations are possible. These two parameters are also
discussed in detail in section "Cluster-wide Parameters" on page 4-19.

P0_BPP0_SBC_ID

This parameter defines the lowest possible
logical SBC ID value that may be used on
the second (higher numbered slots) P0
overlay. All SBCs located in the second P0
overlay must have a logical SBC ID value
that is greater than or equal to this parameter.
Al l SBCs loca ted in the f i r s t (lower
numbered slots) P0 overlay must have logi-
cal SBC ID values that are less than this
tunable.

A P0_BPP0_SBC_ID parameter value of zero
indicates that the system has NOT been
configured to accommodate a BPP0 bridge
board. If a BPP0 is probed for and found on
the P0Bus by the server’s kernel during
system initialization, then warning messages
will be output to the console and the BPP0
bridge and closely-coupled support will
NOT be enabled. Therefore, when a BPP0
is physically present in the cluster, this
P0_BPP0_SBC_ID parameter MUST be set to a
non-ze ro va lue even when the re a re

A-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

currently no SBCs located on the second
overlay.

VME_DRAM_WINDOW

This parameter is an index value that defines
the largest amount of DRAM that is located
on any SBC in the cluster.

Given the above parameters, there are basically three types of valid BPP0 cluster
configurations. These are:

1. VME_DRAM_WINDOW size <= 256MB

2. VME_DRAM_WINDOW size = 512MB

3. VME_DRAM_WINDOW size = 1GB

 These three configuration types are described in more detail below.

1. Configurations with a VME_DRAM_WINDOW size <= 256MB

When VME_DRAM_WINDOW is set to an index value of 1, 2 or 3, then all of the
SBCs in the cluster may contain no more that 256MB of DRAM. In this case, a
maximum of 7 or 8 SBCs may be located in a cluster, depending upon the BPP0
cluster configuration being used.

In this type of BPP0 configuration, the valid values for the P0_BPP0_SBC_ID tunable
are: 2, 4 or 6.

The following table shows the valid logical SBC ID values for each of the two P0
overlays for a given valid P0_BPP0_SBC_ID value. It should be noted that when there
are less than the maximum number of boards in the configuration, any subset of the
valid SBC IDs specified below for each of the P0 overlays may be assigned.

Note that the local SBC ID values do not denote specific slot locations in the rack or
specific P0 overlay positions:

The following list contains the additional restrictions for BPP0 cluster
configurations with DRAM sizes <= 256MB:

- Since the largest P0 overlay accommodates a maximum of 5 slots/
boards, the maximum number of SBCs in the cluster is therefore 7
when the P0_BPP0_SBC_ID parameter is set to either 2 or 6 (5 boards
on one overlay + 2 boards on the other overlay). Only when

P0_BPP0_SBC_ID
First P0 overlay
logical SBC IDs

Second P0 overlay
logical SBC IDs

2 0 1 2 3 4 5 6 7

4 0 1 2 3 4 5 6 7

6 0 1 2 3 5 6 7

A-3

Backplane P0 Bridge Board Cluster Configuration

P0_BPP0_SBC_ID is set to 4 will a maximum number of 8 SBCs be
configurable in the cluster (with 4 SBCs located on each P0 overlay).

- When P0_BPP0_SBC_ID is set to 6, then the logical SBC ID value of 4
may not be used on the first overlay. However, it is still possible to
place 5 SBCs on the first overlay in this configuration when a 5-slot
overlay is used as the first P0 overlay.

When P0_BPP0_SBC_ID is set to 2 and VME_DRAM_WINDOW is set to 3 (256MB) then the
largest value allowed for the SBC_SLAVE_MMAP_MAXSZ diskless cluster.profile
parameter is one-eighth the amount of memory defined by the VME_DRAM_WINDOW

parameter. (Usually, up to one-fourth the amount of memory defined by the
VME_DRAM_WINDOW parameter may be used for the SBC_SLAVE_MMAP_MAXSZ parame-
ter. See section "Cluster-wide Parameters" on page 4-19 for more information about the
SBC_SLAVE_MMAP_MAXSZ parameter.)

2. Configurations with a VME_DRAM_WINDOW size = 512MB

When VME_DRAM_WINDOW is set to a value of 4, then all of the SBCs in the cluster
contain 512MB of DRAM or less. In this case, a maximum of 4 SBCs may be
located in the cluster.

In this BPP0 configuration, the valid values for the P0_BPP0_SBC_ID tunable are: 1, 2
or 3.

The following table shows the valid logical SBC ID values for each of the two P0
overlays for a given valid P0_BPP0_SBC_ID value. It should be noted that when there
are less than the maximum number of boards in the configuration, any subset of the
valid SBC IDs specified below for each of the P0 overlays may be assigned.

Note that the logical SBC ID values do not denote specific slot locations in the rack
or specific P0 overlay positions:

The only additional restriction for this type of BPP0 cluster configuration is:

- When P0_BPP0_SBC_ID is set to 1, then the largest value allowed for
the SBC_SLAVE_MMAP_MAXSZ diskless cluster.profile
parameter is one-eighth the amount of memory defined by the
VME_DRAM_WINDOW parameter. (Usually, up to one-fourth the
amount of memory defined by the VME_DRAM_WINDOW parameter
may be used for the SBC_SLAVE_MMAP_MAXSZ parameter. See sec-
tion "Cluster-wide Parameters" on page 4-19 for more information
about the SBC_SLAVE_MMAP_MAXSZ parameter.)

P0_BPP0_SBC_ID
First P0 overlay
logical SBC IDs

Second P0 overlay
logical SBC IDs

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

A-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

3. Configurations with a VME_DRAM_WINDOW size = 1GB

When VME_DRAM_WINDOW is set to a value of 5, then the two SBCs in the cluster
contain 1GB of DRAM or less. In this case, a maximum of 2 SBCs may be located
in the cluster.

In this BPP0 configuration, the only valid value for the P0_BPP0_SBC_ID tunable is 1.

The following table shows the valid logical SBC ID values for each of the two P0
overlays for the one valid P0_BPP0_SBC_ID value.

Note that the logical SBC ID values do not denote specific slot locations in the rack
or specific P0 overlay positions:

There are no additional restrictions for this type of BPP0 cluster configuration.

P0_BPP0_SBC_ID
First P0 overlay
logical SBC IDs

Second P0 overlay
logical SBC IDs

1 0 1

B-1

B
Appendix BAdding a Local Disk

2
2

2 This appendix describes the various cluster configurations that are supported when a P0Bus bridge board (BPP0) is present. This appendix also describes the additional limitations that are associated with some of the BPP0 configurations.

By default, clients are configured as diskless systems. It may be desirable to connect a
local disk drive which is used to store application-specific data. The following example
demonstrates how to configure a disk assuming that the disk has been formatted, file
systems have been created on the appropriate partitions and the disk has been connected to
the client. Note that the instructions provided in this appendix apply to both loosely/
closely-coupled systems. Refer to the System Administration manual (Volume 2) for
guidelines on how to accomplish these pre-requisite steps.

The kernel configuration may be modified using the config(1M) tool and specifying
the client’s virtual root directory. For example, if the client’s virtual root path is
/vroots/elroy:

config -r /vroots/elroy

1. If necessary, add an entry to the adapters table -

Adapter information must be added to the adapters table for VME adapters
(i.e., via). PCI adapters (i.e., ncr) are auto-configurable and should not be
added to the adapters table. If this is a VME adapter, add an entry for it in
the adapters table using the Adapters/Add menu option of config(1m).

2. Configure kernel modules -

Use the Modules function of the config(1M) tool to enable the follow-
ing modules:

gd (generic disk driver)

scsi (device independent SCSI interface support)

ncr (internal SCSI adapter interface driver)

ufs (unix file system)

sfs (unix secure file system)

If the client is a closely-coupled client and the ncr module is being enabled, then use
the Modules function of the config(1M) tool to make sure that the following
kernel module is disabled:

sym_dma (P0Bus DMA module - Used only when the ncr module is not
configured into the client's kernel. The ncr and sym_dma modules are mutu-
ally exclusive.

If a Resilient File System (XFS) is required for a client, instead of enabling ufs and
sfs, enable:

B-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

xfs (resilient file system)

xfsth (resilient file system threaded)

Note that the kernel.modlist.add table in the client’s custom.conf
directory (/etc/clients/<client_dir>/custom.conf) may instead be
used to enable kernel modules.

Note: The procedural steps below differ depending whether the client was
configured with NFS support or as embedded.

NFS Clients (steps #3 - #6):

3. Configure Disk Device Files

Check that an appropriate device node entry (Node(4)) exists and is uncommented
for the disk being added. The following is such an entry from the Node file
/vroots/elroy/etc/conf/node.d/gd:

gd dsk/0 D ncr 0 0 0 0 3 0640 2

4. Add mount point directory entries to the memfs root file system via the
memfs.files.add custom file. For example, to add the directories arbitrarily
named /dsk0s0 and /dsk0s1:

cd /etc/clients/<client_dir>/custom.con
./mkprivate memfs.files.add
vi memfs.files.add

Example entries:

d /dsk0s0 0777
d /dsk0s1 0777

5. Enable Automatic Mounting of a Disk Partition by adding entries to the client’s
vfstab file. Note that the mount point directory name must match the directory
name specified in the memfs.files.add file in step 4 above.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate vfstab
vi vfstab

Example entries:

6. Generate a new boot image.

For a closely-coupled system you can optionally use the -B option to also boot

/dev/dsk/0s0 /dev/rdsk/0s0 /dsk0s0 ufs 1 yes -

/dev/dsk/0s1 /dev/rdsk/0s1 /dsk0s1 ufs 1 yes -

B-3

Adding a Local Disk

the client:

mkvmebstrap -B -r all <client>

For a loosely-coupled system:

mknetbstrap -r all <client>

Embedded clients (steps #3 - #5):

3. The disk management tools must be added to the memfs file system. The list of
tools is documented in the file /usr/etc/diskless.d/sys.conf
/memfs.d/add_disk.sh. In executing the following commands, we grep the
list of commands from this file and append them to the memfs.files.add tables.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate memfs.files.add
/sbin/grep "^#f" /usr/etc/diskless.d/sys.conf \
/memfs.d/add_disk.sh | cut -c2- >> ./memfs.files.add

Verify that the following entries were appended to memfs.files.add.

f /sbin/expr 0755
f /usr/bin/devcfg 0755
f /usr/bin/cut 0755
f /sbin/mknod 0755
f /usr/bin/mkdir 0755
f /sbin/fsck 0755
f /etc/fs/ufs/fsck 0755
f /etc/fs/xfs/mount 0755
f /etc/fs/ufs/mount 0755
f /sbin/df 0755

4. Embedded client systems do not have access to the kernel configuration directory,
which is needed to generate the device node entries. However, the device node must
be created on the client system because it’s minor number carries information that
is unique to the running system. For this reason, special steps must be taken during
client boot-up to create the device nodes.

The sample script below will do the necessary steps to add a local disk on an
embedded client. This script may be found on the File Server system under the path
/usr/etc/diskless.d/sys.conf/memfs.d/add_disk.sh. Note that
you must set the variables “FSTYPE” and “PARTITIONS” to the appropriate
values.

cd /etc/clients/<client_dir>/custom.conf
./mkprivate S25client
cat /usr/etc/diskless.d/sys.conf/memfs.d \
/add_disk.sh >> ./S25client
vi ./S25 client

Verify that the script (illustrated on the next page after step #5) was appended to
S25client and set the variables FSTYPE and PARTITIONS.

5. Generate a new boot image.

B-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

For a closely-coupled system you can optionally use the -B option
to also boot the client:

mkvmebstrap -B -r all <client>

For a loosely-coupled system:

mknetbstrap -r all <client>

----------- Beginning of Script --------------------

#
Start-up script to mount a local disk on a client configured
as embedded.
#
The variables FSTYPE and PARTITIONS should be set to the
appropriate values.

To be able to run this script, the following binaries must be
added to the memfs file system via the memfs.files.add custom
table. Example entries follow.
#
#f /sbin/expr 0755

#f /usr/bin/devcfg 0755

#f /usr/bin/cut 0755

#f /sbin/mknod 0755

#f /usr/bin/mkdir 0755
#f /sbin/fsck 0755
#f /etc/fs/ufs/fsck0755
#f /etc/fs/xfs/mount0755
#f /etc/fs/ufs/mount 0755

#f /sbin/df 0755
#
Set FSTYPE and PARTITIONS
#
FSTYPE=ufs # file system type (ufs, xfs)
PARTITIONS=”0 1 2 3 4 5 6” # disk partitions to be mounted

#
Initialize
#
> /etc/mnttab
> /etc/vfstab
disk=0

#
Create the device directories
#
/usr/bin/mkdir -p /dev/dsk
/usr/bin/mkdir -p /dev/rdsk

#
In this loop, the device nodes are created based on
major/minor device information gathered from the call
to devcfg. The fsck(1m) utility is executed for each

B-5

Adding a Local Disk

file system, a mount point directory is created, and
the file system is mounted and then verified using df.
#
/usr/bin/devcfg -m disk | /usr/bin/cut -f3 | while read majmin
do

maj=`echo $majmin | /usr/bin/cut -f1 -d” “`
min=`echo $majmin | /usr/bin/cut -f2 -d” “`
#
Creates, fsck and mounts the partition.
#
for i in $PARTITIONS
do

#
create the device nodes
#
minor=`/sbin/expr $min + $i`
echo “===>Creating nodes /dev/dsk/${disk}s${i} \c”
echo “and /dev/rdsk/${disk}s${i}”
/sbin/mknod /dev/dsk/${disk}s${i} b $maj $minor
/sbin/mknod /dev/rdsk/${disk}s${i} c $maj $minor

fsck (ufs only) and mount each partitions.
#
if [“$FSTYPE” != “xfs”]
then
echo “===>Fsck’ing partition /dev/rdsk/${disk}s${i}”

/etc/fs/$FSTYPE/fsck -y /dev/rdsk/${disk}s${i} \
> /dev/null

fi

#
create a mount point directory
#
/usr/bin/mkdir /${disk}s${i}

#
mount the partition
#
echo “===>Mounting /dev/dsk/${disk}s${i} /${disk}s${i}\n”
/etc/fs/$FSTYPE/mount /dev/dsk/${disk}s${i} /${disk}s${i}

done
break
disk=`/sbin/expr $disk + 1`

done
#
verify the partitions are mounted
#
echo “===>Verifying mounted file systems”
/sbin/df -kl

-------------- End of Script --------------------

B-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

C-1

C
Appendix CMake Client System Run in

NFS File Server Mode

3
3

3 This appendix describes the various cluster configurations that are supported when a P0Bus bridge board (BPP0) is present. This appendix also describes the additional limitations that are associated with some of the BPP0 configurations.

To become an NFS server, a client system must have an attached local disk. In becoming
an NFS server, the client can share the data in the local disk partitions with other nodes in
the cluster. Note that these instructions apply to both loosely-coupled and closely-coupled
systems. See Appendix B "Adding a Local Disk" for instructions on how to add a local
disk to a diskless client.

We will refer to the client that has a local disk attached as the disk_server and the node(s)
that want to share this disk as disk_clients.

Note

Note that on systems where both network interfaces (p0 and eth)
are enabled, each node has multiple hostnames - one for each
enabled network interface. Diskless clients follow the rule of
<nodename>-p0 and <nodename>-eth, respectively, for the p0bus
and the symbios ethernet networks. However, the node config-
ured as the File Server of a closely-coupled system uses <node-
name> for its ethernet network hostname and <nodename>-p0 for
its p0bus interface. It is important that the hostname specified is
attached to the same interface on the disk_clients and the
disk_server. A hostname is specified on the disk_clients when
mounting the partitions and on the disk_server in the share com-
mand line in the dfstab table.

First we must enable the nfssrv kernel module which, by default, is disabled in a
diskless client configuration. We must also give the disk_client node(s) permission to
access the partitions. The following commands are to be run on the node configured as the
File Server of the loosely or closely-coupled system.

1. Enable the nfssrvr kernel module for the client that has the local disk
attached (disk_server). This may be accomplished in several ways, either
by using config(1M) and using the -r option to specify the virtual root
directory or by adding it to the kernel.modlist.add custom file.

cd /etc/clients/<disk_server_dir>/custom.conf
./mkprivate kernel.modlist.add
vi kernel.modlist.add

Add the following:

nfssrv

C-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

2. For each partition to be shared, add an entry similar to the example entry
shown below. Note that "disk_client_1:disk_client_n" refers
to a list of nodes that want to share this partition. See the dfstab(4)
manpage for more information. disk_server_vrootpath is the path
to the virtual root directory of the node with the local disk attached.

vi <disk_server_vrootpath>/etc/dfs/dfstab

Example entry:

share -F nfs -o rw,root=disk_client_1:disk_client_n -d "/disk0s0" /disk0s0 disk0s0

3. Generate a new boot image for the disk_server node by executing the
command:

If this is a closely-coupled system you may use the -B option to also boot
the disk_server node:

mkvmebstrap -B -r all <disk_server>

If this is a loosely-coupled system:

mknetbstrap -r all <disk_server>

On each disk_client node that wants to share the disk partitions, we need to generate a
mount point directory for each partition to be mounted across NFS. These partition can
also be automatically mounted and unmounted during the system’s boot/shutdown if
desired. If the disk_client node is another diskless client, the mount points may be added
to the memfs root file system via the memfs.files.add table and the automatic
mounting may be achieved via the node’s vfstab file or the rc scripts shown below.

1. Add directories to be used for mount points to the memfs filesystem.

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate memfs.files.add
vi memfs.files.add

Example entry:

d /rem_0s0 0755

2. Add an entry to the client’s startup script to automatically mount the
partition.

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate S25client
vi S25client

Example entry:

#

if the disk_server is up, mount remote file system

C-3

Make Client System Run in NFS File Server Mode

mount point /rem_0s0

#

if ping <disk_server> > /dev/null

then

/sbin/mount -F nfs <disk_server>:/disk0s0 /rem_0s0

fi

3. Add an entry to the client’s shutdown script to automatically unmount the
partition

cd /etc/clients/<disk_client_dir>/custom.conf
./mkprivate K00client
vi K00client

Example entry:

umount /rem_0s0

C-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

Glossary-1

Glossary

4
4 Abbreviations, Acronyms, and Terms to Know

4

10base-T

See twisted-pair Ethernet (10base-T).

100base-T

See twisted-pair Ethernet (100base-T).

ARP

Address Resolution Protocol as defined in RFC 826. ARP software maintains a table of
translation between IP addresses and Ethernet addresses.

AUI

Attachment Unit Interface (available as special order only)

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asynchro-
nous event. A signal can occur when something in the system fails, but it is not known
when the failure will occur.

asynchronous I/O operation

An I/O operation that does not of itself cause the caller to be blocked from further use of
the CPU. This implies that the caller and the I/O operation may be running concurrently.

asynchronous I/O completion

An asynchronous read or write operation is completed when a corresponding synchronous
read or write would have completed and any associated status fields have been updated.

Backplane P0 Bridge Board (BPP0)

A P0*PCI bridge board, which may be used to connect two P0Bus Overlay boards
together in order to create a larger common P0Bus in a closely-coupled system
configuration. See definitions for P0Bus Overlay and P0*PCI (P0Bus).

block data transfer

The method of transferring data in units (blocks) between a block device such as a
magnetic tape drive or disk drive and a user program.

Glossary-2

Power Hawk Series 700 Diskless Systems Administrator’s Guide

block device

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code. Compare character device.

block driver

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for example, the buf structure). One driver
is written for each major number employed by block devices.

block I/O

A data transfer method used by drivers for block access devices. Block I/O uses the sys-
tem buffer cache as an intermediate data storage area between user memory and the
device.

block

The basic unit of data for I/O access. A block is measured in bytes. The size of a block dif-
fers between computers, file system sizes, or devices.

boot

The process of starting the operating system. The boot process consists of self-configura-
tion and system initialization.

boot device

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

boot image file

A file that can be downloaded to and executed on a client SBC. Usually contains an
operating system and root filesystem contents, plus all bootstrap code necessary to start it.

bootstrap

The process of bringing up the operating system by its own action. The first few instruc-
tions load the rest of the operating system into the computer.

buffer

A staging area for input-output (I/O) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a mem-
ory array that contains data from the disk and a buffer header that identifies the buffer.

cache

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

Glossary-3

Glossary

character device

A device, such as a terminal or printer, that conveys data character by character.

character driver

The driver that conveys data character by character between the device and the user pro-
gram. Character drivers are usually written for use with terminals, printers, and network
devices, although block devices, such as tapes and disks, also support character access.

character I/O

The process of reading and writing to/from a terminal.

client

A SBC board, usually without a disk, running a stripped down version of PowerMAX OS
and dedicated to running a single set of applications. Called a client since if the client
maintains a P0Bus or Ethernet connection to its File Server, it may use that File Server as
a kind of remote disk device, utilizing it to fetch applications, data, and to swap unused
pages to.

controller

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the
device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

cyclic redundandancy check (CRC)

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.

datagram

Transmission unit at the IP level.

data structure

The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

data terminal ready (DTR)

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

Glossary-4

Power Hawk Series 700 Diskless Systems Administrator’s Guide

data transfer

The phase in connection and connection-less modes that supports the transfer of data
between two DLS users.

device number

The value used by the operating system to name a device. The device number contains the
major number and the minor number.

diagnostic

A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

DLM

Dynamically Loadable Modules.

DRAM

Dynamic Random Access Memory.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver

The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.

embedded

The host system provides a boot image for the client system. The boot image contains a
UNIX kernel and a file system image which is configured with one or more embedded
applications. The embedded applications execute at the end of the boot sequence.

error correction code (ECC)

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

flash autobooting

The process of booting a target from an image in its Flash memory rather than from an
image downloaded from a host. Flash booting makes it possible to design targets that can
be separated from their hosts when moved from a development to a production environ-
ment.

flash booting

See definition for flash autobooting.

Glossary-5

Glossary

flash burning

The process of writing a boot or other image into a Flash memory device. On SBC
boards, this is usually accomplished with SMon fp uf command.

flash memory

A memory device capable of being occasionally rewritten in its entirety, usually by a
special programming sequence. Like ROM, Flash memories do not lose their contents
upon power down.

FTP (ftp)

The File Transfer Protocol is used for interactive file transfer.

File Server

The File Server has special significance in that it is the only system with a physically
attached disk(s) that contain file systems and directories essential to running the Power-
MAX OS. The File Server boots from a locally attached SCSI disk and provides disk stor-
age space for configuration and system files for all clients. All clients depend on the File
Server since all the boot images and the system files are stored on the File Server’s disk.

function

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls and
library routines in a user-level program.

host

A SBC running a full fledged PowerMAX OS system containing disks, networking, and
the netboot development environment. Called a File Server since it serves clients with
boot images, filesystems, or whatever else they need when they are running.

host board

The single board computer of the File Server.

host name

A name that is assigned to any device that has an IP address.

host system

A term used for the File Server. It refers to the prerequisite Power Hawk system.

interprocess communication (IPC)

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

Glossary-6

Power Hawk Series 700 Diskless Systems Administrator’s Guide

interrupt level

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of the
device, and passes control to the appropriate interrupt routine.

interrupt vector

Interrupts from a device are sent to the device’s interrupt vector, activating the interrupt
entry point for the device.

ICMP

Internet Control Message Protocol, an integral part of IP as defined in RFC 792. This
protocol is part of the Internet Layer and uses the IP datagram delivery facility to send its
messages.

IP

The Internet Protocol, RFC 791, is the heart of the TCP/IP. IP provides the basic packet
delivery service on which TCP/IP networks are built.

ISO

International Organization for Standardization

kernel buffer cache

A set of buffers used to minimize the number of times a block-type device must be
accessed.

kdb

Kernel debugger.

loadable module

A kernel module (such as a device driver) that can be added to a running system without
rebooting the system or rebuilding the kernel.

MTU

Maximum Transmission Units - the largest packet that a network can transfer.

memory file system image

A cpio archive containing the files which will exist in the root file system of a client sys-
tem. This file system is memory resident. It is implemented via the existing memfs file
system kernel module. The kernel unpacks the cpio archive at boot time and populates the
root memory file system with the files supplied in the archive.

Glossary-7

Glossary

memory management

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

modem

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.

netboot

The process of a client SBC downloading into its own memory and then executing a boot
image file that is retrieved from a File Server SBC by using the TFTP network protocol.
On client SBC boards, networking is configured with the SMon smonconfig command,
and a SMon startup script may be created and configured to automatically execute after a
reset, in order to download and execute a boot image via TFTP with the SMon tftpboot
command.

netload

The process of a target loading a boot image as discussed under netboot, but without
subsequently executing it. On SBC boards, netloading is invoked with the Smon load
command.

network boot

See definition for netboot.

network load

See definition for netload.

netstat

The netstat command displays the contents of various network-related data structures
in various formats, depending on the options selected.

NFS

Network File System. This protocol allows files to be shared by various hosts on the net-
work.

NFS client

In a NFS client configuration, the host system provides UNIX file systems for the client
system. A client system operates as a diskless NFS client of a host system.

Glossary-8

Power Hawk Series 700 Diskless Systems Administrator’s Guide

NIS

Network Information Service (formerly called yellow pages or yp). NIS is an administra-
tive system. It provides central control and automatic dissemination of important adminis-
trative files.

NVRAM

Non-Volatile Random Access Memory. This type of memory retains its state even after
power is removed.

P0*PCI (P0Bus)

The PCI-to-PCI (P0) hardware bus interface that provides improved SBC board-to-board
performance. The P0Bus is 64 bits wide and operates at 33 MHz, for a theoretical
maximum of 264 MB/sec. This is more than three times the theoretical maximum of the
standard VME64 bus of 80 MB/sec. The Power Hawk Series 700 P0Bus interface is
based on the Intel 21554 64-bit PCI-to-PCI bridge chip.

The P0Bus hardware is required for Power Hawk Series 720/740 Closely Coupled
configurations, where the P0Bus is used for Closely Coupled inter-SBC communications.

P0*PCI (P0Bus) Overlay

A P0*PCI connector board, which is used to connect multiple SBCs in the same cardcage
(cluster) to a common P0Bus.

panic

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a mes-
sage is displayed on the console to indicate the cause of the problem.

PDU

Protocol Data Unit

PowerPC G4

The PowerPC G4 (7400) microprocessor. Part of the PowerPC family of microprocessors;
an architecture based on Motorola/IBM’s 32-bit RISC design CPU core.

PPP

Point-to-Point protocol is a method for transmitting datagrams over point-to-point serial
links

prefix

A character name that uniquely identifies a driver’s routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be given the ramd prefix.
If it is a block driver, the routines are ramdopen, ramdclose, ramdsize,
ramdstrategy, and ramdprint.

Glossary-9

Glossary

protocol

Rules as they pertain to data communications.

RFS

Remote File Sharing.

random I/O

I/O operations to the same file that specify absolute file offsets.

raw I/O

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

raw mode

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

rcp

Remote copy allows files to be copied from or to remote systems. rcp is often compared to
ftp.

read queue

The half of a STREAMS module or driver that passes messages upstream.

rlogin

Remote login provides interactive access to remote hosts. Its function is similar to telnet.

routines

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines. The entry-point routines are accessed through system tables.

rsh

Remote shell passes a command to a remote host for execution.

SBC

Single Board Computer

Glossary-10

Power Hawk Series 700 Diskless Systems Administrator’s Guide

SCSI driver interface (SDI)

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

sequential I/O

I/O operations to the same file descriptor that specify that the I/O should begin at the “cur-
rent” file offset.

SLIP

Serial Line IP. The SLIP protocol defines a simple mechanism for “framing” datagrams
for transmission across serial line.

server

See definition for File Server and host.

SMon

A board-resident ROM monitor utility that provides a basic I/O system (BIOS), a boot
ROM, and system diagnostics for Power Hawk Series 700 single board computers
(SBCs).

SMon startup script

As part of the boot process, SMon can automatically perform SMon commands and/or user
defined functions written in a startup script that is stored in NVRAM (nonvolatile RAM).
Special startup scripts are used for booting client SBCs in closely-coupled configurations,
and also for netbooting client SBCs in loosely-coupled configurations.

SMTP

The Simple Mail Transfer Protocol, delivers electronic mail.

small computer system interface (SCSI)

The American National Standards Institute (ANSI) approved interface for supporting
specific peripheral devices.

SNMP

Simple Network Management Protocol

Source Code Control System (SCCS)

A utility for tracking, maintaining, and controlling access to source code files.

Glossary-11

Glossary

special device file

The file that identifies the device’s access type (block or character), the external major and
minor numbers of the device, the device name used by user-level programs, and security
control (owner, group, and access permissions) for the device.

SYM (sym)

Internal Symbios Logic SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller.

synchronous data link interface (SDLI)

A UN-type circuit board that works subordinately to the input/output accelerator (IOA).
The SDLI provides up to eight ports for full-duplex synchronous data communication.

system

A single board computer running its own copy of the operating system, including all
resources directly controlled by the operating system (for example, I/O boards, SCSI
devices).

system disk

The PowerMAX OS requires a number of “system” directories to be available in order for
the operation system to function properly. In a closely-coupled cluster, these directories
include: /etc, /sbin, /dev, /usr and /var.

system initialization

The routines from the driver code and the information from the configuration files that
initialize the system (including device drivers).

System Run Level

A netboot system is not fully functional until the files residing on the File Server are
accessible. init(1M) ‘init state 3’ is the initdefault and the only run level supported for
netboot systems. In init state 3, remote file sharing processes and daemons are started.
Setting initdefault to any other state or changing the run level after the system is up and
running, is not supported.

swap space

Swap reservation space, referred to as ‘virtual swap’ space, is made up of the number of
real memory pages that may be used for user space translations, plus the amount of
secondary storage (disk) swap space available.

target

See definition for client.

TELNET

The Network Terminal Protocol, provides remote login over the network.

Glossary-12

Power Hawk Series 700 Diskless Systems Administrator’s Guide

TCP

Transmission Control Protocol, provides reliable data delivery service with end-to-end
error detection and correction.

Trivial File Transfer
Protocol(TFTP)

Internet standard protocol for file transfer with minimal capability and minimal overhead.
TFTP depends on the connection-less datagram delivery service (UDP).

twisted-pair Ethernet (10base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 10 Mbps for a maximum distance of 185
meters.

twisted-pair Ethernet (100base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 100 Mbps for a maximum distance of 185
meters.

UDP

User Datagram Protocol, provides low-overhead, connection-less datagram delivery
service.

unbuffered I/O

I/O that bypasses the file system cache for the purpose of increasing I/O performance for
some applications.

upstream

The direction of STREAMS messages flowing through a read queue from the driver to the
user process.

user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user programs and the kernel. Drivers execute in the kernel, and the user
programs that interact with drivers execute in the user program area. This space is also
referred to as user data area.

yellow pages

See definition for NIS (Network Information Services).

Index-1

Numerics

100base-T Glossary-1
10base-T Glossary-1

A

ARP Glossary-1

B

banked flash 5-2
Basic Client

customizing the configuration 3-13
Basic Configuration

Customizing 4-40
Block

device Glossary-2
driver Glossary-1

Board
Jumpers 4-6

Boot
device Glossary-2

Boot Image 3-27, 4-57
Characteristics of 1-10
Creation of 1-10
how to create 4-60

Boot Status
how to verify 3-30, 4-62

Bootable object file Glossary-2
Booting 1-12, 4-56

a netbootable client from flash 5-2
Flash 4-62
the boot image 3-26

booting
Net 4-62
VME 4-61

Booting Options 4-58
BPP0 configurations A-1
Bridge Board A-1

Burn
a boot image into User Flash 5-3

burn process 5-5
Burning 5-3

a Netboot Client’s User Flash 5-3
Burning and Booting

for VMEBus Bootable Clients 5-4
Burning and booting from Flash 5-4

C

Cache Glossary-2
Changing

Default VME Configuration 6-3
Character

driver Glossary-3
I/O schemes Glossary-3

Client
how to shutdown 4-63

client Glossary-3
Client Board Configuration 4-11
Client Configuration 3-8
client kernel 7-2
Client Profile File 3-8
Client Profile Parameters 3-24
Client profile parameters

how to modify 3-24
client’s boot image 5-3
client’s global memory 5-3
Closely-Coupled

VME A32 window considerations 6-4
Closely-Coupled System Hardware Prerequisites 1-22
Cluster

Configuration 4-18
Cluster Configuration 4-18
cluster members 7-1
Cluster-wide Parameters 4-19
config utility 3-15, 4-42
Configuration Files

Custom 4-43
Configuration Toolsets 1-5
Configuring

Clients Using netbootconfig 3-11

Index

Power Hawk 700 Series Diskless Systems Administrator’s Guide

Index-2

Diskless Systems 1-22
console debugger 7-2
console terminal 7-2
copying the boot image 5-3
crash 7-1, 7-2
crash analysis 7-3
Creating

a Client Configuration 3-11
the Boot Image 3-28

Critical code Glossary-3
Custom Configuration Files 3-16
Customizing

the Basic Client Configuration 3-13, 4-40

D

default client kernel 7-2
Default VME Configuration 6-1
Definitions

of terms 1-6
device switch table Glossary-4
Disk Space Requirements 1-23
disk_clients C-1
disk_server C-1
Diskless Boot Basics 1-3
diskless client 7-1
Diskless Implementation 1-10
Diskless Topography 1-1
Driver routines Glossary-4
Dynamic Memory Allocations 4-38

E

Embedded Client 1-2
launching an application 4-55

Embedded Clients
launching an application 3-25

ENV
Set Environment Command Glossary-4

erasing the User Flash 5-3
Ethernet LAN 1-23
Example

of non-default VME A32 space configuration 6-4
Examples

on Creating the Boot Image 3-28

F

Features
Series 700 SBC Hardware 1-9

File Server Glossary-5
File Server Board Configuration 4-7
file server system 7-2
flash autobooting Glossary-4
Flash Boot 1-7, 1-14
flash booting Glossary-4
flash burning Glossary-5
flash memory Glossary-5
flashboot 5-3
flashbooting 5-4
flashburning 5-4
Functions Glossary-5

G

GEV Glossary-5

H

hard reset 5-5
Hardware Characteristics

User Flash 5-2
Hardware Overview 1-9
Hardware Prerequisites

Closely-Coupled System 1-22
Loosely-Coupled System 1-23

host Glossary-5
How To

Boot the Cluster 4-4

I

idtuneobj 3-15, 4-42
Illustrations

Closely-Coupled Cluster of Single Board
Computers 1-3

Loosely-Coupled System Configuration 1-2
Init Level 1-8
Inittab Table 4-46
Installing

Additional Boards 3-1
Loosely-Coupled System 3-1
the Cluster 4-2

Index

Index-3

Installing Additional Boards 3-3
Integrated

Disk File Controller (IDFC) Glossary-6
Interrupt level Glossary-5
Interrupt priority level (IPL) Glossary-6

K

K00client rc script 3-18, 4-45
kdb 7-1, 7-2
Kernel buffer cache Glossary-6
Kernel Configuration

Modifying 4-40
kernel.modlist.add 3-14, 4-41
kernel.modlist.add Table 3-20, 4-47
keyadm 1-24

L

Launching an Appication for NFS Clients 3-25
Launching an Appilcation for Embedded Clients 3-25
Launching an Application (Embedded Client) 4-55
Launching an Application (NFS Clients) 4-55
Launching Applications 3-25, 4-55
Licensing Information 1-24
Limitations

on configuration of VME address space 6-3
local cluster 7-2
Local Disk B-1
Loosely-Coupled System Hardware Prequisites 1-23

M

Make Client System Run in NFS File Server Mode C-1
mapping

P0Bus and VME space 7-1
MEMFS Root Filesystem 1-11
memfs.files.add 3-21
memfs.files.add Table 3-21, 4-48
memfs.inittab and inittab Tables 3-19
Memfs.inittab Table 4-46
Memory

Shared 1-20
mknetbstrap 3-15
Modifying

client profile parameters 3-24
Modifying Profile Parameters 4-51
Modifying the Kernel Configuration 3-14, 4-40

N

NCR/Symbios SCSI 1-23
Net Boot 1-13
Netboot

using SMon 3-29
netboot Glossary-7
netbootable client 5-3
netload Glossary-7
network boot Glossary-7
Network Information Services Glossary-12
network load Glossary-7
NFS Client

launching an application 4-55
NFS Clients 1-3

launching an application 3-25
NFS Related Parameters 4-29
Node Configuration 4-33

O

Overview
of Hardware 1-9

P

P0 Bridge A-1
P0 overlay positions A-3
P0 overlay restrictions A-1
P0Bus

Networking 1-15
paged flash 5-2
panics 7-3
Parameters

modifying profile 4-51
Point-to-Point protocol Glossary-8
Portable device interface (PDI) Glossary-8
Power Hawk

Networking Structure 1-16
PPP Glossary-8
Prerequisites

Hardware, Closely-Coupled System 1-22
Hardware, Loosely-Coupled System 1-23
Software 1-24

processor and user limits 1-24
profile

modifying parameters 4-51

Power Hawk 700 Series Diskless Systems Administrator’s Guide

Index-4

R

random I/O Glossary-9
Raw I/O Glossary-9
rc scripts

K00client 4-45
S25client 4-45

rcp Glossary-9
read queue Glossary-9
Reasons to Modify Defaults 6-2
Remote

File Sharing 1-17, Glossary-9
Removing

a Client Configuration 3-11
Required Parameters 3-9, 4-26
RFS Glossary-9
rlogin Glossary-9
rsh Glossary-9

S

S25client rc script 3-18, 4-45
savecore 7-1, 7-3
SBC

Cluster Configuration 4-6
Configuration, client board 3-3

SBC Configuration 3-3
sbc device driver 7-1
SBC ID value A-1
sbcboot command 5-4
sbcmon 7-1, 7-3
SCSI

driver interface (SDI) Glossary-10
SCSI CD-ROM 1-23
sequential I/O Glossary-10
Serial Port A 1-22, 1-23
Series 700 Hardware Features 1-9
server Glossary-10
Server SBC Parameters 4-24
Shared Memory 1-20
Shutdown 3-26, 4-56
Slave Shared Memory Support 4-36
SLIP Glossary-10
Small Computer System Interface (SCSI) Glossary-10
SMTP Glossary-10
SNMP Glossary-10
Source Code Control System (SCCS) Glossary-10
Space

Swap 1-20
Static Memory Allocations 4-37
Subsystem Support 3-13, 4-35

Swap Space 1-20
swap space 1-8, Glossary-11
Symbios SYM53C885 1-23
Synergy Monitor (SMon) 1-7
system console 1-22, 1-23
system debugging 7-1
system dump 7-1, 7-3
System initialization Glossary-11
System Run Level 1-8, Glossary-11

T

Tables 3-21
Configuration 3-8
Hosts 3-11
kernel.modlist.add 3-20, 4-47
memfs.files.add 4-48
memfs.inittab & inittab 4-46
memfs.inittab and inittab 3-19
vfstab 3-20, 4-47

target Glossary-11
target system Glossary-11
TCP Glossary-12
TELNET Glossary-11
TFTP Glossary-11, Glossary-12
tftp protocol 5-3
The cluster.profile File 4-19
Tools 7-1
Toolset

Configuration 1-5
Topography

Diskless 1-1
Trivial File Transfer Protocol Glossary-12
Trivial File Transfer Protocol(TFTP) 1-8
tunables

modifying system 4-39

U

UDP Glossary-12
Unpacking

Instructions 2-2
Upstream Glossary-12
User Flash 5-2
User Flash Hardware 5-2
user limits 1-24
Using netbootconfig 3-11
Utilities

kdb, crash, savecore, sbcmon 7-1

Index

Index-5

V

vfstab Table 4-47
VGM5 Reset Switch 2-3
VGM5 SMI Switch 2-3
Virtual Root 1-10
VME

A32 Window 6-3
Booting 1-13

VMEBus bootable clients 5-2
vroot.files.add Table 3-22
VSS4 Reset Switch 2-4
VSS4 SMI Switch 2-4

Y

yellow pages Glossary-12

Power Hawk 700 Series Diskless Systems Administrator’s Guide

Index-6

Spine for 1” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Power Hawk
Series 700
Diskless
Systems

Administrator’s
Guide

0891086

Admin

P
o

w
erM

A
X

 O
S

	Preface
	Contents
	Introduction
	1.1. Overview
	1.1.1. Diskless Topography
	1.1.2. Diskless Boot Basics
	1.1.3. Configuration Toolsets

	1.2. Definitions
	1.3. Hardware Overview
	1.3.1. Series 700 Hardware Features

	1.4. Diskless Implementation
	1.4.1. Virtual Root
	1.4.2. Boot Image Creation and Characteristics
	1.4.3. MEMFS Root Filesystem
	1.4.4. Booting
	1.4.4.1. VME Boot
	1.4.4.2. Net Boot
	1.4.4.3. Flash Boot

	1.4.5. P0Bus Networking
	1.4.6. Remote File Sharing
	1.4.7. Shared Memory
	1.4.8. Swap Space

	1.5. Configuring Diskless Systems
	1.5.1. Closely-Coupled System Hardware Prerequisites
	1.5.2. Loosely-Coupled System Hardware Prerequisites
	1.5.3. Disk Space Requirements
	1.5.4. Software Prerequisites

	1.6. Licensing Information

	SBC Hardware Considerations
	2.1. Introduction
	2.2. Unpacking Instructions
	2.3. Board Jumpers
	2.4. VGM5 Reset/SMI Toggle Switch
	2.5. VSS4 Reset/SMI Toggle Switch

	Netboot System Administration
	3.1. Configuration Overview
	3.1.1. Installing a Loosely-Coupled System
	3.1.2. Installing Additional Boards

	3.2. SBC Client Board Configuration
	3.3. Client Configuration
	3.3.1. The Client Profile File
	3.3.1.1. Required Parameters
	3.3.1.2. Required NFS-Related Parameters
	3.3.1.3. Hosts Tables

	3.3.2. Configuring Clients Using netbootconfig
	3.3.2.1. Creating and Removing a Client Configuration
	3.3.2.2. Subsystem Support

	3.4. Customizing the Basic Client Configuration
	3.4.1. Modifying the Kernel Configuration
	3.4.1.1. kernel.modlist.add
	3.4.1.2. mknetbstrap
	3.4.1.3. config utility
	3.4.1.4. idtuneobj

	3.4.2. Custom Configuration Files
	3.4.2.1. S25client and K00client rc Scripts
	3.4.2.2. memfs.inittab and inittab Tables
	3.4.2.3. vfstab Table
	3.4.2.4. kernel.modlist.add Table
	3.4.2.5. memfs.files.add Table
	3.4.2.6. vroot.files.add Table

	3.4.3. Modifying the Client Profile Parameters
	3.4.4. Launching Applications
	3.4.4.1. Launching an Application for Embedded Clients
	3.4.4.2. Launching an Application for NFS Clients

	3.5. Booting and Shutdown
	3.5.1. The Boot Image
	3.5.2. Creating the Boot Image
	3.5.2.1. Examples on Creating the Boot Image

	3.5.3. Net Booting
	3.5.3.1. Netboot Using SMon

	3.5.4. Verifying Boot Status
	3.5.5. Shutting Down the Client

	VME Boot System Administration
	4.1. Overview
	4.2. Cluster Configuration Overview
	4.2.1. Installing the Cluster
	4.2.2. How To Boot the Cluster
	4.2.3. Installing Additional Boards in a Cluster

	4.3. SBC Cluster Configuration
	4.3.1. Board Jumpers
	4.3.2. Installing the P0Bus Overlay
	4.3.3. File Server Board Configuration
	4.3.4. Client Board Configuration

	4.4. Cluster Configuration
	4.4.1. The Profile Files
	4.4.1.1. The cluster.profile File
	4.4.1.1.1. Cluster-wide Parameters
	4.4.1.1.2. File Server SBC Parameters

	4.4.1.2. The Client Profile File
	4.4.1.2.1. Required Parameters
	4.4.1.2.2. NFS Related Parameters
	4.4.1.2.3. Shared Memory Parameters

	4.4.1.3. Networking Hostname Naming Conventions

	4.4.2. Node Configuration
	4.4.2.1. Creating and Removing a Client
	4.4.2.2. Subsystem Support
	4.4.2.3. Slave Shared Memory Support
	4.4.2.3.1. Static Memory Allocations
	4.4.2.3.2. Dynamic Memory Allocations

	4.4.2.4. System Tunables Modified

	4.5. Customizing the Basic Configuration
	4.5.1. Modifying the Kernel Configuration
	4.5.1.1. kernel.modlist.add
	4.5.1.2. mkvmebstrap
	4.5.1.3. config Utility
	4.5.1.4. idtuneobj

	4.5.2. Custom Configuration Files
	4.5.2.1. S25client and K00client rc Scripts
	4.5.2.2. Memfs.inittab and Inittab Tables
	4.5.2.3. vfstab Table
	4.5.2.4. kernel.modlist.add Table
	4.5.2.5. memfs.files.add Table
	4.5.2.6. vroot.files.add Table

	4.5.3. Modifying Profile Parameters
	4.5.3.1. Cluster.profile File
	4.5.3.2. Modifying Client Profile Settings

	4.5.4. Launching Applications
	4.5.4.1. Launching an Application (Embedded Client)
	4.5.4.2. Launching an Application (NFS Client)

	4.6. Booting and Shutdown
	4.6.1. The Boot Image
	4.6.2. Booting Options
	4.6.3. Creating the Boot Image
	4.6.4. VME Booting
	4.6.5. Net Booting
	4.6.6. Flash Booting
	4.6.7. Verifying Boot Status
	4.6.8. Shutting Down the Client

	Flash Boot System Administration
	5.1. Introduction
	5.2. User Flash Hardware Characteristics
	5.3. Booting a Netbootable Client from Flash
	5.4. Burning a Netboot Client’s User Flash
	5.5. Burning and Booting from Flash for VMEBus Bootable Clients

	Modifying VME Space Allocation
	6.1. Overview
	6.2. Default VME Configuration
	6.3. Reasons to Modify Defaults
	6.4. Limitations
	6.5. Changing The Default VME Configuration
	6.5.1. VME A32 Window
	6.5.2. Closely-Coupled VME A32 Window Considerations

	6.6. Example Configuration

	Debugging Tools
	7.1. System Debugging Tools
	7.2. kdb
	7.3. crash
	7.4. savecore
	7.5. sbcmon

	Backplane P0 Bridge Board Cluster Configuration
	Adding a Local Disk
	Make Client System Run in NFS File Server Mode
	Glossary
	Index

