Power Hawk Series 700
Closely-Coupled Programming Guide

0891087-000
June 2001

Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive Pompano Beach, FL 33069. Mark the envéitteation: Publications Department.”

This publication may not be reproduced for any other reason in any form without written permission of the publisher.

UNIX is a registered trademark of The Open Group.

Ethernet is a trademark of Xerox Corporation.

PowerMAX OS is a registered trademark of Concurrent Computer Corporation.

Power Hawk and PowerStack Il/lll are trademarks of Concurrent Computer Corporation.

Other products mentioned in this document are trademarks, registered trademarks, or trade names of the
manufactures or marketers of the product with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:
Original 000 PowerMAX OS Release 5.1

Preface

Scope of Manual

This manual is intended for programmers that are writing applications which are
distributed across multiple single board computers (SBCs) which either share the same
VMEDbus or which are connected via a Real-time Clock and Interrupt Module (RCIM).
Programming interfaces which allow communication between processes resident on
separate single board computers in such a configuration are discussed. For information on
configuring and administering these configurations, sedPtveer Hawk Series 700
Diskless Systems Administrator’s Guide

Structure of Manual

This manual consists of a title page, this preface, a master table of contents, four chapters,
local tables of contents for the chapters, one appendix, glossary of terms, and an index.

* Chapter 1)ntroduction contains an overview of closely-coupled systems
(CCS) and the programming interfaces that are unique to closely-coupled
single board computer (SBC) configurations.

* Chapter 2Reading and Writing Remote SBC Memerylains how to use
shared memory to read and write remote SBC memory in a cluster
configuration.

* Chapter 3shared Memorgxplains how SBCs within the same cluster can
be configured to share memaory with each other.

¢ Chapter 4|nter-SBC Interrupt Generation and Notificaticaescribes how
program interfaces are available voatl(2) commands to interrupt
SBCs within the same cluster in an CCS system.

* Glossaryexplains the abbreviations, acronyms, and terms used throughout
the manual.

The index contains an alphabetical list of all paragraph formats, character formats, cross
reference formats, table formats, and variables.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms may also appeaitdtic.

Power Hawk Series 700 Closely-Coupled Programming Guide

list bold

list

Referenced Publications

User input appears ilist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appebstibold type.

Operating system and program output such as prompts and mes-
sages and listings of files and programs appedistin type.

Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

Concurrent Computer Corporation Manuals:

0890429
0890430
0891084-reln

0890466
0890479
0891086
0891082

0890425

System Administration Manual (Volume 1)

System Administration Manual (Volume 2)

Power Hawk Series 700 PowerMAX OS Release Notes

(reln = release number)

PowerMAX OS Real-Time Guide

PowerMAX OS Guide to Real-Time Services

Power Hawk Series 700 Diskless System Administrator's Guide
Real-Time Clock & Interrupt Module (RCIM)

User's Guide

Device Driver Programming Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction

OVEeIVIEWo

Reading and Writing Remote SBC Memory

OVeIVIEWo e e
User Interface.

Device Files

Contents

Contents

Using Iseek,read andwrite Calls. i

Using ioctl Commands.
ReservingMemory
Sample Application Code

Shared Memory

OVEIVIEW . . . oo i

Slave MMAP Shared Memory OVEIVIEWot ittt i e e

Accessing Shared SBC Memory . .

Using read(2) and write(2) to Access Shared SBC Memory
Using mmap(2) To Access Shared SBCMemory
Using shmbind(2) To Access Shared SBCMemory
Closely-Coupled Shared Memory Limitations

Slave Shared Memory (SMAP). ..

SMAP User Interface........

SMAP mmap(2) systemcall interface
SMAP shmbind(2) system call interface.
SMAP Limitations and Considerations

SMAP Kernel Configuration . .
SMAP Kernel Tunables. . .

Inter-SBC Synchronization and Coordination

OVEIVIEW . . . oot e e e

Inter-SBC Interrupt Generation and Notification

Calling Syntax

Remote Message Queues and Remote Semaphores
Coupled Frequency-Based Schedulers i
Closely Coupled Timing DeViCesS.o e

RCIM Coupled Timing Devices

2-1
2-1
2-2
2-4
2-7

3-1
3-2

3-2
3-3

3-4
3-4

3-5
3-5

3-6

Power Hawk Series 700 Closely-Coupled Programming Guide

Glossary

Index

Tables

Vi

Table 3-1. SMAP Kernel Tunables .
Table 3-2. SMAP Size Index Values

Overview

1
Introduction

This manual is a guide to the programming interfaces that are unique to closely-coupled
single board computer (SBC) configurations. A closely-coupled configuration is one
where there are multiple Series 700 SBCs in the same VME backplane that are also
connected together with a common PCI-to-PCI (POBus) Bus. The programming inter-
faces described in this book allow inter-process communication between processes that are
resident on separate SBCs in a closely-coupled configuration. Many of these interfaces
are designed to be compatible with the interfaces available for interprocess communica-
tion on a symmetric multi-processor. TRewer Hawk Series 700 Diskless Systems
Administrator's Guidds a companion to this manual and contains information on config-
uring, booting and administering closely-coupled configurations as well as other diskless
configurations.

The types of inter-process, inter-board communication mechanisms supported for transfer-
ring data include:

Shared memory
A shared memory region is located in the physical memory of one
SBC that is located in the VME cluster. Other SBCs access that
physical memory across the POBus, through configured POBus
upstream and downstream windows. Once configured, access to
shared memory is accomplished through eitherstimat(2)
family of system calls or via themap(2) system call in the same
manner as access to shared memory regions which are strictly
local to one SBC.

Posix message queues

These interfaces can be used to pass data across the POBus
between processes that reside on different SBCs in the cluster.
POBus messages are used to pass data to and from a message
queue. Storage space for the messages in the message queue is
user-defined to be resident on one SBC in the VME cluster.

POBus networking sockets

Standard network protocols can be configured to operate across
the POBus. The POBus is then utilized like any other network
fabric. The standardocket(3) interfaces can be used to
establish POBus networking connections between processes that
are running on different SBCs in the same cluster.

1-1

Power Hawk Series 700 Closely-Coupled Programming Guide

DMA to reserved memory on another board

Data cam be DMAed directly onto the memory of another SBC
that is within the same cluster. Physical memory must be reserved
on an SBC in order to use this DMA capability. Data can be
transferred directly to and from this reserved memory via
read(2) /write(2) calls. The data will be DMAed across
either the VMEBus or the POBus, depending upon the device file
that is being used.

The types of inter-process, inter-board communication mechanisms supported for
synchronization and natification include:

Signals

Posix semaphores

It is possible to send a signal to a process on another SBC. The
interface is not the standard signal interface, but rather an
ioctl(2) to /dev/targetn . This system call causes a mail-
box interrupt to be generated on another processor which results
in a signal being delivered to the process that has registered for
notification of the arrival of that interrupt.

These interfaces can be used to synchronize access to shared
memory data structures or to asynchronously notify a process on
another SBC that is in the same cluster. The semaphore is user-
defined to be resident on a particular SBC. Messages are passed
across the POBus to that SBC and local test and set operations
guarantee that only one process can lock the semaphore at any
given point in time.

VME interrupt generation

Using anioctl(2) to /dev/ivmebus/targetn it is possible

to generate a VME interrupt. This interrupt can be caught on
another processor using a user-level interrupt connection to the
VME vector.

Mailbox interrupt generation

An inter-SBC mailbox interrupt may be used to remotely generate
a mailbox interrupt on one SBC from a remote SBC that is located
in the same cluster. The generation of this interrupt is
accomplished by writing across the POBus to a specific memory
location on the SBC that is receiving the mailbox interrupt. Mail-
box interrupts are generated and caught vidoati(2) to
/dev/targetn . Notification of the arrival of a mailbox
interrupt can be either via a user-level interrupt or a signal.

RCIM interrupt generation

1-2

The RCIM is a Concurrent-developed PMC board, which
provides additional connectivity between SBCs. It is possible to
generate an interrupt on another SBC when both boards share an
RCIM connection. The advantage of RCIM connected boards is
that there is no latency in sending an interrupt, because there is no

Introduction

need to gain access to the POBus for passing interrupt notification
messages.

Frequency-based scheduling

A frequency-based scheduler (hereinafter also referred to as FBS)
is a task synchronization mechanism that enables you to run
processes at fixed frequencies in a cyclical pattern. Processes are
awakened and scheduled for execution based on the elapsed time
as measured by a real-time clock, or when an external interrupt
becomes active (used for synchronization with an external
device).

While the standard FBS support may be used to schedule
processes within a single SBC, there are also Coupled FBS exten-
sions to the FBS support which may be used to provide cluster-
wide synchronization of processes by using frequency-based
schedulers that are running off of the same Coupled FBS timing
device. In this case, each SBC in the cluster may have its own
local scheduler attached to the same Coupled FBS timing device
that other schedulers residing on other SBCs within the same
cluster are also using. It should also be mentioned that there are
two types of Coupled FBS timings devices: Closely Coupled and
RCIM Coupled timing devices. While Closely Coupled timing
devices may be used by each SBC in within the same cluster,
RCIM Coupled timing devices may be used by any mix of stand
lone SBCs, netbooted SBCs, and SBCs within a closely-coupled
cluster, as long as certain configuration requirements are met. See
the PowerMAX OS Guide to Real-Time Servicenual for more
information about using these two types of Coupled FBS timing
devices.

Both the standard and the Coupled FBS timing devices allow for
the use of the integral real-time clocks and the RCIM real-time
clocks and edge-triggered interrupts as the timing devices for FBS
schedulers.

Except for RCIM-based operations and fead(2) andwrite(2) operations
explicitly issued orldevivmebus device files, the communication mechanisms previ-
ously mentioned in this chapter all utilize the POBus for communicating between
processes that are running on separate SBCs. Because of the need to arbitrate for the
POBus and because of the indeterminism of gaining this access in the presence of other
POBus block transfers, these operations can be significantly slower than similar inter-pro-
cess operations on a symmetric multiprocessor. For this reason, care must be taken in
deciding processor assignments for the tasks that comprise a distributed application on a
closely-coupled system.

The most efficient means of transferring large amounts of data between SBCs is to use the
DMA capability for transferring data directly into or out of the memory of another SBC.
This technique requires only a single arbitration of the POBus for transferring each block
of DMA data. POBus networking sockets are efficient in terms of their access usage on the
POBus (that is, they use the DMA capability in the same way as described above), but
there is additional overhead in transferring data because of the network protocols used in
this style of communication. For some applications, TCP/IP sockets would be the
communication mechanism of choice because: 1) a TCP/IP socket provides a reliable

1-3

Power Hawk Series 700 Closely-Coupled Programming Guide

connection between the two processes, and 2) sockets across the POBus have exactly the
same user interface as sockets across any other network fabric and are thus a more
portable interface.

1-4

Overview

User Interface

Device Files

2
Reading and Writing Remote SBC Memory

In addition to using shared memory to read and write remote SBC memory in a cluster, the
read(2) andwrite(2) system services calls are available to examine or modify
another SBC’s local DRAM memory. Read and write act on an SBC’s physical memory.
Thereforeread(2) andwrite(2) operations to remote SBC memory should usually

be done to physical memory that is either reserved, or is part of the Slave Mmap memory
area.

While theread(2) andwrite(2) system calls require the caller to enter the kernel in
order to access the remote memory, this method is still more efficient than the shared
memory method for transferring larger amounts of data between SBCs. This is because
read and write use DMA transfers which make more efficient use of the POBus or
VMEDbus than the single word transfers performed when using shared memory CPU
accesses. Unlike the shared memory methodrethe@ andwrite method places no
restrictions on the number of other SBCs that may be accessed from one SBC, and also,
requires less kernel configuration setup.

Note that the read/write interface is oalyailable between SBC's in the same cluster (i.e.,
SBC'’s residing in same VME chassis and therefore, sharing the same VME and PClI-to-
PCI (P0) buses). In this chapter, the term “remote SBC” refers to another SBC and/or its
memory in the same cluster as the SBC (sometimes referred to as the “local SBC”) doing
the read/write operation.

Reading and writing from or to a remote SBC's memory is accomplished by opening the
appropriate SBC device file, followed by issuing the appropriate sequelsee=kf2)
read(2) ,readv(2) ,write(2) ,writev(2) andclose(2) system service calls.

On Series 700 closely-coupled systems, the set of SBC device files that may be used for
reading and writing are:

/dev/host |, /devitarget[n]
/dev/pObus/host , /dev/pObusi/target[n]
/devivmebus/host , /dev/ivmebus/target[n]

2-1

Power Hawk Series 700 Closely-Coupled Programming Guide

On Series 700 closely-coupled systems, the hostaaget[n] device files located in

/dev and/dev/pObus are functionally equivalent; they will both resultraad(2)
andwrite(2) DMA transfers across the POBus. Use of the higher-speed POBus is
generally recommended over the slower VMEBuUs, especially if there are I/0O devices
located on the VME Bus that could cause contention for use of the VMEBus. However,
the/devivmebus device files may also be used for issuiegd(2) andwrite(2)

DMA transfers across the VMEBUuS, if the user so chooses.

The file server/host SBC's device files are Mev/host , /dev/pObus/host and
/dev/ivmebus/host files, where the file server SBC always has a board id of 0. It
should also be mentioned that tlev/targetO , /dev/pObus/target0 and
/devivmebus/targetO files also correspond to the file server/host SBC.

The other SBCs in the cluster have target device file names, where a SBC with a board id
of 2, for example, would correspond to the device fildev/target2 ,
/dev/pObus/target2 , or/dev/ivmebus/target2

NOTE

Applications that execute on both Series 600 and Series 700
closely-coupled systems should usually make use of the
/dev/host and/devi/target[n] device files whenever pos-
sible, instead of thédev/pObus device files, which are not
available on Series 600 systems. On both Series 600 and 700
closely-coupled systems, thedev/host and
/dev/target[n] device files correspond to the default 1/0
bus. On Series 600 systems, the default /O bus is the VMEBuUsS,
and on Series 700 systems, the default I/O bus is the POBus.
Therefore, by using thalev/host and/dev/target[n]

device files, theead(2)/write(2) application will run on
either type of closely-coupled system without the need for any
source code changes to the name of the SBC device file that is
open(2)ed fortheread(2) andwrite(2) operations.

Using Iseek, read and write Calls

2-2

Theread andwrite data transfers are accomplished through use of an on-board DMA
controller for transferring the data to and from a remote SBC's DRAM memory across
either the POBus or the VMEDbus.

More than one process may open a SBC's device file at the same time; the coordination
between use of these device files is entirely up to the user.

It is not possible toead orwrite the physical memory on the local SBC; either
shmbind(2) ormmap(2) of /dev/mem or the user accessible slave shared memory
(SMAP) may be used to access locally reserved physical memory.

Usuallylseek(2) is used first to set the starting physical address location on the remote
SBC. The physical address offsets specifiedtseak(2) calls should be as though the

Reading and Writing Remote SBC Memory

memory was being accessed locally on that SBC, starting with physical address 0. No
checking of the specified offset is made duringldeek(2) call; if the offset speci-

fied is past the end of the remote SBC’s memory, then any error notification will not
occur until the subsequergad(2) orwrite(2) call is issued.

CAUTION

The read/write interface allows writing data to any memory
location on every other SBC in the same cluster. Writing to an
incorrect address can have severe effects on the remote SBC;
crashes and data corruption may occur.

Following thelseek(2) call, theread(2) orwrite(2) = commands may be used

to read or write the data from or to the remote SBC physical memory locations. When
successful, theead(2) orwrite(2) call will return the number of bytes read or
written. When the current offset to read or write is beyond the end of the remote SBC
memory, zero will be returned as the byte count. When the entire number of bytes can-
not be read or written due to reaching the end of remote SBC memory, then as many
bytes as possible will be read or written, and this amount will be returned to the caller
as the byte count.

Although any source and target address alignments and any size byte counts may be
used to read and write the remote memory locations, for best performance, double-
word aligned source and target addresses should be used, along with double-word mul-
tiple byte counts. Following these restrictions allows the 64 bit DMA transfer mode to
be used instead of the slower 32 bit transfer mode.

When the byte count ofr@ad(2) orwrite(2) call is greater than the value of the
tunablePOBUS_DIRECT_BCfor POBus transfers, or is greater than the value of the
tunableDMAC_DIRECT_BC for VMEBus transfer, then the user’s data will be
directly DMAd into or out of the user’s buffer. In this case, the user must have the
P_PLOCK privilege. To further improve performance, the application writer may want

to also lock down the pages where the buffer resides before making the subsequent
read(2) andwrite(2) calls, in order to lower the amount of page locking process-
ing done by the kernel during thead(2) or write(2) calls, although this is not
required.

When the byte count is less than or equa?®@BUS_DIRECT_BC for POBus trans-

fers, orDMAC_DIRECT_BC for VMEBuUSs transfers, the user’s data is copied in or
out of a kernel buffer, where the kernel buffer becomes the source or target of the DMA
operation.

The system administrator may use toafig(1M) utility to examine or modify the
POBUS_DIRECT_BCor DMAC_DIRECT_BC tunables. Note that in order to mod-
ify or examine these tunables for a SBC other than the host SBE, thgtion must be
used to specify the virtual root directory of the client SBC.

2-3

Power Hawk Series 700 Closely-Coupled Programming Guide

Using ioctl Commands

2-4

There are also severaictl(2) commands that may be helpful for supplementing the
application’sread(2) andwrite(2) system service calls. Applications that use
read(2) andwrite(2) can determine their own board id with the
SBCIOC_GET_BOARDID ioctl(2) command:

#include <sys/sbc.h>
int fd, board_id;
ioctl(fd, SBCIOC_GET_BOARDID,& board_id);

where the local SBC’s board id is returned at the locdtimard id, and the value in
board_id will contain a value from 0 to.

Since, presumably, the local board id is not known at the time thab¢H{R) call is
made, thefd’ would normally be the file descriptor of apen(2) call that was made by
opening thédev/host device file, since th&lev/host file will always be present on
all SBCs in a cluster configuration.

Once the local SBC board id is known, it may also be useful to know what other SBCs are
present within the cluster. This information may be obtained with the
SBCIOC_GET_REMOTE_MASK ioctl(2) command:

#include <sys/shc.h>

int fd;

u_int board_mask;

ioctl(fd, SBCIOC_GET_REMOTE_MASK, & board_mask};

Upon return from this call, a bit mask of all the remote SBC board ids that are present in
the cluster will be returned at the locatiomard_mask (SBCO is the least significant bit).
The fd file descriptor may be obtained by opening amev/host or
/devitarget[- n] file, as long as that device file corresponds to a SBC that is actually
present within the cluster.

To transfer data from local memory to (or from) a remote SBC'’s slave shared memory
segment, information about a given SBC’s Slave Mmap shared memory area may be
obtained with th&&BCIOC_GET_SWIN_INFO ioctl(2) command:

#include <sys/shc.h>

int fd;

swinfo_t si;

ioctl(fd, SBCIOC_GET_SWIN_INFO, &si);

Upon return from this call, information on the remote client’s slave shared memory area is
returned in theswinfo_t structure. Theswinfo_t structure contains various
information about the slave window configuration.

Theswinfo_t data structure

typedef struct sbc_swin_info {

ulong_t flags; /* flags defined below */
ulong_t win_size; [* size of the slave window */
paddr_t win_base; * physical I/0 address where window exists */

ulong_t dmap_size; /* size of the DMAP area */

flags

Reading and Writing Remote SBC Memory

paddr_t dmap_addr; /* physical address of DMAP area */
ulong_t mmap_size; /* size of the MMAP area */

paddr_t mmap_addr; /* physical address of MMAP area */
paddr_t dmac_addr; /* Iseek(2) offset for DMA read/write */
paddr_tbind_addr; /* shmbind(2) address for mmap area */
} swinfo_t;

This field describes information about the window. The followin
flags bits are currently defined:
SWIN_DYNAMIC_MEMORMicates that the slave DRAM used
by the local SBC was dynamically allocated during the system ini-
tialization process.

SWIN_RESERVED_ MEMORUYicates that the slave DRAM used

by the local SBC uses system reserved memory as defined by the
res_sects|] array in the MM device driver
(../pack.d/io/mm/space.c) and the SBC device driver’s
SBC_SLAVE_MMAP_STARinable.

SWIN_PO_BUSindicates that this Slave Mmap shared memor
will be remotely accessed fromn across the POBus. This flag wjll
always be set on Power Hawk Series 700 systems.

SWIN_VME_BU#$hdicates that this Slave Mmap shared memor
area will be remotely accessed from across the VME Bus. Thls
flag will never be set on Power Hawk Series 700 systems. (Onjy
the Power Hawk Series 600 closely coupled systems access fhe
Slave Mmap shared memory area from across the VME Bus.)

win_size This field reports the POBus slave window size, in bytes, that is

configured for each SBC in the cluster. This size was defined with
the SBC_SLAVE_MMAP_MAX8Hhable.

win_base This field reports the physical POBus address where the start of

this SBC's slave window resides, out on the POBus.

dmap_size This field reports the size, in bytes, of the kernel portion of the

Slave Window. Closely-coupled system drivers use this area to
report information about each other (such asttiafo t data),
as well as for passing messages between SBCs.

dmap_addr This field reports the local processor relative physical address

used to access the DMAP portion of the slave shared memory
area. This area is reserved for kernel use.

mmap_size* This field reports the actual size of the user accessible slave shared

memory area. If this value is zero, then the remote SBC has not
been configured with a slave shared memory area.

mmap_addr This field reports the local processor relative physical address

used to access the user accessible MMAP portion of the slave
shared memory area.

dmac_addr* The field reports the offset into the remote SBC’'s memory used to

access the slave shared memory area. Usidghac_addr in

2-5

Power Hawk Series 700 Closely-Coupled Programming Guide

2-6

thelseek(2) ‘“offset” argument (assuming the “whence” field is
set toSEEK_SEY points to the first byte of user accessible slave
shared memory (SMAP) area. If this value is zero, then the
read(2) andwrite(2) interface cannot be used to perform a
data transfer.

bind_addr* The field reports the address to be usedhimbind(2) shared
memory accesses. If this value is zero, thlambind(2) cannot
be used to access the slave shared memory area.

NOTE

User level processes which need to access slave shared memory
will normally only need to referencerimap_size ” to see if the

client has defined a shared memory areimdc_addr " if the
application is going to use thead(2) /write(2) interface,

and “bind_addr " if the application is going to use
shmbind(2) to access shared memory.

In addition to theoctl(2) commands that return information about SBC board ids and
slave shared memory information, there is anoibt(2) command that can be used

to send a VME interrupt to another SBC within the cluster. idud(2) could be

used, for example, to notify a remote SBC that new data has been placed into its memory.
The interface to this command is:

#include <sys/sbc.h>

int fd;

u_short irq_vector;

ioctl(fd, SBCIOC_GEN_VME_INTR, irg_vector};

Where ‘fd’ is a file descriptor of al/dev/vmebus/host or
/devivmebus/target[n] SBC device file where the VME interrupt is to be sent.
Note that ddev/ivmebus device file MUST be used for thisctl(2) command. The
irq_vector contains the VME interrupt request leviedj() in the most significant byte
and the VME vector number in the least significant byte.

This command will broadcast a VME interrupt on the VME backplane at the interrupt
request level specified. The SBC that receives this VME interrupt will process the
interrupt using the interrupt vector routine that corresponds to the VME vector number
that was specified imq_vector

The VME interrupt request level irg_vector should be in the range of 1 to 7, and the
VME vector number irirq_vector should be in the range of 0 to 255. This vector
number must be a vector that the receiving SBC is specifically set up to process, either
with a kernel interrupt handling routine, or a user-level interrupt routine (see below).

There are several configuration requirements and restrictions to be followed in order to
properly use thigoctl(2) to send an interrupt to another SBC in the cluster.

The sending SBC (the SBC making ibetl(2) call) must not be enabled to receive
the VME level interrupt specified iirq_vector . The kernel may be disabled for
receiving this VME level by usingonfig(1M) to set the appropriate
VME_IRQ[1-7]_ENABLE tunable to 0. Note that in order to modify or examine the

Reading and Writing Remote SBC Memory

VME_IRQ[1-7]_ENABLE tunable for a SBC other than the host SBC,-theoption
must be used to specify the virtual root directory of the client SBC.

The SBC that is to receive the VME interrupt should have its kernel enabled for receiving
the VME level interrupt. Theonfig(1M) utility should be used to set the appropriate
VME_IRQ[1-7]_ENABLE tunable to 1. Only one SBC kernel in the cluster should be
enabled to receive the VME interrupt. Note that in order to modify or examine the
VME_IRQ[1-7]_ENABLE tunable for a SBC other than the host SBC,-theoption

must be used to specify the virtual root directory of the client SBC.

The SBC that is to receive the VME interrupt should also have either a kernel or user-level
interrupt handler for processing the VME interrupt vector. On the receiving SBC, a spe-
cific interrupt vector should usually be be allocated by usingdbenect(3c)
ICON_IVEC command, with thél_ ALLOCATE andll_VECSPEC ii_flags speci-

fied in theicon_ivec structure. By allocating a specific interrupt vector, the sending
SBC will know which interrupt vector to use in itg_vector parameter.

Refer to theDevice Driver Programmingnanual for details on writing a kernel interrupt
routine and refer to the "User-Level Interrupt Routines" chapter ifPtmeerMAX OS
Real-Time Guiddor details on how to allocate an interrupt vector and on how to set up a
user-level interrupt routine.

Reserving Memory

Note that it is entirely up to the application to properly reserve those portions of physical
memory on each SBC that will be the source or targeeafi(2) orwrite(2)
operations.

The reservation of memory is accomplished by modifyingréise sects[Jarray in the
/etc/conf/pack.d/mm/space.c file for the host SBC, and/or the
<virtual_rootpath>/etc/conf/pack.d/mm/space.c file for a client SBC.

For example, to reserve 16384 bytes of memory, starting at the 24MB physical memory
location, the following entry would be added:

struct res_sect res_sects[] ={
[*r_start, r_len, r_flags */
{0x1800000, 0x4000, 0};
{0, 0, 0}
h

Note that the last entry should always be the NULL (zero) entry, for the purpose of
terminating the list.

Sample Application Code

The sample code shown below illustrates some basic examples of how to use the
read(2) andwrite(2) system services, along with thoetl(2) calls previously
mentioned.

Power Hawk Series 700 Closely-Coupled Programming Guide

2-8

This sample code accomplishes the following:

creates a /O buffer space usimgnap(2),

locks down the buffer space,

determines the local SBC id,

gets the mask of all remote SBC ids,

chooses one remote SBC to read/write to,

fills the write buffer with a data pattern,

Iseek(2) s to set the remote physical memory address start location,
write(2) s the data to the remote SBC memory via the POBus,
Iseek(2) s to reset the remote physical memory address start location,
read(2) s the data back from remote SBC memory via the POBus,
verifies that the data is valid,

sends a VME interrupt to the remote SBC, using the appropriate
/devivmebus SBC device file,

closes file descriptors and exits.

Note that the following assumptions are made in this sample code:

The physical address range fr@m1800000 to 0x1803fff has been
reserved on the remote SBC in ties_sect[larray.

The remote SBC'YME_IRQ3_ENABLE tunable has been set to 1, and
all other SBCs in the cluster, including the local SBC, has set this tunable
to 0.

The remote SBC has either a kernel interrupt routine or user-level interrupt
routine set up to handle interrupt vector 252.

The remote SBC memory has not been modified by another SBC between
the time that thevrite(2) andread(2) calls are made by this local
SBC; otherwise, the data pattern comparison would fail.

Reading and Writing Remote SBC Memory

Begin Sample Application Code --

#include <sys/types.h>
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/sbc.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

/*

* File descriptors.

*

int local_fd; /* The local SBC */

int remote_fd; [* The remote SBC */

/*

* File name bulffer.

*

char filename[MAXPATHLEN];

/*

* Physical address range starts at 24mb for 4 pages.

*/

#define PHYS_START_ADDR 0x1800000

#define BUFFER_SIZE 0x4000

/*

* Starting value for the write buffer.

*/

#define PATTERN_SEED 0x10203040

/*

* The VME level and vector for sending a VME interrupt to the remote SBC.
*

#define INT_VECTOR 252 [* interrupt vector (Oxfc) */

#define VME_LEVEL 3 [*VME level 3 */

/*

* Construct the irq_vector parameter for the SBCIOC_GEN_VME_INTR ioctl(2).
*

u_short irg_vector = ((VME_LEVEL << 8) | INT_VECTOR);

main(argc, argv)

int argc;
char **argv;
{
int i, status, value, fd;
int local_board _id; /*local SBC id */
int *bufferp; /* mmap(2)ed buffer */
int *bp; [* pointer to walk through the buffer */
int remote_board_id; I* remote SBC id to read/write */

u_intremote_board_id_mask;
/* mask of all remote SBCs in the cluster */

Power Hawk Series 700 Closely-Coupled Programming Guide

/*
* mmap(2) a zero-filled buffer into the address space.
*/
fd = open(“/dev/zero”, O_RDWR);
if (fd ==-1) {
printf(*ERROR: open(2) of /dev/zero failed, errno %d\n”,
errno);
exit(1);
}

bufferp = (int *)mmap((void *)NULL, (size_t)BUFFER_SIZE,
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
if (bufferp == (int *)-1) {
printf*fERROR: mmap(2) failed, errno %d\n”, errno);
exit(1);
}
close(fd);

/*

* Lock down I/O buffer to improve performance.

*/

status = memcntl((caddr_t)bufferp, (size_t)BUFFER_SIZE,
MC_LOCK, 0, 0, 0);

if (status == -1) {
printf(*ERROR: memcntl(2) failed, errno = %d\n”, errno);

exit(1);
}
/*
* Open(2) the host device file, since it is known to exist.
*/
fd = open(“/dev/host”, O_RDWR);
if (fd ==-1) {
printf"fERROR: open(2) of /dev/host failed, errno %d\n”,
errno);
exit(1);
}
/*
* Get our local SBC board id.
*/

status = ioctl(fd, SBCIOC_GET_BOARDID, &local_board_id);
if (status == -1) {
printf"fERROR: SBCIOC_GET_BOARDID ioctl(2) failed, errno %d\n”,
errno);
exit(1);
}

/*
* Open our local SBC board id.
*/
if (local_board_id) {
close(fd);
sprintf(filename, “/dev/target%d”, local_board_id);
local_fd = open(filename, O_RDWR);
if (local_fd == -1) {
printf*fERROR: open(2) of %s failed, errno %d\n”,
filename, errno);

2-10

exit(1);
}
}
else {
/*
* Local SBC is host, just use existing fd.
*/
local_fd = fd;
}
/*
* Get the mask of remote SBC board ids.
*/

Reading and Writing Remote SBC Memory

status = ioctl(local_fd, SBCIOC_GET_REMOTE_MASK, &remote_board_id_mask);

if (status == -1) {

printf(“ERROR: SBCIOC_GET_REMOTE_MASK ioctl(2) failed, errno %d\n”,

errno);
exit(1);

}

if ('remote_board_id_mask) {
printf*"ERROR: no remote SBCs found.\n");
exit(1);

}

/*
* Use the first remote SBC id in the returned id mask.
*/
for (i = O; remote_board_id_mask; i++) {
if (remote_board_id_mask & 1)
break;
remote_board_id_mask >>=1;

}

remote_board_id =i;

/*
* Open(2) the remote SBC device file.
*
if (remote_board_id)
sprintf(filename, “/dev/target%d”, remote_board_id);
else
strepy(filename, “/dev/host”);

remote_fd = open(filename, O_RDWR);
if (remote_fd ==-1) {
printf*"ERROR: remote open(2) of %s failure, errno = %d\n”,
filename, errno);

exit(1);
}
/*
* Fill the write buffer with some known pattern.
*/

for (value = PATTERN_SEED, i = 0, bp = bufferp;
i < (BUFFER_SIZE/4); i += 4, value += 1, bp++)
{

}
/*

*bp = value;

2-11

Power Hawk Series 700 Closely-Coupled Programming Guide

2-12

* Seek up to the specified starting location.
*/
status = Iseek(remote_fd, PHYS_START_ADDR, SEEK_SET);
if (status == -1) {
printf"fERROR: Iseek() for write failure, errno = %d\n”,

errno);
exit(1);
}
/*
* Write the data to the remote SBC’s memory.
*/

status = write(remote_fd, bufferp, BUFFER_SIZE);
if (status == -1) {
printf‘fERROR: write(2) failure, errno = %d\n”, errno);
exit(1);
}
if (status == 0) {
printf(*ERROR: write(2) returned EOF.\n");
exit(1);
}
if (status < BUFFER_SIZE) {
printf*fERROR: write returned only %d bytes\n”, status);

exit(1);
}
/*
* Set the file position back to where we started.
*/

status = Iseek(remote_fd, PHYS_START_ADDR, SEEK_SET);

if (status == -1) {
printf(*ERROR: Iseek() for read failure, errno = %d\n”, errno);
exit(1);

}

/*
* Now read the data that we just wrote to see that it matches.
*/
status = read(remote_fd, bufferp, BUFFER_SIZE);
if (status == -1) {
printf"fERROR: read(2) failure, errno = %d\n”, errno);
exit(1);
}
if (status == 0) {
printf*fERROR: read(2) returned EOF.\n");
exit(1);
}
if (status < BUFFER_SIZE) {
printf‘fERROR: read returned only %d bytes\n”, status);
exit(1);
}

/*
* Check the data in the read buffer against the values expected.
*/
for (value = PATTERN_SEED, i = 0, bp = (int *)bufferp;
i < (BUFFER_SIZE/4); i += 4, value += 1, bp++)
{
if (*bp = value) {

Reading and Writing Remote SBC Memory

printf(*ERROR: data mismatch at offset 0x%x.\n", i);
printf(* Expected 0x%x, read 0x%x\n”,

value, *bp);
exit(1);

}

/* Open the local SBC's VMEBus device file for sending
* the VME interrupt to the remote SBC.

*/

close(local_fd);

sprintf(filename, "/dev/ivmebus/target%d", local_board_id);
local_fd = open(filename, O_RDWR);
if (local_fd == -1) {
fprintf(stderr,
"ERROR: open(2) of %s failed, errno %d\n",
filename, errno);
exit(1);
}

/*
* Send an interrupt to the remote SBC to let
* it know that new data is available.
*/
status = ioctl(local_fd, SBCIOC_GEN_VME_INTR, irq_vector);
if (status == -1) {
printf(*ERROR: SBCIOC_GEN_VME_INTR ioctl(2) failed, errno %d\n”,
errno);
exit(1);
}

/*

* All done. Close the files.
*/

close(local_fd);
close(remote_fd);

End Sample Application Code.

2-13

Power Hawk Series 700 Closely-Coupled Programming Guide

2-14

Overview

3
Shared Memory

SBCs in the same cluster can be configured to share memory with each other. Accesses to
shared memory on a different SBC in the cluster is done via CPU read and write accesses
across the POBus. The POBus is a PCI-to-PCI bus, where each SBC contains a POBus
bridge that connects its own local PCI bus to a common POBus bus.

The method that is used for configuring and accessing shared memory in a
closely-coupled system (CCS) is called Slave MMap. The name comes from the fact that
each SBC may optionally place a POBus downstream (Slave) window out on the POBus
that provides other SBCs with remote access to a section of that SBCisRleaal mem-

ory from across the POBus. This downstream POBus window thus provides a “Slave”
“M”emory “Map” ping (Slave MMap) method for accessing a remote SBC's memory.

Slave MMap memory accesses provide the fastest and most efficient method of reading
and writing small amounts of data between two SBCs.

Slave MMAP Shared Memory Overview

The Slave MMAP interface allows simultaneous access to physical meorowy) on

every SBC in a cluster. The local processor defines a shared memory segment which is
then mapped into a POBus downstream window at a well known POBus physical address
location.

Implementation:

- Each SBC driver sets up a downstream POBus window at a “well known”
POBus physical I/O address into which it maps its own local sitaved
memory.

- Each SBC driver sets up an upstream POBus window (which resides on the
local SBC's PCI bus) that maps onto the entire range of the “well known”
Slave MMap memory areas out on the POBus bus. This POBus address area
consists of a range of physically contiguous POBus addresses, where each
remote SBC's Slave MMap memory area may be accessed by using its SBC
board id value as an index into this space.

- SBCs access any other SBC's Slave MMap memory area by reading and
writing to the correct local PCI upstream POBus window on their own SBC.
These accesses move through the local PCI bus upstream POBus window,

3-1

Power Hawk Series 700 Closely-Coupled Programming Guide

out onto the POBus, and down into the remote SBC via the remote SBC's
downstream POBus window.

Advantages:

- Simultaneous access to all other SBCs which define a Slave MMAP
memory region.

- No need to know the physicaRam address of any of the remote
memory regions in order to access them.

- No need to reconfigure existing clients when adding additional SBCs
to an existing configuration.

- Supports bothmmap(2) and shmbind(2) shared memory
interfaces.

- Shared memory may be either dynamically allocated or statically
allocated (by defining ees_sects|] in the MM driver's space.c).

Disadvantages:

- Only one contiguous shared memory region is configurable per SBC.

- The amount of physical memory that can be mapped on any one SBC
is limited to one fourth of the amount of memory defined by the
VME_DRAM_WINDOW tunable.

Accessing Shared SBC Memory

Using read(2) and write(2) to Access Shared SBC Memory

Theread(2) andwrite(2) system service calls are available for examining and
modifying another SBC's Slave MMap memory area. A highly efficient DMA block
transfer mode that utilizes the embedded Symbios 348k Memory command to
move blocks of data across the POBus is used for satisfying tkadé2) and
write(2) requests.

The interface for usingead(2) andwrite(2) to a Slave MMap area was previously
discussed in Chapter 2, “Reading and Writing Remote SBC Memory”, under the “Using
ioctl Commands” section that describes B8BcIOC_GET_SWIN_INFaOioctl(2)
command. There is also an example of usingituig(2) command taead(2)
andwrite(2) to the Slave MMap memory area in the diskless pkg, which is located in
lusr/etc/diskless.d/ccs.program.examples/shared_memory/shm.c

Using mmap(2) To Access Shared SBC Memory

Themmap(2) system service call can be used to access Slave MMap shared memory.
Themmap(2) interface allows processes to directly map both local and remote closely-

3-2

Shared Memory

coupled shared memory into it's own address space for normal load and store opera-
tions.

Using shmbind(2) To Access Shared SBC Memory

Theshmbind(2) system service call can be used to access Slave MMap shared
memory. Theshmbind(2) system service call can always be used to access a remote
SBC's Slave MMap memory area, regardless of whether or not the remote Slave MMap
memory was dynamically or statically allocated. However, in order to successfully use
shmbind(2) to bind to the local SBC's Slave MMap memory area, the memory must
be statically allocated.

Closely-Coupled Shared Memory Limitations

The following are the limitations for using Slave MMap memory:

* Thetest andset type of instructions are not supported on remote
shared memory through either timenap(2) or shmbind(2) mem-
ory. (However, any such mapping to a processor’s local memory may
use the following system calls.) The following features make use of
test andset functionality and therefore, cannot be used in remote

SBC memory:

¢ Test and_Set(3C) - the test and set intrinsic

¢ sem_init(3) - the family of POSIX counting semaphore
primitives

* synch(3synch) - the families of Threads Library synchroniza-
tion primitives including_spin_init, mutex_init,
rmutex_init, rwlock _init, sema_init,
barrier_init andcond_init

¢ spin_init(2) - the family of spin lock macros

* The Slave MMap shared memory POBus downstream window is no
longer present after a reset is issued to an SBC. This downstream
window is initialized by PowerMAX OS, and is thus not available until a
new kernel is downloaded and started up on the board which was reset.

During this time interval, memory accesses from applications (local
processes) accessing rematenap(2) memory (or remote
shmbind(2) accesses to Slave MMAP memory) cannot be resolved.

ThelGNORE_BUS_TIMEOUTSUNable (enabled by default in closely-cou-
pled configurations) should be kept enabled in order to prevent a
machine check panic or a system fault panic from occurring on the sys-
tem that is issuing the remote memory request.

3-3

Power Hawk Series 700 Closely-Coupled Programming Guide

With theIGNORE_BUS_TIMEOUTStunable enabled, the application will not
receive any notification that these reads and/or writes are not completing
successfully. However, writes to the rempteam memory will not actu-

ally take place, and the reads from the renmstam memory will return
values of all ones. For example, word reads will return values of
OxFFFFFFFF. Once the remote SBC’s Slave MMap downstream POBus
window has been re-initialized by PowerMAX OS, the renmram
memory reads and writes will once again operate normally.

If the IGNORE_BUS_TIMEOUTStunable is not enabled, a system panic will
then occur. Therefore, it is recommended that the tunable
IGNORE_BUS_TIMEOUTSbe enabled; otherwise, applications that are known
to be actively accessing the memory on a remote SBC should be stopped
before that remote SBC is reset, or rebootedheoot(1M)

Slave Shared Memory (SMAP)

The Slave MMap shared memory interface (hereafter referredgmam® provides an
interface which supports simultaneous access to physical mebpray) on every SBC
in the cluster.

The smAP interface provides shared access to it's loealv by creating a downstream
POBus window out on the POBus that maps onto the local SB&'s memory. The
downstream POBus window is placed out on the POBus on a pre-configured POBus address
range.

In order to access other remote SBI@AP areas, each SBC additionally creates an
upstream POBus window out on their own local PCI bus. This upstream window provides
access from the local SBC out onto the POBus in the address ranges on the POBus where
the remotesmaP area downstream POBus windows reside.

Thus, SBCs in the cluster access rengMapP memory by attaching to the local PCI
upstream POBus window addresses that map onto the POBus at the appropriate address
ranges, using either tmemap(2) orshmbind(2) system call interfaces.

SMAP User Interface

SMAP mmap(2) system call interface

3-4

Access tosmMAP shared memory is obtained by opening tev/host and/or
/devi/target[n] device files, followed by ammap(2) call, using the file descriptor
that was returned from trepen(2) call.

When accessingMAP shared memory, opening the device file associated with the local
SBC results immap(2) access to locaRraAM. If the device file opened and subsequently
mmap'ed refers to a remote SBC, then access to the remoteDBBG 'will be performed
over the POBus. For example, if SBC1 opklev/targetl , and mmaps memory using
the/dev/targetl file descriptor, the mapped memory directly accesses tooah.

Shared Memory

This DRAM is visible to any other SBC in the cluster when they ddewtargetl
The only difference is that the remote SBC accesses torhig will be made over the
POBus.

If SBC1 now opengdev/host , SBC1 will be able to access memory on SBCO (the
host) over the POBus. Additionally, SBC1 could also ofskv/target2 and gain
access to SBC2's shared memory area.

All three memory area's in this example can be accessed at the same time.

When issuing anmap(2) system call, the “off” parameter that is specified is relative to
the starting physical address that is mapped by the local or remote client.

SMAP shmbind(2) system call interface

Theshmbind(2) system call interface can be used to access all remote SBCs slave
shared memory. However, if it becomes necessasptabind(2) to on-boardRrAM,

you must allocate the slave shared memory usingethesects|] array (memory can-

not be dynamically allocated). Furthermore, wsbmbind(2) ing to this memory, the
DRAM address must be used (as definedds_sects[]) . Do notattempt to
shmbind(2) to local memory through the POBus window address. This may result in a
POBus bus error or POBus hang.

SMAP Limitations and Considerations

* The upstream and downstream POBugP shared memory windows are
setup by the kernel during system initialization. This means that this
memory area should only be accessed while the remote SBC is up.

* The maximum amount adMAP shared memory that can be configured is
equal to one fourth the size of th®E_DRAM_WINDOW tunable, minus
4KB. For example, in a cluster where the SBC with the largest sikzed
is 256MB and the’ME_DRAM_WINDOW is therefore set to 3 (256MB), then
the largessmapP shared memory area that may be allocated on any one
SBC would be:

(256MB / 4) - 4KB = 64MB - 4KB = 67104768 (0x3fff000) bytes

Note

When a Backplane PO (BPPO) Bridge board is installed in the
cluster, then under certain circumstances it may be necessary to
further limit the maximum SMAP shared memory size to one
eighth the size of the VME_DRAM_WINDOW minus 4KB. See
the Power Hawk Series 700 Diskless System Administrator's
Guide section 4.4 “Cluster Configuration" for more details on
this additional size limitation.

3-5

Power Hawk Series 700 Closely-Coupled Programming Guide

SMAP Kernel Configuration

SMAP Kernel Tunables

3-6

The SMAP shared memory interface is implemented using upstream and downstream
windows on the POBus. These upstream and downstream windows are created at system
initialization time, based upon certain kernel tunables (see Table 3-2). Typically, the
SMAP shared memory area tunables are configured and modified by using the
vmebootconfig(1M) andmkvmebstrap(1M) diskless utility commands.

Table 3-1. SMAP Kernel Tunables

Kernel Tunable Module | Default| Min. Max. Unit
VME_DRAM_WINDOW vme 2 1 5 1=64MB
2=128MB
3 =256MB
4 =512MB
5= 1GB
SBC_SLAVE_MMAP_MAXSZ shc 1 1 17 Power of 2 index value.

(See Table 3-2, “SMAP
Size Index Values” for
more information.)

SBC_SLAVE_MMAP_START sbc 0 0 0x3ffff000 | PhysicalbrAM Address

SBC_SLAVE_MMAP_SIZE shc 1 1 17 Power of 2 index value.
(See Table 3-2, “SMAP
Size Index Values” for
more information.)

Table 3-2. SMAP Size Index Values

Value Size | Value Size | Value Size | Value Size | Value Size

1 4KB |5 64KB |9 1MB | 13 16MB | 17 256MB
2 8KB |6 128KB | 10 2MB | 14 32MB
3 16KB | 7 256KB | 11 4MB | 15 64MB
4 32KB | 8 512KB | 12 8MB | 16 128MB

The VME_DRAM_WINDOW andSBC_SLAVE_MMAP_MAXSztunable values are cluster-wide
values (they apply to all SBCs in the cluster) that are defined in the
Jusr/etc/diskless.d/profiles.conf/cluster.profile file.

Shared Memory

The vME_DRAM_WINDOW tunable should be set to a value that reflects the langest
that is located on any SBC in the cluster.

The sBC_SLAVE_MMAP_MAXSZtunable defines the largest possible Slave MMAP area of
any SBC in the cluster. TheBC_SLAVE_MMAP_MAXSzmay be set to a value that is no
larger than one fourth the size of thhee_DRAM_WINDOW size. Note that the first 4KB of

the Slave MMap area is always set aside for kernel use. The remaining area is used as the
user-accessiblsmAr shared memory area. The Slave MMap area size must be a power-
of-2, and the index values as defined in Table 3-2 “SMAP Size Index Values” show the
valid power-of-2 sizes for this tunable.

NOTE

The sBC_SLAVE_MMAP_MAXSztunable is a maximum value; not
all SBCs have to actually dedicateam for sMAP shared memory
use. The actual amount bRAM that is used by each SBC for
Slave MMap memory is defined by the per-SBC
SBC_SLAVE_MMAP_SIzEtunable.

Even though a SBC may not use or accessita® shared mem-
ory areas, all SBCs in the cluster must be configured with the
samevME_DRAM_WINDOW andSLAVE_MMAP_MAXSz values in
order to ensure proper cluster system operation.

The SBC_SLAVE_MMAP_SIZEandSBC_SLAVE_MMAP_STARTtunables are per-SBC tunables
that are defined for each SBC in the cluster in hher/etc/diskless.d

Ipraofile.conf directory, within each client profile file. The file server SBC values for
these tunables are defined in thuesr/etc/diskless.d/profile.conf
[cluster.profile file.

The sBC_SLAVE_MMAP_SIzEtunable defines the actual Slave MMap area size for a given
SBC. This tunable is also a power-of-2 tunable that is defined in an index value as defined
in Table 3-2 “SMAP Size Index Values”. This tunable may be equal to or less than the
SBC_SLAVE_MMAP_MAXSztunable value.

The SBC_SLAVE_MMAP_STARTtunable determines whether the Slave MMap area is
statically or dynamically allocated. WheBC_SLAVE_MMAP_STARTIS set to zero, then the
Slave MMap memory area is dynamically allocated during system initialization. This is
the preferred allocation setting, unless a particular application recphinaisind(2)
support for accessing this Slave MMap area on the local SBC. When
SBC_SLAVE_MMAP_STARTIS hon-zero, then this indicates that theap area is statically
allocated. In this casepc_SLAVE_MMAP_STARTMuUSt be set to a physicakam address
value that is aligned on a boundary that is a multiple of the tunable value
SBC_SLAVE_MMAP_SIZE

WhensBC_SLAVE_MMAP_STARTIS hon-zero, then the SBC driver will attempt to use the
reserved memory area that must be defined in the res_sects]] array of that SBC. The SBC
driver will search the res_sects[] array and try to locate an entry that starts at the
SBC_SLAVE_MMAP_STARTVvalue, with a length equal to tlsec_sLAVE_MMAP_SIzEtunable

value.

Power Hawk Series 700 Closely-Coupled Programming Guide

For example, iSBC_SLAVE_MMAP_STARTIS set to 0x1400000 argBC_SLAVE_MMAP_SIZE
is set to a value of 9 (for a 1MB size), then the following res_sects[] entry would reserve
that range of physic@lrRAM memory:

struct res_sect res_sects[] ={

[*r_start, r_len, r_flags */

{ 0x1400000, 0x100000, 0}, /* Slave MMap area */

{0,0,0} /* This must be the last line, DO NOT change

it. */
h

3-8

Inter-SBC Synchronization and Coordination

Overview

Several mechanisms exist for processes on different SBCs to synchronize and coordinate
their activities. This chapter will discuss five:

* Interrupt generation and notification. This method would primarily be
used by a process to signal another process on a specific SBC.

* Remote message queues. Used to transfer data between processes located
on any SBC within the cluster. The full functionality of POSIX message
gueues is provided.

* Remote semaphores. Used to synchronize the activities of processes
located on any SBC within the cluster. The full functionality of POSIX
semaphores is provided.

* CCS_FBS. Provides cluster-wide synchronization for all FBS schedulers
that are attached to the same Closely Coupled timing device.

* RCIM Coupled FBS. While not specific to closely-coupled systems,
RCIM Coupled FBS timing devices may used by SBCs within a single
cluster for achieving cluster-wide synchronization for all FBS schedulers
that are attached to the same RCIM Coupled timing device. Additionally,
RCIM Coupled timing devices may also be attached to by FBS schedulers
on SBCs where one or more of those SBCs may reside outside of the clus-
ter.

Inter-SBC Interrupt Generation and Notification

Program interfaces are available ioatl(2) commands to interrupt SBCs within the
same cluster in a closely-coupled system (CCS).

Processes with the appropriate privilege (P_USERINT) may interrupt an arbitrary SBC
and/or receive a notification when an interrupt is received. (For information on privileges,
refer to theintro(2) and privilege(5) system manual pages, and the “Adminis-
tering Privilege” Chapter in thBystem Administration (Volumerhpnual).

Associated with each inter-SBC interrupt is a “virtual interrupt” id, which ranges from 0 to
127. The effect is that there are 128 virtual interrupts available to ibee
commands.

4-1

Power Hawk Series 700 Closely-Coupled Programming Guide

Calling Syntax

4-2

Theioctl commands are applied to the SBC device files,/dev/host or
/devitargetn (wheren=0to 7).

Interrupt generation is done by specifying an SBC that will receive the interrupt in
addition to a virtual interrupt id. The SBC that will receive the interrupt must be within the
same cluster as the sending SBC. An interrupt may also be sent to the local SBC.

Interrupt notification is done by specifying the virtual interrupt id as well as the
notification type. Notification will occur whenever the indicated virtual interrupt is
received on the local SBC (regardless of originating SBC).

Interrupt notification may be done by either signal or user-level interrupt. The signal
number or interrupt vector number must be specified. The caller is responsible for estab-
lishing the disposition of the signal handler or user-level interrupt routine.

Interrupt notification may be either permanent or temporary. A permanent notification
remains until explicitly removed. A temporary notification is removed when a virtual
interrupt (indicated id) is received.

Only one notification type is allowed per virtual interrupt.

The calling syntaxes for interrupt generation, signal notification and interrupt notification
are shown below.

Interrupt Generation

#include <sys/sbc.h>
ioctl(fildes, SBCIOC_MBINTR_GEN, parms);
int fildes, command, *parms;
struct parms {
int virtual_interrupt_id,;

g
Generates a virtual interrupt on the SBC specified by fildes. fildes is a file descriptor
obtained by having previously openglgv/host or /dev/targetn. fildes deter-

mines which SBC a generated interrupt will be directed to. The receiving SBC must be
within the same cluster as the sending SBC. The virtual interrupt number is specified by
virtual_interrupt_id

virtual_interrupt_idis a number between 0-127.
Returns:

0 : successful
ENXIO: sbc module not configured.
ENODEV: sbc device not present or not CCS system.
EINVAL: virtual_interrupt_idis out of range (0-127).
EHOSTDOWN: specified sbc is not available.
ENOLINK: communication failure.
EPERM: caller does not have P_USERINT privilege.
EFAULT: illegal address foparms

Inter-SBC Synchronization and Coordination

Signal Notification

#include <sys/sbc.h>
ioctl(fildes, SBCIOC_MBINTR_SIGNAL, parms);
int fildes, command, *parms;
struct parms {
int virtual_interrupt_id,;
int signo;
int op;

Attaches (or detaches) signal notification for the calling process when a virtual interrupt
with the specified id is delivered to local SBC.

fildesis a file descriptor obtained by openifigv/host or /dev/targetn . The spe-
cific SBC associated with this file descriptor is not significant as notification is always
delivered to the calling process.

virtual_interrupt_idis a number between 0-125gnois the signal number to be used for
process notification.

opis one of:

SBCIOC_MBINTR_ATTACH
_or-
SBCIOC_MBINTR_DETACH

plus the following flag may also be Or'd in:

SBCIOC_MBINTR_PERM

The operation SBCIOC_MBINTR_ATTACH attaches signal notification to the specified
virtual_interrupt_ id If the flag SBCIOC_MBINTR_PERM is set, then the attachment is
permanent and is only removed by an explicit SBCIOC_MBINTR_DETACH. If the flag
SBCIOC_MBINTR_PERM is NOT set, then the attachment is temporary and is removed
when a virtual interrupt at this id occurs (or is explicitly detached).

The operation SBCIOC_MBINTR_DETACH removes a signal notification.
Returns:

0 : successful
ENXIO: sbc module not configured.
ENODEV: sbc device not present or not CCS system.
EINVAL: virtual_interrupt_idis out of range (0-127).
EINVAL: illegal signal number.
EPERM: caller does not have P_USERINT privilege.
EBUSY: interrupt notification already present for this virtual interrupt
(SBCIOC_MBINTR_ATTACH)
ESRCH: no interrupt notification for this virtual interrupt
(SBCIOC_MBINTR_DETACH).
EFAULT: illegal address foparms

4-3

Power Hawk Series 700 Closely-Coupled Programming Guide

4-4

Interrupt Notification

#include <sys/sbc.h>
ioctl(fildes, SBCIOC_MBINTR_UI, parms);
int fildes, command, *parms;
struct parms {
int virtual_interrupt_id,;
int vector;
int op;

Attaches (or detaches) user-level interrupt notification when a virtual interrupt with the
specified id is delivered to local SBC.

fildesis a file descriptor obtained by openifiigv/host or /dev/targetn . The spe-
cific SBC associated with this file descriptor is not significant as notification is always
delivered to the SBC on which the calling process is executing.

virtual_interrupt_idis a number between 0-12#ctoris the interrupt vector number of
the user-level interrupt to invoke.

opis one of:

SBCIOC_MBINTR_ATTACH
_or-
SBCIOC_MBINTR_DETACH

plus the following flag may also be Or'd in:

SBCIOC_MBINTR_PERM

The operation SBCIOC_MBINTR_ATTACH attaches user-level interrupt notification to
the specifiedvirtual_interrupt_id If the flag SBCIOC_MBINTR_PERM is set, then the
attachment is permanent and is only removed by an explicit.
SBCIOC_MBINTR_DETACH. If the flag SBCIOC_MBINTR_PERM is NOT set, then

the attachment is temporary and is removed when a virtual interrupt at this id occurs (or is
explicitly detached).

The standard initialization required for user-level interrupts iianect(3C) and
ienable(3C)) , must still be done.

Note that the calling process may not necessarily be the same process that will receive the
user-level interrupt. The user-level interrupt is delivered to the process which is connected
to the interruptector

For more information on user-level interrupts, refer to the “User-Level Interrupt Routines”
Chapter in th&?owerMAX OS Real-Time Guide

The operation SBCIOC_MBINTR_DETACH removes a user-level interrupt notification.
Returns:

0 : successful
ENXIO: sbc module not configured.

Inter-SBC Synchronization and Coordination

ENODEV: shc device not present or not CCS system.

EINVAL: virtual_interrupt_idis out of range (0-127).

EPERM: caller does not have P_USERINT privilege.

EBUSY: interrupt naotification already present for this virtual interrupt
(SBCIOC_MBINTR_ATTACH)

ESRCH: no interrupt natification for this virtual interrupt
(SBCIOC_MBINTR_DETACH).

EFAULT: illegal address foparms

Example Send/Receive Inter-SBC interrupts Programs

The following are two simple programs that demonstrate how to send and receive
inter SBC interrupts.

The first program sends the interrupt:

#include <stdio.h>
#include <sys/types.h>
#include <sys/iconnect.h>
#include <sys/mman.h>
#include <sys/sbc.h>
#include <sys/stat.h>
#include <fcntl.h>

/*

** send virtual interrupt to an SBC

*/

main()

{
int ret; /* return values */
charfnrame[100 J;/*de vice file name */
int fileds; /* device file descriptor */
int vid; /* virtual interrupt number */
int shcid; /* SBC number */

printf (“sbc id:");/* ask operator for SBC number */

scanf (“%d”, &sbcid);/* read in SBC number */

sprintf (fname, “/dev/target%1d”, sbcid); /* build device file name ... */
/* format: /dev/targetn, n = SBC id */

printf (“vid: “);/* ask operator for virtual interrupt ... */
/* number. vids are between 0..127 */
scanf (“%d”, &vid);/* read in virtual interrupt number */

fileds = open (fname, O_RDWR);/* open device file of SBC to direct ... */
/* virtual interrupt to */

if (fileds == -1) {
perror (“open”);/* open failed */
exit (1);

}

4-5

Power Hawk Series 700 Closely-Coupled Programming Guide

ret = ioctl (fileds, SBCIOC_MBINTR_GEN, &vid); /* send virtual interrupt

*
if (ret=="-1) {
perror (“ioctl”);/* ioctl failed */
exit (1);
}
}

The second program receives the interrupt:

#include <stdio.h>
#include <sys/types.h>
#include <sys/iconnect.h>
#include <sys/mman.h>
#include <sys/sbc.h>
#include <sys/stat.h>
#include <signal.h>
#include <fcntl.h>

/*

** attach signal notification to virtual interrupt

*/

main()

{
int ret; /* return values */
charfnrame[100];/*de vice file name */
int fileds; /* device file descriptor */
int vid; /* virtual interrupt number */

int parms[3];/* parameter list */
externvoid sig_handler();

sprintf (fname, “/dev/host”);/* build device file name ... */
/* can use any SBC device file: */
/* I[dev/host or /dev/targetn */

printf (“vid: “);/* ask operator for virtual interrupt ... */
/* number. vids are between 0..127 */
scanf (“%d”, &vid);/* read in virtual interrupt number */

fileds = open (fname, O_RDWR);/* open device file */

if (fileds == -1) {
perror (“open”);/* open failed */
exit (1);

}

signal (SIGUSR1, sig_handler);/* establish signal handler */

parms[0] = vid;/* parms[0] = virtual interrupt number */

parms[1] = SIGUSR1;/* parms[1] = signal number to receive */

parms[2] = SBCIOC_MBINTR_ATTACH; /* parms[2] = cmd, attach signal ... */
/* notification to virtual interrupt */

4-6

Inter-SBC Synchronization and Coordination

parms[2] |= SBCIOC_MBINTR_PERM:;/* parms[2] or-in additional flag ... */
/* make attachment permanent, ... */
/* otherwise it is removed when ... */
/* notification arrives */

ret = ioctl (fileds, SBCIOC_MBINTR_SIGNAL, &parms); /* attach notification

*/
if (ret=="-1) {
perror (“ioctl”);/* ioctl failed */
exit (1);
}
pause (); [* wait for a signal */
parms[0] = vid;/* parms[0] = virtual interrupt number */
parms[1] = SIGUSR1;/* parms[1] = signal number to receive */
parms[2] = SBCIOC_MBINTR_DETACH; /* parms[2] = cmd, detach signal ... */
/* notification to virtual interrupt */
ret = ioctl (fileds, SBCIOC_MBINTR_SIGNAL, &parms); /* detach notification
*
if (ret ==-1) {
perror (“ioctl”);/* ioctl failed */
exit (1);
}
}
void
sig_handler ()
{
printf (“got a signal\n”);
}

Remote Message Queues and Remote Semaphores

A remote message queue or semaphore is one that is located on a remote SBC and is
accessed using an RPC-like protocol. The full functionality of message queues and sema-
phores is available when accessed remotely.

Remote message queues and semaphores are named by pre-pending the host name to the
name of the message queue or semaphore. The host name can be any SBC within the
cluster.

Remote message queues and semaphores are implemented by having a unique connection

with a file server process located on the SBC where the message queue is at. Requests are
sent to the file server process which executes the operation and replies with the result.

4-7

Power Hawk Series 700 Closely-Coupled Programming Guide

More information on message queues can be found in the chapter “Real-Time Interprocess
Communication” in thdPowerMAX OS Real-Time Guid&emaphores are described in
the chapter “Interprocess Synchronization” in HogverMAX OS Real-Time Guide

The daemorsbc_msgd(3) is responsible for performing remote file server operations.
While this daemon will automatically start on the file server SBC without any system
configuration changes, this daemon must be configured to be automatically started on each
client SBC within a closely-coupled cluster by enablingabs IPcsubsystem. Refer to
thesbc_msgd(3) man page for more information aibc_msgd, and see the
vmebootconfig(1M) man page for more information on enabling tdws_ipPC
subsystem.

Coupled Frequency-Based Schedulers

The Coupled Frequency Based Scheduler (FBS) support provides two types of timing
devices: Closely Coupled and RCIM Coupled timing devices. Both of these timing
devices may be used to provide cluster-wide synchronization for all FBS schedulers that
are attached to the same Coupled FBS timing device. In addition, RCIM Coupled timing
devices may be used to coupled together FBS schedulers on SBCS that may reside both
within and outside a given closely-coupled cluster.

A Coupled FBS timing device may be attached to a scheduler by making use of the same
library function calls ortcp(1) commands that are used to attach other types of timing
devices. However, a Coupled FBS timing device must first be "registered" as a Coupled
FBS timing device on the host/SBC where the device interrupt originates, before it may be
attached to FBS schedulers on the local and/or remote hosts/SBCs. Note that only one
FBS scheduler on each host/SBC may be attached to the same Coupled FBS timing
device.

More information about the Coupled FBS support can be found iRdiverMAX OS
Guide to Real-Time Servicagnual.

In order to make configuration of client SBCs easier, the CCS_FBS subsystem support
may be used to properly configure SBC clients so that they may make use of Closely Cou-
pled timing devices. Additionally, the RCFBS subsystem support may be used to properly
configure SBC clients with support for RCIM Coupled timing devices.

For more information on this topic, see the "Subsystem Support" section in the "VME
Boot System Administration" chapter of tRewer Hawk Series 700 Diskless Systems
Administrator's Guide.

Closely Coupled Timing Devices

4-8

A requirement and restriction for Closely Coupled timing devices is that all SBCs must be
located within the same cluster of a closely-coupled system. This is due to the fact that
SBC messaging is relied upon for the inter-host/SBC message passing mechanism.

For some Closely Coupled timing devices such as the integral real-time clocks, the SBC
message mechanism is also used to propagate the timing device interrupts to all attached

Inter-SBC Synchronization and Coordination

schedulers on the various SBCs within the cluster. However, the Real-Time Clocks and
Interrupts Module (RCIM) devices may also be used as Closely Coupled timing devices;
and in this case, the device interrupts may be optionally distributed by hardware through
the RCIM cable directly to each receiving SBC, for faster and more deterministic inter-

rupt response times than the POBus SBC messaging mechanism can provide.

RCIM Coupled Timing Devices

When a RCIM Coupled timing device is used to coupled together FBS schedulers residing
on different SBCs, then any set of standalone SBCs, SBCs within a closely-coupled clus-
ter, and/or netbooted SBCs may be used, as long as the RCIM Coupled configuration
requirements are met.

The requirements for making use of a RCIM Coupled timing device are:

- the device must be a real-time clock or edge-triggered RCIM device that is
configured to distribute its interrupts through the RCIM cable,

- all hosts/SBCs making use of the RCIM Coupled timing device must be
connected to the same RCIM cable,

- all remote hosts must be configured to receive this specific RCIM interrupt
through the RCIM cable, and

- all hosts that make use of this RCIM Coupled timing device must be able to
communicate between each other using TCP/IP sockets as the method of
inter-host communication.

In all cases, the distributed device interrupt that is sent through the RCIM cable is used to
directly interrupt each host/SBC that has a FBS scheduler attached to the RCIM Coupled
timing device.

Note that due to the above networking requirement, embedded clients in a closely-coupled

cluster may not make use of RCIM Coupled timing devices; however, embedded clients
may make use of Closely Coupled timing devices.

4-9

Power Hawk Series 700 Closely-Coupled Programming Guide

4-10

Glossary

Abbreviations, Acronyms, and Terms to Know

10base-T
See twisted-pair Ethernet (10base-T).
100base-T
See twisted-pair Ethernet (100base-T).
ARP
Address Resolution Protocol as defined in RFC 826. ARP software maintains a table of
translation between IP addresses and Ethernet addresses.
AUl
Attachment Unit Interface (available as special oaidy)
asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an
asynchronous event. A signal can occur when something in the system fails, but it is not
known when the failure will occur.

asynchronous 1/O operation

An /O operation that does not of itself cause the caller to be blocked from further use of
the CPU. This implies that the caller and the I/O operation may be running concurrently.

asynchronous 1/0O completion

An asynchronous read or write operation is completed when a corresponding synchronous
read or write would have completed and any associated status fields have been updated.

Backplane PO Bridge Board (BPPO)
A PO*PCI bridge board, which may be used to connect two POBus Overlay boards

together in order to create a larger common POBus in a closely-coupled system
configuration. See definitions f®¥0Bus OverlayandP0*PCI (POBus)

Glossary-1

Power Hawk Series 700 Closely-Coupled Programming Guide

block data transfer

block device

block driver

block I/O

block

boot

boot device

boot image file

bootstrap

buffer

Glossary-2

The method of transferring data in units (blocks) between a block device such as a
magnetic tape drive or disk drive and a user program.

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code. Compararacter device

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for exampldyuhestructure). One driver
is written for each major number employed by block devices.

A data transfer method used by drivers for block access devices. Block 1/0 uses the system
buffer cache as an intermediate data storage area between user memory and the device.

The basic unit of data for 1/0 access. A block is measured in bytes. The size of a block
differs between computers, file system sizes, or devices.

The process of starting the operating system. The boot process consists of self-
configuration and system initialization.

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

A file that can be downloaded to and executed on a client SBC. Usually contains an
operating system and root filesystem contents, plus all bootstrap code necessary to start it.

The process of bringing up the operating system by its own action. The first few
instructions load the rest of the operating system into the computer.

A staging area for input-output (1/0) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a
memory array that contains data from the disk and a buffer header that identifies the
buffer.

cache

character device

character driver

character I/O

client

controller

Glossary

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

A device, such as a terminal or printer, that conveys data character by character.

The driver that conveys data character by character between the device and the user
program. Character drivers are usually written for use with terminals, printers, and
network devices, although block devices, such as tapes and disks, also support character
access.

The process of reading and writing to/from a terminal.

A SBC board, usually without a disk, running a stripped down version of PowerMAX OS
and dedicated to running a single set of applications. Called a client since if the client
maintains a POBus or Ethernet connection to its File Server, it may use that File Server as
a kind of remote disk device, utilizing it to fetch applications, data, and to swap unused
pages to.

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the
device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

cyclic redundandancy check (CRC)

datagram

data structure

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.

Transmission unit at the IP level.

The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

Glossary-3

Power Hawk Series 700 Closely-Coupled Programming Guide

data terminal ready (DTR)

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

data transfer

The phase in connection and connection-less modes that supports the transfer of data
between two DLS users.

device number

The value used by the operating system to name a device. The device number contains the
major number and the minor number.

diagnostic
A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

DLM
Dynamically Loadable Modules.

DRAM

Dynamic Random Access Memory.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver

The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.

embedded
The host system provides a boot image for the client system. The boot image contains a

UNIX kernel and a file system image which is configured with one or more embedded
applications. The embedded applications execute at the end of the boot sequence.

error correction code (ECC)

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

FDDI

Fiber Distributed Data Interface.

Glossary-4

flash autobooting

flash booting

flash burning

flash memory

FTP (ftp)

File Server

function

host

host board

host name

Glossary

The process of booting a target from an image in its Flash memory rather than from an
image downloaded from a host. Flash booting makes it possible to design targets that can
be separated from their hosts when moved from a development to a production
environment.

See definition foflash autobooting

The process of writing a boot or other image into a Flash memory device. On SBC boards,
this is usually accomplished wiMonfp uf command.

A memory device capable of being occasionally rewritten in its entirety, usually by a
special programming sequence. Like ROM, Flash memories do not lose their contents
upon power down.

The File Transfer Protocol is used for interactive file transfer.

The File Server has special significance in that it is the only system with a physically
attached disk(s) that contain file systems and directories essential to running the Power-
MAX OS. The File Server boots from a locally attached SCSI disk and provides disk stor-
age space for configuration and system files for all clients. All clients depend on the File
Server since all the boot images and the system files are stored on the File Server’s disk.

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls and
library routines in a user-level program.

A SBC running a full fledged PowerMAX OS system containing disks, networking, and
the netboot development environment. Called a File Server since it serves clients with
boot images, filesystems, or whatever else they need when they are running.

The single board computer of the File Server.

A name that is assigned to any device that has an IP address.

Glossary-5

Power Hawk Series 700 Closely-Coupled Programming Guide

host system

A term used for the File Server. It refers to the prerequisite Power Hawk system.

interprocess communication (IPC)

interrupt level

interrupt vector

ICMP

ISO

kernel buffer cache

kdb

loadable module

MTU

Glossary-6

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of the
device, and passes control to the appropriate interrupt routine.

Interrupts from a device are sent to the device's interrupt vector, activating the interrupt
entry point for the device.

Internet Control Message Protocol, an integral part of IP as defined in RFC 792. This pro-
tocol is part of the Internet Layer and uses the IP datagram delivery facility to send its
messages.

The Internet Protocol, RFC 791, is the heart of the TCP/IP. IP provides the basic packet
delivery service on which TCP/IP networks are built.

International Organization for Standardization

A set of buffers used to minimize the number of times a block-type device must be
accessed.

Kernel debugger.

A kernel module (such as a device driver) that can be added to a running system without
rebooting the system or rebuilding the kernel.

Maximum Transmission Units - the largest packet that a network can transfer.

Glossary

memory file system image

memory management

modem

netboot

netload

network boot

network load

netstat

NFS

A cpio archive containing the files which will exist in the root file system of a client sys-
tem. This file system is memory resident. It is implemented via the exsgngdile sys-

tem kernel module. The kernel unpacks the cpio archive at boot time and populates the
root memory file system with the files supplied in the archive.

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.

The process of a client SBC downloading into its own memory and then executing a boot
image file that is retrieved from a File Server SBC by using the TFTP network protocol.
On client SBC boards, networking is configured with$hMon smonconfig command,

and aSMonstartup script may be created and configured to automatically execute after a
reset, in order to download and execute a boot image via TFTP wiiivibretftpboot
command.

The process of a target loading a boot image as discussed under netboot, but without
subsequently executing it. On SBC boards, netloading is invoked witBrienload
command.

See definition fonetboot .

See definition fonetload .

Thenetstat command displays the contents of various network-related data structures
in various formats, depending on the options selected.

Network File System. This protocol allows files to be shared by various hosts on the net-
work.

Glossary?

Power Hawk Series 700 Closely-Coupled Programming Guide

NFS client

NIS

NVRAM

PO*PCI (POBuUS)

In a NFS client configuration, the host system provides UNIX file systems for the client
system. A client system operates as a diskless NFS client of a host system.

Network Information Service (formerly called yellow pages or yp). NIS is an administra-
tive system. It provides central control and automatic dissemination of important adminis-
trative files.

Non-Volatile RandomAccessMemory. This type of memory retains its state even after
power is removed.

The PCI-to-PCI (P0) hardware bus interface that provides improved SBC board-to-board

performance. The POBus is 64 bits wide and operates at 33 MHz, for a theoretical

maximum of 264 MB/sec. This is more than three times the theoretical maximum of the

standard VMEG64 bus of 80 MB/sec. The Power Hawk Series 700 POBus interface is based
on the Intel 21554 64-bit PCI-to-PCI bridge chip.

The POBus hardware is required for Power Hawk Series 720/740 Closely Coupled
configurations, where the POBus is used for Closely Coupled inter-SBC communications.

PO*PCI (POBus) Overlay

panic

PDU

PowerPC G4

PPP

Glossary-8

A PO*PCI connector board, which is used to connect multiple SBCs in the same cardcage
(cluster) to a common POBus.

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a mes-
sage is displayed on the console to indicate the cause of the problem.

Protocol Data Unit

The PowerPC G4 (7400) microprocessor. Part of the PowerPC family of microprocessors;
an architecture based on Motorola/IBM's 32-bit RISC design CPU core.

Point-to-Point protocol is a method for transmitting datagrams over point-to-point serial
links

prefix

protocol

RFS

random I/O

raw 1/O

raw mode

rcp

read queue

rlogin

routines

rsh

Glossary

A character name that uniquely identifies a driver's routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be givenartit prefix.

If it is a block driver, the routines aramdopen, ramdclose , ramdsize ,
ramdstrategy , andramdprint.

Rules as they pertain to data communications.

Remote File Sharing.

I/O operations to the same file that specify absolute file offsets.

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

Remote copy allows files to be copied from or to remote systems. rcp is often compared to
ftp.

The half of a STREAMS module or driver that passes messages upstream.

Remote login provides interactive access to remote hosts. Its function is similar to telnet.

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines. The entry-point routines are accessed through system tables.

Remote shell passes a command to a remote host for execution.

Glossary-9

Power Hawk Series 700 Closely-Coupled Programming Guide

SBC

Single Board Computer

SCSI driver interface (SDI)

sequential 110

SLIP

server

SMon

SMon startup script

SMTP

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

I/O operations to the same file descriptor that specify that the 1/0 should begin at the “cur-
rent” file offset.

Serial Line IP. The SLIP protocol defines a simple mechanism for “framing” datagrams
for transmission across serial line.

See definition foFile Serverandhost

A board-resident ROM monitor utility that provides a basic I/O system (BIOS), a boot
ROM, and system diagnostics for Power Hawk Series 700 single board computers (SBCSs).

As part of the boot procesSMoncan automatically perforf@Moncommands and/or user
defined functions written in a startup script that is stored in NVRAM (nonvolatile RAM).
Special startup scripts are used for booting client SBCs in closely-coupled configurations,
and also for netbooting client SBCs in loosely-coupled configurations.

The Simple Mail Transfer Protocol, delivers electronic mail.

small computer system interface (SCSI)

SNMP

The American National Standards Institute (ANSI) approved interface for supporting spe-
cific peripheral devices.

Simple Network Management Protocol

Source Code Control System (SCCS)

Glossary-10

A utility for tracking, maintaining, and controlling access to source code files.

special device file

SYM (sym)

Glossary

The file that identifies the device's access type (block or character), the external major and
minor numbers of the device, the device name used by user-level programs, and security
control (owner, group, and access permissions) for the device.

Internal Symbios Logic SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller.

synchronous data link interface (SDLI)

system

system disk

system initialization

System Run Level

swap space

target

TELNET

A UN-type circuit board that works subordinately to the input/output accelerator (I0A).
The SDLI provides up to eight ports for full-duplex synchronous data communication.

A single board computer running its own copy of the operating system, including all
resources directly controlled by the operating system (for example, 1/0 boards, SCSI
devices).

The PowerMAX OS requires a number of “system” directories to be available in order for
the operation system to function properly. In a closely-coupled cluster, these directories
include:/etc ,/sbin ,/dev ,/usr andivar .

The routines from the driver code and the information from the configuration files that
initialize the system (including device drivers).

A netboot system is not fully functional until the files residing on the File Server are
accessibleinit(IM) ‘init state 3 is the initdefault and the only run level supported for
netboot systems. limit state 3, remote file sharing processes and daemons are started.
Setting initdefault to any other state or changing the run level after the system is up and
running, is not supported.

Swap reservation space, referred to as ‘virtual swap’ space, is made up of the number of
real memory pages that may be used for user space translations, plus the amount of
secondary storage (disk) swap space available.

See definition foclient.

The Network Terminal Protocol, provides remote login over the network.

Glossary-11

Power Hawk Series 700 Closely-Coupled Programming Guide

TCP

Transmission Control Protocol, provides reliable data delivery service with end-to-end
error detection and correction.

Trivial File Transfer
Protocol(TFTP)

Internet standard protocol for file transfer with minimal capability and minimal overhead.
TFTP depends on the connection-less datagram delivery service (UDP).

twisted-pair Ethernet (10base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 10 Mbps for a maximum distance of 185
meters.

twisted-pair Ethernet (100base-T)

An Ethernet implementation in which the physical medium is an unshielded pair of
entwined wires capable of carrying data at 100 Mbps for a maximum distance of 185
meters.

UbDP

User Datagram Protocol, provides low-overhead, connection-less datagram delivery ser-
vice.

unbuffered I/O

I/O that bypasses the file system cache for the purpose of increasing I/O performance for
some applications.

upstream

The direction of STREAMS messages flowing through a read queue from the driver to the
user process.

user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user programs and the kernel. Drivers execute in the kernel, and the user pro-
grams that interact with drivers execute in the user program area. This space is also
referred to as user data area.

yellow pages

See definition foNIS (Network Information Services).

Glossary-12

Index

Numerics D
100base-T Glossary-1 device switch table Glossary-4
10base-T Glossary-1 DMA to reserved memory 1-2

Driver routines Glossary-4

A

Access Shared SBC Memory 3-2
ARP Glossary-1 ENV
Set Environment Command Glossary-4

B
F
Block
device Glossary-2 File Server Glossary-5
driver Glossary-2 flash autobooting Glossary-5
Boot flash booting Glossary-5
device Glossary-2 flash burning Glossary-5
Bootable object file Glossary-2 flash memory Glossary-5
Frequency-based scheduling 1-3
Functions Glossary-5
C
G
Cache Glossary-2
calling syntax 4-2
Calls GEV Glossary-5
Iseek 2-2
read 2-2
write 2-2 H
Character
driver Glossary-3
I/O schemes Glossary-3 host Glossary-5
client Glossary-3
Closely Coupled Timing Devices 4-8
Coupled Frequency-Based Schedulers 4-8 |
Critical code Glossary-3
Integrated

Disk File Controller (IDFC) Glossary-6
interrupt generation 4-2
Interrupt level Glossary-6
interrupt notification 4-2

Index-1

Power Hawk Series 700 Closely-Coupled Programming Guide

Interrupt priority level (IPL) Glossary-6
inter-SBC interrupt 4-1

intro(2) 4-1
ioctl(2) iii, 4-1
K

Kernel buffer cache Glossary-6

Iseek calls 2-2

M

Mailbox interrupt generation 1-2

netboot Glossary-7

netload Glossary-7

network boot Glossary-7

Network Information Services Glossary-12
network load Glossary-7

P_USERINT 4-1

POBus 1-1

PCI-to-PCI 1-1

Point-to-Point protocol Glossary-8
Portable device interface (PDI) Glossary-8
Posix message queues 1-1

Posix semaphores 1-2

Power Hawk Release Notes iv

PPP Glossary-8

privilege(5) 4-1

R

random I/O Glossary-9

Raw I/0O Glossary-9

RCIM Coupled Timing Devices 4-9
RCIM interrupt generation 1-2

Index-2

rcp Glossary-9
read calls 2-2
read queue Glossary-9
Reading

Remote SBC Memory 2-1
Remote

File Sharing Glossary-9
Reserving

Memory 2-7
RFS Glossary-9
rlogin Glossary-9
rsh Glossary-9

SBC

Memory Shared 3-2
SCsl

driver interface (SDI) Glossary-10
sequential /O Glossary-10
server Glossary-10
Shared

SBC Memory 3-2
Shared memory 1-1
Signal Notification 4-3
Signals 1-2
SLIP Glossary-10

Small Computer System Interface (SCSI) Glossary-10

SMTP Glossary-10
SNMP Glossary-10
Source Code Control System (SCCS) Glossary-10
swap space Glossary-11
Synchronization and Coordination
Inter-SBC 4-1
System initialization Glossary-11
System Run Level Glossary-11

target Glossary-11

target system Glossary-11

TCP Glossary-12

TELNET Glossary-11

TFTP Glossary-11 to Glossary-12

Trivial File Transfer Protocol Glossary-12

UDP Glossary-12
Upstream Glossary-12

\Y,

virtual interrupt id 4-2
virtual_rootpath 2-7

VME interrupt generation 1-2
VMEnet sockets 1-1

w

write calls 2-2
Writing
Remote SBC Memory 2-1

Y

yellow pages Glossary-12

Index

Index-3

Power Hawk Series 700 Closely-Coupled Programming Guide

Index-4

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

.-
o
=
@
<
>
X
O
n

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between

each title
Power Hawk
Series 700
Closely-
. . Coupleq
Bar: 1" x 1/8" beginning Programming

1/4" in from either side Guide

Part Number: Helvetica,
6 pt, centered, 1/8" up

089108X

	Power Hawk Series 700 Closely-Coupled Programming Guide
	Preface
	Contents
	Introduction
	Overview

	Reading and Writing Remote SBC Memory
	Overview
	User Interface
	Device Files
	Using lseek, read and write Calls
	Using ioctl Commands

	Reserving Memory
	Sample Application Code

	Shared Memory
	Overview
	Slave MMAP Shared Memory Overview
	Accessing Shared SBC Memory
	Using read(2) and write(2) to Access Shared SBC Memory
	Using mmap(2) To Access Shared SBC Memory
	Using shmbind(2) To Access Shared SBC Memory

	Closely-Coupled Shared Memory Limitations
	Slave Shared Memory (SMAP)
	SMAP User Interface
	SMAP mmap(2) system call interface
	SMAP shmbind(2) system call interface

	SMAP Limitations and Considerations
	SMAP Kernel Configuration
	SMAP Kernel Tunables

	Inter-SBC Synchronization and Coordination
	Overview
	Inter-SBC Interrupt Generation and Notification
	Calling Syntax

	Remote Message Queues and Remote Semaphores
	Coupled Frequency-Based Schedulers
	Closely Coupled Timing Devices
	RCIM Coupled Timing Devices

	Glossary
	Index

