
PowerWorks Linux Development Environment Tutorial

0898100-030
December 2004

Copyright 2004 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerWorks, PowerMAX OS, Power Hawk, NightBench, NightProbe, NightSim, NightTrace, NightView, and MAXAda are trademarks of Con-
current Computer Corporation.

Motorola is a registered trademark of Motorola, Inc.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

Printed in U. S. A.

Preface

General Information

The PowerWorksTM Linux Development Environment (PLDE) allows users on a Linux®

PC to develop applications for Concurrent real-time computer systems. The PLDE pro-
vides cross compilation, cross linking, and cross debugging and analysis tools. Editing,
compilation, linking, and scheduling, as well as debug and analysis sessions, are hosted on
the Linux system while the application programs execute on a system running Concur-
rent's PowerMAX OSTM real-time UNIX®-based operating system.

The PowerWorks Linux Development Environment consists of high-performance Ada95
and C/C++ compilers, the NightViewTM symbolic debugger, NightTraceTM event analyzer,
NightSimTM frequency-based scheduler, the NightProbeTM data monitoring tool, the
NightBenchTM GUI program development environment, and the shmdefine shared mem-
ory configuration tool.

Utilizing the PLDE utilities on a Linux system while targeting the PowerMAX OS system
offloads the heavy processing associated with compilation, linking, symbolic debug trans-
lation, and GUI network traffic from the real-time target systems.

Scope of Manual

This manual is a tutorial for the PowerWorks Linux Development Environment.

Structure of Manual

This manual consists of one chapter which is the tutorial for the PowerWorks Linux
Development Environment.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.
3

PowerWorks Linux Development Environment Tutorial
emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window
type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ } Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView User’s Guide
0890398 NightTrace Manual
0890465 NightProbe User’s Guide
0890458 NightSim User’s Guide
0890514 NightBench User’s Guide
0890516 MAXAda Reference Manual
4

Contents
Contents

Chapter 1 Using the PLDE

Overview . 1-1
Before you begin . 1-1

Remote shell access. 1-2
Privileges. 1-3
Additions to PATH . 1-4

Getting Started . 1-5
Creating a working directory . 1-5
Exporting the filesystem. 1-6
Mounting the filesystem. 1-6
Copying tutorial-related files from the installation CD 1-7

Using NightBench . 1-9
Creating a new environment. 1-9
Introducing existing source files into the environment 1-12
Setting compile options . 1-15
Adding an environment to the Environment Search Path 1-16
Defining a partition. 1-17
Building a partition. 1-17
Showing a reference . 1-19
Correcting an error . 1-20
Rebuilding a partition . 1-21
Before you continue . 1-22

Using NightSim . 1-24
Invoking NightSim . 1-24
Configuring the Scheduler . 1-24
Scheduling a process . 1-26
Setting up the scheduler . 1-28

Using NightView . 1-29
Setting a monitorpoint . 1-31
Resuming execution . 1-33
Starting the simulation . 1-34
Monitoring the simulation . 1-35

Using NightProbe . 1-37
Invoking NightProbe . 1-37
Configuring NightProbe . 1-38
Selecting the target system . 1-41
Connecting to the target program . 1-42
Starting sampling . 1-42
Modifying program data. 1-43

Using NightTrace. 1-46
Invoking NightTrace. 1-46

Invoking NightTrace from the command line. 1-46
Loading data and configuration files . 1-47

Invoking NightTrace from NightProbe . 1-51
Configuring a user daemon . 1-52
5

PowerWorks Linux Development Environment Tutorial
Creating a customized display page . 1-54
Creating the user application daemon. 1-55
Resuming execution of the user application daemon . 1-56
Displaying the user trace data . 1-56
Inserting a patchpoint . 1-57
Viewing streaming trace output . 1-59
Configuring a kernel daemon . 1-60
Creating the kernel daemon . 1-61
Resuming execution of the kernel daemon. 1-63
Displaying the kernel trace data . 1-63
Flushing the trace data . 1-64
Stopping the daemons . 1-64
Positioning the current time line . 1-64
Loading an eventmap file . 1-66
Searching for a user trace event . 1-66
Zooming in . 1-68
Examining the kernel trace data . 1-69

Exiting the tools . 1-71
Exiting NightTrace . 1-72
Exiting NightProbe . 1-72
Exiting NightSim . 1-72
Exiting NightView . 1-73
Exiting NightBench . 1-73

Conclusion . 1-73

Appendix A Tutorial Files

sim.ada . A-2
counters.ada . A-3
art.conversions.ada. A-5

Illustrations

Figure 1-1. NightBench Project . 1-9
Figure 1-2. Creating a new environment - language selection 1-10
Figure 1-3. Creating a new environment - specifications . 1-10
Figure 1-4. Introducing existing source files into the environment 1-12
Figure 1-5. Source files introduced into the environment . 1-13
Figure 1-6. Units introduced into the environment . 1-14
Figure 1-7. Setting environment-wide compile options . 1-15
Figure 1-8. Adding an environment to the Environment Search Path 1-16
Figure 1-9. Builder window - Build page with errors for sim partition 1-18
Figure 1-10. HyperHelp viewer displaying a reference . 1-20
Figure 1-11. Editing the source file sim.ada in NEdit . 1-21
Figure 1-12. Build completed with no errors . 1-22
Figure 1-13. NightSim Scheduler . 1-24
Figure 1-14. NightSim Edit Process . 1-26
Figure 1-15. Start NightView Session on Remote Host dialog 1-29
Figure 1-16. NightView Dialogue . 1-30
Figure 1-17. NightView Principal Debug Window . 1-31
Figure 1-18. Setting a new monitorpoint . 1-32
Figure 1-19. NightView Monitor Window . 1-33
Figure 1-20. Resuming execution . 1-34
6

Contents
Figure 1-21. Starting the simulation . 1-34
Figure 1-22. Monitoring cycle_time in the NightView Monitor Window 1-35
Figure 1-23. NightSim Monitor . 1-36
Figure 1-24. NightProbe Main window . 1-37
Figure 1-25. NightProbe Timer menu . 1-38
Figure 1-26. NightProbe Output menu . 1-38
Figure 1-27. Configured NightProbe Data Recording window 1-39
Figure 1-28. NightProbe Spreadsheet Viewer window . 1-40
Figure 1-29. Target System Selection dialog . 1-41
Figure 1-30. User Authentication dialog . 1-42
Figure 1-31. Modified values in NightView Monitor Window 1-43
Figure 1-32. Modified values in NightProbe Spreadsheet Viewer 1-44
Figure 1-33. NightTrace Main window . 1-46
Figure 1-34. NightTrace user trace display page . 1-47
Figure 1-35. NightTrace user trace display page with data loaded 1-48
Figure 1-36. NightTrace kernel display page . 1-49
Figure 1-37. NightTrace Main Window . 1-50
Figure 1-38. Daemon Definition dialog . 1-51
Figure 1-39. Login dialog . 1-52
Figure 1-40. Import Daemon Definition dialog . 1-52
Figure 1-41. Customized NightTrace display page . 1-54
Figure 1-42. User trace data in customized NightTrace display page 1-56
Figure 1-43. Setting a new patchpoint . 1-57
Figure 1-44. User trace data after patchpoint inserted . 1-59
Figure 1-45. Daemon Definition dialog . 1-60
Figure 1-46. NightTrace kernel display page . 1-61
Figure 1-47. NightTrace kernel trace data . 1-64
Figure 1-48. NightTrace Search dialog . 1-66
Figure 1-49. User trace data after search . 1-67
Figure 1-50. Zoomed in view of user trace data . 1-68
Figure 1-51. Zoomed in view of kernel display page . 1-69
Figure 1-52. Removing the scheduler . 1-71
Figure 1-53. Remove Scheduler dialog . 1-72
7

PowerWorks Linux Development Environment Tutorial
8

Using the PLDE
1
Chapter 1Using the PLDE

1
1
1

Concurrent’s PowerWorks® Linux Development Environment (PLDE) allows users on a
Linux® PC to develop applications for any Concurrent real-time computer system. The
PLDE makes it easy to utilize the features of Concurrent compilers and real-time GUI
tools. Application programs are compiled and debugged directly on a Linux PC while tar-
geted to a system running Concurrent’s PowerMAX OSTM real-time UNIX-based operat-
ing system.

The PowerWorks Linux Development Environment consists of high-performance C/C++
and MAXAdaTM (Ada95) compilers, the NightViewTM symbolic debugger, NightTraceTM

event analyzer, NightSimTM frequency-based scheduler, the NightProbeTM data monitor-
ing tool, the NightBenchTM Program Development Environment, and the shmdefine
shared memory helper tool.

Overview 1

This is a demonstration of the PowerWorks Linux Development Environment. In this
tutorial, we will use many of the PLDE tools including:

- NEdit

- NightBench

- MAXAda

- NightSim

- NightView

- NightProbe

- NightTrace

integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin 1

In order to run the portion of the tutorial that uses the NightSim Scheduler and the Night-
View Source-Level Debugger, a system running PowerMAX OS should be networked to
1-1

PowerWorks Linux Development Environment Tutorial
your Linux system. If you have a PowerMAX OS system networked to your Linux sys-
tem, the following items must also be taken into consideration:

- Remote shell access

- Privileges

- Additions to PATH

Proceed to “Getting Started” on page 1-5 to begin the tutorial.

NOTE

You may still run the tutorial (excluding the portions that use the
NightSim Scheduler and the NightView Source-Level Debugger)
even if you do not have a system running PowerMAX OS net-
worked to your Linux system. You will be instructed as to how to
skip over the sections that use the NightSim Scheduler and the
NightView Source-Level Debugger.

Remote shell access 1

Since NightSim uses rsh to start the NightSim server process on each target system, the
user must be able to rsh to those systems.

Ensure that a login for your user name exists on the target system and

• the .rhosts file in the home directory for that user name on the target
system contains an entry for your user name and the NightSim host

An example entry might look like:

remote_machine_name username

where remote_machine_name is the name of the NightSim host and username
is your login name on that system.

Also note that the .rhosts file must have the permissions 644.

or

• the /etc/hosts.equiv file on the target system contains the name of
the NightSim host

You may test your remote shell access by issuing the following command from your host
system (the system running Linux):

/usr/bin/rsh remote_machine_name date
where remote_machine_name is the name of the target system. You should see the date
and time on the remote system if successful.

See the rsh(1) man page for more details.
1-2

Using the PLDE
See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.

Privileges 1

For the sections of the tutorial that run on the target system (the portions that use the
NightSim Scheduler and the NightView Source-Level Debugger), this tutorial requires
that the user have the following privileges on the target system:

• P_CPUBIAS

• P_PLOCK

• P_RTIME

A convenient way to associate privileges with users is through the use of roles. A role is
simply a named description of a set of privileges that have been registered for certain exe-
cutable files, such as the shell. The system administrator creates roles and assigns users to
them. During the login process, users can request that their shell be granted the privileges
associated with their role. Such a request takes the form of an invocation of the tfad-
min(1M) command. Once privileges have been granted to the user’s shell, subsequently
spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by this tuto-
rial to three commonly used shells (sh, ksh, and csh). The PowerMAX OS system
administrator should issue the following commands once.

/usr/bin/adminrole -n PLDE_USERS
/usr/bin/adminrole -a sh:/usr/bin/sh:cpubias:plock:rtime PLDE_USERS
/usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:plock:rtime PLDE_USERS
/usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:plock:rtime PLDE_USERS

The following command assigns an example user (JoeUser) to the PLDE_USERS role.
The system administrator should issue the following command once.

/usr/bin/adminuser -n -o PLDE_USERS JoeUser

JoeUser is now allowed to request that the above privileges be granted to his shell (assum-
ing JoeUser utilizes either the sh, ksh, or csh shell, as these are the only shell commands
registered in the PLDE_USERS role). However, by default, these privileges are not
granted. He must explicitly make the request by initiating a new shell with the tfad-
min(1M) command. For convenience, it is recommended that the following command
be added to the end of his .profile (or .login for csh users) file. (This file is exe-
cuted during initialization of the login shell).

exec /sbin/tfadmin PLDE_USERS: shell

where shell is the shell of your choice (sh, ksh, or csh).

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.
1-3

PowerWorks Linux Development Environment Tutorial
Additions to PATH 1

If users are interested in doing command-line compilations (although they are not covered
in this tutorial), the following should be added to their PATH:

/usr/ada/bin
/usr/ccs/bin

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.
1-4

Using the PLDE
Getting Started 1

It is highly recommended that the paths to the executables and working directories on the
host system (the system running Linux) and the target system (the system running Power-
MAX OS) are identical. Their mount points should be based on a common name.

The following sections will guide us through creating a working directory on our host sys-
tem, exporting that filesystem to our target system, and mounting the filesystem on that
target system. We will also copy the tutorial-related files from the PowerWorks Linux
Development Environment Installation CD to our working directory.

NOTE

The following steps will likely require root access

Creating a working directory 1

We will start by creating a directory on the Linux system in which we will do all our work.

NOTE

The following steps will likely require root access

To create a working directory on the Linux system

- On the Linux system, use the mkdir(1) command to create a working
directory.

NOTE

The pathname should be unique such that it can be mounted with
the same pathname on the PowerMAX OS system.

We will name our directory /tutorial using the following command:

mkdir /tutorial
- Ensure that the directory is writable by issuing the following command:

chmod 777 /tutorial
- Position yourself in the newly created directory using the cd(1) com-

mand:

cd /tutorial
1-5

PowerWorks Linux Development Environment Tutorial
NOTE

Ensure that your umask setting on the Linux system will allow
the PowerMAX OS system to read and write files in your working
directory, or use the same user and group ID on both systems.

To automatically ensure that all files your user creates on the
Linux system are publicly readable and writeable, include the fol-
lowing command in your shell startup script:

 umask 000

Exporting the filesystem 1

In order for the PowerMAX OS system to be able to access the Linux directory that we
created in “Creating a working directory” on page 1-5, we must export the filesystem.

NOTE

The following steps will likely require root access

To export the Linux filesystem to the PowerMAX OS system

- Enter the following command on the Linux system:

exportfs -o rw pmax_system:work_dir

where pmax_system is the name of the PowerMAX OS system and work_dir is the
pathname of our working directory.

For our example, we will enter the following command:

exportfs -o rw yoshi:/tutorial
where yoshi is the name of our PowerMAX OS system and /tutorial is our
working directory.

Mounting the filesystem 1

In order for the PowerMAX OS system to be able to access the Linux directory that we
exported in “Exporting the filesystem” on page 1-6, we must mount that filesystem on the
PowerMAX OS system.

NOTE

The following steps will likely require root access
1-6

Using the PLDE
To mount the filesystem on the PowerMAX OS system

- On the PowerMAX OS system, use the mkdir(1) command to create a
place in which to mount the Linux filesystem.

NOTE

The pathname should be the same as that created on the Linux
system (see “Creating a working directory” on page 1-5).

We will name our directory /tutorial using the following command:

mkdir /tutorial
- Mount the filesystem using the following command:

mount -F nfs linux_system:work_dir work_dir

where linux_system is the name of the Linux system and work_dir is the pathname of
our working directory.

For our example, we will enter the following command:

mount -F nfs raptor:/tutorial /tutorial
where raptor is the name of our Linux system and /tutorial is our working
directory.

Copying tutorial-related files from the installation CD 1

Source files, as well as configuration files for the various tools, are included on the Power-
Works Linux Development Environment Installation CD. We will copy these tuto-
rial-related files to our tutorial directory.

NOTE

The following steps will likely require root access

To copy the files from the PowerWorks Linux Development Environment
Installation CD

- Insert the PowerWorks Linux Development Environment Installation CD
in the CD-ROM drive on the Linux system.

- Mount the CD-ROM drive on the Linux system (assuming the standard
mount entry for the CD-ROM device exists in /etc/fstab).

mount /mnt/cdrom
- Copy all tutorial-related configuration files to our working directory.
1-7

PowerWorks Linux Development Environment Tutorial
cp /mnt/cdrom/tutorial-sup/* work_dir

where work_dir is the pathname of our working directory.

For our example, we will enter the following command:

cp /mnt/cdrom/tutorial-sup/* /tutorial
where /tutorial is our working directory.

- Unmount the CD-ROM drive (otherwise, you will be unable to remove the
PowerWorks Linux Development Environment Installation CD from the
CD-ROM drive).

umount /mnt/cdrom
1-8

Using the PLDE
Using NightBench 1

In order to compile and link our program, we will use the NightBench Program Develop-
ment Environment. NightBench is a graphical user interface that provides a common
work environment for the PowerWorks Linux Development Environment editor, compil-
ers, and development tools. NightBench organizes all of the information required for con-
sistent, repeatable development of PowerMAX OS applications while providing an effi-
cient interface for editing, browsing, building, and debugging.

Let’s open the NightBench Project window.

To invoke NightBench from the command line

- From the command line, type the following command:

nbench
Note that we have not provided nbench with any parameters, indicating that we want to
open the NightBench Project window. nbench accepts a number of command line
options, allowing the user to open a particular NightBench component or to provide
start-up information to NightBench.

The NightBench Project window will appear, listing the environments with which it has
previously interacted. If no other environments have been created under NightBench, this
list will be empty.

Figure 1-1. NightBench Project

Creating a new environment 1

One of the first steps we must take in order to use NightBench for program development is
to create an environment. Environments are used as the basic structure of organization
within NightBench.
1-9

PowerWorks Linux Development Environment Tutorial
To create a new environment from the NightBench Project window

- On the NightBench Project window, press the button marked New... so we
can create our new environment. This will open a dialog in which you may
select the language to be used in this environment.

- Select the language that will be used in this environment (Ada).

- Press the Next> button.

Figure 1-2. Creating a new environment - language selection

The next dialog presented allows us to specify details about the directory which will con-
tain the new environment, the release of the compiler to be used, as well as the architec-
ture of the target machine and the version of PowerMAX OS running on it:

Figure 1-3. Creating a new environment - specifications

- Type the directory name in the Directory for new environment field
where you want NightBench to create the new environment. This can be
the name of an existing directory or NightBench can create the directory
1-10

Using the PLDE
for you. (Note that NightBench can only create a subdirectory of an exist-
ing directory.) We will enter the name of the directory we created in “Get-
ting Started” on page 1-5. The full directory name in our example is
/tutorial. Since we invoked NightBench from that directory, the path-
name will appear in the Directory for new environment field.

- Select a Compiler Release if you have more than one release of MAX-
Ada installed on your system. If you have only one release of MAXAda
installed on your system, it will appear here.

- Choose a Target Architecture.

Because we are building an executable that will run on a Concurrent real-time com-
puter system, we must choose which type of system we are targeting.

To determine which item to select from the drop-down list, issue the following com-
mand on the PowerMAX OS target system:

uname -m
Make your selection based on the machine hardware name returned from the uname
command:

For our example, we will be targeting a Power HawkTM 640 so we will select moto
from the drop-down list. For more information on target architectures, see the sec-
tion titled “Target Architectures” in the MAXAda Reference Manual (0890516).

- Identify the PowerMAX OS Version.

To determine the version of PowerMAX OS running on the target system, issue the
following command on that target system:

uname -r
In our example, we will select 5.1 from the drop-down list for the version of the
operating system running on the system we are targeting.

- Press Done

This will add the new environment to the list of Environments in the NightBench
Project window. NightBench will also open the new environment in its own NightBench
Development window.

Machine Hardware
Name

Target
Architecture

Motorola moto

Synergy synergy

all others nh
1-11

PowerWorks Linux Development Environment Tutorial
Introducing existing source files into the environment 1

Our next step is to populate the environment with units. Units are the basic building
blocks for programs in NightBench. They are contained within source files and it is
through these source files that they are introduced into their intended environments.

Source files may already have been created outside the NightBench environment or you
may use the editing features of NightBench to create a new file. For this example, we will
introduce the files we copied from the PowerWorks Linux Development Environment
Installation CD (see “Getting Started” on page 1-5).

NOTE

Listings of the source files can be found in Appendix A “Tutorial
Files”.

To introduce existing source files into a NightBench environment

- Click on the Source Files tab of the NightBench Development window.

- Press the Introduce/Create... button. This will open the Introduce
Source Files dialog so we can introduce our source files (and the units
contained within) into the new environment.

Figure 1-4. Introducing existing source files into the environment

- Maneuver to the directory in which the source files are contained. You
may type the path to the directory name in the Directory field or use the
entries in the Directories list to navigate to the desired directory.
1-12

Using the PLDE
NOTE

Since we invoked NightBench from the directory in which our file
resides, we should already be positioned in that directory.

- Press the Add All button located beneath the Selection field. The names
of the three source files will then appear in the list of Files to Introduce.

- Press the OK button to introduce the source files into the environment.

The source files now appear in the list of files on the Source Files page of the Night-
Bench Development window and the units contained within them now appear on the
Units page.

Figure 1-5 shows the Source Files page of the NightBench Development window. You
can see the three source files we have just introduced.

Figure 1-5. Source files introduced into the environment

Figure 1-6 shows the Units page of the NightBench Development window. This figure
shows the units contained in the source files that were just introduced into the environ-
ment: the body of sim (contained in the source file sim.ada), the specification and body
of counters (contained in the source file counters.ada), and the specification and
1-13

PowerWorks Linux Development Environment Tutorial
body of ada.real_time.conversions (contained in the source file art.conver-
sions.ada). Note that the state of these units is uncompiled.

Figure 1-6. Units introduced into the environment
1-14

Using the PLDE
Setting compile options 1

In order to debug the program using the NightView Source Level Debugger, we need to
compile the program with debug information. We do this by setting an environment-wide
compile option which will apply to all units within the current environment.

NOTE

NightProbe also requires that the user application is built with
debugging information in order to read symbol table information
from user application program files. This enables NightProbe to
determine which variables may be probed.

To set environment-wide compile options

- Click on the Settings tab of the NightBench Development window.

- Press the Show Options Editor button associated with the Permanent
Compile Options.

- On the General page of the Ada Environment Compile Options
dialog, select full (2) from the drop-down list under the Permanent col-
umn for Debug Information.

- Press OK.

Figure 1-7. Setting environment-wide compile options
1-15

PowerWorks Linux Development Environment Tutorial
NOTE

Alternatively, you could have entered -g in the Permanent
Compile Options field on the Settings page and pressed the
Apply button.

Adding an environment to the Environment Search Path 1

MAXAda supplies a number of pre-built environments containing various packages that
can be used for program development. These packages consist of pre-compiled Ada
source code with units grouped together on the basis of Ada language definitions and
functionality.

By default, when you create an new environment, you automatically have access to the
MAXAda environment predefined which contains the standard Ada-defined packages.

Our program utilizes the MAXAda-defined package night_trace_bindings which
is included in the general environment. In order for NightBench to use that package,
we must add that environment to our Environment Search Path.

To add an environment to the Environment Search Path

- Click on the Settings tab of the NightBench Development window.

- Press the Add... button at the bottom of the Environment Search
Path area.

The Add Environment Search Path Element dialog is presented.

Figure 1-8. Adding an environment to the Environment Search Path

- Enter general in the Environment pathname or keyword to add:
field.

- Ensure that the At end of search path radiobutton is selected.
1-16

Using the PLDE
- Press OK.

You will see the environment /usr/ada/release/bindings/general added to the
Environment Search Path (where release is the name of the Ada release).

Defining a partition 1

In order to use the units introduced into NightBench, we must include them in a partition.
NightBench defines three types of Ada partitions:

• active

• archive

• shared object

For our example, we want to include our sim unit in an executable program so we will be
defining an active partition.

To define all active partitions in the environment

- Click on the Partitions tab of the NightBench Development window to
get to the Partitions page.

- Press the Create All button. This creates an active partition for each unit
in the current environment that qualifies as a main unit.

At this point, we have an environment, /tutorial, that has within it the definition for
the active partition, sim, made up of a main unit, sim, contained in the source file,
sim.ada , and two other uni ts - counters , contained in the source f i le
counters.ada, and ada.real_time.conversions contained in the source file
art.conversions.ada. Full debug information will be generated for the program
and the environment containing the night_trace_bindings package has been added
to our Environment Search Path.

Building a partition 1

We are now ready to build our partition. We do this using the NightBench Builder.

To build the partition

- Click on the Partitions tab of the NightBench Development window to
get to the Partitions page.

- In the list of partitions on the Partitions page, make sure the partition
sim is selected.
1-17

PowerWorks Linux Development Environment Tutorial
- Press the button marked Build. This will open the NightBench Builder
window so we can build our new partition.

In Figure 1-9, you will see that partition sim has been automatically entered in the
Targets field on the Build page. This is because it was selected on the Partitions
page when the Build button was pressed.

- Press Start Build.

The Build Progress bar shows the number of actions (compilations and links) left
to perform in the current build as the Transcript window details each step taken
during the build.

Figure 1-9. Builder window - Build page with errors for sim partition

When the build finishes, a Build Completed dialog notifies the user.

NOTE

The notification operations can be changed on the Notification
page.

In our example, the Build Completed dialog notifies us that the build completed with
errors. This is due to the following line which we have included in sim.ada (see
“sim.ada” on page A-2):
1-18

Using the PLDE
 pragma task_cpu_bias(illegal_use_of); -- Remove this line

This was done to demonstrate the error handling capabilities of NightBench.

- Press OK to dismiss the Build Completed dialog.

Showing a reference 1

NightBench allows Ada users to display the section of the MAXAda Reference Manual or
the Ada 95 Reference Manual related to the error selected in the NightBench Builder.

Since our build completed with errors, we can use this feature to display the references
associated with those errors.

Note

When executing the steps described below, if you are using the
HyperHelp tool to display this tutorial, the page displayed will
automatically switch to the MAXAda Reference Manual when you
click the Show Reference button. To return to this tutorial,
click the Back button in the HyperHelp tool

To show a reference

- Click on the Build tab of the NightBench Builder window to get to the
Build page.

- Select the error from the Errors and Alerts window located at the bot-
tom of the Build page by clicking on the text of the error.

- Press the Show Reference button.

This opens the HyperHelp viewer to the section of the MAXAda Reference Manual
related to the selected error.
1-19

PowerWorks Linux Development Environment Tutorial
Figure 1-10. HyperHelp viewer displaying a reference

The MAXAda Reference Manual is opened in the HyperHelp viewer showing the topic
associated with pragma TASK_CPU_BIAS since the error we have inserted in sim.ada
(see “sim.ada” on page A-2) is associated with that pragma.

Correcting an error 1

We must correct the error in order for our build to complete successfully. We can do that
using the editing features of NightBench.

To correct an error

- Click on the Build tab of the NightBench Builder window to get to the
Build page.

- Select the error from the Errors and Alerts window located at the bot-
tom of the Build page by clicking on the text of the error.

- Press the Edit Selected button.
1-20

Using the PLDE
The source file associated with the selected error is opened in the editor configured
for NightBench (see the section titled “Preferences - Editor” in the NightBench
User’s Guide (0890514)).

In our case, the source file sim.ada (see “sim.ada” on page A-2) will be brought
up in the default editor, NEdit. NEdit is a part of the PowerWorks Linux Develop-
ment Environment.

Figure 1-11. Editing the source file sim.ada in NEdit

The problem with the offending line is that it does not belong in our program at all. It was
only included to demonstrate the error handling capabilities of NightBench. We need to
delete the line, save the file, and rebuild our program.

- Select the line

pragma task_cpu_bias(illegal_use_of); -- Remove this line

in the editor configured for NightBench. (In NEdit, you may triple-click on a line to
select it.)

- Press the Backspace key to delete the line.

- Select Save from the File menu to save the changes.

- Select Exit from the File menu to close NEdit.

Rebuilding a partition 1

Now that we have corrected the error, we are ready to rebuild our partition.
1-21

PowerWorks Linux Development Environment Tutorial
To rebuild a partition

- Click on the Build tab of the NightBench Builder window to get to the
Build page.

- Press Start Build.

Since we only modified the body of the unit sim to correct our error and since none
of the other units in our partition have any dependencies on sim, NightBench will
recompile only the body of that unit and relink the partition.

Figure 1-12. Build completed with no errors

When the build finishes, a Build Completed dialog notifies us that the build has com-
pleted with no errors.

- Press OK to dismiss the Build Completed dialog.

Before you continue 1

The following sections require a PowerMAX OS system networked to your Linux system
since those sections use the NightSim Scheduler and the NightView Source-Level Debug-
ger (see “Before you begin” on page 1-1 for important recommendations and consider-
ations concerning this configuration).
1-22

Using the PLDE
However, if you do not have a PowerMAX OS system networked to your Linux system,
you may jump to the section “Using NightTrace” on page 1-46 and continue with the tuto-
rial.
1-23

PowerWorks Linux Development Environment Tutorial
Using NightSim 1

NightSim is a tool for scheduling and monitoring real-time applications which require pre-
dictable, repetitive process execution. NightSim provides a graphical interface to the
PowerMAX OS frequency-based scheduler and performance monitor. With NightSim,
application builders can control and dynamically adjust the periodic execution of multiple
coordinated processes, their priorities, and their CPU assignments. NightSim’s perfor-
mance monitor tracks the CPU utilization of individual processes and provides a customi-
zable display of period times, minimums, maximums, and frame overruns. For more
information on NightSim, refer to the NightSim User’s Guide (0890480).

Invoking NightSim 1

Because our program uses the frequency-based scheduler, we will use the NightSim
Scheduler to schedule the process.

NightBench allows the user to invoke the NightSim Scheduler directly.

To invoke NightSim from NightBench

- Select NightSim Scheduler from the Tools menu of either the Night-
Bench Development or the NightBench Builder window.

Configuring the Scheduler 1

The NightSim Scheduler window is opened, ready for us to configure it for our particular
simulation.

Figure 1-13. NightSim Scheduler
1-24

Using the PLDE
To configure a NightSim Scheduler

- Specify a Scheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
1000.

- Specify the Cycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the value 5.

- Specify the Max. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. Enter 5 for our example.

- Specify the Max. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value 5.

- Enter the name of a PowerMAX OS system which will act as the Timing
host for the simulation. You may use the drop down list associated with
this field for the names of systems previously used as timing hosts. For our
example, we will enter yoshi a Power Hawk 640 system.

NOTE

When NightSim is operating in On-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User’s Guide (0890480) for more information.

- Select a Timing source from the list provided. This list contains the set
of devices available on the timing host. We will use Real-time clock
0c2.

NOTE

Do not use Real-time clock 0c0 for the Timing source as it
is typically used by system utilities and could cause unwanted
effects if used. See hrtconfig(1) for more information

- Specify Clock period.

For our simulation, we would like the real-time clock to “fire” every .001 seconds
(or 100000 microseconds).

For our example, we will specify 100000 for the number of microseconds.
1-25

PowerWorks Linux Development Environment Tutorial
Scheduling a process 1

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

Figure 1-14. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press the Edit... button on the NightSim Scheduler window. This will
bring up the Edit Process window.

- Press the Select... button next to the Process Name field. This brings
up the Select a Program dialog.

- Choose the program we wish to schedule from the Files list. For our
example, we will select sim from the list.

- Press Select to select the program.

NOTE

The Select a Program dialog operates from the target Power-
MAX OS system. If the working directory is not exported to and
NFS mounted on the PowerMAX OS system, then the dialog will
not be able to show the files. See “Getting Started” on page 1-5
for details on setting up your working directory.
1-26

Using the PLDE
- Ensure that the Working Directory is the same directory that contains
our program (the directory of the Process Name selected in the previous
step).

- Click on the FBS tab:

- Select Starting Cycle.

This field allows you to specify the first minor cycle in which the specified
program is to be wakened in each major frame.

We will choose the lowest value, 0, for our example.

- Select Period.

This field allows you to establish the frequency with which the specified pro-
gram is to be awakened in each major frame. Enter the number of minor
cycles representing the frequency with which you wish the program to be
awakened.

For our example, we will specify a period of 3, indicating that the specified
program is to be awakened every third minor cycle.

- Click on the Process tab:

- Click on the All CPUs checkbox to deselect all of the CPUs

- Choose a single CPU for this process to run on.

For our example, we will specify CPU 0 by clicking on the checkbox labeled
0.

- Specify the Priority for this process.

The range of priority values that you can enter is governed by the scheduling
policy specified. NightSim displays the range of priority values that you can
enter next to the Priority field. Higher numerical values correspond to more
favorable scheduling priorities.

For our example, we will give the process a priority of 50.

- Click on the I/O and Debug tab:

- Check the Schedule program within a NightView dialogue
checkbox. This will bring the program up in the NightView debug-
ger before the program executes.

- Press Add to add the process to the frequency-based scheduler.

We would also like to measure the idle time on the same CPU. We can do this by schedul-
ing the /idle process.
1-27

PowerWorks Linux Development Environment Tutorial
To schedule the /idle process

- In the Edit Process window, enter:

/idle
in the Process Name field.

- Press the Add button to add the /idle process.

- Press the Close button to dismiss the Edit Process window.

You will notice that two entries now appear in the Process Scheduling Area of the Night-
Sim Scheduler window.

Setting up the scheduler 1

To set up the scheduler

- In the NightSim Scheduler window, press the Set up button.

This action:

• creates a scheduler that is configured according to the parameters we
specified

• schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the first fbs_wait call,
and

• attaches the timing source to the scheduler.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-26), the NightView Source Level
Debugger will be started.
1-28

Using the PLDE
Using NightView 1

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications. NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minimal intrusion. In addition to
standard debugging capabilities, NightView supports application-speed eventpoint condi-
tions, hot patches, synchronized data monitoring, exception handling and loadable mod-
ules.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-26), we are presented with a NightView
dialog allowing us to log into the target system on which we will be running our program.

Figure 1-15. Start NightView Session on Remote Host dialog
1-29

PowerWorks Linux Development Environment Tutorial
To start a NightView session on a remote host

- In the Start NightView Session on Remote Host dialog, ensure that
the values for Remote host and Login name are correct.

NOTE

The Name for new Dialogue field is initialized to the name of
the remote system on which we are debugging our program.

- Enter your Password for the Login name on the system listed in the
Remote host field.

- Press OK.

When the login has completed successfully, a NightView Dialogue window for the remote
host will be opened as well as a Principal Debug Window with the execution of the pro-
gram stopped.

Figure 1-16. NightView Dialogue

During initialization, you will see a message similar to the following:

Warning: Process yoshi:3336 is no longer debuggable, detaching.
[E-SlashProcMethod-012]
 (errno=13) Permission denied
1-30

Using the PLDE
This is an anomaly caused by an intermediate process which schedules the user program.
You may ignore this warning.

Figure 1-17. NightView Principal Debug Window

Setting a monitorpoint 1

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
1-31

PowerWorks Linux Development Environment Tutorial
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor Window.

To set a monitorpoint

- In the NightView Principal Debug Window, click on the line:

rt.fbs_wait(status);

- Select Set Monitorpoint... from the Eventpoint menu. This will open
the Set a New Monitorpoint dialog.

Figure 1-18. Setting a new monitorpoint

- Enter the following

 print counters.cycle_time

in the Commands text box:.

- Press OK.

A NightView Monitor Window is opened containing an entry for the
counters.cycle_time variable.
1-32

Using the PLDE
Figure 1-19. NightView Monitor Window

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

 monitorpoint at line_number
 print counters.cycle_time
 end monitor
where line_number coincides with the line:

 rt.fbs_wait(status);

See monitorpoint for details on the use of this command.

Resuming execution 1

Now it’s time to let the program run.

To resume execution in NightView

- Press the Resume button in the NightView Principal Debug Window.
1-33

PowerWorks Linux Development Environment Tutorial
Figure 1-20. Resuming execution

Starting the simulation 1

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on the Start button, NightSim carries out the following actions:

• Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

• If a real-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in the Clock period field in the
Scheduler Configuration Area

• Starts the simulation with the values of the minor cycle, major frame, and
overrun counts set to zero

To start a simulation in NightSim

- Press the Start button on the NightSim Scheduler window.

Figure 1-21. Starting the simulation
1-34

Using the PLDE
When the simulation begins, you should notice the values for Frame and Cycle in the
Run Status Area begin to change.

Also, note that the value for counters.cycle_time in the NightView Monitor Win-
dow changes as the program runs.

Figure 1-22. Monitoring cycle_time in the NightView Monitor Window

Monitoring the simulation 1

The performance monitor is a mechanism that enables you to monitor FBS–scheduled
processes’ utilization of a CPU.

The performance monitor provides you with the ability to:

• Obtain performance monitor values by process or processor

• Start and stop performance monitoring by process

• Clear performance monitor values by processor

To create a performance monitor window

- Select Create Monitor Window from the NightSim menu on the
NightSim Scheduler window.
1-35

PowerWorks Linux Development Environment Tutorial
Figure 1-23. NightSim Monitor

Notice the value under the Last Time column for the process sim. This value shows the
amount of time (in microseconds) that the process has spent running between the last time
that it was wakened by the scheduler and the next time it called fbs_wait.

The value under the Last Time column for the /idle process shows the time during
which the CPU was not busy.
1-36

Using the PLDE
Using NightProbe 1

The NightProbe Data Monitoring Tool is a real-time graphical tool for monitoring, record-
ing, and altering program data within one or more executing programs without intrusion.
It can be used in a development environment as a tool for debugging, or in a production
environment to create a “control panel” for program input and output.

NightProbe utilizes a non-intrusive technique of mapping the application’s address space
into its own. Subsequent direct reads and writes by NightProbe allow it to sample and
modify user data without interrupting or otherwise affecting the user process.

There is no API for NightProbe. Applications need only ensure that their debug informa-
tion is generated with the DWARF format by using the -g compilation option. Even with-
out symbols, however, NightProbe can probe processes based on virtual addresses alone.

For more information on NightProbe, refer to the NightProbe User’s Guide (0890465).

Invoking NightProbe 1

To invoke the NightProbe from NightSim

- From the Tools menu of the NightSim Scheduler window, select Night-
Probe Monitor.

The NightProbe Main window is opened.

Figure 1-24. NightProbe Main window
1-37

PowerWorks Linux Development Environment Tutorial
Configuring NightProbe 1

The user may configure NightProbe by selecting a timing source and output method.

The timing source is selected from the Timer menu:

Figure 1-25. NightProbe Timer menu

You may instruct NightProbe to sample when the user requests (On Demand), to use the
system clock as the timing source using a frequency that the user selects (System
Clock) , or to take samples as directed by a frequency-based scheduler (Fre-
quency-Based Scheduler).

Press the ESC key to exit this menu.

NOTE

You can also select the timing source by right-clicking on the
Timing Source entry in the Session Overview area. Each
item in the Session Overview area has a menu associated with
it that can be brought up by right-clicking on that item.

The output method is selected from the Output menu:

Figure 1-26. NightProbe Output menu

NightProbe can write the output to a file that the user specifies (To File), to a file where
the sampled data is written in a format usable as input to NightTrace (To NightTrace), to
a window that will display a scrolling list of the values of the monitored variables as the
program runs (To List Window), or to a window displaying the values of the monitored
variables in a spreadsheet format (To Spreadsheet).
1-38

Using the PLDE
Press the ESC key to exit this menu.

NOTE

You can also select the output method by right-clicking on the
Outputs entry in the Session Overview area. Each item in
the Session Overview area has a menu associated with it that
can be brought up by right-clicking on that item.

Our example will use a configuration file shipped with the PowerWorks Linux Develop-
ment Environment Installation CD which specifies the timing source to use the system
clock sampling at an asynchronous rate of once per second and which displays the output
in a spreadsheet format. This file, nprobe.config, was copied to our working direc-
tory earlier in the step “Getting Started” on page 1-5.

To configure the NightProbe Data Monitoring Tool

- Select Open Session... from the NightProbe menu of the NightProbe
Data Recording window.

You will be presented with a file selection dialog.

- Maneuver to the working directory, if necessary.

- Select the file nprobe.config from the list of Files.

- Press OK to load the configuration file and dismiss the dialog.

You should see the following members of the counters class listed in the Vari-
able List area of the NightProbe Data Recording window:

- counters.cycle_time

- counters.i_counter

- counters.workload

We will be probing and modifying these variables.
1-39

PowerWorks Linux Development Environment Tutorial
Figure 1-27. Configured NightProbe Data Recording window

Since the nprobe.config file specifies that NightProbe is to direct its output to a
spreadsheet window, the Spreadsheet Viewer window is automatically opened as well.

Figure 1-28. NightProbe Spreadsheet Viewer window
1-40

Using the PLDE
Selecting the target system 1

We need to tell NightProbe on which system our sim application is running so that it will
be able to connect to it.

To select the target system

- Double-click on the Target system item in the Session Overview area of
the NightProbe Main window.

You will be presented with the Target System Selection dialog.

Figure 1-29. Target System Selection dialog

- Enter the name of the system on which the sim application is running in
the Target System field.

- Enter the login name of the user on the target system in the User field.

- Press OK to dismiss the dialog.
1-41

PowerWorks Linux Development Environment Tutorial
Connecting to the target program 1

When you are ready to perform data recording or monitoring, you must first connect
NightProbe to a real-time NightProbe server on the target system.

The real-time NightProbe server performs initialization during the connection phase -
opening output devices, verifying target processes, and mapping target process variable
addresses.

The probed applications are not affected by this operation.

The real-time NightProbe server is the actual process that will read and write values from
and to the user application’s address space.

To connect to the target program

- Press the Connect button under the Sampler Control area of the Night-
Probe Main window.

- When presented with the User Authentication dialog, enter the login
name of the user in the User field along with the corresponding password
in the Password field.

- Press the OK button to continue.

Figure 1-30. User Authentication dialog

Starting sampling 1

Once connected, we are ready to begin data recording.

Once started, the NightProbe server process will sample data based on the timing selection
and will send the output to all specified output methods.

When we configured NightProbe (see “Configuring NightProbe” on page 1-38), we
defined the timing selection to be the system clock (which fires once every second) and
selected the Spreadsheet Viewer window as our output method.
1-42

Using the PLDE
To start sampling

- Press the Start button under the Sampler Control area of the Night-
Probe Main window.

Note that the values in the Spreadsheet Viewer window will begin to change
once a second.

The user application that we are probing independently measures the time it takes
for each cycle and saves that value in counters.cycle_time.

Note that the value of counters.cycle_time (in units of seconds) is approxi-
mately the same as the Last Time statistic (in units of microseconds) in the Night-
Sim Monitor window. (It will be slightly less than the value shown in the NightSim
Monitor window because the application’s calculations do not include all of its
per-cycle activities.)

Furthermore, the value of counters.cycle_time can also be seen in the Night-
View Monitor Window.

Modifying program data 1

NightProbe allows you to monitor and modify target locations while the program is run-
ning. We will modify the sim variable counters.workload to increase the amount of
work the program does.

To modify the value of a variable

- In the Spreadsheet Viewer window, click on the value next to the label
workload.

- Enter the value 1000.

Notice that the value for cycle_time has increased significantly. In our example,
it is now approximately 0.00028 seconds (this value is dependent on your machine
speed). (You can also see this reflected in the Last Time statistic in the NightSim
Monitor window as well as in the counters.cycle_time monitorpoint in the
NightView Monitor Window.)

Figure 1-31. Modified values in NightView Monitor Window
1-43

PowerWorks Linux Development Environment Tutorial
In addition, the color of the cell containing the value of cycle_time has changed
to yellow. NightProbe allows you to define caution and danger values for variables
displayed in spreadsheets. Since the attributes for this cell (which were included in
the configuration file nprobe.config - see “Configuring NightProbe” on page
1-38) specify that when the value exceeds 0.0002, the color of the cell will change to
yellow signifying a state of high caution.

NOTE

Depending on the speed of your machine, the color of the cell may
not have changed at all or may have changed to some other color.
Experiment with values for workload until the cycle_time is
in the range 0.0002 .. 0.0004999.

Figure 1-32. Modified values in NightProbe Spreadsheet Viewer

- Change the value of workload to 10000. Notice the color of the cell
containing the cycle_time value changes to red, signifying a state of
high danger.

NOTE

Depending on the speed of your machine, the color of the cell may
not have changed at all or may have changed to some other color.
Experiment with values for workload until the cycle_time is
greater than 0.0005.

- Change the value of workload to 100. Notice the color of the cell con-
taining the cycle_time value changes back to white.
1-44

Using the PLDE
NOTE

Depending on the speed of your machine, the color of the cell may
not have changed at all or may have changed to some other color.
Experiment with values for workload until the cycle_time is
less than 0.0002.
1-45

PowerWorks Linux Development Environment Tutorial
Using NightTrace 1

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log application data events from simultaneous pro-
cesses executing on multiple CPUs or even multiple systems. NightTrace combines appli-
cation events with PowerMAX OS events and presents a synchronized view of the entire
system. NightTrace allows users to zoom, search, filter, summarize, and analyze events in
a wide variety of ways. PowerMAX OS events include individual system calls, context
switches, machine exceptions, page faults and interrupts. Application events are defined
by the user allowing logging of the data items associated with each event.

NightTrace allows users to manage user and kernel NightTrace daemons, providing the
user with the ability to start, stop, pause, and resume execution of any of the daemons
under its management.

Invoking NightTrace 1

IMPORTANT!!!

If you do not have a system running PowerMAX OS networked to
your Linux system, you may use NightTrace to analyze the kernel
and user trace data files that were copied from the installation CD
to the working directory you created in “Getting Started” on page
1-5. Follow the instructions under “Invoking NightTrace from the
command line” on page 1-46.

Otherwise, continue with the section titled “Invoking NightTrace
from NightProbe” on page 1-51.

Invoking NightTrace from the command line 1

To invoke NightTrace from the command line

- From the working directory you created in “Getting Started” on page 1-5
on the Linux system, enter the following command

ntrace
This will open the NightTrace Main Window. (See the section titled “ntrace Argu-
ments” in the NightTrace User’s Guide (0890398) for more information about
invoking NightTrace.)
1-46

Using the PLDE
Figure 1-33. NightTrace Main window

For more information on the NightTrace Main Window, see the chapter titled “Using the
NightTrace Main Window” in the NightTrace User’s Guide (0890398).

Loading data and configuration files 1

Since we do not have a PowerMAX OS system connected to our Linux system, we will
load the kernel trace and user trace data as well as a NightTrace configuration file from
those files that we copied in “Copying tutorial-related files from the installation CD” on
page 1-7.

Those files are:

ntrace.kernel-data a file containing the kernel trace data

ntrace.user-data a file containing the user trace data

ntrace.config a file containing string tables, format tables,
and a NightTrace display page, including
descriptions of NightTrace display objects
for the application’s user trace events

To load data and configuration files

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.
1-47

PowerWorks Linux Development Environment Tutorial
- Select the file ntrace.config from the list of Files.

- Press the OK button to create the display page as specified by the
configuration file.

NightTrace will present a user trace display page configured using the
ntrace.config file as shown below:

Figure 1-34. NightTrace user trace display page

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.user-trace from the list of Files.

- Press the OK button to load the user trace data.

- Press the Scroll Out button multiple times until the horizontal scroll
bar fills the entire display

NightTrace will load the user trace data into the display page we created in the pre-
vious step:
1-48

Using the PLDE
Figure 1-35. NightTrace user trace display page with data loaded

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.kernel-trace from the list of Files.

- Press the OK button to load the kernel trace data.

- Press the Scroll Out button multiple times until the horizontal scroll
bar fills the entire display area.

NightTrace will create a kernel display page and load the kernel trace data into it as
shown below:
1-49

PowerWorks Linux Development Environment Tutorial
Figure 1-36. NightTrace kernel display page

For more information on display pages, see The Display Page in the NightTrace User’s
Guide (0890398).

IMPORTANT!!!

Proceed to the section titled “Positioning the current time line” on
page 1-64.
1-50

Using the PLDE
Invoking NightTrace from NightProbe 1

To invoke NightTrace from NightProbe

- From the Tools menu of the NightProbe Data Recording window, select
the NightTrace System Tracing and Analysis menu item.

The NightTrace Main Window is opened.

Figure 1-37. NightTrace Main Window

For more information on the NightTrace Main Window, see the chapter titled “Using the
NightTrace Main Window” in the NightTrace User’s Guide (0890398).

NightTrace allows users to manage user and kernel NightTrace daemons. It provides
users with the ability to define a session consisting of one or more daemon definitions
which can be saved for future use. These definitions include daemon collection modes
and settings, daemon priorities and CPU bindings, and data output formats, as well as the
trace event types that are logged by that particular daemon.

Using NightTrace, users can manage multiple daemons simultaneously on multiple target
systems from a central location.

NightTrace offers the user the ability to start, stop, pause, and resume execution of any of
the daemons under its management. The user may also view statistics as trace data is
being gathered as well as dynamically enable and disable events while a particular dae-
mon is executing.
1-51

PowerWorks Linux Development Environment Tutorial
Configuring a user daemon 1

NightTrace allows the user to configure a user daemon to collect user trace events.

User trace events are generated by:

- user applications that use the NightTrace API

- NightProbe (see the description of the To NightTrace menu item in the
chapter titled “Using the Data Recording Window” in the NightProbe
User’s Guide (0890480).

We will configure a user daemon to collect the events that our sim program logs.

To configure a user daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition Dialog is displayed.

Figure 1-38. Daemon Definition dialog

- Press the Import... button at the bottom of the Daemon Definition Dialog.

You will be presented with a Login dialog.
1-52

Using the PLDE
Figure 1-39. Login dialog

- Enter the name of the system on which the sim application is run-
ning in the Target System field.

- Enter your login name on that system in the User field.

- Press the OK button.

You will then be presented with the Enter Password dialog.

- Enter the password for the user specified in the Login dialog.

When user authentication completes, the Import Daemon Definition dialog is pre-
sented.

Figure 1-40. Import Daemon Definition dialog

The Import Daemon Definition dialog allows the user to define daemon attributes
based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the sim application.

- Press the OK button.
1-53

PowerWorks Linux Development Environment Tutorial
The Import Daemon Definition closes and the Daemon Definition Dialog is popu-
lated with the imported attributes.

- Press OK to complete the configuration of the user application daemon.

Creating a customized display page 1

Now that we have configured our user application daemon, we can create a NightTrace
display page in which we will view our trace data.

For this example, we would like to use a customized display page so we will use the con-
figuration file shipped with the PowerWorks Linux Development Environment Installa-
tion CD. This file, named ntrace.config, was copied to our local tutorial direc-
tory earlier in the step “Getting Started” on page 1-5.

To create a customized display page

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.config from the list of Files.

- Press the OK button to create the display page as specified by the
configuration file.

The customized NightTrace display page is presented.
1-54

Using the PLDE
Figure 1-41. Customized NightTrace display page

Creating the user application daemon 1

Once the user application daemon is configured, it must be created before it can begin col-
lecting events.

To create the user application daemon

- Select the user application daemon in the Daemon Details Area of the
NightTrace Main Window.

- Press Launch.

The user application daemon is now created and ready to capture data. Note that the
daemon is in a Paused state.

NOTE

Launching a daemon does not imply that the daemon begins to
collect events.
1-55

PowerWorks Linux Development Environment Tutorial
Resuming execution of the user application daemon 1

Now that the daemon is configured and created, waiting in a Paused state, we may
resume its execution so that it may begin collecting events.

To resume execution of the user application daemon

- Select the user application daemon in the Daemon Details Area of the
NightTrace Main Window.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

Displaying the user trace data 1

Now that we have our customized display page, we can display the user trace data.

To display the user trace data

- Press the Zoom Out button on the user display page repeatedly until data
fills the grid area. You should see a saw-toothed pattern similar to the one
shown in the figure below.
1-56

Using the PLDE
Figure 1-42. User trace data in customized NightTrace display page

NOTE

This display page is configured to only display events from the
user application.

Inserting a patchpoint 1

NightView allows the use of patchpoints while debugging a process. Patchpoints are loca-
tions in the debugged process where a patch, usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop to change the value of the arg vari-
able in order to modify the output of the trace data:

 arg := counters.get mod 10;
 ntb.trace_event(cycle_end, arg);
1-57

PowerWorks Linux Development Environment Tutorial
To insert a patchpoint in a program

- In the NightView Principal Debug Window, click on the line:

ntb.trace_event(cycle_end, arg);

- Select Set Patchpoint... from the Eventpoint menu. This will open
the Set a New Patchpoint dialog.

Figure 1-43. Setting a new patchpoint

- Enter the expression:

arg := 10 - arg

in the Evaluate field.

- Press OK.

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

 patchpoint at line_number eval arg := 10 - arg
where line_number coincides with the line:
1-58

Using the PLDE
 trace_event_arg (cycle_end, arg);

See patchpoint for details on the use of this command.

Viewing streaming trace output 1

Now that we’ve modified the behavior of the program using patchpoints in NightView
(see “Inserting a patchpoint” on page 1-57), we can see the effect our change has on the
output of the user trace data.

Since the user trace daemon was configured to stream the output directly to the Night-
Trace display buffer, we may view it immediately even while additional trace data is being
collected.

To view streaming data

- On the Interval Control Bar under the grid on the NightTrace display page,
press the right arrowhead continually until you see the shape of the saw-
tooth pattern change from an ascending pattern to a descending pattern as
shown in the figure below. (See the section titled “The Interval Scroll Bar”
in the chapter “Viewing Trace Event Logs with ntrace” in the NightTrace
User’s Guide (0890398).
1-59

PowerWorks Linux Development Environment Tutorial
Figure 1-44. User trace data after patchpoint inserted

NOTE

We've just modified the path and behavior of our real-time appli-
cation without stopping it or causing it to miss any deadlines - just
one of the many features of NightView!

Configuring a kernel daemon 1

NightTrace allows the user to configure a kernel daemon to collect data about the execu-
tion time of interrupts, exceptions, system calls, context switches, and I/O to various
devices.
1-60

Using the PLDE
To configure a kernel daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition dialog is displayed.

Figure 1-45. Daemon Definition dialog

- Select the Kernel radiobutton located in the Target section on the Gen-
eral page to indicate that we want this daemon to collect kernel events.

- Press OK to complete the configuration of this daemon.

Creating the kernel daemon 1

Once the daemons are configured, they must be created before they can begin collecting
events.

To create the daemons

- Select the kernel daemon in the Daemon Details Area of the NightTrace
Main Window.

- Press Launch.
1-61

PowerWorks Linux Development Environment Tutorial
The kernel daemon is now created and ready to capture data. Note that the daemon
is in a Paused state.

In addition, a NightTrace kernel display page appears.

Figure 1-46. NightTrace kernel display page

NOTE

Launching a daemon does not imply that the daemon begins to
collect events.
1-62

Using the PLDE
Resuming execution of the kernel daemon 1

Now that the kernel daemon is configured and created, waiting in a Paused state, we
may resume its execution so it may begin collecting events.

To resume execution of the kernel daemon

- Select the kernel daemon in the Daemon Details Area of the NightTrace
Main Window.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

NOTE

You may display the kernel data as it is streaming. See “Display-
ing the kernel trace data” in the following section.

- When the value in the Logged column reaches around 50000 events,
press the Pause button.

IMPORTANT

The current activity on the system has a drastic effect on how
much data will be collected. Streaming data for a few seconds on
a busy system may collect hundreds of thousands of kernel events
while on a fairly idle system it may take a few minutes to reach
that level.

Displaying the kernel trace data 1

As we are collecting trace data from the PowerMAX OS kernel, we can display that data
in the NightTrace kernel display page.

To display the kernel trace data

- Select only the kernel daemon in the Daemon Details Area of the Night-
Trace Main Window (as indicated by the K in the Type column).

- Press Display.

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by the setting of the Stream checkbox on the General page of
the Daemon Definition dialog), pressing this button causes a flush of the data cur-
rently in the trace buffer to the NightTrace display buffer.
1-63

PowerWorks Linux Development Environment Tutorial
Flushing the trace data 1

To flush the trace data

- Select both daemons from the Daemon Details Area of the NightTrace
Main Window).

- Press Flush.

This flushes any remaining trace events from the buffers associated with the dae-
mons currently selected in the Daemon Control Area to the NightTrace display
buffer. (If our trace data was being output to output files, the trace events would be
flushed to those files.)

Stopping the daemons 1

Once we are finished accumulating enough data from the daemons, we can stop them.

To stop the daemons

- Select both daemons from the Daemon Details Area of the NightTrace
Main Window).

- Press Halt.

The state of both daemons change from Running to Halted.

Positioning the current time line 1

For those users without a PowerMAX OS system networked to their Linux system, we
will continue with an analysis of the trace data that we loaded in “Loading data and con-
figuration files” on page 1-47.

For those users who have generated live data from a PowerMAX OS system networked to
their Linux system, we will analyze that data in the following sections.

We will position the current time line to a point somewhere after the kernel trace data
started being generated.

To position the current time line

- On the Interval Control Bar under the grid on the kernel display page, press
the right arrowhead continually until data appears in the grid area. (See the
section titled “The Interval Scroll Bar” in the chapter “Viewing Trace
Event Logs with ntrace” in the NightTrace User’s Guide (0890398).

- Click in the center of the data displayed in the grid area of the kernel dis-
play page.
1-64

Using the PLDE
Note the information regarding interrupts, exceptions, system calls, and kernel
events on each CPU displayed in the DataBoxes on the left side of the grid area.

Figure 1-47. NightTrace kernel trace data

The DataBoxes are updated based on the current position of the current timeline and indi-
cate the last value of each data item that occurred on or before the timeline on each CPU.

NOTE

By default, user events are not displayed on this page even though
they may exist in the same interval.
1-65

PowerWorks Linux Development Environment Tutorial
Loading an eventmap file 1

Eventmap files map ASCII trace event names with numeric trace event IDs allowing the
user to reference events based on mnemonic tags or meaningful labels.

An eventmap file, ntrace.eventmap, was copied from the PowerWorks Linux Devel-
opment Environment Installation CD to our working directory in the step “Getting
Started” on page 1-5. This file contains a mapping of trace event names to the trace events
IDs logged in our user application.

We will load that eventmap file now so that we can refer to those event names in the next
section, “Searching for a user trace event”.

To load an eventmap file

- Press the Open... button at the bottom of the NightTrace Main Window.

You will be presented with an Open Display File dialog.

- Select the file ntrace.eventmap from the list of Files.

- Press the OK button to load the eventmap file.

Searching for a user trace event 1

To search for a user trace event

- Select the Search... menu item from the Tools menu on the NightTrace
display page containing the user trace data.

The NightTrace Search dialog is presented.
1-66

Using the PLDE
Figure 1-48. NightTrace Search dialog

- Enter cycle_start in the Event List field.

In sim.ada (see “sim.ada” on page A-2), we log a trace event immediately when
we start our cycle (exiting fbs_wait):

ntb.trace_event(cycle_start, counters.get);

NOTE

Because we loaded the ntrace.eventmap file (“Loading an
eventmap file” on page 1-66), we are able to specify the more
meaningful event name, cycle_start, in the Event List field
instead of the numeric trace event ID (110).

- Press the Search button.

- Press the Close button to dismiss the Search dialog.

Both display pages are positioned at the first occurrence in our data which meets our
search criteria.
1-67

PowerWorks Linux Development Environment Tutorial
Figure 1-49. User trace data after search

Zooming in 1

We can see a finer level of detail by zooming in on the user trace display page.

To zoom in

- Press the Zoom In button repeatedly until two black vertical lines with a
green bar between them appears.
1-68

Using the PLDE
Figure 1-50. Zoomed in view of user trace data

Remember that our program logs a trace event immediately when we start our cycle (exit-
ing fbs_wait), then it performs some calculations using counters.work, and finally
it logs another trace event when it is finished before returning to the fbs_wait call at the
top of the loop. (See “sim.ada” on page A-2.)

The black lines represent the individual events logged in the application by the
trace_event_arg() API calls. The green bar is a state graph; the start of the state is
defined to be the cycle_start event logged when we begin our cycle (event #110) and
the end of the state is defined by cycle_end (event #111) which is logged when we
complete our cycle.

The red line that appears at the end of the state graph is an entry in a datagraph whose
value is that of the argument logged with the cycle_end event in the second
trace_event_arg() call. (This value which ranges from 1 to 9).

Examining the kernel trace data 1

Now let’s take a look at the kernel trace data to see how it coincides with the user trace
data.
1-69

PowerWorks Linux Development Environment Tutorial
NOTE

NightTrace automatically synchronizes all display pages so that
every display page shows the same time frame. Thus, our kernel
display page reflects the system activity corresponding to the time
period displayed in our user trace display page.

Figure 1-51. Zoomed in view of kernel display page
1-70

Using the PLDE
NOTE

The following analysis of the kernel trace data is based on
Figure 1-51. If you are analyzing live data, your kernel display
page may look different. You may see additional activity, most
likely red interrupt activity, between the exit and reentry to
fbs_wait. Additionally, the colors in the PID rows will differ.

The boxes with textual information on the left hand side of the window change when the
current time line changes. The current time line is the vertical dashed lined that runs the
entire length of the display grid. The text in the boxes to the left describes the most recent
item to the left of the time line. Each row describes a different event or entity. Items in
the Red row are interrupts, items in the green row are machine exceptions, items in the
blue row are system calls, items in the next row are process identifiers and items in the last
row individual kernel trace events.

In Figure 1-51, the first red bar displayed on the grid for CPU 3 indicates the interrupt
from the RCIM device. (If you collected your own kernel data, the CPU where the inter-
rupt occurred could be on any CPU.) Note that the red text box to the left for CPU 3 indi-
ciates it was an rcimintr interrupt.

NOTE

In Figure 1-51, the description of the interrupt name may be either rcimintr or
fbs_intr, depending on your system configuration.

A context-switch then occurs on CPU 0 as indicated by the first black vertical line to the
right of the red bar. The blue bar following that first black line is the fbswait system
call. In our source code, this is when we exit the fbswait call.

The application then performs its calculations (as indicated by the goldenrod-colored bar
in the PID row) before it comes back to the fbswait call (the second blue bar).

The lack of any activity in the white space in the top three rows for that CPU indicates that
the user application did not make any intervening system calls, received no machine
exceptions, and was not disturbed by some other interrupt. The PID graphs shows a col-
ored box when a process is context-switched onto a CPU. The color of each process is
automatically generated (and in this case is goldenrod) so that context switches are readily
identified. Each process retains it’s assigned color throughout the data set.

In a real-life scenario, we would tune and shield the system for optimal real-time perfor-
mance.

Exiting the tools 1

In conclusion of our tutorial, we will exit each of the tools.
1-71

PowerWorks Linux Development Environment Tutorial
Exiting NightTrace 1

To exit NightTrace

- From the NightTrace Main Window, select Exit Immediately from the
NightTrace menu.

Exiting NightProbe 1

To exit NightProbe

- From the NightProbe Data Recording window, press the Stop button to
stop sampling data.

- Press the Disconnect button to disconnect from the application.

- From the File menu, select Exit.

- When NightProbe presents the warning dialog asking if you would like to
save configuration changes, press No.

Exiting NightSim 1

To exit NightSim

- In the NightSim Scheduler window, press the Stop button.

- Press the Remove button.

Figure 1-52. Removing the scheduler

You will be presented with the following dialog:
1-72

Using the PLDE
Figure 1-53. Remove Scheduler dialog

- Press Yes to kill the processes that are currently scheduled on the sched-
uler.

- From the NightSim menu, select Exit.

- When NightSim presents the warning dialog asking if you would like to
save the current configuration, press No.

Exiting NightView 1

To exit NightView

- From the NightView Principal Debug Window, select

Exit (Quit NightView)

from the NightView menu.

Exiting NightBench 1

To exit NightBench

- From the NightBench Development window, select Exit NightBench
Session from the Development menu.

Conclusion 1

This concludes our tutorial for the PowerWorks Linux Development Environment.
1-73

PowerWorks Linux Development Environment Tutorial
1-74

Tutorial Files
A
Appendix ATutorial Files

1
1
1

The following sections show the source listings for the files used in the PowerWorks Linux
Development Environment Tutorial.
A-1

PowerWorks Linux Development Environment Tutorial
sim.ada A

with night_trace_bindings;
with rt_interface;
with ada.real_time;
with ada.real_time.conversions;
with counters;

procedure sim is
--
 package rt renames rt_interface;
 package ntb renames night_trace_bindings;
 package art renames ada.real_time;
 package artc renames ada.real_time.conversions;

 arg : integer;
 status : integer;
 cycle_start : constant := 110;
 cycle_end : constant := 111;
 start : art.time;
 stop : art.time;
--
begin
--
 pragma task_cpu_bias(illegal_use_of); -- Remove this line

 ntb.trace_begin (trace_file => "sim-data",
 use_spl => false,
 use_resched => false,
 lock_pages => false);
 ntb.trace_open_thread ("sim");

 counters.set_workload(0);

 loop
 rt.fbs_wait(status);
 exit when status /= 0;
 start := art.clock;
 counters.increment(1);
 ntb.trace_event(cycle_start, counters.get);
 counters.work;
 stop := art.clock;
 arg := counters.get mod 10;
 ntb.trace_event(cycle_end, arg);
 counters.cycle_time := float(artc.to_seconds(art."-"(stop,start)));
 end loop;

 ntb.trace_end;
--
end sim;
A-2

Tutorial Files
counters.ada A

package counters is
--
 procedure increment(i : integer);
 procedure set_workload (workload : integer);

 function calculate return integer;
 function get return integer;

 procedure work;
 cycle_time : float;
--
private
--
 i_counter : integer := 0;
 workload : integer := 10000;
--
end counters;

with ada.real_time;
with ada.real_time.conversions;
package body counters is
--
 procedure spin (seconds : long_float) is
 use ada.real_time;
 mark : time := clock;
 begin
 loop
 exit when
 ada.real_time.conversions.to_seconds(clock-mark) >= seconds;
 end loop;
 end spin;

 procedure increment (i : integer) is
 begin
 i_counter := (i_counter + i) mod 10;
 end increment;

 procedure work is
 x : long_float := 0.0;
 pragma volatile (x);
 begin
 for i in 1..workload loop
 x := x * long_float(calculate);
 end loop;
 spin (0.000100);
 end work;

 function calculate return integer is
 begin
 return i_counter * 2;
 end calculate;

 function get return integer is
 begin
 return i_counter;
 end get ;
A-3

PowerWorks Linux Development Environment Tutorial
 procedure set_workload (workload : integer) is
 begin
 counters.workload := workload;
 end set_workload;
--
end counters;
A-4

Tutorial Files
art.conversions.ada A

package ada.real_time.conversions is
--
 function to_seconds (t : time_span) return long_float ;
--
end ada.real_time.conversions ;

package body ada.real_time.conversions is
--
 function to_seconds (t : time_span) return long_float is
 sc : seconds_count;
 ts : time_span;
 res : long_float ;
 begin
 split(time'(time_of(0,t)), sc, ts);
 res := long_float (sc) ;
 ts := ts * 1_000_000_000 ;
 split(time'(time_of(0, ts)), sc, ts);
 return res + (long_float(sc)/1_000_000_000.0) ;
 end to_seconds ;
--
end ada.real_time.conversions ;
A-5

PowerWorks Linux Development Environment Tutorial
A-6

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Tutorial

0898100

Pow
erW

orks Linux
D

evelopm
ent Environm

ent

	PowerWorks Linux Development Environment Tutorial
	Preface
	Chapter 1 Using the PLDE
	Appendix A Tutorial Files
	Illustrations

	Using the PLDE
	Overview
	Before you begin
	Remote shell access
	Privileges
	Additions to PATH

	Getting Started
	Creating a working directory
	Exporting the filesystem
	Mounting the filesystem
	Copying tutorial-related files from the installation CD

	Using NightBench
	Creating a new environment
	Introducing existing source files into the environment
	Setting compile options
	Adding an environment to the Environment Search Path
	Defining a partition
	Building a partition
	Showing a reference
	Correcting an error
	Rebuilding a partition
	Before you continue

	Using NightSim
	Invoking NightSim
	Configuring the Scheduler
	Scheduling a process
	Setting up the scheduler

	Using NightView
	Setting a monitorpoint
	Resuming execution
	Starting the simulation
	Monitoring the simulation

	Using NightProbe
	Invoking NightProbe
	Configuring NightProbe
	Selecting the target system
	Connecting to the target program
	Starting sampling
	Modifying program data

	Using NightTrace
	Invoking NightTrace
	Invoking NightTrace from the command line

	Loading data and configuration files
	Invoking NightTrace from NightProbe

	Configuring a user daemon
	Creating a customized display page
	Creating the user application daemon
	Resuming execution of the user application daemon
	Displaying the user trace data
	Inserting a patchpoint
	Viewing streaming trace output
	Configuring a kernel daemon
	Creating the kernel daemon
	Resuming execution of the kernel daemon
	Displaying the kernel trace data
	Flushing the trace data
	Stopping the daemons
	Positioning the current time line
	Loading an eventmap file
	Searching for a user trace event
	Zooming in
	Examining the kernel trace data

	Exiting the tools
	Exiting NightTrace
	Exiting NightProbe
	Exiting NightSim
	Exiting NightView
	Exiting NightBench

	Conclusion

	Tutorial Files
	sim.ada
	counters.ada
	art.conversions.ada

