
 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

Concurrent C/C++
Version 7.3 Release Notes (Linux)

November 2006

0898497-7.3
READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

Copyright
Copyright 2006 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with
Concurrent Computer Corporation products by Concurrent Computer Corporation personnel, customers, and end–users. It may not be
reproduced in any form without the written permission of the publisher.

Disclaimer
The information contained in this document is subject to change without notice. Concurrent Computer Corporation has taken efforts to
remove errors from this document, however, Concurrent Computer Corporation’s only liability regarding errors that may still exist is to
correct said errors upon their being made known to Concurrent Computer Corporation.

 License
Duplication of this manual without the written consent of Concurrent Computer Corporation is prohibited. Any copy of this manual
reproduced with permission must include the Concurrent Computer Corporation copyright notice.

Trademark Acknowledgments
MAXAda, NightBench, PowerWorks, PowerMAXION, PowerMAX OS, TurboHawk, Power Hawk, and RedHawk are trademarks of
Concurrent Computer Corporation.

Night Hawk is a registered trademark of Concurrent Computer Corporation.

Motorola is a registered trademark of Motorola, Inc.

PowerStack is a trademark of Motorola, Inc.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark of Red Hat, Inc.

SUSE is a registered trademark of Novell, Inc., in the United States and other countries.

Intel is a registered trademark of Intel Corporation.

X Window System is a trademark of The Open Group.

Contents
1.0 Introduction . 1

2.0 Documentation . 2

3.0 Prerequisites . 3
3.1 Host System . 3

3.1.1 Software . 3
3.1.2 Hardware . 3

3.2 Target System . 3
3.2.1 Software . 3
3.2.2 Hardware . 3

4.0 System Installation . 4
4.1 Separate Host Installation . 4
4.2 Cross-Development Libraries . 5
4.3 Multiple Releases . 6

5.0 Using Concurrent C/C++ with the PLDE 7
5.1 PATH Considerations . 7
5.2 Include Files and Libraries . 7
5.3 OS Versions and Target Architectures 8
5.4 Shared vs. Static Linking . 9
5.5 Makefile Considerations . 9

5.5.1 Explicit Modification Using ec/ec++ 10
5.5.2 Use of /usr/ccs/crossbin in PATH Environment Variable . . . 10
5.5.3 Use of CC Environment or Make Variables 10

6.0 Changes in This Release . 12
6.1 Invoking the compiler . 12
6.2 Debug Information: location lists 12
6.3 Debug Information: --compress_debug_info 13
6.4 Enhancements to c.script . 13
6.5 static_cast between enum types allowed 13
6.6 Operator keywords in #if directives 13
6.7 Value-initialization . 14
6.8 GNU C compatibility option . 14
6.9 __alignof__ equivalent to __ALIGNOF__ 15
6.10 #warning directive . 15
6.11 Semantic analysis of friends of class templates 16
6.12 Indirect flexible array members in C99 mode 16
6.13 Command-line option to allow long long in strict mode 16
6.14 Limiting the amount of instantiation context output in diagnostics . 16
6.15 __ALIGNOF__ no longer requires parentheses around argument
 expressions . 17
6.16 C99, GNU C mode: lowering of bool increment/decrement 17
6.17 GNU C: variable-length array fields of local structs 17
Concurrent C/C++ Version 7.3 Release Notes (PowerMAX OS) i

ii
6.18 GNU C compatibility: "auto" ignored in file scope 17
6.19 GNU C: incomplete array parameter types 18
6.20 GNU C: --short_enums option 18
6.21 GNU C compatibility: parameter names in unprototyped declarations 18
6.22 GNU C mode: typedefs with sign or size modifiers 18
6.23 How conversion functions compete with constructors 18
6.24 GNU C mode: warning only on invalid uses of "inline" 19
6.25 Template function with explicit arguments treated as simple function 19
6.26 Select C99 features . 19
6.27 --[no]_vector_safe_prologs compile option 19
6.28 -Qall_variables_in_memory . 19
6.29 Code quality improvements . 20

7.0 Cautions . 21
7.1 va_list structure format . 21
7.2 Retain source . 21
7.3 curses.h and bool . 21
7.4 Structure compares . 21

8.0 Direct Software Support . 23
Concurrent C/C++ Version 7.3 Release Notes (PowerMAX OS)

1.0. Introduction
Concurrent C/C++ is part of the PowerWorksTM Linux Development Environment (PLDE) and utilizes
Edison Design Group’s C++ front end and Concurrent’s Common Code Generator (CCG) technology to
produce highly optimized object code tailored to Concurrent systems running PowerMAX OSTM.

There are several compiler switches that provide a degree of compatibility with previous drafts of the
ANSI C++ Standard, USL versions 2.1 and 3.0 C++ compilers (also known as cfront), Kernighan and
Ritchie C and SVR4 C, in addition to compatibility with the ANSI C++ and C languages.

This release combines into a single compiler what were, previous to release 5.1, separate C and C++
compilers. Release 5.1 was the “next” release after Concurrent C 4.3 and Concurrent C++ 3.1 compilers.
This release does not require un-installing previous versions of the C and C++ compilers. It installs in
its own unique location and provides a mechanism for supporting the use of multiple releases.

This release provides a command-line-based program development environment for building complex
projects. Alternatively, the user may use NightBenchTM to interface with this program development
environment.

As of release 5.1, C/C++ no longer ships with USL iostream and complex libraries. They are available
separately.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 1

2

2.0. Documentation
Table 2-1 lists the Concurrent C/C++ 7.3 documentation available from Concurrent.

Copies of the Concurrent documentation can be ordered by contacting the Concurrent Software Support
Center. The toll-free number for calls within the continental United States is 1-800-245-6453. For calls
outside the continental United States, the number is 1-954-283-1822 or 1-305-931-2408.

Additionally, the manuals listed above are available:

- online using the PowerWorks Linux Development Environment utility, nhelp

- in PDF format in the documentation directory of the PLDE Installation CD

- on the Concurrent Computer Corporation web site at www.ccur.com

Table 2-1. Concurrent C/C++ Version 7.3 Documentation

Manual Name Pub. Number

Concurrent C/C++ Reference Manual 0890497-040

Concurrent C/C++ Version 7.3 Release Notes (Linux) 0898497-7.3
Concurrent C/C++ Version 7.3 Release Notes (Linux)

http://www.ccur.com/isd_support_documentation.asp

3.0. Prerequisites
Prerequisites for Concurrent C/C++ Version 7.3 for both the host system and target system are as
follows:

3.1. Host System

3.1.1. Software
• Any of the following operating systems:

- Red Hat® Linux® 8.0 or 9.0

- Red Hat Enterprise Linux WS 3.0 or 4.0

- RedHawkTM Linux 1.4 or later

- SUSE® Linux Enterprise Real Time 10

• Cross development packages for each PowerMAX OS system to be targeted (see “Cross-Develop-
ment Libraries” on page 5)

3.1.2. Hardware
• an Intel®-based PC - 300Mhz or higher (recommended minimum configuration)
• 64MB physical memory (recommended minimum configuration)

3.2. Target System

3.2.1. Software
• PowerMAX OS 4.3 or later

3.2.2. Hardware
• Computer Systems:

Power HawkTM 620 and 640
Power Hawk 710, 720 and 740
Power Hawk 910, 920 and 940
PowerStackTM II and III
Night Hawk® Series 6000
TurboHawkTM

PowerMAXIONTM

• Board-Level Products:
Motorola® MVME2604
Motorola MVME4604
Concurrent C/C++ Version 7.3 Release Notes (Linux) 3

4

4.0. System Installation
Installation of the host portion of Concurrent C/C++ is normally done as part of the general installation
of the PowerWorks Linux Development Environment software suite. A single command installs (or
uninstalls) all software components of the PLDE, as described in the PowerWorks Linux Development
Environment Release Notes (0898000).

The following section describes how to install (or uninstall) Concurrent C/C++ separately from the
PLDE suite for those rare cases when this is necessary.

4.1. Separate Host Installation

In rare cases, it may be necessary to install (or uninstall) Concurrent C/C++ independent of the
installation of the PowerWorks Linux Development Environment software suite. This may be done
using the standard Linux product installation mechanism, rpm (see rpm(8)).

The names of the RPMs associated with Concurrent C/C++ 7.3 are:

ccur-invoker
plde-c++-7.3
plde-c++help-7.3
plde-common-tools-7.3

and the files associated with these RPMs, respectively, are:

ccur-invoker-000-*.i386.rpm
plde-c++-7.3-000-*.i386.rpm
plde-c++help-7.3-000-*.i386.rpm
plde-common-tools-7.3-000-*.i386.rpm

which can be found on the PowerWorks Linux Development Environment Installation CD.

NOTE

The package plde-c++help-7.3 contains the online manu-
a l s f o r t h e C / C + + c o m p i l e r. T h e i n s t a l l a t i o n o f
plde-c++help-7.3 is not necessary for the proper opera-
tion of the compiler.

NOTE

The user must be root in order to use the rpm product installa-
tion mechanism on the Linux system.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

To install the Concurrent C/C++ RPMs, issue the following command on your Linux system:

rpm -i ccur-invoker-000-*.i386.rpm \
 plde-c++-7.3-000-*.i386.rpm \
 plde-c++help-7.3-000-*.i386.rpm \
 plde-common-tools-7.3-000-*.i386.rpm

To uninstall the Concurrent C/C++ RPMs, use the following command:

rpm -e plde-c++help-7.3 \
 ccur-invoker \
 plde-c++-7.3 \
 plde-common-tools-7.3

NOTE

The cross F77 compiler requires both ccur-invoker and
plde-common-tools-7.3, while the native Linux Concur-
rent F77 compiler requires ccur-invoker. The uninstall
command above will fail if either of these compilers are
installed on the system. You may need to omit one or both of
these RPMs from the uninstall command.

4.2. Cross-Development Libraries

In order to cross-compile and cross-link on the Linux system, it is necessary to have certain PowerMAX
OS libraries installed on that system. These libraries are normally installed as part of the PowerWorks
Linux Development Environment.

The name of the RPM containing the PowerMAX OS libraries minimally required for cross-linking is:

plde-pmax-crossdev-version

NOTE

The version number is part of the name of the RPM. Because
of that, it is possible to install multiple RPMs on the Linux sys-
tem at the same time. This allows the user to generate executa-
bles for multiple PowerMAX OS versions from the same
Linux system.

User applications built with Concurrent C/C++ may require other capabilities which are provided by
additional RPMs included on the PLDE Installation CD. Refer to the section titled “Cross-Development
Libraries and Headers” in the PowerWorks Linux Development Environment Release Notes (0898000)
for more information.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 5

6

4.3. Multiple Releases
Release 5.1 of Concurrent C/C++ introduced the capability of having multiple releases installed on the
system simultaneously. This allows the system administrator and users greater flexibility in upgrading
to new compiler versions that may have incompatibility requiring recompilation or source modification.
It will also allow the installation of beta releases without interfering with those users who need to
continue using the official version of the compiler.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

5.0. Using Concurrent C/C++ with the PLDE
The following should be taken into consideration in order to use Concurrent C/C++ with the
PowerWorks Linux Development Environment.

5.1. PATH Considerations
On Linux systems, the cc, c++, gcc, and g++ commands invoke the native Linux compilers, which are
completely unrelated (and incompatible at the object level) with PowerMAX OS and the Concurrent
C/C++ cross-compiler.

To utilize the Concurrent C/C++ compiler, specify the following in your PATH environment variable:
PATH=$PATH:/usr/ccs/bin

The compiler should then be invoked with either ec or ec++.

However, if you wish to be able to invoke the Concurrent C/C++ compiler as cc or c++, insert the
following at the head of your PATH environment variable:

PATH=/usr/ccs/crossbin:$PATH

The /usr/ccs/crossbin directory contains commands named cc and c++ which invoke the
Concurrent C/C++ compiler as opposed to the Linux compilers.

See “Makefile Considerations” on page 9 below for more information.

5.2. Include Files and Libraries
By default, the Concurrent C/C++ compiler automatically looks for PowerMAX OS include files and
libraries in the tree rooted as:

/pmax/os/version/arch

where version and arch indicate the PowerMAX OS version and target architecture of your choice (see
“OS Versions and Target Architectures” on page 8 for more details).

Files located under /usr/include and /usr/lib are native Linux files and are unrelated and
incompatible with the corresponding files for PowerMAX OS. Do not attempt to utilize files from those
directories when building PowerMAX OS programs.

Remove any explicit references to these directories in:

- source files (e.g. #include "/usr/include/unistd.h")

- Makefiles (e.g. cc -I/usr/include)

- build scripts
Concurrent C/C++ Version 7.3 Release Notes (Linux) 7

8

Include file references of the form:

#include <unistd.h>

or

#include "unistd.h"

need not be changed. These forms are supported, as the appropriate /pmax/os/version/arch trees are
searched.

5.3. OS Versions and Target Architectures
The PowerWorks Linux Development Environment supports building PowerMAX OS programs for
various versions of PowerMAX OS and various systems.

The current versions of PowerMAX OS (osversion) that are supported are 4.3 and later.

The current architectures (arch) that are supported are:

- nh

- moto

- synergy

which correspond to the following systems:

System type architecture

PowerMAXION-4 nh

PowerMAXION nh

Night Hawk 6800 nh

Night Hawk 6800 Plus nh

TurboHawk nh

Power Hawk 610 moto

Power Hawk 620 moto

Power Hawk 640 moto

PowerStack moto

PowerStack II moto

Power Hawk 710 synergy

Power Hawk 720 synergy

Power Hawk 740 synergy

Power Hawk 910 synergy

Power Hawk 920 synergy

Power Hawk 940 synergy
Concurrent C/C++ Version 7.3 Release Notes (Linux)

NOTE

The default OS version is currently 4.3 and the default target
architecture is nh.

You can change the osversion and arch settings in several ways:

- Specify the options on the ec or ec++ command line:

ec -o main main.c --arch=arch --osversion=os

- Change the default for your user on a specific Linux system using the Concurrent
C/C++ command line utility c.release:

c.release -arch arch -osversion os

- When using the Concurrent C/C++ PDE utilities (c.build, etc.), you can:

- Set the arch and osversion for an environment using c.mkenv:

c.mkenv -arch arch -osversion os

- Set the arch and osversion for a specific partition using c.partition:

c.partition -oset "--arch=arch --osversion=os" main

5.4. Shared vs. Static Linking
By default, the Concurrent C/C++ compiler links with shared libraries.

Thus, if you attempt to execute your C++ program on a PowerMAX OS system it will require, at a
minimum, the shared library libCruntime.so.

If your PowerMAX OS system doesn't have either the Concurrent C/C++ product or the c++runtime
package installed, your program will fail to execute.

You can install the full PowerMAX OS version of the Concurrent C/C++ compiler, install just the
c++runtime package, or relink your program using static libraries.

The PowerMAX OS c++runtime package is included on the PowerWorks Linux Development
Environment Installation CD. See the section titled “Target Installation” in the PowerWorks Linux
Development Environment Release Notes (0898000) for installation instructions.

To link your program using static libraries, append the -Zlink=static option to your command line:
ec++ -o main main.c -Zlink=static

5.5. Makefile Considerations
Makefiles may already contain references to cc or c++ commands explicitly within them. Additionally,
if default rules for compilation, such as

.c.o:

or

.cc.o:

are not explicitly mentioned, the make processor will also attempt to invoke cc, c++, or even g++.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 9

10
By default, unless you have /usr/ccs/crossbin early in your PATH variable, these situations will
result in the Linux native compilers being invoked instead of the Concurrent C/C++ compiler.

To resolve these problems you can take any of the following approaches.

5.5.1. Explicit Modification Using ec/ec++
Ensure that /usr/ccs/bin is in your PATH environment variable.

Modify all occurrences of cc and c++ to utilize ec and ec++, respectively.

Supply default .c.o rules (and the like) to explicitly utilize the ec and ec++ commands.

5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable
Put /usr/ccs/crossbin at the head of your PATH environment variable.

This will cause references to cc and c++ to invoke the Concurrent C/C++ compiler as opposed to the
Linux compilers.

5.5.3. Use of CC Environment or Make Variables
If you don't want /usr/ccs/crossbin early on your PATH (perhaps because you plan to build for
Linux and/or PowerMAX OS at various times), then you'll want to just use the ec and ec++ when you
want to compile for PowerMAX OS (it is still necessary to add /usr/ccs/bin to your PATH).

One approach to using ec and ec++ that requires minimal changes to Makefiles, etc., is to use
environment variables or make variables to control which C/C++ compiler you're using. The following
commands will all build using the PLDE cross-compilers:

Short-lived environment variables:
CC=ec CXX=ec++ make arguments

make variables:
make arguments CC=ec CXX=ec++

Long-lived environment variables:
export CC=ec
export CXX=ec++
make arguments

You can also use the long-lived environment variable approach if you intend to always build for
PowerMAX OS, by adding the following to your login script (e.g. .profile or .login depending on
your shell):

export CC=ec
export CXX=ec++

Or, if you prefer finer-grained control, you can add lines like the following to the top of any Makefiles
that should use the Concurrent C/C++ cross-compiler:

CC=ec
CXX=ec++

The changes will then only affect the modified Makefiles. Note that this solution only works for
Makefiles that use the default .c.o and .cpp.o, etc. rules. If they contain hard-coded references to cc
or cc++, then either /usr/ccs/crossbin must be used, or the Makefiles must be changed to use
$(CC) and $(CXX) instead. If the Makefile references anything like g++ (Linux's GNU C++
compiler), then it will need to be changed, regardless.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

Here are two more complete and robust sets of variables which will work equally well with well-written
Makefiles.

CC=/usr/ccs/crossbin/cc
CXX=/usr/ccs/crossbin/c++
AS=/usr/ccs/crossbin/as
AR=/usr/ccs/crossbin/ar
LD=/usr/ccs/crossbin/ld

Or, alternatively:
CC=/usr/ccs/bin/ec
CXX=/usr/ccs/bin/ec++
AS=/usr/ccs/bin/as.pmax
AR=/usr/ccs/bin/ar.pmax
LD=/usr/ccs/bin/ld.pmax

These two sets are mentioned in order to provide very easy support for those users that want to compile
only for PowerMAX OS (/usr/ccs/crossbin) and for those users that may want to compile for
either Linux or PowerMAX OS, depending on the application (/usr/ccs/bin).
Concurrent C/C++ Version 7.3 Release Notes (Linux) 11

12
6.0. Changes in This Release
The following changes were made in Concurrent C/C++ Version 7.3.

6.1. Invoking the compiler

To use the release 5.1 and later of the C/C++ compiler, it is necessary to add the path /usr/ccs/bin
to your PATH environment variable. The C compiler is invoked by the ec command, and the C++
compiler is invoked by the ec++ command.

If an earlier C or C++ compiler is still installed on the system, the system administrator may choose to
configure the previous compiler commands (cc, hc, cc++, c++, analyze, and report) to invoke the
pre-5.1 release. However, by default, they will invoke the latest release. The user may override this
default behavior by setting the PDE_RELEASE environment variable to either pre5.1, 5.4, or another
release name, or by using the c.release command to select the user-specific default release.

6.2. Debug Information: location lists

Traditionally, debug information associates one location with a variable. However, modern optimizing
compilers (such as Concurrent’s) may keep a variable in a variety of locations over the variable’s
lifetime. For example, a variable stored in memory may be kept in a register during the execution of a
loop, or a variable may be bound to several registers over the course of its lifetime. Another drawback
of the traditional approach is that a location may not always contain the value of the variable. The
location may contain other values at any point where it is not required for the variable, such as before the
varaible is first set, or after it is last used. At such times, examination of the variable with the debugger
would produce incorrect values.

This release of the compiler implements a more detailed description of variable locations called “location
lists”. These lists specify where a variable is located as a function of the program counter. Thus, while
using the debugger, if the user is stopped inside a loop and the variable has been copied into a register,
the register will be used to examine the variable’s value. When the user is stopped outside the loop, and
the variable exists only in memory, then the memory location will be used to examine or modify the
variable. If a variable is in a register, but the user is stopped at a location when the register contains some
other value, such as after the last use of the variable, then the debugger will indicate that the variable has
no valid location.

It is recommended that NightView 5.4 or later be used to debug programs compiled with location lists.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

The -g option has been enhanced for location lists to give the user more control over the amount of debug
information the compiler generates:

-g0 (none) No debug information is generated. (This is the default if no -g
option is specified.)

-g1 (lines) Only line number information is generated. (In previous releases,
this was the default when no -g option was specified.)

-g2 (simple) Variables are described in only the most common location, and for
the entirety of their defined scope. (In previous releases, this was
the default when the -g option was specified.)

-g3 (full) Full location lists are generated for variables. (This is the default
if the -g option is specified without a numeric modifier.)

6.3. Debug Information: --compress_debug_info

When compiling under the PDE (using the c.* tools or NightBench), there is a new option available:

--compress_debug_info

This option will direct the compiler to record type definitions in the PDE’s database rather than in each
individual object file. The result is much smaller debug information in the final executable. Without the
same types defined repeatedly from each object file, the NightView debugger will operate much faster.

6.4. Enhancements to c.script

The c.script tool, which is used by NightBench to save an environment to a file, no longer generates
a /bin/sh script for re-creating an environment. Instead it generates a /usr/ccs/bin/c.sh script.
The /bin/sh script was slow because each command it invoked had to open, modify, and update the
database file. The /usr/ccs/bin/c.sh tool only needs to open the database one time, interpret all
the commands, then close the database when done. Apart from the script running much faster, this
change should be transparent to the user unless the user manually edits the script to make changes.

6.5. static_cast between enum types allowed

The standards committee ruled in Core Issue 128 that static_cast between enums is allowed.

The compiler now allows that.

 enum E1 { ke1 };
 enum E2 { ke2 };
 int main () {
 static_cast<E2>(ke1); // Now allowed
 }

6.6. Operator keywords in #if directives

The compiler now correctly processes operator keywords (like compl or new) in #if directives when
alternative tokens are enabled (see the --[no]_alternative_tokens option).
Concurrent C/C++ Version 7.3 Release Notes (Linux) 13

14
For example:

#if 0 or 1 // Now tests true when alternative tokens are enabled
#if delete 0 // Still invalid, but different diagnostic
#endif
#endif

6.7. Value-initialization

Value-initialization, a refinement of default-initialization introduced in TC1 of the C++ standard (and
Core Issue 178), is now implemented. It ensures that all fields of non-POD classes without user-written
constructors are properly initialized, by zeroing the storage for the object before calling the constructor.

6.8. GNU C compatibility option

The compiler now supports command-line switches --gcc and --no_gcc that provide some language
compatibility with GNU C compilers. The compatibility is neither exact (i.e., some extensions may have
a slightly different meaning) nor complete (some extensions are not implemented). This compatibility
is only provided in C mode; in fact, the command-line switches imply C mode even when no --c option
is specified.

The set of extensions enabled with the --gcc option initially includes:

• variable length arrays
• extended designated initializers
• compound literals (extended over C99 to allow more kinds of initializations)
• extended variadic macros
• identifiers with dollar signs
• C++-style comments
• digraphs
• long long (and related extensions provided by C99)
• hexadecimal floating-point constants
• nonconstant aggregate initializers for automatic variables
• the typeof operator
• the __inline__ (and inline) and __extension__ keywords
• __FUNCTION__ and __PRETTY_FUNCTION__
• zero-sized arrays
• the \e escape sequence
• empty structs and structs with flexible array members
• attributes
• &&label

• goto *expression
• builtin functions
• statement expressions i.e., ({...})
• multi-line strings
Concurrent C/C++ Version 7.3 Release Notes (Linux)

• binary conditional operators ("x ?: y")
• extern inline
• the sizeof operator is applicable to void and function types and evaluates to the value one
• arithmetic on pointers to void and function types is possible (they behave much like char*)
• variables can be redeclared with different top-level cv-qualifiers (the new qualification is merged

into existing qualifiers)
• locally declared labels
• the (ternary) conditional operation produces an lvalue if its second and third operand are lvalues
• the comma operator produces an lvalue if its second operand is an lvalue
• certain casts preserve the lvalueness of their operands
• case ranges
• union casts
• implicit conversions between integer and pointer types, and between incompatible pointer types,

with a warning
• implicit conversions between pointer types that drop cv-qualifiers
• typedef initializers
• --preinclude_macros option (like the GCC --imacros feature)
• do-nothing casts to struct or union types
• return expressions in void functions
• oversized bit fields are turned into ordinary fields
• old-style definitions with unpromoted parameter types can follow function prototypes with those

same parameter types
• _Bool keyword
• "?" operators with mixed void/non-void operands

6.9. __alignof__ equivalent to __ALIGNOF__

The compiler now accepts __alignof__ as an alternative spelling of __ALIGNOF__. The two are
exactly equivalent, but the former was added to increase compatibility with other C++ compilers. The
__ALIGNOF__ spelling remains available.

6.10. #warning directive

The compiler now supports a #warning directive that is similar to #error, except that it generates a
warning instead of a catastrophic error.

#warning Issue this warning

This new directive is not recognized in strict ANSI mode.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 15

16
6.11. Semantic analysis of friends of class templates

The standard currently specifies that semantic analysis of a friend function defined in a class template is
done when the enclosing class is instantiated, even if the friend function is never used. Most
implementations, however, defer such analysis until the function is used. As a result, there is a body of
code that requires such deferral to compile. We believe that the standard should be revised to require
such deferral and have changed the compiler accordingly pending consideration of the issue by the
standards committee.

 template <class T> struct A {
 friend void f(A a) {
 g(a);
 }
 };

 A<int> ai;

6.12. Indirect flexible array members in C99 mode

The default C99 mode of the front end now accepts structure definitions whose last field has a struct type
containing a flexible array member.

For example:

 struct F { int i; int a[]; };
 struct S {
 int n;
 struct F f; /* Now accepted in default C99 mode. */
 };

This is still an error in strict C99 mode.

6.13. Command-line option to allow long long in strict
mode

Except in C99 mode, the use of long long results in a diagnostic in strict mode. The --long_long
option can now be used to override this behavior so that code that uses long long can be compiled
without diagnostics in strict mode. The --long_long option must follow the strict mode option on the
command line.

6.14. Limiting the amount of instantiation context output in
diagnostics

In certain cases, the context information provided for errors during template instantiations can become
very lengthy. In many cases much of the context information is unnecessary. The compiler now provides
a mechanism to limit the volume of context output. The "context limit" is the maximum number of
context entries to be displayed as part of a diagnostic message and may be set with the
--context_limit command-line option.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

A value of zero is used to indicate that there is no limit. If the number of context entries exceeds the limit,
the first and last N context entries are displayed where N is half of the context limit. The following is an
example of the output when a portion of the context is suppressed using --context_limit=2. The
default limit is 10.

detected during:
 instantiation of "void f(T) [with T=int ***]" at line 4
 [20 instantiation contexts not shown]
 instantiation of "void f(T) [with T=int]"

6.15. __ALIGNOF__ no longer requires parentheses
around argument expressions

The __ALIGNOF__ (or __alignof__) operator now more closely matches the standard sizeof
operator in that it can be followed by an expression that is not parenthesized. For example:

int a = __ALIGNOF__ a;

This change makes the __ALIGNOF__ extension more compatible with similar extensions in other
compilers.

6.16. C99, GNU C mode: lowering of bool
increment/decrement

In C99 mode and GNU C mode, when a bool value is incremented or decremented it should be set to 1
(true) or 0 (false), respectively. The generated code for those cases now does that.

6.17. GNU C: variable-length array fields of local structs

The GNU C compiler accepts variable-length array fields in local struct declarations, which may result
in size and offset computation being delayed until run time. However, it common for this feature to be
used simply to indicate that the last field of a structure is a flexible array member. To enable the latter
idiom, the compiler now accepts such declarations in GNU C mode, but it discards the given length with
a warning, and sets the length of the array to zero. For example:

 void f(int n) {
 struct S {
 int a[n]; /* Warning: equivalent to "int a[0];". */
 };
 }

6.18. GNU C compatibility: "auto" ignored in file scope

In GNU C mode, the front end ignores the auto specifier with a warning when it appears on a file-scope
declaration.

 auto int i; // Warning in GNU C mode; error otherwise
Concurrent C/C++ Version 7.3 Release Notes (Linux) 17

18
6.19. GNU C: incomplete array parameter types

In GNU C mode, the compiler now accepts the following code:

 void f(int x[][]) {}

Within the definition of the function, the parameter x is treated as being a pointer to an incomplete type
(e.g., it cannot be subscripted).

6.20. GNU C: --short_enums option

The compiler now accepts the --short_enums option in GNU C mode. It indicates that all the
enumeration types should be treated as if they were declared with the packed attribute (i.e., the
underlying type should be the smallest integer type that can accommodate the enumerator constants).

6.21. GNU C compatibility: parameter names in
unprototyped declarations

The compiler now accepts parameter names in unprototyped function declarations that are not
definitions. A warning is issued (in strict C mode an error is issued).

 void f(i); /* Accepted with a warning in GNU C mode. */

6.22. GNU C mode: typedefs with sign or size modifiers

The compiler now accepts the modifiers short, long, signed and unsigned on typedef types
that are synonyms for builtin integer or floating-point types.

typedef int Int;
typedef unsigned Int UInt; /* Accept in GNU C and pcc modes; error
 in other modes. */

6.23. How conversion functions compete with constructors

The C++ standards committee in closing Core Issue 243 without action affirmed a piece of the C++
standard we weren't sure was intended - that constructors win out over conversion functions in
direct-initializations. Accordingly, we have changed the compiler to follow that rule, except in cfront
mode.

 extern "C" int printf(const char *, ...);
 struct B;
 struct A {
 A(B);
 };
 struct B {
 operator A() { printf("B::operator A()\n"); return A(*this); }
 } b;
 A::A(B) { printf("A(B)\n"); }
Concurrent C/C++ Version 7.3 Release Notes (Linux)

 void f(A) {}
 int main() {
 f(A(b)); // Prints A(B)
 f((A)b); // Prints A(B)
 return 0;
 }

6.24. GNU C mode: warning only on invalid uses of
"inline"

In GNU C mode, declaring a variable inline causes the front end to only issue a warning (rather than
an error). The keyword is ignored after the warning is issued.

 int inline x; /* Warning in GNU C mode; error in other modes. */

The use of inline in block-extern declarations of functions is treated similarly:

void f() {
 inline void g(); /* Warning in GNU C mode;
 error in other modes. */

6.25. Template function with explicit arguments treated as
simple function

In accordance with the proposed resolution to Core Issue 115, the compiler now treats a template function
with explicit template arguments as a simple function if the arguments are sufficient to select a unique
template function.

 template <class T> void f(T);
 int main() {
 &f<int>; // Okay now
 }

6.26. Select C99 features

The C99 features Variable Length Arrays and Complex Arithmetic have been added.

6.27. --[no]_vector_safe_prologs compile option

The --vector_safe_prologs compile option places a runtime test in function prologs to avoid
executing AltiVec instructions in the prolog. This makes it possible for the user to write a single function
that uses AltiVec instructions if available, or non-vector operations otherwise.

6.28. -Qall_variables_in_memory

This customer-requested option forces all variables to reside in memory.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 19

20
WARNING

Since this suppresses holding variables in hardware registers,
code quality will be significantly impacted.

This option may be helpful in debugging problems in user code, as it allows setting address traps on all
variables.

6.29. Code quality improvements

A number of code quality improvements have been made.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

7.0. Cautions

7.1. va_list structure format

When using PowerMAX OS 5.1 or later headers, varargs and stdarg use a different format for the
va_list structure. Because of this, the user should avoid passing va_list structures to routines that
are built with previous versions of the PowerMAX OS headers.

Code built with PowerMAX OS 5.1 or later headers can handle both the old and the new format of
va_list. There should therefore be no problem with old code, compiled with PowerMAX OS 5.0 and
earlier headers, passing va_list to code compiled with PowerMAX OS 5.1 headers.

For example, a dynamically-linked program that calls vfprintf and that is compiled under
PowerMAX OS 4.3 will have no problem running on a PowerMAX OS 5.1 or later system, calling the
vfprintf in the 5.1 or later version of libc.so. That same program compiled under PowerMAX OS
5.1 or later will not work if run on a PowerMAX OS 4.3 system. The vfprintf in the 4.3 version of
libc.so will not know how to handle the new va_list format.

7.2. Retain source

Users are encouraged to retain the source for their applications. Major releases may have changes in the
object-file format which will require the recompilation of their programs. This release is one such
release. In the process of implementing additional ANSI/ISO C++ features, some changes to “name
mangling” and interfaces to runtime routines were necessary.

7.3. curses.h and bool

The curses.h header file contains a bool type definition. In compilation modes where bool is a
keyword, this results in a compilation error. There are two workarounds. The user may turn off the bool
keyword with the --no_bool option, or he may use the following sequence when using the header file:

#define bool _curses_bool
#include <curses.h>
#undef bool

When using this second workaround, if the user makes reference to curses’ bool type definition, the user
must use the name _curses_bool instead.

7.4. Structure compares

The C 4.3 and earlier releases supported an enhancement that allowed the user to implicitly compare a
structure to zero (meaning all bytes of the structure are zero) in an if or while statement:

struct S {int a,b,c,d,e,f;} s;
...
if (s) {
...
Concurrent C/C++ Version 7.3 Release Notes (Linux) 21

22
As this enhancement is not present in any other major C compiler and is undocumented in the Concurrent
C compiler, it is no longer present in C/C++ 5.1. The user can easily write a small function to test a
structure for being zero should any code actually use this feature.
Concurrent C/C++ Version 7.3 Release Notes (Linux)

8.0. Direct Software Support
Software support is available from a central source. If you need assistance or information about your
system, please contact the Concurrent Software Support Center at our toll free number 1-800-245-6453.
For calls outside the continental United States, the number is 1-954-283-1822 or 1-305-931-2408. The
Software Support Center operates Monday through Friday from 8 a.m. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Computer Corporation
web site at http://www.ccur.com/isd_support_contact.asp or by sending an email to
support@ccur.com.
Concurrent C/C++ Version 7.3 Release Notes (Linux) 23

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

24
 Concurrent C/C++ Version 7.3 Release Notes (Linux)

	1.0. Introduction
	2.0. Documentation
	3.0. Prerequisites
	3.1. Host System
	3.1.1. Software
	3.1.2. Hardware

	3.2. Target System
	3.2.1. Software
	3.2.2. Hardware

	4.0. System Installation
	4.1. Separate Host Installation
	4.2. Cross-Development Libraries
	4.3. Multiple Releases

	5.0. Using Concurrent C/C++ with the PLDE
	5.1. PATH Considerations
	5.2. Include Files and Libraries
	5.3. OS Versions and Target Architectures
	5.4. Shared vs. Static Linking
	5.5. Makefile Considerations
	5.5.1. Explicit Modification Using ec/ec++
	5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable
	5.5.3. Use of CC Environment or Make Variables

	6.0. Changes in This Release
	6.1. Invoking the compiler
	6.2. Debug Information: location lists
	6.3. Debug Information: --compress_debug_info
	6.4. Enhancements to c.script
	6.5. static_cast between enum types allowed
	6.6. Operator keywords in #if directives
	6.7. Value-initialization
	6.8. GNU C compatibility option
	6.9. __alignof__ equivalent to __ALIGNOF__
	6.10. #warning directive
	6.11. Semantic analysis of friends of class templates
	6.12. Indirect flexible array members in C99 mode
	6.13. Command-line option to allow long long in strict mode
	6.14. Limiting the amount of instantiation context output in diagnostics
	6.15. __ALIGNOF__ no longer requires parentheses around argument expressions
	6.16. C99, GNU C mode: lowering of bool increment/decrement
	6.17. GNU C: variable-length array fields of local structs
	6.18. GNU C compatibility: "auto" ignored in file scope
	6.19. GNU C: incomplete array parameter types
	6.20. GNU C: --short_enums option
	6.21. GNU C compatibility: parameter names in unprototyped declarations
	6.22. GNU C mode: typedefs with sign or size modifiers
	6.23. How conversion functions compete with constructors
	6.24. GNU C mode: warning only on invalid uses of "inline"
	6.25. Template function with explicit arguments treated as simple function
	6.26. Select C99 features
	6.27. --[no]_vector_safe_prologs compile option
	6.28. -Qall_variables_in_memory
	6.29. Code quality improvements

	7.0. Cautions
	7.1. va_list structure format
	7.2. Retain source
	7.3. curses.h and bool
	7.4. Structure compares

	8.0. Direct Software Support

