
PowerWorks Linux Development Environment Tutorial

0898100-000

April 2001

Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope“Attention: Publications Department .”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerWorks, PowerMAX OS, Power Hawk, NightBench, NightSim, NightTrace, NightView, and MAXAda are trademarks of Concurrent Com-
puter Corporation.

Motorola is a registered trademark of Motorola, Inc.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- April 2001 000 PowerMAX OS 4.3

pro-
iting,
ted on
cur-

a95

m
ans-

ux

cify
y

ns

es-
Preface

General Information

The PowerWorksTM Linux Development Environment (PLDE) allows users on a Linux®

PC to develop applications for Concurrent real-time computer systems. The PLDE
vides cross compilation, cross linking, and cross debugging and analysis tools. Ed
compilation, linking, and scheduling, as well as debug and analysis sessions, are hos
the Linux system while the application programs execute on a system running Con
rent's PowerMAX OSTM real-time UNIX®-based operating system.

The PowerWorks Linux Development Environment consists of high-performance Ad
and C/C++ compilers, the NightViewTM symbolic debugger, NightTraceTM event analyzer,
NightSimTM frequency-based scheduler, and the NightBenchTM GUI program develop-
ment environment.

Utilizing the PLDE utilities on a Linux system while targeting the PowerMAX OS syste
offloads the heavy processing associated with compilation, linking, symbolic debug tr
lation, and GUI network traffic from the real-time target systems.

Scope of Manual

This manual is a tutorial for the PowerWorks Linux Development Environment.

Structure of Manual

This manual consists of one chapter which is the tutorial for the PowerWorks Lin
Development Environment.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms and comments in code ma
also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, optio
and man page references also appear inlist bold type.

list Operating system and program output such as prompts and m
sages and listings of files and programs appears inlist type.
Keywords also appear inlist type.
iii

PowerWorks Linux Development Environment Tutorial

ons,

are
ify

ipe
ype
emphasis Words or phrases that require extra emphasis use emphasistype.

window Keyboard sequences and window features such as push butt
radio buttons, menu items, labels, and titles appear inwindow
type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{ } Braces enclose mutually exclusive choices separated by the p
(|) character, where one choice must be selected. You do not t
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol meansis defined asin Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView User’s Guide

0890398 NightTrace Manual

0890458 NightSim User’s Guide

0890514 NightBench User’s Guide

0890516 MAXAda Reference Manual
iv

Contents

-1
-1
-2

1-3
-3
4
-5

-5
-8
-8
10
-12
15
6
6
7

18
9
0

20
-22
23
-26
7
30
32
33
33
35
35
6
37
39
39
40
1

-42
-43
-46
7

49
Contents

Chapter 1 Using the PLDE

Overview . 1
Before you begin . 1

Pathname conventions. 1
Remote shell access. .
Privileges . 1
Additions to PATH . 1-

Getting Started . 1
Using NEdit . 1
Using NightBench . 1

Creating a new environment. 1
Introducing an existing source file into the environment 1-
Creating a new source file in the environment . 1
Setting compile options . 1-
Defining a partition. 1-1
Activating tracing for a partition . 1-1
Building a partition. 1-1
Before you continue . 1-
Invoking NightSim . 1-1

Using NightSim . 1-2
Configuring the Scheduler . 1-
Scheduling a process . 1
Activating user tracing and kernel tracing . 1-
Setting up the scheduler . 1

Using NightView . 1-2
Adding a tracepoint in the program . 1-
Resuming execution . 1-
Starting the simulation . 1-
Inserting a patchpoint . 1-
Halting user tracing and kernel tracing . 1-
Disabling the patchpoint. 1-
Exiting the program . 1-3
Removing the scheduler . 1-

Using NightTrace. 1-
Converting kernel trace event files . 1-
Creating NightTrace configuration files. 1-
Invoking NightTrace. 1-4
Creating a default kernel page . 1
Searching for a kernel trace event . 1
Searching for a user trace event . 1
Zooming in . 1-4

Conclusion . 1-
v

PowerWorks Linux Development Environment Tutorial

-6
-8

1-9
11

-13
-15
7

19
20
22
7
-28

0
-31
-32
33
-34

-37
-37
-38
1

-42
-43
-44

-45
-45
-46

-47
-48
Illustrations

Figure 1-1. NEdit Editor . 1
Figure 1-2. NightBench Project . 1
Figure 1-3. Creating a new environment - language selection. 1-9
Figure 1-4. Creating a new environment - specifications .
Figure 1-5. Introducing an existing source file . 1-
Figure 1-6. Source file,prog.a - newly introduced . 1-12
Figure 1-7. Creating a new source file . 1
Figure 1-8. Setting environment-wide compile options . 1
Figure 1-9. Activating tracing for a partition . 1-1
Figure 1-10. Builder window - Build page forprog partition 1-18
Figure 1-11. Starting NightSim from NightBench . 1-
Figure 1-12. NightSim Scheduler . 1-
Figure 1-13. NightSim Edit Process . 1-
Figure 1-14. NightView Global Window . 1-2
Figure 1-15. Start NightView Session on Remote Host dialog 1
Figure 1-16. NightView Dialogue 1-29
Figure 1-17. NightView Principal Debug Window . 1-3
Figure 1-18. Setting a new tracepoint . 1
Figure 1-19. Resuming execution . 1
Figure 1-20. Starting the simulation . 1-
Figure 1-21. Setting a new patchpoint . 1
Figure 1-22. Disabling a patchpoint . .. 1-36
Figure 1-23. Resuming execution . 1
Figure 1-24. Removing the scheduler . 1
Figure 1-25. Removing the scheduler . 1
Figure 1-26. NightTrace Main window . 1-4
Figure 1-27. NightTrace display page. 1
Figure 1-28. Default Kernel Page . 1
Figure 1-29. Searching for a kernel trace event . 1
Figure 1-30. First kernel trace event . 1
Figure 1-31. NightTrace display page repositioned accordingly 1
Figure 1-32. Searching for a user trace event . 1
Figure 1-33. NightTrace display page. 1
Figure 1-34. Zoomed in kernel display page . 1
vi

Using the PLDE

a
The
GUI
tar-

++

his

con-

ght-
d to
1
Chapter 1Using the PLDE

1
1
1

Concurrent’s PowerWorks® Linux Development Environment (PLDE) allows users on
Linux® PC to develop applications for any Concurrent real-time computer system.
PLDE makes it easy to utilize the features of Concurrent compilers and real-time
tools. Application programs are compiled and debugged directly on a Linux PC while
geted to a system running Concurrent’s PowerMAX OSTM real-time UNIX-based operat-
ing system.

The PowerWorks Linux Development Environment consists of high-performance C/C
and MAXAdaTM (Ada95) compilers, the NightViewTM symbolic debugger, NightTraceTM

event analyzer, NightSimTM frequency-based scheduler, and the NightBenchTM Program
Development Environment.

Overview 1

This is a demonstration of the PowerWorks Linux Development Environment. In t
tutorial, we will use many of the PLDE tools including:

- NEdit

- NightBench

- MAXAda

- NightSim

- NightView

- NightTrace

integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and
siderations.

Before you begin 1

In order to run the portion of the tutorial that uses the NightSim Scheduler and the Ni
View Source-Level Debugger, a system running PowerMAX OS should be networke
1-1

PowerWorks Linux Development Environment Tutorial

ys-

x)
rking

er-

-
on

stem
rtup
your Linux system. If you have a PowerMAX OS system networked to your Linux s
tem, the following items must also be taken into consideration:

- Pathname conventions

- Remote shell access

- Privileges

- Additions to PATH

Proceed to “Getting Started” on page 1-5 to begin the tutorial.

NOTE

You may still run the tutorial (excluding the portions that use the
NightSim Scheduler and the NightView Source-Level Debugger)
even if you do not have a system running PowerMAX OS net-
worked to your Linux system. You will be instructed as to how to
skip over the sections that use the NightSim Scheduler and the
NightView Source-Level Debugger.

Pathname conventions 1

It is highly recommendedthat the paths from the host system (the system running Linu
and the target system (the system running PowerMAX OS) to the executables and wo
directories be identical.

Their mount points should be based on a common name.

Consider the following entries showing a Linux filesystem mounted via NFS on a Pow
MAX OS system.

The following entry is located in/etc/fstab on the Linux system:

/dev/hda5 /myspace ext2 defaults 1 2

and the following entry is located in/etc/vfstab on the PowerMAX OS system

linuxsys:/myspace - /myspace nfs - yes rw,bg,soft

wherelinuxsys is the name of the host system running Linux.

In the above example, the user would create their working directory under/myspace .
Creating a working directory is covered in “Getting Started” on page 1-5.

Ensure that yourumask setting on the Linux system will allow the PowerMAX OS sys
tem to read and write files in your working directory, or use the same user and group ID
both systems. To automatically ensure that all files your user creates on the Linux sy
are publicly readable and writeable, include the following command in your shell sta
script:

umask 000
1-2

Using the PLDE

ider-

host

he

ider-

e the
ires

le is
exe-

sers to
See “Before you begin” on page 1-1 for other important recommendations and cons
ations.

Remote shell access 1

Since NightSim usesrsh to start theNightSim serverprocess on eachtarget system, the
user must be able torsh to those systems.

Ensure that a login for your user name exists on the target systemand

• the .rhosts file in the home directory for that user name on the target
system contains an entry for your user name and theNightSim host

An example entry might look like:

remote_machine_name username

whereremote_machine_name is the name of the target system andusername
is your login name on the remote system.

Also note that the.rhosts file must have the permissions 644.

or

• the /etc/hosts.equiv file on the target system contains the name of
the NightSim host

You may test your remote shell access by issuing the following command from your
system (the system running Linux):

/usr/bin/rsh remote_machine_name date

whereremote_machine_name is the name of the target system. You should see t
date and time on the remote system if successful.

See thersh(1) man page for more details.

See “Before you begin” on page 1-1 for other important recommendations and cons
ations.

Privileges 1

For the sections of the tutorial that run on the target system (the portions that us
NightSim Scheduler and the NightView Source-Level Debugger), this tutorial requ
that the user have the following privileges on the target system:

• P_CPUBIAS

• P_PLOCK

• P_RTIME

A convenient way to associate privileges with users is through the use of roles. A ro
simply a named description of a set of privileges that have been registered for certain
cutable files, such as the shell. The system administrator creates roles and assigns u
1-3

PowerWorks Linux Development Environment Tutorial

ileges

ently

tuto-

role.

sum-
ands
not

and

ider-

ered

ider-
them. During the login process, users can request that their shell be granted the priv
associated with their role. Such a request takes the form of an invocation of thetfad-
min(1M) command. Once privileges have been granted to the user’s shell, subsequ
spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by this
rial to three commonly used shells (sh , ksh , andcsh). The PowerMAX OS system
administrator should issue the following commands once.

/usr/bin/adminrole -n PLDE_USERS
/usr/bin/adminrole -a sh:/usr/bin/sh:cpubias:plock:rtime PLDE_USERS
/usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:plock:rtime PLDE_USERS
/usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:plock:rtime PLDE_USERS

The following command assigns an example user (JoeUser) to the PLDE_USERS
The system administrator should issue the following command once.

/usr/bin/adminuser -n -o PLDE_USERS JoeUser

JoeUser is now allowed to request that the above privileges be granted to his shell (as
ing JoeUser utilizes either the sh, ksh, or csh shell, as these are the only shell comm
registered in the PLDE_USERS role). However, by default, these privileges are
granted. He must explicitly make the request by initiating a new shell with thetfad-
min(1M) command. For convenience, it is recommended that the following comm
be added to the end of his.profile (or .login for csh users) file. (This file is exe-
cuted during initialization of the login shell).

exec /sbin/tfadmin PLDE_USERS: shell

whereshell is the shell of your choice (sh , ksh , or csh).

See “Before you begin” on page 1-1 for other important recommendations and cons
ations.

Additions to PATH 1

If users are interested in doing command-line compilations (although they are not cov
in this tutorial), the following should be added to theirPATH:

/usr/ada/bin
/usr/ccs/bin

See “Before you begin” on page 1-1 for other important recommendations and cons
ations.
1-4

Using the PLDE

-

We
i-
and
Getting Started 1

We will start by creating a directory in which we will do all our work. On the Linux sys
tem, create a directory and position yourself in it:

To create a working directory

- Use themkdir(1) command to create a working directory. See “Path-
name conventions” on page 1-2 for recommendations as to where you
should create your working directory.

We will name our directorytutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using thecd(1) com-
mand:

cd tutorial

Using NEdit 1

Next, we will create one of the source files that will be used by our example program.
will do this using the NEdit Editor. NEdit is the PowerWorks Linux Development Env
ronment editor. Although other editors may be used, NEdit comes with the PLDE
thus will be demonstrated in this tutorial.

Let’s open the NEdit editor.

To start NEdit

- From the command line, type the following command:

neditor -ktalk &

NOTE

The-ktalk option allows NightBench to communicate with this
NEdit session later in this tutorial. We specify the& so that this
NEdit session runs in the background.

The NEdit Editor will be opened, ready to accept input.
1-5

PowerWorks Linux Development Environment Tutorial

n in

o
cess's
re
.
er
uler
Figure 1-1. NEdit Editor

We will enter one of the source files for our example program. This program is writte
Ada and is shown below:

with data_process;
with rt_interface;

procedure prog is
istat : integer;
i : integer;

begin

i := 0;

rt_interface.FBS_wait(istat);

while istat = 0 loop

data_process.do_work;
rt_interface.FBS_wait(istat);
i := i + 1;

end loop;

end;

This program utilizes theFBS_wait service.FBS_wait causes the calling process to g
to sleep. The process will be awakened by a frequency-based scheduler at the pro
scheduled frequency. At that point, i t wil l enter the loop. The procedu
data_process.do_work (which we will create later) will do some calculations
When do_work returns from its processing, the program will encounter anoth
FBS_wait call which will cause the program to sleep until the frequency-based sched
allows it continue.
1-6

Using the PLDE

xt
com-
its
To save an untitled file using the NEdit Editor

- SelectSave from theFile menu. This will open a file dialog.

- Ensure theDirectory is the same as the one you created in “Getting
Started” on page 1-5.

- Enter the nameprog.a in theSave File As field.

- PressOK .

Now that we have saved the file, we may close it in our NEdit session.

To close a file in NEdit

- SelectClose from theFile menu.

We are finished using NEdit for this portion of the tutorial but will be using it in the ne
section with NightBench. We may leave this session open so that NightBench can
municate with it. However, if we chose to exit out of NEdit, NightBench would start
own session of NEdit, if necessary.
1-7

PowerWorks Linux Development Environment Tutorial

op-
mon
pil-
con-
ffi-

o

ide

as
, this

nt is
ion
Using NightBench 1

In order to compile and link our program, we will use the NightBench Program Devel
ment Environment. NightBench is a graphical user interface that provides a com
work environment for the PowerWorks Linux Development Environment editor, com
ers, and development tools. NightBench organizes all of the information required for
sistent, repeatable development of PowerMAX OS applications while providing an e
cient interface for editing, browsing, building, and debugging.

Let’s open the NightBench Project window.

To start NightBench

- From the command line, type the following command:

nbench

Note that we have not providednbench with any parameters, indicating that we want t
open the NightBench Project window.nbench accepts a number of command line
options, allowing the user to open a particular NightBench component or to prov
start-up information to NightBench.

The NightBench Project window will appear, listing the environments with which it h
previously interacted. If no other environments have been created under NightBench
list will be empty.

Figure 1-2. NightBench Project

Creating a new environment 1

One of the first steps we must take in order to use NightBench for program developme
to create anenvironment. Environments are used as the basic structure of organizat
within NightBench.
1-8

Using the PLDE

on-
hitec-
To create a new environment from the NightBench Project window

- On the NightBench Project window, press the button markedNew... so we
can create our new environment. This will open a dialog in which you may
select the language to be used in this environment.

- Select the language that will be used in this environment (Ada).

- Press theNext> button.

Figure 1-3. Creating a new environment - language selection

The next dialog presented allows us to specify details about the directory which will c
tain the new environment, the release of the compiler to be used, as well as the arc
ture of the target machine and the version of PowerMAX OS running on it:

Figure 1-4. Creating a new environment - specifications

- Type the directory name in theDirectory for new environment field
where you want NightBench to create the new environment. This can be
1-9

PowerWorks Linux Development Environment Tutorial

ch

it is

r you
will
the name of an existing directory or NightBench can create the directory
for you. (Note that NightBench can only create a subdirectory of an exist-
ing directory.) We will enter the name of the directory we created in “Get-
ting Started” on page 1-5. The full directory name in our example is
/tooth/tutorial . Since we invoked NightBench from that directory,
the pathname will appear in theDirectory for new environment field.

- Select aCompiler Release if you have more than one release of MAX-
Ada installed on your system. If you have only one release of MAXAda
installed on your system, it will appear here.

- Choose aTarget Architecture. Because we are building an executable
that will run on a Concurrent real-time computer system, we must choose
which type of system we are targeting. For our example, we will be target-
ing a Power HawkTM 640 so we will selectmoto from the drop-down list.
For more information on target architectures, see the section titled “Target
Architectures” in theMAXAda Reference Manual(0890516).

- Identify the PowerMAX OS Version. In our example, we will select
4.3 from the drop-down list for the version of the operating system run-
ning on the system we are targeting.

- PressDone

This will add the new environment to the list ofEnvironments in the NightBench
Project window. NightBench will also open the new environment in its own NightBen
Development window.

Introducing an existing source file into the environment 1

Our next step is to populate the environment withunits. Units are the basic building
blocks for programs in NightBench. They are contained within source files and
through these source files that they are introduced into their intended environments.

Source files may already have been created outside the NightBench environment o
may use the editing features of NightBench to create a new file. For this example, we
introduce the file,prog.a , that we created earlier in “Using NEdit” on page 1-5.

To introduce an existing source file into a NightBench environment

- Click on theSource Files tab of the NightBench Development window.

- Press theIntroduce/Create... button. This will open theIntroduce
Source Files dialog so we can introduce our source files (and the units
contained within) into the new environment.
1-10

Using the PLDE
Figure 1-5. Introducing an existing source file

- Maneuver to the directory in which theprog.a source file is contained.
You may type the path to the directory name in theDirectory field or use
the entries in theDirectories list to navigate to the desired directory.
Since we invoked NightBench from the directory in which our file resides,
we should already be positioned in that directory.

- Select theprog.a source file by clicking once with the mouse on the
name in theFiles list. The name of the source file will then appear in the
Selection field.

- Press theAdd button to add this file to the list ofFiles to Introduce.
(You may introduce any number of files, or create new files, by adding
them here but for our example we will just introduce this one file.)

- Press theOK button to introduce the source file into the environment.

The unitprog that was contained in the source fileprog.a is now a part of the environ-
ment/tooth/tutorial .

The source file now appears in the list of files on theSource Files page of the Night-
Bench Development window and the unit contained within now appears on theUnits
page.
1-11

PowerWorks Linux Development Environment Tutorial

ench
. In
ht-
Figure 1-6. Source file, prog.a - newly introduced

Creating a new source file in the environment 1

As mentioned earlier, source files may already have been created outside the NightB
environment or you may use the editing features of NightBench to create a new file
this part of the tutorial, we will create a new source file using the editing features of Nig
Bench.

To create a new source file in a NightBench environment

- Click on theSource Files tab of the NightBench Development window.

- Press theIntroduce/Create... button. This will open theIntroduce
Source Fi les dialog so we can create new source files and introduce
them into the new environment.
1-12

Using the PLDE

to
Edi-
Figure 1-7. Creating a new source file

- Maneuver to the directory in which you would like to create the new source
file. You may type the path to the directory name in theDirectory field or
use the entries in theDirectories list to navigate to the desired directory.
Since we invoked NightBench from the directory in which we would like
to create our new source file, we should already be positioned in that direc-
tory.

- Enter the name of new source file in the Selection field. For our example,
we will name our filedata_process.a

- Press theCreate button. This will add the file name to the list of ofFiles
to Introduce. Note theYes in the Create column for this file. (You
may create other new source files, or introduce other existing source files,
by adding them here but for our example we will just create this one file.)

- PressOK .

For each file with aYes in theCreate column of the list ofFiles to Introduce, an edi-
tor window will be opened. This will bring up the editor that NightBench is configured
use. NEdit is the default editor for NightBench. See the section titled “Preferences -
tor” in the NightBench User’s Guide(0890514).

We may now enter the other source file used in our example program:
1-13

PowerWorks Linux Development Environment Tutorial
package data_process is

iteration_count : integer := 1;
x1,x2 : long_float;
x1_mult_x2 : long_float;
procedure do_work;

end data_process;

package body data_process is

procedure do_work is
begin

x1 := 1.0e-160;
x2 := 1.0e-160;

iteration_count := iteration_count + 1 ;

for i in 1 .. 2000 loop
x1_mult_x2 := x1 * x2 ;

end loop;
end;

end data_process;

To save a named file using the NEdit Editor

- SelectSave from theFile menu. Since we specified the pathname of the
file to NightBench, NEdit saves our input in that file.

Now that we have saved the file, we may close it in our NEdit session.

To close a file in NEdit

- SelectClose from theFile menu.
1-14

Using the PLDE

d to
ide
Setting compile options 1

In order to debug the program using the NightView Source Level Debugger, we nee
compile the program with debug information. We do this by setting an environment-w
compile option which will apply to all units within the current environment.

To set environment-wide compile options

- Click on theSettings tab of the NightBench Development window.

- Press theShow Options Editor button associated with thePermanent
Compile Options.

- On the General page of theAda Environment Compile Options
dialog, selectfull (2) from the drop-down list under thePermanent col-
umn forDebug Information.

- PressOK.

Figure 1-8. Setting environment-wide compile options

NOTE

Alternatively, you could have entered-g in the Permanent
Compile Options field on theSettings page and pressed the
Apply button.
1-15

PowerWorks Linux Development Environment Tutorial

l

hen
Defining a partition 1

In order to use the units introduced into NightBench, we must include them in apartition.
NightBench defines three types of Ada partitions:

• active

• archive

• shared object

For our example, we want to include ourprog unit in an executable program so we wil
be defining anactivepartition.

To define all active partitions in the environment

- Click on thePartitions tab of the NightBench Development window to
get to thePartitions page.

- Press theCreate All button. This creates an active partition for each unit
in the current environment that qualifies as a main unit.

Activating tracing for a partition 1

We will need to activate tracing for this partition so that we may generate trace data w
we run the program and then subsequently analyze it using the NightTrace Analyzer.

To activate tracing for a partition

- Click on thePartitions tab of the NightBench Development window to
get to thePartitions page.

- Click on theTracing settings tab.

- Check theActivated checkbox.

- Select theMechanism to be used for tracing. In our example, we will
selectntrace ud from the drop-down list so that the Ada run-time
executive can log trace events using the NightTrace user daemon,
ntraceud .

- PressApply.
1-16

Using the PLDE

c-
Figure 1-9. Activating tracing for a partition

Building a partition 1

At this point, we have an environment,/tooth/tutorial , that has within it the defini-
tion for the active partition,prog , made up of a main unit,prog , contained in the source
file, prog.a , and another unitdata_process , contained in the source file,
data_process.a . Full debug information will be generated for the program and tra
ing has been activated so that we may gather tracing data for later analysis.

We can now build this partition. We do this using the NightBench Builder.

To build the partition

- In the list of partitions on thePartitions page, make sure the partition
prog is selected.

- Press the button markedBuild. This will open the NightBench Builder
window so we can build our new partition.

In Figure 1-10, you will see thatpartit ion prog has been automatically
entered in theTargets field on theBuild page. This is because it was
selected on thePartitions page when theBuild button was pressed.
1-17

PowerWorks Linux Development Environment Tutorial

tem
bug-

ider-
- PressStart Build.

TheBuild Progress bar shows the number of actions (compilations and
links) left to perform in the current build as theTranscript window details
each step taken during the build.

Figure 1-10. Builder window - Build page for prog partition

When the build is completed, aBuild Completed dialog notifies the user.

NOTE

The notification operations can be changed on theNotification
page.

Before you continue 1

The following sections require a PowerMAX OS system networked to your Linux sys
since those sections use the NightSim Scheduler and the NightView Source-Level De
ger (see “Before you begin” on page 1-1 for important recommendations and cons
ations concerning this configuration).
1-18

Using the PLDE

m,
to-

tSim
However, if you do not have a PowerMAX OS system networked to your Linux syste
you may jump to the section “Using NightTrace” on page 1-39 and continue with the tu
rial.

Invoking NightSim 1

Because this program uses the frequency-based scheduler, we will use the Nigh
Scheduler to schedule the process.

NightBench allows the user to invoke the NightSim Scheduler directly.

To invoke the NightSim Scheduler from the NightBench Program
Development Environment

- SelectNightSim Scheduler from theTools menu of either NightBench
Development or the NightBench Builder.

Figure 1-11. Starting NightSim from NightBench
1-19

PowerWorks Linux Development Environment Tutorial

re-
the
im,

iple
rfor-
omi-
ore

lar
Using NightSim 1

NightSim is a tool for scheduling and monitoring real-time applications which require p
dictable, repetitive process execution. NightSim provides a graphical interface to
PowerMAX OS frequency-based scheduler and performance monitor. With NightS
application builders can control and dynamically adjust the periodic execution of mult
coordinated processes, their priorities, and their CPU assignments. NightSim’s pe
mance monitor tracks the CPU utilization of individual processes and provides a cust
zable display of period times, minimums, maximums, and frame overruns. For m
information on NightSim, refer to theNightSim User’s Guide(0890480).

Configuring the Scheduler 1

The NightSim Scheduler window is opened, ready for us to configure it for our particu
simulation.

Figure 1-12. NightSim Scheduler

To configure a NightSim Scheduler

- Specify aScheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
100.

- Specify theCycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the value1.

- Specify theMax. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. Enter10 for our example.
1-20

Using the PLDE

clock
ds
- Specify theMax. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value10.

- Enter the name of a PowerMAX OS system which will act as theTiming
host for the simulation. You may use the drop down list associated with
this field for the names of systems previously used as timing hosts. For our-
example, we will enterbuzzard, a Power Hawk 640 system.

NOTE

When NightSim is operating inOn-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User’s Guide(0890480) for more information.

- Select aTiming source from the list provided. This list contains the set
of devices available on the timing host. We will useReal-time clock
0c2.

NOTE

Do not useReal-time clock 0c0 for theTiming source as it
is typically used by system utilities and could cause unwanted
effects if used. Seehrtconfig(1) for more information

Since we are using the real-time clock on the target system, we need to specify the
period. For our simulation, we would like the real-time clock to “fire” every .5 secon
(or 500 milliseconds).

IMPORTANT

The following steps should be performed in the order presented
below to ensure the correct value for the clock period.

- Choose themsec from the drop-down list next to theClock period field.

- Specify Clock period. For our example, we will specify500 for the
number of milliseconds.
1-21

PowerWorks Linux Development Environment Tutorial

fre-
Scheduling a process 1

Once we have properly configured the Scheduler, we can add a process to the
quency-based scheduler.

Figure 1-13. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press theEdit... button on the NightSim Scheduler window. This will
bring up theEdit Process window.

- Press theSelect... button next to theProcess Name field. This brings
up theSelect a Program dialog.

- Since NightSim was invoked from our NightBench environment, the
Directory field should coincide with our working directory. If it
does not, either type the full pathname to our working directory,
1-22

Using the PLDE

g to
e to

ight-
rti-

data
d I/O
/tooth/tutorial , in theDirectory field, or maneuver to that
directory using the items in theDirectories list.

- Choose the program we wish to schedule from theFiles list. For our
example, we will selectprog from the list.

- PressOK to select the program.

- Ensure that theWorking Directory is the same directory that contains
our program (the directory of theProcess Name selected in the previous
step).

- Check theSchedule program within a NightView dialogue check-
box. This will bring the program up in the NightView debugger before the
program executes, allowing us to settracepointsso that we may generate
trace data when the program executes.

- Specify thePriority for this process. The range of priority values that you
can enter is governed by the scheduling policy specified. NightSim dis-
plays the range of priority values that you can enter next to thePriority
field. Higher numerical values correspond to more favorable scheduling
priorities. For our example, we will give the process a priority of50.

- SelectStarting Cycle. This field allows you to specify the first minor
cycle in which the specified program is to be wakened in each major frame.
We will choose the lowest value,0, for our example.

- Select Period. This field allows you to establish the frequency with
which the specified program is to be wakened in each major frame. Enter
the number of minor cycles representing the frequency with which you
wish the program to be wakened. For our example, we will specify a
period of1, indicating that the specified program is to be wakened every
minor cycle.

- PressAdd to add the process to the frequency-based scheduler.

- Press theClose button to dismiss theEdit Process window.

Activating user tracing and kernel tracing 1

At this point in the tutorial, we are about to create the scheduler configured accordin
the parameters we just specified and allow the program to run. However, we would lik
generate trace data from this program while it is running so we need to start the N
Trace user daemon (which we specified in the section titled “Activating tracing for a pa
tion” on page 1-16) to log user trace events as well as KernelTrace which will collect
about the execution time of interrupts, exceptions, system calls, context switches, an
to various devices.

To activate the NightTrace user daemon

- Log into the PowerMAX OS system where you will be running your simu-
lation. This is the system we specified as theTiming host in the NightSim
Scheduler window (see “Configuring the Scheduler” on page 1-20). So,
for our example, we will log into the systembuzzard .
1-23

PowerWorks Linux Development Environment Tutorial
- Position yourself in the working directory you created in “Getting Started”
on page 1-5. Also, see “Pathname conventions” on page 1-2 for recom-
mendations as to where you should create your working directory.

IMPORTANT

It is essential that you are positioned in the working directory that
is associated with the user program being scheduled with
NightSim. The NightTrace user daemon will communicate with
the user program based on the file argument supplied in the next
step.

- Invoke the NightTrace user daemon. We issue thentraceud command
which takes as an argument the name of a file in which to save the trace
data. This file should be namedprogram_name.trace.data , where
program_nameis the name of the program generating the trace data.

NOTE

By default, ntraceud requires write access to system SPL
devices, e.g./dev/spl , /dev/spl1 , etc. On most systems,
these devices are only writeable by the root user; therefore, you
should run thentraceud command as root.

However, since the use of SPL devices is not strictly necessary for
tracing single-threaded user applications (although, for optimal
real-time performance it is recommended), the-ipldisable
option tontraceud is acceptable.

Since the application in this tutorial is single-threaded, you may
use the-ipldisable option as indicated below.

For our example, we will issue the following command:

ntraceud -ipldisable prog.trace.data

Now we can activate kernel tracing.

To activate kernel tracing

- Log into the PowerMAX OS system where you will be running your simu-
lation. This is the system we specified as theTiming host in the NightSim
Scheduler window (see “Configuring the Scheduler” on page 1-20). So,
for our example, we will log into the systembuzzard .

- Position yourself in a directory local to the PowerMAX OS system.
1-24

Using the PLDE

e

very
file

f

- Invoke the KernelTrace utility. We issue thektrace command which can
take a number of arguments.

NOTE

The KernelTrace utility requires root access in order to run.
Ensure that the Linux system has exported its filesystem to the
PowerMAX OS system in a manner which allows root to write on
that file system. This normally requires theroot_no_squash
option in the/etc/exports entry for the file system. For
example:

/myspace pmax_system(rw,root_no_squash)

Alternatively, you can run the KernelTrace utility on a file system
local to the PowerMAX OS system and subsequently copy its out-
put file (as a non-root user) back to Linux file system. The
remainder of the steps below assume that root has write access to
the Linux file system.

We will use the-o option which specifies the name of a file in which to save th
kernel trace data.

When generating kernel trace data, the resultant file can grow extremely large
quickly. In order to circumvent any problems that may arise from the output
growing extremely large, we will use the-bufferwrap option which limits the
size of the output file. Specifying a value of 50 to this option will limit the size o
the resulting output file to a little over 2 megabytes.

NOTE

Due to a problem with the-bufferwrap option, user and kernel
data may not appear synchronized when viewing the trace data in
subsequent steps. This problem has been fixed in thektrace
and ntfilter commands in PowerMAX OS 4.3 Patch Set 6
(trace-004 and base-006). If these packages are not
installed on your system, you may omit the-bufferwrap
option. However, be aware that the kernel trace file may grow
extremely large in a short period of time.

So, for our example, we will issue the following command, as the root user:

ktrace -bufferwrap 50 -o prog.ktrace.data

You should see output similar to the following:

locking into memory
setting priority to RT 59
open /dev/trace
initialize
1-25

PowerWorks Linux Development Environment Tutorial

a pro-
evel
set trace event time stamp source to Motorola Time Base
Register
gather trace point data

Setting up the scheduler 1

To set up the scheduler

- In the NightSim Scheduler window, press theSet up button.

This action:

• creates a scheduler that is configured according to the parameters we
specified

• schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the firstFBS_wait call,
and

• attaches the timing source to the scheduler.

Because we have specified theSchedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add
cess to the frequency-based scheduler” on page 1-22), the NightView Source L
Debugger will be started.
1-26

Using the PLDE

lly
iple
n to
ondi-
mod-

a pro-
tView
we
Using NightView 1

NightView is a graphical source-level debugging and monitoring tool specifica
designed for real-time applications. NightView can monitor, debug, and patch mult
real-time processes running on multiple processors with minimal intrusion. In additio
standard debugging capabilities, NightView supports application-speed eventpoint c
tions, hot patches, synchronized data monitoring, exception handling and loadable
ules.

Because we have specified theSchedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add
cess to the frequency-based scheduler” on page 1-22), we are presented with a Nigh
Global Window as well as a dialog allowing us to log into the target system on which
will be running our program.

Figure 1-14. NightView Global Window
1-27

PowerWorks Linux Development Environment Tutorial

ote
ro-
Figure 1-15. Start NightView Session on Remote Host dialog

To start a NightView session on a remote host

- In theStart NightView Session on Remote Host dialog, ensure that
the values forRemote host andLogin name are correct.

NOTE

TheName for new Dialogue field is initialized to the name of
the remote system on which we are debugging our program.

- Enter yourPassword for the Login name on the system listed in the
Remote host field.

- PressOK .

When the login has completed successfully, a NightView Dialogue window for the rem
host will be opened as well as a Principal Debug Window with the execution of the p
gram stopped.
1-28

Using the PLDE

gram.
Figure 1-16. NightView Dialogue

During initialization, you will see a message similar to the following:

Warning: Process buzzard:3336 is no longer debuggable,
detaching.
[E-SlashProcMethod-012]

(errno=13) Permission denied

This is an anomaly caused by an intermediate process which schedules the user pro
You may ignore this warning.
1-29

PowerWorks Linux Development Environment Tutorial

code
Figure 1-17. NightView Principal Debug Window

Adding a tracepoint in the program 1

Since we would like to generate user trace data, but did not place any calls within the
before our program was compiled, we can use NightView to insert atracepointin the
1-30

Using the PLDE
code. A tracepoint is a call to one of thentrace(3X) library routines for recording the
time when execution reached the tracepoint.

To add a tracepoint in a program

- In the NightView Principal Debug Window, click on the line:

data_process.do_work;

- SelectSet tracepoint... from theEventpoint menu. This will open the
Set a New Tracepoint dialog.

Figure 1-18. Setting a new tracepoint

- Enter the4402 for theEvent ID. The value 4402 is typically used as the
event ID for user trace events in Ada programs. For example, the MAX-
Ada utility, a.trace , expects user trace events to have an event ID of
4402.

- Enter i in the Value field. This will log the value of the variablei as
arg1 in the trace file every time this tracepoint is encountered.

- PressOK .
1-31

PowerWorks Linux Development Environment Tutorial

t we
NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

tracepoint 4402 at line_number value=i

whereline_numbercoincides with the line:

data_process.do_work;

Seetracepoint for details on the use of this command.

Resuming execution 1

Now it’s time to let the program run and generate some trace data from the tracepoin
just entered.

To resume execution in NightView

- Press theResume button in the NightView Principal Debug Window.

Figure 1-19. Resuming execution
1-32

Using the PLDE

ion.

a-
or
Starting the simulation 1

Now we need to go back to our NightSim Scheduler window and start the simulat
When you click on theStart button, NightSim carries out the following actions:

• Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

• If a real-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in theClock period field in the
Scheduler Configuration Area

• Starts the simulation with the values of theminor cycle, major frame, and
overruncounts set to zero

To start a simulation in NightSim

- Press theStart button on the NightSim Scheduler window.

Figure 1-20. Starting the simulation

Inserting a patchpoint 1

NightView allows the use ofpatchpointswhile debugging a process. Patchpoints are loc
tions in the debugged process where apatch, usually an expression that alters the behavi
of the process, is inserted.

In our example, we will insert a patchpoint in the loop to change the value of theistat
variable in order to exit the loop:

while istat = 0 loop

data_process.do_work;
rt_interface.FBS_wait(istat);
i := i + 1;

end loop;
1-33

PowerWorks Linux Development Environment Tutorial

alue
g

To insert a patchpoint in a program

- In the NightView Principal Debug Window, click on the line:

while istat = 0 loop

- SelectSet patchpoint... from the Eventpoint menu. This will open
theSet a New Patchpoint dialog.

Figure 1-21. Setting a new patchpoint

- Enter the expression:

istat := -1

in theEvaluate field.

When this patchpoint is encountered during the execution of the program, the v
of the variableistat will be set to -1, breaking out of the loop, thereby terminatin
the program.

- PressOK .
1-34

Using the PLDE

ght-

for

g a
ular

is-
is

nate
NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

patchpoint at line_number eval istat := -1

whereline_numbercoincides with the line:

while istat = 0 loop

Seepatchpoint for details on the use of this command.

Halting user tracing and kernel tracing 1

Now that our program has finished, we can exit the KernelTrace utility and stop the Ni
Trace user daemon.

To halt kernel tracing

- On the PowerMAX OS system where you invoked the KernelTrace utility
(see “To activate kernel tracing” on page 1-24), pressCntl-C.

You should see the message:

terminating

To halt the NightTrace user daemon

- On the PowerMAX OS system where you invoked the NightTrace user
daemon (see “To activate the NightTrace user daemon” on page 1-23),
enter the following command:

ntraceud -quit program_name.trace.data

whereprogram_nameis the name of the program generating the trace data. So,
our example, we will issue the following command:

ntraceud -quit prog.trace.data

Disabling the patchpoint 1

Before we exit NightView, we should disable the patchpoint that we set in “Insertin
patchpoint” on page 1-33. NightView retains knowledge of all eventpoints for a partic
program in a current session and will reinitialize them if that program is re-run. If not d
abled, the patchpoint in our program will be encountered immediately if our program
re-run under the current session of NightView, causing us to exit the loop and termi
the program.
1-35

PowerWorks Linux Development Environment Tutorial

cess
To disable a patchpoint in NightView

- SelectSummarize/Change... from theEventpoint menu.

- Select the patchpoint from the list of eventpoints (listed with aP in the
Type column).

Figure 1-22. Disabling a patchpoint

- PressDisable.

- PressClose.

Exiting the program 1

NightView suspends the process it is debugging before it exits. We may allow the pro
to complete its termination by resuming its execution.

To resume execution in NightView

- Press theResume button in the NightView Principal Debug Window.
1-36

Using the PLDE
Figure 1-23. Resuming execution

Removing the scheduler 1

To remove the scheduler

- In the NightSim Scheduler window, press theRemove button.

Figure 1-24. Removing the scheduler

You will be presented with the following dialog:
1-37

PowerWorks Linux Development Environment Tutorial
Figure 1-25. Removing the scheduler

- PressYes to kill the processes that are currently scheduled on the sched-
uler.
1-38

Using the PLDE

ro-
pro-
ppli-
ntire
nts in
ext
fined

ion of
ght-

ile

The
en-
f
cing.
Using NightTrace 1

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multip
cessor applications. NightTrace can log application data events from simultaneous
cesses executing on multiple CPUs or even multiple systems. NightTrace combines a
cation events with PowerMAX OS events and presents a synchronized view of the e
system. NightTrace allows users to zoom, search, filter, summarize, and analyze eve
a wide variety of ways. PowerMAX OS events include individual system calls, cont
switches, machine exceptions, page faults and interrupts. Application events are de
by the user allowing logging of the data items associated with each event.

We may use NightTrace to analyze the trace data that we gathered during the execut
our program but first we will need to convert the files so that they may be used by Ni
Trace.

NOTE

If you do not have a system running PowerMAX OS networked to
your Linux system, you will need to copy the files contained in
the directorytutorial-sup from the installation CD to the
working directory you created in “Getting Started” on page 1-5.

Proceed to the section titled “Invoking NightTrace” on page 1-41.

Converting kernel trace event files 1

To convert kernel trace event files

- On the PowerMAX OS system where you invoked the KernelTrace utility
(see “To activate kernel tracing” on page 1-24), enter the following com-
mand:

ntfilter -v < raw_kernel_file > filtered_kernel_file

whereraw_kernel_fileis the file we specified using the-o option toktrace and
filtered_kernel_fileis the name of the resultant output file fromntfilter .

So, for our example, we will issue the following command:

ntfilter -v < prog.ktrace.data > prog.ntrace.kernel

The converted KernelTrace trace event file will then be saved to the f
prog.ntrace.kernel . The -v option creates avectors files that will be
specified to NightTrace along with the converted KernelTrace trace event file.
vectors file is generated dynamically because it is system-configuration dep
dent. Without avectors file, NightTrace will not be able to display the names o
the system processes, interrupts, and exceptions that occurred during kernel tra
1-39

PowerWorks Linux Development Environment Tutorial

ge,
’s
See “Converting KernelTrace Trace Event Files with ntfilter” in theNightTrace
Manual(0890398) for more detailed information about this process.

Creating NightTrace configuration files 1

To create NightTrace configuration files

- On the Linux system, use the MAXAda utility,a.trace to create the
NightTrace configuration files from the file generated by the NightTrace
user daemon. The command has the following syntax:

a.trace program_name.trace.data

whereprogram_nameis the name of the program that generated the trace data.

So, for our example, we will issue the following command:

a.trace prog.trace.data

NOTE

You may need to prepend/usr/ada/bin to the a.trace
command if you did not add it to yourPATH. See “Additions to
PATH” on page 1-4 for more information.

This command creates the following two files:

1. program_name.ntrace.data

This file is a hard link toprogram_name.trace.data . See for more infor-
mation about this file.

2. program_name.ntrace.config

This file contains string tables, format tables, and a NightTrace display pa
including descriptions of NightTrace display objects for this application
trace events.

See Creating the NightTrace Configuration File in theMAXAda Reference Manual
(0890516) for more detailed information about this process.
1-40

Using the PLDE

lyze

-

Invoking NightTrace 1

Now that all our files are created and converted, we may invoke NightTrace and ana
the results.

To invoke NightTrace

- On the Linux system, enter the following command

ntrace prog.ntrace.* vectors

This will start the NightTrace Analyzer and pass to it:

prog.ntrace.* the files created by “Converting kernel trace
event files” on page 1-39 and “Creating
NightTrace configuration files” on page 1-40

vectors a file created by “Converting kernel trace
event files” on page 1-39 which allows
NightTrace to display the names of the sys-
tem processes, interrupts, and exceptions
that occurred during kernel tracing.

See ntrace Arguments for more information about invoking NightTrace.

NightTrace will present theNightTrace window as well as a display page config
ured using theprog.ntrace.config file created in “Creating NightTrace con-
figuration files” on page 1-40. Both windows are shown below:

Figure 1-26. NightTrace Main window

For more information on theNightTrace window, see ntrace Global Window in the
NightTrace Manual(0890398).
1-41

PowerWorks Linux Development Environment Tutorial
Figure 1-27. NightTrace display page

For more information on display pages, see The Display Page in theNightTrace Manual
(0890398).

Creating a default kernel page 1

In order to view our kernel trace events, we need to create a default kernel page.

To create a default kernel page

- In theNightTrace window, selectDefault Kernel Page from theFile
menu.

This will create a Default Kernel Page as shown below:
1-42

Using the PLDE

play
Figure 1-28. Default Kernel Page

For more information on the Default Kernel Page, see Kernel Display Pages in theNight-
Trace Manual(0890398).

Searching for a kernel trace event 1

Now that we have loaded our data into NightTrace and created the appropriate dis
pages, we can search for the system call that corresponds to theFBS_wait call made in
our program (see “Using NEdit” on page 1-5).

To search for a kernel trace event

- SelectSearch... from the Tools menu of the kernel display page (see
“Creating a default kernel page” on page 1-42).

You will be presented with the following dialog:
1-43

PowerWorks Linux Development Environment Tutorial

hat
age
Figure 1-29. Searching for a kernel trace event

- Enter TR_SYSCALL_RESUME in the Event List field. This trace
event is logged whenever a system call (syscall) is resumed (i.e., the pro-
cess that caused the syscall to occur, which was switched out before the
syscall could be completed, is switched back in).

- Enter arg2 == get_item(syscall, "fbswait") in the If Expression
field. The fbswait system call corresponds to theFBS_wait call we
made in our Ada program.

- PressApply.

- PressSearch.

NightTrace will set the current time to that of the first logged kernel trace event t
matches the specified search criteria, positioning the grid on the kernel display p
accordingly. This is shown in the figure below. Note theCurrent Time. In our exam-
ple, it is set to 48.5713587 seconds.

NOTE

Since we specified the-bufferwrap option toktrace (see
“To activate kernel tracing” on page 1-24), it is likely that the ear-
lier trace events may have been overwritten by buffer wraparound
during the execution of the program. Hence, we may not actually
see thefirst actual kernel trace event that corresponds to our
search criteria. However, this is sufficient for our example.
1-44

Using the PLDE

age
cally
nts as
Figure 1-30. First kernel trace event

In addition to setting the current time and repositioning the grid on the kernel display p
when the search for the kernel trace event was performed, NightTrace will automati
set the current time and reposition the display page that contains the user trace eve
well. This is shown in the figure below.

Figure 1-31. NightTrace display page repositioned accordingly
1-45

PowerWorks Linux Development Environment Tutorial

user
” on
Searching for a user trace event 1

Now that we have found the first logged kernel trace event, we can search for the
trace events that we logged using NightView (see “Adding a tracepoint in the program
page 1-30).

To search for a user trace event

NOTE

You may use the same search dialog that you used in the previous
step, “Searching for a kernel trace event” on page 1-43.

- SelectSearch... from theTools menu of the display page created when
NightTrace was invoked (see “Invoking NightTrace” on page 1-41).

You will be presented with the following dialog:

Figure 1-32. Searching for a user trace event

- Enter4402 in the Event List field. This corresponds to theEvent ID
for the tracepoint we specified in NightView (see “Adding a tracepoint in
the program” on page 1-30).

- Ensure that the value of theIf Expression field is TRUE.
1-46

Using the PLDE

that
age

ernel
s (see

.

- PressApply.

- PressSearch.

NightTrace will set the current time to the first user trace event after the current time
matches the specified search criteria, positioning the grid on the kernel display p
accordingly. This is shown in the figure below. Note theCurrent Time now. In our
example, it is set to 48.5714136 seconds, 0.0000549 seconds after thefbswait system
call we found in “Searching for a kernel trace event” on page 1-43.

You can alternately search between the kernel display page (see “To search for a k
trace event” on page 1-43) and the display page which contains the user trace event
“To search for a user trace event” on page 1-46) to see that anfbswait system call
always precedes the user trace event that we logged, which is what we would expect

NOTE

If you used the same search dialog as you used for searching for a
kernel trace event, you may use thePrev button on the search
dialog for the previous search criteria. You can alternate between
searching for user trace events and kernel trace events using this
functionality.

Figure 1-33. NightTrace display page

Zooming in 1

To zoom in:

- You may use theZoom In button on the NightTrace Analyzer to see more
details.
1-47

PowerWorks Linux Development Environment Tutorial

fol-

cle.

usly

e the
” on
pre-
line

ter of
For our example, we zoomed in on our kernel display page 13 times to see the
lowing level of detail.

Figure 1-34. Zoomed in kernel display page

In the above figure, the first bar (red) indicates the real-time clock interrupt for this cy
The second bar (blue) shows the target processprog exiting theFBS_wait call in the
Ada code. The current time line is positioned at the user trace event that we previo
searched for.

Looking at the other display page (which shows our user trace events), we can se
user_trace event inserted through NightView (see “Adding a tracepoint in the program
page 1-30). Note that both displays are synchronized in time (the current time line re
sents the same instant in time on both display pages). You may middle-click on the
representing the user trace event to see more detailed information.

The third and final bar (blue) on the kernel display page represents the next encoun
theFBS_wait call in the loop.

NOTE

Due to a problem with the-bufferwrap option to thektrace
command, user and kernel data may not appear synchronized.
This problem has been fixed in thektrace and ntfilter
commands in PowerMAX OS 4.3 Patch Set 6 (trace-004 and
base-006). See “To activate kernel tracing” on page 1-24 for
more information.
1-48

Using the PLDE

We
tions
Conclusion 1

This concludes our tutorial for the PowerWorks Linux Development Environment.
hope that we have given you a sufficient overview of the various tools and the interac
between them.
1-49

PowerWorks Linux Development Environment Tutorial
1-50

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Tutorial

0898100

P
ow

erW
orks

Linux
D

evelopm
entE

nvironm
ent

	PowerWorks Linux Development Environment Tutorial
	Preface
	Contents
	Using the PLDE
	Overview
	Before you begin
	Pathname conventions
	Remote shell access
	Privileges
	Additions to PATH

	Getting Started
	Using NEdit
	Using NightBench
	Creating a new environment
	Introducing an existing source file into the environment
	Creating a new source file in the environment
	Setting compile options
	Defining a partition
	Activating tracing for a partition
	Building a partition
	Before you continue
	Invoking NightSim

	Using NightSim
	Configuring the Scheduler
	Scheduling a process
	Activating user tracing and kernel tracing
	Setting up the scheduler

	Using NightView
	Adding a tracepoint in the program
	Resuming execution
	Starting the simulation
	Inserting a patchpoint
	Halting user tracing and kernel tracing
	Disabling the patchpoint
	Exiting the program
	Removing the scheduler

	Using NightTrace
	Converting kernel trace event files
	Creating NightTrace configuration files
	Invoking NightTrace
	Creating a default kernel page
	Searching for a kernel trace event
	Searching for a user trace event
	Zooming in

	Conclusion

