PowerWorks Linux Development Environment Tutorial

@ CONCURRENT 0898100-000
GRPORATIC April 2001

CORPORATION"

Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. Itis subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envéitigation: Publications Department .”

This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerWorks, PowerMAX OS, Power Hawk, NightBench, NightSim, NightTrace, NightView, and MAXAda are trademarks of Concurrent Com-
puter Corporation.

Motorola is a registered trademark of Motorola, Inc.
Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- April 2001 000 PowerMAX OS 4.3

General Information

Scope of Manual

Structure of Manual

Syntax Notation

Preface

The PowerWork8" Linux Development Environment (PLDE) allows users on a Lifiux

PC to develop applications for Concurrent real-time computer systems. The PLDE pro-
vides cross compilation, cross linking, and cross debugging and analysis tools. Editing,
compilation, linking, and scheduling, as well as debug and analysis sessions, are hosted on
the Linux system while the application programs execute on a system running Concur-
rent's PowerMAX O3" real-time UNIX®-based operating system.

The PowerWorks Linux Development Environment consists of high-performance Ada95
and C/C++ compilers, the NightVieW symbolic debugger, NightTraté event analyzer,
NightSim™ frequency-based scheduler, and the NightBéMdBUI program develop-
ment environment.

Utilizing the PLDE utilities on a Linux system while targeting the PowerMAX OS system
offloads the heavy processing associated with compilation, linking, symbolic debug trans-
lation, and GUI network traffic from the real-time target systems.

This manual is a tutorial for the PowerWorks Linux Development Environment.

This manual consists of one chapter which is the tutorial for the PowerWorks Linux
Development Environment.

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear initalic type. Special terms and comments in code may
also appear iitalic.

list bold User input appears itist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appeéisinbold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appeatssin type.
Keywords also appear iist type.

PowerWorks Linux Development Environment Tutorial

emphasis

window

{1}

Referenced Publications

Words or phrases that require extra emphasis use emggpsis

Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appeaviimdow

type.

Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

This symbol meanis defined asn Backus-Naur Form (BNF).

The following publications are referenced in this document:

0890395
0890398
0890458
0890514
0890516

NightView User's Guide
NightTrace Manual
NightSim User’s Guide
NightBench User’s Guide
MAXAda Reference Manual

Contents

Contents

Chapter 1 Using the PLDE

OVBIVIBW . ettt e e e
Beforeyoubegin e
Pathname conventions.
Remote shellaccess.
Privileges. . ..o
Additionsto PATH
Getting Started.
Using NEit.o
Using NightBench
Creating a new environment.ttt
Introducing an existing source file into the environment.
Creating a new source file in the environment.
Setting compile options
Defininga partition.
Activating tracing fora partition
Building a partition.
Beforeyoucontinue
Invoking NightSim
Using NIghtSimo
Configuring the Scheduler
Scheduling @ proCessttt
Activating user tracing and kerneltracing L.
Settingupthescheduler
Using NIghtVIeWo
Adding atracepointinthe program
Resuming eXecution
Starting the simulation
Inserting a patchpoint. e
Halting user tracing and kerneltracing
Disabling the patchpoint.
Exitingthe program
Removing the scheduler.
Using NIghtTrace.o e
Converting kernel trace eventfiles.
Creating NightTrace configurationfiles.
Invoking NightTrace. e
Creating adefaultkernelpage
Searching for akerneltraceevent i
Searching forausertraceevent i
ZOOMING IN . o o
CONCIUSION . . o

PowerWorks Linux Development Environment Tutorial

Illustrations

vi

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 1-20.
Figure 1-21.
Figure 1-22.
Figure 1-23.
Figure 1-24.
Figure 1-25.
Figure 1-26.
Figure 1-27.
Figure 1-28.
Figure 1-29.
Figure 1-30.
Figure 1-31.
Figure 1-32.
Figure 1-33.
Figure 1-34.

NEdit EAItOor 1-6
NightBench Project 1-8
Creating a new environment - language selection............. 1-9
Creating a new environment - specifications 1-9
Introducing an existing sourcefile 1-11
Source fileprog.a - newlyintroduced, 1-12
Creatinganewsourcefile i, 1-13
Setting environment-wide compileoptions 1-15
Activating tracing fora partition o o L 1-17
Builder window - Build page f@rog partition 1-18
Starting NightSim from NightBench 1-19
NightSim Scheduler 1-20
NightSim Edit Process i 1-22
NightView Global Window 1-27
Start NightView Session on Remote Hostdialog 1-28
NightView Dialogue i 1-29
NightView Principal Debug Window 1-30
Setting a new tracepoint 1-31
Resuming execution i 1-32
Starting the simulation 1-33
Settinganew patchpoint 1-34
Disabling a patchpoint..... 1-36
Resuming execution i 1-37
Removing the scheduler 1-37
Removing the scheduler 1-38
NightTrace Mainwindow 1-41
NightTrace display page. o i 1-42
Default KernelPage i 1-43
Searching for a kerneltraceevent 1-44
Firstkerneltrace event. i 1-45
NightTrace display page repositioned accordingly 1-45
Searching forausertraceevent........... i 1-46
NightTrace display page.o i 1-47
Zoomed in kernel display page 1-48

Using the PLDE

1
Using the PLDE

Concurrent's PowerWorRsLinux Development Environment (PLDE) allows users on a
Linux® PC to develop applications for any Concurrent real-time computer system. The
PLDE makes it easy to utilize the features of Concurrent compilers and real-time GUI
tools. Application programs are compiled and debugged directly on a Linux PC while tar-
geted to a system running Concurrent’s PowerMAX™®&al-time UNIX-based operat-

ing system.

The PowerWorks Linux Development Environment consists of high-performance C/C++
and MAXAda™ (Ada95) compilers, the NightVieW symbolic debugger, NightTrat%
event analyzer, NightSifY frequency-based scheduler, and the NightBéWdProgram
Development Environment.

Overview

This is a demonstration of the PowerWorks Linux Development Environment. In this
tutorial, we will use many of the PLDE tools including:

- NEdit
- NightBench
- MAXAda
- NightSim
- NightView
- NightTrace
integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin

In order to run the portion of the tutorial that uses the NightSim Scheduler and the Night-
View Source-Level Debugger, a system running PowerMAX OS should be networked to

11

PowerWorks Linux Development Environment Tutorial

your Linux system. If you have a PowerMAX OS system networked to your Linux sys-
tem, the following items must also be taken into consideration:

- Pathname conventions

- Remote shell access

Privileges

Additions to PATH

Proceed to “Getting Started” on page 1-5 to begin the tutorial.

NOTE

You may still run the tutorial (excluding the portions that use the
NightSim Scheduler and the NightView Source-Level Debugger)
even if you do not have a system running PowerMAX OS net-
worked to your Linux system. You will be instructed as to how to
skip over the sections that use the NightSim Scheduler and the
NightView Source-Level Debugger.

Pathname conventions

1-2

It is highly recommendethat the paths from the host system (the system running Linux)
and the target system (the system running PowerMAX OS) to the executables and working
directories be identical.

Their mount points should be based on a common name.

Consider the following entries showing a Linux filesystem mounted via NFS on a Power-
MAX OS system.

The following entry is located ifetc/fstab on the Linux system:
/dev/hda5 /myspace ext2 defaults 1 2
and the following entry is located itetc/vfstab on the PowerMAX OS system
linuxsys:/myspace - /myspace nfs - yes rw,bg,soft
wherelinuxsys is the name of the host system running Linux.

In the above example, the user would create their working directory uUndespace .
Creating a working directory is covered in “Getting Started” on page 1-5.

Ensure that younmask setting on the Linux system will allow the PowerMAX OS sys-
tem to read and write files in your working directory, or use the same user and group ID on
both systems. To automatically ensure that all files your user creates on the Linux system
are publicly readable and writeable, include the following command in your shell startup
script:

umask 000

Using the PLDE

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.

Remote shell access

Since NightSim usessh to start theNightSim serveprocess on eactarget systemthe
user must be able tsh to those systems.

Ensure that a login for your user name exists on the target syesteim

¢ the.rhosts file in the home directory for that user name on the target
system contains an entry for your user name and\ightSim host

An example entry might look like:
remote_machine_name username

whereremote_machine_name is the name of the target system amgkrname
is your login name on the remote system.

Also note that therhosts file must have the permissions 644.
or

¢ the/etc/hosts.equiv file on the target system contains the name of
the NightSim host

You may test your remote shell access by issuing the following command from your host
system (the system running Linux):

/usr/bin/rsh remote_machine_name date

whereremote_machine_name is the name of the target system. You should see the
date and time on the remote system if successful.

See thash(1) man page for more details.

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.

Privileges

For the sections of the tutorial that run on the target system (the portions that use the
NightSim Scheduler and the NightView Source-Level Debugger), this tutorial requires
that the user have the following privileges on the target system:

* P_CPUBIAS
e P_PLOCK
e P_RTIME

A convenient way to associate privileges with users is through the use of roles. A role is

simply a named description of a set of privileges that have been registered for certain exe-
cutable files, such as the shell. The system administrator creates roles and assigns users to

1-3

PowerWorks Linux Development Environment Tutorial

Additions to PATH

1-4

them. During the login process, users can request that their shell be granted the privileges
associated with their role. Such a request takes the form of an invocation téthe

min(1M) command. Once privileges have been granted to the user’s shell, subsequently
spawned processes automatically inherit those privileges.

The following commands create a role and register all the privileges required by this tuto-
rial to three commonly used shellsh(, ksh , andcsh). The PowerMAX OS system
administrator should issue the following commands once.

lusr/bin/adminrole -n PLDE_USERS

lusr/bin/adminrole -a sh:/usr/bin/sh:cpubias:plock:rtime PLDE_USERS
usr/bin/adminrole -a ksh:/usr/bin/ksh:cpubias:plock:rtime PLDE_USERS
usr/bin/adminrole -a csh:/usr/bin/csh:cpubias:plock:rtime PLDE_USERS

The following command assigns an example user (JoeUser) to the PLDE_USERS role.
The system administrator should issue the following command once.

lusr/bin/adminuser -n -0 PLDE_USERS JoeUser

JoeUser is now allowed to request that the above privileges be granted to his shell (assum-
ing JoeUser utilizes either the sh, ksh, or csh shell, as these are the only shell commands
registered in the PLDE_USERS role). However, by default, these privileges are not
granted. He must explicitly make the request by initiating a new shell withféuk

min(1M) command. For convenience, it is recommended that the following command
be added to the end of hiprofile (or .login for csh users) file. (This file is exe-

cuted during initialization of the login shell).

exec /sbin/tfadmin PLDE_USERS: shell
whereshellis the shell of your choicesf, ksh, orcsh).

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.

If users are interested in doing command-line compilations (although they are not covered
in this tutorial), the following should be added to thBiATH

/usr/ada/bin
Jusr/ccs/bin

See “Before you begin” on page 1-1 for other important recommendations and consider-
ations.

Using the PLDE

Getting Started

We will start by creating a directory in which we will do all our work. On the Linux sys-
tem, create a directory and position yourself in it:

To create a working directory

- Use themkdir(l) command to create a working directory. See “Path-
name conventions” on page 1-2 for recommendations as to where you
should create your working directory.

We will name our directoryutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using ti§1) com-
mand:

cd tutorial

Using NEdit

Next, we will create one of the source files that will be used by our example program. We
will do this using the NEdit Editor. NEdit is the PowerWorks Linux Development Envi-
ronment editor. Although other editors may be used, NEdit comes with the PLDE and
thus will be demonstrated in this tutorial.

Let's open the NEdit editor.

To start NEdit

- From the command line, type the following command:

neditor -ktalk &
NOTE
The-ktalk option allows NightBench to communicate with this

NEdit session later in this tutorial. We specify t&eso that this
NEdit session runs in the background.

The NEdit Editor will be opened, ready to accept input.

1-5

PowerWorks Linux Development Environment Tutorial

Eadiig bebiiled |
Urpicled 1ine 1. ool O, 0 kutas
I

Figure 1-1. NEdit Editor

We will enter one of the source files for our example program. This program is written in
Ada and is shown below:

with data_process;
with rt_interface;

procedure prog is
istat : integer;
i : integer;
begin

i =0
rt_interface.FBS_wait(istat);
while istat = 0 loop

data_process.do_work;
rt_interface.FBS_wait(istat);
=0+ 1

end loop;

end;

This program utilizes thEBS_wait service.FBS_wait causes the calling process to go

to sleep. The process will be awakened by a frequency-based scheduler at the process's
scheduled frequency. At that point, it will enter the loop. The procedure
data_process.do_work (which we will create later) will do some calculations.
Whendo_work returns from its processing, the program will encounter another
FBS_wait call which will cause the program to sleep until the frequency-based scheduler
allows it continue.

Using the PLDE

To save an untitled file using the NEdit Editor

- SelectSave from theFile menu. This will open a file dialog.

- Ensure theDirectory is the same as the one you created in “Getting
Started” on page 1-5.

- Enterthe namerog.a intheSave File As field.

- PressOK.

Now that we have saved the file, we may close it in our NEdit session.

To close a file in NEdit

- SelectClose from theFile menu.

We are finished using NEdit for this portion of the tutorial but will be using it in the next
section with NightBench. We may leave this session open so that NightBench can com-
municate with it. However, if we chose to exit out of NEdit, NightBench would start its
own session of NEdit, if necessary.

1-7

PowerWorks Linux Development Environment Tutorial

Using NightBench

In order to compile and link our program, we will use the NightBench Program Develop-
ment Environment. NightBench is a graphical user interface that provides a common
work environment for the PowerWorks Linux Development Environment editor, compil-
ers, and development tools. NightBench organizes all of the information required for con-
sistent, repeatable development of PowerMAX OS applications while providing an effi-
cient interface for editing, browsing, building, and debugging.

Let's open the NightBench Project window.

To start NightBench

- From the command line, type the following command:

nbench

Note that we have not providetbench with any parameters, indicating that we want to
open the NightBench Project windowbench accepts a number of command line
options, allowing the user to open a particular NightBench component or to provide
start-up information to NightBench.

The NightBench Project window will appear, listing the environments with which it has
previously interacted. If no other environments have been created under NightBench, this
list will be empty.

I MightBench Project

Environments

Lang |Directory |

[ew.. Add to List..

T R {irigary Foraind
I . HEEHEE L S nAafG

Figure 1-2. NightBench Project

Creating a new environment

1-8

One of the first steps we must take in order to use NightBench for program development is
to create arenvironment Environments are used as the basic structure of organization
within NightBench.

Using the PLDE

To create a new environment from the NightBench Project window

- On the NightBench Project window, press the button mafted... so we
can create our new environment. This will open a dialog in which you may
select the language to be used in this environment.

- Select the language that will be used in this environmaAiiz().

- Press theNext> button.

New Enwironment

Figure 1-3. Creating a new environment - language selection

The next dialog presented allows us to specify details about the directory which will con-
tain the new environment, the release of the compiler to be used, as well as the architec-
ture of the target machine and the version of PowerMAX OS running on it:

Hew Environment

Ttoothitutorial = I_

Figure 1-4. Creating a new environment - specifications

- Type the directory name in theirectory for new environment field
where you want NightBench to create the new environment. This can be

1-9

PowerWorks Linux Development Environment Tutorial

the name of an existing directory or NightBench can create the directory
for you. (Note that NightBench can only create a subdirectory of an exist-
ing directory.) We will enter the name of the directory we created in “Get-
ting Started” on page 1-5. The full directory name in our example is
[tooth/tutorial . Since we invoked NightBench from that directory,
the pathname will appear in ttizirectory for new environment field.

- Select aCompiler Release if you have more than one release of MAX-
Ada installed on your system. If you have only one release of MAXAda
installed on your system, it will appear here.

- Choose ararget Architecture. Because we are building an executable
that will run on a Concurrent real-time computer system, we must choose
which type of system we are targeting. For our example, we will be target-
ing a Power Hawk" 640 so we will selecinoto from the drop-down list.

For more information on target architectures, see the section titled “Target
Architectures” in theMAXAda Reference Manué)890516).

- Identify thePowerMAX OS Version. In our example, we will select
4.3 from the drop-down list for the version of the operating system run-
ning on the system we are targeting.

- PresdDone

This will add the new environment to the list Ehvironments in the NightBench

Project window. NightBench will also open the new environment in its own NightBench

Development window.

Introducing an existing source file into the environment

1-10

Our next step is to populate the environment withits. Units are the basic building

blocks for programs in NightBench. They are contained within source files and it is

through these source files that they are introduced into their intended environments.

Source files may already have been created outside the NightBench environment or you
may use the editing features of NightBench to create a new file. For this example, we will

introduce the fileprog.a , that we created earlier in “Using NEdit” on page 1-5.

To introduce an existing source file into a NightBench environment

- Click on theSource Files tab of the NightBench Development window.

- Press thdntroduce/Create... button. This will open thdntroduce
Source Files dialog so we can introduce our source files (and the units
contained within) into the new environment.

Using the PLDE

et | Ak | 2“- Corvarchs | W A Fies i b g short mame. Porel by || -

- Eanon |

Figure 1-5. Introducing an existing source file

o |

- Maneuver to the directory in which throg.a source file is contained.
You may type the path to the directory name in Bigectory field or use
the entries in th®irectories list to navigate to the desired directory.
Since we invoked NightBench from the directory in which our file resides,

we should already be positioned in that directory.

- Select theprog.a source file by clicking once with the mouse on the
name in theFiles list. The name of the source file will then appear in the

Selection field.

- Press theAdd button to add this file to the list ofiles to Introduce.
(You may introduce any number of files, or create new files, by adding
them here but for our example we will just introduce this one file.)

- Press the®®K button to introduce the source file into the environment.

The unitprog that was contained in the source fjleog.a
ment/tooth/tutorial

is now a part of the environ-

The source file now appears in the list of files on Beurce Files page of the Night-
Bench Development window and the unit contained within now appears od tliies

page.

1-11

PowerWorks Linux Development Environment Tutorial

Eugmileret Bers | pei

Figure 1-6. Source file, prog.a - newly introduced

Creating a new source file in the environment

1-12

As mentioned earlier, source files may already have been created outside the NightBench
environment or you may use the editing features of NightBench to create a new file. In
this part of the tutorial, we will create a new source file using the editing features of Night-
Bench.

To create a new source file in a NightBench environment

- Click on theSource Files tab of the NightBench Development window.

- Press thdntroduce/Create... button. This will open thdntroduce
Source Files dialog so we can create new source files and introduce
them into the new environment.

Using the PLDE

Rt Iawgdiee
P s Proprens Demife

oalecign
|-:|:|a|_|:-n-cﬁ-. a v]

e | ssii| [Cama] o Corrarcs | W A fesm bt vsing shotrene Pl s [-
=] Ganen | e |

Figure 1-7. Creating a new source file

- Maneuver to the directory in which you would like to create the new source
file. You may type the path to the directory name in bieectory field or
use the entries in thBirectories list to navigate to the desired directory.
Since we invoked NightBench from the directory in which we would like
to create our new source file, we should already be positioned in that direc-
tory.

- Enter the name of new source file in the Selection field. For our example,
we will name our filedata_process.a

- Press the&€reate button. This will add the file name to the list of Biles
to Introduce. Note theYes in the Create column for this file. (You
may create other new source files, or introduce other existing source files,
by adding them here but for our example we will just create this one file.)

- Pres0K.

For each file with @'es in theCreate column of the list ofFiles to Introduce, an edi-

tor window will be opened. This will bring up the editor that NightBench is configured to
use. NEditis the default editor for NightBench. See the section titled “Preferences - Edi-
tor” in the NightBench User's Guid&890514).

We may now enter the other source file used in our example program:

1-13

PowerWorks Linux Development Environment Tutorial

package data_process is
iteration_count : integer := 1;
x1,x2 : long_float;
x1_mult_x2 : long_float;
procedure do_work;

end data_process;

package body data_process is

procedure do_work is

begin
x1 := 1.0e-160;
x2 = 1.0e-160;

iteration_count := iteration_count + 1 ;
for i in 1 .. 2000 loop
x1_mult_x2 = x1 * x2 ;
end loop;
end;

end data_process;

To save a named file using the NEdit Editor

- SelectSave from theFile menu. Since we specified the pathname of the
file to NightBench, NEdit saves our input in that file.

Now that we have saved the file, we may close it in our NEdit session.

To close a file in NEdit

- SelectClose from theFile menu.

1-14

Using the PLDE

Setting compile options

In order to debug the program using the NightView Source Level Debugger, we need to
compile the program with debug information. We do this by setting an environment-wide
compile option which will apply to all units within the current environment.

To set environment-wide compile options

- Click on theSettings tab of the NightBench Development window.

- Pressth&how Options Editor button associated with tHeermanent
Compile Options.

- On theGeneral page of theAda Environment Compile Options
dialog, selecfull (2) from the drop-down list under theermanent col-
umn forDebug Information.

- Pres0K.

Figure 1-8. Setting environment-wide compile options

NOTE
Alternatively, you could have entered in thePermanent

Compile Options field on theSettings page and pressed the
Apply button.

1-15

PowerWorks Linux Development Environment Tutorial

Defining a partition

In order to use the units introduced into NightBench, we must include thenpantéion.
NightBench defines three types of Ada partitions:

* active
¢ archive

¢ shared object

For our example, we want to include opirog unit in an executable program so we will
be defining aractivepartition.

To define all active partitions in the environment

- Click on thePartitions tab of the NightBench Development window to
get to thePartitions page.

- Press the&Create All button. This creates an active partition for each unit
in the current environment that qualifies as a main unit.

Activating tracing for a partition

We will need to activate tracing for this partition so that we may generate trace data when
we run the program and then subsequently analyze it using the NightTrace Analyzer.

To activate tracing for a partition

- Click on thePartitions tab of the NightBench Development window to
get to thePartitions page.

- Click on theTracing settings tab.
- Check theActivated checkbox.

- Select theMechanism to be used for tracing. In our example, we will
selectntraceud from the drop-down list so that the Ada run-time
executive can log trace events using the NightTrace user daemon,
ntraceud

- PressApply.

1-16

Using the PLDE

-

JJI—'I—II.-.I..I-_J—'-'J.F..J.IJ._J-I _|.|_|.|_u.|.|.-.-|_-..-_-|.|.|.|.u.-._|_u JJI—-—I—U_——I.'

e
-

- -

Figure 1-9. Activating tracing for a partition

Building a partition

At this point, we have an environmerfipoth/tutorial , that has within it the defini-
tion for the active partitionprog , made up of a main uniprog , contained in the source
file, prog.a , and another unitlata_process , contained in the source file,
data_process.a . Full debug information will be generated for the program and trac-
ing has been activated so that we may gather tracing data for later analysis.

We can now build this partition. We do this using the NightBench Builder.

To build the partition

- In the list of partitions on théPartitions page, make sure the partition
prog is selected.

- Press the button markeBluild. This will open the NightBench Builder
window so we can build our new partition.

In Figure 1-10, you will see thatartition prog has been automatically
entered in théTargets field on theBuild page. This is because it was
selected on th@artitions page when th®&uild button was pressed.

1-17

PowerWorks Linux Development Environment Tutorial

- PressStart Build.

TheBuild Progress bar shows the number of actions (compilations and
links) left to perform in the current build as tAHeanscript window details
each step taken during the build.

Figure 1-10. Builder window - Build page for prog partition

When the build is completed,Bwild Completed dialog notifies the user.

NOTE

The notification operations can be changed onNdification
page.

Before you continue

The following sections require a PowerMAX OS system networked to your Linux system
since those sections use the NightSim Scheduler and the NightView Source-Level Debug-
ger (see “Before you begin” on page 1-1 for important recommendations and consider-
ations concerning this configuration).

1-18

Using the PLDE

However, if you do not have a PowerMAX OS system networked to your Linux system,

you may jump to the section “Using NightTrace” on page 1-39 and continue with the tuto-
rial.

Invoking NightSim
Because this program uses the frequency-based scheduler, we will use the NightSim
Scheduler to schedule the process.

NightBench allows the user to invoke the NightSim Scheduler directly.

To invoke the NightSim Scheduler from the NightBench Program
Development Environment

- SelectNightSim Scheduler from theTools menu of either NightBench
Development or the NightBench Builder.

e Files endencies

Femowve | Euild | Bun Context.. | Bun

Artive)

Figure 1-11. Starting NightSim from NightBench

1-19

PowerWorks Linux Development Environment Tutorial

Using NightSim

NightSim is a tool for scheduling and monitoring real-time applications which require pre-
dictable, repetitive process execution. NightSim provides a graphical interface to the
PowerMAX OS frequency-based scheduler and performance monitor. With NightSim,
application builders can control and dynamically adjust the periodic execution of multiple
coordinated processes, their priorities, and their CPU assignments. NightSim’s perfor-
mance monitor tracks the CPU utilization of individual processes and provides a customi-
zable display of period times, minimums, maximums, and frame overruns. For more
information on NightSim, refer to thRightSim User’s Guid¢0890480).

Configuring the Scheduler

1-20

The NightSim Scheduler window is opened, ready for us to configure it for our particular
simulation.

Figure 1-12. NightSim Scheduler

To configure a NightSim Scheduler

- Specify aScheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
100.

- Specify theCycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the valuel.

- Specify theMax. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. EnterlO for our example.

Using the PLDE

- Specify theMax. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the valle

- Enter the name of a PowerMAX OS system which will act asThring
host for the simulation. You may use the drop down list associated with
this field for the names of systems previously used as timing hosts. For our-
example, we will entebuzzard, a Power Hawk 640 system.

NOTE

When NightSim is operating i©n-Line mode, an attempt will

be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User’s Guid¢0890480) for more information.

- Select aTiming source from the list provided. This list contains the set
of devices available on the timing host. We will uReal-time clock
Oc2.

NOTE
Do not useReal-time clock 0cO for the Timing source as it

is typically used by system utilities and could cause unwanted
effects if used. Sebrtconfig(1) for more information

Since we are using the real-time clock on the target system, we need to specify the clock
period. For our simulation, we would like the real-time clock to “fire” every .5 seconds
(or 500 milliseconds).

IMPORTANT

The following steps should be performed in the order presented
below to ensure the correct value for the clock period.

- Choose thensec from the drop-down list next to th€élock period field.

- Specify Clock period. For our example, we will specif00 for the
number of milliseconds.

1-21

PowerWorks Linux Development Environment Tutorial

Scheduling a process

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

Figure 1-13. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press theEdit... button on the NightSim Scheduler window. This will
bring up theEdit Process window.

- Press th&elect... button next to thérocess Name field. This brings
up theSelect a Program dialog.

- Since NightSim was invoked from our NightBench environment, the
Directory field should coincide with our working directory. If it
does not, either type the full pathname to our working directory,

1-22

Using the PLDE

/tooth/tutorial , intheDirectory field, or maneuver to that
directory using the items in th@irectories list.

- Choose the program we wish to schedule fromRfles list. For our
example, we will selegbrog from the list.

- Pres®K to select the program.

- Ensure that thé&Vorking Directory is the same directory that contains
our program (the directory of tHerocess Name selected in the previous
step).

- Check theSchedule program within a NightView dialogue check-
box. This will bring the program up in the NightView debugger before the
program executes, allowing us to s$etcepointsso that we may generate
trace data when the program executes.

- Specify thePriority for this process. The range of priority values that you
can enter is governed by the scheduling policy specified. NightSim dis-
plays the range of priority values that you can enter next toPtHerity
field. Higher numerical values correspond to more favorable scheduling
priorities. For our example, we will give the process a priorityp0f

- SelectStarting Cycle. This field allows you to specify the first minor
cycle in which the specified program is to be wakened in each major frame.
We will choose the lowest valu@, for our example.

- SelectPeriod. This field allows you to establish the frequency with
which the specified program is to be wakened in each major frame. Enter
the number of minor cycles representing the frequency with which you
wish the program to be wakened. For our example, we will specify a
period of1, indicating that the specified program is to be wakened every
minor cycle.

- PressAdd to add the process to the frequency-based scheduler.

- Press theClose button to dismiss th&dit Process window.

Activating user tracing and kernel tracing

At this point in the tutorial, we are about to create the scheduler configured according to
the parameters we just specified and allow the program to run. However, we would like to
generate trace data from this program while it is running so we need to start the Night-
Trace user daemon (which we specified in the section titled “Activating tracing for a parti-
tion” on page 1-16) to log user trace events as well as KernelTrace which will collect data
about the execution time of interrupts, exceptions, system calls, context switches, and 1/0
to various devices.

To activate the NightTrace user daemon

- Log into the PowerMAX OS system where you will be running your simu-
lation. This is the system we specified as ffiming host in the NightSim
Scheduler window (see “Configuring the Scheduler” on page 1-20). So,
for our example, we will log into the systebuzzard .

1-23

PowerWorks Linux Development Environment Tutorial

1-24

- Position yourself in the working directory you created in “Getting Started”
on page 1-5. Also, see “Pathname conventions” on page 1-2 for recom-
mendations as to where you should create your working directory.

IMPORTANT

It is essential that you are positioned in the working directory that
is associated with the user program being scheduled with
NightSim. The NightTrace user daemon will communicate with
the user program based on the file argument supplied in the next
step.

- Invoke the NightTrace user daemon. We issuerttraceud command
which takes as an argument the name of a file in which to save the trace
data. This file should be namemtogram_namedrace.data , where
program_namés the name of the program generating the trace data.

NOTE

By default,ntraceud requires write access to system SPL
devices, e.gldev/spl ,/dev/spll , etc. On most systems,
these devices are only writeable by the root user; therefore, you
should run thentraceud command as root.

However, since the use of SPL devices is not strictly necessary for
tracing single-threaded user applications (although, for optimal
real-time performance it is recommended), th@disable

option tontraceud is acceptable.

Since the application in this tutorial is single-threaded, you may
use theipldisable option as indicated below.

For our example, we will issue the following command:

ntraceud -ipldisable prog.trace.data

Now we can activate kernel tracing.

To activate kernel tracing

- Log into the PowerMAX OS system where you will be running your simu-
lation. This is the system we specified as fiming host in the NightSim
Scheduler window (see “Configuring the Scheduler” on page 1-20). So,
for our example, we will log into the systebuzzard .

- Position yourself in a directory local to the PowerMAX OS system.

Using the PLDE

- Invoke the KernelTrace utility. We issue thk'kace command which can
take a number of arguments.

NOTE

The KernelTrace utility requires root access in order to run.
Ensure that the Linux system has exported its filesystem to the
PowerMAX OS system in a manner which allows root to write on
that file system. This normally requires theot _no_squash

option in the/etc/exports entry for the file system. For
example:
/myspace pmax_system(rw,root_no_squash)

Alternatively, you can run the KernelTrace utility on a file system
local to the PowerMAX OS system and subsequently copy its out-
put file (as a non-root user) back to Linux file system. The
remainder of the steps below assume that root has write access to
the Linux file system.

We will use the-o option which specifies the name of a file in which to save the
kernel trace data.

When generating kernel trace data, the resultant file can grow extremely large very
quickly. In order to circumvent any problems that may arise from the output file
growing extremely large, we will use thbufferwrap option which limits the

size of the output file. Specifying a value of 50 to this option will limit the size of
the resulting output file to a little over 2 megabytes.

NOTE

Due to a problem with thebufferwrap ~ option, user and kernel
data may not appear synchronized when viewing the trace data in
subsequent steps. This problem has been fixed irktteee

and ntfilter commands in PowerMAX OS 4.3 Patch Set 6
(trace-004 andbase-006). If these packages are not
installed on your system, you may omit thleufferwrap

option. However, be aware that the kernel trace file may grow
extremely large in a short period of time.

So, for our example, we will issue the following command, as the root user:
ktrace -bufferwrap 50 -0 prog.ktrace.data

You should see output similar to the following:
locking into memory
setting priority to RT 59

open /dev/trace
initialize

1-25

PowerWorks Linux Development Environment Tutorial

set trace event time stamp source to Motorola Time Base
Register
gather trace point data

Setting up the scheduler

To set up the scheduler
- Inthe NightSim Scheduler window, press tBet up button.
This action:

¢ creates a scheduler that is configured according to the parameters we
specified

¢ schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the fiF8S_wait call,
and

¢ attaches the timing source to the scheduler.

Because we have specified tBehedule program within a NightView dialogue

option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-22), the NightView Source Level
Debugger will be started.

1-26

Using the PLDE
Using NightView

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications. NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minimal intrusion. In addition to
standard debugging capabilities, NightView supports application-speed eventpoint condi-
tions, hot patches, synchronized data monitoring, exception handling and loadable mod-
ules.

Because we have specified tBehedule program within a NightView dialogue

option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-22), we are presented with a NightView
Global Window as well as a dialog allowing us to log into the target system on which we
will be running our program.

Miphtdiss kiztal Hins

Iezanges:
A k_dﬁ.ﬁ-i‘m G.8-Ee, linked Hon 13 1d:34:58 EET 2wy
g:ﬁtll’."l .I'.“n'—-ll:tl'.-::l.rl.-{l'.rpa-ﬂﬁ

[rs v f corieaion, Lass TTelp”

Figure 1-14. NightView Global Window

1-27

PowerWorks Linux Development Environment Tutorial

Figure 1-15. Start NightView Session on Remote Host dialog

To start a NightView session on a remote host

- IntheStart NightView Session on Remote Host dialog, ensure that
the values foRemote host andLogin name are correct.

NOTE

TheName for new Dialogue field is initialized to the name of
the remote system on which we are debugging our program.

- Enter yourPassword for the Login name on the system listed in the
Remote host field.

- Pres0K.

When the login has completed successfully, a NightView Dialogue window for the remote
host will be opened as well as a Principal Debug Window with the execution of the pro-
gram stopped.

1-28

Using the PLDE

o FEibar i Uiy sanity

LT

Erorrarel e Wi ghk Vs =8| 2 ek Ted el
Bz od et o el

5
iz BF 550wl -FL el ntesthMutorial i on

nein, irbopi
fpid B sexigrad ta process Atookktbutorisdprog

Figure 1-16. NightView Dialogue

During initialization, you will see a message similar to the following:

Warning: Process buzzard:3336 is no longer debuggable,
detaching.
[E-SlashProcMethod-012]

(errno=13) Permission denied

This is an anomaly caused by an intermediate process which schedules the user program.
You may ignore this warning.

1-29

PowerWorks Linux Development Environment Tutorial

Figure 1-17. NightView Principal Debug Window
Adding a tracepoint in the program

Since we would like to generate user trace data, but did not place any calls within the code
before our program was compiled, we can use NightView to insérae@epointin the

1-30

Using the PLDE

code. Atracepointis a call to one of thérace(3X) library routines for recording the
time when execution reached the tracepoint.

To add a tracepoint in a program
- Inthe NightView Principal Debug Window, click on the line:

data_process.do_work;

- SelectSet tracepoint... from theEventpoint menu. This will open the
Set a New Tracepoint dialog.

Figure 1-18. Setting a new tracepoint

- Enter the4402 for theEvent ID. The value 4402 is typically used as the
event ID for user trace events in Ada programs. For example, the MAX-
Ada utility, a.trace , expects user trace events to have an event ID of
4402,

- Enteri in the Value field. This will log the value of the variable as
argl in the trace file every time this tracepoint is encountered.

- Pres0K.

1-31

PowerWorks Linux Development Environment Tutorial

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

tracepoint 4402 at line_number value=i
whereline_numbercoincides with the line:
data_process.do_work;

Seetracepoint for details on the use of this command.

Resuming execution

Now it’s time to let the program run and generate some trace data from the tracepoint we
just entered.

To resume execution in NightView

- Press thd&Resume button in the NightView Principal Debug Window.

19 * | end loop:

2 |

i~

F%esume| Step | Mext
Print | Breakpoint|

Figure 1-19. Resuming execution

1-32

Using the PLDE

Starting the simulation

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on thé&tart button, NightSim carries out the following actions:

¢ Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

¢ If areal-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in bock period field in the
Scheduler Configuration Area

¢ Starts the simulation with the values of thenor cycle major frame and
overruncounts set to zero

To start a simulation in NightSim

- Press theStart button on the NightSim Scheduler window.

Simulation

Start Frar
_ st |

Cyel

Stopped a
Resume | on

Fate

t Halt” Start Cycle |

Figure 1-20. Starting the simulation

Inserting a patchpoint

NightView allows the use gbatchpointavhile debugging a process. Patchpoints are loca-
tions in the debugged process whengadch usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop to change the value d$tdie
variable in order to exit the loop:

while istat = 0 loop
data_process.do_work;
rt_interface.FBS_wait(istat);

=10+ 1

end loop;

1-33

PowerWorks Linux Development Environment Tutorial

To insert a patchpoint in a program
- Inthe NightView Principal Debug Window, click on the line:
while istat = 0 loop

- SelectSet patchpoint... from the Eventpoint menu. This will open
theSet a New Patchpoint dialog.

Figure 1-21. Setting a new patchpoint

- Enter the expression:
istat := -1
in theEvaluate field.

When this patchpoint is encountered during the execution of the program, the value
of the variablastat will be set to -1, breaking out of the loop, thereby terminating
the program.

- Pres0K.

1-34

Using the PLDE

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

patchpoint at line_numbereval istat := -1
whereline_numbercoincides with the line:

while istat = 0 loop

Seepatchpoint for details on the use of this command.

Halting user tracing and kernel tracing

Now that our program has finished, we can exit the KernelTrace utility and stop the Night-
Trace user daemon.
To halt kernel tracing

- On the PowerMAX OS system where you invoked the KernelTrace utility
(see “To activate kernel tracing” on page 1-24), préssl-C.

You should see the message:

terminating

To halt the NightTrace user daemon

- On the PowerMAX OS system where you invoked the NightTrace user
daemon (see “To activate the NightTrace user daemon” on page 1-23),
enter the following command:

ntraceud -quit program_namgrace.data

whereprogram_names the name of the program generating the trace data. So, for
our example, we will issue the following command:

ntraceud -quit prog.trace.data

Disabling the patchpoint

Before we exit NightView, we should disable the patchpoint that we set in “Inserting a
patchpoint” on page 1-33. NightView retains knowledge of all eventpoints for a particular
program in a current session and will reinitialize them if that program is re-run. If not dis-
abled, the patchpoint in our program will be encountered immediately if our program is
re-run under the current session of NightView, causing us to exit the loop and terminate
the program.

1-35

PowerWorks Linux Development Environment Tutorial

To disable a patchpoint in NightView

- SelectSummarize/Change... from theEventpoint menu.

- Select the patchpoint from the list of eventpoints (listed witR én the
Type column).

Figure 1-22. Disabling a patchpoint

- Presdisable.

- PresClose.

Exiting the program

NightView suspends the process it is debugging before it exits. We may allow the process
to complete its termination by resuming its execution.

To resume execution in NightView

- Press th&kesume button in the NightView Principal Debug Window.

1-36

Using the PLDE

ié * I end loop:
20|

ey i

Figure 1-23. Resuming execution

Removing the scheduler

To remove the scheduler

- Inthe NightSim Scheduler window, press tRemove button.

| I
T
“rhed Prio- Soft Hal¢

Figure 1-24. Removing the scheduler

You will be presented with the following dialog:

1-37

PowerWorks Linux Development Environment Tutorial

Figure 1-25. Removing the scheduler

- PressYes to kill the processes that are currently scheduled on the sched-
uler.

1-38

Using the PLDE

Using NightTrace

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log application data events from simultaneous pro-
cesses executing on multiple CPUs or even multiple systems. NightTrace combines appli-
cation events with PowerMAX OS events and presents a synchronized view of the entire
system. NightTrace allows users to zoom, search, filter, summarize, and analyze events in
a wide variety of ways. PowerMAX OS events include individual system calls, context
switches, machine exceptions, page faults and interrupts. Application events are defined
by the user allowing logging of the data items associated with each event.

We may use NightTrace to analyze the trace data that we gathered during the execution of
our program but first we will need to convert the files so that they may be used by Night-
Trace.

NOTE

If you do not have a system running PowerMAX OS networked to
your Linux system, you will need to copy the files contained in
the directorytutorial-sup from the installation CD to the
working directory you created in “Getting Started” on page 1-5.

Proceed to the section titled “Invoking NightTrace” on page 1-41.

Converting kernel trace event files

To convert kernel trace event files

- On the PowerMAX OS system where you invoked the KernelTrace utility
(see “To activate kernel tracing” on page 1-24), enter the following com-
mand:

ntfilter -v < raw_kernel_file > filtered_kernel_file

whereraw_kernel_fileis the file we specified using th@ option toktrace and
filtered_kernel_filds the name of the resultant output file fronffilter

So, for our example, we will issue the following command:

ntfilter -v < prog.ktrace.data > prog.ntrace.kernel

The converted KernelTrace trace event file will then be saved to the file
prog.ntrace.kernel . The-v option creates &ectors files that will be
specified to NightTrace along with the converted KernelTrace trace event file. The
vectors file is generated dynamically because it is system-configuration depen-
dent. Without avectors file, NightTrace will not be able to display the names of

the system processes, interrupts, and exceptions that occurred during kernel tracing.

1-39

PowerWorks Linux Development Environment Tutorial

See “Converting KernelTrace Trace Event Files with ntfilter” in tiightTrace
Manual (0890398) for more detailed information about this process.

Creating NightTrace configuration files

To create NightTrace configuration files

- On the Linux system, use the MAXAda utilitg.trace to create the
NightTrace configuration files from the file generated by the NightTrace
user daemon. The command has the following syntax:

a.trace program_namgrace.data
whereprogram_namés the name of the program that generated the trace data.
So, for our example, we will issue the following command:

a.trace prog.trace.data

NOTE

You may need to prepentisr/ada/bin to thea.trace
command if you did not add it to yol?ATH See “Additions to
PATH” on page 1-4 for more information.

This command creates the following two files:
1. program_namstrace.data

This file is a hard link tgprogram_namgrace.data . See for more infor-
mation about this file.

2. program_namstrace.config

This file contains string tables, format tables, and a NightTrace display page,
including descriptions of NightTrace display objects for this application’s
trace events.

See Creating the NightTrace Configuration File in MAXAda Reference Manual
(0890516) for more detailed information about this process.

1-40

Using the PLDE

Invoking NightTrace

Now that all our files are created and converted, we may invoke NightTrace and analyze
the results.

To invoke NightTrace
- On the Linux system, enter the following command
ntrace prog.ntrace.* vectors

This will start the NightTrace Analyzer and pass to it:

prog.ntrace.* the files created by “Converting kernel trace
event files” on page 1-39 and “Creating
NightTrace configuration files” on page 1-40

vectors a file created by “Converting kernel trace
event files” on page 1-39 which allows
NightTrace to display the names of the sys-
tem processes, interrupts, and exceptions
that occurred during kernel tracing.

See ntrace Arguments for more information about invoking NightTrace.

NightTrace will present th&lightTrace window as well as a display page config-
ured using therog.ntrace.config file created in “Creating NightTrace con-
figuration files” on page 1-40. Both windows are shown below:

File Help

1 MightTrace performance analyzer - Version 4,2

2 Copyright ¢C} 2000, Concurrent Computer Corporation

3

4 2 trace event log files read.

4

B User trace event log file: prog.ntrace,data,

7 122 trace events plus 4 continuation events,

2 122 events zaved in memary,

9 0 trace events lost,

10 81,1051428= time span. from 0,0000000s to 81,1551428s,

11

12 kernel trace event log file: prog,ntrace,kernel,

13 E1320 trace events pluz 53090 continuation events,

14 B1320 events saved in memory.

15 0 trace events lost,

16 22,1248402= time span, from 47,6431822= to 70, 7EB0224s,

17

18 Time Baze Regizter was uzed to time stamp events,

19

20 E1442 total events read from disk plus 53034 continuation events,
I 21 E1442 total events zaved in memory: B events internal to ntrace, v I
—

Figure 1-26. NightTrace Main window

For more information on thélightTrace window, see ntrace Global Window in the
NightTrace Manua(0890398).

1-41

PowerWorks Linux Development Environment Tutorial

R TR L sadaas sl

Figure 1-27. NightTrace display page

For more information on display pages, see The Display Page iNitji@ Trace Manual
(0890398).

Creating a default kernel page
In order to view our kernel trace events, we need to create a default kernel page.

To create a default kernel page

- IntheNightTrace window, selecDefault Kernel Page from theFile
menu.

This will create a Default Kernel Page as shown below:

1-42

Using the PLDE

Figure 1-28. Default Kernel Page

For more information on the Default Kernel Page, see Kernel Display PagesMighe
Trace Manua0890398).

Searching for a kernel trace event

Now that we have loaded our data into NightTrace and created the appropriate display
pages, we can search for the system call that corresponds EBthewait call made in

our program (see “Using NEdit” on page 1-5).

To search for a kernel trace event

- SelectSearch... from the Tools menu of the kernel display page (see
“Creating a default kernel page” on page 1-42).

You will be presented with the following dialog:

1-43

PowerWorks Linux Development Environment Tutorial

1-44

Search

Search
Search Direction: Search Constraints:
< Forvard < (Global Search
- Backward - Interval Search

Interval Manipulation:

< Scroll Current Time to Event
-~ Zoom to Include Event
-~ Do Mot Mowve Current Time

Ewent List [TR_SYSCALL_RESUME
Mo Event List |NONE
If Expression |ar‘g2 == get_itemisyzcall, "fbawait"}
CPU List [ALL
PID List [ALC
TID List [ALL

| Applyl Resetl Prevl Nextl Search | Closel
! =

Figure 1-29. Searching for a kernel trace event

- EnterTR_SYSCALL_RESUME in the Event List field. This trace
event is logged whenever a system call (syscall) is resumed (i.e., the pro-
cess that caused the syscall to occur, which was switched out before the
syscall could be completed, is switched back in).

- Enterarg2 == get_item(syscall, "fbswait") in thelf Expression
field. Thefbswait system call corresponds to tiBS_wait call we
made in our Ada program.

- PressApply.

- PressSearch.

NightTrace will set the current time to that of the first logged kernel trace event that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. This is shown in the figure below. Note tBarrent Time. In our exam-

ple, it is set to 48.5713587 seconds.

NOTE

Since we specified thebufferwrap option toktrace (see

“To activate kernel tracing” on page 1-24), it is likely that the ear-
lier trace events may have been overwritten by buffer wraparound
during the execution of the program. Hence, we may not actually
see thefirst actual kernel trace event that corresponds to our
search criteria. However, this is sufficient for our example.

Using the PLDE

m TTT I
N [Fimsais 111 1

i ek e s T

'
gi a1 b v e liwaa

Figure 1-30. First kernel trace event

In addition to setting the current time and repositioning the grid on the kernel display page
when the search for the kernel trace event was performed, NightTrace will automatically
set the current time and reposition the display page that contains the user trace events as
well. This is shown in the figure below.

|1-t||—. *lumid, ﬁ—,lu||_H-n-umh--|.|u.-:r-|-mmu:m| || Scks Eerd Dmpoeirtaon

. N 'm"""'ﬂ""""'ﬂ"'"'l e _tracn! mbiisinde. debalethda, deladuin

11
|| | |
P | I [| poorarmer s dstude, doatsnda, derades

Figure 1-31. NightTrace display page repositioned accordingly

1-45

PowerWorks Linux Development Environment Tutorial

Searching for a user trace event

Now that we have found the first logged kernel trace event, we can search for the user
trace events that we logged using NightView (see “Adding a tracepoint in the program” on

page 1-30).

To search for a user trace event

NOTE

You may use the same search dialog that you used in the previous
step, “Searching for a kernel trace event” on page 1-43.

- SelectSearch... from theTools menu of the display page created when

NightTrace was invoked (see “Invoking NightTrace” on page 1-41).

You will be presented with the following dialog:

Search
Search Direction: Search Constraints:
< Forvard < (Global Search
- Backward - Interval Search

Interval Manipulation:

< Scroll Current Time to Event
-~ Zoom to Include Event
-~ Do Mot Mowve Current Time

Ewent List [4402
Mo Event List |NONE
If Expression |TRUE

CPU List |ALL
PID List [ALL
TICr List |ALL|

| Applyl Resetl Prevl Nextl Search | Closel
! =

Figure 1-32. Searching for a user trace event

- Enter4402 in the Event List field. This corresponds to theévent ID
for the tracepoint we specified in NightView (see “Adding a tracepoint in

the program” on page 1-30).
- Ensure that the value of tHé Expression field is TRUE.

1-46

Using the PLDE

- PressApply.

- PressSearch.

NightTrace will set the current time to the first user trace event after the current time that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. This is shown in the figure below. Note Barrent Time now. In our
example, it is set to 48.5714136 seconds, 0.0000549 seconds aftbswest system

call we found in “Searching for a kernel trace event” on page 1-43.

You can alternately search between the kernel display page (see “To search for a kernel
trace event” on page 1-43) and the display page which contains the user trace events (see
“To search for a user trace event” on page 1-46) to see th#tawmait system call

always precedes the user trace event that we logged, which is what we would expect.

NOTE

If you used the same search dialog as you used for searching for a
kernel trace event, you may use tReev button on the search
dialog for the previous search criteria. You can alternate between
searching for user trace events and kernel trace events using this
functionality.

[t a, lamis. ik, id {1

Eedg Evericr dpurple = @l tsgba @ red o iediwics] Saskal Il Bcdy Emprd Dmporirizan

Drmet R
aprw | o

[ST il |||H\1||I ...'Fﬁlull

L

| | " poor_irace! mb_ibsinlh. detalehdbh, celalaly

|-¢vu|rw-:-l:-

P

[| Foerrmnr st sidotmn. astaimedn, danadone

Figure 1-33. NightTrace display page

Zooming in

To zoom in:

- You may use th&Zoom In button on the NightTrace Analyzer to see more
details.

1-47

PowerWorks Linux Development Environment Tutorial

For our example, we zoomed in on our kernel display page 13 times to see the fol-
lowing level of detalil.

HrgdnTrace) aivncd | BF5s

~ Edt
= Yiew

SaErdh araieris sl fL SR EErL,
2 Geerth oriteris st ot 353EE sl

KRi®

[rid meg

| L

Figure 1-34. Zoomed in kernel display page

1-48

In the above figure, the first bar (red) indicates the real-time clock interrupt for this cycle.
The second bar (blue) shows the target progeeg exiting theFBS_wait call in the

Ada code. The current time line is positioned at the user trace event that we previously
searched for.

Looking at the other display page (which shows our user trace events), we can see the
user_trace event inserted through NightView (see “Adding a tracepoint in the program” on

page 1-30). Note that both displays are synchronized in time (the current time line repre-

sents the same instant in time on both display pages). You may middle-click on the line

representing the user trace event to see more detailed information.

The third and final bar (blue) on the kernel display page represents the next encounter of
theFBS_wait call in the loop.

NOTE

Due to a problem with thebufferwrap option to thektrace
command, user and kernel data may not appear synchronized.
This problem has been fixed in theérace andntfilter
commands in PowerMAX OS 4.3 Patch Sett&€e-004 and
base-006). See “To activate kernel tracing” on page 1-24 for
more information.

Using the PLDE

Conclusion

This concludes our tutorial for the PowerWorks Linux Development Environment. We
hope that we have given you a sufficient overview of the various tools and the interactions
between them.

1-49

PowerWorks Linux Development Environment Tutorial

1-50

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

XNuI SYI0ANIBMOd

O
@
<
@
O
©
3
D
S
~+
M
-
<.
=
O
-
=
@
S
~+

Tutorial

0898100

	PowerWorks Linux Development Environment Tutorial
	Preface
	Contents
	Using the PLDE
	Overview
	Before you begin
	Pathname conventions
	Remote shell access
	Privileges
	Additions to PATH

	Getting Started
	Using NEdit
	Using NightBench
	Creating a new environment
	Introducing an existing source file into the environment
	Creating a new source file in the environment
	Setting compile options
	Defining a partition
	Activating tracing for a partition
	Building a partition
	Before you continue
	Invoking NightSim

	Using NightSim
	Configuring the Scheduler
	Scheduling a process
	Activating user tracing and kernel tracing
	Setting up the scheduler

	Using NightView
	Adding a tracepoint in the program
	Resuming execution
	Starting the simulation
	Inserting a patchpoint
	Halting user tracing and kernel tracing
	Disabling the patchpoint
	Exiting the program
	Removing the scheduler

	Using NightTrace
	Converting kernel trace event files
	Creating NightTrace configuration files
	Invoking NightTrace
	Creating a default kernel page
	Searching for a kernel trace event
	Searching for a user trace event
	Zooming in

	Conclusion

