
PowerMAX OS Programming Guide

0890423-080

December 2001

Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309–1892. Mark the envelope “Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.
UNIX is a registered trademark of The Open Group
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
PowerPC and PowerPC 604 are trademarks of International Business Machines Corporation.
PowerMAX OS and Power MAXION are trademarks of Concurrent Computer Corporation

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- August 1994 000 PowerUX 1.1

Previous Release -- August 1999 070 PowerMAX OS 4.3

Current Release -- December 2001 080 PowerMAX OS 5.1

iii

Preface

Scope of Manual

This manual provides information needed for application programming in the PowerMAX
OSTM1 operating system environment. It describes the system services provided by the
system calls and libraries for the C programming language. It focuses on such topics as
process scheduling, memory management, interprocess communications, and threads pro-
gramming.

Structure of Manual

This manual consists of 14 chapters, 1 appendix, a glossary, and an index. A brief descrip-
tion of the chapters and appendix is presented as follows:

• Chapter 1 provides an introduction to the manual.

• Chapter 2 introduces the system calls and other system services that you
can use to develop application programs.

• Chapter 3 discusses the system file and record locking facility. It also
describes the STREAMS mechanism as it relates to input/output opera-
tions.

• Chapter 4 explains process management.

• Chapter 5 provides an overview of process scheduling and describes:

- System V scheduler classes

- POSIX®2 scheduling policies

- Scheduler priorities.

• Chapter 6 provides an overview of primary memory and explains the pro-
cedures for using memory management facilities.

• Chapter 7 discusses the general terminal interface to control asynchronous
communication ports. It also addresses the STREAMS mechanism as it
relates to terminal device control.

• Chapter 8 describes the programming interface to the internationalization
feature.

• Chapter 9 discusses file and directory management. Security consider-
ations including privileges and device security are also described.

1. PowerMAX OS is a trademark of Concurrent Computer Corporation
2. POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

PowerMAX OS Programming Guide

iv

• Chapter 9 provides a detailed explanation of three interprocess communi-
cation facilities:

- signals

- job control

- pipes.

• Chapter 11 introduces the Threads Library, which provides facilities for
concurrent programming.

• Chapter 12 describes the InterProcess Communications (IPC) package that
allows processes to exchange data and synchronize execution. The system
calls for three IPC mechanisms are described:

- messages

- semaphores

- shared memory.

This chapter also describes the POSIX shared memory facilities.

• Chapter 13 discusses the synchronous polling mechanism and asynchro-
nous event notification within STREAMS. It also explains STREAMS
input/output multiplexing.

• Chapter 14 describes how to package software applications.

• Appendix A provides guidelines for writing trusted software.

The glossary contains definitions of technical terms that are important to understanding
the concepts presented in this book.

The index contains an alphabetical reference to key terms and concepts and numbers of
pages where they occur in the text.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

Preface

v

Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual

0890424 Character User Interface Programming

0890429 System Administration Volume 1

0890430 System Administration Volume 2

0890431 Concurrent C Reference Manual

0890459 Compilation Systems Volume 1 (Tools)

0890460 Compilation Systems Volume 2 (Concepts)

0890466 PowerMAX OS Real-Time Guide

PowerMAX OS Programming Guide

vi

vii

Contents

Chapter 1 Introduction

Introduction . 1-1
Audience and Prerequisite Knowledge. 1-1
Related Books and Documentation . 1-1

Programming Books . 1-1
Reference Set. 1-2

The C Connection. 1-3
Hardware/Software Dependencies . 1-3
Information in the Examples . 1-3
Notation Conventions . 1-3
Manual Page References . 1-4

Application Programming in the UNIX System Environment 1-4
UNIX System Tools and Languages . 1-5

Facilities Covered and Not Covered in This Guide. 1-5
Programming Tools and Languages in the UNIX System Environment 1-6

The C Language . 1-6
Shell. 1-7
awk . 1-7
lex . 1-7
yacc . 1-8
m4 . 1-8
bc and dc . 1-8

Character User Interfaces . 1-8
curses. 1-8
FMLI . 1-8
ETI. 1-9

Graphical User Interfaces . 1-10
XWIN Graphical Windowing System. 1-10

System Calls and Libraries . 1-11
File and Device Input/Output . 1-11

STREAMS Input/Output. 1-11
File and Record Locking. 1-14
Where to Find More Information . 1-15

Memory Management . 1-15
The Memory Mapping Interface . 1-15
Where to Find More Information . 1-16

Process Management and Scheduling . 1-16
Where to Find More Information . 1-16

Interprocess Communications . 1-16
Where to Find More Information . 1-18

Symbolic Links. 1-18
Where to Find More Information . 1-19

PowerMAX OS Programming Guide

viii

Chapter 2 System Calls and Libraries

Introduction . 2-1
Libraries and Header Files . 2-1

Header Files . 2-1
How to Use Library Functions . 2-2
C Library (libc) . 2-6

Subsection 3C Routines. 2-6
Subsection 3S Routines . 2-9

Math Library (libm) . 2-10
General Purpose Library (libgen) . 2-12
Standard I/O Library. 2-14

Three Files You Always Have . 2-14
Named Files. 2-14

How C Programs Communicate with the Shell . 2-16
Passing Command Line Arguments . 2-16

System Calls. 2-18
Input/Output and File System Calls . 2-19

File and Device I/O . 2-19
Terminal Device Control . 2-19
Directory and File System Control . 2-20
Access Control System Calls. 2-21

Process and Memory System Calls. 2-22
Processes . 2-22
Signals . 2-23
Basic Interprocess Communication . 2-23
Advanced Interprocess Communication . 2-24
Memory Management . 2-25

Miscellaneous System Calls . 2-25
System Call Error Handling . 2-26

Chapter 3 File and Device Input/Output

Introduction . 3-1
Input/Output System Calls . 3-1

File Descriptors. 3-2
Reading and Writing Files . 3-3
Opening, Creating and Closing Files . 3-5
Random Access — lseek . 3-7

File and Record Locking . 3-8
Terminology . 3-8
File Protection. 3-10

Opening a File for Record Locking. 3-10
Setting a File Lock. 3-11
Setting and Removing Record Locks . 3-13
Getting Lock Information . 3-17
Deadlock Handling . 3-18

Selecting Advisory or Mandatory Locking . 3-18
Caveat Emptor—Mandatory Locking . 3-19

Record Locking and Future Releases of the UNIX System 3-20
Basic STREAMS Operations. 3-20
Benefits of STREAMS. 3-22

Standardized Service Interfaces . 3-22
Manipulating Modules . 3-23

Contents

ix

Protocol Portability . 3-23
Protocol Substitution. 3-24
Protocol Migration . 3-24
Module Reusability . 3-25

STREAMS Mechanism . 3-27
STREAMS System Calls . 3-27

getmsg and putmsg . 3-28
poll. 3-28

Opening a STREAMS Device File. 3-28
Creating a STREAMS-based Pipe . 3-28
Adding and Removing Modules. 3-29
Closing the Stream . 3-29
Stream Construction Example . 3-30

Inserting Modules . 3-30
Module and Driver Control . 3-32

Chapter 4 Process Management

Introduction . 4-1
Program Execution and Process Creation . 4-2

Program Execution—exec . 4-2
Process Creation—fork . 4-4
Control of Processes—fork and wait . 4-7
Process Termination . 4-7
Managing Processors and Processes . 4-8

Processor Administration Information . 4-8
Binding Processes to Processors . 4-8
Local Memory Considerations . 4-10

Chapter 5 Process Scheduling and Management

Process Scheduling . 5-1
How the Process Scheduler Works . 5-2

System V Scheduler Classes . 5-3
Time-Sharing Class and Fixed Class . 5-4
System Class . 5-4
Fixed-Priority Class . 5-4
ADA Priority Class . 5-5

POSIX Scheduling Policies. 5-5
Scheduler Priorities . 5-5

POSIX Scheduling Routines . 5-8
The sched_setscheduler Routine . 5-9
The sched_getscheduler Routine. 5-10
The sched_setparam Routine . 5-11
The sched_getparam Routine . 5-13
The sched_yield Routine. 5-13
The sched_get_priority_min Routine . 5-14
The sched_get_priority_max Routine . 5-14
The sched_rr_get_interval Routine . 5-15

System V Scheduling System Calls and Commands . 5-16
The priocntl System Call. 5-17

The PC_GETCID and PC_GETCLINFO Commands. 5-18
The PC_GETPARMS and PC_SETPARMS Commands 5-22

PowerMAX OS Programming Guide

x

The PC_GETTQ and PC_SETTQ Commands 5-28
The priocntllist System Call . 5-29
The priocntlset System Call. 5-29

Scheduler Commands . 5-31
The priocntl Command . 5-32
The run and rerun Commands . 5-36

The setrun(1) command . 5-38
Scheduling classes . 5-39
Display options . 5-39
Examples . 5-39

Scheduler Interaction with Other Functions . 5-40
Kernel Processes . 5-40
fork, exec . 5-40
nice. 5-40
init . 5-40

Scheduler Performance . 5-41
LWP State Transition. 5-41

Chapter 6 Memory Management

Overview of Primary Memory . 6-1
Hardware Features . 6-1
Software Features . 6-3

Memory Pools . 6-3
NUMA Policies . 6-4
Guidelines for Determining the Appropriate Default NUMA Policy 6-7
Memory Pools and Process Memory Locking . 6-8

Using the memdefaults System Call . 6-8
Using the run and rerun Commands . 6-11

Memory Management Facilities . 6-12
Virtual Memory, Address Spaces, and Mapping . 6-13
Networking, Heterogeneity and Integrity . 6-13
Memory Management Interfaces . 6-14

Creating and Using Mappings . 6-14
Establishing a Mapping to a Target Process’s Address Space 6-22
Establishing a Mapping to /dev/zero . 6-25

Removing Mappings . 6-26
Cache Control . 6-27

Memory Cache Control . 6-27
Memory Page Locking . 6-27
Address Space Locking . 6-33
Memory Cache Synchronization . 6-34
Memory Page Residency . 6-35

Other Mapping Functions . 6-36
Address Space Layout . 6-37
Managing Misaligned Data. 6-38

Alignment . 6-38
Exceptions . 6-39
Implementation . 6-39

Chapter 7 Terminal Device Control

Introduction . 7-1

Contents

xi

Terminal Device Control Functions. 7-1
General Terminal Interface. 7-1

Baud Rates. 7-2
Input Modes. 7-3
Output Modes . 7-3
Control Modes. 7-3
Local Modes and Line Disciplines . 7-4
Special Control Characters . 7-4

Opening a Terminal Device File. 7-5
Input Processing and Reading Data . 7-5

Canonical Mode Input Processing. 7-6
Non-Canonical Mode Input Processing . 7-7

Writing Data and Output Processing . 7-9
Closing a Terminal Device File . 7-9
Special Characters . 7-9
The Controlling-Terminal and Process-Groups . 7-11
Session Management and Job Control . 7-12
Improving Terminal I/O Performance . 7-13

TTY in Canonical Mode . 7-13
TTY in Raw Mode . 7-14
TTY Flow Control. 7-15

STREAMS-Based Terminal Subsystem . 7-16
Line Discipline Module . 7-18

Default Settings . 7-18
Open and Close Routines . 7-19
Read-Side Processing . 7-19
Write-Side Processing . 7-20
EUC Handling in ldterm . 7-21

Support of termiox . 7-23
Hardware Emulation Module . 7-24

STREAMS-based Pseudo-Terminal Subsystem . 7-25
Line Discipline Module . 7-25
Pseudo-tty Emulation Module — ptem . 7-26
Remote Mode . 7-28
Packet Mode . 7-28
Pseudo-tty Drivers — ptm and pts . 7-29

grantpt . 7-32
unlockpt. 7-32
ptsname . 7-32

Chapter 8 Internationalization

Introduction . 8-1
Discussion . 8-2
Organization . 8-2

Locales. 8-3
Character Representation. 8-5

“8-bit Clean”. 8-6
Character Classification and Conversion . 8-7

Sign Extension. 8-8
Characters Used as Indices . 8-8

Wide Characters . 8-8
Multibyte and Wide-character Conversion . 8-10

PowerMAX OS Programming Guide

xii

Input/Output. 8-10
Character Classification and Conversion. 8-11
curses Support . 8-11
C Language Features . 8-11

System-defined Words . 8-12
Cultural and Language Conventions . 8-13

Date and Time. 8-13
Numeric and Monetary Information . 8-14
String Collation. 8-15

Message Handling . 8-17
mkmsgs and gettxt (System V-specific) . 8-18
exstr and srchtxt (System V-specific) . 8-19
catopen and catclose (X/Open) . 8-20
gencat and catgets (X/Open). 8-21
%n$ Conversion Specifications . 8-22

kbd . 8-23
Building kbd Tables . 8-23

Internationalization Facilities. 8-25
Interface Standards . 8-25
Enhanced Commands . 8-26

Chapter 9 Directory and File Management

Introduction . 9-1
Structure of the File System. 9-2

Types of Files . 9-2
Regular Files . 9-2
Directory Files . 9-2
Special Files. 9-3

Organization of Files. 9-3
File Naming . 9-5
Path Names . 9-5

Full Pathnames. 9-6
Relative Pathnames . 9-7

Symbolic Links . 9-11
Properties of Symbolic Links . 9-12
Using Symbolic Links . 9-14

Creating Symbolic Links . 9-14
Examples . 9-16

Removing Symbolic Links . 9-16
Accessing Symbolic Links . 9-16
Copying Symbolic Links . 9-17
Linking Symbolic Links . 9-17
Moving Symbolic Links . 9-18
File Ownership and Permissions . 9-19

Using Symbolic Links with NFS . 9-19
Archiving Commands . 9-21

Summary of UNIX System Files & Directories . 9-21
UNIX System Directories. 9-22
Directories and Files . 9-23

Directories in root . 9-23
Directories in /etc. 9-25
Files in /etc. 9-27

Contents

xiii

Directories in /usr . 9-32
Files in /usr . 9-34
Directories in /var . 9-35
Files in /var . 9-37

File Access Controls . 9-39
File Protection . 9-40

File Permissions . 9-41
Setting Default Permissions . 9-42
How to Determine Existing Permissions. 9-42
How to Change Existing Permissions . 9-44
A Note on Permissions and Directories . 9-46
An Alternative Method . 9-46

Security Considerations . 9-47
What Security Means to Programmers. 9-47

What Is Security? . 9-47
How Basic Security Works . 9-48
How Enhanced Security Works. 9-48

Privileges . 9-50
Privileges Associated with a File . 9-53
Manipulating File Privileges . 9-54
Privileges Associated with a Process . 9-56
Manipulating Process Privileges . 9-57

Device Security. 9-59
Device Database . 9-60
Kernel Device Allocation . 9-61
Device Driver Flags. 9-62
Device Allocation Routines. 9-62

The devalloc Routine . 9-62
The devdealloc Routine . 9-63

Chapter 10 Signals, Job Control, and Pipes

Introduction . 10-1
Signals . 10-1

Signal Types . 10-2
Signal Actions . 10-5
Real-Time Signal Behavior . 10-6
Signal Structures. 10-8

The sigset_t Structure . 10-8
The sigaction Structure . 10-9
The sigval and sigevent Structures . 10-11
The siginfo_t Structure . 10-13
The ucontext_t Structure . 10-15

POSIX Signal System Calls . 10-16
The kill System Call . 10-16
The sigsetops Library Routines. 10-17
The sigaction System Call . 10-17
The sigprocmask System Call . 10-22
The sigpending System Call . 10-23
The sigsuspend System Call . 10-24
The sigtimedwait System Call. 10-24
The sigwaitinfo System Call . 10-26
The sigqueue System Call . 10-27

PowerMAX OS Programming Guide

xiv

System V Signal System Calls . 10-28
The Signal–Handling Routine . 10-29

Job Control and Session Management . 10-30
Overview of Job Control. 10-30

Job Control Terminology. 10-31
Job Control Signals . 10-32
The Controlling Terminal and Process-Groups . 10-32
Terminal Access Control . 10-32
Modem Disconnect . 10-34

STREAMS-based Job Control . 10-35
Allocation and Deallocation . 10-35
Hung-up Streams . 10-36
Hangup Signals . 10-36
Accessing the Controlling Terminal . 10-36

Basic Interprocess Communication Pipes. 10-37
STREAMS-Based Pipes and FIFOs . 10-39

Creating and Opening Pipes and FIFOs . 10-40
Accessing Pipes and FIFOs . 10-41

Reading from a Pipe or FIFO . 10-41
Writing to a Pipe or FIFO. 10-42
Closing a Pipe or FIFO. 10-43

Flushing Pipes and FIFOs . 10-44
Named Streams . 10-44

fattach . 10-44
fdetach . 10-45
isastream. 10-46
File Descriptor Passing. 10-46

Unique Connections . 10-47

Chapter 11 Programming with the Threads Library

Introduction . 11-1
What Is Concurrent Programming? . 11-2
What Are Threads? . 11-3

Threads Illustrated . 11-5
Basic Threads Management . 11-6

Creating a New Thread . 11-7
Creating a PowerMAX OS Thread . 11-7
Creating a POSIX Thread . 11-9

POSIX Thread Creation Attributes . 11-9
Modifying POSIX Thread Creation Attributes 11-10

Creating a Thread From a Thread . 11-12
Terminating a Thread . 11-13

PowerMAX OS Thread Termination. 11-13
POSIX Thread Terminations . 11-13
Termination of the Process . 11-14

PowerMAX OS Process Termination. 11-14
POSIX Process Termination. 11-15

Waiting for Thread Termination . 11-15
PowerMAX OS Thread Joining. 11-15
POSIX Thread Joining. 11-15
Detached Threads . 11-17

Thread-Specific Data . 11-17

Contents

xv

PowerMAX OS Thread-Specific Data Functions . 11-18
POSIX Thread-Specific Data Functions . 11-19

Threads and Signals . 11-19
PowerMAX OS Thread Signal Masks . 11-20
POSIX Thread Signal Masks . 11-20
Asynchronously-Generated Signals . 11-21

Asynchronously-Generated Signals — Paradigm 11-21
Synchronously-Generated Signals . 11-22
Thread-to-Thread Signaling . 11-23

PowerMAX OS Thread Signaling . 11-23
POSIX Thread Signaling . 11-23

POSIX Thread Cancellations . 11-24
Cancellation Point Function Considerations. 11-25
Cancellation Cleanup Handlers. 11-25
Issuing a Cancellation Request . 11-26
Testing for Cancellation Requests. 11-26

Cancellation Cleanup Handler Example . 11-27
Disabled Cancellation Example . 11-29

Threads Concurrency Level . 11-31
Lightweight Processes. 11-31
Multiplexed Threads . 11-32
Managing Threads Concurrency . 11-32
Bound Threads . 11-34
The Initial (Primordial) Thread. 11-35

Thread Scheduling . 11-35
Multiplexed Thread Scheduling . 11-35

Priority for PowerMAX OS Threads . 11-36
Priority for POSIX Threads . 11-36

Bound Thread Scheduling. 11-37
Managing Thread Scheduling . 11-39

PowerMAX OS Thread Scheduling. 11-39
POSIX Thread Scheduling. 11-39

Using fork(2) . 11-40
A pthread_atfork() Example . 11-41

Synchronizing Threads . 11-45
Locks . 11-47

Mutual Exclusion Locks . 11-47
PowerMAX OS Mutex Lock Interface . 11-47
POSIX Mutex Lock Interface . 11-48
POSIX Priority Ceiling Protocol Mutexes. 11-48
Priority Ceiling Mutex Restrictions . 11-49
Initializing PTHREAD_PRIO_PROTECT Mutexes 11-50
Using PTHREAD_PRIO_PROTECT Mutexes 11-51
Priority Protect Mutex Example . 11-51

Spin Locks. 11-61
POSIX Spin Locks. 11-61

Recursive Mutual Exclusion . 11-62
POSIX Thread Recursive Mutexes . 11-63

Reader-Writer Locks . 11-63
POSIX Thread Reader-Writer Locks . 11-64

Condition Variables . 11-67
POSIX Thread Condition Variables . 11-69

Semaphores. 11-70
POSIX Thread Semaphores . 11-71

PowerMAX OS Programming Guide

xvi

Barriers . 11-71
POSIX Thread Barriers . 11-72

Awakening Threads for Synchronization Mechanisms. 11-73
Further Considerations for Synchronization Mechanisms 11-74
Initialization of Synchronization Mechanisms . 11-74

PowerMAX OS Synchronization Mechanisms . 11-74
POSIX Initialization Mechanisms . 11-75
Alternative Initialization . 11-75
POSIX Static Initializations. 11-76

Invalidation of Synchronization Mechanisms. 11-76
Development Environment. 11-77

Compilation Environment. 11-77
Error Returns . 11-77
Thread-Safe Libraries . 11-78
System Call Wrappers . 11-79

Timers. 11-79
POSIX Timers . 11-80
User-Level Interrupts . 11-80

Examples . 11-80
Hello, world . 11-80
Basic Threads Management . 11-81
Dining Philosophers . 11-83
Producer/Consumer . 11-85

Chapter 12 Interprocess Communication

Introduction . 12-1
Shared Memory Alternatives . 12-1
POSIX Shared Memory . 12-2

Using the shm_open Routine . 12-4
Using the shm_unlink Routine . 12-5

System V IPC Package. 12-6
Security Enhancements for IPC Objects . 12-7

Discretionary Access Control . 12-7
Mandatory Access Control . 12-9

System V Messages . 12-9
Using Messages . 12-10
Getting Message Queues . 12-14

Using msgget . 12-14
Example Program . 12-16

Controlling Message Queues . 12-18
Using msgctl . 12-18
Example Program . 12-19

Operations for Messages. 12-23
Using Message Operations: msgsnd and msgrcv . 12-24

Sending a Message . 12-24
Receiving Messages . 12-25

Example Program . 12-25
msgsnd . 12-27
msgrcv . 12-27

Multilevel Operation On Messages. 12-31
System V Semaphores . 12-31

Using Semaphores . 12-33

Contents

xvii

Getting Semaphores . 12-36
Using semget . 12-36
Example Program . 12-38

Controlling Semaphores . 12-41
Using semctl . 12-41
Example Program . 12-42

Operations On Semaphores . 12-49
Using semop . 12-49
Example Program . 12-50

Multilevel Operation On Semaphores . 12-53
System V Shared Memory. 12-53

Using Shared Memory . 12-54
Getting Shared Memory Segments. 12-57

Using shmget. 12-57
Example Program . 12-60

Controlling Shared Memory. 12-62
Using shmctl . 12-62
Example Program . 12-64

Binding a Shared Memory Segment to Physical Memory 12-68
Reserving Physical Memory . 12-68

Initializing the res_sects Array . 12-69
Using physmalloc. 12-69
Using physconfig . 12-71

Using shmget and shmbind . 12-73
Operations for Shared Memory . 12-73

Using Shared Memory Operations: shmat and shmdt. 12-74
Attaching a Shared Memory Segment . 12-74
Detaching Shared Memory Segments . 12-74

Example Program . 12-75
shmat . 12-75
shmdt . 12-76

Using Shared Memory Utilities . 12-78
Using shmdefine . 12-78
Using shmconfig . 12-84

Multilevel Operation On Shared Memory Segments . 12-90

Chapter 13 STREAMS Polling and Multiplexing

Introduction . 13-1
STREAMS Input/Output Polling. 13-1

Synchronous Input/Output . 13-2
Asynchronous Input/Output . 13-5
Signals . 13-6

Extended Signals . 13-7
STREAMS Input/Output Multiplexing . 13-7

STREAMS Multiplexors . 13-12
Building a Multiplexor . 13-12
Dismantling a Multiplexor . 13-19
Routing Data through a Multiplexor . 13-20

Persistent Links . 13-21

PowerMAX OS Programming Guide

xviii

Chapter 14 Packaging Your Software Applications

An Overview of Software Packaging. 14-1
Packaging Tools and the Enhanced Security Utilities . 14-1
Contents of a Package. 14-2

Required Components . 14-3
Optional Package Information Files . 14-3
Optional Installation Scripts . 14-4

The Structural Life Cycle of a Package . 14-4
The Package Creation Tools. 14-4

The pkgmk Command . 14-5
The pkgtrans Command . 14-6
The pkgproto Command . 14-6

The Installation Tools. 14-6
The Package Information Files . 14-7

The pkginfo File . 14-7
The prototype File. 14-8

The Description Lines . 14-9
The Command Lines . 14-10

The compver File . 14-12
The copyright File. 14-12
The depend File . 14-13
The space File . 14-14
The pkgmap File . 14-14

The Installation Scripts . 14-15
Script Processing. 14-15
Installation Parameters . 14-16
Getting Package Information for a Script . 14-17
Exit Codes for Scripts . 14-18
The Request Script . 14-18

Request Script Naming Conventions. 14-18
Request Script Usage Rules. 14-18
Soliciting User Input in Request Scripts . 14-19

The Class Action Script . 14-20
Class Action Script Naming Conventions . 14-20
Class Action Script Usage Rules . 14-20
Installation of Classes . 14-21
Removal of Classes . 14-22

The Special System Classes . 14-23
The sed Class Script . 14-23
The awk Class Script . 14-24
The build Class Script . 14-24

The Procedure Script . 14-25
Naming Conventions for Procedure Scripts . 14-25
Procedure Script Usage Rules . 14-25

Basic Steps of Packaging . 14-26
Step 1. Assigning a Package Abbreviation . 14-27
Step 2. Defining a Package Instance. 14-28

Identifying a Package Instance . 14-28
Accessing the Instance Identifier in Your Scripts . 14-29

Step 3. Placing Objects into Classes. 14-29
Step 4. Making Package Objects Relocatable. 14-30

Defining Collectively Relocatable Objects . 14-30
Defining Individually Relocatable Objects . 14-31

Contents

xix

Step 5. Writing Your Installation Scripts . 14-31
Reserving Additional Space on the Installation Machine 14-32

Step 6. Defining Package Dependencies . 14-32
Step 7. Writing a Copyright Message. 14-33
Step 8. Creating the pkginfo File . 14-33
Step 9. Creating the prototype File. 14-34

Creating the File Manually . 14-34
Creating Links . 14-34
Mapping Development Pathnames to Installation Pathnames 14-35
Defining Objects for pkgadd to Create . 14-35
Using the Command Lines. 14-35

Creating the File Using pkgproto . 14-36
Creating a Basic prototype. 14-36
Assigning Objects to a Class . 14-37
Renaming Pathnames with pkgproto . 14-37
pkgproto and Links . 14-37

Step 11. Distributing Packages Over Multiple Volumes 14-38
Step 12. Creating a Package with pkgmk. 14-38

Package File Compression . 14-38
Creating a Package Instance . 14-39
Helping pkgmk Locate Package Contents . 14-39

Step 13. Creating a Package with pkgtrans . 14-40
Creating a Datastream Package. 14-40
Translating a Package Instance . 14-41

Set Packaging. 14-41
Set Installation . 14-41
Set Removal . 14-42
Set Information Display . 14-42
The setsize File . 14-43
The setsizecvt Command . 14-43

Quick Reference to Packaging Procedures . 14-44
Package Installation Case Studies . 14-47

Case #1 . 14-47
Techniques. 14-47
Approach . 14-47
Sample Files . 14-49

Case #2 . 14-50
Techniques. 14-51
Approach . 14-51
Sample Files . 14-52

Case #3 . 14-54
Techniques. 14-54
Approach . 14-55
Sample Files . 14-56

Case #4 . 14-58
Techniques. 14-58
Approach . 14-58
Sample Files . 14-58

Case #5a . 14-59
Techniques. 14-60
Approach . 14-60
Sample Files . 14-61

Case #5b . 14-62
Techniques. 14-62

PowerMAX OS Programming Guide

xx

Approach . 14-63
Sample Files . 14-64

Case #5c . 14-65
Techniques . 14-65
Approach . 14-65
Sample Files . 14-66

Case #6 . 14-67
Techniques . 14-67
Approach . 14-67
Sample Files . 14-68

Case #7a . 14-70
Techniques . 14-70
Approach . 14-70
Sample Files . 14-71

Case #7b . 14-74
Techniques . 14-74
Approach . 14-75
Sample Files . 14-75

Appendix A Guidelines for Writing Trusted Software

Writing Trusted Software. A-1
Scope of Trust . A-2

How Trust Is Achieved . A-3
How to Use This Chapter . A-3

Trust and Security . A-3
Privilege . A-4
Trusted Facility Management . A-5
Mandatory Access Control . A-6
MAC Isolation Policy . A-7
Discretionary Access Control . A-8
Discretionary Access Isolation . A-8

Writing Trusted Commands. A-9
User Documentation . A-9
Parameter and Process Attribute Checking. A-9
Privilege and Special Access . A-10

Set-id Commands . A-10
Privileged Commands . A-10

Privilege and Special Access in Shared Private Routines. A-11
Error Checking . A-13
Signal Handling . A-13
Handling Sensitive Data . A-14
Executing Other Commands. A-14
Using Library Routines. A-15

Trusting Shell Scripts. A-15
User Documentation . A-15
Privilege and Special Access . A-15
Executing Commands . A-16
Error Checking . A-17

Trusting Public Library Routines. A-17
Documentation . A-18
Privilege and Special Access . A-18
Reporting Errors . A-18

Contents

xxi

Handling Sensitive Data . A-18
Executing Commands. A-19

Installing Trusted Commands and Data. A-19
Assigning Access Controls. A-19
Assigning Privileges and Special Permissions . A-20

Summary . A-21

Glossary

Index

Illustrations

Figure 1-1. A Simple ETI Program . 1-10
Figure 1-2. Simple Streams . 1-12
Figure 1-3. STREAMS-based Pipe . 1-13
Figure 2-1. Sample DIAGNOSTICS Section . 2-4
Figure 2-2. How strcmp Is Used in a Program . 2-5
Figure 2-3. Sample DIAGNOSTICS Section . 2-6
Figure 2-4. String Operations . 2-7
Figure 2-5. Classifying 8-Bit Character-Coded Integer Values 2-8
Figure 2-6. Converting Characters, Integers, or Strings . 2-8
Figure 2-7. Standard I/O Functions and Macros . 2-9
Figure 2-8. Using argv[1] to Pass a File Name . 2-17
Figure 2-9. Using Command Line Arguments to Set Flags 2-18
Figure 2-10. Signal Management Functions. 2-23
Figure 2-11. Basic Interprocess Communication Functions 2-23
Figure 2-12. Advanced Interprocess Communication Functions 2-24
Figure 2-13. Memory Management Functions . 2-25
Figure 2-14. Miscellaneous System Functions. 2-25
Figure 3-1. Simplified Version of cp . 3-6
Figure 3-2. Stream to Communication Driver . 3-21
Figure 3-3. X.25 Multiplexing Stream . 3-24
Figure 3-4. Protocol Migration . 3-25
Figure 3-5. Module Reusability . 3-26
Figure 3-6. Case Converter Module . 3-31
Figure 4-1. Process Status . 4-1
Figure 4-2. Process Primitives . 4-4
Figure 4-3. Example of fork . 4-6
Figure 5-1. The PowerMAX OS Scheduler . 5-3
Figure 5-2. Process Priorities (Programmer’s View) . 5-6
Figure 5-3. LWP State Transition Diagram . 5-41
Figure 6-1. Logical Organization of Primary Memory . 6-2
Figure 7-1. STREAMS-based Terminal Subsystem . 7-17
Figure 7-2. Pseudo-tty Subsystem Architecture . 7-26
Figure 9-1. A Sample File System . 9-4
Figure 9-2. Diagram of a Full Pathname . 9-6
Figure 9-3. Full Pathname of the /home/starship Directory 9-8
Figure 9-4. Relative Pathname of the draft Directory . 9-9
Figure 9-5. Relative Pathname from “starship” to “outline” 9-10

PowerMAX OS Programming Guide

xxii

Figure 9-6. Example Pathnames . 9-10
Figure 9-7. File Tree with Symbolic Link . 9-14
Figure 9-8. Symbolic Links with NFS: Example 1 . 9-20
Figure 9-9. Symbolic Links with NFS: Example 2 . 9-20
Figure 9-10. Directory Tree from root . 9-22
Figure 9-11. Excerpt from /etc/profile . 9-31
Figure 9-12. Sample /etc/vfstab File . 9-32
Figure 9-13. File Types . 9-39
Figure 9-14. Description of Output Produced by the ls -l Command 9-40
Figure 9-15. Umask(1) Settings for Different Security Levels 9-43
Figure 9-16. File Access Permissions . 9-44
Figure 9-17. Directory Access Permissions . 9-45
Figure 10-1. Pclose . 10-39
Figure 10-2. Pushing Modules on a STREAMS-based Pipe 10-42
Figure 10-3. Server Sets Up a Pipe . 10-47
Figure 10-4. Processes X and Y Open /usr/toserv . 10-48
Figure 11-1. Overview of Threads . 11-6
Figure 11-2. Hello, World . 11-80
Figure 11-3. Sometask . 11-81
Figure 11-4. Multiple Threads . 11-82
Figure 11-5. Barrier_wait . 11-83
Figure 11-6. Dining Philosophers . 11-84
Figure 11-7. Producer/Consumer . 11-86
Figure 12-1. Definition of msqid_ds Structure . 12-11
Figure 12-2. Definition of ipc_perm Structure . 12-12
Figure 12-3. Definition of ipc_sec Structure . 12-12
Figure 12-4. Definition of sem Structure . 12-34
Figure 12-5. Definition of semid_ds Structure . 12-34
Figure 12-6. Definition of shmid_ds Structure . 12-55
Figure 13-1. Many-to-One Multiplexor . 13-8
Figure 13-2. One-to-Many Multiplexor . 13-8
Figure 13-3. Many-to-Many Multiplexor . 13-9
Figure 13-4. Internet Multiplexing Stream . 13-10
Figure 13-5. X.25 Multiplexing Stream . 13-11
Figure 13-6. Protocol Multiplexor . 13-13
Figure 13-7. Before Link . 13-14
Figure 13-8. IP Multiplexor after First Link . 13-16
Figure 13-9. IP Multiplexor . 13-17
Figure 13-10. TP Multiplexor . 13-18
Figure 13-11. Open of MUXdriver and Driver1 . 13-22
Figure 13-12. Multiplexor after I_PLINK . 13-23
Figure 13-13. Other Users Opening a MUXdriver . 13-24
Figure 14-1. The Contents of a Package . 14-2
Figure 14-2. Sample pkginfo File . 14-8
Figure 14-3. Sample #1 prototype File . 14-10
Figure 14-4. Sample #2 prototype File . 14-11
Figure 14-5. Sample compver File . 14-12
Figure 14-6. Sample copyright File . 14-12
Figure 14-7. Sample depend File . 14-13
Figure 14-8. Sample space File . 14-14
Figure 14-9. Placing Parameters into the Installation Environment 14-17
Figure 14-10. sed Script Format . 14-23
Figure 14-11. awk Script Format . 14-24
Figure 14-12. Case #1 pkginfo File . 14-49

Contents

xxiii

Figure 14-13. Case #1 prototype File . 14-49
Figure 14-14. Case Study #1 Request Script . 14-50
Figure 14-15. Case #2 prototype File . 14-52
Figure 14-16. Case #2 pkginfo File . 14-53
Figure 14-17. Case #2 Request Script . 14-53
Figure 14-18. Case #2 Postinstall Script . 14-54
Figure 14-19. Case #3 pkginfo File . 14-56
Figure 14-20. Case #3 prototype File . 14-56
Figure 14-21. Case #3 space File . 14-56
Figure 14-22. Case #3 Installation Class Action Script (i.admin) 14-57
Figure 14-23. Case #3 Removal Class Action Script (r.cfgdata) 14-57
Figure 14-24. Case #4 pkginfo File . 14-58
Figure 14-25. Case #4 copyright File . 14-59
Figure 14-26. Case #4 compver File . 14-59
Figure 14-27. Case #4 depend File . 14-59
Figure 14-28. Case #5a pkginfo File . 14-61
Figure 14-29. Case #5a prototype File . 14-61
Figure 14-30. Case #5a sed Script (/home/mypkg/inittab.sed) 14-62
Figure 14-31. Case #5a Postinstall Script . 14-62
Figure 14-32. Case #5b pkginfo File . 14-64
Figure 14-33. Case #5b prototype File . 14-64
Figure 14-34. Case #5b Installation Class Action Script (i.inittab) 14-64
Figure 14-35. Case #5b Removal Class Action Script (r.inittab) 14-65
Figure 14-36. Case #5b inittab File . 14-65
Figure 14-37. Case #5c pkginfo File . 14-66
Figure 14-38. Case #5c prototype File . 14-66
Figure 14-39. Case #5c build Script (/home/case5c/inittab.build) . . 14-67
Figure 14-40. Case #6 pkginfo File . 14-68
Figure 14-41. Case #6 prototype File . 14-69
Figure 14-42. Case #6 Installation Class Action Script (i.cron) 14-69
Figure 14-43. Case #6 Removal Class Action Script (r.cron) 14-69
Figure 14-44. Case #6 Root crontab File (Delivered with Package) 14-70
Figure 14-45. Case #6 Sys crontab File (Delivered with Package) 14-70
Figure 14-46. Case #7a setinfo File . 14-71
Figure 14-47. Case #7a prototype File . 14-72
Figure 14-48. Case #7a preinstall Script File . 14-72
Figure 14-49. Case #7a request Script File . 14-73
Figure 14-49. Case #7a request Script File (Cont.) . 14-74
Figure 14-50. Case #7b Original setinfo File . 14-75
Figure 14-51. Case #7b SIP One New setinfo File . 14-75
Figure 14-52. Case #7b SIP Two New setinfo Files . 14-75
Figure 14-53. Case #7b Original prototype File . 14-76
Figure 14-54. Case #7b SIP One New prototype File . 14-76
Figure 14-55. Case #7b SIP Two New prototype Files 14-76
Figure A-1. Correct Regulation of Access in C Programs A-11
Figure A-2. Correct Use of Privilege in a C Program . A-12
Figure A-3. Correct Use of Privilege in a Shell Script . A-16
Figure A-4. Shell Script Using Commands From TFM Database A-17

PowerMAX OS Programming Guide

xxiv

Tables

Table 2-1. Math Functions . 2-10
Table 2-2. libgen Functions. 2-12
Table 2-3. File and Device I/O Functions . 2-19
Table 2-4. Terminal Device Control Functions . 2-20
Table 2-5. Directory and File System Control Functions . 2-20
Table 2-6. Mandatory Access Control (MAC) System Calls 2-21
Table 2-7. Process Management Functions. 2-22
Table 2-8. errno Values . 2-26
Table 5-1. priocntl(2) idtype Values . 5-17
Table 5-2. priocntl(2) Commands . 5-17
Table 5-3. Information Returned by PC_GETPARMS . 5-24
Table 5-4. Symbolic Constants for Specifying Quantum . 5-27
Table 5-5. Idtype and idlist Values . 5-32
Table 5-6. Class Specific Options for priocntl . 5-33
Table 5-7. Acceptable Keywords for the -s Option. 5-35
Table 6-1. Byte Alignment Requirements. 6-38
Table 7-1. Terminal Device Control Functions . 7-1
Table 7-2. Baud-Rates Definitions . 7-2
Table 7-3. Terminal Device Control Character Array. 7-4
Table 8-1. EUC Code Set Representations . 8-5
Table 8-2. EUC and Corresponding 32-bit Wide-Character Representation 8-9
Table 8-3. Routines for Application Programming. 8-25
Table 8-4. Routines for System Programming and Administration 8-26
Table 8-5. Enhanced Commands. 8-26
Table 10-1. POSIX Signals . 10-2
Table 10-2. Job Control Signals . 10-3
Table 10-3. Real-Time Signals . 10-3
Table 10-4. Additional Signals . 10-3
Table 12-1. Operation Permissions Codes . 12-15
Table 12-2. Operation Permissions Codes . 12-37
Table 12-3. Operation Permissions Codes . 12-58
Table 12-4. Options Specified for Reserving Memory . 12-72
Table 12-5. Attributes . 12-80
Table 12-6. Options Specified for a Virtual Segment . 12-86
Table 12-7. Options Specified for a Bound Segment . 12-87
Table 12-8. Options for Reserving Memory Prior to Binding 12-88
Table 13-1. siginfo_t Data Available to the Signal Handler 13-7

Screens

Screen 5-1. Obtaining the Range of Priorities for Scheduler Classes. 5-19
Screen 5-2. Output from the getcid Program . 5-19
Screen 5-3. Obtaining the Class ID and the Maximum Priority 5-20
Screen 5-4. Obtaining a Process’s Scheduler Class . 5-21
Screen 5-5. Obtaining a Process’s Scheduler Parameters . 5-22
Screen 5-6. Obtaining a Process’s Scheduler Class and Parameters. 5-25
Screen 5-7. Changing a Process’s Scheduler Class and Priority. 5-26
Screen 5-8. Changing the Scheduler Class for Selected Processes. 5-30
Screen 5-9. Output from the priocntl -l Command . 5-32
Screen 5-10. Output from the priocntl -d Command . 5-33
Screen 5-11. Output from the priocntl -s Command. 5-34
Screen 5-12. Output from the priocntl -e Command . 5-35

Contents

xxv

Screen 7-1. Improving TTY Performance Canonical Mode 7-14
Screen 7-2. Improving TTY Performance Raw Mode . 7-15
Screen 7-3. Improving TTY Performance Flow Control . 7-16
Screen 9-1. Setting File Privileges in Kernel Privilege Table. 9-55
Screen 9-2. Retrieving File Privileges . 9-56
Screen 9-3. Adding and Clearing Process Privileges . 9-58
Screen 9-4. Setting Process Privileges Using PUTPRV . 9-58
Screen 9-5. Retrieving Process Privileges . 9-59
Screen 10-1. Example Specifying SIG_IGN or SIG_DFL. 10-18
Screen 10-2. Example Specifying a Pointer to a Handler . 10-19
Screen 10-3. Example Detecting SIGINT Signal . 10-20
Screen 10-4. System() Function . 10-22
Screen 10-5. popen . 10-38

PowerMAX OS Programming Guide

xxvi

1
Introduction

Introduction . 1-1
Audience and Prerequisite Knowledge. 1-1
Related Books and Documentation . 1-1

Programming Books . 1-1
Reference Set. 1-2

The C Connection. 1-3
Hardware/Software Dependencies . 1-3
Information in the Examples . 1-3
Notation Conventions . 1-3
Manual Page References . 1-4

Application Programming in the UNIX System Environment 1-4
UNIX System Tools and Languages . 1-5

Facilities Covered and Not Covered in This Guide. 1-5
Programming Tools and Languages in the UNIX System Environment 1-6

The C Language . 1-6
Shell. 1-7
awk . 1-7
lex . 1-7
yacc . 1-8
m4 . 1-8
bc and dc . 1-8

Character User Interfaces . 1-8
curses. 1-8
FMLI . 1-8
ETI. 1-9

Graphical User Interfaces . 1-10
XWIN Graphical Windowing System. 1-10

System Calls and Libraries . 1-11
File and Device Input/Output . 1-11

STREAMS Input/Output. 1-11
File and Record Locking. 1-14
Where to Find More Information . 1-15

Memory Management . 1-15
The Memory Mapping Interface . 1-15
Where to Find More Information . 1-16

Process Management and Scheduling . 1-16
Where to Find More Information . 1-16

Interprocess Communications . 1-16
Where to Find More Information . 1-18

Symbolic Links. 1-18
Where to Find More Information . 1-19

PowerMAX OS Programming Guide

1-1

1
Chapter 1Introduction

1
1
1

Introduction 1

This book, PowerMAX OS Programming Guide, concentrates on how to use the system
services provided by the operating system. It is designed to give you information about
application programming in a UNIX® 1 system environment. It does not attempt to teach
you how to write programs. Rather, it is intended to supplement texts on programming by
concentrating on the other elements that are part of getting application programs into oper-
ation.

Audience and Prerequisite Knowledge 1

As the title suggests, this manual assumes that you are a software developer. No special
level of programming involvement is assumed. Hopefully, this book will also be useful to
you if you work on or manage large application development projects.

If you are a programmer in the expert class, or if you are engaged in developing system
software, you may find that the PowerMAX OS Programming Guide lacks the depth of
information that you need. In this case, refer to the on-line system manual pages.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system direc-
tory/file structure is assumed. If you feel shaky about your mastery of these basic tools,
you may want to look over the User's Guide before tackling this one.

Related Books and Documentation 1

Throughout this book, you will find pointers and references to other guides and manuals
where information is described in more detail. In particular, you will find references to
other programming guides (this document being a part of the programming guide series)
and reference manuals. Both of these document sets are described below.

Programming Books 1

The components of PowerMAX OS include the shell command line interface (CLI), the
Application Program Interface (API), and the Device Driver Interface/Driver Kernel Inter-

1. UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

PowerMAX OS Programming Guide

1-2

face (DDI/DKI). This document is part of a series of programming guides that includes the
following:

• PowerMAX OS Real-Time Guide — Provides an introduction to the real-
time features of PowerMAX OS and describes techniques for improving
response time and increasing determinism. It contains documentation for
interfaces that are used primarily by real-time applications. These inter-
faces include those for interprocess synchronization tools, POSIX clocks
and timers, user-level interrupt routines, synchronized I/O, and asynchro-
nous I/O.

The PowerMAX OS Programming Guide contains documentation for inter-
faces that are used generally by both real-time and secure applications (for
example, process management facilities, POSIX scheduling interfaces, sig-
nal management facilities, memory management facilities, and Threads
Library facilities). It is intended that these two guides be used together.

• Concurrent C Reference Manual — Provides an introduction to Concur-
rent C, describes Concurrent extensions to the C language, and explains use
of the Concurrent C compiler, compiler optimization options, and compila-
tion modes.

• Compilation Systems Manuals — The Compilation Systems Volume 1
(Tools) describes the features and use of several software development
environment tools, analysis tools, and project-control tools. The Compila-
tion Systems Volume 2 (Concepts) describes the concepts underlying com-
pilation systems. Such concepts include those related to environments, per-
formance analysis, and formats.

• Character User Interface Programming — Provides guidelines on how to
develop a menu and form-based interface that operates on ASCII character
terminals running on PowerMAX OS.

Reference Set 1

The on-line reference set contains manual pages that formally and comprehensively
describe features of the PowerMAX OS operating system. References to this documenta-
tion can be found throughout this book. Therefore, the reference set is recommended as a
companion set to the PowerMAX OS programming guides. It is available only in on-line
form and is composed of the following:

• Command Reference — Describes all user and administrator commands in
the system.

• Operating System API Reference — Describes system calls and C language
library functions.

• System Files and Devices Reference — Describes file formats, special files
(devices), and miscellaneous system facilities.

• Device Driver Reference — Describes functions used by device driver soft-
ware.

Introduction

1-3

The C Connection 1

The UNIX system supports many programming languages, and C compilers are available
on many different operating systems. Nevertheless, the relationship between the UNIX
operating system and C has always been and remains very close. Most of the code in the
UNIX operating system is written in the C language, and over the years many organiza-
tions using the UNIX system have come to use C for an increasing portion of their appli-
cation code. Thus, while the PowerMAX OS Programming Guide is intended to be useful
to you no matter what language(s) you are using, you will find that, unless there is a spe-
cific language-dependent point to be made, the examples assume you are programming in
C. Concurrent C Reference Manual gives you detailed information about C language pro-
gramming in the UNIX environment.

Hardware/Software Dependencies 1

If some commands just don't seem to exist at all, they may be members of packages not
installed on your system. If you do find yourself trying to execute a non-existent
command, talk to the administrators of your system to find out what you have available.

Information in the Examples 1

While every effort has been made to present displays of information just as they appear on
your terminal, it is possible that your system may produce slightly different output. Some
displays depend on a particular machine configuration that may differ from yours.
Changes between releases of the UNIX system software may cause small differences in
what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they compile and
work as represented. Where code fragments are shown, while we can't say that they have
been compiled, we have attempted to maintain the same standards of coding accuracy for
them.

Notation Conventions 1

Whenever the text includes examples of output from the computer and/or commands
entered by you, we follow the standard notation scheme that is common throughout Pow-
erMAX OS documentation:

• All computer input and output is shown in a constant-width font.
Commands that you type in from your terminal are shown in constant-
width type. Text that is printed on your terminal by the computer is shown
in constant-width type.

• Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from the
text that represents computer output or input. Comments that explain the
input or output are shown in the same type font as the rest of the display.

PowerMAX OS Programming Guide

1-4

An italic font is used to show substitutable text elements, such as the word
“ filename” for example.

• Because you are expected to press the RETURN key after entering a com-
mand or menu choice, the RETURN key is not explicitly shown in these
cases. If, however, during an interactive session, you are expected to press
RETURN without having typed any text, the notation is shown.

• Control characters are shown by the string “CTRL- ” followed by the
appropriate character, such as “d ” (this is known as “CTRL-d ”). To enter
a control character, hold down the key marked “ C T R L ” (or
“ CONTROL ”) and press the d key.

• The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

• When the # prompt is used in an example, the command illustrated may be
executed only by root .

Manual Page References 1

Manual pages are available only in on-line form and are referred to with the function name
showing first in constant width font, followed by the section number appearing in paren-
theses; for example, the Executable and Linking Format Library (ELF) manual page
appears as elf(3E) . Reference manuals are not referred to individually; however, indi-
vidual sections are referred to as “Section 3E in the Reference Manuals.”

Section (1) Command Reference

Sections (2), (3) Operating System API Reference

Sections (4), (5), (7), (8) System Files and Devices Reference

Section (9) Manual Descriptions

Note that the Command Reference describes commands appropriate for general users and
system administrators as well as for programmers.

Application Programming in the UNIX System Environment 1

This section introduces application programming in a UNIX system environment. It
briefly describes what application programming is and then moves on to a discussion on
UNIX system tools and where you can read about them, and to languages supported in the
UNIX system environment and where you can read about them.

Programmers working on application programs develop software for the benefit of other,
nonprogramming users. Most large commercial computer applications involve a team of
applications development programmers. They may be employees of the end-user organi-
zation or they may work for a software development firm. Some of the people working in

Introduction

1-5

this environment may be more in the project management area than working program-
mers.

Application programming has some of the following characteristics:

• Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in Compilation Systems Volume 1 (Tools)), change requests,
tracking, and so on.

• Applications must be developed more robustly.

- They must be easy to use, implying character or graphical user inter-
faces.

- They must check all incoming data for validity (for example, using
the Data Validation Tools described in Compilation Systems Volume
1 (Tools) and Compilation Systems Volume 2 (Concepts)).

- They should be able to handle large amounts of data.

• Applications must be easy to install and administer.

UNIX System Tools and Languages 1

What is meant by the term UNIX system tools? In simple terms, it means an existing piece
of software used as a component in a new task. In a broader context, the term is used often
to refer to elements of the UNIX system that might also be called features, utilities, pro-
grams, filters, commands, languages, functions, and so on. It gets confusing because any
of the things that might be called by one or more of these names can be, and often are,
used simply as components of the solution to a programming problem. The chapter's aim
is to give you some sense of the situations in which you use these tools, and how the tools
fit together. It refers you to other chapters in this book or to other documents for more
details.

Facilities Covered and Not Covered in This Guide 1

The PowerMAX OS Programming Guide is about facilities used by application programs
in a UNIX system environment. Some tools may or may not be covered in this book. Actu-
ally, some of the subjects not covered in this programming guide might be even more
important to you than those that are covered. This book could not possibly cover every-
thing you ever need to know about UNIX system tools in one volume.

Tools not covered in this text are as follows:

• The login procedure

• UNIX system editors and how to use them

• How the file system is organized and how you move around in it

• Shell programming

PowerMAX OS Programming Guide

1-6

Information about these subjects can be found in the User's Guide and a number of com-
mercially available texts.

Tools that are covered in this text apply to application software development. This text
also covers tools for packaging application and device driver software and for customizing
the administrative interface.

Programming Tools and Languages in the UNIX System Environment 1

This section describes a variety of programming tools supported in the UNIX system envi-
ronment. Programming tools refers to those tools offered for use on a computer running a
current release of PowerMAX OS. Since these are separately purchasable items, not all of
them will necessarily be installed on your machine. On the other hand, you may have pro-
gramming tools and languages available on your machine that came from another source
and are not mentioned in this discussion.

The C Language 1

C is intimately associated with the UNIX system since it was originally developed for use
in recoding the UNIX system kernel. If you need to use a lot of UNIX system function
calls for low-level I/O, memory or device management, or interprocess communication, C
is a logical first choice. Most programs, however, don't require such direct interfaces with
the operating system, so the decision to choose C might better be based on one or more of
the following characteristics:

• a variety of data types: characters, integers of various sizes, and floating
point numbers

• low-level constructs (most of the UNIX system kernel is written in C)

• derived data types such as arrays, functions, pointers, structures, and
unions

• multidimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bitwise operators

• a variety of flow-of-control statements: if, if-else, switch,
while, do-while, and for

• a high degree of portability

Refer to the Concurrent C Reference Manual for complete details on C.

It takes fairly concentrated use of the C language over a period of several months to reach
your full potential as a C programmer. If you are a casual programmer, you might make it
easier for yourself if you choose a less demanding programming facility such as those
described below.

Introduction

1-7

Shell 1

You can use the shell to create programs (new commands). Such programs are also called
shell procedures.

awk 1

The awk program (its name is an acronym constructed from the initials of its developers)
scans an input file for lines that match pattern(s) described in a specification file. When
awk finds a line that matches a pattern, it performs actions also described in the specifica-
tion. It is not uncommon that an awk program can be written in a couple of lines to do
functions that would take a couple of pages to describe in a programming language like
FORTRAN or C. For example, consider a case where you have a set of records that consist
of a key field and a second field that represents a quantity, and the task is to output the sum
of the quantities for each key. The pseudocode for such a program might look like this:

An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in qty) print key, qty[key] }

This illustrates only one characteristic of awk; its ability to work with associative arrays.
With awk, the input file does not have to be sorted, which is a requirement of the
pseudoprogram.

lex 1

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical ana-
lyzer is interested in the vocabulary of a language rather than its grammar, which is a sys-
tem of rules defining the structure of a language. lex can produce C language subroutines
that recognize regular expressions specified by the user, take some action when a regular
expression is recognized, and pass the output stream on to the next program.

For detailed information on lex , see the “lex ” chapter in Compilation Systems Volume 1
(Tools) and Compilation Systems Volume 2 (Concepts) and lex(1) in the Command Ref-
erence.

SORT RECORDS
Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,

add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,

write the held record,
move the new record to the hold area;

}
At EOF, write out the last record from the hold area.

PowerMAX OS Programming Guide

1-8

yacc 1

yacc (Yet Another Compiler Compiler) is a tool for describing an input language to a
computer program. yacc produces a C language subroutine that parses an input stream
according to rules laid down in a specification file. The yacc specification file establishes
a set of grammatical rules together with actions to be taken when tokens in the input match
the rules. lex may be used with yacc to control the input process and pass tokens to the
parser that applies the grammatical rules.

For detailed information on yacc , see the “yacc ” chapter in Compilation Systems Vol-
ume 1 (Tools) and yacc(1) in the Command Reference.

m4 1

m4 is a macro processor that can be used as a preprocessor for assembly language and C
programs. For details, see the “m4” chapter of Concurrent C Reference Manual and
m4(1) in the Command Reference.

bc and dc 1

bc enables you to use a computer terminal as you would a programmable calculator. You
can edit a file of mathematical computations and call bc to execute them. The bc program
uses dc . You can use dc directly, if you want, but it takes a little getting used to since it
works with reverse Polish notation. bc and dc are described in Section 1 of the Command
Reference.

Character User Interfaces 1

curses 1

Actually a library of C functions, curses is included in this list because the set of func-
tions comprise a sublanguage for dealing with terminal screens. If you are writing pro-
grams that include interactive user screens, you will want to become familiar with this
group of functions.

For detailed information on curses , see the Character User Interface Programming.

FMLI 1

The Form and Menu Language Interpreter (FMLI) is a high-level programming tool hav-
ing two main parts:

• The Form and Menu Language, a programming language for writing
scripts that define how an application will be presented to users. The syntax
of the Form and Menu Language is very similar to that of the UNIX system
shell programming language, including variable setting and evaluation,
built-in commands and functions, use of and escape from special charac-
ters, redirection of input and output, conditional statements, interrupt signal

Introduction

1-9

handling, and the ability to set various terminal attributes. The Form and
Menu Language also includes sets of “descriptors,” which are used to
define or customize attributes of frames and other objects in your applica-
tion.

• The Form and Menu Language Interpreter, fmli , which is a command
interpreter that sets up and controls the video display screen on a terminal,
using instructions from your scripts to supplement FMLI's predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
commands and C executables, either in the background or in full screen
mode. The Form and Menu Language Interpreter operates similarly to the
UNIX command interpreter sh . At run time it parses the scripts you have
written, thus giving you the advantages of quick prototyping and easy
maintenance.

FMLI provides a framework for developers to write applications and application interfaces
that use menus and forms. It controls many aspects of screen management for you. This
means that you do not have to be concerned with the low-level details of creating or plac-
ing frames, providing users with a means of navigating between or within frames, or pro-
cessing the use of forms and menus. Nor do you need to worry about on which kind of ter-
minal your application will be run. FMLI takes care of all that for you.

For details see the FMLI chapter in the Character User Interface Programming.

ETI 1

The Extended Terminal Interface (ETI) is a set of C library routines that promote the
development of application programs displaying and manipulating windows, panels,
menus, and forms and that run under the UNIX system. ETI consists of

• the low-level (curses) library

• the panel library

• the menu library

• the form library

• the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the standard
C library. For example, there's a routine printw that behaves much like printf and
another routine getch that behaves like getc . The automatic teller program at your bank
might use printw to print its menus and getch to accept your requests for withdrawals
(or, better yet, deposits). A visual screen editor like the UNIX system screen editor vi
might also use these and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes the amount
a cursor has to move around a screen to update it. For example, if you designed a screen
editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus

to read

ETI is the best package for creating forms and menus

PowerMAX OS Programming Guide

1-10

the program would change only “the best ” in place of “a great ”. The other charac-
ters would be preserved. Because the amount of data transmitted—the output—is mini-
mized, cursor optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for the ter-
minal on which an ETI program is run. This means that ETI can do whatever is required to
update many different terminal types. It searches the terminfo database to find the cor-
rect description for a terminal.

How does cursor optimization help you and those who use your programs? First, it saves
you time in describing in a program how you want to update screens. Second, it saves a
user's time when the screen is updated. Third, it reduces the load on your UNIX system's
communication lines when the updating takes place. Fourth, you don't have to worry about
the myriad of terminals on which your program might be run.

Figure 1-1 shows a simple ETI program. It uses some of the basic ETI routines to move a
cursor to the middle of a terminal screen and print the character string BullsEye . For
now, just look at their names and you will get an idea of what each of them does:

Figure 1-1. A Simple ETI Program

For complete information on ETI, refer to the ETI chapter in the Character User Interface
Programming.

Graphical User Interfaces 1

XWIN Graphical Windowing System 1

The XWIN Graphical Windowing System is a network-transparent window system. X dis-
play servers run on computers with either monochrome or color bitmap display hardware.
The server distributes user input to and accepts output requests from various application
programs (referred to as “clients”). Each client is located on either the same machine or on
another machine in the network.

The clients use Xlib , a C library routine, to interface with the window system by means
of a stream connection.

#include <curses.h>

main()
{
 initscr();

 move(LINES/2 - 1, COLS/2 - 4);
 addstr(“Bulls”);
 refresh();
 addstr(“Eye”);
 refresh();
 endwin();
}

Introduction

1-11

“Widgets” are a set of code and data that provide the look and feel of a user interface. The
C library routines used for creating and managing widgets are called the X Intrinsics. They
are built on top of the X Window System, monitor events related to user interactions, and
dispatch the correct widget code to handle the display. Widgets can then call application-
registered routines (called callbacks) to handle the specific application semantics of an
interaction. The X Intrinsics also monitor application-registered, nongraphical events and
dispatch application routines to handle them. These features allow programmers to use
this implementation of an OPEN LOOK toolkit in data base management, network man-
agement, process control, and other applications requiring response to external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of widgets in
addition to Xlib . Refer to the X Window System User’s Guide R5 for general information
about the design of X and to the OSF/Motif Documentation Set for information about
widgets.

System Calls and Libraries 1

This section describes the system services supplied by system calls and libraries for the C
programming language. It introduces such topics as the process scheduler, virtual mem-
ory, interprocess communication, file and record locking, and symbolic links. The system
calls and libraries that programs use to access these system services are described in detail
later in this book.

File and Device Input/Output 1

UNIX system applications can do all I/O by reading or writing files, because all I/O
devices, even a user's terminal, are files in the file system. Each peripheral device has an
entry in the file system hierarchy, so that device names have the same structure as file
names, and the same protection mechanisms apply to devices as to files. Using the same
I/O calls on a terminal as on any file makes it easy to redirect the input and output of com-
mands from the terminal to another file. Besides the traditionally available devices, names
exist for disk devices regarded as physical units outside the file system, and for absolutely
addressed memory.

STREAMS Input/Output 1

STREAMS is a general, flexible facility and a set of tools for development of UNIX sys-
tem communication services. It supports the implementation of services ranging from
complete networking protocol suites to individual device drivers. STREAMS defines stan-
dard interfaces for character input/output within the kernel, and between the kernel and the
rest of the UNIX system. The associated mechanism is simple and open-ended. It consists
of a set of system calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable development and easy
integration of high-performance network services and their components. STREAMS does
not impose any specific network architecture. The STREAMS user interface is upwardly
compatible with the character I/O user level functions such as open , close , read ,

PowerMAX OS Programming Guide

1-12

write , and ioctl . Benefits of STREAMS are discussed in more detail later in this chap-
ter.

A “Stream” is a full-duplex processing and data transfer path between a STREAMS driver
in kernel space and a process in user space.

Figure 1-2. Simple Streams

In the kernel, a Stream is constructed by linking a Stream head, a driver, and zero or more
modules between the Stream head and driver.The “Stream head” is the end of the Stream
nearest to the user process. All system calls made by a user level process on a Stream are
processed by the Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe is a full-duplex (bidirectional)
data transfer path in the kernel.It implements a connection between the kernel and one or
more user processes and also shares properties of STREAMS-based devices.

A STREAMS driver may be a device driver that provides the services of an external I/O
device, or a software driver, commonly referred to as a pseudo-device driver. The driver
typically handles data transfer between the kernel and the device and does little or no pro-
cessing of data other than conversion between data structures used by the STREAMS
mechanism and data structures that the device understands.

User Process

User Space

Kernel Space
downstream

upstream

Stream Head

Module
(optional)

Driver

External Interface 161190

Introduction

1-13

Figure 1-3. STREAMS-based Pipe

A STREAMS module represents processing functions to be performed on data flowing on
the Stream. The module is a defined set of kernel-level routines and data structures used to
process data, status, and control information. Data processing may involve changing the
way the data is represented, adding/deleting header and trailer information to data, and/or
packetizing/depacketizing data. Status and control information includes signals and
input/output control information.

Each module is self-contained and functionally isolated from any other component in the
Stream except its two neighboring components. The module communicates with its
neighbors by passing messages. The module is not a required component in STREAMS,
whereas the driver is, except in a STREAMS-based pipe where only the Stream head is
required.

One or more modules may be inserted into a Stream between the Stream head and driver
to perform intermediate processing of messages as they pass between the Stream head and
driver.STREAMS modules are dynamically interconnected in a Stream by a user pro-
cess.No kernel programming, assembly, or link editing is required to create the intercon-
nection.

STREAMS uses queue structures to keep information about given instances of a pushed
module or opened STREAMS device. A queue is a data structure that contains status
information, a pointer to routines for processing messages, and pointers for administering
the Stream. Queues are always allocated in pairs; one queue for the read-side and the other
for the write-side. There is one queue pair for each driver and module, and the Stream
head. The pair of queues is allocated whenever the Stream is opened or the module is
pushed (added) onto the Stream.

Data is passed between a driver and the Stream head and between modules in the form of
messages. A message is a set of data structures used to pass data, status, and control infor-
mation between user processes, modules, and drivers. Messages that are passed from the
Stream head toward the driver or from the process to the device, are said to travel

User Process

User Space

Kernel Space

Stream HeadStream Head

161200

PowerMAX OS Programming Guide

1-14

downstream (also called write-side). Similarly, messages passed in the other direction,
from the device to the process or from the driver to the Stream head, travel upstream (also
called read-side).

A STREAMS message is made up of one or more message blocks.Each block consists of
a header, a data block, and a data buffer. The Stream head transfers data between the data
space of a user process and STREAMS kernel data space. Data to be sent to a driver from
a user process is packaged into STREAMS messages and passed downstream. When a
message containing data arrives at the Stream head from downstream, the message is pro-
cessed by the Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain message types
sent upstream may cause the Stream head to perform specific actions, such as sending a
signal to a user process. Other message types are intended to carry information within a
Stream and are not directly seen by a user process.

File and Record Locking 1

The provision for locking files, or portions of files, is primarily used to prevent the sort of
error that can occur when two or more users of a file try to update information at the same
time. The classic example is the airlines reservation system where two ticket agents each
assign a passenger to Seat A, Row 5 on the 5 o'clock flight to Detroit. A locking mecha-
nism is designed to prevent such mishaps by blocking Agent B from even seeing the seat
assignment file until Agent A's transaction is complete.

File locking and record locking are really the same thing, except that file locking implies
the whole file is affected; record locking means that only a specified portion of the file is
locked. (Remember, in the UNIX system, file structure is undefined; a record is a concept
of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places a read lock
on a file, other processes can also read the file but all are prevented from writing to it, that
is, changing any of the data. If a process places a write lock on a file, no other processes
can read or write in the file until the lock is removed. Write locks are also known as exclu-
sive locks. The term shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and advisory locking. Manda-
tory locking means that the discipline is enforced automatically for the system calls that
read, write, or create files. This is done through a permission flag established by the file's
owner (or the superuser). Advisory locking means that the processes that use the file take
the responsibility for setting and removing locks as needed. Thus, mandatory may sound
like a simpler and better deal, but it isn't so. The principal weakness in the mandatory
method is that the lock is in place only while the single system call is being made. It is
extremely common for a single transaction to require a series of reads and writes before it
can be considered complete. In cases like this, the term atomic is used to describe a trans-
action that must be viewed as an indivisible unit. The preferred way to manage locking in
such a circumstance is to make certain the lock is in place before any I/O starts, and that it
is not removed until the transaction is done. That calls for locking of the advisory variety.

Introduction

1-15

Where to Find More Information 1

Chapter 3 discusses file and device I/O including file and record locking in detail with a
number of examples. There is an example of file and record locking in the sample applica-
tion in Chapter 2. The manual pages that specifically address file and record locking are
fcntl(2) , lockf(3) and chmod(2) and fcntl(5) . fcntl(2) describes the sys-
tem call for file and record locking (although it isn't limited to that only) fcntl(5) tells
you the file control options. The subroutine lockf(3) can also be used to lock sections
of a file or an entire file. Setting chmod so that all portions of a file are locked will ensure
that parts of files are not corrupted.

Memory Management 1

The UNIX system includes a complete set of memory-mapping mechanisms. Process
address spaces are composed of a vector of memory pages, each of which can be indepen-
dently mapped and manipulated. The memory-management facilities

• unify the system's operations on memory

• provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support

• maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects

The system's virtual memory consists of all available physical memory resources includ-
ing local and remote file systems, processor primary memory, swap space, and other ran-
dom-access devices. Named objects in the virtual memory are referenced through the
UNIX file system. However, not all file system objects are in the virtual memory; devices
that the UNIX system cannot treat as storage, such as terminal and network device files,
are not in the virtual memory. Some virtual memory objects, such as private process mem-
ory and shared memory segments, do not have names.

The Memory Mapping Interface 1

The applications programmer gains access to the facilities of the virtual memory system
through several sets of system calls.

• mmap establishes a mapping between a process's address space and a
virtual memory object.

• mprotect assigns access protection to a block of virtual memory.

• munmap removes a memory mapping.

• getpagesize returns the system-dependent size of a memory page.

• mincore tells whether mapped memory pages are in primary memory.

PowerMAX OS Programming Guide

1-16

Where to Find More Information 1

Chapter 6 gives a detailed description of the virtual memory system. Refer to the
mmap(2) , mprotect(2) , munmap(2) , getpagesize(2) and mincore(2)
system manual pages.

Process Management and Scheduling 1

Beginning with the operating system (OS), the schedulable entity is always a lightweight
process (LWP). Scheduling priorities and classes are attributes of LWPs and not processes.
When scheduling system calls accept a process on which to operate, the operation is
applied to each LWP in the process. The UNIX system scheduler determines when LWPs

run. It maintains priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign LWPs to the CPU.

The OS gives users absolute control over the sequence in which certain LWPs run, and the
amount of time each LWP may use the CPU before another LWP gets a chance

By default, the scheduler uses a time-sharing policy similar to the policy used in previous
releases. A time-sharing policy adjusts priorities dynamically in an attempt to provide
good response time to interactive LWPs and good throughput to CPU-intensive LWPs.

A fixed class scheduling policy is available, also. It is similar to the time-sharing policy
except that the time slices given to fixed class processes or LWPs do not degrade over time.

The scheduler offers a fixed priority scheduling policy as well as a time-sharing policy.
Fixed priority scheduling allows users to set fixed priorities on a per-process or LWP basis.
The highest-priority fixed priority LWP always gets the CPU as soon as it is runnable, even
if system processes are runnable. An application can therefore specify the exact order in
which LWPs run. An application may also be written so that its fixed priority LWPs have a
guaranteed response time from the system.

For most UNIX environments, the default scheduler configuration works well and no fixed
priority LWPs are needed: administrators should not change configuration parameters and
users should not change scheduler properties of their applications. However, for some
applications with strict timing constraints, fixed priority LWPs are the only way to guaran-
tee that the application's requirements are met.

Where to Find More Information 1

Chapter 5 gives detailed information on the process scheduler, along with relevant code
examples. See also the priocntl(1) , priocntl(2) , and dispadmin(1M) system
manual pages.

Interprocess Communications 1

Pipes, named pipes, and signals are all forms of interprocess communication. Business
applications running on a UNIX system computer, however, often need more sophisticated
methods of communication. In applications, for example, where fast response is critical, a

Introduction

1-17

number of processes may be brought up at the start of a business day to be constantly
available to handle transactions on demand. This cuts out initialization time that can add
seconds to the time required to deal with the transaction. To go back to the ticket reserva-
tion example again for a moment, if a customer calls to reserve a seat on the 5 o'clock
flight to Detroit, you don't want to have to say, “Yes, sir; just hang on a minute while I start
up the reservations program.” In transaction-driven systems, the normal mode of process-
ing is to have all the components of the application standing by waiting for some sort of an
indication that there is work to do.

To meet requirements of this type, the UNIX system offers a set of nine system calls and
their accompanying header files, all under the umbrella name of interprocess communica-
tions (IPC).

The IPC system calls come in sets of three; one set each for messages, semaphores, and
shared memory. These three terms define three different styles of communication between
processes:

messages Communication is in the form of data stored in a buffer. The
buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a value
between 0 and 32,767. Semaphores may be contained in an array
the size of which is determined by the system administrator. The
default maximum size for the array is 25.

shared memory Communication takes place through a common area of main
memory. One or more processes can attach a segment of memory
and as a consequence can share whatever data is placed there.

The sets of IPC system calls are:

The “get ” calls each return to the calling program an identifier for the type of IPC facil-
ity that is being requested.

The “ctl ” calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data struc-
tures associated with the identifiers picked up by the “get ” calls.

The “op ” manual pages describe calls that are used to perform the particular operations
characteristic of the type of IPC facility being used. msgop has calls that send or receive
messages. semop (the only one of the three that is actually the name of a system call) is
used to increment or decrement the value of a semaphore, among other functions. shmop
has calls that attach or detach shared memory segments.

msgget semget shmget

msgctl semctl shmctl

msgop semop shmop

PowerMAX OS Programming Guide

1-18

Where to Find More Information 1

Chapter 12 gives a detailed description of IPC, with many code examples that use the IPC
system calls. The system calls are described in Section 2 of the Operating System API Ref-
erence.

Symbolic Links 1

A symbolic link is a special type of file that represents another file. The data in a symbolic
link consists of the path name of a file or directory to which the symbolic link file refers.
The link that is formed is called symbolic to distinguish it from a regular (also called a
hard) link. A symbolic link differs functionally from a regular link in three major ways.

• Files from different file systems may be linked.

• Directories, as well as regular files, may be symbolically linked by any
user.

• A symbolic link can be created even if the file it represents does not exist

When a user creates a regular link to a file, a new directory entry is created containing a
new filename and the inode number of an existing file. The link count of the file is incre-
mented.

In contrast, when a user creates a symbolic link (using the ln(1) command with the -s
option), both a new directory entry and a new inode are created. A data block is allocated
to contain the path name of the file to which the symbolic link refers. The link count of the
referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For example, it fre-
quently happens that a disk partition (such as root) runs out of disk space. With sym-
bolic links, an administrator can create a link from a directory on that file system to a
directory on another file system. Such a link provides extra disk space and is, in most
cases, transparent to both users and programs.

Symbolic links can also help deal with the built-in path names that appear in the code of
many commands. Changing the path names would require changing the programs and
recompiling them. With symbolic links, the path names can effectively be changed by
making the original files symbolic links that point to new files.

In a shared resource environment like NFS, symbolic links can be very useful. For exam-
ple, if it is important to have a single copy of certain administrative files, symbolic links
can be used to help share them. Symbolic links can also be used to share resources selec-
tively. Suppose a system administrator wants to do a remote mount of a directory that con-
tains sharable devices. These devices must be in /dev on the client system, but this sys-
tem has devices of its own so the administrator does not want to mount the directory onto
/dev . Rather than do this, the administrator can mount the directory at a location other
than /dev and then use symbolic links in the /dev directory to refer to these remote
devices. (This is similar to the problem of built-in path names since it is normally assumed
that devices reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file system (VFS)
architecture. With VFS, new services, such as higher performance files and network IPC,

Introduction

1-19

may be provided on a file system basis. Symbolic links can be used to link these services
to home directories or to places that make more sense to the application or user. Thus, you
might create a data base index file in a RAM-based file system type and symbolically link
it to the place where the data base server expects it and manages it.

Where to Find More Information 1

Chapter 9 discusses symbolic links in detail. Refer to the symlink(2) system manual
page for information on creating symbolic links. See also stat(2) , rename(2) ,
link(2) , readlink(2) , unlink(2) , and ln(1) .

PowerMAX OS Programming Guide

1-20

2
System Calls and Libraries

Introduction . 2-1
Libraries and Header Files. 2-1

Header Files . 2-1
How to Use Library Functions . 2-2
C Library (libc). 2-6

Subsection 3C Routines . 2-6
Subsection 3S Routines. 2-9

Math Library (libm) . 2-10
General Purpose Library (libgen). 2-12
Standard I/O Library. 2-14

Three Files You Always Have. 2-14
Named Files. 2-14

How C Programs Communicate with the Shell . 2-16
Passing Command Line Arguments . 2-16

System Calls . 2-18
Input/Output and File System Calls . 2-19

File and Device I/O . 2-19
Terminal Device Control . 2-19
Directory and File System Control . 2-20
Access Control System Calls . 2-21

Process and Memory System Calls . 2-22
Processes . 2-22
Signals . 2-23
Basic Interprocess Communication. 2-23
Advanced Interprocess Communication . 2-24
Memory Management . 2-25

Miscellaneous System Calls . 2-25
System Call Error Handling . 2-26

PowerMAX OS Programming Guide

2-1

2
Chapter 2System Calls and Libraries

2
2
2

Introduction 2

This chapter introduces the system calls and other system services you can use to develop
application programs. Each application performs a different function, but goes through the
same basic steps: input, processing, and output. For the input and output steps, most appli-
cations interact with an end user at a terminal. During the processing step, sometimes an
application needs access to special services provided by the operating system (for exam-
ple, to interact with the file system, control processes, manage memory, and more). Some
of these services are provided through system calls and some through libraries of func-
tions.

Libraries and Header Files 2

The standard libraries supplied by the C compilation system contain functions that you
can use in your program to perform input/output, string handling, and other high-level
operations that are not explicitly provided by the C language. Header files contain defini-
tions and declarations that your program will need if it calls a library function. They also
contain function-like macros that you can use in your program as you would a function.

In this part, we'll talk a bit more about header files and show you how to use library func-
tions in your program. We'll also describe the contents of some of the more important stan-
dard libraries, and tell you where to find them in the Operating System API Reference.
We'll close with a brief discussion of standard I/O.

Header Files 2

Header files serve as the interface between your program and the libraries supplied by the
C compilation system. Because the functions that perform standard I/O, for example, very
often use the same definitions and declarations, the system supplies a common interface to
the functions in the header file <stdio.h> . By the same token, if you have definitions or
declarations that you want to make available to several source files, you can create a
header file with any editor, store it in a convenient directory, and include it in your
program as described in the first part of this chapter.

Header files traditionally are designated by the suffix .h , and are brought into a program
at compile time. The preprocessor component of the compiler does this because it inter-
prets the #include statement in your program as a directive. The two most commonly

PowerMAX OS Programming Guide

2-2

used directives are #include and #define . As we have seen, the #include directive
is used to call in and process the contents of the named file. The #define directive is
used to define the replacement token string for an identifier. For example,

#define NULL 0

defines the macro NULL to have the replacement token sequence 0. See the Concurrent C
Reference Manual for information on preprocessing directives.

Many different .h files are named in the Operating System API Reference. Here we are
going to list a number of them, to illustrate the range of tasks you can perform with header
files and library functions. When you use a library function in your program, the manual
page will tell you which header file, if any, needs to be included. If a header file is men-
tioned, it should be included before you use any of the associated functions or declarations
in your program. It's generally best to put the #include right at the top of a source file.

How to Use Library Functions 2

The manual page for each function describes how you should use the function in your pro-
gram. Manual pages follow a common format; although, some manual pages may omit
some sections:

• The “NAME” section names the component(s) and briefly states its purpose.

• The “SYNOPSIS” section specifies the C language programming inter-
face(s).

assert.h assertion checking

ctype.h character handling

errno.h error conditions

float.h floating point limits

limits.h other data type limits

locale.h program's locale

math.h mathematics

setjmp.h nonlocal jumps

signal.h signal handling

stdarg.h variable arguments

stddef.h common definitions

stdio.h standard input/output

stdlib.h general utilities

string.h string handling

time.h date and time

unistd.h system calls

System Calls and Libraries

2-3

• The “DESCRIPTION” section details the behavior of the component(s).

• The “EXAMPLE” section gives examples, caveats and guidance on usage.

• The “FILES ” section gives the file names that are built into the program.

• The “SEE ALSO” section lists related component interface descriptions.

• The “DIAGNOSTICS” section outlines return values and error conditions.

The “NAME” section lists the names of components described in that manual page with a
brief, one-line statement of the nature and purpose of those components.

The “SYNOPSIS” section summarizes the component interface by compactly representing
the order of any arguments for the component, the type of each argument (if any) and the
type of value the component returns.

The “DESCRIPTION” section specifies the functionality of components without stipulating
the implementation; it excludes the details of how the OS implements these components
and concentrates on defining the external features of a standard computing environment
instead of the internals of the operating system, such as the scheduler or memory manager.
Portable software should avoid using any features or side-effects not explicitly defined.

The “SEE ALSO” section refers the reader to other related manual pages in the PowerMAX
OS reference manual set as well as other documents. The “SEE ALSO” section identifies
manual pages by the title which appears in the upper corners of each page of a manual
page.

Some manual pages cover several commands, functions or other PowerMAX OS compo-
nents; thus, components defined along with other related components share the same man-
ual page title. For example, references to the function calloc cite malloc(3) because
the function calloc is described with the function malloc in the manual page entitled
malloc(3) . As an example manual page, we'll look at the strcmp function, which
compares character strings. The routine is described on the string manual page in Sec-
tion 3, Subsection 3C, of the Operating System API Reference. Related functions are
described there as well, but only the sections relevant to strcmp are shown in Figure 2-1.

As shown, the “DESCRIPTION” section tells you what the function or macro does. It's the
“SYNOPSIS” section, though, that contains the critical information about how you use the
function or macro in your program. Note that the first line in the “SYNOPSIS” is

#include <string.h>

That means that you should include the header file <string.h> in your program
because it contains useful definitions or declarations relating to strcmp .

In fact, <string.h> contains the strcmp “function prototype” as follows:

extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned by a C lan-
guage function. Function prototypes afford a greater degree of argument type checking
than old-style function declarations, and reduce the chance of using the function incor-
rectly. Including <string.h> , assures that the C compiler checks calls to strcmp
against the official interface. You can, of course, examine <string.h> in the standard
place for header files on your system, usually the /usr/include directory.

PowerMAX OS Programming Guide

2-4

Figure 2-1. Sample DIAGNOSTICS Section

The “SYNOPSIS” for a C library function closely resembles the C language declaration of
the function and its arguments. The “SYNOPSIS” tells the reader:

• the type of value returned by the function;

• the arguments the function expects to receive when called, if any;

• the argument types.

For example, the “SYNOPSIS” for the macro feof is:

#include <stdio.h>
int feof (FILE * sfp)

The “SYNOPSIS” section for feof shows that:

• The macro feof requires the header file <stdio.h>

• The macro feof returns a value of type int

• The argument sfp is a pointer to an object of type FILE

To use feof in a program, you need only write the macro call, preceded at some point by
the #include control line, as in the following:

#include <stdio.h> /* include definitions */

main() {
 FILE *infile; /* define a file pointer */
 while (!feof(infile)) { /* until end-of-file */
 /* operations on the file */
 }
}

NAME

strcat , strdup , strncat , strcmp , strncmp , strcpy , strncpy , strl en,
strchr , strrchr , strpbrk , strspn , strcspn ,
strtok - string operations

SYNOPSIS

#include <string.h>
. . .
int strcmp (const char * sptr1, const char * sptr2); . . .

DESCRIPTION

. . . strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than, equal to, or
greater than the second . . .

System Calls and Libraries

2-5

By way of further illustration, here is an example of how you might use strcmp in your
own code. The following figure shows a program fragment that will find the bird of your
choice in an array of birds.

Figure 2-2. How strcmp Is Used in a Program

The format of a “SYNOPSIS” section only resembles, but does not duplicate, the format of
C language declarations. To show that some components take varying numbers of argu-
ments, the “SYNOPSIS” section uses additional conventions not found in actual C function
declarations:

• Text in courier represents source-code typed just as it appears.

• Text in italic usually represents substitutable argument prototypes.

• Square brackets [] around arguments indicate optional arguments.

• Ellipses . . . indicate that the previous arguments may repeat.

• If the type of an argument may vary, the “SYNOPSIS” omits the type.

For example, the “SYNOPSIS” for the function printf is:

#include <stdio.h>
int printf (char * fmt [, arg . . .])

The “SYNOPSIS” section for printf shows that the argument arg is optional, may be
repeated and is not always of the same data type. The ”DESCRIPTION” section of the man-

#include <string.h>

/* birds must be in alphabetical order */
char *birds[] = { “albatross”, “canary”, “cardinal”, “ostrich”, “penguin” };

/* Return the index of the bird in the array. */
/* If the bird is not in the array, return -1 */

int is_bird(const char *string)
{

int low, high, midpoint;
int cmp_value;

/* use a binary search to find the bird */
low = 0;
high = sizeof(birds)/sizeof(char *) - 1;
while(low <= high)
{

midpoint = (low + high)/2;
cmp_value = strcmp(string, birds[midpoint]);
if (cmp_value < 0)

high = midpoint - 1;
else if (cmp_value > 0)

low = midpoint + 1;
else /* found a match */

return midpoint;
}
return -1;

}

PowerMAX OS Programming Guide

2-6

ual page provides any remaining information about the function printf and the argu-
ments to it.

The “DIAGNOSTICS” section specifies return values and possible error conditions. The text
in “DIAGNOSTICS” takes a conventional form which describes the return value in case of
successful completion followed by the consequences of an unsuccessful completion, as in
the following example:

Figure 2-3. Sample DIAGNOSTICS Section

The <errno.h> header file defines symbolic names for error conditions which are
described in intro(2) of the Operating System API Reference. For more information on
error conditions, see the section entitled “System Call Error Handling” in this chapter.

C Library (libc) 2

In this section, we describe some of the more important routines in the standard C library.
As we indicated in the first part of this chapter, libc contains the system calls described
in Section 2 of the Operating System API Reference, and the C language functions
described in Section 3, Subsections 3C and 3S. We'll explain what each of these subsec-
tions contains below. We'll look at system calls at the end of the section.

Subsection 3C Routines 2

Subsection 3C of the Operating System API Reference contains functions and macros that
perform a variety of tasks:

• string manipulation

• character classification

• character conversion

Figure 2-4 lists string-handling functions that appear on the string page in Subsection
3C of the Operating System API Reference. Programs that use these functions should
include the header file <string.h.

On success, lseek returns the value of the resulting file-offset, as measured in bytes
from the beginning of the file.

On failure, lseek returns -1 , it does not change the file-offset, and errno equals:

EBADF if fildes is not a valid open file-descriptor.

EINVAL if whence is not SEEK_SET, SEEK_CURorSEEK_END.

ESPIPE if fildes denotes a pipe or FIFO.

System Calls and Libraries

2-7

>

Figure 2-5 lists functions and macros that classify 8-bit character-coded integer values.
These routines appear on the conv(3C) and ctype(3C) pages in Subsection 3C of the
Operating System API Reference. Programs that use these routines should include the
header file <ctype.h>

Figure 2-4. String Operations

strcat Append a copy of one string to the end of another.

strncat Append no more than a given number of characters from one string to
the end of another.

strcmp Compare two strings. Returns an integer less than, greater than, or
equal to 0 to show that one is lexicographically less than, greater than,
or equal to the other.

strncmp Compare no more than a given number of characters from the two
strings. Results are otherwise identical to strcmp .

strcpy Copy a string.

strncpy Copy a given number of characters from one string to another. The
destination string will be truncated if it is longer than the given num-
ber of characters, or padded with null characters if it is shorter.

strdup Return a pointer to a newly allocated string that is a duplicate of a
string pointed to.

strchr Return a pointer to the first occurrence of a character in a string, or a
null pointer if the character is not in the string.

strrchr Return a pointer to the last occurrence of a character in a string, or a
null pointer if the character is not in the string.

strlen Return the number of characters in a string.

strpbrk Return a pointer to the first occurrence in one string of any character
from the second, or a null pointer if no character from the second
occurs in the first.

strspn Return the length of the initial segment of one string that consists
entirely of characters from the second string.

strcspn Return the length of the initial segment of one string that consists
entirely of characters not from the second string.

strstr Return a pointer to the first occurrence of the second string in the first
string, or a null pointer if the second string is not found.

strtok Break up the first string into a sequence of tokens, each of which is
delimited by one or more characters from the second string. Return a
pointer to the token, or a null pointer if no token is found.

PowerMAX OS Programming Guide

2-8

.

Figure 2-6 lists functions and macros in Subsection 3C of the Operating System API Ref-
erence that are used to convert characters, integers, or strings from one representation to
another. The left-hand column contains the name that appears at the top of the manual
page; the other names in the same row are related functions or macros described on the
same manual page. Programs that use these routines should include the header file
<stdlib.h> .

Figure 2-5. Classifying 8-Bit Character-Coded Integer Values

isalpha Is c a letter?

isupper Is c an uppercase letter?

islower Is c a lowercase letter?

isdigit Is c a digit [0-9]?

isxdigit Is c a hexadecimal digit [0-9], [A-F], or [a-f]?

isalnum Is c alphanumeric (a letter or digit)?

isspace Is c a space, horizontal tab, vertical tab, new-line, form-feed, or car-
riage return?

ispunct Is c a punctuation character (neither control nor alphanumeric)?

isprint Is c a printing character?

isgraph Same as isprint except false for a space.

iscntrl Is c a control character or a delete character?

isascii Is c an ASCII character?

toupper Change lower case to upper case.

_toupper Macro version of toupper.

tolower Change upper case to lower case.

_tolower Macro version of tolower.

toascii Turn off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

Figure 2-6. Converting Characters, Integers, or Strings

a64l l64a Convert between long integer and base-64 ASCII
string.

ecvt fcvt gcvt Convert floating point number to string.

l3tol ltol3 Convert between 3-byte packed integer and long
integer.

strtod atof Convert string to double-precision number.

strtol stroll atoll atol atoi Convert string to integer.

strtoul stroull Convert string to unsigned long.

System Calls and Libraries

2-9

Subsection 3S Routines 2

Subsection 3S of the Operating System API Reference contains the so-called standard I/O
library for C programs. Frequently, one manual page describes several related functions or
macros. In Figure 2-7,the left-hand column contains the name that appears at the top of the
manual page; the other names in the same row are related functions or macros described
on the same manual page. Programs that use these routines should include the header file
<stdio.h> . We'll talk a bit more about standard I/O in the last subsection of this chapter.

Figure 2-7. Standard I/O Functions and Macros

fclose fflush Close or flush a stream.

ferror feof clearerr fileno Stream status inquiries.

fopen fopen64
freopen64

freopen fdopen Open a stream.

fread fwrite Input/output.

fseek fgetpos
fgetpos64 fseeko
fsetpos fsetpos64
ftello ftello64

rewind ftell Reposition a file pointer
in a stream.

getc getchar fgetc getw Get a character or word
from a stream.

gets fgets Get a s t r ing f rom a
stream.

popen pclose Beg in o r en d a p ipe
to/from a process.

printf fprintf sprintf Print formatted output.

putc putchar fputc putw Put a character or word on
a stream

puts fputs Put a string on a stream.

scanf fscanf sscanf Convert formatted input.

setbuf setvbuf Assign buffer ing to a
stream.

system Issue a command through
the shell.

tmpfile tmpfile64 Create a temporary file.

tmpnam tempnam Create a name for a tem-
porary file.

ungetc Push character back into
input stream.

vprintf vfprintf vsprintf Print formatted output of
a varargs argument list.

PowerMAX OS Programming Guide

2-10

Math Library (libm) 2

The math library, libm , contains the mathematics functions supplied by the C compila-
tion system. These appear in Subsection 3M of the Operating System API Reference. Here
we describe some of the major functions, organized by the manual page on which they
appear. Note that functions whose names end with the letter f are single-precision
versions, which means that their argument and return types are float . Programs that use
math functions should include the header file <math.h> .

The OS also provides an alternate math library:/usr/ccs/lib/libM.a Use of this
library is recommended when the characteristics of the arguments are well-understood and
higher performance is preferred to increased accuracy. It differs from the standard math
library in the following ways:

• Arguments are not checked to ensure that they are valid IEEE floating-
point numbers.

• Arguments are not checked for mathematical validity (for example,
sqrt(-2)).

• For the single-precision functions, certain calculations that are performed
in double precision in the standard library are performed in single precision
in the alternate library. As a result, 1-bit errors can occur in some calcula-
tions.

• This alternate library uses large tables of constants as a repository of data
for its calculations. Use of this library will require a larger address space
than is needed with the standard library.

For additional information on use of the alternate math library, refer to Compilation Sys-
tems Volume 1 (Tools).

Table 2-1. Math Functions

erf(3M)

erf Compute the error function of x, defined as:

erfc Compute 1.0 - erf(x) , which is used because of
the extreme loss of relative accuracy if erf is
called for large x and the result subtracted from 1.0
(e.g., for x = 5, 12 places are lost).

exp(3M)

exp expf Compute ex.

cbrt Compute the cube root of x.

log logf Compute the natural logarithm of x.
The value of x must be positive.

2

Π
-------- e t2– td

0

x

∫

System Calls and Libraries

2-11

log10 log10f Compute the base-ten logarithm of x.
The value of x must be positive.

pow powf Compute .
If x is zero, y must be positive.
If x is negative, y must be an integer.

sqrt sqrtf Compute the non-negative square root of x.
The value of x must be non-negative.

floor(3M)

floor floorf Compute the largest integer not greater than x.

ceil ceilf Compute the smallest integer not less than x.

copysign Compute x but with the sign of y.

fmod fmodf Compute the floating point remainder of the divi-
sion of x by y: x if y is zero, otherwise the number f
with same sign as x, such that for some
integer i, and .

fabs fabsf Compute , the absolute value of x.

rint Compute as a double-precision floating point num-
ber the integer value nearest the double-precision
floating point argument x, and rounds the return
value according to the currently set machine round-
ing mode.

remainder Compute the floating point remainder of the divi-
sion of x by y: NaN if y is zero, otherwise the value

, where n is the integer value nearest the
exact value of , and n is even whenever

.

gamma(3M)

gamma lgamma Compute , where is defined as

hypot(3M)

hypot Compute , taking precautions against over-
flows.

matherr(3)

matherr Error handling.

trig(3M)

sin sinf Compute the sine of x, measured in radians.

cos cosf Compute the cosine of x, measured in radians.

tan tanf Compute the tangent of x, measured in radians.

Table 2-1. Math Functions (Cont.)

x
y

x iy f+=
f y<

x

r x yn–=
x y⁄

n x y⁄– 1 2⁄=

Γ x()ln Γ x()

e
t–
t
x 1–

td

0

x

∫

x
2

y
2

+

PowerMAX OS Programming Guide

2-12

General Purpose Library (libgen) 2

libgen contains general purpose functions, and functions designed to facilitate interna-
tionalization. These appear in Subsection 3G of the Operating System API Reference.
Table 2-2 describes functions in libgen . The header files <libgen.h> and, occasion-
ally, <regexp.h> should be included in programs that use these functions.

asin asinf Compute the arcsine of x, in the range .

acos acosf Compute the arccosine of x, in the range
.

atan atanf Compute the arctangent of x, in the range
.

atan2 atan2f Compute the arctangent of , in the range
, using the signs of both arguments to

determine the quadrant of the return value.

sinh(3M)

sinh sinhf Compute the hyperbolic sine of x.

cosh coshf Compute the hyperbolic cosine of x.

tanh tanhf Compute the hyperbolic tangent of x.

asinh Compute the inverse hyperbolic sine of x.

acosh Compute the inverse hyperbolic cosine of x.

atanh Compute the inverse hyperbolic tangent of x.

Table 2-2. libgen Functions

advance step Execute a regular expression on a string.

basename Return a pointer to the last element of a path name.

bgets Read a specified number of characters into a buffer
from a stream until a specified character is reached.

bufsplit Split the buffer into fields delimited by tabs and
new-lines.

compile Return a pointer to a compiled regular expression
that uses the same syntax as ed.

copylist Copy a file into a block of memory, replacing new-
lines with null characters. It returns a pointer to the
copy.

dirname Return a pointer to the parent directory name of the
file path name.

Table 2-1. Math Functions (Cont.)

Π 2⁄– Π 2⁄[,]

0 Π[,]

Π 2⁄– Π 2⁄(,)

y x⁄
Π–(Π],

System Calls and Libraries

2-13

eaccess Determine if the effective user ID has the appropri-
ate permissions on a file.

gmatch Check if name matches shell file name pattern.

isencrypt Use heuristics to determine if contents of a charac-
ter buffer are encrypted.

mkdirp Create a directory and its parents.

p2open p2close p2open is similar to popen (see popen(3S)). It
establishes a two-way connection between the par-
ent and the child. p2close closes the pipe.

pathfind Search the directories in a given path for a named
file with given mode characteristics. If the file is
found, a pointer is returned to a string that corre-
sponds to the path name of the file. A null pointer is
returned if no file is found.

regcmp Compile a regular expression and return a pointer
to the compiled form.

regex Compare a compiled regular expression against a
subject string.

rmdirp Remove the directories in the specified path.

strccpy strcadd strccpy copies the input string to the output
string, compressing any C-like escape sequences to
the real character. strcadd is a similar function
that returns the address of the null byte at the end of
the output string.

strecpy Copy the input string to the output string, expand-
ing any non-graphic characters with the C escape
sequence. Characters in a third argument are not
expanded.

strfind Return the offset of the first occurrence of the sec-
ond string in the first string. -1 is returned if the
second string does not occur in the first.

strrspn Trim trailing characters from a string. It returns a
pointer to the last character in the string not in a list
of trailing characters.

strtrns Return a pointer to the string that results from
replacing any character found in two strings with a
character from a third string. This function is simi-
lar to the tr command.

Table 2-2. libgen Functions (Cont.)

PowerMAX OS Programming Guide

2-14

Standard I/O Library 2

The functions in Subsection 3S of the Operating System API Reference constitute the
standard I/O library for C programs. In this section, we want to discuss standard I/O in a
bit more detail. First, let's briefly define what I/O involves. It has to do with

• reading information from a file or device to your program;

• writing information from your program to a file or device;

• opening and closing files that your program reads from or writes to.

Three Files You Always Have 2

Programs automatically start off with three open files: standard input, standard output, and
standard error. These files with their associated buffering are called streams, and are desig-
nated stdin , stdout , and stderr , respectively. The shell associates all three files
with your terminal by default.

This means that you can use functions and macros that deal with stdin , stdout , or
stderr without having to open or close files. gets , for example, reads a string from
stdin ; puts writes a string to stdout . Other functions and macros read from or write
to files in different ways: character at a time, getc and putc ; formatted, scanf and
printf ; and so on. You can specify that output be directed to stderr by using a
function such as fprintf . fprintf works the same way as printf except that it
delivers its formatted output to a named stream, such as stderr .

Named Files 2

Any file other than standard input, standard output, and standard error must be explicitly
opened by you before your program can read from or write to the file. You open a file with
the standard library function fopen . fopen takes a path name, asks the system to keep
track of the connection between your program and the file, and returns a pointer that you
can then use in functions that perform other I/O operations.

The pointer is to a structure called FILE , defined in <stdio.h> , that contains informa-
tion about the file: the location of its buffer, the current character position in the buffer, and
so on. In your program, then, you need to have a declaration such as

FILE *fin;

which says that fin is a pointer to a FILE . The statement

fin = fopen(“filename”, “r”);

associates a FILE structure with filename , the path name of the file to open, and
returns a pointer to it. The “r” means that the file is to be opened for reading. This argu-
ment is known as the mode. There are modes for reading, writing, and both reading and
writing.

In practice, the file open function is often included in an if statement:

System Calls and Libraries

2-15

if ((fin = fopen(“filename”, “r”)) == NULL)
 (void)fprintf(stderr,“Cannot open input file %s\n”,
 “filename”);

which takes advantage of the fact that fopen returns a NULL pointer if it cannot open the
file. To avoid falling into the immediately following code on failure, you can call exit ,
which causes your program to quit:

if ((fin = fopen(“filename”, “r”)) == NULL) {
 (void)fprintf(stderr,“Cannot open input file %s\n”,
 “filename”);
 exit(1);
}

If the file to be opened is larger than 2GB, or is likely to grow to be that size, you should
use fopen64 . See “Subsection 3S Routines” on page 2-9 for other Standard I/O func-
tions for use with large files.

Once you have opened the file, you use the pointer fin in functions or macros to refer to
the stream associated with the opened file:

int c;
c = getc(fin);

brings in one character from the stream into an integer variable called c . The variable c is
declared as an integer even though we are reading characters because getc returns an
integer. Getting a character is often incorporated in some flow-of-control mechanism such
as

while ((c = getc(fin)) != EOF)
 .
 .
 .

that reads through the file until EOF is returned. EOF, NULL, and the macro getc are all
defined in <stdio.h> . getc and other macros in the standard I/O package keep advanc-
ing a pointer through the buffer associated with the stream; the UNIX system and the
standard I/O functions are responsible for seeing that the buffer is refilled if you are
reading the file, or written to the output file if you are producing output, when the pointer
reaches the end of the buffer.

Your program may have multiple files open simultaneously, 20 or more depending on sys-
tem configuration. If, subsequently, your program needs to open more files than it is per-
mitted to have open simultaneously, you can use the standard library function fclose to
break the connection between the FILE structure in <stdio.h> and the path names of
the files your program has opened. Pointers to FILE may then be associated with other
files by subsequent calls to fopen . For output files, an fclose call makes sure that all
output has been sent from the output buffer before disconnecting the file. exit closes all
open files for you, but it also gets you completely out of your process, so you should use it
only when you are sure you are finished.

PowerMAX OS Programming Guide

2-16

How C Programs Communicate with the Shell 2

Information or control data can be passed to a C program as an argument on the command
line, which is to say, by the shell. When you execute a C program, command line argu-
ments are made available to the function main in two parameters, an argument count,
conventionally called argc , and an argument vector, conventionally called argv . (Every
C program is required to have an entry point named main .) argc is the number of argu-
ments with which the program was invoked. argv is an array of pointers to character
strings that contain the arguments, one per string. Since the command name itself is con-
sidered to be the first argument, or argv[0] , the count is always at least one. Here is the
declaration for main :

int
main(int argc, char *argv[])

For two examples of how you might use run-time parameters in your program, see the last
subsection of this chapter.

The shell, which makes arguments available to your program, considers an argument to be
any sequence of non-blank characters. Characters enclosed in single quotes ('abc
def') or double quotes (“abc def”) are passed to the program as one argument even if
blanks or tabs are among the characters. You are responsible for error checking and other-
wise making sure that the argument received is what your program expects it to be.

In addition to argc and argv , you can use a third argument: envp is an array of pointers
to environment variables. You can find more information on envp in the Operating Sys-
tem API Reference under exec in Section 2 and in the System Files and Devices Refer-
ence under environ in Section 5.

C programs exit voluntarily, returning control to the operating system, by returning from
main or by calling the exit function. That is, a return(n) from main is equivalent to the
call exit(n) . (Remember that main has type “function returning int .”) Your program
should return a value to say whether it completed successfully or not. The value gets
passed to the shell, where it becomes the value of the $? shell variable if you executed
your program in the foreground. By convention, a return value of zero denotes success, a
non-zero return value means some sort of error occurred. You can use the macros
EXIT_SUCCESS and EXIT_FAILURE , defined in the header file <stdlib.h> , as
return values from main or argument values for exit .

Passing Command Line Arguments 2

As described above, information or control data can be passed to a C program as an argu-
ment on the command line. When you execute the program, command line arguments are
made available to the function main in two parameters, an argument count, convention-
ally called argc , and an argument vector, conventionally called argv . argc is the
number of arguments with which the program was invoked. argv is an array of pointers
to characters strings that contain the arguments, one per string. Since the command name
itself is considered to be the first argument, or argv[0] , the count is always at least one.

If you plan to accept run-time parameters in your program, you need to include code to
deal with the information. and show program fragments that illustrate two common uses
of run-time parameters:

System Calls and Libraries

2-17

• Figure 2-8 shows how you provide a variable file name to a program, such
that a command of the form

$ prog filename

will cause prog to attempt to open the specified file.

• Figure 2-9shows how you set internal flags that control the operation of a
program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options specified.
The getopt function used in the example is the most common way to process
arguments in UNIX system programs. getopt is described in Subsection 3C of the
Operating System API Reference.

Figure 2-8. Using argv[1] to Pass a File Name

#include <stdio.h>

int
main(int argc, char *argv[])
{
 FILE *fin;
 int ch;

 switch (argc)
 {
 case 2:
 if ((fin = fopen(argv[1], “r”)) == NULL)
 {
 /* First string (%s) is program name (argv[0]). */
 /* Second string (%s) is name of file that could */
 /* not be opened (argv[1]). */

 (void)fprintf(stderr, “%s: Cannot open input file %s\n”,
 argv[0], argv[1]);
 return(2);
 }
 break;
 case 1:
 fin = stdin;
 break;

 default:
 (void)fprintf(stderr, “Usage: %s [file]\n”, argv[0]);
 return(2);
 }

 while ((ch = getc(fin)) != EOF)
 (void)putchar(ch);

 return (0);

}

PowerMAX OS Programming Guide

2-18

Figure 2-9. Using Command Line Arguments to Set Flags

System Calls 2

System calls are the interface between the kernel and the user programs that run on top of
it. The kernel is the software on which everything else in the UNIX operating system
depends. The kernel manages system resources, maintains file systems and supports
system calls. read , write and the other system calls in Section 2 of the Operating Sys-
tem API Reference define what the UNIX system is. Everything else is built on their foun-
dation. Strictly speaking, they are the only way to access such facilities as the file system,
interprocess communication primitives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain access to
these facilities. If you are writing a C program, for example, you can use the library
functions described in Section 3 of the Operating System API Reference. When you use
these functions, the details of their implementation on the system are transparent to the
program, for example, that the system call read underlies the fread implementation in
the standard C library. In other words, the program will generally be portable to any sys-
tem, UNIX or not, with a conforming C implementation. (See the Concurrent C Reference
Manual guide for a discussion of the standard C library.)

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
 int oflag = 0;
 int pflag = 0;/* Function flags */
 int rflag = 0;
 int ch;

 while ((ch = getopt(argc, argv, “opr”)) != -1)
 {
 /* For options present, set flag to 1. */
 /* If unknown options present, print error message. */

 switch (ch)
 {
 case 'o':
 oflag = 1;
 break;
 case 'p':
 pflag = 1;
 break;
 case 'r':
 rflag = 1;
 break;
 default:
 (void)fprintf(stderr, “Usage: %s [-opr]\n”, argv[0]);
 return(2);
 }
 }
 /* Do other processing controlled by oflag, pflag, rflag. */
 return(0);
}

System Calls and Libraries

2-19

In contrast, programs that invoke system calls directly are portable only to other UNIX
systems or systems that are similar to UNIX systems; for that reason, you would not use
read in a program that performed a simple input/output operation. Other operations,
however, including most multitasking mechanisms, do require direct interaction with the
UNIX system kernel. These operations are the subject of the first part of this book. This
chapter lists the system calls in functional groups, and includes brief discussions of error
handling. For details on individual system calls, see Section 2 of the Operating System
API Reference.

A C program is automatically linked with the system calls you have invoked when you
compile the program. The procedure may be different for programs written in other lan-
guages. Check the Concurrent C Reference Manual guide for details on the language you
are using.

Input/Output and File System Calls 2

File and Device I/O 2

These system calls perform basic input/output operations on system files.

Terminal Device Control 2

These system calls deal with a general terminal interface for the control of asynchronous
communications ports.

Table 2-3. File and Device I/O Functions

Function Name(s) Purpose

open open a file for reading or writing

open64 open a large file

creat create a new file or rewrite an existing one

creat64 create a large file

close close a file descriptor

read write transfer data from/onto a file or device

getmsg putmsg get/put message from/onto a stream

lseek move file I/O pointer

lseek64 move file I/O pointer of a large file

fcntl file I/O control

ioctl device I/O control

truncate64 ftruncate64 set a large file to a specified length

PowerMAX OS Programming Guide

2-20

Directory and File System Control 2

These system calls allow creation of new directories (and other types of files), linking to
existing files, obtaining or modifying file status information, and allow you to control
various aspects of the file system.

Table 2-4. Terminal Device Control Functions

Function Name(s) Purpose

tcgetattr tcsetattr get and set terminal attributes

tcdrain tcflush line control functions

tcflow tcsendbreak line control functions

cfgetispeed cfgetospeed get baud rate functions

cfsetispeed cfsetospeed set baud rate functions

tcgetsid get terminal session ID

tcgetpgrp get terminal foreground process group ID

tcsetpgrp set terminal foreground process group ID

Table 2-5. Directory and File System Control Functions

Function Name(s) Purpose

link link to a file

access determine accessibility of a file

mknod make a directory, special, or regular
file

chmod fchmod change mode of file

chown fchown lchown change owner and group of a file

utime lutime set file access and modification times

stat fstat lstat get file status

pathconf fpathconf get configurable path name variables

getdents read directory entries and put in file
system-independent format

mkdir make a directory

readlink read the value of a symbolic link

rename change the name of a file

rmdir remove a directory

symlink make a symbolic link to a file

System Calls and Libraries

2-21

Access Control System Calls 2

These system calls are used to obtain or modify security level information that is used by
the system to mediate access control when the Enhanced Security Utilities are installed
and running.

Only privileged processes can modify file or process security levels. See the individual
system call manual pages and the intro(2) manual page in the Operating System API
Reference for a description of the various privileges required by the system calls, and the
effect of Mandatory Access Control levels on the access checking algorithm used by the
system.

Function Name(s) Purpose

unlink remove directory entry

ustat get file system statistics

sync update super block

mount umount mount/unmount a file system

statfs fstatfs get file system information

stat64 fstat64 lstat64 get large file status

sysfs get file system type information

Table 2-6. Mandatory Access Control (MAC) System Calls

Function Name(s) Purpose

devstat,
fdevstat

get or set the security attributes of a device

lvldom determine domination relationship of two levels

lvlequal determine if two levels are equal

lvlfile get or set the level of a directory, a named pipe or a reg-
ular or special file

lvlipc manipulate an IPC object's level

lvlproc get or set the level of the calling process

lvlvfs get or set the level ceiling of a mounted file system

mkmld create a multilevel directory

mldmode get or set the mld mode of the calling process

secadvise get kernel advisory access information

Table 2-5. Directory and File System Control Functions (Cont.)

PowerMAX OS Programming Guide

2-22

Process and Memory System Calls 2

Processes 2

These system calls control user processes.

Table 2-7. Process Management Functions

Function Name(s) Purpose

fork create a new process

execl execle execlp execute a file with a list of
arguments

execv execve execvp execute a file with a variable
list

exit _exit terminate process

wait waitpid waitid wait for child process to
change state

cpu_bias get and set LWP’s CPU bias
or assignment

setuid setgid set user and group IDs

getpgrp setpgrp get and set process group ID

chdir fchdir change working directory

chroot change root directory

nice change priority of a process

getcontext setcontext get and set current user con-
text

getgroups setgroups get or set supplementary
group IDs

getpid getppid getpgid get process and parent pro-
cess IDs

getuid geteuid get real user and effective
user

getgid getegid get real group and effective
group

_lwp_global_self get current LWP’s global ID

pause suspend process until signal

priocntl process scheduler control

System Calls and Libraries

2-23

Signals 2

Signals are messages passed by the system to running processes.

Basic Interprocess Communication 2

These system calls connect processes so they can communicate. pipe is the system call
for creating an interprocess channel. dup is the call for duplicating an open file descriptor.
(These IPC mechanisms are not applicable for processes on separate hosts.)

setpgid set process group ID

setsid set session ID

kill send a signal to a process or
group of processes

Figure 2-10. Signal Management Functions

Function Name(s) Purpose

sigaltstack set/get signal alternate stack context

sigignore sigpause simplified signal management

sighold sigrelse simplified signal management

sigset signal simplified signal management

sigpending examine blocked and pending signals

sigprocmask change or examine signal mask

sigqueue queue a signal to a process

sigsuspend install a signal mask and suspend process

sigsend sigsendset send a signal to a process or group of pro-
cesses

Figure 2-11. Basic Interprocess Communication Functions

Function
Name(s)

Purpose

pipe

dup

open file-descriptors for a pipe

duplicate an open file-descriptor

Table 2-7. Process Management Functions (Cont.)

Function Name(s) Purpose

PowerMAX OS Programming Guide

2-24

Advanced Interprocess Communication 2

Some of these system calls support System V IPC messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms are also not
applicable for processes on separate hosts.) Others are interprocess synchronization tools
that are provided by the OS for use in synchronizing cooperating processes’ access to data
in shared memory. For additional information on the System V IPC mechanisms, refer to
Chapter 12. For an explanation of the interprocess synchronization tools, refer to the Pow-
erMAX OS Real-Time Guide.

Figure 2-12. Advanced Interprocess Communication Functions

Function Name(s) Purpose

msgget get message queue

msgctl message control operations

msgop message operations

semget get set of semaphores

semctl semaphore control operations

semop semaphore operations

shmget get shared memory segment identifier

shmctl shared memory control operations

shmop shared memory operations

resched_cntl rescheduling control operations

server_block block the calling LWP only if no wake-up
request has occurred since last return from
server_block

server_wake1 wake a single server blocked in a
server_block system call

server_wakevec wake a group of servers blocked in a
server_block system call

client_block block the calling LWP (a client) and pass its
priority to another LWP (a server)

client_wake1 wake a single client blocked in a
client_block system call

client_wakechan wake a group of clients blocked in a
client_block system call

System Calls and Libraries

2-25

Memory Management 2

These system calls give you access to virtual memory facilities.

Miscellaneous System Calls 2

These are system calls for such things as administration, timing, and other miscellaneous
purposes.

Figure 2-13. Memory Management Functions

Function Name(s) Purpose

getpagesize get system page size

memcntl memory management control

mmap map pages of memory

mmap64 map pages of memory for a large file

mprotect set protection of memory mapping

munmap unmap pages of memory

plock lock process, text, or data in memory

userdma prepare a buffer for DMA transfers

brk sbrk dynamically allocate memory space

Figure 2-14. Miscellaneous System Functions

Function Name(s) Purpose

acct enable or disable process accounting

alarm set a process alarm clock

getrlimit setrlimit control maximum system resource consumption

getrlimit64 setrlimit64 control large file size limit

hrdclk control hardclock interrupt handling

modload loads dynamically loadable kernel module

moduload unloads kernel module

modpath change path from which modules are loaded

modadm module administration

profil execution time profile

sysconf method for application's determination of value for
system configuration

PowerMAX OS Programming Guide

2-26

System Call Error Handling 2

System calls that fail to complete successfully almost always return a value of -1 to your
program. (If you look through the system calls in Section 2, you will see that there are a
few calls for which no return value is defined, but they are the exceptions.) In addition to
the -1 returned to the program, the unsuccessful system call places an integer in an exter-
nally declared variable, errno . In a C program, you can determine the value in errno if
your program contains the following statement:

#include <errno.h>

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno . The value in errno is not cleared on successful
calls, so your program should check it only if the system call returned a -1 indicating an
error. Table 2-8 identifies the symbolic names defined in the <errno.h> header file and
described in intro(2) of the Operating System API Reference.

syscx machine-specific functions (available only on Pow-
erMAX OS)

time stime get/set time

uadmin administrative control

ulimit get and set user limits

uname get/set name of current system

Table 2-8. errno Values

Symbolic Name Description

ENOENT No such file or directory
A file name is specified and the file should exist but fails to,
or one of the directories in a path name fails to exist.

ESRCH No such process
No process can be found corresponding to the that specified
by PID in the kill or ptrace routine.

EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system ser-
vice routine. If execution is resumed after processing the
signal, it will appear as if the interrupted routine call
returned this error condition.

Figure 2-14. Miscellaneous System Functions (Cont.)

Function Name(s) Purpose

System Calls and Libraries

2-27

EIO I/O error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

ENXIO No such device or address
I/O on a special file refers to a subdevice which does not
exist, or exists beyond the limit of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to
a member of the exec family of routines. The argument list
limit is sum of the size of the argument list plus the size of
the environment's exported shell variables.

ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format
(see a.out(4)).

EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively, write) request is made to a file that is open
only for writing (respectively, reading).

ECHILD No child processes
A wait routine was executed by a process that had no exist-
ing or unwaited-for child processes.

EAGAIN Resource is temporarily unavailable
For example, the fork routine failed because the system's
process table is full or the user is not allowed to create any
more processes. Or a system call failed because of insuffi-
cient memory or swap space.

ENOMEM Not enough space
During execution of an exec , brk , or sbrk routine, a pro-
gram asks for more space than the system is able to supply.
This is not a temporary condition; the maximum size is a
system parameter. The error may also occur if the arrange-
ment of text, data, and stack segments requires too many
segmentation registers, or if there is not enough swap space
during the fork routine.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

PowerMAX OS Programming Guide

2-28

EFAULT Bad address
The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten-
tially may be set to EFAULT any time a routine that takes a
pointer argument is passed an invalid address, if the system
can detect the condition. Because systems will differ in their
ability to reliably detect a bad address, on some implementa-
tions passing a bad address to a routine will result in unde-
fined behavior.

ENOTBLK Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the mount routine).

EBUSY Device busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

EEXIST File exists
An existing file was mentioned in an inappropriate context
(e.g., call to the link routine).

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate operation to
a device (e.g., read a write-only device).

ENOTDIR Not a directory
A non-directory was specified where a directory is required
(e.g., in a path prefix or as an argument to the chdir rou-
tine).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
An invalid argument was specified (e.g., unmounting a non-
mounted device, mentioning an undefined signal in a call to
the signal or kill routine. Also set by the functions
described in the math package (3M) .

ENFILE File table overflow
The system file table is full (i.e., SYS_OPEN files are open,
and temporarily no more files can be opened).

EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors
open at a time.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

System Calls and Libraries

2-29

ENOTTY Not a typewriter
A call was made to the ioctl routine specifying a file that
is not a special character device.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open
for writing or to remove a pure-procedure program that is
being executed.

EFBIG File too large
The size of a file exceeded the maximum file size,
FCHR_MAX (see getrlimit(2)).

ENOSPC No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fcntl rou-
tine, the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries
left on the system.

ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out
of the domain of the function.

ERANGE Math result not representable
The value of a function in the math package (3M) is not rep-
resentable within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type not
existing on the specified message queue (see msgop(2)).

EIDRM Identifier removed
This error is returned to processes that resume execution due
to the removal of an identifier from the file system's name
space (see msgctl(2) , semctl(2) , and shmctl(2)).

ECHRNG Channel number out of range

Table 2-8. errno Values (Cont.)

Symbolic Name Description

PowerMAX OS Programming Guide

2-30

EL2NSYNC Level 2 not synchronized

EL3HLT Level 3 halted

EL3RST Level 3 reset

ELNRNG Link number out of range

EUNATCH Protocol driver not attached

ENOCSI No CSI structure available

EL2HLT Level 2 halted

EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error
pertains to file and record locking.

ENOLCK No record locks available
There are no more locks available. The system lock table is
full (see fcntl(2)).

ENOSTR Device not a stream.
A putmsg or getmsg system call was attempted on a file
descriptor that is not a STREAMS device.

ENODATA No data available

ETIME Timer expired
The timer set for a STREAMS ioctl call has expired. The
cause of this error is device specific and could indicate either
a hardware or software failure, or perhaps a timeout value
that is too short for the specific operation. The status of the
ioctl operation is indeterminate.

ENOSR Out of stream resources
During a STREAMS open , either no STREAMS queues or
no STREAMS head data structures were available. This is a
temporary condition; one may recover from it if other pro-
cesses release resources.

ENOPKG Package not installed
This error occurs when users attempt to use a system call
from a package which has not been installed.

EREMOTE Object is remote
This error occurs when users try to advertise a resource that
is not on the local machine or try to mount/unmount a device
(or path name) that is on a remote machine.

ENOLINK Link has been severed
This error occurs when the link (virtual circuit) connecting
to a remote machine is gone.

EPROTO Protocol error
Some protocol error occurred. This error is device specific,
but is generally not related to a hardware failure.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

System Calls and Libraries

2-31

EBADMSG Not a data message
During a read , getmsg , or ioctl I_RECVFD system call
to a STREAMS device, something has come to the head of
the queue that can't be processed. That something depends
on the system call: read —control information or a passed
file descriptor, getmsg —passed file descriptor, ioctl —
control or data information.

ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect; (see limits(4)).

EOVERFLOW Value too large to be stored in data type. Attempting a stat
or lseek using SEEK_END on a file whose size is too large
to fit in a long integer. Other operations on large files may
also return this value if the large file system calls are not
used.

ENOTUNIQ Name not unique on network
Given log name not unique.

EBADFD File descriptor in bad state.
Either a file descriptor refers to no open file or a read request
was made to a file that is open only for writing.

EREMCHG Remote address changed.

ELIBACC Cannot access a needed shared library
Trying to exec an a.out that requires a shared library and
the shared library doesn't exist or the user doesn't have per-
mission to use it.

ELIBBAD Accessing a corrupted shared library
Trying to exec an a.out that requires a shared library (to
be linked in) and exec could not load the shared library.
The shared library is probably corrupted.

ELIBSCN .lib section in a.out corrupted
Trying to exec an a.out that requires a shared library (to
be linked in) and there was erroneous data in the .lib sec-
tion of the a.out . The .lib section tells exec what
shared libraries are needed. The a.out is probably cor-
rupted.

ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a.out that requires more static shared
libraries than is allowed on the current configuration of the
system. See the System Administration, Volume 1.

ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

EILSEQ Illegal byte sequence. Handle multiple characters as a single
character.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

PowerMAX OS Programming Guide

2-32

ENOSYS Operation not applicable

ELOOP Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

ERESTART Interrupted system call should be restarted.

ESTRPIPE Streams pipe error (not externally visible).

ENOTEMPTY Directory not empty

EUSERS Too many users.

ENOTSOCK Socket operation on non-socket
Self-explanatory.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a
transport endpoint. Destination address required.

EMSGSIZE Message too long
A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

EPROTOTYPE Protocol wrong type for socket.
A protocol was specified that does not support the semantics
of the socket type requested.

ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting
options for a protocol.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no
implementation for it exists.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into
the system or no implementation for it exists.

EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram
transport endpoint.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system
or no implementation for it exists. Used for the Internet pro-
tocols.

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was
used.

EADDRINUSE Address already in use
User attempted to use an address already in use, and the pro-
tocol does not allow this.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

System Calls and Libraries

2-33

EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with
an address not on the current machine.

ENETDOWN Network is down
Operation encountered a dead network.

ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host
machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host due
to a timeout or a reboot.

ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not per-
formed because the system lacked sufficient buffer space or
because a queue was full.

EISCONN Transport endpoint is already connected
A connect request was made on an already connected trans-
port endpoint; or, a sendto or sendmsg request on a con-
nected transport endpoint specified a destination when
already connected.

ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the
transport endpoint is not connected and (when sending a dat-
agram) no address was supplied.

ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport
endpoint had already been shut down.

ETOOMANYREFS Too many references: cannot splice

ETIMEDOUT Connection timed out
A connect or send request failed because the connected party
did not properly respond after a period of time. (The timeout
period is dependent on the communication protocol.)

ECONNREFUSED Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to con-
nect to a service that is inactive on the remote host.

Table 2-8. errno Values (Cont.)

Symbolic Name Description

PowerMAX OS Programming Guide

2-34

EHOSTDOWN Host is down
A transport provider operation failed because the destination
host was down.

EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreach-
able host.

EALREADY Operation already in progress
An operation was attempted on a non-blocking object that
already had an operation in progress.

EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect) was attempted on a non-blocking object.

ESTALE Stale NFS file handle

ENOLOAD Cannot load required module
An attempt made to load a module failed.

ERELOC Relocation error in loading module
Symbolic referencing error.

ENOMATCH No symbol is found matching the given spec

EBADVER Version number mismatched
The version number associated with a module is not sup-
ported by the kernel.

ECONFIG Configured kernel resource exhausted

EPERM Not superuser

EBADE Invalid exchange

EBADR Invalid request descriptor

EXFULL Exchange full

ENOANO No anode

EBADRQC Invalid request code

EBADSLT Invalid slot

EDEADLOCK File locking deadlock error

EBFONT Bad font file format

ECLNRACE Non-clone open race with clone open

EPROCLIM Too many processes

EDQUOT Not superuser

Table 2-8. errno Values (Cont.)

Symbolic Name Description

System Calls and Libraries

2-35

ELKBUSY File/record lock request will block (only returned to NFS
lock manager).

EPOWERFAIL Power failure

ECANCELED Asynchronous I/O request canceled

Table 2-8. errno Values (Cont.)

Symbolic Name Description

PowerMAX OS Programming Guide

2-36

3
File and Device Input/Output

Introduction . 3-1
Input/Output System Calls. 3-1

File Descriptors . 3-2
Reading and Writing Files . 3-3
Opening, Creating and Closing Files . 3-5
Random Access — lseek . 3-7

File and Record Locking . 3-8
Terminology . 3-8
File Protection . 3-10

Opening a File for Record Locking. 3-10
Setting a File Lock . 3-11
Setting and Removing Record Locks . 3-13
Getting Lock Information . 3-17
Deadlock Handling . 3-18

Selecting Advisory or Mandatory Locking . 3-18
Caveat Emptor—Mandatory Locking . 3-19

Record Locking and Future Releases of the UNIX System. 3-20
Basic STREAMS Operations . 3-20
Benefits of STREAMS . 3-22

Standardized Service Interfaces . 3-22
Manipulating Modules . 3-23

Protocol Portability . 3-23
Protocol Substitution. 3-24
Protocol Migration . 3-24
Module Reusability . 3-25

STREAMS Mechanism . 3-27
STREAMS System Calls . 3-27

getmsg and putmsg . 3-28
poll. 3-28

Opening a STREAMS Device File. 3-28
Creating a STREAMS-based Pipe . 3-28
Adding and Removing Modules. 3-29
Closing the Stream . 3-29
Stream Construction Example . 3-30

Inserting Modules . 3-30
Module and Driver Control . 3-32

PowerMAX OS Programming Guide

3-1

3
Chapter 3File and Device Input/Output

3
3
3

Introduction 3

This chapter discusses the UNIX system file and record locking facility. Mandatory and
advisory file and record locking are both available on current releases of the UNIX
system. The intent of this capability is to provide a synchronization mechanism for
programs accessing the same stores of data simultaneously. Such processing is character-
istic of many multiuser applications, and the need for a standard method of dealing with
the problem has been recognized by standards advocates like /usr/group , an organiza-
tion of UNIX System users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing processes.
In mandatory locking, the standard I/O subroutines and I/O system calls enforce the
locking protocol. In this way, at the cost of a little efficiency, mandatory locking double
checks the programs against accessing the data out of sequence.

Also included in this chapter is a description of how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconceptions
about the amount of protection that record locking affords are dispelled. Record locking
should be viewed as a synchronization mechanism, not a security mechanism.

The remainder of this chapter describes the STREAMS mechanism as it relates to
input/output operations.

Input/Output System Calls 3

The lowest level of I/O in provides no buffering or other such services, but it offers the
most control over what happens. System calls that represent direct entries into the Power-
MAX OS kernel control all user I/O. The OS keeps the system calls that do I/O simple,
uniform and regular to eliminate differences between files, devices and styles of access.
The same read and write system calls apply to ordinary disk files and I/O devices such as
terminals, tape-drives and line-printers. They do not distinguish between “random” and
“sequential” I/O, nor do they impose any logical record size on files. Thus, a single, uni-
form interface handles all communication between programs and peripheral devices, and
programmers can defer specifying devices from program-development until program-exe-
cution time.

All I/O is done by reading or writing files, because all peripheral I/O devices, even a user's
terminal, are files in the file system. Each supported device has an entry in the file system
hierarchy, so that device names have the same structure as filenames, and the same protec-
tion mechanisms work on both devices and files.

PowerMAX OS Programming Guide

3-2

A file is an ordered set of bytes of data on a I/O-device. The size of the file on input is
determined by an end-of-file condition dependent on device-specific characteristics. The
size of a regular file is determined by the position and number of bytes written on it, no
predetermination of the size of a file is necessary or possible.

Besides the traditionally available devices, names exist for disk devices regarded as physi-
cal units outside the file system, and for absolutely addressed memory. The most impor-
tant device in practice is the user's terminal. Treating a communication-device in the same
way as any file by using the same I/O calls make it easy to redirect the input and output of
commands from the terminal to another file; although, some differences are inevitable. For
example, the OS ordinarily treats terminal input in units of lines because character-erase
and line-delete processing cannot be completed until a full line is typed. Programs trying
to read some large number of bytes from a terminal must wait until a full line is typed, and
then may be notified that some smaller number of bytes were actually read. All programs
must prepare for this eventuality in any case, because a read from any disk file returns
fewer bytes than requested when it reaches the end of the file. Ordinarily, reads from a ter-
minal are fully compatible with reads from a disk file.

File Descriptors 3

The OS File and Device I/O functions denote a file by a small positive integer called a
“file-descriptor” and declared as follows:

int fildes

where fildes represents the file-descriptor, and the file-descriptor denotes an open file
from which data is read or onto which data is written. The OS maintains all information
about an open file; the user program refers to the file only by the file-descriptor. Any I/O
on the file uses the file-descriptor instead of the filename to denote the file.

Multiple file-descriptors may denote the same file, and each file-descriptor has associated
with it information used to do I/O on the file:

• a file-offset that shows which byte in the file to read or write next;

• file-status and access-modes (e.g., read, write, read/write) (see open(2));

• the “close-on-exec” flag (see fcntl(2)).

Doing I/O on the user's terminal occurs commonly enough that special arrangements make
this convenient. When the command interpreter (the “shell”) runs a program, it opens
three files, called the standard input, the standard output and the standard error output,
with file-descriptors 0 , 1 and 2 . All of these are normally connected to the terminal; thus,
a program reading file-descriptor 0 and writing file-descriptors 1 and 2 , can do terminal
I/O without opening the files. If I/O is redirected to and from files with < and > , as in:

prog <infile >outfile

the shell changes the default assignments for file-descriptors 0 and 1 from the terminal to
the named files. Similar conventions hold for I/O on a pipe. Normally file-descriptor 2
remains attached to the terminal, so error messages can go there. In all cases, the shell
changes the file assignments, the program does not. The program can ignore where its out-
put goes, as long as it uses file-descriptor 0 for input and 1 and 2 for output.

File and Device Input/Output

3-3

Reading and Writing Files 3

The functions read and write do I/O on files. For both, the first argument is a file-
descriptor, the second argument is a buffer in the user program where the data comes from
or goes to and the third argument is the number of bytes of data to transfer. Each call
returns a count of the number of bytes actually transferred. These calls look like:

n = read (fildes, buffer, count);
n = write (fildes, buffer, count);

Up to count bytes are transferred between the file denoted by fildes and the byte array
pointed to by buffer. The returned value n is the number of bytes actually transferred.

For writing, the returned value is the number of bytes actually written; it is generally an
error if this fails to equal the number of bytes requested. In the write case, n is the same
as count except under exceptional conditions, such as I/O errors or end of physical
medium on special files; in a read , however, n may without error be less than count.

For reading, the number of bytes returned may be less than the number requested, because
fewer than count bytes remained to be read. If the file-offset is so near the end of the file
that reading count characters would cause reading beyond the end, only sufficient bytes
are transferred to reach the end of the file, also, typewriter-like terminals never return more
than one line of input. (When the file is a terminal, read normally reads only up to the
next new-line, which is generally less than what was requested.)

When a read call returns with n equal to zero, the end of the file has been reached. For
disk files this occurs when the file-offset equals the current size of the file. It is possible to
generate an end-of-file from a terminal by use of an escape sequence that depends on the
device used. The function read returns 0 to signify end-of-file, and returns -1 to signify
an error.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1 , which means one character at a time (“unbuffered”), and 512 , which corresponds
to a physical block size on many peripheral devices. This latter size is most efficient, but
even character at a time I/O is not overly expensive. Bytes written affect only those parts
of a file implied by the position of the file-offset and the count; no other part of the file is
changed. If the last byte lies beyond the end of the file, the file grows as needed.

A simple program using the read and write functions to copy its input to its output can
copy anything, since the input and output can be redirected to any file or device.

PowerMAX OS Programming Guide

3-4

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of
bytes to be written by write : the next call to read after that will return zero indicating
end-of-file.

To see how read and write can be used to construct higher level functions like
getchar and putchar , here is an example of getchar which does unbuffered input:

The variable c must be declared char , because read accepts a character pointer. The
character returned must be masked with 0377 to ensure that it is positive; otherwise, sign
extension may make it negative.

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define BUFSIZE 512

main() /* copy input to output */
{
 char buf[BUFSIZE];
 int n;

 while ((n = read(0, buf, BUFSIZE)) > 0)
 write(1, buf, n);
 exit(0);
}

#define CMASK 0377 /* for making char's > 0 */

getchar() /* unbuffered single character input */
{
 char c;

 return((read(0, &c, 1) > 0) ? c & CMASK : EOF);
}

File and Device Input/Output

3-5

Opening, Creating and Closing Files 3

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. The functions that do this are: open , open64 , creat , and
creat64 (see open(2) , open64(2) , creat(2) , and creat64(2) in the Operat-
ing System API Reference). To read or write a file assumed to exist already, it must be
opened by the following call:

fildes = open (name, oflag);

The argument name is a character string that represents an OS file system pathname. The
oflag argument indicates whether the file is to be read, written, or “updated”, that is, read
and written simultaneously. The returned value fildes is a file-descriptor used to denote the
file in subsequent calls that read, write or otherwise manipulate the file. If open is used on
a pre-existing large file, the operation fails and errno is set to EOVERFLOW. To open a
large file, set O_LARGEFILE in oflag or use open64 .

The function open resembles the function fopen in the Standard I/O Library, except that
instead of returning a pointer to FILE , open returns a file-descriptor which is just an int
(see fopen(3S) and stdio(3S) in the Operating System API Reference). Moreover,
the values for the access mode argument oflag are different (the flags are found in
/usr/include/fcntl.h):

• O_RDONLY for read access.

• O_WRONLY for write access.

• O_RDWR for read and write access.

The function open returns -1 if any error occurs; otherwise it returns a valid open file-
descriptor.

Trying to open a file that does not exist causes an error; hence, creat is used to create
new files, or to re-write old ones. The creat system call creates the given file if it does
not exist, or truncates it to zero length if it does exist; creat also opens the new file for
writing and, like open , returns a file-descriptor. Calling creat as follows:

fildes = creat (name, pmode);

#define CMASK 0377 /* for making char's > 0 */
#define BUFSIZE 512

getchar() /* buffered version */
{
 static char buf[BUFSIZE];
 static char *bufp = buf;
 static int n = 0;

 if (n == 0) { /* buffer is empty */
 n = read(0, buf, BUFSIZE);
 bufp = buf;
 }
 return((- -n >= 0) ? *bufp++ & CMASK : EOF);
}

PowerMAX OS Programming Guide

3-6

returns a file-descriptor if it created the file identified by the string name, and -1 if it did
not. Trying to creat a file that already exists does not cause an error, but if the file
already exists, creat truncates it to zero length. If creat is used on a pre-existing large
file, the operation fails and errno is set to EOVERFLOW. To create or re-write an existing
large file, use creat64 .

If the file is brand new, creat creates it with the protection mode specified by the pmode
argument. The OS file system associates nine bits of protection information with a file,
controlling read, write and execute permission for the owner of the file, for the owner's
group, and for any other users. Thus, a three-digit octal number specifies the permissions
most conveniently. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and all other users.

Figure 3-1 illustrates this with a simplified version of the OS utility cp (a program which
copies one file to another):

Figure 3-1. Simplified Version of cp

The main simplification is that this version copies only one file, and does not permit the
second argument to be a directory.

As stated earlier, there is a limit, OPEN_MAX, on the number of files which a process may
have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file-descriptors. The function close breaks the connection
between a file-descriptor and an open file, and frees the file-descriptor for use with some
other file. Termination of a program via exit or return from the main program closes all
open files.

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW owner, R group & others */

main(argc, argv) /* cp: copy fd1 to fd2 */
 int argc;
 char *argv[];
{
 int fd1, fd2, n;
 char buf[BUFSIZE];

 if (argc != 3)
 error(“Usage: cp from to”, NULL);
 if ((fd1 = open(argv[1], 0)) == -1)
 error(“cp: can't open %s”, argv[1]);
 if ((fd2 = creat(argv[2], PMODE)) == -1)
 error(“cp: can't create %s”, argv[2]);

 while ((n = read(fd1, buf, BUFSIZE)) > 0)
 if (write(fd2, buf, n) != n)
 error(“cp: write error”, NULL);

 exit(0);
}

error(s1, s2) /* print error message and die */
 char *s1, *s2;
{
 printf(s1, s2);
 printf(“\n”);

 exit(1);
}

File and Device Input/Output

3-7

Random Access — lseek 3

Normally, file I/O is sequential: each read or write proceeds from the point in the file
right after the previous one. This means that if a particular byte in the file was the last byte
written (or read), the next I/O call implicitly refers to the immediately following byte. For
each open file, the OS maintains a file-offset that indicates the next byte to be read or writ-
ten. If n bytes are read or written, the file-offset advances by n bytes. When necessary,
however, a file can be read or written in any arbitrary order using lseek or lseek64
(for files larger than 2GB) to move around in a file without actually reading or writing.

To do random (direct-access) I/O it is only necessary to move the file-offset to the appro-
priate location in the file with a call to lseek . Calling lseek as follows:

lseek (fildes, offset, whence);

or as follows:

location = lseek (fildes, offset, whence);

forces the current position in the file denoted by file-descriptor fildes to move to position
offset as specified by whence. Subsequent reading or writing begins at the new position. To
set the file offset beyond 2GB, lseek64 should be used:

location = lseek64 (fildes, offset, whence);

In this case location and offset should be declared as type off64_t .

The file-offset associated with fildes is moved to a position offset bytes from the beginning
of the file, from the current position of the file-offset or from the end of the file, depending
on whence; offset may be negative. For some devices (e.g., paper tape and terminals)
lseek calls are ignored. The value of location equals the actual offset from the begin-
ning of the file to which the file-offset was moved. The argument offset is of type off_t
defined by the header file <types.h> as a long ; fildes and whence are int 's. The argu-
ment whence can be SEEK_SET, SEEK_CUR or SEEK_END to specify that offset is to be
measured from the beginning, from the current position, or from the end of the file respec-
tively. For example, to append a file, seek to the end before writing:

lseek (fildes, 0L, SEEK_END);

To get back to the beginning (“rewind”),

lseek (fildes, 0L, SEEK_SET);

Notice the 0L argument; it could also be written as (long) 0 .

If lseek is used, and the returned offset would overflow an item of type off_t , the error
EOVERFLOW is returned. For example:

lseek (fildes, 0L, SEEK_END);

will fail with errno set to EOVERFLOW if the file is larger than 2GB.

With lseek , you can treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any
arbitrary point in a file:

PowerMAX OS Programming Guide

3-8

File and Record Locking 3

Mandatory and advisory file and record locking are both available on current releases of
the UNIX system. The intent of this capability to is provide a synchronization mechanism
for programs accessing the same stores of data simultaneously. Such processing is charac-
teristic of many multiuser applications, and the need for a standard method of dealing with
the problem has been recognized by standards advocates like /usr/group , an organiza-
tion of UNIX system users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing processes.
In mandatory locking, the standard I/O subroutines and I/O system calls enforce the lock-
ing protocol. In this way, at the cost of a little efficiency, mandatory locking double checks
the programs against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking capabilities can be
used. Examples are given for the correct use of record locking. Misconceptions about the
amount of protection that record locking affords are dispelled. Record locking should be
viewed as a synchronization mechanism, not a security mechanism.

The manual pages for the fcntl system call, the lockf library function, and fcntl
data structures and commands are referred to throughout this section (see fcntl(5)).
You should read them before continuing.

An additional set of fcntl lock commands, F_GETLK64, F_SETLK64, and
F_SETLKW64, is provided for use on large files.

To make use of these locking commands you must declare your lock structure as type
struct flock64 . The l_start and l_len members of this structure are expanded
to long long data types.

As an alternative to using fcntl , lockf64 can be used on large files. The lockf64
library function has the same functionality as lockf , but takes a long argument for the
length of the lock.

Terminology 3

Before discussing how to use record locking, a few terms need to be defined.

get(fd, p, buf, n) /* read n bytes from position p */
 int fd, n;
 long p;
 char *buf;
{
 lseek(fd, p, SEEK_SET); /* move to p */
 return(read(fd, buf, n));
}

File and Device Input/Output

3-9

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the programs that
use the files.

Cooperating Processes
Processes that work together in some well-defined fashion to accomplish the
tasks at hand. Processes that share files must request permission to access the
files before using them. File access permissions must be carefully set to
restrict noncooperating processes from accessing those files. The term process
will be used interchangeably with cooperating process to refer to a task obey-
ing such protocols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a read lock is
put on a record, other processes may also read lock that record, in whole or in
part. No other process, however, may have or obtain a write lock on an over-
lapping section of the file. If a process holds a read lock it may assume that no
other process will be writing or updating that record at the same time. This
access method also lets many processes read the given record. This might be
necessary when searching a file, without the contention involved if a write or
exclusive lock were used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a write
lock is put on a record, no other process may read or write lock that record, in
whole or in part. If a process holds a write lock it may assume that no other
process will be reading or writing that record at the same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem. Advi-
sory locking is not enforced, for example, by creat , open , read , or
write . The control over records is accomplished by requiring an appropriate
record lock request before I/O operations. If appropriate requests are always
made by all processes accessing the file, then the accessibility of the file will
be controlled by the interaction of these requests. Advisory locking depends
on the individual processes to enforce the record locking protocol; it does not
require an accessibility check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem. Access to
locked records is enforced by the creat , open , read and write system
calls. If a record is locked, then access of that record by any other process is
restricted according to the type of lock on the record. The control over records
should still be performed explicitly by requesting an appropriate record lock
before I/O operations, but an additional check is made by the system before
each I/O operation to ensure the record locking protocol is being honored.
Mandatory locking offers an extra synchronization check, but at the cost of
some additional system overhead.

PowerMAX OS Programming Guide

3-10

File Protection 3

There are access permissions for UNIX system files to control who may read, write, or
execute such a file. These access permissions may only be set by the owner of the file or
by a process with the appropriate privilege. The permissions of the directory in which the
file resides can also affect the ultimate disposition of a file. Note that if the directory per-
missions allow anyone to write in it, then files within the directory may be removed, even
if those files do not have read, write or execute permission for that user. Any information
that is worth protecting, is worth protecting properly. If your application warrants the use
of record locking, make sure that the permissions on your files and directories are set prop-
erly. A record lock, even a mandatory record lock, will only protect the portions of the
files that are locked. Other parts of these files might be corrupted if proper precautions are
not taken.

Only a known set of programs and/or administrators should be able to read or write a data
base. This can be done easily by setting the set-group-ID bit of the data base accessing
programs (see chmod(1)). The files can then be accessed by a known set of programs
that obey the record locking protocol. An example of such file protection, although record
locking is not used, is the mail command. In that command only the particular user and
the mail command can read and write in the unread mail files.

Opening a File for Record Locking 3

The first requirement for locking a file or segment of a file is having a valid open file
descriptor. If read locks are to be done, then the file must be opened with at least read
accessibility, and with write accessibility for write locks.

NOTE

Mapped files cannot be locked: if a file has been mapped, any
attempt to use file or record locking on the file fails. See
mmap(2).

For this example you will open your file for both read and write access:

File and Device Input/Output

3-11

The file is now open to perform both locking and I/O functions. You then proceed with the
task of setting a lock.

Setting a File Lock 3

There are several ways to set a lock on a file. In part, these methods depend on how the
lock interacts with the rest of the program. There are also questions of performance as
well as portability. Two methods will be given here, one using the fcntl system call, the
other using the /usr/group standards compatible lockf library function call.

Locking an entire file is just a special case of record locking. For both these methods the
concept and the effect of the lock are the same. The file is locked starting at a byte offset of
zero (0) until the end of the maximum file size. This point extends beyond any real end of
the file so that no lock can be placed on this file beyond this point. To do this the value of
the size of the lock is set to zero. The code using the fcntl system call is as follows:

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; /* file descriptor */
char *filename;

main(argc, argv)
int argc;
char *argv[];
{
 extern void exit(), perror();

 /* get data base file name from command line and open the
 * file for read and write access.
 */
 if (argc < 2) {
 (void) fprintf(stderr, “usage: %s filename\n”, argv[0]);
 exit(2);

 }
 filename = argv[1];
 fd = open(filename, O_RDWR);
 if (fd < 0) {
 perror(filename);
 exit(2);
 }
 .
 .
 .

PowerMAX OS Programming Guide

3-12

This portion of code tries to lock a file. This is attempted several times until one of the fol-
lowing things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf function, the code is as follows:

#include <fcntl.h>
#define MAX_TRY10
int try;
struct flock lck;

try = 0;

/* set up the record locking structure, the address of which
 * is passed to the fcntl system call.
 */
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = 0L;
lck.l_len = 0L; /* until the end of the file address space */

/* Attempt locking MAX_TRY times before giving up.
 */
while (fcntl(fd, F_SETLK, &lck) < 0) {
 if (errno == EAGAIN || errno == EACCES) {
 /* there might be other errors cases in which
 * you might try again.
 */
 if (++try < MAX_TRY) {
 (void) sleep(2);
 continue;
 }
 (void) fprintf(stderr,“File busy try again later!\n”);
 return;
 }
 perror(“fcntl”);
 exit(2);
}
 .
 .
 .

File and Device Input/Output

3-13

It should be noted that the lockf example appears to be simpler, but the fcntl example
exhibits additional flexibility. Using the fcntl method, it is possible to set the type and
start of the lock request simply by setting a few structure variables. lockf merely sets
write (exclusive) locks; an additional system call, lseek , is required to specify the start
of the lock.

Setting and Removing Record Locks 3

Locking a record is done the same way as locking a file except for the differing starting
point and length of the lock. You will now try to solve an interesting and real problem.
There are two records (these records may be in the same or different file) that must be
updated simultaneously so that other processes get a consistent view of this information.
(This type of problem comes up, for example, when updating the interrecord pointers in a
doubly linked list.) To do this you must decide the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain all the
required locks. It is because of contention for these records that you have decided to use
record locking in the first place. Different programs might:

#include <unistd.h>
#define MAX_TRY10
int try;
try = 0;

/* make sure the file pointer
 * is at the beginning of the file.
 */
lseek(fd, 0L, 0);

/* Attempt locking MAX_TRY times before giving up.
 */
while (lockf(fd, F_TLOCK, 0L) < 0) {

if (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
 * you might try again.
 */
if (++try < MAX_TRY) {

sleep(2);
continue;

}
(void) fprintf(stderr,“File busy try again later!\n”);
return;

}
perror(“lockf”);
exit(2);

}
.
.
.

PowerMAX OS Programming Guide

3-14

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Now look at the example of inserting an entry into a doubly linked list. For the example,
you will assume that the record after which the new record is to be inserted has a read lock
on it already. The lock on this record must be changed or promoted to a write lock so that
the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no other process
is holding a read lock in the same section of the file. If there are processes with pending
write locks that are sleeping on the same section of the file, the lock promotion succeeds
and the other (sleeping) locks wait. Promoting (or demoting) a write lock to a read lock
carries no restrictions. In either case, the lock is merely reset with the new lock type.
Because the /usr/group lockf function does not have read locks, lock promotion is
not applicable to that call. An example of record locking with lock promotion follows:

File and Device Input/Output

3-15

The locks on these three records were all set to wait (sleep) if another process was block-
ing them from being set. This was done with the F_SETLKW command. If the F_SETLK
command was used instead, the fcntl system calls would fail if blocked. The program

struct record {
.
. /* data portion of record */
.
long prev;/* index to previous record in the list */
long next;/* index to next record in the list */

};

/* Lock promotion using fcntl(2)
 * When this routine is entered it is assumed that there are read
 * locks on “here” and “next”.
 * If write locks on “here” and “next” are obtained:
 * Set a write lock on “this”.
 * Return index to “this” record.
 * If any write lock is not obtained:
 * Restore read locks on “here” and “next”.
 * Remove all other locks.
 * Return a -1.
 */
long
set3lock (this, here, next)
long this, here, next;
{

struct flock lck;

lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* promote lock on “here” to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {
 return (-1);
}
/* lock “this” with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
 /* Lock on “this” failed;
 * demote lock on “here” to read lock.
 */
 lck.l_type = F_RDLCK;
 lck.l_start = here;
 (void) fcntl(fd, F_SETLKW, &lck);
 return (-1);
}
/* promote lock on “next” to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
 /* Lock on “next” failed;
 * demote lock on “here” to read lock,
 */
 lck.l_type = F_RDLCK;

lck.l_start = here;
 (void) fcntl(fd, F_SETLK, &lck);
 /* and remove lock on “this”.
 */
 lck.l_type = F_UNLCK;
 lck.l_start = this;
 (void) fcntl(fd, F_SETLK, &lck);
 return (-1);/* cannot set lock, try again or quit */
}

return (this);
}

PowerMAX OS Programming Guide

3-16

would then have to be changed to handle the blocked condition in each of the error return
sections.

Now look at a similar example using the lockf function. Since there are no read locks,
all (write) locks will be referenced generically as locks.

Locks are removed in the same manner as they are set, only the lock type is different
(F_UNLCK or F_ULOCK). An unlock cannot be blocked by another process and will only
affect locks that were placed by this process. The unlock only affects the section of the file
defined in the previous example by lck . It is possible to unlock or change the type of lock
on a subsection of a previously set lock. This may cause an additional lock (two locks for

/* Lock promotion using lockf(3)
 * When this routine is entered it is assumed that there are
 * no locks on “here” and “next”.
 * If locks are obtained:
 * Set a lock on “this”.
 * Return index to “this” record.
 * If any lock is not obtained:
 * Remove all other locks.
 * Return a -1.
 */

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

{

/* lock “here” */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

return (-1);
}
/* lock “this” */
(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on “this” failed.
 * Clear lock on “here”.
 */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}

/* lock “next” */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on “next” failed.
 * Clear lock on “here”,
 */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));

/* and remove lock on “this”.
 */
(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);/* cannot set lock, try again or quit */

}

return (this);
}

File and Device Input/Output

3-17

one system call) to be used by the operating system. This occurs if the subsection is from
the middle of the previously set lock.

Getting Lock Information 3

You can determine which processes, if any, are blocking a lock from being set. This can be
used as a simple test or as a means to find locks on a file. A lock is set up as in the previous
examples and the F_GETLK command is used in the fcntl call. If the lock passed to
fcntl would be blocked, the first blocking lock is returned to the process through the
structure passed to fcntl . That is, the lock data passed to fcntl is overwritten by
blocking lock information. This information includes two pieces of data that have not been
discussed yet, l_pid and l_sysid , that are only used by F_GETLK. (For systems that
do not support a distributed architecture the value in l_sysid should be ignored.) These
fields uniquely identify the process holding the lock.

If a lock passed to fcntl using the F_GETLK command would not be blocked by another
process's lock, then the l_type field is changed to F_UNLCK and the remaining fields in
the structure are unaffected. You can use this capability to print all the segments locked by
other processes. Note that if there are several read locks over the same segment only one
of these will be found.

fcntl with the F_GETLK command will always return correctly (that is, it will not sleep
or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if there is a
process blocking a lock. This function does not, however, return the information about
where the lock actually is and which process owns the lock. A routine using lockf to test
for a lock on a file follows:

struct flock lck;

/* Find and print “write lock” blocked segments of this file. */
(void) printf(“sysid pid type start length\n”);
lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf(“%5d %5d %c %8d %8d\n”,
lck.l_sysid,
lck.l_pid,
(lck.l_type == F_WRLCK) ? 'W' : 'R',
lck.l_start,
lck.l_len);

/* if this lock goes to the end of the address
 * space, no need to look further, so break out.
 */
if (lck.l_len == 0)

break;
/* otherwise, look for new lock after the one
 * just found.
 */
lck.l_start += lck.l_len;

}
} while (lck.l_type != F_UNLCK);

PowerMAX OS Programming Guide

3-18

When a process forks, the child receives a copy of the file descriptors that the parent has
opened. The parent and child also share a common file pointer for each file. If the parent
were to seek to a point in the file, the child's file pointer would also be at that location. This
feature has important implications when using record locking. The current value of the file
pointer is used as the reference for the offset of the beginning of the lock, as described by
l_start , when using a l_whence value of 1. If both the parent and child process set
locks on the same file, there is a possibility that a lock will be set using a file pointer that
was reset by the other process. This problem appears in the lockf function call as well
and is a result of the /usr/group requirements for record locking. If forking is used in a
record locking program, the child process should close and reopen the file if either locking
method is used. This will result in the creation of a new and separate file pointer that can
be manipulated without this problem occurring. Another solution is to use the fcntl sys-
tem call with a l_whence value of 0 or 2. This makes the locking function atomic, so
that even processes sharing file pointers can be locked without difficulty.

Deadlock Handling 3

There is a certain level of deadlock detection/avoidance built into the record locking facil-
ity. This deadlock handling provides the same level of protection granted by the
/usr/group standard lockf call. This deadlock detection is only valid for processes
that are locking files or records on a single system. Deadlocks can only potentially occur
when the system is about to put a record locking system call to sleep. A search is made for
constraint loops of processes that would cause the system call to sleep indefinitely. If such
a situation is found, the locking system call will fail and set errno to the deadlock error
number. If a process wishes to avoid the use of the systems deadlock detection it should
set its locks using F_GETLK instead of F_GETLKW.

Selecting Advisory or Mandatory Locking 3

The use of mandatory locking is not recommended for reasons that will be made clear in a
subsequent section. Whether or not locks are enforced by the I/O system calls is deter-

/* find a blocked record. */
/* seek to beginning of file */
(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero (0)
 * to test until the end of the file address space.
 */
if (lockf(fd, F_TEST, 0L) < 0) {

switch (errno) {
case EACCES:
case EAGAIN:
(void) printf(“file is locked by another process\n”);
break;
case EBADF:
/* bad argument passed to lockf */
perror(“lockf”);
break;
default:
(void) printf(“lockf: unknown error <%d>\n”, errno);
break;
}

}

File and Device Input/Output

3-19

mined at the time the calls are made by the permissions on the file (see chmod(2)). For
locks to be under mandatory enforcement, the file must be a regular file with the set-
group-ID bit on and the group execute permission off. If either condition fails, all record
locks are advisory. Mandatory enforcement can be assured by the following code:

Files that are to be record locked should never have any type of execute permission set on
them. This is because the operating system does not obey the record locking protocol
when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory locking.
This can be done with the command:

chmod +l file

The ls(1) command shows this setting when you ask for the long listing format:

ls -l file

causes the following to be printed:

-rw---l--- 1 user group size mod_time file

Caveat Emptor—Mandatory Locking 3

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the pro-
cess should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this
way.

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

.

.

.
if (stat(filename, &buf) < 0) {

perror(“program”);
exit (2);

}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set 'set group id bit' in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {

perror(“program”);
exit(2);

}
.
.
.

PowerMAX OS Programming Guide

3-20

• As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future Releases of the UNIX System 3

Provisions have been made for file and record locking in a UNIX system environment. In
such an environment the system on which the locking process resides may be remote from
the system on which the file and record locks reside. In this way multiple processes on dif-
ferent systems may put locks upon a single file that resides on one of these or yet another
system. The record locks for a file reside on the system that maintains the file. It is also
important to note that deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that a process only hold
record locks on a single system at any given time for the deadlock mechanism to be effec-
tive. If a process needs to maintain locks over several systems, it is suggested that the pro-
cess avoid the sleep-when-blocked features of fcntl or lockf and that the process
maintain its own deadlock detection. If the process uses the sleep-when-blocked feature,
then a timeout mechanism should be provided by the process so that it does not hang wait-
ing for a lock to be cleared.

Basic STREAMS Operations 3

This section describes the basic set of operations for manipulating STREAMS entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has one or
more nodes associated with it in the file system, and it is accessed using the open system
call. Typically, each file system node corresponds to a separate minor device for that
driver. Opening different minor devices of a driver causes separate Streams to be con-
nected between a user process and the driver. The file descriptor returned by the open call
is used for further access to the Stream. If the same minor device is opened more than
once, only one Stream is created; the first open call creates the Stream, and subsequent
open calls return a file descriptor that references that Stream. Each process that opens the
same minor device shares the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using the write
system call and receive data from the device using the read system call. Access to
STREAMS drivers using read and write is compatible with the traditional character
I/O mechanism.

The close system call closes a device and dismantles the associated Stream when the last
open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the user
program interacts with a communications device that provides point-to-point data transfer
between two computers. Data written to the device transmitted over the communications
line, and data arriving on the line can be retrieved by reading from the device.

File and Device Input/Output

3-21

In the example, /dev/comm/01 identifies a minor device of the communications device
driver. When this file is opened, the system recognizes the device as a STREAMS device
and connects a Stream to the driver. Figure 3-2 shows the state of the Stream following the
call to open .

Figure 3-2. Stream to Communication Driver

This example illustrates a user reading data from the communications device and then
writing the input back out to the same device. In short, this program echoes all input back
over the communications line. The example assumes that a user sends data from the other
side of the communications line. The program reads up to 1024 bytes at a time, and then
writes the number of bytes just read.

#include <fcntl.h>

main()
{

char buf[1024];
int fd, count;

if ((fd = open(“/dev/comm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

while ((count = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, count) != count) {

perror(“write failed”);
break;

}
}
exit(0);

}

User Process

User Space

Kernel Space

Communications
Driver

Stream Head

161210

PowerMAX OS Programming Guide

3-22

The read call returns the available data, which may contain fewer than 1024 bytes. If no
data is currently available at the Stream head, the read call blocks until data arrive.

Similarly, the write call attempts to send count bytes to /dev/comm/01 . However,
STREAMS implements a flow control mechanism that prevents a user from exhausting
system resources by flooding a device driver with data.

Flow control controls the rate of message transfer among the modules, drivers, Stream
head, and processes. Flow control is local to each Stream and advisory (voluntary). It
limits the number of characters that can be queued for processing at any queue in a
Stream, and limits buffers and related processing at any queue and in any one Stream, but
does not consider buffer pool levels or buffer usage in other Streams. Flow control is not
applied to high-priority messages.

If the Stream exerts flow control on the user, the write call blocks until flow control is
relieved. The call does not return until it has sent count bytes to the device. exit , which is
called to terminate the user process, also closes all open files, and thereby dismantling the
Stream in this example.

Benefits of STREAMS 3

STREAMS provides the following benefits:

• A flexible, portable, and reusable set of tools for development of UNIX
system communication services.

• Easy creation of modules that offer standard data communications services
and the ability to manipulate those modules on a Stream.

• From user level, modules can be dynamically selected and interconnected;
kernel programming, assembly, and link editing are not required to create
the interconnection.

STREAMS also greatly simplifies the user interface for languages that have complex input
and output requirements.

Standardized Service Interfaces 3

STREAMS simplifies the creation of modules that present a service interface to any
neighboring application program, module, or device driver. A service interface is defined
at the boundary between two neighbors. In STREAMS, a service interface is a specified
set of messages and the rules that allow passage of these messages across the boundary. A
module that implements a service interface receives a message from a neighbor and
responds with an appropriate action (for example, sends back a request to retransmit)
based on the specific message received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However, rational
sequences are generally constructed by connecting modules with compatible protocol ser-
vice interfaces. For example, a module that implements an X.25 protocol layer, as shown

File and Device Input/Output

3-23

in Figure 3-2, presents a protocol service interface at its input and output sides. In this
case, other modules should only be connected to the input and output side if they have the
compatible X.25 service interface.

Manipulating Modules 3

STREAMS provides the capabilities to manipulate modules from the user level, to inter-
change modules with common service interfaces, and to change the service interface to a
STREAMS user process. These capabilities yield further benefits when implementing net-
working services and protocols, including:

• User level programs can be independent of underlying protocols and physi-
cal communication media.

• Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

• Higher level services can be created by selecting and connecting lower
level services and protocols.

The following examples show the benefits of STREAMS capabilities for creating service
interfaces and manipulating modules. These examples are only illustrations and do not
necessarily reflect real situations.

Protocol Portability 3

Figure 3-3 shows how the same X.25 protocol module can be used with different drivers
on different machines by implementing compatible service interfaces. The X.25 protocol
module interfaces are Connection Oriented Network Service (CONS) and Link Access
Protocol - Balanced (LAPB).

PowerMAX OS Programming Guide

3-24

Figure 3-3. X.25 Multiplexing Stream

Protocol Substitution 3

Alternate protocol modules (and device drivers) can be interchanged on the same machine
if they are implemented to an equivalent service interface.

Protocol Migration 3

Figure 3-4 illustrates how STREAMS can move functions between kernel software and
front-end firmware. A common downstream service interface allows the transport protocol
module to be independent of the number or type of modules below. The same transport
module connects without change to either an X.25 module or X.25 driver that has the same
service interface.

By shifting functions between software and firmware, developers can produce cost effec-
tive, functionally equivalent systems over a wide range of configurations. They can rapidly
incorporate technological advances. The same transport protocol module can be used on a
lower capacity machine, where economics may preclude the use of front-end hardware,
and also on a larger scale system where a front-end is economically justified.

X.25
Protocol Layer

Module

Machine A Machine B

LAPB
Driver

Machine A

161220

X.25
Protocol Layer

Module

LAPB
Driver

Machine B
DIFFERENT

DRIVER

SAME
MODULE

LAPB
INTERFACE

CONS
INTERFACE

File and Device Input/Output

3-25

Figure 3-4. Protocol Migration

Module Reusability 3

Figure 3-5 shows the same canonical module (for example, one that provides delete and
kill processing on character strings) reused in two different Streams. This module is typi-
cally implemented as a filter, with no downstream service interface. In both cases, a tty
interface is presented to the Stream's user process because the module is nearest to the
Stream head.

X.25
Packet Layer

Protocol

X.25
Packet Layer

Driver

Class 1
Transport
Protocol

Class 1
Transport
Protocol

LAPB
Driver

161230

SAME
MODULES

KERNEL

HARDWARE

CONS
INTERFACE

PowerMAX OS Programming Guide

3-26

Figure 3-5. Module Reusability

Canonical
Module

Canonical
Module

Terminal
Emulator
Module

Raw
TTY

Driver

User
Process

User
Process

LAPB
Driver

161240

Class 1
Transport
Protocol

X.25
Packet Layer

Protocol

SAME
INTERFACE

SAME
MODULE

File and Device Input/Output

3-27

STREAMS Mechanism 3

This chapter shows how to construct, use, and dismantle a Stream using STREAMS-
related systems calls. General and STREAMS-specific system calls provide the user level
facilities required to implement application programs. This system call interface is
upwardly compatible with the traditional character I/O facilities. The open system call
recognizes a STREAMS file and creates a Stream to the specified driver. A user process
can receive and send data on STREAMS files using read and write in the same way as
with traditional character files. The ioctl system call enables users to perform functions
spec i f i c t o a pa r t i cu la r dev i ce . STREAMS ioc t l commands (see
streamio(7))support a variety of functions for accessing and controlling Streams. The
last close in a Stream dismantles a Stream.

In addition to the traditional ioctl commands and system calls, there are other system
calls used by STREAMS. The poll system call enables a user to poll multiple Streams
for various events. The putmsg and getmsg system calls enable users to send and
receive STREAMS messages, and are suitable for interacting with STREAMS modules
and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of modules and
drivers. The Stream head handles most system calls so that the related processing does not
have to be incorporated in a module or driver.

STREAMS System Calls 3

The STREAMS-related system calls are as follows:

open Open a Stream

close Close a Stream

read Read data from a Stream

write Write data to a Stream

ioctl Control a Stream

getmsg Receive a message at the Stream head

putmsg Send a message downstream

poll Notify the application program when selected events occur on a
Stream

pipe Create a channel that provides a communication path between
multiple processes

A STREAMS device responds to the standard character I/O system calls, such as read
and write , by turning the request into a message. This feature ensures that STREAMS
devices may be accessed from the user level in the same manner as non-STREAMS char-
acter devices. However, additional system calls provide other capabilities.

PowerMAX OS Programming Guide

3-28

getmsg and putmsg 3

The putmsg and getmsg system calls enable a user process to send and receive
STREAMS messages, in the same form the messages have in kernel modules and drivers.
read and write are not designed to include the message boundaries necessary to encode
messages.

The advantage of this capability is that a user process, as well as a STREAMS module or
driver, can implement a service interface.

poll 3

The poll system call allows a user process to monitor a number of streams to detect
expected I/O events. Such events might be the availability of a device for writing, input
data arriving from a device, a hangup occurring, an error being detected, or the arrival of a
priority message. See poll(2) in the Operating System API Reference for more infor-
mation.

Opening a STREAMS Device File 3

One way to construct a Stream is to open (see open(2)) a STREAMS-based driver file.

If the open call is the initial file open, a Stream is created. (There is one Stream per
major/minor device pair.)

If this is the initial open of this Stream, the driver open routine is called. If modules have
been specified to be autopushed, they are pushed immediately after the driver open. When
a Stream is already open, further opens of the same Stream result in calls to the open pro-
cedures of all pushable modules and the driver open. Note that this is done in the reverse
order from the initial Stream open. In other words, the initial open processes from the
Stream end to the Stream head, while later opens process from the Stream head to the
Stream end.

Creating a STREAMS-based Pipe 3

In addition to opening a STREAMS-based driver, a Stream can be created by creating a
pipe (see pipe(2)). Because pipes are not character devices, STREAMS creates and ini-
tializes a streamtab structure for each end of the pipe.

When the pipe system call is executed, two Streams are created. STREAMS follows the
procedures similar to those of opening a driver; however, duplicate data structures are cre-
ated. That is, two entries are allocated in the user's file table and two vnode s are created
to represent each end of the pipe. The file table entries are initialized to point to the allo-
cated vnode s and each vnode is initialized to specify a file of type FIFO .

Each Stream header represents one end of the pipe, and it points to the downstream half of
each Stream head queue pair. Unlike STREAMS-based devices, however, the downstream
portion of the Stream terminates at the upstream portion of the other Stream.

File and Device Input/Output

3-29

Adding and Removing Modules 3

As part of constructing a Stream, a module can be added (pushed) with an ioctl
I_PUSH (see streamio(7)) system call. The push inserts a module beneath the
Stream head. Because of the similarity of STREAMS components, the push operation is
similar to the driver open. First, the address of the qinit structure for the module is
obtained.

Next, STREAMS allocates a pair of queue structures and initializes their contents as in
the driver open.

Then, q_next values are set and modified so that the module is interposed between the
Stream head and its neighbor immediately downstream. Finally, the module open proce-
dure (located using qinit) is called.

Each push of a module is independent, even in the same Stream. If the same module is
pushed more than once on a Stream, there will be multiple occurrences of that module in
the Stream. The total number of pushable modules that may be contained on any one
Stream is limited by the kernel parameter NSTRPUSH.

An ioctl I_POP (see streamio(7)) system call removes (pops) the module immedi-
ately below the Stream head. The pop calls the module close procedure. On return from
the module close, any messages left on the module's message queues are freed (deallo-
cated). Then, STREAMS connects the Stream head to the component previously below
the popped module and deallocates the module's queue pair. I_PUSH and I_POP enable
a user process to alter dynamically the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed and a new one inserted
below the Stream head. Then the original module can be pushed back after the new mod-
ule has been pushed.

Closing the Stream 3

The last close to a STREAMS file dismantles the Stream. Dismantling consists of
popping any modules on the Stream and closing the driver. Before a module is popped, the
close may delay to allow any messages on the write message queue of the module to be
drained by module processing. Similarly, before the driver is closed, the close may delay
to allow any messages on the write message queue of the driver to be drained by driver
processing. If O_NDELAY (or O_NONBLOCK) is clear, close waits up to 15 seconds for
each module to drain and up to 15 seconds for the driver to drain (see open(2)). If
O_NDELAY (or O_NONBLOCK) is set, the pop is performed immediately and the driver is
closed without delay. Messages can remain queued, for example, if flow control is inhibit-
ing execution of the write queue service procedure. When all modules are popped and
any wait for the driver to drain is completed, the driver close routine is called. On return
from the driver close, any messages left on the driver's queues are freed, and the queue
and stdata structures are deallocated.

PowerMAX OS Programming Guide

3-30

NOTE

STREAMS frees only the messages contained on a message
queue. Any message or data structures used internally by the
driver or module must be freed by the driver or module close pro-
cedure.

Finally, the user's file table entry and the vnode are deallocated and the file is closed.

Stream Construction Example 3

The following example extends the previous communications device echoing example
(see the section “Basic STREAMS Operations” in this chapter) by inserting a module in
the Stream. The (hypothetical) module in this example can convert (change case, delete,
and/or duplicate) selected alphabetic characters.

Inserting Modules 3

An advantage of STREAMS over the traditional character I/O mechanism stems from the
ability to insert various modules into a Stream to process and manipulate data that pass
between a user process and the driver. In the example, the character conversion module is
passed a command and a corresponding string of characters by the user. All data passing
through the module are inspected for instances of characters in this string; the operation
identified by the command is performed on all matching characters. The necessary decla-
rations for this program are shown below:

The first step is to establish a Stream to the communications driver and insert the character
conversion module. The following sequence of system calls accomplishes the following
display:

#include <string.h>
#include <fcntl.h>
#include <stropts.h>

#define BUFLEN 1024

/*
 * These defines would typically be
 * found in a header file for the module
 */
#define XCASE 1 /* change alphabetic case of char */
#define DELETE 2 /* delete char */
#define DUPLICATE 3 /* duplicate char */

main()
{

char buf[BUFLEN];
int fd, count;
struct strioctl strioctl;

File and Device Input/Output

3-31

The I_PUSH ioctl call directs the Stream head to insert the character conversion mod-
ule between the driver and the Stream head, creating the Stream shown in Figure 3-6 As
with drivers, this module resides in the kernel and must have been configured into the sys-
tem before it was booted, unless the system has an autoload capability.

Figure 3-6. Case Converter Module

An important difference between STREAMS drivers and modules is illustrated here.
Drivers are accessed through a node or nodes in the file system and may be opened just
like any other device. Modules, on the other hand, do not occupy a file system node.

if ((fd = open(“/dev/comm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

if (ioctl(fd, I_PUSH, “chconv”) < 0) {
perror(“ioctl I_PUSH failed”);
exit(2);

}

User Process

User Space

Kernel Space

Character
Converter

Stream Head

161250

Communications
Driver

PowerMAX OS Programming Guide

3-32

Instead, they are identified through a separate naming convention, and are inserted into a
Stream using I_PUSH. The name of a module is defined by the module developer

Modules are pushed onto a Stream and removed from a Stream in Last-In-First-Out
(LIFO) order. Therefore, if a second module was pushed onto this Stream, it would be
inserted between the Stream head and the character conversion module

Module and Driver Control 3

The next step in this example is to pass the commands and corresponding strings to the
character conversion module. This can be done by issuing ioctl calls to the character
conversion module as follows:

ioctl requests are issued to STREAMS drivers and modules indirectly, using the I_STR
ioctl call (see streamio(7)). The argument to I_STR must be a pointer to a stri-
octl structure, which specifies the request to be made to a module or driver. This struc-
ture is defined in <stropts.h> and has the following format:

where ic_cmd identifies the command intended for a module or driver, ic_timout
specifies the number of seconds an I_STR request should wait for an acknowledgment
before timing out, ic_len is the number of bytes of data to accompany the request, and
ic_dp points to that data.

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;
strioctl.ic_timout = 0;/* default timeout (15 sec) */
strioctl.ic_dp = “AEIOU”;
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I_STR failed”);
exit(3);

}

/* delete all instances of the chars 'x' and 'X' */
strioctl.ic_cmd = DELETE;
strioctl.ic_dp = “xX”;
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I_STR failed”);
exit(4);

}

struct strioctl {
int ic_cmd; /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data argument */
char *ic_dp; /* ptr to data argument */

};

File and Device Input/Output

3-33

In the example, two separate commands are sent to the character conversion module. The
first sets ic_cmd to the command XCASE and sends as data the string “AEIOU”; it con-
verts all uppercase vowels in data passing through the module to lowercase. The second
sets ic_cmd to the command DELETE and sends as data the string “xX”; it deletes all
occurrences of the characters ‘x’ and ‘X’ from data passing through the module. For each
command, the value of ic_timout is set to zero, which specifies the system default tim-
eout value of 15 seconds. The ic_dp field points to the beginning of the data for each
command; ic_len is set to the length of the data.

I_STR is intercepted by the Stream head, which packages it into a message, using infor-
mation contained in the strioctl structure, and sends the message downstream. Any
module that does not understand the command in ic_cmd passes the message further
downstream. The request will be processed by the module or driver closest to the Stream
head that understands the command specified by ic_cmd . The ioctl call will block up
to ic_timout seconds, waiting for the target module or driver to respond with either a
positive or negative acknowledgment message. If an acknowledgment is not received in
ic_timout seconds, the ioctl call will fail.

NOTE

Only one I_STR request can be active on a Stream at one time.
Further requests will block until the active I_STR request is
acknowledged and the system call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR request.
If data is returned by the target module or driver, ic_dp must point to a buffer large
enough to hold that data, and ic_len will be set on return to show the amount of data
returned:

Note that the character conversion processing was realized with no change to the commu-
nications driver.

The exit system call dismantles the Stream before terminating the process. The charac-
ter conversion module is removed from the Stream automatically when it is closed. Alter-
natively, modules may be removed from a Stream using the I_POP ioctl call described
in streamio(7) . This call removes the topmost module on the Stream, and enables a
user process to alter the configuration of a Stream dynamically, by popping modules as
needed.

A few of the important ioctl requests supported by STREAMS have been discussed.
Several other requests are available to support operations such as determining if a given

while ((count = read(fd, buf, BUFLEN)) > 0) {
if (write(fd, buf, count) != count) {

perror(“write failed”);
break;

}
}
exit(0);

}

PowerMAX OS Programming Guide

3-34

module exists on the Stream, or flushing the data on a Stream. These requests are
described fully in streamio(7) .

4
Process Management

Introduction . 4-1
Program Execution and Process Creation . 4-2

Program Execution—exec . 4-2
Process Creation—fork . 4-4
Control of Processes—fork and wait . 4-7
Process Termination . 4-7
Managing Processors and Processes . 4-8

Processor Administration Information . 4-8
Binding Processes to Processors . 4-8
Local Memory Considerations . 4-10

PowerMAX OS Programming Guide

4-1

4
Chapter 4Process Management

4
4
4

Introduction 4

A process is the execution of a program; most OS commands execute as separate pro-
cesses. Each process is a distinct entity, able to execute and terminate independently of all
other processes. Each user can have many processes in the system simultaneously. In fact,
it is not always necessary for the user to be logged into the system while those processes
are executing.

The OS supports a schedulable entity called a lightweight process (LWP). Each process
contains one or more LWPs. LWPs allow multiple threads of control within a single pro-
cess. The Threads Library provides interfaces with which applications may be multi-
threaded. See Chapter 11, entitled, “Programming with the Threads Library” for informa-
tion about threads and LWPs. When a process does not explicitly create any new LWPs, it
contains one LWP and has the same semantics that a process had in previous releases.

Whenever you execute a command in a UNIX system, you are initiating a process that is
numbered and tracked by the operating system. A flexible feature of a UNIX system is that
processes can be generated by other processes. This happens more than you might ever be
aware of. For example, when you log in to your system you are running a process, very
probably the shell. If you then use an editor such as vi , take the option of invoking the
shell from vi , and execute the ps command, you will see a display something like the one
in the following figure (which shows the results of a ps -f command):

Figure 4-1. Process Status

As you can see, user abc (who went through the steps described above) now has four pro-
cesses active. It is an interesting exercise to trace the chain that is shown in the Process ID
(PID) and Parent Process ID (PPID) columns. The shell that was started when user abc
logged on is process 24210; its parent is the initialization process (process ID 1). Process
24210 is the parent of process 24631, and so on.

The four processes in the example above are all UNIX system shell-level commands, but
you can spawn new processes from your own program. You might think, “Well, it's one
thing to switch from one program to another when I'm at my terminal working interac-

UID PID PPID CLS PRI STIME TTY TIME COMD
abc 24210 1 TS 70 06:13:14 tty29 0:05 -sh
abc 24631 24210 TS 70 06:59:07 tty29 0:13 vi c2.uli
abc 28441 28358 TS 70 09:17:22 tty29 0:01 ps -f
abc 28358 24631 TS 70 09:15:14 tty29 0:01 sh -i

PowerMAX OS Programming Guide

4-2

tively with the computer; but why would a program want to run other programs, and if one
does, why wouldn't I just put everything together into one big executable module?”

Overlooking the case where your program is itself an interactive application with diverse
choices for the user, your program may need to run one or more other programs based on
conditions it encounters in its own processing. (If it's the end of the month, go do a trial
balance, for example.) The usual reasons why it might not be practical to create one large
executable are:

• The load module may get too big to fit in the maximum process size for
your system.

• You may not have control over the object code of all the other modules you
want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes might
need to be done. There are two ways to do it:

• exec(2) —stop this process and start another

• fork(2) —start an additional copy of this process

Program Execution and Process Creation 4

Program Execution—exec 4

Overlays, performed by the family of exec system calls, can change the executing
program, but cannot create new processes. Processes are created (or spawned) by the
system call fork , which is discussed later.

exec is the name of a family of functions that includes execl , execv , execle ,
execve , execlp , and execvp . They all have the function of transforming the calling
process into a new process. The reason for the variety is to provide different ways of
pulling together and presenting the arguments of the function. An example of one version
(execl) might be:

execl(“/usr/bin/prog2”, “prog”, progarg1,
progarg2, (char *)0);

For execl the argument list is

/usr/bin/prog2 path name of the new process file

prog the name the new process gets in its argv[0]

progarg1 , progarg2 arguments to prog2 as char * 's

(char *)0 a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Operating System API Reference for the rest of
the details. The key point of the exec family is that there is no return from a successful

Process Management

4-3

execution: the new process overlays the process that makes the exec system call. The
new process also takes over the process ID and other attributes of the old process. If the
call to exec is unsuccessful, control is returned to your program with a return value of
-1 . You can check errno to learn why it failed.

The system call execl executes another program, without returning; thus, to print the date
as the last action of a running program, use:

execl(“/bin/date”, “date”, NULL);

The first argument to execl is the filename of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the filename), but this is seldom used except as a placeholder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits,
without returning to the original program.

NOTE

When a multithreaded process calls exec , the new process will
be created with a single thread (and LWP), effectively terminating
all other threads (and LWPs) in the process. If exec fails, no
threads (or LWPs) are terminated.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you
don't know where date is located, say:

execl(“/bin/date”, “date”, NULL);
execl(“/usr/bin/date”, “date”, NULL);
printf(stderr, “Someone stole 'date'\n”);

A variant of execl called execv is useful when you don't know in advance how many
arguments there are going to be. The call is:

execv(filename, argp);

Where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, filename is the file in which
the program is found, and argp[0] is the name of the program. (This arrangement is identi-
cal to the argv array for C program arguments.)

Neither of these functions provides the niceties of normal command execution. There is no
automatic search of multiple directories; you have to know precisely where the command
is located. Nor do you get the expansion of metacharacters like “<”, “ >”, “ * ”, “ ?” and
“ [] ” in the argument list. If you want these, use execl to invoke the shell sh , which then
does all the work. Construct a string cmdline that contains the complete command as it
would have been typed at the terminal, then say:

execl(“/bin/sh”, “sh”, “-c”, cmdline, NULL);

PowerMAX OS Programming Guide

4-4

The shell is assumed to be at a fixed place, /bin/sh . Its argument “-c” says to treat the
next argument as a whole command line, so it does just what you want. The only problem
is in constructing the right information in cmdline .

To summarize:

• Any process may exec (cause execution of) a file.

• Doing an exec does not change the process ID; the process that did the
exec persists, but after the exec it is executing a different program.

• Files that were open before the exec remain open afterwards.

Many programs want to regain control after exec ing another program; these should use a
combination of fork and exec (see the next section). However, a program with two or
more phases that communicate only through temporary files might use an exec function
without a fork . Here it is natural to make the second pass simply an execl call from the
first. For example, the first pass of a compiler might overlay itself with the second pass of
the compiler. This is analogous to a “goto” in programming.

Process Creation—fork 4

If a process wishes to regain control after exec ing a second program, it should fork a
child process, have the child exec the second program, and the parent wait for the child.
This is analogous to a “call” except that the fork system call creates a new process that is
an exact copy of the calling process. The following figure depicts what is involved in exe-
cuting a program with a typical fork as the first step:

Figure 4-2. Process Primitives

Because the exec functions simply overlay the new program on the old one, to save the
old one requires that it first be split into two copies; one of these can be overlaid, while the

fork

Program A

wait

Program BProgram A

Process 1
(Parent)

Process 2
(Child)

(asleep)

exit

exec
B

161260

Process Management

4-5

other waits for the new overlaying program to finish. The system call fork does the
splitting as in the following call:

proc_id = fork();

The newly created process, known as the child process, is a copy of the image of the orig-
inal process, called the parent process. The system call fork splits the program into two
copies, both of which continue to run, and which differ only in the value returned in
proc_id . In the child process, proc_id equals zero; in the parent process, proc_id
equals a non-zero value that is the process number of the child process. Thus, the basic
way to call, and return from, another program is:

if (fork() == 0) /* in child */
 execl(“/bin/sh”, “sh”, “-c”, cmd, NULL);

And in fact, except for handling errors, this is sufficient. The fork is zero, so it calls
execl , which does the cmd and then dies. In the parent, fork returns non-zero so it skips
the execl . (If there is any error, fork returns -1 .)

A child inherits its parent's permissions, working-directory, root-directory, open files, etc.
This mechanism permits processes to share common input streams in various ways. Files
that were open before the fork are shared after the fork . The processes are informed
through the return value of fork as to which is the parent and which is the child. In any
case the child and parent differ in three important ways:

• The child has a different process ID.

• The child has a different parent process ID.

• All accounting variables are reset to appropriate values in the child.

NOTE

The functionality of fork(2) in a multithreaded program differs
depending upon whether POSIX threads or PowerMAX OS
threads are being used. See the “Using fork(2) ” section in the
“Programming with the Threads Library” chapter for more
details.

The fork system call creates a child process with code and data copied from the parent
process that created the child process. Once the copying is completed, the new (child) pro-
cess is placed on the runnable queue to be scheduled. Each child process executes inde-
pendently of its parent process, although the parent may explicitly wait for the termination
of that child or any of its children. Usually the parent waits for the death of its child at
some point because this wait call is used to free the process-table entry used by the child.
See the discussion under “Process Termination” for more detail.

Calling fork creates a new process that is an exact copy of the calling process. The one
major difference between the two processes is that the child gets its own unique process
ID. When the fork process has completed successfully, it returns a 0 to the child process
and the child's process ID to the parent. If the idea of having two identical processes seems
a little funny, consider this:

PowerMAX OS Programming Guide

4-6

• Because the return value is different between the child process and the par-
ent, the program can contain the logic to determine different paths.

• The child process could say, “Okay, I'm the child; I'm supposed to issue an
exec for an entirely different program.”

• The parent process could say, “My child is going to exec a new process;
I'll issue a wait until I get word that the new process is finished.”

Your code might include statements like the following:

Figure 4-3. Example of fork

Because the new exec 'd process takes over the child process ID, the parent knows the ID.
What this boils down to is a way of leaving one program to run another, returning to the
point in the first program where processing left off.

Keep in mind that the fragment of code above includes minimal checking for error condi-
tions, and has potential for confusion about open files and which program is writing to a
file. Leaving out the possibility of named files, the new process created by the fork or
exec has the three standard files that are automatically opened: stdin , stdout , and
stderr . If the parent has buffered output that should appear before output from the child,
the buffers must be flushed before the fork. Also, if the parent and the child processes both
read input from a stream, whatever is read by one process will be lost to the other. That is,
once something has been delivered from the input buffer to a process the pointer has
moved on.

Process creation is essential to the basic operation of the OS because each command run
by the Shell executes in its own process. In fact, execution of a Shell command or Shell
procedure involves both a fork and an overlay. This scheme makes a number of services
easy to provide. I/O redirection, for example, is basically a simple operation; it is per-
formed entirely in the child process that executes the command, and thus no memory in
the Shell parent process is required to rescind the change in standard input and output.

#include <errno.h>

pid_t ch_pid;
int ch_stat, status;
char *p_arg1, *p_arg2;
void exit();

if ((ch_pid = fork()) < 0) {

/* Could not fork... check errno */

}
else if (ch_pid == 0) {/* child */

(void)execl(“/usr/bin/prog2”, “prog”, p_arg1, p_arg2, (char *)NULL);
exit(2);/* execl() failed */

}
else { /* parent */

while ((status = wait(&ch_stat)) != ch_pid) {
if (status < 0 && errno == ECHILD)

break;
errno = 0;

}
}

Process Management

4-7

Background processes likewise require no new mechanism; the Shell merely refrains from
waiting for commands executing in the background to complete. Finally, recursive use of
the Shell to interpret a sequence of commands stored in a file is in no way a special opera-
tion.

Control of Processes—fork and wait 4

A parent process can suspend its execution to wait for termination of a child process with
wait or waitpid . More often, the parent wants to wait for the child to terminate before
continuing itself as follows:

int status;

if (fork() == 0)
 execl(...);
wait(&status);

The previous code fragment avoids handling any abnormal conditions, such as a failure of
the execl or fork , or the possibility that there might be more than one child running
simultaneously. (The function wait returns the process-id of the terminated child, which
can be checked against the value returned by fork .) In addition, this fragment avoids
dealing with any funny behavior on the part of the child (which is reported in status).

The low-order eight bits of the value returned by wait encodes the termination status of
the child process; 0 signifies normal termination and non-zero to signify various kinds of
abnormalities. The next higher eight bits are taken from the argument of the call to exit
that caused a normal termination of the child process. It is good coding practice for all
programs to return meaningful status.

When a program is called by the shell, the three file-descriptors are available for use.
When this program calls another one, correct etiquette suggest making sure the same con-
ditions hold. Neither fork nor the exec calls affects open files in any way. If the parent is
buffering output that must come out before output from the child, the parent must flush its
buffers before the execl . Conversely, if a caller buffers an input stream, the called pro-
gram loses any information that has been read by the caller.

Process Termination 4

Processes terminate in one of two ways:

• Normal termination occurs by a return from main or when requested by an
explicit call to exit or _exit .

• Abnormal termination occurs as the default action of a signal or when
requested by abort .

On receiving a signal, a process looks for a signal-handling function. Failure to find a sig-
nal-handling function forces the process to call exit , and therefore to terminate. The
functions _exit , exit and abort terminate a process with the same effects except that

PowerMAX OS Programming Guide

4-8

abort makes available to wait or waitpid the status of a process terminated by the
signal SIGABRT (see exit(2) and abort(2)).

As a process terminates, it can set an eight-bit exit status code available to its parent. Usu-
ally, this code indicates success (zero) or failure (non-zero), but it can be used in any
manner the user wishes. If a signal terminated the process, the system first tries to dump an
image of core, then modifies the exit code to indicate which signal terminated the process
and whether core was dumped. This is provided that the signal is one that produces a core
dump (see signal(5)). Next, all signals are set to be ignored, and resources owned by
the process are released, including open files and the working directory. The terminating
process is now a “zombie” process, with only its process-table entry remaining; and that is
unavailable for use until the process has finally terminated. Next, the process-table is
searched for any child or zombie processes belonging to the terminating process. Those
children are then adopted by init by changing their parent process ID to 1). This is nec-
essary because there must be a parent to record the death of the child. The last actions of
exit are to record the accounting information and exit code for the terminated process in
the zombie process-table entry and to send the parent the death-of-child signal, SIGCHLD.
(see Chapter 10, “Signals, Job Control, and Pipes”).

If the parent wants to wait until a child terminates before continuing execution, the parent
can call wait , which causes the parent to sleep until a child zombie is found (meaning the
child terminated). When the child terminates, the death-of-child signal is sent to the parent
although the parent ignores this signal. (Ignore is the default disposition. Applications that
fork children and need to know the return status should set this signal to other than
ignore.) The search for child zombies continues until the terminated child is found; at
which time, the child's exit status and accounting information is reported to the parent
(remember the call to exit in the child put this information in the child's process-table
entry) and the zombie process-table entry is freed. Now the parent can wake up and con-
tinue executing.

Managing Processors and Processes 4

Processor Administration Information 4

Processors are identified with a processor ID number that gives them a unique tag within
the system. The state of the processors in your system can be examined by using the
psrinfo(1M) command or the processor_info(2) system call. They report
whether the processor is on line or off line.

Binding Processes to Processors 4

By default, an LWP can execute on any processor in the system. Every LWP has a bit
mask, or CPU bias, that determines the processor or processors on which it can be
scheduled. An LWP inherits its CPU bias from its creator during a fork(2) or an
_lwp_create(2) but may thereafter change it. The kernel assigns an LWP to a CPU in
the LWP’s CPU bias. If an LWP’s CPU bias identifies more than one processor, the
LWP’s CPU assignment may change several times during its execution. In making CPU
assignments, the kernel attempts to balance the load on the CPUs and avoid unnecessary
migration between CPUs.

Process Management

4-9

The commands and program interfaces that allow you to set an LWP’s CPU bias accept
the following types of identifiers for the target LWP(s):

LWP ID specifies a particular LWP

Process ID specifies all LWPs in the process

Process group ID specifies all LWPs in each process in the group

User ID specifies all LWPs in each process owned by the user

You can set the CPU bias for one or more LWPs by using one of the following methods:

1. Invoke the cpu_bias(2) system call from a program, and specify the
CPU_SETBIAS command.

2. Invoke the mpadvise(3C) library routine from a program, and specify
the MPA_PRC_SETBIAS command.

3. Invoke the run(1) or rerun(1) command from the shell, and specify
the –b bias option.

If you wish to run a program with a particular CPU bias, use the run
command. If you wish to change the CPU bias of a program that is already
running, use the rerun command.

With mpadvise , cpu_bias , and rerun , the following conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the LWP for which the bias is being set, or the calling pro-
cess must have the P_OWNER privilege.

• To add a CPU to an LWP’s CPU bias, the calling process must have the
P_CPUBIAS privilege.

Note that the P_CPUBIAS privilege is also required to use the run com-
mand for this purpose.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

You can also change the CPU assignment of one or more LWPs by invoking cpu_bias ,
mpadvise , and rerun . Procedures are as follows:

1. Invoke the cpu_bias(2) system call from a program, specify the
CPU_SETRUN command, and set only one bit in *mask.

2. Invoke the mpadvise(3C) library routine from a program, specify the
MPA_PRC_SETRUN command, and set only one bit in *mask.

3. Invoke the rerun(1) command from the shell, and specify the –c cpu_id
option.

To change an LWP’s CPU assignment, the following conditions must be met:

PowerMAX OS Programming Guide

4-10

• The real or effective user ID of the calling process must match the real or
saved user ID of the LWP for which the CPU assignment is being changed,
or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

The System V processor_bind(3C) library routine and pbind(1M) utility allow
you to assign a process (all of the associated LWPs) or LWP to a single processor. Both
also allow you to remove a process’s or LWP’s previous CPU assignment. Once a pro-
cess’s or LWP’s assignment has been removed, the process or LWP can execute on any
processor in the system. To use processor_bind or pbind for these purposes, the real
or effective user ID of the calling process must match the real or saved user ID of the tar-
get process or LWP, or the calling process must have the P_OWNER privilege.

For additional information on the use of cpu_bias(2) , mpadvise(3C) , run(1) ,
rerun(1) , processor_bind(3C) , and pbind(1M) , refer to the corresponding
system manual pages.

Local Memory Considerations 4

On NightHawk platforms with more than one local memory pool, there is an additional
restriction that must be observed in order to successfully migrate a process or LWP
between two different CPU boards.

A process may not have any writable data pages of its address space locked into memory if
they are located in a local memory pool when attempting to migrate that process, or a
LWP within that process, to another CPU board. (For more information on NUMA poli-
cies, see Chapter 6 Memory Management and the memory(7) man page.)

Therefore, applications that wish to migrate across CPU boards should perform the migra-
tion before memory locking any writable data pages into local memory, or temporarily
unlock those pages until the migration completes.

The memcntl(2) , mlock(3C) , mlockall(3C) and plock(2) functions and sys-
tem services may be used to lock pages into memory. (For more information on memory
page locking, see Chapter 6, “Memory Management”, in this manual.)

Also note that rescheduling variables (resched_cntl(2)) will cause a private writable
data user page to be locked down in memory when a rescheduling variable is setup. (For
more information on rescheduling variables, see Chapter 6 “Interprocess Synchroniza-
tion” of the PowerMAX OS Real-Time Guide.)

5
Process Scheduling and Management

Process Scheduling . 5-1
How the Process Scheduler Works . 5-2

System V Scheduler Classes . 5-3
Time-Sharing Class and Fixed Class . 5-4
System Class . 5-4
Fixed-Priority Class . 5-4
ADA Priority Class . 5-5

POSIX Scheduling Policies. 5-5
Scheduler Priorities . 5-5

POSIX Scheduling Routines . 5-8
The sched_setscheduler Routine . 5-9
The sched_getscheduler Routine. 5-10
The sched_setparam Routine . 5-11
The sched_getparam Routine . 5-13
The sched_yield Routine. 5-13
The sched_get_priority_min Routine . 5-14
The sched_get_priority_max Routine . 5-14
The sched_rr_get_interval Routine . 5-15

System V Scheduling System Calls and Commands . 5-16
The priocntl System Call. 5-17

The PC_GETCID and PC_GETCLINFO Commands. 5-18
The PC_GETPARMS and PC_SETPARMS Commands 5-22
The PC_GETTQ and PC_SETTQ Commands 5-28

The priocntllist System Call . 5-29
The priocntlset System Call . 5-29

Scheduler Commands. 5-31
The priocntl Command . 5-32
The run and rerun Commands. 5-36

The setrun(1) command . 5-38
Scheduling classes. 5-39
Display options . 5-39
Examples . 5-39

Scheduler Interaction with Other Functions. 5-40
Kernel Processes . 5-40
fork, exec . 5-40
nice . 5-40
init . 5-40

Scheduler Performance. 5-41
LWP State Transition . 5-41

PowerMAX OS Programming Guide

5-1

5
Chapter 5Process Scheduling and Management

5
5
5

This chapter provides an overview of process scheduling on PowerMAX OS systems. It
explains how the process scheduler works and describes System V scheduler classes,
POSIX scheduling policies, and scheduler priorities. It explains the procedures for using
the program interfaces and commands that support process scheduling and management
and describes scheduler interaction with such functions as fork , exec , and init . It also
highlights performance issues.

Process Scheduling 5

In the OS, the schedulable entity is always a lightweight process (LWP). Scheduling prior-
ities and classes are attributes of LWPs and not processes. When scheduling program
interfaces accept a process on which to operate, the operation is applied to each LWP in
the process. The system scheduler determines when LWPs run. It maintains priorities
based on configuration parameters, process behavior, and user requests; it uses these prior-
ities as well as other factors to assign LWPs to the CPU.

The OS gives users absolute control over the sequence in which certain LWPs run and the
amount of time each LWP may use the CPU before another LWP gets a chance.

By default, the scheduler uses the time-sharing class. The time-sharing class adjusts prior-
ities dynamically in an attempt to provide good response time to interactive LWPs and
good throughput to CPU-intensive LWPs. The fixed class is similar to the time-sharing
class except that priorities and time slices are not dynamically adjusted over time.

The scheduler offers a fixed-priority scheduling class as well as a time-sharing and a fixed
class. Fixed-priority scheduling allows users to set fixed priorities on a per-process or
LWP basis. The highest-priority fixed-priority LWP always gets the CPU as soon as it is
runnable, even if system processes are runnable. An application can therefore specify the
exact order in which LWPs run. An application may also be written so that its fixed-prior-
ity LWPs have a guaranteed response time from the system.

For system environments in which real-time performance is not required, the default
scheduler configuration works well, and no fixed-priority LWPs are needed: administra-
tors should not change configuration parameters, and users should not change scheduler
properties of their applications. However, for real-time applications or applications with
strict timing constraints, fixed-priority LWPs are the only way to guarantee that the appli-
cation's requirements are met.

NOTE

Fixed-priority LWPs used carelessly can have a dramatic negative
effect on the performance of time-sharing LWPs and the system in
general.

PowerMAX OS Programming Guide

5-2

This chapter is addressed to programmers who need more control over order of process
and LWP execution than they get using default scheduler parameters.

Because changes in scheduler administration can affect scheduler behavior, programmers
may also need to know about scheduler administration. For administrative information on
the scheduler, see the System Administration Volume 2 manual. There are also the follow-
ing system manual pages with information on scheduler administration:

dispadmin(1M) tells how to change scheduler configuration in a running system

ts_dptbl(4) describes the time-sharing dispatcher parameter table that is used
to configure the scheduler

fc_dptbl(4) describes the fixed-class dispatcher parameter table that is used to
configure the scheduler

fp_dptbl(4) describes the fixed-priority dispatcher parameter tables that are
used to configure the scheduler

How the Process Scheduler Works 5

Figure 5-1 shows how the OS process and LWP scheduler works. Fixed-class priorities
overlap the default time-sharing priorities

When a process or LWP is created, it inherits its scheduler parameters, including scheduler
class and a priority within that class. A process or LWP changes class only as a result of a
user request. The system manages the priority of an LWP based on user requests and the
scheduler class of the LWP.

In the default configuration, the initialization process belongs to the time-sharing class.
Because processes inherit their scheduler parameters, all user login shells begin as
time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global priority of
an LWP determines when it runs—the scheduler always runs the runnable LWP with high-
est global priority. Numerically higher priorities run first. Once the scheduler assigns an
LWP to the CPU, the LWP runs until it uses up its time slice, sleeps, or is preempted by a
higher-priority LWP. LWPs with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users may assign
time slices to fixed-priority LWPs by using the priocntl(1) command or the prio-
cntl(2) system call.

You can display the global priority of a process or LWP with the ps(1) command. You
can display configuration information about class-specific priorities with the prio-
cntl(1) command and the dispadmin(1M) command.

By default, all fixed-priority processes or LWPs have higher priorities than any system
process, and all system processes have higher priorities than any time-sharing process.

Process Scheduling and Management

5-3

Figure 5-1. The PowerMAX OS Scheduler

NOTE

As long as a runnable fixed-priority process or LWP is available
for a particular processor, no system process and no time-sharing
process will run on that processor.

The sections that follow describe System V scheduler classes, POSIX scheduling policies,
and scheduler priorities.

System V Scheduler Classes 5

System V defines four scheduler classes: the time-sharing class, the fixed class, the system
class, and the fixed-priority class. PowerMAX OS defines an additional class reserved for
the internal use of the ADA runtime environment. The sections that follow describe each
of the classes.

Global
Priority

Highest First

Lowest Last

163690

Scheduling
Order

Scheduler
Classes

LWP
Queues

Class-Specific
Priorities

Fixed
Priorities

Fixed Priority
LWPs

System
LWPs

System
Priorities

Time-Sharing
and

Fixed-Class
LWPs

Time-Sharing
and

Fixed-Class
Priorities

•
•
•

•
•
•

•
•
•

PowerMAX OS Programming Guide

5-4

Time-Sharing Class and Fixed Class 5

The goal of the time-sharing class is to provide good response time to interactive pro-
cesses and LWPs and good throughput to CPU-bound processes and LWPs. The scheduler
switches CPU allocation frequently enough to provide good response time, but not so fre-
quently that it spends too much time doing the switching. Time slices are typically a few
hundred milliseconds.

The time-sharing class changes priorities dynamically and assigns time slices of different
lengths. The scheduler raises the priority of an LWP that sleeps after only a little CPU use
(an LWP sleeps, for example, when it starts an I/O operation such as a terminal read or a
disk read); frequent sleeps are characteristic of interactive tasks such as editing and run-
ning simple shell commands. On the other hand, the time-sharing class lowers the priority
of an LWP that uses the CPU for long periods without sleeping.

The default time-sharing class gives larger time slices to LWPs with lower priorities. An
LWP with a low priority is likely to be CPU-bound. Other LWPs get the CPU first, but
when a low-priority LWP finally gets the CPU, it gets a bigger chunk of time. If a
higher-priority LWP becomes runnable during a time slice, however, it preempts the run-
ning process or LWP.

The scheduler manages time-sharing processes and LWPs using configurable parameters
in the time-sharing parameter table ts_dptbl(4) . This table contains information spe-
cific to the time-sharing class.

The default fixed class is similar to the default time-sharing class except that the priorities
and time slices given to fixed-class processes or LWPs are not dynamically changed over
time. The fc_dptbl(4) parameter table contains information specific to the fixed class.

System Class 5

The system class uses fixed priorities to run kernel processes such as servers and house-
keeping processes such as the paging daemon. The system class is reserved for use by the
kernel; users may neither add a process to nor remove a process from the system class.
Priorities for system class processes are set up in the kernel code for those processes; once
established, the priorities of system processes do not change. (User processes and LWPs
running in kernel mode are not in the system class.)

Fixed-Priority Class 5

With the fixed-priority class, critical processes and LWPs can run in predetermined
sequence. Fixed priorities never change except when a user requests a change. Contrast
this fixed-priority class with the time-sharing class, for which the system changes priori-
ties to provide good interactive response time.

Privileged users can use the run(1) , rerun(1) , and priocntl(1) commands or the
sched_setscheduler(3C) and priocntl(2) program interfaces to assign an
LWP to the fixed-priority class. (See “Scheduler Commands,” p. 5-31, for information on
the commands and “POSIX Scheduling Routines” and “System V Scheduling System
Calls and Commands,” pp. 5-8 and 5-16, for information on the program interfaces.)

The scheduler manages fixed-priority processes and LWPs using configurable parameters
in the fixed-priority parameter table fp_dptbl(4) . This table contains information
specific to the fixed-priority class.

Process Scheduling and Management

5-5

ADA Priority Class 5

PowerMAX OS reserves the AD scheduling class for the internal use of the ADA runtime
environment; applications should not directly use it.

POSIX Scheduling Policies 5

POSIX defines three types of scheduling policies that control the way a process is sched-
uled:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Each of the POSIX scheduling policies is associated with one of the System V scheduler
classes described in the preceding sections.

The SCHED_FIFO and SCHED_RR policies are associated with the fixed-priority class.
These policies are almost identical. The only difference is that a process scheduled under
the FIFO policy does not have an associated time quantum. As a result, as long as a process
scheduled under the FIFO policy is the highest priority process scheduled on a particular
CPU, it will continue to execute until it voluntarily blocks. A process that is scheduled
under the SCHED_RR policy has an associated time quantum; the system default time quan-
tum is defined in the fixed-priority parameter table fp_dptbl(4) .

The SCHED_OTHER policy is associated with the time-sharing class.

Each POSIX scheduling policy has a range of priority values associated with it. The prior-
ity range for the SCHED_FIFO and SCHED_RR policies is the same as that for the fixed-pri-
ority class. The priority range for the SCHED_OTHER policy is the same as that for the
time-sharing class. The “Scheduler Priorities” section that follows provides an overview of
scheduler priorities and explains the class-specific priority ranges.

A set of library routines that is based on IEEE Standard 1003.1b provides you with direct
access to a process’s scheduling policy and priority. Included in the set are routines that
allow processes to obtain or set a process’s scheduling policy and priority; obtain the min-
imum and maximum priorities associated with a particular scheduling policy; and obtain
the time quantum associated with a process scheduled under the SCHED_RR scheduling
policy. You may alter the scheduling policy and the scheduling parameters associated
with that policy for an LWP or process by using the run(1) or rerun(1) command.
Procedures for using the POSIX scheduling routines are explained in “POSIX Scheduling
Routines” (p. 5-8). Procedures for using the run and rerun commands are explained in
“Scheduler Commands” (p. 5-31).

Scheduler Priorities 5

Figure 5-2 presents a programmer's view of default LWP priorities. Fixed-class priorities
overlap the default time-sharing priorities.

PowerMAX OS Programming Guide

5-6

Figure 5-2. Process Priorities (Programmer’s View)

From a user or programmer's point of view, a process or LWP priority has meaning only in
the context of a scheduler class. You specify an LWP priority by specifying a class and a
class-specific priority value. The class and class-specific value are mapped by the system
into a global priority that the system uses to schedule LWPs.

• Fixed priorities run from zero to a configuration-dependent maximum. The
system maps them directly into global priorities. They never change except
when a user changes them.

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

• Time-sharing priorities have a user-controlled component (the user prior-
ity) and a component controlled by the system. The system does not change
the user priority except as the result of a user request. The system changes
the system-controlled component dynamically on a per-process or LWP
basis to provide good overall system performance; users cannot affect the
system-controlled component. The scheduler combines these two compo-
nents to get the process or LWP global priority.

The user priority runs from the negative of a configuration-dependent max-
imum to the positive of that maximum. A process or LWP inherits its user

Global
Priority

Highest First

Lowest Last

163700

Scheduling
Order

Scheduler
Classes

Class-Specific
Priorities

FP max Fixed Priority
Class

System
Class

0

Time-Sharing
and

Fixed Class

+ TS max or + FC max
0

- TS max or - FC max

•
•
•

•
•
•

•
•
•

Process Scheduling and Management

5-7

priority. Zero is the default initial user priority.

The user priority limit is the configuration-dependent maximum value of
the user priority. You may set a user priority to any value below the user
priority limit. With the P_TSHAR privilege, you may raise the user priority
limit. Zero is the default user priority limit. You can raise the user priority
limit by using the priocntl(2) system call (see “The priocntl System
Call,” p. 5-17).

You may lower the user priority of a process or LWP to give the process or
LWP reduced access to the CPU, or you may raise the user priority to get
better service. Because you cannot set the user priority above the user pri-
ority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero. Note that you must have
the P_TSHAR privilege to raise the user priority limit.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user may set a user priority only in the range from -20 to +20, but 60
time-sharing global priorities are configured.

• Fixed-class priorities have a user-controlled component (the user priority)
and a component controlled by the system. The system does not change the
user priority except as the result of a user request. The scheduler combines
these two components to get the process or LWP global priority.

The user priority runs from the negative of a configuration-dependent max-
imum to the positive of that maximum. A process or LWP inherits its user
priority. Zero is the default initial user priority.

The user priority limit is the configuration-dependent maximum value of
the user priority. You may set a user priority to any value below the user
priority limit. With the P_TSHAR privilege, you may raise the user priority
limit. Zero is the default user priority limit. You can raise the user priority
limit by using the priocntl(2) system call (see “The priocntl System
Call,” p. 5-17).

You may lower the user priority of a process or LWP to give the process or
LWP reduced access to the CPU, or you may raise the user priority to get
better service. Because you cannot set the user priority above the user pri-
ority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero. Note that you must have
the P_TSHAR privilege to raise the user priority limit.

An administrator configures the maximum user priority independent of
global fixed-class priorities. In the default configuration, for example, a
user may set a user priority only in the range from -20 to +20, but 60
fixed-class global priorities are configured.

A system administrator's view of priorities is different from that of a user or programmer.
When configuring scheduler classes, an administrator deals directly with global priorities.
The system maps priorities supplied by users into these global priorities. See System
Administration Volume 2 for additional detail.

PowerMAX OS Programming Guide

5-8

POSIX Scheduling Routines 5

The sections that follow explain the procedures for using the POSIX scheduling routines.
These routines are briefly described as follows:

sched_setscheduler set a process’s scheduling policy and priority

sched_getscheduler obtain a process’s scheduling policy

sched_setparam change a process’s scheduling priority

sched_getparam obtain a process’s scheduling priority

sched_yield relinquish the CPU

sched_get_priority_min obtain the lowest priority associated with a
scheduling policy

sched_get_priority_max obtain the highest priority associated with a
scheduling policy

sched_rr_get_interval obtain the time quantum associated with a pro-
cess scheduled under the SCHED_RR scheduling
policy

NOTE

The POSIX scheduling routines that are listed above should only
be used for singled-threaded applications or for multi-LWP
applications that directly call _lwp_create(2) to create the
LWPs within the process.

Multi-threaded applications that are linked with the thread library
should make use of the thread library routines that get or set a
thread's scheduling class and priority, instead of the routines listed
above.

When a process (all of the associated LWPs) is scheduled under the SCHED_FIFO or
SCHED_RR scheduling policy, it is assigned to the fixed-priority scheduler class. The prior-
ity value specified on the call to the POSIX scheduling routine is the same priority value
that would be specified if a priocntl(2) call were made to set the process’s priority
within the fixed-priority class.

When a process (all of the associated LWPs) is scheduled under the SCHED_OTHER sched-
uling policy, it is assigned to the time-sharing scheduler class. The priority value specified
on the call to the POSIX scheduling routine is the same priority value that would be speci-
fied if a priocntl(2) call were made to set the process’s priority within the time-shar-
ing class.

Process Scheduling and Management

5-9

The sched_setscheduler Routine 5

The sched_setscheduler(3C) library routine allows you to set the scheduling pol-
icy and priority of a specified process.

It is important to note that to use the sched_setscheduler call to (1) change a pro-
cess’s scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the pri-
ority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, the following
conditions must be met:

• The calling process must have the P_RTIME privilege

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER priv-
ilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

To use sched_setscheduler to raise the priority of a process scheduled under the
SCHED_OTHER policy above a per-process or LWP limit, the following conditions must be
met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

The specifications required for making the sched_setscheduler call are as follows:

#include <sched.h>

int sched_setscheduler(pid, policy, param)

pid_t pid;
int policy;
struct sched_param * param;

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the schedul-
ing policy and priority are being set. To specify the current process, set the
value of pid to zero.

PowerMAX OS Programming Guide

5-10

policy a scheduling policy as defined in the file <sched.h >. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy. Note that a
process cannot be scheduled under this policy on a
CPU on which servicing of the 60 Hz clock interrupt
has been disabled. In such cases, the process will
behave as though it were scheduled under the
SCHED_FIFO policy.

SCHED_OTHER time-sharing scheduling policy

param a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of prior-
ities defined for the scheduler class associated with the specified policy. You
can determine the range of priorities associated with that policy by invoking
the run(1) command from the shell and not specifying any options or argu-
ments (see the corresponding system manual page for an explanation of this
command). You can also do so by invoking one of the following routines:
sched_get_priority_min or sched_get_priority_max (for an
explanation of these routines, see pages 5-14 and 5-14, respectively).

If the scheduling policy and priority of the specified process are successfully set, the
sched_setscheduler routine returns the process’s previous scheduling policy. A
return value of –1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched_setscheduler(3C) system manual page for a listing of the types
of errors that may occur. If an error occurs, the process’s scheduling policy and priority
are not changed.

It is important to note that when you change a process’s scheduling policy, you also
change its time quantum to the default time quantum that is defined for the scheduler class
associated with the new policy and the priority. You can change the time quantum for a
process or LWP scheduled under the SCHED_RR scheduling policy by using the run(1)
or rerun(2) command (see p.5-36 for information on these commands).

NOTE

The sched_setscheduler routine should not be used to modify the
LWPs in a mu l t i th readed p rocess . See the
sched_setscheduler(3C) man page for more details on
this subject.

The sched_getscheduler Routine 5

The sched_getscheduler(3C) library routine allows you to obtain the scheduling
policy for a specified process. Scheduling policies are defined in the file <sched.h > as
follows:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

Process Scheduling and Management

5-11

SCHED_OTHER time-sharing scheduling policy

The specifications required for making the sched_getscheduler call are as follows

#include <sched.h>

int sched_getscheduler(pid)

pid_t pid;

The argument is defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling policy. To specify the current process, set the value of
pid to zero.

If the call is successful, sched_getscheduler returns the scheduling policy of the
specified process. A return value of –1 indicates that an error has occurred; errno is set
to indicate the error. Refer to the sched_getscheduler(3C) system manual page
for a listing of the types of errors that may occur.

Note

Multi-threaded applications should use the thread library function
calls for obtaining a thread's scheduling policy.

The sched_setparam Routine 5

The sched_setparam(3C) library routine allows you to change the scheduling prior-
ity of a specified process.

It is important to note that to use the sched_setparam call to change the scheduling
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, the fol-
lowing conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER priv-
ilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

If you wish to raise the priority of a process scheduled under the SCHED_OTHER policy
above a per-process or LWP limit, the following conditions must be met:

PowerMAX OS Programming Guide

5-12

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

The specifications required for making the sched_setparam call are as follows:

#include <sched.h>

int sched_setparam(pid, param)

pid_t pid;
struct sched_param * param;

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the schedul-
ing priority is being changed. To specify the current process, set the value of
pid to zero.

param a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of prior-
ities associated with the process’s current scheduling policy. High numbers
represent more favorable priorities and scheduling.

You can obta in a process’s schedul ing po l icy by invok ing the
sched_getscheduler(3C) routine (see p. 5-9 for an explanation of this
routine). You can determine the range of priorities associated with that policy
by invoking the run(1) command from the shell and not specifying any
options or arguments (see the corresponding system manual page for an expla-
nation of this command). You can also obtain the range of priorities associated
with a policy by invoking the sched_get_priority_min(3C) and
sched_get_priority_max(3C) routines (see p.5-14 for explanations
of these routines).

A return value of 0 indicates that the scheduling priority of the specified process has been
successfully changed. A return value of -1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sched_setparam(3C) system manual page for a
listing of the types of errors that may occur. If an error occurs, the process’s scheduling
priority is not changed.

Process Scheduling and Management

5-13

NOTE

The sched_setparam routine should not be used to modify the
LWPs in a mu l t i th readed p rocess . See the
sched_setparam(3C) man page for more details on this
subject.

The sched_getparam Routine 5

The sched_getparam(3C) library routine allows you to obtain the scheduling prior-
ity of a specified process.

The specifications required for making the sched_getparam call are as follows:

#include <sched.h>

int sched_getparam(pid, param)

pid_t pid;
struct sched_param * param;

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling priority. To specify the current process, set the value of
pid to zero.

param a pointer to a structure to which the scheduling priority of the process identi-
fied by pid will be returned

A return value of 0 indicates that the call to sched_getparam has been successful. The
scheduling priority of the specified process is returned in the structure to which param
points. A return value of − 1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sched_getparam(3C) system manual page for a listing of the
types of errors that may occur.

NOTE

Multi-threaded applications should use the thread library function
calls for obtaining a thread's scheduling priority.

The sched_yield Routine 5

The sched_yield(3C) library routine allows the calling process to relinquish the
CPU until it again becomes the highest priority process that is ready to run. Note that a call
to sched_yield is effective only if a process whose priority is equal to that of the call-
ing process is ready to run. This routine cannot be used to allow a process whose priority
is lower than that of the calling process to execute.

The specifications required for making the sched_yield call are as follows:

PowerMAX OS Programming Guide

5-14

#include <sched.h>

void sched_yield()

The sched_yield routine does not return a value.

The sched_get_priority_min Routine 5

The sched_get_priority_min(3C) library routine allows you to obtain the lowest
(least favorable) priority associated with a specified scheduling policy.

The specifications required for making the sched_get_priority_min call are as
follows:

#include <sched.h>
#include <timers.h>

int sched_get_priority_min(policy)

int policy;

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h >. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

If the call is successful, sched_get_priority_min returns the lowest priority associ-
ated with the specified scheduling policy. A return value of –1 indicates that an error has
occurred; errno is set to indicate the error. Refer to the system manual page for
sched_get_priority_max(3C) to obtain a listing of the types of errors that may
occur.

The sched_get_priority_max Routine 5

The sched_get_priority_max(3C) library routine allows you to obtain the highest
(most favorable) priority associated with a specified scheduling policy.

The specifications required for making the sched_get_priority_max call are as
follows:

#include <sched.h>
#include <timers.h>

int sched_get_priority_max(policy)

int policy;

Process Scheduling and Management

5-15

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h >. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

If the call is successful, sched_get_priority_max returns the highest priority asso-
ciated with the specified scheduling policy. A return value of –1 indicates that an error has
occurred; errno is set to indicate the error. For a listing of the types of errors that may
occur, refer to the sched_get_priority_max(3C) system manual page.

The sched_rr_get_interval Routine 5

The sched_rr_get_interval(3C) library routine allows you to obtain the time
quantum for a process that is scheduled under the SCHED_RR scheduling policy. The time
quantum is the fixed period of time for which the kernel allocates the CPU to a process.
When the process to which the CPU has been allocated has been running for its time quan-
tum, a scheduling decision is made. If another process of the same priority is ready to run,
that process will be scheduled. If not, the other process will continue to run.

The specifications required for making the sched_rr_get_interval call are as
follows:

#include <sched.h>
#include <timers.h>

int sched_rr_get_interval(pid, min)

pid_t pid;
struct timespec * min;

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the time quantum. To specify the current process, set the value of pid to
zero.

min a pointer to a structure to which the time quantum of the process identified by
pid will be returned.

A return value of 0 indicates that the call to sched_rr_get_interval has been suc-
cessful. The time quantum of the specified process is returned in the structure to which
min points. A return value of –1 indicates that an error has occurred; errno is set to indi-
cate the error. Refer to the sched_getpriority_max(3C) system manual page for a
listing of the types of errors that may occur.

PowerMAX OS Programming Guide

5-16

System V Scheduling System Calls and Commands 5

The sections that follow explain the procedures for using the System V system calls and
commands related to scheduling. These system calls are briefly described as follows:

priocntl system call that obtains or sets the scheduler parameters of
one or more processes or LWPs

priocntllist system call that obtains or sets the scheduler parameters of a
list of LWPs

priocntlset system call that obtains or sets the scheduler parameters of a
set of running processes

setrun system command that defines the scheduling environment in
which a command executes

These system calls set or retrieve scheduler parameters for processes and LWPs. Steps that
you use to set priorities are similar for the first three functions (setrun works a little dif-
ferently):

1. Specify the target processes and LWPs.

2. Specify the scheduler parameters you want for those processes and LWPs.

3. Do the command or system call to set the parameters for the processes and
LWPs.

You specify the target processes and LWPs using an ID type and an ID. The ID type tells
how to interpret the ID. (This concept of a set of processes and LWPs applies to signals as
well as to the scheduler; see sigsend(2)). The valid ID types that you may specify are
as follows.

• LWP ID

• Process ID

• Parent process ID

• Process group ID

• Session ID

• Class ID

• Effective user ID

• Effective group ID

• All processes

These IDs are basic properties of UNIX processes and LWPs. (See intro(2)). The class
ID refers to the scheduler class of the process or LWP. The priocntl system call works
only for the time-sharing, fixed, and fixed-priority classes, not for the system class.

Processes in the system class have fixed priorities assigned when they are started by the
kernel. Such processes include system daemons. The only way that you can affect the pri-
ority of a system daemon is to change the value of the system tunable parameter associated

Process Scheduling and Management

5-17

with that daemon’s scheduling priority. You can examine and modify the values of system
tunable parameters associated with system daemons by using the config(1M) utility.
For an explanation of the procedures for using this utility, refer to the “Configuring and
Building the Kernel” chapter of System Administration Volume 2. Note that after chang-
ing a tunable parameter, you must rebuild the kernel and then reboot your system. If you
wish to change the scheduling priority of all of the system daemons, you may use the
daemon_tune(1M) command. In this case also, you must rebuild the kernel and then
reboot your system.

NOTE

Global priorities and user-supplied priorities are in ascending
order: numerically higher priorities run first.

The priocntl System Call 5

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/fppriocntl.h>
#include <sys/tspriocntl.h>
#include <sys/fcpriocntl.h>

long priocntl (idtype_t idtype, id_t id, int cmd, void *arg);

The priocntl system call gets or sets scheduler parameters of a set of processes or
LWPs. The input arguments are defined as follows:

• idtype is the type of ID you are specifying.

• id is the ID.

• cmd specifies which priocntl function to perform. The functions are
listed in Table 5-2.

• arg, in most cases, is a pointer to a structure that depends on cmd. The type
of arg for each value of cmd is listed in Table 5-2.

Table 5-1 presents the valid values for idtype that are defined in <sys/procset.h> and
the corresponding interpretations of id.

Table 5-1. priocntl(2) idtype Values

idtype Interpretation of id

P_PID Process ID (of a single process)

P_PPID Parent process ID

P_PGID Process group ID

P_LWPID LWP ID

P_SID Session ID

PowerMAX OS Programming Guide

5-18

Table 5-2 shows the valid values for cmd as defined in <sys/priocntl.h >, their mean-
ings, and the type of arg.

Following are the values priocntl returns on success:

• The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

• PC_SETPARMS returns 0.

• PC_GETPARMS returns the process ID of the process or LWP whose
scheduler properties it is returning.

On failure, priocntl returns -1 and sets errno to indicate the reason for the failure.
See priocntl(2) for the complete list of error conditions.

The PC_GETCID and PC_GETCLINFO Commands 5

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters for a
class based on the class ID or class name. Both commands use the pcinfo structure to
send arguments and receive return values:

typedef struct pcinfo {
 id_t pc_cid; /* class id */
 char pc_clname[PC_CLNMSZ]; /* class name */
 long pc_clinfo[PC_CLINFOSZ]; /* class information */
} pcinfo_t;

P_CID Scheduling class ID

P_UID Effective user ID

P_GID Effective group ID

P_ALL All processes and LWPs

Table 5-2. priocntl(2) Commands

cmd arg Type Function

PC_GETCID pcinfo_t Get class ID and attributes

PC_GETCLINFO pcinfo_t Get class name and attributes

PC_SETPARMS pcparms_t Set class and scheduling parameters

PC_GETPARMS pcparms_t Get class and scheduling parameters

PC_GETTQ int Get time quantum

PC_SETTQ int Set time quantum

Table 5-1. priocntl(2) idtype Values (Cont.)

idtype Interpretation of id

Process Scheduling and Management

5-19

The PC_GETCID command gets scheduler class ID and parameters given the class name.
The class ID is used in some of the other priocntl commands to specify a scheduler
class. The valid class names are TS for time-sharing, FC for fixed class, and FP for fixed
priority.

For the fixed-priority class, pc_clinfo contains an fpinfo structure, which holds
fp_maxpri, the maximum valid fixed priority; in the default configuration, this is the
highest priority any process or LWP can have. The minimum valid fixed priority is zero.
fp_maxpri is a configurable value; the “Process Scheduling” chapter of System Admin-
istration Volume 2 explains how to configure process and LWP priorities.

typedef struct fpinfo {
 short fp_maxpri; /* maximum fixed priority */
} fpinfo_t;

For the time-sharing class, pc_clinfo contains a tsinfo structure, which holds
ts_maxupri, the maximum time-sharing user priority. The minimum time-sharing user
priority is -ts_maxupri. ts_maxupri is also a configurable value.

typedef struct tsinfo {
 short ts_maxupri; /*limits of user priority range */
} tsinfo_t;

For the fixed class, pc_clinfo contains an fcinfo structure, which holds
fc_maxupri , the maximum fixed class user priority. The minimum fixed class user pri-
ority is -fc_maxupri. fc_maxupri is also a configurable value.

typedef struct fcinfo {
 short fc_maxupri; /*limits of user priority range */
} fcinfo_t;

The program shown in Screen 5-1 is a cheap substitute for priocntl -l ; it gets and
prints the range of valid priorities for the time-sharing and fixed-priority scheduler classes.

Screen 5-2 shows the output of the program shown in Screen 5-1. The program is called
getcid in this example.

PowerMAX OS Programming Guide

5-20

Screen 5-1. Obtaining the Range of Priorities for Scheduler Classes

Screen 5-2. Output from the getcid Program

The function shown in Screen 5-3 is useful in the examples presented in subsequent
screens. Given a class name, it uses PC_GETCID to return the class ID and maximum pri-
ority in the class.

/*
 * Get scheduler class IDs and priority ranges.
 */

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/fppriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

main ()
{
 pcinfo_t pcinfo;
 tsinfo_t *tsinfop;
 fpinfo_t *fpinfop;
 short maxtsupri, maxfppri;

 /* time sharing */
 (void) strcpy (pcinfo.pc_clname, “TS”);
 if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {
 perror (“PC_GETCID failed for time-sharing class”);
 exit (1);
 }
 tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
 maxtsupri = tsinfop->ts_maxupri;
 (void) printf(“Time sharing: ID %ld, priority range -%d through %d\n”,
 pcinfo.pc_cid, maxtsupri, maxtsupri);

 /* fixed priority */
 (void) strcpy(pcinfo.pc_clname, “FP”);
 if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {
 perror (“PC_GETCID failed for fixed priority class”);
 exit (2);
 }
 fpinfop = (struct fpinfo *) pcinfo.pc_clinfo;
 maxfppri = fpinfop->fp_maxpri;
 (void) printf(“Fixed priority: ID %ld, \

priority range 0 through %d\n”,
pcinfo.pc_cid, maxfppri);

 return (0);
}

$ getcid
Time sharing: ID 1, priority range -20 through 20
Fixed priority: ID 2, priority range 0 through 59

Process Scheduling and Management

5-21

NOTE

All of the examples in the screens that follow omit the lines that
include header files. The examples compile with the same header
files as presented in Screen 5-1.

Screen 5-3. Obtaining the Class ID and the Maximum Priority

The PC_GETCLINFO command gets a scheduler class name and parameters given the
class ID. This command makes it easy to write applications that make no assumptions
about what classes are configured.

The program shown in Screen 5-4 uses PC_GETCLINFO to get the class name of a pro-
cess or LWP based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process or LWP given the process ID;
this function is shown in Screen 5-5.

/*
 * Return class ID and maximum priority.
 * Input argument name is class name.
 * Maximum priority is returned in *maxpri.
 */

id_t
schedinfo (name, maxpri)
 char *name;
 short *maxpri;
{
 pcinfo_t info;
 tsinfo_t *tsinfop;
 fpinfo_t *fpinfop;

 (void) strcpy(info.pc_clname, name);
 if (priocntl (0L, 0L, PC_GETCID, &info) == -1L) {
 return (-1);
 }
 if (strcmp(name, “TS”) == 0) {
 tsinfop = (struct tsinfo *) info.pc_clinfo;
 *maxpri = tsinfop->ts_maxupri;
 } else if (strcmp(name, “FP”) == 0) {
 fpinfop = (struct fpinfo *) info.pc_clinfo;
 *maxpri = fpinfop->fp_maxpri;
 } else {
 return (-1);
 }
 return (info.pc_cid);
}

PowerMAX OS Programming Guide

5-22

Screen 5-4. Obtaining a Process’s Scheduler Class

The PC_GETPARMS and PC_SETPARMS Commands 5

The PC_GETPARMS command gets and the PC_SETPARMS command sets scheduler
parameters for processes and LWPs. Both commands use the pcparms structure to send
arguments or receive return values:

typedef struct pcparms {
 id_t pc_cid; /* process or LWP class */
 long pc_clparms[PC_CLPARMSZ]; /* class specific */
} pcparms_t;

Ignoring class-specific information for the moment, a simple function for returning the
scheduler class ID of a process is shown in Screen 5-5.

/* Get scheduler class name given process ID. */

main (argc, argv)
 int argc;
 char *argv[];
{
 pcinfo_t pcinfo;
 id_t pid, classID;
 id_t getclassID();

 if ((pid = atoi(argv[1])) <= 0) {
 perror (“bad pid”);
 exit (1);
 }
 if ((classID = getclassID(pid)) == -1) {
 perror (“unknown class ID”);
 exit (2);
 }
 pcinfo.pc_cid = classID;
 if (priocntl (0L, 0L, PC_GETCLINFO, &pcinfo) == -1L) {
 perror (“PC_GETCLINFO failed”);
 exit (3);
 }
 (void) printf(“process ID %d, class %s\n”, pid, pcinfo.pc_clname);
}

Process Scheduling and Management

5-23

Screen 5-5. Obtaining a Process’s Scheduler Parameters

For the fixed-priority class, pc_clparms contains an fpparms structure. fpparms
holds scheduler parameters specific to the fixed-priority class:

typedef struct fpparms {
 short fp_pri; /* fixed priority */
 ulong_t fp_tqsecs; /* seconds in time quantum */
 long fp_tqnsecs; /* additional nsecs in quantum */
} fpparms_t;

fp_pri is the fixed priority. fp_tqsecs is the number of seconds, and fp_tqnsecs is
the number of additional nanoseconds in a time slice; that is, fp_tqsecs seconds plus
fp_tqnsecs nanoseconds is the interval an LWP may use the CPU without sleeping
before the scheduler gives another LWP a chance at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure. tsparms holds
the scheduler parameters specific to the time-sharing class:

typedef struct tsparms {
 short ts_uprilim; /* user priority limit */
 short ts_upri; /* user priority */
} tsparms_t;

ts_uprilim is the user priority limit, the maximum user priority a process or LWP may
set for itself without being a privileged user. ts_upri is the user priority, the user-con-
trolled component of a time-sharing priority. These values are described as follows:

• The user priority is the user-controlled component of a time-sharing or
fixed-class priority. The scheduler calculates the global priority of a
time-sharing or fixed-class process or LWP by combining this user priority
with a system-controlled component that depends on process or LWP
behavior. The user priority has the same effect as a value set by nice
(except that nice uses higher numbers for lower priority).

• The user priority limit is the maximum user priority a process or LWP may
set for itself without being a privileged user. By default, the user priority
limit is 0. You must have the P_TSHAR privilege to set a user priority limit
above 0.

/*
 * Return scheduler class ID of process with ID pid.
 */

getclassID (pid)
 id_t pid;
{
 pcparms_t pcparms;

 pcparms.pc_cid = PC_CLNULL;
 if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {
 return (-1);
 }
 return (pcparms.pc_cid);
}

PowerMAX OS Programming Guide

5-24

Both the user priority and the user priority limit must be within the user priority range
reported by the priocntl -l command. This range is also reported by the PC_GETCID
and PC_GETCLINFO commands to the priocntl system call (see p. 5-18). The default
range is -20 to +20 for both the time-sharing and fixed class.

There is no limit for the number of times a process or LWP may lower and raise its user
priority, as long as the value is below its user priority limit. As a courtesy to other users,
lower your user priority for big chunks of low-priority work. However, remember that if
you lower your user priority limit, you must have the P_TSHAR privilege to raise it. A typ-
ical use of the user priority limit is to reduce permanently the priority of child processes or
LWPs or another set of low-priority processes or LWPs.

The user priority can never be greater than the user priority limit. If you set the user prior-
ity limit below the user priority, the user priority is lowered to the new user priority limit.
If you attempt to set the user priority above the user priority limit, the user priority is set to
the user priority limit.

For the fixed class, pc_clparms contains an fcparms structure. fcparms holds
scheduler parameters specific to the fixed class:

typedef struct fcparms {
 short fc_uprilim;/* user priority limit */
 short fc_upri; /* user priority */
 long fc_timeleft/* time-left for this lwp */
 short fc_cpupri; /* assigned cpu priority */
 short fc_umdpri; /* computed user mode priority */
} fcparms_t;

fc_uprilimit is the user priority limit, the maximum user priority a process or LWP
may set for itself without being a privileged user. fc_upri is the user priority, the
user-controlled component of a fixed-class priority. These values are described in the pre-
ceding paragraphs. fc_timeleft is the remaining amount of the time quantum.
fc_cpupri is the system-controlled component of the fixed-class priority. fc_umdpri
is the computed priority that is based on the value of fc_upri and fc_cpupri .

The PC_GETPARMS command gets the scheduler class and parameters of a single process
or LWP. The return value of the priocntl(2) call is the process ID of the process or
LWP whose parameters are returned in the pcparms structure. The process or LWP that
is chosen depends on the idtype and id arguments to priocntl and on the value of
pcparms.pc_cid, which contains a class ID returned by PC_GETCID or the constant
PC_CLNULL . Table 5-3 shows the type of information that a PC_GETPARMS priocntl
call returns in various circumstances.

Process Scheduling and Management

5-25

If idtype and id select a single process or LWP and pc_cid does not conflict with the
class of that process or LWP, priocntl returns the scheduler parameters of the process
or LWP. If they select more than one process or LWP of a single scheduler class, prio-
cntl returns parameters using class-specific criteria as shown in Table 5-3. priocntl
returns an error in the following cases:

• The idtype and id arguments select one or more processes or LWPs, and
none is in the class specified by pc_cid.

• The idtype and id arguments select more than one process or LWP, and
pc_cid is PC_CLNULL .

• The idtype and id arguments select no processes or LWPs.

The program shown in Screen 5-6 takes a process ID as its input and prints the scheduler
class and class-specific parameters of the highest priority LWP within that process.

The PC_SETPARMS command sets the scheduler class and parameters of a set of pro-
cesses or LWPs. The idtype and id input arguments specify the processes or LWPs to be
changed. The pcparms structure contains the new parameters: pc_cid contains the ID
of the scheduler class to which the processes or LWPs are to be assigned, as returned by
PC_GETCID; pc_clparms contains the class-specific parameters:

• If pc_cid is the fixed-priority class ID, pc_clparms contains an
fpparms structure in which fp_pri contains the fixed priority and
fp_tqsecs plus fp_tqnsecs contains the time slice to be assigned to
the processes or LWPs.

• If pc_cid is the time-sharing class ID, pc_clparms contains a
tsparms structure in which ts_uprilim contains the user priority limit
and ts_upri contains the user priority to be assigned to the processes or
LWPs.

Table 5-3. Information Returned by PC_GETPARMS

Number of Processes
Selected by idtype and
id

pc_cid

FP Class ID TS Class ID FC Class ID PC_CLNULL

1 FP parameters of
process or LWP
selected

TS parameters of
process or LWP
selected

FC parameters of
process or LWP
selected

Class and parame-
ters of process or
LWP selected

(error) More than 1 FP parameters of
highest-priority FP
process or LWP

TS parameters of
process or LWP
with highest user
priority

FC parameters of
process or LWP
with highest user
priority

PowerMAX OS Programming Guide

5-26

Screen 5-6. Obtaining a Process’s Scheduler Class and Parameters

• If pc_cid is the fixed class ID, pc_clparms contains an fcparms
structure in which fc_uprilim contains the user priority limit;
fc_upri contains the user priority to be assigned to the processes or
LWPs; fc_timeleft contains the time quantum left (cannot be altered);
fc_cpupri contains the system-controlled component of the fixed-class

/*
 * Get scheduler class and parameters of
 * process whose pid is input argument.
 */

main (argc, argv)
 int argc;
 char *argv[];
{
 pcparms_t pcparms;
 fpparms_t *fpparmsp;
 tsparms_t *tsparmsp;
 id_t pid, fpID, tsID;
 id_t schedinfo();
 short priority, tsmaxpri, fpmaxpri;
 ulong secs;
 long nsecs;

 pcparms.pc_cid = PC_CLNULL;
 fpparmsp = (fpparms_t *) pcparms.pc_clparms;
 tsparmsp = (tsparms_t *) pcparms.pc_clparms;
 if ((pid = atoi(argv[1])) <= 0) {
 perror (“bad pid”);
 exit (1);
 }

 /* get scheduler properties for this pid */
 if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {
 perror (“GETPARMS failed”);
 exit (2);
 }

 /* get class IDs and maximum priorities for TS and FP */
 if ((tsID = schedinfo (“TS”, &tsmaxpri)) == -1) {
 perror (“schedinfo failed for TS”);
 exit (3);
 }
 if ((fpID = schedinfo (“FP”, &fpmaxpri)) == -1) {
 perror (“schedinfo failed for FP”);
 exit (4);
 }

 /* print results */

 if (pcparms.pc_cid == fpID) {
 priority = fpparmsp->fp_pri;
 secs = fpparmsp->fp_tqsecs;
 nsecs = fpparmsp->fp_tqnsecs;
 (void) printf (“process %d: FP priority %d\n”,
 pid, priority);
 (void) printf (“time slice %ld secs, %ld nsecs\n”,
 secs, nsecs);
 } else if (pcparms.pc_cid == tsID) {
 priority = tsparmsp->ts_upri;
 (void) printf (“process %d: TS priority %d\n”,
 pid, priority);
 } else {
 printf (“Unknown scheduler class %d\n”,
 pcparms.pc_cid);
 exit (5);
 }
 return (0);
}

Process Scheduling and Management

5-27

priority; and fc_umdpri contains the computed priority that is based on
the value of fc_upri and fc_cpupri .

The program shown in Screen 5-7 takes a process ID as input, makes the process or LWP a
fixed-priority process or LWP with the highest valid priority minus 1, and gives it the
default time slice for that priority. The program calls the schedinfo function shown in
Screen 5-3 to get the fixed-priority class ID and maximum priority.

Screen 5-7. Changing a Process’s Scheduler Class and Priority

The following table lists the special values fp_tqnsecs can take when PC_SETPARMS
is used on fixed-priority processes and LWPs. When any of these is used, fp_tqsecs is
ignored. These values are defined in the header file <sys/fppriocntl.h> .

FP_TQINF specifies an infinite time slice. FP_TQDEF specifies the default time slice
configured for the fixed priority being set with the SETPARMS call. FP_NOCHANGE spec-

fp_tqnsecs Time Slice

FP_TQINF Infinite

FP_TQDEF Default

FP_NOCHANGE Unchanged

/*
 * Input arg is proc ID. Make process or LWP a fixed priority
 * process or LWP with highest priority minus 1.
 */

main (argc, argv)
 int argc;
 char *argv[];
{
 pcparms_t pcparms;
 fpparms_t *fpparmsp;
 id_t pid, fpID;
 id_t schedinfo();
 short maxrtpri;
 short maxfppri;

 if ((pid = atoi(argv[1])) <= 0) {
 perror (“bad pid”);
 exit (1);
 }

 /* Get highest valid FP priority. */
 if ((fpID = schedinfo (“FP”, &maxfppri)) == -1) {
 perror (“schedinfo failed for FP”);
 exit (2);
 }

 /* Change proc to FP, highest prio - 1, default time slice */
 pcparms.pc_cid = fpID;
 fpparmsp = (struct fpparms *) pcparms.pc_clparms;
 fpparmsp->fp_pri = maxfppri - 1;
 fpparmsp->fp_tqnsecs = FP_TQDEF;

 if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
 perror (“PC_SETPARMS failed”);
 exit (3);
 }
}

PowerMAX OS Programming Guide

5-28

ifies no change from the current time slice; this value is useful, for example, when you
change process or LWP priority but do not want to change the time slice. (You can also use
FP_NOCHANGE in the fp_pri field to change a time slice without changing the priority.)

The PC_GETTQ and PC_SETTQ Commands 5

The PC_GETTQ command gets the time quantum associated with a single LWP that has
been assigned to the fixed-priority, time-sharing, or fixed scheduler class. The LWP that is
selected depends on the values of the idtype and id arguments. If idtype and id specify more
than one LWP, priocntl returns the time quantum using the following class-specific cri-
teria:

Fixed-priority class quantum of the fixed-priority LWP with the highest priority

Time-sharing class quantum of the time-sharing LWP with the highest user pri-
ority

Fixed class quantum of the fixed-class LWP with the highest user prior-
ity

The priocntl PC_GETTQ call returns a positive integer value that represents the quan-
tum in 60 Hz clock ticks or a negative integer value that indicates an infinite quantum.

The PC_SETTQ command sets the time quantum associated with processes or LWPs that
have been assigned to the fixed-priority or the time-sharing scheduler class. The idtype and
id input arguments specify the processes or LWPs for which the quantum is to be set. The
arg argument specifies a positive integer value that represents the desired quantum in 60
Hz clock ticks or one of the symbolic constants that has been defined for the scheduler
class as presented in Table 5-4.

The constants for the time-sharing class are defined in the file <sys/tspriocntl.h >;
the constants for the fixed-priority class are defined in the file <sys/fppriocntl.h >.

It is important to note that to change the time quantum for processes or LWPs assigned to
the fixed-priority class, the following conditions must be met:

• The calling process must have the P_RTIME privilege

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER priv-
ilege.

Table 5-4. Symbolic Constants for Specifying Quantum

Quantum Class-Specific Constants

Time-Sharing Fixed-Priority

Infinite TS_TQINF FP_TQINF

Default TS_TQDEF FP_TQDEF

Unchanged TS_NOCHANGE FP_NOCHANGE

Process Scheduling and Management

5-29

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

The priocntllist System Call 5

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/fppriocntl.h>
#include <sys/tspriocntl.h>

long priocntllist (lwpid_t * lwpidp, int idcnt, int cmd, void * arg);

The priocntllist system call provides the programming interface to scheduler classes
and class-specific parameters for an arbitrary list of LWPs within the calling process.
priocntllist has the same functions as the priocntl system call but offers a more
general way of specifying the set of LWPs whose scheduling properties are to be changed.
The input argument lwpidp points to an array in user memory of LWP IDs that identify the
LWPs to which the system call applies, and idcnt is the number of elements in the array.
cmd specifies the function to be performed, and arg is a pointer to a structure whose type
depends on cmd.

The priocntlset System Call 5

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/fppriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset (procset_t * psp, int cmd, void * arg);

The priocntlset system call changes scheduler parameters of a set of processes or
LWPs, just as priocntl(2) does. priocntlset has the same command set as
priocntl ; the cmd and arg input arguments are the same. But while priocntl applies
to a set of processes or LWPs specified by a single idtype/id pair, priocntlset applies
to a set of processes or LWPs that results from a logical combination of two idtype/id pairs.
The input argument psp points to a procset structure that specifies the two idtype/id
pairs and the logical operation to perform. This structure is defined in procset.h :

PowerMAX OS Programming Guide

5-30

typedef struct procset {
 idop_t p_op; /* operator connecting */
 /* left and right sets */
 /* left set: */
 idtype_t p_lidtype; /* left ID type */
 id_t p_lid; /* left ID */

 /* right set: */
 idtype_t p_ridtype; /* right ID type */
 id_t p_rid; /* right ID */
} procset_t;

p_lidtype and p_lid specify the ID type and ID of one (left set) set of processes
or LWPs; p_ridtype and p_rid specify the ID type and ID of a second (right set)
set of processes or LWPs. p_op specifies the operation to perform on the two sets of pro-
cesses or LWPs to get the set of processes or LWPs to operate on. The valid values for
p_op and the processes or LWPs they specify are:

POP_DIFF set difference—processes or LWPs in left set and not in right set

POP_AND set intersection—processes or LWPs in both left and right sets

POP_OR set union—processes or LWPs in either left or right sets or both

POP_XOR set exclusive-or—processes or LWPs in left or right set but not in both

The following macro, also defined in procset.h , offers a convenient way to initialize a
procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
((psp)->p_op = (op), \
(psp)->p_lidtype = (ltype), \
(psp)->p_lid = (lid), \
(psp)->p_ridtype = (rtype), \
(psp)->p_rid = (rid))

Here is a situation where priocntlset can be useful: an application has both fixed-pri-
ority and time-sharing processes that run under a single user ID. If the application wants to
change the priority of only its fixed-priority processes without changing the time-sharing
processes to fixed-priority processes, it can do so as shown in Screen 5-8 (This example
uses the function schedinfo, which is defined in Screen 5-3.)

priocntl offers a simple scheduler interface that is adequate for many applications;
applications that need a more powerful way to specify sets of processes or LWPs can use
priocntlset.

Process Scheduling and Management

5-31

Screen 5-8. Changing the Scheduler Class for Selected Processes

Scheduler Commands 5

The sections that follow explain the procedures for using the following commands for
scheduling purposes:

priocntl Displays or sets the scheduler parameters of processes or LWPs

This command provides easy access to the major services provided by
the priocntl(2) system call.

run Executes a program in the specified environment

Options allow you to specify a POSIX scheduling policy and priority.
You can also specify the time quantum for a program scheduled under
the SCHED_RR policy.

/*
 * Change fixed priorities of this uid
 * to highest fixed priority minus 1.
 */

main (argc, argv)
 int argc;
 char *argv[];
{
 procset_t procset;
 pcparms_t pcparms;
 struct fpparms *fpparmsp;
 id_t fpclassID;
 id_t schedinfo();
 short maxfppri;

 /* left set: select processes with same uid as this process */
 procset.p_lidtype = P_UID;
 procset.p_lid = getuid();

 /* get info on fixed priority class */
 if ((fpclassID = schedinfo (“FP”, &maxfppri)) == -1) {
 perror (“schedinfo failed”);
 exit (1);
 }

 /* right set: select fixed priority processes */
 procset.p_ridtype = P_CID;
 procset.p_rid = fpclassID;

 /* select only my FP processes */
 procset.p_op = POP_AND;

 /* specify new scheduler parameters */
 pcparms.pc_cid = fpclassID;
 fpparmsp = (struct fpparms *) pcparms.pc_clparms;

 fpparmsp->fp_pri = maxfppri - 1;
 fpparmsp->fp_tqnsecs = FP_NOCHANGE;
 if (priocntlset (&procset, PC_SETPARMS, &pcparms) == -1) {
 perror (“priocntlset failed”);
 exit (2);
 }
}

PowerMAX OS Programming Guide

5-32

rerun Alters the execution environment of a running process or LWP

Options allow you to specify a POSIX scheduling policy and priority.
You can also specify the time quantum for a process or LWP scheduled
under the SCHED_RR policy.

setrun(1) Combines the functions of several system functions into one interface
that:

- Lets the application define the scheduling environment in which a
specified command executes

- Can either bind or exclusively bind a process to a processor
- Can interpret the run-time environment and the command to execute

from either a file or the command line.

In addition to these commands, you can also use the ps -cel command to obtain global
priorities for all active processes and LWPs.

The priocntl Command 5

The priocntl(1) command sets or retrieves scheduler parameters for processes and
LWPs. It reports the class-specific priorities that users and programmers use.

The steps used to set priorities with priocntl(1) are similar to those used for the
priocntl(2) , priocntllist(2) , and priocntlset(2) system calls (see p.
5-16 for a list of these steps). The way in which you specify the target processes and LWPs
by using an ID type and ID is also similar (see p. 5-16 for an explanation of ID types and
IDs and a list of the valid ID types that you can specify).

The priocntl command comes in four forms:

priocntl -l display configuration information

priocntl -d display the scheduler parameters of processes and LWPs

priocntl -s set the scheduler parameters of processes and LWPs

priocntl -e execute a command with the specified scheduler parameters

Screen 5-9 shows the output of the -l option for the default configuration.

Process Scheduling and Management

5-33

Screen 5-9. Output from the priocntl -l Command

Note

PowerMAX OS reserves the AD scheduling class for the internal
use of the ADA runtime environment; applications should not use
it.

The -d option displays the scheduler parameters of a process or LWP or a set of pro-
cesses or LWPs. The syntax for this option is

priocntl -d -i idtype idlist

The idtype argument tells what kind of IDs are in idlist. idlist is a list of IDs separated by
white space. Table 5-5 shows the valid values for idtype and their corresponding ID types
in idlist:

Table 5-5. Idtype and idlist Values

idtype idlist

lwpid LWP IDs

pid Process IDs

ppid Parent process IDs

pgid Process group IDs

sid Session IDs

class Class names (TS, FC, or FP)

uid Effective user IDs

gid Effective group IDs

all All processes and LWPs

$ priocntl -l
CONFIGURED CLASSES
==================

SYS (System Class)

AD (ADA Class)
Maximum Configured AD Priority: 160

TS (Time Sharing)
Configured TS User Priority Range: -20 through 20

FP (Fixed Priority)
Maximum Configured FP Priority: 59

FC (Fixed Class)
Configured FC User Priority Range: -20 through 20

PowerMAX OS Programming Guide

5-34

Screen 5-10 shows some examples of the -d option of priocntl :

Screen 5-10. Output from the priocntl -d Command

The -s option sets scheduler parameters for a process or LWP or a set of processes or
LWPs. The syntax for this option is

priocntl -s -c class class_option(s) -i idtype idlist

The idtype and idlist arguments are the same as for the -d option described previously.

The value of class is TS for time-sharing, FC for fixed class, or FP for fixed priority. You
must have the P_RTIME privilege to change a process’s or LWP’s class to fixed priority.
You must have the P_TSHAR privilege to raise a time-sharing or fixed-class user priority
limit. Class options are class-specific as shown in Table 5-6:

For a fixed-priority process or LWP, you may assign a priority and a time slice.

• The priority is a number from 0 to the fixed-priority maximum as reported
by priocntl -l; the default maximum is 59.

Table 5-6. Class Specific Options for priocntl

class -c class options Meaning

fixed priority FP -p pri Priority

-t tslc Time slice

-r res Resolution

time-sharing TS -p upri User priority

-m uprilim User priority limit

fixed class FC -p upri User priority

-m uprilim User priority limit

$ # display info on all processes and LWPs
$ priocntl -d -i all

.

.

.
$ # display info on all time-sharing processes and LWPs:
$ priocntl -d -i class TS

.

.

.
$ # display info on all processes and LWPs with user ID 103 or 6626
$ priocntl -d -i uid 103 6626

.

.

.

Process Scheduling and Management

5-35

• To specify the time slice, you use the -t tslc option to specify a number of
clock intervals; in addition, you have the option of using the -r res option
to specify the resolution of the interval. Resolution is specified in intervals
per second. The time slice, therefore, is tslc/res seconds. To specify a time
slice of one-tenth of a second, for example, you would specify a tslc of 1
and a res of 10. If you specify a time slice without specifying a resolution,
millisecond resolution (a res of 1000) is assumed.

If you change a time-sharing or fixed-class process or LWP into a fixed-priority process or
LWP, it gets a default priority and time slice if you do not specify one. If you want to
change only the priority of a fixed-priority process or LWP and leave its time slice
unchanged, omit the -t option. If you want to change only the time slice of a fixed-prior-
ity process or LWP and leave its priority unchanged, omit the -p option.

For a time-sharing or fixed-class process or LWP, you may assign a user priority and a user
priority limit. The user priority is the user-controlled component of a time-sharing or
fixed-class priority. The user priority limit is the maximum user priority a process or LWP
may set for itself without being a privileged user. These values are described in detail in
the section that explains use of the priocntl(2) system call (p. 5-17).

Both the user priority and the user priority limit must be within the user priority range
reported by the priocntl -l command; this range is also reported by the PC_GETCID
and PC_GETCLINFO commands to the priocntl(2) system call.

There is no limit for the number of times a process or LWP may lower and raise its user
priority, as long as the value is below its user priority limit. As a courtesy to other users,
lower your user priority for big chunks of low-priority work. However, remember that if
you lower your user priority limit, you must have the P_TSHAR privilege to raise it. A typ-
ical use of the user priority limit is to reduce permanently the priority of child processes or
LWPs or another set of low-priority processes or LWPs.

The user priority can never be greater than the user priority limit. If you set the user prior-
ity limit below the user priority, the user priority is lowered to the new user priority limit.
If you attempt to set the user priority above the user priority limit, the user priority is set to
the user priority limit.

Screen 5-11 shows examples of the -s option of priocntl :

Screen 5-11. Output from the priocntl -s Command

make process with ID 24668 a fixed priority process with default
parameters:
priocntl -s -c FP -i pid 24668

make 3608 FP with priority 55 and a one-fifth second time slice:
priocntl -s -c FP -p 55 -t 1 -r 5 -i pid 3608

change all processes or LWPs into time-sharing processes or LWPs:
priocntl -s -c TS -i all

for uid 1122, reduce TS user priority and user priority limit to -10:
priocntl -s -c TS -p -10 -m -10 -i uid 1122

PowerMAX OS Programming Guide

5-36

The -e option sets scheduler parameters for a specified command and executes the com-
mand. The syntax for this option is

priocntl -e -c class class_option(s) command [command arguments]

The class and class options are the same as for the -s option described previously.
Screen 5-12 shows examples of the -e option of priocntl :

Screen 5-12. Output from the priocntl -e Command

The priocntl command includes the function of nice , which continues to work as in
previous releases. nice works only on time-sharing processes and LWPs and uses higher
numbers to assign lower priorities. The example shown in Screen 5-12 is equivalent to
using nice to set an increment of 10:

nice -10 make bigprog

The run and rerun Commands 5

The run(1) command allows you to run a program under a specified POSIX scheduling
policy and at a specified priority (see p.5-5 for a complete explanation of POSIX schedul-
ing policies). It also allows you to set the time quantum for a program scheduled under the
SCHED_RR policy. The rerun(1) command allows you to change the scheduling policy
and priority of one or more running processes or LWPs. It also allows you to change the
time quantum for a process or LWP scheduled under the SCHED_RR policy.

To set a program’s scheduling policy and priority, invoke the run command from the
shell, and specify the –s scheduling_policy and –P priority options. The value of
scheduling_policy must be one of the keywords presented in the following table:

Table 5-7. Acceptable Keywords for the -s Option

Scheduling Policy Keywords

First-in-first-out (FIFO) policy - SCHED_FIFO
- fifo

Round-robin (RR) policy - SCHED_RR
- rr

Time-sharing policy - SCHED_OTHER
- other

start a fixed priority shell with default fixed priority:
priocntl -e -c FP /bin/sh

run make with a time-sharing user priority of -10:
priocntl -e -c TS -p -10 make bigprog

Process Scheduling and Management

5-37

The value of priority is (1) an integer that lies within the range of scheduling priorities
defined for the scheduler class associated with the specified scheduling policy or (2) the
keyword max. You can obtain the allowable range of priorities by invoking the run com-
mand from the shell and not specifying any options or arguments or by invoking the
sched_get_priority_min(3C) and sched_get_priority_max(3C) library
routines (see p. 5-14 for explanations of these routines). The keyword max specifies the
highest (most favorable) priority defined for the scheduler class associated with the sched-
uling policy.

If you specify the -s scheduling_policy option without also specifying the -P priority
option, the program’s priority is set to zero, which is the default initial user priority.

To set the time quantum for a program being scheduled under the SCHED_RR scheduling
policy, also specify the -q quantum option. The quantum specifies the time that an LWP
may use the CPU before the scheduler preempts it to allow another LWP of the same pri-
ority to use the CPU. The time is specified in clock ticks, where each clock tick is 1/HZ of
a second (HZ is a constant that is defined in <sys/param.h >).

It is important to note that to (1) change a process’s scheduling policy to the SCHED_FIFO

or the SCHED_RR policy, (2) change the priority of a process scheduled under the
SCHED_FIFO or the SCHED_RR policy, or (3) change the time quantum for a process sched-
uled under the SCHED_RR policy, the following conditions must be met:

• The calling process must have the P_RTIME privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER priv-
ilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

To raise the priority of a process scheduled under the SCHED_OTHER policy above a
per-process or LWP limit, the following conditions must be met:

• The calling process must have the P_TSHAR privilege.

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling priority is
being set), or the calling process must have the P_OWNER privilege.

If the Enhanced Security Utilities are installed and running, the following additional con-
ditions must be met:

The Mandatory Access Control (MAC) level of the calling process must equal the
MAC level of the target process, or the calling process must have the P_MACWRITE
privilege.

To change the scheduling policy and priority of one or more running processes or LWPs,
invoke the rerun command from the shell, and specify the –s scheduling_policy and –P

PowerMAX OS Programming Guide

5-38

priority options. The value of scheduling_policy must be one of the keywords presented in
Table 5-7.

Note that the specified priority of the process(es) or LWP(s) for which the scheduling pol-
icy is being changed must lie within the range of priorities defined for the scheduler class
associated with scheduling_policy. If it does not, an error message will be displayed; the
process’s scheduling policy and priority will not be changed.

Note that when you change a process’s scheduling policy, you also change its time
quantum to the default time quantum that is defined for the scheduler class associated with
the new policy and the priority. To change the time quantum for a running process or LWP
scheduled under the SCHED_RR scheduling policy, specify the -q quantum option.

The privileges required for changing a running process’s scheduling policy, priority, and
quantum are the same as those presented previously for use of the run command.

For additional information on use of the run(1) and rerun(1) commands for schedul-
ing purposes, refer to the corresponding system manual pages.

The setrun(1) command 5

You can use the System V scheduling classes without embedding the routines in your
application by using setrun(1) . setrun(1) is a system command that sets the sched-
uling and execution environment for a process. setrun(1) combines the functions of
several system functions into one interface that:

• Lets the application define the scheduling environment in which a specified
command executes

• Can either bind or exclusively bind a process to a particular processor

• Can interpret the run-time environment and the command to execute from
either a file or the command line.

• Can lock the application in memory.

See the setrun(1) man page for more information..

The syntax is:

setrun -e [-c class] [class-specific options] [command] [argument]

setrun - f [filename] [command] [argument]

setrun -d [-i [idtype]]

where:

-e Indicates that the specified command (and its arguments) shall execute in the
environment specified.

-f Specifies that the file filename contains the execution environment. The com-
mand to be executed can be specified either on the command line or in the file.

Process Scheduling and Management

5-39

-d Displays information about the specified processes. This information is also
ava i lab le th rough ps(1) , pbind(1M) , pexbind(1M) , and
psrinfo(1M) .

Scheduling classes 5

The -c option specifies the System V scheduling class:

TS time-sharing

FC fixed class

FP fixed priority

Each class has class-specific options. See the setrun(1) man page for information.

Display options 5

The -i option specifies the type of process the -d option reports on:

pid process

lwp lightweight process

Examples 5

The fo l low ing l ines i n a f i le ins t ruc t set run(1) t o run the p rogram
/user/tests/test as a fixed priority process with a priority of 56 on processor 2:

prog = /user/tests/test
class = FP
priority = 56
bind = 2

Additional keywords are prilim , quantum , and xbind .

The following command reads in all arguments from filename and runs the command
listed in the file:

setrun -f filename

The following command executes command with arguments arguments as a time-sharing
command with a priority of -8 and a priority limit of 0:

setrun -e -c TS -m 0 -p -8 command arguments

The setrun(1) man page describes all of the options listed in this example.

PowerMAX OS Programming Guide

5-40

Scheduler Interaction with Other Functions 5

This section describes scheduler interaction with kernel processes and such functions as
fork and exec , nice , and init .

Kernel Processes 5

The kernel assigns its daemon and housekeeping processes to the system scheduler class.
Users may not add processes or LWPs to this class, remove processes or LWPs from this
class, or change the priorities of these processes or LWPs. The command ps -el lists the
scheduler class of all processes or LWPs. Processes in the system class are identified by a
SYS entry in the CLS column.

If the workload on a machine contains fixed-priority processes or LWPs that use too much
CPU time, they can lock out system processes; doing so can lead to trouble if these
fixed-priority processes depend on the services of a system daemon running on the same
processor.

fork, exec 5

Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2), _lwp_create(2) , and exec(2) system calls.

nice 5

The nice(1) command and the nice(2) system call work as in previous versions of
the UNIX operating system. They allow you to change the priority of only a time-sharing
process or LWP. You still use lower numeric values to assign higher time-sharing priorities
with these functions.

To change the scheduler class of a process or LWP or to specify a fixed priority, you must
use one of the priocntl functions or the POSIX scheduling functions. Use higher
numeric values to assign higher priorities with these functions.

init 5

The init process (process ID 1) may be assigned to any class configured in the system.
However, init should be assigned to the time-sharing class unless there are compelling
reasons to do otherwise. You can assign the init process to another class by using the
config(1M) utility to change the value of the system tunable parameter INITCLASS .
Refer to the corresponding system manual page and the “Configuring and Building the
Kernel” chapter of System Administration Volume 2 for an explanation of the procedures
for doing so.

Process Scheduling and Management

5-41

Scheduler Performance 5

Because the scheduler determines when and for how long LWPs run, it has an overriding
importance in the performance and perceived performance of a system.

By default, all processes and LWPs are time-sharing processes or LWPs. A process or
LWP changes class only as a result of one of the priocntl functions or the POSIX
scheduling functions.

In the default configuration, all fixed-priority process priorities are above any time-sharing
process priority. This implies that as long as any fixed-priority process or LWP is runna-
ble, no time-sharing process or LWP or system process ever runs. So if a fixed-priority
application is not written carefully, it can completely lock out users and essential kernel
housekeeping.

Besides controlling process and LWP class and priorities, a fixed-priority application must
also control several other factors that influence its performance. The most important fac-
tors in performance are CPU power, amount of primary memory, and I/O throughput.
These factors interact in complex ways. For more information, see the chapter on perfor-
mance management in the System Administration Volume 2 manual. In particular, the
sar(1) command has options for reporting on all the factors discussed in this section.

LWP State Transition 5

Applications that have strict fixed-priority constraints may need to prevent processes and
LWPs from being swapped or paged out to secondary memory. Figure 5-3 presents a sim-
plified overview of UNIX system LWP states and the transitions between states:

PowerMAX OS Programming Guide

5-42

Figure 5-3. LWP State Transition Diagram

An active LWP is normally in one of the five states in the diagram. The arrows show how
it changes states.

• An LWP is running if it is assigned to a CPU. An LWP is preempted—that
is, removed from the running state—by the scheduler if an LWP with a
higher priority becomes runnable. An LWP is also preempted if it con-
sumes its entire time slice and an LWP of equal priority is runnable.

• An LWP is runnable in memory if it is in primary memory and ready to run
but is not assigned to a CPU.

• An LWP is sleeping in memory if it is in primary memory but is waiting for
a specific event before it can continue execution; for example, an LWP is
sleeping if it is waiting for an I/O operation to complete, for a locked
resource to be unlocked, or for a timer to expire. When the event occurs,
the process is sent a wakeup; if the reason for its sleep is gone, the LWP
becomes runnable.

• An LWP is runnable and swapped if it is not waiting for a specific event but
has had its whole address space written to secondary memory to make
room in primary memory for other LWPs.

running

runnable
in memory

assign CPU preempt

161290

runnable
swapped

swap in swap out swap out

sleep

wakeup

wakeup

sleeping
in memory

sleeping
swapped

Process Scheduling and Management

5-43

• An LWP is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to make
room in primary memory for other processes or LWPs.

If a machine does not have enough primary memory to hold all its active processes and
LWPs, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages of
some processes and LWPs to secondary memory but leaves those processes
and LWPs runnable. When an LWP runs, if it accesses those pages, it must
sleep while the pages are read back into primary memory.

• When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes and LWPs to secondary memory and
marks those processes and LWPs as swapped. Such processes and LWPs
get back into a schedulable state only by being chosen by the system sched-
uler daemon process, then read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a process or
LWP is ready to run again. For processes and LWPs that have strict timing requirements,
this delay can be unacceptable. To avoid swapping delays, fixed-priority processes and
LWPs are never swapped, though parts of them may be paged. An application can prevent
paging and swapping by locking its text and data into primary memory. For more informa-
tion see the memcntl(2) system manual page. Of course, how much can be locked is
limited by how much memory is configured. Also, locking too much can cause intolerable
delays to processes and LWPs that do not have their text and data locked into memory.
Trade offs between performance of fixed-priority processes and LWPs and performance of
other processes and LWPs depend on local needs. On some systems, process locking may
be required to guarantee the necessary fixed-priority response.

PowerMAX OS Programming Guide

5-44

6
Memory Management

Overview of Primary Memory. 6-1
Hardware Features . 6-1
Software Features . 6-3

Memory Pools . 6-3
NUMA Policies . 6-4
Guidelines for Determining the Appropriate Default NUMA Policy 6-7
Memory Pools and Process Memory Locking . 6-8

Using the memdefaults System Call. 6-8
Using the run and rerun Commands. 6-11

Memory Management Facilities . 6-12
Virtual Memory, Address Spaces, and Mapping . 6-13
Networking, Heterogeneity and Integrity. 6-13
Memory Management Interfaces . 6-14

Creating and Using Mappings. 6-14
Establishing a Mapping to a Target Process’s Address Space 6-22
Establishing a Mapping to /dev/zero . 6-25

Removing Mappings . 6-26
Cache Control . 6-27

Memory Cache Control . 6-27
Memory Page Locking. 6-27

Using the mlock and munlock Library Routines 6-27
Using the userdma System Call . 6-29

Address Space Locking . 6-33
Memory Cache Synchronization . 6-34
Memory Page Residency . 6-35

Other Mapping Functions . 6-36
Address Space Layout . 6-37
Managing Misaligned Data . 6-38

Alignment . 6-38
Exceptions . 6-39
Implementation . 6-39

PowerMAX OS Programming Guide

6-1

6
Chapter 6Memory Management

6
6
6

Overview of Primary Memory 6

This section provides an overview of primary memory from the hardware and software
perspectives. Primary memory on Model 6800 systems consists of different types of mem-
ory pools that vary in their proximity to the system’s processors. Because some memory
pools are closer to some processors than others, the system architecture has non-uniform
primary memory access times. Such architectures are called NUMA architectures. This
section shows how you can influence the operating system’s page placement decisions by
selecting policies that govern the type of memory in which different portions of a pro-
cess’s address space may be located. It describes some of the performance benefits associ-
ated with the use of local memory.

Hardware Features 6

Primary memory includes global memory and local memory. Global memory is a pool of
memory that is physically located on a memory board. The global memory pool is shared
by all of the processors in the system. Each processor has access to global memory via the
system bus. Local memory is a pool of memory that is located on a processor board. A
local memory pool is shared by all of the processors that reside on that board. Each pro-
cessor has a data path to its local memory pool that does not require use of the system bus
and does not incur any system bus arbitration delay. Data from global or local memory
can be stored in the processor’s data or instruction cache. Figure 6-1 shows the organiza-
tion of primary memory.

PowerMAX OS Programming Guide

6-2

Figure 6-1. Logical Organization of Primary Memory

Local memory is an architectural feature that is designed to improve the performance of
multiprocessor systems. The primary advantages of local memory include the following:

1. Reduced system bus traffic and contention

Multiprocessor systems can easily utilize the entire bandwidth of the sys-
tem bus, leading to a saturation condition. When this occurs, the memory
requests of CPUs and I/O controllers must be queued and wait until the bus
is free. Because local memory accesses do not use the system bus, overall
bus traffic and contention are reduced. This contention has been one of the
factors that has traditionally limited the number of processors that can be
effectively utilized in a tightly coupled multiprocessing system.

2. Faster memory access times when a cache miss occurs

Faster memory access times are due in part to the absence of the need to
access the system bus, but they can also be due to different memory chip
technology being used for local memory.

3. More predictable memory access times

That memory access times are more predictable is an outgrowth of the lack
of system bus contention on local memory accesses.

PROCESSOR BOARD

GLOBAL MEMORY BOARD

SYSTEM BUS

GLOBAL MEMORY

CPU

CPU

LOCAL
MEMORY

PROCESSOR BOARD

CPU

CPU

LOCAL
MEMORY

160900

Memory Management

6-3

A processor can access the local memory on another processor board. Such accesses,
which are called foreign or remote memory accesses, are slow. Whereas data from global
or local memory can be stored in the processor’s data cache, data from remote memory
cannot. Hence, remote memory accesses always bypass the caches and contend for the
system bus. Executing out of remote memory locations should be avoided. In addition, use
of atomic synchronizing instructions (lwarx or stwcx. , for example) on remote mem-
ory locations should be avoided because the indivisibility of their read-modify-write cycle
is not guaranteed (for information on lwarx and stwcx. , refer to the PowerPC Micro-
processor Family: the Programming Environments). For these reasons, the kernel restricts
the use of remote memory. (On Series 6000 and Power MAXIONTM1 systems, use of
atomic synchronizing instructions should also be avoided on cache-inhibited locations.)

Software Features 6

The operating system provides support for obtaining information about the memory
resources of your system. The run(1) command and the mpadvise(3C) library rou-
tine allow you to determine which CPUs on your system have local memory. The
mpstat(1) command provides a graphical display of information about all of the sys-
tem’s memory pools. The syscx(2) system call allows you to obtain information about
a particular memory pool. The hwstat(1M) command provides a wide range of infor-
mation about your system’s hardware configuration; included is information about each
memory pool. For additional details on the use of these interfaces and the types of infor-
mation they provide, refer to the corresponding system manual pages.

“Memory Pools” describes memory pools from the software perspective, and “NUMA
Policies” explains the NUMA policies that govern placement of portions of a process’s
address space in those pools. “Guidelines for Determining the Appropriate Default
NUMA Policy” provides guidelines for determining the appropriate NUMA policy for dif-
ferent parts of an applications’s address space. “Memory Pools and Process Memory
Locking” explains how process memory locking is handled.

Memory Pools 6

By default, the operating system itself resides entirely in global memory, leaving all local
memory for use by applications. Kernel text, however, can be replicated in selected local
memory pools by setting the value of the corresponding KTEXTLOCALn system tunable
parameter to 1 (n denotes a number ranging from 1 to 4, where 1 represents the first local
memory pool, 2 the second, and so on, in order according to processor board slot number).
You can examine and modify the values of system tunable parameters by using the
config(1M) utility. For an explanation of the procedures for using this utility, refer to
the “Configuring and Building the Kernel” chapter of System Administration Volume 2.
After changing a tunable parameter, you must rebuild the kernel and then reboot your sys-
tem. Note that when kernel text is replicated in local memory, the original copy of kernel
text remains in global memory.

A local memory pool is shared by all of the processors that reside on the processor board
on which the pool is located. Processes using local memory can easily migrate between
the processors on the same board; however, a process using local memory cannot migrate

1. Power MAXION is a trademark of Concurrent Computer Corporation.

PowerMAX OS Programming Guide

6-4

to another processor board without also migrating its local memory pages (in order to
avoid costly remote memory accesses). Because cross-board migrations are expensive,
they are never initiated by the kernel’s dynamic load balancer. Therefore, when processes
are using local memory, it is possible for a processor on one board to idle while processors
on other boards are quite busy. For this and other reasons, the operating system allows
applications to control their use of local memory.

When an application begins execution, there is one LWP in the process. If the process is
using local memory, the dynamic load balancer confines the LWP to a single processor
board. When additional LWPs are created by invoking _lwp_create(2) , they are con-
fined to the same processor board as their creator. Thus, in a process that is using local
memory, the default behavior is for all LWPs to run on the same processor board. You can
override the default by using the _lwp_migrate(2) system call to migrate a particular
LWP to another processor board. I f there are multiple LWPs in the process,
_lwp_migrate distributes the address space by creating a new virtual-to-physical
address translation table for the LWP to use on the new processor board. Using multiple
translation tables makes it possible for LWPs running on different processor boards to
fetch instructions from their respective local memory pools. A process that is using local
memory and that has multiple LWPs running on different processor boards is called a dis-
tributed process.

The operating system manages primary memory as a file cache. To keep the data in this
cache coherent, the operating system enforces the rule that writable pages cannot exist in
more than one memory pool at a time. Read-only pages, however, can be replicated in dif-
ferent memory pools in order to provide the smallest possible access times to the largest
possible number of processes. In order to enforce the cache coherence rule, if a read-only
page later becomes writable, replicas of the page are destroyed until only a single copy
remains, Also, in order to avoid remote memory accesses, if a writable page in a local
memory pool is referenced from a remote processor, the page may migrate to the global
memory pool.

NUMA Policies 6

Beyond the cache coherence rule mentioned in the preceding section, there is some flexi-
bility in the outcome of the kernel’s page placement decisions. You can influence the ker-
nel’s page placement decisions by selecting NUMA policies for different portions of a
process’s virtual address space. It is important to note that NUMA policies are attributes of
processes or mappings; they are not attributes of LWPs. All of the LWPs in a process use
the same NUMA policy for a given page. Four policies are available: global, soft-local,
hard-local, and any-pool. They are described as follows:

Global policy Places the process’s pages in global memory

Soft-local policy Places the process’s pages in local memory if possible and global
memory if not

The soft-local policy is available in two forms: floating and
anchored. The terms floating and anchored are used to differenti-
ate the times at which the kernel’s page-placement decisions are
made. With the floating soft-local policy, the decision is made
when the page is referenced in memory. With the anchored
soft-local policy, the decision is made when a mapping is created.
(see “Virtual Memory, Address Spaces, and Mapping,” p. 6-13).

Memory Management

6-5

These terms are described in further detail following presentation
of the four policies.

Hard-local policy Attempts to place the process’s pages in local memory and if the
local memory pool is full, waits for the pages to be available

When the local memory pool is full, the hard-local policy causes a
process to block until the pages become available. When there is
one LWP in the process and the hard-local policy is used for
process-private stack and heap pages, it can guarantee that those
pages will be placed in a local memory pool. However, the operat-
ing system’s enforcement of the cache coherence rule and avoid-
ance of remote memory accesses cannot guarantee that file pages
will be placed in a local memory pool. File pages will not be
placed in a local memory pool, for example, if they are writable
and are being accessed from different processor boards. They will
be placed in the global memory pool instead.

Use of the hard-local NUMA policy can cause a local memory
pool to thrash. For this reason, you are advised to select this pol-
icy only when the application mix is well-known and the use of
local memory is strictly controlled.

The hard-local policy is available in two forms: floating and
anchored. The terms floating and anchored are used to differenti-
ate the times at which the kernel’s page-placement decisions are
made. With the floating hard-local policy, the decision is made
when the page is referenced in memory. With the anchored
hard-local policy, the decision is made when a mapping is created
(see “Virtual Memory, Address Spaces, and Mapping,” p. 6-13).
These terms are described in greater detail following presentation
of the four policies.

Any-pool policy Makes it possible for the process’s pages to be placed in any of the
system’s memory pools

This policy is similar to the soft-local NUMA policy in that it pre-
fers to use local rather than global page frames, but it is different
from the other policies in that it considers remote page frames
acceptable as a last resort. With the other policies, a remote page
will migrate to or be replicated in a pool that is more acceptable.
With the any-pool policy, the remote frame will be used directly.

Note that the any-pool NUMA policy is available only through
use of the memcntl(2) and mmap(2) system calls. You are
advised to use it sparingly.

The terms floating and anchored are further differentiated by considering the perspective
from which the page-placement decision is made. With a floating local policy, the perspec-
tive is that of the CPU that is fetching the page. That perspective may be different for dif-
ferent LWPs in the same process because the LWPs may be executing on different proces-
sor boards. A floating local policy is useful for read-only pages (text pages, for example)
in distributed processes because it causes the pages to be replicated. It is also useful for

PowerMAX OS Programming Guide

6-6

other processes because it causes the pages to follow the process when it migrates to
another processor board.

With an anchored local policy, the perspective is that of the CPU that has created the map-
ping. That perspective is the same for all of the LWPs in a process, regardless of where
they are executing. An anchored local policy is useful for writable pages that have a lop-
sided reference pattern (stack pages, for example). It causes the kernel to place the pages
in a particular local memory pool—a pool that is close to the CPUs that generate the
majority of the accesses. The operating system permits remote memory accesses from
other processor boards.

Every process has a set of default NUMA policies for different parts of its address space.
A process inherits its defaults from its parent during a fork(2) system call. Because
init is the ancestor of all processes, its default NUMA policies are, in effect, sys-
tem-wide defaults. A process can change its default NUMA policies by using the
memdefaults(2) system call or the run(1) and rerun(1) commands. Procedures
for using memdefaults are explained in “Using the memdefaults System Call.” Proce-
dures for using run and rerun are explained in “Using the run and rerun Commands.”
Default NUMA policies affecting all processes running on a system may be set by the sys-
tem administrator by altering the NUMA policies of the init process as set in the rerun
script in the /etc/init.d directory. Note that anchored local policies are not permitted
as defaults.

A process can select a different default NUMA policy for its text, private data, shared
data, and U-block. These categories are defined as follows:

Text Refers to pages in private (mmap(2) MAP_PRIVATE) map-
pings that belong to a file in a file system (the traditional
text segment, for example)

Private data Refers to pages in private mappings that do not belong to a
file in a file system (the traditional stack and data segments,
for example)

Note that the first time that a process writes to a page in a
private, writable mapping to a file, the page will move from
the text category to the private data category.

Shared data Refers to shared (mmap(2) MAP_SHARED) mappings other
than System V shared memory segments

U-block Refers to a kernel data structure that is associated with each
LWP; it contains the kernel-mode stack used during system
calls, the register save area used during context switches,
and information about the LWP.

A process’s default NUMA policies can be overridden by use of the mmap(2) and
memcntl(2) system calls. Mmap allows a process to select any of the previously enu-
merated NUMA policies or no policy at all. If a policy is selected, it applies only to the
mapping established by mmap. If no policy is selected, the defaults are used. Memcntl
allows a process to change the NUMA policy associated with a range of addresses in its
address space. Procedures for using mmap are explained in “Creating and Using Map-
pings.” Information necessary for using memcntl is provided in the corresponding sys-
tem manual page.

Memory Management

6-7

The NUMA policies for System V shared memory segments are established when a shared
memory segment is created. System V shared memory segments are created by using the
shmget(2) system call or the shmdefine(1) or shmconfig(1M) utilities. The glo-
bal NUMA policy is selected for a shared memory segment by default. If one of the local
policies is selected, the local memory pool used for the shared memory segment will be
that which belongs to the CPU of the calling process; the segment will not be available to
processes executing on a different processor board. Procedures for using the OS shared
memory facilities are explained in Chapter 12, “Interprocess Communication.”

Guidelines for Determining the Appropriate Default NUMA Policy 6

Selection of NUMA policies for different parts of an application’s address space may
require some experimentation. The following analysis may help you to determine the pol-
icies that are appropriate for your application:

Text pages are not writable, so binding text pages to local memory can cause the pages to
be replicated when the same program is run on multiple processor boards. Page replication
is a space versus time trade off that may or may not be beneficial for a given application.
Furthermore, text references are cached in the instruction cache and are not snooped
(which means faster access to memory in the event of a cache miss). So if the hit rate on
the instruction cache is high and the local memory pools are small, it may not be worth-
while to bind text pages to local memory. Writable pages cannot be replicated, so binding
them to local memory can cause some page migration. In general though, placing private
writable pages in local memory gives the best performance improvement.

A program that makes very frequent system calls may benefit from locating the U-block in
local memory; the benefit comes from more predictable and possibly reduced context
switch and system call times. Locating the program’s private data in local memory will
usually also lead to some reduction in system time because arguments to system calls and
buffered I/O transfers must be copied between kernel space and the user program’s data
space.

Processes attempting to attach a shared memory segment that is bound to a local memory
pool should be executing on a processor that has access to that pool. The operating system
discourages a process from attaching to a shared memory segment that is bound to the
local memory of another processor board. If such an attempt is made, the call to
shmat(2) to attach the segment will fail and return an EACCES error. If a shared mem-
ory segment is to be used by processes executing on different processor boards, the global
NUMA policy should be selected for that segment.

It is important to note that a process may attach a shared memory segment that is located
in remote memory by invoking the shmat system call with the SHM_FLMEM bit set in
the shmflg argument. Setting the SHM_FLMEM bit is not generally recommended. The
reasons are as follows:

• All caching of the specified shared memory segment’s pages will be inhib-
ited on the CPU or CPUs that are making the remote memory references.

• Accesses to remote memory are much slower than references to global or
local memory.

• Atomic synchronizing instructions are not supported when executed on a
semaphore that resides in remote memory.

PowerMAX OS Programming Guide

6-8

Memory Pools and Process Memory Locking 6

When an application locks pages in memory using the facilities described in “Memory
Page Locking” and “Address Space Locking,” the operating system attempts to preprocess
all possible faults on those pages in order to guarantee that no faults will occur later when
the application accesses those pages. It is not possible, however, for the operating system
to guarantee that no faults will occur on some types of pages locked in a local memory
pool. If a writable page locked in a local memory pool is referenced from a remote CPU
with a conflicting NUMA policy (that is, one that specifies a different memory pool), the
page will migrate to global memory, and the LWPs accessing the page will fault. Further-
more, if a read-only page locked in a local memory pool later becomes writable, replicas
of the page are destroyed until only a single copy remains; the LWPs accessing those rep-
licas will fault. Note, however, that this problem does not exist for process-private pages,
pages locked in global memory, or shared memory pages.

When a process’s NUMA policy or CPU assignment changes, some of the locked pages in
the process’s address space may need to move to a new memory pool. Before such an
operation begins, it is very difficult to guarantee that all necessary page migrations can be
completed successfully. If a page migration fails, the operation must be aborted. It is also
not possible to guarantee that after the operation has been aborted, the process’s original
state can be restored. Aborting the operation can leave pages that should be locked
unlocked. The OS provides features (for example, user-level interrupts and control over
rescheduling) for real-time applications that require firm guarantees about the properties
of locked pages. To ensure adherence to the guarantees, the following rule is enforced.

A process or LWP migration or a NUMA policy change that
requires locked pages to move between memory pools will fail
(that is, will not be performed) without affecting the locked state
of the pages in the address space.

When developing an application, you are advised to migrate LWPs and set their NUMA
policies before locking their pages. Failures caused by locked pages are identified by set-
ting errno to EBUSY.

Using the memdefaults System Call 6

The memdefaults(2) system call allows you to control the default NUMA policies of
one or more processes.

Note that to change the default NUMA policies of a process, the real or effective user ID
of the calling process must match the real or effective user ID of the receiving process, or
the calling process must have the P_ OWNER privilege.

The specifications required for making the memdefaults call are as follows:

#include <sys/procset.h>
#include <sys/mman.h>

int memdefaults(cmd, idtype, id, arg)

int cmd;

Memory Management

6-9

idtype_t idtype;
id_t id;
void * arg;

The arguments are defined as follows:

cmd the operation to be performed

idtype the type of identifier specified by the id argument

The idtype and id arguments together specify the process or set of pro-
cesses for which the operation is to be performed. Acceptable values for
the idtype argument and the corresponding interpretations of id are as
follows:

P_PID process ID

P_PPID parent process ID

P_PGID process group ID

P_SID session ID

P_CID scheduler class ID

P_UID user ID

P_GID group ID

P_ALL all processes and LWPs

In this case, the value of the id argument is ignored.

id the identifier for the process or set of processes for which the operation
is to be performed

The value of this argument depends on the value of idtype as explained
above. You may specify a value of P_MYID to be used with the value of
idtype to specify the calling process’s process ID, parent process ID,
process group ID, session ID, scheduler class ID, user ID, or group ID.

arg a pointer to an argument whose value depends on the value of cmd

Cmd can be one of the following. The values of arg that are associated with each command
are indicated.

MDF_SETNUMA Sets the default NUMA policies of all of the specified processes to
the values specified by arg. Arg is a pointer to an integer value that
sets one or more of the following bits:

MDF_TEXT_GLOBAL global text

MDF_TEXT_SOFTLOCAL floating soft-local text

MDF_TEXT_HARDLOCAL floating hard-local text

MDF_PRDATA_GLOBAL global private data

PowerMAX OS Programming Guide

6-10

MDF_PRDATA_SOFTLOCAL floating soft-local private data

MDF_PRDATA_HARDLOCAL floating hard-local private data

MDF_SHDATA_GLOBAL global shared data

MDF_SHDATA_SOFTLOCAL floating soft-local shared data

MDF_SHDATA_HARDLOCAL floating hard-local shared data

MDF_UBLOCK_GLOBAL global U-blocks

MDF_UBLOCK_SOFTLOCAL floating soft-local U-blocks

MDF_UBLOCK_HARDLOCAL floating hard-local U-blocks

Note that you may specify only one value from each of the text,
private data, shared data, and U-block categories. If you do not
specify a value for a particular category, the NUMA policy
assigned to that category is not changed.

MDF_GETNUMA Returns the logical sum of the NUMA policies of the specified
process(es) in the location referenced by arg

A return value of 0 indicates that the call to memdefaults has been successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the memdefaults(2) system manual page for a listing of the types of errors that may
occur.

The following C program segment shows how to use the memdefaults system call to set
the default NUMA policy for the U-block and private data to hard-local and the default
NUMA policy for text to soft-local.

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/mman.h>
#include <stdio.h>
#include <errno.h>

void
main()
{

int cmd;
idtype_t idtype;
id_t id;
uint_t flags;

cmd = MDF_SETNUMA;
idtype = P_PID;
id = P_MYID;
flags = MDF_PRDATA_HARDLOCAL | MDF_UBLOCK_HARDLOCAL | MDF_TEXT_SOFTLOCAL;

if (memdefaults(cmd,idtype,id,&flags) == -1) {
printf (“memdefaults failed, errno = %d\n”, errno);
exit (1);

}

printf (“default NUMA policies set successfully\n”);
exit (0);

}

Memory Management

6-11

It is important to note that use of memdefaults to change NUMA policies may cause
those parts of the program’s address space that are bound to one memory pool to migrate
to a new pool. Migration may be from local to global memory or from global to local
memory. If a page requiring migration to another memory pool is locked, memdefaults
will fail, and errno will be set to EBUSY. If the program is migrated to a CPU on a dif-
ferent processor board through use of the mpadvise(3C) library routine, the
cpu_bias(2) system call, or the rerun(1) command, the parts of its address space
that are bound to local memory will be migrated to the local memory pool on that board.

For additional information on use of the memdefaults(2) system call, refer to the cor-
responding system manual page.

Using the run and rerun Commands 6

The run(1) command executes a specified command in an environment that is set by a
specified list of options. Such options include processor bias, memory bindings, schedul-
ing policy and priority, and time quantum. The rerun(1) command alters the execution
environment of one or more running processes. Aspects of the environment that may be
altered include processor bias, processor assignment, memory bindings, scheduling policy
and priority, and time quantum.

To select the NUMA policies for a command or one or more running processes, invoke the
run or rerun command from the shell, and specify the -m NUMA option. NUMA speci-
fies one or more keywords that select the NUMA policies for parts of the process’s
address space. Keywords must be separated by commas. The valid keywords are
described as follows:

global Selects the global NUMA policy for all categories

local Selects the floating soft-local NUMA policy for all catego-
ries

hard Selects the floating hard-local NUMA policy for all catego-
ries

text_global Selects the global NUMA policy for text

text_local Selects the floating soft-local NUMA policy for text

text_hard Selects the floating hard-local NUMA policy for text

prdata_global Selects the global NUMA policy for private data

prdata_local Selects the floating soft-local NUMA policy for private data

prdata_hard Selects the floating hard-local NUMA policy for private
data

shdata_global Selects the global NUMA policy for shared data

shdata_local Selects the floating soft-local NUMA policy for shared data

shdata_hard Selects the floating hard-local NUMA policy for shared data

PowerMAX OS Programming Guide

6-12

ublock_global Selects the global NUMA policy for the U-block

ublock_local Selects the floating soft-local NUMA policy for the U-block

ublock_hard Selects the floating hard-local NUMA policy for the
U-block

The following example shows how to invoke the run command to set the NUMA policy
for x_cmd’s U-block and private data to the floating soft-local NUMA policy:

run -m ublock_local,prdata_local x_cmd

The following example shows how to invoke the rerun command to run proc_n on CPU
4 and set the NUMA policy for the process’s pages to the floating hard-local NUMA pol-
icy:

rerun -b 4 -m hard proc_n

Note that use of the rerun command to change NUMA policies or CPU bias may cause
those parts of the program’s address space that are bound to local memory to migrate to a
new memory pool. If the program is migrated to a different processor board, the parts of
the program that are bound to local memory will be migrated to the local memory pool on
that board.

The run command also allows you to determine the current NUMA policies for the cur-
rent shell. To do so, invoke run from the shell without specifying any options. The run
command provides the current NUMA memory bindings.

For additional information on use of the run(1) and rerun(1) commands, refer to the
corresponding system manual pages.

Memory Management Facilities 6

The UNIX system provides a complete set of memory management mechanisms, provid-
ing applications complete control over the construction of their address space and permit-
ting a wide variety of operations on both process address spaces and the variety of mem-
ory objects in the system. Process address spaces are composed of a vector of memory
pages, each of which can be independently mapped and manipulated. Typically, the
system presents the user with mappings that simulate the traditional UNIX process mem-
ory environment, but other views of memory are useful as well.

The memory-management facilities:

• Unify the system's operations on memory.

• Provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without spe-
cial-purpose kernel support.

• Maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects.

Memory Management

6-13

Virtual Memory, Address Spaces, and Mapping 6

The system's virtual memory (VM) consists of all available physical memory resources.
Examples include local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are referenced
through the UNIX file system. However, not all file system objects are in the virtual mem-
ory; devices such as terminal and network device files that cannot be treated as storage are
not in the virtual memory. Some virtual memory objects, such as private process memory
and System V shared memory segments, do not have names.

A process's address space is defined by mappings onto objects in the system's virtual
memory (usually files). Each mapping is constrained to be sized and aligned with the page
boundaries of the system on which the process is executing. Each page may be mapped (or
not) independently. Only process addresses that are mapped to some system object are
valid, for there is no memory associated with processes themselves—all memory is repre-
sented by objects in the system's virtual memory.

Each object in the virtual memory has an object address space defined by some physical
storage. A reference to an object address accesses the physical storage that implements the
address within the object. The virtual memory's associated physical storage is thus
accessed by transforming process addresses to object addresses, and then to the physical
store.

A given process page may map to only one object although a given object address may be
the subject of many process mappings. An important characteristic of a mapping is that the
object to which the mapping is made is not affected by the mere existence of the mapping.
Thus, it cannot, in general, be expected that an object has an awareness of having been
mapped or of which portions of its address space are accessed by mappings; in particular,
the notion of a page is not a property of the object. Establishing a mapping to an object
simply provides the potential for a process to access or change the object's contents.

The establishment of mappings provides an access method that renders an object directly
addressable by a process. Applications may find it advantageous to access the storage
resources they use directly rather than indirectly through read and write . Potential
advantages include efficiency (elimination of unnecessary data copying between the ker-
nel and the application) and reduced complexity (single-step updates rather than the
read- modify buffer-write cycle). The ability to access an object and have it retain its iden-
tity over the course of the access is unique to this access method and facilitates the sharing
of common code and data.

Networking, Heterogeneity and Integrity 6

VM is designed to fit well with the larger UNIX heterogeneous environment. This envi-
ronment makes extensive use of networking to access file systems—file systems that are
now part of the system's virtual memory. Networks are not constrained to consist of simi-
lar hardware or to be based upon a common operating system; in fact, the opposite is
encouraged, for such constraints create serious barriers to accommodating heterogeneity.
While a given set of processes may apply a set of mechanisms to establish and maintain
the properties of various system objects—properties such as page sizes and the ability of
objects to synchronize their own use—a given operating system should not impose such
mechanisms on the rest of the network.

PowerMAX OS Programming Guide

6-14

As it stands, the access method view of a virtual memory maintains the potential for a
given object (say a text file) to be mapped by systems running the UNIX memory manage-
ment system and also to be accessed by systems for which virtual memory and storage
management techniques such as paging are totally foreign, such as PC-DOS. Such sys-
tems can continue to share access to the object, each using and providing its programs
with the access method appropriate to that system. The unacceptable alternative would be
to prohibit access to the object by less capable systems.

Another consideration arises when applications use an object as a communications
channel, or otherwise try to access it simultaneously. In both cases, the object is shared;
thus, applications must use some synchronization mechanism to maintain the integrity of
their actions on it. The scope and nature of the synchronization mechanism is best left to
the application. For example, file access on systems that do not support virtual memory
access methods must be indirect, by way of read and write . Applications sharing files
on such systems must coordinate their access using semaphores, file locking, or some
application-specific protocols. What is required in an environment where mapping
replaces read and write as the access method is an operation, such as fsync , that sup-
ports atomic update operations.

The nature and scope of synchronization over shared objects is application-defined from
the outset. If the system tried to impose automatic semantics for sharing, it might prohibit
other useful forms of mapped access that have nothing to do with communication or
sharing. By providing the mechanism to support integrity and by leaving it to cooperating
applications to apply the mechanism, the needs of applications are met without eliminat-
ing diversity. Note that this design does not prohibit the creation of libraries that provide
abstractions for common application needs. Not all abstractions on which an application
builds need be supplied by the operating system.

Memory Management Interfaces 6

The applications programmer gains access to VM facilities through several sets of system
calls. The next sections summarize these calls and provide examples of their use.

Creating and Using Mappings 6

The memory mapping facilities allow processes to access the data in memory objects
directly by mapping portions of their address spaces onto the objects. A memory object is
defined as an object that contains an array of bytes. It has an address space that begins at
zero and extends through the length of the object minus one. Each byte of data in the
object can be identified by its offset in the object. Additionally, a memory object is an
object for which a file descriptor can be obtained. It includes POSIX shared memory
objects, regular files, and some devices (for an explanation of POSIX shared memory
objects, see Chapter 12). One of the files to which a mapping can be established is the
/proc/ pid/as file, which is described following this section. One of the devices to
which a mapping can be established is /dev/zero , which is also described following
this section.

The data in a memory object are shared if multiple processes establish mappings to the
same portion of the object. If the mappings permit shared write access, data written to the
object through the address space of one process are visible in the address spaces of the
other processes.

Memory Management

6-15

The operating system performs memory mapping operations on whole pages. Conse-
quently, the length of a mapping is rounded up to the next multiple of the system’s page
size. The length of a process’s mapping to a memory object may exceed the length of the
object at the time of the call to mmap. The only requirement when creating a mapping is
that the addresses, lengths, and offsets specified in the operation be possible (that is,
within the range permitted for the object in question), not that they exist at the time the
mapping is created (or subsequently). After the process’s mapping has been established,
the length of the object may increase or decrease at any time because it can be manipu-
lated by other processes. Such changes may affect processes’ accesses to the mapped area.

If the size of a memory object is not a multiple of the system’s page size, then the operat-
ing system treats the page that contains the end of the object in a special way: it fills the
locations that are beyond the end of the object but within this last page with zeros. If a pro-
cess that has established a mapping to the memory object writes to the zero-filled portion
of the last page, the operating system will not write the modified data to secondary stor-
age. If the process references a page that is within the mapping but beyond the last page
associated with the memory object, a SIGBUS signal will be sent to the process. A
SIGBUS signal may also be sent to the process if a reference to a page will cause an error
in the mapped object (an out of space condition, for example). If the process references a
page that is not within the mapping, a SIGSEGV signal will be sent to the process. A
SIGSEGV signal will also be sent to the process if it attempts to (1) write to a page within
the mapping that has been mapped without write access or (2) access a page within the
mapping that has been mapped with no access.

In general, if a program makes a reference to an address that is inconsistent with the map-
ping (or lack of a mapping) established at that address, the system will respond with a
SIGSEGV violation. However, if a program makes a reference to an address consistent
with how the address is mapped but that address does not evaluate at the time of the access
to allocated storage in the object being mapped, then the system will respond with a SIG-
BUS violation. In this manner, a program (or user) can distinguish between whether it is
the mapping or the object that is inconsistent with the access and take appropriate reme-
dial action.

The mapping between a process’s address space and a memory object remains until the
process removes it by invoking the munmap(2) system call (see “Removing Mappings,”
p. 6-26, for an explanation of this call). If the process invokes the exec(2) or exit(2)
system calls, the operating system removes the mapping.

The mmap(2) system call establishes a mapping between a process's address space and
an object in the system's virtual memory. All other system functions that contribute to the
definition of an address space are built from mmap, the system's most fundamental func-
tion for defining the contents of an address space.

The specifications required for making the mmap call are as follows:

#include <sys/mman.h>

void *mmap(addr, len, prot, flags, fildes, off)

void * addr;
size_t len;
int prot;
int flags;
int fildes;
off_t off;

PowerMAX OS Programming Guide

6-16

The format for invoking mmap from an application program is presented as follows:

The mmap call establishes a mapping from the process's address space at an address pa for
len bytes to the object specified by fildes at offset off for len bytes. A successful call to
mmap returns pa as its result; pa is an implementation-dependent function of the argument
addr and the value of flags as described in the paragraphs that follow. The address range
[pa, pa + len) must be valid for the address space of the process and the range [off, off +
len) must be valid for the virtual memory object. (The notation [start, end) denotes the
interval from start to end, including start but excluding end.)

NOTE

The mapping established by mmap replaces any previous map-
pings for the process's pages in the range [pa, pa + len).

To memory map a region of a file whose size exceeds 2GB, the mmap64 function must be
used as follows:

In this case the file offset, off, must be declared as type off64_t. The other arguments have
the same types and meaning as with mmap. As with mmap, memory mappings using
mmap64 can be removed using munmap.

The arguments to mmap are defined as follows:

addr if the MAP_FIXED option is specified in the flags argument, specifies the
starting address of the portion of the calling process’s virtual address
space that is to be mapped to the memory object specified by fildes. The
specified address must be a multiple of the system page size. The system
page size is avai lable to an appl icat ion through use of the
sysconf(3C) library routine. Note that when you specify the
MAP_FIXED option, the mapping will replace any existing mapping at
the address specified by addr.

If the MAP_FIXED option is not specified, the value of addr may be zero
or a nonzero value that specifies an appropriate starting address for the
mapping. Specifying a value of zero grants the operating system com-
plete freedom in selecting an address for the mapping. Specifying a non-
zero value provides the operating system with a suggested address near
which the mapping may be placed. The operating system will select an
address that is suitable for mapping len bytes to the specified memory

pa = mmap(addr, len, prot, flags, fildes, off);

pa = mmap64(addr, len, prot, flags, fildes, off);

Memory Management

6-17

object. In selecting an address, the operating system will not place a
mapping at address 0, replace an existing mapping, or map areas that are
considered part of the process’s potential data or stack segments.

len the length in bytes of the mapping. This value is not required to be a
multiple of the system’s page size. Because the operating system per-
forms memory mapping operations on whole pages, the length of the
mapping may be rounded up to the next multiple of the system’s page
size.

prot an integer value that specifies one or more of the following options and
determines the access permissions associated with the data to which the
calling process’s address space is being mapped. This value is either

PROT_NONE permits no access to the data in the memory object

 or

the bitwise inclusive OR of one or more of the following:

PROT_READ permits read access to the data in the memory object

PROT_WRITE permits write access to the data in the memory object

PROT_EXEC permits execute access to the data in the memory
object

It is important to note that regardless of the value specified by prot, the
memory object specified by fildes must have been opened with read per-
mission. If PROT_WRITE is specified and the MAP_SHARED option is
specified in the flags argument, the memory object must have been
opened with write permission.

A write access must fail if PROT_WRITE has not been set although the
behavior of the write can be influenced by setting MAP_PRIVATE in the
flags argument. The flags argument provides other information about the
handling of mapped pages as described in the following paragraphs

flags provides information about the mapping. The value specified by flags is
the bitwise inclusive OR of the following options.

Note that MAP_SHARED and MAP_PRIVATE are mutually exclusive. One
of them must be specified.

MAP_SHARED indicates that changes to data in the memory object
are to be shared

Note that when MAP_SHARED is specified, a store to a
page will modify the memory object such that it is
changed for all processes that have mapped a portion
of their address spaces to it. The act of storing into a
MAP_SHARED mapping is equivalent to doing a
write system call.

After a fork(2) system call, the child process has
the memory object mapped to the same address range

PowerMAX OS Programming Guide

6-18

as the parent and has it mapped MAP_SHARED. A store
performed by either the parent or the child to a
MAP_SHARED page will modify the underlying mem-
ory object.

MAP_PRIVATE indicates that changes to data in the memory object
are private to the calling process

When MAP_PRIVATE is specified, the calling process’s
first store to a page creates a private copy of the page
and redirects the mapping and the initial and succes-
sive write references to the copy; changes to the copy
do not affect the underlying memory object.
Th is operat ion is somet imes refer red to as
copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have
copies made in this manner.

Un t i l t he ca l l ing p rocess ’s f i r s t s to re to a
MAP_PRIVATE page, changes made by other processes
that have mapped the page MAP_SHARED will be visi-
ble. If an application needs isolation from changes
made by other processes, it should use read to make
a copy of the data it wishes to keep isolated. After the
store has occurred, no other process can modify the
page because the calling process has a private copy of
it.

After a fork(2) system call, the child process has
the memory object mapped to the same address range
as the parent and has it mapped MAP_PRIVATE . The
first store performed by either the parent or the child
to a MAP_PRIVATE page creates a private copy of the
page. Changes to either process’s copy do not affect
the underlying memory object. Changes made by the
parent are not visible to the child. Changes made by
the child are not visible to the parent.

MAP_PRIVATE mappings are used by system functions
such as exec(2) when mapping files containing
programs for execution. This permits operations by
programs such as debuggers to modify the text (code)
of the program without affecting the file from which
the program is obtained.

MAP_FIXED indicates that the specified memory object must be
mapped to the calling process’s virtual address space
at the exact location specified by addr. You are
advised to use caution in specifying this option
because it may prevent the system from making the
most effective use of system resources. The system
strives to choose alignments for mappings that maxi-
mize the performance of its hardware resources.

Memory Management

6-19

Note that when you specify this option, the mapping
will replace any existing mapping in the address range
specified by the addr and len arguments.

The following values set the NUMA policy for the pages being mapped
(NUMA refers to non-uniform memory access as described in “Over-
view of Primary Memory”). Specifying one of these values is optional.
If you do not specify a value, the default NUMA policy is the policy that
has been established previously by invoking the memdefaults(2)
system call. Only one of the following values may be specified:

MAP_GLOBAL selects the global NUMA policy, which indi-
cates that the pages are to be placed in global
memory

MAP_FLOATSOFT selects the floating soft-local NUMA policy,
which indicates that the pages are to be placed
in local memory if possible and global memory
if not (for an explanation of the term floating,
refer to p. 6-5)

MAP_FLOATHARD selects the floating hard-local NUMA policy,
which indicates that the pages are to be placed
only in local memory (for an explanation of the
term floating, refer to p. 6-5). If the necessary
pages are not available, the process blocks until
the pages become available.

It is important to note that selection of this pol-
icy for memory mapped files does not guarantee
that the pages will be placed in local memory.
Pages will not be placed in local memory if they
are writable and are being accessed from differ-
ent processor boards; they will be placed in glo-
bal memory instead.

Use of the hard-local NUMA policy can cause a
local memory pool to thrash. For this reason,
you are advised to select this policy only when
the application mix is well-known and the use
of local memory is strictly controlled.

MAP_ANCHORSOFT selects the anchored soft-local NUMA policy,
which indicates that the pages are to be placed
in local memory if possible and global memory
if not (for an explanation of the term anchored,
refer to p. 6-5)

MAP_ANCHORHARD selects the anchored hard-local NUMA policy,
which indicates that the pages are to be placed
only in local memory (for an explanation of the
term anchored, refer to p. 6-5). If the necessary
pages are not available, the process blocks until
the pages become available.

PowerMAX OS Programming Guide

6-20

MAP_ANYPOOL selects the any-pool NUMA policy, which indi-
cates that the pages may be placed in any of the
system’s memory pools

This policy is similar to the soft-local NUMA
policy in that it prefers to use local rather than
global page frames, but it is different from the
other policies in that it considers remote page
frames acceptable as a last resort. With the
other policies, a remote page will migrate to or
be replicated in a pool that is more acceptable.
With the any-pool policy, the remote frame will
be used directly.

The any pool NUMA policy is available only
through use of the memcntl and mmap system
calls. You are advised to use it sparingly.

The following values set the cache policy for the pages being mapped.
Specifying one of these values is optional. If you do not specify a value,
the default cache policy is copyback. Only one of the following values
may be specified:

MAP_NOCPUCACHE selects the no-cache CPU cache policy, which
indicates that accesses to the pages are to
bypass the CPU’s data cache

MAP_CBCPUCACHE selects the copyback CPU cache policy, which
indicates that accesses to the pages are to be
cached in copyback mode

In copyback mode, a CPU write transaction
usually updates the data cache only; it does not
immediately update memory. Later when the
cache line is displaced or invalidated, the data
are written to memory.

fildes the file descriptor identifying the memory object to which the process’s
address space is to be mapped. A process must have obtained this
descriptor previously by invoking the open(2) or creat(2) system
call or the shm_open(3C) library routine (see Chapter 12 for an
explanation of this routine).

The file descriptor used in a mmap call need not be kept open after the
mapping is established. If it is closed, the mapping will remain until
such time as it is replaced by another call to mmap that explicitly speci-
fies the addresses occupied by this mapping or until the mapping is
removed

off the byte offset in the memory object where the mapping is to begin. The
value of off must be a multiple of the system page size. The system page
size is available to an application through use of the sysconf(3C)
library routine. The range beginning at off and extending for the number
of bytes specified by len must be valid for the possible (not necessarily

Memory Management

6-21

current) offsets in the memory object. The size of a memory object can-
not be extended by using mmap.

If the call is successful, mmap returns the virtual address at which the mapping of the
memory object begins. A return value of -1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the mmap(2) system manual page for a listing of the
types of errors that may occur.

Using mmap to access system memory objects can simplify programs in a variety of ways.
Keeping in mind that mmap can really be viewed as just a means to access memory
objects, it is possible to program using mmap in many cases where you might program
with read or write . However, it is important to realize that mmap can be used only to
gain access to memory objects—those objects that can be thought of as randomly accessi-
ble storage. Thus, terminals and network connections cannot be accessed with mmap
because they are not memory. Magnetic tapes, even though they are memory devices, can-
not be accessed with mmap because storage locations on the tape can be addressed only
sequentially. Some examples of situations that can be thought of as candidates for use of
mmap over more traditional methods of file access include:

• Random access operations—either map the entire file into memory or if the
address space cannot accommodate the file or the file size is variable, cre-
ate “windows” of mappings to the object.

• Efficiency—even in situations where access is sequential, if the object
being accessed can be accessed via mmap, an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via read
or write .

• Structured storage— if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to
the file is treated as though the tables were in memory. Previously, pro-
grams could not simply make storage or table alterations in memory and
save them for access in subsequent runs; however, when the addresses of a
table are defined by mappings to a file, then changes to that storage are
changes to the file and are, thus, automatically recorded in it.

• Scattered storage—if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation.

In some cases, devices or files are useful only if accessed via mapping. An example of this
is frame buffer devices used to support bit-mapped displays, where display management
algorithms function best if they can operate randomly on the addresses of the display
directly.

Not all device drivers support memory mapping. If you try to map a device that does not
support mapping, mmap fails.

Finally, it is important to remember that mappings can be operated upon at the granularity
of a single page. Even though a mapping operation may define multiple pages of an
address space, there is no restriction that subsequent operations on those addresses must
operate on the same number of pages. For instance, an mmap operation defining ten pages
of an address space may be followed by subsequent munmap operations that remove every
other page from the address space, leaving five mapped pages, each followed by an
unmapped page (for information on munmap, see “Removing Mappings,” p. 6-26). Those
unmapped pages may subsequently be mapped to different locations in the same or differ-

PowerMAX OS Programming Guide

6-22

ent objects, or the whole range of pages (or any partition, superset, or subset of the pages)
may be used in other mmap or other memory management operations. Further, it must be
noted that any mapping operation that operates on more than a single page can partially
succeed in that some parts of the address range can be affected even though the call returns
a failure. Thus, an mmap operation that replaces another mapping, if it fails, may have
deleted the previous mapping and failed to replace it. Similarly, other operations (unless
specifically stated otherwise) may process some pages in the range successfully before
operating on a page where the operation fails.

The sections that follow explain the special cases of establishing a mapping to a target pro-
cess’s address space and establishing a mapping to /dev/zero .

Establishing a Mapping to a Target Process’s Address Space 6

For each running process, the /proc file system provides a file that represents the address
space of the process. The name of this file is /proc/ pid/as , where pid denotes the pro-
cess ID of the process whose address space is represented. A process can open a
/proc/ pid/as file and use the read(2) and write(2) system calls to read and mod-
ify the contents of another process’s address space. As mentioned previously, a process
can use mmap to map a portion of its address space to a /proc/ pid/as file and directly
access the contents of another process’s address space. A process that establishes a map-
ping to a /proc/ pid/as file is hereinafter referred to as a monitoring process. A process
whose address space is being mapped is referred to as a target process.

To establish a mapping to a /proc/ pid/as file, the following requirements must be met:

• The file must have been opened with read permission. If you intend to
modify the target process’s address space, the file must also have been
opened with write permission.

• On the call to mmap to establish the mapping, the flags argument must
specify the MAP_SHARED option. It may not specify any of the options that
set the NUMA policy or the cache policy for the pages being mapped. The
NUMA policy and cache policy associated with the mapping are those set
by the target process.

The following C program segment shows how to establish a mapping to a /proc/ pid/as
file.

/*
 * Header files
 */
#include <sys/types.h>
#include <sys/mman.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

. . .

/*
 * Data declarations
 */

unsigned long pagemask /* for adjusting to page boundary */
caddr_t address; /* target address to map */
long offset; /* page address to map */
caddr_t mapaddr; /* resulting page address of map */

Memory Management

6-23

unsigned long delta; /* offset of target within its page */
size_t nbytes; /* number of bytes to map */
pid_t pid; /* process id of target */
int fd; /* file descriptor for /proc file */
char name[16]; /* "/proc/00000/as" */

. . .

/*
 * Assign values to address and pid
 */

 . . .

/*
 * mmap requires the target address to be on a page boundary.
 * Round down the address value and increase the nbytes accordingly.
 */

pagemask = ~ (getpagesize() - 1);
offset = (long) ((unsigned long) address & pagemask);
delta = (unsigned long) address - (unsigned long) offset;
nbytes += delta;

/*
 * Open the address space file in the /proc file system.
 */

sprintf(name, "/proc/%d/as", pid);
fd = open(name, O_RDWR, 0);
if (fd < 0) {

perror(name);
return;

}

/*
 * Map the target memory. The mapping is to nbytes bytes starting at
 * offset (which is on a page boundary) of the address space memory
 * object identified by fd. The resulting virtual address of offset
 * is returned in mapaddr. The virtual mapped address of the original
 * address value is mappaddr+delta.
 */

mapaddr = (caddr_t) mmap((caddr_t)0, nbytes,
PROT_READ|PROT_WRITE, MAP_SHARED, fd, offset);

/*
 * After mapping, the proc file can be closed.
 */

close(fd);

/*
 * Test the return value for a failed mmap attempt.
 */

if ((int) mapaddr == -1) {
perror("mmap");
return;

}

It is important to note that a monitoring process’s mapping is to the memory object to
which the target process’s pages in the range [off, off + len) are mapped. As a result, a
monitoring process’s mapping to a target process’s address space can become invalid if the
target’s mapping changes. In such circumstances, the monitoring process retains a map-
ping to the underlying memory object, but the mapping is no longer shared with the target

PowerMAX OS Programming Guide

6-24

process. Because a monitoring process cannot detect that a mapping is no longer valid,
you must make provision in your application for controlling the relationship between the
monitoring process and the target.

Circumstances in which a mapping to a target process’s address space becomes invalid are
as follows:

• The target process terminates.

• The target process unmaps a page in the range [off, off + len).

• The target process maps a page in the range [off, off + len) to a different
memory object.

• The target process invokes fork(2) and stores into an unlocked, private,
writable page in the range [off, off + len) before the child process does.

In this case, the target process receives a private copy of the page, and its
mapping and write reference are redirected to the copy (see p. 6-18 for an
explanation of MAP_PRIVATE mappings and the fork system call). The
monitoring process retains a mapping to the original memory object.

• The target process invokes fork(2) and locks in memory a private, writ-
able page in the range [off, off + len) that is being shared with the child pro-
cess pending a copy-on-write.

In this case, the process that performs the lock operation receives a private
copy of the page (as though it has performed the first store to the page). If it
is the parent, or target, process that locks the page, then the monitoring pro-
cess’s mapping is no longer valid.

• The target process invokes mprotect(2) to enable write permission on
a locked, private, read-only page in the range [off, off + len) that is being
shared with the child process pending a copy-on-write.

In this case, the target process receives a private copy of the page. The
monitoring process retains a mapping to the original memory object.

If your application is expected to be the target of address space mapping by a monitoring
process, you are advised to:

• Perform memory-locking operations in the target process before its address
space is mapped by the monitoring process.

• Prior to invoking fork , lock in memory any pages for which mappings by
the parent and the monitoring process need to be retained.

If your application is not expected to be the target of address space mapping, you may
wish to postpone locking pages in memory until after invoking fork .

Finally, if a monitoring process attempts to write to a private, writable page that the target
process is sharing with a child process pending a copy-on-write, the operation will fail,
and a SIGSEGV signal will be sent to the monitoring process.

It is important to note that the OS also supports the usermap(3rt) and user-
map(3F77rt) library routines, which allow a target process’s address space to be
mapped onto the virtual address space of another process. For information on the use of

Memory Management

6-25

these routines, refer to the corresponding system manual pages. It is recommended that
you consider the following prior to using these routines.

• The mmap system call is a standard System V interface although the capa-
bility of using it to establish mappings to /proc/ pid/as files is a Concur-
rent extension. The usermap routines are wholly Concurrent extensions.

• Mmap provides control over the page protections and the location of map-
pings in the calling process. The usermap routines do not.

• Based on the assumption that you have identified the pages that are to be
mapped, mmap provides independent mappings (two requests for a map-
ping to the same page result in two separate mappings). The usermap rou-
tines are intended to be used for mappings to particular data items and so
can avoid redundant mappings to the same target page.

• When invoking mmap, you specify an open file descriptor. It is your
responsibility to open and close the target memory object at appropriate
times. When invoking one of the usermap routines, you specify a process
identifier. Usermap opens the corresponding /proc/ pid/as file.
Because usermap is expected to be called multiple times, the file descrip-
tor remains open. Leaving the file descriptor open may not be appropriate
in all cases.

Establishing a Mapping to /dev/zero 6

As mentioned previously, one of the devices to which a process can establish a mapping is
a pseudo-device called /dev/zero . A process can read from or write to /dev/zero . If
it uses the read(2) system call to read from /dev/zero , it obtains a buffer full of
zeros. If it uses the write(2) system call to write to /dev/zero , the write operation
succeeds, but the data that are written are ignored.

A process can use mmap to map a portion of its address space to /dev/zero . Each time
a process establishes a mapping to /dev/zero , it creates a mapping to a new, unnamed
memory object that is filled with zeros. If two processes map /dev/zero , each has a
mapping to a different zero-filled memory object. If one process maps /dev/zero twice,
it has mappings to two different zero-filled memory objects. When a process has
/dev/zero mapped MAP_SHARED, then a child process created through a subsequent
call to fork(2) will share the object with the parent. A store performed by either the par-
ent or the child will be visible to both. When a process has /dev/zero mapped
MAP_PRIVATE , then a child process created through a subsequent call to fork will get a
copy of the object in its address space.

The following code fragment demonstrates a use of /dev/zero to create a block of
scratch storage in a program at an address of the system's choosing.

PowerMAX OS Programming Guide

6-26

As written, this function permits a hierarchy of processes to use the area of allocated stor-
age as a region of communication (for implicit interprocess communication purposes).

Removing Mappings 6

The munmap(2) system call removes all mappings for pages in a specified range from
the address space of the calling process. It is not an error to remove mappings from
addresses that do not have them, and any mapping, regardless of how it has been estab-
lished, can be removed with munmap. The munmap call does not in any way affect the
objects that have been mapped at those addresses.

If the call to munmap is successful, further references to the previously mapped pages will
result in delivery of a SIGSEGV signal to the process. Any changes to pages that have
been mapped MAP_PRIVATE will be discarded. Any memory locks associated with the
mapped pages will be removed (see “Memory Page Locking”, p.6-27, and “Address Space
Locking”, p.6-33, for information on memory locking facilities).

The specifications required for making the munmap call are as follows:

#include <sys/mman.h>

int munmap(addr, len)

void * addr;
size_t len;

The arguments are defined as follows:

addr the starting address of the portion of the calling process’s virtual address
space that is to be unmapped. The specified address must be a multiple
of the system page size. The system page size is available to an applica-
tion through use of the sysconf(3C) library routine.

len the length in bytes of the portion of the process’s address space that is to
be unmapped

/*
 * Function to allocate a block of zeroed storage. Parameter
 * is the number of bytes desired. The storage is mapped as
 * MAP_SHARED so that if a fork occurs, the child process
 * will be able to access and modify the storage. If we wished
 * to cause the child's modifications (as well as those by the
 * parent) to be invisible to the ancestry of processes, we
 * would use MAP_PRIVATE.
 */
caddr_t
get_zero_storage(int len);
{

int fd;
caddr_t result;

if ((fd = open(“/dev/zero”, O_RDWR)) == -1)
return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);
return (result);

}

Memory Management

6-27

A return value of 0 indicates that the call to munmap has been successful. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
munmap(2) system manual page for a listing of the types of errors that may occur.

Cache Control 6

The UNIX memory management system can be thought of as a form of cache manage-
ment in which a processor's primary memory is used as a cache for pages from objects
from the system's virtual memory. Thus, there are several operations that control or inter-
rogate the status of this cache, as described in this section.

Memory Cache Control 6

The memcntl(2) system call provides several control operations over mappings in the
range [addr, addr + len), including locking pages into physical memory, unlocking them,
and writing pages to secondary storage. The functions described in the rest of this section
offer simplified interfaces to the memcntl operations.

Memory Page Locking 6

Using the mlock and munlock Library Routines 6

The mlock(3C) and munlock(3C) library routines allow a process to lock and unlock
pages within its virtual address space. The interfaces to these routines are based on UNIX
System V Release 4 and IEEE Standard 1003.1b-1993. They are explained in the para-
graphs that follow.

NOTE

To use these routines, the calling process must have the
P_PLOCK privilege (for additional information on privileges,
refer to the “Security Considerations” section of Chapter 9 and the
intro(2) system manual page).

If you wish to be able to perform DMA (Direct Memory Access)
transfers to or from the virtual address space of an application
program, you must use the userdma(2) system call rather than
the mlock(3C) library routine. Requirements and procedures
are explained in “Using the userdma System Call.”

As an alternative to embedding library calls in your application, you can use the multipur-
pose setrun(1) command to run a command so that all current and future mappings are
locked and the process is immune to page stealing, page aging, and page swapping.

int
memcntl(caddr_t addr , size_t len , int cmd, caddr_t arg , int attr , int mask);

PowerMAX OS Programming Guide

6-28

The syntax relating to process memory locking is:

setrun -e -l [command] [argument]

See the setrun(1) man page for a full description.

The mlock routine causes a specified range of the calling process’s virtual pages to be
locked in physical memory. The size of the area that is locked in memory is a multiple of
the system page size. References to these pages (through other mappings in this or other
processes) will not result in page faults that require an I/O operation to obtain the data
needed to satisfy the reference. Because this operation ties up physical system resources
and has the potential to disrupt normal system operation, use of this facility is restricted to
users who have the P_PLOCK privilege. The system prohibits more than a configura-
tion-dependent limit of pages to be locked in memory simultaneously, the call to mlock
will fail if this limit is exceeded.

The pages will be resident until the process unlocks them by invoking the munlock(3C)
or the munlockall(3C) library routine, invokes the exec(2) system call, or exits.
Multiple lock operations performed by the process on the same range of virtual pages will
be removed with a single call to munlock . If the process invokes fork(2) , the virtual
pages within the child process will not be locked in physical memory.

CAUTION

The fork system call normally uses the copy-on-write technique
to reduce the number of pages of the parent process that must be
copied to the child. In this case, the copy is not made until the first
write to the page is performed. To avoid the copy-on-write protec-
tion faults, copies of locked pages are made at the time of the call
to fork . The performance of the fork operation will be signifi-
cantly slower if the fork is performed when a large portion of an
application’s address space is locked.

The specifications required for using the mlock call are as follows:

#include <mman.h>

int mlock(addr, len)

void * addr;
size_t len;

The arguments are defined as follows:

addr the starting address of the range of virtual address space that is to be
locked in memory

len the length in bytes of the range of virtual address space that is to be
locked in memory

If the call to mlock(3C) is successful, the range of pages between addr and addr + len -
1 is locked in memory; a value of zero is returned. A return value of -1 indicates that an
error has occurred; errno is set to indicate the error.

Memory Management

6-29

munlock releases the locks on physical pages. If multiple mlock calls are made through
the same mapping, only a single munlock call will be required to release the locks (in
other words, locks on a given mapping do not nest.) However, if different mappings to the
same pages are processed with mlock , then the pages will stay locked until the locks on
all the mappings are released.

Locks are also released when a mapping is removed, either through being replaced with an
mmap operation or removed explicitly with munmap. A lock will be transferred between
pages on the “copy-on-write” event associated with a MAP_PRIVATE mapping, thus locks
on an address range that includes MAP_PRIVATE mappings will be retained transparently
along with the copy-on-write redirection (see mmap above for a discussion of this redirec-
tion).

The munlock(3C) library routine allows the calling process to unlock a specified range
of its virtual pages. The size of the area that is unlocked is a multiple of the system page
size.

The specifications required for using the munlock call are as follows:

#include <mman.h>

int munlock(addr, len)

void * addr;
size_t len;

The arguments are defined as follows:

addr the starting address of the range of virtual address space that is to be
unlocked

len the length in bytes of the range of virtual address space that is to be
unlocked

Upon successful completion, the munlock(3C) routine returns a value of zero. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error.

Using the userdma System Call 6

The userdma system call allows you to use an I/O controller’s DMA (Direct Memory
Access) capabilities directly from user mode. It prepares an I/O buffer located in a user
process’s virtual address space for DMA transfers.

Standard DMA hardware operates at the physical memory level; it bypasses memory man-
agement units and sometimes data caches. To be able to perform DMA transfers to or from
the virtual address space of an application program, the following requirements must be
met:

• The application’s buffer must be locked in physical memory; that is, the
buffer must be resident, and the virtual to physical mappings must not be
allowed to change.

• The application must know the physical location of the buffer.

• CPU access and I/O access to the buffer must be coherent.

PowerMAX OS Programming Guide

6-30

• The virtual pages containing the buffer must be marked “used” and for
DMA read operations, “modified.” The userdma(2) system call ensures
that all of these requirements are met.

The specifications required for using the userdma call are as follows:

#include <sys/types.h>
#include <sys/mman.h>

int userdma(addr, len, cmd, flags, vec, nvec)

caddr_t addr;
size_t len;
int cmd;
int flags;
struct dmavec * vec;
int nvec;

Arguments are defined as follows:

addr the virtual address of the first byte of the user’s I/O buffer

len the length in bytes of the I/O buffer

cmd the operation to be performed on the I/O buffer

flags an integer value that indicates how the I/O buffer is to be used. The
value of flags depends upon the operation specified by cmd.

vec the null pointer constant or a pointer to an array of dmavec structures to
which the physical locations of the buffer fragments are returned. A
dmavec structure contains the following fields:

paddr_t dma_paddr; /*Physical address and ... */
uint_t dma_plen; /*length of buffer fragment.*/

nvec zero or the number of elements in the array pointed to by vec

Cmd must be one of the following. The values of flags that are associated with each com-
mand are indicated.

USERDMA_LOCK fault the pages in the address range specified by the addr
and len arguments into physical memory and ensure that
physical memory and CPU data caches are coherent. A page
may be locked multiple times through different mappings;
however, within a mapping, locks on a page are not nested.
Multiple lock operations on the same address in the same
process will be removed with a single unlock operation. An
unlock operation will be performed on a locked I/O buffer if
a mapping is removed or a page is deleted when a file is
removed or truncated.

It is important to note that the physical location of a locked
buffer can change under the following circumstances:

Memory Management

6-31

• If a read-only, MAP_PRIVATE mapping is
made writable by a call to mprotect(2)

• If the buffer resides in a local memory pool
and is mapped to a file and another process
attempts to access the file

As a result, it is advisable to use process private pages for
locked I/O buffers.

The value of the flags argument may be one or both of the
following or zero:

USERDMA_WRITE indicates that the buffer is to be
used to write to a device. The pages
contain ing the buffer wi l l be
checked for read access and marked
as “used.”

USERDMA_READ indicates that the buffer is to be
used to read from a device. The
pages containing the buffer will be
checked for wr i te access and
marked as “used” and “modified.”

If one or both of these flags are specified, the cache modes
of the pages containing the buffer are altered as necessary to
keep memory and cache coherent. If the value of flags is
zero, the I/O buffer is locked in physical memory, but the
cache modes of the pages containing the buffer are not mod-
ified.

If the value of nvec is greater than zero, userdma returns
the physical location of the I/O buffer in the array pointed to
by vec. Each element in the array describes a contiguous
physical buffer fragment. The return value of userdma is
the number of array elements used to describe the I/O
buffer. If the value of nvec is zero, userdma does not
return the physical location of the I/O buffer.

Note that to use this command, the calling process must
have the P_PLOCK privilege (for additional information on
privileges, refer to the “Security Considerations” section of
Chapter 9 and the intro(2) system manual page).

USERDMA_UNLOCK unlock all of the pages in the address range specified by the
addr and len arguments

The value of the flags argument should be the same as the
value that was supplied on a corresponding USERDMA_LOCK

call. The value of vec must be NULL ; the value of nvec must
be zero.

Note that to use this command, the calling process must
have the P_PLOCK privilege (for additional information on

PowerMAX OS Programming Guide

6-32

privileges, refer to the “Security Considerations” section of
Chapter 9 and the intro(2) system manual page).

USERDMA_VTOP return the physical location of the I/O buffer located in the
address range specified by the addr and len arguments in the
same way that it is returned by a USERDMA_LOCK userdma
call

The value of the flags argument must be zero.

Note that this command performs virtual to physical address
translation only; it does not lock the I/O buffer in physical
memory. You must lock the I/O buffer in physical memory
prior to making a USERDMA_VTOP userdma call.

Upon successful completion of a USERDMA_LOCK or a USERDMA_VTOP call, the return
value of userdma is the number of dmavec structures used to describe the physical loca-
tion of an I/O buffer. The number of structures can range from one to as many as one per
page. In the best case, when the entire buffer is physically contiguous, the number will be
one. In the worst case, when none of the pages are contiguous, the number will be one per
page. In any case, userdma takes advantage of any physical contiguity in describing a
physical buffer fragment. Upon successful completion of a USERDMA_UNLOCK call, the
return value of userdma is 0. If an error occurs on a userdma call, the return value is -1,
and errno is set to indicate the error.

You can compute the number of pages in the address range specified by the addr and len
arguments (where len > 0) by using the following formula:

nvec = ((unsigned)(addr + len - 1) / nbpp) - ((unsigned)(addr) / nbpp) + 1;

The variable nbpp represents the number of bytes per page on your system. You can
obtain this value by using the sysconf(3C) library routine (see p. 6-36 for additional
information on this routine).

You can use the value obtained from the formula to determine how large the array of
dmavec structures needs to be. You can then supply a pointer to the array and the number
of elements that it contains on a USERDMA_LOCK userdma call as follows:

nfrag = userdma(addr, len, USERDMA_LOCK, 0, vec, nvec);

This call locks the I/O buffer in physical memory and returns its physical location in the
array that is pointed to by vec . Upon return from the call, nfrag contains the number of
contiguous physical buffer fragments.

To unlock the I/O buffer, you can invoke userdma as follows:

userdma(addr, len, USERDMA_UNLOCK, 0, 0, 0);

For additional information on use of the userdma(2) system call, refer to the corre-
sponding system manual page. User-level device drivers use userdma . An overview of
user-level device drivers is provided in Device Driver Programming.

Memory Management

6-33

Address Space Locking 6

The mlockall(3C) and munlockall(3C) library routines are similar in purpose
and restriction to mlock(3C) and munlock(3C) (see p. 6-27) except that they operate
on entire address spaces.

NOTE

To use these routines, the calling process must have the
P_PLOCK privilege (for additional information on privileges,
refer to the “Security Considerations” section of Chapter 9 and the
intro(2) system manual page).

If you wish to be able to perform DMA (Direct Memory Access)
transfers to or from the virtual address space of an application
program, you must use the userdma(2) system call rather than
the mlockall(3C) library routine. Requirements and proce-
dures are explained in “Using the userdma System Call:.”

The mlockall routine locks all of the calling process’s virtual address space in physical
memory--that is, text, data, stack, and shared memory segments, memory-mapped files,
and shared libraries. The address space remains resident until the process unlocks it by
invoking the munlockall routine, invokes the exec(2) system call, or exits. Multiple
lock operations performed by the process on its virtual address space will be removed with
a single call to munlockall . If the process invokes fork(2) , the address space of the
child process will not be locked in physical memory.

CAUTION

The fork system call normally uses the copy-on-write technique
to reduce the number of pages that must be copied from the parent
process to the child. With this technique, a page is not copied until
the first write to the page is performed by either the parent or the
child. However, to avoid the copy-on-write protection faults that
result, copies of locked pages are made at the time of the call to
fork . The performance of the fork operation will be signifi-
cantly slower when a large portion of the parent’s address space is
locked.

The specifications required for using the mlockall call are as follows:

#include <mman.h>

int mlockall(flags)

int flags;

The argument is defined as follows:

flags an integer value that sets one or both of the following bits:

PowerMAX OS Programming Guide

6-34

MCL_CURRENT causes all of the process’s current virtual
address space to be locked in physical memory

MCL_FUTURE causes the new virtual pages to be locked in
physical memory if the process’s virtual address
space is expanded in the future

If flags is (MCL_CURRENT | MCL_FUTURE) , the lock is to affect every-
thing that is currently in the process’s address space and everything that
is added in the future (both current and future mappings).

Upon successful completion, the mlockall(3C) routine returns a value of zero. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.

One call to the munlockall routine removes all locks on all pages in the process’s vir-
tual address space, whether the locks have been established by mlock, mlockall ,
plock , or userdma .

The specifications required for using the munlockall call are as follows:

#include <mman.h>

int munlockall()

The munlockall(3C) routine always returns a value of zero.

Memory Cache Synchronization 6

The msync(3C) routine supports applications that require assertions about the integrity
of data in the storage backing their mapping, either for correctness or for coherent com-
munications in a distributed environment. The msync routine causes all modified copies
of pages over the range [addr, addr + len) to be flushed to the objects mapped by those
addresses. In the cache analogy discussed in “Cache Control” (see p. 6-27), msync is the
cache “write-back,” or flush, operation. It is similar in purpose to the fsync(2) opera-
tion for files. The msync routine optionally invalidates such cache entries so that further
references to the pages cause the system to obtain them from their permanent storage loca-
tions.

Secondary storage for the portion of a process’s address space that has been mapped
MAP_SHARED is the file to which it has been mapped. If a portion of a process’s address
space has been mapped MAP_PRIVATE and has been modified, it has no permanent second-
ary storage--it temporarily uses the swap area.

The specifications for making the msync call are as follows:

#include <sys/mman.h>

int msync(addr, len, flags)

void * addr;
size_t len;
int flags;

The arguments are defined as follows:

Memory Management

6-35

addr the starting address of the memory-mapped file that contains modified
data to be written to secondary storage. The specified address must be a
multiple of the system page size. The system page size is available to an
application through use of the sysconf(3C) library routine.

len the length in bytes of the memory-mapped file that contains modified
data to be written to secondary storage

flags an integer value that sets one or more of the following bits:

Note that MS_ASYNC and MS_SYNC are mutually exclusive bits. One of
them must be specified.

MS_ASYNC indicates that the write operations are to be
asynchronous. In this case, the msync routine
will return as soon as all of the write operations
have been queued.

MS_SYNC indicates that the write operations are to be syn-
chronous. In this case, the msync routine will
not return until all of the write operations have
been completed as defined for synchronized I/O
data integrity completion (for an explanation of
POSIX synchronized I/O, refer to the Real-Time
Programming Guide).

MS_INVALIDATE indicates that copies of pages in memory are to
be invalidated. If these pages are referenced
subsequently, the system will obtain them from
secondary storage.

A return value of 0 indicates that the call to msync has been successful. A return value of
-1 indicates that an error has occurred; errno is set to indicate the error.

Memory Page Residency 6

The mincore(2) system call determines the residency of the memory pages in the
address space covered by mappings in the range [addr, addr + len). Using the cache con-
cept described in “Cache Control” (see p. 6-27), this function can be viewed as an opera-
tion that interrogates the status of the cache and returns an indication of what is currently
resident in the cache. The status is returned as a char-per-page in the character array refer-
enced by *vec (which the system assumes to be large enough to encompass all of the pages
in the address range). Each character contains either a 1 (indicating that the page is resi-
dent in the system's primary storage) or a 0 (indicating that the page is not resident in pri-
mary storage.) Other bits in the character are reserved for possible future expansion—
therefore, programs testing residency should test only the least significant bit of each char-
acter.

int
mincore(caddr_t addr , size_t len , char * vec);

PowerMAX OS Programming Guide

6-36

The mincore call returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this information
may quickly be outdated. Only locked pages are guaranteed to remain in memory.

Other Mapping Functions 6

Given the _SC_PAGESIZE argument, the sysconf(3C) routine returns the system-depen-
dent size of a memory page. For portability, applications should not embed any constants
specifying the size of a page, and instead should make use of sysconf to obtain that
information. Note that it is not unusual for page sizes to vary even among implementations
of the same instruction set, increasing the importance of using this function for portability.

The mprotect(2) system call allows the calling process to change the access permis-
sions associated with a mapping that it has established to a memory object. Mprotect
has the effect of assigning protection prot to all pages in the range [addr, addr + len). The
protection assigned cannot exceed the permissions allowed on the underlying object. For
instance, a read-only mapping to a file that has been opened for read-only access cannot be
set to be writable with mprotect (unless the mapping is of the MAP_PRIVATE type, in
which case the write access is permitted because the writes will modify copies of pages
from the object, and not the object itself).

A process may not change the permissions associated with a mapping that has been estab-
lished by another process.

The specifications for making the mprotect call are as follows:

#include <sys/mman.h>

int mprotect(addr, len, prot)

void * addr;
size_t len;
int prot;

The arguments are defined as follows:

addr the starting address of the mapping for which the permissions are to be
changed

len the length in bytes of the mapping for which the permissions are to be
changed

prot an integer value that specifies one or more of the following options and
determines the access permissions to be associated with the mapped
data. This value is either

PROT_NONE permits no access to the data

 or

the bitwise inclusive OR of one or more of the following:

PROT_READ permits read access to the data

PROT_WRITE permits write access to the data

Memory Management

6-37

PROT_EXEC permits execute access to the data

Generally a process should not attempt to read, write, or execute data for
which the corresponding permission has not been granted. If
PROT_NONE is specified, any attempt to access the data will fail; a
SIGSEGV signal will be sent to the process. If PROT_WRITE is not spec-
ified, any attempt to write to the data will fail; a SIGSEGV signal will be
sent to the process. If PROT_WRITE is specified and the mapping has
been established through a call to mmap(2) with the MAP_SHARED

option specified, the underlying memory object must have been opened
with write permission.

It is important to note that on Model 6800 systems, the caches may not
be coherent if either of the following occurs:

• Only PROT_READ and PROT_EXEC are specified, and a
process attempts to read the data. In this case, the data
cache will not be coherent with memory.

• PROT_WRITE and PROT_EXEC are specified, and a pro-
cess attempts to execute the data. In this case, the instruc-
tion cache may not be coherent with memory.

If you wish to modify data and then execute the modified data, use the
following steps: (1) map the data with the prot option set to
PROT_WRITE ; (2) modify the data; (3) change the permissions associ-
ated with the data by invoking mprotect with the prot option set to
PROT_EXEC; and (4) execute the data.

A return value of 0 indicates that the call to mprotect has been successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the mprotect(2) system manual page for a listing of the types of errors that may occur.

Address Space Layout 6

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynamically allo-
cated storage (data), and the process's stack. Text is read-only and shared, while the data
and stack segments are private to the process.

The OS still uses text, data, and stack segments although these should be thought of as
constructs provided by the programming environment rather than by the operating system.
As such, it is possible to construct processes that have multiple segments of each type, or
of types of arbitrary semantic value—no longer are programs restricted to being built only
from objects the system was capable of representing directly. For instance, a process's
address space may contain multiple text and data segments, some belonging to specific
programs and some shared among multiple programs. Text segments from shared librar-
ies, for example, typically appear in the address spaces of many processes. A process's
address space is simply a vector of pages, and there is no necessary division between dif-
ferent address-space segments. Process text and data spaces are simply groups of pages
mapped in ways appropriate to the function they provide the program.

PowerMAX OS Programming Guide

6-38

While the system may have multiple areas that can be considered data segments, for pro-
gramming convenience, the system maintains operations to operate on an area of storage
associated with a process's initial heap storage area. A process can manipulate this area by
calling brk(2) and sbrk(2) :

The brk system call sets the system's idea of the lowest data segment location not used by
the caller to addr (rounded up to the next multiple of the system's page size).

The alternate function, sbrk adds incr bytes to the caller's data space and returns a pointer
to the start of the new data area.

A process's address space is usually sparsely populated, with data and text pages intermin-
gled. The precise mechanics of the management of stack space is machine-dependent. By
convention, page 0 is not used. Process address spaces are often constructed through
dynamic linking when a program is exec' ed. Operations such as exec and dynamic
linking build upon the mapping operations described previously. Dynamic linking is
described further in the Concurrent C Reference Manual.

Managing Misaligned Data 6

This section describes the data alignment requirements of Series 6000 systems. It explains
the procedures for handling misaligned data exceptions on those systems and describes the
underlying implementation details.

Alignment 6

On Series 6000 systems, data must align according to the following requirements:

Table 6-1. Byte Alignment Requirements

Data Type Byte Alignment

half-word 2

word 4

single-precision float 4

double-precision float 8

caddr_t
brk(caddr_t addr);

caddr_t
sbrk(int incr);

Memory Management

6-39

Programs that try to access data not aligned according to these requirements cause a Series
6000 system to generate a bus error.

Certain coding practices can cause misaligned data exceptions. In a FORTRAN applica-
tion, for example, EQUIVALENCE statements and COMMON blocks can be used to override
the compiler’s normal alignment procedure. If a double-precision variable is forced to be
aligned on a boundary that is not a multiple of eight, a misaligned data exception occurs.

To ensure that a program can access misaligned data without aborting, you must make
provisions for handling misaligned data exceptions in your program. The following sec-
tion explains procedures for handling these exceptions.

Exceptions 6

Handle misaligned data exceptions on a Series 6000 system using one of the following
methods:

• Write a signal-handling routine to deal with the SIGBUS signal.

• Compile and link the source program with the misalign.o object
designed to handle such exceptions by silently emulating the access.

misalign.o provides a signal handler to decide if the exception is a misaligned data
exception. If it is, the handler works around the problem by accessing the data byte by
byte at a significant cost in performance.

To compile and link a C or FORTRAN source program with misalign.o , specify its
name when invoking the compiler. Use the following examples for command line instruc-
tions with C and FORTRAN programs:

cc -p source_file.c /lib/misalign.o
f77 source_file.f /lib/misalign.o

The following section presents implementation details related to the system object files.

Implementation 6

misalign.o deals with misaligned data exceptions by using the C global variable
_handle_misaligned_accesses and the C routines _misalign_init() and
_sigbus_handler() . The C start-up routines crt0.o , mcrt0.o , and gcrt0.o ,
check the value of the variable _handle_misaligned_accesses . If the value is
non-zero, the start-up routines call the _misalign_init() routine. This routine then
makes the following sigaction(2) system call to specify the address of a structure
that identifies a signal-handling routine to deal with the SIGBUS signal:

sigaction (SIGBUS, &action, 0)

(See the sigaction(2) system manual page and “The sigaction Structure” on
page 10-9 for information on using this call.)

The _sigbus_handler() routine queries the SIGBUS signal and emulates the mis-
aligned data access. To handle misaligned data exceptions, the signal handler must deal

PowerMAX OS Programming Guide

6-40

with the SIGBUS signal and recognize that the exception block argument is
BUS_ADRALN.

NOTE

User programs can replace system-provided versions of variables
and functions by naming them identically. This keeps the sys-
tem-provided versions from linking into the executable modules.

7
Terminal Device Control

Introduction . 7-1
Terminal Device Control Functions. 7-1

General Terminal Interface. 7-1
Baud Rates. 7-2
Input Modes. 7-3
Output Modes . 7-3
Control Modes. 7-3
Local Modes and Line Disciplines . 7-4
Special Control Characters . 7-4

Opening a Terminal Device File. 7-5
Input Processing and Reading Data . 7-5

Canonical Mode Input Processing. 7-6
Non-Canonical Mode Input Processing . 7-7

Writing Data and Output Processing . 7-9
Closing a Terminal Device File . 7-9
Special Characters . 7-9
The Controlling-Terminal and Process-Groups . 7-11
Session Management and Job Control . 7-12
Improving Terminal I/O Performance . 7-13

TTY in Canonical Mode . 7-13
TTY in Raw Mode . 7-14
TTY Flow Control. 7-15

STREAMS-Based Terminal Subsystem . 7-16
Line Discipline Module . 7-18

Default Settings . 7-18
Open and Close Routines . 7-19
Read-Side Processing . 7-19
Write-Side Processing . 7-20
EUC Handling in ldterm . 7-21

Support of termiox . 7-23
Hardware Emulation Module . 7-24

STREAMS-based Pseudo-Terminal Subsystem . 7-25
Line Discipline Module . 7-25
Pseudo-tty Emulation Module — ptem . 7-26
Remote Mode . 7-28
Packet Mode . 7-28
Pseudo-tty Drivers — ptm and pts . 7-29

grantpt . 7-32
unlockpt. 7-32
ptsname . 7-32

PowerMAX OS Programming Guide

7-1

7
Chapter 7Terminal Device Control

7
7
7

Introduction 7

This chapter discusses the general terminal interface to control asynchronous communica-
tion ports. The functions on the termio(7) manual page are used to access and config-
ure the hardware interface to a terminal.

Also included in this chapter is a discussion of the mechanisms involved with opening and
closing a terminal device file, as well as input/output processing.

The remainder of this chapter addresses the STREAMS mechanism as it relates to termi-
nal device control. The STREAMS-based terminal subsystem provides a uniform interface
for implementing character I/O devices and networking protocols in the kernel. Also dis-
cussed here is the notion of the STREAMS-based pseudo-terminal subsystem which pro-
vides the user with an identical interface to the STREAMS-based terminal subsystem.

Terminal Device Control Functions 7

General Terminal Interface 7

Terminal Device Control functions offer a general terminal interface for controlling asyn-
chronous communication-ports in a device-independent manner using parameters stored
in the termios structure which is defined by the <termios.h> header file (see
termios(7)). The OS also uses termios to control the operation of network-connec-
tions. Table 7-1 gives an overview of this interface:

Table 7-1. Terminal Device Control Functions

Feature/Function Description Interface

General Terminal Characteristics

- get output baud-rate cfgetospeed

- set output baud-rate cfsetospeed

- get input baud-rate cfgetispeed

- set input baud-rate cfsetispeed

PowerMAX OS Programming Guide

7-2

The termios structure stores the values of settable terminal I/O parameters used by
functions to control terminal I/O characteristics and the operation of a terminal-device-
file. The <termios.h> header file defines the termios structure to contain at least the
following members (see termios(7)):

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* control chars */

The <termios.h> header file defines the type tcflag_t as long , the type cc_t as
char . The <termios.h> header file also defines the symbolic-constant NCCS as the
size of the control-character array.

Baud Rates 7

The structure termios stores the input and output baud-rates in c_cflag . Table 7-2
below shows symbolic names defined in <termios.h> and the baud-rate each repre-
sents:

General Terminal Control Functions

- get state of terminal tcgetattr

- set state of terminal tcsetattr

- line control function tcsendbreak

- line control function tcdrain

- line control function tcflush

- line control function tcflow

- get foreground process-group-id tcgetpgrp

- set foreground process-group-id tcsetpgrp

Table 7-2. Baud-Rates Definitions

Symbolic Constant Associated baud-rate

B0 hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134.5 baud

B150 150 baud

B200 200 baud

Table 7-1. Terminal Device Control Functions (Cont.)

Terminal Device Control

7-3

Note that the zero baud-rate, B0, is used to terminate the connection. If B0 is specified, the
modem control lines are no longer asserted; normally, this disconnects the line (see
cfsetospeed(2) and tcsetattr(2)):

The termios structure members c_iflag , c_oflag , c_cflag and c_lflag take
as values the bitwise inclusive-OR of bitwise distinct masks with symbolic names defined
by the <termios.h> header file (see termios(7)).

Input Modes 7

The input-modes field c_iflag specifies treatment of terminal input. Calling read on a
terminal-device-file works as described in “Input Processing and Reading Data” and the
value of c_iflag along with the value of c_lflag determine how to process input read
from the terminal (see termios(7)).

Output Modes 7

The output-modes field c_oflag specifies treatment of terminal output. Calling write
on a terminal-device-file works as described in “Writing Data and Output Processing” and
the value of c_oflag determines how to process output written to the terminal (see
termios(7)).

Control Modes 7

The control-modes field c_cflag specifies communication control for terminals. The
value of c_cflag controls characteristics of the communications-port to a terminal-
device, but the underlying hardware may fail to support all c_cflag values (see
termios(7)). A communication-port other than an asynchronous serial connection may
ignore some of the control-modes; for example, if an attempt is made to set the baud-rate
on a network-connection to a terminal on another host, the baud-rate may or may not be
set on the connection between the terminal and the machine it is directly connected to.

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

Table 7-2. Baud-Rates Definitions (Cont.)

Symbolic Constant Associated baud-rate

PowerMAX OS Programming Guide

7-4

Local Modes and Line Disciplines 7

The local-modes field c_lflag specifies the line-discipline for the terminal. The line-
discipline works as described in “Canonical Mode Input Processing” and “Non-Canonical
Mode Input Processing” and the value of c_lflag along with the value of c_iflag
determine how the line-discipline acts on input from a terminal-device-file (see
termios(7)).

Special Control Characters 7

The array c_cc specifies the special control-characters that affect the operation of the
communication-port and the processing of terminal input and output as described in the
“Special Characters” section below. For each entry of the control-character array c_cc ,
the following are typical default values:

The subscript values are unique, except that the VMIN and VTIME subscripts may have the
same value as the VEOF and VEOL subscripts respectively. The <termios.h> header file
defines the relative positions, subscript names and default values for the control-character
array c_cc (see termios(7)).

The NL and CR character cannot be changed. The INTR,QUIT,ERASE, KILL,EOF,
EOL, SUSP, STOP and START characters can be changed as follows:

struct termios term;

term.c_cc[VINTR] = ' a';
term.c_cc[VQUIT] = ' b';
term.c_cc[VERASE] = ' c';
term.c_cc[VKILL] = ' d';

Table 7-3. Terminal Device Control Character Array

Subscript
Value

Subscript
Name

Character
Value

Character
Description

0 VINTR ASCII DEL INTR character

1 VQUIT ASCII FS QUIT character

2 VERASE # ERASE character

3 VKILL @ KILL character

4 VEOF ASCII EOT EOF character

5 VEOL ASCII NUL EOL character

6 reserved

7 reserved

8 VSTART ASCII DC1 START character

9 VSTOP ASCII DC3 STOP character

10 VSUSP ASCII SUB SUSP character

Terminal Device Control

7-5

term.c_cc[VEOF] = ' e';
term.c_cc[VEOL] = ' f';
term.c_cc[VSUSP] = ' g';
term.c_cc[VSTOP] = ' h';
term.c_cc[VSTART] = ' i';

where a, b, c, d, e, f, g, h and i are the INTR, QUIT, ERASE, KILL, EOF, EOL,
SUSP, STOP and START characters respectively.

Implementations which prohibit changing the START and STOP characters may ignore the
character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
tcsetattr is called, but return the character value when tcsetattr is called (see
tcsetattr(2)).

If _POSIX_VDISABLE is defined for the terminal-device-file, and the value of one of the
changeable special control-characters equals _POSIX_VDISABLE, that function is dis-
abled; that is, the special character is ignored on input and is not recognized (see “Special
Characters” section below). If ICANON is clear, the value of _POSIX_VDISABLE lacks
any special meaning for the VMIN and VTIME entries of the c_cc array.

Opening a Terminal Device File 7

When a terminal-device-file is opened, it normally causes the process to wait until a con-
nection is established. In practice, application-programs seldom open such files; instead, at
system-initialization time special-programs open terminal-device-files as the standard
input, standard output and standard error files (see stdio(4)).

Opening a terminal-device-file with the flag O_NONBLOCK clear on the open system call
causes the process to block until the terminal-device is ready and available (see
open(2)). The flag CLOCAL can also affect the open system call (see termios(7)).

Input Processing and Reading Data 7

A terminal-device accessed through an open terminal-device-file ordinarily operates in
full-duplex mode. This means data may arrive at any time, even while output is occurring.
Each terminal-device-file has associated with it an “input-queue,” into which the system
stores incoming data before the process reads that data. The system imposes a limit of
MAX_INPUT, the maximum allowable number of bytes of input data, on the number of
bytes of data that it stores in the input-queue. Data is lost only when the input-queue
becomes completely full, or when an input line exceeds MAX_INPUT. The behavior of the
system when this limit is exceeded is implementation-dependent.

In the OS, if the data in the terminal-device-file input-queue exceeds MAX_INPUT and
IMAXBEL is clear, all the bytes of data saved up to that point are discarded without any
notice, but if IMAXBEL is set and the data in the terminal-device-file input-queue exceeds
MAX_INPUT, the ASCII BEL character is echoed. Further input is not stored, and any data
already present in the input-queue remains undisturbed.

Two general kinds of input processing are available, determined by whether the terminal-
device-file is operating in canonical mode or non-canonical mode. These modes are

PowerMAX OS Programming Guide

7-6

described in “Canonical Mode Input Processing” and “Non-Canonical Mode Input Pro-
cessing”. Additionally, input is processed according to the c_iflag and c_lflag fields
(see termios(7)). Such processing can include echoing, which in general means trans-
mitting input data bytes immediately back to the terminal when they are received from the
terminal. This is useful for terminals that can operate in full-duplex mode.

The way a process reading from a terminal-device-file gets data depends on whether the
terminal-device-file is operating in canonical mode or non-canonical mode. How read
operates on a terminal-device-file also depends on how open(2) or fcntl(2) sets the
flag O_NONBLOCK for the file:

• If O_NONBLOCK and O_NDELAY are clear, read blocks until data is avail-
able or a signal interrupts the read operation.

• If O_NONBLOCK is set, read completes, without blocking, in one of the
following three ways:

1. If enough bytes of data are available to satisfy the entire request,
read completes successfully and returns the number of bytes it
transferred.

2. If too few bytes of data are available to satisfy the entire request,
read completes successfully, having transferred as much data as it
could, and returns the number of bytes it actually transferred.

3. If no data is available, read returns -1 and errno equals EAGAIN.

When data become available depends on whether the input-processing mode is canonical
or non-canonical. The following sections, “Canonical Mode Input Processing” and “Non-
Canonical Mode Input Processing,”describe each of these input-processing modes.

Canonical Mode Input Processing 7

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by the new-line ('\n') character, end-of-file (EOF) character or end-of-line
(EOL) character (see “Special Characters”section below for more information on EOF and
EOL).

Processing terminal input in units of lines means that a program attempting a read from a
terminal-device-file is suspended until an entire line is typed, or a signal is received. Also,
no matter how many bytes of data a read may request from a terminal-device-file, it
transfers at most one line of input. It is not, however, necessary to read the entire line at
once; a read may request any number of bytes of data, even one, without losing any data
remaining in the line of input.

If MAX_CANON is defined for this terminal-device, it is a limit on the number of bytes in a
line. The behavior of the system when this limit is exceeded is implementation-dependent.
If MAX_CANON is not defined for this terminal-device, there is no such limit.

It should be noted that there is a possible inherent deadlock if the program and the imple-
mentation conflict on the value of MAX_CANON. With both ICANON and IXOFF set when
more than MAX_CANON characters transmitted without a line-feed, transmission is
stopped, the line-feed (or carriage-return if ICRLF is set) never arrives, and the read is
never satisfied.

Terminal Device Control

7-7

A program should never set IXOFF if it is using canonical-mode unless it knows that
(even in the face of a transmission error) the conditions described previously cannot be
met or unless it is prepared to deal with the possible deadlock in some other way, such as
time-outs.

NOTE

This would only occur if the transmitting side was a communica-
tions device (for example, an asynchronous port). This normally
will not happen since the transmitting side is a user at a terminal.

It should also be noted that this can be made to happen in non-canonical-mode if the num-
ber of characters received that would cause IXOFF to be sent is less than VMIN when
VTIME equals zero.

With the OS, if the data in the line-discipline buffer exceeds MAX_CANON in canonical
mode and IMAXBEL is clear, all the bytes of data saved in the buffer up to that point are
discarded without any notice, but if IMAXBEL is set and the data in the line-discipline
buffer exceeds MAX_INPUT, the ASCII BEL character is echoed. Further input is not
stored, and any data already present in the input-queue remains undisturbed.

During input, erase and kill processing occurs whenever either of two special characters,
the ERASE and KILL characters is received (see “Special Characters”). This processing
affects data in the input-queue that has yet to be delimited by a new-line, EOF or EOL
character. This un-delimited data makes up the current line. The ERASE character deletes
the last character (if any) in the current line; it does not erase beyond the beginning of the
line. The KILL character deletes all data (if any) in the current line; it optionally outputs a
new-line character. The ERASE and KILL characters have no effect if the current line
lacks any data.

Both the ERASE and KILL characters operate on a key-stroke basis independently of any
backspacing or tabbing. Typically, # is the default ERASE character, and @ is the default
KILL character. The ERASE and KILL characters themselves are not placed in the input-
queue.

Non-Canonical Mode Input Processing 7

In non-canonical input processing, input bytes are not assembled into lines, and erase and
kill processing does not occur. The values of the MIN and TIME members of the c_cc
array determine how to process any data received.

MIN is the minimum number of bytes of data that a read should return when it completes
successfully. If MIN exceeds MAX_INPUT, the response to the request is implementation-
defined. With the OS, the maximum value that can be stored for MIN in c_cc[VMIN] is
256, less than MAX_INPUT which equals 512; thus, the MIN value can never exceed
MAX_INPUT. TIME is a read-timer with a 0.10 second granularity used to time -out burst
and short-term data transmissions. The four possible interactions between MIN and TIME
follow:

1. (MIN>0 , TIME>0).

PowerMAX OS Programming Guide

7-8

Because TIME>0 , it serves as an inter-byte timer activated on receipt of the first
byte of data, and reset on receipt of each byte of data. MIN and TIME interact as
follows:

• As soon as a byte of data is received, the inter-byte timer starts
(remember that the timer is reset on receipt of each byte)

• If MIN bytes of data are received before the inter-byte timer expires,
the read completes successfully.

• If the inter-byte timer expires before MIN bytes of data are received,
the read transfers any bytes received up until then.

When TIME expires, a read transfers at least one byte of data because the inter-
byte timer is enabled if and only if a byte of data was received. A program using this
case must wait for at least one byte of data to be read before proceeding. In case
(MIN>0 , TIME>0), a read blocks until receiving a byte of data activates MIN and
TIME, or a signal interrupts the read . Thus, the read transfers at least one byte of
data.

2. (MIN>0 , TIME=0).

Because TIME=0 , the timer plays no role and only MIN is significant. A read com-
pletes successfully only on receiving MIN bytes of data (i.e., the pending read
blocks until MIN bytes of data are received) or a signal interrupts the read . Use
these values only when the program cannot continue until a predetermined number
of bytes of data are read. A program using this case to do record-based terminal I/O
may block indefinitely in a read .

3. (MIN=0 , TIME>0).

Because MIN=0 , TIME no longer serves as an inter-byte timer, but now serves as a
read-timer activated when a read is processed (in canon). A read completes suc-
cessfully as soon as any bytes of data are received or the read-timer expires. A read
does not transfer any bytes of data if the read-timer expires. If the read-timer does
not expire, a read completes successfully if and only if some bytes of data are
received. In case (MIN=0 , TIME>0), the read does not block indefinitely waiting
for a byte of data. If no bytes of data are received within TIME*0.10 seconds after
the read starts, it returns 0 having read no data. If the buffer holds data when a
read starts, the read-timer starts as if it received data immediately. MIN and TIME
are useful when a program can assume that data is not available after a TIME inter-
val and other processing can be done before data is available.

4. (MIN=0 , TIME=0).

Without waiting for more bytes of data to be received, a read returns the minimum
of either the number of bytes of data requested or the number of bytes of data cur-
rently available. In this case, a read immediately transfers any bytes of data
present, or if no bytes of data are available, it returns 0 having read no data. In case
(MIN=0 , TIME=0), read operates identically to the O_NDELAY flag in canonical
mode.

MIN/TIME interactions serve different purposes and thus do not parallel one another. In
case [2]: (MIN>0 , TIME=0), TIME lacks effect, but with the conditions reversed in case
[3]: (MIN=0 , TIME>0), both MIN and TIME play a role in that receiving a single byte sat-

Terminal Device Control

7-9

isfies the MIN criteria. Furthermore, in case [3]: (MIN=0 , TIME>0), TIME represents a
read-timer, while in case [1]: (MIN>0 , TIME>0), TIME represents an inter-byte timer,

Cases [1] and [2], where MIN>0 , handle burst mode activity (e.g., file-transfers), where
programs need to process at least MIN bytes of data at a time . In case [1], the inter-byte
timer acts as a safety measure; in case [2], the timer is turned off.

Cases [3] and [4] handle single byte, timed transfers like those used by screen-based
programs that need to know if a byte of data is present in the input-queue before refreshing
the screen. In case [3], the read is timed, while in case [4], it is not.

One should also note that MIN is always just a minimum, and does not define a record
length. Thus, if a program tries a read of 20 bytes when 25 bytes of data are present and
MIN is 10, the read returns 20 bytes of data. In the special case of MIN=0 , this still
applies: if more than one byte of data is available, all data is returned immediately.

Writing Data and Output Processing 7

When a process writes data onto a terminal-device-file, c_oflag controls how to process
those bytes (see termios(7)). The OS provides buffering such that a call to write
schedules data for transfer to the device, but has not necessarily completed the transfer
when the call returns (see write(2) for the effects of O_NONBLOCK on write).

Closing a Terminal Device File 7

The last process to close a terminal-device-file causes any output remaining to be sent to
the device and any input remaining to be discarded. Following these actions, if the flag
HUPCL is set in the control-modes and the communication-port supports a disconnect
function, the terminal-device does a disconnect.

Because the POSIX.1 standard is silent on whether a close blocks waiting for transmis-
sion to drain, or even if a close might flush any pending output, a program concerned
about how data in terminal input and output-queues are handled should call the appropri-
ate functions such as tcdrain to ensure the desired behavior (see close(2) and
tcdrain(2)).

Special Characters 7

Certain characters have special functions on input or output or both. These functions and
their typical default character values are summarized below:

INTR (typically, rubout or ASCII DEL) sends an interrupt signal, SIGINT , to all
processes in the foreground process-group for which the terminal is the con-
trolling-terminal. Receiving the signal SIGINT normally forces a process to
terminate, but a process may arrange to ignore the signal or to call a signal-
catching function (see sigaction(2)).

PowerMAX OS Programming Guide

7-10

If ISIG is set, the INTR character is recognized and acts as a special character
on input and is discarded when processed (see termios(7)).

QUIT (typically, control-\ or ASCII FS) sends a quit signal, SIGQUIT, to all pro-
cesses in the foreground process-group for which the terminal is the control-
ling-terminal. Receiving the signal SIGQUIT normally forces a process to ter-
minate just as the signal SIGINT does except that, unless a receiving process
makes other arrangements, it not only terminates but a core image file (called
CORE) will be created in the current working directory of the process (see
sigaction(2)).

If ISIG is set, the QUIT character is recognized and acts as a special character
on input and is discarded when processed (see termios(7)).

ERASE (typically, the character #) erases the most recently input character in the cur-
rent line (see “Canonical Mode Input Processing”). It does not erase beyond
the start of a line.

If ICANON is set, the ERASE character is recognized and acts as a special
character on input and is discarded when processed (see termios(7)).

KILL (typically, the character @) deletes the entire line, as delimited by an EOF, EOL
or NL character.

If ICANON is set, the KILL character is recognized and acts as a special char-
acter on input and is discarded when processed (see termios(7)).

EOF (typically, control-d or ASCII EOT) generates an EOF, from a terminal. On
receiving EOF, a read immediately passes any bytes of data it holds to the
process without waiting for a new-line, and discards the EOF. If EOF occurred
at the beginning of a line, a read holds no bytes of data, and returns a byte
count of zero, the standard end-of-file indication.

If ICANON is set, the EOF character is recognized and acts as a special charac-
ter on input and is discarded when processed (see termios(7)).

NL (ASCII LF) is the normal line delimiter, ('\n'), which can not be changed or
escaped.

If ICANON is set, the NL character is recognized and acts as a special character
on input (see termios(7)).

EOL (typically, ASCII NUL) is an additional line delimiter, like the NL character.
EOL is not normally used.

If ICANON is set, the EOL character is recognized and acts as a special charac-
ter on input (see termios(7)).

SUSP (typically, control-d or ASCII SUB) sends an stop signal, SIGTSTP, to all
processes in the foreground process-group for which the terminal is the con-
trolling-terminal.

If job-control is supported and ISIG is set, the SUSP character is recognized
and acts as a special character on input and is discarded when processed (see
termios(7)).

Terminal Device Control

7-11

STOP (typically, control-s or ASCII DC3) temporarily suspends output. It is useful
with CRT terminals to prevent output from disappearing before it can be seen.
While output is suspended, STOP characters are ignored not read. The STOP
character can be changed through the c_cc array (see termios(7)).

If IXON (output control) is set or IXOFF (input control) is set, the STOP char-
acter is recognized and acts as a special character on both input and output. If
IXON is set, the STOP character is discarded when processed (see
termios(7)).

START (typically, control-q or ASCII DC1) resumes output suspended by a STOP
character. While output is not suspended, START characters are ignored and
not read. The START character can be changed through the c_cc array (see
termios(7)).

If IXON (output control) is set or IXOFF (input control) is set, the START
character is recognized and acts as a special character on both input and out-
put. If IXON is set, the START character is discarded when processed (see
termios(7)).

CR (ASCII CR) is a line delimiter, ('\r'), which is translated into the NL char-
acter, and it has the same effect as the NL character if ICANON and ICRNL are
set and IGNCR is clear.

If ICANON is set, the NL character is recognized and acts as a special character
on input (see termios(7)).

MIN controls terminal I/O during raw mode (ICANON off) processing (see “Canon-
ical Mode Input Processing”).

TIME controls terminal I/O during raw mode (ICANON off) processing (see “Non-
Canonical Mode Input Processing”).

The NL and CR character cannot be changed. The INTR, QUIT, ERASE, KILL,
EOF, EOL, SUSP, STOP and START characters can be changed through the c_cc
array (see termios(7)).

The ERASE, KILL and EOF characters may be entered literally (their special meaning
escaped) by preceding them with the escape character ('\'). In this case, no special func-
tion is done and the escape character is not read as input.

The Controlling-Terminal and Process-Groups 7

A terminal may belong to a process as its controlling-terminal, which is a terminal
uniquely associated with one session. Each process of a session with a controlling-termi-
nal has the same controlling-terminal assigned to it. Each session may have at most one
controlling-terminal associated with it and vice versa. A terminal may be assigned to at
most one session as the controlling-terminal. Certain input sequences from the control-
ling-terminal cause signals to be sent to all processes in the process-group for the control-
ling-terminal (see termios(7)). The controlling-terminal plays a special role in han-
dling quit and interrupt signals (see “Special Characters”).

PowerMAX OS Programming Guide

7-12

The controlling-terminal for a session is acquired by the session-leader, which is the pro-
cess that created the session; the session-id of a session equals the process-id of the ses-
sion-leader. When a session-leader acquires a controlling-terminal for its session, it
thereby becomes the controlling-process of that session (see setsid(2)). Should the
terminal later cease to be a controlling-terminal for the session of the session-leader, the
session-leader ceases to be a controlling-process.

When a session-leader without a controlling-terminal opens a terminal-device-file and the
flag O_NOCTTY is clear on open , that terminal becomes the controlling-terminal assigned
to the session-leader if the terminal is not already assigned to some session (see
open(2)). When any process other than a session-leader opens a terminal-device-file, or
the flag O_NOCTTY is set on open , that terminal does not become the controlling-termi-
nal assigned to the calling-process.

A controlling-terminal distinguishes one of the process-groups in the session assigned to it
as the foreground process-group; all other process-groups in the session are background
process-groups. By default, when the session-leader acquires a controlling-terminal, the
process-group of the session-leader becomes the foreground process-group of the control-
ling-terminal. The foreground process-group plays a special role in handling signal-gener-
ating input characters (see “Special Characters” above).

A new process inherits the controlling-terminal through the fork operation (see
fork(2)). When a process calls setsid to create a new session, the process relin-
quishes its controlling-terminal; other processes remaining in the old session with that ter-
minal as their controlling-terminal continue to have it (see setsid(2)). When all file-
descriptors that denote the controlling-terminal in the system are closed (whether or not it
is in the current session), it is unspecified whether all processes that had that terminal as
their controlling-terminal cease to have any controlling-terminal. Whether and how a ses-
sion-leader can reacquire a controlling-terminal after the controlling-terminal is relin-
quished in this fashion is unspecified. A process does not relinquish its controlling-termi-
nal simply by closing all of its file-descriptors that denote the controlling-terminal if other
processes continue to have it open.

When a session-leader terminates, the current session relinquishes the controlling-terminal
allowing a new session-leader to acquire it. Any further attempts to access the terminal by
other processes in the old session may be denied and treated as if modem-disconnect was
detected on the terminal.

Session Management and Job Control 7

If _POSIX_JOB_CONTROL is defined, the OS supports job-control and command inter-
preter processes supporting job-control can assign the terminal to different jobs, or pro-
cess-groups, by placing related processes in a single process-group and assigning the pro-
cess-group with the terminal. A process may examine or change the foreground process-
group of a terminal assuming the process has the required permissions (see tcget-
pgrp(2) and tcsetpgrp(2)). The termios facility aids in this assignment by
restricting access to the terminal by processes outside of the foreground process-group
(see Chapter 10. “Signals, Job Control, and Pipes” in this guide).

When there is no longer any process whose process-id or process-group-id matches the
process-group-id of the foreground process-group, the terminal lacks any foreground pro-
cess-group. It is unspecified whether the terminal has a foreground process-group when

Terminal Device Control

7-13

there is no longer any process whose process-group-id matches the process-group-id of the
foreground process-group, but there is a process whose process-id matches the process-
group-id of the foreground process-group. Only a successful call to tcsetpgrp or
assignment of the controlling-terminal as described can make a process-group the fore-
ground process-group of a terminal (see tcsetpgrp(2)).

Background process-groups in the session of the session-leader are subject to a job-control
line-discipline when they attempt to access their controlling-terminal. Typically, they are
sent a signal that causes them to stop, unless they have made other arrangements (see
signal(4)). An exception is made for processes that belong to a orphaned process-
group, which is a process-group none of whose members have a parent in another process-
group within the same session and thus share the same controlling-terminal. When these
processes attempt to access their controlling-terminal, they return errors, because there is
no process to continue them if they should stop (see chapter “Signals, Job Control, and
Pipes” in this guide).

Improving Terminal I/O Performance 7

For user-level programs that read and write to terminals, the TTY subsystem the OS pro-
vides a flexible interface, known as the termio facility. The flexibility of the termio
facility enables users to perform efficient TTY I/O in a wide range of applications. How-
ever, the improper use of this termio can result in inefficient user programs. This section
discusses writing programs that use termio and focuses on the topics of buffer size,
canonical mode, raw mode and flow control and provides several code examples.

User programs that read from terminal devices must read from TTYs in either canonical
mode or raw mode.

TTY in Canonical Mode 7

In canonical mode, characters are read from the device and processed before being
returned. This processing translates kill and erase characters. Characters are not returned
until a new line (NL), end of file (EOF), or end of line (EOL) is read, which means that
characters are returned a line at a time. Canonical mode is usually associated with termi-
nals.

An important factor to consider when using canonical mode is what to do when reading
from a TTY device for which characters are not available. If the O_NDELAY flag has been
set for the TTY, then such read s return a 0, indicating that no characters are available.
Otherwise, read s will not return until a character is available. If a program can perform
other processing when characters are not available from a TTY, then the O_NDELAY flag
should be set for the TTY. This might require programs to be more complicated, but the
complication are offset by an increase in efficiency.

The following function shown in Screen 7-1 opens a TTY device for reading or writing
(line 12), places it in canonical mode (line 23), and sets the O_NDELAY option so that
read s are not blocked when characters are not available (line 12).

PowerMAX OS Programming Guide

7-14

Screen 7-1. Improving TTY Performance Canonical Mode

TTY in Raw Mode 7

In raw mode, characters are read and returned as is; that is, without being processed. Read-
ing from a TTY device in raw mode is faster than reading from a TTY device in canonical
mode. In the interest of efficiency, raw mode should be used when characters do not need
to be canonically processed.

Just as in canonical mode, TTY devices that are in raw mode must deal with the problem
of what to do when reading from a device for which characters are not available. The
O_NDELAY flag only applies to TTY devices that are in canonical mode. The same func-
tion is provided by the MIN and TIME values for raw TTY devices. By choosing appropri-
ate values of MIN and TIME, a programmer can help maximize efficiency when reading
from TTY devices in raw mode.

The following function shown in Screen 7-2 inputs a TTY that has previously been opened
in raw mode and sets the MIN and TIME options to be 0 so that read s will not be blocked
when characters are not available.

 1 #include <fcntl.h>
 2 #include <termio.h>
 3
 4 extern struct termio old_term;
 5
 6 setup1(TTY)
 7 char *TTY;
 8 {
 9 int fid;
10 struct termio new_term;
11
12 if ((fid = open(TTY, O_RDWR|O_NDELAY)) == -1)
13 {
14 printf(“open failed.\n”);
15 exit(1);
16 }
17 else if (ioctl(fid, TCGETA, &old_term) == -1)
18 {
19 printf(“ioctl get failed.\n”);
20 exit(1);
21 }
22 new_term = old_term;
23 new_term.c_lflag |= ICANON;
24 if (ioctl(fid, TCSETA, &new_term) == -1)
25 {
26 printf(“ioctl set failed.\n”);
27 exit(1);
28 }
29 return fid;
30 }

Terminal Device Control

7-15

Screen 7-2. Improving TTY Performance Raw Mode

TTY Flow Control 7

Flow control becomes a problem when a program that reads from a TTY device that can-
not keep up with the number of characters that are coming into the TTY. If this happens,
characters are over-written in the TTY input queue before they can be read by the pro-
gram.

Conversely, when a program writes to a TTY, the device might not be able to keep up with
the TTY. When this happens, characters that are written by a program to a TTY are not
being seen by the appropriate device.

The termio facility provides a mechanism called software flow control to solve this
problem. If a program cannot keep up with the characters coming into a TTY, the TTY
sends a STOP character to the originator. The originator, upon receipt of the STOP charac-
ter, stops sending characters to the TTY until it received a START character. The TTY
sends the START character when the program has sufficiently emptied its input queue.

If a device cannot keep up with a TTY, the device sends a STOP character to the TTY.
Upon receipt of the STOP character, the TTY stops sending characters to the terminal until
it receives a START character. The terminal sends the START character when it has suffi-
ciently emptied its input queue. The TTY then blocks writes to the TTY until the TTY's
output has sufficiently emptied.

Three different options are provided for flow control: IXON, IXOFF, and IXANY. If
IXOFF is set, then software flow control is enabled on the TTY's input queue. The TTY
transmits a STOP character when the program cannot keep up with its input queue and
transmits a START character when its input queue in nearly empty again.

 1 #include <termio.h>
 2
 3 extern struct termio old_term;
 4
 5 setup2(fid)
 6 int fid;
 7 {
 8 struct termio new_term;
 9
10 if (ioctl(fid, TCGETA, &old_term) == -1)
11 {
12 printf(“ioctl get failed.\n”);
13 exit(1);
14 }
15
16 new_term = old_term;
17 new_term.c_lflag &= ~ICANON;
18 new_term.c_cc[VMIN] = 0;
19 new_term.c_cc[VTIME] = 0;
20
21 if (ioctl(fid, TCSETA, &new_term) == -1)
22 {
23 printf(“ioctl set failed.\n”);
24 exit(1);
25 }
26 }

PowerMAX OS Programming Guide

7-16

If IXON is set, software flow control is enabled on the TTY's output queue. The TTY
blocks writes by the program when the device to which it is connected cannot keep up
with it. If IXANY is set, then any character received by the TTY from the device restarts
the output that has been suspended.

The following function shown in Screen 7-3 sets the IXANY, IXOFF, and IXANY options
for a TTY device that has previously been opened so that software flow control is enabled
for both input and output.

Screen 7-3. Improving TTY Performance Flow Control

When you design programs that read and write for the TTY subsystem, remember to
address buffer size, canonical/raw mode and flow control concerns to ensure programming
efficiency. For further information, see the following references:

• termio(7) in the System Files and Devices Reference.

• open(2) , read(2) , and ioctl(2) in the Operating System API Ref-
erence.

• termio(BA_ENV) in the System V Interface Definition.

STREAMS-Based Terminal Subsystem 7

The OS implements the terminal subsystem in STREAMS. The STREAMS-based termi-
nal subsystem (see Figure 7-1) provides many benefits:

• Reusable line discipline modules. The same module can be used in many
STREAMS where the configuration of these STREAMS may be different.

 1 #include <termio.h>
 2
 3 extern struct termio old_term;
 4
 5 setup3(fid)
 6 int fid;
 7 {
 8 struct termio new_term;
 9
10 if (ioctl(fid, TCGETA, &old_term) == -1)
11 {
12 printf(“ioctl get failed.\n”);
13 exit(1);
14 }
15
16 new_term = old_term;
17 new_term.c_iflag |= IXON | IXOFF | IXANY;
18
19 if (ioctl(fid, TCSETA, &new_term) == -1)
20 {
21 printf(“ioctl set failed.\n”);
22 exit(1);
23 }
24 }

Terminal Device Control

7-17

• Line discipline substitution. Although the OS provides a standard terminal
line discipline module, another one conforming to the interface may be
substituted. For example, a remote login feature may use the terminal sub-
system line discipline module to provide a terminal interface to the user.

• Internationalization. The modularity and flexibility of the STREAMS-
based terminal subsystem enables an easy implementation of a system that
supports multiple byte characters for internationalization. This modularity
also allows easy addition of new features to the terminal subsystem.

• Easy customizing. Users may customize their terminal subsystem environ-
ment by adding and removing modules of their choice.

• The pseudo-terminal subsystem. The pseudo-terminal subsystem can be
easily supported.

• Merge with networking. By pushing a line discipline module on a network
line, you can make the network look like a terminal line.

Figure 7-1. STREAMS-based Terminal Subsystem

User Process

User Space

upstream

downstream
Kernel Space

Line
Discipline

Stream Head

161300

TTY
Driver

PowerMAX OS Programming Guide

7-18

The initial setup of the STREAMS-based terminal subsystem is handled with the
ttymon(1M) command within the framework of the Service Access Facility (SAF) or
the autopush facility.

The STREAMS-based terminal subsystem supports termio , the termios specification
of the POSIX standard, multiple byte characters for internationalization, the interface to
asynchronous hardware flow control and peripheral controllers for asynchronous terminals
(see termio(7) , termios(7) and termiox(7)).

To use shl with the STREAMS-based terminal subsystem, the sxt driver is imple-
mented as a STREAMS-based driver. However, the sxt feature is being phased out and
users are encouraged to use the job control mechanism. Note that both shl and job
control should not be run simultaneously.

Line Discipline Module 7

A STREAMS line discipline module called ldterm (see ldterm(7)) is a key part of
the STREAMS-based terminal subsystem. Throughout this chapter, the terms “line disci-
pline” and ldterm are used interchangeably and refer to the STREAMS version of the
standard line discipline and not the traditional character version. ldterm performs the
standard terminal I/O processing that was traditionally done through the linesw mecha-
nism.

The termio and termios specifications describe four flags that are used to control the
terminal: c_iflag (defines input modes), c_oflag (defines output modes), c_cflag
(defines hardware control modes), and c_lflag (defines terminal functions used by
ldterm). To process these flags elsewhere (for example, in the firmware or in another
process), a mechanism is in place to turn on and off the processing of these flags. When
ldterm is pushed, it sends an M_CTL message downstream, which asks the driver which
flags the driver will process. The driver sends back that message in response if it needs to
change ldterm 's default processing. By default, ldterm assumes that it must process all
flags except c_cflag unless it receives a message telling otherwise.

Default Settings 7

When ldterm is pushed on the Stream, the open routine initializes the settings of the
termio flags. The default settings are:

c_iflag = BRKINT|ICRNL|IXON|ISTRIP|IXANY
c_oflag = OPOST|ONLCR|TAB3
c_cflag = 0
c_lflag = ISIG|ICANON|ECHO|ECHOK

In canonical mode (ICANON flag in c_lflag is turned on), read from the terminal file
descriptor is in message nondiscard (RMSGN) mode (see streamio(7)). This implies
that in canonical mode, read on the terminal file descriptor always returns at most one
line regardless of how many characters have been requested. In noncanonical mode, read
is in byte-stream (RNORM) mode.

Terminal Device Control

7-19

Open and Close Routines 7

The open routine of the ldterm module allocates space for holding state information.

The ldterm module establishes a controlling tty for the line when an M_SETOPTS mes-
sage (so_flags is set to SO_ISTTY) is sent upstream. The Stream head allocates the
controlling tty on the open, if one is not already allocated.

To maintain compatibility with existing application-programs that use the O_NDELAY
flag, the open routine sets the SO_NDELON flag on in the so_flags field of the
stroptions structure in the M_SETOPTS message.

The open routine fails if there is insufficient space for allocating the state structure, or
when an interrupt occurs while the open is sleeping until memory becomes available.

The close routine frees all the outstanding buffers allocated by this Stream. It also sends an
M_SETOPTS message to the Stream head to undo the changes made by the open routine.
The ldterm module also sends M_START and M_STARTI messages downstream to
undo the effect of any previous M_STOP and M_STOPI messages.

Read-Side Processing 7

The ldterm module's read-side processing has put and service procedures. ldterm
can send the following messages upstream:

M_DATA, M_BREAK, M_PCSIG, M_SIG, M_FLUSH, M_ERROR, M_IOCACK,
M_IOCNAK, M_HANGUP, M_CTL, M_SETOPTS, M_COPYOUT, and M_COPYIN .

The ldterm module's read-side processes M_BREAK, M_DATA, M_CTL, M_FLUSH,
M_HANGUP, and M_IOCACK messages. All other messages are sent upstream unchanged.

The put procedure scans the message for flow control characters (IXON), signal generat-
ing characters, and after (possible) transformation of the message, queues the message for
the service procedure. Echoing is handled completely by the service procedure.

In canonical mode if the ICANON flag is on in c_lflag , canonical processing is per-
formed. If the ICANON flag is off, noncanonical processing is performed (see ter-
mio(7) for more details). Handling VMIN/VTIME in the STREAMS environment is
somewhat complicated, because read needs to activate a timer in the ldterm module in
some cases; hence, read notification becomes necessary. When a user issues an ioctl to
put ldterm in noncanonical mode, the ldterm module sends an M_SETOPTS message
to the Stream head to register read notification. Further reads on the terminal file descrip-
tor causes the Stream head to issue an M_READ message downstream and data are sent
upstream in response to the M_READ message. With read notification, buffering of raw
data is performed by ldterm . It is possible to canonize the raw data when the user has
switched from raw to canonical mode. However, the reverse is not possible.

To summarize, in noncanonical mode, the ldterm module buffers all data until a request
for the data arrives in the form of an M_READ message. The number of bytes sent
upstream is the argument of the M_READ message.

Input flow control is regulated by the ldterm module by generating M_STARTI and
M_STOPI high-priority messages. When sent downstream, receiving drivers or modules
take appropriate action to regulate the sending of data upstream. Output flow control is

PowerMAX OS Programming Guide

7-20

activated when ldterm receives flow control characters in its data stream. The ldterm
module then sets an internal f lag indicating that output processing is to be
restarted/stopped and sends an M_START/M_STOP message downstream.

Write-Side Processing 7

Write-side processing of the ldterm module is performed by the write-side put and
service procedures. The ldterm module supports the following ioctl s:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA,
TCGETS, TCXONC, TCFLSH, TCSBRK, TIOCSWINSZ, TIOCGWINSZ, and
JWINSIZE .

All ioctl s not recognized by the ldterm module are passed downstream to the neigh-
boring module or driver. BSD functionality is turned off by IEXTEN (see termio(7)
for more details).

The following messages can be received on the write-side:

M_DATA, M_DELAY, M_BREAK, M_FLUSH, M_STOP, M_START, M_STOPI,
M_STARTI, M_READ, M_IOCDATA, M_CTL, and M_IOCTL.

On the write-side, the ldterm module processes M_FLUSH, M_DATA, M_IOCTL, and
M_READ messages, and all other messages are passed downstream unchanged.

An M_CTL message is generated by ldterm as a query to the driver for an intelligent
peripheral and to determine the functional split for termio processing. If all or part of
termio processing is done by the intelligent peripheral, ldterm can turn off this pro-
cessing to avoid computational overhead. This is done by sending an appropriate response
to the M_CTL message, as follows: (see also ldterm(7)).

• If all the termio processing is done by the peripheral hardware, the driver
sends an M_CTL message back to ldterm with ioc_cmd of the structure
iocblk set to MC_NO_CANON. If ldterm is to handle all termio pro-
cessing, the driver sends an M_CTL message with ioc_cmd set to
MC_DO_CANON. Default is MC_DO_CANON.

• If the peripheral hardware handles only part of the termio processing, it
informs ldterm in the following way:

The driver for the peripheral device allocates an M_DATA message large
enough to hold a termios structure. The driver then turns on those
c_iflag , c_oflag , and c_lflag fields of the termios structure that
are processed on the peripheral device by ORing the flag values. The
M_DATA message is then attached to the b_cont field of the M_CTL mes-
sage it received. The message is sent back to ldterm with ioc_cmd in
the data buffer of the M_CTL message set to MC_PART_CANON.

The ldterm module does not check if write-side flow control is in effect before forward-
ing data downstream. It expects the downstream module or driver to queue the messages
on its queue until flow control is lifted.

Terminal Device Control

7-21

EUC Handling in ldterm 7

The idea of letting post-processing (the o_flags) happen off the host processor is not
recommended unless the board software is prepared to deal with international (EUC) char-
acter sets properly. The reason for this is that post-processing must take the EUC informa-
tion into account. ldterm knows about the screen width of characters (that is, how many
columns are taken by characters from each given code set on the current physical display)
and it takes this width into account when calculating tab expansions. When using multi-
byte characters or multicolumn characters ldterm automatically handles tab expansion
(when TAB3 is set) and does not leave this handling to a lower module or driver.

By default, multibyte handling by ldterm is turned off. When ldterm receives an
EUC_WSET ioctl call, it turns multibyte processing on, if it is essential to handle prop-
erly the indicated code set. Thus, if one is using single byte 8-bit codes and has no special
multicolumn requirements, the special multicolumn processing is not used at all. This
means that multibyte processing does not reduce the processing speed or efficiency of
ldterm unless it is actually used.

The following describes how the EUC handling in ldterm works:

First, the multibyte and multicolumn character handling is only enabled when the
EUC_WSET ioctl indicates that one of the following conditions is met:

• Code set consists of more than one byte (including the SS2 and/or SS3) of
characters.

• Code set requires more than one column to display on the current device, as
indicated in the EUC_WSET structure.

Assuming that one or more of the above conditions, EUC handling is enabled. At this
point, a parallel array, used for other information, is allocated. When a byte with the high
bit arrives, it is checked to see if it is SS2 or SS3. If so, it belongs to code set 2 or 3. Oth-
erwise, it is a byte that comes from code set 1. Once the extended code set flag has been
set, the input processor retrieves the subsequent bytes, as they arrive, to build one multi-
byte character. A counter field tells the input processor how many bytes remain to be read
for the current character. The parallel array holds the display width of each logical charac-
ter in the canonical buffer. During erase processing, positions in the parallel array are con-
sulted to figure out how many backspaces need to be sent to erase each logical character.
(In canonical mode, one backspace of input erases one logical character, no matter how
many bytes or columns that character consumes.) This greatly simplifies erase processing
for EUC.

The t_maxeuc field holds the maximum length, in memory bytes, of the EUC character
mapping currently in use. The eucwioc field is a substructure, which holds information
about each extended code set.

The t_eucign field aids in output post-processing (tab expansion). When characters are
output, ldterm keeps a column to show the current cursor column. When it sends the
first byte of an extended character, it adds the number of columns required for that charac-
ter to the output column. It then subtracts one from the total width in memory bytes of that
character and stores the result in t_eucign . This field tells ldterm how many bytes to
ignore for the purposes of column calculation. (ldterm calculates the appropriate num-
ber of columns when it sees the first byte of the character.)

PowerMAX OS Programming Guide

7-22

The field t_eucwarn is a counter for occurrences of bad extended characters. It is mostly
useful for debugging. After receiving a certain number of invalid EUC characters (perhaps
because of some problem on the line or with declared values), a warning is given on the
system console.

There are two relevant files for handling multibyte characters: <euc.h> and <eucio-
ctl.h> . The <eucioctl.h> header contains the structure that is passed with
EUC_WSET and EUC_WGET calls. The normal way to use this structure is to get CSWIDTH
(see note below) from the locale using a mechanism such as getwidth or setlocale
and then copy the values into the structure in <eucioctl.h> , and send the structure
using an I_STR ioctl call. The EUC_WSET call informs the ldterm module about the
number of bytes in extended characters and how many columns the extended characters
from each set consume on the screen. This allows ldterm to treat multibyte characters as
single entities for erase processing and to calculate correctly tab expansions for multibyte
characters.

NOTE

LC_CTYPE (instead of CSWIDTH) should be used in the environ-
ment in PowerMAX OS systems. See chrtbl(1M) for more
information.

The file <euc.h> has the structure with fields for EUC width, screen width, and wide
character width. The following functions are used to set and get EUC widths (these func-
tions assume the environment where the eucwidth_t structure is needed and available):

Terminal Device Control

7-23

The brief discussion of multiple byte character handling by the ldterm module was pro-
vided here for those interested in internationalization applications in the OS.

Support of termiox 7

The OS includes the extended general terminal interface (see termiox(7)) that supple-
ments the termio(7) general terminal interface by adding for asynchronous hardware
flow control, isochronous flow control and clock modes, and local implementations of
additional asynchronous features. termiox(7) is handled by hardware drivers if the
board supports it.

Hardware flow control supplements the termio(7) IXON, IXOFF, and IXANY charac-
ter flow control. The termiox(7) interface allows for both unidirectional and bidirec-
tional hardware flow control. Isochronous communication is a variation of asynchronous
communication where two communicating devices provide transmit and/or receive clock
to each other. Incoming clock signals can be taken from the baud rate generator on the
local isochronous port controller. Outgoing signals are sent on the receive and transmit
baud rate generator on the local isochronous port controller.

#include <eucioctl.h> /* need some other things too, like stropts.h */

struct eucioc eucw; /* for EUC_WSET/EUC_WGET to line discipline */
eucwidth_t width; /* return struct from _getwidth() */

/*
 * set_euc Send EUC code widths to line discipline.
 */

set_euc(e)
set_euc(struct eucioc *e)
{
struct strioctl sb;

sb.ic_cmd = EUC_WSET;
sb.ic_timout = 15;
sb.ic_len = sizeof(struct eucioc);
sb.ic_dp = (char *) e;

if (ioctl(0, I_STR, &sb) < 0)
fail();

}
/*
 * euclook Get current EUC code widths from line discipline.
 */

euclook(e)
euclook(struct eucioc *e)
{
struct strioctl sb;

sb.ic_cmd = EUC_WGET;
sb.ic_timout = 15;
sb.ic_len = sizeof(struct eucioc);
sb.ic_dp = (char *) e;
if (ioctl(0, I_STR, &sb) < 0)

fail();
printf(“CSWIDTH=%d:%d,%d:%d,%d:%d,

e->eucw[1], e->scrw[1],
e->eucw[2], e->scrw[2],
e->eucw[3], e->scrw[3]);

}

PowerMAX OS Programming Guide

7-24

Terminal parameters are specified in the termiox structure that is defined in the
<termiox.h> .

Hardware Emulation Module 7

If a Stream supports a terminal interface, a driver or module that understands all ioctls
to support terminal semantics (specified by termio and termios) is needed. If there is
no hardware driver that understands all ioctl commands downstream from the ldterm
module, a hardware emulation module must be placed downstream from the ldterm
module. The function of the hardware emulation module is to understand and acknowl-
edge the ioctl s that may be sent to the process at the Stream head and to mediate the
passage of control information downstream. The combination of the ldterm module and
the hardware emulation module behaves as if there were a terminal on that Stream.

The hardware emulation module is necessary whenever there is no tty driver at the end of
the Stream. For example, it is necessary in a pseudo-tty situation where there is process-
to-process communication on one system and in a network situation where a termio
interface is expected (for example, remote login) but there is no tty driver on the Stream.

Most actions taken by the hardware emulation module are the same regardless of the
underlying architecture. However, some actions differ depending on whether the commu-
nication is local or remote and whether the underlying transport protocol supports the
remote connection.

Each hardware emulation module has an open, close, read queue put procedure, and
write queue put procedure.

The hardware emulation module does the following:

• Processes, if appropriate, and acknowledges receipt of the following
ioctl s on its write queue by sending an M_IOCACK message back
upstream: TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF,
TCGETA, TCGETS, and TCSBRK.

• Acknowledges the Extended UNIX Code (EUC) ioctl s.

• If the environment supports windowing, it acknowledges the windowing
ioctl s TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE . If the environ-
ment does not support windowing, an M_IOCNAK message is sent
upstream.

• If any other ioctl s are received on its write queue, it sends an M_IOCNAK
message upstream.

• When the hardware emulation module receives an M_IOCTL message of
type TCSBRK on its write queue, it sends an M_IOCACK message upstream
and the appropriate message downstream. For example, an M_BREAK mes-
sage could be sent downstream.

• When the hardware emulation module receives an M_IOCTL message on
its write queue to set the baud rate to 0 (TCSETAW with CBAUD set to B0),
it sends an M_IOCACK message upstream and an appropriate message
downstream; for networking situations this probably is an M_PROTO mes-

Terminal Device Control

7-25

sage, which is a TPI T_DISCON_REQ message requesting the transport
provider to disconnect.

• All other messages (M_DATA, and so forth) not mentioned here are passed
to the next module or driver in the Stream.

The hardware emulation module processes messages in a way consistent with the driver
that exists below.

STREAMS-based Pseudo-Terminal Subsystem 7

The pseudo-terminal subsystem (pseudo-tty) supports a pair of STREAMS-based devices
called the “master” device and “slave” device. The slave device provides processes with
an interface that is identical to the terminal interface. However, where all devices that pro-
vide the terminal interface have some hardware device behind them, the slave device has
another process manipulating it through the master half of the pseudo terminal. Anything
written on the master device is given to the slave as an input and anything written on the
slave device is presented as an input on the master-side.

Figure 7-2 illustrates the architecture of the STREAMS-based pseudo-terminal sub-
system. The master driver called ptm is accessed through the clone driver (see
clone(7)) and is the controlling part of the system. The slave driver called pts works
with the ldterm module and the hardware emulation module to provide a terminal inter-
face to the user process. An optional packetizing module called pckt is also provided. It
can be pushed on the master-side to support packet mode.

The number of pseudo-tty devices that can be installed on a system depends on available
memory.

Line Discipline Module 7

In the pseudo-tty subsystem (see Figure 7-2), the line discipline module ldterm is
pushed on the slave side to present the user with the terminal interface.

ldterm may turn off the processing of the c_iflag , c_oflag , and c_lflag fields to
allow processing to take place elsewhere. The ldterm module may also turn off all
canonical processing when it receives an M_CTL message with the MC_NO_CANON com-
mand to support remote mode. Although ldterm passes through messages without pro-
cessing them, the appropriate flags are set when a “get” ioctl , such as TCGETA or
TCGETS, is issued to show that canonical processing is being performed.

PowerMAX OS Programming Guide

7-26

Figure 7-2. Pseudo-tty Subsystem Architecture

Pseudo-tty Emulation Module — ptem 7

Because the pseudo-tty subsystem has no hardware driver downstream from the ldterm
module to process the terminal ioctl calls, another module that understands the ioctl
commands is placed downstream from the ldterm . This module, known as ptem , pro-
cesses all the terminal ioctl commands and mediates the passage of control information
downstream.

Client
Process

User Space

Kernel Space

Line
Discipline

Slave
PTS

Stream Head

161310

Hardware
Emulation

Module

Server
Process

Master
PTM

PCKT
Module

Stream Head

Terminal Device Control

7-27

ldterm and ptem together behave like a real terminal. Because there is no real terminal
or modem in the pseudo-tty subsystem, some of the ioctl commands are ignored and
cause only an acknowledgment of the command. The ptem module keeps track of the ter-
minal parameters set by the various “set” commands such as TCSETA or TCSETAW but
does not usually perform any action. For example, if one of the “set” ioctl s is called,
none of the bits in the c_cflag field of termio has any effect on the pseudo-terminal
except if the baud rate is set to 0. When setting the baud rate to 0, it has the effect of hang-
ing up the pseudo-terminal.

The pseudo-terminal has no concept of parity so none of the flags in the c_iflag that
control the processing of parity errors have any effect. The delays specified in the
c_oflag field are not also supported.

The ptem module does the following:

• Processes, if appropriate, and acknowledges receipt of the following
ioctl s on its write queue by sending an M_IOCACK message back
upstream:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW,
TCSETSF, TCGETA, TCGETS, and TCSBRK.

• Keeps track of the window size; information needed for the TIOCSWINSZ,
TIOCGWINSZ, and JWINSIZE ioctl commands.

• When it receives any other ioctl on its write queue, it sends an
M_IOCNAK message upstream.

• It passes downstream the following ioctl s after processing them:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW,
TCSETSF, TCSBRK, and TIOCSWINSZ.

• ptem frees any M_IOCNAK messages it receives on its read queue in case
the pckt module is not on the pseudo-terminal subsystem and the above
ioctl s get to the master's Stream head, which then sends an M_IOCNAK
message.

• In its open routine, the ptem module sends an M_SETOPTS message
upstream requesting allocation of a controlling tty.

• When the ptem module receives an M_IOCTL message of type TCSBRK
on its read queue, it sends an M_IOCACK message downstream and an
M_BREAK message upstream.

• When it receives an ioctl message on its write queue to set the baud rate
to 0 (TCSETAW with CBAUD set to B0), it sends an M_IOCACK message
upstream and a 0-length message downstream.

• When it receives an M_IOCTL of type TIOCSIGNAL on its read queue, it
sends an M_IOCACK downstream and an M_PCSIG upstream where the
signal number is the same as in the M_IOCTL message.

• When the ptem module receives an M_IOCTL of type TIOCREMOTE on
its read queue, it sends an M_IOCACK message downstream and the appro-
priate M_CTL message upstream to enable/disable canonical processing.

PowerMAX OS Programming Guide

7-28

• When it receives an M_DELAY message on its read or write queue, it dis-
cards the message and does not act on it.

• When it receives an M_IOCTL message with type JWINSIZE on its write
queue and if the values in the jwinsize structure of ptem are not zero, it
sends an M_IOCACK message upstream with the jwinsize structure. If
the values are zero, it sends an M_IOCNAK message upstream.

• When it receives an M_IOCTL message of type TIOCGWINSZ on its write
queue and if the values in the winsize structure are not zero, it sends an
M_IOCACK message upstream with the winsize structure. If the values
are zero, it sends an M_IOCNAK message upstream. It also saves the infor-
mation passed to it in the winsize structure and sends a STREAMS sig-
nal message for signal SIGWINCH upstream to the slave process if the size
changed.

• When the ptem module receives an M_IOCTL message with type
TIOCGWINSZ on its read queue and if the values in the winsize struc-
ture are not zero, it sends an M_IOCACK message downstream with the
winsize structure. If the values are zero, it sends an M_IOCNAK message
downstream. It also saves the information passed to it in the winsize
structure and sends a STREAMS signal message for signal SIGWINCH
upstream to the slave process if the size changed.

• All other messages not mentioned above are passed to the next module or
driver.

Remote Mode 7

A feature known as remote mode is available with the pseudo-tty subsystem. This feature
is used for applications that perform the canonical function normally done by the ldterm
module and tty driver. The remote mode allows applications on the master-side to turn off
the canonical processing. An ioctl TIOCREMOTE with a nonzero parameter
(ioctl(fd, TIOCREMOTE, 1)) is issued on the master-side to enter the remote
mode. When this occurs, an M_CTL message with the command MC_NO_CANON is sent to
the ldterm module indicating that data should be passed when received on the read-side
and no canonical processing is to take place. The remote mode may be disabled by
ioctl(fd, TIOCREMOTE, 0) .

Packet Mode 7

The STREAMS-based pseudo-terminal subsystem also supports a feature called packet
mode. This is used to inform the process on the master-side when “state” changes have
occurred in the pseudo-tty. Packet mode is enabled by pushing the pckt module on the
master-side. Data written on the master-side is processed normally. When data is written
on the slave-side or when other messages are encountered by the pckt module, a header
is added to the message so it can be retrieved later by the master-side with a getmsg oper-
ation.

The pckt module does the following:

Terminal Device Control

7-29

• When a message is passed to this module on its write queue, the module
does no processing and passes the message to the next module or driver.

• The pckt module creates an M_PROTO message when one of the follow-
ing messages is passed to it:

M_DATA, M_IOCTL, M_PROTO/M_PCPROTO, M_FLUSH,
M_START/M_STOP, M_STARTI/M_STOPI, and M_READ.

All other messages are passed through. The M_PROTO message is passed upstream
and retrieved when the user issues getmsg(2) .

• If the message is an M_FLUSH message, pckt does the following:

If the flag is FLUSHW, it is changed to FLUSHR (because FLUSHR was the original
flag before the pts driver changed it), packetized into an M_PROTO message, and
passed upstream. To prevent the Stream head's read queue from being flushed, the
original M_FLUSH message must not be passed upstream.

If the flag is FLUSHR, it is changed to FLUSHW, packetized into an M_PROTO mes-
sage, and passed upstream. To flush the write queues properly, an M_FLUSH mes-
sage with the FLUSHW flag set is also sent upstream.

If the flag is FLUSHRW, the message with both flags set is packetized and passed
upstream. An M_FLUSH message with the FLUSHW flag set is also sent upstream.

Pseudo-tty Drivers — ptm and pts 7

In order to use the pseudo-tty subsystem, a node for the master-side driver /dev/ptmx
and N number of slave drivers must be installed. (N is determined at installation time.) The
names of the slave devices are /dev/pts/ M where M has the values 0 through N-1. A
user accesses a pseudo-tty device through the master device (called ptm) that in turn is
accessed through the clone driver (see clone(7)). The master device is set up as a clone
device where its major device number is the major for the clone device and its minor
device number is the major for the ptm driver.

The master pseudo-driver is opened by the open system call with /dev/ptmx as the
device to be opened. The clone open finds the next available minor device for that major
device; a master device is available only if it and its corresponding slave device are not
already open. There are no nodes in the file system for master devices.

When the master device is opened, the corresponding slave device is automatically locked
out. No user may open that slave device until it is unlocked. A user may invoke a function
grantpt that will change the owner of the slave device to that of the user who is running
this process, change the group ID to tty , and change the mode of the device to 0620 .
Once the permissions have been changed, the device may be unlocked by the user. Only
the owner or superuser can access the slave device. The user must then invoke the
unlockpt function to unlock the slave device. Before opening the slave device, the user
must call the ptsname function to obtain the name of the slave device. The functions
grantpt , unlockpt , and ptsname are called with the file descriptor of the master
device. The user may then invoke the open system call with the name that was returned
by the ptsname function to open the slave device.

PowerMAX OS Programming Guide

7-30

The following example shows how a user may invoke the pseudo-tty subsystem:

Unrelated processes may open the pseudo-device. The initial user may pass the master file
descriptor using a STREAMS-based pipe or a slave name to another process to enable it to
open the slave. After the slave device is open, the owner is free to change the permissions.

NOTE

Certain programs such as write and wall are set group-ID
(setgid) to tty and are also able to access the slave device.

After both the master and slave have been opened, the user has two file descriptors that
provide full-duplex communication using two Streams. The two Streams are automati-
cally connected. The user may then push modules onto either side of the Stream. The user
also needs to push the ptem and ldterm modules onto the slave-side of the pseudo-ter-
minal subsystem to get terminal semantics.

The master and slave drivers pass all STREAMS messages to their adjacent queues. Only
the M_FLUSH needs some processing. Because the read queue of one side is connected to
the write queue of the other, the FLUSHR flag is changed to FLUSHW flag and vice versa.

When the master device is closed, an M_HANGUP message is sent to the slave device that
will render the device unusable. The process on the slave-side gets the errno ENXIO
when attempting to write on that Stream but it will be able to read any data remaining on
the Stream head read queue. When all the data has been read, read returns 0 indicating
that the Stream can no longer be used.

On the last close of the slave device, a 0-length message is sent to the master device. When
the application on the master-side issues a read or getmsg and 0 is returned, the user of
the master device decides whether to issue a close that dismantles the pseudo-terminal
subsystem. If the master device is not closed, the pseudo-tty subsystem will be available to
another user to open the slave device.

Because 0-length messages are used to indicate that the process on the slave-side has
closed and should be interpreted that way by the process on the master-side, applications
on the slave-side should not write 0-length messages. If that occurs, the write returns
0, and the 0-length message is discarded by the ptem module.

The standard STREAMS system calls can access the pseudo-tty devices. The slave
devices support the O_NDELAY and O_NONBLOCK flags. Because the master-side does

int fdm fds;
char *slavename;
extern char *ptsname();

fdm = open(“/dev/ptmx”, O_RDWR); /* open master */
grantpt(fdm); /* change permission of slave */
unlockpt(fdm); /* unlock slave */
slavename = ptsname(fdm); /* get name of slave */
fds = open(slavename, O_RDWR); /* open slave */
ioctl(fds, I_PUSH, “ptem”); /* push ptem */
ioctl(fds, I_PUSH, “ldterm”); /* push ldterm */

Terminal Device Control

7-31

not act like the terminal, if O_NONBLOCK or O_NDELAY is set, read on the master side
returns -1 with errno set to EAGAIN if no data is available, and write returns -1 with
errno set to EAGAIN if there is internal flow control.

The master driver supports the ISPTM and UNLKPT ioctl s that are used by the func-
tions grantpt , unlockpt , and ptsname (see grantpt(3C) , unlockpt(3C) ,
ptsname(3C)). The ioctl ISPTM determines whether the file descriptor is that of an
open master device. On success, it returns the major/minor number (type dev_t) of the
master device that can be used to determine the name of the corresponding slave device.
The ioctl UNLKPT unlocks the master and slave devices. It returns 0 on success. On
failure, the errno is set to EINVAL indicating that the master device is not open.

The format of these commands is:

int ioctl (int fd, int command, int arg)

where command is either ISPTM or UNLKPT and arg is 0. On failure, -1 is returned.

When data is written to the master-side, the entire block of data written is treated as a sin-
gle line. The slave-side process reading the terminal receives the entire block of data. Data
is not input-edited by the ldterm module regardless of the terminal mode. The master-
side application is responsible for detecting an interrupt character and sending an interrupt
signal SIGINT to the process in the slave-side. This can be done as follows:

ioctl (fd, TIOCSIGNAL, SIGINT)

where SIGINT is defined in the file <signal.h> . When a process on the master-side
issues this ioctl , the argument is the number of the signal that should be sent. The spec-
ified signal is then sent to the process group on the slave-side.

To summarize, the master driver and slave driver have the following characteristics:

• Each master driver has a one-to-one relationship with a slave device based
on major/minor device numbers.

• Only one open is allowed on a master device. Multiple opens are allowed
on the slave device according to standard file mode and ownership permis-
sions.

• Each slave driver minor device has a node in the file system.

• An open on a master device automatically locks out an open on the corre-
sponding slave driver.

• A slave cannot be opened unless the corresponding master is open and has
unlocked the slave.

• To provide a tty interface to the user, the ldterm and ptem modules are
pushed on the slave-side.

• A close on the master sends a hang-up to the slave and renders both
Streams unusable after all data has been consumed by the process on the
slave side.

• The last close on the slave-side sends a 0-length message to the master
but does not sever the connection between the master and slave drivers.

PowerMAX OS Programming Guide

7-32

grantpt 7

The grantpt function changes the mode and the ownership of the slave device that is
associated with the given master device. Given a file descriptor fd, grantpt first checks
that the file descriptor is that of the master device. If so, it obtains the name of the associ-
ated slave device and sets the user ID to that of the user running the process and the group
ID to tty . The mode of the slave device is set to 0620 .

If the process is already running as root, the permission of the slave can be changed
directly without invoking this function. The interface is:

grantpt (int fd)

The grantpt function returns 0 on success and -1 on failure. It fails if one or more of
the following occurs: fd is not an open file descriptor, fd is not associated with a master
device, the corresponding slave could not be accessed, or a system call failed because no
more processes could be created.

unlockpt 7

The unlockpt function clears a lock flag associated with a master/slave device pair. Its
interface is:

unlockpt (int fd)

The unlockpt returns 0 on success and -1 on failure. It fails if one or more of the fol-
lowing occurs: fd is not an open file descriptor or fd is not associated with a master device.

ptsname 7

The ptsname function returns the name of the slave device that is associated with the
given master device. It first checks that the file descriptor is that of the master. If it is, it
then determines the name of the corresponding slave device /dev/pts/ M and returns a
pointer to a string containing the null-terminated pathname. The return value points to
static data whose content is overwritten by each call. The interface is:

char *ptsname (int fd)

The ptsname function returns a non-NULL pathname on success and a NULL pointer
upon failure. It fails if one or more of the following occurs: fd is not an open file descriptor
or fd is not associated with the master device.

8
Internationalization

Introduction . 8-1
Discussion . 8-2
Organization . 8-2

Locales. 8-3
Character Representation. 8-5

“8-bit Clean”. 8-6
Character Classification and Conversion . 8-7

Sign Extension. 8-8
Characters Used as Indices . 8-8

Wide Characters . 8-8
Multibyte and Wide-character Conversion . 8-10
Input/Output . 8-10
Character Classification and Conversion . 8-11
curses Support . 8-11
C Language Features. 8-11

System-defined Words . 8-12
Cultural and Language Conventions . 8-13

Date and Time . 8-13
Numeric and Monetary Information. 8-14
String Collation . 8-15

Message Handling . 8-17
mkmsgs and gettxt (System V-specific) . 8-18
exstr and srchtxt (System V-specific) . 8-19
catopen and catclose (X/Open). 8-20
gencat and catgets (X/Open) . 8-21
%n$ Conversion Specifications . 8-22

kbd . 8-23
Building kbd Tables . 8-23

Internationalization Facilities . 8-25
Interface Standards . 8-25
Enhanced Commands . 8-26

PowerMAX OS Programming Guide

8-1

8
Chapter 8Internationalization

8
8
8

Introduction 8

This chapter descr ibes the programming inter face to the PowerMAX OS
internationalization feature. Its primary audience is the application programmer in C,
although it may be of interest to system programmers and, to a lesser extent,
administrators. It is assumed that readers are experienced in the UNIX system and the C
language.

The chapter consists of a discussion of the programming interface, and covers only as
much of the interface as programmers will need to get started. Much of the details can be
found in the manual pages of the reference set. A list of UNIX system commands that
have been enhanced for internationalization is provided in this chapter.

For the most part, the discussion concentrates on the System V implementation of ANSI
standard C functions. These routines are supported in turn by the X/Open consortium, of
which many System V vendors are members. To provide as realistic a view as possible, we
give the locations of files used by these functions as they would be installed on a System V
target implementation. You should not assume that these will be their locations on other
X/Open or ANSI C-conforming systems, nor should you assume that these locations are
permanent even on System V installations. In other words, the path names we provide
should not be hardcoded in programs intended to be portable across UNIX or C language
implementations. Similarly, although some type of “extended character set” will be
supported on every X/Open and ANSI C-conforming system, the discussion below of
“extended UNIX code” (EUC) is specific to System V, and should not be taken to describe
the character encoding elsewhere.

Of course, both System V and X/Open go beyond the ANSI C standard in various other
ways, most importantly in providing facilities for handling program messages in
international contexts. In this regard, note that System V offers two distinct approaches to
message handling, only one of which is standard to X/Open. Both approaches are
described below, but keep in mind that the X/Open method is employed throughout much
of Europe, so you can generally count on wider support for it than for the System V-
specific method. By and large, System V internationalization is aligned with the X/Open
Portability Guide Issue 4 and the ISO/IEC 9945-2 (POSIX.2) specification.The only
significant departures from this guide is that full support for internationalized regular
expressions is not provided and the names and syntaxes of the commands used to build the
locale specific files do not match the standards.

PowerMAX OS Programming Guide

8-2

Discussion 8

This chapter describes C language functions that you can use to write UNIX applications
that will process input and generate output in a user's native language or cultural
environment. It shows you how to use these functions and some associated commands to
create programs that make no assumptions about the language environments in which they
will be run, and so are portable across these environments. We'll also look at a STREAMS
module called kbd (for “keyboard display”) that can be programmed to alter or
supplement data as it flows between the physical terminal and a user process to produce
language-dependent effects: for example, characters that cannot be entered from terminal
keyboards, for instance, or overstriking sequences on printers.

The basic idea behind the internationalization interface is that at any time a C program has
a current “locale”: a collection of information on which it relies for language- or culture-
dependent processing. This information is supplied by implementations and seen by the
program only at run time. Because the information is stored externally to the program,
applications need not make — and should not make if they mean to be portable — any
assumptions about

• the code sets used by the implementation in which they are executed. The
7-bit US ASCII code set, for example, cannot represent every member of
the Spanish character set; the 8-bit code sets used for most European
languages cannot represent every ideogram and phonogram in the Japanese
language.

• the cultural and language conventions of the application's users. The same
date is formatted in the United States as 6/14/90 , in Great Britain as
14/6/90 , in Germany as 14.6.90 . Similar problems arise in formatting
numeric and monetary values. By language conventions we mean, for
instance, that the sharp s “β” (bühne) in German is collated as ss ; the
character ch in Spanish is collated after all other character sequences
starting with c .

• the language of the messages in which the program communicates with the
user. Interactive applications in an English-speaking setting usually will
query users at some point for a yes or no response; in a German-language
setting the responses will be ja or nein ; in a French one oui or non .
Program error messages will differ much more widely than that across
languages: File not found , Fichier inexistant , and so on.

A typical locale, then, consists of an encoding scheme; databases that describe the
conventions appropriate to some nationality, culture, and language; and a file which you
supply, that contains your program's message strings in whatever language the locale
implements.

Organization 8

The discussion is organized in terms of these three elements of a locale. “Character Repre-
sentation” describes the character encoding used by System V implementations that
support the internationalization feature, and the ANSI C library functions that perform
codeset-dependent tasks. It also discusses the sequences of bytes, or “multibyte
characters,” that are needed to encode Asian-language ideograms. “Cultural and Language

Internationalization

8-3

Conventions” looks at ANSI C functions that collate strings and format cultural
information in locale-dependent ways. “Message Handling” describes the functions you
use to generate program messages in a user's native language. The “kbd ” section outlines
the function of the STREAMS module used as the keyboard display interface. Before we
turn to this material, there's some background we need to give on how C programs
determine their locales.

NOTE

For the relationship of System V internationalization to the ANSI
C and X/Open standards, see the “Introduction” section in the
beginning of this chapter.

Locales 8

One or more locales is provided by every UNIX system implementation that supports the
internationalization feature. Each OS program begins in the “C” locale, which causes all
library functions to behave as they have historically. The “POSIX” locale is another name
for the default “C” locale. Either name can be used to specify the default locale. Any other
locale will cause certain functions to behave in the appropriate language- or culture-
dependent ways. Locales can have names that are strings — “french” , “german” , and
so forth (or “fr” and “de” , following ISO conventions) — but only “C”, “POSIX”
and “” are guaranteed. When given as the second argument to the ANSI C setlocale
function, the string “” tells the program to change its current locale to the one set by the
user, or the system administrator for all users, in the UNIX system shell environment. Any
other argument will cause the program to change its current locale to the one specified by
the string. See the environ(5) manual page for further information.

Locales are partitioned into categories:

LC_CTYPE character representation information

LC_TIME date and time printing information

LC_MONETARY currency printing information

LC_NUMERIC numeric printing information

LC_COLLATE sorting information

LC_MESSAGES message information

In the implementation's view, these categories are files in directories named for each locale
it supports; the directories themselves are kept in /usr/lib/locale . In the user's
view, the categories are environment variables that can be set to given locales:

$ LC_COLLATE=german export LC_COLLATE
$ LC_CTYPE=french export LC_CTYPE
$ LC_MESSAGES=french export LC_MESSAGES

PowerMAX OS Programming Guide

8-4

In the program's view, the categories are macros that can be passed as the first argument to
setlocale to specify that it change the program's locale for just that category. That is,

setlocale(LC_COLLATE, “”);

tells the program to use the sorting information for the locale specified in the environment,
in this case, german , but leaves the other categories unchanged.

LC_ALL is the macro that specifies the entire locale. Given the environment setup above,
the code

setlocale(LC_ALL, ““);

would allow a user to work in a French interface to a program while sorting German text
files. When the LC_ALL variable is set, it overrides all other LC_ variables, as well as the
LANG setting; setting it to spanish , for instance, causes all the categories to be set to
spanish in the environment. The LANG environment variable is checked after the
environment variables for individual categories, so a user could set a category to french
and use LANG to set the other categories to spanish .

setlocale , then, is the interface to the program's locale. Any program that has a need to
use language or cultural conventions should put a call such as

#include <locale.h>
/*...*/
setlocale(LC_ALL, ““);

early in its execution path. You'll generally want to use “” as the second argument to
setlocale so that your application will change locales correctly for whatever language
environment in which it is run. Occasionally, though, you may want to change the locale
or a portion of it for a limited duration in a way that's transparent to the user.

Suppose, for example, there are parts of your program that need only the ASCII upper-
and lowercase characters guaranteed by ANSI C in the <ctype.h> header. In these parts,
in other words, you want the program to see the character classification information in
LC_CTYPE for the “C” locale. Since the user of the program in a non-ASCII environment
will presumably have set LC_CTYPE to a locale other than “C” , and will not be able to
change its setting mid-program, you'll have to arrange for the program to change its
LC_CTYPE locale whenever it is in those parts. setlocale returns the name of the
current locale for a given category and serves in an inquiry-only capacity when its second
argument is a null pointer. So you might want to use code something like this:

char *oloc;
/*...*/
oloc = setlocale(LC_CTYPE, NULL);
if (setlocale(LC_CTYPE, “C”) != 0)
{
 /* use temporarily changed locale */
 (void)setlocale(LC_CTYPE, oloc);
}

The setlocale(3C) function is described in section (3C) of the reference manual set.

Internationalization

8-5

Character Representation 8

Every System V implementation that supports the internationalization feature can
represent up to four code sets concurrently in an 8-bit byte stream. The code sets are
configured in a scheme called “extended UNIX code,” or EUC. As shown in Table 8-1, the
primary code set (code set 0) is always 7-bit US ASCII. Each byte of any character in a
supplementary code set (code sets 1,2, or 3) has the high-order bit set; code sets 2 and 3
are distinguished from code set 1 and each other by their use of a special “shift byte”
before each character.

There are two shift bytes: SS2 and SS3. SS2 is represented in hexadecimal by 0x8e ;
SS3 is represented by 0x8f .

EUC is provided mainly to support the huge number of ideograms needed for I/O in an
Asian-language environment. To work within the constraints of usual computer
architectures, these ideograms are encoded as sequences of bytes, or “multibyte
characters.” Because single-byte characters (the digits 0-9, say) can be intermixed with
multibyte characters, the sequence of bytes needed to encode an ideogram must be self-
identifying: regardless of the supplementary code set used, each byte of a multibyte
character will have the high-order bit set; if code sets 2 or 3 are used, each multibyte
character will also be preceded by a shift byte. In a moment, we'll take a closer look at
multibyte characters and at the implementation-defined integral type wchar_t that lets
you manipulate variable width characters as uniformly sized data objects called “wide
characters.” We'll also discuss the functions you use to manage multibyte and wide
characters.

Of course, programmers developing applications for less complex linguistic environments
need not concern themselves with the details of multibyte or wide character processing. In
Europe, for instance, a single 8-bit code set can hold all the characters of the major
languages. In these environments, at least one 8-bit character set will be represented in the
EUC code sets, usually code sets 0 and 1. Other character sets may be represented
simultaneously, in various combinations. Applications will work correctly with any
standard 7- or 8-bit character set, provided (1) they are “8-bit clean” — they make no
assumptions about the contents of the high-order bit when processing characters; and (2)
they use correctly the functions supplied by the interface for codeset-dependent tasks —
character classification and conversion, in other words. We'll take a brief look at these
issues now.

Table 8-1. EUC Code Set Representations

Code Set EUC Representation

0 0xxxxxxx

1 1xxxxxxx [1xxxxxxx]

2 SS2 1xxxxxxx [1xxxxxxx]

3 SS3 1xxxxxxx [1xxxxxxx]

PowerMAX OS Programming Guide

8-6

“8-bit Clean” 8

UNIX system applications written for 7-bit US ASCII environments have sometimes
assumed that the high-order bit is available for purposes other than character processing.
In data communications, for instance, it was often used as a parity bit. On receipt and after
a parity check, the high-order bit was stripped either by the line discipline or the program
to obtain the original 7-bit character:

char c;
/* bitwise AND with octal value 177 strips high-order bit
*/
c &= 0177;

Other programs used the high-order bit as a private data storage area, usually to test a flag:

char c;
/*...*/
c |= 0200;/* bitwise OR with octal value 200 sets flag */
/*...*/
c &= 0177;/* bitwise AND removes flag */
/*...*/
if (c & 0200)/* test if flag set */
{
/*...*/
}
c &= 0177;/* original character */

Neither of these practices will work with 8-bit or larger code sets. To show you how to
store data in a codeset-independent way, we'll look at code fragments from a UNIX system
program before and after it was made 8-bit clean. In the first fragment, the program sets
the high-order bit of characters quoted on the command line:

In the next fragment, the same data is stored by internally placing backslashes before
quoted characters in the command string:

#define LITERAL '\xd3
#define QUOTE 0200
register int c;
register char *argp = arg->argval;

if (c == LITERAL)/* character is a single quote */
{

/* get next character until next single quote */
while ((c = getc()) && c != LITERAL)
{

*argp++ = (c | QUOTE);
}

}

Internationalization

8-7

Because the data is stored in 8-bit character values rather than the high-order bit of the
quoted characters, the program will work correctly with code sets other than US ASCII.
Note, by the way, the use of the type unsigned char in the declaration of the character
pointer in the second fragment. We'll discuss the reasons why you use it in the next
section.

Character Classification and Conversion 8

The ANSI C functions declared in the <ctype.h> header file classify or convert
character-coded integer values according to type and conversion information in the
program's locale. The tables used by these functions are stored in the LC_CTYPE file in
the locale’s directory. The chrtbl(1M) and wchrtbl(1M) commands are used to
build these locale specific tables. All the classification functions except isdigit and
isxdigit can return nonzero (true) for single-byte supplementary code set characters
when the LC_CTYPE category of the current locale is other than “C” or “POSIX”. In a
Spanish locale, isalpha('~') should be true. Similarly, the case conversion functions
toupper and tolower will appropriately convert any single-byte supplementary code
set characters identified by the isalpha function.

The point of these functions is to let you determine a character's type or case without
reference to its numeric value in a given code set. Whereas a program written for a US
ASCII environment might test whether a character is printable with the code.

if (c <= 037 || c == 0177)

a codeset-independent program will use isprint :

if (!isprint(c))

Similarly,

c = toupper(c);

will do the same thing as

if(c >= 'a' && c <= 'z')
c += 'a' -'A';

without relying on the fact that upper- and lowercase characters are numerically
contiguous in the US ASCII code set.

#define LITERAL '\xd3
register int c;
register unsigned char *argp = arg->argval;

if (c == LITERAL)
{

while ((c = getc()) && c != LITERAL)
{
/* precede each character within single quotes with a backslash */

*argp++ = '\\';
*argp++ = c;

}
}

PowerMAX OS Programming Guide

8-8

The <ctype.h> functions are almost always macros that are implemented using table
lookups indexed by the character argument. Their behavior is changed by resetting the
table(s) to the new locale's values. The classification functions are described on the
ctype(3C) manual page, the conversion functions on the conv(3C) page. Both
single- and multibyte character classification and conversion routines are declared in the
<wctype.h> header, and described on the pages wctype(3W) and wconv(3W) . Note
that the multibyte routines are not part of the ANSI C standard, nor are the single-byte
functions isascii and toascii .

Sign Extension 8

In some C language implementations, character variables that are not explicitly declared
signed or unsigned are treated as nonnegative quantities with a range typically from 0
to 255. In other implementations, they are treated as signed quantities with a range
typically from -128 to 127. When a signed object of type char is converted to a wider
integer, the machine is obliged to propagate the sign, which is encoded in the high-order
bit of the new integer object. If the character variable holds an eight-bit character with the
high-order bit set, the sign bit will be propagated the full width of an object of type int or
long , producing a negative value.

You can avoid this problem (which typically occurs with the ctype functions) by
declaring as unsigned any object of type char that is liable to be converted to a wider
integer. In the example we showed earlier, for instance, the declaration of the character
pointer as of type unsigned char would guarantee that on any implementation the
values pointed at will be nonnegative. On this system, objects of type char are by default
unsigned.

Characters Used as Indices 8

A related problem arises when characters are used as indices into arrays and tables. If a
table has been defined to contain only 128 possible characters, the amount of allocated
memory will be exceeded if an eight-bit character whose value is greater than 127 is used
as an index. Moreover, if the character is signed, the index may be negative.

The solution, at least when dealing with 8-bit code sets, is obviously to increase the size of
the table from the 7-bit maximum of 128 to the 8-bit maximum of 256. And again, to
declare the object that will hold the character as type unsigned char .

Wide Characters 8

Earlier in this section we looked at the encoding scheme used for the multibyte characters
that are needed to represent Asian-language ideograms. We noted that because single-byte
characters can be intermixed with multibyte characters, the sequence of bytes needed to
encode an ideogram must be self-identifying: regardless of the supplementary code set
used, each byte of a multibyte character will have the high-order bit set. In this way, any
byte of a multibyte character can always be distinguished from a member of the primary,
7-bit US ASCII code set, whose high-order bit is not set (or “0”). If code sets 2 or 3 are
used, each multibyte character will also be preceded by a shift byte; that is, if code set 1
were dedicated to a single-byte character set, either of code sets 2 or 3 could be used to

Internationalization

8-9

represent multibyte characters. Given some set of these encodings, then any program
interested in the next character will be able to determine whether the next byte represents a
single-byte character or the first byte of a multibyte character. If the latter, then the
program will have to retrieve bytes until the character is complete. A maximum of two
bytes per multibyte character is supported in the supplementary code sets (exclusive of the
single shift bytes used for code sets 2 and 3).

Some of the inconvenience of handling multibyte characters would be eliminated, of
course, if all characters were a uniform number of bytes. ANSI C provides the
implementation-defined integral type wchar_t to let you manipulate variable-width
characters as uniformly sized data objects called wide characters. Since there can be
thousands or tens of thousands of ideograms in an Asian-language set, programs must use
a 32-bit sized integral value to hold all members. wchar_t is defined in the headers
<stdlib.h> and <widec.h> as a typedef declaration of long .

Implementations provide appropriate libraries with functions that you can use to manage
multibyte and wide characters. We'll look at these functions below.

For each wide character there is a corresponding EUC representation and vice versa; the
wide character that corresponds to a regular single-byte character is required to have the
same numeric value as its single-byte value, including the null character. There is no
guarantee that the value of the macro EOF can be stored in a wchar_t , just as EOF might
not be representable as a char .

Most of the functions provided let you convert multibyte characters into wide characters
and back again. Before we turn to the functions, we should note that most application
programs will not need to convert multibyte characters to wide characters in the first place.
Programs such as diff , for example, will read in and write out multibyte characters,
needing only to check for an exact byte-for-byte match. More complicated programs such
as grep , that use regular expression pattern matching, may need to understand multibyte
characters, but only the common set of functions that manages regular expressions needs
this knowledge. The program grep itself requires no other special multibyte character
handling. Finally, note that except for libc , the libraries described below are archives,
not shared objects. They cannot be dynamically linked with your program.

Table 8-2. EUC and Corresponding 32-bit Wide-Character Representation

Code
Set

EUC Code Representation Wide-character Representation

0 0xxxxxxx 0000000000000000000000000xxxxxxx

1 1xxxxxxx
1xxxxxxx1xxxxxxx

0011000000000000000000000xxxxxxx
001100000000000000xxxxxxxxxxxxxx

2 SS2 1xxxxxxx
SS2 1xxxxxxx1xxxxxxx

0001000000000000000000000xxxxxxx
000100000000000000xxxxxxxxxxxxxx

3 SS3 1xxxxxxx
SS3 1xxxxxxx1xxxxxxx

0010000000000000000000000xxxxxxx
001000000000000000xxxxxxxxxxxxxx

PowerMAX OS Programming Guide

8-10

Multibyte and Wide-character Conversion 8

ANSI C provides five library functions that manage multibyte and wide characters:

mblen length of next multibyte character

mbtowc convert multibyte character to wide character

wctomb convert wide character to multibyte character

mbstowcs convert multibyte character string to wide character string

wcstombs convert wide character string to multibyte character string

The first three functions are described on the mbchar(3C) manual page, the last two on
the mbstring(3C) page.

Input/Output 8

Since most programs will convert between multibyte and wide characters just before or
after performing I/O, libc provides routines that let you manage the conversion within
the I/O function itself. getwc , for instance, reads bytes from a stream until a complete
EUC character has been seen and returns it in its wide-character representation. getws
does the same thing for strings; putwc and putws are the corresponding write versions.
Of course, these routines and others are functionally similar to the stdio(3S)
functions; they differ only in their handling of EUC representations. Check the 3W
manual pages for details. Here is a look at how you can expect the functions to work.

Given the following declarations:

#include <stdio.h>
#include <widec.h>

wchar_t s1[BUFSIZ]; /* declare array s1 to store wide characters*/

char s2[BUFSIZ]; / * declare array s2 of characters

for EUC representation */

a multibyte string can be input into s1 using getws :

getws(s1); /* read EUC string from stdin and convert

to process code string in s1 */

gets and strtows :

gets(s2); /* read EUC string from stdin into s2 */

strtows(s1, s2); /* convert EUC string in s2 to process

 code string in s1 */

the %ws conversion specifier for scanf :

scanf(“%ws”, s1); /* read EUC string from stdin and convert to

process code string in s1 */

the %s conversion specifier for scanf and strtows :

Internationalization

8-11

scanf(“%s”, s2); /* read EUC string from stdin into s2 */

strtows(s1, s2); /* convert EUC string in s2 to process

code string in s1 */

You can use putws , wstostr , and the %ws conversion specifier for printf in the same
way for output.

Character Classification and Conversion 8

Single- and multibyte character classification and conversion functions are provided in
libc . You can use these routines to test 7-bit US ASCII characters, for instance, in their
wide-character representations, or to determine whether multibyte characters are
ideograms, phonograms, or the like. See the wctype(3W) and wconv(3W) manual
pages for details. The towupper(3C) and towlower(3C) functions provide
conversion of wide characters between upper and lower case.

As noted, these routines are declared in the <wchar.h> header file.

curses Support 8

32-bit versions of certain curses functions are provided in libcurses and declared in
<curses.h> . Check the 3X manual pages especially curses(3X) , for some of the
things you need to look out for in using these functions.

C Language Features 8

To give even more flexibility to the programmer in an Asian environment, ANSI C
provides 32-bit wide character constants and wide string literals. These have the same
form as their non-wide versions except that they are immediately prefixed by the letter L :

'x' regular character constant

'¥' regular character constant

L'x' wide character constant

L'¥' wide character constant

“abc¥xyz” regular string literal

L“abc¥xyz” wide string literal

Note that multibyte characters are valid in both the regular and wide versions. The
sequence of bytes necessary to produce the ideogram ¥ is encoding-specific, but if it
consists of more than one byte, the value of the character constant ¥' is implementation-
defined, just as the value of 'ab' is implementation-defined. A regular string literal
contains exactly the bytes (except for escape sequences) specified between the quotes,
including the bytes of each specified multibyte character. Of course, programs using this
feature will probably not be portable.

When the compilation system encounters a wide character constant or wide string literal,
each multibyte character is converted (as if by calling the mbtowc function) into a wide

PowerMAX OS Programming Guide

8-12

character. Thus the type of L'¥' is wchar_t and the type of L“abc¥xyz” is array of
wchar_t with length eight. (Just as with regular string literals, each wide string literal
has an extra zero-valued element appended, but in these cases it is a wchar_t with value
zero.)

Just as regular string literals can be used as a short-hand method for character array
initialization, wide string literals can be used to initialize wchar_t arrays:

wchar_t *wp = L“a¥z”;
wchar_t x[] = L“a¥z”;
wchar_t y[] = {L'a', L'¥', L'z', 0};
wchar_t z[] = {'a', L'¥', 'z', '\0'};

In the above example, the three arrays x , y and z as well as the array pointed to by wp,
have the same length and all are initialized with identical values.

Adjacent wide string literals will be concatenated, just as with regular string literals.
Adjacent regular and wide string literals produce undefined behavior.

System-defined Words 8

The UNIX system uses a number of special words to identify system resources, user and
group names, process IDs, peripherals, and other information. The following should be
specified only with characters from the primary 7-bit ASCII code set:

• process ID numbers

• message queue, semaphore, and shared memory identifiers

• external symbol names and fill patterns for the cc and as commands

• layer names

Although the following can be specified with supplementary code set characters, we
recommend against it:

• user names

• group names

• passwords

• names of devices, terminals, and special devices

• printer names and printer class names

• system names

• disk pack, diskette, and tape label/volume names

• names visible to other machines on a network

• environment variable names

The following can be specified with primary or supplementary code set characters, subject
to length limitations imposed by the file system:

Internationalization

8-13

• file names

• directory names

• command names

• file system names

File name prefixes of the form s. , or suffixes of the form .c , must be specified with
characters from the primary code set.

Cultural and Language Conventions 8

In this section we'll look at how programs interpret or print the formatted date and time, or
formatted numeric and monetary values, in locale-dependent ways. We'll also look at the
functions you use to collate strings according to the rules of the language the locale imple-
ments.

Date and Time 8

The ANSI C function strftime provides a sprintf -like formatting of the values in a
struct tm , along with some date and time representations that depend on the LC_TIME
category of the current locale. (strftime supersedes ctime and ascftime , although,
for the sake of compatibility with older systems, these routines format the date and time
correctly for a given locale.) Unlike the other LC_ categories, there is no special
command that must be used to generate the LC_TIME file. It is an ASCII file that is
prepared using one of the standard editors. See the strftime(3C) and strftime(4)
manual pages for information on the format of this file. Here is how you might use
strftime to print the current date in a locale-dependent way:

In this case, strftime puts characters into the array pointed to by buf , as controlled by
the string pointed to by %x. %x is a directive that provides an implementation-defined date
representation appropriate to the locale. In a Spanish locale, for example, the current date

#include <stdio.h>
#include <locale.h>
#include <time.h>

main()
{

time_t tval;
struct tm *tmptr;
char buf [BUFSIZ];

tval = time(NULL);
tmptr = localtime(&tval);

setlocale(LC_ALL, “”);

strftime(buf, BUFSIZE, “%x”, tmptr);
puts(buf);

}

PowerMAX OS Programming Guide

8-14

June 14, 1990, might be represented as 14 Junio 1990 or 14/6/90 or any other way
the implementation deems appropriate to the locale. No particular format is guaranteed.
Use the %X directive to obtain the locale's appropriate time representation:

strftime(buf, BUFSIZE, “%X”, tmptr)

or %c to obtain both the date and time representation. Check the strftime(3C) manual
page for the other directives.

Although it requires a bit more work, you can control the format of the date and time for
different locales by using printf with the message retrieval functions gettxt or
catgets . Suppose, for example, you want the current date June 14, 1990, to be displayed
in a British locale as 14/6/90 , in a German locale as 14.6.90 , and in a U.S. locale as
6/14/90 . What you need, in other words, is some way to switch the arguments to
printf depending on the program's current locale. The %n$ form of conversion
specification lets you convert the nth argument in a printf argument list rather than the
next unused argument. That is,

printf(gettxt(“progmsgs:9”, “%d/%d/%d\n”),
tm->tm.mon,
tm->tm.mday,
tm->tm.year);

will produce the locale-dependent date displays we want, so long as the string whose
index is 9 in the message file progmsgs reads, in the British locale

“%2$d/%1$d/%3$d\n”

in the German locale

“%2$d.%1$d.%3$d\n”

and in the U.S. locale

“%1$d/%2$d/%3$d\n” /* or simply “%d/%d/%d\n” */

You can use scanf in a similar way to interpret formatted dates in the input:

int month, day, year;
scanf(gettxt(“progmsgs:9”, “%d/%d/%d\n”),

&month, &day, &year);

Note that the %n$ form of conversion specification has a wider application than the one
we've described here, as we'll show in the “Message Handling” section below. There, too,
we'll take a closer look at gettxt and catgets . Detailed information concerning
printf(3S) , scanf(3S) , gettxt(3C) and catgets(3C) can be found in their
respective manual pages.

Numeric and Monetary Information 8

The ANSI C localeconv function returns a pointer to a structure containing
information useful for formatting numeric and monetary information appropriate to the
current locale's LC_NUMERIC and LC_MONETARY categories. (This is the only function
whose behavior depends on more than one category.) For numeric values the structure

Internationalization

8-15

describes the decimal-point (radix) character, the thousands separator, and where the
separator(s) should be located. Other structure members describe how to format monetary
values, as in the following, somewhat contrived example. Assuming setlocale has
been called, the code

will print kr1.234,56 in a Norwegian locale, F 1.234,56 in a Dutch locale, and
SFrs.1,234.56 in a Swiss locale. Check the localeconv(3C) manual page for
details.

localeconv aside, functions that write or interpret printable floating values — printf
and scanf , for example — may use a decimal-point character other than a period (.)
when the LC_NUMERIC category of the current locale is other than “C” or “POSIX”.
There is no provision for converting numeric values to printable form with thousands
separator-type characters, but when converting from a printable form to an internal form,
implementations are allowed to accept such additional forms, again in other than the “C”
or “POSIX” locale. Functions that make use of the decimal-point character are the
printf and scanf families, atof , and strtod . Functions that are allowed
implementation-defined extensions for the thousands separator are atof , atoi , atol ,
strtod , strtol , strtoul , and the scanf family.

The chrtbl(1M) and wchrtbl(1M) commands are used to build the locale specific
LC_NUMERIC category table. The montbl(1M) command is used to build the locale
specific LC_MONETARY category table.

String Collation 8

ANSI C provides two functions for locale-dependent string compares. strcoll is
analogous to strcmp except that the two strings are compared according to the
LC_COLLATE category of the current locale. (see strcoll(3C) and strcmp(3C)).
The locale specific LC_COLLATE table is built using the colltbl(1M) command.
Conceptually, collation occurs in two passes to obtain an appropriate ordering of accented
characters, two-character sequences that should be treated as one (the Spanish character
ch , for example), and single characters that should be treated as two (the sharp s in
German “β” (bühne), for instance). Since this comparison is not necessarily as
inexpensive as strcmp , the strxfrm function is provided to transform a string into
another. Therefore, any two such after-translation strings can be passed to strcmp to get
an ordering identical to what strcoll would have returned if passed the two pre-
translation strings. You are responsible for keeping track of the strings in their translated

int thousands = 1;
int rest = 234;
int frac = 56;

struct lconv *lptr;
lptr = localeconv();

printf(“%s%d%c%d%c%d\n”,
lptr->currency_symbol,
thousands, lptr->mon_thousands_sep[0], rest,
lptr->mon_decimal_point[0], frac);

PowerMAX OS Programming Guide

8-16

and printable forms. Generally, you should use strxfrm when a string will be compared
a number of times.

The following example uses qsort(3C) and strcoll(3C) to sort lines in a text file:

Assuming malloc succeeds, the return value of compare (s1, s2) should correspond to
the return value of strcoll (s1, s2) . Although it is too complicated to show here, it
would probably be better to hold onto the strings for subsequent comparisons rather than
transforming them each time the function is called. Details of strcoll(3C) and
strxfrm(3C) can be found in their respective manual pages.

The next example does the same thing with a function that uses strxfrm :

#include <stdio.h>
#include <string.h>
#include <locale.h>

char table [ELEMENTS] [WIDTH];

main(argc, argv)
int argc;
char **argv;
{

FILE *fp;
int nel, i;

setlocale(LC_ALL, ““);

if ((fp = fopen(argv[1], “r”)) == NULL) {
fprintf(stderr, gettxt(“progmsgs:2”,

“Can't open %s\n”, argv[1]);
exit(2);

}
for (nel = 0; nel < ELEMENTS &&

fgets(table[nel], WIDTH, fp); ++nel);

fclose(fp);

if (nel >= ELEMENTS) {
fprintf(stderr, gettxt(“progmsgs:3”,

“File too large\n”);
exit(3);

}
qsort(table, nel, WIDTH, strcoll);
for (i = 0; i < nel; ++i)

fputs(table(i), stdout);
return(0);

}

Internationalization

8-17

Message Handling 8

As the examples in earlier sections may have suggested, the general approach behind the
message handling feature is to separate messages from program source code, replacing
hard-coded character strings with function calls that fetch the strings from a file. You
supply the file, which contains your program's messages in whatever language the locale
implements. You can adapt your applications to different locales, then, without having to
change and recompile source code.

In this section we'll look at the System V-specific and X/Open message handling facilities
as they might be used to adapt an “English-speaking” program to a French locale. The
code fragment below queries the English-speaking user for an affirmative or negative
response, and reads the response:

compare (s1, s2)
char *s1, *s2;
{

char *tmp;
int result;
size_t n1 = strxfrm(NULL, s1, 0) + 1;
size_t n2 = strxfrm(NULL, s2, 0) + 1;

if ((tmp = malloc(n1 + n2)) == NULL)
return strcmp(s1, s2);

(void)strxfrm(tmp, s1, n1);
(void)strxfrm(tmp + n1 + 1, s2, n2);

result = strcmp(tmp, tmp + n1 + 1);
free(tmp);
return(result);

}

PowerMAX OS Programming Guide

8-18

mkmsgs and gettxt (System V-specific) 8

You use the mkmsgs(l) command to store the strings for a given locale in a file that can
be read by the message retrieval function gettxt(3C) . mkmsgs accepts an input file
consisting of text strings separated by new lines. If the file fr.str contains

Votre choix (o/n)
oui
non

the command:

$ mkmsgs -o -i french fr.str progmsgs

will generate a fi le called progmsgs that, when instal led in the directory
/usr/lib/locale/french/LC_MESSAGES , can be read by gettxt such that

puts(gettxt(“progmsgs:1”, “Choose (y/n)”));

will display:

Votre choix (o/n)

in a French locale. gettxt takes as its first argument the name of the file created by
mkmsgs and the number of the desired string in the file, counting from 1. You hard-code
the second argument, not necessarily in English, in case gettxt fails to retrieve the
message string from the current locale, or the default “C”(“POSIX”) locale.

#include <stdio.h>

main()
{

int yes();

while(1)
{

puts(“Choose (y/n)”);
if (yes())

puts(“yes”);
else

puts(“no”);
}

}

static int
yes()
{

int i, b;

i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar();
return(i == 'y');

}

Internationalization

8-19

exstr and srchtxt (System V-specific) 8

Once you have created the message files for the different locales, you can use the
exstr(l) command to extract the strings from the original source code and replace
them with calls to gettxt . If the name of the source file is prog.c , the command

$ exstr -e prog.c > prog.strings

will produce the following output in prog.strings :

prog.c:9:8:::Choose (y/n)
prog.c:11:8:::yes
prog.c:13:8:::no

The first three fields in each entry are the file name, the line number in which the string
appears in the file, and the character position of the string in the line. You fill in the next
two fields with the name of the message file and the index of the string in the file:

prog.c:9:8:progmsgs:1:Choose (y/n)
prog.c:11:8:progmsgs:2:yes
prog.c:13:8:progmsgs:3:no

Now the command

$ exstr -rd prog.c < prog.strings > intl.c

will produce in intl.c

The next step in the conversion of these routines is to change the test for the affirmative
response. This can also be accomplished using gettxt(3c) to provide the locale
specific affirmative response. This conversion step must be completed manually.

#include <stdio.h>

extern char *gettxt();
main()
{

int yes();

while(1)
{

puts(gettxt(“progmsgs:1”, “Choose (y/n)”));
if (yes())

puts(gettxt(“progmsgs:2”, “yes”));
else

puts(gettxt(“progmsgs:3”, “no”));
}

}

static int
yes()
{

int i, b;

i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar();
return(i == 'y');

}

PowerMAX OS Programming Guide

8-20

The completed source code would look like this:

The srchtxt command lets you display or search for text strings in message files
installed in a given locale. Among other ways, you might want to use it to see how other
programs have translated messages similar to yours. Details of the mkmsgs(1) ,
exstr(1) , srchtxt(1) and gettxt(3C) commands can be found in their respec-
tive manual pages.

catopen and catclose (X/Open) 8

As noted in the “Introduction” section at the beginning of this chapter, the X/Open
messaging interface is the de facto standard throughout much of Europe, so you can
generally count on wider support for it than for the System V-specific version. The
principal difference between the interfaces lies in where your message files, or message
catalogs, to use the X/Open terminology, are located on the target system. System V-
spec i f i c message f i l es mus t be ins ta l l ed i n the s tandard p lace
(/usr/lib/locale/ locale/LC_MESSAGES). X/Open message catalogs can be
installed anywhere on the system, which means that programs must search their
environments for the location of message catalogs at run time.

Users specify message catalog search paths with the NLSPATH environment variable. The
value of NLSPATH is used by the function catopen(3C) to locate the message catalog

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <locale.h>
#define RESPLEN 16

char yesstr[RESPLEN];/* assumed to be long enough */
extern char *gettxt();
main()
{

int yes();

setlocale(LC_ALL, ““);

/* save local yes string for subsequent comparisons */
strcpy(yesstr, gettxt(“progmsgs:2”, “yes”));

while(1)
{

puts(gettxt(“progmsgs:1”, “Choose (y/n)”));
if (yes())

puts(yesstr);
else

puts(gettxt(“progmsgs:3”, “no”));
}

}

static int
yes()
{

int i, b;

i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar();
return(i == (int) yesstr[0]);

}

Internationalization

8-21

named in its first argument. Users will almost always find it convenient to use the %L and
%N substitution fields when setting NLSPATH:

$ NLSPATH=“%L/%N” export NLSPATH

In this example, the value of the LC_MESSAGES locale category is substituted for %L. The
value of the first argument to catopen is substituted for %N. So if the name of the catalog
given to catopen is progmsgs , and if the environment variable LC_MESSAGES is set
to french , then the value of NLSPATH would be /usr/lib/locale/french/
LC_MESSAGES/progmsgs on a System V implementation. For more on NLSPATH, see
the catopen(3C) manual page.

The call to catopen would look like:

nl_catd catd;
catd = catopen(“progmsgs”, NL_CAT_LOCALE);

where catopen and the type nl_catd are defined in the header <nl_types.h> .
catd is a message catalog descriptor that can be passed as an argument to subsequent
calls of the catgets and catclose functions. We'll look at catgets in the next
section; catclose closes the message catalog identified by catd . The second argument
to catopen is used as a flag. When set to NL_CAT_LOCALE, the LC_MESSAGES
category is used to locate the message catalog. When this flag is zero, the environment
variable LANG locates the message catalog.

gencat and catgets (X/Open) 8

You use the gencat(l) command to store the strings for a given locale in a catalog that
can be read by the message retrieval function catgets(3C) . The gencat input file for
our example would be:

$set
1 votre choix (o/n)
2 oui
3 non

The $set directive specifies that the three messages are members of set 1. A subsequent
$set directive would mean that the following messages are members of set 2, and so on.
The messages for each module of an application, then, can be assigned to different sets,
making it easier to keep track of message numbers across source files: the messages for
any given module will always be numbered consecutively from 1. Note that each message
in a gencat input file must be numbered. For details of the input file syntax, see the
gencat(1) manual page.

If the gencat input file is named fr.str , the command

$ gencat progmsgs fr.str

will generate a catalog called progmsgs that, when installed in the appropriate directory,
can be read by catgets such that

puts(catgets(catd, 1, 1, “Choose (y/n)”));

PowerMAX OS Programming Guide

8-22

will display

Votre choix (o/n)

in a French locale. catd is the message catalog descriptor returned by the earlier call to
catopen ; the second and third arguments are the set and message numbers, respectively,
of the string in the catalog. Again, you hard-code the final argument in case catgets
fails. Details on gencat(1) , catgets(3C) and catopen(3C) can be found in their
respective manual pages.

The X/Open version of our example follows:

%n$ Conversion Specifications 8

Earlier we noted that the %n$ form of conversion specification lets you convert the nth
argument in a printf or scanf argument list rather than the next unused argument. We
showed you how you could use the feature to control the format of the date and time in
different locales, and suggested that %n$ had a wider application than that. What we had
in mind were cases in which the rules of a given language were built into print statements
such as

printf(“%s %s\n”,
func == MAP ? “Can't map” : “Can't create”, pathname);

#include <stdio.h>
#include <nl_types.h>
#include <string.h>
#include <locale.h>
#define RESPLEN 16

char yesstr[RESPLEN];/* assumed to be long enough */
extern char *catgets();
main()
{

int yes();
nl_catd catd;
setlocale(LC_ALL, ““);
catd = catopen(“progmsgs”, 0);

/* save local yes string for subsequent comparisons */
strcpy(yesstr, catgets(catd, 1, 2, “yes”));

while(1)
{

puts(catgets(catd, 1, 1, “Choose (y/n)”));
if (yes())

puts(yesstr);
else

puts(catgets(catd, 1, 3, “no”));
}

}

static int
yes()
{

int i, b;
i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar();
return(i == (int) yesstr[0]);

}

Internationalization

8-23

The problem with this code is that it assumes that the verb precedes the object of the
sentence, which is not the case in many languages. In other words, even if we rewrote the
fragment to use gettxt , and stored translations of the strings in message files in the
appropriate locales, we would still want to use the %n$ conversion specification to switch
the arguments to printf depending on the locale. That is, the printf format string

“%1$s %2$s\n”

in an English-language locale would be written

“%2$s %1$s\n”

in a locale in which the object of the sentence precedes the predicate.

kbd 8

As noted, kbd is a STREAMS module that can be programmed to alter or supplement
data as it flows between the physical terminal and a user process to produce language-
dependent effects. It translates strings in the input stream according to instructions given
in tables compiled with the kbdcomp command. In a European environment these
instructions might describe how to compose characters that cannot be entered from
terminal keyboards (so-called compose and dead keys), or how to map one key to another
(a German user of a QWERTY keyboard, for instance, will want the y and z keys swapped).
In an Asian-language environment, where the number of ideograms far exceeds the
number of keys on most keyboards, kbd might be used to implement a dictionary lookup
scheme that converts single-byte input to multibyte characters.

The compiled tables are loaded with the kbdload command, and attached to user
processes with the kbdset command. Public tables, which are loaded when the system is
first brought up, are retained in memory across invocations and made available to all users.
Private tables can be defined and loaded by users, but do not remain resident in memory.
kbd also supports the use of external kernel-resident functions as if they were tables.
These functions, which must be registered with the alp (“algorithm pool management”)
module, are needed for code set conversions that would be difficult or impossible with
normal kbd tables.

In this section, we'll take a brief look at how you might build a kbd table. We provide this
material for background only. Most programmers will not have occasion to use kbd . For
more on the STREAMS facility, see the STREAMS Modules and Drivers. Detailed
in format ion concerning a lp(7) , alpq(1) , kbd(7) , kbdcomp(1M) ,
kbdload(1M) , kbdpipe(1) , and kbdset(1) can be found in their respective
manual pages.

Building kbd Tables 8

A kbd table typically consists of a map declaration of the form

PowerMAX OS Programming Guide

8-24

map (name) {
expressions

}

The expressions we'll look at here have the forms

keylist (string string)
define (word value)
word (extension result)

In the following example of a map for a German-language environment

map(german) {
keylist(yzYZ zyZY)
define(umlaut '\042')
umlaut(a '\0344')
umlaut(o '\0366')
umlaut(u '\0374')
define(sharp '\044)
sharp(ss '\0315')

}

the keylist expression causes the y and z keys to be swapped by defining y as z and
vice versa in the lookup table generated by kbdcomp for this map. The first define
expression causes the double quote key (octal 042 in the code set being used) to be defined
as a dead key such that whenever it is followed by an a , o or u in the input, it will produce
the umlaut version of that character in the code set. The second define does the same
thing with the sharp key and the characters ss to produce the German sharp s . Check the
kbdcomp(1) manual page for details. The mappings are summarized below:

Input Output

y z

z y

“a a

“o o

“u u

#ss b

Internationalization

8-25

Internationalization Facilities 8

Interface Standards 8

The functions discussed in this chapter are listed below by task in Table 8-3 and Table 8-4.
In Table 8-3, pages describing utilities compatible with both the ANSI C and X/Open
standards are denoted by an asterisk (*); pages describing utilities compatible with the
X/Open standard only are denoted by a dagger (†).

Table 8-3. Routines for Application Programming

Task Functions

locale specification setlocale(3C)*, environ(5)

character classification conv(3C)*, ctype(3C)*

multibyte/wide character
conversion

mbchar(3C)*, mbstring(3C)*

wide character handling all (3W) †

curses wide character
handling

all (3X)

date and time
strftime(3C)*, strftime(4)*
nl_langinfo(3C) †, langinfo(5) †
getdate(3C)

numeric and monetary
conventions

localeconv(3C)*

nl_langinfo(3C) †, langinfo(5) †

string collation strcoll(3C)*, strxfrm(3C)*

formatted input/output printf(3S)*, scanf(3S)*

message handling

gencat(1) †, catgets(3C) †,
catopen(3C) †, nl_types(5) †
exstr(1), gettxt(1), mkmsgs(1),
srchtxt(1), gettxt(3C)

message management and
monitoring

lfmt(1), pfmt(1), addsev(3C),
lfmt(3C), pfmt(3C), setcat(3C),
setlabel(3C)

PowerMAX OS Programming Guide

8-26

Enhanced Commands 8

All System V commands are “8-bit clean.” They make no assumptions about the contents
of the high-order bit when processing characters. Accordingly, they will work correctly
with any standard 7- or 8-bit character set, provided the environment variables LC_CTYPE
or LANG have been set to a locale in which the character set is implemented. Similar
arrangements have been made for commands that use locale-dependent date and time
representations and collation.

Many of these commands have been further enhanced to process multibyte characters,
again, provided the environment variables LC_CTYPE or LANG have been set to a locale
in which the multibyte character set is implemented. In the manual pages, these characters
are described as “supplementary code set characters” in reference to their EUC
representation. Check the manual pages for the degree of multibyte support provided.

Finally, many commands have been enhanced to produce locale-specific message output,
provided the environment variables LC_MESSAGES or LANG have been set to a locale in
which the message output is stored. Note that commands that produce localized output
messages use the System V-specific messaging interface.

Table 8-4. Routines for System Programming and Administration

Task Functions

character tables chrtbl(1M), wchrtbl(1M)

monetary tables montbl(1M)

collation tables colltbl(1M)

date and time databases strftime(4)

STREAMS
alpq(1), kbdpipe(1), kbdset(1),
pseudo(1), kbdcomp(1M), kbdload(1M),
eucioctl(5), iconv(5), alp(7),kbd(7)

Table 8-5. Enhanced Commands

Command
Name

Multibyte
Support

Message
Facility

accept y y

admin y y

ar y

as y

at y

atq y

atrm y

awk y y

Internationalization

8-27

banner y

basename y

batch y

bc y

bfs y

cal y y

calendar y y

cancel y y

cat y y

cb y

cc y y

cd y

cflow y

chgrp y

chmod y

chown y

cksum y

cmp y

col y

comm y

compress y

cp y

cpio y y

cron y

crontab y

csh y y

csplit y y

ctccpio y

cu y y

cut y y

cxref y

date y y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

PowerMAX OS Programming Guide

8-28

dc y

dd y y

delta y y

devattr y

devnm y

df y

diff y y

diff3 y

dircmp y y

dirname y

disable y

du y

echo y

ed y y

edit y y

egrep y y

enable y

env y y

ex y y

expr y y

fgrep y y

file y y

find y y

fmt y y

fold y y

fsdb y

fuser y

gencat y

get y

getconf y

getopt y y

getopts y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

Internationalization

8-29

gettxt y

getty y

grep y y

head y y

iconv y

id y

installf y

join y y

jsh y y

kill y

ksh y y

lex y

line y

ln y

logger y

login y

logname y

lp y y

lpadmin y

lpfilter y

lpforms y

lpmove y

lpsched y

lpshut y

lpstat y y

lpusers y

ls y y

m4 y y

mail y y

mailx y y

make y

mesg y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

PowerMAX OS Programming Guide

8-30

mkdir y

mkfifo y

mkmsgs y y

more y y

mv y

mvdir y

nawk y y

newform y

newgrp y

news y

nl y y

nlsadmin y

nohup y

od y y

pack y

page y y

passwd y

paste y y

pathchk y

pcat y

pg y y

pkgadd y

pkgask y

pkgchk y

pkginfo y

pkgmk y

pkgparam y

pkgproto y

pkgrm y

pkgtrans y

pr y y

printf y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

Internationalization

8-31

prs y

ps y

pwd y

read y

red y y

regcmp y

reject y

removef y

rfuadmin y

rm y

rmdel y

rmdir y

rsh y y

sdb y

sdiff y

sed y y

sh y y

shl y y

sleep y

sort y y

split y

srchtxt y

strip y

stty y

sttydefs y

su y

sum y

sysadm y

tabs y

tail y y

tar y

tee y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

PowerMAX OS Programming Guide

8-32

test y y

touch y

tr y y

tty y

ttyadm y

ttymon y

umask y

uname y

uncompress y

unget y

uniq y y

unpack y

uucleanup y

uucp y y

uudecode y

uuencode y

uulog y y

uuname y y

uupick y

uustat y

uuto y

uux y y

vedit y y

vi y y

view y y

wait y

wall y y

wc y y

who y

write y y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

Internationalization

8-33

xargs y

yacc y y

zcat y

Table 8-5. Enhanced Commands (Cont.)

Command
Name

Multibyte
Support

Message
Facility

PowerMAX OS Programming Guide

8-34

9
Directory and File Management

Introduction . 9-1
Structure of the File System . 9-2

Types of Files . 9-2
Regular Files . 9-2
Directory Files. 9-2
Special Files . 9-3

Organization of Files . 9-3
File Naming . 9-5
Path Names. 9-5

Full Pathnames . 9-6
Relative Pathnames . 9-7

Symbolic Links . 9-11
Properties of Symbolic Links . 9-12
Using Symbolic Links . 9-14

Creating Symbolic Links. 9-14
Examples . 9-16

Removing Symbolic Links . 9-16
Accessing Symbolic Links . 9-16
Copying Symbolic Links. 9-17
Linking Symbolic Links . 9-17
Moving Symbolic Links . 9-18
File Ownership and Permissions. 9-19

Using Symbolic Links with NFS . 9-19
Archiving Commands. 9-21

Summary of UNIX System Files & Directories . 9-21
UNIX System Directories. 9-22
Directories and Files. 9-23

Directories in root . 9-23
Directories in /etc . 9-25
Files in /etc . 9-27
Directories in /usr . 9-32
Files in /usr . 9-34
Directories in /var . 9-35
Files in /var . 9-37

File Access Controls . 9-39
File Protection . 9-40

File Permissions . 9-41
Setting Default Permissions . 9-42
How to Determine Existing Permissions. 9-42
How to Change Existing Permissions . 9-44
A Note on Permissions and Directories . 9-46
An Alternative Method . 9-46

Security Considerations . 9-47
What Security Means to Programmers. 9-47

What Is Security? . 9-47
How Basic Security Works . 9-48
How Enhanced Security Works. 9-48

PowerMAX OS Programming Guide

Privileges. 9-50
Privileges Associated with a File. 9-53
Manipulating File Privileges . 9-54
Privileges Associated with a Process. 9-56
Manipulating Process Privileges . 9-57

Device Security . 9-59
Device Database . 9-60
Kernel Device Allocation . 9-61
Device Driver Flags . 9-62
Device Allocation Routines . 9-62

The devalloc Routine . 9-62
The devdealloc Routine . 9-63

9-1

9
Chapter 9Directory and File Management

9
9
9

Introduction 9

PowerMAX OS File System functions create and remove files and directories, and inspect
and modify their characteristics. Processes use these functions to access files and directo-
ries for subsequent I/O operations. One of the most important services provided by an
operating system is to maintain a consistent, orderly and easily accessed file system. The
file system contains directories of files arranged in a tree-like structure. The file system is
simple in structure; nevertheless, it is more powerful and general than those often found
even in considerably larger operating systems.

All OS files have a consistent structure to conceal physical properties of the device storing
the file, such as the size of a disk track. It is not necessary, nor even possible, to preallocate
space for a file. The size of a file is the number of bytes in it, with the last byte determined
by the high-water mark of writes to the file. The OS presents each file as a featureless, ran-
domly addressable sequence of bytes arranged as a one-dimensional array of bytes ending
with EOF.

The file system organizes files and directories into a tree-like structure of directories with
files attached anywhere (and possibly multiply) into this hierarchy of directories. Files can
be accessed by a “full pathname” or “relative pathname”, have independent protection
modes, are automatically allocated and de-allocated, and can be linked across directories.

In the hierarchically arranged directory tree-structure, each directory contains a list of
names (character strings) and the associated file index, which implicitly refers to the same
device as does the directory. Because directories are themselves files, the naming structure
is potentially an arbitrary directed graph. Administrative rules restrict it to have the form
of a tree, except that non-directory-files may have several names (entries in various direc-
tories).

The same non-directory-file may appear in several directories under possibly different
names. This feature is called linking; a directory-entry for a file is sometimes called a link.
PowerMAX OS differs from other systems in which linking is permitted in that all links to
a file have equal status. That is, a file does not exist within a particular directory; the direc-
tory-entry for a file consists merely of its name and a pointer to the information actually
describing the file. Thus, a file exists independently of any directory-entry, although in
practice a file is removed along with the last link to it.

PowerMAX OS Programming Guide

9-2

Structure of the File System 9

Types of Files 9

From the point of view of the user, there are three types of files:

1. regular files

2. directory files

3. special files

The user and user application programs access all three types of files simply as a string of
bytes, and must interpret the file appropriately. With the OS, files normally reside on a
disk.

Regular Files 9

Regular files contain whatever information users write onto them (for example, character
data, source programs or binary objects). Any file other than a special file or a directory
file is a regular file. Every file is a (one-dimensional) array of bytes; the OS imposes no
further structure on the contents of files. A file of text consists simply of a string of charac-
ters, with the new-line character delimiting lines. Binary files are sequences of words as
they appear in memory when the file executes. Some programs operate on files with more
structure; for example, the assembler generates, and the loader expects, object files in a
specific format. The programs that use files dictate their structure, not the system.

Directory Files 9

Directory files (also called “directories”) provide the mapping (paths) between the names
of files and the files themselves. Directories induce a tree-like structure on the file system
as a whole to create a hierarchical system of files with directories as the nodes in the hier-
archy. A directory is a file that catalogs the files, including directories (sub-directories),
directly beneath it in the hierarchy.

Each user owns a directory of files, and may also create sub-directories to contain groups
of files conveniently treated together. A directory behaves exactly like a regular file except
that only the operating system can write onto it. The OS controls the contents of directo-
ries; however, users with permission may read a directory just like any other file.

The operating system maintains several directories for its own use. One of these is the
root-directory. Each file in the file system can be found by tracing a path from the
root-directory through a chain of directories until the desired file is reached. Other system
directories contain any programs provided for general use; that is, all commands; however,
it is by no means necessary that a program reside in one of these directories for it to be
executed.

Entries in a directory file are called links. A link associates a file-identifier with a filename.
Each directory has at least two links, “. ” (dot) and “.. ” (dot-dot). The link dot refers to
the directory itself; while dot-dot refers to the parent of the directory in which dot-dot

Directory and File Management

9-3

appears. Programs may read the current-directory using “. ” without knowing its complete
pathname.

The root-directory, which is the top-most node of the hierarchy, has itself as its par-
ent-directory; thus, “/ ” is the pathname of both the root-directory and the parent-directory
of the root-directory.

The directory structure is constrained to have the form of a rooted tree. Except for the spe-
cial entries . and .. , each directory must appear as an entry in exactly one other direc-
tory, which is its parent. The reason for this is to simplify the writing of programs that visit
sub-trees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult
to detect when the last connection from the root-directory to a directory was severed.

Special Files 9

Special files constitute the most unusual feature of the PowerMAX OS file system. Each
supported I/O device is associated with at least one special file. Special files are read and
written just like regular files, but requests to read or write result in activation of the associ-
ated device-handler (driver) rather than the normal file mechanism.

An entry for each special file resides under the directory /dev although a link may be
made to one of these files just as it may to a regular file. For example, to write on magnetic
tape one may write on the file /dev/mt . Special files exist for peripheral devices such as
terminal ports, communication links, disk drives, tape drives and for physical main mem-
ory. Of course, the active disks and memory special files are protected from indiscriminate
access by appropriate read and write permissions.

There are several advantages to treating I/O devices this way:

• file and device I/O are as similar as possible; all I/O is treated uniformly,
and the same system calls work on all types of files.

• file and device names have the same syntax and meaning, so that a program
expecting a filename as a parameter can be passed a device name.

• the same protection mechanism works on special files, directory files and
regular files.

Organization of Files 9

The file system is made up of a set of regular files, special files, symbolic links, and direc-
tories. These components provide a way to organize, retrieve, and manage information
electronically. The “File and Device Input/Output” chapter introduced some of the proper-
ties of directories and files; this section will review them briefly before discussing how to
use them.

• A regular file is a collection of characters stored on a disk. It may contain
text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A symbolic link is a file that points to another file.

PowerMAX OS Programming Guide

9-4

• A directory is a collection of files and other directories (sometimes called
subdirectories). Use directories to group files together on the basis of any
criteria you choose. For example, you might create a directory for each
product that your company sells or for each of your student's records.

The set of all the directories and files is organized into a tree shaped structure. Figure 9-1
shows a sample file structure with a directory called root (/) as its source. By moving
down the branches extending from root, you can reach several other major system directo-
ries. By branching down from these, you can, in turn, reach all the directories and files in
the file system.

Figure 9-1. A Sample File System

In this hierarchy, files and directories that are subordinate to a directory have what is
called a parent/child relationship. This type of relationship is possible for many layers of
files and directories. In fact, there is no limit to the number of files and directories you may

161320

stand

unix

sbin dev

console

= Directories

= Regular Files

= Special Files

= Branch

tmp var usrhomeetc

jmrsmary2

term bin

date cat

sbinlib

/
(root)

draft bin

tools

letters

23 12

list mbox

outline table display listsanders johnson

starship

Directory and File Management

9-5

create in any directory that you own. Neither is there a limit to the number of layers of
directories that you may create. Thus, you have the capability to organize your files in a
variety of ways, as shown in the preceding figure.

File Naming 9

Strings of 1 to {NAME_MAX} characters may be used to name a regular file, directory file
or special file. {NAME_MAX} must be at least 14, and the characters may be any from the
set of all character values excluding NULL and slash, ‘/ ‘. The following are examples of
legal directory or file names:

memoMEMOsection2ref:list
file.dchap3+4item1-10outline

A regular file, special file or directory may have any name that conforms to the following
rules:

• All characters other than / are legal.

• Non-printing characters including space, tab and backspace, are best
avoided. If you use a space or tab in a directory or filename, you must
enclose the name in quotation-marks on the command-line.

• Note that it is generally unwise to use “* ”, “ ? ”, “ ! ”, “ [” or “] ” as part of
filenames because of the special meaning given these characters for file-
name expansion by the command interpreter (see system(2)). Other
characters to avoid are the hyphen, “<”, “ >”, backslash, single and double
quotes, accent grave, vertical bar, caret, curly braces and parentheses.

• Avoid using a + , - or . as the first character in a filename.

• Upper case and lower case characters are distinct to the UNIX system. For
example, the system considers a directory (or file) named draft to be dif-
ferent from one named DRAFT.

Path Names 9

The name of a file may take the form of a pathname, which is a sequence of directory
names separated from one another by “/ ” and ending in a filename. A pathname is a
null-terminated character-string starting with an optional slash, “/ ”, followed by zero or
more directory-names separated by slashes and optionally followed by a filename.

More precisely, a pathname is a null-terminated character-string as follows:

<path_name>::=<file_name><path_prefix><file_name >/ . ..
<path_prefix>::=<rtprefix> /<rtprefix> empty
<rtprefix>::=<dirname>/<rtprefix><dirname>/

where <file_name> is a string of 1 to {NAME_MAX} significant characters (other than
slash and null), and <dirname> is a string of 1 to {NAME_MAX} significant characters
(other than slash and null) that names a directory. The result of names not produced by the

PowerMAX OS Programming Guide

9-6

grammar are undefined. A null string is undefined and may be considered an error. As a
limiting case, the pathname “/ ” refers to the root-directory itself. An attempt to create or
delete the pathname slash by itself is undefined and may be considered an error. The
meanings of “. ” and “.. ” are defined earlier under the heading “Directory Files.”

The sequence of directories preceding the filename is called a path-prefix, and if the
path-prefix begins with a slash, the search begins in the root-directory. This is called a full
pathname.

Full Pathnames 9

A full pathname (sometimes called an “absolute pathname”) starts in the root directory
and leads down through a unique sequence of directories to a particular directory or file.
Because a full pathname always starts at the root of the file system, its leading character is
always a / (slash). The final name in a full pathname can be either a file name or a direc-
tory name. All other names in the path must be directories. You can use a full pathname to
reach any file or directory in the UNIX system in which you are working.

To understand how a full pathname is constructed and how it directs you, consider the fol-
lowing example. Suppose you are working in the starship directory, located in /home .
You issue the pwd command and the system responds by printing the full pathname of
your working directory: /home/starship .

Figure 9-2 describes the elements of this pathname:

Figure 9-2. Diagram of a Full Pathname

The key for this figure is as follows:

/home/starship

root

system
directory

home
directorydelimiter

161330

Directory and File Management

9-7

The following pathname:

/usr/bin/send

causes a search of the root-directory for directory “usr ”, then a search of “usr ” for
“ bin ”, finally to find “ send ” in “ bin ”. The file “send ” may be a directory, regular or
special file. A null-prefix (or for that matter, any path-prefix without an initial “/ ”) causes
the search to begin in the current-directory of the user. Thus, the simplest form of path-
name, “alpha ”, refers to a file found in the current-directory, and the pathname
“ alpha/beta ” specifies the file named “beta ” in sub-directory “alpha ” of the cur-
rent-directory. This relative pathname allows a user to quickly specify a sub-directory
without needing to know (or input) the full pathname.

The dashed lines in Figure 9-3 trace the full path to /home/starship .

Relative Pathnames 9

A relative pathname gives directions that start in your current working directory and lead
you up or down through a series of directories to a particular file or directory. By moving
down from your current directory, you can access files and directories you own.

For example, suppose you are in the directory starship in the sample system and
starship contains directories named draft , letters , and bin and a file named
mbox. The relative pathname to any of these is simply its name, such as draft or mbox.
Figure 9-4 traces the relative path from starship to draft .

The draft directory belonging to starship contains the files outline and table .
The relative pathname from starship to the file outline is draft/outline .

Figure 9-5 traces this relative path. Notice that the slash in this pathname separates the
directory named draft from the file named outline . Here, the slash is a delimiter
showing that outline is subordinate to draft ; that is, outline is a child of its parent,
draft .

So far, the discussion of relative pathnames has covered how to specify names of files and
directories that belong to, or are children of, the current directory. You can move down the
system hierarchy level by level until you reach your destination. You can also, however,
ascend the levels in the system structure or ascend and subsequently descend into other
files and directories.

/ (leading) = the slash that appears as the first character in the
pathname is the root of the file system

home = system directory one level below root in the hier-
archy to which root points or branches

/ (subsequent) = the next slash separates or delimits the directory
names home and starship

starship = current working directory

PowerMAX OS Programming Guide

9-8

Figure 9-3. Full Pathname of the /home/starship Directory

By moving up from your current directory, you pass through layers of parent directories to
the grandparent of all system directories, root. From there you can move anywhere in the
file system.

The relative pathname is just one of the mechanisms built into the file system to alleviate
the need to use full pathnames. By convention, the path-prefix “.. ” refers to the par-
ent-directory (that is, the directory containing the current-directory), and the path-prefix
“ . ” refers to the current-directory.

161340

stand

unix

sbin dev

console

= Directories

= Regular Files

= Special Files

= Branch

tmp var usrhomeetc

starship jmrsmary2

term bin

date cat

sbinlib

/
(root)

draft bin

tools

letters

23 11

list mbox

outline table display listsanders johnson

Directory and File Management

9-9

Figure 9-4. Relative Pathname of the draft Directory

A relative pathname begins with one of the following: a directory or file name; a “. ” (pro-
nounced dot), which is a shorthand notation for your current directory; or a “.. ” (pro-
nounced dot dot), which is a shorthand notation for the directory immediately above your
current directory in the file system hierarchy. The directory represented by “.. ” (dot dot)
is called the parent directory of . (your current directory).

To ascend to the parent of your current directory, you can use the “.. ” notation. This
means that if you are in the directory named “draft ” in the sample file system, “.. ” is
the pathname to “starship ”, and “../.. ” is the pathname to “starship ”'s parent
directory, “home”.

From “draft ”, you can also trace a path to the file “sanders ” by using the pathname
“ ../letters/sanders ”. The “.. ” brings you up to “starship ”. Then the names
“ letters ” and “sanders ” take you down through the “letters ” directory to the
“ sanders ” file.

Keep in mind that you can always use a full pathname in place of a relative one.

161350

starship mary2 jmrs

draft bin

tools

letterslist mbox

home

outline table senders johnson display list

= Directories

= Regular Files

PowerMAX OS Programming Guide

9-10

Figure 9-5. Relative Pathname from “starship” to “outline”

Figure 9-6 shows some examples of full and relative pathnames.

Figure 9-6. Example Pathnames

Path Name Meaning

/ full pathname of the root directory

/usr/bin full pathname of the bin directory that belongs to
the usr directory that belongs to root (contains
most executable programs and utilities)

161360

starship mary2 jmrs

draft bin

tools

letterslist mbox

home

outline table senders johnson display list

= Directories

= Regular Files

Directory and File Management

9-11

Moving files to the directory “. ” moves them into the current-directory. In addition, files
can be linked across directories. Linking a file to the current-directory obviates the need to
supply a path-prefix when accessing the file. When created, a process has one cur-
rent-directory and one root-directory associated with it, which can differ for other pro-
cesses. See the chapter entitled “Process Management” for more detail on processes.

Symbolic Links 9

A symbolic link is a special type of file that represents another file. The data in a symbolic
link consists of the pathname of a file or directory to which the symbolic link file is linked.
The link that is formed is called symbolic to distinguish it from a regular (also called a
hard) link such as can be created by using the ln(1) command. A symbolic link differs
functionally from a regular link in three major ways: files from different file systems may
be linked together; directories as well as regular files may be symbolically linked by any
user; and a symbolic link can be created even if the file it represents does not exist.

In order to understand how a symbolic link works, it is necessary to understand how the
UNIX operating system views files. (The following description pertains to files that
belong to the standard System V file system type.) The internal representation of a file is
contained in an inode, which contains a description of the layout of the file data on disk as
well as information about the file, such as the file owner, the access permissions, and the
access times. Every file has one inode, but a file may have several names, all of which
point to the inode. Each name is called a regular (or hard) link.

When a file is created, an inode is allocated for it, the file contents are stored in data
blocks, and an entry is created in a directory. A directory is a file whose data is a sequence
of entries, each consisting of an inode number and the name of a file. The inode initially
has a link count of one, which means that this file has one name (or one link to it).

We are now in a position to understand the difference between the creation of a regular and
a symbolic link. When a user creates a regular link to a file with the ln(1) command, a

/home/starship/bin/tools full pathname of the tools directory belonging to
the bin directory that belongs to the starship
directory belonging to home that belongs to root

bin/tools relative pathname to the file or directory tools in
the directory bin

If the current directory is / , then the UNIX system
searches for /usr/bin/tools . However, if the
current directory is starship , then the system
searches the full path /home/star-
ship/bin/tools .

tools relative pathname of a file or directory tools in
the current directory.

Figure 9-6. Example Pathnames (Cont.)

Path Name Meaning

PowerMAX OS Programming Guide

9-12

new directory entry is created containing a new file name and the inode number of an
existing file. The link count of the file is incremented.

In contrast, when a user creates a symbolic link both a new directory entry and a new
inode are created. A data block is allocated to contain the pathname of the file to which the
symbolic link refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For example, it fre-
quently happens that a disk partition (such as root) runs out of disk space. With symbolic
links, an administrator can create a link from a directory on that file system to a directory
on another file system. Such a link provides extra disk space and is, in most cases, trans-
parent to both users and programs.

Symbolic links can also help deal with the built-in pathnames that appear in the code of
many commands. Changing the pathnames would require changing the programs and
recompiling them. With symbolic links, the pathnames can effectively be changed by
making the original files symbolic links that point to new files.

In a shared resource environment like NFS, symbolic links can be very useful. For exam-
ple, if it is important to have a single copy of certain administrative files, symbolic links
can be used to help share them. Symbolic links can also be used to share resources selec-
tively. Suppose a system administrator wants to do a remote mount of a directory that con-
tains sharable devices. These devices must be in /dev on the client system, but this sys-
tem has devices of its own so the administrator does not want to mount the directory onto
/dev . Rather than do this, the administrator can mount the directory at a location other
than /dev and then use symbolic links in the /dev directory to refer to these remote
devices. (This is similar to the problem of built-in pathnames since it is normally assumed
that devices reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file system (VFS)
architecture. With VFS new services, such as higher performance files, events, and net-
work IPC, may be provided on a file system basis. Symbolic links can be used to link these
services to home directories or to places that make more sense to the application or user.
Thus one might create a database index file in a RAM-based file system type and symbol-
ically link it to the place where the database server expects it and manages it.

NOTE

The phrases “following symbolic links” and “not following sym-
bolic links” as they are used in this document refer to the evalua-
tion of the last component of a pathname. In the evaluation of a
pathname, if any component other than the last is a symbolic link,
the symbolic link is followed and the referenced file is used in the
pathname evaluation. However, if the last component of a path-
name is a symbolic link, the link may or may not be followed.

Properties of Symbolic Links 9

This section summarizes some of the essential characteristics of symbolic links. Succeed-
ing sections describe how symbolic links may be used, based on the characteristics out-
lined here.

Directory and File Management

9-13

As we have seen above, a symbolic link is a new type of file that represents another file.
The file to which it refers may be of any type; a regular file, a directory, a character-spe-
cial, block-special, or FIFO-special file, or another symbolic link. The file may be on the
local system or on a remote system. In fact, the file to which a symbolic link refers does
not even have to exist. In particular, the file does not have to exist when the symbolic link
is created or when it is removed.

Creation and removal of a symbolic link follow the same rules that apply to any file. To do
either, the user must have write permission in the directory that contains the symbolic link.
The ownership and the access permissions (mode) of the symbolic link are ignored for all
accesses of the symbolic link. It is the ownership and access permissions of the referenced
file that are used.

If the Enhanced Security Utilities are installed and running, Mandatory Access Control
checks depend on the security level of the referenced file when following a symbolic link,
while the level of the symbolic link is ignored. This means that a file is protected at its
security level, whether it is accessed directly or through a symbolic link. When access is
made to the symbolic link itself without following the link, on the other hand, the level of
the symbolic link inode is used to determine access. For example, to display information
on a symbolic link using ls -l , your login level must dominate that of the symbolic link,
while the level of the referenced file is ignored. In this case the contents of the symbolic
link, which consists of the pathname of the referenced file, is displayed. Since symbolic
links can be created to nonexistent files, this does not give away any information about the
referenced file itself.

A symbolic link cannot be opened or closed and its contents cannot be changed once it has
been created.

If /usr/jan/junk is a symbolic link to the file /etc/passwd , in effect the file name
/etc/passwd is substituted for junk so that when the user executes

cat /usr/jan/junk

it is the contents of the file /etc/passwd that are printed.

Similarly, if /usr/jan/junk is a symbolic link to the file ../junk2 , executing

cat /usr/jan/junk

is the same as executing

cat /usr/jan/../junk2

or

cat /usr/junk2

When a symbolic link is followed and brings a user to a different part of the file tree, we
may distinguish between where the user really is (the physical path) and how the user got
there (the virtual path). The behavior of /usr/bin/pwd , the shell built-in pwd, and ..
are all based on the physical path. In practical terms this means that there is no way for the
user to retrace the path which brought the user to the current position in the file tree.

PowerMAX OS Programming Guide

9-14

CAUTION

Other shells may use the virtual path. For example, by default the
Korn shell pwd uses the virtual path, though there is an option
allowing the user to make it use the physical path.

Consider the case shown in Figure 9-7 where /usr/include/sys is a symbolic link to
/ usr/src/uts/sys. Here if a user enters

cd /usr/include/sys

and then enters pwd, the result is

/usr/src/uts/sys

If the user then enters cd .. followed by pwd, the result is

/usr/src/uts

Figure 9-7. File Tree with Symbolic Link

Using Symbolic Links 9

This section discusses creating, removing, accessing, copying, and linking symbolic links.

Creating Symbolic Links 9

To create a symbolic link, the new system call symlink(2) is used and the owner must
have write permission in the directory where the link will reside. The file is created with

usr

src

uts

/

sys

include

/usr/src/uts/sys

161370

sys

Directory and File Management

9-15

the user's user-id and group-id but these are subsequently ignored. The mode of the file is
created as 0777.

If the Enhanced Security Utilities are installed and running, the file's security level is set to
the level of the parent directory. This allows a user who has access permission for the
directory to also have access to the symbolic link file.

CAUTION

No checking is done when a symbolic link is created. There is
nothing to stop a user from creating a symbolic link that refers to
itself or to an ancestor of itself or several links that loop around
among themselves. Therefore, when evaluating a pathname, it is
important to put a limit on the number of symbolic links that may
be encountered in case the evaluation encounters a loop. The vari-
able MAXSYMLINKS is used to force the error ELOOP after MAX-
SYMLINKS symbolic links have been encountered. The value of
MAXSYMLINKS should be at least 20.

To create a symbolic link, the ln command is used with the -s option (see ln(1)). If the
-s option is not used and a user tries to create a link to a file on another file system, a sym-
bolic link will not be created and the command will fail.

The syntax for creating symbolic links is as follows:

ln -s sourcefile1 [sourcefile2 ...] target

With two arguments:

• sourcefile1 may be any pathname and need not exist.

• target may be an existing directory or a non-existent file.

• If target is an existing directory, a file is created in directory target whose
name is the last component of sourcefile1 (`basename sourcefile1̀). This
file is a symbolic link that references sourcefile1.

• If target does not exist, a file with name target is created and it is a sym-
bolic link that references sourcefile1.

• If target already exists and is not a directory, an error is returned.

• sourcefile1 and target may reside on different file systems.

With more than two arguments:

• For each sourcefile, a file is created in target whose name is sourcefile or its
last component (b̀asename sourcefilè) and is a symbolic link to source-
file.

• If target is not an existing directory, an error is returned.

• Each sourcefile and target may reside on different file systems.

PowerMAX OS Programming Guide

9-16

Examples 9

The following examples show how symbolic links may be created.

ln -s /usr/src/uts/sys /usr/include/sys

In this example /usr/include is an existing directory. But file sys does not exist so it
will be created as a symbolic link that refers to /usr/src/uts/sys . The result is that
when file /usr/include/sys/x is accessed, the file /usr/src/uts/sys/x will
actually be accessed.

This k ind of symbol ic l ink may be used when fi les exist in the directory
/usr/src/uts/sys but programs often refer to files in /usr/include/sys . Rather
than creating corresponding files in /usr/include/sys that are hard links to files in
/usr/src/uts/sys , one symbolic link can be used to link the two directories. In this
example /usr/include/sys becomes a symbolic link that links the former
/usr/include/sys directory to the /usr/src/uts/sys directory.

ln -s /etc/group .

In this example the target is a directory (the current directory), so a file called group
(`basename /etc/group `) is created in the current directory that is a symbolic link to
/etc/group .

ln -s /fs1/jan/abc /var/spool/abc

In this example we imagine that /fs1/jan/abc does not exist at the time the command
is issued. Nevertheless, the file /var/spool/abc is created as a symbolic link to
/fs1/jan/abc . Later, /fs1/jan/abc may be created as a directory, regular file, or
any other file type.

The following example illustrates the use of more than two arguments:

ln -s /etc/group /etc/passwd .

The user would like to have the group and passwd files in the current directory but can-
not use hard links because /etc is a different file system. When more than two arguments
are used, the last argument must be a directory; here it is the current directory. Two files,
group and passwd , are created in the current directory, each a symbolic link to the asso-
ciated file in /etc .

Removing Symbolic Links 9

Normally, when accessing a symbolic link, one follows the link and actually accesses the
referenced file. However, this is not the case when one attempts to remove a symbolic link.
When the rm(1) command is executed and the argument is a symbolic link, it is the
symbolic link that is removed; the referenced file is not touched.

Accessing Symbolic Links 9

Suppose abc is a symbolic link to file def . When a user accesses the symbolic link abc ,
it is the file permissions (ownership and access) of file def that are actually used; the per-
missions of abc are always ignored. If file def is not accessible (that is, either it does not

Directory and File Management

9-17

exist or it exists but is not accessible to the user because of access permissions) and a user
tries to access the symbolic link abc, the error message will refer to abc, not file def .

Copying Symbolic Links 9

This section describes the behavior of the cp(1) command when one or more arguments
are symbolic links. With the cp(1) command, if any argument is a symbolic link, that
link is followed. Then the semantics of the command are as described in the Command
Reference. Suppose the command line is

cp sym file3

where sym is a symbolic link that references a regular file test1 and file3 is a regular
file. After execution of the command, file3 gets overwritten with the contents of the file
test1 .

If the last argument is a symbolic link that references a directory, then files are copied to
that directory. Suppose the command line is:

cp file1 sym symd

where file1 is a regular file, sym is a symbolic link that references a regular file test1 ,
and symd is a symbolic link that references a directory DIR. After execution of the com-
mand, there will be two new files, DIR/file1 and DIR/sym that have the same contents
as file1 and test1 .

Linking Symbolic Links 9

This section describes the behavior of the ln(1) command when one or more arguments
are symbolic links. To understand the difference in behavior between this and the cp(1)
command, it is useful to think of a copy operation as dealing with the contents of a file
while the link operation deals with the name of a file.

Let us look at the case where the source argument to ln is a symbolic link. If the -s
option is specified to ln , the command calls the symlink system call (see
symlink(2)). symlink does not follow the symbolic link specified by the source argu-
ment and creates a symbolic link to it. If -s is not specified, ln invokes the link(2)
system call. link follows the symbolic link specified by the source argument and creates
a hard link to the file referenced by the symbolic link.

For the target argument, ln invokes a stat system call (see stat(2)). If stat indi-
cates that the target argument is a directory, the files are linked in that directory. Other-
wise, if the target argument is an existing file, it is overwritten. This means that if the sec-
ond argument is a symbolic link to a directory, it is followed, but if it is a symbolic link to
a regular file, the symbolic link is overwritten.

For example, if the command line is

ln sym file1

where sym is a symbolic link that references a regular file foo , and file1 is a regular
file, file1 is overwritten and hard-linked to foo . Thus a hard link to a regular file has
been created.

PowerMAX OS Programming Guide

9-18

If the command is

ln -s sym file1

where the files are the same as in first example, file1 is overwritten and becomes a sym-
bolic link to sym.

If the command is

ln file1 sym

where the files are the same as in the first example, sym is overwritten and hard-linked to
file1 .

When the last argument is a directory as in

ln file1 sym symd

where symd is a symbolic link to a directory DIR, and file1 and sym are the same as in
the first example, the file DIR/file1 is hard-linked to file1 and DIR/sym is
hard-linked to foo .

Moving Symbolic Links 9

This section describes the behavior of the mv(1) command. Like the ln(1) command,
mv(1) deals with file names rather than file contents. With two arguments, a user
invokes the mv(1) command to rename a file. Therefore, one would not want to follow
the first argument if it is a symbolic link because it is the name of the file that is to be
changed rather than the file contents. Suppose that sym is a symbolic link to
/etc/passwd and abc is a regular file. If the command

mv sym abc

is executed, the file sym is renamed abc and is still a symbolic link to /etc/passwd . If
abc existed (as a regular file or a symbolic link to a regular file) before the command was
executed, it is overwritten.

Suppose the command is

mv sym1 file1 symd

where sym1 is a symbolic link to a regular file foo , file1 is a regular file, and symd is
a symbolic link that references a directory DIR. When the command is executed, the files
sym1 and file1 are moved from the current directory to the DIR directory so that there
are two new files, DIR/sym1 , which is still a symbolic link to foo , and DIR/file1 .

With the OS, the mv(1) command uses the rename(2) system call. If the first argu-
ment to rename(2) is a symbolic link, rename(2) does not follow it; instead it
renames the symbolic link itself. In previous releases, a file was moved using the
link(2) system call followed by the unlink(2) system call. Since link(2) and
unlink(2) do not follow symbolic links, the result of those two operations is the same
as the result of a call to rename(2) .

Directory and File Management

9-19

File Ownership and Permissions 9

The system calls chmod, chown and chgrp are used to change the mode and ownership
of a file. If the argument to chmod , chown or chgrp is a symbolic link, the mode and
ownership of the referenced file rather than of the symbolic link itself will be changed.
(See the section on “Symbolic Links” that follows in this chapter). In such cases, the link
is followed.

Once a symbolic link has been created, its permissions cannot be changed. By default, the
chown(1) and chgrp(1) commands change the owner and group of the referenced
file. However, a new -h option enables the user to change the owner and group of the sym-
bolic link itself. This is useful for removing files from sticky directories.

Using Symbolic Links with NFS 9

When using symbolic links in an NFS environment, it is important to understand how
pathnames are evaluated. The rule by which evaluations are performed is simple. Sym-
bolic links that a client encounters on the server are interpreted in accordance with the cli-
ent's view of the file tree.

Users on a server system must keep this rule in mind when they create symbolic links in
order to avoid problems. The examples that follow illustrate situations in which failure to
consider the client's view of the file tree can lead to problems.

In the example shown in Figure 9-8, the server advertises its /usr file system as USR. If
the server creates the symbolic link /usr/include/sys as an absolute pathname to
/ usr/src/uts/sys, evaluation of the link will work as intended as long as a client
mounts USR as /usr . Another way of saying this is that if the file tree naming conven-
tions are the same on the client and the server, things will work as intended. However, if
the client mounts USR as /mnt/usr , when the symbolic link /usr/src/uts/sys is
evaluated, the evaluation will be done with respect to the client's view of the file tree and
will not cross the mount point back to the server but will remain on the client. Thus the cli-
ent will not access the file intended. In this situation the server should create the symbolic
link as a relative pathname, . ./src/uts/sys , so that evaluation will produce the
desired results regardless of where the client mounts USR.

Figure 9-9 shows another potential problem situation in which the server advertises its
/usr file system as USR. But in this case the server has a symbolic link from
/usr/src/uts/sys/new.h to /foo/usr/src/uts/sys/new.h . Because the
referenced file, /foo/usr/src/uts/sys/new.h , is outside of the advertised
resource, users on the server can access this file but users on the client cannot. In this
example, it would make no difference if the symbolic link was a relative rather than an
absolute pathname, because the directory / foo on the server is not part of the client's
name space. When the system evaluates the symbolic link, it will look for the file on the
client and will not follow the link as intended.

PowerMAX OS Programming Guide

9-20

Figure 9-8. Symbolic Links with NFS: Example 1

Figure 9-9. Symbolic Links with NFS: Example 2

usr

src

uts

/

sys

vnode.h

usr

CLIENT SERVER
/

include

/usr/arc/uts/sys

or

161380

sys

. ./src/uts/sys

usr usr

foo

src

uts

/

sys

vnode.h

usr

CLIENT SERVER

/

src

uts

sys

new.hnew.h

include

/usr/src/uts/sys

or

161390

sys

. ./src/uts/sys

/foo/usr/src/uts/sys/new.h

Directory and File Management

9-21

Archiving Commands 9

The cpio(1) command copies file archives usually to or from a storage medium such
as tape, disk, or diskette. By default, cpio does not follow symbolic links, unless the -L
option is used with the -o and -p options to indicate that symbolic links should be fol-
lowed. Note that this option is not valid with the -i option.

Normally, a user invokes the find(1) command to produce a list of filenames and pipes
this into the cpio(1) command to create an archive of the files listed. The find(1)
command also has a new option -follow to indicate that symbolic links should be fol-
lowed. If a user invokes find(1) with the -follow option, then cpio(1) must also
be invoked with its new option -L to indicate that it too should follow symbolic links.

When evaluating the output from find(1) , following or not following symbolic links
only makes a difference when a symbolic link to a directory is encountered. For example,
if /usr/jan/symd is a symbolic link to the directory ../joe/test and files test1
and test2 are in directory /usr/joe/test , the output of a find starting from
/usr/jan includes the file /usr/jan/symd if symbolic links are not followed, but
includes /usr/jan/symd/test1 and /usr/jan/symd/test2 as well as
/usr/jan/symd if symbolic links are followed.

If the user wants to preserve the structure of the directories being archived, it is recom-
mended that symbolic links not be followed on both commands. (This is the default.)
When this is done symbolic links will be preserved and the directory hierarchy will be
duplicated as it was. If the user is more concerned that the contents of the files be saved,
then the user should use the -L option to cpio(1) and the -follow option to
find(1) to follow symbolic links.

CAUTION

The user should take care not to mix modes, that is, the user
should either follow or not follow symbolic links for both
cpio(1) and find(1). If modes are mixed, an archive will
be created but the resulting hierarchy created by cpio -i may
exhibit unexpected and undesirable results.

The -i option to cpio(1) copies symbolic links as is.

Summary of UNIX System Files & Directories 9

UNIX system files are organized in a hierarchy; their structure is often described as an
inverted tree. At the top of this tree is the root directory, the source of the entire file sys-
tem. It is designated by a / (slash). All other directories and files descend and branch out
from root, as shown in Figure 9-10:

The following section provides brief descriptions of the root directory and the system
directories under it, as shown in an earlier figure.

PowerMAX OS Programming Guide

9-22

Figure 9-10. Directory Tree from root

UNIX System Directories 9

/ the source of the file system (called the root directory)

/stand contains programs and data files used in the booting process

/sbin contains essential executables used in the booting process and in
manual system recovery

/dev contains special files that represent peripheral devices, such as:

console console

lp line printer

term/* user terminal(s)

dsk/* disks

161400

stand

unix

sbin dev

console

= Directories

= Regular Files

= Special Flies

= Branch

tmp var usrhomeetc

term bin

date cat

sbinlib

/
(root)

2311

Directory and File Management

9-23

/etc contains machine-specific administrative configuration files and
system administration databases

/home the root of a subtree for user directories

/tmp contains temporary files, such as the buffers created for editing a
file

/var the root of a subtree for varying files such as log files

/usr contains other directories, including lib and bin

/usr/bin contains many executable programs and utilities, including the
following: cat , date , login , grep , mkdir , who.

/usr/lib contains libraries for programs and languages

Directories and Files 9

This section describes:

• Directories and files that are important for administering a system

• Directories that are new for this software release

• The reorganization of the directory structure introduced in this release

• The new organization of the root file system, and significant directories
mounted on root

CAUTION

To maintain a secure environment, do not change the file or direc-
tory permissions from those assigned at the time of installation.

Directories in root 9

The / (root) file system contains executables and other files necessary to boot and run the
system. The directories of the root file system are explained next.

/bck

The /bck directory is used to mount a backup file system for restoring files.

/dev

The /dev directory contains block and character special files that are usually
associated with hardware devices or STREAMS drivers.

PowerMAX OS Programming Guide

9-24

/etc

The /etc directory contains machine-specific configuration files and system
administration databases.

/export

The /export directory contains the default root of the exported file system
tree.

/home

The /home directory contains user directories.

/install

The /install directory is used by the packaging commands to mount
add-on packages for installation and removal (/install file system).

/lost+found

The /lost+found directory is used by fsck to save disconnected files and
directories.

/mnt

The /mnt directory is used to mount file systems for temporary use.

/opt

The /opt directory is the mount point from which add-on application pack-
ages are installed.

/proc

The /proc directory is the mount point of the proc file system which pro-
vides information on the system's processes.

/save

The /save directory is used by packaging commands for saving data.

/sbin

The /sbin directory contains executables used in the booting process and in
manual recovery from a system failure.

/stand

The /stand directory contains standalone programs, which include boot .

/tmp

The /tmp directory contains temporary files.

/usr

The /usr directory is the mount point of the usr file system.

Directory and File Management

9-25

/var

The /var directory is the mount point of the var file system. It contains
those files and directories that vary from machine to machine, such as tmp ,
spool and mail . The /var file system also contains administrative directo-
ries such as /var/adm and /var/opt , the latter is installed by application
packages.

Directories in /etc 9

This section describes the directories under the /etc directory, which contain
machine-specific configuration files and system administration databases.

/etc/bkup

This directory contains machine-specific files and directories for the extended
backup and restore operations. Also contained here are files and directories
that allow restore operations to be performed from single-user mode (system
state 1).

/etc/bkup/method

This directory contains files that describe all the extended backup and restore
methods currently used on your computer.

/etc/conf

The /etc/conf directory contains files that define the hardware drivers,
software drivers, and system parameters used to build the UNIX system file
/stand/unix .

/etc/cron.d

This directory contains administrative files for controlling and monitoring
cron activities.

/etc/default

This directory contains files that assign default values to certain system
parameters.

/etc/fs

This directory contains file-type specific utilities.

/etc/init.d

This directory contains executable files used in upward and downward transi-
tions to all system states. These files are linked to files beginning with S (start)
or K (stop) in /etc/rc n.d , where n is the appropriate system state. Files are
executed from the /etc/rc n.d directories.

PowerMAX OS Programming Guide

9-26

/etc/lp

This directory contains the configuration files and interface programs for the
LP print service.

/etc/mail

This directory contains files used in administering the electronic mail system.

/etc/mail/lists

This directory contains files, each of which contains a mail alias. The name of
each file is the name of the mail alias that it contains. (See the mailx(1)
command for a description of the mail alias format.)

/etc/rc.d

This directory contains executable files that perform the various functions
needed to initialize the system to system state 2. The files are executed when
/usr/sbin/rc2 is run. (Files contained in this directory before UNIX Sys-
tem V Release 3.0 were moved to /etc/rc2.d . This directory is maintained
only for compatibility reasons.)

/etc/rc0.d

This directory contains files executed by /usr/sbin/rc0 for transitions to
system states 0, 5, and 6. Files in this directory are linked from the
/etc/init.d directory, and begin with either a K or an S. K shows pro-
cesses that are stopped, and S shows processes that are started when entering
system states 0, 5, or 6.

/etc/rc1.d

This directory contains files executed by /usr/sbin/rc1 for transitions to
system state 1. Files in this directory are linked from the /etc/init.d
directory, and begin with either a K or an S. K shows processes that should be
stopped, and S shows processes that should be started when entering system
state 1.

/etc/rc2.d

This directory contains files executed by /usr/sbin/rc2 for transitions to
system state 2. Files in this directory are linked from the /etc/init.d
directory, and begin with either a K or an S. K shows processes that should
be stopped, and S shows processes that should be started when entering sys-
tem state 2.

/etc/rc3.d

This directory contains files executed by /usr/sbin/rc3 for transitions to
system state 3 (multi-user mode). Files in this directory are linked from the
/etc/init.d directory, and begin with either a K or an S. K shows pro-
cesses that should be stopped, and S shows processes that should be started
when entering system state 3.

Directory and File Management

9-27

/etc/saf

This directory contains files and subdirectories used by the Service Access
Facility. The following commands in /usr/sbin use /etc/saf subdirec-
tories for data storage and retrieval: nlsadmin , pmadm and sacadm . The
following files are included:

_sactab A list of port monitors to be started by the Service
Access Controller (SAC). Each port monitor listed in
this table has a _pmtab file in the /etc/saf/ pmtag
directory, where pmtag is the tag of this port monitor
(such as /etc/saf/starlan for the starlan port
monitor).

_sysconfig The configuration script used to modify the environ-
ment for the Service Access Facility.

/etc/save.d

This directory contains files used by the sysadm command for backing up
data on floppy diskettes. The following files are included:

except A list of the directories and files that should not be
copied as part of a backup is maintained in this file.

timestamp/... The date and time of the last backup (volume or incre-
mental) is maintained for each file system in the
/etc/save.d/timestamp directory.

Files in /etc 9

The following files are used in machine-specific configuration and system administration
databases.

/etc/bkup/bkexcept.tab

This file contains a list of files to be excluded from an incremental backup.

/etc/bkup/bkhist.tab

This file contains information about the success of all backup attempts.

/etc/bkup/bkreg.tab

This file contains instructions to the system for performing backup operations
on your computer.

/etc/bkup/bkstatus.tab

This file contains the status of backup operations currently taking place.

/etc/bkup/rsmethod.tab

This file contains descriptions of the types of objects that may be restored
using the full or partial restore method.

PowerMAX OS Programming Guide

9-28

/etc/bkup/rsnotify.tab

This file contains the electronic mail address of the operator to be notified
whenever restore requests require operator intervention.

/etc/bkup/rsstatus.tab

This file contains a list of all restore requests made by users of your computer.

/etc/bkup/rsstrat.tab

This file specifies a strategy for selecting archives when handling restore
requests. In completing restore operations for these requests, the backup his-
tory log is used to navigate through the backup tape to find the desired files
and or directories.

/etc/bupsched

This file contains the backup schedule.

/etc/d_passwd

This file contains a list of programs that will require dial-up passwords when
run from login. Each line in the file is formatted as

program: encrypted_password:

where program is the full path to any programs into which a user can log in
and run. The password referred to in the encrypted_password is the one that
will be used by the dial-up password program. This password must be entered
before the user is given the login prompt. It is used in conjunction with the file
/etc/dialups.

/etc/default/cron

This file contains the default status (enable or disable) for the CRONLOG
operation.

/etc/default/login

This file may contain the following parameters that define a user's login envi-
ronment:

ALTSHELL Alternate shell status available to users (yes or no).

CONSOLE Root login allowed only at the console terminal.

HZ Number of clock ticks per second.

IDLEWEEKS Number of weeks a password may remain unchanged
before the user is denied access to the system.

PASSREQ Password requirement on logins (yes or no).

PATH User's default PATH.

SUPATH Root's default PATH.

Directory and File Management

9-29

TIMEOUT Number of seconds allowed for logging in before a
timeout occurs.

TIMEZONE Time zone used within the user's environment.

ULIMIT File size limit (ulimit).

UMASK User's value for umask .

/etc/default/passwd

This file contains the following information about the length and aging of user
passwords:

MINWEEKS Minimum number of weeks before a password can be
changed.

MAXWEEKS Maximum number of weeks a password can be
unchanged.

PASSLENGTH Minimum number of characters in a password.

WARNWEEKS Number of weeks before a password expires that the
user is to be warned.

SULOG A pathname that identifies a file in which a log of all
su attempts may be created.

CONSOLE Pathnames of the console on which are broadcast
messages notifying you whenever someone attempts
to su root .

PATH PATH used for su users.

SUPATH PATH used for su root users.

/etc/device.tab

This file is the device table. It lists the device alias, path to the vnode, and spe-
cial attributes of every device connected to the computer.

/etc/devlock.tab

This file is created at run time and lists the reserved (locked) devices. Device
reservations do not remain intact across system reboots.

/etc/saf/ pmtag/_config

This file contains a configuration script used to customize the environment for
the port monitor tagged as pmtag (such as /etc/saf/starlan/_config
for the starlan port monitor). Port monitor configuration scripts are optional.

/etc/dgroup.tab

This file lists the group or groups to which a device belongs.

PowerMAX OS Programming Guide

9-30

/etc/dialups

This file contains a list of terminal devices that cannot be accessed without a
dial-up password. It is used in conjunction with the file /etc/d_passwd .

/etc/group

This file describes each user group to the system. An entry is added for each
new group with the groupadd command.

/etc/inittab

This file contains instructions for the /sbin/init command. The instruc-
tions define the processes created or stopped for each initialization state. Ini-
tialization states are called system states or run states. By convention, system
state 1 (or S or s) is single-user mode; system states 2 and 3 are multi-user
modes. (See inittab(4) in the System Files and Devices Reference for
additional information.)

/etc/mail/mailcnfg

This file permits per-site customizing of the mail subsystem. See the mail-
cnfg(4) manual page in the System Files and Devices Reference and in the
Network Administration manuals.

/etc/mail/mailsurr

This file lists actions to be taken when mail containing particular patterns is
processed by mail . This can include routing translations and logging. See the
mailsurr(4) manual page in the System Files and Devices Reference.

/etc/mail/mailx.rc

This file contains defaults for the mailx program. It may be added by the sys-
tem administrator. See mailx(1) .

/etc/mail/notify and /etc/mail/notify.sys

These files are used by the notify program to determine the location of
users in a networked environment and to establish systems to use in case of
file error.

/etc/motd

This file contains the message of the day. The message of the day is displayed
on a user's screen after that user has successfully logged in. (The commands
that produce this output on the screen are in the /etc/profile file.) This
message should be kept short and to the point. The /var/news files should
be used for lengthy messages.

/etc/passwd

This file identifies each user to the system. An entry is automatically added for
each new user with the useradd command, removed with the userdel
command, and modified with the usermod command.

Directory and File Management

9-31

/etc/profile

This file contains the default profile for all users. The standard (default) envi-
ronment for all users is established by the instructions in the /etc/profile
file. The system administrator can change this file to set options for the root
login. For example, the six lines of code shown in Figure 9-11 can be added to
the /etc/profile . This code defines the erase character, automatically
identifies the terminal type, and sets the TERM variable when the login ID is
root .

Figure 9-11. Excerpt from /etc/profile

/etc/dfs/dfstab

This file specifies the distributed file system resources from your machine that
are automatically shared to remote machines when entering system state 3.
Each entry in this file should be a share(1M) command line.

/etc/saf/ pmtag/_pmtab

This is the administrative file for the port monitor tagged as pmtag. It contains
an entry for each service available through the pmtag port monitor.

/etc/saf/_sactab

This file contains information about all port monitors for which the Service
Access Controller (SAC) is responsible.

/etc/saf/_sysconfig

This file contains a configuration script to customize the environments for all
port monitors on the system. This per-system configuration file is optional.

/etc/TIMEZONE

This file sets the time zone shell variable TZ. The TZ variable is initially
established for the system via the sysadm setup command. The TZ vari-
able in the TIMEZONE file is changed by the sysadm timezone command.
The TZ variable can be redefined on a user (login) basis by setting the variable
in the associated .profile . The TIMEZONE fi le is executed by
/usr/sbin/rc2 . (See timezone(4) in the System Files and Devices
Reference for more information.)

/etc/ttydefs

This file contains information used by ttymon port monitor to set the terminal
modes and baud rate for a TTY port.

1 if [${LOGNAME} = root]
2 then
3 stty echoe
4 echo “Terminal: c”; read TERM 5 export TERM
6 fi

PowerMAX OS Programming Guide

9-32

/etc/vfstab

This file provides default values for file systems and remote resources. The
following information can be stored in this file:

• The block and character devices on which file systems reside

• The resource name

• The location where a file system is usually mounted

• The file system type

• Information on special mounting procedures

These defaults do not override command line arguments that have been
entered manually. (See mountall(1M) in the Command Reference for
additional information.) Figure 9-12 shows a sample of this file.

Figure 9-12. Sample /etc/vfstab File

Directories in /usr 9

This section describes the directories in the /usr file system. The /usr file system con-
tains architecture-dependent and architecture-independent files and system administration
databases that can be shared.

/usr/adm

This directory contains administrative files.

/usr/bin

This directory contains public commands and system utilities.

/usr/ccs

This directory contains compilation systems executables, libraries, and mis-
cellaneous files.

/usr/include

This directory contains public header files for C programs.

#special fsckdev mountp fstype fsckpass automnt mntopts
/dev/root /dev/rroot / ufs 0 yes -
/dev/swap - - swap - yes -
/dev/usr /dev/rusr /usr ufs 1 yes -
/dev/var /dev/rvar /var ufs 0 yes -
/proc - /proc proc - no -
/dev/fd - /dev/fd fdfs - no -
/system/processor - /system/processor profs - no -

Directory and File Management

9-33

/usr/lib

This directory contains public libraries, daemons, and architecture dependent
databases.

/usr/lib/lp

This directory contains the directories and files used in processing requests to
the LP print service.

/usr/lib/mail

This directory contains directories and files used in processing mail.

/usr/lib/mail/surrcmd

This directory contains programs necessary for mail surrogate processing.

/usr/lost+found

This directory contains orphaned files found by fsck(1M) .

/usr/sadm

This directory contains sysadm administration files.

/usr/sadm/bkup

This directory contains executables for the extended backup and restore ser-
vices.

/usr/sbin

This directory contains executables used for system administration.

/usr/share

This directory contains architecture independent files that can be shared.

/usr/share/lib

This directory contains architecture independent databases.

/usr/share/man

This directory contains system manual pages.

/usr/sadm/skel

This directory contains the files and directories built when using the use-
radd command with the -m argument. All directories and files under this
location are built under the $HOME location for the new user.

PowerMAX OS Programming Guide

9-34

Files in /usr 9

This section describes the files in the /usr directories, which contain architecture-depen-
dent and architecture-independent files and system administrative databases that can be
shared.

/usr/sbin/rc0

This file contains a shell script executed by /usr/sbin/shutdown for
transitions to single-user state, and by /sbin/init for transitions to system
states 0, 5, and 6. Files in the /etc/shutdown.d and /etc/rc0.d direc-
tories are executed when /usr/sbin/rc0 is run. The file K00ANNOUNCE
in /etc/rc0.d prints the message System services are now
being stopped. Any task that you want executed when the system is
taken to system states 0, s, 5, or 6 is done by adding a file to the /etc/rc0.d
directory.

/usr/sbin/rc1

This file contains a shell script executed by /sbin/init for transitions to
system state 1 (single-user state). Executable files in the /etc/rc.d direc-
tory and any executable files beginning with S or K in the /etc/rc1.d
directories are executed when /usr/sbin/rc1 is run. All files in rc1.d
are linked from files in the /etc/init.d directory. Other files may be
added to the /etc/rc1.d directory as a function of adding hardware or soft-
ware to the system.

/usr/sbin/rc2

This file contains a shell script executed by /sbin/init for transitions to
system state 2 (multi-user state). Executable files in the /etc/rc.d directory
and any executable files beginning with S or K in the /etc/rc2.d directo-
ries are executed when /usr/sbin/rc2 is run. All files in rc2.d are
linked from files in the /etc/init.d directory. Other files may be added to
the /etc/rc2.d directory as a function of adding hardware or software to
the system.

/usr/sbin/rc3

This file is executed by /sbin/init . It executes the shell scripts in
/etc/rc3.d for transitions to a distributed file system mode (system state
3).

/usr/sbin/rc6

This shell script is run for transitions to system state 6 (for example, using
shutdown -i6). If the kernel needs reconfiguring, the /sbin/buildsys
script is run. If reconfiguration succeeds, /usr/sbin/rc6 reboots without
running diagnostics. If reconfiguration fails, it spawns a shell.

/usr/sbin/shutdown

This file contains a shell script to shut down the system gracefully in prepara-
tion for a system backup or scheduled downtime. After stopping all nonessen-
tial processes, the shutdown script executes files in the /etc/shut-
down.d directory by calling /usr/sbin/rc0 for transitions to system state

Directory and File Management

9-35

1 (single-user state). For transitions to other system states, the shutdown
script calls /sbin/init .

/usr/share/lib/mailx/mailx.help , /usr/share/lib/mailx/mailx.help.

Help files for mailx . The file mailx.help.~ contains help messages for
mailx 's tilde commands. See mailx(1) in the Command Reference.

Directories in /var 9

This section describes the directories of the /var directory, which contain files and direc-
tories that vary from machine to machine.

/var/adm

This directory contains system logging and accounting files.

/var/crashfiles

Th is d i rec tory conta ins the system crash f i les dumped by the
savecore(1M) utility.

/var/cron

This directory contains the cron log file.

/var/iaf

This directory contains log files for the identification and authentication facil-
ity.

/var/lost+found

This directory contains orphaned files found by fsck(1M) .

/var/lp

This directory contains log files for the LP print service.

/var/mail

This directory contains subdirectories and mail files that users access with the
mail(1) and mailx(1) commands.

/var/mail/:saved

This directory contains temporary storage for mail messages while mail is
running. Files are named with the user's ID while they are in /var/mail .

/var/news

This directory contains news files. The file names are descriptive of the con-
tents of the files; they are analogous to headlines. When a user reads the news,
using the news command, an empty file named .news_time is created in
his or her login directory. The date (time) of this file is used by the news com-
mand to determine if a user has read the latest news file(s).

PowerMAX OS Programming Guide

9-36

/var/opt

This directory is created and used by application packages.

/var/options

This directory contains a file (or symbolic link to a file) that identifies each
utility installed on the system. This directory also contains information cre-
ated and used by application packages (such as temporary files and logs).

/var/preserve

This directory contains backup files for vi and ex .

/var/sadm

This directory contains logging and accounting files for the backup and restore
services, software installation utilities, and package management facilities.

/var/sadm/pkg

This directory contains data directories for installed software packages.

/var/sa

This directory contains data files used by sar(1M) .

/var/saf

This directory contains log files for the Service Access Facility.

/var/spool

This directory contains temporary spool files.

/var/spool/cron/crontabs

This directory contains crontab files for the adm, root and sys logins.
Users whose login IDs are in the /etc/cron.d/cron.allow file can
establish their own crontab file using the crontab command. If the
cron.allow file does not exist, the /etc/cron.d/cron.deny file is
checked to determine if the user should be denied the use of the crontab
command.

As root , you can use the crontab command to make the desired entries.
Revisions to the file take effect at the next reboot. The file entries support the
calendar reminder service and the Basic Networking Utilities. Remember,
you can use the cron command to decrease the number of tasks you perform
with the sysadm command; include recurring and habitual tasks in your
crontab file. (See crontab(1) in the Command Reference for additional
information.)

/var/spool/lp

This directory contains temporary print job files.

Directory and File Management

9-37

/var/spool/smtpq

This directory contains Simple Mail Transfer Protocol (SMTP) directories and
log files. Directories named host contain messages spooled to be sent to that
host. Files named LOG.n contain the logs from the past seven days (Sunday's
log is called log.0). The current day's log is simply LOG.

/var/spool/uucp
This directory contains files to be sent by uucp .

/var/spool/uucppublic

This directory contains files received by uucp .

/var/tmp

This directory contains temporary files.

/var/uucp

This directory contains logging and accounting files for uucp .

/var/yp

This directory contains utilities and data used for the Network Information
Service (NIS).

Files in /var 9

This section describes the files in the /var directories, which contain information that
varies from machine to machine.

/var/adm/errfile

This file contains the error log for errdemon(1M) .

/var/adm/lastlog

This file contains the last login time for all users.

/var/adm/spellhist

If the Spell Utility is installed, this file contains a history of all words that the
spell command fails to match. Periodically, this file should be reviewed for
words that you can add to the dictionary. Clear the spellhist file after
reviewing it. (Refer to spell(1) for information on adding words to the dic-
tionary, cleaning up the spellhist file, and other commands that can be
used with the Spell Utility.)

/var/adm/syslog

This is the default log file from the syslogd (system message daemon). It is
set up in /etc/syslog.conf .

PowerMAX OS Programming Guide

9-38

/var/adm/utmp

This file contains information on the current system state. This information is
accessed with the who command.

/var/adm/utmpx

This file contains information similar to that in the /var/adm/utmp file,
along with a record of the remote host.

/var/adm/wtmp

This file contains a history of system logins. The owner and group of this file
must be adm, and the access permissions must be 664. Each time login is
run this file is updated. As the system is accessed, this file increases in size.
Periodically, this file should be cleared or truncated. The command line
>/var/adm/wtmp when executed by root creates the file with nothing in
it. The following command lines limit the size of the /var/adm/wtmp file to
the last 3600 characters in the file:

tail -3600c /var/adm/wtmp > /var/tmp/wtmp
mv /var/tmp/wtmp /var/adm/wtmp
#

The /usr/sbin/cron , /usr/sbin/rc0 , or /usr/sbin/rc2 com-
mand can be used to clean up the wtmp file. You can add the appropriate com-
mand lines to the /var/spool/cron/crontabs/root file or add shell
command lines to directories such as /etc/rc2.d , /etc/rc3.d , and so
on.

/var/adm/wtmpx

This file contains information similar to that in the /var/adm/wtmp file,
along with a record of the remote host.

/var/adm/loginlog

If this file exists, it is a text file that contains one entry for each group of five
consecutive unsuccessful attempts to log in to the system.

/var/adm/sulog

This file contains a history of substitute user (su) command usage. As a secu-
r i ty measure, th is fi le should not be readable by others . The
/var/adm/sulog file should be truncated periodically to keep the size of
the f i le with in a reasonable l imi t . The /usr/sbin/cron , the
/usr/sbin/rc0 , or the /usr/sbin/rc2 command can be used to clean
up the sulog file. You can add the appropriate command lines to the
/var/spool/cron/crontabs/root file or add shell command lines to
directories such as /etc/rc2.d , /etc/rc3.d , and so on. The following
command lines limit the size of the log file to the last 100 lines in the file:

tail -100 /var/adm/sulog > /var/tmp/sulog
mv /var/tmp/sulog /var/adm/sulog
/var/cron/log

Directory and File Management

9-39

This file contains a history of all actions taken by /usr/sbin/cron . The
/var/cron/log file should be truncated periodically to keep the size of the
file within a reasonable limit. The /usr/sbin/cron , /usr/sbin/rc0 , or
/usr/sbin/rc2 command can be used to clean up the /var/cron/log
f i l e . You can ad d the approp r ia te comman d l ines to the
/var/spool/cron/crontabs/root file or add shell command lines in
the following directories (as applicable): /etc/rc2.d , /etc/rc3.d , (and
so on). The following command lines limit the size of the log file to the last
100 lines in the file:

tail -100 /var/cron/log > /var/tmp/log
mv /var/tmp/log /var/cron/log

This file contains a process log used when troubleshooting a backup opera-
tion.

/var/sadm/bkup/logs/bkrs

This file contains a process log used when troubleshooting a backup or restore
operation for which a method was not specified.

/var/sadm/bkup/logs/rslog

This file contains a process log used when troubleshooting a restore operation.

/var/sadm/bkup/toc

This file contains table of contents entries created by a backup method.

File Access Controls 9

When the ls -l command displays the contents of a directory, the first column of output
describes the “mode” of the file. This information tells you not only what type of file it is,
but who has permission to access it. This first field is 10 characters long. The first charac-
ter defines the file type and can be one of the following types:

Figure 9-13. File Types

Type Symbol

Text, programs, etc. -

Directories d

Character special c

Block special b

FIFO (named pipe) special p

Symbolic links l

PowerMAX OS Programming Guide

9-40

Using this key to interpret the previous screen, you can see that the starship directory
contains three directories and two regular disk files.

The next several characters, which are either letters or hyphens, identify who has permis-
sion to read and use the file or directory.

The following number is the link count. For a file, this equals the number of users linked to
that file. For a directory, this number shows the number of directories immediately under it
plus two (for the directory itself and its parent directory).

Next, the login name of the file's owner appears (here it is starship), followed by the
group name of the file or directory (project).

The following number shows the length of the file or directory entry measured in units of
information (or memory) called bytes. The month, day, and time that the file was last mod-
ified is given next. Finally, the last column shows the name of the directory or file.

Figure 9-14 identifies each column in the rows of output from the ls -l command.

Figure 9-14. Description of Output Produced by the ls -l Command

File Protection 9

Because the UNIX operating system is a multi-user system, you usually do not work alone
in the file system. System users can follow pathnames to various directories and read and
use files belonging to one another, as long as they have permission to do so.

If you own a file, you can decide who has the right to read it, write in it (make changes to
it), or, if it is a program, to execute it. You can also restrict permissions for directories.
When you grant execute permission for a directory, you allow the specified users to

number of
blocks used

File
type

total 30
rwxr-xr-x
rwxr-xr-x
rwxr-xr-x
rwx
rw

d
d
d
-
-

bin
draft
letters
list
mbox

96 Oct 27 08:16
64 Nov 1 14:19
80 Nov 8 08:48

3
2
2
2
1

starship proj
starship proj
starship proj

12301 Nov
40 Oct

2 10:15
27 10:00

starship proj
starship proj

owner
name

length of
file in bytes

number
of links

group
name name

permissions time/date last
midified

161410

Directory and File Management

9-41

change directory to it and list its contents with the ls command (see ls(1)). Only the
owner or a privileged user can define the following:

• which users have permission to access data

• which types of permission they have (that is, how they are allowed to use
the data)

This section introduces access-permissions for files and discusses file protection.

File Permissions 9

The OS defines access-control and privilege mechanisms to allow for extended-secu-
rity-controls that implement security policies different from those in PowerMAX OS, but
which avoid altering or overriding the defined semantics of any functions in the OS.
Although quite simple, the access-control scheme has some unusual features. Each user
has a unique user-identification (user-id) number, as well as a shared group-identification
(group-id) number. A file is tagged with the user-id and group-id of its owner, and a set of
access-permission-bits when created by open , creat , mkdir , mknod and mkfifo
(see open(2) , creat(2) , mkdir(2) , mknod(2) and mkfifo(2)). The OS
file-access-control uses the access-permission-bits to specify independent read, write and
execute permissions for the owner of the file, for any members of the owner's group and
for any other users. For directories, execute permission means search permission. These
access-permission-bits are changed by chmod , and are read by stat and fstat (see
chmod(2) , stat(2) and fstat(2)).

When a process requests file-access-permission for read, write or execute/search, access is
determined as follows:

1. If the effective-user-id of the process is a user with appropriate access-per-
missions (such as a privileged user).

a. If read, write or directory search permission is requested, access is
granted.

b. If execute permission is requested, access is granted if execute per-
mission is granted to at least one user by the file-permission-bits or
by an alternate-access-control mechanism; otherwise, access is
denied.

2. Otherwise:

a. The read, write and execute/search access-permissions on a file are
granted to a process if one or more of the following are true (see
chmod(2)):

• The appropriate access-permission-bit of the owner portion of
the file-mode is set and the effective-user-id of the process
matches the user-id of the owner of the file

• The appropriate access-permission-bit of the group portion of
the file-mode is set, the effective-group-id of the process
matches the group-id of the file and the effective-user-id of the
process fails to match the user-id of the owner of the file.

PowerMAX OS Programming Guide

9-42

• The appropriate access-permission-bit of the other portion of
the file-mode is set, the effective-group-id of the process fails
to match the group-id of the file and the effective-user-id of the
process fails to match the user-id of the owner of the file.

Otherwise, the corresponding access-permissions on a file are denied to the
process.

b. Access is granted if an alternate-access-control mechanism is not
enabled and the requested access-permission-bit is set for the class to
which the process belongs, or if an alternate-access-control mecha-
nism is enabled and it allows the requested access; otherwise, access
is denied.

Implementations may provide additional-file-access-control or alternate-file-access-con-
trol mechanisms, or both. An additional-access-control mechanism only further restricts
the file-access-permissions defined by the file-permission-bits. An alternate-access-control
mechanism shall:

1. specify file-permission-bits for the file-owner-class, file-group-class and
file-other-class of the file, corresponding to the access-permissions, that
stat and fstat return.

2. Be enabled only by explicit user action, on a per-file basis by the file-owner
or a user with the appropriate-privilege.

3. Be disabled for a file after the file-permission-bits are changed for that file
with chmod. The disabling of the alternate mechanism need not disable
any additional mechanisms defined by an implementation.

Setting Default Permissions 9

When a file is created its default permissions are set. These default settings may be
changed by placing an appropr iate umask command in the system profi le
(/etc/profile).

How to Determine Existing Permissions 9

You can determine what permissions are currently in effect on a file or a directory by using
ls -l to produce a long listing of a directory's contents.

Figure 9-15. Umask(1) Settings for Different Security Levels

Level of Security umask Disallows

Permissive 0002 w for others

Moderate 0027 w for group, rwx for others

Severe 0077 rwx for group and others

Directory and File Management

9-43

In the first field of the ls -l output, the next nine characters are interpreted as three sets
of three bits each. The first set refers to the owner's permissions; the next to permissions of
members in the file's group; and the last to all others. Within each set, the three characters
show permission to read, to write, and to execute the file as a program, respectively. For a
directory, “execute” permission is interpreted to mean permission to search the directory
for a specified file. For example, typing ls -l while in the directory named star-
ship/bin in the sample file system produces the following output:

Permissions for the display and list files and the tools directory are shown on the
left of the screen under the line total 35 , and appear in this format:

-rwxr-xr-x (for the display file)
-rw-r--r-- (for the list file))
drwx--x--x (for the tools directory)

After the initial character, which describes the file type (for example, a - (dash) symbol-
izes a regular file and a d a directory), the other nine characters that set the permissions
comprise three sets of three characters. The first set refers to permissions for the owner,
the second set to permissions for group members, and the last set to permissions for all
other system users. Within each set of characters, the r , w and x show the permissions
currently granted to each category. If a dash appears instead of an r , w or x permission to
read, write or execute is denied.

The following diagram summarizes this breakdown for the file named display .

As you can see, the owner has r , w, and x permissions and members of the group and
other system users have r and x permissions.

$ ls -l
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

rwxr-xr-x

read

user othersgroup

write execute Permission to
write to the file denied to
group and other

161420

PowerMAX OS Programming Guide

9-44

There are two exceptions to this notation system. Occasionally the letter s or the letter l
may appear in the permissions line, instead of an r , w or x . The letter s (short for set user
ID or set group ID) represents a special type of permission to execute a file. It appears
where you normally see an x (or -) for the user or group (the first and second sets of per-
missions). From a user's point of view it is equivalent to an x in the same position; it
implies that execute permission exists. It is significant only for programmers and system
administrators. (See the System Administration, Volume 1, manual for details about setting
the user or group ID.) The letter l indicates that locking will occur when the file is
accessed. It does not mean that the file has been locked. The permissions are as follows:

How to Change Existing Permissions 9

After you have determined what permissions are in effect, you can change them by calling
the chmod command in the following format:

chmod who+permission file(s)

Figure 9-16. File Access Permissions

Symbol Explanation

r The file is readable.

w The file is writable.

x The file is executable.

- This permission is not granted.

l Mandatory locking will occur during access. (The set-group-ID
bit is on and the group execution bit is off.)

s The set-user-ID or set-group-ID bit is on, and the corresponding
user or group execution bit is also on.

S The set-user-ID bit is on and the user execution bit is off.

t The sticky and the execution bits for other are on.

T The sticky bit is turned on, and the execution bit for other is off.

Figure 9-17. Directory Access Permissions

Symbol Explanation

r The directory is readable.

w The directory may be altered (files may be added or
removed).

x The directory may be searched. (This permission is required
to cd to the directory.)

t File removal from a writable directory is limited to the
owner of the directory or file unless the file is writable.

Directory and File Management

9-45

or

chmod who=permission file(s)

The following list defines each component of this command line.

NOTE

The chmod command will not work if you type a space(s)
between who, the instruction that gives (+) or denies (-) permis-
sion, and the permission.

The following examples show a few possible ways to use the chmod command. As the
owner of display , you can read, write, and run this executable file. You can protect the
file against being accidentally changed by denying yourself write (w) permission. To do
this, type the command line:

chmod u-w display

After receiving the prompt, type ls -l and press the RETURN key to verify that this per-
mission has been changed, as shown in the following screen.

As you can see, you no longer have permission to write changes into the file. You will not
be able to change this file until you restore write permission for yourself.

chmod name of the program

who one of three user groups (u , g or o)
u = user
g = group
o = others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r , w and x)
r = read
w= write
x = execute

file(s) file (or directory) name(s) listed;
assumed to be branches from your current directory,
unless you use full pathnames.

$ chmod u-w display
$ ls -l
total 35
-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

PowerMAX OS Programming Guide

9-46

Now consider another example. Notice that permission to write into the file display has
been denied to members of your group and other system users. However, they do have
read permission. This means they can copy the file into their own directories and then
make changes to it. To prevent all system users from copying this file, you can deny them
read permission by typing:

chmod go-r display

The g and o stand for group members and all other system users, respectively, and the -r
denies them permission to read or copy the file. Check the results with the ls -l com-
mand.

For more information, refer to ls(1) and chmod(1) in the Command Reference.

A Note on Permissions and Directories 9

You can use the chmod command to grant or deny permission for directories as well as
files. Simply specify a directory name instead of a file name on the command line.

However, consider the impact on various system users of changing permissions for direc-
tories. For example, suppose you grant read permission for a directory to yourself (u),
members of your group (g), and other system users (o). Every user who has access to the
system will be able to read the names of the files contained in that directory by running the
ls -l command. Similarly, granting write permission allows the designated users to cre-
ate new files in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their current
directory) by using the cd command.

An Alternative Method 9

There are two methods by which the chmod command can be executed. The method
described above, in which symbols such as r , w and x are used to specify permissions, is
called the symbolic method.

An alternative method is the octal method. Its format requires you to specify permissions
using three octal numbers, ranging from 0 to 7. (The octal number system is different from
the decimal system that we typically use on a day-to-day basis.) To learn how to use the
octal method, see the chmod(1) entry in the Command Reference.

$ chmod go-r display
$ ls -l
total 35
-rwx--x- -x 1 starship project 9346 Nov 1 08:06 display
rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x- -x 2 starship project 32 Nov 8 15:32 tools
$

Directory and File Management

9-47

Security Considerations 9

This section gives the software developer information on various security features and
their impact on writing applications. While many of the security features, like Mandatory
Access Control, are available only if the Enhanced Security Utilities are installed and run-
ning, it is to your advantage to program your application so that it will run on the OS with
and without the Enhanced Security Utilities installed. This way, you can avoid program-
ming the same application for each environment.

What Security Means to Programmers 9

As a programmer on PowerMAX OS, you need a general understanding of how security
affects you and protects your files on the computer system. You also need to understand
the difference between basic security and enhanced security. Finally, you need to under-
stand the term Trusted Computing Base (TCB), an all-encompassing term which describes
the mechanisms used to enforce Enhanced Security.

What Is Security? 9

Security for a computing system means that the information on the system is protected
from unauthorized disclosure or modification. If each user had a personal non-networked
computing system that was kept locked up, each user's files would be secure. But isolation
and physical security are not practical in most circumstances.

On a computer system that many people share, the simplest security mechanism would be
to allow only the owner of a file to access that file. That would be inconvenient, however,
since one of the benefits of a computer system is the sharing of resources. For example, it
would be wasteful for each user to have a private copy of each command. Commands are
usually shared, but users often want to restrict access to the contents of data files.

On a secure system, each user has a unique identity and a level of authorization associated
with that identity. For security to work, the computer system must have some way of iden-
tifying users, their level of authorization, and their files. For the most part, while you are
logged in, all data you enter, create, and process belongs to you. Data is stored in named
files on the computer system. Each file you own is kept separate from the rest of your files
and from the files belonging to other users.

As a programmer, you are also concerned with the impact of security on users who run
your programs.

A secure computer system must have a mechanism that makes access decisions, that is,
one that decides who can access what, based upon user identity and authorization.

There are many ways in which the security of a computer system can be violated. Unau-
thorized access to read or write files can be the result of:

• The abuse of privileges by users or administrators

• Malicious programs that surreptitiously gain privileges or access to files

PowerMAX OS Programming Guide

9-48

• Idle browsing of files that are inadequately protected

Most computer systems provide some degree of basic security. However, the mechanisms
supplied by the TCB and the Enhanced Security Utilities available with the OS provide
specific, enhanced protection against these and other potential security hazards.

A review of basic security will provide a background for understanding the Enhanced
Security Utilities available with the OS.

How Basic Security Works 9

An operating system stores and processes information in the form of electronic data. In
doing so, it provides an interface between you, the user of the computer, and the computer.
An operating system provides you with commands, library routines, functions, and pro-
grams that allow you to tell the computer how to store and process the information that
belongs to you.

A computer system enforces basic security by making access decisions, that is, by decid-
ing who can access what. In order to make access decisions, a computer system uniquely
identifies each user on the system and stores information in named files, each of which
belongs to a single user on the system. It would be a potential violation of security if users
could access any files at will.

The OS supplies basic security through the use of the login and passwd (password)
mechanisms, which identify you to the system and put you in control of your data. Also
included in basic security are access mode bits, which give users some control over
which other users can access their files. It is not a violation of basic security for users to
have the ability to share individual files with specific other users.

Additionally, you may attach specific privileges to executable files and processes. This
allows programs to perform privileged operations without having to become root.

Privileged users need to perform sensitive tasks, but because privileges are associated with
processes and executable files, not user IDs (except for the special case of UID=0 when
using the SUM privilege policy module), it is not possible to grant privileges to users
directly. The Trusted Facility Management (TFM) tools provide an interface between
users and privileges. The TFM tools maintain a database of users and the commands they
may execute with privilege. The tfadmin(1) command invokes the requested com-
mand, regulating the privileges based on the TFM database information. If privileges are
assigned to a user's shell, they will be inherited by all commands executed by that shell.

How Enhanced Security Works 9

The mechanisms that provide enhanced security appear to be simply more restrictive ver-
sions of the mechanisms that provide basic security. They are that, but they are much
more. The mechanisms available with the OS are designed to protect sensitive informa-
tion. Sensitive information must be specially protected according to the rules of a security
policy because its unauthorized disclosure, loss, or alteration will cause damage or harm
to someone or something. The Enhanced Security mechanisms that protect sensitive infor-
mation are part of the Trusted Computing Base, or TCB.

Because the information on a computer system can be easily shared and potentially stolen,
the TCB can be thought of as the mechanisms that control the sharing of information. That

Directory and File Management

9-49

is, the TCB controls who has access to what. By controlling access, the TCB can protect
your files and your programs from being seen or accessed by other computer users.

The security policy for the OS prescribes a relationship between access rules and access
attributes. The access rules allow the TCB to define several distinct levels of authorization,
and the access attributes provide the mechanism for the TCB to prevent unauthorized
access to sensitive information.

NOTE

Note that the levels of authorization defined by the TCB are simi-
lar to but much more complicated and restrictive than the access
control provided by the access mode bits.

More specifically, the security policy for a computing system running on the OS describes
the relationships among five elements. The first two elements are the subjects and objects
on a computer system that interact with each other.

• Subjects cause information to flow among objects or they change the sys-
tem status. A user is represented on the system as a subject.

• Objects are those parts of a computing system that contain or receive infor-
mation. Examples of objects are data files, program files, memory, termi-
nals, line printers, disks, tapes, and processes.

NOTE

Note that a process is a subject when it requests an action and an
object when it receives information.

Typical interactions are for subjects to create, read, or write objects.

The remaining three elements define the ways in which subjects and objects interact.
These elements are access attributes, access rules, and process privileges.

• The access attributes of a subject or an object define its position within the
separation scheme that the TCB uses to segregate computer users and
information on the computer system.

• The access rules embody the policy that segregates information for the sys-
tem. The TCB determines whether a subject can access a given object by
comparing the access attributes of the subject with the access attributes that
are required to access the object. Only if a subject passes all relevant access
checks can it access an object.

• Privileges are assigned to executables. When a subject has access to that
executable, that subject can perform override access checks to perform sen-
sitive system operations.

PowerMAX OS Programming Guide

9-50

NOTE

The security policy requires that a process has only the privileges
it needs to perform its task and that it relinquish a privilege when
it is no longer needed. Most users execute processes without priv-
ileges. If your programs need privileges, contact a system admin-
istrator.

As a very simplified approximation, you can think of the security policy as segregating the
levels of authorization in a hierarchy, that is, some levels are conceptually “higher” than
other levels. A subject can read an object if and only if the subject's level is higher than the
level of the object. A subject can write to an object if and only if the subject's level is equal
to the level of the object.

Actually, the relationship between security levels is much more complex than this simple
approximation. Security levels can be disjoint. For more detailed explanations of security
levels, refer to System Administration, Volume 1.

In enforcing the security policy, the TCB assigns access permissions to subjects and
objects according to the local security policy as instituted by the system administrators,
and then uses the access rules to ensure that subjects do not access objects for which the
subjects do not have the proper access attributes.

The TCB further restricts the use of certain commands and system calls to subjects (pro-
cesses) that have the proper privileges.

Thus, users are limited in their ability to allow access, and the TCB makes access deci-
sions. Security is enhanced because the ability to grant access is enforced by the TCB, not
by individual users.

Since the TCB restricts the use of certain commands and system calls to subjects (pro-
cesses) which have the proper privileges, you will likely want to read more detail about the
security features that affect applications programming in the next section.

Privileges 9

Privilege, in the simplest terms, is the ability to override system restrictions on the actions
of users. All operating systems allow users to exercise special privilege, under certain con-
ditions, to perform sensitive system operations. Sensitive system operations are those
which affect the configuration of the system or its availability to users.

Most users cannot, for example, execute commands affecting the hardware or software
configuration of the system. Activities such as mounting and checking file systems, adding
users, modifying user profiles, adding and removing peripherals, installing application
software, password administration, and administration of the user terminal lines, are
restricted to certain users.

In previous UNIX releases, the restriction of privilege is implemented by designating a
special user identifier (UID) of 0; the login name historically associated with this UID is
root .

Directory and File Management

9-51

When a person logs in as root , that person has unrestricted access to every file on the
system, and the ability to alter system operation. Commands that execute sensitive system
operations check to see whether the effective UID of the process requesting the operation
is 0. If it is, the user process is given unlimited access to the system.

The root login in previous UNIX releases possesses, in effect, the one privilege neces-
sary to override all system restrictions on command execution and access: the superuser
privilege.

The OS provides an alternative privilege mechanism that is more flexible to suit the needs
of the user community. Now, rather than investing the power to issue any command on the
system to one user, you can give partial superuser power to several users. By assigning
privileges linked to specific tasks, you essentially assign a role to each such user.

This privilege mechanism checks the invoking process for the presence of one or more of
a discrete set of privileges corresponding to each sensitive system operation.

The privileges inherited by a new process are derived from the calling process's privileges
and the privileges set on the file being executed. This type of privilege mechanism is
called a file-based privilege mechanism. It is actually a combination of the old UID func-
tionality supported in the UNIX operating system for over 20 years, and new, discrete
privilege functionality.

The most important advantage of this privilege mechanism over the pure UID-based privi-
lege mechanism is the fine granularity with which it can apportion system privileges to
executing processes. For example, you might assign someone to the role of mail adminis-
trator. That person would have all the privileges necessary to oversee maintenance and
troubleshooting of the mail subsystem, but no others; he or she wouldn't be able to add and
delete user accounts, reorganize file systems, or do any other administrative work unre-
lated to electronic mail.

The superuser privilege is replaced by a list of discrete privileges based on the categoriza-
tion of sensitive system operations into groups of operations exercising the same kind of
privilege. In other words, many different commands might need to override discretionary
read access restrictions on files to perform their functions; defining a privilege such as
P_DACREAD.

While the privilege mechanism provides the means by which a system can apportion and
control process privileges, the privilege policy module provides the rules by which the
system grants privileges to processes.

The system is delivered with a Super User Module (SUM) privilege policy module that
provides the same functionality as provided by the superuser privilege in previous UNIX
releases. It also provides additional flexibility by allowing fixed privileges on executable
files.

The Enhanced Security Utilities are delivered with a Least Privilege Module (LPM), that
provides a more restrictive privilege policy. This policy specifies that processes execute
with only the amount of privilege necessary to perform their given function, and no more.
The superuser is not automatically granted privileges as it is when using the SUM privi-
lege policy module.

By default, the SUM module is used unless the Enhanced Security Utilities are installed
and you specifically include the LPM module.

Both privilege policy modules use:

PowerMAX OS Programming Guide

9-52

- a list of system privileges

- a working and maximum set of privileges for each process

- a fixed set of privileges for each executable file

The LPM policy module also supports an inheritable set of privileges for executable files
in addition to the fixed set.

It is important to recognize that the list of system privileges, fixed privileges on files, and
the inheritance mechanism are all part of the basic privilege mechanism provided by the
operating system and are present even when the Enhanced Security Utilities are not
installed.

The ability to override system restrictions with privileges is vested in three ways:

- to any user whose effective identity is root (SUM policy module only)

- through fixed privileges assigned to executable files

- by way of the Trusted Facility Management (TFM) utilities

When using the SUM privilege policy module, any process with an effective user-ID of
“0” (root) is considered omnipotent and has all privileges assigned to it.

The second and third approaches provide methods of giving a “little bit of root” to a user
or command. They introduce the idea of discrete privileges that are associated with exe-
cutable files and processes. A process has privilege only when it is executing a privileged
command.

The filepriv(1M) command assigns fixed privileges to executable files. The fixed
privileges become a file attribute. The executable file will always run with privilege for
those users who can access the file. The fixed privileges for a file will become invalid if
any attributes of the file are changed (checksum, file size, ctime, mode, etc). You may
want to assign fixed privileges to commands when you are more concerned that users are
accessing a version of a command that you can verify is secure, than with the identities of
the users using the command.

Privileged users need to perform sensitive tasks, but because privileges are associated with
processes and executable files, not user IDs (except for “root” when using the SUM privi-
lege policy module), it is not possible to grant privileges to users directly. The Trusted
Facility Management (TFM) utilities provide a way to associate users with the commands
that they can invoke with privilege. Commands that can have a wide-ranging or destructive
effect on the system can be restricted to one user. Unlike file privileges, the TFM database
privileges for an executable file are not invalidated if the file is modified.

The system administrator retains the most control with the TFM tools by specifying
exactly which commands can be executed with privilege by each user. However, this can
become a burden for the administrator to have to add new commands to the TFM database
every time users need to execute additional commands with privilege. Privileges can be
assigned to the user's shell instead of assigning privileges to individual commands.
Because privileges are inherited by child processes, any privileges given to the user's shell
will be inherited by every command the user executes under that shell. See the “Trusted
Facility Management” chapter in the System Administrators Volume 1 manual for addi-
tional information on the TFM utilities.

Directory and File Management

9-53

Privileges Associated with a File 9

For every executable file there may be a set of privileges that are acquired when that pro-
gram is executed via an exec system call. This set of privileges is known as fixed privi-
leges: they are always given to the new program, independent of the privileges of the par-
ent or calling-process. Each executable file can have two sets of privileges associated with
it that are propagated when that program is executed via an exec system call:

• Fixed privileges are always given to the new program, independent of the
calling or parent process's privileges.

• Inheritable privileges will exist in the new program only if they existed in
the previous program. Inheritable privileges are given to the new program
only if they exist in the calling process's privilege set. Inheritable privileges
are only used by the LPM privilege module, not by the SUM privilege
module. The SUM module considers all of the privileges in the calling pro-
cess’s maximum privilege set to be inheritable

These sets are disjoint, that is, a privilege cannot be defined as both fixed and inheritable
for the same file. If an executable file does not require any privileges, both sets are empty.

CAUTION

Privileges associated with a file are removed when the validity
information for the file changes (for example, when the file is
opened for writing or when the modes of the file change). This
removes the file from the Trusted Computing Base; the privileges
must be set again in order for the command to run with privilege.
This validity checking can be disabled. See the following section
and the initprivs(1M) manual page for further details.

Due to the default values of VAL_CKSUM, VAL_SIZE, and
VAL_VALIDITY in the file /etc/default/privcmds , if a
file’s attributes are modified through any of the above stated sys-
tem calls, then the kernel privilege tables will retain the privilege
information that has been established on that file. On most SUM
systems this may not be a problem; however, if one wishes to use
the privilege mechanisms provided, then a problem may occur
where the vnode of a file which has been removed and is subse-
quently re-acquired as a new file name already has the previous
file’s privilege attributes established. To resolve this problem the
system administrator should set the values of VAL_CKSUM,
VAL_SIZE, and VAL_VALID ITY to Yes in
/etc/default/privcmds . This assures that when a vnode is
acquired validity checking will be performed and the file will be
created with no privilege attributes established.

PowerMAX OS Programming Guide

9-54

Giving privileges to non-evaluated programs violates the B2 secu-
rity rating (with the Enhanced Security Utilities installed.) Great
care must be taken when writing software that requires privileges.
See the appendix “Guidelines for Writing Trusted Software” in
this guide.

Manipulating File Privileges 9

The kernel maintains a table of file privileges in memory. It is initialized at system startup
by the initprivs(1M) command using the file privilege entries in the Privilege Data
File (PDF), /etc/security/tcb/privs .

NOTE

If the PDF is missing, an error results and the system is halted.
The system should then be rebooted from tape.

Entries in the PDF are added, deleted, or modified using the filepriv(1M) command.
When the filepriv command adds a file to the PDF, it records checksum, size and last
updated time information about the file in addition to the file privileges. initprivs
compares this validity information to the current values for the file. By default, if these do
not match, the file will not be granted privileges by initprivs and the entry will not be
passed to the kernel to add to the kernel privilege table. This validity checking can be dis-
abled by resetting flags contained in the file /etc/default/privcmds . On systems
where the SUM module is configured (the Enhanced Security Utilities are not installed),
disabling validity checking in initprivs also disables the validity checking performed
by the kernel when a file is executed with exec(2) . See initprivs(1M) for further
information.

File privilege entries in the kernel privilege table can be set, retrieved or counted using the
filepriv(2) system call. The filepriv(2) system call does not modify the PDF
entry for the file. Privileges that are changed with filepriv(2) are valid only until the
next reboot, at which time the changes are lost and the privileges are as defined in the PDF.

The filepriv(1M) command updates the kernel privilege table (using the file-
priv(2) system call) each time additions, deletions or changes are made to entries in the
PDF.

The filepriv(2) system call has three command types:

• PUTPRV sets the fixed and inheritable privileges associated with a file. This
is an absolute setting; the specified privileges replace any previously exist-
ing privileges for the file.

• GETPRV retrieves the fixed and inheritable privileges associated with a file.

• CNTPRV returns the number of privileges associated with a file.

intro(2) lists the names and descriptions of each privilege. privilege(5) lists
the name of the privileges include file as well as some other important items, including
macros to manipulate privilege descriptors. priv(5) lists some functions that can be
used to prepare the arguments to the privilege system calls.

Directory and File Management

9-55

Some of the above command types require a list of privileges or return such a list. PUT-
PRV requires an array of privilege descriptors that lists the privileges to be set. A privilege
descriptor is an integral data type that is assigned a value defining the privilege and the set
it is in. Functions such as pm_inher and pm_fixed have been defined to make this task
simpler. Use pm_inher to indicate an inheri table privi lege. For example,
pm_fixed(P_DACREAD) would indicate the P_DACREAD privilege in the fixed set.
Similarly pm_inher(P_MACREAD) would indicate the P_MACREAD privilege in the
inheritable set.

Screen 9-1 shows a code fragment that sets file privileges in the kernel privilege table. The
inheritable privilege set indicated in this example may or may not exist or be valid for your
particular system.

Screen 9-1. Setting File Privileges in Kernel Privilege Table

In this example, privileges are being set for the executable file /sbin/testprog . The
privileges P_DACREAD and P_DACWRITE are made inheritable, while P_SETUID is
made fixed. pm_inher and pm_fixed are used to assign values to the privilege descrip-
tors; the pm_inher function marks P_DACREAD and P_DACWRITE as inheritable while
pm_fixed marks P_SETUID as fixed. The call to filepriv using PUTPRV will set the
indicated privileges for the file in the kernel privilege table and are valid only until the next
reboot. If an error occurred, perror is called to display an error message (see per-
ror(3C)) and the program terminates.

The filepriv(1M) command must be used to make these changes permanent in the
Privilege Data File (PDF) that is used to initialize the kernel privilege table on the next
reboot.

#include <priv.h>

priv_t privd[3];
/*
 * Set P_DACREAD and P_DACWRITE as inheritable and
 * P_SETUID as fixed for file /sbin/testprog.
 * This process must have P_SETFPRIV, P_DACREAD, P_DACWRITE, and
 * P_SETUID in its maximum set.
 */
privd[0] = pm_inher(P_DACREAD);
privd[1] = pm_inher(P_DACWRITE);
privd[2] = pm_fixed(P_SETUID);
if (filepriv(“/sbin/testprog”, PUTPRV, privd, 3) == -1) {

/* Some error occurred, display the error and exit. */
perror(“filepriv PUTPRV error”);
exit(1);

}

PowerMAX OS Programming Guide

9-56

NOTE

A privilege that is being set for a file must exist in the maximum
set of the process making the filepriv system call.

Since the PUTPRV command for filepriv is a privileged oper-
ation, a process using this system call must have the appropriate
privilege in its working set. See intro(2) for a list of privi-
leges.

Use the GETPRV command for the filepriv system call to determine the fixed and
inheritable privileges associated with a file. This command also requires a pointer to an
array of privilege descriptors. You must ensure that the array is large enough to contain all
the privileges associated with the file.

Screen 9-2 shows a code fragment that will retrieve the privileges associated with a file.

Screen 9-2. Retrieving File Privileges

In this example, the CNTPRV command is used to determine the number of privileges.
This number is then used to determine the amount of memory to request when calling
malloc for an array large enough to contain all the privileges. (see malloc(3C)).
filepriv is then called with the GETPRV command to retrieve the actual privileges.

Privileges Associated with a Process 9

After a fork , the privileges of the parent and child processes are identical. However,
when an exec system call is performed, the privileges of the new program are determined
from those of the program performing the exec and from the privileges associated with
the executable file.

#include <priv.h>

priv_t *privp;
int cnt;
/*
 * Determine the number of privileges for /sbin/testprog.
 */
if ((cnt = filepriv(“/sbin/testprog”, CNTPRV, (priv_t *)0, 0)) == -1) {

/* filepriv failed; display error and exit. */
perror(“filepriv CNTPRV error”);
exit(1);

}
if (cnt > 0) {

/*
 * malloc some memory and get the privileges.
 */
if ((privp = (priv_t *)malloc(cnt * sizeof(priv_t))) == NULL) {

exit(1); /* Couldn't malloc so exit. */
}
if (filepriv(“/sbin/testprog”, GETPRV, privp, cnt) == -1) {

/* filepriv failed; display error and exit. */
perror(“filepriv GETPRV error”);
exit(1);

}
}

Directory and File Management

9-57

Each process has two sets of privileges:

• The maximum set contains all the privileges granted to the process, either
as fixed or inherited privileges.

• The working set contains all the privileges currently being used by the pro-
cess.

How the privileges for a new process are determined is specific to the privilege policy
module installed. The “Privilege Policy Modules” section in the “Administering Privilege”
chapter of the System Administration Volume 1 manual provides further information on
the privilege policy modules.

Manipulating Process Privileges 9

Use the procpriv system call to add, put, remove, retrieve, or count privileges associ-
ated with the calling process. This system call has five command types:

• SETPRV adds the requested privileges to the working set for the current
process. Privileges already in the working set are not affected; they remain
in the set. Requested privileges not in the current maximum set are ignored.

• PUTPRV sets the working and maximum sets for the current process. This
is an absolute setting; the specified privileges replace the current working
and maximum sets. Privileges requested which are not in the current maxi-
mum set are ignored.

• CLRPRV removes the requested privileges from either the working or max-
imum set. If a privilege is removed from the maximum set, it is also
removed from the working set if it exists there, since the working set is
always a subset of the maximum set.

• GETPRV retrieves the working and maximum privilege sets for the current
process.

• CNTPRV returns the number of privileges associated with the current pro-
cess.

Screen 9-3 shows a code fragment that does a setuid and uses procpriv to set and
clear the appropriate privilege as needed.

The first call to procpriv sets the P_SETUID privilege in the process's working set.
Note that the count of 1 in the system call indicates that only one (the first) element of the
array privd is to be used. Once the privilege is in the working set, setuid is called.
Since P_SETUID will not be required by the program any more, procpriv is again
called, this time with the CLRPRV command.

Note in this case that the count of 2 indicates that both elements of array privd are to be
used, thus removing the privilege from both the maximum and working sets. Note that if
the privilege had only been removed from the maximum set, the system would have also
removed it from the working set, since the working set must be a subset of the maximum
set, that is, the working set cannot contain privileges which are not in the maximum set.

PowerMAX OS Programming Guide

9-58

Use the PUTPRV command for procpriv similarly to SETPRV, but remember that the
setting is absolute, that is, the indicated privileges replace both the current working and
maximum sets. The privileges you request must exist in the current maximum set.

Screen 9-3. Adding and Clearing Process Privileges

Screen 9-4 shows a code fragment that uses the PUTPRV command to set the maximum
and working sets.

Screen 9-4. Setting Process Privileges Using PUTPRV

#include <priv.h>

priv_t privd[2];
int uid;

privd[0] = pm_work(P_SETUID);
privd[1] = pm_max(P_SETUID);
/*
 * Add P_SETUID to the working set of the current process. P_SETUID
 * must be in the maximum working set to be successful.
 */
if (procpriv(SETPRV, privd, 1) == -1) {

/* It failed, so display error and exit. */
perror(“procpriv SETPRV error”);
exit(1);

}
/*
 * Change to user id “uid” (previously initialized)
 */
if (setuid(uid) == -1) {

/*
 * It failed, perhaps P_SETUID wasn't in our maximum working
 * set. Display error and exit.
 */
perror(“setuid error”);
exit(1);

}
/*
 * We don't need P_SETUID any more so remove it from the working
 * and maximum sets.
 */
if (procpriv(CLRPRV, privd, 2) == -1) {

/*
 * It failed, so display error and exit.
 */
perror(“procpriv CLRPRV error”);
exit(1);

}

#include <priv.h>

priv_t privd[2];

privd[0] = pm_max(P_SETUID);
/*
 * Set the maximum set to P_SETUID. The working set is empty since
 * it is not set here.
 */
if (procpriv(PUTPRV, privd, 1) == -1) {

/* It failed, so display error and exit. */
perror(“procpriv PUTPRV error”);
exit(1);

}

Directory and File Management

9-59

In this example, the privilege descriptor is set to P_SETUID in the maximum set. If
P_SETUID is already in the maximum set, procpriv causes the new maximum set to
contain only P_SETUID. The new working set will be empty, since no privileges are
defined for it.

The GETPRV and CNTPRV commands work in a manner similar to their counterparts in
the filepriv system call. Screen 9-5 shows a code fragment that will retrieve the privi-
leges associated with a process.

Screen 9-5. Retrieving Process Privileges

In this example, the number of privileges returned by the CNTPRV command to
procpriv is used to determine the amount of memory to request when calling malloc.
procpriv is then called with the GETPRV command to retrieve the actual privileges.

With proper use, the privilege mechanism provides a way to restrict execution of sensitive
system functions and improves the security of the system. See “Guidelines for Writing
Trusted Software” in this guide.

Device Security 9

On a system with multilevel security, all devices that store data need to be protected by a
range of security levels, which restrict what data can be stored on the device. These
restrictions ensure that a device receives only data that is appropriate for its location and
configuration. For example, you would not want to print highly sensitive information on a
printer located in a public area, accessible to everyone on the site.

#include <priv.h>

priv_t *privp;
int cnt;

/*
 * Determine the number of privileges for this process.
 */
if ((cnt = procpriv(CNTPRV, (priv_t *)0, 0)) == -1) {

/* procpriv failed; display error and exit. */
perror(“procpriv CNTPRV error”);
exit(1);

}
if (cnt > 0) {

/*
 * malloc some memory and get the privileges.
 */
if ((privp = (priv_t *)malloc(cnt * sizeof(priv_t)) == NULL) {

/* Couldn't malloc so exit. */
exit(1);

}
if (procpriv(GETPRV, privp, cnt) == -1) {

/* procpriv failed; display error and exit. */
perror(“procpriv GETPRV error”);
exit(1);

}
}

PowerMAX OS Programming Guide

9-60

Information on security characteristics of devices is stored in the Device Database (DDB),
which is a collection of three files. The file /etc/device.tab contains one entry per
device alias that defines the following:

• all device attributes not related to security

• the secdev attribute

The file /etc/security/ddb/ddb_sec contains definitions for all security-related
attributes of devices.

The file /etc/security/ddb/ddb_dsfmap contains one entry for each block or
character device special file, indicating to which device alias it maps. The device special
files are checked to see that they are unique and that each one maps to only one device
alias.

A set of commands is provided to administer information in the DDB. The putdev com-
mand is used to add information to the DDB or to modify existing information. The
getdev command can be used to list the devices defined in the DDB. The devattr
command can be used to list the values of device attributes, including the security
attributes. These are administrative commands that can be used only by an appropriate
administrator.

The security attributes in the DDB define the characteristics the device will have when it is
allocated for use by the operating system's kernel. Upon allocating the device, the kernel
checks the information in the DDB and uses it, along with any information passed to the
device allocation routine, to set security characteristics for the device. Once the device is
allocated, the security characteristics are maintained in kernel data structures. The
devalloc routine can be used to either get or set the security attributes of a device.
When used to set security attributes, devalloc invokes the devstat system call to set
the device attributes. The devdealloc routine is used to deallocate a device whose
attributes were set by devalloc.

To write application programs that control devices, you will need to understand the DDB
and the routines and system calls used for secure device allocation. The rest of this section
presents information on those topics. Information on secure device management can also
be found in System Administration, Volume 1. You should also read carefully the “Guide-
lines for Writing Trusted Software” chapter of this guide before using the features
described below.

Any programs that use the features described in this section will need the appropriate priv-
ilege to execute properly. See System Administration, Volume 1, for information on the
privileges required.

Device Database 9

Before any device can be allocated for use by the kernel, it must be defined in the Device
Database. Information on the Device Database and secure device attributes can be found
in System Administration, Volume 1. You should read this section before attempting to
write applications that allocate devices.

For secure devices, three essential attributes (range , state , and mode) must be defined
for each device listed in the DDB. You can use the putdev command to define these and

Directory and File Management

9-61

other attributes for a device; see putdev(1M) in the Command Reference for complete
information.

Kernel Device Allocation 9

The kernel maintains several security-related attributes that are associated with each
device special file. These attributes provide a mechanism to regulate access to devices.

The following security attributes are associated with each device special file.

release flag The release flag indicates whether the device is allocated and the
way in which it is allocated. The flag can have one of three values:

DEV_PERSISTENT This value indicates that the security
attributes are set explicitly and remain
associated with the device special file
while the system is running or until the
attributes are explicitly changed.

DEV_LASTCLOSE This value indicates that the security
attributes are set explicitly and remain
associated with the device until the last
reference to the device is closed.

DEV_SYSTEM This value indicates that the security
attributes are set by the system. This
value is used with the device driver flags
(described in the next section) to handle
several special cases. If (1) the release
flag is DEV_SYSTEM, (2) the device
state (defined below) is private , and
(3) there are no open connections to the
device (through open file descriptors or
the mmap system call), then the device is
not currently allocated.

state The state attribute must either be private or public . A
device state of private indicates that the device is a pri-
vate TCB resource and that unprivileged access to the
device is denied. A device state of public indicates that
unprivileged access to the device is allowed. The state is
changed from private to public when the device is
allocated for unprivileged access and is changed from
public to private when the device is deallocated.

level range The device level range constrains the allowed values for
the security level of the device and should be based on the
physical constraints of the device (such as device loca-
tion). The high level of the device level range must domi-
nate the low level of the device level range. The device
level (as set in the device special files for the device) must
be contained in the level range.

PowerMAX OS Programming Guide

9-62

mode The device mode is always static . The other possible
value for the device mode, dynamic , is provided only for
those sites that are upgrading from a previous release of a
secure UNIX system. If you are upgrading, please consult
the documentation provided as part of that upgrade for the
correct use of the device mode.

If the device mode is static , then changing the MAC
level of the device is prohibited if the device state is static
and there are active I/O connections to the device. For all
other cases, MAC level change is allowed. When the
device mode is dynamic , the MAC access to the device is
checked for each I/O operation. Thus, if the level of the
device is changed, the process that is accessing the device
must continue to pass MAC access checks.

Device Driver Flags 9

The kernel uses three new flags associated with each device driver to determine MAC
access. The flags are used to handle special cases. If no flag is specified for the driver, the
normal MAC checks (write equal and read down) are performed. The device driver flags
are:

NOSPECMACDATA This flag indicates that no MAC access checks will be done by the
kernel for data transfers and no inode update access time changes.

INITPUB This flag indicates that when the device has the release flag set to
DEV_SYSTEM, the device is in public state. A device that has
the INITPUB flag set in the driver will by default be accessible by
non-privileged processes.

RDWREQ This flag indicates that all accesses (both read and write) require
strict equality.

Device Allocation Routines 9

In application programs, devices can be allocated with the devalloc routine and deallo-
cated (set back to system configuration values) with the devdealloc routine. The
devalloc routine can be used to set the security attributes defined above or to retrieve
information about them. The use of these two routines is described briefly in the following
subsections. Both these routines call the devstat system call to perform their functions.
For more detailed information, see the devalloc(3X) , devdealloc(3X) , and
devstat(2) manual pages in the Operating System API Reference.

The devalloc Routine 9

The devalloc routine can be used to get or set the security attributes of a device. The
routine takes three arguments: a device, which can be either a pathname of a block or char-
acter special device or a device alias defined in the Device Database; a cmd, which is either
DEV_SET or DEV_GET; and bufp, which is a pointer to a dev_alloca structure. This
structure contains the following security attributes:

Directory and File Management

9-63

dev_range The security level range that will be assigned to the device. It is
expressed as a pair of levels, with the high level given first.

dev_state The device state, which is either DEV_PRIVATE or
DEV_PUBLIC.

dev_mode The device mode, which is either DEV_DYNAMIC or
DEV_STATIC.

dev_relflag The release flag, which indicates how the security attributes can
be released. The flag can be either DEV_PERSISTENT,
DEV_LASTCLOSE, or DEV_SYSTEM.

uid The user ID, which is used to check authorization to access the
device. The type of the argument if uid_t .

The devalloc routine calls the devstat system call to get or set these values. If
devstat fails, the devalloc routine undoes any work it has done.

The devdealloc Routine 9

The devdealloc routine is used to deallocate a device; it clears any security attributes
set with devalloc and returns the device to the “system configuration” state. The values
of this state are

range hilevel=lolevel=SYS_PUBLIC (LID value 0)

state private

mode static

release flag DEV_SYSTEM

The routine takes a device as an argument, which can be either the absolute pathname of a
block or character special device or a device alias defined in the Device Database.
devdealloc resets the values by invoking the devstat system call with a release flag
set to DEV_SYSTEM. If devstat fails, devdealloc undoes any work it has done.

PowerMAX OS Programming Guide

9-64

10
Signals, Job Control, and Pipes

Introduction . 10-1
Signals . 10-1

Signal Types . 10-2
Signal Actions . 10-5
Real-Time Signal Behavior . 10-6
Signal Structures. 10-8

The sigset_t Structure . 10-8
The sigaction Structure . 10-9
The sigval and sigevent Structures . 10-11
The siginfo_t Structure . 10-13
The ucontext_t Structure . 10-15

POSIX Signal System Calls . 10-16
The kill System Call . 10-16
The sigsetops Library Routines. 10-17
The sigaction System Call . 10-17
The sigprocmask System Call . 10-22
The sigpending System Call . 10-23
The sigsuspend System Call . 10-24
The sigtimedwait System Call. 10-24
The sigwaitinfo System Call . 10-26
The sigqueue System Call . 10-27

System V Signal System Calls . 10-28
The Signal–Handling Routine . 10-29

Job Control and Session Management. 10-30
Overview of Job Control . 10-30

Job Control Terminology. 10-31
Job Control Signals . 10-32
The Controlling Terminal and Process-Groups. 10-32
Terminal Access Control . 10-32
Modem Disconnect . 10-34

STREAMS-based Job Control . 10-35
Allocation and Deallocation . 10-35
Hung-up Streams. 10-36
Hangup Signals . 10-36
Accessing the Controlling Terminal . 10-36

Basic Interprocess Communication Pipes . 10-37
STREAMS-Based Pipes and FIFOs . 10-39

Creating and Opening Pipes and FIFOs . 10-40
Accessing Pipes and FIFOs. 10-41

Reading from a Pipe or FIFO. 10-41
Writing to a Pipe or FIFO . 10-42

Zero Length Writes. 10-43
Atomic Writes. 10-43

Closing a Pipe or FIFO . 10-43
Flushing Pipes and FIFOs . 10-44
Named Streams . 10-44

fattach. 10-44

PowerMAX OS Programming Guide

fdetach . 10-45
isastream. 10-46
File Descriptor Passing. 10-46

Unique Connections . 10-47

10-1

10
Chapter 10Signals, Job Control, and Pipes

10
10
10

Introduction 10

The kernel provides several means by which processes can communicate with each other.
This chapter provides a detailed discussion on three of these facilities: signals, pipes, and
job control.

Signals are a communications mechanism between processes and the kernel. They notify a
process that a certain event has occurred, and they can be sent to a process or a group of
processes. Based on the type of signal received, a process may take some necessary action.
Included in this chapter is a discussion of the types of signals, signal handlers, the way in
which signals are sent, and the signal stack feature.

Job control provides a means of managing processes during a login session. The discus-
sion here includes an overview of job control and STREAMS-based job control.

Also included in this chapter are sections devoted to pipes and STREAMS-based pipes
and FIFOs. A pipe is a mechanism that provides a means of passing information from one
running process to another. With the OS, pipes and FIFOs have become STREAMS-based
for network applications. For completeness, a discussion of this subject has also been
included.

Signals 10

A signal is an asynchronous notification of an event; it is said to be generated for (or sent
to) a process when the event that causes the signal first occurs. A signal may be sent to a
process by another process, from the terminal, or by the system itself. A signal can be
generated in several ways, which include the following:

• An error during a system call

• An error caused by an LWP (a reference to memory that does not exist, for
example)

• Some condition raised at the controlling-terminal of a process (such as
break or hangup)

• An explicit system call to kill(2) or sigsend(2) or a call to one of
the following POSIX interfaces: sigqueue(2) , mq_notify(3C) ,
a io_ read(3C) , a io_wr i t e (3C) , l i o_ l i s t i o (3C) ,
aio_fsync(3C) , and timer_create(3C) .

PowerMAX OS Programming Guide

10-2

• Expiration of the alarm clock timer or the generation of the trap signal dur-
ing process tracing

Signals are the most frequently used means to notify a process of the occurrence of some
event that may have an effect on that process. In some circumstances, the same event gen-
erates signals for multiple processes. A process may request a detailed notification of the
source of the signal and the reason that it was generated (see sigaction(2)). All sig-
nals have the same priority. When multiple unblocked signals with different signal num-
bers are pending delivery to a process, they are delivered in order according to signal
number; the unblocked pending signal with the lowest signal number is delivered first.

Multithreading brings additional complexity and additional capabilities to signal manage-
ment. Signal semantics for multithreaded applications are described in the chapter enti-
tled, “Programming with the Threads Library.” That chapter also describes the recom-
mended paradigm for signal management in multithreaded programs.

Signal Types 10

There are two categories of signals, those generated externally (a break from a terminal)
and those generated internally (a process fault). Both types are treated identically. The file
/usr/include/signal.h defines the signals that may be delivered to a process.

The OS supports the following signals required by POSIX:

Table 10-1. POSIX Signals

Symbolic Name Signal Event Description

SIGABRT Abnormal termination (see abort(2))

SIGALRM Alarm time out (see alarm(2))

SIGFPE Floating-Point Exception / Erroneous Arithmetic Operation

SIGHUP Hangup on controlling-terminal (see termios(2))

SIGILL Illegal hardware instruction / Invalid function image

SIGINT Interactive attention interrupt (see termios(2))

SIGKILL Termination (cannot be caught or ignored)

SIGPIPE Write onto pipe without readers (see write(2))

SIGQUIT Interactive termination quit (see termios(2))

SIGSEGV Invalid memory (segmentation) reference

SIGTERM Termination

SIGUSR1 Reserved as application-defined signal 1

SIGUSR2 Reserved as application-defined signal 2

Signals, Job Control, and Pipes

10-3

The OS supports the following job control signals:

The OS supports the following real-time signals.

The OS supports the following additional signals:

Table 10-2. Job Control Signals

Symbolic Name Signal Event Description

SIGCHLD Child status changed

SIGCONT Continue process execution

SIGSTOP Stop process execution

SIGTSTP Interactive stop (see termios(2))

SIGTTIN Stop tty input(see termios(2))

SIGTTOU Stop tty output (see termios(2))

Table 10-3. Real-Time Signals

Symbolic Name Signal Event Description

SIGRT1 Real-time signal 1

SIGRT2 Real-time signal 2

SIGRT3 Real-time signal 3

SIGRT4 Real-time signal 4

SIGRT5 Real-time signal 5

SIGRT6 Real-time signal 6

SIGRT7 Real-time signal 7

SIGRT8 Real-time signal 8

Table 10-4. Additional Signals

Symbolic Name Signal Event Description

SIGBUS Bus error

SIGEMT Emulation trap

SIGPOLL Pollable event (see streamio(7))

SIGPWR Power fail / Restart

SIGSYS Bad system call

SIGTRAP Trace / Breakpoint trap

SIGWINCH Window size change

PowerMAX OS Programming Guide

10-4

The signals fall into one of the following classes:

• Hardware conditions

• Software conditions

• Input/output notification

• Job control

• Resource control

Hardware signals are derived from exceptional conditions that may occur during execu-
tion. Such signals include SIGBUS for accesses that result in hardware-related errors,
SIGFPE representing floating-point and other arithmetic exceptions, SIGILL for invalid
instruction execution, and SIGSEGV for addresses outside the currently assigned area of
memory or for accesses that violate memory protection constraints. Other, more CPU-spe-
cific hardware signals such as SIGABRT, SIGEMT and SIGTRAP may be defined by a
specific implementation.

Software signals reflect interrupts generated by user request: SIGINT for the normal
interrupt signal; SIGQUIT for the more powerful quit signal that normally causes a core
image to be generated; SIGHUP and SIGTERM that cause graceful process termination,
either because a user has “hung-up” or by user or program request; and SIGKILL, a more
powerful termination signal that a process cannot catch or ignore. Programs may define
their own asynchronous events using SIGUSR1 and SIGUSR2. Other software signals
such as SIGALRM, SIGVTALRM, SIGPROF indicate the expiration of interval timers.

A process can request notification via the signal SIGPOLL when input or output is possi-
ble on a file descriptor or when a nonblocking operation completes. A process may request
to receive the signal SIGURG when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group (see
termios(2)). The signal SIGSTOP is a powerful stop signal because it cannot be

SIGXCPU CPU time limit exceeded (see getrlimit(2))

SIGXFSZ File size limit exceeded (see getrlimit(2))

SIGWAITING All LWPs blocked (for the Threads Library)

SIGLWP Virtual interprocessor interrupt for the Threads Library

SIGAIO Asynchronous I/O

SIGURG Urgent condition on I/O channel

SIGIO I/O possible or completed

SIGPROF Profiling time alarm (see setitimer(3C))

SIGVTALRM Virtual time alarm (see setitimer(3C))

SIGPRE Programming exception

SIGRESCHED An LWP has blocked rescheduling for longer than contracted

Table 10-4. Additional Signals (Cont.)

Symbolic Name Signal Event Description

Signals, Job Control, and Pipes

10-5

caught. Other stop signals—SIGTSTP, SIGTTIN and SIGTTOU—are used when a user
request, input request, or output request, respectively, is the reason for stopping the pro-
cess. The signal SIGCONT is sent to a process when it is continued from a stopped state.
Processes may receive notification with the signal SIGCHLD when a child process
changes state either by stopping or by terminating (see wait(2)).

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a
process nears its CPU time limit and SIGXFSZ warns that the limit on file size limit has
been reached.

Three system signals, SIGLWP, SIGWAITING, and SIGAIO, are generated by the
operating system for internal use by the Threads Library.

Signal Actions 10

Signals interrupt the normal flow of control in a process. They can affect a process in both
the user mode and kernel mode. While a signal can interrupt the kernel mode only at cer-
tain points, the user mode must be prepared to handle a signal at any time. Signals do not
direct the execution of a process, but rather request that the process take some action.

Associated with each signal is a default action, which is one of the following:

• Terminate the process with all of the consequences outlined in exit(2)

• Generate a core file, and terminate the process with all of the conse-
quences outlined in exit(2)

• Stop the process

• Ignore the signal

The signal(5) system manual page contains a complete list of the OS signals and the
corresponding default actions.

A user process specifies the action that is to be taken upon receipt of a particular signal.
That action may be one of the following: take the default action for the signal, ignore the
signal, or execute a user–specified signal–handling routine. The chosen action for each
signal is known as the signal's disposition.

An interrupt signal may be sent, for example, by pressing an appropriate key on the termi-
nal (Delete, Break, or Rubout). The action taken depends on the requirements of the spe-
cific program being executed. Examples are provided by the following:

• The shell invokes most commands in such a way that they stop executing
immediately (die) when an interrupt is received; for example, the pr (print)
command normally dies, allowing the user to stop unwanted output.

• The shell itself ignores interrupts when reading from the terminal because
the shell should continue execution even when the user stops a command
like pr .

• The editor ed chooses to catch interrupts so that it can halt its current
action (especially printing) without allowing itself to be terminated.

PowerMAX OS Programming Guide

10-6

A signal is delivered to a process when the default action is taken or the process’s signal–
handling routine is executed. Signal delivery resembles the occurrence of a hardware
interrupt: the signal is normally blocked from further occurrence; the current process con-
text is saved; and a new one is built. A signal is caught when it is delivered to the process’s
signal–handling routine.

A process can block one or more signals from delivery. Each process has a signal set that
lists the signals whose delivery is currently being blocked. During the period of time
between a signal’s generation and its delivery, the signal is marked pending. If a blocked
signal has been generated and is not being ignored by the process, it remains pending until
the process either unblocks it or requests that it be ignored. The operating system selects
one of the pending unblocked signals and delivers it to the process. If the process requests
that a blocked signal be ignored, the signal is discarded as soon as it is generated.

The occurrence of a signal is recorded in the process table entry of the receiving process
and is later recognized and acted upon by that process. During the posting of a signal, if
the receiving process is sleeping, it is made runnable. If the signal is to be ignored, no
action is taken, and the process continues sleeping. Signals are posted when they occur
and are handled when the receiving process finds them. It is possible that the signal cannot
be found until the completion of a system call, the occurrence of a process fault, or the
resumption of a preempted user mode. When the process finds a signal, execution may be
interrupted immediately; or, if the process is sleeping with a low enough priority, it may
prematurely return from sleep , as explained previously, and branch directly to a signal-
handling routine.

Real-Time Signal Behavior 10

To support real-time requirements, POSIX specifies real-time signal behavior to include
the following:

• Specification of a range of real–time signal numbers

• Support for FIFO queuing of multiple occurrences of a particular signal
when the signal is generated by using selected POSIX interfaces

• Specification of additional parameters to the signal–handling routine

• Support for specification of an application–defined value when a signal is
generated by selected POSIX interfaces to allow for differentiation among
multiple occurrences of signals of the same type

• Support for a signal code that indicates the reason for a signal and defini-
tion of code values that allow an application to determine whether an appli-
cation–defined value is present

Each aspect of real-time signal behavior is described in the paragraphs that follow.

Certain signal numbers are reserved for use by real–time applications. The number of
these signals is established by the value of RTSIG_MAX. This value is set in the file
<limits.h >. It is available to an application through use of the sysconf(2) system
call.

The range of real–time signal numbers is bound by the values of two symbolic constants:
SIGRTMIN, which establishes the lowest real–time signal number, and SIGRTMAX, which

Signals, Job Control, and Pipes

10-7

establishes the highest real–time signal number. This range does not overlap the range of
other signal numbers that are defined in the system. The values of SIGRTMIN and SIGRT-

MAX and a corresponding range of real–time signal numbers for the OS are defined in the
file <signal.h >. The default action for the real–time signals in the range SIGRTMIN to
SIGRTMAX is to terminate the process.

Normally, multiple occurrences of the same signal number are indistinguishable––that is,
the pending state of a signal merely indicates that one or more instances of that signal have
been generated. An application may request that multiple occurrences of a signal that it
receives be queued, with each occurrence being delivered independently. The circum-
stances under which it can do so are described in the paragraphs that follow.

A process declares an action to be taken upon receipt of a signal by invoking the
sigaction(2) system call and supplying a pointer to a sigaction structure (see
“The sigaction System Call,” p. 10-17, and “The sigaction Structure,” p. 10-9, respec-
tively, for an explanation of this system call and a description of this structure). The
sigaction structure contains a flags field that allows a process to modify the delivery
of the signal. One of the flags that may be set is SA_SIGINFO. Setting the SA_SIGINFO flag
requires that the signal–handling routine have three arguments: the signal number; a
pointer to a siginfo_t structure, which provides information about the signal; and a
pointer to a ucontext_t structure, which defines the user context of the process receiv-
ing the signal. An explanation of the interface to the signal–handling routine is provided in
“The Signal–Handling Routine” (p. 10-29). The siginfo_t and ucontext_t struc-
tures are presented in “Signal Structures” (p. 10-8).

A process sets the SA_SIGINFO flag to indicate (1) that the signal–handling routine is to be
passed a siginfo_t structure providing information about the signal and (2) that when a
subsequent occurrence of a pending signal is generated, another siginfo_t structure is
to be attached to the signal queue with that instance of the signal. The siginfo_t struc-
ture contains such information as the signal number and a code that indicates the reason
for the signal. The supported codes are as follows: SI_USER, SI_QUEUE, SI_TIMER,

SI_ASYNCIO, and SI_MESGQ. In certain cases, the siginfo_t structure also contains an
application–defined value sent with the signal.

In order for a signal to be queued, the following condition must be met: the function that is
generating the signal must be one that sends queued signals. The functions that send
queued signals are the POSIX interfaces that allow a process to queue a signal and receive
notification when a message arrives at a message queue, an asynchronous I/O operation is
completed, and a POSIX timer expires. These interfaces include the sigqueue(2) sys-
tem call and the aio_read(3C) , aio_write(3C) , l io_listio(3C) ,
aio_fsync(3C) , and timer_create(3C) library routines. See the PowerMAX OS
Real-Time Guide for information on mq_notify , aio_read , aio_write ,
lio_listio , aio_fsync , and timer_create . See “The sigqueue System Call” (p.
10-27) for information on sigqueue . When these interfaces are used, one of the follow-
ing codes is passed to the signal–handling routine in the siginfo_t structure:
SI_QUEUE, SI_MESQ, SI_ASYNCIO, or SI_TIMER . An application–defined value is also
passed in the structure.

Support for specification of an application–defined value when a signal is sent to a process
is provided by the sigevent structure. A process uses this structure to indicate the type
of notification mechanism to be used when an asynchronous event occurs, the number of
the signal that is to be generated, and the application–defined value that is to be used to
differentiate one occurrence of the signal from another. A sigval union is defined for
specification of the application–defined value so that either an integer or a pointer can be
passed to the signal–handling routine. The sigevent structure and sigval union are

PowerMAX OS Programming Guide

10-8

presented in “The sigval and sigevent Structures” (p. 10-11). An application–defined
value may be associated with any signal that is defined in the OS.

When the conditions necessary for queuing a signal are met, subsequent occurrences of
any signal that is defined in the OS are queued to the receiving process in FIFO (first–in–
first–out) order. The limit on the number of queued signals that a process may send and
that are still pending at the receiver(s) at any time is 32. A process can obtain this value by
using the sysconf(2) system call.

A process may invoke sigaction(2) with the SA_SIGINFO flag set and receive signals
that are not queued. Such signals include those generated by the kill(2) and
sigsend(2) system calls and those generated by the kernel. When a signal is gener-
ated by a kill or sigsend system call, only one occurrence of the specified signal is
ever pending––for example, if the process sending the signal sends two signals before the
receiving process can receive one of them, the receiving process will receive only one
instance of the signal. When these interfaces are used, a siginfo_t structure is queued
to mark the signal pending. The code that is passed to the signal–handling routine in this
structure is SI_USER. A value is not passed because these interfaces do not allow the send-
ing process to specify one. See “The kill System Call” (p. 10-16) for information on kill
and “System V Signal System Calls” (p. 10-28) for information on sigsend .

Signals generated by the kernel include those for which the code passed to the signal–
handling routine in the siginfo_t structure is a positive number. A positive number is
passed for signals that provide additional information in the siginfo_t structure; this
number can be used with the number of the signal that has been delivered to determine the
cause of the signal (for additional information, refer to the signal(5) system manual
page). When the code is a positive number, a value is not passed.

When the SA_SIGINFO flag is not set on a call to sigaction(2) , the arguments that are
passed to the signal–handling routine are different from those that are passed when
SA_SIGINFO is set. They include the signal number and possibly one or more additional
arguments that vary according to architecture (for a description of these arguments, refer
to the section on signal handlers in the signal(5) system manual page).

Signal Structures 10

The structures and unions that are used by the POSIX signal–management facilities
include the following: sigset_t , sigaction , sigval , sigevent , siginfo_t ,
and ucontext_t . The sigset_t structure is presented in “The sigset_t Structure.” The
sigaction structure is presented in “The sigaction Structure.” The sigval union and
sigevent structure are presented in “The sigval and sigevent Structures.” The
siginfo_t structure is presented in “The siginfo_t Structure.” The ucontext_t struc-
ture is presented in “The ucontext_t Structure.”

The sigset_t Structure 10

The sigset_t structure specifies a set of signals. It is defined in the file <signal.h >.
A process defines and manipulates a set of signals by using the group of library routines
described in the sigsetops(3C) system manual page. These routines are presented in
“The sigsetops Library Routines” (p. 10-17).

Signals, Job Control, and Pipes

10-9

You supply a pointer to a sigset_t structure when you invoke a number of the system
calls and routines that allow you to manage signals. Such calls and routines include
sigaction(2) , sigprocmask(2) , sigpending(2) , sigsuspend(2) ,
sigtimedwait(2) and those described in sigsetops(2) . All are described in
“POSIX Signal System Calls” (p. 10-16).

The sigaction Structure 10

The sigaction structure defines the action to be associated with a particular signal.
You supply a pointer to this structure when you invoke the sigaction(2) system call
to specify or obtain an action for a signal (for information on this call, see “The sigaction
System Call,” p. 10-17).

The sigaction structure is defined in <signal.h> as follows:

struct sigaction {
union {

void (*sa_handler);
void (*sa_sigaction) (int, siginfo_t *, void *);

} sa_func;
sigset_t sa_mask;
int sa_flags;

};

The fields in the structure are described as follows.

sa_func one of two special values, SIG_DFL or SIG_IGN, or a pointer to a process’s
signal–handling routine. SIG_DFL specifies the default action for the sig-
nal (for information on the default action for a particular signal, refer to
the signal(5) system manual page). SIG_IGN specifies that the signal
is to be ignored. The signal.h header file expands each of these spe-
cia l values in to a dist inct constant expression of the type
(void(*)()) , whose value matches no declarable function.

sa_mask specifies a set of signals that is to be blocked while the signal–handling
routine is active. On entry to the signal–handling routine, this set of sig-
nals will be added to the set of signals already being blocked when the
signal is delivered. The signal for which the signal–handling routine is
invoked will also be blocked unless the SA_NODEFER bit is set in the
sa_flags field. Note that the system does not allow the SIGSTOP or the
SIGKILL signal to be blocked.

sa_flags contains zero or an integer value that sets one or more of the following
bits:

SA_ONSTACK causes the signal to be delivered on an alternate stack
if the signal is caught (delivered to a signal–handling
routine) and an alternate signal stack has been defined
by using the sigaltstack(2) system call. If this
bit is not set, the signal is delivered on the same stack
as that on which the main process is executing.

SA_RESETHAND causes the action for the signal to be reset to SIG_DFL

if the signal is caught. Note that the system does not

PowerMAX OS Programming Guide

10-10

allow the SIGILL, SIGTRAP, and SIGPWR signals to be
reset automatically (for additional information on
these signals, refer to the signal(5) system man-
ual page).

SA_NODEFER prevents the signal from being automatically blocked
by the kernel while it is being caught

SA_RESTART if the signal is caught, causes a system call that is
interrupted by execution of the signal–handling rou-
tine to be restarted

SA_SIGINFO if the signal specified by sig on the call to
sigaction(2) is caught, causes the signal number
and two additional arguments to be passed to the asso-
ciated signal–handling routine: a pointer to a
s ig in fo_t s t ruc tu re and a po in te r to a
ucontext_t structure. The siginfo_t structure
contains a code that identifies the reason for the sig-
nal. The ucontext_t structure contains the context
of the receiving process at the time that the signal was
delivered. For additional information on these struc-
tures, see “The siginfo_t Structure” (p. 10-13) and
“The ucontext_t Structure” (p. 10-15), respectively. If
the signal is generated by an interface that sends
queued signals, then subsequent occurrences of the
signal are queued to the receiving process in FIFO
(first–in–first–out) order; with each occurrence,
another siginfo_t structure is queued (see “The
siginfo_t Structure,” p. 10-13, for a more detailed
explanation of the use of this flag).

If the signal is caught and this bit is not set, the argu-
ments that are passed to the signal–handling routine
are different from those just described. They include
the signal number and possibly one or more additional
arguments that vary according to architecture. For an
explanation of the handler interface to be used on
your system, refer to the section on signal handlers in
the signal(5) system manual page.

SA_NOCLDWAIT if the signal specified by sig on the call to
sigaction(2) is set to SIGCHLD, prevents the sys-
tem from creating zombie processes when children of
the calling process exit. If the calling process subse-
quently invokes the wait(2) system call, wait(2)
does not return until all of the child processes termi-
nate. When wait(2) does return, it returns a value
of –1; errno is set to ECHILD.

SA_NOCLDSTOP if the signal specified by sig on the call to
sigaction(2) is set to SIGCHLD, prevents that sig-
nal from being sent to the calling process when its
child processes stop or continue

Signals, Job Control, and Pipes

10-11

The sigval and sigevent Structures 10

The POSIX routines use two structures to specify an application–defined value to be deliv-
ered with a signal. The sigval union and sigevent structure are defined in
<sys/siginfo.h> . The sigval union provides a means of specifying an application–
defined value as either an integer or a pointer. The sigevent structure provides a means
of passing a signal number and a value to a function that will cause a signal to be sent
upon the occurrence of some event. These structures are used by the POSIX routines that
allow you to specify a signal and the value that is to be passed to the signal–handling rou-
tine when the signal is delivered.

The sigevent structure contains a notifyinfo union. The notifyinfo union pro-
vides support for the call-back mechanism—a faster, more deterministic mechanism for
asynchronous event notification than delivery of a signal. The call-back mechanism is a
Concurrent extension that is not POSIX-compliant.

The notifyinfo union allows you to specify a routine that is to be called when a certain
type of event occurs and to specify an application-defined value that is to be passed to that
routine. The functions that support use of the call-back mechanism are the POSIX inter-
faces that allow a process to receive notification when a message arrives at a queue, an
asynchronous I/O operation is completed, and a POSIX timer expires. These interfaces are
as fo l l ows : mq_not i fy (3C) , aio_read(3C) , aio_wr i te (3C) ,
lio_listio(3C) , aio_fsync(3C) , and timer_create(3C) . Procedures for
using these interfaces are fully described in the PowerMAX OS Real-Time Guide.

The sigval union is presented as follows:

union sigval {
 int sival_int;
 void *sival_ptr;
};

The fields in the union are described as follows.

sival_int an application–defined value of type integer. When the signal is deliv-
ered, this value is to be passed to the signal–handling routine as the
si_value component of the siginfo_t structure (see “The
siginfo_t Structure,” p. 10-13, for an explanation of this structure and
“The Signal–Handling Routine,” p. 10-29, for an explanation of the pro-
cedures for defining the signal–handling routine).

sival_ptr an application–defined value of type pointer. When the signal is deliv-
ered, this value is to be passed to the signal–handling routine as the
si_value component of the siginfo_t structure (see “The
siginfo_t Structure,” p. 10-13, for an explanation of this structure and
“The Signal–Handling Routine,” p. 10-29, for an explanation of the pro-
cedures for defining the signal–handling routine).

The notifyinfo union is presented as follows:

union notifyinfo {
 int nisigno;
 void (*nifunc)(union sigval);
};

PowerMAX OS Programming Guide

10-12

The fields in the union are described as follows.

sigev_signo the number of the signal that is to be sent to a process. A set
of symbolic constants has been defined to assist you in spec-
ifying signal numbers. These constants are defined in the
file <signal.h >.

sigev_notify a pointer to a process’s call-back routine

The sigevent structure is presented as follows:

struct sigevent {
 int sigev_notify;
 union notifyinfo sigev_notifyinfo;
 union sigval sigev_value;
};

#define sigev_func sigev_notifyinfo.nifunc
#define sigev_signo sigev_notifyinfo.nisigno

The fields in the structure are described as follows.

sigev_notify an integer value that specifies the notification mechanism to
be used when an asynchronous event occurs. This value
must be one of the following:

SIGEV_NONE indicates that no asynchronous noti-
fication is to be delivered when the
event of interest occurs

SIGEV_SIGNAL indicates that a queued signal with
an application–defined value is to
be generated when the event of
interest occurs

SIGEV_CALLBACK indicates that an application-defined
call-back routine is to be called
when the event of interest occurs

The call-back mechanism is a Con-
current extension that provides a
more efficient mechanism for asyn-
chronous event notification. When
the event of interest occurs, a bound
daemon thread, which is blocked in
the kernel, is wakened. This thread
immediately returns to user space to
execute the application-defined
call-back routine.

Note that the call-back mechanism
is not POSIX-compliant.

Signals, Job Control, and Pipes

10-13

sigev_signo if the value of the sigev_notify field is SIGEV_SIGNAL ,
the number of the signal that is to be sent to a process. A set
of symbolic constants has been defined to assist you in spec-
ifying signal numbers. These constants are defined in the
file <signal.h >.

sigev_func if the value of the sigev_notify field is
SIGEV_CALLBACK , a pointer to an application-defined call-
back routine

sigev_value an application–defined value that is to be used by the sig-
nal–handl ing rout ine for the s ignal spec i fied by
sigev_signo

or

an application-defined value that is to be passed as an argu-
ment to the call-back routine.specified by sigev_func

This value may be an integer or a pointer.

The siginfo_t Structure 10

The siginfo_t structure contains information about a signal that has been delivered to
a process. Such information includes the signal number, a code that indicates the reason
for the signal, and an error number associated with the signal. The structure also contains
the PID and user ID of the sending process if the signal has been generated by a user pro-
cess using a POSIX function that sends queued signals or by a user process using the
kill(2) or sigsend(2) system call. Note that in the case of kill or sigsend ,
when a signal of the same signal number is already pending delivery to the receiving pro-
cess, that process will receive only one instance of the signal. If the signal has been gener-
ated by the kernel, the structure contains additional information that is specific to the sig-
nal––that is, the address of the faulting instruction in the case of a SIGILL signal, the PID of
the child process in the case of a SIGCHLD signal, and so on.

If the SA_SIGINFO flag is set when the sigaction(2) system call is invoked to declare a
handling routine for a particular signal, a pointer to a siginfo_t structure is supplied as
an argument to the signal–handling routine. For information on use of the sigac-
tion(2) system call, see “The sigaction System Call” (p. 10-17). For an explanation of
the interface to the signal–handling routine, see “The Signal–Handling Routine” (p.
10-29).

The siginfo_t structure is defined in <sys/siginfo.h> . The following fields are
among those defined in the structure. Note that the only fields that the program can exam-
ine are those that are defined for the current signal number and signal code value.

int si_signo;
int si_code;
int si_errno;
pid_t si_pid;
uid_t si_uid;
int si_value;

PowerMAX OS Programming Guide

10-14

int si_status;
caddr_t si_addr;

These fields are described as follows.

si_signo contains the number of the signal that has been delivered to the process

si_code contains an integer value that indicates the reason that the signal defined
by the si_signo field has been generated. Signal codes are defined in
the file <sys/siginfo.h >. If the value of si_code is one of the
following, a user process has generated the signal:

SI_USER indicates that the signal has been sent by the
kill(2) or sigsend(2) system call (see
“The kill System Call,” p. 10-16, and “System
V Signal System Calls,” p. 10-28, for explana-
tions of these calls)

SI_QUEUE indicates that the signal has been sent by the
sigqueue(2) system call (see “The sigqueue
System Call,” p. 10-27, for an explanation of
this call)

SI_TIMER indicates that the signal has been generated by
the expiration of a POSIX timer set by the
timer_settime(3P4) library routine (refer
to the PowerMAX OS Real-Time Guide for
information on POSIX clocks and timers)

SI_ASYNCIO indicates that the signal has been generated by
the completion of an asynchronous I/O opera-
tion (refer to the PowerMAX OS Real-Time
Guide for information on asynchronous I/O)

SI_MESGQ indicates that the signal has been generated by
the arrival of a message at an empty message
queue (refer to the PowerMAX OS Real-Time
Guide for information on POSIX message
queues)

 If the value of si_code is different from these, the signal has been
generated by the kernel. In this case, the si_code may be a positive
number. A positive number indicates that the signal is one that provides
additional information in the siginfo_t structure; the number can be
used with the number of the signal that has been delivered to determine
the reason for the signal (refer to the file <siginfo.h > for a brief
statement of the reason). It is likely that the signal has resulted from a
hardware exception; such signals include SIGFPE, SIGILL, SIGSEGV,
SIGBUS, and SIGTRAP.

si_errno contains zero or an error number associated with the signal specified by
si_signo . Error numbers are defined in the file <errno.h >. Cur-
rently, there is no condition that results in the return of an error number.

Signals, Job Control, and Pipes

10-15

si_pid if a user process has generated the signal, contains the process identifi-
cation number (PID) of that process. If the value of si_signo is
SIGCHLD, this field contains the PID of the child process.

si_uid if a user process has generated the signal, contains the user ID of that
process

si_value if the value of si_code is SI_QUEUE, SI_TIMER , or SI_MESGQ, contains
an application–defined value that was specified by the sender of the sig-
nal. If the value of si_code is SI_ASYNCIO, si_value contains the
identifier for the completed asynchronous I/O operation.

si_status if the value of si_signo is SIGCHLD, contains the child process’s exit
value or the number of the signal that has terminated the child process

si_addr if the value of si_signo is SIGILL, contains the virtual address of the
faulting instruction. If the value of si_signo is SIGSEGV, si_addr
contains the virtual address of the faulting memory reference.

The ucontext_t Structure 10

The ucontext_t structure shows the user context of a process at the point at which a
particular signal is delivered. Its contents include the process’s signal set, execution stack,
and machine registers.

If the SA_SIGINFO flag is set when the sigaction(2) system call is invoked to declare a
signal–handling routine for a particular signal, a pointer to this structure is supplied as an
argument to the handling routine. (For information on use of the sigaction(2) system
call, see “The sigaction System Call,” p. 10-17. For an explanation of the interface to the
signal–handling routine, see “The Signal–Handling Routine,” p. 10-29)

The ucontext_t structure is defined in <sys/ucontext.h> as follows:

typedef struct ucontext {

. . .

sigset_t uc_sigmask;
stack_t uc_stack;

. . .

mcontext_t uc_mcontext;

. . .

} ucontext_t;

The fields in the structure are described as follows.

uc_sigmask specifies the set of signals whose delivery is blocked

uc_stack if an alternate stack has been defined by using the
sigaltstack(2) system call, specifies an alternate user

PowerMAX OS Programming Guide

10-16

stack on which signals are to be processed (for information
on the sigaltstack(2) system call, refer to “System V
Signal System Calls,” p. 10-28).

uc_mcontext contains an array of the saved set of machine registers. Note
that portable applications should not access or modify this
array.

POSIX Signal System Calls 10

POSIX.1 defines a number of functions that facilitate signal management. They are briefly
described as follows:

kill(2) send a signal to a process or a group of processes

sigsetops(3C) manipulate a signal set

sigaction(2) define or obtain an action for a signal

sigprocmask(2) obtain or modify a signal set

sigpending(2) identify pending signals

sigsuspend(2) wait for a signal

sigtimedwait(2) wait a specified period of time for receipt of a signal

sigwaitinfo(2) wait indefinitely for receipt of a signal

sigqueue(2) queue a signal and an application–defined value to a process

Each of these functions is described in detail in the sections that follow.

The kill System Call 10

A process can send a signal to another process or group of processes by using kill(2) :

kill(pid, signo

pid_t pid;
int signo;

Unless the process sending the signal is privileged, its real or effective user ID must be
equal to the receiving process's real or saved user ID. If the Enhanced Security Utilities are
installed, then the unprivileged sending process's security level must be equal to the
receiving process's level

As explained in “Real-Time Signal Behavior” (p. 10-6), the kill system calls does not
send queued signals.

Signals, Job Control, and Pipes

10-17

The sigsetops Library Routines 10

A set of C library routines, which is described in the sigsetops(3C) system manual
page, allows a calling process to manipulate a signal set. A signal set is a list of signals.
Among other things, a process may use it to define the signals whose delivery is to be
blocked.

A process supplies a pointer to a signal set as an argument to a number of the system calls
that are used to manage signals––for example, those that allow a process to define an
action for a signal (sigaction(2)), wait for one or more signals (sigsuspend(2) or
sigtimedwait(2)), and identify pending signals (sigpending(2)).

The routines in the sigsetops set are briefly described as follows:

sigemptyset initialize a signal set by excluding all of the signals that are
defined for the system

sigfillset initialize a signal set by including all of the signals that are
defined for the system

sigaddset add a specified signal to an existing signal set

sigdelset delete a specified signal from an existing signal set

sigismember determine whether or not a specified signal is included in a
signal set

For the specifications required for making these calls, the return values, and other details,
refer to the sigsetops(3C) system manual page.

It is important to note that you must initialize a signal set prior to using it. Typically an
application first invokes sigemptyset and then invokes sigaddset one or more times
to define a particular set of signals. If a process has not initialized a signal set prior to
specifying it as an argument to a system call, the results of the call are undefined.

The sigaction System Call 10

The sigaction(2) system call allows a process to specify an action to be taken upon
receipt of a particular signal and to obtain information about the action that has previously
been specified for a signal.

The specifications required for making the sigaction call are as follows:

#include <signal.h>

int sigaction(sig, act, oact)

int sig;
struct sigaction * act;
struct sigaction * oact;

The arguments are defined as follows:

sig the number of the signal for which the action is being specified. A set of
symbolic constants has been defined to assist you in specifying signal

PowerMAX OS Programming Guide

10-18

numbers. These constants are defined in the file <signal.h >, which
must always be included when signals are used.

act the null pointer constant or a pointer to a structure that defines the action
for the specified signal. If the value of act is NULL , the action that is cur-
rently defined for the signal is not changed; it may be returned in the
structure pointed to by oact. The sigaction structure is described in
“The sigaction Structure” (p. 10-9).

oact the null pointer constant or a pointer to a structure to which information
about the action previously associated with the specified signal is
returned. The sigaction structure is described in “The sigaction
Structure” (p. 10-9).

A return value of 0 indicates that the call has been successful. A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error. If an error occurs, a sig-
nal–handling routine is not installed. The action that has previously been defined for the
signal is not changed. Refer to the sigaction(2) system manual page for a listing of
the types of errors that may occur.

Initially, all signals are set to SIG_DFL or SIG_IGN prior to entry of the function main (see
exec(2)). Once an action is established for a specific signal, it usually remains estab-
lished until another action is explicitly established by a call to signal(2) ,
sigset(2) , sigignore(2) , or sigaction(2) or until the process calls
fork(2) or exec(2) . A child process inherits the actions of the parent for the
defaulted and ignored signals. Caught signals are reset to the default action in the child
process. This is necessary because the address linkage for signal-handling routines speci-
fied in the parent are no longer appropriate in the child. When a process invokes exec , all
signals set to catch the signal are reset to SIG_DFL. Alternatively, a process may request
that the action for a signal automatically be reset to SIG_DFL after catching it.

In the example shown in Screen 10-1, the first call to sigaction causes interrupts to be
ignored; while the second call to sigaction restores the default action for interrupts,
which is to terminate the process. In both cases, sigaction returns the previous signal
action in the final argument old_act .

Screen 10-1. Example Specifying SIG_IGN or SIG_DFL

Instead of the special values SIG_IGN or SIG_DFL, the second argument to sigaction
may specify a pointer to a signal-handling routine; in this case, the specified routine is
called when the signal occurs. Most commonly this facility is used to allow the program to

#include <signal.h>

main() {
 struct sigaction new_act, old_act;

 new_act.sa_handler = SIG_IGN;
 sigaction(SIGINT, &new_act, &old_act);

 /* do processing */

 new_act.sa_handler = SIG_DFL;
 sigaction(SIGINT, &new_act, &old_act);
}

Signals, Job Control, and Pipes

10-19

clean up unfinished business before terminating—to delete a temporary file, for example,
as illustrated in Screen 10-2:

Screen 10-2. Example Specifying a Pointer to a Handler

Before establishing on_intr as the signal handler for SIGINT , the program tests the
state of interrupt handling and continues to ignore interrupts if they are already being
ignored. This is needed because SIGINT is sent to all processes started from a specific
terminal. Accordingly, when a program is initiated with an ampersand (&) to run without
any interaction in the background, the shell turns off interrupts for it so that it will not be
stopped by interrupts intended for foreground processes. If this program began by setting
on_intr to catch all interrupts regardless, that would undo the shell's efforts to protect it
when run in the background. The solution, shown in Screen 10-2, is to call sigaction
for SIGINT first to get the signal action currently established for the interrupt signal,
which is returned in the third argument to sigaction . If interrupt signals were already
being ignored, the process should continue to ignore them; otherwise, they should be
caught. In that case, the second call to sigaction for SIGINT establishes a new signal
action that specifies on_intr as the signal handler.

A more sophisticated program may wish to intercept and interpret SIGINT as a request to
stop what it is doing and return to its own command processing loop. Think of a text edi-
tor: interrupting a long printout should not cause it to terminate and lose the work already
done. The outline of the code for this case is probably best written as illustrated in
Screen 10-3:

#include <signal.h>

main() {
 struct sigaction new_act, old_act;
 void on_intr();

 new_act.sa_handler = SIG_IGN;
 sigaction(SIGINT, &new_act, &old_act);

 if (old_act.sa_handler != SIG_IGN) {
 new_act.sa_handler = on_intr;
 sigaction(SIGINT, &new_act, &old_act);
 }

 /* do processing */

 exit(0); /* exit with normal status */
}

void on_intr() {

 unlink(tempfile);

 exit(1); /* exit with interrupted status */
}

PowerMAX OS Programming Guide

10-20

Screen 10-3. Example Detecting SIGINT Signal

The <setjmp.h> header file declares the type jmp_buf for a buffer in which the state
can be saved, and the program shown in Screen 10-3 declares sjbuf to be of type
jmp_buf , which is an array of some type. The function setjmp saves the current con-
text of the user process in sjbuf . When an interrupt occurs, a call to the function
on_intr is forced, which prints a message and can set flags or do something else. The
function longjmp takes as argument an object stored into by setjmp , and restores con-
trol to the location after the call to setjmp , so control (and the stack level) pops back to
the place in the program main where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs. This is neces-
sary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply cannot be stopped at an arbitrary
point—in the middle of updating a linked list for example. If the function called on occur-
rences of a signal sets a flag and then returns instead of calling exit or longjmp , execu-
tion resumes at the exact point at which it was interrupted. The interrupt flag can then be
tested later.

This approach has the following difficulty. Suppose the program is reading the terminal
when the interrupt is sent. The specified function is duly called; it sets its flag and returns.
If it were really true, as said earlier, that execution resumes at the exact point at which it
was interrupted, the program would continue reading the terminal until the user typed
another line. This behavior might well be confusing because the user might not know the
program is reading and, presumably, would prefer to have the signal take effect instantly.
The method chosen to resolve this difficulty is to terminate the read from the terminal
when execution resumes after the signal, with read returning an error code (EINTR) that
indicates the interruption.

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main() {
 struct sigaction new_act, old_act;
 void on_intr();

 new_act.sa_handler = SIG_IGN;
 sigaction(SIGINT, &new_act, &old_act);

 setjmp(sjbuf); /* save current stack position */

 if (old_act.sa_handler != SIG_IGN) {
 new_act.sa_handler = on_intr;
 sigaction(SIGINT, &new_act, &old_act);
 }
/*
 * main command processing loop
 */
 exit(0)
}

void on_intr() {

 printf(“\nInterrupt\n”); /* print message */

 longjmp(sjbuf); /* return to saved state */
}

Signals, Job Control, and Pipes

10-21

As a consequence, programs that catch signals and resume execution afterward should be
prepared for errors caused by interrupted system calls. (The ones to watch out for in par-
ticular are wait and pause as well as any read from the terminal.)

A program whose on_intr function just sets intflag , resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard input or
reads directly from a terminal device.

if (getchar() == EOF)
 if (intflag)
 /* EOF caused by interrupt */
 else
 /* actual end-of-file */

A final subtlety to keep in mind becomes important when signal handling is combined
with execution of other programs. Suppose a program handles interrupts, and also includes
a method (like “! ” in the editor) whereby other programs can be executed. Then the code
should look something like the following:

if (fork() == 0)
 exec(...);
new_act.sa_handler = SIG_IGN; /* ignore interrupts */
sigaction(SIGINT, &new_act, &old_act);
wait(&status); /* until the child completes */
new_act.sa_handler = on_intr; /* restore interrupts */
sigaction(SIGINT, &new_act, &old_act);

Why is this? Again, it is not obvious but not really difficult. Suppose the program called
catches its own interrupts. When this subprogram gets interrupted, it receives the signal,
returns to its main loop, and probably tries to read the terminal. But the calling program
also pops out of its wait for the subprogram and tries to read the terminal. If two processes
try to read the terminal, it is very unfortunate because the system randomly decides which
should get each line of input. A simple solution is for the parent to ignore interrupts until
the child completes. This reasoning is reflected in the function system that Screen 10-4
illustrates.

PowerMAX OS Programming Guide

10-22

Screen 10-4. System() Function

The sigprocmask System Call 10

The sigprocmask(2) system call allows the calling process to obtain or modify the set
of signals whose delivery is currently being blocked.

The specifications required for making the sigprocmask call are as follows:

#include <signal.h>

int sigprocmask(how, set, oset)

int how;
sigset_t * set;
sigset_t * oset;

The arguments are defined as follows:

how an integer value that indicates the way in which the set of signals cur-
rently being blocked is to be changed. The value of how must be one of
the following:

SIG_BLOCK adds the signals to which set points to the set of
signals currently being blocked

SIG_UNBLOCK removes the signals to which set points from the
set of signals currently being blocked

#include <signal.h>

system(cmd_str) /* run command string */
 char *cmd_str;
{
 int status;
 pid_t wpid, xpid;
 struct sigaction sig_act, i_stat, q_stat;

 if ((xpid=fork()) == 0) {
 execl(“/bin/sh”, “sh”, “-c”, cmd_str, 0);
 _exit(127);
 }

 sig_act.sa_handler = SIG_IGN;
 sigaction(SIGINT, &sig_act, &i_stat);

 sig_act.sa_handler = SIG_IGN;
 sigaction(SIGQUIT, &sig_act, &q_stat);

 while (((wpid=wait(&status)) != xpid) && (wpid != -1))
 ;
 if (wpid == -1)
 status = -1;

 sigaction(SIGINT, &i_stat, &sig_act);
 sigaction(SIGQUIT, &q_stat, &sig_act);

 return(status);
}

Signals, Job Control, and Pipes

10-23

SIG_SETMASK replaces the set of signals currently being
blocked with the signals to which set points

set the null pointer constant or a pointer to a structure that specifies the set
of signals that is to be used to change the set of signals currently being
blocked. Note that the SIGKILL and SIGSTOP signals are ignored if they
are included in the signal set. If the value of set is NULL , the set of sig-
nals currently being blocked is not changed; this set may be returned in
the structure pointed to by oset. The sigset_t structure is described in
“The sigset_t Structure” (p. 10-8).

oset the null pointer constant or a pointer to a structure to which the set of
signals currently being blocked is returned. The sigset_t structure is
described in “The sigset_t Structure” (p. 10-8).

A return value of 0 indicates that the call has been successful. A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error. If an error occurs, the
process’s signal set is not changed. Refer to the sigprocmask(2) system manual page
for a listing of the types of errors that may occur.

The sigprocmask system call provides a mechanism whereby critical sections of code
may protect themselves against the occurrence of specified signals.

To block a section of code against one or more signals, the following call may be used to
add a set of signals to the existing mask and return the old mask:

sigprocmask (SIG_BLOCK, &new_set, &old_set);

The old mask can then be restored later with the following call:

sigprocmask (SIG_UNBLOCK, &new_set, &old_set);

It is possible to check conditions with some signals blocked, pause waiting for a signal,
and then restore the mask by using a call to sigsuspend(2) . For more information on
this call, refer to “The sigsuspend System Call” (p. 10-24).

The sigpending System Call 10

The sigpending(2) system call allows the calling process to obtain the set of signals
that have been sent but are currently being blocked from delivery.

The specifications required for making the sigpending call are as follows:

#include <signal.h>

int sigpending(set)

sigset_t * set;

The argument is defined as follows:

set a pointer to a location to which the set of currently pending signals is
returned. The sigset_t structure is described in “The sigset_t Struc-
ture” (p. 10-8).

PowerMAX OS Programming Guide

10-24

A return value of 0 indicates that the call has been successful. A return value of –1 indi-
cates that an error has occurred; errno is set to indicate the error. Refer to the
sigpending(2) system manual page for a listing of the types of errors that may occur.

The sigsuspend System Call 10

The sigsuspend(2) system call allows the calling process to suspend execution until
delivery of a signal whose associated action is termination or execution of a signal–han-
dling routine. It also allows the process to replace the current signal set with a different
set. If the action associated with a signal is execution of a signal–handling routine, the
sigsuspend call returns after the signal–handling routine returns, and it restores the sig-
nal set that existed prior to the call to sigsuspend .

The specifications required for making the sigsuspend call are as follows:

#include <signal.h>

int sigsuspend(set)

sigset_t * set;

The argument is defined as follows:

set a pointer to the set of signals that is to replace the set whose delivery is
currently being blocked

Because the sigsuspend system call suspends process execution indefinitely, it does
not return a value to indicate that the call has been successful. A return value of –1 indi-
cates that the calling process has caught a signal and that control has returned from the
signal–handling routine. Errno is set accordingly. Refer to the sigsuspend(2) sys-
tem manual page for additional information.

The sigtimedwait System Call 10

The sigtimedwait(2) system call allows the calling process to wait for a signal in a
particular signal set for a specified period of time. If any of the signals in the set are pend-
ing at the time of the call, sigtimedwait selects the signal with the lowest number and
returns such information as the signal number, the reason that the signal has been gener-
ated, and, if applicable, an application–defined value that has been queued with the signal.
If none of the signals in the set are pending at the time of the call, sigtimedwait sus-
pends the process until one of the following occurs:

• One or more of the signals in the set are generated or pending delivery.

In this case, sigtimedwait returns the number of the selected signal and
the reason that it has been generated. The signal–handling routine for that
signal is not invoked.

• The specified period of time elapses.

In this case, sigtimedwait returns a value of –1 and sets errno to
EAGAIN.

Signals, Job Control, and Pipes

10-25

• The process is interrupted by a signal that is not in the set.

In this case, the signal–handling routine for the signal is invoked if the sig-
nal is being caught; sigtimedwait returns a value of –1 and sets errno
to EINTR. If the signal is not being caught, the process is terminated.

The sigtimedwait and sigpending system calls are similar in that both notify a pro-
cess that a signal has been sent. You may wish to use sigtimedwait instead of
sigpending because it returns information about the signal and does not require that a
signal–handling routine be called.

The specifications required for making the sigtimedwait call are as follows:

#include <sys/siginfo.h>
#include <signal.h>
#include <sys/timers.h>

int sigtimedwait(set, info, timeout)

const sigset_t * set;
siginfo_t * info;
const struct timespec * timeout;

The arguments are defined as follows:

set a pointer to a structure that specifies the signal(s) for which the process
is to wait.

info the null pointer constant or a pointer to a structure to which information
about the selected signal is returned. If the value of info is not NULL , on
return the si_signo component contains the number of the selected
signal, and the si_code component contains the code that identifies
the reason for the signal. The signal numbers that may be returned are
defined in the file <signal.h >; the signal codes are defined in the file
<sys/siginfo.h >. If an application–defined value has been queued
to the process with that signal, the si_value component contains that
value; if not, the content of the si_value component is undefined.

timeout the null pointer constant or a pointer to a structure that specifies the
length of time that the process is to wait for a signal. If the value of tim-
eout is NULL , the process will wait indefinitely. If the structure to which
timeout points contains zeros and none of the signals specified by the set
argument are pending, an EAGAIN error occurs; the sigtimedwait
call returns immediately.

If one of the signals specified by the set argument is generated or is pending delivery,
sigtimedwait returns the number of the selected signal in the structure to which info
points. A return value of –1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sigtimedwait(2) system manual page for a listing of the types
of errors that may occur.

PowerMAX OS Programming Guide

10-26

The sigwaitinfo System Call 10

The sigwaitinfo(2) system call allows the calling process to wait indefinitely for a
signal in a particular signal set. If any of the signals in the set are pending at the time of the
call, sigwaitinfo selects the signal with the lowest number and returns such informa-
tion as the signal number, the reason that the signal has been generated, and, if applicable,
an application–defined value that has been queued with the signal. If none of the signals in
the set are pending at the time of the call, sigwaitinfo suspends the process until one
of the following occurs:

• One or more of the signals in the set are generated or pending delivery

In this case, sigwaitinfo returns the number of the selected signal and
the reason that it has been generated. The signal–handling routine for that
signal is not invoked.

• The process is interrupted by a signal that is not in the set

In this case, the signal–handling routine for the signal is invoked if the sig-
nal is being caught; sigwaitinfo returns a value of –1 and sets errno
to EINTR. If the signal is not being caught, the process is terminated.

The specifications required for making the sigwaitinfo call are as follows:

#include <sys/siginfo.h>
#include <signal.h>

int sigwaitinfo(set, info)

const sigset_t * set;
siginfo_t * info;

The arguments are defined as follows:

set a pointer to a signal set that specifies the signal(s) for which the process
is to wait.

info the null pointer constant or a pointer to a structure to which information
about the selected signal is returned. If the value of info is not NULL , on
return the si_signo component contains the number of the selected
signal, and the si_code component contains the code that identifies
the reason for the signal. The signal numbers that may be returned are
defined in the file <signal.h >; the signal codes are defined in the file
<sys/siginfo.h >. If an application–defined value has been queued
to the process with the signal, the si_value component contains that
value; if not, the content of the si_value component is undefined.

If one of the signals specified by the set argument is generated or is pending delivery,
sigwaitinfo returns the number of the selected signal in the structure to which info
points. A return value of –1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sigtimedwait(2) system manual page for a listing of the types
of errors that may occur.

Signals, Job Control, and Pipes

10-27

The sigqueue System Call 10

The sigqueue(2) system call allows the calling process to queue a signal and a value to
itself or another process.

In order for multiple occurrences of a signal to be queued and an application–defined
value to be passed with the signal, the receiving process must have asked for queueing by
setting the SA_SIGINFO flag on a call to sigaction(2) to specify the signal action (for
information on the SA_SIGINFO flag and the sigaction(2) system call, see “The sigac-
tion Structure,” p. 10-9, and “The sigaction System Call,” p. 10-17, respectively).

The sigqueue system call differs from the kill(2) system call in three respects: it
queues a unique instance of a siginfo_t structure to be delivered to the specified pro-
cess with a signal; it allows a sending process to specify a value argument; and it does not
allow a process to specify a negative value for the pid argument (which signifies a signal
broadcast).

Unless the sending process is sending the SIGCONT signal to a process that is a member of
the same session, the following conditions must be met in order to use the sigqueue sys-
tem call:

• The real or effective user ID of the sending process must match the real or
saved user ID of the receiving process unless the process sending the signal
is privileged.

• If the Enhanced Security Utilities are installed, then the unprivileged send-
ing process's security level must be equal to the receiving process's level.

The specifications required for making the sigqueue call are as follows:

#include <sys/siginfo.h>
#include <signal.h>

int sigqueue(pid, signo, value)

pid_t pid;
int signo;
const union sigval value;

The arguments are defined as follows:

pid the process identification number (PID) of the process to which the sig-
nal is to be sent. If the value of pid is the PID of the calling process and
the signal specified by signo is not blocked, signo or at least one pending
unblocked signal will be delivered to the calling process before the
sigqueue(2) call returns.

signo the number of the signal that is to be sent to the process specified by pid.
A set of symbolic constants has been defined to assist you in specifying
signal numbers. These constants are defined in the file <signal.h >.

If the value of signo is zero (the null signal), sigqueue checks the
validity of the specified PID but does not send a signal.

value an application–defined value that is to be used by a signal–handling rou-
tine defined by the receiving process. This value may be a pointer or an

PowerMAX OS Programming Guide

10-28

integer. It is available to the receiving process if that process has defined
a signal–handling routine for the signal specified by signo and has set
the SA_SIGINFO flag on a call to sigaction(2) to declare the han-
dling routine.

This value is presented in the si_value component of the
siginfo_t argument to the signal–handling routine. The signal code
that is presented in the si_code component of this argument is
SI_QUEUE. For an explanation of the procedures for using the
sigaction system call, see “The sigaction System Call” (p. 10-17).
For a description of the siginfo_t structure, see “The siginfo_t
Structure” (p. 10-13). For an explanation of the procedures for defining
the signal–handling routine, see “The Signal–Handling Routine” (p.
10-29).

A return value of 0 indicates that the specified signal has been successfully queued. A
return value of –1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sigqueue(2) system manual page for a listing of the types of errors that
may occur.

System V Signal System Calls 10

The OS also supports the System V sigsend(2) and sigaltstack(2) system calls.
The sigsend call allows a process to send a signal to another process or group of pro-
cesses:

sigsend(idtype, id, signo);
idtype_t idtype;
id_t id;
int signo;

Unless the process sending the signal is privileged, its real or effective user ID must be
equal to the receiving process's real or saved user ID. If the Enhanced Security Utilities
are installed, then the unprivileged sending process's security level must be dominated by
the receiving process's level.

As explained in “Real-Time Signal Behavior” (p. 10-6), the sigsend system call does
not send queued signals.

Signals can also be sent from a terminal device to the process group or session leader asso-
ciated with the terminal (see termio(7)).

The sigaltstack system call allows a process to define an alternate stack area on
which signals are to be processed. Applications that maintain complex or fixed-size stacks
can use the call:

struct sigaltstack {
caddr_t ss_sp;
int ss_size;
int ss_flags;

};

Signals, Job Control, and Pipes

10-29

sigaltstack(ss, oss)
struct sigaltstack * ss;
struct sigaltstack * oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery of sig-
nals. The system automatically adjusts for direction of stack growth. The member
ss_flags indicates whether the process is currently on the signal stack and whether the
signal stack is disabled. The sigaltstack structure is defined in <signal.h >.

When a signal is to be delivered and the process has requested that it be delivered on the
alternate stack, the system checks whether the process is currently executing on that stack
(see sigaction(2)). If it is not, then the process is switched to the alternate signal
stack for delivery of the signal. The return from the signal is arranged to restore the previ-
ous stack.

If the process wishes to take a nonlocal exit from the signal-handling routine or run code
from the signal stack that uses a different stack, a sigaltstack call should be used to
reset the signal stack (see sigaltstack(2)).

The Signal–Handling Routine 10

If you wish to obtain information about the reason that a signal has been generated and the
user context of the process that has received it, you must (1) define the signal–handling
routine with a particular interface and (2) declare the routine as the handler for the signal
by invoking the sigaction(2) system call and setting the SA_SIGINFO bit (see “The
sigaction System Call,“ p. 10-17, for an explanation of this call). The interface that you
must use for the signal–handling routine is presented as follows:

handler(sig, infop, ucp)
int sig;
siginfo_t * infop;
ucontext_t * ucp;

The arguments to the routine are defined as follows:

sig the signal number

infop the null pointer constant or a pointer to a structure that contains infor-
mation about the signal specified by sig. Such information includes the
signal number and the reason that the signal has been generated. For a
detailed description of the contents of this structure, see “The siginfo_t
Structure” (p. 10-13).

ucp a pointer to a structure that defines the user context for the process prior
to the delivery of the signal sig. The user context includes the process’s
signal mask, execution stack, and machine registers. It will be used to
restore the process's context upon return from the signal handler. For a
detailed description of the contents of this structure, see “The ucontext_t
Structure” (p. 10-15).

You may modify certain components of the user context within a signal–handling routine,
but you are advised to use caution in doing so. You may modify the general purpose regis-

PowerMAX OS Programming Guide

10-30

ters, instruction address registers, signal mask, and stack flags, but you are not allowed to
modify the address or size of the stack.

Job Control and Session Management 10

An overview of Job Control is provided here for completeness and because it interacts
with the STREAMS-based terminal subsystem. This section describes how to use a
Stream as a controlling terminal. More information on Job Control can be obtained from
the following manual pages: exit(2) , getpgid(2) , getpgrp(2) , getsid(2) ,
kil l (2) , setpgid(2) , setpgrp(2) , setsid(2) , sigaction(2) ,
signal(2) , sigsend(2) , termios(2) , waitid(2) , waitpid(3C) ,
signal(5) , and termio(7) .

Overview of Job Control 10

Job Control is a feature supported by the BSD UNIX operating system. It is also an
optional part of the IEEE P1003.1 POSIX standard. Job Control breaks a login session
into smaller units called jobs. Each job consists of one or more related and cooperating
processes. One job, the foreground job, is given complete access to the controlling termi-
nal. The other jobs, called background jobs, are denied read access to the controlling ter-
minal and given conditional write and ioctl access to it. The user may stop an executing
job and resume the stopped job either in the foreground or in the background.

Under Job Control, background jobs do not receive events generated by the terminal and
are not informed with a hangup indication when the controlling process exits. Background
jobs that linger after the login session has been dissolved are prevented from further access
to the controlling terminal, and do not interfere with the creation of new login sessions.

The OS supports job-control and command interpreter processes supporting job-control
can assign the terminal to different jobs, or process-groups, by placing related processes in
a single process-group and assigning the process-group with the terminal. A process may
examine or change the foreground process-group of a terminal assuming the process has
the required permissions (see tcgetpgrp(2) and tcsetpgrp(2)). The termios
facility aids in this assignment by restricting access to the terminal by processes outside of
the foreground process-group (see “Terminal Access Control”).

When there is no longer any process whose process-id or process-group-id matches the
process-group-id of the foreground process-group, the terminal lacks any foreground pro-
cess-group. It is unspecified whether the terminal has a foreground process-group when
there is no longer any process whose process-group-id matches the process-group-id of
the foreground process-group, but there is a process whose process-id matches the pro-
cess-group-id of the foreground process-group. Only a successful call to tcsetpgrp or
assignment of the controlling terminal as described can make a process-group the fore-
ground process-group of a terminal (see tcsetpgrp(2)).

Background process-groups in the session of the session-leader are subject to a job-control
line-discipline when they attempt to access their controlling terminal. Typically, they are
sent a signal that causes them to stop, unless they have made other arrangements (see

Signals, Job Control, and Pipes

10-31

signal(4)). An exception is made for processes that belong to a orphaned process-
group, which is a process-group none of whose members have a parent in another process-
group within the same session and thus share the same controlling terminal. When these
processes attempt to access their controlling terminal, they return errors because there is
no process to continue them if they should stop (see “Terminal Access Control”).

Job Control Terminology 10

The following defines terms associated with Job Control:

• Background Process-group—a process-group that is a member of a session
that established a connection with a controlling terminal and is not the fore-
ground process-group.

• Controlling Process—a session leader that established a connection to a
controlling terminal.

• Controlling Terminal—a terminal that is associated with a session. Each
session may have at most one controlling terminal associated with it and a
controlling terminal may be associated with at most one session. Certain
input sequences from the controlling terminal cause signals to be sent to
the process-groups in the session associated with the controlling terminal.

• Foreground Process Group—each session that establishes a connection
with a controlling terminal distinguishes one process-group of the session
as a foreground process-group. The foreground process-group has certain
privileges that are denied to background process-groups when accessing its
controlling terminal.

• Orphaned Process Group—a process-group in which the parent of every
member in the group is either a member of the group, or is not a member of
the process-group's session.

• Process Group—each process in the system is a member of a process-
group that is identified by a process-group ID. Any process that is not a
process-group leader may create a new process-group and become its
leader. Any process that is not a process-group leader may join an existing
process-group that shares the same session as the process. A newly created
process joins the process-group of its creator.

• Process Group Leader —a process whose process ID is the same as its pro-
cess group ID.

• Process Group Lifetime—a time period that begins when a process-group
is created by its process-group leader and ends when the last process that is
a member in the group leaves the group.

• Process ID—a positive integer that uniquely identifies each process in the
system. A process ID may not be reused by the system until the process
lifetime, process-group lifetime, and session lifetime ends for any process
ID, process-group ID, and session ID sharing that value.

• Process Lifetime—a time period that begins when the process is forked and
ends after the process exits, when its termination has been acknowledged
by its parent process.

PowerMAX OS Programming Guide

10-32

• Session—each process-group is a member of a session that is identified by
a session ID.

• Session ID—a positive integer that uniquely identifies each session in the
system. It is the same as the process ID of its session leader.

• Session Leader—a process whose session ID is the same as its process and
process-group ID.

• Session Lifetime—a time period that begins when the session is created by
its session leader and ends when the lifetime of the last process-group that
is a member of the session ends.

Job Control Signals 10

The following signals manage Job Control (see also signal(5))

SIGCONT Sent to a stopped process to continue it.

SIGSTOP Sent to a process to stop it. This signal cannot be caught or
ignored.

SIGTSTP Sent to a process to stop it. It is typically used when a user
requests to stop the foreground process.

SIGTTIN Sent to a background process to stop it when it attempts to read
from the controlling terminal.

SIGTTOU Sent to a background process to stop it when one attempts to write
to or modify the controlling terminal.

The Controlling Terminal and Process-Groups 10

A session may be allocated a controlling terminal. For every allocated controlling termi-
nal, Job Control elevates one process group in the controlling process's session to the sta-
tus of foreground process group. The remaining process-groups in the controlling pro-
cess's session are background process-groups. A controlling terminal gives a user the
ability to control execution of jobs within the session. Controlling-terminals play a central
role in Job Control. A user may cause the foreground job to stop by typing a predefined
key on the controlling terminal. A user may inhibit access to the controlling terminal by
background jobs. Background jobs that attempt to access a terminal that has been so
restricted will be sent a signal that typically causes the job to stop. (See the section titled
“Accessing the Controlling Terminal” section later in this chapter.)

Terminal Access Control 10

If a process is in the foreground process-group of its controlling terminal, read works as
described in the “System Calls and Libraries” chapter. If any process in a background pro-
cess-group attempts to read from its controlling terminal when job-control is supported,
the signal SIGTTIN is sent to its process-group unless one of these special cases apply.

Signals, Job Control, and Pipes

10-33

• If the reading process either ignores or blocks the signal SIGTTIN or if the
reading process is a member of an orphaned process-group, attempting to
read the controlling terminal fails without sending the signal SIGTTIN ,
the read returns -1 and errno equals EIO .

The default action of the signal SIGTTIN is to stop the process to which it is sent (see
signal(4)).

If a process is in the foreground process-group of its controlling terminal, write works as
described in “Writing Data and Output Processing.” If any process in a background pro-
cess-group attempts to write onto its controlling terminal when the flag TOSTOP is set in
the c_lflag field of the termios structure, the signal SIGTTOU is sent to the process-
group unless one of these special cases apply:

• If the writing process either ignores or blocks the signal SIGTTOU,
attempting to write the controlling terminal proceeds without sending the
signal SIGTTOU.

• If the writing process neither ignores nor blocks the signal SIGTTOU and if
the writing process is a member of an orphaned process-group, attempting
to write the controlling terminal fails without sending the signal SIGTTOU,
the write returns -1 and errno equals EIO .

If the flag TOSTOP is clear, attempting to write the controlling terminal proceeds without
sending the signal SIGTTOU.

Certain calls that set terminal parameters are treated the same as write calls, except that
the flag TOSTOP is ignored; thus, the effect is the same as terminal write calls when the
flag TOSTOP is set (see tcgetattr(2) and tcsetattr(2)).

If the implementation supports job-control, unless otherwise noted, processes in a back-
ground process-group are restricted in their use of the terminal-control-functions (see
tcdrain(2) , tcflow(2) , tcflush(2) , tcgetattr(2) , tcgetpgrp(2) ,
tcsendbreak(2) , tcsetattr(2) , tcsetsid(2) , tcsetpgrp(2)). Attempts
to perform these functions cause the process-group to be sent the signal SIGTTOU. If the
calling process either ignores or blocks the signal SIGTTOU, attempting to perform a con-
trol-function proceeds without sending the signal SIGTTOU.

The default action of the signal SIGTTOU is to stop the process to which it is sent (see
signal(4)).

All terminal-control-functions operate on an open file-descriptor and they affect the under-
lying terminal-device-file denoted by the file-descriptor, not the open-file-description that
represents it.

If a member of a background process-group attempts to invoke an ioctl on its control-
ling terminal, and that ioctl modifies terminal parameters (e.g., TIOCSPGRP, TCSETA,
TCSETAW or TCSETAF) its process-group is sent SIGTTOU, which normally causes the
members of that process-group to stop.

• If the calling process either ignores or blocks the signal SIGTTOU,
attempting to perform a terminal-control-function on the controlling termi-
nal proceeds without sending the signal SIGTTOU.

• If the calling process neither ignores nor blocks the signal SIGTTOU and if
the calling process is a member of an orphaned process-group, attempting

PowerMAX OS Programming Guide

10-34

to perform a terminal-control-function on the controlling terminal fails
without sending the signal SIGTTOU, the ioctl returns -1 and errno
equals EIO .

The terminal access controls described in this section apply only to a process accessing its
controlling terminal because these controls are for the purpose of job-control, not security,
and job-control relates only to a controlling terminal for a process. Normal file-access-per-
missions handle security. A process accessing a terminal other than the controlling termi-
nal is effectively treated the same as a member of the foreground process-group.

If a process in a background orphaned process-group calls read or write , stopping the
process-group is undesirable, as it is no longer under the control of a job-control shell that
can put it into foreground again. Accordingly, calls to read and write by such processes
receive an immediate return error.

The terminal-driver must repeatedly do a foreground/background/orphaned process-group
check until either the process-group of the calling process is orphaned or the calling pro-
cess moves into the foreground. If a calling process is in the background and should
receive a job-control signal, the terminal-driver sends the appropriate signal (SIGTTIN or
SIGTTOU) to every process in the process-group of the calling process then lets the call-
ing process receive the signal immediately, usually by blocking the process so it reacts to
the signal right away. Note, however, that after the process catches the signal and the ter-
minal-driver regains control, the driver must repeat the foreground/background/orphaned
process-group check. The process may still be in the background, either because a job-
control shell continued the process in the background, or because the process caught the
signal and did nothing.

The terminal-driver repeatedly does the foreground/background/orphaned process-group
check whenever a process tries to access the terminal. For write or the line-control func-
tions, the check is done on entering the function. For read , the check is done not only on
entering the function but also after blocking the process to wait for input data (if neces-
sary). If the process calling read is in the foreground, the terminal-driver tries to get data
from the input-queue, and if the queue is empty, blocks the process to wait for data. When
data are input and the terminal-driver regains control, it must repeat the foreground/back-
ground/orphaned process-group check again because the process may have moved to the
background from the foreground while it blocked to wait for input data. (see the documen-
tation on job control in the “Glossary”).

Modem Disconnect 10

The following arrangements are made to allow processes that read from a terminal-device-
file and test for end-of-file to terminate appropriately when a modem-disconnect is
detected on the terminal-device:

• All processes with that terminal as the controlling terminal receive a hang-
up signal, SIGHUP, if CLOCAL is clear in the c_cflags for the terminal
(see termios(4)). Unless other arrangements are made, the signal
SIGHUP forces the processes to terminate (see signal(4) and
sigaction(2)). If the signal SIGHUP is ignored or caught by a signal-
catching function, any subsequent read returns 0 to indicate end-of-file
until the terminal-device-file is closed (see read(2)).

• If the controlling process is not in the foreground process group of the ter-
minal, the signal SIGTSTP is sent to all processes in the foreground pro-

Signals, Job Control, and Pipes

10-35

cess group for which the terminal is the controlling terminal. Unless other
arrangements are made, the signal SIGTSTP forces the processes to termi-
nate (see signal(4) and sigaction(2)).

• Processes in background process groups that try a read or a write of the
controlling terminal after a modem-disconnect while the terminal is still
assigned to the session receive the appropriate signal, SIGTTIN or
SIGTTOU respectively (see read(2) and write(2)). Unless other
arrangements are made, the signal SIGTTIN or SIGTTOU forces the pro-
cesses to terminate (see signal(4) and sigaction(2)).

STREAMS-based Job Control 10

Job Control requires support from a line discipline module on the controlling terminal's
Stream. The TCSETA, TCSETAW, and TCSETAF commands of termio(7) allow a
process to set the following line discipline values relevant to Job Control:

SUSPcharacter A user defined character that, when typed, causes the line
discipline module to request that the Stream head sends a
SIGTSTP signal to the foreground process with an
M_PCSIG message, which by default stops the members
of that group. If the value of SUSP is zero, the SIGTSTP
signal is not sent, and the SUSP character is disabled.

TOSTOPflag If TOSTOP is set, background processes are inhibited from
writing to their controlling terminal.

A line discipline module must record the SUSP suspend character and notify the Stream
head when the user has typed it, and record the state of the TOSTOP bit and notify the
Stream head when the user has changed it.

Allocation and Deallocation 10

A Stream is allocated as a controlling terminal for a session if

• The Stream is acting as a terminal

• The Stream is not already allocated as a controlling terminal

• The Stream is opened by a session leader that does not have a controlling
terminal.

Drivers and modules can inform the Stream head to act as a terminal Stream by sending an
M_SETOPTS message with the SO_ISTTY flag set upstream. This state may be changed
by sending an M_SETOPTS message with the SO_ISNTTY flag set upstream.

Controlling-terminals are allocated with the open(2) system call. A Stream head must
be informed that it is acting as a terminal by an M_SETOPTS message sent upstream
before or while the Stream is being opened by a potential controlling process. If the
Stream head is opened before receiving this message, the Stream is not allocated as a con-
trolling terminal.

PowerMAX OS Programming Guide

10-36

Hung-up Streams 10

When a Stream head receives an M_HANGUP message, it is marked as hung-up. Streams
that are marked as hung-up are allowed to be reopened by their session leader if they are
allocated as a controlling terminal, and by any process if they are not allocated as a con-
trolling terminal. This way, the hangup error can be cleared without forcing all file
descriptors to be closed first.

If the reopen is successful, the hung-up condition is cleared.

Hangup Signals 10

When the SIGHUP signal is generated by an M_HANGUP message (instead of an M_SIG or
M_PCSIG message), the signal is sent to the controlling process instead of the foreground
process-group because the allocation and deallocation of controlling terminals to a session
is the responsibility of that process-group.

Accessing the Controlling Terminal 10

If a process attempts to access its controlling terminal after it has been deallocated, access
is denied. If the process is not holding or ignoring SIGHUP, it is sent a SIGHUP signal.
Otherwise, the access fails with an EIO error.

Members of background process-groups have limited access to their controlling terminals:

• If the background process is ignoring or holding the SIGTTIN signal or is
a member of an orphaned process-group, an attempt to read from the con-
trolling terminal fails with an EIO error. Otherwise, the process is sent a
SIGTTIN signal, which by default stops the process.

• If the process is attempting to write to the terminal and if the terminal's
TOSTOP flag is clear, the process is allowed access.

The TOSTOP flag is set on reception of an M_SETOPTS message with the
SO_TOSTOP flag set in the so_flags field. It is cleared on reception of
an M_SETOPTS message with the SO_TONSTOP flag set.

• If the terminal's TOSTOP flag is set and a background process is attempting
to write to the terminal, the write succeeds if the process is ignoring or
holding SIGTTOU. Otherwise, the process stops except when it is a mem-
ber of an orphaned process-group, in which case, it is denied access to the
terminal and it is returned an EIO error.

• If a background process is attempting to perform a destructive ioctl (an
ioctl that modifies terminal parameters), the ioctl call succeeds if the
process is ignoring or holding SIGTTOU. Otherwise, the process will stop
except when the process is a member of the orphaned process-group. In
that case, the access to the terminal is denied and an EIO error is returned.

Signals, Job Control, and Pipes

10-37

Basic Interprocess Communication Pipes 10

The system call pipe creates a pipe, a type of unnamed FIFO (First In First Out) file used
as an I/O channel between two cooperating processes: one process writes onto the pipe,
while the other reads from it. Most pipes are created by the shell, as in:

ls | pr

which connects the standard output of ls to the standard input of pr . Sometimes, how-
ever, it is most convenient for a process to set up its own plumbing; this section illustrates
how to establish and use the pipe connection.

Because a pipe is both for reading and writing, pipe returns two file-descriptors as fol-
lows:

int fd[2];
stat = pipe(fd);
if (stat == -1)
 /* there was an error ... */

where fd is an array of two file-descriptors, with fd[0] for the read end of the pipe and
fd[1] for the write end of the pipe. These may be used in read , write and close
calls just like any other file-descriptors.

Implementation of pipes consists of implied lseek operations before each read or
write in order to implement first-in-first-out. The system looks after buffering the data
and synchronizing the two processes to prevent the writer from grossly out-producing the
reader and to prevent the reader from overtaking the writer. If a process reads a pipe that is
empty, it will wait until data arrive; if a process writes into a pipe that is full, it will wait
until the pipe empties somewhat. If the write end of the pipe is closed, a subsequent read
will encounter end-of-file.

To illustrate the use of pipes in a realistic setting, consider a function popen(cmd,mode),
which creates a process cmd, and returns a file-descriptor that will either read or write that
process, according to mode; thus, the call

fout = popen(“pr”, WRITE);

creates a process that executes the pr command; subsequent write calls using the file-
descriptor fout send data to that process through the pipe.

PowerMAX OS Programming Guide

10-38

Screen 10-5. popen

As shown in Screen 10-5, the function popen first calls pipe to create a pipe, then calls
fork to create two copies of itself. The child decides whether it is supposed to read or
write, closes the other end of the pipe, then calls the shell (via execl) to run the desired
process. The parent likewise closes the end of the pipe it does not use. These close oper-
ations are necessary to make end-of-file tests work properly. For example, if a child that
intends to read fails to close the write end of the pipe, it will never encounter the end-of-
file on the pipe, just because there is one writer potentially active. The sequence of close
operations in the child is a bit tricky. Suppose that the task is to create a child process that
will read data from the parent. Then the first close closes the write end of the pipe, leav-
ing the read end open.

To associate a pipe with the standard input of the child, use the following:

close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));

The close call closes file-descriptor 0 , the standard input, then the dup call returns a
duplicate of the open file-descriptor. File-descriptors are assigned in increasing order and
dup returns the first available one, so the dup call effectively copies the file-descriptor for
the pipe (read end) to file-descriptor 0 making the read end of the pipe the standard input.
(Although somewhat tricky, it's a standard idiom.) Finally, the old read end of the pipe is
closed. A similar sequence of operations takes place when the child process must write to
the parent process instead of reading from it. To finish the job we need a function pclose
to close a pipe created by popen .

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen(cmd, mode)
 char *cmd;
 int mode;
{
 int p[2];

 if (pipe(p) < 0)
 return(NULL);

 if ((popen_pid = fork()) == 0) {
 close(tst(p[WRITE], p[READ]));
 close(tst(0, 1));
 dup(tst(p[READ], p[WRITE]));
 close(tst(p[READ], p[WRITE]));
 execl(“/bin/sh”, “sh”, “-c”, cmd, 0);
 _exit(1) /* disaster occurred if we got here */
 }
 if (popen_pid == -1)
 return(NULL);

 close(tst(p[READ], p[WRITE]));
 return(tst(p[WRITE], p[READ]));
}

Signals, Job Control, and Pipes

10-39

Figure 10-1. Pclose

The main reason for using a separate function rather than close is that it is desirable to
wait for the termination of the child process. First, the return value from pclose indi-
cates whether the process succeeded. Equally important when a process creates several
children is that only a bounded number of unwaited-for children can exist, even if some of
them have terminated; performing the wait lays the child to rest. The calls to
sigaction make sure that no interrupts, etc., interfere with the waiting process (see
sigaction(2)).

The routine as written has the limitation that only one pipe may be open at once because of
the single shared variable popen_pid ; it really should be an array indexed by file-
descriptor. A popen function, with slightly different arguments and return value is avail-
able as part of the Standard I/O Library (see stdio(3S)).

STREAMS-Based Pipes and FIFOs 10

A pipe in the UNIX system is a mechanism that provides a communication path between
multiple processes. Before Release 4, the OS had “standard” pipes and named pipes (also
called FIFOs). With standard pipes, one end was opened for reading and the other end for
writing, thus data flow was unidirectional. FIFOs had only one end; typically, one process
opened the file for reading and another process opened the file for writing. Data written
into the FIFO by the writer could then be read by the reader.

To provide greater support and development flexibility for networked applications, pipes
and FIFOs have become STREAMS-based in the OS. The basic interface remains the
same but the underlying implementation has changed. Pipes now provide a bidirectional
mechanism for process communication. When a pipe is created by the pipe system call,

#include <signal.h>

pclose(fd) /* close pipe descriptor */
 int fd;
{
 struct sigaction o_act, h_act, i_act, q_act;
 extern pid_t popen_pid;
 pid_t c_pid;
 int c_stat;

 close(fd);

 sigaction(SIGINT, SIG_IGN, &i_act);
 sigaction(SIGQUIT, SIG_IGN, &q_act);
 sigaction(SIGHUP, SIG_IGN, &h_act);

 while ((c_pid=wait(&c_stat))!=-1 && c_pid!=popen_pid);
 if (c_pid == -1)
 c_stat = -1;

 sigaction(SIGINT, &i_act, &o_act);
 sigaction(SIGQUIT, &q_act, &o_act);
 sigaction(SIGHUP, &h_act, &o_act);

 return(c_stat);
}

PowerMAX OS Programming Guide

10-40

two Streams are opened and connected together, thus providing a full-duplex mechanism.
Data flow is on a FIFO basis. Previously, pipes were associated with character devices and
the creation of a pipe was limited to the capacity and configuration of the device.
STREAMS-based pipes and FIFOs are not attached to STREAMS-based character
devices, eliminating configuration constraints and the number of opened pipes to the num-
ber of file descriptors for that process.

NOTE

The remainder of this chapter uses the terms “pipe” and
“STREAMS-based pipe” interchangeably.

Creating and Opening Pipes and FIFOs 10

FIFOs, which are created by mknod(2) or mkfifo(3C) behave like regular file system
nodes but are distinguished from other file system nodes by the p in the first column when
the ls -l command is executed. Data written to the FIFO or read from the FIFO flow up
and down the Stream in STREAMS buffers. Data written by one process can be read by
another process.

NOTE

If the Enhanced Security Utilities are installed, the Mandatory
Access Control (MAC) security level of a fifonode is inherited
from the level of the creating process. A privileged process can
change the level using the lvl fi le system cal l . See
lvlfile(2) in the Operating System API Reference for details.

MAC write access is required for either a read to or a write from a
FIFO. In other words, a process must be at the same level as the
fifonode for either read or write. This is because a read modifies
the FIFO. If you have installed the Enhanced Security Utilities,
see the chapter “Directory and File Management” in this guide for
a general discussion of security levels and Mandatory Access
Controls.

FIFOs are opened in the same way as other file system nodes using the open system call.
Any data written to the FIFO can be read from the same file descriptor in a FIFO manner.
Modules can also be pushed on the FIFO. See open(2) for the restrictions that apply
when opening a FIFO.

A STREAMS-based pipe is created by the pipe system call that returns two file descrip-
tors, fd[0] and fd[1] . Both file descriptors are opened for reading and writing. Data
written to fd[0] becomes data read from fd[1] and vice versa.

Each end of the pipe has knowledge of the other end through internal data structures. Sub-
sequent reads, writes, and closes are aware of whether the other end of the pipe is open or
closed. When one end of the pipe is closed, the internal data structures provide a way to

Signals, Job Control, and Pipes

10-41

access the Stream for the other end so that an M_HANGUP message can be sent to its
Stream head.

NOTE

If the Enhanced Security Utilities are installed, the security level
of a pipe is inherited from the level of the creating process and
cannot be changed. MAC write access is required for either a read
to or a write from a pipe; in other words, a process must be at the
same level as the pipe.

After successful creation of a STREAMS-based pipe, 0 is returned. If pipe is unable to
create and open a STREAMS-based pipe, it will fail with errno set as follows:

ENFILE File table is overflowed.

EMFILE Cannot allocate more file descriptors for the process.

ENOSR Could not allocate resources for both Stream heads.

EINTR Signal was caught while creating the Stream heads.

STREAMS modules can be added to a STREAMS-based pipe with the ioctl I_PUSH.
A module can be pushed onto one or both ends of the pipe (see Figure 10-2). However, a
pipe maintains the concept of a midpoint so that if a module is pushed onto one end of the
pipe, that module cannot be popped from the other end.

Accessing Pipes and FIFOs 10

STREAMS-based pipes and FIFOs can be accessed through the operating system routines
read(2) , write(2) , ioctl(2) , close(2) , putmsg(2) , getmsg(2) , and
poll(2) . If FIFOs, open is also used.

Reading from a Pipe or FIFO 10

The read (or getmsg) system call is used to read from a pipe or FIFO. A user reads data
from a Stream (not from a data buffer as was done prior to Release 4). Data can be read
from either end of a pipe.

On success, the read returns the number of bytes read and placed in the buffer. When the
end of the data is reached, the read returns 0.

PowerMAX OS Programming Guide

10-42

Figure 10-2. Pushing Modules on a STREAMS-based Pipe

When a user process attempts to read from an empty pipe (or FIFO), the following will
happen:

• If one end of the pipe is closed, 0 is returned indicating the end of the file.

• If no process has the FIFO open for writing, read returns 0 to indicate the
end of the file.

• If some process has the FIFO open for writing, or both ends of the pipe are
open, and O_NDELAY is set, read returns 0.

• If some process has the FIFO open for writing, or both ends of the pipe are
open, and O_NONBLOCK is set, read returns -1 and sets errno to
EAGAIN.

• If O_NDELAY and O_NONBLOCK are not set, the read call blocks until
data is written to the pipe, until one end of the pipe is closed, or the FIFO is
no longer open for writing.

Writing to a Pipe or FIFO 10

When a user process calls the write system call, data is sent down the associated Stream.
If the pipe or FIFO is empty (no modules pushed), data written is placed on the read queue

User Process

User Space

Kernel Space

Stream HeadStream Head

161430

Module Module

Signals, Job Control, and Pipes

10-43

of the other Stream for STREAMS-based pipes, and on the read queue of the same Stream
for FIFOs. Because the size of a pipe is the number of unread data bytes, the written data
is reflected in the size of the other end of the pipe.

Zero Length Writes 10

If a user process issues write with 0 as the number of bytes to send down a STREAMS-
based pipe or FIFO, 0 is returned, and by default no message is sent down the Stream.
However, if a user requires that a 0-length message be sent downstream, an ioctl call
may be used to change this default behavior. The flag SNDZERO supports this. If
SNDZERO is set in the Stream head, write requests of l bytes generate a 0-length mes-
sage and send the message down the Stream. If SNDZERO is not set, no message is gener-
ated and 0 is returned to the user.

To toggle the SNDZERO bit, the ioctl I_SWROPT is used. If arg in the ioctl call is set
to SNDZERO and the SNDZERO bit is off, the bit is turned on. If arg is set to 0 and the
SNDZERO bit is on, the bit is turned off.

The ioctl I_GWROPT is used to return the current write settings.

Atomic Writes 10

If multiple processes simultaneously write to the same pipe, data from one process can be
interleaved with data from another process, if modules are pushed on the pipe or the write
is greater than PIPE_BUF. The sequence of data written is not necessarily the sequence
of data read. To ensure that writes of less than PIPE_BUF bytes are not be interleaved
with data written from other processes, any modules pushed on the pipe should have a
maximum packet size of at least PIPE_BUF.

NOTE

PIPE_BUF is an implementation-specific constant that specifies
the maximum number of bytes that are atomic in a write to a pipe.
When writing to a pipe, write requests of PIPE_BUF or less bytes
are not interleaved with data from other processes doing writes on
the same pipe. However, write requests greater than PIPE_BUF
bytes may have data interleaved on arbitrary byte boundaries with
writes by other processes whether the O_NONBLOCK or
O_NDELAY flag is set.

If the module packet size is at least the size of PIPE_BUF, the Stream head packages the
data in such a way that the first message is at least PIPE_BUF bytes. The remaining data
may be packaged into smaller or larger blocks depending on buffer availability. If the first
module on the Stream cannot support a packet of PIPE_BUF, atomic writes on the pipe
cannot be guaranteed.

Closing a Pipe or FIFO 10

The close system call closes a pipe or FIFO and dismantles its associated Streams. On
the last close of one end of a pipe, an M_HANGUP message is sent upstream to the other
end of the pipe. Later read or getmsg calls on that Stream head return the number of
bytes read and 0 when there is no more data. Later write or putmsg requests will fail

PowerMAX OS Programming Guide

10-44

with errno set to EIO. If the pipe has been mounted using fattach , the pipe must be
unmounted before calling close ; otherwise, the Stream will not be dismantled. If the
other end of the pipe is mounted, the last close of the pipe will force it to be unmounted.

Flushing Pipes and FIFOs 10

When the flush request is initiated from a user ioctl or from a flushq routine, the
FLUSHR and/or FLUSHW bits of an M_FLUSH message have to be switched. The point of
switching the bits is the point where the M_FLUSH message is passed from a write queue
to a read queue. This point is also known as the midpoint of the pipe.

The midpoint of a pipe is not always easily detectable, especially if there are numerous
modules pushed on either end of the pipe. In that case, there needs to be a mechanism to
intercept all messages passing through the Stream. If the message is an M_FLUSH message
and it is at the Streams midpoint, the flush bits need to switched.

This bit switching is handled by the pipemod module. pipemod should be pushed onto
a pipe or FIFO where flushing of any kind takes place. The pipemod module can be
pushed on either end of the pipe. The only requirement is that it is pushed onto an end that
previously did not have modules on it. That is, pipemod must be the first module pushed
onto a pipe so that it is at the midpoint of the pipe itself.

The pipemod module handles only M_FLUSH messages. All other messages are passed
on to the next module by the putnext utility routine. If an M_FLUSH message is passed to
o pipemod and the FLUSHR and FLUSHW bits are set, the message is not processed but is
passed to the next module by the putnext routine. If only the FLUSHR bit is set, the
FLUSHR bit is turned off and the FLUSHW bit is set. The message is then passed to the next
module by putnext . Similarly, if the FLUSHW bit is the only bit set in the M_FLUSH
message, the FLUSHW bit is turned off and the FLUSHR bit is turned on. The message is
then passed to the next module on the Stream.

The pipemod module can be pushed on any Stream that desires the bit switching. It must
be pushed onto a pipe or FIFO if any form of flushing must take place.

Named Streams 10

Some applications may want to associate a Stream or STREAMS-based pipe with an
existing node in the file system name space. For example, a server process may create a
pipe, name one end of the pipe, and allow unrelated processes to communicate with it over
that named end.

fattach 10

A STREAMS file descriptor can be named by attaching that file descriptor to a node in the
file system name space. The routine fattach (see also fattach(3C)) is used to name
a STREAMS file descriptor. fattach(3C) . Its format is

int fattach (int fildes, char * fildes)

where fildes is an open file descriptor that refers to either a STREAMS-based pipe or a
STREAMS device driver (or a pseudo device driver), and path is an existing node in the

Signals, Job Control, and Pipes

10-45

file system name space (for example, regular file, directory, character special file, and so
forth).

The path cannot have a Stream already attached to it. It cannot be a mount point for a file
system nor the root of a file system. A user must be an owner of the path with write per-
mission or a user with the appropriate privileges to attach the file descriptor.

If the path is in use when the routine fattach is executed, those processes accessing the
path are not interrupted and any data associated with the path before the call to the
fattach routine will continue to be accessible by those processes.

NOTE

If the Enhanced Security Utilities are installed, fattach(3C),
and Mandatory Access Control the process calling fattach
must be at the same MAC security level as path. This restriction
can be overridden by processes with appropriate privileges. The
device or pipe associated with the STREAM pointed to by fildes
must also be at the same security level as path; there is no privi-
lege to override this restriction.

After a Stream is named, all subsequent operations (for example, open(2)) on the path
operate on the named Stream. Thus, it is possible that a user process has one file descriptor
pointing to the data originally associated with the path and another file descriptor pointing
to a named Stream.

Once the Stream has been named, the stat system call on path shows information for the
Stream. If the named Stream is a pipe, the stat(2) information shows that path is a
pipe. If the Stream is a device driver or a pseudo-device driver, path appears as a device.
The initial modes, permissions, and ownership of the named Stream are taken from the
attributes of the path. The user can issue the system calls chmod and chown to alter the
attributes of the named Stream and not affect the original attributes of the path, nor the
original attributes of the STREAMS file.

The size represented in the stat information reflects the number of unread bytes of data
currently at the Stream head. This size is not necessarily the number of bytes written to the
Stream.

A STREAMS-based file descriptor can be attached to many different paths at the same
time (that is, a Stream can have many names attached to it). The modes, ownership, and
permissions of these paths may vary, but operations on any of these paths access the same
Stream.

Named Streams can have modules pushed on them, be polled, be passed as file descrip-
tors, and be used for any other STREAMS operation.

fdetach 10

A named Stream can be disassociated from a file with the fdetach routine (see also
fdetach(3C)), which has the following format:

int fdetach (char * path)

PowerMAX OS Programming Guide

10-46

where path is the name of the previously named Stream. Only the owner of path or the
user with the appropriate privileges may disassociate the Stream from its name. The
Stream may be disassociated from its name while processes are accessing it. If these pro-
cesses have the named Stream open at the time of the fdetach call, the processes do not
get an error, and continue to access the Stream. However, after the disassociation, later
operations on path access the underlying file rather than the named Stream.

If only one end of the pipe is named, the last close of the other end causes the named end
to be automatically detached. If the named Stream is a device and not a pipe, the last close
does not cause the Stream to be detached.

If there is no named Stream or the user does not have access permissions on path or on the
named Stream, fdetach returns -1 with errno set to EINVAL. Otherwise, fdetach
returns 0 for success.

A Stream remains attached with or without an active server process. If a server aborted,
the only way a named Stream is cleaned up is if the server executed a clean up routine that
explicitly detached and closed down the Stream.

If the named Stream is that of a pipe with only one end attached, clean up occurs automat-
ically. The named end of the pipe is forced to be detached when the other end closes down.
If there are no other references after the pipe is detached, the Stream is deallocated and
cleaned up. Thus, a forced detach of a pipe end occurs when the server is aborted.

If both ends of the pipe are named, the pipe remains attached even after all processes have
exited. In order for the pipe to become detached, a server process has to explicitly invoke a
program that executes the fdetach routine.

To eliminate the need for the server process to invoke the program, the fdetach(1M)
command can be used. This command accepts a pathname that is a path to a named
Stream. When the command is invoked, the Stream is detached from the path. If the name
is the only reference to the Stream, the Stream is also deallocated.

A user invoking the fdetach(1M) command must be an owner of the named Stream or
a user with the appropriate permissions.

isastream 10

The function isastream (see also isastream(3C)) may be used to determine if a
file descriptor is associated with a STREAMS device. Its format is

int isastream (int fildes)

where fildes refers to an open file. isastream returns 1 if fildes represents a STREAMS
file, and 0 if not. On failure, isastream returns -1 with errno set to EBADF.

This function is useful for client processes communicating with a server process over a
named Stream to check whether the file has been overlaid by a Stream before sending any
data over the file.

File Descriptor Passing 10

Named Streams are useful for passing file descriptors between unrelated processes. A user
process can send a file descriptor to another process by invoking the ioctl I_SENDFD
on one end of a named Stream. This sends a message containing a file pointer to the

Signals, Job Control, and Pipes

10-47

Stream head at the other end of the pipe. Another process can retrieve that message con-
taining the file pointer by invoking the ioctl I_RECVFD on the other end of the pipe.

Unique Connections 10

With named pipes, client processes may communicate with a server process by using a
module called connld that enables a client process to gain a unique, nonmultiplexed con-
nection to a server. The connld module can be pushed onto the named end of the pipe. If
connld is pushed on the named end of the pipe and that end is opened by a client, a new
pipe is created. One file descriptor for the new pipe is passed back to a client (named
Stream) as the file descriptor from the open call and the other file descriptor is passed to
the server. The server and the client may now communicate through a new pipe.

Figure 10-3 illustrates a server process that has created a pipe and pushed the connld
module on the other end. The server then invokes the fattach routine to name the other
end /usr/toserv .

Figure 10-3. Server Sets Up a Pipe

When process X (procx) opens /usr/toserv , it gains a unique connection to the
server process that was at one end of the original STREAMS-based pipe. When process Y
(procy) does the same, it also gains a unique connection to the server. Figure 10-4 shows
that the server process has access to three separate STREAMS-based pipes using three file
descriptors.

connld is a STREAMS-based module that has an open , close , and put procedure.
connld is opened when the module is pushed onto the pipe for the first time and when-
ever the named end of the pipe is opened. The connld module distinguishes between
these two opens with the q_ptr field of its read queue. On the first open , this field is set
to 1 and the routine returns without further processing. On later opens , the field is
checked for 1 or 0. If the 1 is present, the connld module creates a pipe and sends the
file descriptor to a client and a server. When the named Stream is opened, the open routine
of connld is called. The connld open fails if

server

161440

connld

/usr/toserv fd0

PowerMAX OS Programming Guide

10-48

• The pipe ends cannot be created.

• A file pointer and file descriptor cannot be allocated.

• The Stream head cannot stream the two pipe ends.

• A failure occurs while sending the file descriptor to the server.

The open is not complete until the server process receives the file descriptor using the
ioctl I_RECVFD.

NOTE

If the Enhanced Security Utilities are installed, a MAC check is
performed to make sure the server has MAC access to the received
file descriptor before the server receives the file descriptor. If this
fails, the file descriptor is put back on the queue so that another
process that passes MAC checks can receive it.

The setting of the O_NDELAY or O_NONBLOCK flag has no affect on the open.

The connld module does not process messages. All messages are passed to the next
object in the Stream. The read and write put routines call putnext to send the message
up or down the Stream.

Figure 10-4. Processes X and Y Open /usr/toserv

serverprocy procx

/usr/toserv fd0 fdx fdy

connld

161450

11
Programming with the Threads Library

Introduction . 11-1
What Is Concurrent Programming?. 11-2
What Are Threads? . 11-3

Threads Illustrated . 11-5
Basic Threads Management. 11-6

Creating a New Thread. 11-7
Creating a PowerMAX OS Thread . 11-7
Creating a POSIX Thread . 11-9

POSIX Thread Creation Attributes . 11-9
Modifying POSIX Thread Creation Attributes 11-10

Creating a Thread From a Thread . 11-12
Terminating a Thread . 11-13

PowerMAX OS Thread Termination. 11-13
POSIX Thread Terminations . 11-13
Termination of the Process . 11-14

PowerMAX OS Process Termination . 11-14
POSIX Process Termination . 11-15

Waiting for Thread Termination . 11-15
PowerMAX OS Thread Joining . 11-15
POSIX Thread Joining . 11-15
Detached Threads . 11-17

Thread-Specific Data . 11-17
PowerMAX OS Thread-Specific Data Functions . 11-18
POSIX Thread-Specific Data Functions . 11-19

Threads and Signals . 11-19
PowerMAX OS Thread Signal Masks . 11-20
POSIX Thread Signal Masks . 11-20
Asynchronously-Generated Signals . 11-21

Asynchronously-Generated Signals — Paradigm 11-21
Synchronously-Generated Signals . 11-22
Thread-to-Thread Signaling . 11-23

PowerMAX OS Thread Signaling . 11-23
POSIX Thread Signaling . 11-23

POSIX Thread Cancellations . 11-24
Cancellation Point Function Considerations . 11-25
Cancellation Cleanup Handlers. 11-25
Issuing a Cancellation Request . 11-26
Testing for Cancellation Requests. 11-26

Cancellation Cleanup Handler Example . 11-27
Disabled Cancellation Example . 11-29

Threads Concurrency Level . 11-31
Lightweight Processes. 11-31
Multiplexed Threads . 11-32
Managing Threads Concurrency . 11-32
Bound Threads . 11-34
The Initial (Primordial) Thread. 11-35

Thread Scheduling . 11-35

PowerMAX OS Programming Guide

Multiplexed Thread Scheduling. 11-35
Priority for PowerMAX OS Threads . 11-36
Priority for POSIX Threads . 11-36

Bound Thread Scheduling . 11-37
Managing Thread Scheduling . 11-39

PowerMAX OS Thread Scheduling . 11-39
POSIX Thread Scheduling . 11-39

Using fork(2). 11-40
A pthread_atfork() Example. 11-41

Synchronizing Threads . 11-45
Locks. 11-47

Mutual Exclusion Locks . 11-47
PowerMAX OS Mutex Lock Interface. 11-47
POSIX Mutex Lock Interface. 11-48
POSIX Priority Ceiling Protocol Mutexes . 11-48
Priority Ceiling Mutex Restrictions . 11-49
Initializing PTHREAD_PRIO_PROTECT Mutexes 11-50
Using PTHREAD_PRIO_PROTECT Mutexes 11-51
Priority Protect Mutex Example. 11-51

Spin Locks . 11-61
POSIX Spin Locks . 11-61

Recursive Mutual Exclusion . 11-62
POSIX Thread Recursive Mutexes. 11-63

Reader-Writer Locks . 11-63
POSIX Thread Reader-Writer Locks. 11-64

Condition Variables. 11-67
POSIX Thread Condition Variables. 11-69

Semaphores. 11-70
POSIX Thread Semaphores. 11-71

Barriers . 11-71
POSIX Thread Barriers . 11-72

Awakening Threads for Synchronization Mechanisms. 11-73
Further Considerations for Synchronization Mechanisms 11-74
Initialization of Synchronization Mechanisms . 11-74

PowerMAX OS Synchronization Mechanisms . 11-74
POSIX Initialization Mechanisms . 11-75
Alternative Initialization . 11-75
POSIX Static Initializations. 11-76

Invalidation of Synchronization Mechanisms. 11-76
Development Environment. 11-77

Compilation Environment. 11-77
Error Returns . 11-77
Thread-Safe Libraries . 11-78
System Call Wrappers . 11-79

Timers. 11-79
POSIX Timers . 11-80
User-Level Interrupts . 11-80

Examples . 11-80
Hello, world . 11-80
Basic Threads Management . 11-81
Dining Philosophers . 11-83
Producer/Consumer . 11-85

11-1

11
Chapter 11Programming with the Threads Library

11
11
11

Introduction 11

This chapter introduces the Threads Library, which provides facilities for concurrent pro-
gramming. Before describing the routines included in the Threads Library, this chapter
first discusses concepts and terminology of concurrent programming in general and of the
Threads Library in particular.

The Threads Library provides two classes of routines: thread management routines and
synchronization routines. The thread management routines are discussed in “Basic
Threads Management.” These include routines to create threads, terminate threads, wait
for threads, and adjust threads' scheduling characteristics. In addition, this section dis-
cusses how signals interact with multithreaded programs, how threads are scheduled, and
the relationship between threads and lightweight processes. The synchronization routines
are discussed in “Synchronizing Threads.” This includes an overview of the various types
of locks, semaphores, barriers, and condition variables, used to synchronize threads that
are sharing data.

In addition to the PowerMAX OS Threads Library routines, the Threads Library also
includes the POSIX threads function calls. These POSIX threads function calls conform to
the IEEE POSIX 1003.1 1996 Edition. Customers that want to write multi-threaded appli-
cations that are POSIX-compliant are highly encouraged to use these POSIX threads rou-
tines. Mixing POSIX threads function calls with non-POSIX threads function calls is
highly discouraged. Generally speaking, the POSIX threads function call names begin
with the ‘pthread_’ prefix, while the non-POSIX (hereafter referred to as the PowerMAX
OS Threads implementation) threads function call names begin with the ‘thr_’ prefix.

Since most of the POSIX threads function calls are very similar in functionality and inter-
face to the PowerMAX OS threads routines, discussion of the POSIX threads function
calls within this chapter are grouped together with the discussions of their PowerMAX OS
threads function call counter-parts.

The section entitled, “Development Environment,” discusses the compilation environ-
ment. Finally, “Examples” gets you started with some basic threads programs.

This chapter is not intended to replicate all the information covered in the system manual
pages for the threads library routines. Refer to the individual pages on line for details such
as error returns. The overview pages, thread(3thread) , pthread(3pthread) ,
and synch(3synch) , list all the available routines.

PowerMAX OS Programming Guide

11-2

What Is Concurrent Programming? 11

Historically, most programs are examples of sequential programming. That is, they consist
of a series of operations that are carried out one at a time. With concurrent programming
the programmer can specify sets of instructions that potentially can be executed in parallel
and still provide correct results.

The advantages of this style of programming are:

• A powerful programming paradigm.

Programs are often written to emulate or respond to events in the real world. In the
real world, concurrency is common and purely sequential events are the exception.
Modeling such behavior is facilitated if the programming environment supports the
notion of concurrency.

• Possible performance improvement.

If multiple processors are available, the program might be executed in less real time
(than sequential execution) if more than one processor is working simultaneously.
This is called true concurrency.

Even on uniprocessor machines, there may be some performance gain from design-
ing greater concurrency into the program. While one activity is blocked, others
might still be executing.

Thus, there is an advantage to concurrent programming even if the resources (pro-
cessors) are not available to provide true concurrency and the application is only
logically concurrent.

Concurrent programming has been available in the UNIX system since its inception via
the process model. In the UNIX system problems are solved not just by running programs
but by running sets of programs (a running program is called a process) — sometimes
pre-existing tools or commands; sometimes specifically written programs — that work
together (often concurrently) to solve the problem. Processes can communicate and syn-
chronize with each other by mechanisms that include:

• pipes (named and unnamed)

• files and file/record locks

• signals

• messages

• shared memory

• semaphores

Programming with the Threads Library

11-3

What Are Threads? 11

The PowerMAX OS provides vastly expanded capabilities for concurrent programming
via the Threads Library. These capabilities include:

• Facilities to define multiple threads of control to be run concurrently within
a single process. Each thread is a set of instructions that is itself sequential
but can be executed concurrently with other threads.

• A new, rich set of software mechanisms for coordinating and synchroniz-
ing the activities of the process's threads.

PowerMAX OS thread functions include:

- mutual exclusion locks (mutexes), both recursive and not, both
blocking and spinning.

- reader-writer locks

- counting semaphores (not the IPC semaphore system calls)

- condition variables

- barriers

POSIX thread functions include:

- blocking, non-recursive mutual exclusion locks (mutexes),

- condition variables

• Features to control the level of concurrency and the scheduling of threads.

• Underlying operating system kernel support that enables the library to pro-
vide true concurrency (on multiprocessor architectures), not just logical
concurrency for threads.

General characteristics of threads programming:

• Each thread starts executing at a programmer-specified address of a func-
tion.

- A given, common function can be the starting point for several
unique threads.

• A thread has many features that are analogous to process features. For
example,

- Each thread is an individually schedulable entity.

- Threads can be preempted; consequently, a thread cannot assume
uninterrupted access to common data unless special synchronizing
arrangements (for example, locking) are made.

- Threads execute logically in parallel, exhibit logical concurrency and
possibly true concurrency.

- A thread will go through many states during its lifetime such as:

PowerMAX OS Programming Guide

11-4

- executing

- ready to run but not currently executing

- waiting for some resource

- terminated thread with unreported exit status

- stopped from running

- Threads can receive signals; consequently, asynchronous program-
ming is still possible. (See“Threads and Signals,” page 11-19.)

- In this implementation, most of the features of the Threads Library
are implemented by user-level library code that is dynamically linked
with the application program at run time. The underlying operating
system kernel is not aware of the threads of a process.

- The operating system kernel supports a scheduling abstraction called
the lightweight process (LWP). An LWP is not the same as a thread.
It is a facility that is used by the Threads Library to provide true con-
currency for threads. (See “Managing Threads Concurrency,” page
11-32.)

Each thread of the process has access to all of the resources of the process including:

- The entire address space.

Any thread can access any memory location in the process’s address space. By
using threads for concurrency, the programmer sacrifices the address space
protection that the operating system maintains (with support of hardware fea-
tures) between processes—for example, one thread might use an incorrect
data pointer to write data at a location that would corrupt another thread’s
data.

On the other hand, thread-to-thread data sharing is easy and efficient. By
default, all data is available to all threads. Thread-to-thread communication
avoids the system call overhead and typical data copying of process-to-pro-
cess communications.

- Resources maintained by the operating system, including:

- Open files, file pointer offsets, file/record locks, and current
directory.

- Access rights (to files, IPC facilities, and so on) and Enhanced
Security privileges.

- Resource limits such as ulimit , umask, and file descriptor
limit.

- Process identity (such as process ID number, parent process ID, pro-
cess group number)

The features unique to each thread include:

- Program context (that is, register values)

- Stack

Programming with the Threads Library

11-5

- Scheduling information (such as scheduling class, current priority)

- Timers

The interval timers the getitimer(3c) and setitimer(3c)
functions provide are unique to each thread. All threads in the pro-
cess share the POSIX per-process timers provided by the
timer_gettime(3c) and timer_settime(3c) functions.

- Signal handling

Actually, some signal handling features are maintained per thread and some
are maintained at the process level. The relationship between the two (and
how to use them) will be discussed later. (See “Threads and Signals,” page
11-19.)

- Thread ID number and thread-private data.

On the whole, there is a much more intimate relationship between the threads of a
process than between processes of an application. This gives the programmer much
greater flexibility and potentially better performance.

- With this intimacy, there is a greater potential for introducing subtle
errors, and that implies a greater demand on the programmer's skill to
produce correct code.

- Moreover, the proper design of a concurrent program requires certain
disciplines that do not often arise in sequential programming. For
example, inappropriate use of the Threads Library facilities for syn-
chronizing threads may result in a program that is incorrect, ineffi-
cient, or both.

The Threads Library functions are best-suited for medium- to coarse-grained concurrency.
Using the Threads Library can be inefficient when the scale of concurrent tasks is a differ-
ent order of magnitude than the scale of a single function:

• Much larger, such as an entire program. Use fork(2) /exec(2) instead.

• Much smaller, when the Threads Library entails too much overhead.

Threads Illustrated 11

Figure 11-1 illustrates the relation of threads to LWPs to processes to processors. The
terms “multiplexed” threads and “bound” threads will be discussed later in this chapter.

PowerMAX OS Programming Guide

11-6

Figure 11-1. Overview of Threads

Basic Threads Management 11

The basic operations on threads are conceptually similar to certain operations on pro-
cesses.

Operation Process Method Thread Method

Creation fork(2)/exec(2) thr_create(3thread)
pthread_create(3pthread)

Termination exit(2) thr_exit(3thread)
pthread_exit(3pthread)

Synchronization wait(2) thr_join(3thread)
pthread_join(3pthread)

PROCESS 1

MULTIPLEXED

THREADS

THREAD / LWP
INTERFACE

LWPs lwp

processor

lwp lwp lwp lwp

LWP / PROCESSOR
INTERFACE

PROCESSORS processor processor

PROCESS 2

MULTIPLEXED BOUND

161460

Programming with the Threads Library

11-7

Creating a New Thread 11

Processes that are linked with the thread library contain just one user thread within the
process at the point when the process begins execution of a new program (on entry to
main() following a successful call to exec(2)).

The thread that executes the main() routine is known as the initial, or primordial, thread.
By default, this thread is created internally by the thread library as a multiplexing thread.
Therefore, all the characteristics that are associated with other multiplexing threads also
apply to this initial thread.

Creating a PowerMAX OS Thread 11

New threads can be created via the thr_create(3thread) routine

int thr_create (
void * stack_address,
size_t stack_size,
void *(* start_routine)(void * arg),
void * arg,
long flags,
thread_t * new_thread

);

which takes the following parameters:

stack_address and stack_size
These define the stack space for the new thread. (This space is used for func-
tion call transactions and for automatic variables in functions called by the
thread.)

The stack of the traditional UNIX process has autogrow support by the operat-
ing system. That is, if the stack grows beyond its initial size the operating sys-
tem automatically increases its size as needed (or until it runs into some other
defined segment). However, threads (other than the initial thread) use stacks
that do not have autogrow support; consequently, the stacks should be allo-
cated to meet the maximum needs of the thread.

As a convenience, the Threads Library will implicitly allocate a reason-
ably-sized stack if stack_address and stack_size are set to NULL and 0, respec-
tively,

• The programmer can specify other sizes if needed. The value
mus t no t be l ess than tha t re tu rned by
thr_minstack(3thread) . Note that stack_address
should point to the base address (lowest) of the allocated space.

• In this implementation, the Threads Library manages the pro-
cess address space so that stack overflows will result in an
addressing error (SIGSEGV). For most applications, this is a
desirable behavior. It is better to discover such errors as soon as
they occur rather than have one stack corrupt another.

PowerMAX OS Programming Guide

11-8

start_routine and arg
These parameters define the starting condition of the newly created thread.
start_routine is the function address where the new thread's execution will
begin and arg is the argument that start_routine will receive.

start_routine takes a single parameter of type (void *) and returns a value
of the same type. These values can be used (with type casts) to pass values (or
aggregations of values in structures) of any type.

NOTE

For portability, do not cast an int to (void *) , and then cast it
back to int . These values should only be used as pointers; other-
wise, information can be lost.

Of course, a thread need not be entirely defined by a single function. That ini-
tial function will typically call other functions (hence the thread's need for a
separate stack).

flags
These flags will be discussed as their respective topics arise later in this chap-
ter. These flags are not mutually exclusive; they can be combined with a bit-
wise inclusive OR. For each flag, the relevant section is shown:

new_thread
The thread ID of the newly created thread is delivered to the creator thread at
this address.

• This value can be used in other functions to influence that
thread.

• The scope of the value is limited to the enclosing process; it is
not relevant to threads in other processes.

• A thread can learn its own thread ID number by the
thr_self(3thread) function.

 Flag Section

THR_SUSPENDED Managing Thread Scheduling

THR_BOUND Managing Concurrency Level

THR_DETACHED Waiting for Thread Termination

THR_INCR_CONC Managing Concurrency Level

THR_DAEMON Terminating a Thread

Programming with the Threads Library

11-9

NOTE

thr_create(3thread) and the other functions in the
Threads Library return 0 on success. On failure, instead of setting
the errno global variable, they return the error code as the func-
tion's value.

Creating a POSIX Thread 11

POSIX thread creation is done via the pthread_create(3pthread) routine:

int pthread_create(
pthread_t * thread,
const pthread_attr_t * attr,
void *(* start_routine)(void *),
void * arg

);

which takes the following parameters:

thread
The thread ID of the newly created thread is returned to the creator thread at
this address.

attr
Pointer to a thread attributes structure. When this structure is not NULL, then
the attributes in this structure are used when creating the new thread. When
NULL, the default values are used to create the new thread.

start_routine and arg
The new thread is created executing start_routine with arg as its sole argu-
ment. If the start_routine returns, the effect shall be as if there was an implicit
call to pthread_exit(3pthread) using the return value of start_routine
as the exit status.

POSIX Thread Creation Attributes 11

The pthread_create(3pthread) function allows the caller to pass a thread
attributes structure, which may be used to specify certain attributes for the thread about to
be created. Once a thread attributes structure has been properly setup, it may be used on
multiple pthread_create(3pthread) function calls, with or without modifications
between each pthread_create(3pthread) call.

The following POSIX thread function call provides an application with the ability to ini-
tialize a threads attribute structure to default values. Additional POSIX thread function
calls provide the ability to modify these default values.

int pthread_attr_init (pthread_attr_t * attr);

This function call initializes the caller's thread attributes object, pointed to by attr. After a
pthread_attr_init(3pthread) function call, the specified thread attributes object
will be initialized to the following default attribute values. Note that these default values
provide the same results as specifying a NULL attr thread attributes pointer would on a
pthread_create(3pthread) call:

PowerMAX OS Programming Guide

11-10

stack address = NULL
stack size = 0

The created thread will have a stack allocated by the threads library, with a default stack
size.

detach state = PTHREAD_CREATE_JOINABLE

The created thread will be in the joinable state. Such a thread is eligible to participate in a
pthread_join(3pthread) operation.

contention scope = PTHREAD_SCOPE_SYSTEM

The created thread will have PTHREAD_SCOPE_SYSTEM scheduling contention scope;
that is, the thread will be bound to a new lightweight process (LWP) and will be scheduled
exclusively to this LWP.

inherit scheduling = PTHREAD_INHERIT_SCHED

The created thread will inherit its scheduling policy and associated attributes from the cre-
ating thread. The scheduling attributes in the thread attributes object will be ignored.

scheduling policy = SCHED_OTHER

SCHED_OTHER is the default scheduling policy for newly created threads. It is defined as
a time-sharing policy.

scheduling parameter = DEFAULTMUXPRI

This is the scheduling priority parameter. The default value is defined in <thread.h> ,
and applies to multiplexed threads only. With the default settings, it is ignored at thread
creation time. For multiplexed threads, priority is inherited from the creator thread. For
bound threads, priority is inherited from the creator thread's LWP.

It should be noted that several PowerMAX OS thread creation attributes do not have
equivalent counterparts in the POSIX thread interface. The attributes that are not available
through pthread_create(3pthread) via the threads attribute structure are:

• Suspending a thread upon creation (THR_SUSPENDED)

• Increasing the level of concurrency (THR_INCR_CONC)

• Creating a daemon thread (THR_DAEMON)

Modifying POSIX Thread Creation Attributes 11

The following POSIX thread functions may be used to modify or obtain the current value
of an attribute within a threads attribute structure:

int pthread_attr_destroy (pthread_attr_t * attr);

This function call will set the specified thread attributes structure to a destroyed
state[PTHREAD_DESTROYED]. After this call, the thread attributes may no longer be
used on pthread_create(3pthread) ca l l s , wi thou t an in te rven ing
pthread_attr_init(3pthread) call to re-initialize the structure.

Programming with the Threads Library

11-11

int pthread_attr_getstackaddr (const pthread_attr_t
* attr, void ** stackaddr);

int pthread_attr_getstacksize (const pthread_attr_t * attr,
size_t * stacksize);

These two routines will return the stack address and stack size attributes that are in the
specified thread attributes structure.

int pthread_attr_setstackaddr (pthread_attr_t * attr,
void * stackaddr);

int pthread_attr_setstacksize (pthread_attr_t * attr,
size_t stacksize);

These two routines will set the current stack address and stack size attributes, within the
specified thread attributes structure.

As is the case for thr_create(3thread) , a default value of NULL for the stack
address and a zero value for the stack size will cause the Thread Library to implicitly cre-
ate a reasonable-sized stack for the new thread.

int pthread_attr_getdetachstate (const pthread_attr_t
* attr, int * detachstate);

int pthread_attr_setdetachstate (pthread_attr_t * attr,
int detachstate);

These two function calls are used to get and set the detached state threads attribute.
Threads created with a detached state of PTHREAD_CREATE_JOINABLE are joinable via
pthread_join(3pthread) , while PTHREAD_CREATE_DETACHED threads may not
be joined.

int pthread_attr_getscope (pthread_attr_t * attr,
int * contentionscope);

int pthread_attr_setscope (pthread_attr_t * attr,
int contentionscope);

These two function calls are used to get and set the contention scope threads attribute. A
thread created with a PTHREAD_SCOPE_SYSTEM contention scope will be created as a
bound thread, while a thread created with a PTHREAD_SCOPE_PROCESS contention
scope will be created as a multiplexing thread.

int pthread_attr_getinheritsched (const pthread_attr_t
* attr, int * inheritsched);

int pthread_attr_setinheritsched (pthread_attr_t * attr,
int inheritsched);

These two function calls are used to get and set the inherit scheduling attribute in the
threads attribute structure. When inheritsched is PTHREAD_INHERIT_SCHED, the
created thread inherits its scheduling policy and scheduling parameters from the creating
thread. When inheritsched is PTHREAD_EXPLICIT_SCHED, the thread is created
with the scheduling policy and scheduling parameters contained in the thread attributes
structure.

int pthread_attr_getschedpolicy (const pthread_attr_t
* attr, int * policy);

int pthread_attr_setschedpolicy (pthread_attr_t * attr,
int policy);

PowerMAX OS Programming Guide

11-12

These two function calls may be used to get and set the scheduling policy attribute in the
thread attributes structure. The policy may be SCHED_OTHER, SCHED_FIFO
(f i r s t - in - f i r s t -ou t) o r SCHED_RR (roun d rob in) . On ly bound
(PTHREAD_SCOPE_SYSTEM) threads may be created with the SCHED_FIFO or
SCHED_RR scheduling policies.

int pthread_attr_getschedparam (const pthread_attr_t * attr,
struct sched_param * param);

int pthread_attr_setschedparam (pthread_attr_t * attr,
const struct sched_param * param);

These two function calls are used to get and set the scheduling parameters (currently only
the priority) of the threads attribute structure. This attribute is ignored unless the inherit
sched u l i ng a t t r i bu te o f t he th reads a t t r i bu te s t ruc tu re i s se t to
PTHREAD_EXPLICIT_SCHED.

I f a bound thread (PTHREAD_SCOPE_SYSTEM) wi th expl ic i t schedul ing
(PTHREAD_EXPLICIT_SCHED) i s be ing c rea ted , then
pthread_attr_setschedparam(3pthread) should always be called to set the
priority of the new thread, since the default priority value in the thread attributes structure
only pertains to multiplexing (PTHREAD_SCOPE_PROCESS) threads.

Creating a Thread From a Thread 11

The creation of one thread by another is conceptually similar but not identical to the cre-
ation of a new process by another process via the fork(2) system call. Some differ-
ences are:

• After a fork(2) system call both the creator (parent) and created (child)
processes resume from the same point of computation — the return from
fork(2) .

In contrast, a new thread starts execution at the start_function specified by
the creator (in some respects similar to the exec(2) system call), while
the creating thread returns from thr_create(3thread) or
pthread_create(3pthread) .

• The operating system maintains a parent/child relationship between creat-
ing and created processes that affects later interactions at process termina-
tion (for example, wait(2) semantics). In contrast, there is no innate
hierarchy among threads. Each is a sibling of the other. Thus, the creator
might wait for the newly created thread to terminate or, just as easily, the
new thread can wait for its creator to terminate. (See discussion of
thr_join(3thread) and pthread_join(3pthread) below.)

Programming with the Threads Library

11-13

Terminating a Thread 11

PowerMAX OS Thread Termination 11

A thread can terminate itself by using the thr_exit(3thread) function:

void thr_exit (void * status);

where:

status is a pointer to the exit value of the terminating thread. The status will be
returned to one of any sibling threads that call thr_join(3thread) .

The call to thr_exit initiates automatic clean-up for thread resources:

• Recovery of stack allocated by the Threads Library (see above).

NOTE

The stack for a non-detached thread will not be recovered until
after another thread calls thr_join to obtain the status for the
thread, which is stored on the stack. Likewise, an explicitly-allo-
cated stack should not be recovered until after another thread calls
thr_join .

• Invocation of the destructor function for each key value that the thread has
used. (See “Thread-Specific Data,” page 11-17.)

The Threads Library arranges for a simple return from the start_routine to be equivalent to
a call to thr_exit(3thread) (except for the initial thread, see “Termination of the
Process,” page 11-14).

The thr_exit(3thread) function allows one thread to return a value called status to
another; however, this mechanism is more general than the exit status returned by a child
process to its parent. The argument to exit(2) is limited to a small range of integers.
The status returned by thr_exit(3thread) is a general pointer that can be used (with
type casts) to direct the receiver to objects of greater complexity such as structures, arrays,
and linked lists. Of course, both the terminating and receiving threads should be coded to
employ the same convention.

POSIX Thread Terminations 11

A POSIX thread can terminate itself by using the pthread_exit(3pthread) func-
tion:

void pthread_exit (void * status);

where:

PowerMAX OS Programming Guide

11-14

status is a pointer to the exit value of the terminating thread. The status will be
re tu rned to one o f any s ib l i ng th reads tha t ca l l
pthread_join(3pthread) .

The call to pthread_exit initiates automatic clean-up for thread resources:

• Recovery of stack allocated by the Threads Library.

NOTE

The stack for a non-detached (PTHREAD_CREATE_JOINABLE)
thread will not be recovered until after another thread calls
pthread_join(3pthread) to obtain the status for the thread.
Likewise, an explicitly allocated stack should not be recovered
until after another thread calls pthread_join .

• Invocation of the destructor function for each key value that the thread has
used. (See “Thread-Specific Data” on page 11-17.)

A s imp le re tu rn f rom the star t_rout ine i s equ iva len t t o a ca l l to
pthread_exit(3pthread) , with the status value being set to the value returned by
the start_routine.

As was the case for thr_exit(3thread) , the status value is not limited to be a small
range of integers, but may be used as a general pointer to objects such as structures or
arrays.

Termination of the Process 11

PowerMAX OS Process Termination 11

The termination of the last non-daemon thread of the process will terminate the process
(thr_exit passes the status to exit(2) when terminating the process).

• The Threads Library categorizes a thread as either a daemon thread or a
non-daemon thread. In practice, daemon threads are used to provide ser-
vices for other threads. Although they can terminate themselves or be ter-
minated, there is no need to do so. By being distinguished as daemons, they
will be implicitly terminated when there are no other threads (non-dae-
mons) that might need their services.

A thread is categorized as a daemon thread at the time of its creation by use
of the THR_DAEMON flag to thr_create(3thread) .

• There are some special semantics for the initial thread. If the initial thread
executes a return statement or if it implicitly returns from main , the pro-
cess will be terminated. However, a thr_exit(3thread) by the initial
thread will terminate only the initial thread. The process continues to exe-
cute as long as there are other non-daemon threads.

• Finally, any thread can terminate the process by calling the exit(2) sys-
tem call.

Programming with the Threads Library

11-15

POSIX Process Termination 11

The terminat ion of the last thread in the process terminates the process
(pthread_exit(3pthread) passes a zero status value to exit(2) when terminat-
ing the process.)

• There are some special semantics for the initial (primordial) thread. If the
initial thread executes a return statement or if it implicitly returns from
main() , the process will be terminated with the return value from
main() being used as the value that is passed to exit(2) . However, a
pthread_exit(3pthread) call by the initial thread will only termi-
nate the initial thread. The process continues to execute as long as there are
other threads in the process.

• Any thread can terminate the process by calling the exit(2) system ser-
vice directly.

Waiting for Thread Termination 11

PowerMAX OS Thread Joining 11

One thread can suspend itself to wait for the termination of another thread with the
thr_join(3thread) function

int thr_join (
thread_t wait_for,
thread_t * departed,
void ** status

);

where the parameters have the following meaning:

wait_for The ID of the thread of interest, that is, the thread whose termination the caller
will await. A (thread_t)0 indicates interest in the next thread to terminate
(or one that has already terminated, but has not been joined), whatever its ID
happens to be.

departed thr_join(3thread) will deposit the thread ID of the terminated thread
at this address.

status thr_join(3thread) will deposit at this address the value given as an
argument by the terminated thread when it called thr_exit(3thread) .
That value should be the address at which the terminated thread left its return
value (exit status).

POSIX Thread Joining 11

One thread can suspend itself to wait for the termination of another thread with the
pthread_join(3thread) function:

PowerMAX OS Programming Guide

11-16

int pthread_join (
pthread_t thread,
void ** value_ptr

);

where the parameters have the following meaning:

thread The ID of the thread of interest. This parameter must contain a valid thread
ID; it may not be NULL.

status pthread_join(3pthread) will store, at this location, the value passed
on the pthread_exit(3pthread) call that was made by the terminated
thread.

Note that unlike thr_join(3thread) , the pthread_join(3pthread) interface
only provides the ability to wait for one specific thread to terminate.

If the thread of interest has already terminated, thr_join(3thread) or
pthread_join(3pthread) will return immediately; otherwise, the calling thread
will block.

If there is more than one thread waiting for the termination of some particular thread:

• The thread of interest will be joined to only one of the waiting threads. The
choice is not predictable.

• All other waiting threads will return with the ESRCH error code.

If a thread receives a catchable signal while blocked in either thr_join(3thread) or
pthread_join(3pthread) :

• The signal is handled.

• The thr_join(3thread) function is transparently restarted.

NOTE

This is analogous to the autorestart option for blocking system
calls. (See description of the SA_RESTART flag to the sigac-
tion(2) system call.)

The resources of the terminated thread (for example, a stack allocated by the Threads
Library) will not be fully recovered by the Threads Library until some other thread has
called thr_join(3thread) or pthread_join(3pthread) and received the
terminated thread's exit status.

NOTE

Beware of lingering zombies!

Programming with the Threads Library

11-17

Detached Threads 11

If the programmer knows at thread creation time that no other thread will attempt to join
with the new thread via thr_join(3thread) or pthread_join(3pthread) ,
then the new thread should be created as a detached thread. When a detached thread termi-
nates, its resources may be recovered immediately. In fact, it is not valid to use
thr_join(3thread) or pthread_join(3pthread) on a detached thread.

By default, new threads are not created as detached threads.

To c rea te a de tached th read , se t the THR_DETACHED f lag on a
thr_create(3thread) call, or set the PTHREAD_CREATE_DETACHED attribute in
the th reads a t t r ibu te s t ruc tu re tha t i s passed on a subsequen t
pthread_create(3pthread) call.

In addition to making a thread detached at thread creation time, POSIX threads may also
be dynamica l l y de tached a f te r they have a l ready been c rea ted .The
pthread_detach(3pthread) function call may be used for this purpose.

There are several reasons why a method for dynamically detaching a thread may be useful:

1. In order to detach the initial/main() thread.

2. pthread_join(3pthread) call may be interrupted due to a thread
cancellation (see the section on POSIX thread cancellations). This canceled
thread could have a pthread_detach(3pthread) call in its cancella-
tion routine which would detach the target thread, since the thread being
terminated would no longer be able to join with the other target thread.

NOTE

If a thread is blocked in pthread_join(3thread) waiting
for the specified target thread to exit, and that target thread
dynamically becomes detached, then pthread_join() will
unblock the calling thread and return an error of ESRCH.

Thread-Specific Data 11

Historically, programs have used the static or extern storage classes to save data that
must be preserved between function calls. This practice is no longer valid when many
threads in the same process may run a given function concurrently and reference one
static or extern variable by name. Values will not be preserved across function calls
if one thread modifies a value left by another.

NOTE

In contrast, since each thread gets a unique stack, variables of the
auto storage class are implicitly unique.

PowerMAX OS Programming Guide

11-18

The facility for thread-specific data provides a solution to this problem.

• Data can be stored and retrieved by a key value.

• The same key value can be used to store data by many threads.

• The key is a virtual variable name that will resolve to the correct data for
the calling thread when using the following access functions:

• PowerMAX OS:

thr_setspecific(3thread)
thr_getspecific(3thread)

• POSIX:

pthread_setspecific(3pthread)
pthread_getspecific(3pthread)

NOTE

Analogously, the file name /dev/tty can be used by any
process to access its particular controlling terminal.

• The data is specific to each thread, but as with any other part of the process
address space, the data is not protected from access or change by other
threads.

PowerMAX OS Thread-Specific Data Functions 11

The access functions have the following syntax:

int thr_setspecific (thread_key_t key, void * data);
void * thr_getspecific (thread_key_t key);

A key value must be created by the thr_keycreate(3thread) function

int thr_keycreate (
thread_key_t * key,
void (* destructor)(void * data)

);

where:

key specifies the address where the newly created key value will be deposited

destructor specifies a function that will be called on the exit of any thread that has used
the key for data storage. This function should recover any space that has been
used to store thread-specific data. When called, this function receives one
argument, the data address that the thread gave as the second argument to
thr_setspecific(3thread) .

Programming with the Threads Library

11-19

POSIX Thread-Specific Data Functions 11

The POSIX thread-specific data access functions have the following syntax:

int pthread_setspecific (pthread_key_t key,
const void * value);

void * pthread_getspecific (pthread_key_t key);

These functions may be used to set a thread-specific value with a given key, or to get the
thread-specific value that is associated with the given key. Initially, the corresponding
value for a given thread and key is NULL until that thread sets value to a non-NULL value.

A key value must first be created with the pthread_create(3pthread) function:

int pthread_key_create (pthread_key_t * key,
void (* destructor)(void *));

where:

key specifies the location to which the calling thread returns the newly created key
value.

destructor specifies a function that will be called during
pthread_exit(3pthread) processing for any thread that has a
non-NULL value associated with key. The intent is that this destructor func-
tion should recover any space allocated for storing thread-specific data. When
called, this function receives one argument, the value parameter that was
passed on a previous pthread_setspecific(3pthread) call.

NOTE

The key can be created (or later removed) by threads other than
those that use the key for data storage. The using threads need
only have access to the key value by function argument, global
variable, or other means.

If a particular key value is needed for only a particular phase of a program (perhaps initial-
i za t ion) , i t can be dea l loca ted by t h r_keyde le te (3 th read) or
pthread_keydelete(3pthread) .

For efficiency, it is best to minimize the number of keys used in an application.

Threads and Signals 11

When a process receives a signal of some type (for example, SIGINT type) the process
can either take the default response, ignore the signal (the kernel does not actually deliver
the signal), or catch the signal. When the signal is caught, the system will call a handler
function when the signal is delivered. This response is called the disposition for the signal
type. In the PowerMAX OS, that disposition is common to all of the threads of a process.

If the disposition for a signal type is:

PowerMAX OS Programming Guide

11-20

termination such signals will terminate all threads, and the process will terminate.

ignore such signals will be ignored by all threads.

catch any thread responding to such signals will enter the same handler
function.

Moreover, if any thread changes the disposition (by calling sigaction(2) , for exam-
ple), the new disposition is in effect for all threads.

NOTE

System signal types SIGLWP and SIGWAITING are used inter-
nally by the Threads Library. The Threads Library prevents modi-
fication of the disposition or masking of those signal types.

On the other hand, signal masks (the set of signal types being blocked) are maintained per
thread.

PowerMAX OS Thread Signal Masks 11

A thread inherits the signal mask of its creating thread. A thread can alter its mask with the
thr_sigsetmask(3thread) routine.

int thr_sigsetmask (
int how,
const sigset_t * set,
 sigset_t * oset

);

where:

set Defines a set of signal types.

how Specifies how set will be used. how can be one of the following:

SIG_SETMASK Discard the old mask; make set the new mask

SIG_BLOCK Add the types in set to the existing mask

SIG_UNBLOCK Remove the types in set from the existing mask

oset Can be used to save the prior value of the thread's signal mask.

POSIX Thread Signal Masks 11

Like PowerMAX OS threads, POSIX threads also inherit the signal mask of their creating
thread. A thread may alter its signal mask with the pthread_sigmask(3pthread)
routine:

int pthread_sigmask (

Programming with the Threads Library

11-21

int how,
const sigset_t *set,
sigset_t *oset

);

where the parameters have the exac t same func t io na l i t y as the
thr_sigsetmask(3thread) routine.

NOTE

The syntax o f th r_s igse tmask(3 th read) and
pthread_sigmask(3pthread) is nearly identical to that of
the sigprocmask(2) system call.

Signals can be categorized as being asynchronously generated or synchronously gener-
ated. A synchronously-generated signal is one that arises from the action of a particular
thread or process. For example, alarm signals, signals resulting from an illegal memory
reference, and signals resulting from an illegal arithmetic operation are all synchro-
nously-generated signals. An asynchronously-generated signal is one that is sent from out-
side the thread (or process); its delivery is unpredictable. Interruptions and termination
signals are usually asynchronously generated.

Asynchronously-Generated Signals 11

When a signal is delivered to a process, if it is being caught, it will be handled by one, and
only one, of the threads meeting either of the following conditions:

• A thread blocked in a sigwait(2) system call whose argument does
include the type of the caught signal.

• A thread whose signal mask does not include the type of the caught signal.

Additional considerations:

• A thread blocked in sigwait(2) is given preference over a thread not
blocking the signal type.

• If more than one thread meets these requirements (perhaps two threads are
calling sigwait(2)), then one of them will be chosen by the Threads
Library. This choice is not predictable by application programs.

• If no thread is eligible, the signal will remain pending at the process level
until some thread becomes eligible.

Asynchronously-Generated Signals — Paradigm 11

One useful paradigm for managing signals originating outside of the process is to have all
threads include the caught signals in their signal mask and specifically create one daemon
thread to handle the signals. If that thread uses the sigwait(2) system call, the signals
can be handled in a synchronous style.

PowerMAX OS Programming Guide

11-22

thr_sigsetmask(mask);
while((signo = sigwait(mask)) > 0){

handle signal type signo
}

Note that it is not only valid to wait for masked signals with sigwait , but it is important
to mask out the signal types of interest before calling sigwait . Otherwise, the arrival of
one such signal between calls to sigwait will be handled according to the current pro-
cess disposition. By default, that will terminate the entire process. sigwait effectively
unmasks any masked signals while blocked, then masks them again before returning.

Even if a handler function is specified, it will not be executed if a signal is delivered to a
thread blocked in sigwait ; sigwait bypasses any handler.

Since all threads are masking out the same set of signals, one can predict that the signals in
that set will be handled by the single thread using sigwait . This paradigm is advanta-
geous because:

• It reduces the complexity of the program.

• Only one thread need allocate stack space for signal handling. If there are
several eligible threads, each must have sufficient stack for the handler.

NOTE

Alternate signal handling stacks (see sigaltstack(2)) are
not supported by the Threads Library.

• Signals are handled in a synchronous style, which is usually easier to write
and understand than an asynchronous style.

NOTE

The thread that handles the signals should be a bound thread.
Bound threads are introduced in a later section, under “Threads
Concurrency Level.”

Synchronously-Generated Signals 11

A caught, non-masked signal that is caused by a particular thread will be handled by that
thread. Examples include:

• Signals arising from an invalid memory reference or illegal arithmetic
operation. This allows the offending thread to correct its error.

• Alarm or timer signals requested by the thread.

The Threads Library arranges for such signals to always be delivered to the request-
ing thread even if that (multiplexed) thread is no longer held by the same LWP as at
the time of the request.

Programming with the Threads Library

11-23

NOTE

Multiplexed threads are formally introduced in the section titled
“Managing Threads Concurrency.”

Each thread will use the common handler function.

Thread-to-Thread Signaling 11

PowerMAX OS Thread Signaling 11

One thread can signal another thread with the thr_kill(3thread) function:

int thr_kill (thread_t tid,int signo);

where:

tid The thread ID of the target thread.

signo The type of signal to send.

POSIX Thread Signaling 11

One POSIX thread can signal another thread with the pthread_kill(3pthread)
function:

int pthread_kill (
pthread_t tid,
int sig

};

where:

tid The POSIX thread ID of the target thread

sig The signal number of the signal to be delivered to the target thread.

A thread catching a signal cannot distinguish between a signal originating from another
thread of the process or from outside of the process.

The process disposition for the sent signal type (signo) is also applied for thread-to-thread
signaling. As usual, the response will be to ignore the signal, to call the handler function,
or to take the default response (usually, process termination).

This facility allows one thread to influence (perhaps “reset” or terminate) another thread
asynchronously.

PowerMAX OS Programming Guide

11-24

POSIX Thread Cancellations 11

Programs traditionally have used the signal mechanism combined with either
longjmp() or polling to cancel/abort operations. Programmers may often have trouble
using these facilities to solve their problems efficiently in a single-threaded process. With
the introduction of threads, these solutions have become even more difficult to use.

Therefore, a POSIX thread cancellation mechanism has been provided for allowing a
thread to terminate the execution of any other thread within the process in a controlled
manner. The target thread (the one being canceled) is allowed to hold cancellation requests
pending and to specify application-specific cleanup processing routines which will be exe-
cuted when and if a thread cancellation occurs.

Each thread maintains its own cancelability state. The cancellation state has two attributes:

State This attribute may be either enabled or disabled. When the state is disabled,
then cance l la t io n reques ts a re he ld pen d ing . The
pthread_setcancelstate(3pthread) function may be used to set
the cancellation state to either PTHREAD_CANCEL_ENABLE (the default) or
PTHREAD_CANCEL_DISABLE.

Type This attribute may be either deferred, or asynchronous. The
pthread_setcanceltype(3pthread) function may be used to set the
cancellation type to either PTHREAD_CANCEL_DEFERRED (the default) or
PTHREAD_CANCEL_ASYNCHRONOUS.

When a thread's cancellation type is asynchronous, then the thread may be canceled at any
time. Use of asynchronous cancelability while holding resources (or calling a library rou-
tine that acquires internal locks, etc.) may result in resource loss or indeterminate state of
data structures, such as a mutex lock left in a locked state.

I t shou ld be ment ion ed tha t th ree func t i ons a re async -cance l sa fe :
pthread_cancel(3pthread) , pthread_setcancelstate(3pthread) and
pthread_setcanceltype(3pthread) . Asynchronous cancellations will not be
processed while a thread is executing within these functions. However, asynchronous can-
cellation processing can and will be handled immediately upon return from these func-
tions, when appropriate.

When a thread's cancellation type is deferred, then cancellation requests are held pending
until a cancellation point is reached. Cancellation points occur within a specific set of
functions, which are listed below:

 aio_suspend() pause() sigwait()

 close() pthread_cond_timedwait() sigwaitinfo()

 creat() pthread_cond_wait() sleep()

 fsync() pthread_join() system()

 mq_receive() pthread_testcancel() tcdrain()

 mq_send() read() wait()

 msync() sem_wait() waitpid()

Programming with the Threads Library

11-25

 nanosleep() sigsuspend() write()

 open() sigtimedwait() fcntl()

The cancellation point occurs in fcntl(2) only when the cmd argument is F_SETLKW.

Cancellation Point Function Considerations 11

The main intent of defining cancellation points within certain function calls is to allow a
thread to be canceled while it is blocked indefinitely. To that end, when the calling thread's
cancellation state and type are enabled and deferred, then these routines will honor any
pending (or new) cancellation request if the thread is about to block indefinitely, or if the
thread is already in an indefinitely blocked state. If the thread does not reach a point within
the function where it is to be indefinitely blocked, then the routine will not necessarily
check fo r and /o r honor any p end ing cance l la t io n reques t (excep t fo r
pthread_testcancel(3pthread) , which will always honor any pending cancella-
tion request).

Note that some of the above functions are invoked from within other system library func-
tions. In these situations, the cancellation point processing in the above functions will still
occur. For example, a commonly used function that internally calls a cancellation point
routine is printf(3S) , which internally calls write(2) .

NOTE

Due to the fact that the C library will use an internal lock to serial-
ize access to printf() operations, is it recommended that a
ca l l i ng th read se t i t s cance l l a t i on s ta te to
PTHREAD_CANCEL_DISABLE if the thread may be sent a can-
cellation request while it is within the printf() routine.

A side effect of acting upon a cancellation request while in a condition variable wait, such
as pthread_cond_wait() , is that the associated mutex is reacquired before the
thread cancellation processing is initiated. Therefore, applications where cancellation
requests are issued to threads that make condition wait function calls with cancellations
enabled should usually use pthread_cleanup_push() (see the next section) to
specify a cleanup handler that will unlock the associated mutex lock.

Cancellation Cleanup Handlers 11

When a thread is canceled, the cancellation code will call all cancellation handlers that are
currently defined (pushed) for that thread. These cancellation handlers are maintained on a
per thread basis. Note that the thread library will disable cancellations for the thread
before calling its cancellation handlers.

The cleanup handler push and pop function interfaces are shown below:

 void pthread_cleanup_push(void (*routine)(void *), void *arg);

 void pthread_cleanup_pop(int execute);

PowerMAX OS Programming Guide

11-26

The pthread_cleanup_push(3pthread) function pushes the specified
thread-specific cancellation cleanup handler 'routine' onto the cancellation cleanup stack
of the calling thread, while the pthread_cleanup_pop(3pthread) function
removes the 'routine' at the top of the cancellation cleanup stack of the calling thread and
optionally invokes it if the 'execute' argument is nonzero.

When a cancellation request is acted upon, the currently pushed cancellation routines are
invoked one by one in LIFO (last-in-first-out) order. The thread invokes the cancellation
handler with cancellation disabled until the last cancellation cleanup handler returns. If the
last cancellation cleanup handler returns, thread execution is terminated and a status of
PTHREAD_CANCELED is made available to any threads joining with the canceled thread
via pthread_join(3pthread) .

Note that any currently pushed cancellation handlers are also invoked when a thread vol-
untarily calls pthread_exit(3pthread) .

These functions MUST appear as statement pairs within the same lexical scope; that is,
pthread_cleanup_push() may be thought to expand to a token list whose first
token is “{“ with pthread_cleanup_pop() expanding to a token list whose last
token is the corresponding “}”. Failure to properly pair these two functions together
within the same lexical scope will result in compilation errors.

Issuing a Cancellation Request 11

The pthread_cancel(3pthread) function may be used to issue a cancellation
request to another thread within the same process:

int pthread_cancel(pthread_t thread);

where the 'thread' argument specifies the target thread to be canceled.

As previously mentioned, the cancellation state and type of the target thread determines
when the cancellation takes effect. Note that the cancellation processing in the target
thread occurs asynchronously with respect to the calling thread returning from
pthread_cancel(3pthread) .

No te tha t i t i s a l so va l i d to spec i f y the ca l l e r ' s th read id on the
pthread_cancel(3pthread) call; this will cause a cancellation request to be
issued for the calling thread.

Testing for Cancellation Requests 11

When a thread's cancellation type is deferred, and its cancellation state is enabled, then the
thread may call pthread_testcancel(3pthread) to check for a cancellation
request. In this case, if a cancellation request is pending for the calling thread, then cancel-
lation processing for the calling thread will begin immediately, and the calling thread will
not return from this function.

This function call is provided as a way to allow a thread to be canceled in a controlled
fashion, even when that thread is not blocking inside of one of the other cancellation point
routines that were previously listed.

Programming with the Threads Library

11-27

If a cancellation request for the calling thread is not pending, or if the calling thread's can-
cellation state is currently disabled, then this function will have no effect.

Cancellation Cleanup Handler Example 11

The following example shows how one thread is canceled by another thread while it is
blocked inside a pthread_cond_wait() call. The canceled thread pushes a cancella-
tion handler which unlocks the mutex that is associated with the condition variable.

Most of the error checking that would normally be done on function calls has been left out
in order to make the code easier to read.

#include <pthread.h>

/* Set when target thread has called pthread_cond_wait() */
int is_waiting;

/* Set when target thread has called its cancellation routine */
int was_canceled;

/* routine definitions */
void new_thread(void *);
void cond_cleanup(void *);

/* for blocking and synchronizations. */
pthread_cond_t pcond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;

main()
{

int status;
pthread_attr_t attr;
pthread_t pthr_id;
void *exit_status;

/* Setup attributes for thread creation, and create the thread
* that will be canceled. (A bound thread will be created
* in this example.)
*/
(void) pthread_attr_init(&attr);
(void) pthread_create(&pthr_id, &attr,

(void *(*) (void *))new_thread, (void *)NULL);

/* Wait for other thread to get blocked in pthread_cond_wait().
*/
while (1) {

(void) pthread_mutex_lock(&pmutex);
if (is_waiting) {

(void) pthread_mutex_unlock(&pmutex);
break;

}
(void) pthread_mutex_unlock(&pmutex);
while (sleep(1)) ;

PowerMAX OS Programming Guide

11-28

}

/* Send a cancellation to the target thread, and
* wait for it to be canceled.
*/
(void) pthread_cancel(pthr_id);
while (!was_canceled)

sleep(1);

/* Should be able to join with terminated thread.
* The exit status value should be PTHREAD_CANCELED.
*/
(void) pthread_join(pthr_id, &exit_status);
if (exit_status != PTHREAD_CANCELED) {

printf("ERROR: invalid exit status 0x%x\n",
exit_status);

exit(1);
}

/* Check that the mutex is unlocked.
 */
status = pthread_mutex_trylock(&pmutex);
if (status) {

if (status == EBUSY)
printf("ERROR: mutex still locked.\n");

else
printf("ERROR:pthread_mutex_trylock() returned %d\n",

status);
exit(1);

}
(void) pthread_mutex_unlock(&pmutex);

* All done.
*/
pthread_exit((void *)0);

}

/*
 * Cleanup routine for the pthread_cond_wait() call.
 */
void
cond_cleanup(void *arg)
{

int status;

/* When canceled, should be called with the mutex locked.
*/
status = pthread_mutex_trylock(&pmutex);
if (status != EBUSY) {

printf("ERROR: mutex not locked?\n");
exit(1);

}

Programming with the Threads Library

11-29

/* Unlock the mutex before exiting.
*/
(void) pthread_mutex_unlock(&pmutex);

was_canceled++;
}

/*
 * pthread_create() thread starts here.
 */
void
new_thread(void *arg)
{

int status;

(void) pthread_mutex_lock(&pmutex);

is_waiting++;/* main thread waits for this count */

/* Push a cleanup routine and block on the condition variable.
*/
pthread_cleanup_push(cond_cleanup, (void *)NULL);

(void) pthread_cond_wait(&pcond, &pmutex);

/* The main thread should have canceled us, so we shouldn't
* be here. Note that the pthread_cleanup_pop() is necessary
* for proper compilation.
*/
printf("ERROR: Shouldn't be here. Not canceled.\n");
exit(1);

pthread_cleanup_pop(0);
}

Disabled Cancellation Example 11

This example shows how a thread may temporarily disable cancellations until it is ready to
allow a cancellation to possibly occur. In this example, the thread being canceled disables
cancellations until the mutex associated with the condition variable is unlocked. This
example also shows how pthread_testcancel() may be used to cancel the calling
thread.

Most of the error checking that would normally be done on function calls has been left out
in order to make the code easier to read.

#include <pthread.h>

/* Set when target thread has called pthread_cond_wait() */
int is_waiting;

void new_thread(void *);

PowerMAX OS Programming Guide

11-30

/* for blocking and synchronizations. */
pthread_cond_t pcond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;

main()
{

int status;
pthread_attr_t attr;
pthread_t pthr_id;
void *exit_status;

/* Setup attributes for thread creation, and create the thread
* that will be canceled. (A bound thread will be created
* in this example.)
*/
(void) pthread_attr_init(&attr);
(void) pthread_create(&pthr_id, &attr,

(void *(*) (void *))new_thread, (void *)NULL);

/* Wait for other thread to get blocked in pthread_cond_wait().
*/
while (1) {

(void) pthread_mutex_lock(&pmutex);
if (is_waiting) {

(void) pthread_mutex_unlock(&pmutex);
break;

}
(void) pthread_mutex_unlock(&pmutex);
while (sleep(1)) ;

}

/* Send a cancellation to the target thread.
* It will not be immediately processed, since the target
* thread has cancellations disabled.
*/
(void) pthread_cancel(pthr_id);

/* Now wakeup the target thread.
*/
(void) pthread_cond_signal(&pcond);

/* Should be able to join with terminated thread.
* The exit status value should be PTHREAD_CANCELED.
*/
(void) pthread_join(pthr_id, &exit_status);
if (exit_status != PTHREAD_CANCELED) {

printf("ERROR: invalid exit status 0x%x\n", exit_status);
exit(1);

}

/* All done.
*/

Programming with the Threads Library

11-31

pthread_exit((void *)0);
}

/*
 * Target thread starts execution here.
 */
void
new_thread(void *arg)
{

int status, oldstate;

/* Disable cancellations.
*/
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);

/* Call the condition wait.
*/
(void) pthread_mutex_lock(&pmutex);
is_waiting++;

/* main thread waits for this count */
(void) pthread_cond_wait(&pcond, &pmutex);

/* Let go of the mutex while we still have cancellations disabled.
*/
(void) pthread_mutex_unlock(&pmutex);

/* Enable cancellations.
 */
(void) pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);

/* We will now process our pending cancellation request.
*/
(void) pthread_testcancel();

printf("ERROR: Was not canceled.\n");
exit(1);

}

Threads Concurrency Level 11

Lightweight Processes 11

The operating system kernel is not aware of the multithreading of any process using the
Threads Library. The kernel supports an entity known as a lightweight process (LWP).

• There may be many LWPs associated with a single process.

PowerMAX OS Programming Guide

11-32

• Each LWP of a process shares the process address space with its sibling
LWPs.

• Each LWP has its own scheduling context.

• On multiprocessor machines, several LWPs of a process might be running
on different processors simultaneously (true concurrency).

• Each LWP has access to all of the resources of the process such as open file
descriptors, access rights and privileges, and resource limits.

Many of these are features of threads as well. This is no coincidence. Threads have many
of these features because a thread only executes once it has been picked up by an LWP.
However, a process typically has more threads than LWPs.

Conceptually, an LWP is a dearer resource than a thread. The Threads Library will typi-
cally maintain a pool of LWPs that are shared by the set of runnable threads in a process.

NOTE

Analogously, the operating system arranges for the sharing of a
relatively small number of (hardware) processors among a much
greater number of processes or LWPs.

Multiplexed Threads 11

The Threads Library multiplexes threads among the pool of available LWPs for the pro-
cess. For threads with real-time scheduling deadlines, the additional overhead of the
threads library-level scheduler can cause unacceptable delays in thread scheduling.
Threads with real-time scheduling deadlines should instead be bound threads (see “Bound
Threads,” page 11-34).

• An LWP can pick up and run only one thread at a time.

• After a time the LWP will put down (stop running) its current thread and
pick up another.

• Some time later the thread will be picked up again; not necessarily by the
previous LWP.

• The algorithm by which a thread is associated with an LWP and later pre-
empted is covered in the section on Multiplexed Thread Scheduling below.

• On multiprocessor systems, a larger number of LWPs implies a greater
chance that different threads of the process will be executed simultaneously
(that is, true, not logical concurrency).

Managing Threads Concurrency 11

The size of the pool of available LWPs (the actual concurrency level) will vary over time.
The Threads Library manages the size of this pool automatically and dynamically accord-
ing to rules outlined below. The programmer can influence the algorithm by changing the

Programming with the Threads Library

11-33

requested concurrency level (with thr_setconcurrency , see below); at times, the
actual concurrency level may be either greater than or less than the requested level.

The rules governing implicit changes to the actual concurrency level are:

• Initially, for each program, there is a single LWP available for execution of
threads.

• The size of the pool is incremented when a thread is created with the
THR_INCR_CONC flag to thr_create(3thread) . This may increase
the actual level of concurrency above the current requested level of concur-
rency.

NOTE

The newly created thread is not necessarily picked up by that
newly created LWP. In fact, the new LWP is created asynchro-
nously by a housekeeping thread that the Threads Library creates
for each process.

• If all of the LWPs of a process are blocked in system calls, then the process
cannot execute any threads. However, the kernel sends a SIGWAITING
type signal to the process when this condition occurs. Additional LWPs are
created if there are additional runnable threads.

• The number of LWPs should not exceed the number of threads — at least
not for long — that would be wasteful. An LWP that remains unassigned
to a thread for a certain time (5 minutes) is said to have aged and will be
terminated (_lwp_exit(2)). Aging will terminate LWPs until the size
of the pool equals the lesser of

- requested level of concurrency

- number of active (running or runnable) threads.

Thus, if there are few threads, the actual number of LWPs may be less than the
requested level.

A thread can use the thr_setconcurrency(3thread) function to change the
requested concurrency level mentioned in the algorithm above. The syntax is:

int thr_setconcurrency (
int new_level

);

This request is serviced asynchronously.

The ru les govern ing the exp l i c i t ch anges in ac tua l concur rency by
thr_setconcurrency(3thread) are:

• When the level is increased, the number of LWPs is increased asynchro-
nously by a housekeeping thread.

One implication is that certain errors (for example, EAGAIN — system

PowerMAX OS Programming Guide

11-34

limit on user (for LWPs) exceeded) may not be reported because they occur
after thr_setconcurrency returns.

• A request to lower the level of concurrency does not have an immediate
effect: no LWP is terminated, nor is any thread preempted. Instead, the
actual level of concurrency becomes lower by the LWP aging described
above.

• Setting new_level to 0 requests the default level of concurrency.

• The programmer can retrieve the current value of the requested level of
concurrency with the thr_getconcurrency(3thread) function.

• There is no mechanism to return the current, actual level of concurrency.

NOTE

The POSIX specification does not provide any POSIX Thread
interface or function for direct control of thread concurrency lev-
els.

Bound Threads 11

A thread may become runnable at a time when all LWPs of the process are already execut-
ing threads. That thread will be made runnable and enqueued until an LWP becomes avail-
able. This implies some latency between thread awakening and execution. There may be
circumstances where this behavior is not acceptable. (Perhaps the thread must respond to a
signal in a timely manner.)

If a thread is created with either the THR_BOUND flag to thr_create(3thread) or
the PTHREAD_SCOPE_SYSTEM a t t r ibu te (the de fau l t) i s de f i ned on a
pthread_create(3pthread) call, then:

• Both a thread and a new LWP are created.

• The new LWP picks up the new thread.

• That association remains in effect for the life of the thread.

• Such threads are called bound threads.

Bound threads are not counted in the algorithm that manages the level of concurrency.

NOTE

Bound threads are not guaranteed to gain processor time when-
ever they are ready to execute; the LWP on which a bound thread
runs must be scheduled to run on a processor by the system sched-
uler. See “Bound Thread Scheduling,” on page 11-37. Neverthe-
less, bound threads have a performance advantage over multi-
plexed threads.

Programming with the Threads Library

11-35

The Initial (Primordial) Thread 11

Note

Information provided in this section is only applicable 4.3P10 and
beyond, and for 5.1SR3 and beyond.

As was previously mentioned, the thread that executes the main() routine is known as the
initial, or primordial, thread. By default, this thread is created internally by the thread
library as a multiplexing thread. Therefore, all the characteristics that are associated with
other multiplexing threads also apply to this initial thread.

In some situations, applications may wish to have their initial thread be created as a bound
thread. An application may indicate to the thread library initialization code that it desires
a bound thread as the primordial thread, by placing the following global variable declara-
tion and static initialization somewhere in their application code:

int __primordial_bound = 1;

The above line will cause the thread library to setup the primoridal thread as a bound
thread instead of a multiplexing thread. Note that the __primordial_bound global variable
MUST be statically initialized to a value of 1.

Thread Scheduling 11

Thread scheduling governs the competition among threads for various system resources.

• Multiplexed threads vie for a limited number of LWPs.

- Bound threads are spared this competition; each maintains its associ-
ation with its LWP for its lifetime.

• LWPs are, in turn, assigned by the kernel to a limited number of (hardware)
processors for execution.

• To coordinate their activities, threads often make use of various synchroni-
zation mechanisms. At times there may be more than one thread waiting
for a given event (for example, the unlocking of a semaphore). The Threads
Library must decide which thread will receive the resource.

This last category of thread scheduling will be covered in the section enti-
tled “Synchronizing Threads.”

Multiplexed Thread Scheduling 11

Multiplexed threads are subjected to two levels of scheduling:

• Threads Library Scheduling: The Threads Library scheduler assigns multi-
plexed threads to LWPs for execution and, at times, preempts them so the
LWP can pick up another thread.

PowerMAX OS Programming Guide

11-36

• System Scheduling: The kernel assigns LWPs to (hardware) processors and
later preempts them.

The Threads Library maintains a priority level for each multiplexed thread. This value
plays a role in the selection of a thread for assignment to an LWP.

Priority for PowerMAX OS Threads 11

The priority value of a PowerMAX OS multiplexed thread can be modified with the
thr_setprio(3thread) function.

int thr_setprio (thread_t tid,int prio);

Priority for POSIX Threads 11

The priority of an existing POSIX multiplexed thread can be modified with the
pthread_setschedparam(3pthread) function:

int pthread_setschedparam (pthread_t thread, int policy, const
struct sched_param * param);

For multiplexed threads, the policy parameter should always be set to SCHED_OTHER,
and the priority value should be stored into the policy_params[0] location of the
sched_param param structure.

It is also possible to specify the priority of a POSIX multiplexed thread at thread creation
time. See “POSIX Thread Creation Attributes” on page 11-9.

Runnable, multiplexed threads are scheduled for execution in a round-robin manner within
each priority level.

• A thread with a higher priority value will be scheduled to run before a
thread with a lower value.

• The valid range of priorities is 0 to MAXINT-1 ; however, the Threads
Library is optimized for a maximum priority of 126 (or less).

The Threads Library must select a thread for assignment to an LWP on the following occa-
sions:

• When an LWP becomes available, a runnable multiplexed thread will be
assigned to it.

For example, an LWP becomes available when a thread exits, or when a multiplexed
thread blocks on a thread synchronization mechanism (discussed later), or when the
concurrency level is increased.

• When a multiplexed thread becomes runnable (perhaps a mutex has been
released by one thread and acquired by another), it can preempt a multi-
plexed thread of a lower priority.

• When an executing thread calls thr_yield(3thread) , it deliberately
surrenders its LWP to a higher priority thread (if any). (POSIX threads
should use the POSIX-compliant sched_yield(3C) instead.)

Threads Library scheduling and system scheduling are independent of each other.

Programming with the Threads Library

11-37

• The Threads Library can assign a thread to an LWP but cannot say when
that LWP will actually execute.

• The kernel is unaware that the Threads Library is using LWPs to imple-
ment (user-level) threads. The kernel maintains its own scheduling context
(for example, current priority, “nice value,” priority class) that is separate
from similar features that the Threads Library maintains for threads.

The interaction of these two levels of scheduling can produce some interesting effects:

• LWPs of the time-sharing priority class will have their kernel priority
adjusted dynamically according to processor usage and other factors.

NOTE

See the priocntl(2) manual page for further details of the
time-sharing priority class. Note that using the priocntl(2)
system call directly from a multiplexed thread should be avoided
because it may interfere with thread scheduling by the Threads
Library.

Consequently, a thread picked up by an LWP may run with a kernel priority
determined by the activity of the prior thread on that LWP.

• It is possible for a thread of high priority from the point of view of the
Threads Library to be picked up by an LWP of relatively low priority to the
kernel.

Additional points to consider:

• A thread that is blocked in a system call will remain with its LWP until that
system call returns. The Threads Library is unaware of such suspensions.

• Each LWP in the pool used for multiplexed LWPs is of the same kernel
scheduling class (that is, time-sharing or fixed priority). That class is deter-
mined by the scheduling class (that is, time-sharing or fixed priority) of the
LWP running the initial thread of the program.

• One part of associating a thread with an LWP is to make the signal mask of
the LWP agree with that of the thread. On each thread context switch there
is a check for agreement. If the mask of the new thread differs from that of
the prior thread, there is a system call to update the mask of the LWP. One
implication of this is that using threads with a wide variety of signal masks
can add to the cost of switching threads.

Bound Thread Scheduling 11

The semantics of bound thread scheduling differs considerably from that for multiplexed
threads.

• Bound threads are permanently attached to their LWPs; consequently, they
are exempt from that level of scheduling by the Threads Library.

PowerMAX OS Programming Guide

11-38

• A bound thread executes whenever the kernel schedules its underlying
LWP.

• The Threads Library supports the concept of “scheduling policy” as well as
“priority level” for bound threads. When the programmer specifies these
characteristics, the Threads Library applies them to the LWP holding the
thread.

These charac te r i s t i cs can be mod i f i ed w i th t he
thr_setscheduler(3thread) function. POSIX threads should use
pthread_setschedparam(3pthread) or initially create the thread
with the desired scheduling priority and scheduling policy. See “POSIX
Thread Creation Attributes” on page 11-9.

• The available scheduling policies for bound threads are:

SCHED_TS or SCHED_OTHER
The two values are synonymous. The bound thread is run by an
LWP of the kernel time-sharing scheduling class.

NOTE

Technically, multiplexed threads are also categorized as having
the SCHED_TS policy even though they are not necessarily run by
LWPs in the kernel time sharing class. The Threads Library algo-
rithm for scheduling multiplexed threads (round robin) bears a
closer resemblance to the kernel's fixed priority class than the ker-
nel's time sharing class.

SCHED_FIFO or SCHED_RR
The thread will be run on an LWP of the fixed-priority schedul-
ing class. SCHED_FIFO means that the LWP will have an infi-
nite time quantum (not preempted) whereas SCHED_RR
(round-robin) uses a fixed priority with a finite time slice.

The SCHED_FIFO and SCHED_RR policies can be used only
by bound threads.

NOTE

Appropriate privilege is required to set the policy of a thread to
SCHED_FIFO or SCHED_RR. See the system manual page for
sched_setscheduler(3C).

A bound thread with real-time constraints can further improve response time by using
processor_bind(2) to bind its LWP to a processor. It can use _lwp_self(2) to
find the ID of the LWP to which it is bound, and pass that as an argument to
processor_bind .

Programming with the Threads Library

11-39

NOTE

Multiplexed threads should not use processor_bind .

Managing Thread Scheduling 11

The initial thread of a newly executing program (a process returning from exec(2)) is
always a multiplexed thread running under the SCHED_TS policy. The scheduling charac-
teristics of new threads are generally derived from the creator thread. (There are some
interesting variations when a bound thread creates a multiplexed thread and vice versa. See
the thr_create(3thread) or pthread_create(3pthread) manual page for
details.)

PowerMAX OS Thread Scheduling 11

To create a thread with different scheduling characteristics the programmer can:

1. Create a new thread with thr_create(3thread) using the
THR_SUSPENDED flag. This will create a new thread but not allow it to
execute.

2. Use the returned thread ID to change the characteristics of the new thread
with either of the following functions: thr_setprio(3thread) or
thr_setscheduler(3thread) .

3. Use the thr_continue(3thread) function to make the new thread
runnable.

A l te rna t ive l y, a th read can use th r_se t schedu le r (3 th read) o r
thr_setprio(3thread) to modify its own scheduling class or priority.

POSIX Thread Scheduling 11

To create a POSIX thread with different scheduling characteristics, the programmer can:

1. Initialize a POSIX thread attributes structure with
pthread_attr_init(3pthread) .

2. Set the desired scheduling policy attribute in the thread attributes structure
with pthread_attr_setschedpolicy(3pthread) .

3. Set the desired scheduling priority attribute in the thread attributes structure
with pthread_attr_setschedparam(3pthread) .

4. Set the inherit scheduling thread attribute in the thread attributes structure
to PTHREAD_EXPLICIT_SCHED wi th
pthread_attr_setinheritsched(3pthread) .

5. Create the thread with pthread_create(3pthread) , passing the
threads attributes structure as the attr parameter.

Alternatively, a POSIX thread can use pthread_setschedparam(3pthread) to
modify its own or an existing scheduling priority and policy.

PowerMAX OS Programming Guide

11-40

Using fork(2) 11

The functionality provided by fork(2) differs between POSIX thread and PowerMAX
OS thread applications.

For PowerMAX OS applications, two variations of fork(2) , forkall(2) and
fork1(2) , are provided. forkall(2) (which is a synonym for fork(2)) duplicates
in the new process the set of threads and underlying LWPs that exist in the calling process.
fork1(2) , on the other hand, creates a new process with a single thread and a single
LWP. fork1(2) should be used by multithreaded processes that will have the new pro-
cess call exec(2) . Because exec(2) will terminate all but one thread (and LWP),
there is no need to duplicate all threads with forkall(2) .

Contrastingly, when a POSIX thread calls fork(2) , only the calling thread (and under-
lying LWP) of the parent process is duplicated in the new child process. When the child
process returns from the fork(2) call, the returning thread will be the only user thread
that exists within the new child process. Note that both the forkall(2) and
fork1(2) services are not POSIX-compliant services and therefore, a POSIX-compliant
application should not usually make use of these services.

When a POSIX thread calls fork(2) , the new process will contain a replica of the call-
ing thread and its entire address space, possibly including the state of mutexes, condition
variables, and other resources.

The POSIX function, pthread_atfork(3pthread) , may be used to establish fork
handlers whose intended purpose is to maintain data structure consistency across
fork(2) calls:

int pthread_atfork(
void (*prepare(void), void (*parent)(void), void (*child)(void));

One or more pthread_atfork(3pthread) function calls may be made by a process
before a subsequent fork(2) call is made by one or more of the threads in the parent pro-
cess. The pthread_atfork(3pthread) calls establish fork handler routines that are
to be called before and after the fork(2) actually occurs.

When the fork(2) call is made, the prepare fork handler(s) are called by the calling
thread in the parent process, before the fork(2) processing commences.

Upon successful return from the fork(2) system service call, the parent fork handler(s)
are called by the thread that made the fork(2) call within the parent process. The child
fork handler(s) are called by the child process's thread upon return from the fork(2)
system service call.

If no handler is desired at one or more of these three points, then the corresponding fork
handler addresses may be set to NULL.

No te th a t once any a t fo rk hand le r s have been es tab l i shed by a
pthread_atfork(3pthread) function call, all subsequent fork(2) calls will
make use of these atfork handler routines for as long as that process exists. Also note that
a child process will inherit the set of atfork handlers from the parent process, if any existed
at the time that the child process was created via fork(2) .

The ordering of pthread_atfork(3pthread) calls is significant. The parent and
child fork handlers are called in the same order in which they were established by calls to

Programming with the Threads Library

11-41

pthread_atfork(3pthread) . For example, the first parent and/or child handler
called after the fork(2) processing completes will be the handler that was previously
established on the first pthread_atfork(3pthread) call.

However, the prepare fork handlers are called in the opposite order; that is, the last handler
established on the last pthread_atfork call will be the first prepare handler called.

For example, an application can supply a prepare routine that acquires the necessary
mutexes, a parent routine that releases those same mutexes, and a child routine that re ini-
tializes those same mutexes, thus ensuring that both the parent and child processes get
consistent snapshots of the mutex states. Note that the child process will only contain one
thread, and therefore any private (PTHREAD_PROCESS_PRIVATE) mutexes may be
safely re initialized. Furthermore, re initializing rather than unlocking the mutex is the rec-
ommended procedure in th is si tuat ion, since the cal l ing chi ld thread of a
pthread_mutex_unlock(3pthread) call would not be the owner of the mutex;
the owner would be the parent process's thread that originally called fork(2) .

A pthread_atfork() Example 11

A sample program is show below. This program shows how the state of two mutexes,
mutex1 and mutex2, can be properly maintained across a fork(2) call. For clarity, the
error returns are not coded, and additional threads in the parent process that could also be
using mutex1 and mutex2 are not shown.

Note that if a locking hierarchy between mutex1 and mutex2 did exist, then this example is
coded such that mutex2 would usually be acquired BEFORE mutex1, and mutex1 would
be unlocked before unlocking mutex2.

The example below could have been coded with just one set of prepare, parent and child
atfork handler routines that would operate on both mutexes, but two sets of handler rou-
tines were used in order to demonstrate the calling order of these handlers.

#include <pthread.h>

/* Internal routines.
 */
void child_routine(void);
void prepare1(void), prepare2(void);
void parent1(void), parent2(void);
void child1(void), child2(void);

/* Example mutexes that are acquired and released or re-initialized
 * around the fork(2) call.
 */
pthread_mutex_t mutex1, mutex2;

/* Counters that verify/demonstrate the calling order of the
 * prepare, parent and child atfork handlers.
 */
int prepare;
int parent;
int child;

main()

PowerMAX OS Programming Guide

11-42

{
int status;
pid_t pid;

/* Initialize the mutexes to default attributes.
* These mutexes are PTHREAD_PROCESS_PRIVATE.
*/
(void) pthread_mutex_init(&mutex1, (pthread_mutexattr_t *)NULL);
(void) pthread_mutex_init(&mutex2, (pthread_mutexattr_t *)NULL);

/* Push two sets of atfork handlers.
*/
(void) pthread_atfork(prepare1, parent1, child1);
(void) pthread_atfork(prepare2, parent2, child2);

/* Fork off a new process.
*/
pid = fork();
if (pid == -1) {

printf("fork(2) errno %d\n", errno);
exit(1);

}

/* Upon return from the fork(2) call for both the child and
* parent processes, neither of the two mutexes should be locked.
*/
status = pthread_mutex_trylock(&mutex1);
if (status) {

printf("ERROR: trylock 1 %d\n", status);
exit(1);

}

status = pthread_mutex_trylock(&mutex2);
if (status) {

printf("ERROR: trylock 2 %d\n", status);
exit(1);

}

/* The fact that the two prepare handlers were called should be
* visible to both the parent and child processes.
*/
if (prepare != 2) {

printf("error on prepare %d\n", prepare);
exit(1);

}

if (pid) {
/* The parent process.
* Both parent handlers should have been called.
*/
if (parent != 2) {

printf("error on parent %d\n", parent);
exit(1);

}

Programming with the Threads Library

11-43

/* The child handlers should not have been called within
* this parent process.
*/
if (child) {

printf("error on child routine execution %d\n", child);
exit(1);

}
}
else {

/* Both child handlers should have been called in this
* child process.
*/
if (child != 2) {

printf("error on child %d\n", child);
exit(1);

}

/* The parent handlers should not have been called within
* this child process.
*/
if (parent) {

printf("error on parent routine execution %d\n",
parent);

exit(1);
}

}

/* All done.
*/
pthread_exit((void *)0);

}

void
prepare1()
{

/* mutex1 is locked AFTER mutex2 has been locked.
*/
(void) pthread_mutex_lock(&mutex1);

if (pthread_mutex_trylock(&mutex2) != EBUSY) {
printf("prepare1() mutex2 not locked.\n");
exit(1);

}

/* The prepare2() routine should have already been called,
* and no child or parent handlers should have been called.
*/
if ((prepare != 1) || child || parent) {

printf("prepare1() wrong order\n");
exit(1);

}
prepare++;

}

PowerMAX OS Programming Guide

11-44

void
prepare2()
{

/* mutex2 is the 1st mutex to be locked.
*/
(void) pthread_mutex_lock(&mutex2);

/* prepare2() is the 1st prepare handler to be called.
*/
if (prepare || child || parent) {

printf("prepare2() wrong order\n");
exit(1);

}
prepare++;

}

void
parent1()
{

/* Unlock mutex1 first, since it was locked last.
*/
(void) pthread_mutex_unlock(&mutex1);

/* This should be the 1st parent handler called, and both
* prepare handlers should already have been called.
*/
if (parent || (prepare != 2)) {

printf("parent1() wrong order\n");
exit(1);

}
parent++;

}

void
parent2()
{

/* mutex2 is unlocked last, since it was the first mutex to be locked.
*/
(void) pthread_mutex_unlock(&mutex2);

/* This should be the 2nd parent handler to be called.
*/
if (parent != 1) {

printf("parent2() wrong order\n");
exit(1);

}
parent++;

}

Programming with the Threads Library

11-45

void
child1()
{

/* Re-initialize the mutex mutex1.
*/
(void) pthread_mutex_init(&mutex1, (pthread_mutexattr_t *)NULL);

/* This should be the 1st child handler to be called.
* Both prepare handlers should have already been called.
*/
if (child || (prepare != 2)) {

printf("child1() wrong order\n");
exit(1);

}
child++;

}

void
child2()
{

/* Re-initialize the mutex mutex2.
*/
(void) pthread_mutex_init(&mutex2, (pthread_mutexattr_t *)NULL);

/* child1() should already have been called.
*/
if (child != 1) {

printf("child2() wrong order\n");
exit(1);

}
child++;

}

Synchronizing Threads 11

In general, each thread must take special care in using resources that might be concur-
rently used by another thread.

NOTE

The definition of resource will vary with applications. Typically,
resources are manifested as some organization of data relevant to
the application in process memory (perhaps a linked list or other
data structure) or in files.

Unless their actions are synchronized, threads may encounter logically inconsistent linked
lists or partially updated structures in common process memory. Synchronization may also

PowerMAX OS Programming Guide

11-46

be needed for concurrent actions on commonly held external resources such as file
descriptors and message queues.

• There is no automatic, implicit mechanism to protect each thread from the
actions of other threads. The correctness of a multithreaded program must
be incorporated into the design by having each thread cooperate with the
others.

• The Threads Library provides a suite of functions with several categories
of synchronization semantics. The categories are:

- Locks

- Semaphores

- Barriers

- Condition Variables

Most of these categories contain several variants.

• The programmer has the responsibility to:

- use the correct number and type of synchronization mechanism(s)

- use them where needed

- enforce synchronization on every thread using the common resource

- avoid deadlock and starvation conditions

• Other than programmer discipline, there is nothing to stop any thread from
using common resources without obeying the synchronization protocol
being used by the others.

• The general procedure for using these mechanisms is:

1. Allocate a synchronization data structure for the resource to be pro-
tected (for example, to use a mutual exclusion lock, allocate a struc-
ture of type mutex_t). The address of that structure becomes an
argument for all subsequent operations on this instance of the mecha-
nism.

2. Initialize the mechanism.

3. Use the mechanism.

4. Deallocate the mechanism when it is no longer needed — perhaps
when the resource being protected is deallocated.

• Source code that uses the PowerMAX OS synchronization routines in the
Threads Library should include the following line

#include <synch.h>

• Source code that uses the POSIX thread synchronization routines
(3pthread) in the Threads Library should include the following line:

#include <pthread.h>

Programming with the Threads Library

11-47

Locks 11

The semantics of a lock allow the resource to be used by only one thread at a time. The
Threads Library supports several types of locks:

• mutual exclusion locks (“mutexes”)

• spin locks

• recursive mutual exclusion locks (rmutexes)

• reader-writer locks (these allow non-exclusive access for readers)

A thread that successfully locks a resource is said to hold the lock or to have acquired the
lock. Unlocking is also known as releasing the lock.

NOTE

The POSIX Thread interface only supports the mutual exclusion
locks. It does not support the other 3 types of locks listed above.
However, the programmer may construct the other 3 types of
locks by using the available POSIX Thread locking functions. See
the following sections for details on this topic.

Mutual Exclusion Locks 11

A mutual exclusion lock, or mutex, allows only one thread at any time to access the
resource being protected.

PowerMAX OS Mutex Lock Interface 11

The lock is acquired by the mutex_lock(3synch) function.

int mutex_lock (mutex_t * mutex);

If the lock is already held by some other thread, the calling thread will block in
mutex_lock(3synch) .

A non-b lock ing a t tempt t o acqu i re a mutex lock can be done w i th the
mutex_trylock(3synch) function:

int mutex_trylock (mutex_t * mutex);

If the lock can be acquired, then this function will return 0. Otherwise, when the lock is
already locked by another thread, the caller will NOT block, but instead, EBUSY will be
immediately returned.

When the thread holding the lock calls mutex_unlock(3synch) , some waiting
thread (if any) will be made runnable.

int mutex_unlock (mutex_t * mutex);

PowerMAX OS Programming Guide

11-48

The Threads Library does not enforce any notion of ownership of a lock by a thread. The
thread unlocking a mutex need not be the same thread that locked the mutex.

POSIX Mutex Lock Interface 11

The mutex lock can be acquired with the pthread_mutex_lock(3pthread) func-
tion.

int pthread_mutex_lock (pthread_mutex_t * mutex);

If the lock is already held by some other thread, the calling thread will block in
pthread_mutex_lock(3pthread) .

A non-b lock ing a t tempt to acqu i re a mutex lock can be done w i th the
pthread_mutex_trylock(3pthread) function:

int pthread_mutex_trylock (pthread_mutex_t * mutex);

If the lock can be acquired, then this function will return 0. Otherwise, when the lock is
already locked by another thread, the caller will NOT block, but instead, EBUSY will be
immediately returned.

When the thread holding the lock calls pthread_mutex_unlock(3pthread) ,
some waiting thread (if any) will be made runnable.

int pthread_mutex_unlock (pthread_mutex_t * mutex);

It is recommended that the owner of the thread holding the lock be the one to call
pthread_mutex_unlock(3pthread) to unlock the mutex, although this restric-
tion is not currently enforced.

POSIX Priority Ceiling Protocol Mutexes 11

POSIX mutual exclusion locks also contain a protocol attribute which is associated with
each pthread_mutex_t mutex . By changing the default value of this protocol
attribute, the resulting POSIX mutex can greatly reduce, or eliminate potential priority
inversions that are not otherwise prevented by traditional mutex usage.

In a priority-driven environment, direct use of traditional primitives like mutexes and con-
dition variables can lead to unbounded priority inversion, where a higher priority thread
can be blocked by a lower priority thread, or set of threads, for an unbounded duration of
time. As a result, it becomes impossible to guarantee thread deadlines. Priority inversion
can be bounded and minimized by the use of priority inheritance protocols. This allows
thread deadlines to be guaranteed even in the presence of synchronization requirements.

The IEEE POSIX 1003.1 1996 Edition specifies a Priority Ceiling Protocol Emulation
protocol, governed by the _POSIX_THREAD_PRIO_PROTECT option in <unistd.h>,
where each mutex may have a priority ceiling, usually setup to be equal to the priority of
the highest priority thread that will lock the mutex. When a thread is executing inside
critical sections, its priority is unconditionally increased to the highest of the priority ceil-
ings of all the mutexes currently owned (locked) by the thread. The Priority Ceiling Proto-
col is supported for POSIX threads in the thread l ibrary and therefore, the
_POSIX_THREAD_PRIO_PROTECT option is set to a value of '1' in <unistd.h >.

Programming with the Threads Library

11-49

NOTE

It should be mentioned that the IEEE POSIX 1003.1 1996 Edition
also defines the Basic Priority Inheritance protocol, governed by
the _POSIX_THREAD_PRIO_INHERIT option in <unistd.h>.
Under this protocol, a thread executes at the priority of the highest
priority thread that is currently blocked on the mutex. This proto-
col is not currently supported in the thread library and the corre-
sponding _POSIX_THREAD_PRIO_INHERIT option is set to a
value of '0' in <unistd.h>.

Priority Ceiling Mutex Restrictions 11

Applications wishing to use the Priority Ceiling Protocol for a given mutex may do so by
setting the protocol mutex attribute to a value of PTHREAD_PRIO_PROTECT, using the
pthread_mutexattr_setprotocol(3pthread) function. However, program-
mers should be aware of the fact that there are certain restrictions regarding the use of this
protocol.

The PTHREAD_PRIO_PROTECT mutex attribute will only be enforced for bound
(PTHREAD_SCOPE_SYSTEM) threads in the SCHED_RR or SCHED_FIFO scheduling
classes. Threads in the SCHED_OTHER (SCHED_TS) scheduling class will not have their
priority altered when locking a PTHREAD_PRIO_PROTECT mutex. This applies to all
multiplexed threads and bound threads that are in the SCHED_OTHER scheduling class.

For efficiency and performance reasons, the thread library makes use of internally cached
information about a thread's scheduling class and priority. Internally saving off this infor-
mation allows decisions about raising or lowering a thread's priority to be made without
making a system service call at every mutex lock or unlock point in order to determine the
current thread's priority and scheduling class. However, as a result, processes should not
modify the scheduling class or priority of threads in other processes that are using
PTHREAD_PRIO_PROTECT mutexes. Otherwise, the thread library will not be using
accurate priority scheduling information for determining the correct action to take when a
thread locks or unlocks a PTHREAD_PRIO_PROTECT mutex.

Note that it is permissible for a thread to change the scheduling class and/or priority of
itself or any other thread within the process, using pthread_setschedparam
(3pthread) ; the thread library will have knowledge of these changes and it will update
its internal information accordingly. However, if the thread being modified currently owns
a PTHREAD_PRIO_PROTECT mutex (holds the lock), then unspecified results will occur
when that thread unlocks the mutex.

Other methods for modifying the scheduling class and/or priority within or without a
thread's own process, such as priocntl(2) , priocntllist(2) and prio-
cntlset(2) , should be avoided when PTHREAD_PRIO_PROTECT mutexes are being
used.

Also note that the sched_setscheduler(3C) and sched_setparam(3C) func-
tions are generally not recommended for multi threaded processes. See the
sched_setscheduler(3C) or sched_setparam(3C) man pages for more infor-
mation on this subject.

PowerMAX OS Programming Guide

11-50

Initializing PTHREAD_PRIO_PROTECT Mutexes 11

By default, a mutex is initialized to have a protocol attribute of PTHREAD_PRIO_NONE.
The PTHREAD_PRIO_NONE p ro toco l a t t r i bu te i s se t dynamica l l y on a
pthread_mutex_init(3pthread) function call, or statically with the
PTHREAD_MUTEX_INITIALIZER macro (see the
pth read_mutex_ in i t (3p th read) man page fo r more de ta i l s) . A
PTHREAD_PRIO_NONE mutex behaves in the traditional fashion; no adjustment of prior-
ity will occur when a thread locks or unlocks the mutex.

A Pr io r i t y Ce i l i ng Pro toco l mu tex may be c rea ted by us ing the
pthread_mutexattr_setprotocol(3pthread) function, and specifying the
PTHREAD_PRIO_PROTECT value as the protocol parameter.

The ceiling priority value associated with a PTHREAD_PRIO_PROTECT mutex should be
specified with the pthread_mutexattr_setprioceiling(3pthread) func-
tion call, where the priority value must be within the maximum range of priorities defined
by SCHED_FIFO/SCHED_RR (the range is 0 to 59, since these classes correspond to the
kernel's fixed priority (FP) scheduling class). In order to avoid priority inversion, the prior-
ity ceiling of the mutex should be set to a priority that is higher than or equal to the highest
priority of all the threads that may lock that mutex. Also note when more than one
PTHREAD_PRIO_PROTECT mutex may be held at the same time by one thread, the asso-
ciated priority ceiling attribute of each mutex must be at equal or ascending priority values
as each additional mutex is acquired; it is not valid for a thread to lock a mutex with a
lower priority ceiling attribute than the current thread's priority value.

As an example, the sequence for initializing a Priority Ceiling Protocol mutex, with a pri-
ority ceiling value of 50, is shown below:

pthread_mutexattr_t mattr;
pthread_mutex_t mutex;

pthread_mutexattr_init(&mattr);
pthread_mutexattr_setprotocol(&mattr, PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&mattr, 50);
pthread_mutex_init(&mutex, &mattr);

I n add i t i on to the p th read_mutexa t t r_se tp ro toco l () and
pthread_mutexattr_setprioceiling() functions, there are corresponding
pth read_mutexa t t r_ge tp ro toco l (3p th read) and
pthread_mutexattr_getprioceiling(3pthread) functions that may be
used to obtain the protocol and priority ceiling values, respectively, within a specified
mutex attributes structure.

It is also possible to dynamically change the priority ceiling value associated with an
a l ready in i t i a l i zed PTHREAD_PRIO_PROTECT mu tex by us ing the
pthread_mutex_setprioceiling(3pthread) function call. In this case, the
mutex is first acquired by the calling thread (the calling thread will block, if the mutex is
already locked), the priority ceiling attribute is modified, and then the mutex is
released/unlocked. I t should be noted that the locking of the mutex on the
pth read_mutex_se tp r i oce i l i ng () ca l l w i l l NOT fo l l ow the
PTHREAD_PRIO_PROTECT protocol; the priority of the calling thread will not be raised
on this function call.

Programming with the Threads Library

11-51

Using PTHREAD_PRIO_PROTECT Mutexes 11

When a bound thread in the SCHED_RR or SCHED_FIFO scheduling classes locks a
PTHREAD_PRIO_PROTECT mutex with the pthread_mutex_lock(3pthread) or
pthread_mutex_trylock(3pthread) functions, the scheduling priority of the
thread will be raised to the prioceiling mutex attribute that is associated with that mutex. If
the locking thread's priority is already equal to the priority ceiling value, then no priority
modification will be performed.

When a mutex has a protocol attribute of PTHREAD_PRIO_PROTECT, and the calling
thread's pr ior i ty is a l ready higher than the mutex's pr iocei l ing at t r ibute,
pthread_mutex_lock() or pthread_mutex_trylock() will return EINVAL,
and the mutex will not be locked.

The pr ior i t y o f the thread w i l l remain ra ised un t i l tha t thread makes a
pth read_mutex_un lock (3p th read) ca l l . I f add i t iona l
PTHREAD_PRIO_PROTECT mutexes are acquired, then the thread's priority may be
raised to higher prior i ty levels unt i l each of those addit ional mutexes are
released/unlocked.

In the unl ikely event that raising the pr iori ty of a thread that is locking a
PTHREAD_PRIO_PROTECT mutex fails on a pthread_mutex_lock() or
pthread_mutex_trylock() call, the these functions will return EPERM, with the
mutex not locked. Since SCHED_RR and SCHED_FIFO threads should normally be able
to raise their own priority, this error most likely would indicate that some external manip-
ulation of the thread's or the process's scheduling parameters has been done by another
process.

Note tha t when a th read ca l l s pthread_cond_wai t (3pth read) o r
pthread_cond_timedwait(3pthread) and the associated mutex is a
PTHREAD_PRIO_PROTECT mutex, the calling thread's priority will be lowered back to
its previous value while the mutex is unlocked and the thread is blocked on the condition
variable. When the thread becomes unblocked and re-acquires the mutex, its priority will
be raised back to the prioceiling priority mutex attribute value of the mutex before return-
ing back from the conditional wait function call.

For PTHREAD_PRIO_NONE mutexes, it is highly recommended that the calling thread of
pthread_mutex_unlock() be the thread that currently owns the mutex. For perfor-
mance reasons, this recommendation is not currently enforced by the thread library.

However, for PTHREAD_PRIO_PROTECT mutexes where the priority of the owning
thread has been raised while the mutex was locked, the calling thread of the corresponding
pthread_mutex_unlock() call MUST be the thread that currently owns the mutex;
otherwise, an error of EPERM will be returned, and the mutex will remain locked.

Priority Protect Mutex Example 11

The fo l l ow ing cod ing examp le uses fou r mutexes , th ree o f wh ich a re
PTHREAD_PRIO_PROTECT mutexes, and one mutex that is a PTHREAD_PRIO_NONE
mutex. Four threads are created, and each thread acquires all four mutexes, in ascending
priority order, and then releases the mutexes in reverse order.

Each of the four threads are different: one is in the SCHED_FIFO class, one is in the
SCHED_RR class, one is a bound thread in the SCHED_OTHER class, and one thread is a
MUX thread in the SCHED_OTHER class.

PowerMAX OS Programming Guide

11-52

The threads in the SCHED_OTHER class do not have their priority modified when locking
these mutexes, but the SCHED_RR and SCHED_FIFO threads have their priority adjusted
when locking and unlocking the PTHREAD_PRIO_PROTECT mutexes.

The example code checks after each mutex lock and mutex unlock operation to verify that
the thread's priority and scheduling class are at the appropriate values.

Note that the priority ceiling values are based off of the kernel's fix priority (FP) schedul-
ing class.

The main thread in this example is the thread that initializes the mutexes, creates the four
additional threads, and then waits for the other threads to finish.

The appropriate error return checks from function calls were left out in order to make the
code easier to read.

#include <pthread.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/fppriocntl.h>

/* Internal routines.
 */
void setup_mutexes(void);
void get_max_priority(void);
void create_threads(void);
void thread_start(void *);
void run_fifo_rr(int, int);
void run_other(int);
void wait_for_done(void);

#define NUM_THREADS 4 /* uses four additional threads */
int num_ready; /* incremented when each thread is ready to run the
test */
int num_done; /* incremented when each thread is through testing */

/* Arg value passed to thread_start() routine.
 */
#define ARG_PRIO_RR 0 /* bound thread in SCHED_RR */
#define ARG_PRIO_FIFO1 /* bound thread in SCHED_FIFO */
#define ARG_PRIO_OTHER2 /* bound thread in SCHED_OTHER */
#define ARG_PRIO_MUX 3 /* mux thread */

int arg_array[NUM_THREADS] =
{ ARG_PRIO_RR, ARG_PRIO_FIFO, ARG_PRIO_OTHER, ARG_PRIO_MUX };

/* Keep all the mutexes in one array.
 */
#define NUM_MUTEXES 4 /* number of mutexes to go through */
#define NUM_NONE_MUTEX 2 /* index of PTHREAD_PRIO_NONE */

pthread_mutex_t pmutex_array[NUM_MUTEXES];
int prio_array[NUM_MUTEXES];/* The associated priorities */

/* The main thread handles timeouts.

Programming with the Threads Library

11-53

 */
#define TIMEOUT_WAIT 10 /* seconds */

/* Maximum mutex prioceiling priority value.
 */
int max_prioceiling;

/* Condition variable used to wait for all threads to get ready.
 * It's associated mutex is just a normal mutex.
 */
pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t pcond = PTHREAD_COND_INITIALIZER;
int posted; /* set just before the broadcast wakeup */

main(argc, argv)
int argc;
char **argv;
{

/* Initialize the mutexes.
*/
setup_mutexes();

/* Create all the other threads and let them run the test.
*/
create_threads();

/* Wait for the threads to finish.
* Timeout if some sort of lockup failure.
*/
wait_for_done();

/* Test is good if we reach this point without termination.
*/
pthread_exit((void *)0);

}

/*
 * The main thread calls this routine to initialize the mutexes.
 */
void
setup_mutexes()
{

int i, status, priority, *priop, protocol;
pthread_mutex_t *pmp;
pthread_mutexattr_t mattr;

/* Get the maximum priority ceiling value.
*/
get_max_priority();

/* Initialize a mutex attributes structure.

PowerMAX OS Programming Guide

11-54

*/
(void) pthread_mutexattr_init(&mattr);

/* Set the protocol of the mutex attributes to prio protect.
*/
(void) pthread_mutexattr_setprotocol(&mattr, PTHREAD_PRIO_PROTECT);

/* Use the top available priorities for the mutexes.
* One of the mutexes is not a prioprotect mutex.
*/
priority = max_prioceiling - NUM_MUTEXES + 2;

for (i = 0, pmp = pmutex_array, priop = prio_array;
i < NUM_MUTEXES; i++, pmp++, priop++)

{
if (i == NUM_NONE_MUTEX) {

(void) pthread_mutex_init(pmp,
(pthread_mutexattr_t *)NULL);

/* Save off the priority into the array.
* -1 is used to indicate no priority change.
*/
*priop = -1;
printf("mutex %d no priority protocol\n", i);
continue;

}

/* Set the priority attribute of this mutex.
*/
(void) pthread_mutexattr_setprioceiling(&mattr, priority);

/* Initialize the mutex.
*/
(void) pthread_mutex_init(pmp, &mattr);

/* Save off the priority into the array.
*/
printf("mutex %d priority %d\n", i, priority);
*priop = priority;
priority++;

}
}

/*
 * Called by the main thread from setup_mutexes().
 * This routine gets the kernel's fixed priority (FP) class's
 * maximum priority value. This is the largest value allowed
 * for a prioceiling mutex attribute.
 */
void
get_max_priority()
{

int status;

Programming with the Threads Library

11-55

pcinfo_t pcinfo;
fpinfo_t *fpp;

strcpy(pcinfo.pc_clname, "FP");
(void) priocntl(0, 0, PC_GETCID, &pcinfo);
fpp = (struct fpinfo *)pcinfo.pc_clinfo;
max_prioceiling = fpp->fp_maxpri;
printf("FP maxpri %d\n", max_prioceiling);

}

/*
 * The main thread calls this routine to create the additional threads.
 */
void
create_threads()
{

int i, status, timeout;
pthread_attr_t attr;
pthread_t id;

/* Initialize a thread attributes structure.
* Bound threads by default.
*/
(void) pthread_attr_init(&attr);

/* Create the other threads.
*/
for (i = 0; i < NUM_THREADS; i++) {

if (i == ARG_PRIO_MUX) {
/* Make the last thread a mux thread. */
(void) pthread_attr_setscope(&attr,

PTHREAD_SCOPE_PROCESS);
}
(void) pthread_create(&id, &attr,

(void *(*)(void *))thread_start, (void *)&arg_array[i]);
}

/* Wait for the other threads to run and initialize themselves.
*/
timeout = 0;
while (1) {

if (num_ready == NUM_THREADS)
break;

if (timeout == TIMEOUT_WAIT) {
printf("ERROR: timeout waiting for threads.\n");
exit(1);

}
timeout++;
while (sleep(1)) ;

}

/* Wakeup the other threads to let them run the test.

PowerMAX OS Programming Guide

11-56

*/
posted = 1;
(void) pthread_cond_broadcast(&pcond);

}

/*
 * The main thread calls this routine in order to wait while the
 * other threads run and finish their testing.
 */
void
wait_for_done()
{

int i;

for (i = 0; i < TIMEOUT_WAIT; i++) {
if (num_done == NUM_THREADS)

return;
while (sleep(1));

}
printf("ERROR: timeout on locking: num_done %d num_thread %d\n",

num_done, NUM_THREADS);
exit(1);

}

/*
 * Created threads start here.
 * 'arg' points to an integer value that defines the type of
 * scheduling class and scope (bound/mux) to be used for the thread.
 */
void
thread_start(void *arg)
{

int class, which = *(int *)arg, status;
struct sched_param param;

switch (which) {
case ARG_PRIO_FIFO:
case ARG_PRIO_RR:

/* Use a low priority so that the prio protect
* priority changes are noticeable.
*/
param.sched_priority = 0;

if (which == ARG_PRIO_FIFO)
class = SCHED_FIFO;

else
class = SCHED_RR;

(void) pthread_setschedparam(pthread_self(), class, ¶m);
break;

case ARG_PRIO_OTHER:

Programming with the Threads Library

11-57

case ARG_PRIO_MUX:
/* MUX thread and SCHED_OTHER bound thread. Get our
* scheduling priority. (Class is SCHED_OTHER).
*/
void) pthread_getschedparam(pthread_self(), &class, ¶m);
break;

default:
printf("ERROR: unexpected which arg %d tid %d\n",

which, pthread_self());
exit(1);

}

/* Sync up with all the other threads.
*/
(void) pthread_mutex_lock(&pmutex);
num_ready++;
while (!posted) {

(void) pthread_cond_wait(&pcond, &pmutex);
}
(void) pthread_mutex_unlock(&pmutex);

/* Go do the locks and unlocks and check priorities.
*/
switch (which) {
case ARG_PRIO_FIFO:
case ARG_PRIO_RR:

run_fifo_rr(param.sched_priority, class);
break;

case ARG_PRIO_OTHER:
case ARG_PRIO_MUX:

run_other(param.sched_priority);
break;

}

/* Let main thread know that we're finished and then exit.
*/
(void) pthread_mutex_lock(&pmutex);
num_done++;
(void) pthread_mutex_unlock(&pmutex);
pthread_exit((void *)0);

}

/*
 * The SCHED_FIFO and SCHED_RR threads call this routine to do the locking
 * and unlocking. The priority of these threads should be modified at each
 * lock and unlock point, except for the one mutex that has not been setup as
 * a prioprotect mutex.
 *
 * orig_pri contains the current priority value of the thread
 * orig_class contains the current scheduling class of the calling thread
 */

PowerMAX OS Programming Guide

11-58

void
run_fifo_rr(int orig_pri, int orig_class)
{

int i, class, status;
int our_prio[NUM_MUTEXES];
int *ourpriop = our_prio;
int *priop = prio_array;
pthread_mutex_t *pmp = pmutex_array;
struct sched_param param;

/* Push current priority into our own priority stack.
 * We save off up to the next to last mutex's resulting priority
 * change. Used during unlocking for checking priority.
 */
*ourpriop = orig_pri;
ourpriop++;

/* Loop through the mutex array, locking each mutex and
 * checking for the proper scheduling priority adjustment.
 */
for (i = 0; i < NUM_MUTEXES; i++, pmp++, priop++, ourpriop+

/* Get the lock. */
(void) pthread_mutex_lock(pmp);

/* Get our priority and class */
(void) pthread_getschedparam(pthread_self(), &class, ¶m);

/* Check the class. Should not have changed. */
if (class != orig_class) {

printf("ERROR: class changed during lock.\n");
exit(1);

}

/* Check the priority. */
if (*priop == -1) {

/* Priority should not have been changed
* for the PTHREAD_PRIO_NONE mutex.
*/
ourpriop--; /* back up to previous priority */
if (*ourpriop != param.sched_priority) {

printf("ERROR: priority changed.\n");
exit(1);

}
ourpriop++;

}
else if (param.sched_priority != *priop) {

/* Priority was not raised to the proper value.
 */
printf("ERROR: priority not raised.\n");
exit(1);

}

/* Save current priority for unlocks

Programming with the Threads Library

11-59

 * unless we're at the last lock.
 */
if ((i + 1) != NUM_MUTEXES)

*ourpriop = param.sched_priority;

/* Communicate with the outside world.
 */
printf("thread id %d locked mutex %d priority %d class %d\n",

pthread_self(), i, param.sched_priority, orig_class);
}

/* Now unlock the mutexes in the reverse order.
 */
ourpriop = &our_prio[NUM_MUTEXES - 1];
pmp = &pmutex_array[NUM_MUTEXES - 1];

for (i = 0; i < NUM_MUTEXES; i++, pmp--, ourpriop--) {
/* Unlock the lock. */
(void) pthread_mutex_unlock(pmp);

/* Get our priority and class */
(void) pthread_getschedparam(pthread_self(), &class, ¶m);

/* Check the class. Should not have changed. */
if (class != orig_class) {

printf("ERROR: class changed during unlock.\n");
exit(1);

}

/* Check the priority. */
if (*ourpriop != param.sched_priority) {

printf("ERROR: invalid priority at unlock.\n");
exit(1);

}

/* Communicate with the outside world. */
printf("thread id %d unlocked mutex %d priority %d class %d\n",

pthread_self(), NUM_MUTEXES - i - 1,
param.sched_priority, orig_class);

}
}

/*
 * The bound and MUX SCHED_OTHER threads call this routine to do the
 * locking and unlocking.
 *
 * 'orig_pri' contains the current priority value of the thread.
 * The priority of these threads should not change during the locking
 * and unlocking of these locks.
 */
void
run_other(int orig_pri)
{

PowerMAX OS Programming Guide

11-60

int i, class, status;
pthread_mutex_t *pmp = pmutex_array;
struct sched_param param;

/* Loop through the mutex array, locking each mutex and
* checking the scheduling priority and class.
*/
for (i = 0; i < NUM_MUTEXES; i++, pmp++) {

/* Get the lock. */
(void) pthread_mutex_lock(pmp);

/* Get our priority and class */
(void) pthread_getschedparam(pthread_self(), &class, ¶m);

/* Check the class. Should not have changed. */
if (class != SCHED_OTHER) {

printf("ERROR: class changed during lock.\n");
exit(1);

}

/* Check the priority. */
if (orig_pri != param.sched_priority) {

printf("ERROR: priority changed during lock.\n");
exit(1);

}

/* Communicate with the outside world. */
printf("thread id %d locked mutex %d priority %d class %d\n",

pthread_self(), i, param.sched_priority, SCHED_OTHER);
}

/* Now unlock the mutexes in the reverse order.
*/
pmp = &pmutex_array[NUM_MUTEXES - 1];

for (i = 0; i < NUM_MUTEXES; i++, pmp--) {
/* Unlock the lock. */
(void) pthread_mutex_unlock(pmp);

/* Get our priority and class */
(void) pthread_getschedparam(pthread_self(), &class, ¶m);

/* Check the class. Should not have changed. */
if (class != SCHED_OTHER) {

printf("ERROR: class change during unlock.\n");
exit(1);

}

/* Check the priority. */
if (orig_pri != param.sched_priority) {

printf("ERROR: priority change during unlock.\n");
exit(1);

}

Programming with the Threads Library

11-61

/* Communicate with the outside world. */
printf("thread id %d unlocked mutex %d priority %d class %d\n",

pthread_self(), NUM_MUTEXES - i - 1,
param.sched_priority, SCHED_OTHER);

}
}

Spin Locks 11

A spin lock is also used for mutually exclusive access to some resource. The PowerMAX
OS _spin_lock(3synch) function differs from mutex_lock(3synch) in imple-
mentation. If a spin lock is not available, the calling thread is not blocked, instead the
caller busy waits (or spins) until the lock becomes available.

_spin_lock (spin_t * lock);
_spin_unlock (spin_t * lock);

Considerations for the use of spin locks:

• The busy waiting prevents the LWP from being used by another thread.

• This facility is intended for use when the delay is expected to be smaller
than the time to context switch to another thread and back.

• Use of this facility is not recommended on uniprocessor machines or if
only one processor of a multiprocessor machine might be available. In
those circumstances the spinning thread prevents the possible execution of
the thread that is holding the lock, thereby delaying, possibly deadlocking,
itself.

CAUTION

Extreme care should be exercised in using spin locks. Deadlocks
are always possible; therefore, in this release, most applications
cannot use these interfaces.

POSIX Spin Locks 11

While POSIX Thread interfaces do not directly support spin locks, they can be built using
pthread_mutex_trylock(3pthread) . The following example omits error check-
ing for clarity:

/* spinlock.h */

struct spinlock {
pthread_mutex_t s_mutex;

};

/* spinlock.c */

PowerMAX OS Programming Guide

11-62

void
spinlock_init(struct spinlock *s)
{

(void) pthread_mutex_init(&s->s_mutex,
(pthread_mutexattr_t *)NULL);

}

void
spinlock_lock(struct spinlock *s)
{

while (pthread_mutex_trylock(&s->s_mutex)) ;
}

void
spinlock_unlock(struct spinlock *s)
{

(void) pthread_mutex_unlock(&s->s_mutex);
}

Recursive Mutual Exclusion 11

The regular mutex lock (shown earlier) will deadlock the calling thread on attempts to
re-lock a lock that it already holds. A recursive mutually exclusive lock (recursive mutex
or rmutex) allows the holder of a lock to re-lock without deadlock; other threads will block
normally.

int rmutex_lock (rmutex_t * rmutex);
int rmutex_unlock (rmutex_t * rmutex);

Considerations for the use of recursive mutex locks:

• The holder must unlock the lock for each time it was locked.

• This facility is useful for

- The implementation of recursive algorithms.

- Situations where the code locking a resource cannot know which
locks have already been acquired. This may arise in the implementa-
tion of library functions where generally the activities of the callers
are not known.

• Recursive mutexes only prevent deadlock of a thread with itself for a single
resource. It is still possible for a thread to become deadlocked even with
recursive mutexes. Two (or more) threads can deadlock by each acquiring
multiple locks in an unfortunate order.

• Recursive mutexes provide exclusivity but they sacrifice “atomicity.” A
resource protected by an rrmutex will be used by only one thread at a time;
however, that use must be designed to be reentrant because that thread
might reacquire the resource in the midst of using it.

Programming with the Threads Library

11-63

POSIX Thread Recursive Mutexes 11

While the POSIX Thread interfaces do not directly support recursive mutual exclusion
locks , such locks can be bu i l t us ing pthread_mutex_lock() and
pthread_mutex_unlock() . The following example omits error checking for clarity:

/* rmutexlock.h */

struct rmutexlock {
pthread_mutex_t r_mutex;
pthread_t r_id;
int r_depth;

};

/* rmutexlock.c */

void
rmutexlock_init(struct rmutexlock *r)
{

(void) pthread_mutex_init(&r->r_mutex,
(pthread_mutexattr_t *)NULL);
r->r_depth = 0;
r->r_id = (pthread_t)-1;

}

void
rmutexlock_lock(struct rmutexlock *r)
{

if (r->r_id == pthread_self()) {
r->r_depth++;
return;

}
(void) pthread_mutex_lock(&r->r_mutex);
r->r_depth = 1;
r->r_id = pthread_self();

}

void
rmutexlock_unlock(struct rmutexlock *r)
{

r->r_depth--;
if (r->r_depth == 0) {

r->r_id = (pthread_t)-1;
(void) pthread_mutex_unlock(&r->r_mutex);

}
}

Reader-Writer Locks 11

Whereas the locks for mutual exclusion allow only one thread to use a resource at a time,
the reader-writer facility supports a more complicated model of resource use. Mutual

PowerMAX OS Programming Guide

11-64

exclusion is needed only when the resource is being modified; otherwise, access need not
be denied to multiple threads.

Such locks can be held in either read mode (a read lock) or write mode (a write lock).

• In read mode, there is no limit on the number of threads using the resource.
By convention, each thread with such a lock assumes that the resource is
stable while the lock is held. That assumption is reasonable provided no
thread will modify the resource until it acquires a write lock and that is not
possible while at least one read lock is being held. As usual, these assump-
tions are not enforced by any mechanism other than programming disci-
pline.

• In practice, a lock held in read mode should bar only writers while a lock
held in write mode should bar all readers and all other writers. Read and
wr i te locks are acqui red by the rw_rd lock(3synch) and
rw_wrlock(3synch) functions, respectively.

int rw_rdlock (rwlock_t * rwlock);
int rw_wrlock (rwlock_t * rwlock);

If one or more threads are blocked waiting for a write lock, then any
threads requesting read locks will be blocked to wait for the writer. This
prevents a sequence of readers from indefinitely blocking a waiting writer.

• The order of access is strictly first-in-first-out (FIFO). This ordering is
obeyed even if the readers have higher priority than the writer. This is an
exception to the algorithm used to awaken threads by the other thread syn-
chronization mechanisms. (See “Further Considerations for Synchroniza-
tion Mechanisms,” page 11-74.)

• It is not possible to promote in place a read lock to a write lock. The read
lock must be released and a write lock acquired in a separate operation.

POSIX Thread Reader-Writer Locks 11

While the POSIX Thread interfaces do not provide the reader-writer lock mechanism, it
can be built using POSIX Thread features and functions. The condition variables used in
the example below are described in the next section, POSIX Thread Condition Variables.

Unlike PowerMAX OS thread reader-writer locks, the code below does not implement
strict FIFO access to the lock when the threads have differing scheduling policies and/or
priorities. Implementing FIFO access to a reader-writer lock would require a FIFO queue
of dynamically allocated condition variable structures, one for each thread that is waiting.
This approach is not part of the following example, which also omits error recovery for
clarity:

/* rwlock.h */

struct rwl_lock {
pthread_mutex_t rw_mutex;/* for synchronization */
pthread_cond_t rw_readcond;/* waiting readers */
pthread_cond_t rw_writecon d;/* wa iting writers */
int rw_writing;/* non-zero if write locked */
int rw_readcnt;/* number of current readers */

Programming with the Threads Library

11-65

int rw_readwcnt;/* number of waiting readers */
int rw_writewcn t;/* nu mber of waiting writers */

};

/* rwlock.c */

/*
 * Initialize the read/write lock structure.
 */
void
rwl_init(struct rwl_lock *r)
{

(void) pthread_mutex_init(&(r->rw_mutex),
(pthread_mutexattr_t *)NULL);

(void) pthread_cond_init(&(r->rw_readcond),
(pthread_condattr_t *)NULL);

(void) pthread_cond_init(&(r->rw_writecond),
(pthread_condattr_t *)NULL);

r->rw_readwcnt = 0;
r->rw_writewcnt = 0;
r->rw_writing = 0;
r->rw_readcnt = 0;

}

/*
 * Read lock the rw lock.
 */
void
rwl_read(struct rwl_lock *r)
{

(void) pthread_mutex_lock(&r->rw_mutex);

while (r->rw_writing || r->rw_writewcnt) {
/*
 * Wait if write locked or waiting writers
 */
r->rw_readwcnt++;
(void) pthread_cond_wait(&r->rw_readcond,
&r->rw_mutex);
r->rw_readwcnt--;

}
r->rw_readcnt++;

(void) pthread_mutex_unlock(&r->rw_mutex);
}

/*
 * Write lock the rw lock.
 */
void

PowerMAX OS Programming Guide

11-66

rwl_write(struct rwl_lock *r)
{

(void) pthread_mutex_lock(&r->rw_mutex);

while (r->rw_writing || r->rw_readcnt) {
/*
 * Wait if already read or write locked.
 */
r->rw_writewcnt++;
(void) pthread_cond_wait(&r->rw_writecond,
&r->rw_mutex);
r->rw_writewcnt--;

}
r->rw_writing = 1;

(void) pthread_mutex_unlock(&r->rw_mutex);
}

/*
 * Unlock the rw lock.
 */
void
rwl_unlock(struct rwl_lock *r)
{

(void) pthread_mutex_lock(&r->rw_mutex);

if (r->rw_writing) {
/* Writer unlock */
r->rw_writing = 0;

/* Wakeup any waiting writer, or
 * wakeup any waiting reader if no waiting writers.
 */
if (r->rw_writewcnt)

(void) pthread_cond_signal(&r->rw_writecond);
else if (r->rw_readwcnt)

(void) pthread_cond_broadcast(&r->rw_readcond);
}

else {
/* Reader unlock. */
r->rw_readcnt--;

/* Wakeup any waiting writer. */
if ((r->rw_readcnt == 0) && r->rw_writewcnt)

(void) pthread_cond_signal(&r->rw_writecond);
}
(void) pthread_mutex_unlock(&r->rw_mutex);

}

Programming with the Threads Library

11-67

Condition Variables 11

Condition variables are a general mechanism by which one thread can delay its execution
until some condition is true and another thread can announce when some condition is true.

NOTE

The semantics of condition variables are analogous to those of the
sleep-wakeup idiom historically used in kernel and device driver
code.

The condition variable (of type cond_t) is part of the mechanism by which this synchro-
nization occurs but that variable is not the condition itself. This condition is a somewhat
abstract concept (as is resource) that is represented by other code in the program. Some
hypothetical examples of conditions are:

• A message has arrived.

• Data is available for processing.

• Space is available to buffer output.

The association between condition and the condition variable arises from the program-
mer's usage of the feature.

One distinguishing feature of the conditional variable mechanism is that two different
types of data structures are employed, not just one. A mutual exclusion lock (type
mutex_t) must be used in concert with the condition variable (type cond_t) itself. By
convention, a thread that evaluates, modifies, or acts on the condition must acquire the
associated mutex lock beforehand and release that lock afterward.

The following pseudo-code shows the protocol for a thread that is making some condition
true and announcing the change.

mutex_lock(&mutex);
make condition true;
cond_signal(&cond); awaken thread (if any) waiting for condition
mutex_unlock(&mutex);

When the thread announces the change of the condition (to being true), it has a choice of
awakening either a single thread waiting for that condition or all threads waiting for that
condition. The syntax is:

int cond_signal (cond_t * cond); awaken one thread
int cond_broadcast (cond_t * cond); awaken all threads

In either case, there is no problem if there are no waiting threads at the time of announce-
ment.

PowerMAX OS Programming Guide

11-68

NOTE

Do not confuse the term “signal” in the sense of calling
cond_signal(3synch) and “signal” in the sense of
thr_kill(3thread) . They are different mechanisms with
different semantics. (The latter provides asynchronous influence,
the former does not.)

A thread wanting to delay itself until the condition is true must first acquire the associated
mutex before evaluating the condition. If the condition is true, there is no need for delay
and the thread can proceed; otherwise, the thread must call cond_wait(3synch) to
wait for the condition to become true. The following pseudo-code illustrates the program-
ming idiom.

mutex_lock(&mutex)
while(condition is false)

cond_wait(&cond, &mutex);
act on the condition; possibly invalidate it
mutex_unlock(&mutex);

The mutex and condition variable used here must be the same data structures as those used
in the places where the condition is made true.

If the condition is true when cond_wait is called, it returns immediately. If the condition
is false, cond_wait will:

• Implicitly unlock the specified mutex.

If the mutex remained locked (and the stated conventions were obeyed) no
thread could enter the critical section to make the condition true.

• Block the calling thread until some other thread makes the condition true
and announces that change with cond_signal(3synch) or
cond_broadcast(3synch) .

• Implicitly re-acquire the specified mutex before returning.

If this were not done, the thread could neither validly re-evaluate the condi-
tion (part of the while loop), nor validly act on the condition.

The semantics of condition variables require that a thread re-test the condition on any
return from cond_wait(3synch) .

• The calling of either cond_signal(3synch) or
cond_broadcast(3synch) implies that the condition was set true at
some time.

• A thread waiting for that condition is made runnable, but there may be
some de lay un t i l i t ac tua l l y execu tes and re tu rns f rom
cond_wait(3synch) .

• During that delay some other thread may be chosen to return from
cond_wait(3synch) and invalidate the condition. This other thread
might be:

Programming with the Threads Library

11-69

- Another thread in the “gang” awakened by
cond_broadcast(3synch) .

- A thread of higher priority that concurrently called
cond_wait(3synch) .

• Consequently, for correctness every thread must re-test the condition on
return from cond_wait(3synch) .

Other features of condition variables are:

• Blocked threads can be awakened by signals. The handler will be called
and cond_wait(3synch) returns with an EINTR condition.

• There is a time-limited variant of cond_wait called
cond_timedwait(3synch) .

• The separateness of the variable (type cond_t) used for signaling and for
mutual exclusion (type mutex_t) means that several different conditions
can be managed within one critical section.

POSIX Thread Condition Variables 11

The POSIX Thread interface provides condition variable functions almost identical to
those provided by PowerMAX OS, with a few differences discussed below. All other
POSIX condition variables work the same as PowerMAX OS condition variables.

POSIX condition variables support an attributes object used when initializing a condition
variable. Therefore, the following functions exist to initialize and modify this attributes
structure:

int pthread_condattr_init(pthread_condattr_t * attr);
Initializes the specified condition variable attributes structure to default val-
ues . Th is a t t r i bu tes s t ruc tu re can b e used on a subsequen t
pthread_cond_init(3pthread) call. The only attribute currently
defined in the condition variable attributes structure is the shared attribute.
The shared attribute is initialized to PTHREAD_PROCESS_PRIVATE by this
routine. The PTHREAD_PROCESS_PRIVATE value indicates that any condi-
tion variable initialized with this attributes structure can be used only by the
threads within the process.

int pthread_condattr_getpshared(const pthread_condattr_t * attr,
int * pshared);

int pthread_condattr_setpshared(pthread_condattr_t * attr, int
pshared);
These routines get and set the shared attribute of the condition variable
at t r ibutes object . The shared at t r ibute can be set to a va lue of
PTHREAD_PROCESS_SHARED if the condition variable nitialized with this
attributes object is used between threads in different processes.

int pthread_condattr_destroy(pthread_condattr_t * attr);
Used to set a condition variable attributes object to a destroyed state.

PowerMAX OS Programming Guide

11-70

in t p thread_cond_in i t (p th read_cond_t * cond, const
pthread_condattr_t * attr);
Initializes a POSIX condition variable. The attr parameter can be either speci-
fied or set to NULL. If NULL, then the condition variable has a shared
attribute of PTHREAD_PROCESS_PRIVATE.

The other POSIX Thread condition variable functions so resemble PowerMAX OS condi-
tion variables functions that little additional discussion is needed. These functions include:

• pthread_cond_wait(3pthread)

• pthread_cond_timedwait(3pthread)

• pthread_cond_signal(3pthread)

• pthread_cond_broadcast(3pthread)

• pthread_cond_destroy(3pthread)

Only one minor difference between the condition variable wait functions needs mention.
The PowerMAX OS func t i ons , cond_ t imedwai t (3synch) and
cond_wait(3synch) , return a value of EINTR when they return prematurely due to a
signal. The POSIX functions, pthread_cond_timedwait(3pthread) and
pthread_cond_wait(3pthread) , return a value of 0 in the same situation. Since
the semantics of condition variables require that a thread re-test the condition upon any
return from a condition variable wait, this is an insignificant difference.

Semaphores 11

Semaphores are a facility well-suited to managing the allocation and deallocation of iden-
tical resources.

• The semaphore can be initialized to the number of resources.

• A thread needing a resource should atomically decrement the associated
semaphore with the sema_wait(3synch) function.

• If the resource is not available (semaphore count non-positive) the caller
will block in sema_wait(3synch) until one becomes available.

int sema_wait (sema_t * sema);

• When a resource is no longer in use, the thread releasing the resource
sho u ld i nc remen t t he assoc ia ted semaph ore w i th th e
sema_post(3synch) function.

int sema_post (sema_t * sema);

• If any threads are blocked on that semaphore, the call to sema_post will
make one runnable so that it can (implicitly) decrement the semaphore and
return from sema_wait(3synch) .

Additional considerations:

• This mechanism lacks the following features of the IPC style semaphore
facility:

Programming with the Threads Library

11-71

- Increment/decrement by values greater than 1.

- Operations on semaphore sets.

- The ability to, “block while count is non-zero” instead of the usual
rule, “block only when count is zero.”

- The ability to automatically release semaphores on termination
(SEM_UNDO flag).

• A semaphore initialized to 1 is almost equivalent to a mutex. In such cases,
use the mutex facilities; they are more efficient, having been optimized for
that case.

NOTE

If the design of the application calls for signal handlers to use the
synchronization operations, then use semaphores, which are asyn-
chronous-safe, and can be used to communicate between signal
handlers and base level code. For example, a signal handler can
safely call sema_post , but it should not try to lock or unlock a
mutex used in the base code.

• The sema_post(3synch) function can validly be used to increase a
semaphore count above that defined by sema_init(3synch) .

POSIX Thread Semaphores 11

The POSIX Thread interfaces within the thread library do not provide thread-specific sup-
port for POSIX semaphores. Instead, all POSIX compliant applications, whether they are
single-threaded or POSIX multi-threaded applications, should make use of the POSIX
semaphore interfaces: sem_wait(3) , sem_post(3) , etc.

Barriers 11

In a sense, a barrier is the logical inverse of a lock. Whereas a lock allows only one thread
at a time to proceed (to use a resource), a barrier allows no thread to proceed until an entire
group of them are ready to proceed.

• The number of threads expected to gather at a barrier is specified in the bar-
rier structure when it is initialized with barrier_init(3synch) . (See
“Initialization of Synchronization Mechanisms,” page 11-74.)

• A thread declares its arrival at the barrier with the
barrier_wait(3synch) function.

int barrier_wait (barrier_t * barrier);

• The barrier mechanism has no facility to authenticate the threads calling
barrier_wait ; it simply counts the arriving threads.

PowerMAX OS Programming Guide

11-72

• If the number of threads at the barrier is less than the initialized value, the
thread calling barrier_wait is suspended.

• If the arriving thread brings the count to the requisite value, all of the wait-
ing th reads a re made runnab le and even tua l l y re tu rn f rom
barrier_wait .

• When the threads are released, the count of threads at the barrier is reset to
zero. That same barrier can be reused without re-initialization.

• A barrier should not be re-initialized while there are waiting threads.

• There is also a “spinning” variant of barriers called
_barrier_spin(3synch) . The considerations for usage are similar to
those for spin locks given above.

POSIX Thread Barriers 11

The POSIX Thread interfaces do not provide support for barriers. However, a set of barrier
routines can be coded by using standard POSIX Thread constructs and routines. The
example code shown below does not include error recovery, for clarity's sake:

/* pbarrier.h */

struct pbarrier {
pthread_mutex_t pb_mutex;/* synchronization lock */
pthread_cond_t pb_cond;/* for waiting */
int pb_count;/* barrier count */
int pb_generation;/* for determining wakeups */
int pb_waiting;/* number of threads waiting */

};

/* pbarrier.c */

/*
 * Initialize the barrier structure.
 */
void
pbar_init(struct pbarrier *b, int count)
{

(void) pthread_mutex_init(&b->pb_mutex,
(pthread_mutexattr_t *)NULL);

(void) pthread_cond_init(&b->pb_cond,
(pthread_condattr_t *)NULL);

b->pb_count = count;
b->pb_generation = 0;
b->pb_waiting = 0;

}

/*
* Barrier wait.
*/
void

Programming with the Threads Library

11-73

pbar_wait(struct pbarrier *b)
{

int my_generation;

(void) pthread_mutex_lock(&b->pb_mutex);

b->pb_waiting++;
if (b->pb_waiting >= b->pb_count)
{

b->pb_waiting = 0;
b->pb_generation++;
(void) pthread_cond_broadcast(&b->pb_cond);

}
else
{

my_generation = b->pb_generation;
while (my_generation == b->pb_generation)

 (void) pthread_cond_wait(&b->pb_cond,
&b->pb_mutex);

}
(void) pthread_mutex_unlock(&b->pb_mutex);

}

Awakening Threads for Synchronization Mechanisms 11

When only one thread is to be awakened for a newly available synchronization mecha-
nism, the selection is made by the following general rule.

a. Preference is given to bound threads over multiplexed threads.

b. If there is still more than one candidate for awakening, the thread with the
highest (Threads Library) priority is chosen.

c. If there is still more than one candidate for awakening, the thread that
blocked first is selected.

FIFO ordering of threads of the same priority is generally true but not guar-
anteed. In this implementation, there are race conditions in which the
ordering is not strictly FIFO.

There are some exceptions to this algorithm:

• For a broadcast on a condition variable and for barriers, more than one
thread is awakened. Conceptually, these are awakened simultaneously.

• For reader-writer locks, the order of awakening is strictly FIFO, regardless
of priority or other factors.

PowerMAX OS Programming Guide

11-74

Further Considerations for Synchronization Mechanisms 11

• There is no protection against priority inversion. When a thread holds a
lock, it keeps its priority even if a higher priority thread is waiting for that
lock. Therefore, a low priority thread can prevent a thread of higher priority
from running.

• thr_exit(3thread) and pthread_exit(3pthread) do not
release any locks a thread might have acquired.

• There is no automatic protection from deadlock (except for the limited pro-
tection provided by recursive mutexes).

• If a caught signal is received by a thread while blocked on a synchroniza-
tion mechanism (other than a condition variable):

- The signal handler is called.

- The blocked function call is transparently re-started.

- The function does not return with EINTR.

- Condition variables are the single exception. A call to cond_wait
or cond_timedwait will be abnormally terminated on receipt of a
signal, and EINTR will be returned. pthread_cond_wait and
pthread_cond_timedwait will also be abnormally terminated
on receipt of a signal, but will instead return 0.

• Each mechanism (except barriers) has a conditional _try variant that will
not block when the resource is unavailable; error condition EBUSY is
returned instead.

Initialization of Synchronization Mechanisms 11

PowerMAX OS Synchronization Mechanisms 11

Some general characteristics of the initialization functions are:

• The first argument is a pointer to the locking structure to be initialized.

• The type argument can take on the values of either:

USYNC_THREAD thread-to-thread synchronization .

USYNC_PROCESS interprocess synchronization. For such use, the
synchronization data structures must reside in
memory that is shared between the processes,
using either IPC shared memory or the mapped file
feature.

The type argument is not available for the two spinning type locks.

• Two mechanism types (barriers and semaphore) require an initial value
(count).

Programming with the Threads Library

11-75

• The last argument is of type (void *) , is reserved for future use, and
should be set to NULL for future compatibility.

The syntax of these functions is given below.

POSIX Initialization Mechanisms 11

POSIX thread mutexes and condition variables can both be initialized with or without a
user-specified attributes structure.

Both the mutex and condition variable attributes structures have one attribute, the shared
attribute. The value of this attribute may be set to:

PTHREAD_PROCESS_PRIVATE
thread-to-thread synchronization

PTHREAD_PROCESS_SHARED
interprocess synchronization.

When an attributes structure is not specified on a mutex or condition variable initialization
call, then this attribute defaults to PTHREAD_PROCESS_PRIVATE.

The syntax of the mutex and condition variable initialization functions are shown below:

int pthread_condattr_init(pthread_condattr_t *attr);
int pthread_condattr_getpshared(const pthread_condattr_t

*attr, int *pshared);
int pthread_condattr_setpshared(pthread_condattr_t *attr,

int pshared);
int pthread_cond_init(pthread_cond_t *cond, const

pthread_condattr_t *attr);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t

*attr, int *pshared);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,

int pshared);
int pthread_mutex_init(pthread_mutex_t *mutex, const

pthread_mutexattr_t *attr);

Alternative Initialization 11

In this implementation, it is valid to use statically initialized (zero-filled) data structures
for the synchronization mechanisms.

int sema_init(sema_t* sema,int count,int type,void * arg);
int barrier_init(barrier_t* barrier,int count,int type,void * arg);
int _barrier_spin_init(barrier_spin_t* barrier,int count,void * arg);
int _spin_init(spin_t* lock,void * arg);
int cond_init(cond_t* cond, int type,void * arg);
int mutex_init(mutex_t* mutex,int type,void * arg);
int rmutex_init(rmutex_t* rmutex,int type,void * arg);
int rwlock_init(rwlock_t* rwlock,int type,void * arg);

PowerMAX OS Programming Guide

11-76

For most of the mechanisms, a zero-filled data structure is taken to be unlocked and of
type USYNC_THREAD. The mechanisms that take a count argument have the following
additional interpretations:

• A zero-filled sema_t structure represents zero available resources. A
sema_wait(3synch) on that structure will block.

• A zero-filled barrier_t structure is valid but meaningless.

This technique is not recommended for re-initialization of synchronization structures. In
general, it is incorrect to re-initialize a synchronization structure while in use. Some of the
initialization functions (shown above) return EBUSY if called for an active data structure
(one on which threads are blocked). Zero-filling the data structure bypasses that check.

POSIX Static Initializations 11

Both pthread_mutex_t and pthread_cond_t structures can be statically initialized, when
the de fau l t a t t r i bu te va lues fo r these s t ruc tu res i s appropr ia te . The
PTHREAD_MUTEX_INITIALIZER and PTHREAD_COND_INITIALIZER macros may
be used for this purpose:

• pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

• pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Note that dynamically zero-filling POSIX thread mutex or condition variables as a method
for initializing these structures is NOT appropriate behavior for POSIX-compliant appli-
cations.

Invalidation of Synchronization Mechanisms 11

The syntax of the functions that invalidate synchronization structures is even more regular
than that of the initializing functions.

• The first and only argument is a pointer to the mechanism-specific structure
to be invalidated.

The syntax is:

Each function can fail as follows:

EINVAL Invalid argument specified.

int sema_destroy (sema_t * sema);
int _spin_destroy (spin_t * lock);
int barrier_destroy (barrier_t * barrier);
int _barrier_spin_destroy (barrier_spin_t * barrier);
int cond_destroy (cond_t * cond);
int mutex_destroy (mutex_t * mutex);
int rmutex_destroy (rmutex_t * rmutex);
int rwlock_destroy (rwlock_t * rwlock);
int pthread_cond_destroy (pthread_cond_t *cond);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Programming with the Threads Library

11-77

EBUSY Mechanism currently in use.

The effect of these functions is:

• To mark the structure as being invalid for further use (unless re-initialized).

• To allow the recovery of any Threads Library internal resources that may
have been allocated when the synchronization mechanism was initialized.

• Though these _destroy functions recover underlying resources, the
space for the synchronization structure itself remains. If the space is to be
recovered (say the structure will no longer be used) that must be done sepa-
rately. For example, a space acquired from malloc(3C) should be
recovered with free(3C) .

Development Environment 11

Compilation Environment 11

Source code that uses Threads Library functions should include one of the following lines:

• PowerMAX OS: #include <thread.h>

• POSIX: #include <pthread.h>

and should be compiled and linked with the Threads Library. You may link this program
either statically or dynamically. To compile and link it dynamically, use the following
command-line options:

cc [options] - D_REENTRANT file -lthread

This will create a dynamically linked executable. For linking statically, see the hc(1) and
ld(1) system manual pages and the “Link Editor and Linking” chapter in Compilation
Systems Volume 1 (Tools).

The -lthread flag links in the Threads Library. The -D_REENTRANT flag is needed for
an application to be thread-safe and to access reentrant routines in standard libraries (see
below).

Error Returns 11

None of the thread management or synchronization routines in the Threads Library set
errno to indicate an error; most return an error number if an error is encountered.

• The error numbers returned correspond to errno numbers.

• This discourages use of errno , which is not reentrant and is inefficient in
a multithreaded environment.

• The Threads Library does not guarantee preservation of errno across
calls.

PowerMAX OS Programming Guide

11-78

NOTE

The asynchronous I/O routines, which are included in the Threads
Library, do set errno . See the aio system manual pages.

However, threads may call routines that do set errno . If all threads in a process accessed
a global errno , no thread could be sure that the global value resulted from a system call it
had made, it might have resulted from another system call made by another thread. There-
fore, the Threads Library maintains a private copy of errno for each thread. When a
thread references errno , it will get the value of its private copy, not the global variable.

There is one exception: the initial thread (the thread running main) accesses the global
errno via its private copy. Therefore, the initial thread can safely call into non-reentrant
code (such as an old object file compiled before PowerMAX OS), and have correct errno
semantics. Threads other than the initial thread should not make calls into old object files
that set errno . The mixing of reentrant and non-reentrant object files is discouraged, and
should only be done as an interim measure until applications are made reentrant.

Applications that reference errno should include the following line:

#include <errno.h>

Thread-Safe Libraries 11

In previous releases of the system, libraries freely used global and static data. In a multi-
threaded program, different sibling threads running concurrently could corrupt global or
static data. Therefore, in the PowerMAX OS, standard libraries have been made
thread-safe. When an application is compiled with the -D_REENTRANT flag to cc(1) ,
standard libraries will synchronize threads' use of global and static data. (As this synchro-
nization has a performance cost to single-threaded applications, it is only enabled when
the -D_REENTRANT flag is used.)

In addition, new, reentrant versions of some library routines have been added. The names
of these routines are suffixed with _r ; for example, the reentrant version of strtok(3S)
is strtok_r(3S) . Multithreaded applications should use the reentrant versions of
library routines.

The PowerMAX OS supplies thread-safe versions of the following libraries:

• libc

• libm

• libnsl

• libsocket

• libresolv

• resolv

• tcpip

• libud

Programming with the Threads Library

11-79

Applications using other libraries that have not been made thread-safe must synchronize
access to global data.

System Call Wrappers 11

The Threads Library provides wrappers for the system calls and library routines listed
below. A wrapper is a routine with the same name and interface as another routine—in this
case, a standard system call or library routine. Wrappers usually do something to modify
the behavior of the standard routine, then call the standard routine, and perhaps do some-
thing further when the standard routine returns. Many of the Threads Library wrappers
cause the system call to affect a single thread instead of the entire process or LWP. See the
on-line system manual pages for these routines for details.

When you compile with -D_REENTRANT and -lthread , references to these routines
will automatically access the Threads Library wrapper versions.

Timers 11

The Threads Library provides facilities that allow multiplexed threads to use alarms and
real interval timers without requiring that the threads tie up LWPs between the initiation
and expiration of the call. For this purpose, the Threads Library supplies wrappers for
alarm(2) , getitimer(3C) , setitimer(3C) , and sleep(2) . When a bound
thread calls one of these routines, it has access to the full functionality as described in the
system manual page. However, when a multiplexed thread calls one of these functions, it
will use the Threads Library version of the function, and, in some cases, the functionality
will be limited; for example, a multiplexed thread can use only real timers, not virtual or
profiling timers.

In addition, the wrapper versions of these functions have per-thread semantics rather than
per-LWP semantics. For example, alarm(2) sets an alarm clock. When the set time

Table 11-1. System Call Wrappers

alarm(2) close(2) creat(2)

fcntl(2) fork(2) forkall(2)

fsync(2) getitimer(3C) iconnect(3C)

ienable(3C) msync(3C) open(2)

pause(2) posix_timers(2) read(2)

raise(3C) sched_yield(3C) setcontext(2)

setitimer(3C) sigaction(2) sighold(2)

sigignore(2) signal(2) sigpause(2)

sigpending(2) sigprocmask(2) sigrelse(2)

sigset(2) sigsuspend(2) sigwait(2)

sigtimedwait(2) sigwaitinfo(2) sleep(2)

tcdrain(2) timer_create(3C) timer_delete(3C)

wait(2) waitpid(2) write(2)

PowerMAX OS Programming Guide

11-80

expires, the caller receives a SIGALRM signal. The wrapper function ensures that the
SIGALRM is delivered to the calling thread (rather than the calling LWP), regardless of
whether the calling thread is running on the same LWP on which it was running when it
issued the call to alarm .

See the system manual pages for these routines for details.

POSIX Timers 11

The Threads Library provides thread synchronization for the per-process POSIX timers.
As a result, multiplexed threads may create, set, and delete timers that are shared among
all threads within the process. For this purpose, the Threads Library supplies wrappers for
timer_create(3C) and timer_delete(3C) .

In addition, the wrapper versions of these routines provide the SIGEV_CALLBACK timer
expiration notification mechanism. This mechanism is a Concurrent Computer Corpora-
tion extension to the POSIX specification. It is provided as a higher performance, more
deterministic method for providing notification of timer expiration.

User-Level Interrupts 11

The Threads Library provides wrapper versions of the iconnect(3C) and
ienable(3C) routines. In addition to providing thread synchronization among the mul-
tiplexed threads within a process, these wrappers provide the ability to connect to more
than one external interrupt within the same process.

Examples 11

This section presents several small programs to illustrate use of the Threads Library.

Hello, world 11

Figure 11-2 shows the traditional first program written when one enters a new regime of
the UNIX programming environment. In this example, one thread is created to output
“hello ” and a separate thread to output “world.\n ” Despite its brevity, this example
illustrates several points about programming with the Threads Library:

• The argument types and the return type of the printf(3S) function dis-
qualify it as the starting point of a thread. A “wrapper” function (print)
had to be devised.

• There is no need for the initial thread to wait for the completion of the two
threads running print . The process is automatically terminated after both
of the printing threads complete.

Programming with the Threads Library

11-81

NOTE

The use of thr_exit(3thread) is important. The use of
return from main or allowing main to run off the closing
brace is translated to a call to the exit(2) system call. That
system call generally terminates the process before the printing
threads can produce their output.

The order of the output is not guaranteed. In most cases the thread that is created first will
be able to output “hello, ” before the following thread outputs “world.\n ” Occasion-
ally, the order is reversed.

Figure 11-2. Hello, World

Basic Threads Management 11

The following examples on threads management will use (either explicitly or implicitly)
the function sometask that appears in Figure 11-3. This function will call sleep(3C)
to represent some arbitrary activity by the thread. Features to note in this example are:

• The simulated action for each thread will be different since each sleeps for
a different, random period of time. The seed for the random number gener-
ator depends on current process ID, current time, and thread ID.

• The activity period is at least one second plus a random component
between zero and nine seconds.

• The random number is generated with rand_r(3C), the thread-safe
version of rand(3C) .

Calls to sleep(3C) by each thread will put only the calling thread to sleep, as arranged
by the wrapper version of sleep provided by the Threads Library.

#include<stdio.h>
#include<stdlib.h>
#include<thread.h>
static void*print(void*);
int main()
{

int okend = EXIT_SUCCESS;
(void)thr_create(0,0, print, (void *)“hello, “, 0L,0);
(void)thr_create(0,0, print, (void *)“world.\n”, 0L,0);
thr_exit(&okend);
/*NOTREACHED*/

}
static void *print(void *s)
{

(void)printf(s);
return NULL;

}

PowerMAX OS Programming Guide

11-82

Figure 11-3. Sometask

The program in Figure 11-4 creates one or more threads as follows

• The number of threads to be created is determined by a (validated) com-
mand line parameter.

• Each new thread runs sometask .

The initial thread waits for the termination of each thread that it creates.

Figure 11-4. Multiple Threads

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <thread.h>
#define RANGE10
/* ARGSUSED */

void *sometask(void *dummy)
{

thread_t thrID= thr_self();
unsigned seed= getpid() * time(NULL) * (thrID + 1);
unsigned naptime=

(unsigned)(1 + RANGE*((double)rand_r(&seed)/(double)RAND_MAX));
setbuf(stdout,NULL);
(void)printf(“thread %ld entering sometask\n”,thrID);
(void)printf(“thread %ld naptime %d\n”,thrID, naptime);
(void)sleep(naptime);
(void)printf(“thread %ld leaving sometask\n”,thrID);
return NULL;

}

#include<stdio.h>
#include<stdlib.h>
#include<thread.h>
extern void*sometask(void *);

main(int argc, char **argv)
{
 int Nthreads, i; thread_t threadID;
 if(argc != 2){

(void)fprintf(stderr,”%s: usage: %s Nthreads\nwhere Nthreads > 0\n”,
argv[0], argv[0]);

return 1;
 }
 if((Nthreads = atoi(argv[1])) <= 0){

(void)fprintf(stderr,”%s: usage: %s Nthreads\nwhere Nthreads > 0\n”,
argv[0], argv[0]);

return 1;
 }
 for(i = 0; i < Nthreads; i++)

(void)thr_create(NULL, 0, sometask, NULL, 0, NULL);
 for(i = 0; i < Nthreads; i++){

(void)thr_join(0, &threadID, NULL);
(void)printf(“thread %ld is gone\n”, threadID);

 }
 return 0;
}

Programming with the Threads Library

11-83

The example in Figure 11-5 is a variation of that in Figure 11-4. In this case:

• Each thread that is created (running repeatask) calls sometask repeat-
edly.

• The created threads coordinate their activity into cycles by the barrier facil-
ity of the Threads Library.

• Output of this program shows a flurry of activity as the barrier count is
reached and the set of threads is unleashed for the next cycle.

There is no need for the initial thread to persist; consequently, the initial thread terminates
itself with thr_exit(3thread) . The process continues until the user terminates it
manually.

Figure 11-5. Barrier_wait

Dining Philosophers 11

The program in Figure 11-6 shows an implementation of the classic “dining philosophers”
problem using the facilities of the Threads Library.

#include<stdio.h>
#include<stdlib.h>
#include<thread.h>
#include<synch.h>
extern void*sometask (void *);
static void*repeatask(void *);
static barrier_tcommon_wall;

main(int argc, char **argv)
{
 int Nthreads, i;
 if(argc != 2){

(void)fprintf(stderr,”%s: usage: %s Nthreads\nwhere Nthreads > 0\n”,
argv[0], argv[0]);

return 1;
 }
 if((Nthreads = atoi(argv[1]))>0){

(void)barrier_init(&common_wall, Nthreads, USYNC_THREAD, NULL);
 } else {

(void)fprintf(stderr,”%s: usage: %s Nthreads\nwhere Nthreads > 0\n”,
argv[0], argv[0]);

return 1;
 }
 for(i = 0; i < Nthreads; i++)

(void)thr_create(NULL, 0, repeatask, NULL, 0, NULL);
 thr_exit(NULL);
 /*NOTREACHED*/
}
/* ARGSUSED */
static void *repeatask(void *dummy)
{

for(;;){
(void)printf(“thread %ld at wall\n”, thr_self());
(void)barrier_wait(&common_wall);
(void)sometask(NULL);

}
}

PowerMAX OS Programming Guide

11-84

In this problem there are N philosophers sitting at a round table eating and thinking. Each
has a plate of spaghetti and there is a single fork (a total of N forks) between each pair.
Each philosopher must use two forks to eat the spaghetti. Each philosopher puts down
both forks to think. This simple problem illustrates many of the issues in concurrent pro-
gramming, such as the need for synchronization to prevent deadlock. The philosophers
represent processes that require shared resources (the forks).

Some features of this program are:

• Each philosopher is represented by a thread.

• Each fork is represented by a semaphore.

Figure 11-6. Dining Philosophers

• Each thread runs the same code (philo) but needs different arguments.
That is each philosopher being simulated will follow the same rules but is
assigned to use a distinct pair of forks. The example shows how to assem-
ble several items of information into a structure and inform the thread of
where to find its arguments.

#include<stdio.h>
#include<thread.h>
#include<synch.h>
#define NPHIL5
static sema_t forks[NPHIL];
typedef struct {

int id, left_fork, right_fork;
} philo_t;
static philo_t philo_args[NPHIL];
static void *philo(void*);
extern void *sometask(void*);
main()
{

int i;
for(i = 0; i < NPHIL; i++){

(void)sema_init(&forks[i], 1, USYNC_THREAD, NULL);
philo_args[i].id= i;
philo_args[i].left_fork= i;
philo_args[i].rght_fork= (i+1)%NPHIL;

}
for(i = 0; i < NPHIL; i++)

(void)thr_create(NULL, 0, philo, &philo_args[i], 0, NULL);
thr_exit(NULL);
/*NOTREACHED*/

}
static void *philo(void *philo_arg)
{

philo_t*argp= (philo_t *)philo_arg;
int id = argp->id;
int left = argp->left_fork;
int rght = argp->rght_fork;
(void)printf(“thrID %ld id %d left %d rght %d\n”,

thr_self(), id, left, rght);
for(;;){

(void)sema_wait(&forks[left]);
(void)sema_wait(&forks[rght]);
(void)printf(“philo %d eating w. %d and %d\n”, id, left, rght);
(void)sometask(NULL); /* eating */
(void)printf(“philo %d done w. %d and %d\n”, id, left, rght);
(void)sema_post(&forks[left]);
(void)sema_post(&forks[rght]);
(void)sometask(NULL); /* think */

} /* NOTREACHED */
}

Programming with the Threads Library

11-85

• This implementation can deadlock. If each philosopher picks up his or her
left fork before any picks up his or her right fork, they will deadlock, wait-
ing to pick up their right forks. One way to solve this deadlock would be to
allow no more than N-1 philosophers to eat at the same time. That way, one
of the philosophers will always be able to pick up two forks.

• As in other examples, there is no need for the initial thread to persist. The
simulation continues until manually terminated.

Producer/Consumer 11

The program in Figure 11-7 shows a simple producer/consumer example implemented
using the condition variables facilities of the Threads Library.

• There are two threads, each running different functions. One runs
producer , the other runs consumer .

• There are two threads, each running different functions. One runs
producer , the other runs consumer .

• The item being produced and consumed is data in a common buffer.

- The producer obtains that data with fgets(3C) and places the data
in the common buffer.

- The consumer reads the data from the buffer. That data is output with
fputs(3S) so that its actions can be confirmed.

• The actions of producer and consumer threads are coordinated by the con-
dition variable facility so that they run in strict alternation.

- Nothing will be output (consumed) until something is placed in the
buffer (produced).

- Data in the buffer will not be overwritten until it is output.

• Note that this example differs from the pseudo-code shown earlier. The use
o f the cond i t i on var iab les a re no t b racke ted by ca l l s to
mutex_lock(3thread) and mutex_unlock(3thread) .

- This curiosity arises because the actions of each of these threads is
organized in a loop.

- The semantics of cond_wait(3synch) guarantee that the named
mutex will be released while a thread is waiting and reacquired
before return from that function.

- The condition (DataInBuff) is tested (for different values) by each
thread only when the thread holds the mutex and the use of
cond_wait by each threads allows the other to acquire the mutex.

• The initial calls to mutex_lock(3thread) by each thread and the ini-
tial state of DataInBuff are organized so that:

- Proper conditions are achieved for the initial pass by each thread.

PowerMAX OS Programming Guide

11-86

.

Figure 11-7. Producer/Consumer

- The program will work correctly no matter which thread acquires the
mutex on the first pass.

• The producer thread terminates the process with the exit(2) system call
when it can obtain no more data from fgets(3S) .

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <thread.h>
#include <synch.h>
#define TRUE 1
#define FALSE 0
static void *producer(void*);
static void *consumer(void*);
static char Buff[BUFSIZ];
static cond_t Buff_cond;
static mutex_t Buff_mutex;
static int DataInBuff = FALSE;
main()
{
 (void)mutex_init(&Buff_mutex, USYNC_THREAD, NULL);
 (void)cond_init (&Buff_cond, USYNC_THREAD, NULL);
 (void)thr_create(NULL, 0, producer, NULL, 0, NULL);
 (void)thr_create(NULL, 0, consumer, NULL, 0, NULL);
 thr_exit(NULL);
 /*NOTREACHED*/
}
/*ARGSUSED*/
static void *producer(void *dummy)
{

(void)mutex_lock(&Buff_mutex);
 for(;;){
 while(DataInBuff == TRUE)
 cond_wait(&Buff_cond, &Buff_mutex);

/* At this point,
 * the buffer is empty (contents have been output).
 * (Re)fill the buffer.
 */

 if(fgets(Buff, sizeof(Buff), stdin) == NULL)
 exit(EXIT_SUCCESS);
 DataInBuff = TRUE;
 cond_signal (&Buff_cond);
 }
 /*NOTREACHED*/
}
/*ARGSUSED*/
static void *consumer(void *dummy)
{
 (void)mutex_lock(&Buff_mutex);
 for(;;){
 while(DataInBuff == FALSE)
 cond_wait(&Buff_cond, &Buff_mutex);

/* At this point,
 * the buffer has data to be output
 */

 (void)fputs(Buff, stdout);
 DataInBuff = FALSE;
 cond_signal(&Buff_cond);
 }
 /*NOTREACHED*/
}

12
Interprocess Communication

Introduction . 12-1
Shared Memory Alternatives . 12-1
POSIX Shared Memory. 12-2

Using the shm_open Routine . 12-4
Using the shm_unlink Routine . 12-5

System V IPC Package . 12-6
Security Enhancements for IPC Objects . 12-7

Discretionary Access Control. 12-7
Mandatory Access Control . 12-9

System V Messages . 12-9
Using Messages . 12-10
Getting Message Queues . 12-14

Using msgget. 12-14
Example Program . 12-16

Controlling Message Queues . 12-18
Using msgctl . 12-18
Example Program . 12-19

Operations for Messages . 12-23
Using Message Operations: msgsnd and msgrcv . 12-24

Sending a Message. 12-24
Receiving Messages. 12-25

Example Program . 12-25
msgsnd . 12-27
msgrcv . 12-27

Multilevel Operation On Messages . 12-31
System V Semaphores . 12-31

Using Semaphores . 12-33
Getting Semaphores . 12-36

Using semget . 12-36
Example Program . 12-38

Controlling Semaphores . 12-41
Using semctl . 12-41
Example Program . 12-42

Operations On Semaphores . 12-49
Using semop . 12-49
Example Program . 12-50

Multilevel Operation On Semaphores . 12-53
System V Shared Memory. 12-53

Using Shared Memory . 12-54
Getting Shared Memory Segments. 12-57

Using shmget. 12-57
Example Program . 12-61

Controlling Shared Memory. 12-63
Using shmctl . 12-63
Example Program . 12-64

Binding a Shared Memory Segment to Physical Memory 12-68
Reserving Physical Memory . 12-69

PowerMAX OS Programming Guide

Initializing the res_sects Array. 12-69
Using physmalloc . 12-70
Using physconfig . 12-71

Using shmget and shmbind . 12-74
Operations for Shared Memory . 12-74

Using Shared Memory Operations: shmat and shmdt 12-74
Attaching a Shared Memory Segment . 12-75
Detaching Shared Memory Segments . 12-75

Example Program . 12-75
shmat . 12-76
shmdt . 12-77

Using Shared Memory Utilities . 12-78
Using shmdefine . 12-79
Using shmconfig . 12-85

Multilevel Operation On Shared Memory Segments . 12-91

12-1

12
Chapter 12Interprocess Communication

12
12
12

Introduction 12

The OS provides several mechanisms that allow processes to exchange data. These mech-
anisms include the following: POSIX shared memory facilities that are based on IEEE
Standard 1003.1b-1993, the System V Interprocess Communication (IPC) package, and
such simple mechanisms as pipes, named pipes, and signals.

“POSIX Shared Memory” describes the POSIX shared memory facilities and shows how
they can be used by cooperating processes.

The System V IPC package consists of three mechanisms for interprocess communication:
messages, semaphores, and shared memory. “System V IPC Package” (p. 12-6) provides
an overview of these mechanisms and the facilities for using them. “Security Enhance-
ments for IPC Objects” (p. 12-7) describes the enhanced Discretionary Access Control
(DAC) and Mandatory Access Control (MAC) that are provided if the Enhanced Security
Utilities are installed on your system.

Pipes, named pipes, and signals are the simplest mechanisms for interprocess communica-
tion, but they are limited in the following ways:

• Pipes do not allow unrelated processes to communicate.

• Named pipes allow unrelated processes to communicate, but they cannot
provide private channels for pairs of communicating processes; that is, any
process with appropriate permission may read from or write to a named
pipe.

• Sending signals, via the kill system call, allows arbitrary processes to
communicate, but the message consists only of the signal number and one
word of data.

Chapter 10, “Signals, Job Control, and Pipes,” describes these mechanisms and explains
the procedures for using them.

Shared Memory Alternatives 12

Although you may create areas of shared memory by using either the POSIX shared mem-
ory interfaces or the System V IPC shared memory interfaces, the two types of interfaces
are quite different syntactically. The procedures that cooperating processes must follow in
order to use the interfaces to share data are also different. (For additional details on syntax
and procedures, refer to “POSIX Shared Memory,” p.12-2, and “System V Shared Mem-

PowerMAX OS Programming Guide

12-2

ory,” p. 12-53, respectively.) The following recommendations may assist you in determin-
ing whether to use the POSIX interfaces or the System V interfaces in your application:

• It is recommended that you use a System V shared memory area in an
application in which data placed in shared memory are temporary and do
not need to exist following a reboot of the system. Data in a System V
shared memory area are kept only in memory. No disk file is associated
with that memory. Data in a System V shared memory area will not con-
tribute to the disk traffic that is generated by the sync(2) system call.
Note that disk traffic generated by sync can cause significant system over-
head.

If the POSIX shared memory interfaces are used to share data, those data
are mapped to a disk file in the /var/tmp directory. If this directory is
mounted on a memfs file system, then no extra disk traffic is generated to
flush the shared data during the sync system call. If this directory is
mounted on a regular disk partition, then disk traffic will be generated dur-
ing the sync system call to keep the shared data updated in the mapped
disk file. Whether the data that are written to POSIX shared memory are
saved in a file or not, those data do not persist following a reboot of the sys-
tem. For information on the memfs file system type, refer to System
Administration Volume 2.

• If a shared memory area is to be associated with a section of physical mem-
ory, it is recommended that you use System V shared memory and the
facilities for binding an area of shared memory to a section of physical
memory (see “Using shmget and shmbind,” p.12-73, and “Using shmcon-
fig,” p.12-84).

An alternative to using System V shared memory is to use the mmap(2)
system call to map a portion of the /dev/mem file. For information on the
mmap system call, refer to Chapter 6, “Memory Management.” For infor-
mation on the /dev/mem file, refer to the mem(7) system manual page.

• When the user desires a shared memory area to be placed in local memory,
the System V shared memory interfaces are more useful. With the System
V shared memory interfaces, the NUMA policy is forced to be the same for
all processes that attach to the shared memory segment. It is also possible
to create a process that accesses the shared memory segment as a foreign
local memory reference. Each process that attaches to a POSIX shared
memory object can select a different NUMA policy. This means that the
shared memory object could be migrated to global memory when a process
that is not running on the processor board where the shared memory is cur-
rently residing attaches to the shared memory object.

POSIX Shared Memory 12

The POSIX shared memory interfaces allow cooperating processes to share data and more
efficiently communicate through the use of a shared memory object. A shared memory
object is defined as a named region of storage that is independent of the file system and

Interprocess Communication

12-3

can be mapped to the address space of one or more processes to allow them to share the
associated memory.

The interfaces are briefly described as follows:

shm_open create a shared memory object and establish a connection
between the shared memory object and a file descriptor

shm_unlink remove the name of a shared memory object

Procedures for using the shm_open routine are presented in “Using the shm_open Rou-
tine.” Procedures for using the shm_unlink routine are presented in “Using the
shm_unlink Routine.”

In order for cooperating processes to use these interfaces to share data, one process com-
pletes the following steps. Note that the order in which the steps are presented is typical,
but it is not the only order that you can use.

STEP 1: Create a shared memory object and establish a connection
between that object and a file descriptor by invoking the
shm_open library routine, specifying a unique name, and
setting the O_RDWR bit to open the shared memory object
for reading and writing.

STEP 2: Set the size of the shared memory object by invoking the
ftruncate(2) system call and specifying the file
descriptor obtained in Step 1. This system call requires that
the memory object be open for writing. For additional infor-
mation on ftruncate(2) , refer to the corresponding sys-
tem manual page.

STEP 3: Map a portion of the process’s virtual address space to the
shared memory object by invoking the mmap(2) system
call and specifying the file descriptor obtained in Step 1 (see
Chapter 6, “Memory Management,” for an explanation of
this system call).

To use the shared memory object, any other cooperating process completes the following
steps. Note that the order in which the steps are presented is typical, but it is not the only
order that you can use.

STEP 1: Establish a connection between the shared memory object
created by the first process and a file descriptor by invoking
the shm_open library routine and specifying the same
name that was used to create the object.

STEP 2: If the size of the shared memory object is not known, obtain
the size of the shared memory object by invoking the
fstat(2) system call and specifying the file descriptor
obtained in Step 1 and a pointer to a stat structure (this
structure is defined in <sys/stat.h >). The size of the
object is returned in the st_size field of the stat struc-
ture. Access permissions associated with the object are
returned in the st_modes field. For additional information
on fstat(2) , refer to the corresponding system manual
page.

PowerMAX OS Programming Guide

12-4

STEP 3: Map a portion of the process’s virtual address space to the
shared memory object by invoking mmap and specifying the
file descriptor obtained in Step 1 (see Chapter 6, “Memory
Management,” for an explanation of this system call).

Using the shm_open Routine 12

The shm_open(3C) routine allows the calling process to create a POSIX shared mem-
ory object and establish a connection between that object and a file descriptor. A process
subsequently uses the file descriptor that is returned by shm_open to refer to the shared
memory object on calls to ftruncate(2) , fstat(2) , and mmap(2) . After a process
creates a shared memory object, other processes can establish a connection between the
shared memory object and a file descriptor by invoking shm_open and specifying the
same name.

After a shared memory object is created, all data in the shared memory object remain until
every process removes the mapping between its address space and the shared memory
object by invoking munmap(2) , exec(2) , or exit(2) and one process removes the
name of the shared memory object by invoking shm_unlink(3C) (see Chapter 6,
“Memory Management,” and “Using the shm_unlink Routine,” respectively, for explana-
tions of these routines). Neither the shared memory object nor its name is valid after your
system is rebooted.

The specifications required for making the shm_open call are as follows:

#include <sys/mman.h>

int shm_open(name, oflag, mode)

char * name;
int oflag;
mode_t mode;

The arguments are defined as follows:

name a pointer to a null–terminated string that specifies the name of the
shared memory object. Note that this string may contain a maximum of
255 characters. It may contain a leading slash (/) character, but it may
not contain embedded slash characters. Note that this name is not a part
of the file system; neither a leading slash character nor the current work-
ing directory affects interpretation of it (/shared_obj and
shared_obj are interpreted as the same name). If you wish to write
code that can be ported to any system that supports POSIX interfaces,
however, it is recommended that name begin with a slash character.

oflag an integer value that sets one or more of the following bits:

Note that O_RDONLY and O_RDWR are mutually exclusive bits; one of
them must be set.

O_RDONLY causes the shared memory object to be opened for
reading only

Interprocess Communication

12-5

O_RDWR causes the shared memory object to be opened for
reading and writing. Note that the process that creates
the shared memory object must open it for writing in
order to be able to set its size by invoking ftrun-
cate(2) .

O_CREAT causes the shared memory object specified by name to
be created if it does not exist. The memory object’s
user ID is set to the effective user ID of the calling
process; its group ID is set to the effective group ID of
the calling process; and its permission bits are set as
specified by the mode argument.

If the shared memory object specified by name exists,
setting O_CREAT has no effect except as noted for
O_EXCL .

O_EXCL causes shm_open to fail if O_CREAT is set and the
shared memory object specified by name exists. If
O_CREAT is not set, this bit is ignored.

O_TRUNC causes the length of the shared memory object speci-
fied by name to be truncated to zero if the object exists
and has been opened for reading and writing. The
owner and the mode of the specified shared memory
object are unchanged.

mode an integer value that sets the permission bits of the shared memory
object specified by name with the following exception: bits set in the
process’s file mode creation mask are cleared in the shared memory
object’s mode (refer to the umask(2) and chmod(2) system manual
pages for additional information). If bits other than the permission bits
are set in mode, they are ignored. A process specifies the mode argument
only when it is creating a shared memory object.

If the call is successful, shm_open creates a shared memory object of size zero and
returns a file descriptor that is the lowest file descriptor not open for the calling process.
The FD_CLOEXEC file descriptor flag is set for the new file descriptor; this flag indicates
that the file descriptor identifying the shared memory object will be closed upon execution
of the exec(2) system call (refer to the fcntl(2) system manual page for additional
information).

A return value of –1 indicates that an error has occurred; errno is set to indicate the
error. Refer to the shm_open(3C) system manual page for a listing of the types of
errors that may occur.

Using the shm_unlink Routine 12

The shm_unlink(3C) routine allows the calling process to remove the name of a
shared memory object. If one or more processes have a portion of their address space
mapped to the shared memory object at the time of the call, the name is removed before
shm_unlink returns, but data in the shared memory object are not removed until the last

PowerMAX OS Programming Guide

12-6

process removes its mapping to the object. The mapping is removed if a process invokes
munmap(2) , exec(2) , or exit(2) .

The specifications required for making the shm_unlink call are as follows:

#include <sys/mman.h>

int shm_unlink(name)

char * name;

The argument is defined as follows:

name a pointer to a null–terminated string that specifies the shared memory
object name that is to be removed. Note that this string may contain a
maximum of 255 characters. It may contain a leading slash (/) character,
but it may not contain embedded slash characters. Note that this name is
not a part of the file system; neither a leading slash character nor the
current working directory affects interpretation of it (/shared_obj
and shared_obj are interpreted as the same name). If you wish to
write code that can be ported to any system that supports POSIX inter-
faces, however, it is recommended that name begin with a slash charac-
ter.

A return value of 0 indicates that the call to shm_unlink has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the shm_unlink(3C) system manual page for a listing of the types of errors that may
occur. If an error occurs, the call to shm_unlink does not change the named shared
memory object.

System V IPC Package 12

The mechanisms contained in the System V IPC package are described as follows:

• Messages allow processes to send formatted data streams to arbitrary pro-
cesses.

• Semaphores allow processes to synchronize execution.

• Shared memory allows processes to share parts of their virtual address
space.

When implemented as a unit, these three mechanisms share such common properties as
the following:

• Each mechanism contains a “get” system call to create a new entry or
retrieve an existing one.

• Each mechanism contains a “control” system call to query the status of an
entry, to set status information, or to remove the entry from the system.

• Each mechanism contains an “operations” system call to perform various
operations on an entry.

Interprocess Communication

12-7

This chapter describes the system calls for each of these three forms of IPC. “System V
Messages” (p.12-9) describes those for creating message queues and sending and receiv-
ing messages. “System V Semaphores” (p.12-31) describes those for creating semaphores
and performing semaphore operations. “System V Shared Memory” (p.12-53) describes
the system calls and utilities for creating shared memory segments, attaching them to and
detaching them from a process’s virtual address space, and binding them to a section of
physical memory.

This information is for programmers who write multiprocess applications. These program-
mers should have a general understanding of what semaphores are and how they are used.

Information from other sources would also be helpful. See the manual pages ipcs(1)
and ipcrm(1) and the following manual pages:

intro(2) aclipc(2) lvlipc(2)
msgget(2) msgctl(2) msgop(2)
semget(2) semctl(2) semop(2)
shmget(2) shmctl(2) shmop(2)

Included in this chapter are several example programs that show the use of these System V
IPC system calls. Since there are many ways to accomplish the same task or requirement,
keep in mind that the example programs were written for clarity and not for program effi-
ciency. Usually, system calls are embedded within a larger user-written program that
makes use of a particular function provided by the calls.

Security Enhancements for IPC Objects 12

The Enhanced Security Utilities, if installed, enhance the UNIX system's ability to control
access to a message queue, semaphore, or shared memory segment, by providing
enhanced Discretionary Access Control (DAC) and Mandatory Access Control (MAC).
Enhanced Discretionary Access Control allows the owner or creator of an IPC object to
control access to it on a single-user basis through the use of Access Control Lists. Manda-
tory Access Control further restricts access to IPC objects through the security levels
assigned to each process and IPC object on the system.

Discretionary Access Control 12

The IPC data structure for each specific type of IPC contains the ipc_perm data struc-
ture, around which is based a simple, easy-to-use, but somewhat limited DAC mechanism.
The system call to manipulate this structure varies slightly for each type of IPC object, and
is described separately for each type.

For cases where greater control is needed a more sophisticated mechanism, based on an
Access Control List (ACL) is provided. Using an ACL, you can specify exactly what
access (read, write, or both) is to be granted to specific users or groups.

The following discussion describes how to manipulate the ACL information for an IPC
object. The system uses the information in the ACL, together with the information in the
ipc_perm structure, to determine access to the IPC object. The evaluation that the sys-

PowerMAX OS Programming Guide

12-8

tem makes to determine access to IPC objects is nearly identical to that used to determine
access to a file.

The ACL for an IPC object is controlled with the aclipc system call, which can perform
three tasks:

• Get the ACL information for an IPC object (GETACL).

• Set the ACL information of an IPC object, replacing any existing ACL
(SETACL).

• Get the number of ACL entries in the ACL of an IPC object
(GETACLCNT).

The system call must be passed the type of IPC object being manipulated and the identifier
of the specific object, together with the ACL itself.

The synopsis found in the aclipc(2) system manual page is as follows:

#include <sys/types.h>
#include <acl.h>

int aclipc (int type, int id, int cmd, int nentries,
struct acl * aclbufp);

The acl structure is defined as:

struct acl {
 int a_type;
 uid_t a_id;
 ushort a_perm;
}

The type variable must be one of IPC_SHM, IPC_SEM, or IPC_MSG; and id must be
a valid identifier of an IPC object of the specified type.

The value of cmd must be one of the following:

GETACL The ACL information for the IPC object specified by type and id is
copied into the user-supplied aclbufp. The value of nentries
specifies the number of ACL entr ies which will fi t into
aclbufp. The user must have read access to the IPC object

SETACL The ACL for the IPC object specified by type and id is set to the
ACL entries in the user-supplied buffer aclbufp. The value of
nentries specifies the number of ACL entries in aclbufp. The con-
tents of aclbufp must be a valid ACL. For a description of what
makes up a valid ACL, see the chapter “Directory and File Man-
agement” of this guide. Only the owner or creator of an IPC object
can set the ACL.

GETACLCNT Returns the number of ACL entries for the IPC object specified by
type and id. The values of nentries and aclbufp are ignored. The
user must have read access to the IPC object.

A process with the appropriate privileges can override DAC restrictions. The
P_DACWRITE privilege is used to override DAC for write operations; P_DACREAD over-

Interprocess Communication

12-9

rides DAC for read operations. Some IPC read operations modify the object being read,
and therefore require both privileges in order to override DAC restrictions. The P_OWNER
privilege overrides the restriction on setting an IPC object's ACL.

Mandatory Access Control 12

Mandatory access control (MAC) is based on the security levels of subjects and objects.
The MAC policy for IPC is the same as the policy for files and directories. A process's
level must dominate that of an IPC object for read operations, and must equal the object's
level for write operations.

In some cases reading an IPC object modifies the object. For example, when a process
reads a message queue, the message is removed from the queue. Such operations require
MAC write permission; in other words, the process must be at the same level as the IPC
object.

An IPC object (message queue, semaphore, or shared memory segment) inherits its secu-
rity level from the creating process. The security level of the IPC object cannot be
changed.

A process with the appropriate privileges can override MAC restrictions. The
P_MACWRITE privilege is used to override MAC for write operations; P_MACREAD over-
rides MAC for read operations. Both P_MACWRITE and P_MACREAD are needed to over-
ride MAC for read operations that alter IPC objects or to change the attributes of an IPC
object existing at a different security level.

The examples shown throughout this chapter assume that the process does not possess any
privileges. Unless a process needs information located at different security levels, a pro-
cess may not notice any changes to the IPC mechanism. Minor differences are noted in the
following sections.

System V Messages 12

The message type of IPC allows processes (executing programs) to communicate through
the exchange of data stored in buffers. This data is transmitted between processes in dis-
crete portions called messages. Processes using this type of IPC can send and receive mes-
sages.

If the Enhanced Security Utilities are installed and running, a process must be at the same
security level as the message queue to send or receive messages. Thus, communication
between processes must occur at identical security levels

Before a process can send or receive a message, it must have the UNIX operating system
generate the necessary software mechanisms to handle these operations. A process does
this using the msgget system call. In doing this, the process becomes the owner/creator
of a message queue and specifies the initial operation permissions for all processes,
including itself. Subsequently, the owner/creator can relinquish ownership or change the
operation permissions using the msgctl system call. However, the creator remains the

PowerMAX OS Programming Guide

12-10

creator as long as the facility exists. Other processes with permission can use msgctl to
perform various other control functions.

Processes which have permission and are attempting to send or receive a message can sus-
pend execution if they are unsuccessful at performing their operation. That is, a process
which is attempting to send a message can wait until it becomes possible to post the mes-
sage to the specified message queue; the receiving process isn't involved (except indirectly,
for example, if the consumer isn't consuming, the queue space will eventually be
exhausted) and vice versa. A process which specifies that execution is to be suspended is
performing a “blocking message operation.” A process which does not allow its execution
to be suspended is performing a “nonblocking message operation.”

A process performing a blocking message operation can be suspended until one of three
conditions occurs:

• It is successful.

• It receives a signal.

• The message queue is removed from the system.

System calls make these message capabilities available to processes. The calling process
passes arguments to a system call, and the system call either successfully or unsuccess-
fully performs its function. If the system call is successful, it performs its function and
returns applicable information. Otherwise, a known error code (-1) is returned to the pro-
cess, and an external error number variable, errno , is set accordingly.

Using Messages 12

Before a message can be sent or received, a uniquely identified message queue and data
structure must be created. The unique identifier is called the message queue identifier
(msqid); it is used to identify or refer to the associated message queue and data structure.
This identifier is accessible by any process in the system, subject to normal access restric-
tions.

The message queue is used to store (header) information about each message being sent or
received. This information, which is for internal use by the system, includes the following
for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message queue. This data
structure contains the following information related to the message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

Interprocess Communication

12-11

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

NOTE

All C header files discussed in this chapter are located in the
/usr/include or /usr/include/sys directories.

The definition for the associated message-queue data structure msqid_ds includes the
following members as shown in Figure 12-1:

Figure 12-1. Definition of msqid_ds Structure

The C programming language data structure definition for the message-queue data struc-
ture msqid_ds is located in the sys/msg.h header file.

With the OS, the definition of the ipc_perm data structure is as shown in Figure 12-2.

struct msqid_ds
{
struct ipc_permmsg_perm; /* operation permission struct*/
struct msg *msg_first; /* ptr to first message on q */
struct msg *msg_last; /* ptr to last message on q */
ulong_t msg_cbytes; /* current # bytes on q */
msgqnum_t msg_qnum; /* # of messages on Q */
msglen_t msg_qbytes; /* max # of bytes on q */
pid_t msg_lspid; /* pid of last msgsnd */
pid_t msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* last msgsnd time */
long msg_pad1; /* reserved for time_t expansion */
time_t msg_rtime; /* last msgrcv time */
long msg_pad2; /* reserved for time_t expansion */
time_t msg_ctime; /* last change time */
long msg_pad3; /* time_t expansion */
long msg_pad4(MSG_PAD]; /* reserve area */
};

PowerMAX OS Programming Guide

12-12

Figure 12-2. Definition of ipc_perm Structure

The C programming language data structure definition for the interprocess communication
permissions data structure ipc_perm is located in the sys/ipc.h header file and is
common to all IPC facilities.

The data structure ipc_sec is used to hold the Discretionary and Mandatory Access
Control (DAC and MAC) information used by the Enhanced Security Utilities. The
ipc_sec data structure is shown in Figure 12-3 and is located in the sys/ipcsec.h
header file.

Figure 12-3. Definition of ipc_sec Structure

The ipc_sec data structure contains both DAC and MAC information. DAC information
is contained in the ipc_dac data structure. The MAC security level is stored in the
ipc_lid field. The type lid_t is defined as an unsigned long integer in the header file
sys/types.h.

The msgget system call is used to perform one of two tasks:

• to get a new message queue identifier and create an associated message
queue and data structure for it

• to return an existing message queue identifier that already has an associated
message queue and data structure

Both tasks require a key argument passed to the msgget system call. For the first task, if
the key is not already in use for an existing message queue identifier, a new identifier is

struct ipc_perm
{
uid_t uid; /* owner's user id */
gid_t gid; /* owner's group id */
uid_t cuid; /* creator's user id*/
gid_t cgid; /* creator's group id */
mode_t mode; /* access modes */
ulong seq; /* slot usage sequence number *
key_t key; /* key */
struct ipc_sec*secp; /* security structure ptr */
long pad[IPC_PERM_PAD];

/* reserve area */
};

struct ipc_sec
{
struct ipc_dac *dacp; /* ptr */
lid_t ipc_lid; /* MAC level identifier */
};

Interprocess Communication

12-13

returned with an associated message queue and data structure created for the key . If the
Enhanced Security Utilities are installed, the new msqid inherits the security level of the
creating process.

This occurs as long as no system-tunable parameters would be exceeded and a control
command IPC_CREAT is specified in the msgflg argument passed in the system call.

There is also a provision for specifying a key of value zero, known as the private key
(IPC_PRIVATE). When specified, a new identifier is always returned with an associated
message queue and data structure created for it unless a system-tunable parameter would
be exceeded. The ipcs command will show the key field for the msqid as all zeros.

For the second task, if a message queue identifier exists for the key specified, the value of
the existing identifier is returned. If you do not want to have an existing message queue
identifier returned, a control command (IPC_EXCL) can be specified (set) in the msgflg
argument passed to the system call (see “Using shmget” for how to use this system call).

When the Enhanced Security Utilities are installed and running, keys are kept on a
per-level basis. Keys within a security level are unique; however, the same key may exist
at different security levels. Each key references a different message queue and data struc-
ture at each security level where the key exists. As mentioned before, a message queue
and data set inherit the security level of the creating process. While the security level of
the message queue cannot be changed, a process with appropriate privilege may perform
multilevel operations on message queues. Refer to the “Multilevel Operation On Mes-
sages” section of this chapter for details.

When performing the first task, the process that calls msgget becomes the owner/creator,
and the associated data structure is initialized accordingly. Remember, ownership can be
changed but the creating process always remains the creator. The message queue creator
also determines the initial operation permissions for it.

Once a uniquely identified message queue and data structure are created, msgop (message
operations) and msgctl (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving messages. The
msgsnd and msgrcv system calls are provided for each of these operations (see “Opera-
tions for Messages” for details of the msgsnd and msgrcv system calls.

The msgctl system call permits you to control the message facility in the following
ways:

• by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

• by changing operation permissions for a message queue (IPC_SET)

• by changing the size (msg_qbytes) of the message queue for a particular
message queue identifier (IPC_SET)

• by removing a particular message queue identifier from the UNIX operat-
ing system along with its associated message queue and data structure
(IPC_RMID)

See the section “Controlling Message Queues” for details of the msgctl system call.

PowerMAX OS Programming Guide

12-14

Getting Message Queues 12

This section describes how to use the msgget system call. The accompanying program
illustrates its use.

Using msgget 12

The synopsis found in the msgget(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

All of these #include files are located in the /usr/include/sys directory of the
UNIX operating system.

The following line in the synopsis:

int msgget (key_t key, int msgflg);

informs you that msgget is a function that returns an integer-type value. It also declares
the types of the two formal arguments: key is of type key_t, and msgflg is of type int.
key_t is defined by a typedef in the sys/types.h header file to be an integral type.

The integer returned from this function upon successful completion is the message queue
identifier that was discussed earlier. Upon failure, the external variable errno is set to
indicate the reason for failure, and the value -1 (which is not a valid msqid) is returned.

As declared, the process calling the msgget system call must supply two arguments to be
passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided if either

• key is equal to IPC_PRIVATE ,

or

• key is a unique integer and the control command IPC_CREAT is specified
in the msgflg argument.

If the Enhanced Security Utilities are installed, the key is an integer that is not yet associ-
ated with a message queue at the security level of the calling process; and the new mes-
sage queue and its data structure inherit the security level of the creating process.

Interprocess Communication

12-15

The value passed to the msgflg argument must be an integer-type value that will specify
the following:

• operations permissions

• control fields (commands)

Operation permissions determine the operations that processes are permitted to perform
on the associated message queue. “Read” permission is necessary for receiving messages
or for determining queue status by means of a msgctl IPC_STAT operation. “Write”
permission is necessary for sending messages.

If the Enhanced Security Utilities are installed and running, a process must also pass Man-
datory Access Control (MAC) checks to send or receive messages or query queue status.
The MAC policy requires that the process and message queue be at identical security lev-
els to send or receive messages. The level of the process must dominate that of the mes-
sage queue for determining queue status by means of a msgctl IPC_STAT operation.

Table 12-1 reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions wanted. That is, if read by user and read/write by others is desired, the code
value would be 00406 (00400 plus 00006). There are constants located in the
sys/msg.h header file which can be used for the user operations permissions. They are
as follows:

MSG_W 0200 /* write permissions by owner */
MSG_R 0400 /* read permissions by owner */

Control flags are predefined constants (represented by all upper-case letters). The flags
which apply to the msgget system call are IPC_CREAT and IPC_EXCL and are defined
in the sys/ipc.h header file.

The value for msgflg is therefore a combination of operation permissions and control com-
mands. After determining the value for the operation permissions as previously described,
the desired flag(s) can be specified. This is accomplished by adding or bitwise ORing (|)
them with the operation permissions; the bit positions and values for the control com-
mands in relation to those of the operation permissions make this possible.

Table 12-1. Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

PowerMAX OS Programming Guide

12-16

The msgflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value:

msqid = msgget (key, (IPC_CREAT | 0400));
msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget(2) system manual page, success or failure of this system
call depends upon the argument values for key and msgflg or system-tunable parameters.
The system call will attempt to return a new message queue identifier if one of the follow-
ing conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a message queue identifier associated with it and
(msgflg and IPC_CREAT) is “true” (not zero).

If the Enhanced Security Utilities are installed, the key is an integer that is not yet associ-
ated with a message queue at the security level of the calling process; and the new mes-
sage queue and its data structure inherit the security level of the creating process.

The key argument can be set to IPC_PRIVATE like this:

msqid = msgget (IPC_PRIVATE, msgflg);

The system call will always be attempted. Exceeding the MSGMNI system-tunable param-
eter always causes a failure. The MSGMNI system-tunable parameter determines the sys-
temwide number of unique message queues that may be in use at any given time.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It will
cause the system call to return an error if a message queue identifier already exists for the
specified key (at the security level of the calling process, if the Enhanced Security Utilities
are installed and running). This is necessary to prevent the process from thinking that it
has received a new identifier when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new message queue identifier is returned if the system call is
successful.

Refer to the msgget(2) manual page for specific, associated data structure initializa-
tion for successful completion. The specific failure conditions and their error names are
contained there also.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the msgget system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 4-8) by including the required header files as specified by the
msgget(2) system manual page. Note that the <errno.h> header file is included as
opposed to declaring errno as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the synopsis for the
system call. Their declarations are self explanatory. These names make the programs more
readable are perfectly valid since they are local to the program.

Interprocess Communication

12-17

The variables declared for this program and what they are used for are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions

flags used to store the desired control commands (flags)

opperm_flags used to store the combination from the logical ORing of the S and
flags variables; it is then used in the system call to pass the msg-
flg argument

msqid used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal operation permissions
code, and finally for the control command combinations (flags) which are selected from a
menu (lines 15-32). All possible combinations are allowed even though they might not be
viable. This allows errors to be observed for invalid combinations.

Next, the menu selection for the flags is combined with the operation permissions, and the
result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable (line 53).

Since the msqid variable now contains a valid message queue identifier or the error code
(-1), it is tested to see if an error occurred (line 55). If msqid equals -1 , a message indi-
cates that an error resulted, and the external errno variable is displayed (line 57).

If no error occurred, the returned message queue identifier is displayed (line 61).

The example program for the msgget system call follows. We suggest you name the pro-
gram file msgget.c and the executable file msgget .

 1 /* This is a program to illustrate
 2 **the message get, msgget(),
 3 **system call capabilities.*/
 4 #include <stdio.h>
 5 #include <sys/types.h>
 6 #include <sys/ipc.h>
 7 #include <sys/msg.h>
 8 #include <errno.h>
 9 /*Start of main C language program*/
 10 main()
 11 {
 12 key_t key;
 13 int opperm, flags;
 14 int msqid, opperm_flags;
 15 /*Enter the desired key*/
 16 printf(“Enter the desired key in hex = “);
 17 scanf(“%x”, &key);
 18 /*Enter the desired octal operation
 19 permissions.*/
 20 printf(“\nEnter the operation\n”);
 21 printf(“permissions in octal = “);
 22 scanf(“%o”, &opperm);
 23 /*Set the desired flags.*/
 24 printf(“\nEnter corresponding number to\n”);
 25 printf(“set the desired flags:\n”);

PowerMAX OS Programming Guide

12-18

 26 printf(“No flags = 0\n”);
 27 printf(“IPC_CREAT = 1\n”);
 28 printf(“IPC_EXCL = 2\n”);
 29 printf(“IPC_CREAT and IPC_EXCL = 3\n”);
 30 printf(“ Flags = “);
 31 /*Get the flag(s) to be set.*/
 32 scanf(“%d”, &flags);
 33 /*Check the values.*/
 34 printf (“\nkey =0x%x, opperm = 0%o, flags = 0%o\n”,
 35 key, opperm, flags);
 36 /*Incorporate the control fields (flags) with
 37 the operation permissions*/
 38 switch (flags)
 39 {
 40 case 0: /*No flags are to be set.*/
 41 opperm_flags = (opperm | 0);
 42 break;
 43 case 1: /*Set the IPC_CREAT flag.*/
 44 opperm_flags = (opperm | IPC_CREAT);
 45 break;
 46 case 2: /*Set the IPC_EXCL flag.*/
 47 opperm_flags = (opperm | IPC_EXCL);
 48 break;
 49 case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
 50 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
 51 }
 52 /*Call the msgget system call.*/
 53 msqid = msgget (key, opperm_flags);
 54 /*Perform the following if the call is unsuccessful.*/
 55 if(msqid == -1)
 56 {
 57 printf (“\nThe msgget call failed, error number = %d\n”,
 58 errno);
 59 }
 60 /*Return the msqid upon successful completion.*/
 61 else
 62 printf (“\nThe msqid = %d\n”, msqid);
 63 exit(0);
 64 }

Controlling Message Queues 12

This section describes how to use the msgctl system call. The accompanying program
illustrates its use.

Using msgctl 12

The synopsis found in the msgctl(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds * buf;

Interprocess Communication

12-19

The msgctl system call requires three arguments to be passed to it; it returns an inte-
ger-type value.

When successful, it returns a zero value; when unsuccessful, it returns a -1

The msqid variable must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The cmd argument can be any one of the following values:

IPC_STAT return the status information contained in the associated data
structure for the specified message queue identifier, and place it in
the data structure pointed to by the buf pointer in the user mem-
ory area.

IPC_SET for the specified message queue identifier, set the effective user
and group identification, operation permissions, and the number
of bytes for the message queue to the values contained in the data
structure pointed to by the buf pointer in the user memory area.

IPC_RMID remove the specified message queue identifier along with its asso-
ciated message queue and data structure.

To perform an IPC_SET or IPC_RMID control command, a process must have:

• an effective user id of OWNER/CREATOR, or

• the P_OWNER privilege.

and, if the Enhanced Security Utilities are installed, must be at the same security level as
the message queue identifier.

Note that a message queue can also be removed by using the ipcrm(1) command and
specifying the -q msqid or the -Q msgkey option, where msqid specifies the identifier for
the message queue and the msgkey argument specifies the key associated with the message
queue. To use this command, a process must have the same privileges as those required for
performing an IPC_RMID control command. See the ipcrm(1) system manual page for
additional information on the use of this command.

Read permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the following example program. If you
need more information on the logic manipulations in this program, read the msgget(2)
system manual page; it goes into more detail than would be practical for this document.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the msgctl system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

PowerMAX OS Programming Guide

12-20

This program begins (lines 5-9) by including the required header files as specified by the
msgctl(2) system manual page. Note in this program that errno is declared as an
external variable, and therefore, the <errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These names make
the program more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

uid used to store the IPC_SET value for the effective user identifica-
tion

gid used to store the IPC_SET value for the effective group identifi-
cation

mode used to store the IPC_SET value for the operation permissions

bytes used to store the IPC_SET value for the number of bytes in the
message queue (msg_qbytes)

rtrn used to store the return integer value from the system call

msqid used to store and pass the message queue identifier to the system
call

command used to store the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member is to be changed for the
IPC_SET control command

msqid_ds used to receive the specified message queue identifier's data struc-
ture when an IPC_STAT control command is performed

buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values or where the IPC_SET command gets
the values to set

Note that the msqid_ds data structure in this program (line 16) uses the data structure,
located in the sys/msg.h header file of the same name, as a template for its declaration.

The next important thing to observe is that although the buf pointer is declared to be a
pointer to a data structure of the msqid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 17). Now that all of the required dec-
larations have been explained for this program, this is how it works.

First, the program prompts for a valid message queue identifier which is stored in the
msqid variable (lines 19, 20). This is required for every msgctl system call.

Then the code for the desired control command must be entered (lines 21-27) and stored in
the command variable. The code is tested to determine the control command for subse-
quent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 37, 38) and the status information returned is printed out (lines 39-46); only the

Interprocess Communication

12-21

members that can be set are printed out in this program. Note that if the system call is
unsuccessful (line 106), the status information of the last successful call is printed out. In
addition, an error message is displayed and the errno variable is printed out (line 108). If
the system call is successful, a message indicates this along with the message queue iden-
tifier used (lines 110-113).

If the IPC_SET control command is selected (code 2), the first thing is to get the current
status information for the message queue identifier specified (lines 50-52). This is neces-
sary because this example program provides for changing only one member at a time, and
the system call changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive failures for this con-
trol command until corrected. The next thing the program does is to prompt for a code cor-
responding to the member to be changed (lines 53-59). This code is stored in the choice
variable (line 60). Now, depending upon the member picked, the program prompts for the
new value (lines 66-95). The value is placed into the appropriate member in the user mem-
ory area data structure, and the system call is made (lines 96-98). Depending upon success
or failure, the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is performed
(lines 100-103), and the msqid along with its associated message queue and data struc-
ture are removed from the UNIX operating system. Note that the buf pointer is ignored in
performing this control command, and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other control com-
mands.

The example program for the msgctl system call follows. We suggest that you name the
source program file msgctl.c and the executable file msgctl .

PowerMAX OS Programming Guide

12-22

 1 /* This is a program to illustrate
 2 **the message control, msgctl(),
 3 **system call capabilities.
 4 */
 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/msg.h>
 10 /*Start of main C language program*/
 11 main()
 12 {
 13 extern int errno;
 14 int uid, gid, mode, bytes;
 15 int rtrn, msqid, command, choice;
 16 struct msqid_ds msqid_ds, *buf;
 17 buf = &msqid_ds;
 18 /* Get the msqid, and command.*/
 19 printf(“Enter the msqid = “);
 20 scanf(“%d”, &msqid);
 21 printf(“\nEnter the number for\n”);
 22 printf(“the desired command:\n”);
 23 printf(“IPC_STAT = 1\n”);
 24 printf(“IPC_SET = 2\n”);
 25 printf(“IPC_RMID = 3\n”);
 26 printf(“Entry = “);
 27 scanf(“%d”, &command);
 28 /* Check the values.*/
 29 printf (“\nmsqid =%d, command = %d\n”,
 30 msqid, command);
 31 switch (command)
 32 {
 33 case 1: /* Use msgctl() to duplicate
 34 the data structure for
 35 msqid in the msqid_ds area pointed
 36 to by buf and then print it out.*/
 37 rtrn = msgctl(msqid, IPC_STAT,
 38 buf);
 39 printf (“\nThe USER ID = %d\n”,
 40 buf->msg_perm.uid);
 41 printf (“The GROUP ID = %d\n”,
 42 buf->msg_perm.gid);
 43 printf (“The operation permissions = 0%o\n”,
 44 buf->msg_perm.mode);
 45 printf (“The msg_qbytes = %d\n”,
 46 buf->msg_qbytes);
 47 break;
 48 case 2: /* Select and change the desired
 49 member(s) of the data structure.*/
 50 /*Get the original data for this msqid
 51 data structure first.*/
 52 rtrn = msgctl(msqid, IPC_STAT, buf);
 53 printf(“\nEnter the number for the\n”);
 54 printf(“member to be changed:\n”);
 55 printf(“msg_perm.uid = 1\n”);
 56 printf(“msg_perm.gid = 2\n”);
 57 printf(“msg_perm.mode = 3\n”);
 58 printf(“msg_qbytes = 4\n”);
 59 printf(“Entry = “);
 60 scanf(“%d”, &choice);
 61 /*Only one choice is allowed per
 62 pass as an invalid entry will
 63 cause repetitive failures until
 64 msqid_ds is updated with
 65 IPC_STAT.*/

Interprocess Communication

12-23

 66 switch(choice){
 67 case 1:
 68 printf(“\nEnter USER ID = “);
 69 scanf (“%ld”, &uid);
 70 buf->msg_perm.uid =(uid_t)uid;
 71 printf(“\nUSER ID = %d\n”,
 72 buf->msg_perm.uid);
 73 break;
 74 case 2:
 75 printf(“\nEnter GROUP ID = “);
 76 scanf(“%d”, &gid);
 77 buf->msg_perm.gid = gid;
 78 printf(“\nGROUP ID = %d\n”,
 79 buf->msg_perm.gid);
 80 break;
 81 case 3:
 82 printf(“\nEnter MODE = “);
 83 scanf(“%o”, &mode);
 84 buf->msg_perm.mode = mode;
 85 printf(“\nMODE = 0%o\n”,
 86 buf->msg_perm.mode);
 87 break;
 88 case 4:
 89 printf(“\nEnter msq_bytes = “);
 90 scanf(“%d”, &bytes);
 91 buf->msg_qbytes = bytes;
 92 printf(“\nmsg_qbytes = %d\n”,
 93 buf->msg_qbytes);
 94 break;
 95 }
 96 /*Do the change.*/
 97 rtrn = msgctl(msqid, IPC_SET,
 98 buf);
 99 break;
 100 case 3: /*Remove the msqid along with its
 101 associated message queue
 102 and data structure.*/
 103 rtrn = msgctl(msqid, IPC_RMID, (struct msqid_ds *) NULL);
 104 }
 105 /*Perform the following if the call is unsuccessful.*/
 106 if(rtrn == -1)
 107 {
 108 printf (“\nThe msgctl call failed, error number = %d\n”, errno);
 109 }
 110 /*Return the msqid upon successful completion.*/
 111 else
 112 printf (“\nMsgctl was successful for msqid = %d\n”,
 113 msqid);
 114 exit (0);
 115 }

Operations for Messages 12

This section describes how to use the msgsnd and msgrcv system calls. The accompa-
nying program illustrates their use.

If the Enhanced Security Utilities are installed and running, communicating processes
must be at the same security level.

PowerMAX OS Programming Guide

12-24

Using Message Operations: msgsnd and msgrcv 12

The synopsis found in the msgop(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf * msgp;
int msgsz, msgflg;

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf * msgp;
int msgsz;
long msgtyp;
int msgflg;

Sending a Message 12

The msgsnd system call requires four arguments to be passed to it. It returns an integer
value.

When successful, it returns a zero value; when unsuccessful, msgsnd returns a -1 .

The msqid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that contains the
type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data structure pointed
to by the msgp argument. This is the length of the message. The maximum size of this
array is determined by the MSGMAX system-tunable parameter.

The msgflg argument allows the “blocking message operation” to be performed if the
IPC_NOWAIT flag is not set ((msgflg and IPC_NOWAIT)= = 0); the operation would
block if the total number of bytes allowed on the specified message queue are in use
(msg_qbytes or MSGMNB), or the total system-wide number of messages on all queues
is equal to the system- imposed limit (MSGTQL). If the IPC_NOWAIT flag is set, the sys-
tem call will fail and return a -1 .

The value of the msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctl IPC_SET control command, but only a process with the P_SYSOPS
privilege can raise it afterwards.

Interprocess Communication

12-25

Further details of this system call are discussed in the following program. If you need
more information on the logic manipulations in this program, read “Using msgget.” It
goes into more detail than would be practical for every system call.

Receiving Messages 12

The msgrcv system call requires five arguments to be passed to it; it returns an integer
value.

When successful, it returns a value equal to the number of bytes received; when unsuc-
cessful it returns a -1 .

The msqid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will receive the
message type and the message text.

The msgsz argument specifies the length of the message to be received. If its value is less
than the message in the array, an error can be returned if desired (see the msgflg argument
below).

The msgtyp argument is used to pick the first message on the message queue of the partic-
ular type specified. If it is equal to zero, the first message on the queue is received; if it is
greater than zero, the first message of the same type is received; if it is less than zero, the
lowest type that is less than or equal to its absolute value is received.

The msgflg argument allows the “blocking message operation” to be performed if the
IPC_NOWAIT flag is not set ((msgflg and IPC_NOWAIT) == 0); the operation would
block if there is not a message on the message queue of the desired type (msgtyp) to be
received. If the IPC_NOWAIT flag is set, the system call will fail immediately when there
is not a message of the desired type on the queue. msgflg can also specify that the sys-
tem call fail if the message is longer than the size to be received; this is done by not set-
ting the MSG_NOERROR flag in the msgflg argument ((msgflg and MSG_NOERROR)) == 0).
If the MSG_NOERROR flag is set, the message is truncated to the length specified by the
msgsz argument of msgrcv .

Further details of this system call are discussed in the following program. If you need
more information on the logic manipulations in this program, read “Using msgget.” It
goes into more detail than would be practical for every system call.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the msgsnd and msgrcv system calls
to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 5-9) by including the required header files as specified by the
msgop(2) system manual page. Note that in this program errno is declared as an exter-
nal variable; therefore, the <errno.h> header file does not have to be included.

PowerMAX OS Programming Guide

12-26

Variable and structure names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the program more
readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it uses
the msgbuf1 data structure as a template (lines 10-13). The
msgbuf1 structure (lines 10-13) is a duplicate of the msgbuf
structure contained in the sys/msg.h header file, except that the
size of the character array for mtext is tailored to fit this applica-
tion. The msgbuf structure should not be used directly because
mtext has only one element that would limit the size of each
message to one character. Instead, declare your own structure. It
should be identical to msgbuf except that the size of the mtext
array should fit your application.

rcvbuf used as a buffer to receive a message (line 13); it uses the
msgbuf1 data structure as a template (lines 10-13)

msgp used as a pointer (line 13) to both the sndbuf and rcvbuf buff-
ers

i used as a counter for inputing characters from the keyboard, stor-
ing them in the array, and keeping track of the message length for
the msgsnd system call; it is also used as a counter to output the
received message for the msgrcv system call

c used to receive the input character from the getchar function
(line 50)

flag used to store the code of IPC_NOWAIT for the msgsnd system
call (line 61)

flags used to store the code of the IPC_NOWAIT or MSG_NOERROR
flags for the msgrcv system call (line 117)

choice used to store the code for sending or receiving (line 30)

rtrn used to store the return values from all system calls

msqid used to store and pass the desired message queue identifier for
both system calls

msgsz used to store and pass the size of the message to be sent or
received

msgflg used to pass the value of flag for sending or the value of flags for
receiving

msgtyp used for specifying the message type for sending or for picking a
message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a pointer ini-
tialized to point to it (line 22); this will allow the data structure members affected by mes-

Interprocess Communication

12-27

sage operations to be observed. They are observed by using the msgctl (IPC_STAT)
system call to get them for the program to print them out (lines 80-92 and lines 160-167).

The first thing the program prompts for is whether to send or receive a message. A corre-
sponding code must be entered for the desired operation; it is stored in the choice variable
(lines 23-30). Depending upon the code, the program proceeds as in the following msg-
snd or msgrcv sections.

msgsnd 12

When the code is to send a message, the msgp pointer is initialized (line 33) to the address
of the send data structure, sndbuf. Next, a message type must be entered for the mes-
sage; it is stored in the variable msgtyp (line 42), and then (line 43) it is put into the
mtype member of the data structure pointed to by msgp.

The program now prompts for a message to be entered from the keyboard and enters a
loop of getting and storing into the mtext array of the data structure (lines 48-51). This
will continue until an end-of-file is recognized which, for the getchar function, is a
CTRL-d immediately following a carriage return (RETURN).

The message is immediately echoed from the mtext array of the sndbuf data structure
to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the IPC_NOWAIT flag. The
program does this by requesting that a code of a 1 be entered for yes or anything else for
no (lines 57-65). It is stored in the flag variable. If a 1 is entered, IPC_NOWAIT is logi-
cally ORed with msgflg ; otherwise, msgflg is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure message is
displayed along with the error number (lines 70-72). If it is successful, the returned value
is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data structure
are updated. They are:

msg_qnum represents the total number of messages on the message queue; it
is incremented by one.

msg_lspid contains the process identification (PID) number of the last pro-
cess sending a message; it is set accordingly.

msg_stime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accordingly.

These members are displayed after every successful message send operation (lines 79-92).

msgrcv 12

When the code is to receive a message, the program continues execution as in the follow-
ing paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive the mes-
sage is requested; it is stored in msqid (lines 100-103).

PowerMAX OS Programming Guide

12-28

The message type is requested; it is stored in msgtyp (lines 104-107).

The code for the desired combination of control flags is requested next; it is stored in flags
(lines 108-117). Depending upon the selected combination, msgflg is set accordingly
(lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msgsz (lines
132-135).

The msgrcv system call is performed (line 142). If it is unsuccessful, a message and error
number is displayed (lines 143-145). If successful, a message indicates so, and the number
of bytes returned and the msg type returned (because the value returned may be different
from the value requested) is displayed followed by the received message (lines 150-156).

When a message is successfully received, three members of the associated data structure
are updated. They are:

msg_qnum contains the number of messages on the message queue; it is dec-
remented by one.

msg_lrpid contains the PID of the last process receiving a message; it is set
accordingly.

msg_rtime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it is
set accordingly.

The sample code for the msgop system call follows. We suggest that you put the program
into a source file called msgop.c and then compile it into an executable file called
msgop.

 1 /*This is a program to illustrat
 2 **the message operations, msgop(),
 3 **system call capabilities.
 4 */
 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/msg.h>
 10 struct msgbuf1 {
 11 long mtype;
 12 char mtext[8192];
 13 } sndbuf, rcvbuf, *msgp;
 14 /*Start of main C language program*/
 15 main()
 16 {
 17 extern int errno;
 18 int i, c, flag, flags, choice;
 19 int rtrn, msqid, msgsz, msgflg;
 20 long mtype, msgtyp;
 21 struct msqid_ds msqid_ds, *buf;
 22 buf = &msqid_ds;
 23 /*Select the desired operation.*/
 24 printf(“Enter the corresponding\n”);
 25 printf(“code to send or\n”);
 26 printf(“receive a message:\n”);
 27 printf(“Send = 1\n”);
 28 printf(“Receive = 2\n”);
 29 printf(“Entry = “);

Interprocess Communication

12-29

 30 scanf(“%d”, &choice);
 31 if(choice == 1) /*Send a message.*/
 32 {
 33 msgp = &sndbuf; /*Point to user send structure.*/
 34 printf(“\nEnter the msqid of\n”);
 35 printf(“the message queue to\n”);
 36 printf(“handle the message = “);
 37 scanf(“%d”, &msqid);
 38 /*Set the message type.*/
 39 printf(“\nEnter a positive integer\n”);
 40 printf(“message type (long) for the\n”);
 41 printf(“message = “);
 42 scanf(“%ld”, &msgtyp);
 43 msgp->mtype = msgtyp;
 44 /*Enter the message to send.*/
 45 printf(“\nEnter a message: \n”);
 46 /*A control-d (^d) terminates as
 47 EOF.*/
 48 /*Get each character of the message
 49 and put it in the mtext array.*/
 50 for(i = 0; ((c = getchar()) != EOF); i++)
 51 sndbuf.mtext[i] = c;
 52 /*Determine the message size.*/
 53 msgsz = i;
 54 /*Echo the message to send.*/
 55 for(i = 0; i < msgsz; i++)
 56 putchar(sndbuf.mtext[i]);
 57 /*Set the IPC_NOWAIT flag if
 58 desired.*/
 59 printf(“\nEnter a 1 if you want \n”);
 60 printf(“the IPC_NOWAIT flag set: “);
 61 scanf(“%d”, &flag);
 62 if(flag == 1)
 63 msgflg = IPC_NOWAIT;
 64 else
 65 msgflg = 0;
 66 /*Check the msgflg.*/
 67 printf(“\nmsgflg = 0%o\n”, msgflg);
 68 /*Send the message.*/
 69 rtrn = msgsnd(msqid, (const void*) msgp, msgsz, msgflg);
 70 if(rtrn == -1)
 71 printf(“\nMsgsnd failed. Error = %d\n”,
 72 errno);
 73 else {
 74 /*Print the value of test which
 75 should be zero for successful.*/
 76 printf(“\nValue returned = %d\n”, rtrn);
 77 /*Print the size of the message
 78 sent.*/
 79 printf(“\nMsgsz = %d\n”, msgsz);
 80 /*Check the data structure update.*/
 81 msgctl(msqid, IPC_STAT, buf);
 82 /*Print out the affected members.*/
 83 /*Print the incremented number of
 84 messages on the queue.*/
 85 printf(“\nThe msg_qnum = %d\n”,
 86 buf->msg_qnum);
 87 /*Print the process id of the last sender.*/
 88 printf(“The msg_lspid = %d\n”,
 89 buf->msg_lspid);
 90 /*Print the last send time.*/
 91 printf(“The msg_stime = %d\n”,
 92 buf->msg_stime);
 93 }
 94 }

PowerMAX OS Programming Guide

12-30

 95 if(choice == 2) /*Receive a message.*/
 96 {
 97 /*Initialize the message pointer
 98 to the receive buffer.*/
 99 msgp = &rcvbuf;
 100 /*Specify the message queue which contains
 101 the desired message.*/
 102 printf(“\nEnter the msqid = “);
 103 scanf(“%d”, &msqid);
 104 /*Specify the specific message on the queue
 105 by using its type.*/
 106 printf(“\nEnter the msgtyp = “);
 107 scanf(“%ld”, &msgtyp);
 108 /*Configure the control flags for the
 109 desired actions.*/
 110 printf(“\nEnter the corresponding code\n”);
 111 printf(“to select the desired flags: \n”);
 112 printf(“No flags = 0\n”);
 113 printf(“MSG_NOERROR = 1\n”);
 114 printf(“IPC_NOWAIT = 2\n”);
 115 printf(“MSG_NOERROR and IPC_NOWAIT = 3\n”);
 116 printf(“ Flags = “);
 117 scanf(“%d”, &flags);
 118 switch(flags) {
 119 case 0:
 120 msgflg = 0;
 121 break;
 122 case 1:
 123 msgflg = MSG_NOERROR;
 124 break;
 125 case 2:
 126 msgflg = IPC_NOWAIT;
 127 break;
 128 case 3:
 129 msgflg = MSG_NOERROR | IPC_NOWAIT;
 130 break;
 131 }
 132 /*Specify the number of bytes to receive.*/
 133 printf(“\nEnter the number of bytes\n”);
 134 printf(“to receive (msgsz) = “);
 135 scanf(“%d”, &msgsz);
 136 /*Check the values for the arguments.*/
 137 printf(“\nmsqid =%d\n”, msqid);
 138 printf(“\nmsgtyp = %ld\n”, msgtyp);
 139 printf(“\nmsgsz = %d\n”, msgsz);
 140 printf(“\nmsgflg = 0%o\n”, msgflg);
 141 /*Call msgrcv to receive the message.*/
 142 rtrn = msgrcv(msqid, (void*), msgp, msgsz, msgtyp,msgflg);
 143 if(rtrn == -1) {
 144 printf(“\nMsgrcv failed., Error = %d\n”, errno);
 145 }
 146 else {
 147 printf (“\nMsgctl was successful\n”);
 148 printf(“for msqid = %d\n”,
 149 msqid);
 150 /*Print the number of bytes received,
 151 it is equal to the return
 152 value.*/
 153 printf(“Bytes received = %d\n”, rtrn);
 154 /*Print the received message.*/
 155 for(i = 0; i<rtrn; i++)
 156 putchar(rcvbuf.mtext[i]);
 157 }
 158 /*Check the associated data structure.*/
 159 msgctl(msqid, IPC_STAT, buf);

Interprocess Communication

12-31

 160 /*Print the decremented number of messages.*/
 161 printf(“\nThe msg_qnum = %d\n”, buf->msg_qnum);
 162 /*Print the process id of the last receiver.*/
 163 printf(“The msg_lrpid = %d\n”, buf->msg_lrpid);
 164 /*Print the last message receive time*/
 165 printf(“The msg_rtime = %d\n”, buf->msg_rtime);
 166 }
 167 }

Multilevel Operation On Messages 12

If the Enhanced Security Utilities are installed and running, it may be desirable for a priv-
ileged process to communicate with a process running at another Mandatory Access Con-
trol (MAC) level. Multilevel operation on messages is allowed for privileged processes.

For a process to write to a message queue at a different security level, the P_MACWRITE
privilege is required. Both P_MACREAD and P_MACWRITE are required for a process to
receive a message from a queue at a different security level, since reading changes the
queue. Both privileges are also required to change the attributes of a message queue exist-
ing at a different security level.

Even though a privileged process may access information at many different security lev-
els, a key specified in a msgget system call will return a msqid with an associated mes-
sage queue and data structure having a security level identical to that of the calling pro-
cess. Once a privileged process has obtained a msqid, the process may perform any of
the possible operations from any security level. Unlike key s, msqid s are not unique to a
security level but to the entire system.

There is no defined interface to obtain the msqid for multilevel operation. A process may
obtain the msqid via the msgget system call when invoked from a specific security
level. A privileged user may obtain a msqid and security level information about the mes-
sage queue by invoking the ipcs command. See the manual page ipcs(1) for details
on the use of ipcs.

The lvlipc system call reports the security level of a message queue associated with the
specified msqid. This system call is of little use to an unprivileged process, since a mes-
sage queue created and used by the unprivileged process always has a security level equal
to that of the process. The process with the P_MACREAD privilege, though, may use this
system call to find the security level of any existing message queue on the system. The
process must also have discretionary read access to the message queue.

For a detailed discussion of process privileges, see the individual system call manual
pages and the intro(2) manual page.

System V Semaphores 12

The semaphore type of IPC allows processes (executing programs) to communicate
through the exchange of semaphore values. Since many applications require the use of
more than one semaphore, the operating system has the ability to create sets or arrays of
semaphores. A semaphore set can contain one or more semaphores up to a limit set by the

PowerMAX OS Programming Guide

12-32

system administrator. The tunable parameter, SEMMSL, has a default value of 25. Sema-
phore sets are created by using the semget (semaphore get) system call.

The process performing the semget system call becomes the owner/creator, determines
how many semaphores are in the set, and sets the initial operation permissions for all pro-
cesses, including itself. This process can subsequently relinquish ownership of the set or
change the operation permissions using the semctl (semaphore control) system call. The
creating process always remains the creator as long as the facility exists. Other processes
with permission can use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore grants per-
mission. If the Enhanced Security Utilities are installed and running, the semaphore and
the manipulating process must also have identical security levels. Privileged processes can
access semaphores at different security levels.

Each semaphore within a set can be incremented and decremented with the semop system
call (documented in the corresponding system manual page).

To increment a semaphore, an integer value of the desired magnitude is passed to the
semop system call. To decrement a semaphore, a minus (-) value of the desired magni-
tude is passed.

The operating system ensures that only one process can manipulate a semaphore set at any
given time. Simultaneous requests are performed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by attempting to
decrement the semaphore by one more than that value. If the process is successful, then
the semaphore value is greater than that certain value. Otherwise, the semaphore value is
not. While doing this, the process can have its execution suspended (IPC_NOWAIT flag
not set) until the semaphore value would permit the operation (other processes increment
the semaphore), or the semaphore facility is removed.

The ability to suspend execution is called a “blocking semaphore operation.” This ability
is also available for a process which is testing for a semaphore equal to zero; only read
permission is required for this test; it is accomplished by passing a value of zero to the
semop (semaphore operation) system call.

On the other hand, if the process is not successful and did not request to have its execution
suspended, it is called a “nonblocking semaphore operation.” In this case, the process is
returned a known error code (-1), and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on the values
of semaphores at different points in time. Remember also that IPC facilities remain in the
operating system until removed by a permitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop system call.

When a set of semaphores is created, the first semaphore in the set is semaphore number
zero. The last semaphore number in the set is numbered one less than the total in the set.

A single system call can be used to perform a sequence of these “blocking/nonblocking
operations” on a set of semaphores. When performing a sequence of operations, the block-
ing/nonblocking operations can be applied to any or all of the semaphores in the set. Also,
the operations can be applied in any order of semaphore number. However, no operations
are done until they can all be done successfully. For example, if the first three of six oper-
ations on a set of ten semaphores could be completed successfully, but the fourth operation

Interprocess Communication

12-33

would be blocked, no changes are made to the set until all six operations can be performed
without blocking. Either the operations are successful and the semaphores are changed, or
one (“nonblocking”) operation is unsuccessful and none are changed. In short, the opera-
tions are “atomically performed.”

Remember, any unsuccessful nonblocking operation for a single semaphore or a set of
semaphores causes immediate return with no operations performed at all. When this
occurs, an error code (-1) is returned to the process, and the external variable errno is
set accordingly.

System calls make these semaphore capabilities available to processes. The calling pro-
cess passes arguments to a system call, and the system call either successfully or unsuc-
cessfully performs its function. If the system call is successful, it performs its function and
returns the appropriate information. Otherwise, a known error code (-1) is returned to the
process, and the external variable errno is set accordingly.

Using Semaphores 12

Before semaphores can be used (operated on or controlled) a uniquely identified data
structure and semaphore set (array) must be created. The unique identifier is called the
semaphore set identifier (semid); it is used to identify or refer to a particular data struc-
ture and semaphore set. This identifier is accessible by any process in the system, subject
to normal access restrictions.

The semaphore set contains a predefined number of structures in an array, one structure for
each semaphore in the set. The number of semaphores (nsems) in a semaphore set is user
selectable. The following members are in each structure within a semaphore set:

• semaphore value

• PID performing last operation

• number of processes waiting for the semaphore value to become greater
than its current value

• number of processes waiting for the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set. This data
structure contains the following information related to the semaphore set:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The definition for the semaphore set (array member) sem is as shown in Figure 12-4:

PowerMAX OS Programming Guide

12-34

Figure 12-4. Definition of sem Structure

Likewise, the definition for the associated semaphore data structure semid_ds is as
shown in Figure 12-5:

Figure 12-5. Definition of semid_ds Structure

The C programming language data structure definition for the semaphore set (array mem-
ber) and for the semid_ds data structure are located in the sys/sem.h header file.

Note that the sem_perm member of this structure uses ipc_perm as a template.

The ipc_perm data structure is the same for all IPC facilities; it is located in the
sys/ipc.h header file and is shown in the “System V Messages” section.

The semget system call is used to perform two tasks:

• to get a new semaphore set identifier and create an associated data structure
and semaphore set for it

• to return an existing semaphore set identifier that already has an associated
data structure and semaphore set

The task performed is determined by the value of the key argument passed to the semget
system call. For the first task, if the key is not already in use for an existing semid and the
IPC_CREAT flag is set, a new semid is returned with an associated data structure and
semaphore set created for it provided no system tunable parameter would be exceeded.

struct sem {
ushort_t semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort_t semncnt; /* # awaiting semval > cval */
ushort_t semzcnt; /* # awaiting semval = 0 */
sv_t semn_sv; /* synch variable for semncnt */
sv_t semz_sv; /* synch variable for semzcnt */

}:

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphre in set*/
char sem_pad0[2]; /* expansion */
ushort_t sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last semop time */
long sem_pad1;/* reserved for time_t expansion */
time_t sem_ctime; /* last change time */
long sem_pad2; /* time_t expansion */
long sem_pad3[SEM_PAD]; /* reserve area */

};

Interprocess Communication

12-35

When the Enhanced Security Utilities are installed and running, key s are kept on a
per-level basis. Keys within a security level are unique; however, the same key may exist
at different security levels. Each key references a different semaphore and data structure
at each security level where the key exists. As mentioned before, a semaphore and data
set inherit the security level of the creating process. While the security level of the sema-
phore cannot be changed, a process with appropriate privilege may perform multilevel
operations on semaphores. Refer to the “Multilevel Operation On Semaphores” section of
this chapter for details.

There is also a provision for specifying a key of value zero (0), which is known as the pri-
vate key (IPC_PRIVATE). When this key is specified, a new identifier is always
returned with an associated data structure and semaphore set created for it, unless a sys-
tem-tunable parameter would be exceeded. The ipcs command will show the key field
for the semid as all zeros.

When performing the first task, the process which calls semget becomes the owner/cre-
ator, and the associated data structure is initialized accordingly. Remember, ownership can
be changed, but the creating process always remains the creator (see the “Controlling
Semaphores” section). The creator of the semaphore set also determines the initial opera-
tion permissions for the facility.

For the second task, if a semaphore set identifier exists for the key specified, the value of
the existing identifier is returned. If you do not want to have an existing semaphore set
identifier returned, a control command (IPC_EXCL) can be specified (set) in the semflg
argument passed to the system call. The system call will fail if it is passed a value for the
number of semaphores (nsems) that is greater than the number actually in the set; if you
do not know how many semaphores are in the set, use 0 for nsems. (see “Using semget”
for how to use this system call).

If the Enhanced Security Utilities are installed and running, key s are unique within secu-
rity levels. The same key may exist at different security levels; however, the key will ref-
erence a different semaphore set and data structure at each security level where the key
exists. As mentioned before, a semaphore set and data structure inherit the security level
of the creating process; the security level of the semaphore set cannot be changed.

Once a uniquely identified semaphore set and data structure are created, semop (sema-
phore operations) and semctl (semaphore control) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for zero. The
semop system call is used to perform these operations (see “Operations On Semaphores”
for details of the semop system call.

The semctl system call permits you to control the semaphore facility in the following
ways:

• by returning the value of a semaphore (GETVAL)

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a sema-
phore set (GETPID)

• by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

PowerMAX OS Programming Guide

12-36

• by returning the number of processes waiting for a semaphore value to
equal zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in user
memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of values
in user memory (SETALL)

• by retrieving the data structure associated with a semaphore set
(IPC_STAT)

• by changing operation permissions for a semaphore set (IPC_SET)

• by removing a particular semaphore set identifier from the operating sys-
tem along with its associated data structure and semaphore set
(IPC_RMID)

See the section “Controlling Semaphores” for details of the semctl system call.

Getting Semaphores 12

This section describes how to use the semget system call. The accompanying program
illustrates its use.

Using semget 12

The synopsis found in the semget(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflag)
key_t key;
int nsems, semflag;

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that returns an inte-
ger-type value. The next two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. key_t is defined by a typedef in the
sys/types.h header file to be an integer.

The integer returned from this system call upon successful completion is the semaphore
set identifier that was discussed above.

Interprocess Communication

12-37

The process calling the semget system call must supply three actual arguments to be
passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is created if either

• key is equal to IPC_PRIVATE ,

or

• key is a unique integer and semflg ANDed with IPC_CREAT is “true.”

If the Enhanced Security Utilities are installed, a unique key is an integer that is not yet
associated with a message queue at the security level of the calling process; the new mes-
sage queue and its data structure inherit the security level of the creating process.

The value passed to the semflg argument must be an integer that will specify the following:

• operation permissions

• control fields (commands)

Table 12-2 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise ORing the values for the operation per-
missions wanted. That is, if read by user and read/alter by others is desired, the code value
would be 00406 (00400 plus 00006). There are constants #define 'd in the sys/sem.h
header file which can be used for the user (OWNER). They are as follows:

SEM_A 0200 /* alter permission by owner */
SEM_R 0400 /* read permission by owner */

Control flags are predefined constants (represented by all upper-case letters). The flags
that apply to the semget system call are IPC_CREAT and IPC_EXCL and are defined in
the sys/ipc.h header file.

The value for semflg is, therefore, a combination of operation permissions and control
commands. After determining the value for the operation permissions as previously

Table 12-2. Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Alter by User 00200

Read by Group 00040

Alter by Group 00020

Read by Others 00004

Alter by Others 00002

PowerMAX OS Programming Guide

12-38

described, the desired flag(s) can be specified. This specification is accomplished by add-
ing or bitwise ORing (|) them with the operation permissions; the bit positions and values
for the control commands in relation to those of the operation permissions make this pos-
sible.

The semflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value:

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL|0400));

As specified by the semget(2) system manual page, success or failure of this system
call depends upon the actual argument values for key, nsems, and semflg, and system-tun-
able parameters. The system call will attempt to return a new semaphore set identifier if
one of the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semaphore set identifier associated with it and
(semflg & IPC_CREAT) is “true” (not zero).

If the Enhanced Security Utilities are installed, the key is an integer that is not yet associ-
ated with a message queue at the security level of the calling process; and the new mes-
sage queue and its data structure inherit the security level of the creating process.

The key argument can be set to IPC_PRIVATE like this:

semid = semget(IPC_PRIVATE, nsems, semflg);

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters will always
cause a failure. The SEMMNI system-tunable parameter determines the maximum number
of unique semaphore sets (semid 's) that may be in use at any given time. The SEMMNS
system-tunable parameter determines the maximum number of semaphores in all sema-
phore sets system wide. The SEMMSL system-tunable parameter determines the maximum
number of semaphores in each semaphore set.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It will
cause the system call to return an error if a semaphore set identifier already exists for the
specified key provided. (If the Enhanced Security Utilities are installed and running, it will
cause the system call to return an error if a semaphore set identifier already exists at the
security level of the calling process for the specified key provided.) This is necessary to
prevent the process from thinking that it has received a new (unique) identifier when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a new sema-
phore set identifier is returned if the system call is successful. Any value for semflg returns
a new identifier if the key equals zero (IPC_PRIVATE) and no system-tunable parameters
are exceeded.

Refer to the semget(2) manual page for specific associated data structure initialization
for successful completion. The specific failure conditions and their error names are con-
tained there also.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the semget system call to be exercised.

Interprocess Communication

12-39

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 4-8) by including the required header files as specified by the
semget(2) system manual page. Note that the <errno.h> header file is included as
opposed to declaring errno as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the synopsis. Their
declarations are self explanatory. These names make the program more readable and are
perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions

flags used to store the desired control commands (flags)

opperm_flags used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to
pass the semflg argument

semid used for returning the semaphore set identification number for a
successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal operation permissions
code, and the control command combinations (flags) which are selected from a menu
(lines 15-32). All possible combinations are allowed even though they might not be viable.
This allows observing the errors for invalid combinations.

Next, the menu selection for the flags is combined with the operation permissions; the
result is stored in opperm_flags (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57); its value is stored in
nsems.

The system call is made next; the result is stored in the semid (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the error code
(-1), it is tested to see if an error occurred (line 63). If semid equals -1 , a message indi-
cates that an error resulted and the external errno variable is displayed (line 65).
Remember that the external errno variable is only set when a system call fails; it should
only be examined immediately following system calls.

If no error occurred, the returned semaphore set identifier is displayed (line 69).

The example program for the semget system call follows. We suggest that you name the
source program file semget.c and the executable file semget .

 1 /*This is a program to illustrate
 2 **the semaphore get, semget(),
 3 **system call capabilities.*/
 4 #include <stdio.h>
 5 #include <sys/types.h>
 6 #include <sys/ipc.h>
 7 #include <sys/sem.h>

PowerMAX OS Programming Guide

12-40

 8 #include <errno.h>
 9 /*Start of main C language program*/
 10 main()
 11 {
 12 key_t key; /*declare as long integer*/
 13 int opperm, flags, nsems;
 14 int semid, opperm_flags;
 15 /*Enter the desired key*/
 16 printf(“\nEnter the desired key in hex = “);
 17 scanf(“%x”, &key);
 18 /*Enter the desired octal operation
 19 permissions.*/
 20 printf(“\nEnter the operation\n”);
 21 printf(“permissions in octal = “);
 22 scanf(“%o”, &opperm);
 23 /*Set the desired flags.*/
 24 printf(“\nEnter corresponding number to\n”);
 25 printf(“set the desired flags:\n”);
 26 printf(“No flags = 0\n”);
 27 printf(“IPC_CREAT = 1\n”);
 28 printf(“IPC_EXCL = 2\n”);
 29 printf(“IPC_CREAT and IPC_EXCL = 3\n”);
 30 printf(“ Flags = “);
 31 /*Get the flags to be set.*/
 32 scanf(“%d”, &flags);
 33 /*Error checking (debugging)*/
 34 printf (“\nkey =0x%x, opperm = 0%o, flags = %d\n”,
 35 key, opperm, flags);
 36 /*Incorporate the control fields (flags) with
 37 the operation permissions.*/
 38 switch (flags)
 39 {
 40 case 0: /*No flags are to be set.*/
 41 opperm_flags = (opperm | 0);
 42 break;
 43 case 1: /*Set the IPC_CREAT flag.*/
 44 opperm_flags = (opperm | IPC_CREAT);
 45 break;
 46 case 2: /*Set the IPC_EXCL flag.*/
 47 opperm_flags = (opperm | IPC_EXCL);
 48 break;
 49 case 3: /*Set the IPC_CREAT and IPC_EXCL
 50 flags.*/
 51 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
 52 }
 53 /*Get the number of semaphores for this set.*/
 54 printf(“\nEnter the number of\n”);
 55 printf(“desired semaphores for\n”);
 56 printf(“this set (25 max) = “);
 57 scanf(“%d”, &nsems);
 58 /*Check the entry.*/
 59 printf(“\nNsems = %d\n”, nsems);
 60 /*Call the semget system call.*/
 61 semid = semget(key, nsems, opperm_flags);
 62 /*Perform the following if the call is unsuccessful.*/
 63 if(semid == -1)
 64 {
 65 printf(“The semget call failed, error number = %d\n”, errno);
 66 }
 67 /*Return the semid upon successful completion.*/
 68 else
 69 printf(“\nThe semid = %d\n”, semid);
 70 exit(0);
 71 }

Interprocess Communication

12-41

Controlling Semaphores 12

This section describes how to use the semctl system call. The accompanying program
illustrates its use.

Using semctl 12

The synopsis found in the semctl(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun
{
 int val;
 struct semid_ds *buf;
 ushort *array;
} arg;

The semctl system call requires four arguments to be passed to it, and it returns an inte-
ger value.

The semid argument must be a valid, non-negative, integer value that has already been cre-
ated by using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates to
sequences of operations (atomically performed) on the set. When a set of semaphores is
created, the first semaphore is number 0, and the last semaphore is numbered one less than
the total in the set.

The cmd argument can be replaced by one of the following values:

GETVAL return the value of a single semaphore within a semaphore set

SETVAL set the value of a single semaphore within a semaphore set

GETPID return the PID of the process that performed the last operation on
the semaphore within a semaphore set

GETNCNT return the number of processes waiting for the value of a particu-
lar semaphore to become greater than its current value

GETZCNT return the number of processes waiting for the value of a particu-
lar semaphore to be equal to zero

GETALL return the value for all semaphores in a semaphore set

SETALL set all semaphore values in a semaphore set

PowerMAX OS Programming Guide

12-42

IPC_STAT return the status information contained in the associated data
structure for the specified semid , and place it in the data structure
pointed to by the buf pointer in the user memory area; arg.buf
is the union member that contains pointer

IPC_SET for the specified semaphore set (semid), set the effective
user/group identification and operation permissions

IPC_RMID remove the specified semaphore set (semid) along with its asso-
ciated data structure.

To perform an IPC_SET or IPC_RMID control command, a process must have:

• an effective user id of OWNER/CREATOR, or

• the P_OWNER privilege,

and, if the Enhanced Security Utilities are installed, must be at the same security level as
the semid.

Note that a semaphore set can also be removed by using the ipcrm(1) command and
specifying the -s semid or the -S semkey option, where semid specifies the identifier for
the semaphore set and the semkey argument specifies the key associated with the sema-
phore set. To use this command, a process must have the same privileges as those required
for performing an IPC_RMID control command. See the ipcrm(1) system manual page
for additional information on the use of this command.

The remaining control commands require either read or write permission, as appropriate.

If the Enhanced Security Utilities are installed and running, the process and the semaphore
must be at the same security level and the process must pass DAC write access checks to
execute commands that alter the semaphore set. To execute commands that do not alter the
semaphore set, the process's level must dominate that of the semaphore set, and the pro-
cess must pass DAC read access checks. A process with the P_MACREAD and/or
P_MACWRITE privileges may override the security level restriction.

The arg argument is used to pass the system call the appropriate union member for the
control command to be performed. For some of the control commands, the arg argument
is not required and is simply ignored.

• arg.val required: SETVAL

• arg.buf required: IPC_STAT, IPC_SET

• arg.array required: GETALL, SETALL

• arg ignored: GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

The details of this system call are discussed in the following program. If you need more
information on the logic manipulations in this program, read “Using semget.” It goes into
more detail than would be practical for every system call.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the semctl system call to be exercised.

Interprocess Communication

12-43

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 5-9) by including the required header files as specified by the
semctl(2) system manual page. Note that in this program errno is declared as an
external variable, and therefore the <errno.h> header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self explanatory. These names make the program
more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

semid_ds used to receive the specified semaphore set identifier's data struc-
ture when an IPC_STAT control command is performed

c used to receive the input values from the scanf function (line
119) when performing a SETALL control command

i used as a counter to increment through the union arg.array
when displaying the semaphore values for a GETALL (lines
98-100) control command, and when initializing the arg.array
when performing a SETALL (lines 117-121) control command

length used as a variable to test for the number of semaphores in a set
against the i counter variable (lines 98, 117)

uid used to store the IPC_SET value for the user identification

gid used to store the IPC_SET value for the group identification

mode used to store the IPC_SET value for the operation permissions

retrn used to store the return value from the system call

semid used to store and pass the semaphore set identifier to the system
call

semnum used to store and pass the semaphore number to the system call

cmd used to store the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member (uid , gid , mode) for the
IPC_SET control command is to be changed

semvals[] used to store the set of semaphore values when getting (GETALL)
or initializing (SETALL)

arg.val used to pass the system call a value to set, or to store a value
returned from the system call, for a single semaphore (union
member)

arg.buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values, or where the IPC_SET command gets
the values to set (union member)

PowerMAX OS Programming Guide

12-44

arg.array a pointer passed to the system call which locates the array in the
user memory where the GETALL control command is to place its
return values, or when the SETALL command gets the values to
set (union member)

Note that the semid_ds data structure in this program (line 14) uses the data structure
located in the sys/sem.h header file of the same name as a template for its declaration.

Note that the semvals array is declared to have 25 elements (0 through 24). This number
corresponds to the maximum number of semaphores allowed per set (SEMMSL), a sys-
tem-tunable parameter.

Now that all of the required declarations have been presented for this program, this is how
it works.

First, the program prompts for a valid semaphore set identifier, which is stored in the
semid variable (lines 24-26). This is required for all semctl system calls.

Then, the code for the desired control command must be entered (lines 17-42), and the
code is stored in the cmd variable. The code is tested to determine the control command
for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a sema-
phore number is displayed (lines 48, 49). When it is entered, it is stored in the semnum
variable (line 50). Then, the system call is performed, and the semaphore value is dis-
played (lines 51-54). Note that the arg argument is not required in this case, and the sys-
tem call will simply ignore it. If the system call is successful, a message indicates this
along with the semaphore set identifier used (lines 197, 198); if the system call is unsuc-
cessful, an error message is displayed along with the value of the external errno variable
(lines 194, 195).

If the SETVAL control command is selected (code 2), a message prompting for a sema-
phore number is displayed (lines 55, 56). When it is entered, it is stored in the semnum
variable (line 57). Next, a message prompts for the value to which the semaphore is to be
set; it is stored as the arg.val member of the union (lines 58, 59). Then, the system call is
performed (lines 60, 62). Depending upon success or failure, the program returns the same
messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is made immediately
since all required arguments are known (lines 63-66), and the PID of the process perform-
ing the last operation is displayed. Note that the arg argument is not required in this case,
and the system call will simply ignore it. Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for a sema-
phore number is displayed (lines 67-71). When entered, it is stored in the semnum vari-
able (line 73). Then, the system call is performed and the number of processes waiting for
the semaphore to become greater than its current value is displayed (lines 73-76). Note
that the arg argument is not required in this case, and the system call will simply ignore it.
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the GETZCNT control command is selected (code 5), a message prompting for a sema-
phore number is displayed (lines 77-80). When it is entered, it is stored in the semnum
variable (line 81). Then the system call is performed and the number of processes waiting

Interprocess Communication

12-45

for the semaphore value to become equal to zero is displayed (lines 82-85). Depending
upon success or failure, the program returns the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set (lines
87-93). The length variable is set to the number of semaphores in the set (line 93). The
arg.array union member is set to point to the semvals array where the system call is
to store the values of the semaphore set (line 96). Now, a loop is entered which displays
each element of the arg.array from zero to one less than the value of length (lines
98-104). The semaphores in the set are displayed on a single line, separated by a space.
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the SETALL control command is selected (code 7), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set (lines
107-110). The length variable is set to the number of semaphores in the set (line 113).
Next, the program prompts for the values to be set and enters a loop which takes values
from the keyboard and initializes the semvals array to contain the desired values of the
semaphore set (lines 115-121). The loop puts the first entry into the array position for
semaphore number zero and ends when the semaphore number that is filled in the array
equals one less than the value of length. The arg.array union member is set to point to
the semvals array from which the system call is to obtain the semaphore values. The
system call is then made (lines 122-125). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is performed (line
129), and the status information returned is printed out (lines 130-141); only the members
that can be set are printed out in this program. Note that if the system call is unsuccessful,
the status information of the last successful one is printed out. In addition, an error mes-
sage is displayed, and the errno variable is printed out (line 194).

If the IPC_SET control command is selected (code 9), the program gets the current status
information for the semaphore set identifier specified (lines 145-149). This is necessary
because this example program provides for changing only one member at a time, and the
semctl system call changes all of them. Also, if an invalid value happened to be stored in
the user memory area for one of these members, it would cause repetitive failures for this
control command until corrected. The next thing the program does is to prompt for a code
corresponding to the member to be changed (lines 150-156). This code is stored in the
choice variable (line 157). Now, depending upon the member picked, the program
prompts for the new value (lines 158-181). The value is placed into the appropriate mem-
ber in the user memory area data structure, and the system call is made (line 184).
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the IPC_RMID control command (code 10) is selected, the system call is performed
(lines 186-188). The semaphore set identifier along with its associated data structure and
semaphore set is removed from the operating system. Depending upon success or failure,
the program returns the same messages as for the other control commands.

The example program for the semctl system call follows. We suggest that you name the
source program file semctl.c and the executable file semctl .

 1 /*This is a program to illustrate
 2 **the semaphore control, semctl(),
 3 **system call capabilities.
 4 */

PowerMAX OS Programming Guide

12-46

 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/sem.h>
 10 /*Start of main C language program*/
 11 main()
 12 {
 13 extern int errno;
 14 struct semid_ds semid_ds;
 15 int c, i, length;
 16 int uid, gid, mode;
 17 int retrn, semid, semnum, cmd, choice;
 18 ushort semvals[25];
 19 union semun {
 20 int val;
 21 struct semid_ds *buf;
 22 ushort *array;
 23 } arg;
 24 /*Enter the semaphore ID.*/
 25 printf(“Enter the semid = “);
 26 scanf(“%d”, &semid);
 27 /*Choose the desired command.*/
 28 printf(“\nEnter the number for\n”);
 29 printf(“the desired cmd:\n”);
 30 printf(“GETVAL = 1\n”);
 31 printf(“SETVAL = 2\n”);
 32 printf(“GETPID = 3\n”);
 33 printf(“GETNCNT = 4\n”);
 34 printf(“GETZCNT = 5\n”);
 35 printf(“GETALL = 6\n”);
 36 printf(“SETALL = 7\n”);
 37 printf(“IPC_STAT = 8\n”);
 38 printf(“IPC_SET = 9\n”);
 39 printf(“IPC_RMID = 10\n”);
 40 printf(“Entry = “);
 41 scanf(“%d”, &cmd);
 42 /*Check entries.*/
 43 printf (“\nsemid =%d, cmd = %d\n\n”,
 44 semid, cmd);
 45 /*Set the command and do the call.*/
 46 switch (cmd)
 47 {
 48 case 1: /*Get a specified value.*/
 49 printf(“\nEnter the semnum = “);
 50 scanf(“%d”, &semnum);
 51 /*Do the system call.*/
 52 retrn = semctl(semid, semnum, GETVAL, arg);
 53 printf(“\nThe semval = %d”, retrn);
 54 break;
 55 case 2: /*Set a specified value.*/
 56 printf(“\nEnter the semnum = “);
 57 scanf(“%d”, &semnum);
 58 printf(“\nEnter the value = “);
 59 scanf(“%d”, &arg.val);
 60 /*Do the system call.*/
 61 retrn = semctl(semid, semnum, SETVAL, arg);
 62 break;
 63 case 3: /*Get the process ID.*/
 64 retrn = semctl(semid, 0, GETPID, arg);
 65 printf(“\nThe sempid = %d”, retrn);
 66 break;
 67 case 4: /*Get the number of processes
 68 waiting for the semaphore to
 69 become greater than its current

Interprocess Communication

12-47

 70 value.*/
 71 printf(“\nEnter the semnum = “);
 72 scanf(“%d”, &semnum);
 73 /*Do the system call.*/
 74 retrn = semctl(semid, semnum, GETNCNT, arg);
 75 printf(“\nThe semncnt = %d”, retrn);
 76 break;
 77 case 5: /*Get the number of processes
 78 waiting for the semaphore
 79 value to become zero.*/
 80 printf(“\nEnter the semnum = “);
 81 scanf(“%d”, &semnum);
 82 /*Do the system call.*/
 83 retrn = semctl(semid, semnum, GETZCNT, arg);
 84 printf(“\nThe semzcnt = %d”, retrn);
 85 break;
 86 case 6: /*Get all of the semaphores.*/
 87 /*Get the number of semaphores in
 88 the semaphore set.*/
 89 arg.buf = &semid_ds;
 90 retrn = semctl(semid, 0, IPC_STAT, arg);
 91 if(retrn == -1)
 92 goto ERROR;
 93 length = arg.buf->sem_nsems;
 94 /*Get and print all semaphores in the
 95 specified set.*/
 96 arg.array = semvals;
 97 retrn = semctl(semid, 0, GETALL, arg);
 98 for (i = 0; i < length; i++)
 99 {
 100 printf(“%d”, semvals[i]);
 101 /*Separate each
 102 semaphore.*/
 103 printf(“ “);
 104 }
 105 break;
 106 case 7: /*Set all semaphores in the set.*/
 107 /*Get the number of semaphores in
 108 the set.*/
 109 arg.buf = &semid_ds;
 110 retrn = semctl(semid, 0, IPC_STAT, arg);
 111 if(retrn == -1)
 112 goto ERROR;
 113 length = arg.buf->sem_nsems;
 114 printf(“Length = %d\n”, length);
 115 /*Set the semaphore set values.*/
 116 printf(“\nEnter each value:\n”);
 117 for(i = 0; i < length ; i++)
 118 {
 119 scanf(“%d”, &c);
 120 semvals[i] = c;
 121 }
 122 /*Do the system call.*/
 123 arg.array = semvals;
 124 retrn = semctl(semid, 0, SETALL, arg);
 125 break;
 126 case 8: /*Get the status for the semaphore set.*/
 127 /*Get and print the current status values.*/
 128 arg.buf = &semid_ds;
 129 retrn = semctl(semid, 0, IPC_STAT, arg);
 130 printf (“\nThe USER ID = %d\n”,
 131 arg.buf->sem_perm.uid);
 132 printf (“The GROUP ID = %d\n”,
 133 arg.buf->sem_perm.gid);
 134 printf (“The operation permissions = 0%o\n”,

PowerMAX OS Programming Guide

12-48

 135 arg.buf->sem_perm.mode);
 136 printf (“The number of semaphores in set = %d\n”,
 137 arg.buf->sem_nsems);
 138 printf (“The last semop time = %d\n”,
 139 arg.buf->sem_otime);
 140 printf (“The last change time = %d\n”,
 141 arg.buf->sem_ctime);
 142 break;
 143 case 9: /*Select and change the desired
 144 member of the data structure.*/
 145 /*Get the current status values.*/
 146 arg.buf = &semid_ds;
 147 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
 148 if(retrn == -1)
 149 goto ERROR;
 150 /*Select the member to change.*/
 151 printf(“\nEnter the number for the\n”);
 152 printf(“member to be changed:\n”);
 153 printf(“sem_perm.uid = 1\n”);
 154 printf(“sem_perm.gid = 2\n”);
 155 printf(“sem_perm.mode = 3\n”);
 156 printf(“Entry = “);
 157 scanf(“%d”, &choice);
 158 switch(choice){
 159 case 1: /*Change the user ID.*/
 160 printf(“\nEnter USER ID = “);
 161 scanf (“%d”, &uid);
 162 arg.buf->sem_perm.uid = uid;
 163 printf(“\nUSER ID = %d\n”,
 164 arg.buf->sem_perm.uid);
 165 break;
 166 case 2: /*Change the group ID.*/
 167 printf(“\nEnter GROUP ID = “);
 168 scanf(“%d”, &gid);
 169 arg.buf->sem_perm.gid = gid;
 170 printf(“\nGROUP ID = %d\n”,
 171 arg.buf->sem_perm.gid);
 172 break;
 173 case 3: /*Change the mode portion of
 174 the operation
 175 permissions.*/
 176 printf(“\nEnter MODE in octal = “);
 177 scanf(“%o”, &mode);
 178 arg.buf->sem_perm.mode = mode;
 179 printf(“\nMODE = 0%o\n”,
 180 arg.buf->sem_perm.mode);
 181 break;
 182 }
 183 /*Do the change.*/
 184 retrn = semctl(semid, 0, IPC_SET, arg);
 185 break;
 186 case 10: /*Remove the semid along with its
 187 data structure.*/
 188 retrn = semctl(semid, 0, IPC_RMID, arg);
 189 }
 190 /*Perform the following if the call is unsuccessful.*/
 191 if(retrn == -1)
 192 {
 193 ERROR:
 194 printf (“\nThe semctl call failed!,error number = %d\n”, errno);
 195 exit(0);
 196 }
 197 printf (“\n\nThe semctl system call was successful\n”);
 198 printf (“for semid = %d\n”, semid);

Interprocess Communication

12-49

 199 exit (0);
 200 }

Operations On Semaphores 12

This section describes how to use the semop system call. The accompanying program
illustrates its use.

Using semop 12

The synopsis found in the semop(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf * sops;
unsigned nsops;

The semop system call requires three arguments to be passed to it and returns an integer
value which will be zero for successful completion or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the semget system call.

The sops argument points to an array of structures in the user memory area that contains
the following for each semaphore to be changed

• the semaphore number (sem_num)

• the operation to be performed (sem_op)

• the control flags (sem_flg)

The * sops declaration means that either an array name (which is the address of the first
element of the array) or a pointer to the array can be used. sembuf is the tag name of the
data structure used as the template for the structure members in the array; it is located in
the sys/sem.h header file.

The nsops argument specifies the length of the array (the number of structures in the
array). The maximum size of this array is determined by the SEMOPM system-tunable
parameter. Therefore, a maximum of SEMOPM operations can be performed for each
semop system call.

The semaphore number (sem_num) determines the particular semaphore within the set on
which the operation is to be performed.

The operation to be performed is determined by the following:

• if sem_op is positive, the semaphore value is incremented by the value of
sem_op

PowerMAX OS Programming Guide

12-50

• if sem_op is negative, the semaphore value is decremented by the absolute
value of sem_op

• if sem_op is zero, the semaphore value is tested for equality to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT—this operation command can be set for any operations in
the array. The system call will return unsuccessfully without changing any
semaphore values at all if any operation for which IPC_NOWAIT is set
cannot be performed successfully. The system call will be unsuccessful
when trying to decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

• SEM_UNDO—this operation command is used to tell the system to undo the
process's semaphore changes automatically when the process exits; it
allows processes to avoid deadlock problems. To implement this feature,
the system maintains a table with an entry for every process in the system.
Each entry points to a set of undo structures, one for each semaphore used
by the process. The system records the net change.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the semop system call to be exercised.
From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 5-9) by including the required header files as specified by the
shmop(2) system manual page. Note that in this program errno is declared as an
external variable; therefore, the <errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the program more
readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

sembuf[10] used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten is the standard value of the tunable
parameter SEMOPM, the maximum number of operations on a
semaphore set for each semop system call

sops used as a pointer (line 14) to the sembuf array for the system call
and for accessing the structure members within the array

string[8] used as a character buffer to hold a number entered by the user

rtrn used to store the return value from the system call

flags used to store the code of the IPC_NOWAIT or SEM_UNDO flags
for the semop system call (line 59)

sem_num used to store the semaphore number entered by the user for each
semaphore operation in the array

Interprocess Communication

12-51

i used as a counter (line 31) for initializing the structure members
in the array, and used to print out each structure in the array (line
78)

semid used to store the desired semaphore set identifier for the system
call

nsops used to specify the number of semaphore operations for the sys-
tem call; must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is to perform
operations on (lines 18-21). semid is stored in the semid variable (line 22).

A message is displayed requesting the number of operations to be performed on this set
(lines 24-26). The number of operations is stored in the nsops variable (line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The semaphore
number, operation, and operation command (flags) are entered for each structure in the
array. The number of structures equals the number of semaphore operations (nsops) to be
performed for the system call, so nsops is tested against the i counter for loop control.
Note that sops is used as a pointer to each element (structure) in the array, and sops is
incremented just like i. sops is then used to point to each member in the structure for
setting them.

After the array is initialized, all of its elements are printed out for feedback (lines 77-84).

The sops pointer is set to the address of the array (lines 85, 86). sembuf could be used
directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a corresponding
message is displayed. The results of the operation(s) can be viewed by using the semctl
GETALL control command.

The example program for the semop system call follows. We suggest that you name the
source program file semop.c and the executable file semop.

 1 /*This is a program to illustrate
 2 **the semaphore operations, semop(),
 3 **system call capabilities.
 4 */
 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/sem.h>
 10 /*Start of main C language program*/
 11 main()
 12 {
 13 extern int errno;
 14 struct sembuf sembuf[10], *sops;
 15 char string[8];
 16 int retrn, flags, sem_num, i, semid;
 17 unsigned nsops;
 18 /*Enter the semaphore ID.*/
 19 printf(“\nEnter the semid of\n”);
 20 printf(“the semaphore set to\n”);
 21 printf(“be operated on = “);
 22 scanf(“%d”, &semid);
 23 printf(“\nsemid = %d”, semid);

PowerMAX OS Programming Guide

12-52

 24 /*Enter the number of operations.*/
 25 printf(“\nEnter the number of semaphore\n”);
 26 printf(“operations for this set = “);
 27 scanf(“%d”, &nsops);
 28 printf(“\nsops = %d”, nsops);
 29 /*Initialize the array for the
 30 number of operations to be performed.*/
 31 for(i = 0, sops = sembuf; i < nsops; i++, sops++)
 32 {
 33 /*This determines the semaphore in
 34 the semaphore set.*/
 35 printf(“\nEnter the semaphore\n”);
 36 printf(“number (sem_num) = “);
 37 scanf(“%d”, &sem_num);
 38 sops->sem_num = sem_num;
 39 printf(“\nThe sem_num = %d”, sops->sem_num);
 40 /*Enter a (-)number to decrement,
 41 an unsigned number (no +) to increment,
 42 or zero to test for zero. These values
 43 are entered into a string and converted
 44 to integer values.*/
 45 printf(“\nEnter the operation for\n”);
 46 printf(“the semaphore (sem_op) = “);
 47 scanf(“%s”, string);
 48 sops->sem_op = atoi(string);
 49 printf(“\nsem_op = %d\n”, sops->sem_op);
 50 /*Specify the desired flags.*/
 51 printf(“\nEnter the corresponding\n”);
 52 printf(“number for the desired\n”);
 53 printf(“flags:\n”);
 54 printf(“No flags = 0\n”);
 55 printf(“IPC_NOWAIT = 1\n”);
 56 printf(“SEM_UNDO = 2\n”);
 57 printf(“IPC_NOWAIT and SEM_UNDO = 3\n”);
 58 printf(“ Flags = “);
 59 scanf(“%d”, &flags);
 60 switch(flags)
 61 {
 62 case 0:
 63 sops->sem_flg = 0;
 64 break;
 65 case 1:
 66 sops->sem_flg = IPC_NOWAIT;
 67 break;
 68 case 2:
 69 sops->sem_flg = SEM_UNDO;
 70 break;
 71 case 3:
 72 sops->sem_flg = IPC_NOWAIT | SEM_UNDO;
 73 break;
 74 }
 75 printf(“\nFlags = 0%o\n”, sops->sem_flg);
 76 }
 77 /*Print out each structure in the array.*/
 78 for(i = 0; i < nsops; i++)
 79 {
 80 printf(“\nsem_num = %d\n”, sembuf[i].sem_num);
 81 printf(“sem_op = %d\n”, sembuf[i].sem_op);
 82 printf(“sem_flg = 0%o\n”, sembuf[i].sem_flg);
 83 printf(“ “);
 84 }
 85 sops = sembuf; /*Reset the pointer to
 86 sembuf[0].*/
 87 /*Do the semop system call.*/
 88 retrn = semop(semid, sops, nsops);

Interprocess Communication

12-53

 89 if(retrn == -1) {
 90 printf(“\nSemop failed, error = %d\n”, errno);
 91 }
 92 else {
 93 printf (“\nSemop was successful\n”);
 94 printf(“for semid = %d\n”, semid);
 95 printf(“Value returned = %d\n”, retrn);
 96 }
 97 }

Multilevel Operation On Semaphores 12

If the Enhanced Security Utilities are installed and running, it may be desirable for a priv-
ileged process to communicate with a process running at another Mandatory Access Con-
trol (MAC) level. Multilevel operation on semaphores is allowed for privileged processes.

For a process to alter a semaphore at a different security level, the P_MACWRITE privilege
is required. P_MACREAD is required for a process to read semaphore set at a different
security level. Both privileges are required to change the attributes of a semaphore set
existing at a different security level.

Even though a privileged process may access information at many different security lev-
els, a key specified in a semget system call will return a semid with an associated
semaphore set and data structure having a security level identical to that of the calling pro-
cess. Once a privileged process has obtained a semid, the process may perform any of
the possible operations from any security level. Unlike keys , semids are not unique to
a security level but to the entire system.

There is no defined interface to obtain the semid for multilevel operation. A process may
obtain the semid via the semget system call when invoked from a specific security
level. A privileged user may also manually obtain a semid and security level information
about the semaphore set by invoking the ipcs command. The privileged process must
have the P_MACREAD privilege when invoking ipcs.

See the manual page ipcs(1) for details on the use of ipcs.

The lvlipc system call reports the security level of a semaphore set associated with the
specified semid. This system call is of little use to an unprivileged process, since a sema-
phore set created and used by the unprivileged process always has a security level equal to
that of the process. The process with the P_MACREAD privilege, though, may use this sys-
tem call to find out the security level of any existing semaphore set on the system. The
process must also have discretionary read access to the semaphore set.

For a detailed discussion of process privileges, see the individual system call manual
pages and intro(2).

System V Shared Memory 12

The shared memory type of IPC allows two or more processes to share memory and, con-
sequently, the data contained therein. This is done by allowing processes to set up access

PowerMAX OS Programming Guide

12-54

to a common virtual memory address space. This sharing occurs on a segment basis,
which is memory management hardware-dependent.

A process initially creates a shared memory segment using the shmget system call. Upon
creation, this process sets the overall operation permissions for the shared memory seg-
ment, sets its size in bytes, and can specify that the shared memory segment is for refer-
ence only (read-only) upon attachment. If the Enhanced Security Utilities are installed and
running, the shared memory segment inherits the security level of the creating process.

If the memory segment is not specified to be for reference only, all other processes with
appropriate operation permissions can read from or write to the memory segment. If the
Enhanced Security Utilities are installed and running, the process must also be at the same
security level as the segment.

shmat (shared memory attach) and shmdt (shared memory detach) can be performed on
a shared memory segment.

shmat allows processes to associate themselves with the shared memory segment if they
have permission. They can then read or write as allowed.

shmdt allows processes to disassociate themselves from a shared memory segment.
Therefore, they lose the ability to read from or write to the shared memory segment.

The original owner/creator of a shared memory segment can relinquish ownership to
another process using the shmctl system call. However, the creating process remains the
creator until the facility is removed or the system is reinitialized. Other processes with per-
mission can perform other functions on the shared memory segment using the shmctl
system call.

A process can bind a shared memory segment to a section of physical memory by using
the shmbind system call.

To facilitate use of shared memory by cooperating programs, a utility called
shmdefine(1) is provided. Procedures for using this utility are explained in “Using
shmdefine” (see p. 12-78). To assist you in creating a shared memory segment and binding
it to a section of physical memory, a utility called shmconfig(1M) is also provided.
Procedures for using this utility are explained in “Using shmconfig” (see p. 12-84).

Using Shared Memory 12

Sharing memory between processes occurs on a virtual segment basis. There is only one
copy of each individual shared memory segment existing in the operating system at any
time.

Before sharing of memory can be realized, a uniquely identified shared memory segment
and data structure must be created. The unique identifier created is called the shared mem-
ory identifier (shmid); it is used to identify or refer to the associated data structure. This
identifier is available to any process in the system, subject to normal access restrictions

The data structure includes the following for each shared memory segment:

• Operation permissions

• Segment size

Interprocess Communication

12-55

• Segment descriptor (for internal system use only)

• PID performing last operation

• PID of creator

• Current number of processes attached

• Last attach time

• Last detach time

• Last change time

With the OS, the definition of the associated shared-memory segment data structure
shmid_ds is as shown in Figure 12-6:

Figure 12-6. Definition of shmid_ds Structure

The C programming language data structure definition for the shared memory segment
data structure shmid_ds is located in the sys/shm.h header file.

Note that the shm_perm member of this structure uses ipc_perm as a template. The
ipc_perm data structure is the same for all IPC facilities; it is located in the sys/ipc.h
header file.

The shmget system call performs two tasks:

• It gets a new shared memory identifier and creates an associated shared
memory segment data structure.

• It returns an existing shared memory identifier that already has an associ-
ated shared memory segment data structure.

The task performed is determined by the value of the key argument passed to the shmget
system call.

struct shmid_ds {
struct ipc_perm shm_perm; /* operation permission struct */
int shm_segsz; /* size of segment in bytes */
_VOID *shm_pad0;/* placeholder for historical shm_amp */
ushort_t shm_lkcnt;/* number of times it is being locked */
char pad[SHM_PAD];/* expansion */
pid_t shm_lpid; /* pid of last shmop */
pid_t shm_cpid; /* pid of creator */
shmatt_t shm_nattch; /* used only for shminfo */
ulong_t shm_cnattch;/* used only for shminfo */
time_t shm_atime; /* last shmat time */
long shm_pad1; /* reserved for time_t expansion */
time_t shm_dtime; /* last shmdt time */
long shm_pad2; /* reserved for time_t expansion */
time_t shm_ctime; /* last change time */
long shm_pad3; /* reserved for time_t expansion */
long shm_pad4[SHM_PAD1];/* reserve area */

};

PowerMAX OS Programming Guide

12-56

The key can be an integer that you select, or it can be an integer that you have generated by
using the ftok subroutine. The ftok subroutine generates a key that is based upon a path
name and identifier that you supply. By using ftok , you can obtain a unique key and con-
trol users’ access to the key by limiting access to the file associated with the path name. If
you wish to ensure that a key can be used only by cooperating processes, it is recom-
mended that you use ftok . This subroutine is specified as follows:

key_t ftok(path_name, id)

The path_name argument specifies a pointer to the path name of an existing file that should
be accessible to the calling process. The id argument specifies a character that uniquely
identifies a group of cooperating processes. Ftok returns a key that is based on the speci-
fied path_name and id. Additional information on the use of ftok is provided in the sys-
tem manual page stdipc(3C)

When the Enhanced Security Utilities are installed and running, keys are kept on a
per-level basis. Keys within a security level are unique; however, the same key may exist at
different security levels. Each key references a different shared memory segment and data
structure at each security level where the key exists. As mentioned before, a shared mem-
ory segment and data set inherit the security level of the creating process. While the secu-
rity level of the shared memory segment cannot be changed, a process with appropriate
privilege may perform multilevel operations on shared memory segments. Refer to the
“Multilevel Operation On Shared Memory Segments” section of this chapter for details.

For the first task, if the key is not already in use for an existing shared memory identifier at
the security level of the calling process and the IPC_CREAT flag is set in shmflg, a new
identifier is returned with an associated shared memory segment data structure created for
it provided no system-tunable parameters would be exceeded.

There is also a provision for specifying a key of value zero which is known as the private
key (IPC_PRIVATE); when specified, a new shmid is always returned with an associated
shared memory segment data structure created for it unless a system-tunable parameter
would be exceeded. The ipcs command will show the key field for the shmid as all
zeros.

For the second task, if a shmid exists for the key specified, the value of the existing
shmid is returned. If it is not desired to have an existing shmid returned, a control com-
mand (IPC_EXCL) can be specified (set) in the shmflg argument passed to the system
call. “Using shmget” discusses how to use this system call.

When performing the first task, the process that calls shmget becomes the owner/creator,
and the associated data structure is initialized accordingly. Remember, ownership can be
changed, but the creating process always remains the creator (see “Controlling Shared
Memory”). The creator of the shared memory segment also determines the initial opera-
tion permissions for it.

Once a uniquely identified shared memory segment data structure is created, shmbind
(shared memory segment binding to physical memory), shmctl (shared memory con-
trol), and shmop (shared memory segment operations) can be used.

The shmbind system call allows you to bind a shared memory segment to a section of
physical memory. It requires that you first reserve a section of physical memory of the
desired size. See the section “Binding a Shared Memory Segment to Physical Memory”
for details of the shmbind system call and procedures for reserving a segment of physical
memory.

Interprocess Communication

12-57

The shmctl system call permits you to control the shared memory facility in the follow-
ing ways:

• by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

• by changing operation permissions for a shared memory segment
(IPC_SET)

• by removing a particular shared memory segment from the operating sys-
tem along with its associated shared memory segment data structure
(IPC_RMID)

• by locking a shared memory segment in memory (SHM_LOCK)

• by unlocking a shared memory segment (SHM_UNLOCK)

See the section “Controlling Shared Memory” for details of the shmctl system call.

Shared memory segment operations consist of attaching and detaching shared memory
segments. shmat and shmdt are provided for each of these operations (see “Operations
for Shared Memory” for details of the shmat and shmdt system calls).

It is important to note that the shmdefine(1) and shmconfig(1M) utilities also
allow you to create shared memory segments. See the section “Using Shared Memory
Utilities” for details on the use of these utilities.

Getting Shared Memory Segments 12

This section describes how to use the shmget system call. The accompanying program
illustrates its use.

Using shmget 12

The synopsis found in the shmget(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

Upon successful completion, this function returns the shared memory identifier (shmid)
that was discussed earlier.

As declared, the process calling the shmget system call must supply three arguments to
be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if either

• key is equal to IPC_PRIVATE ,

PowerMAX OS Programming Guide

12-58

or

• key is a unique integer and shmflg ANDed with IPC_CREAT is “true” (not
zero).

If the Enhanced Security Utilities are installed, the key is an integer that is not yet associ-
ated with a shmid at the security level of the calling process; the new memory segment
and its data structure inherit the security level of the creating process.

The value passed to the shmflg argument must be an integer-type value and will specify the
following:

• operations permissions

• control fields (commands)

Access permissions determine the read/write attributes and modes determine the
user/group/other attributes of the shmflg argument. They are collectively referred to as
“operation permissions.”

Table 12-3 reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific octal value is derived by adding or bitwise ORing the octal values for the oper-
ation permissions desired. That is, if read by user and read/write by others is desired, the
code value would be 00406 (00400 plus 00006). The SHM_R and SHM_W constants that are
located in <sys/shm.h> can be used to define read and write permission for the owner.

The flags that apply to the shmget system call are IPC_CREAT and IPC_EXCL and are
defined in <sys/ipc.h> .

The OS defines additional flags that set the NUMA policy and cache policy associated
with a shared memory segment on Series 6000 and Power MAXION systems. These flags
are defined in <sys/shm.h >. They are described in the paragraphs that follow.

The global NUMA policy is selected for a shared memory segment by default. You may
select one of the local NUMA policies by setting one of the following flags:

Table 12-3. Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

Interprocess Communication

12-59

SHM_LOCAL selects the anchored soft-local NUMA policy. Selecting a
soft-local policy indicates that the pages are to be placed in local
memory if possible and global memory if not

SHM_HARD selects the anchored hard-local NUMA policy. Selecting a
hard-local policy indicates that the pages are to be placed only in
local memory. If the necessary pages are not available, the process
blocks until the pages become available.

When one of these flags is set, the local memory pool used for the shared memory segment
will be that which belongs to the CPU of the calling process.

If a shared memory identifier already exists for the specified key, then the NUMA policy
that is specified in the shmflg argument will not affect the existing shared memory seg-
ment (that is, it will not cause the segment to be migrated). For additional information on
NUMA policies, refer to Chapter 6, “Memory Management.”

The copyback cache policy is selected for a shared memory segment by default. You may
select a cache policy for the shared memory segment by setting one of the following flags:

SHM_NCACHE selects the no-cache CPU cache policy, which indicates that
accesses to the pages are to bypass the CPU’s data cache

CAUTION

Synchronizing instructions are not atomic when they operate on
cache-inhibited locations.

SHM_COPYBACK selects the copyback CPU cache policy, which indicates that
accesses to the pages are to be cached in copyback mode

In copyback mode, a CPU write transaction usually updates the
data cache only; it does not immediately update memory. Later
when the cache line is displaced or invalidated, the data are writ-
ten to memory.

The value for shmflg is a combination of operation permissions and control commands.
After determining the value for the operation permissions as previously described, the
desired flag(s) can be specified. This is accomplished by adding or bitwise ORing (|) them
with the operation permissions; the bit positions and values for the control commands in
relation to those of the operation permissions make this possible.

The shmflg value can easily be set by using the names of the flags in conjunction with the
octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT | 0400));
shmid = shmget (key, size,

(IPC_CREAT | IPC_EXCL | 0400));

The system call will attempt to return a new shmid if one of the following conditions is
true:

• key is equal to IPC_PRIVATE .

• key does not already have a shmid associated with it and (shmflg &
IPC_CREAT) is “true” (not zero).

PowerMAX OS Programming Guide

12-60

If the Enhanced Security Utilities are installed and the key is an integer that is not yet asso-
ciated with a shmid at the security level of the calling process, the new memory segment
and its data structure inherit the security level of the creating process.

The key argument can be set to IPC_PRIVATE like this:

shmid = shmget (IPC_PRIVATE, size, shmflg);

The SHMMNI system tunable parameter determines the maximum number of unique
shared memory segments (shmid s) that may be in use at any given time. If the maximum
number of shared memory segments is already in use, an attempt to create an additional
segment will fail. You can examine and modify the values of system tunable parameters by
using the config(1M) utility. For an explanation of the procedures for using this utility,
refer to the “Configuring and Building the Kernel” chapter of System Administration Vol-
ume 2.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It will
cause the system call to return an error if a shared memory identifier already exists for the
specified key provided. (If the Enhanced Security Utilities are installed and running, it will
cause the system call to return an error if a shared memory identifier already exists at the
security level of the calling process for the specified key provided.) This is necessary to
prevent the process from thinking that it has received a new (unique) shmid when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a unique
shared memory identifier is returned if the system call is successful. Any value for shmflg
returns a new identifier if the key equals zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less than SHMMIN or greater
than SHMMAX. These system tunable parameters specify the minimum and maximum
shared memory segment sizes.

Refer to the shmget(2) manual page for the specific error conditions.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the shmget system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

Variable names have been chosen to be as close as possible to those in the synopsis for the
system call. Their declarations are self explanatory. These names make the program more
readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions

flags used to store the desired control commands (flags)

shmid used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful
one

Interprocess Communication

12-61

size used to specify the shared memory segment size

opperm_flags used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to
pass the shmflg argument

The program begins by prompting for a hexadecimal key , an octal operation permissions
code, and finally for the control command combinations (flags) which are selected from a
menu (lines 14-31). All possible combinations are allowed even though they might not be
viable. This allows observing the errors for invalid combinations.

Next, the menu selection for the flags is combined with the operation permissions; the
result is stored in the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory segment; it is stored in the size
variable (lines 51-54).

The system call is made next; the result is stored in the shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the error code
(-1), it is tested to see if an error occurred (line 58). If shmid equals -1 , a message indi-
cates that an error resulted and the external errno variable is displayed (line 60).

If no error occurred, the returned shared memory segment identifier is displayed (line 64).

The example program for the shmget system call follows. We suggest that you name the
source program file shmget.c and the executable file shmget .

 1 /*This is a program to illustrate
 2 **the shared memory get, shmget(),
 3 **system call capabilities.*/
 4 #include <sys/types.h>
 5 #include <sys/ipc.h>
 6 #include <sys/shm.h>
 7 #include <errno.h>
 8 /*Start of main C language program*/
 9 main()
 10 {
 11 key_t key; /*declare as long integer*/
 12 int opperm, flags;
 13 int shmid, size, opperm_flags;
 14 /*Enter the desired key*/
 15 printf(“Enter the desired key in hex = “);
 16 scanf(“%x”, &key);
 17 /*Enter the desired octal operation
 18 permissions.*/
 19 printf(“\nEnter the operation\n”);
 20 printf(“permissions in octal = “);
 21 scanf(“%o”, &opperm);
 22 /*Set the desired flags.*/
 23 printf(“\nEnter corresponding number to\n”);
 24 printf(“set the desired flags:\n”);
 25 printf(“No flags = 0\n”);
 26 printf(“IPC_CREAT = 1\n”);
 27 printf(“IPC_EXCL = 2\n”);
 28 printf(“IPC_CREAT and IPC_EXCL = 3\n”);
 29 printf(“ Flags = “);
 30 /*Get the flag(s) to be set.*/
 31 scanf(“%d”, &flags);
 32 /*Check the values.*/
 33 printf (“\nkey =0x%x, opperm = 0%o, flags = %d\n”,

PowerMAX OS Programming Guide

12-62

 34 key, opperm, flags);
 35 /*Incorporate the control fields (flags) with
 36 the operation permissions*/
 37 switch (flags)
 38 {
 39 case 0: /*No flags are to be set.*/
 40 opperm_flags = (opperm | 0);
 41 break;
 42 case 1: /*Set the IPC_CREAT flag.*/
 43 opperm_flags = (opperm | IPC_CREAT);
 44 break;
 45 case 2: /*Set the IPC_EXCL flag.*/
 46 opperm_flags = (opperm | IPC_EXCL);
 47 break;
 48 case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
 49 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
 50 }
 51 /*Get the size of the segment in bytes.*/
 52 printf (“\nEnter the segment”);
 53 printf (“\nsize in bytes = “);
 54 scanf (“%d”, &size);
 55 /*Call the shmget system call.*/
 56 shmid = shmget (key, size, opperm_flags);
 57 /*Perform the following if the call is unsuccessful.*/
 58 if(shmid == -1)
 59 {
 60 printf (“\nThe shmget call failed, error number = %d\n”, errno);
 61 }
 62 /*Return the shmid upon successful completion.*/
 63 else
 64 printf (“\nThe shmid = %d\n”, shmid);
 65 exit(0);
 66 }

Controlling Shared Memory 12

This section describes how to use the shmctl system call. The accompanying program
illustrates its use.

Using shmctl 12

The synopsis found in the shmctl(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds * buf;

The shmctl system call requires three arguments to be passed to it. It returns an integer
value which will be zero for successful completion or -1 otherwise.

Interprocess Communication

12-63

The shmid variable must be a valid, non-negative, integer value. It must have been created
previously by using the shmget system call.

The cmd argument can be replaced by one of following values:

IPC_STAT return the status information contained in the associated data
structure for the specified shmid and place it in the data structure
pointed to by the buf pointer in the user memory area

IPC_SET for the specified shmid, set the effective user and group identifi-
cation, and operation permissions

IPC_RMID remove the specified shmid with its associated shared memory
segment data structure

SHM_LOCK lock the specified shared memory segment in memory; must have
appropriate privileges to perform this operation

SHM_LCCK locks only one of two resources that are needed to
provide fault-free access to memory. SHM_LOCK locks the pages
but does not build and lock the virtual-to-physical translations to
those pages. Use mlock(3C) to obtain fault-free access to a
shared memory segment (refer to Chapter 6, “Memory Manage-
ment,” for an explanation of this routine).

SHM_UNLOCK unlock the shared memory segment from memory; must have
appropriate privileges to perform this operation.

To perform an IPC_SET or IPC_RMID control command, a process must have:

• An effective user ID that is equal to that of the owner/creator of the shared
memory segment

or

• The P_OWNER privilege

If the Enhanced Security Utilities are installed and running, the following conditions must
also be met:

• The calling process and the shared memory segment must have identical
security levels, or the process must have both P_MACREAD and
P_MACWRITE privileges.

Note that a shared memory segment can also be removed by using the ipcrm(1) com-
mand and specifying the -m shmid or the -M shmkey option, where shmid specifies the
identifier for the shared memory segment and the shmkey argument specifies the key asso-
ciated with the segment. To use this command, a process must have the same privileges as
those required for performing an IPC_RMID control command. See the ipcrm(1) sys-
tem manual page for additional information on the use of this command.

A process with the P_SYSOPS privilege can perform a SHM_LOCK or SHM_UNLOCK con-
trol command.

A process must have read permission to perform the IPC_STAT control command. To
have read permission when the Enhanced Security Utilities are installed and running, the

PowerMAX OS Programming Guide

12-64

security level of the process must dominate that of the shared memory segment and the
operation permissions must allow access. A process with the P_MACREAD privilege may
override the security level restriction and perform the IPC_STAT control command suc-
cessfully.

The details of this system call are discussed in the example program. If you need more
information on the logic manipulations in this program, read “Using shmget.” It goes into
more detail than would be practical for every system call.

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the shmctl system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These names make
the program more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

uid used to store the IPC_SET value for the user identification

gid used to store the IPC_SET value for the group identification

mode used to store the IPC_SET value for the operation permissions

rtrn used to store the return integer value from the system call

shmid used to store and pass the shared memory segment identifier to the
system call

command used to store the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member for the IPC_SET control com-
mand is to be changed

shmid_ds used to receive the specified shared memory segment identifier's
data structure when an IPC_STAT control command is performed

buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values or where the IPC_SET command gets
the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data structure of
the same name located in the sys/shm.h header file as a template for its declaration.

The next important thing to observe is that although the buf pointer is declared to be a
pointer to a data structure of the shmid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 17).

Interprocess Communication

12-65

First, the program prompts for a valid shared memory segment identifier which is stored in
the shmid variable (lines 18-20). This is required for every shmctl system call.

Then, the code for the desired control command must be entered (lines 21-29); it is stored
in the command variable. The code is tested to determine the control command for subse-
quent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 39, 40) and the status information returned is printed out (lines 41-71). Note that if
the system call is unsuccessful (line 139), the status information of the last successful call
is printed out. In addition, an error message is displayed and the errno variable is printed
out (lines 141). If the system call is successful, a message indicates this along with the
shared memory segment identifier used (lines 143-147).

If the IPC_SET control command is selected (code 2), the first thing done is to get the
current status information for the shared memory identifier specified (lines 88-90). This is
necessary because this example program provides for changing only one member at a
time, and the system call changes all of them. Also, if an invalid value happened to be
stored in the user memory area for one of these members, it would cause repetitive failures
for this control command until corrected. The next thing the program does is to prompt for
a code corresponding to the member to be changed (lines 91-96). This code is stored in the
choice variable (line 97). Now, depending upon the member picked, the program prompts
for the new value (lines 98-120). The value is placed in the appropriate member in the user
memory area data structure, and the system call is made (lines 121-128). Depending upon
success or failure, the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is performed
(lines 125-128), and the shmid along with its associated message queue and data struc-
ture are removed from the operating system. Note that the buf pointer is ignored in per-
forming this control command and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other control com-
mands.

If the SHM_LOCK control command (code 4) is selected, the system call is performed
(lines 130,131). Depending upon the success or failure, the program returns the same mes-
sages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is performed
(lines 133-135). Depending upon the success or failure, the program returns the same mes-
sages as for the other control commands.

The example program for the shmctl system call follows. We suggest that you name the
source program file shmctl.c and the executable file shmctl .

 1 /*This is a program to illustrate
 2 **the shared memory control, shmctl(),
 3 **system call capabilities.
 4 */
 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/shm.h>

 10 /*Start of main C language program*/
 11 main()

PowerMAX OS Programming Guide

12-66

 12 {
 13 extern int errno;
 14 int uid, gid, mode;
 15 int rtrn, shmid, command, choice;
 16 struct shmid_ds shmid_ds, *buf;
 17 buf = &shmid_ds;
 18 /*Get the shmid, and command.*/
 19 printf(“Enter the shmid = “);
 20 scanf(“%d”, &shmid);
 21 printf(“\nEnter the number for\n”);
 22 printf(“the desired command:\n”);
 23 printf(“IPC_STAT = 1\n”);
 24 printf(“IPC_SET = 2\n”);
 25 printf(“IPC_RMID = 3\n”);
 26 printf(“SHM_LOCK = 4\n”);
 27 printf(“SHM_UNLOCK = 5\n”);
 28 printf(“Entry = “);
 29 scanf(“%d”, &command);
 30 /*Check the values.*/
 31 printf (“\nshmid =%d, command = %d\n”,
 32 shmid, command);
 33 switch (command)
 34 {
 35 case 1: /*Use shmctl() to get
 36 the data structure for
 37 shmid in the shmid_ds area pointed
 38 to by buf and then print it out.*/
 39 rtrn = shmctl(shmid, IPC_STAT,
 40 buf);
 41 printf (“\nThe USER ID = %d\n”,
 42 buf->shm_perm.uid);
 43 printf (“The GROUP ID = %d\n”,
 44 buf->shm_perm.gid);
 45 printf (“The creator's ID = %d\n”,
 46 buf->shm_perm.cuid);
 47 printf (“The creator's group ID = %d\n”,
 48 buf->shm_perm.cgid);
 49 printf (“The operation permissions = 0%o\n”,
 50 buf->shm_perm.mode);
 51 printf (“The slot usage sequence\n”);
 52 printf (“number = 0%x\n”,
 53 buf->shm_perm.seq);
 54 printf (“The key= 0%x\n”,
 55 buf->shm_perm.key);
 56 printf (“The segment size = %d\n”,
 57 buf->shm_segsz);
 58 printf (“The pid of last shmop = %d\n”,
 59 buf->shm_lpid);
 60 printf (“The pid of creator = %d\n”,
 61 buf->shm_cpid);
 62 printf (“The current # attached = %d\n”,
 63 buf->shm_nattch);
 64 printf(“The last shmat time = %ld\n”,
 65 buf->shm_atime);
 66 printf(“The last shmdt time = %ld\n”,
 67 buf->shm_dtime);
 68 printf(“The last change time = %ld\n”,
 69 buf->shm_ctime);
 70 break;/* Lines 71 - 85 deleted */

 86 case 2: /*Select and change the desired
 87 member(s) of the data structure.*/
 88 /*Get the original data for this shmid
 89 data structure first.*/

Interprocess Communication

12-67

 90 rtrn = shmctl(shmid, IPC_STAT, buf);
 91 printf(“\nEnter the number for the\n”);
 92 printf(“member to be changed:\n”);
 93 printf(“shm_perm.uid = 1\n”);
 94 printf(“shm_perm.gid = 2\n”);
 95 printf(“shm_perm.mode = 3\n”);
 96 printf(“Entry = “);
 97 scanf(“%d”, &choice);
 98 switch(choice){
 99 case 1:
 100 printf(“\nEnter USER ID = “);
 101 scanf (“%d”, &uid);
 102 buf->shm_perm.uid = uid;
 103 printf(“\nUSER ID = %d\n”,
 104 buf->shm_perm.uid);
 105 break;
 106 case 2:
 107 printf(“\nEnter GROUP ID = “);
 108 scanf(“%d”, &gid);
 109 buf->shm_perm.gid = gid;
 110 printf(“\nGROUP ID = %d\n”,
 111 buf->shm_perm.gid);
 112 break;
 113 case 3:
 114 printf(“\nEnter MODE in octal = “);
 115 scanf(“%o”, &mode);
 116 buf->shm_perm.mode = mode;
 117 printf(“\nMODE = 0%o\n”,
 118 buf->shm_perm.mode);
 119 break;
 120 }
 121 /*Do the change.*/
 122 rtrn = shmctl(shmid, IPC_SET,
 123 buf);
 124 break;
 125 case 3: /*Remove the shmid along with its
 126 associated
 127 data structure.*/
 128 rtrn = shmctl(shmid, IPC_RMID, (struct shmid_ds *) NULL);
 129 break;
 130 case 4: /*Lock the shared memory segment*/
 131 rtrn = shmctl(shmid, SHM_LOCK, (struct shmid_ds *) NULL);
 132 break;
 133 case 5: /*Unlock the shared memory
 134 segment.*/
 135 rtrn = shmctl(shmid, SHM_UNLOCK, (struct shmid_ds *)NULL);
 136 break;
 137 }
 138 /*Perform the following if the call is unsuccessful.*/
 139 if(rtrn == -1)
 140 {
 141 printf (“\nThe shmctl call failed, error number = %d\n”, errno);
 142 }
 143 /*Return the shmid upon successful completion.*/
 144 else
 145 printf (“\nShmctl was successful for shmid = %d\n”,
 146 shmid);
 147 exit (0);
 148 }

PowerMAX OS Programming Guide

12-68

Binding a Shared Memory Segment to Physical Memory 12

The OS allows you to bind a shared memory segment to a section of physical memory.
The procedures for doing so are as follows:

1. Define a reserved section of physical memory.

2. Create a shared memory segment, and bind it to a section of physical mem-
ory.

3. Attach the shared memory segment to the user’s virtual address space

4. Detach the shared memory segment from the user’s virtual address space

Procedures for defining a reserved section of physical memory are explained in “Reserv-
ing Physical Memory.”

You can create a shared memory segment and bind it to a section of physical memory by:

• Using the shmget(2) system call to obtain an identifier for a shared
memory segment and the shmbind(2) system call to bind the segment to
a particular section of physical memory. It is recommended that you use
this method if you are creating a segment that will be used only by the par-
ent process and its children. Procedures for using these system calls are
explained in “Using shmget and shmbind.”

or

• Invoking the shmconfig(1M) utility with the appropriate parameters. If
you wish to create a segment that will be accessed by a controlled group of
users, it is recommended that you use this utility. Procedures for using this
utility are explained in “Using Shared Memory Utilities.”

You can attach a shared memory segment to and detach it from the user’s virtual address
space by using the shmat and shmdt system calls. Procedures for using these system
calls are explained in “Operations for Shared Memory.”

Reserving Physical Memory 12

 If you wish to bind a shared memory segment to a section of physical memory in the local
or global memory pool, it is required that you first reserve the section of physical memory.
Note that it is not necessary to reserve memory if the physical address resides in I/O mem-
ory space. There are several methods for reserving a section of physical memory.

One method allows you to reserve a section of physical memory statically; it requires that
you first place an entry in an array in the configuration-dependent space.c file and then
rebuild the kernel and reboot the system. This method is explained in “Initializing the
res_sects Array.” This method is recommended if you wish the section of physical mem-
ory to be reserved at an exact starting address and you wish to ensure that the section is
reserved each time the system is rebooted.

The other methods allow you to reserve a section of physical memory dynamically—that
is, on a running system. With these methods, it is not necessary to rebuild the kernel and
reboot the system. These methods include use of the physmalloc(3C) library routine,

Interprocess Communication

12-69

the physconfig(1M) utility, or the shmconfig(1M) utility. Procedures for using
these methods are explained in “Using physmalloc” (see p. 12-69), “Using physconfig”
(see p. 12-71), and “Using shmconfig” (see p. 12-84).

Initializing the res_sects Array 12

To reserve a section of physical memory statically, you must initialize the res_sects[]
array in the /etc/conf/pack.d/mm/space.c file. Your entry will describe the start-
ing address and the desired length of the reserved section of memory. Initially the
res_sects[] array appears as follows:

struct res_sect res_sects[] = {
/* r_start, r_len, r_flags */

{ 0, 0, 0 } /* This must be the last line, DO NOT change it.*/
};

For each section of physical memory that you wish to reserve, place an entry in the
res_sects[] array. The r_start field specifies the starting physical address, and the
r_len field specifies the length in bytes. The r_flags field must always be zero.

To assist you in determining appropriate values for your entry, the space.c file provides
the following examples:

/* struct res_sect res_sects[] = {
* {0x1000000, 0x20000,0 },
* {0x1000000, 0x40000,0 },
* {0x1000000, 0x80000,0 },
* { 0, 0, 0 }
* };
* reserves:
* 0x01000000 - 0x0101ffff (128 Kb),
* 0x01040000 - 0x0107ffff (256 Kb),
* 0x01080000 - 0x010fffff (512 Kb)
*/

These examples assume a system with at least 32 megabytes of global memory and a run-
ning kernel that occupies no more than the first 16 megabytes of memory. Note that the
address and length values presented here are simply examples and may not be appropriate
for every system. Multiple sections of physical memory may be reserved by adding addi-
tional lines.

After changing the space.c file, you must rebuild the kernel using idbuild(1M) and
reboot your system before the changes take effect.

Using physmalloc 12

The physmalloc(3C) library routine allows the calling process to reserve a section of
physical memory.

Note that to use this routine, the calling process must have the P_PLOCK privilege.

The specifications required for making the physmalloc call are as follows:

#include <sys/types.h>
#include <sys/physmem.h>

int physmalloc (floor, ceiling, len, rpaddr)

PowerMAX OS Programming Guide

12-70

paddr_t floor;
paddr_t ceiling;
off_t len;
paddr_t * rpaddr;

The arguments are defined as follows:

floor the desired starting address of the section of physical memory to be
reserved.

This address may reside in local or global memory. If it resides in global
memory, the value specified by ceiling must also reside within global
memory. If it resides in a local memory pool, the value specified by ceil-
ing must reside in the same local memory pool.

ceiling the highest desired ending address of the section of physical memory to
be reserved

len the length in bytes of the section of physical memory to be reserved

rpaddr a pointer to a location to which the actual starting physical address of
the reserved section of memory is returned

The physmalloc routine will try to reserve a section of memory that is len bytes in
length within the boundaries defined by the values of floor and ceiling. If it is successful,
the resulting reserved section will be aligned with a page boundary, be len bytes in length,
and reside somewhere within the boundaries specified by floor and ceiling.

Upon successful completion, physmalloc returns a value of zero, and rpaddr contains
the actual starting physical address of the reserved section of memory. A return value of
- 1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
physmalloc(3C) system manual page for a listing of the types of errors that may
occur.

To free a section of physical memory reserved with physmalloc , use the
physfree(3C) library routine. Note that to use this routine, the calling process must
have the P_PLOCK privilege.

The specifications required for making this call are as follows:

#include <sys/types.h>
#include <sys/physmem.h>

int physfree(paddr)

paddr_t paddr;

The argument is defined as follows:

paddr the starting address of the reserved section of memory to be freed

In order to free a reserved section, there must be no bindings between shared memory seg-
ments and any address within the reserved area.

Interprocess Communication

12-71

Upon successful completion, physfree returns a value of zero. A return value of -1 indi-
cates that an error has occurred; errno is set to indicate the error. Refer to the
physmalloc(3C) system manual page for a listing of the types of errors that may
occur.

Using physconfig 12

The /usr/sbin/physconfig command allows you to perform the following func-
tions: (1) view the sections of physical memory that have been reserved; (2) reserve a sec-
tion of physical memory; and (3) free a section of physical memory that has been reserved
by using physconfig or shmconfig(1M) . Procedures for performing these functions
are explained in the sections that follow.

To display sections that have been reserved, use the following format:

/usr/sbin/physconfig -v

This option is used to display sections of memory that have been reserved statically or
dynamically. It displays the starting physical address of the section, the length, and the
number of bindings between shared memory segments and any address within the section.
Sample output follows:

Static Reserves:
Starting Address Length Bindings
---------------- -------------------- --------
0x10000000 128 KB (32 pages) 2

Dynamic Reserves:
Starting Address Length Bindings
---------------- -------------------- --------
0x0072b000 64 KB (16 pages) 1
0x0073b000 64 KB (16 pages) 0

To reserve a section of physical memory, use the following format:

/usr/sbin/physconfig -r -s size [-b begin] [-e end]

Note that to use physconfig to reserve memory, you must have the P_PLOCK privi-
lege.

Options for reserving memory are described in Table 12-4.

Table 12-4. Options Specified for Reserving Memory

Option Description

 -r Specifies that you wish to reserve a section of physical memory

When specifying this option, you must also specify the size argument;
the begin and end arguments are optional.

-s size Specifies the size in bytes of the section of physical memory to be
reserved

PowerMAX OS Programming Guide

12-72

It is recommended that the address range specified by begin and end be larger than the
value of size in case the kernel cannot reserve a section of memory starting at begin.

The following example shows how to invoke physconfig to reserve a one-megabyte
section of physical memory that resides somewhere between address 0x1000000 and
0x1C00000 on a Model HN6800 system In this example, it is assumed that the system has
32 MB of global memory.

physconfig -r -s 0x100000 -b 0x1000000 -e 0x1C00000

NOTE

Do not attempt to reserve a section in the last two megabytes of
global memory. The kernel allocates space there for the console
driver. Refer to the HN6800 Architecture Manual for the memory
map for the Model HN6800 system.

Use the following format to free a section of physical memory that has been reserved by
using physconfig or shmconfig(1M) :

/usr/sbin/physconfig -d paddr

The paddr argument is defined as follows:

-b begin Specifies the desired starting physical address of the reserved section
of memory. This address may reside in local or global memory.

If you do not this specify this option, the kernel will use the starting
address of global memory as the starting address of the reserved sec-
tion. It will then try to reserve the first available contiguous section of
memory of size bytes that it finds in global memory.

If the reserved section of memory must start at a certain physical
address, you must also specify the -e end option. The address speci-
fied by end should be equal to the value of begin plus the value of
size.

-e end Specifies the desired ending address of the section of physical mem-
ory to be reserved. This address must reside in the same memory pool
as the starting physical address of the section.

If you do not specify this option, the system will consider any physi-
cal address that is higher than begin and within the same memory
pool as begin as memory that can satisfy the reservation request.

Note that if you specify this option, you must also specify the
-b begin option.

Table 12-4. Options Specified for Reserving Memory (Cont.)

Option Description

Interprocess Communication

12-73

paddr the starting physical address of the section of reserved memory that is to
be freed

Note that to use physconfig to free memory, you must have the P_PLOCK privilege.

In order to free a reserved section, there must be no bindings between shared memory seg-
ments and any address within the reserved area. Use the -v option to determine the start-
ing physical addresses of the reserved sections and the number of bindings to each.

Using shmget and shmbind 12

The shmget(2) system call is invoked first to create a shared memory segment. The
specification for making this call is as follows:

int shmget(key, size, shmflg)

Upon successful completion of the call, a shared memory segment of size bytes is created,
and an identifier for the segment is returned. Complete information on the use of this call
is provided in “Getting Shared Memory Segments” (p. 12-57).

After you have created a shared memory segment, you can bind it to a section of physical
memory by using the shmbind(2) system call. Note that to use this call, you must have
the P_SHMBIND privilege.

The section of physical memory is defined by its starting address and the size of the shared
memory segment to which it is being bound. The starting address must be aligned with a
page boundary. The size of the shared memory segment has been established by specify-
ing the size argument on the call to shmget . If you have created a shared memory seg-
ment of 1024 bytes, for example, and you wish to bind it to a section of physical memory
that starts at location 0x2000000 (hexadecimal representation), the bound section of phys-
ical memory will include memory locations 0x2000000 through 0x2000BFF.

The specifications required for making the call to shmbind are as follows:

int shmbind(shmid, paddr)

int shmid;
paddr_t paddr;

Arguments are defined as follows:

shmid the identifier for the shared memory segment that you wish to bind to a
section of physical memory

paddr the starting physical address of the section of memory to which you
wish to bind the specified shared memory segment

Operations for Shared Memory 12

This section describes how to use the shmat and shmdt system calls. The accompanying
program illustrates their use.

PowerMAX OS Programming Guide

12-74

Using Shared Memory Operations: shmat and shmdt 12

The synopsis found in the shmop(2) system manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void * shmat (shmid, shmaddr, shmflg)
int shmid;
void * shmaddr;
int shmflg;

int shmdt (shmaddr)
void * shmaddr;

Attaching a Shared Memory Segment 12

The shmat system call requires three arguments to be passed to it. It returns a character
pointer value. Upon successful completion, this value will be the address in memory
where the process is attached to the shared memory segment and when unsuccessful, the
value will be -1 .

The shmid argument must be a valid, non-negative, integer value. It must have been cre-
ated previously by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the shmat system
call. If it is zero, the operating system selects the address where the shared memory seg-
ment will be attached. If it is user-supplied, the address must be a valid address within the
program’s address space.

The following illustrates some typical address ranges.

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Allowing the operating system to select addresses improves portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY flags to the
shmat system call.

Detaching Shared Memory Segments 12

The shmdt system call requires one argument to be passed to it. It returns an integer value
which will be zero for successful completion or -1 otherwise.

Further details on shmat and shmdt are discussed in the example program. If you need
more information on the logic manipulations in this program, read “Using shmget.” It
goes into more detail than would be practical for every system call.

Interprocess Communication

12-75

Example Program 12

The example program that is presented at the end of this section is a menu-driven pro-
gram. It allows all possible combinations of using the shmat and shmdt system calls to
be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the program more
readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

addr used to store the address of the shared memory segment for the
shmat and shmdt system calls and to receive the return value
from the shmat system call

laddr used to store the desired attach/detach address entered by the user

flags used to store the codes of the SHM_RND or SHM_RDONLY flags
for the shmat system call

i used as a loop counter for attaching and detaching

attach used to store the desired number of attach operations

shmid used to store and pass the desired shared memory segment identi-
fier

shmflg used to pass the value of flags to the shmat system call

retrn used to store the return values from the shmdt system call

detach used to store the desired number of detach operations

This example program combines both the shmat and shmdt system calls. The program
prompts for the number of attachments and enters a loop until they are done for the speci-
fied shared memory identifiers. Then, the program prompts for the number of detachments
to be performed and enters a loop until they are done for the specified shared memory seg-
ment addresses.

shmat 12

The program prompts for the number of attachments to be performed, and the value is
stored at the address of the attach variable (lines 19-23).

A loop is entered using the attach variable and the i counter (lines 23-72) to perform the
specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines 26-29); it
is stored in the shmid variable (line 30). Next, the program prompts for the address where
the segment is to be attached (lines 32-36); it is stored in the laddr variable (line 37) and
converted to a pointer (line 39). Then, the program prompts for the desired flags to be used
for the attachment (lines 40-47), and the code representing the flags is stored in the flags

PowerMAX OS Programming Guide

12-76

variable (line 48). The flags variable is tested to determine the code to be stored for the
shmflg variable used to pass them to the shmat system call (lines 49-60). The system
call is executed (line 63). If successful, a message stating so is displayed along with the
attach address (lines 68-70). If unsuccessful, a message stating so is displayed and the
error code is displayed (line 65). The loop then continues until it finishes.

shmdt 12

After the attach loop completes, the program prompts for the number of detach operations
to be performed (lines 73-77) and the value is stored in the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 80-98) to perform the
specified number of detachments.

In this loop, the program prompts for the address of the shared memory segment to be
detached (lines 81-85); it is stored in the laddr variable (line 86) and converted to a
pointer (line 88). Then, the shmdt system call is performed (line 89). If successful, a mes-
sage stating so is displayed along with the address that the segment was detached from
(lines 95, 96). If unsuccessful, the error number is displayed (line 92). The loop continues
until it finishes.

The example program for the shmop system calls follows. We suggest that you name the
source program file shmop.c and the executable file shmop.

 1 /*This is a program to illustrate
 2 **the shared memory operations, shmop(),
 3 **system call capabilities.
 4 */
 5 /*Include necessary header files.*/
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/shm.h>
 10 /*Start of main C language program*/
 11 main()
 12 {
 13 extern int errno;
 14 void *addr;
 15 long laddr;
 16 int flags, i, attach;
 17 int shmid, shmflg, retrn, detach;
 18 /*Loop for attachments by this process.*/
 19 printf(“Enter the number of\n”);
 20 printf(“attachments for this\n”);
 21 printf(“process (1-4).\n”);
 22 printf(“ Attachments = “);
 23 scanf(“%d”, &attach);
 24 printf(“Number of attaches = %d\n”, attach);
 25 for(i = 1; i <= attach; i++) {
 26 /*Enter the shared memory ID.*/
 27 printf(“\nEnter the shmid of\n”);
 28 printf(“the shared memory segment to\n”);
 29 printf(“be operated on = “);
 30 scanf(“%d”, &shmid);
 31 printf(“\nshmid = %d\n”, shmid);
 32 /*Enter the value for shmaddr.*/
 33 printf(“\nEnter the value for\n”);
 34 printf(“the shared memory address\n”);
 35 printf(“in hexadecimal:\n”);
 36 printf(“ Shmaddr = “);

Interprocess Communication

12-77

 37 scanf(“%lx”, &laddr);
 38 addr = (void*) laddr;
 39 printf(“The desired address = 0x%lx\n”, (long)addr);
 40 /*Specify the desired flags.*/
 41 printf(“\nEnter the corresponding\n”);
 42 printf(“number for the desired\n”);
 43 printf(“flags:\n”);
 44 printf(“SHM_RND = 1\n”);
 45 printf(“SHM_RDONLY = 2\n”);
 46 printf(“SHM_RND and SHM_RDONLY = 3\n”);
 47 printf(“ Flags = “);
 48 scanf(“%d”, &flags);
 49 switch(flags)
 50 {
 51 case 1:
 52 shmflg = SHM_RND;
 53 break;
 54 case 2:
 55 shmflg = SHM_RDONLY;
 56 break;
 57 case 3:
 58 shmflg = SHM_RND | SHM_RDONLY;
 59 break;
 60 }
 61 printf(“\nFlags = 0%o\n”, shmflg);
 62 /*Do the shmat system call.*/
 63 addr = shmat(shmid, addr, shmflg);
 64 if(addr == (char*) -1) {
 65 printf(“\nShmat failed, error = %d\n”, errno);
 66 }
 67 else {
 68 printf (“\nShmat was successful\n”);
 69 printf(“for shmid = %d\n”, shmid);
 70 printf(“The address = 0x%lx\n”, (long)addr);
 71 }
 72 }
 73 /*Loop for detachments by this process.*/
 74 printf(“Enter the number of\n”);
 75 printf(“detachments for this\n”);
 76 printf(“process (1-4).\n”);
 77 printf(“ Detachments = “);
 78 scanf(“%d”, &detach);
 79 printf(“Number of attaches = %d\n”, detach);
 80 for(i = 1; i <= detach; i++) {
 81 /*Enter the value for shmaddr.*/
 82 printf(“\nEnter the value for\n”);
 83 printf(“the shared memory address\n”);
 84 printf(“in hexadecimal:\n”);
 85 printf(“ Shmaddr = “);
 86 scanf(“%lx”, &laddr);
 87 addr = (void*) laddr;
 88 printf(“The desired address = 0x%lx\n”, (long)addr);
 89 /*Do the shmdt system call.*/
 90 retrn = shmdt(addr);
 91 if(retrn == -1) {
 92 printf(“Error = %d\n”, errno);
 93 }
 94 else {
 95 printf (“\nShmdt was successful\n”);
 96 printf(“for address = 0x%lx\n”, (long)addr);
 97 }
 98 }
 99 }

PowerMAX OS Programming Guide

12-78

Using Shared Memory Utilities 12

The OS provides two utilities that facilitate use of shared memory segments. The shmde-
fine(1) utility allows you to create one or more shared memory segments that are to be
used by cooperating programs. The shmconfig(1M) utility allows you to create a
shared memory segment and bind it to a section of physical memory. The sections that fol-
low provide detailed explanations of the procedures for using shmdefine and shmcon-
fig , respectively.

Using shmdefine 12

The shmdefine utility is designed to facilitate the use of shared memory by a set of
cooperating programs. Although you may have a number of programs that will cooperate
in using one or more shared memory segments, it is necessary to invoke the utility only
once. Because shmdefine produces object files that must be linked to the source object
file, you must invoke it prior to linking

The format for executing the shmdefine utility is as follows:

shmdefine [-b base_name] [-U] [files]

The object files that shmdefine produces are an initialization file and a linker command
file. The initialization file contains an executable function that accesses shared memory
services at program start-up time. The default name for this file is shm_init.sm.c . The
linker command file describes the shared memory segments to the linker. The default
name for this file is shm_init.sm.ld . The base name of each of these files is
shm_init . The -b option enables you to supply a base name of your choice

The initialization file also takes care of data initialization. Data initialization of variables
that are associated with a shared memory segment via shmdefine occurs when a newly
executed program attaches to the corresponding shared memory segment--if and only if it
is the only program currently attached to that segment.

The shmdefine utility converts uppercase Fortran COMMON block names to lower-
case. The -U option enables you to prevent this conversion.

Input to the shmdefine utility defines the shared memory segment or segments that are
to be used by cooperating programs. You may use the standard input to define the seg-
ments, or you may specify one or more files that contain the definitions. Although input in
either case may be free-form, the general format for defining a shared memory segment is
as follows:

SHARED REGION segment_name

[attribute1, attribute2, ...]
 variable1, variable2, ...

END SHARED REGION

Note that blanks, tabs, and newlines are recognized only as separators. The hash character
(#) can be used to indicate that the rest of the line is a comment.

Attributes that can be specified are presented in Table 12-5.

Interprocess Communication

12-79

.

Variables must be either Fortran COMMON blocks or C external variables. These vari-
ables can be associated with Ada variables via the implementation-defined pragma
interface_shared_object in the Ada source program. If you are using the Concurrent For-
tran compiler, COMMON blocks must be declared VOLATILE in the Fortran source pro-
gram. If you are using the Concurrent C compiler, external variables must be declared
with the type qualifier volatile in the C source program. The volatile declaration informs
the compiler that the values of the variables may be modified in a way that is unknown to
the compiler. It is important to note that space in the shared memory segment is allocated
to variables in the same order in which the variables are specified in the input to shmde-
fine .

Additional information that is needed to specify attributes and variables is provided in the
system manual page shmdefine(1) .

Making provisions for programs to share data requires the following steps:

Table 12-5. Attributes

Attribute Purpose

ADDRESS Enables you to specify a starting virtual address for the
shared memory segment

IPC Enables you to set the control flags for the segment

SHM_LOCAL Enables you to set the NUMA policy for the shared
memory segment to the anchored soft-local policy. A
soft-local policy allows pages to be allocated from glo-
bal memory when pages are not available for allocation
from the local memory pool. This option has no effect
on systems without local memory.

For complete information on NUMA policies, refer to
Chapter 6, “Memory Management.”

SHM_HARD Enables you to set the NUMA policy for the shared
memory segment to the anchored hard-local policy. A
hard-local policy causes a process to wait for local
memory pages to become available if the pages cannot
be allocated from the local memory pool when needed.
This option has no effect on systems without local
memory.

For complete information on NUMA policies, refer to
Chapter 6, “Memory Management.”

KEY Enables you to specify a user-chosen identifier for the
segment

MODE Enables you to set the permissions that are associated
with the segment

SHM_RDONLY Enables you to prevent a process from writing to the
segment

PowerMAX OS Programming Guide

12-80

1. If you wish to bind the shared memory segment to a particular section of
physical memory, add a line with the appropriate parameters to the shm-
config script in the /etc/init.d directory. Procedures for doing so
are presented in “Using shmconfig” (p. 12-84).

2. Create source programs, and include in them a volatile type declaration for
each program variable that is to reside in shared memory.

3. Create the shmdefine input file(s).

4. Execute shmdefine with the desired options.

5. Compile the initialization output file that is produced by shmdefine .

6. Compile and link the source programs with the shmdefine initialization
object file and the shmdefine link command output file.

Use of these steps to enable a C program, a Fortran program, and two Ada programs to
cooperate in using a shared memory segment is illustrated by the C shell dialogue that fol-
lows. When executed, the C program named generate places data into a shared memory
segment; the Fortran program named process performs a computation on each item of
data stored in the segment; the Ada program named init initializes the iready and
oready variables; and the Ada program named output writes the result of each compu-
tation to the standard output.

These programs do not require that the shared memory segment be bound to a section of
physical memory; therefore, Step 1 is not required. To perform Step 2, create the C, For-
tran, and Ada source programs, using a text editor of your choice. The following listing
shows the files that have been created:

Interprocess Communication

12-81

% ls -C
generate.c output.a process.f
% cat generate.c
 /* This program creates 10 integer values and passes the

data to the cooperating programs using the shared memory
structure sm_data.

*/

 #include <stdio.h>

 volatile struct sm_data {
 int ain, aout ;
 int iready, oready ;
} shared_data__ ;

 void main () {
 int i ;
 int accum = 2 ;

 for (i = 1 ; i <= 10 ; ++ i) {
 while (shared_data__.iready > 0) {
 sleep(1) ;
 }
 shared_data__.ain = accum ;
 shared_data__.iready = i ;
 accum *= 2 ;
 }
}
% cat process.f
C This program processes the input data and places the results of
C the calculations in another shared memory segment for output. On
C input, it waits for the iready variable to be equal to its count
C of the data. When it has processed that datum, it negates the
C iready variable to tell the input program it is ready for another
C one. A similar scheme is used for communicating to the output
C program.

 PROGRAM process
 COMMON /shared_data/ ain, aout, iready, oready
 INTEGER ain, aout
 INTEGER iready, oready
 VOLATILE shared_data
 INTEGER i

 DO i = 1,10
 DO WHILE (iready .NE. i .OR. oready .GE. 0)
 CALL sleep(1)
 END DO
 aout = - ain
 iready = - iready
 oready = i
 END DO
 END

PowerMAX OS Programming Guide

12-82

% cat output.a
---- This file contains the source for two programs. ”Init”
---- initializes the iready and oready variables. ”Output”
---- writes the results from the process program. It waits
---- for the oready variable to be equal to its count of the
---- the data. When that happens, it writes the results and
---- negates the oready variable.

package external_data is

type data_items is new integer range -10 .. 10 ;
subtype data_item_id is data_items range 1..10 ;

 type common_block is
 record
 ain, aout : integer ;
 iready, oready : data_items ;
 end record ;
 shared_data : common_block ;

 pragma interface_shared_object (shared_data, ”shared_data__”) ;

end external_data ;

with external_data ;
procedure init is
 use external_data ;
begin
 shared_data.iready := data_items’first ;
 shared_data.oready := data_items’first ;
end init ;

with external_data ;
with text_io ;
procedure output is

 use text_io ;
 use external_data ;
 package int_io is new integer_io (data_items) ;
 package item_io is new integer_io (integer) ;

begin

for id in data_item_id loop

 ---- Wait for the [next] data item
 ---- to be ready for output.
 while (shared_data.oready /= id) loop
 delay (1.0) ;
 end loop ;

 ---- Print the data.
 put (”result ”) ;
 int_io.put (id) ;
 put (” = ”) ;
 item_io.put (shared_data.aout) ;
 new_line ;

 ---- Inform ”process” that the data item has been output.
 shared_data.oready := -shared_data.oready ;

 end loop ;

end output ;

Interprocess Communication

12-83

To perform Step 3, create the shmdefine input file, using a text editor of your choice.
Specify the KEY attribute with a path name to ensure that a unique identifier for the shared
memory segment is obtained and that access to the segment is limited to the cooperating
programs. Specify the Fortran COMMON block shared_data as the variable. Display
the input file:

% cat shmdef
SHARED REGION input_output
 KEY=”./generate.c”
 Fortran COMMON shared_data
END SHARED REGION

To perform Step 4, execute shmdefine using shmdef as the input file. Also specify the
-b option to supply shmdef as the base name for the object files produced by the utility.

% shmdefine -b shmdef shmdef

Display a listing of your files. Note that the listing now includes the shmdef input file
that you have created and the initialization and linker command files that shmdefine has
produced.

% ls -C
generate.c process.f shmdef.sm.c
output.a shmdef shmdef.sm.ld

To perform Step 5, compile the initialization file by invoking the C compiler. Note that a
subsequent listing of your files will include the object file produced by the compiler.

% hc -c shmdef.sm.c
% ls -C
generate.c process.f shmdef.sm.c shmdef.sm.o
output.a shmdef shmdef.sm.ld

To perform Step 6, compile and link the source programs. To compile and link the pro-
gram to generate the data, invoke the C compiler, and specify the initialization object file
and the link command file. Note that a subsequent listing of your files will include the exe-
cutable file generate .

% hc -o generate generate.c shmdef.sm.o -Wl,-M shmdef.sm.ld
% ls -C
generate* output.a shmdef shmdef.sm.ld
generate.c process.f shmdef.sm.c shmdef.sm.o

To compile and link the program to process the data, invoke the Fortran compiler, and
specify the initialization object file and the link command file. Note that a subsequent list-
ing of your files will include the executable file process .

% hf77 -o process -M shmdef.sm.ld process.f shmdef.sm.o
process.f:
% ls -C
generate* output.a process.f shmdef.sm.c shmdef.sm.o
generate.c process* shmdef shmdef.sm.ld

To compile and link the programs to initialize the iready and oready variables and
write the results of the computations, invoke the Ada compiler, and specify the initializa-
tion object file and the link command file. Note that a subsequent listing of your files will
include the executable files output and init as well as files generated by the Ada com-
piler (GVAS_table , ada.lib , and gnrx.lib).

PowerMAX OS Programming Guide

12-84

% /usr/hapse/bin/a.mklib
% /usr/hapse/bin/ada output.a
% /usr/hapse/bin/a.ld -o output output shmdef.sm.o shmdef.sm.ld
% /usr/hapse/bin/a.ld -o init init shmdef.sm.o shmdef.sm.ld
% ls -C
GVAS_table generate.c output* process.f shmdef.sm.ld
ada.lib gnrx.lib output.a shmdef shmdef.sm.o
generate* init* process* shmdef.sm.c

You are now ready to run the programs. Note that each program performs its operations
asynchronously. The appearance of the prompt (%) in the midst of the listing of output
data, for example, indicates that generate has completed execution prior to output.

% init
% output &
[1] 5515
% process &
[2] 5526
% generate
RESULT 1 = -2
RESULT 2 = -4
RESULT 3 = -8
RESULT 4 = -16
RESULT 5 = -32
RESULT 6 = -64
RESULT 7 = -128
RESULT 8 = -256
RESULT 9 = -512
% RESULT 10 = -1024
[2] + Done process &
[1] + Done output &

Following the link editing of a program, shared variables in a section are undefined. In
programs created with the aid of the shmdefine utility, shared variables that were ini-
tialized at compile time will have these initial values when control is transferred to the
main procedure of the program. If multiple processes are simultaneously attached to a
shared memory segment, however, only the first attached process will contribute its initial
values.

If you wish to compile a C or Fortran program, it is important to note that the Concurrent
C and Fortran compilers are available on all systems. The C compiler is called either hc or
cc . The Fortran compiler is called either hf77 or f77 .

For information specific to the C programming language, refer to the Concurrent C Refer-
ence Manual. For information specific to Fortran and the use of shared memory, refer to
the hf77 Fortran Reference Manual. For information specific to Ada and the use of shared
memory, refer to the HAPSE Reference Manual.

Using shmconfig 12

The /usr/sbin/shmconfig command has been developed to assist you in creating a
shared memory segment that is associated with a certain key and in binding it to a particu-
lar section of physical memory. This command also allows you to reserve the section of
physical memory to which you wish a shared memory segment to be bound.

Options that you can specify with the command make it possible for you to create shared
memory segments that are located in global memory, local memory, or I/O memory. If you
create a segment that is to lie in global or local memory, you can specify whether its pages,

Interprocess Communication

12-85

when resident, can be located anywhere in the corresponding memory space or must be
bound to a particular range of addresses in that space. If you create a segment that is to lie
in I/O memory, you must specify the range of addresses to which it is to be bound.

If you do not wish to bind the segment to a particular section of physical memory, use the
following format to specify the /usr/sbin/shmconfig command:

/usr/sbin/shmconfig { -L cpu | -Hcpu} -s size [-u user] [-g group] [-mmode] key

Options are described in Table 12-6. .

If you do wish the segment to be bound to a specified section of physical memory, use the
following format:

Table 12-6. Options Specified for a Virtual Segment

Option Description

 -L cpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored soft-local policy. A soft-local policy allows pages to
be allocated from global memory when pages are not available for
allocation from the local memory pool. This option has no effect on
systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

-Hcpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored hard-local policy. A hard-local policy causes a pro-
cess to wait for local memory pages to become available if the pages
cannot be allocated from the local memory pool when needed. This
option has no effect on systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

 For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

-s size Specifies the size of the segment in bytes.

-u user Specifies the login name of the owner of the shared memory segment

-g group Specifies the name of the group to which group access to the segment
is applicable.

-mmode Specifies mode as the set of permissions governing access to the
shared memory segment. You must use the octal method to specify
the permissions.

PowerMAX OS Programming Guide

12-86

/usr/sbin/shmconfig { -L cpu | -Hcpu } -p paddr -s size [-u user] [-g group] \
[-mmode] key

Note that you must have the P_SHMBIND privilege to perform this operation.

Use this format in the following circumstances:

• If the physical address range has been dynamically reserved with
physmalloc(3C) or physconfig(1M)

• If the physical address range has been statically reserved in the kernel

• If the physical address range resides in I/O memory space

Options are described in Table 12-7..

Table 12-7. Options Specified for a Bound Segment

Option Description

-L cpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored soft-local policy. A soft-local policy causes pages to
be allocated from global memory when pages are not available for
allocation from the local memory pool. This option has no effect on
systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

-Hcpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored hard-local policy. A hard-local policy causes a pro-
cess to wait for local memory pages to become available if the pages
cannot be allocated from the local memory pool when needed. This
option has no effect on systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

-p paddr Specifies paddr as the starting address of the section of physical
memory to which the segment is to be bound.

-s size Specifies the size in bytes of the section of physical memory to which
the segment is to be bound.

Interprocess Communication

12-87

If you wish to reserve a section of physical memory and then bind the shared memory seg-
ment to it, use the following format:

/usr/sbin/shmconfig { -L cpu | -Hcpu | } -b begin [-e end] -s size [-u user] \
[-g group] [-mmode] key

Note that you must have the P_SHMBIND and the P_PLOCK privileges to perform these
operations.

When using the -b begin option, the shmconfig utility reserves a section of physical
memory of size bytes within the address range specified by -b begin and optionally -e end.
It then creates a shared memory segment identified by key and binds it to the reserved sec-
tion of physical memory.

Use this method if the physical address range resides in local or global memory and has
not been previously reserved using other methods.

Options are described in Table 12-8..

-u user Specifies the login name of the owner of the shared memory segment.

-g group Specifies the name of the group to which group access to the segment
is applicable.

-mmode Specifies mode as the set of permissions governing access to the
shared memory segment. You must use the octal method to specify
the permissions.

Table 12-8. Options for Reserving Memory Prior to Binding

Option Description

-L cpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored soft-local policy. A soft-local policy causes pages to
be allocated from global memory when pages are not available for
allocation from the local memory pool. This option has no effect on
systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

Table 12-7. Options Specified for a Bound Segment (Cont.)

Option Description

PowerMAX OS Programming Guide

12-88

-Hcpu Specifies that the NUMA policy for the shared memory segment is to
be the anchored hard-local policy. A hard-local policy causes a pro-
cess to wait for local memory pages to become available if the pages
cannot be allocated from the local memory pool when needed. This
option has no effect on systems without local memory.

The value of cpu can range from 0 to 7, where the number specifies
the CPU ID of the processor from whose local memory the segment’s
pages are to be allocated.

For complete information on NUMA policies, refer to Chapter 6,
“Memory Management.”

-b begin Specifies the desired starting address of the section of physical mem-
ory to be reserved. This address may reside in local or global mem-
ory.

If you wish the kernel to use the starting address of global memory as
the starting address of the reserved section, specify a value of zero. If
not, specify the desired starting address. Starting at the address speci-
fied by begin, the kernel will attempt to reserve the first available con-
tiguous section of memory of size bytes that it finds.

If the reserved section of memory must start at a certain physical
address, you must also specify the -e end option. The address speci-
fied by end should be equal to the value of begin plus the value of size.

-e end Specifies the highest desired ending address of the section of physical
memory to be reserved. This address must reside in the same memory
pool as the starting address specified by begin.

If you do not specify this option, the system will consider any physi-
cal address that is higher than begin and within the same memory
pool as begin as memory that can satisfy the reservation request.

Note that if you specify this option, you must also specify the
-b begin option.

It is recommended that the address range specified by begin and end
be larger than the value of size in case the kernel cannot reserve a con-
tiguous section of memory starting at begin.

-s size Specifies the size in bytes of the section of physical memory to which
the segment is to be bound.

-u user Specifies the login name of the owner of the shared memory segment

-g group Specifies the name of the group to which group access to the segment
is applicable.

Table 12-8. Options for Reserving Memory Prior to Binding (Cont.)

Option Description

Interprocess Communication

12-89

It is important to note that the size of a segment as specified by the -s size argument must
match the size of the data that will be placed there. If the shmdefine utility is being
used, the size of the segment must match the size of the variables that are declared to be a
part of the shared segment. Specifying a larger size will work. (For information on
shmdefine , see “Using shmdefine.”)

It is recommended that you specify the -u , -g , and -m options to identify the user and
group associated with the segment and to set the permissions controlling access to it. If
you do not, the default user ID and group ID of the segment are those of the owner; the
default mode is 644.

The key argument represents a user-chosen identifier for a shared memory segment. This
identifier can be either an integer or a standard UNIX path name that refers to an existing
file.

If you use the /usr/sbin/shmconfig command to bind a section of I/O memory to a
shared memory segment, it is recommended that you use the badaddr(2) system call to
verify that the specified I/O memory location is valid. For additional information on the
use of this call, refer to the corresponding system manual page.

When the /usr/sbin/shmconfig command is executed, an internal data structure and
shared memory segment are created for the specified key; whether the created shared
memory segment is bound to a contiguous section of physical memory depends upon the
options that you have specified.

To access the sha red memory segment t ha t has b een c rea ted by th e
/usr/sbin/shmconfig command, processes must first call shmget(2) to obtain the
identifier for the segment. This identifier is required by other system calls for manipulat-
ing shared memory segments. The specification for shmget is as follows:

int shmget(key, size, 0)

The value of key is determined by the value of the key argument specified with the
/usr/sbin/shmconfig command. If the value of the key argument was an integer,
that integer must be specified as key on the call to shmget . If the value of the key argu-
ment was a path name, you must first call the ftok subroutine to obtain an integer value
that is based on the path name to specify as key on the call to shmget . It is important to
note that the value of the id argument on the call to ftok must be zero because
/usr/sbin/shmconfig calls ftok with an id of zero when it converts the path name
to a key. The value of size must be equal to the number of bytes specified by the -s size
argument to the /usr/sbin/shmconfig command. A value of 0 is specified as the
flag argument because the shared memory segment has already been created.

For complete information on use of the shmget system call, see “Getting Shared Memory
Segments.” For assistance in using ftok , see “Using Shared Memory” and the system
manual page for stdipc(3C) . When you are creating areas of mapped memory that are

-mmode Specifies mode as the set of permissions governing access to the
shared memory segment. You must use the octal method to specify
the permissions.

Table 12-8. Options for Reserving Memory Prior to Binding (Cont.)

Option Description

PowerMAX OS Programming Guide

12-90

to be treated as global system resources, you may f ind it helpful to invoke
/usr/sbin/shmconfig by adding a line to the shmconfig script in the
/etc/init.d directory. Doing so allows you to reserve the IPC key before noncooper-
ating processes have an opportunity to use it, and it enables you to establish the binding
between the shared memory segment and physical memory before cooperating processes
need to use the segment. Add a line similar to the following example:

/usr/sbin/shmconfig -p 0xf00000 -s 0x10000 -u root -g sys -m 0666 key

If you need additional information on the use of /usr/sbin/shmconfig , refer to the
system manual page shmconfig(1M) .

Multilevel Operation On Shared Memory Segments 12

If the Enhanced Security Utilities are installed and running, it may be desirable for a priv-
ileged process to communicate with a process running at another Mandatory Access Con-
trol (MAC) level. Multilevel operation on shared memory segments is allowed for privi-
leged processes.

For a process to attach to a shared memory segment at a different security level (using the
shmat operation of the shmop system call), both the P_MACWRITE and P_MACREAD
privileges are required. The process can then read from or write to the segment if it passes
DAC checks. Both privileges are also required to change the attributes of a shared memory
segment at a different security level.

Even though a privileged process may access information at many different security lev-
els, a key specified in a shmget system call will return a shmid with an associated
shared memory segment and data structure having a security level identical to that of the
calling process. Once a privileged process has obtained a shmid , the process may per-
form any of the possible operations from any security level. Unlike keys, shmids are
not unique to a security level but to the entire system.

There is no defined interface to obtain the shmid for multilevel operation. A process may
obtain the shmid via the shmget system call when invoked from a specific security
level. A privileged user may also manually obtain a shmid and security level information
about the message queue by invoking the ipcs command. The privileged process must
have the P_MACREAD privilege when invoking ipcs. See the manual page ipcs(1)
for details on the use of ipcs.

The lvlipc system call reports the security level of a shared memory segment associated
with the specified shmid . This system call is of little use to an unprivileged process,
since a shared memory segment created and used by the unprivileged process always has a
security level equal to that of the process. The process with the P_MACREAD privilege,
though, may use this system call to find the security level of any existing shared memory
segment on the system. The process must also have discretionary read access to the mem-
ory segment.

For a detailed discussion of process privileges, see “Privileges” in Chapter 9 of this guide.

13
STREAMS Polling and Multiplexing

Introduction . 13-1
STREAMS Input/Output Polling. 13-1

Synchronous Input/Output . 13-2
Asynchronous Input/Output . 13-5
Signals . 13-6

Extended Signals . 13-7
STREAMS Input/Output Multiplexing . 13-7

STREAMS Multiplexors . 13-12
Building a Multiplexor . 13-12
Dismantling a Multiplexor . 13-19
Routing Data through a Multiplexor . 13-20

Persistent Links . 13-21

PowerMAX OS Programming Guide

13-1

13
Chapter 13STREAMS Polling and Multiplexing

13
13
13

Introduction 13

This chapter describes how STREAMS allows user processes to monitor, control, and poll
Streams to allow an effective utilization of system resources. The synchronous polling
mechanism and asynchronous event notification within STREAMS is discussed.
STREAMS signal handling between modules and/or drivers and user processes is also dis-
cussed.

The remainder of this chapter is devoted to STREAMS input/output multiplexing. It
defines a STREAMS multiplexor, and describes multiplexing drivers. A discussion of how
STREAMS multiplexing configurations are created, is included. Code examples are
included to illustrate using both the polling and multiplexing mechanisms.

STREAMS Input/Output Polling 13

This section describes the synchronous polling mechanism and asynchronous event notifi-
cation within STREAMS.

User processes can efficiently monitor and control multiple Streams with two system calls:
poll and the I_SETSIG ioctl command. These calls allow a user process to detect
events that occur at the Stream head on one or more Streams, including receipt of data or
messages on the read queue and cessation of flow control.

To monitor Streams with poll , a user process issues that system call and specifies the
Streams to be monitored, the events to look for, and the amount of time to wait for an
event. The poll system call blocks the process until the time expires or until an event
occurs. If an event occurs, it returns the type of event and the Stream on which the event
occurred.

Instead of waiting for an event to occur, a user process may want to monitor one or more
Streams while processing other data. It can do so by issuing the I_SETSIG ioctl com-
mand, specifying one or more Streams and events (as with poll). This ioctl does not
block the process and force the user process to wait for the event but returns immediately
and issues a signal when an event occurs. The process must specify a signal handler to
catch the resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS causes the SIG-
POLL catching function to be executed in all associated requesting processes. However,
the process(es) will not know which event occurred, nor on what Stream the event

PowerMAX OS Programming Guide

13-2

occurred. A process that issues the I_SETSIG can get more detailed information by issu-
ing a poll after it detects the event.

Synchronous Input/Output 13

The poll system call provides a mechanism to identify those Streams over which a user
can send or receive data. For each Stream of interest, users can specify one or more events
about which they should be notified. The types of events that can be polled are as follows:

POLLIN A message other than an M_PCPROTO is at the front of the
Stream head read queue. This event is maintained for com-
patibility with the previous releases of the UNIX System
V.

POLLRDNORM A normal (nonpriority) message is at the front of the
Stream head read queue.

POLLRDBAND A priority message (band > 0) is at the front of the Stream
head queue.

POLLPRI A high-priority message (M_PCPROTO) is at the front of
the Stream head read queue.

POLLOUT The normal priority band of the queue is writable (not flow
controlled).

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 of a queue downstream
exists and is writable.

POLLMSG An M_SIG or M_PCSIG message containing the
SIGPOLL signal has reached the front of the Stream head
read queue.

Some of the events may not be applicable to all file types. For example, it is not expected
that the POLLPRI event will be generated when polling a regular file. POLLIN,
POLLRDNORM, POLLRDBAND, and POLLPRI are set even if the message is of zero
length.

The poll system call examines each file descriptor for the requested events and, on
return, shows which events have occurred for each file descriptor. If no event has occurred
on any polled file descriptor, poll blocks until a requested event or timeout occurs. poll
takes the following arguments:

• An array of file descriptors and events to be polled.

• The number of file descriptors to be polled.

• The number of milliseconds poll should wait for an event if no events are
pending (-1 specifies wait forever).

The following example shows the use of poll . Two separate minor devices of the com-
munications driver are opened, thereby establishing two separate Streams to the driver.

STREAMS Polling and Multiplexing

13-3

The pollfd entry is initialized for each device. Each Stream is polled for incoming data.
If data arrives on either Stream, it is read and then written back to the other Stream.

The variable pollfds is declared as an array of the pollfd structure that is defined in
<poll.h> and has the following format:

For each entry in the array, fd specifies the file descriptor to be polled and events is a
bitmask that contains the bitwise inclusive OR of events to be polled on that file descriptor.
On return, the revents bitmask indicates which of the requested events has occurred.

The example continues to process incoming data as follows:

#include <fcntl.h>
#include <poll.h>

#define NPOLL 2 /* number of file descriptors to poll */

main()
{

struct pollfd pollfds[NPOLL];
char buf[1024];
int count, i;

if ((pollfds[0].fd = open(“/dev/comm/01”, O_RDWR|O_NDELAY)) < 0) {
perror(“open failed for /dev/comm/01”);
exit(1);

}

if ((pollfds[1].fd = open(“/dev/comm/02”, O_RDWR|O_NDELAY)) < 0) {
perror(“open failed for /dev/comm/02”);
exit(2);

}

struct pollfd {
int fd; /* file descriptor */
shortevents; /* requested events */
shortrevents; /* returned events */

}

PowerMAX OS Programming Guide

13-4

The user specifies the polled events by setting the events field of the pollfd structure
to POLLIN. This requested event directs poll to notify the user of any incoming data on
each Stream. The bulk of the example is an infinite loop, where each iteration polls both
Streams for incoming data.

The second argument to the poll system call specifies the number of entries in the
pollfds array (2 in this example). The third argument is a timeout value indicating the
number of milliseconds poll should wait for an event if none occurs. On a system where
millisecond accuracy is not available, timeout is rounded up to the nearest value available
on that system. If the value of timeout is 0, poll returns immediately. Here, the value of
timeout is -1 , specifying that poll should block until a requested event occurs or until the
call is interrupted.

If the poll call succeeds, the program looks at each entry in the pollfds array. If
revents is set to 0, no event has occurred on that file descriptor. If revents is set to
POLLIN, incoming data is available. In this case, all data is read from the polled minor
device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must have occurred
on that Stream, because POLLIN was the only requested event. The following are poll
error events:

pollfds[0].events = POLLIN; /* set events to poll */
pollfds[1].events = POLLIN; /* for incoming data */
pollfds[0].revents = 0;
pollfds[1].revents = 0;

while (1) {
/* poll and use -1 timeout (infinite) */
if (poll(pollfds, NPOLL, -1) < 0) {

perror(“poll failed”);
exit(3);

}
for (i = 0; i < NPOLL; i++) {

switch (pollfds[i].revents) {

case 0: /* no events */
break;

case POLLIN:
/* echo incoming data on “other” Stream */
while ((count = read(pollfds[i].fd, buf, 1024)) > 0)

/*
 * the write loses data if flow control
 * prevents the transmit at this time.
 */

if (write(pollfds[(i+1)%2].fd, buf, count) != count)
fprintf(stderr,“writer lost data\n”);

pollfds[i].revents = 0;
break;

default: /* default error case */
perror(“error event”);
exit(4);

}
}

}
}

STREAMS Polling and Multiplexing

13-5

POLLERR A fatal error has occurred in some module or driver on the Stream
associated with the specified file descriptor. Further system calls
will fail.

POLLHUP A hangup condition exists on the Stream associated with the spec-
ified file descriptor. This event and POLLOUT are mutually exclu-
sive; a Stream cannot be writable if a hangup has occurred.

POLLNVAL The specified file descriptor is not valid

These events may not be polled by the user, but will be reported in revents whenever
they occur. As such, they are only valid in the revents bitmask.

The example attempts to process incoming data as quickly as possible. However, when
writing data to a Stream, the write call may block if the Stream is exerting flow control.
To prevent the process from blocking, the minor devices of the communications driver
were opened with the O_NDELAY (or O_NONBLOCK, see note) flag set. The write will
not be able to send all the data if flow control is exerted and O_NDELAY (O_NONBLOCK)
is set. This can occur if the communications driver is unable to keep up with the user's rate
of data transmission. If the Stream becomes full, the number of bytes the write sends
will be less than the requested count . For simplicity, the example ignores the data if the
Stream becomes full, and a warning is printed to stderr .

NOTE

For conformance with the IEEE operating system interface stan-
dard, POSIX, it is recommended that new applications use the
O_NONBLOCK flag, which behaves the same as O_NDELAY unless
otherwise noted.

This program continues until an error occurs on a Stream, or until the process is inter-
rupted.

Asynchronous Input/Output 13

The poll system call enables a user to monitor multiple Streams in a synchronous fash-
ion. The poll call normally blocks until an event occurs on any of the polled file descrip-
tors. In some applications, however, it is desirable to process incoming data asynchro-
nously. For example, an application may want to do some local processing and be
interrupted when a pending event occurs. Some time-critical applications cannot afford to
block, but must have immediate indication of success or failure.

The I_SETSIG ioctl call (see streamio(7)) is used to request that a SIGPOLL sig-
nal be sent to a user process when a specific event occurs. Listed below are events for the
ioctl I_SETSIG . These are similar to those described for poll .

S_INPUT A message other than an M_PCPROTO is at the front of the Stream
head read queue. This event is maintained for compatibility with
previous releases.

PowerMAX OS Programming Guide

13-6

S_RDNORM A normal (nonpriority) message is at the front of the Stream head
read queue.

S_RDBAND A priority message (band > 0) is at the front of the Stream head
read queue.

S_HIPRI A high-priority message (M_PCPROTO) is present at the front of
the Stream head read queue.

S_OUTPUT A write queue for normal data (priority band = 0) is no longer full
(not flow controlled). This notifies a user that there is room on the
queue for sending or writing normal data downstream.

S_WRNORM The same as S_OUTPUT.

S_WRBAND A priority band greater than 0 of a queue downstream exists and is
writable. This notifies a user that there is room on the queue for
sending or writing priority data downstream.

S_MSG An M_SIG or M_PCSIG message containing the SIGPOLL flag
has reached the front of Stream head read queue.

S_ERROR An M_ERROR message reaches the Stream head.

S_HANGUP An M_HANGUP message reaches the Stream head.

S_BANDURG When used with S_RDBAND, SIGURG is generated instead SIG-
POLL when a priority message reaches the front of the Stream
head read queue.

S_INPUT, S_RDNORM, S_RDBAND, and S_HIPRI are set even if the message is of zero
length. A user process may choose to handle only high-priority messages by setting the
arg to S_HIPRI .

Signals 13

STREAMS allows modules and drivers to cause a signal to be sent to user process(es)
through an M_SIG or M_PCSIG message. The first byte of the message specifies the sig-
nal for the Stream head to generate. If the signal is not SIGPOLL (see signal(2)), the
signal is sent to the process group associated with the Stream. If the signal is SIGPOLL,
the signal is only sent to processes that have registered for the signal by using the
I_SETSIG ioctl .

An M_SIG message can be used by modules or drivers that want to insert an explicit
inband signal into a message Stream. For example, this message can be sent to the user
process immediately before a particular service interface message to gain the immediate
attention of the user process. When the M_SIG message reaches the head of the Stream
head read queue, a signal is generated and the M_SIG message is removed. This leaves the
service interface message as the next message to be processed by the user. Use of the
M_SIG message is typically defined as part of the service interface of the driver or mod-
ule.

STREAMS Polling and Multiplexing

13-7

Extended Signals 13

To enable a process to obtain the band and event associated with SIGPOLL more readily,
STREAMS supports extended signals. For the given events, a special code is defined in
<siginfo.h> that describes the reason SIGPOLL was generated. Table 13-1 describes
the data available in the siginfo_t structure passed to the signal handler.

STREAMS Input/Output Multiplexing 13

This section describes how STREAMS multiplexing configurations are created and also
discusses multiplexing drivers.

Earlier, Streams were described as linear connections of modules, where each invocation
of a module is connected to at most one upstream module and one downstream module.
While this configuration is suitable for many applications, others require the ability to
multiplex Streams in a variety of configurations. Typical examples are terminal window
facilities, and internetworking protocols (which might route data over several subnet-
works).

Figure 13-1 shows an example of a multiplexor that multiplexes data from several upper
Streams over a single lower Stream. An upper Stream is one that is upstream from a multi-
plexor, and a lower Stream is one that is downstream from a multiplexor. A terminal win-
dowing facility might be implemented in this fashion, where each upper Stream is associ-
ated with a separate window.

Table 13-1. siginfo_t Data Available to the Signal Handler

Event si_signo si_code si_band si_errno

S_INPUT SIGPOLL POLL_IN band readable unused

S_OUTPUT SIGPOLL POLL_OUT band writable unused

S_MSG SIGPOLL POLL_MSG band signaled unused

S_ERROR SIGPOLL POLL_ERR unused Stream error

S_HANGUP SIGPOLL POLL_HUP unused unused

S_HIPRI SIGPOLL POLL_PRI unused unused

PowerMAX OS Programming Guide

13-8

Figure 13-1. Many-to-One Multiplexor

Figure 13-2 shows a second type of multiplexor that might route data from a single upper
Stream to one of several lower Streams. An internetworking protocol could take this form,
where each lower Stream links the protocol to a different physical network.

Figure 13-2. One-to-Many Multiplexor

Figure 13-3 shows a third type of multiplexor that might route data from one of many
upper Streams to one of many lower Streams.

MUX

161470

MUX

161480

STREAMS Polling and Multiplexing

13-9

Figure 13-3. Many-to-Many Multiplexor

The STREAMS mechanism supports the multiplexing of Streams through special pseudo-
device drivers. Using a linking facility, users can dynamically build, maintain, and dis-
mantle multiplexed Stream configurations. Simple configurations like the ones shown in
Figure 13-1 through Figure 13-3 can be further combined to form complex, multilevel,
multiplexed Stream configurations.

STREAMS multiplexing configurations are created in the kernel by interconnecting multi-
ple Streams. Conceptually, there are two kinds of multiplexors: upper and lower multi-
plexors. Lower multiplexors have multiple lower Streams between device drivers and the
multiplexor, and upper multiplexors have multiple upper Streams between user processes
and the multiplexor.

Figure 13-4 is an example of the multiplexor configuration that typically occurs where
internetworking functions are included in the system. This configuration contains three
hardware device drivers. The IP (Internet Protocol) is a multiplexor.

The IP multiplexor switches messages among the lower Streams or sends them upstream
to user processes in the system. In this example, the multiplexor expects to see the same
interface downstream to Module 1, Module 2, and Driver 3.

MUX

161490

PowerMAX OS Programming Guide

13-10

Figure 13-4. Internet Multiplexing Stream

Figure 13-4 depicts the IP multiplexor as part of a larger configuration. The multiplexor
configuration, shown in the dashed rectangle, generally has an upper multiplexor and addi-
tional modules. Multiplexors can also be cascaded below the IP multiplexor driver if the
device drivers are replaced by multiplexor drivers.

Figure 13-5 shows a multiplexor configuration where the multiplexor (or multiplexing
driver) routes messages between the lower Stream and one upper Stream. This Stream per-
forms X.25 multiplexing to multiple independent Switched Virtual Circuit (SVC) and Per-
manent Virtual Circuit (PVC) user processes. Upper multiplexors are a specific applica-
tion of standard STREAMS facilities that support multiple minor devices in a device
driver. This figure also shows that more complex configurations can be built by having one
or more multiplexed drivers below and multiple modules above an upper multiplexor.

Developers can choose either upper or lower multiplexing, or both, when designing their
applications. For example, a window multiplexor would have a similar configuration to the

Upper
Multiplexor or

Module

User Processes

161500

Module 1

Driver 1

Module 2

Driver 2 Driver 3

IP
Multiplexor

Driver

STREAMS Polling and Multiplexing

13-11

X.25 configuration of Figure 13-5, with a window driver replacing the Packet Layer, a tty
driver replacing the driver XYZ, and the child processes of the terminal process replacing
the user processes. Although the X.25 and window multiplexing Streams have similar
configurations, their multiplexor drivers would differ significantly. The IP multiplexor in
Figure 13-4 has a different configuration than the X.25 multiplexor, and the driver would
implement its own set of processing and routing requirements in each configuration.

Figure 13-5. X.25 Multiplexing Stream

In addition to upper and lower multiplexors, you can create more complex configurations
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general purpose multi-
plexor drivers. Rather, STREAMS provides a general purpose multiplexing facility, which
allows users to set up the intermodule/driver plumbing to create multiplexor configura-
tions of generally unlimited interconnection.

PVC
Processes

SVC
Processes

Processes

161510

Modules Modules Modules

X.25
Packet Layer Protocol

Multiplexor Driver

Driver XYZ
or

Lower Multiplexor

PowerMAX OS Programming Guide

13-12

STREAMS Multiplexors 13

A STREAMS multiplexor is a driver with multiple Streams connected to it. The primary
function of the multiplexing driver is to switch messages among the connected Streams.
Multiplexor configurations are created at user level by system calls.

STREAMS-related system calls set up the “plumbing,” or Stream interconnections, for
multiplexing drivers. The subset of these calls that allows a user to connect (and discon-
nect) Streams below a driver is referred to as the multiplexing facility. This type of con-
nection is referred to as a 1-to-M, or lower, multiplexor configuration. This configuration
must always contain a multiplexing driver, which is recognized by STREAMS as having
special characteristics.

Multiple Streams can be connected above a driver by open calls. There is no difference
between the connections to these drivers, only the functions performed by the driver are
different. In the multiplexing case, the driver routes data between multiple Streams. In the
device driver case, the driver routes data between user processes and associated physical
ports. Multiplexing with Streams connected above is referred to as an N-to-1, or upper,
multiplexor. STREAMS does not provide any facilities beyond open and close to con-
nect or disconnect upper Streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only in how they are
initially connected to the driver. The implementation requirements are the same: route the
data and handle flow control. All multiplexor drivers require special developer-provided
software to perform the multiplexing data routing and to handle flow control. STREAMS
does not directly support flow control among multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above mecha-
nisms in a driver.

The multiple Streams that represent minor devices are actually distinct Streams in which
the driver keeps track of each Stream attached to it. The STREAMS subsystem does not
recognize any relationship between the Streams. The same is true for STREAMS multi-
plexors of any configuration. The multiplexed Streams are distinct and the driver must be
implemented to do most of the work.

In addition to upper and lower multiplexors, more complex configurations can be created
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general-purpose multi-
plexor drivers. Rather, STREAMS provides a general purpose multiplexing facility that
allows users to set up the intermodule/driver plumbing to create multiplexor configura-
tions of generally unlimited interconnection.

Building a Multiplexor 13

This section builds a protocol multiplexor with the multiplexing configuration shown in
Figure 13-6. To free users from the need to know about the underlying protocol structure,
a user-level daemon process is built to maintain the multiplexing configuration. Users can
then access the transport protocol directly by opening the transport protocol (TP) driver
device node.

STREAMS Polling and Multiplexing

13-13

An internetworking protocol driver (IP) routes data from a single upper Stream to one of
two lower Streams. This driver supports two STREAMS connections beneath it. These
connections are to two distinct networks; one for the IEEE 802.3 standard with the 802.3
driver, and the other to the IEEE 802.4 standard with the 802.4 driver. The TP driver mul-
tiplexes upper Streams over a single Stream to the IP driver.

Figure 13-6. Protocol Multiplexor

The following example shows how this daemon process sets up the protocol multi-
plexor.The necessary declarations and initialization for the daemon program are as fol-
lows:

daemon

User Space

Kernel Space

161520

user 1

TP
Driver

Stream
Head

802.4
Driver

802.3
Driver

user 2

IP
Driver

PowerMAX OS Programming Guide

13-14

This multilevel multiplexed Stream configuration is built from the bottom up. Therefore,
the example begins by first constructing the Internet Protocol (IP) multiplexor. This multi-
plexing device driver is treated like any other software driver. It owns a node in the UNIX
file system and is opened just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creating separate
Streams above each driver as shown in Figure 13-7. The Stream to the 802.4 driver may
now be connected below the multiplexing IP driver using the I_LINK ioctl call.

Figure 13-7. Before Link

#include <fcntl.h>
#include <stropts.h>

main()
{

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/* daemon-ize this process */

switch (fork()) {
case 0:

break;
case -1:

perror(“fork failed”);
exit(2);

default:
exit(0);

}
setsid();

daemon

User Space

Kernel Space

IP
Driver

802.4
Driver

161530

STREAMS Polling and Multiplexing

13-15

The sequence of instructions to this point is

I_LINK takes two file descriptors as arguments. The first file descriptor, fd_ip , must
reference the Stream connected to the multiplexing driver, and the second file descriptor,
fd_802_4 , must reference the Stream to be connected below the multiplexor.
Figure 13-8 shows the state of these Streams following the I_LINK call. The complete
Stream to the 802.4 driver has been connected below the IP driver. The Stream head's
queues of the 802.4 driver is used by the IP driver to manage the lower half of the multi-
plexor.

if ((fd_802_4 = open(“/dev/802_4”, O_RDWR)) < 0) {
perror(“open of /dev/802_4 failed”);
exit(1);

}

if ((fd_ip = open(“/dev/ip”, O_RDWR)) < 0) {
perror(“open of /dev/ip failed”);
exit(2);

}

/* now link 802.4 to underside of IP */

if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) {
perror(“I_LINK ioctl failed”);
exit(3);

}

PowerMAX OS Programming Guide

13-16

Figure 13-8. IP Multiplexor after First Link

I_LINK returns an integer value, called muxid , which is used by the multiplexing driver
to identify the Stream just connected below it. This muxid is ignored in the example, but
is useful for dismantling a multiplexor or routing data through the multiplexor. Its signifi-
cance is discussed later.

The following sequence of system calls is used to continue building the internetworking
protocol multiplexor (IP):

All links below the IP driver have now been established, giving the configuration in
Figure 13-9.

daemon

User Space

Kernel Space

IP
Driver

802.4
Driver

161540

if ((fd_802_3 = open(“/dev/802_3”, O_RDWR)) < 0) {
perror(“open of /dev/802_3 failed”);
exit(4);

}

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {
perror(“I_LINK ioctl failed”);
exit(5);

}

STREAMS Polling and Multiplexing

13-17

Figure 13-9. IP Multiplexor

The Stream above the multiplexing driver used to establish the lower connections is the
controlling Stream and has special significance when dismantling the multiplexing config-
uration. This will be illustrated later in this section. The Stream referenced by fd_ip is
the controlling Stream for the IP multiplexor.

NOTE

The order in which the Streams in the multiplexing configuration
are opened is unimportant. If it is necessary to have intermediate
modules in the Stream between the IP driver and media drivers,
these modules must be added to the Streams associated with the
media drivers (using I_PUSH) before the media drivers are
attached below the multiplexor.

The number of Streams that can be linked to a multiplexor is restricted by the design of the
particular multiplexor. The manual page describing each driver (typically found in Section
7) describes such restrictions. However, only one I_LINK operation is allowed for each
lower Stream; a single Stream cannot be linked below two multiplexors simultaneously.

daemon

User Space

Kernel Space

Controlling
Stream IP

Driver

802.4
Driver

802.3
Driver

161550

PowerMAX OS Programming Guide

13-18

Continuing with the example, the IP driver is now linked below the transport protocol (TP)
multiplexing driver. As seen earlier in Figure 13-6, only one link is supported below the
transport driver. This link is formed by the following sequence of system calls:

The multilevel multiplexing configuration shown in Figure 13-10 has now been created.

Figure 13-10. TP Multiplexor

if ((fd_tp = open(“/dev/tp”, O_RDWR)) < 0) {
perror(“open of /dev/tp failed”);
exit(6);

}

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) {
perror(“I_LINK ioctl failed”);
exit(7);

}

daemon

User Space

Kernel Space

Controlling
Stream

IP
Driver

802.4
Driver

802.3
Driver

TP
Driver

161560

STREAMS Polling and Multiplexing

13-19

Because the controlling Stream of the IP multiplexor has been linked below the TP multi-
plexor, the controlling Stream for the new multilevel multiplexor configuration is the
Stream above the TP multiplexor.

At this point, the file descriptors associated with the lower drivers can be closed without
affecting the operation of the multiplexor. If these file descriptors are not closed, all later
read , write , ioctl , poll , getmsg , and putmsg system calls issued to them will
fail because I_LINK associates the Stream head of each linked Stream with the multi-
plexor, so the user may not access that Stream directly for the duration of the link.

The following sequence of system calls completes the daemon example:

To summarize, Figure 13-10 shows the multilevel protocol multiplexor. The transport
driver supports several simultaneous Streams. These Streams are multiplexed over the sin-
gle Stream connected to the IP multiplexor. The mechanism for establishing multiple
Streams above the transport multiplexor is actually a by-product of the way in which
Streams are created between a user process and a driver. By opening different minor
devices of a STREAMS driver, separate Streams are connected to that driver. Of course,
the driver must be designed with the intelligence to route data from the single lower
Stream to the appropriate upper Stream.

The daemon process maintains the multiplexed Stream configuration through an open
Stream (the controlling Stream) to the transport driver. Meanwhile, other users can access
the services of the transport protocol by opening new Streams to the transport driver; they
are freed from the need for any unnecessary knowledge of the underlying protocol config-
urations and subnetworks that support the transport service.

Multilevel multiplexing configurations should be assembled from the bottom up because
the passing of ioctl s through the multiplexor is determined by the multiplexing driver
and cannot generally be relied on.

Dismantling a Multiplexor 13

Streams connected to a multiplexing driver from above with open , can be dismantled by
closing each Stream with close . The mechanism for dismantling Streams that have been
linked below a multiplexing driver is less obvious, and is described below.

The I_UNLINK ioctl call disconnects each multiplexor link below a multiplexing
driver individually. This command has the form:

ioctl (fd, I_UNLINK , muxid);

close(fd_802_4);
close(fd_802_3);
close(fd_ip);

/* Hold multiplexor open forever */
pause();

}

PowerMAX OS Programming Guide

13-20

where fd is a file descriptor associated with a Stream connected to the multiplexing driver
from above, and muxid is the identifier that was returned by I_LINK when a driver was
linked below the multiplexor. Each lower driver may be disconnected individually in this
way, or a special muxid value of -1 may disconnect all drivers from the multiplexor simul-
taneously.

In the multiplexing daemon program presented earlier, the multiplexor is never explicitly
dismantled because all links associated with a multiplexing driver are automatically dis-
mantled when the controlling Stream associated with that multiplexor is closed. Because
the controlling Stream is open to a driver, only the final call of close for that Stream
closes it. In this case, the daemon is the only process that opens the controlling Stream, so
the multiplexing configuration is dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, multiplexed Stream
configuration, the controlling Stream for each multiplexor at each level must be linked
under the next higher level multiplexor. In the example, the controlling Stream for the IP
driver was linked under the TP driver, which resulted in a single controlling Stream for the
full, multilevel configuration. Because the multiplexing program relied on closing the con-
trolling Stream to dismantle the multiplexed Stream configuration instead of using explicit
I_UNLINK calls, the muxid values returned by I_LINK could be ignored.

An important side-effect of automatic dismantling on the close is that it is not possible for
a process to build a multiplexing configuration with I_LINK and then exit. This is
because exit closes all files associated with the process, including the controlling
Stream. To keep the configuration intact, the process must exist for the life of that multi-
plexor. That is the motivation for implementing the example as a daemon process.

However, if the process uses persistent links with the I_PLINK ioctl call, the multi-
plexor configuration remains intact after the process exits. Persistent links are described
later in this section.

Routing Data through a Multiplexor 13

As shown, STREAMS provides a mechanism for building multiplexed Stream configura-
tions. However, the criteria on which a multiplexor routes data is driver-dependent. For
example, the protocol multiplexor shown before might use address information found in a
protocol header to determine over which subnetwork data should be routed. It is the multi-
plexing driver's responsibility to define its routing criteria.

One routing option available to the multiplexor is to use the muxid value to determine to
which Stream data should be routed (remember that each multiplexor link is associated
with a muxid). I_LINK passes the muxid value to the driver and returns this value to the
user. The driver can therefore specify that the muxid value must accompany data routed
through it. For example, if a multiplexor routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexor could require the user to insert
the muxid of the desired lower Stream into the first four bytes of each message passed to it.
The driver could then match the muxid in each message with the muxid of each lower
Stream, and route the data accordingly.

STREAMS Polling and Multiplexing

13-21

Persistent Links 13

With I_LINK and I_UNLINK ioctl s, the file descriptor associated with the Stream
above the multiplexor used to set up the lower multiplexor connections must remain open
for the duration of the configuration. Closing the file descriptor associated with the con-
trolling Stream dismantles the whole multiplexing configuration. Some applications may
not want to keep a process running merely to hold the multiplexor configuration together.
Therefore, “free-standing” links below a multiplexor are needed. A persistent link is such
a link. It is similar to a STREAMS multiplexor link, except that a process is not needed to
hold the links together. After the multiplexor has been set up, the process may close all file
descriptors and exit, and the multiplexor remains intact.

Two ioctl s, I_PLINK and I_PUNLINK , are used to create and remove persistent links
that are associated with the Stream above the multiplexor. close and I_UNLINK are not
able to disconnect the persistent links.

The format of I_PLINK is

ioctl (fd0, I_PLINK , fd1)

The first file descriptor, fd0, must reference the Stream connected to the multiplexing
driver and the second file descriptor, fd1, must reference the Stream to be connected below
the multiplexor. The persistent link can be created in the following way:

Figure 13-11 shows how open establishes a Stream between the device and the Stream
head.

upper_stream_fd = open(“/dev/mux”, O_RDWR);
lower_stream_fd = open(“/dev/driver”, O_RDWR);
muxid = ioctl(upper_stream_fd, I_PLINK, lower_stream_fd);
/*
 * save muxid in a file
 */
exit(0);

PowerMAX OS Programming Guide

13-22

Figure 13-11. Open of MUXdriver and Driver1

The persistent link can still exist even if the file descriptor associated with the upper
Stream to the multiplexing driver is closed. The I_PLINK ioctl returns an integer
value, muxid , that can be used for dismantling the multiplexing configuration. If the pro-
cess that created the persistent link still exists, it may pass the muxid value to some other
process to dismantle the link, if the dismantling is desired, or it can leave the muxid value
in a file so that other processes may find it later. Figure 13-12 shows a multiplexor after
I_PLINK .

User
Process

User Space

Kernel Space

161570

fd1 fd0

Driver1 MUXdriver

STREAMS Polling and Multiplexing

13-23

Figure 13-12. Multiplexor after I_PLINK

Several users can open the MUXdriver and send data to Driver1 since the persistent link to
Driver1 remains intact. This is shown in Figure 13-13.

fd0fd1

User
Process

User Space

Kernel Space

Persistent
Link

MUXDriver

Driver1

161580

PowerMAX OS Programming Guide

13-24

Figure 13-13. Other Users Opening a MUXdriver

The I_PUNLINK ioctl is used for dismantling the persistent link. Its format is

ioctl (fd0, I_PUNLINK , muxid)

where the fd0 is the file descriptor associated with Stream connected to the multiplexing
driver from above. The muxid is returned by the I_PLINK ioctl for the Stream that was
connected below the multiplexor. The I_PUNLINK removes the persistent link between
the multiplexor referenced by the fd0 and the Stream to the driver designated by the muxid.
Each of the bottom persistent links can be disconnected individually. An I_PUNLINK
ioctl with the muxid value of MUXID_ALL removes all persistent links below the multi-
plexing driver referenced by fd0.

The following dismantles the previously given configuration:

userB

User Space

Kernel Space

Persistent
Link

userA userC

MUXdriver

Driver1

161590

STREAMS Polling and Multiplexing

13-25

The use of the ioctl s I_PLINK and I_PUNLINK should not be intermixed with
I_LINK and I_UNLINK . Any attempt to unlink a regular link with I_PUNLINK or to
unlink a persistent link with I_UNLINK ioctl causes the errno value of EINVAL to be
returned.

Because multilevel multiplexing configurations are allowed in STREAMS, it is possible to
have a situation where persistent links exist below a multiplexor whose Stream is con-
nected to the above multiplexor by regular links. Closing the file descriptor associated
with the controlling Stream removes the regular link but not the persistent links below it.
On the other hand, regular links are allowed to exist below a multiplexor whose Stream is
connected to the above multiplexor with persistent links. In this case, the regular links are
removed if the persistent link above is removed and no other references to the lower
Streams exist.

The construction of cycles is not allowed when creating links. A cycle could be con-
structed by creating a persistent link of multiplexor 2 below multiplexor 1 and then closing
the controlling file descriptor associated with the multiplexor 2 and reopening it again and
then linking the multiplexor 1 below the multiplexor 2, but this is not allowed. The operat-
ing system prevents a multiplexor configuration from containing a cycle to ensure that
messages cannot be routed infinitely, thus creating an infinite loop or overflowing the ker-
nel stack.

fd = open(“/dev/mux”, O_RDWR);
/*
 * retrieve muxid from the file
 */
ioctl(fd, I_PUNLINK, muxid);
exit(0);

PowerMAX OS Programming Guide

13-26

14
Packaging Your Software Applications

An Overview of Software Packaging . 14-1
Packaging Tools and the Enhanced Security Utilities . 14-1
Contents of a Package . 14-2

Required Components . 14-3
Optional Package Information Files . 14-3
Optional Installation Scripts . 14-4

The Structural Life Cycle of a Package . 14-4
The Package Creation Tools . 14-4

The pkgmk Command . 14-5
The pkgtrans Command . 14-6
The pkgproto Command. 14-6

The Installation Tools . 14-6
The Package Information Files . 14-7

The pkginfo File . 14-7
The prototype File . 14-8

The Description Lines . 14-9
The Command Lines . 14-10

The compver File . 14-12
The copyright File . 14-12
The depend File . 14-13
The space File. 14-14
The pkgmap File. 14-14

The Installation Scripts . 14-15
Script Processing . 14-15
Installation Parameters . 14-16
Getting Package Information for a Script. 14-17
Exit Codes for Scripts. 14-18
The Request Script . 14-18

Request Script Naming Conventions. 14-18
Request Script Usage Rules . 14-18
Soliciting User Input in Request Scripts . 14-19

The Class Action Script . 14-20
Class Action Script Naming Conventions. 14-20
Class Action Script Usage Rules. 14-20
Installation of Classes . 14-21
Removal of Classes . 14-22

The Special System Classes . 14-23
The sed Class Script . 14-23
The awk Class Script. 14-24
The build Class Script . 14-24

The Procedure Script . 14-25
Naming Conventions for Procedure Scripts . 14-25
Procedure Script Usage Rules . 14-25

Basic Steps of Packaging. 14-26
Step 1. Assigning a Package Abbreviation. 14-27
Step 2. Defining a Package Instance . 14-28

Identifying a Package Instance . 14-28

PowerMAX OS Programming Guide

Accessing the Instance Identifier in Your Scripts . 14-29
Step 3. Placing Objects into Classes. 14-29
Step 4. Making Package Objects Relocatable. 14-30

Defining Collectively Relocatable Objects . 14-30
Defining Individually Relocatable Objects . 14-31

Step 5. Writing Your Installation Scripts . 14-31
Reserving Additional Space on the Installation Machine 14-32

Step 6. Defining Package Dependencies. 14-32
Step 7. Writing a Copyright Message. 14-33
Step 8. Creating the pkginfo File . 14-33
Step 9. Creating the prototype File . 14-34

Creating the File Manually . 14-34
Creating Links . 14-34
Mapping Development Pathnames to Installation Pathnames 14-35
Defining Objects for pkgadd to Create. 14-35
Using the Command Lines . 14-35

Creating the File Using pkgproto . 14-36
Creating a Basic prototype . 14-36
Assigning Objects to a Class . 14-37
Renaming Pathnames with pkgproto . 14-37
pkgproto and Links. 14-37

Step 11. Distributing Packages Over Multiple Volumes. 14-38
Step 12. Creating a Package with pkgmk . 14-38

Package File Compression. 14-38
Creating a Package Instance . 14-39
Helping pkgmk Locate Package Contents. 14-39

Step 13. Creating a Package with pkgtrans. 14-40
Creating a Datastream Package . 14-40
Translating a Package Instance . 14-41

Set Packaging. 14-41
Set Installation . 14-41
Set Removal . 14-42
Set Information Display . 14-42
The setsize File . 14-43
The setsizecvt Command . 14-43

Quick Reference to Packaging Procedures . 14-44
Package Installation Case Studies . 14-47

Case #1 . 14-47
Techniques . 14-47
Approach . 14-47
Sample Files . 14-49

Case #2 . 14-50
Techniques . 14-51
Approach . 14-51
Sample Files . 14-52

Case #3 . 14-54
Techniques . 14-54
Approach . 14-55
Sample Files . 14-56

Case #4 . 14-58
Techniques . 14-58
Approach . 14-58
Sample Files . 14-58

Case #5a . 14-59

Techniques. 14-60
Approach . 14-60
Sample Files . 14-61

Case #5b . 14-62
Techniques. 14-62
Approach . 14-63
Sample Files . 14-64

Case #5c . 14-65
Techniques. 14-65
Approach . 14-65
Sample Files . 14-66

Case #6 . 14-67
Techniques. 14-67
Approach . 14-67
Sample Files . 14-68

Case #7a . 14-70
Techniques. 14-70
Approach . 14-70
Sample Files . 14-71

Case #7b . 14-74
Techniques. 14-74
Approach . 14-75
Sample Files . 14-75

PowerMAX OS Programming Guide

14-1

14
Chapter 14Packaging Your Software Applications

14
14
14

An Overview of Software Packaging 14

This chapter describes how to package software. A packaging tool, the pkgmk command,
is provided to help automate package creation. It gathers the components of a package on
the development machine, copies them onto the installation medium, and places them into
a structure that pkgadd recognizes.

This chapter also describes the installation tool, the pkgadd command, which copies the
package from the installation medium onto a system and performs system housekeeping
routines that concern the package. This tool is primarily for the installer but is described
here to provide you with a background on the environment into which your packages will
be placed and to help you test-install your packages.

The next two sections describe what a package consists of and gives an overview of the
structural life cycle of a package (how its structure on your development machine relates
to its structure on the installation medium and on the installation machine).

The remaining sections familiarize you with all of the tools, files, and scripts involved in
creating a package, provide suggestions for how to approach software packaging, and
describe some specific procedures.

A section on set packaging is at the end of this chapter. It describes the new concept of
“sets,” how packages are related to them, and how some of the packaging commands have
been enhanced to support sets.

After reading this chapter, you should study the section entitled “Package Installation Case
Studies” which provides case studies using the tools and techniques described in this
chapter.

Packaging Tools and the Enhanced Security Utilities 14

If you have installed, or are planning to install, the Enhanced Security Utilities, you should
execute the packaging tools in single-user mode only. This will ensure that privileges and
Mandatory Access Control levels are handled correctly when you install, remove, and
change packages and their associated files and scripts. On a system running the Enhanced
Security Utilities, only the administrator responsible for maintaining the system configura-
tion (the Trusted Systems Programmer) should be executing commands in single-user
mode that alter the installed software base of the system.

If your package requires MLDs when the Enhanced Security Utilities are installed, your
installation script must update the file /etc/security/MLD with the names of MLDs

PowerMAX OS Programming Guide

14-2

required for the package to function properly when the Enhanced Security Utilities are
installed. When the Enhanced Security Utilities are installed, a startup script in
/etc/rc2.d reads this file and creates the MLDs listed, commenting out the lines for
the MLDs created so that they will be ignored the next time the script is run (that is, on the
next transition to the multi-user state).

It is recommended that you write your packaging scripts and data files to take advantage of
the Enhanced Security Utilities so that you do not need to maintain two sets of packaging
files. The Enhanced Security features you need to consider in your packaging files are
Mandatory Access Control levels, fixed and inheritable privileges, and MLDs (mentioned
above). Levels and privileges are populated via fields in the pkgmap and prototype
files.

Contents of a Package 14

A software package is made up of a group of components that together create the software.
These components naturally include the executables that comprise the software, but they
also include at least two information files and can optionally include other information
files and scripts.

As shown in Figure 14-1, a package's contents fall into three categories:

• required components (the pkginfo file, the prototype file, package
objects)

• optional package information files

• optional packaging scripts

Figure 14-1. The Contents of a Package

Optional Package
Information Files

Optional Packaging
Scripts

pkginfo
file

prototype
file

Package
Objects

Objects
can be

grouped
into

classes

Packaging Your Software Applications

14-3

Required Components 14

At the very least, a package must contain the following components:

• Package Objects

These are the objects that make up the software. They can be files (executable or
data), directories, or named pipes. Objects can be manipulated in groups during
installation by placing them into classes. You will learn more about classes when
reading the section “Step 3. Placing Objects into Classes”

• The pkginfo File

The pkginfo file is a required package information file defining parameter values
that describe a package. For example, this file defines values for the package
abbreviation, the full package name, and the package architecture.

• The prototype File

The prototype file is a required package information file that lists the contents of
the package. There is one entry for each deliverable object and this entry consists of
several fields of information describing the object. All package components,
including the pkginfo file, must be listed in the prototype file.

Both required package information files are described further in “The Package Informa-
tion Files” section and on their respective manual pages.

Optional Package Information Files 14

There are four optional package information files that you can add to your package:

• The compver File

Defines previous versions of the package that are compatible with this version.

• The depend File

Defines any software dependencies associated with this package.

• The space File

Defines disk space requirements for the target environment beyond that used by
objects defined in the prototype file (for example, files that will be dynamically
created at installation time).

• The copyright File

Defines the text for a copyright message that will be printed on the terminal at the
time of package installation or removal.

Every package information file used must have an entry in the prototype file. All of
these files are described further in the “The Package Information Files” section and on
their respective manual pages.

PowerMAX OS Programming Guide

14-4

Optional Installation Scripts 14

Your package can use three types of installation scripts, although no scripts are required.
An installation script must be executable by sh (for example, a shell script or executable
program). The three script types are the request script (solicits installer input), class action
script (defines a set of actions to perform on a group of objects), and the procedure script
(defines actions that will occur at particular points during installation).

Packaging scripts are described in detail in “The Installation Scripts” section. Example
scripts can be found in the Case Studies.

The Structural Life Cycle of a Package 14

The material covered in this chapter talks about package object pathnames. While reading,
keep in mind that a package object resides in three places while being packaged and
installed. To help you avoid confusion, consider which of the three possible locations are
being discussed:

• On a development machine

Packages originate on a development machine. They can be in the same directory
structure on your machine as they will be placed on the installation machine. Or
pkgmk can locate components on the development machine and give them different
pathnames on the installation machine.

• On the installation media

When pkgmk copies the package components from the development machine to the
installation medium, it places them into the structure you have defined in your
prototype file and a format that pkgadd recognizes.

• On the installation machine

pkgadd copies a package from the installation medium and places it in the structure
defined in your prototype file. Package objects can be defined as relocatable,
meaning the installer can define the actual location of these package objects on the
installation machine during installation. Objects with fixed locations are copied to
their predefined path.

The Package Creation Tools 14

The packaging tools are provided to automate package creation and to remove the burden
of packaging from the developer. There are three packaging tools:

• From the components of a package on the development machine, pkgmk
creates a package image in directory structure format.

• pkgtrans translates an installable package from one package format to
another. The two format types are directory structure and datastream. For

Packaging Your Software Applications

14-5

example, after having used pkgmk to create a package in directory
structure format, you might use pkgtrans to translate it into datastream
format.

• pkgproto generates a prototype file based on the directory structure
of your development area.

Each of these commands is described in the following text and on its manual page.

The pkgmk Command 14

This command takes all of the package objects residing on the development machine,
optionally compresses them, copies them onto the installation medium, and places them
into a fixed directory structure. You are not required to know the details of the fixed
directory structure since pkgmk takes care of the formatting.

Files can be unstructured on the development machine and pkgmk will structure them cor-
rectly on the medium based on information supplied in the prototype file. The installa-
tion medium onto which a package is formatted can be what is typically thought of as a
medium (cartridge tape, for example) or it can be a directory on a machine.

pkgmk requires the presence of two information files on the development machine, the
prototype and the pkginfo file (other package information files may be present). The
pkginfo file defines the values for a number of package parameters, such as the package
abbreviation and the package name. The prototype file provides a complete list of the
package contents. pkgmk creates the pkgmap file, which is the package contents file on
the installation medium, by processing the prototype file and then adding three fields to
each entry.

pkgmk follows these steps when processing a package:

1. Processes all of the command lines in the input prototype file.
(prototype command lines can tell pkgmk where to look for package
objects, merge other prototype files into this one, define default mode
owner group for package objects, and place parameter values in the packag-
ing environment.)

2. Copies the objects of a package onto the installation medium, using the
prototype file as a listing of contents. If desired, the objects placed on
the installation medium may be compressed.

3. Puts the package objects into the proper format.

4. Divides a package into pieces and distributes those pieces on multiple
volumes, if necessary.

5. Creates the pkgmap file. (the content listing file that is placed on the instal-
lation medium). It resembles the prototype file except that all command
lines are processed, and the volno, size, cksum, and modtime
fields are added to each entry.

PowerMAX OS Programming Guide

14-6

The pkgtrans Command 14

This command translates a package already created with pkgmk from one package format
to another. It can make the following translations:

• a fixed directory structure to a datastream

• a datastream to a fixed directory structure

• a fixed directory structure to a fixed directory structure

Note that a package in a fixed directory structure can be in a directory on disk (for
example, in a spooling directory) or on a removable device such as a cartridge tape. A
datastream can be on any device; for example, on a disk or a tape.

The pkgproto Command 14

This command generates a prototype file. It scans the paths specified on the command
line and creates description line entries for these paths. If the pathname is a directory, an
entry for each object in the directory is generated. You can use the -c option of the
pkgproto command to place objects into a particular class.

When you create a prototype file with an editor, it does not matter how package
components are organized on your development machine. You use the path1=path2
pathname format to define where the files reside on your development machine and where
they should be placed on the installation machine. However, when you use pkgproto to
create your file, your development area must be structured exactly as you want your
package to be structured.

The Installation Tools 14

The installation tools provide capabilities to install and remove packages, create responses
to prompts during installation of packages, check the accuracy of installed packages, and
display information about software packages. These tools are introduced to you here so
that you can understand the environment into which your package will be placed. Manual
pages for these tools are provided in the back of this book. The installation tools are:

• pkgadd installs a package.

• pkgrm removes a package.

• pkgask stores answers to an interactive package (one with a request
script) in a response file. Later, when installing the package, this file
may be specified on the pkgadd command line so that the package may be
installed in noninteractive mode.

• pkgchk checks the content and attribute information for an installed
package to ensure that it was not corrupted during installation.

• pkginfo and pkgparam display information about packages.

Packaging Your Software Applications

14-7

The system administrator can set parameters that control various aspects of installation in
an administration file called the admin file. Refer to the manual pages for more
information on these commands and on the admin file.

The Package Information Files 14

Each of the six package information files will be described in the following pages. All of
these files can be created using any editor. File formats are described in the following text
and in full detail in their respective manual pages.

The six package information files are:

• the pkginfo file

• the prototype file

• the compver file

• the copyright file

• the depend file

• the space file

This section also describes the system-generated pkgmap file, which pkgmk creates and
places on the installation medium. It is similar to the prototype file.

The pkginfo File 14

This required package information file defines parameter values that describe
characteristics of the package, such as the package abbreviation, full package name,
package version, and package architecture. The definitions in this file can set values for all
of the installation parameters defined in the pkginfo manual page.

Each entry in the file uses the following format to establish the value of a parameter:

PARAM=“value”

Figure 14-2 shows an example pkginfo file.

PowerMAX OS Programming Guide

14-8

Figure 14-2. Sample pkginfo File

The pkginfo and pkgparam commands can be used to access information in a
pkginfo file.

NOTE

Before defining the PKG, ARCH, and VERSION parameters, you
need to know how pkgadd defines a package instance and the
rules associated with naming a package. Refer to the section,
“Step 2. Defining a Package Instance” before assigning values to
these parameters.

The prototype File 14

This required package information file contains a list of the package contents. The pkgmk
command uses the prototype file to identify the contents of a package and their
location on the development machine when building the package.

You can create this file in two ways. As with all the package information files, you can use
an editor to create a file named prototype . It should contain entries following the
description given later in this chapter. You can also use the pkgproto command to
generate the file automatically. To make use of the second method, you must have a copy
of your package on your development machine that is structured exactly as you want it
structured on the installation machine and all modes and permissions must be correct. If
you want to put the attributes mac, fixed , and inherited on any of the files in the
prototype file, you must add them to the file manually after executing pkgproto . If you
are not going to use pkgproto , you do not need a structured copy of your package.

There are two types of entries in the prototype file: description lines and command
lines.

PKG=“pkgA”
NAME=“My Package A”
ARCH=“nh68000”
RELEASE=“4.0”
VERSION=“2”
VENDOR=“MYCOMPANY”
HOTLINE=“1-800-245-6453”
VSTOCK=“0122c3f5566”
CATEGORY=“application”
ISTATES=“S 2”
RSTATES=“S 2”

Packaging Your Software Applications

14-9

The Description Lines 14

You must create one description line for each deliverable object that consists of several
fields describing the object. This entry describes such information as mode, owner, and
group for the object. You can also use this entry to accomplish the tasks listed below.

• You can override pkgmk's placement of an object on a multiple-part
package. (Refer to the section “Step 11. Distributing Packages Over Multi-
ple Volumes” for more details.)

• You can place objects into classes. (Refer to the section “Step 3. Placing
Objects into Classes” for details.)

• You can tell pkgmk where to find an object in your development directory
structure and map that name to the correct placement on the installation
machine. (Refer to the section “Mapping Development Pathnames to
Installation Pathnames” for details.)

• You can define an object as relocatable. (Refer to the section “Step 4. Mak-
ing Package Objects Relocatable” for details.)

• You can define links. (Refer to the section “Step 9. Creating the prototype
File” for details.)

The generic format of the descriptive line is:

[part] ftype class pathname [major minor] [mode owner group]
[part] ftype class pathname [major minor] [mode owner group] [mac fixed
inherited]

Definitions for each field are as follows:

part Designates the part in which an object should be placed. A
package can be divided into a number of parts. A part is a
collection of files and is the atomic unit by which a package is
processed. A developer can choose the criteria for grouping files
into a part (for example, by class). If not defined, pkgmk decides
in which part the object will be placed.

ftype Designates the file type of an object. Example file types are f
(a standard executable or data file), d (a directory), l (a linked
fi le), and i (a package information fi le). (Refer to the
prototype manual page for a complete list of file types.)

class Defines the class to which an object belongs. All objects must
belong to a class. If the object belongs to no special class, this
field should be defined as none .

pathname Defines the pathname which an object should have on the
installation machine. If you do not begin this name with a slash,
the object is considered to be relocatable. You can use the form
path1=path2 to map the location of an object on your
development machine to the pathname it should have when
installed on a machine.

PowerMAX OS Programming Guide

14-10

major/minor Defines the major and minor numbers for a block or character spe-
cial device.

mode/owner/group Defines the mode, owner, and group for an object. The mode,
owner, and group must be defined or packaging will fail. If not
defined, the defaults defined with the default command are
assigned.

mac Defines the Mandatory Access Control (MAC) Level Identifier
(LID), an integer value that specifies a combination of a
hierarchical classification and zero or more non-hierarchical cate-
gories. This field can only be applied to a file on a sfs-type file-
system and is not used for linked files or packaging information
files.

fixed Defines a comma separated list of valid mnemonic fixed privilege
names as defined for the filepriv command. The string NULL
is used in place of the comma separated list when privilege is not
to be specified. This field is not used for linked files or packaging
information files.

inherited Defines a comma separated list of valid mnemonic inherited
privilege names as defined for the filepriv command. The
string NULL is used in place of the comma separated list when
privilege is not to be specified. This field is not used for linked
files or packaging information files.

Figure 14-3 shows an example of this file with only description lines.

Figure 14-3. Sample #1 prototype File

The Command Lines 14

There are four types of commands that can be embedded in the prototype file. They are

search pathnames Specifies a list of directories (separated by white space) in
which pkgmk should search when looking for package
objects. pathnames is prepended to the basename of each
object in the prototype file until the object is located.

i pkginfo
i request
d bin /ncmpbin 0755 root other
f bin /ncmpbin/dired=/usr/ncmp/bin/dired 0755 root other
f bin /ncmpbin/less=/usr/ncmp/bin/less 0755 root other
f bin /ncmpbin/ttype=/usr/ncmp/bin/ttype 0755 root other

Packaging Your Software Applications

14-11

NOTE

The search command will not work when invoking pkgmk with
the -c option specified to compress all noninformation package
files.

include filename Specifies the pathname of another prototype file that
should be merged into this one during processing. (Note
that search requests do not span include files. Each
prototype file should have its own search command
defined, if one is needed.)

default mode owner group

[mac fixed inherited]
Defines the default mode owner group that should be used
if this information is not supplied in a prototype entry
that requires the information. (The defaults do not apply to
entries in any include files. Each prototype file
should have its own default command defined, if one is
needed.) The mac, fixed, and inherited fields can also be
supplied.

param=value Places the indicated parameter in the packaging
environment. This allows you to expand a variable path-
name so that pkgmk can locate the object without chang-
ing the actual object pathname. (This assignment will not
be available in the installation environment.)

A command line must always begin with an exclamation point (!). Commands may have
variable substitutions embedded within them.

Figure 14-4 shows an example prototype file with both description and command
lines.

Figure 14-4. Sample #2 prototype File

!PROJDIR=/usr/myname
!search /usr/myname/bin /usr/myname/src /usr/myname/hdrs
!include $PROJDIR/src/prototype
i pkginfo
i request
d bin ncmpbin 0755 root other
f bin ncmpbin/dired=/usr/ncmp/bin/dired 0755 root other
f bin ncmpbin/less=/usr/ncmp/bin/less 0755 root other
f bin ncmpbin/ttype=/usr/ncmp/bin/ttype 0755 root other
!default 755 root bin

PowerMAX OS Programming Guide

14-12

The compver File 14

This package information file defines previous (or future) versions of the package that are
compatible with this version. Each line in the file consists of a string defining a version of
the package with which the current version is compatible. Since some packages may
require installation of a particular version of another software package, compatibility
information is extremely crucial. If a package “A” requires version “1.0” of application
“B” as a prerequisite, but the customer installing “A” has a new and improved version of
“1.3” of “B”, the compver file for “B” must indicate that the new version is compatible
with version “1.0” in order for the customer to install package “A”. The string must match
the definition of the VERSION parameter in the pkginfo file of the package considered
to be compatible. Figure 14-5 shows an example of this file.

Figure 14-5. Sample compver File

The copyright File 14

This package information file contains the text of a copyright message that will be printed
on the terminal at the time of package installation or removal. The display is exactly as
shown in the file. Figure 14-6 shows an example of this file

Figure 14-6. Sample copyright File

This package information file is an optional file that contains interactive scripts for pack-
age installation. The request file contains a procedure script for situations that the
Installation Tools do not handle. This request script will be described in the “The Installa-
tion Scripts” section of this chapter.

Version 1.3
Version 1.0

Copyright (c) 1989 HCSC
All Rights Reserved.

THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF HCSC.

The copyright notice above does not evidence any
actual or intended publication of such source code.

Packaging Your Software Applications

14-13

The depend File 14

This package information file defines software dependencies associated with the package.
You can define three types of package dependencies with this file.

• a prerequisite package (meaning this package depends on the existence of
another package)

• a reverse dependency (meaning another package depends on the existence
of this package)

• an incompatible package (meaning your package is incompatible with this
one)

The generic format of a line in this file is:

type pkg name
 (arch)version
 (arch)version

Definitions for each field are as follows:

type Defines the dependency type.

P indicates the named package is a prerequisite for installation.

I indicates the named package is incompatible.

R indicates a reverse dependency, that is, the named package requires
that this package be on the system.

pkg Indicates the package abbreviation for the package.

name Specifies the full package name (used for display purposes only).

(arch)version Defines a particular instance of a package by defining the archi-
tecture and version. If (arch)version is not supplied, it means
the entry refers to any instance of the package.

Figure 14-7 shows an example of this file.

Figure 14-7. Sample depend File

P acu Advanced C Utilities
Issue 4 Version 1

P cc C Programming Language
Issue 4 Version 1 (nh6800)

R vpkg Another Vendor Package

PowerMAX OS Programming Guide

14-14

The space File 14

This package information file defines disk space requirements for the target environment
beyond that which is used by objects defined in the prototype file—for example, files
that will be dynamically created at installation time. It should define the maximum amount
of additional space that a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for each field are as follows:

pathname Names a directory in which there are objects that will require
additional space. The pathname may be the mount point for a
file-system. Pathnames that do not begin with a slash (/) indicate
relocatable directories.

blocks Defines the number of 512 byte disk blocks required for
installation of the files and directory entries contained in the path-
name. (Do not include file-system dependent disk usage.)

inodes Defines the number of inodes required for installation of the files
and directory entries contained in name.

Numbers of blocks or inodes can be negative to indicate that the package will ultimately
(after processing by scripts, and so on) take up less space than the installation tool would
calculate.

Figure 14-8 shows an example of this file.

extra space required by config data which is
dynamically loaded onto the system
data 500 1

Figure 14-8. Sample space File

The pkgmap File 14

The pkgmk command creates the pkgmap file when it processes the prototype file.
This new file contains all of the information in the prototype file plus three new fields
for each entry. These fields are size (file size in bytes), cksum (checksum of file), and
modtime (last time of modification). All command lines defined in the prototype file
are executed as pkgmk creates the pkgmap file. The pkgmap file is placed on the
installation medium. The prototype file is not. Refer to the pkgmap manual page for
more details about this file.

Packaging Your Software Applications

14-15

The Installation Scripts 14

The pkgadd command automatically performs all of the actions necessary to install a
package, using the package information files as input. As a result, you do not have to
supply any packaging scripts. However, if you want to customize the installation
procedures for your package needs, the following three types of scripts can be used:

You decide which type of script to use based on when you want the script to execute. To
help you with this assessment, script processing is discussed next, followed by a
description of parameters available to packaging scripts, how to get information about a
package for your scripts, and script exit codes. After that, each type of script is described
in detail.

NOTE

All installation scripts must be executable by sh (for example, a
shell script or an executable program).

Script Processing 14

You can customize the actions taken during installation by delivering installation scripts
with your package. The decision on which type of script to use to meet a need depends
upon when the action is needed during the installation process. As a package is installed,
pkgadd performs the following steps:

• Executes the request script.

This is the only point at which your package can solicit input from the
installer.

• Executes the preinstall script.

• Installs the package objects.

request script Solicits administrator interaction during package installation
for the purpose of assigning or redefining environment
parameter assignments.

class action scripts Define an action or set of actions that should be applied to a
class of files during installation or removal. You define your
own classes or you can use one of three standard classes
(sed, awk, and build). See the section “Step 3. Placing
Objects into Classes” for details on how to define a class.

procedure scripts Specifies a procedure to be invoked before or after the instal-
lation or removal of a package. The four procedure scripts
are preinstall, postinstall, preremove, and
postremove.

PowerMAX OS Programming Guide

14-16

Installation occurs class-by-class and class action scripts are executed
accordingly. The list of classes operated upon and the order in which they
should be installed is initially defined with the CLASSES parameter in your
pkginfo file. However, your request script can change the value of
CLASSES.

• Executes the postinstall script.

When a package is being removed, pkgrm performs these steps:

• Executes the preremove script.

• Executes the removal class action scripts.

Removal also occurs class-by-class. As with the installation class action
scripts, if more than one removal script exists, they are processed in the
reverse order in which the classes were listed in the CLASSES parameter at
the time of installation.

• Executes the postremove script.

The request script is not processed at the time of package removal. However, its output
(a list of parameter values) is saved and so is available to removal scripts.

Installation Parameters 14

The following four groups of parameters are available to all installation scripts. Some of
the parameters can be modified by a request script, others cannot be modified at all.

• The four system parameters that are generated by the installation software
(see below for a description of these). None of these parameters can be
modified by a package.

• The 21 standard installation parameters defined in the pkginfo file. Of
these, a package can only modify the CLASSES parameter. (The standard
installation parameters are described in detail in the pkginfo manual
page.

• You can define your own installation parameters by assigning a value to
them in the pkginfo file. Such a parameter must be alphanumeric with an
initial capital letter. Any of these parameters can be changed by a request
script.

• Your request script can define new parameters by assigning values to them
and placing them into the installation environment, as shown in
Figure 14-9.

Packaging Your Software Applications

14-17

Figure 14-9. Placing Parameters into the Installation Environment

The four installation parameters that are generated by installation software are described
below:

Getting Package Information for a Script 14

There are two commands that can be used from your scripts to solicit information about a
package.

The pkginfo command returns information about software packages, such as the
instance identifier and package name.

The pkgparam command returns values for all parameters or only for the parameters
specified.

The pkginfo(1) and pkgparam(1) manual pages give details for these tools.

PATH Specifies the search list used by sh to find commands; PATH is set to
/sbin:/usr/sbin:/usr/bin:/usr/sadm/install/bin
upon script invocation.

UPDATE Indicates that the current installation is intended to update the system.
Automatically set to true if the package being installed is
overwriting a version of itself.

PKGINST Specifies the instance identifier of the package being installed. If
another instance of the package is not already installed, the value will
be the package abbreviation. Otherwise, it is the package abbreviation
followed by a suffix, such as pkg.1 .

(Multiple variations of the same package can reside simultaneously
on the installation medium, as well as on the installation machine.
Each variation is known as a package instance and assigned an
instance identifier. See section “Step 2. Defining a Package Instance”
for more details.)

PKGSAV Specifies the directory where files can be saved for use by removal
scripts or where previously saved files may be found.

make parameters available to installation service
and any other packaging script we might have
cat >$1 <<!
CLASSES='$CLASSES'
NCMPBIN='$NCMPBIN'
EMACS='$EMACS'
NCMPMAN='$NCMPMAN'
!

PowerMAX OS Programming Guide

14-18

Exit Codes for Scripts 14

Each script must exit with one of the following exit codes:

0 Successful completion of script.

1 Fatal error. Installation process is terminated at this point.

2 Warning or possible error condition. Installation will continue. A warning
message will be displayed at the time of completion.

3 Script was interrupted and possibly left unfinished. Installation terminates at
this point.

10 System should be rebooted when installation of all selected packages is com-
pleted. (This value should be added to one of the single-digit exit codes
described above.)

20 The system should be rebooted immediately upon completing installation of
the current package. (This value should be added to one of the single-digit exit
codes described above.)

See the Case Studies for examples of exit codes in installation scripts.

The Request Script 14

The request script solicits interaction during installation and is the only place where your
package can interact directly with the installer. It can be used, for example, to ask the
installer if optional pieces of a package should be installed.

The output of a request script must be a list of parameters and their values. This list can
include any of the parameters you created in the pkginfo file (not including the 21
standard parameters) and the CLASSES parameter. The list can also introduce parameters
that have not been defined elsewhere.

When your request script assigns values to a parameter, it must then make those values
available to the installation environment for use by pkgadd and also by other packaging
scripts. The following example shows a request script segment that performs this task for
the four parameters CLASSES, NCMPBIN, EMACS, and NCMPMAN.

Request Script Naming Conventions 14

There can only be one request script per package and it must be named request .

Request Script Usage Rules 14

1. The request script is executed as uid=root and gid=other . (Note that
this does not conform to the Application Binary Interface requirement that
uid=install .)

Packaging Your Software Applications

14-19

2. The request script should not modify any files, with the exception of the
“response” file (described below) which is the output of the request script.
It is intended only to interact with users and to create a list of parameter
assignments based upon that interaction.

3. pkgadd calls the request script with one argument that names the file to
which the output of this script will be written. This file is referred to as the
response file.

4. The parameter assignments should be added to the installation environment
for use by pkgadd and other packaging scripts (as shown in Figure 14-9).

5. System parameters and standard installation parameters, except for the
CLASSES parameter, cannot be modified by a request script. Any of the
other parameters available can be changed.

6. The format of the output list should be PARAMETER=“value”. For
example:

CLASSES=“none class1”

7. The list should be written to the file named as the argument to the request
script.

8. The user's terminal is defined as standard input to the request script.

9. The request script is not executed during package removal. However, the
parameter values assigned in the script are saved and are available during
removal.

Soliciting User Input in Request Scripts 14

A tool is provided in the base package for generating full-screen menus for handling user
input. This tool is called menu, and should be used when user input is solicited in a
request script. Using a form description file [see menu(4)], menu generates a full-screen
form that can be used for displaying information, entering a selection from a numbered
list, or filling out a more complex, multiple-field form. The menu tool may also contain
help text so that a user can get more information about the current step in the installation.

The menu tool output is a file that contains Bourne/Korn shell statements of the form:

VARIABLE=“value”

After the user completes the menu, this output file can be read in and executed in the
request script using the shell '.' command. The values obtained may be used to generate the
response file, the output of the request script.

The menu tool should be used when soliciting user input from the request script. The
menu tool can also be used in the postinstall script for a package to inform the user about
the status of the installation at completion. (See menu(1) and menu(4) for more
information.)

PowerMAX OS Programming Guide

14-20

The Class Action Script 14

The class action script defines a set of actions to be executed during installation or removal
of a package. The actions are performed on a group of pathnames based on their class def-
inition. (See the “Package Installation Case Studies” section for examples of class action
scripts.)

Class Action Script Naming Conventions 14

The name of a class action script is based on which class it should operate and whether
those actions should occur during package installation or removal. The two name formats
are:

• i.class (operates on pathnames in the indicated class during package instal-
lation)

• r.class (operates on pathnames in the indicated class during package
removal)

For example, the name of the installation script for a class named class1 would be
i.class1 and the removal script would be named r.class1 .

Class Action Script Usage Rules 14

1. Class action scripts are executed as uid=root and gid=other .

2. If a package spans more than one volume, the class action script will be
executed once for each volume that contains at least one file belonging to
the class. Consequently, each script must be “multiply executable.” This
means that executing a script any number of times with the same input
must produce the same results as executing the script only once.

NOTE

The installation service relies upon this condition being met.

3. The script is executed only if there are files in the given class existing on
the current volume.

4. pkgadd (and pkgrm) creates a list of all objects listed in the pkgmap
file that belong to the class. As a result, a class action script can only act
upon pathnames defined in the pkgmap and belonging to a particular class.

5. A class action script should never add, remove, or modify a pathname or
system attribute that does not appear in the list generated by pkgadd
unless by use of the installf or removef command.

(See the manual pages for details on these two commands and the “Package
Installation Case Studies” section for examples of them in use.)

Packaging Your Software Applications

14-21

6. When the class action script executes for the last time (meaning the input
pathname is the last path on the last volume containing a file of this class),
it is executed with the keyword argument ENDOFCLASS. This flag allows
you to include post-processing actions into your script.

Installation of Classes 14

The following steps outline the system actions that occur when a class is installed. The
actions are repeated once for each volume of a package as that volume is being installed.

1. pkgadd creates a pathname list.

pkgadd creates a list of pathnames upon which the action script will oper-
ate. Each line of this list consists of source and destination pathnames, sep-
arated by white space. The source pathname indicates where the object to
be installed resides on the installation volume and the destination pathname
indicates the location on the installation machine where the object should
be installed. The contents of the list is restricted by the following criteria:

• The list contains only pathnames belonging to the associated class.

• Directories, named pipes, character/block devices, and symbolic
links are included in the list with the source pathname set to
/dev/null . They are automatically created by pkgadd (if not
already in existence) and given proper attributes (mode, owner,
group) given proper attributes (mode, owner, group, mac, fixed,
inherited) as defined in the pkgmap file.

• Linked files are not included in the list, that is, files where ftype is
l . (ftype defines the file type and is defined in the prototype file.)
Links in the given class are created in Step 4.

• If a pathname already exists on the target machine and its contents
are no different from the one being installed, the pathname will not
be included in the list.

To determine this, pkgadd compares the cksum , modtime , and
size fields in the installation software database with the values for
those fields in your pkgmap file. If they are the same, it then checks
the actual file on the installation machine to be certain it really has
those values. If the field values are the same and are correct, the path-
name for this object will not be included in the list.

2. If there is no class action script, the files associated with the pathnames are
copied to the target machine.

If no class action script is provided for installation of a particular class, the
files in the generated pathname list will simply be copied from the volume
to the appropriate target location.

3. If there is a class action script, the script is executed.

The class action script is invoked with standard input containing the list
generated in Step 1. If this is the last volume of the package and there are

PowerMAX OS Programming Guide

14-22

no more objects in this class, the script is executed with the single argu-
ment of ENDOFCLASS.

4. pkgadd performs a content and attribute audit and creates links.

After successfully executing Step 2 or 3, an audit of both content and
attribute information is performed on the list of pathnames. pkgadd cre-
ates the links associated with the class automatically. Detected attribute
inconsistencies are corrected for all pathnames in the generated list.

Removal of Classes 14

Objects are removed class-by-class. Classes that exist for a package, but are not listed in
the CLASSES parameter are removed last (for example, an object installed with the
installf command). Classes that are listed in the CLASSES parameter are removed in
reverse order. The following steps outline the system actions that occur when a class is
removed:

1. pkgrm creates a pathname list.

pkgrm creates a list of installed pathnames that belong to the indicated
class. Pathnames referenced by another package are excluded from the list
unless their ftype is e (meaning the file may be edited upon installation or
removal).

If a pathname is referenced by another package, it will not be removed
from the system. However, if it is of ftype e, it may be modified to remove
information placed in it by the package being removed. The modification
should be performed by the removal class action script.

2. If there is no class action script, the pathnames are removed.

If your package has no removal class action script for the class, all of the
pathnames in the list generated by pkgrm will be removed.

NOTE

You should always assign a class for files with an ftype of e
(editable) and have an associated class action script for that class.
Otherwise, they will be removed at this point, even if the path-
name is shared with other packages.

3. If there is a class action script, the script is executed.

pkgrm invokes the class action script with standard input containing the
list generated in Step 1.

4. pkgrm performs an audit.

Upon successful execution of the class action script, knowledge of the
pathnames is removed from the system unless a pathname is referenced by
another package.

Packaging Your Software Applications

14-23

The Special System Classes 14

The system provides three special classes. They are:

• The sed class (provides a method for using sed instructions to edit files
upon installation and removal).

• The awk class (provides a method for using awk instructions to edit files
upon installation and removal).

• The build class (provides a method to construct a file dynamically during
installation).

The sed Class Script 14

The sed installation class provides a method of installing and removing objects that
require modification to an existing object on the target machine. (The file must have
already been installed by another package.) A sed class action script delivers sed
instructions in the format shown in Figure 14-10. You can give instructions that will be
executed during either installation or removal. Two commands indicate when instructions
should be executed. sed instructions that follow the !install command are executed
during package installation and those that follow the !remove command are executed
during package removal. It does not matter in which order the commands are used in the
file.

The sed class action script executes automatically at installation time if a file belonging to
class sed exists. The name of the sed class file should be the same as the name of the file
upon which the instructions will be executed.

Figure 14-10. sed Script Format

address, function, and arguments are as defined in the sed(1) manual page. See “Package
Installation Case Studies” Case #5a and Case #5b for examples of sed class action
scripts.

comment, which may appear on any line in the file
!install
sed(1) instructions which are to be invoked during
installation of the object
[address [,address]] function [arguments]
 . . .

!remove
sed(1) instructions to be invoked during the removal process
[address [,address]] function [arguments]
 . . .

PowerMAX OS Programming Guide

14-24

The awk Class Script 14

The awk installation class provides a method of installing and removing objects that
require modification to an existing object on the target machine (the object must have been
previously installed from another package installation). Modifications are delivered as
awk instructions in an awk class action script.

The awk class action script executes automatically at the time of installation if a file
belonging to class awk exists. Such a file contains instructions for the awk class script in
the format shown in Figure 14-11. Two commands indicate when instructions should be
executed. awk instructions that follow the !install command are executed during
package installation and those that follow the !remove command are executed during
package removal. It does not matter in which order the commands are used in the file.

Figure 14-11. awk Script Format

The name of the awk class file should be the same as the name of the file upon which the
instructions will be executed.

The file to be modified is used as input to awk and the output of the script ultimately
replaces the original object. Parameters may not be passed to awk using this syntax.

See “Package Installation Case Studies” “Case #5a”, for example awk class action scripts.

The build Class Script 14

The build class installs or removes objects by executing instructions that create or
modify the object file. These instructions are delivered as a build class action script.

The name of the instruction file should be the same as the name of the file upon which the
instructions will be executed.

The build class action script executes automatically at installation time if a file
belonging to class build exists.

A build script must be executable by sh . The script's output becomes the new version of
the file as it is built.

See “Package Installation Case Studies” “Case #5c”, for an example build class action
script.

comment, which may appear on any line in the file
!install
awk(1) program to install changes
 . . . (awk program)

!remove
awk1(1) program to remove changes
 . . . (awk program)

Packaging Your Software Applications

14-25

The Procedure Script 14

The procedure script gives a set of instructions that are performed at particular points in
installation or removal. Four possible procedure scripts are described below. (The Case
Studies in the back of the chapter show examples of procedure scripts.)

Naming Conventions for Procedure Scripts 14

The four procedure scripts must use one of the names listed below, depending on when
these instructions are to be executed.

• preinstall (executes before class installation begins)

• postinstall (executes after all volumes have been installed)

• preremove (executes before class removal begins)

• postremove (executes after all classes have been removed)

Procedure Script Usage Rules 14

1. Procedure scripts are executed as uid=root and gid=other .

2. Each installation procedure script must use the installf command to
notify pkgadd that it will add or modify a pathname. After all additions or
modifications are complete, this command should be invoked with the -f
option to indicate all additions and modifications are complete. (See the
installf manual page and the “Package Installation Case Studies” sec-
tion for details and examples.)

3. Each removal procedure script must use the removef command to notify
pkgrm that it will remove a pathname. After removal is complete, this
command should be invoked with the -f option to indicate all removals
have been completed. (See the removef manual page and the “Package
Installation Case Studies” section for details and examples.)

NOTE

The installf and removef commands must be used for the
following reasons. If a procedure script physically removes an
object from the system, the system's contents database will still
contain an entry for that object until the removef command is
used to remove the entry. Similarly, if a procedure script places an
object on the system, it will not be registered in the contents data-
base until the installf command is used to register the object.

PowerMAX OS Programming Guide

14-26

Basic Steps of Packaging 14

What steps you take to create a package depend on how customized your package will be;
therefore, it is difficult to give you a step-by-step guide on how to proceed. Your first step
should be to plan your packaging. For example, you must decide on which package
information files and scripts your package needs.

The following list outlines some of the steps you might use in a packaging scenario. Not
all of these steps are required and there exists no mandated order for their execution
(although you must have all of your package objects together before executing pkgmk).
The remainder of this chapter gives procedural information for each step.

NOTE

This list, and the following procedures, are intended only as
guidelines. These guidelines can not substitute for reading the rest
of this chapter to learn what options are available to your package,
and do your own individualized planning.

1. Assign a package abbreviation.

Every package installed must have a package abbreviation.

2. Define a package instance.

You must decide on values for the three package parameters that will make
each package instance unique. (You need to understand what a package
instance is, how it is defined, what the instance identifier is, and how to use
that identifier. All of this is covered in the section “Step 2. Defining a Pack-
age Instance.”)

3. Place your objects into classes.

You must decide on what installation classes you are going to use before
you can create the prototype file and also before you can write your
class action scripts.

4. Set up a package and its objects as relocatable.

Package objects can be delivered with either fixed locations, meaning that
their location is defined by the package and cannot be changed, or with
relocatable locations, meaning that they have no absolute location require-
ments. All of a package or parts of a package can be defined as relocatable.
You should decide if package objects will have fixed locations or be relo-
catable before you write any installation scripts and before you create the
prototype file.

5. Decide which installation scripts your package needs.

You must assess the needs of your package beyond the actions provided by
pkgadd and decide on which type of installation scripts will allow you to
deliver your customized actions.

Packaging Your Software Applications

14-27

6. Define package dependencies

You must decide if your package has dependencies on other packages and
if any other packages depend on yours.

7. Write a copyright message.

You must decide if your package requires a copyright message to appear as
it is being installed (and removed) and, if so, you must write that message.

8. Create the pkginfo file.

You must create a pkginfo file before executing pkgmk. It defines basic
information concerning the package and can be created with any editor as
long as it follows the format described earlier in this chapter and in the
pkginfo manual page.

Create the prototype file.

This file is required and must be created before you execute pkgmk. It lists
all of the objects that belong to a package and information about each
object (such as its file type and to which class it belongs). You can create it
using any editor and you must follow the format described earlier in this
chapter and in the prototype manual page. You can also use the pkg-
proto command to generate a prototype file.

9. Distribute packages over multiple volumes.

pkgmk automatically distributes packages over multiple volumes. You
must decide if you want to leave those calculations up to pkgmk or cus-
tomize package placement on multiple volumes.

10. Create the package.

Create the package using the pkgmk command, which copies objects from
the development machine to the installation medium, puts them into the
proper structure, and automatically spans them across multiple volumes, if
necessary.

This is always the last step of packaging, unless you want to create a datas-
tream structure for your package. If so, you must execute pkgtrans after
creating a package with pkgmk.

Step 1. Assigning a Package Abbreviation 14

Each package installed must have a package abbreviation assigned to it. This abbreviation
is defined with the PKG parameter in the pkginfo file.

A valid package abbreviation must meet the criteria defined below:

• It must start with an alphabetic character.

PowerMAX OS Programming Guide

14-28

• Additional characters may be alphanumeric and contain the two special
characters + and - .

• It cannot be longer than nine characters.

• Reserved names are install , new, and all .

Step 2. Defining a Package Instance 14

The same software package can differ by version or architecture or both. Multiple
variations of the same package can reside simultaneously on the same machine. Each vari-
ation is known as a package instance. pkgadd assigns a package identifier to each pack-
age instance at the time of installation. The package identifier is the package abbreviation
with a numerical suffix. This identifier distinguishes an instance from any other package,
including other instances of the same package.

Identifying a Package Instance 14

Three parameters defined in the pkginfo file combine to identify each instance uniquely.
You cannot assign identical values for all three parameters for two instances of the same
package installed in the same target environment. These parameters are:

• PKG (defines the software package abbreviation and remains constant for
every instance of a package)

• VERSION (defines the software package version)

• ARCH (defines the software package architecture)

For example, you might identify two identical versions of a package that run on different
hardware as:

Two different versions of a package that run on the same hardware might be identified as:

Instance #1 Instance #2

PKG=“abbr” PKG=“abbr”

VERSION=“release 1” VERSION=“release 1”

ARCH=“hn5800” ARCH=“nh6800”

Instance #1 Instance #2

PKG=“abbr” PKG=“abbr”

VERSION=“release 1” VERSION=“release 2”

ARCH=“nh6800” ARCH=“nh6800”

Packaging Your Software Applications

14-29

The instance identifier, assigned by pkgadd , maps the three pieces of information that
identify an instance to one name consisting of the package abbreviation plus a suffix. The
first instance of a package installed on a system does not have a suffix and so its instance
identifier will be the package abbreviation. Subsequent instances receive a suffix,
beginning with .2 . An instance is given the lowest integer extension available and so may
not correspond to the order in which a package was installed. For example, if mypkg.2
was deleted after mypkg.3 was installed, the next instance to be added will be named
mypkg.2 . Because the number of instances of a particular package can vary from
machine to machine, the instance identifier can also vary.

NOTE

pkgmk also assigns an instance identifier to a package as it places
it on the installation medium if one or more instances of a package
already exists. That identifier bears no relationship to the identifier
assigned to the same package on the installation machine.

Accessing the Instance Identifier in Your Scripts 14

Because the instance identifier is assigned at the time of installation and will differ from
machine to machine, you should use the PKGINST system parameter to reference your
package in your installation scripts.

Step 3. Placing Objects into Classes 14

Installation classes allow a series of actions to be performed on a group of package objects
at the time of their installation or removal. You place objects into a class in the
prototype file. All package objects must be given a class, although the class of none
may be used for objects that require no special action.

The installation parameter CLASSES, defined in the pkginfo file, is a list of classes to be
installed (including the none class). Objects defined in the prototype file that belong
to a class not listed in this parameter will not be installed. The actions to be performed on
a class (other than simply copying the components to the installation machine) are defined
in a class action script. These scripts are named after the class itself.

For example, to define and install a group of objects belonging to a class named class1 ,
follow these steps:

1. Define the objects belonging to class1 as such in their prototype file
entry. For example,

f class1 /usr/src/myfile
f class1 /usr/src/myfile2

2. Ensure that the CLASSES parameter in the pkginfo file has an entry for
class1 . For example,

CLASSES=“class1 class2 none”

PowerMAX OS Programming Guide

14-30

NOTE

Package objects cannot be removed by class.

3. Ensure that a class action script exists for this class. An installation script
for a class named class1 would be named i.class1 and a removal
script would be named r.class1 .

If you define a class but do not deliver a class action script, the only action taken for
that class will be to copy components from the installation medium to the
installation machine.

In addition to the classes that you can define, the system provides three standard classes
for your use. The sed class provides a method for using sed instructions to edit files
upon package installation and removal. The awk class provides a method for using awk
instructions to edit files upon package installation and removal. The build class provides
a method to construct a file dynamically during package installation.

Step 4. Making Package Objects Relocatable 14

Package objects can be delivered either with fixed locations, meaning that their location on
the installation machine is defined by the package and cannot be changed, or as
relocatable, meaning that they have no absolute location requirements on the installation
machine. The location for relocatable package objects is determined during the installation
process.

You can define two types of relocatable objects: collectively relocatable and individually
relocatable. All collectively relocatable objects are placed relative to the same directory
once the relocatable root directory is established. Individually relocatable objects are not
restricted to the same directory location as collectively relocatable objects.

Defining Collectively Relocatable Objects 14

Follow these steps to define package objects as collectively relocatable:

1. Define a value for the BASEDIR parameter.

Put a definition for the BASEDIR parameter in your pkginfo file. This
parameter names a directory where relocatable objects will be placed by
default. If you supply no value for BASEDIR, no package objects will be
considered as collectively relocatable.

2. Define objects as collectively relocatable in the prototype file.

An object is defined as collectively relocatable by using a relative path-
name in its entry in the prototype file. A relative pathname does not
begin with a slash. For example, src/myfile is a relative pathname,
while /src/myfile is a fixed pathname.

Packaging Your Software Applications

14-31

NOTE

A package can deliver some objects with relocatable locations and
others with fixed locations.

All objects defined as collectively relocatable will be put under the same root directory on
the installation machine. The root directory value will be one of the following (and in this
order):

• if the admin file contains basedir=ask and pkgadd was not invoked in
non-interactive mode, then the installer's response to pkgadd when asked
where relocatable objects should be installed (this overrides the value for
BASEDIR in the package's pkginfo file, if any)

• the value of BASEDIR as it is defined in the admin file used during the
pkgadd process (the BASEDIR value assigned in the admin file overrides
the value of the pkginfo file)

• the value of BASEDIR as it is defined in your pkginfo file (this value is
used only as a default in case the other two possibilities have not supplied a
value)

• if the admin file contains basedir=default and no BASEDIR is set in
the package's pkginfo file, then BASEDIR defaults to /

Defining Individually Relocatable Objects 14

A package object is defined as individually relocatable by using a variable in its pathname
definition in the prototype file. Your request script must query the installer on where
such an object should be placed and assign the response value to the variable. pkgadd
will expand the pathname based on the output of your request script at the time of installa-
tion. Case Study 1 shows an example of the use of variable pathnames and the request
script needed to solicit a value for the base directory.

Step 5. Writing Your Installation Scripts 14

You should read the section “The Installation Scripts” to learn what types of scripts you
can write and how to write them. You can also look at the Case Studies to see how the var-
ious scripts can be utilized and to see examples. Remember, you are not required to write
any installation scripts for a package. Remember, you are not required to write any instal-
lation scripts for a package, though you must do so to take advantage of certain features,
such as Multilevel Directories (MLDs). The pkgadd command performs all of the actions
necessary to install your package, using the information you supply with the package
information files. Any installation script that you write will be used to perform customized
actions beyond those executed by pkgadd .

For example, if your package requires MLDs when the Enhanced Security Utilities are
installed, your installation script must update the file /etc/security/MLD with the
names of MLDs required for the package to function properly when the Enhanced
Security Utilities are installed. When the Enhanced Security Utilities are installed, a star-
tup script in /etc/rc2.d reads this file and creates the MLDs listed, commenting out

PowerMAX OS Programming Guide

14-32

the lines for the MLDs created so that they will be ignored the next time the script is run
(that is, on the next transition to the multi-user state).

NOTE

Be certain that every installation script being delivered with your
package has an entry in the prototype file. The file type should
be i .

Reserving Additional Space on the Installation Machine 14

pkgadd assures that there is enough disk space to install your package, based on the
object definitions in the pkgmap file. However, sometimes your package will require
additional disk space beyond that needed by the objects defined in the pkgmap file. For
example, your package might create a file during installation. pkgadd checks for addi-
tional space when you deliver a space file with your package. Refer to the section “The
space File” earlier in this chapter or the space manual page for details on the format of
this file.

NOTE

Be certain that your space file has an entry in the prototype
file. Its file type should be i (for package information file).

Step 6. Defining Package Dependencies 14

Package dependencies and incompatibilities can be defined with two of the optional
package information files. Delivering a compver file lets you name versions of your
package that are compatible with the one being installed. Delivering a depend file lets
you define three types of dependencies associated with your package. These dependency
types are:

• a prerequisite package (meaning your package depends on the existence of
another package)

• a reverse dependency (meaning another package depends on the existence
of your package)

NOTE

This type should only be used when a pre-UNIX System V
Release 4 package (that cannot deliver a depend file) relies on
the newer package.

• an incompatible package (meaning your package is incompatible with this
one)

Packaging Your Software Applications

14-33

Refer to the sections “The depend File” and “The compver File” earlier in this chapter, or
the manual pages depend and compver for details on the formats of these files.

NOTE

Be certain that your depend and compver files have entries in
the prototype file. The file type should be i (for package infor-
mation file).

Step 7. Writing a Copyright Message 14

To deliver a copyright message, you must create a copyright file named copyright . The
message will be displayed exactly as it appears in the file (no formatting) as the package is
being installed and as it is being removed. Refer to the section “The copyright File” earlier
in this chapter or the copyright manual page for more detail.

NOTE

Be certain that your copyright file has an entry in the
prototype file. Its file type should be i (for package informa-
tion file).

Step 8. Creating the pkginfo File 14

The pkginfo file establishes values for parameters that describe the package and is a
required package component. The format for an entry in this file is:

PARAM=“value”

PARAM can be any of the 21 standard parameters described in the pkginfo manual page.
You can also create your own package parameters simply by assigning a value to them in
this file. Your parameter names must begin with a capital letter followed by either upper or
lowercase letters.

The following five parameters are required:

• PKG (package abbreviation)

• NAME (full package name)

• ARCH (package architecture)

• VERSION (package version)

• CATEGORY (package category)

The CLASSES parameter dictates which classes are installed and the order of installation.
Although the parameter is not required, no classes will be installed without it. Even if you

PowerMAX OS Programming Guide

14-34

have no class action scripts, the none class must be defined in the CLASSES parameter
before objects belonging to that class will be installed.

NOTE

You can choose to define the value of CLASSES with a request
script and not to deliver a value in the pkginfo file.

Step 9. Creating the prototype File 14

The prototype file is a list of package contents and is a required package component.

You can create the prototype file by using any editor and following the format
described in the section “The prototype File” and in the prototype manual page. You
can also use the pkgproto command to create one automatically.

Creating the File Manually 14

While creating the prototype file, you must at the very least supply the following three
pieces of information about an object:

• The object's type

All of the possible object types are defined in the prototype manual
page. f (for a data file), l (for a linked file), and d (for a directory) are
examples of object types.

• The object's class

All objects must be assigned a class. If no special handling is required, you
can assign the class none .

• The object`s pathname

The pathname can define a fixed pathname such as /mypkg/src/file-
name, a collectively relocatable pathname such as src/filename, and
an individually relocatable pathname such as $BIN/filename or /opt/
$PKGINST/filename .

Creating Links 14

To define links you must do the following in the prototype entry for the linked object:

1. Define its ftype as l (a link) or s (a symbolic link).

2. Define its pathname with the format path1=path2 where path1 is the
destination and path2 is the source file.

Packaging Your Software Applications

14-35

Mapping Development Pathnames to Installation Pathnames 14

If your development area is in a different structure than you want the package to be in on
the installation machine, you can use the prototype entry to map one pathname to the
other. You use the path1=path2 format for the pathname as is used to define links.
However, since the ftype is not defined as l or s , path1 is interpreted as the pathname
you want the object to have on the installation machine, and path2 is interpreted as the
pathname the object has on your development machine.

For example, your project might require a development structure that includes a project
root directory and numerous src directories. However, on the installation machine you
might want all files to go under a package root directory and for all src files to be in one
directory. So, a file on your machine might be named /projdir/srcA/filename . If
you want that file to be named /pkgroot/src/filename on the installation machine,
your prototype entry for this file might look like this

f class1 /pkgroot/src/filename=/projdir/srcA/filename

Defining Objects for pkgadd to Create 14

You can use the prototype file to define objects that are not actually delivered on the
installation medium. pkgadd creates objects with the following ftype s if they do not
already exist at the time of installation:

• d (directories)

• x (exclusive directories)

• l (linked files)

• s (symbolically linked files)

• p (named pipes)

• c (character special device)

• b (block special device)

To request that one of these objects be created on the installation machine, you should add
an entry for it in the prototype file using the appropriate ftype .

For example, if you want a directory created on the installation machine, but do not want
to deliver it on the installation medium, an entry for the directory in the prototype file
is sufficient. An entry such as the one shown below will cause the directory to be created
on the installation machine, even if it does not exist on the installation medium.

d none /directoryA 644 root other

Using the Command Lines 14

There are four types of commands that you can put into your prototype file. They allow
you to do the following:

• Nest prototype files (the include command)

• Define directories for pkgmk to look in when attempting to locate objects
as it creates the package (the search command)

PowerMAX OS Programming Guide

14-36

NOTE

This will not work if pkgmk is instructed to compress the pack-
age.

• Set a default value for mode owner group mac fixed inherited
(the default command). If all or most of your objects have the same
values, using the default command will keep you from having to define
these values for every entry in the prototype file.

• Assign a temporary value for variable pathnames to tell pkgmk where to
locate these relocatable objects on your machine (with param=value)

Creating the File Using pkgproto 14

The pkgproto command scans your directories and generates a prototype file.
pkgproto cannot assign ftype s of v (volatile files), e (editable files), or x (exclusive
directories). You can edit the prototype file and add these ftype s, as well as perform
any other fine-tuning you require (for example, adding command lines or classes).

pkgproto writes its output to the standard output. To create a file, you should redirect
the output to a file. The examples shown in this section do not perform redirection in order
to show you what the contents of the file would like.

Creating a Basic prototype 14

The standard format of pkgproto is

pkgproto path [. . .]

where path is the name of one or more paths to be included in the prototype file. If path
is a directory, then entries are created for the contents of that directory as well (everything
below that directory).

With this form of the command, all objects are placed into the none class and are
assigned the same mode owner group as exists on your machine. The following exam-
ple shows pkgproto being executed to create a file for all objects in the directory
/home/pkg :

To create a prototype file that contains the output of the example above, you would
execute pkgproto /home/pkg > prototype

$ pkgproto /home/pkg
d none /home/pkg 755 bin bin
f none /home/pkg/file1 755 bin bin
f none /home/pkg/file2 755 bin bin
f none /home/pkg/file3 755 bin bin
f none /home/pkg/file4 755 bin bin
f none /home/pkg/file5 755 bin bin
$

Packaging Your Software Applications

14-37

NOTE

If no pathnames are supplied when executing pkgproto ,
standard in (stdin) is assumed to be a list of paths. Refer to the
pkgproto manual page for details on this usage.

Assigning Objects to a Class 14

You can use the -c class option of pkgproto to assign objects to a class other than none .
When using this option, you can only name one class. To define multiple classes in a
prototype file created by pkgproto , you must edit the file after its creation.

The following example is the same as above except the objects have been assigned to
class1 .

Renaming Pathnames with pkgproto 14

You can use a path1=path2 format on the pkgproto command line to give an object a
different pathname in the prototype file than it has on your machine. You can, for
example, use this format to define relocatable objects in a prototype file created by
pkgproto .

The following example is like the others shown in this section, except that the objects are
now defined as bin (instead of /usr/bin) and are thus relocatable.

pkgproto and Links 14

pkgproto detects linked files and creates entries for them in the prototype file. If
multiple files are linked together, it considers the first path encountered the source of the
link.

$ pkgproto -c class1 /home/pkg
d class1 /home/pkg 755 bin bin
f class1 /home/pkg/file1 755 bin bin
f class1 /home/pkg/file2 755 bin bin
f class1 /home/pkg/file3 755 bin bin
f class1 /home/pkg/file4 755 bin bin
f class1 /home/pkg/file5 755 bin bin
$

$ pkgproto -c class1 /home/pkg=bin
d class1 bin 755 bin bin
f class1 bin/file1 755 bin bin
f class1 bin/file2 755 bin bin
f class1 bin/file3 755 bin bin
f class1 bin/file4 755 bin bin
f class1 bin/file5 755 bin bin
$

PowerMAX OS Programming Guide

14-38

If you have symbolic links established on your machine but want to generate an entry for
that file with an ftype of f (file), then use the -i option of pkgproto . This option cre-
ates a file entry for all symbolic links.

Step 11. Distributing Packages Over Multiple Volumes 14

As a packager, you need not worry about placing package components on multiple
volumes. pkgmk performs the calculations and actions necessary to organize a multiple
volume package.

However, you can use the optional part field in the prototype file to define in which
part you want an object to be placed. A number in this field overrides pkgmk and forces
the placement of the component into the part given in the field. Note that there is a one-to-
one correspondence between parts and volumes for removable media.

Step 12. Creating a Package with pkgmk 14

pkgmk takes all of the objects on your machine (as defined in the prototype file), puts
them in the fixed directory format and copies everything to the installation medium.

To package your software, execute

pkgmk [-d device] [-f filename]

You must use the -d option to name the device onto which the package should be placed.
device can be a directory pathname or the identifier for a disk. The default device is the
installation spool directory.

pkgmk looks for a file named prototype . You can use the -f option to specify a pack-
age contents file named something other than prototype . This file must be in the
prototype format.

For example, executing pkgmk -d diskette1 creates a package based on a file named
prototype in your current directory. The package will be formatted and copied to the
diskette in the device diskette1 .

Package File Compression 14

In Release 4.2, the pkgmk command has been enhanced to optionally compress package
files. If the -c option is specified, pkgmk will compress all non-information files. The fol-
lowing exceptions apply.

If, as a result of compression, the size of the file is not reduced, pkgmk will not compress
the file. If the pathname for the file in the package's prototype file is a relative
pathname, (for example, ../mypkg/foo), the file will not be compressed.

Packaging Your Software Applications

14-39

Creating a Package Instance 14

pkgmk will create a new instance of a package if one already exists on the device to which
it is writing. It will assign the package an instance identifier. Use the -o option of pkgmk
to overwrite an existing instance of a package rather than to create a new one.

Helping pkgmk Locate Package Contents 14

The following list describes situations that might require supplying pkgmk with extra
information and an explanation of how to do so:

• Your development area is not structured in the same way that you want
your package structured.

You should use the path1=path2 pathname format in your prototype
file.

• You have relocatable objects in your package.

You can use the path1=path2 pathname format in your prototype file,
with path1 as a relocatable name and path2 a full pathname to that object
on your machine.

You can use the search command in your prototype file to tell pkgmk
where to look for objects. (You can not use the -c option with search ,
however.)

You can use the -b basedir option to define a pathname that informs
pkgmk where to find relocatable object names while creating the package.
It does this by prepending basedir to relocatable object names while cre-
ating the package. For example, executing

pkgmk -d /dev/diskette -b usr2/myhome/reloc

would look in the directory /usr2/myhome/reloc for any relocatable
object in your package.

• You have variable object names.

You can use the search command in your prototype file to tell pkgmk
where to look for objects. (You can not use the -c option with search ,
however.)

You can use the param=“value” command in your prototype file to give
pkgmk a value to use for the object name variables as it creates your pack-
age.

You can use the variable=value option on the pkgmk command line to
define a temporary value for variable names.

• The root directory on your machine differs from the root directory
described in the prototype file (and that will be used on the installation
machine).

PowerMAX OS Programming Guide

14-40

You can use the -r rootpath option to tell pkgmk to ignore the destination
pathnames in the prototype file. Instead, pkgmk prepends rootpath to
the source pathnames in order to find objects on your machine.

Step 13. Creating a Package with pkgtrans 14

pkgtrans performs the following package translations:

• a fixed directory structure to a datastream

• a datastream to a fixed directory structure

To perform one of these translations, execute

pkgtrans -s device1 device2 [pkg1[, pkg2[. . .]]]

where -s is the option to translate to datastream, device1 is the name of the device or
directory where the package currently resides, device2 is the name of the device onto
which the translated package will be placed, and [pkg1[pkg2 . . .]] is one or more package
names. If no package names are given, a menu of all packages residing in device1 will be
displayed and the user asked for a selection.

Creating a Datastream Package 14

Creating a datastream package requires two steps:

1. Create a package using pkgmk.

Use the default device (the installation spool directory) or name a directory
into which the package should be placed. pkgmk creates a package in a
fixed directory format. Specify the capacity of the device where the datas-
tream will be placed as an argument to the -l option.

2. After the software is formatted in fixed directory format and is residing in a
spool directory, execute pkgtrans .

This command translates the fixed directory format to the datastream for-
mat and places the datastream on the specified medium.

For example, the two steps shown below will create a datastream package.

1. pkgmk -d spooldir -l 1400

(Formats a package into a fixed directory structure and places it in a direc-
tory named spooldir . Each part of the package will require no more than
1400 blocks.)

2. pkgtrans -s spooldir 9track package1

(Translates the fixed directory format of package1 residing in the direc-
tory spooldir into a datastream format. Places the datastream package
on the medium in a device named 9track .)

Packaging Your Software Applications

14-41

OR

3. pkgtrans -s spooldir diskette package1

Similar to number 2 above, except that it places the datastream package on
the medium in a device named diskette . pkgtrans will prompt for
additional volumes if the package requires more than one diskette.

Translating a Package Instance 14

When an instance of the package being translated to fixed directory format already exists
on device2, pkgtrans will not perform the translation. You can use the -o option to tell
pkgtrans to overwrite any existing instances on the destination device and the -n
option to tell it to create a new instance if one already exists. Note that the above does not
apply when device2 contains a datastream format.

Set Packaging 14

Sets provide a method of grouping packages together as one installable entity. Usually this
is used to group packages that provide a particular feature or set of features. To enable the
set capability in UNIX System V Release 4.2, several packaging commands have been
enhanced. They are

• pkgadd(1M)

• pkginfo(1M)

• pkgrm(1M)

Set Installation 14

For sets, a special-purpose package referred to as a Set Installation Package (SIP) is used.
The SIP is used to control the installation of a set's member packages. The SIP's name and
package instance name are always the same as those used to identify the set itself. For
instance, the SIP controlling the installation of the Foundation Set (fnd) is also named
Foundation Set (fnd). A SIP is distinguished from other packages by the CATEGORY
parameter “set” in its pkginfo file and by the presence of a special type of package
information file named setinfo(4) . This file is used to convey information about a
set's member packages to the software installation tools.

When pkgadd recognizes that a SIP is being processed, it sets up special environment
variables and makes them available to the SIP's procedure scripts. This allows for a well-
defined interface between the scripts and pkgadd that enables the SIP scripts to do most
of the work when processing set member package selection and interaction. The SIP's
request and preinstall scripts are especially designed to use this environment.

Among other things, the SIP's request script utilizes these environment variables to access
the setinfo file and access the set member packages' request and default response files

PowerMAX OS Programming Guide

14-42

(if any). After the request script has finished processing, the SIP's preinstall script is then
used to pass back to pkgadd a list of set member packages selected for installation as part
of the set (see Case 7 in the “Package Installation Case Studies” section of this guide for
examples of these scripts).

The following is a list of the environment variables made available to a SIP's procedure
scripts.

• $SETINFO
This environment variable is used to access the setinfo file.

• $REQDIR
This environment variable provides the directory where the set member
packages' request and default response files, if any, reside.

• $RESPDIR
This environment variable contains the name of the directory where pro-
cessed response files are to be placed. This response file could be the result
of having run a set member package's request script (in the case of custom
installation) or simply a copy of the default response file provided with the
SIP (in the case of automatic installation).

• $SETLIST
This environment variable is used to pass back to pkgadd the list of pack-
ages selected for installation as part of the set.

After it has processed a SIP, pkgadd adds the set member packages selected (it gets this
from the file represented by $SETLIST in the installation environment) to the list of
packages to be installed and proceeds to install them.

Set Removal 14

When the package instance specified to the pkgrm command is a SIP, pkgrm will remove
all of the SIP's set member packages in reverse dependency order (opposite the order in
which they were installed). After all of its member packages have been removed, the SIP
itself is removed from the system.

Set Information Display 14

The pkginfo command displays information about sets. Since the name of the set is the
same as its SIP, pkginfo must distinguish between when it is being requested to provide
information on the SIP, from a request asking for information on the set's member pack-
ages (not including the SIP).

If -c set is specified, pkginfo will display information about the SIP, if one was
specified on the command line, or on all SIPs if none was specified. If the category set is
not specified, pkginfo will display information about all packages except those whose
category is set. If the name of a set is specified on the command line, but -c set is not,
pkginfo will display information on all set member packages belonging to that set
except for the SIP itself.

Packaging Your Software Applications

14-43

The setsize File 14

The setsize file is a set information file that defines disk space requirements for the
target environment. It contains information about all of the packages in the set. This file
describes the disk space taken up by installed files as well as extra space needed for
dynamically created files, as described in each package's space file.

The generic format of a line in this file is:

pkg:pathname blocks inodes

Definitions for each field are as follows:

• pkg

The short, or abbreviated, name of a package in the set. This name
describes which package of the set requires the amount of space described
by the rest of the data on this line in the setsize file.

• pathname

Names a directory in which there are objects that will be installed or that
will require additional space. The name may be the mount-point for a file
system. Names that do not begin with a slash (/) indicate relocatable direc-
tories.

• blocks

Defines the number of 512-byte disk blocks required for installation of the
files and directory entries contained in the pathname. (Do not include file-
system-dependent disk usage).

• inodes

Defines the number of inodes required for the installation of the files and
directory entries contained in the pathname.

At installation time, the set installation calls setsizecvt , which reduces the setsize
file for a set to a space file containing entries for only the packages that are selected. It is
this resulting space file against which space checking for the set is performed.

The setsizecvt Command 14

The setsizecvt command generates files in the space format for sets. Before sets
were included as packaging objects, the installation tools used space files to specify any
additional space the packages required, in addition to that listed in the entries in that pack-
age's pkgmap file.

The setsizecvt command was designed to work as simply as possible; the packaging
tools process the sets in much the same way they process packages.

PowerMAX OS Programming Guide

14-44

Executing in a set's installation directory, setsizecvt collects the space file (if it
exists) and the setsize file from each of the packages included in that set. The
setsize file is a file whose entries are formatted as follows:

pkg:/path/name #blks #inodes

where pkg is the short form of the package name, and the rest is the directory and number
of blocks and inodes used in that directory. This setsize file is created when the sets are
created. Typically, the setsize file for a given set would be created from the pkgmap
files for all of the packages in that set.

setsizecvt selects those entries in the setsize file for packages (in the current set)
that the user wants to install. Those entries are then collected in a new file called space .

pkgadd uses the space file to see if there is enough space on the disk to install the set.
The space file for a set is treated the same way as it is in a package.

Quick Reference to Packaging Procedures 14

Before beginning any packaging procedure, you must first have planned your packaging
needs based on the information presented in this chapter. The section “Basic Steps of
Packaging” gives a comprehensive list of possible packaging steps and considerations.
This section only covers the required steps.

1. Create a prototype file.

• Create one manually using any editor. There must be one entry for
every package component. The format for a prototype file entry
is:

[volno] ftype class pathname [major minor] [mode owner group] [mac
fixed inherited]

volno designates the medium volume number on which the object
should be placed. If no volno is given, pkgmk distributes package
components across volumes automatically.

ftype must be one of these object file types:

f (standard executable or data file)
e (file to be edited upon installation or removal)
v (volatile file, contents will change)
d (directory)
x (exclusive directory)
l (linked file)
p (named pipe)
c (character special device)
b (block special device)
i (installation script or package information file)
s (symbolic link)

Packaging Your Software Applications

14-45

class defines the class to which the object belongs. Place an object
into the class of none if no special handling is required.

pathname defines the pathname of an object. It can be in one of these
formats:

- fixed pathname: /src/myfile

- collectively relocatable pathname: src/myfile (no beginning
slash)

- individually relocatable pathname: $BIN/myfile

This pathname defines where the component should reside on the
installation medium and also tells pkgmk where to find it on your
machine. If these names differ, use the path1=path2 format for path-
name, where path1 is the name it should have on the installation
machine and path2 is the name it has on your machine.

major minor defines the major and minor numbers for a block or
character special device.

mode owner group defines the mode, owner and group for the object.
If not defined, the value of the default command is used. If no
default value is defined, 644 root other is assigned.

mac fixed inherited defines the Mandatory Access Control (MAC)
level, fixed privilege(s), and inheritable privilege(s) and for the
object. If not defined, the value of the default command is used. If
no default value is defined, the equivalent of specifying 4 NULL
NULL is assigned (that is, a MAC level of USER_PUBLIC, with no
fixed or inheritable privileges). MAC levels are installed only on
sfs -type file-systems.

You can use four types of command lines in a prototype file:

search pathnames (defines a search path for pkgmk to use when
creating your package)

include filename (nests prototype files)

default mode owner group mac fixed inherited (defines a default
mode owner group mac fixed inherited for objects
defined in this prototype file)

default mode owner group (defines a default mode owner
group for objects defined in this prototype file)

param=value (defines parameter values for pkgmk)

All command lines must begin with an exclamation point (!).

• Create one using pkgproto .

 pkgproto [-i] [-c class] [path1[= path2] . . .] > filename

PowerMAX OS Programming Guide

14-46

where -i tells pkgproto to record symbolic links with an ftype
of f (not s), -c defines the class of all objects as class, and path1
defines the object pathname (or names) to be included in the proto-
type file. If path1 is a directory, entries for all objects in that direc-
tory will be generated.

Use the path1=path2 format to give an object a different pathname in
the prototype file than it has on your machine. path1 is the path-
name where objects can be located on your machine and path2 is the
pathname that should be substituted for those objects.

pkgproto writes its output to the standard output. To create a file,
you should redirect the output to a file. That file can be named pro-
totype (although it is not required).

2. Create a pkginfo file.

Use any editor. Define one entry per line per parameter in this format:

PARAM=“ value”

where PARAM is the name of one of the standard installation parameters
defined in the pkginfo manual page and value is the value you assign to
it.

You can also define values for your own installation parameters using the
same format. Names for parameters that you create must begin with a capi-
tal letter and be followed by only lower-case letters.

The following five parameters are required in every pkginfo file: PKG,
NAME, ARCH, VERSION and CATEGORY. No other restrictions apply con-
cerning which parameters or how many parameters you define.

The CLASSES parameter dictates which classes are installed and the order
of installation. Although the parameter is not required, no classes will be
installed without it. Even if you have no class action scripts, the none class
must be defined in the CLASSES parameter before objects belonging to
that class will be installed.

3. Execute pkgmk.

pkgmk [-d device] [-r rootpath] [-b basedir] [-f filename]

where -d specifies that the package should be copied onto device, -r
requests that the root directory rootpath be used to locate objects on your
machine, -b requests that basedir be prepended to relocatable paths when
searching for them on your machine, and -f names a file, filename, to be
used as your prototype file. (Other options are described in the pkgmk
manual page.)

Refer to the procedures in this chapter for details on other, optional packaging steps
(including how to use pkgtrans to create a package in datastream structure).

Packaging Your Software Applications

14-47

Package Installation Case Studies 14

This section presents packaging case study in order to show packaging techniques such as
installing objects conditionally, determining at run time how many files to create, and how
to modify an existing data file during package installation and removal.

Each case begins with a description of the study, followed by a list of the packaging
techniques it uses and a narrative description of the approach taken when using those
techniques. After this material, sample files and scripts associated with the case study are
shown.

Case #1 14

This package has three types of objects. The installer may choose which of the three types
to install and where to locate the objects on the installation machine.

Techniques 14

This case study shows examples of the following techniques:

• using variables in object pathnames

• using the request script to solicit input from the installer

• setting conditional values for an installation parameter

Approach 14

To set up selective installation, you must:

• Define a class for each type of object which can be installed.

In this case study, the three object types are the package executables, the
manual pages, and the emacs executables. Each type has its own class: bin,
man, and emacs, respectively. Notice in the prototype file, shown in
Figure 14-13, that all of the object files belong to one of these three classes.

• Initialize the CLASSES parameter in the pkginfo file as null.

Normally when you define a class, you want the CLASSES parameter to
list all classes that will be installed. Otherwise, no objects in that class will
be installed. For this example, the parameter is initially set to null.
CLASSES will be given values by the request script, based on the package
pieces chosen by the installer. This way, CLASSES is set to only those
object types that the installer wants installed. Figure 14-12 shows the
pkginfo file associated with this package. Notice that the CLASSES
parameter is set to null.

PowerMAX OS Programming Guide

14-48

• Define object pathnames in the prototype file with variables.

These variables will be set by the request script to the value which the
installer provides. pkgadd resolves these variables at installation time and
so knows where to install the package.

The three variables used in this example are:

- $NCMPBIN (defines location for object executables)

- $NCMPMAN (defines location for manual pages)

- $EMACS (defines location for emacs executables)

Look at the example prototype file (Figure 14-13) to see how to define
the object pathnames with variables.

• Create a request script to ask the installer which parts of the package
should be installed and where they should be placed.

The request script for this package, shown in Figure 14-14, asks two ques-
tions:

- Should this part of the package be installed?

When the answer is yes, then the appropriate class name is added to
the CLASSES parameter. For example, when the question “Should
the manual pages associated with this package be installed” is
answered yes, the class man is added to the CLASSES parameter.

- If so, where should that part of the package be placed?

The appropriate variable is given the value of the response to this
question. In the manual page example, the variable $NCMPMAN is set
to this value.

These two questions are repeated for each of the three object types.

At the end of the request script, the parameters are made available to the
installation environment for pkgadd and any other packaging scripts. In
the case of this example, no other scripts are provided.

When looking at the request script for this example, notice that the ques-
tions are generated by the data validation tools ckyorn and ckpath .

Packaging Your Software Applications

14-49

Sample Files 14

Figure 14-12. Case #1 pkginfo File

Figure 14-13. Case #1 prototype File

PKG='ncmp'
NAME='NCMP Utilities'
CATEGORY='applications,tools'
ARCH='nh6800'
VERSION='Release 1.0, Issue 1.0'
CLASSES=”

i pkginfo
i request
x bin $NCMPBIN 0755 root other
f bin $NCMPBIN/dired=/usr/ncmp/bin/dired 0755 root other
f bin $NCMPBIN/less=/usr/ncmp/bin/less 0755 root other
f bin $NCMPBIN/ttype=/usr/ncmp/bin/ttype 0755 root other
f emacs $NCMPBIN/emacs=/usr/ncmp/bin/emacs 0755 root other
x emacs $EMACS 0755 root other
f emacs $EMACS/ansii=/usr/ncmp/lib/emacs/macros/ansii 0644 root other
f emacs $EMACS/box=/usr/ncmp/lib/emacs/macros/box 0644 root other
f emacs $EMACS/crypt=/usr/ncmp/lib/emacs/macros/crypt 0644 root other
f emacs $EMACS/draw=/usr/ncmp/lib/emacs/macros/draw 0644 root other
f emacs $EMACS/mail=/usr/ncmp/lib/emacs/macros/mail 0644 root other
f emacs $NCMPMAN/man1/emacs.1=/usr/ncmp/man/man1/emacs.1 0644 root other
d man $NCMPMAN 0755 root other
d man $NCMPMAN/man1 0755 root other
f man $NCMPMAN/man1/dired.1=/usr/ncmp/man/man1/dired.1 0644 root other
f man $NCMPMAN/man1/ttype.1=/usr/ncmp/man/man1/ttype.1 0644 root other
f man $NCMPMAN/man1/less.1=/usr/ncmp/man/man1/less.1 0644 inixmr other

PowerMAX OS Programming Guide

14-50

Figure 14-14. Case Study #1 Request Script

Case #2 14

This package installs a driver. A set of device nodes associated with that driver needs to be
created, but the installer will decide how many nodes to create. After installation, the sys-
tem needs to be rebooted so that the driver is properly configured.

trap 'exit 3' 15

determine if and where general executables should be placed
ans=`ckyorn -d y \
 -p “Should executables included in this package be installed”
` || exit $?
if [“$ans” = y]
then
 CLASSES=“$CLASSES bin”
 NCMPBIN=`ckpath -d /usr/ncmp/bin -aoy \
 -p “Where should executables be installed”
 ` || exit $?
fi

determine if emacs editor should be installed, and if it should
where should the associated macros be placed
ans=`ckyorn -d y \
 -p “Should emacs editor included in this package be installed”
` || exit $?
if [“$ans” = y]
then
 CLASSES=“$CLASSES emacs”
 EMACS=`ckpath -d /usr/ncmp/lib/emacs -aoy \
 -p “Where should emacs macros be installed”
 ` || exit $?
fi

determine if and where manual pages should be installed
ans=`ckyorn \
 -d y \
 -p “Should manual pages associated with this package be installed”
` || exit $?
if [“$ans” = y]
then
 CLASSES=“$CLASSES man”
 NCMPMAN=`ckpath -d /usr/ncmp/man -aoy \
 -p “Where should manual pages be installed”
 ` || exit $?
fi

make parameters available to installation service,
and so to any other packaging scripts
cat >$1 <<!
CLASSES='$CLASSES'
NCMPBIN='$NCMPBIN'
EMACS='$EMACS'
NCMPMAN='$NCMPMAN'
!

exit 0

Packaging Your Software Applications

14-51

Techniques 14

This case study shows examples of the following techniques:

• installing a driver with a postinstall script

• using an exit code to reboot the system

• allowing the installer to define how many device nodes to create at
installation time

Approach 14

To install a driver at the time of installation, you must:

• Include the object and master files for the driver in the prototype file.

In this example, the object file for the driver is a data file named qz.o .
This is the file on which the standard UNIX system driver install command,
drvinstall , operates. The master.d file is named qz and is used by
drvinstall to help configure the driver.

Looking at Figure 14-15 (the prototype file for this example), notice the
following:

- Since no special treatment is required for these files, you can put
them into the standard none class. The CLASSES parameter is set to
none in the pkginfo file (Figure 14-16).

- The pathname for qz.o begins with the variable $BOOTDIR. This
variable will be set in the request script and allows the administrator
to decide where the object file should be installed. The default
directory will be /boot .

- There is an entry for the postinstall script (the script that will perform
the driver installation).

• Create a request script.

The request script, shown in Figure 14-17, has two major functions:

- to determine how many device nodes to create for this driver

This is accomplished by questioning the installer and then assigning
the answer to the parameter $NDEVICES. Notice that the data vali-
dation tool ckrange is used and that it limits the response to a num-
ber between 0 and 32. It sets the default number to 8.

If the installer chooses not to install any devices, the CLASSES
parameter is set to null. This means that no classes are defined and
therefore no objects will be installed.

- to determine where the installer wants the driver objects to be
installed

PowerMAX OS Programming Guide

14-52

This is accomplished by questioning the installer and assigning the
answer to the $BOOTDIR parameter.

The script ends with a routine to make the three parameters
CLASSES, NDEVICES, and BOOTDIR available to the installation
environment and so to the postinstall script.

• Create a postinstall script.

The postinstall script, shown in Figure 14-18, actually performs the driver
installation. It is executed after the two files qz and qz.o have been
installed. The postinstall shown for this example performs the following
actions:

- checks to see if any devices should be installed (if not, it exits)

- creates the /dev/qz directory using the installf command (this
directory could also be created by putting an entry for it in the
prototype file)

- executes the drvinstall command using the two files installed
with this package (the major number is returned to the script at this
time)

- calculates the minor numbers for installed devices

- installs the device using installf

- creates a link for the device also using installf

- finalizes the installation using installf -f

• Reboot the system upon installation.

This is accomplished by exiting from the postinstall script with an exit code
of 10 , meaning that the system should be rebooted upon completing an
error-free installation.

Sample Files 14

Figure 14-15. Case #2 prototype File

i pkginfo
i request
i postinstall
f none $BOOTDIR/qz.o 444 root root
f none /etc/master.d/qz 444 root root

Packaging Your Software Applications

14-53

Figure 14-16. Case #2 pkginfo File

Figure 14-17. Case #2 Request Script

PKG='qzdev'
NAME='qz Devices'
CATEGORY='system'
ARCH='nh6800'
VERSION='Software Issue #19'
CLASSES='none'

trap 'exit 3' 15

determine if and where general executables should be placed
NDEVICES=`ckrange -l0 -u32 -d 8 \
 -p “How many qz devices do you want configured”
` || exit $?

if user chose to install no devices, don't install anything
if [$NDEVICES -eq 0]
then
 CLASSES=
else
 # determine where driver object should be placed; location
 # must be an absolute pathname which is an existing directory
 BOOTDIR=`ckpath -aoy -d /boot \
 -p “Where do you want driver object installed”
 ` || exit $?
fi

make parameters available to installation service,
and so to any other packaging scripts
cat >$1 <<!
CLASSES='$CLASSES'
NDEVICES='$NDEVICES'
BOOTDIR='$BOOTDIR'
!
exit 0

PowerMAX OS Programming Guide

14-54

Figure 14-18. Case #2 Postinstall Script

Case #3 14

This study creates a database file at the time of installation and saves a copy of the
database when the package is removed.

Techniques 14

This case study shows examples of the following techniques:

• using classes and class action scripts to perform special actions on different
sets of objects

PKGINST parameter provided by installation service
NDEVICES parameter provided by 'request' script
BOOTDIR parameter provided by 'request' script

[$NDEVICES -eq 0] && exit 0

err_code=1 # an error is considered fatal

need to create the /dev/qz directory
installf $PKGINST /dev/qz d 755 root sys ||
 exit $err_code

install the driver object and determine major device number
majno=`/usr/sbin/drvinstall -m /etc/master.d/qz -d $BOOTDIR/qz.o -v1.0` ||
 exit $err_code

i=00
while [$i -lt $NDEVICES]
do
 for j in 0 1 2 3 4 5 6 7
 do
 # calculate minor number based on loop variables
 minno=`expr $i * 8 + $j` || exit $err_code

 # install character device with appropriate major/minor
 # device numbers and correct permissions (installf will
 # do all of work here - you need only provide the info!)
 installf $PKGINST /dev/qz/$i$j c $majno $minno 644 root sys ||
 exit $err_code

 # create a link from /dev/qz/xx to /dev/qzxx
 installf $PKGINST /dev/qz$i$j=/dev/qz/$i$j ||
 exit $err_code
 done
 i=`expr $i + 1`

 # add leading zero if necessary
 [$i -le 9] && i=“0$i”
done

finalize installation; the installf command will now
attempt to create the links that was requested above
installf -f $PKGINST || exit $err_code

exit 10 # requests a reboot from user

Packaging Your Software Applications

14-55

• using the space file to inform pkgadd that extra space will be required to
install this package properly

• using the installf command

Approach 14

To create a database file at the time of installation and save a copy on removal, you must:

• Create three classes.

This package requires three classes:

- the standard class of none (contains a set of processes belonging in
the subdirectory bin)

- the admin class (contains an executable file config and a directory
containing data files)

- the cfgdata class (contains a directory)

• Make the package collectively relocatable.

Notice in the prototype file (Figure 14-20) that none of the pathnames
begin with a slash or a variable. This indicates that they are collectively
relocatable.

• Calculate the amount of space the database file will require and create a
space file to deliver with the package. This file notifies pkgadd that this
package requires extra space and how much extra space. Figure 14-21
shows the space file for this package.

• Create an installation class action script for the admin class.

The script, shown in Figure 14-22, initializes a database using the data files
belonging to the admin class. To perform this task, it:

- copies the source data file to its proper destination

- creates an empty file named config.data and assigns it to a class
of cfgdata

- executes the bin/config command (delivered with the package
and already installed) to populate the database file config.data
using the data files belonging to the admin class

- executes installf -f to finalize installation

No special action is required for the admin class at removal time so no
removal class action script is created. This means that all files and directo-
ries in the admin class will simply be removed from the system.

• Create a removal class action script for the cfgdata class.

The script, shown in Figure 14-23, makes a copy of the database file before
it is deleted during package removal. No special action is required for this
class at installation time, so no installation class action script is needed.

PowerMAX OS Programming Guide

14-56

Remember that the input to a removal script is a list of pathnames to
remove. Pathnames always appear in lexical order with the directories
appearing first. This script captures directory names so that they can be
acted upon later and copies any files to a directory named /tmp . When all
of the pathnames have been processed, the script then goes back and
removes all directories and files associated with the cfgdata class.

The outcome of this removal script is to copy config.data to /tmp and
then remove the config.data file and the data directory.

Sample Files 14

Figure 14-19. Case #3 pkginfo File

Figure 14-20. Case #3 prototype File

Figure 14-21. Case #3 space File

PKG='krazy'
NAME='KrAzY Applications'
CATEGORY='applications'
ARCH='nh6800'
VERSION='Version 1'
CLASSES='none cfgdata admin'

i pkginfo
i i.admin
i r.cfgdata
d none bin 555 root sys
f none bin/process1 555 root other
f none bin/process2 555 root other
f none bin/process3 555 root other
f none bin/config 500 root sys
d admin cfg 555 root sys
f admin cfg/datafile1 444 root sys
f admin cfg/datafile2 444 root sys
f admin cfg/datafile3 444 root sys
f admin cfg/datafile4 444 root sys
d cfgdata data 555 root sys

extra space required by config data which is
dynamically loaded onto the system
data 500 1

Packaging Your Software Applications

14-57

Figure 14-22. Case #3 Installation Class Action Script (i.admin)

Figure 14-23. Case #3 Removal Class Action Script (r.cfgdata)

PKGINST parameter provided by installation service
BASEDIR parameter provided by installation service

while read src dest
do
 # the installation service provides '/dev/null' as the
 # pathname for directories, pipes, special devices, etc
 # which it knows how to create
 [“$src” = /dev/null] && continue

 cp $src $dest || exit 2
done

if this is the last time this script will
be executed during the installation, do additional
processing here
if [“$1” = ENDOFCLASS]
then
 # our config process will create a data file based on any changes
 # made by installing files in this class; make sure
 # the data file is in class 'cfgdata' so special rules can apply
 # to it during package removal
 installf -c cfgdata $PKGINST $BASEDIR/data/config.data f 444 root sys
||
 exit 2
 $BASEDIR/bin/config > $BASEDIR/data/config.data ||
 exit 2
 installf -f -c cfgdata $PKGINST ||
 exit 2
fi
exit 0

the product manager for this package has suggested that
the configuration data is so valuable that it should be
backed up to /tmp before it is removed!

while read path
do
 # pathnames appear in lexical order, thus directories
 # will appear first; you can't operate on directories
 # until done, so just keep track of names until
 # later
 if [-d $path]
 then
 dirlist=“$dirlist $path”
 continue
 fi
 mv $path /tmp || exit 2
done
if [-n “$dirlist”]
then
 rm -rf $dirlist || exit 2
fi
exit 0

PowerMAX OS Programming Guide

14-58

Case #4 14

This package uses the optional packaging files to define package compatibilities and
dependencies and to present a copyright message during installation.

Techniques 14

This case study shows examples of the following techniques:

• using the copyright file

• using the compver file

• using the depend file

Approach 14

To meet the requirements in the description, you must:

• Create a copyright file.

A copyright file contains the ASCII text of a copyright message. The
message shown in Figure 14-25 will be displayed on the screen during
package installation (and also during package removal).

• Create a compver file.

The pkginfo file shown in Figure 14-24 defines this package version as
version 3.0. The compver file, shown in Figure 14-26, defines version 3.0
as being compatible with versions 2.3, 2.2, 2.1, 2.1.1, 2.1.3 and 1.7.

• Create a depend file.

Files listed in a depend file must already be installed on the system when
a package is installed. The example shown in Figure 14-27 has 11 packages
which must already be on the system at installation time.

Sample Files 14

Figure 14-24. Case #4 pkginfo File

PKG='case4'
NAME='Case Study #4'
CATEGORY='application'
ARCH='nh6800'
VERSION='Version 3.0'
CLASSES='none'

Packaging Your Software Applications

14-59

Figure 14-25. Case #4 copyright File

Figure 14-26. Case #4 compver File

Figure 14-27. Case #4 depend File

Case #5a 14

This study modifies a file which exists on the installation machine during package
installation. It uses one of three modification methods. The other two methods are shown
in Case #5b and Case #5c. The file modified is /etc/inittab .

Copyright (c) 1989 AT&T
All Rights Reserved.

THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T.

The copyright notice above does not evidence any
actual or intended publication of such source code.

Version 2.3
Version 2.2
Version 2.1
Version 2.1.1
Version 2.1.3
Version 1.7

P acu Advanced C Utilities
 Issue 4 Version 1
P cc C Programming Language
 Issue 4 Version 1
P dfm Directory and File Management Utilities
P ed Editing Utilities
P esg Extended Software Generation Utilities
 Issue 4 Version 1
P graph Graphics Utilities
P rfs Remote File Sharing Utilities
 Issue 1 Version 1
P rx Remote Execution Utilities
P sgs Software Generation Utilities
 Issue 4 Version 1
P shell Shell Programming Utilities
P sys System Header Files
 Release 3.1

PowerMAX OS Programming Guide

14-60

Techniques 14

This case study shows examples of the following techniques:

• using the sed class

• using a postinstall script

Approach 14

To modify /etc/inittab at the time of installation, you must:

• Add the sed class script to the prototype file.

The name of a script must be the name of the file that will be edited. In this
case, the file to be edited is /etc/inittab and so our sed script is
named /etc/inittab . There are no requirements for the mode owner
group of a sed script (represented in the sample prototype by question
marks). The file type of the sed script must be e (indicating that it is edit-
able). The prototype file for this case study is shown in Figure 14-29

NOTE

Since the pathname of the sed class action script is exactly the
same as the file it is intended to edit, these two may not coexist in
the same package.

• Set the CLASSES parameter to include sed .

In the case of the example shown in Figure 14-28, sed is the only class
being installed. However, it could be one of any number of classes.

• Create a sed class action script.

You cannot deliver a copy of /etc/inittab that looks the way you need
for it to, since /etc/inittab has already been installed and is a
dynamic file. Because of this, you have no way of knowing how it will look
at the time of package installation. Using a sed script allows us to modify
the /etc/inittab file during package installation.

As already mentioned, the name of a sed script should be the same as the
name of the file it will edit. A sed script contains sed commands to
remove and add information to the file. See Figure 14-30 for an example
sed script.

• Create a postinstall script.

You need to inform the system that /etc/inittab has been modified by
executing init q . The only place you can perform that action in this
example is in a postinstall script. Looking at the example postinstall script,
shown in Figure 14-31, you will see that its only purpose is to execute
init q .

Packaging Your Software Applications

14-61

This approach to editing /etc/inittab during installation has two drawbacks. First of
all, you have to deliver a full script (the postinstall script) simply to perform init q . In
addition to that, the package name at the end of each comment line is hard-coded. It would
be nice if this value could be based on the package instance so that you could distinguish
between the entries you add for each package.

Sample Files 14

Figure 14-28. Case #5a pkginfo File

Figure 14-29. Case #5a prototype File

PKG='case5a'
NAME='Case Study #5a'
CATEGORY='applications'
ARCH='nh6800'
VERSION='Version 1d05'
CLASSES='sed'

i pkginfo
i postinstall
e sed /etc/inittab=/home/mypkg/inittab.sed ? ? ?

PowerMAX OS Programming Guide

14-62

Figure 14-30. Case #5a sed Script (/home/mypkg/inittab.sed)

Figure 14-31. Case #5a Postinstall Script

Case #5b 14

This study modifies a file which exists on the installation during package installation. It
uses one of three modification methods. The other two methods are shown in Case #5a and
Case #5c. The file modified is /etc/inittab .

Techniques 14

This case study shows examples of the following techniques:

• creating classes

• using installation and removal class action scripts

!remove
remove all entries from the table that are associated
with this package, though not necessarily just
with this package instance
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d

!install
remove any previous entry added to the table
for this particular change
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d

add the needed entry at the end of the table;
sed(1) does not properly interpret the '$a'
construct if you previously deleted the last
line, so the command
$a\
rb:023456:wait:/usr/robot/bin/setup #ROBOT
will not work here if the file already contained
the modification. Instead, you will settle for
inserting the entry before the last line!
$i\
rb:023456:wait:/usr/robot/bin/setup #ROBOT

make init re-read inittab
/sbin/init q ||
 exit 2
exit 0

Packaging Your Software Applications

14-63

Approach 14

To modify /etc/inittab during installation, you must:

• Create a class.

Create a class called inittab . You must provide an installation and a
removal class action script for this class. Define the inittabl class in the
CLASSES parameter in the pkginfo file (as shown in Figure 14-32).

• Create an inittab file.

This file contains the information for the entry that you will add to etc/
inittab . Notice in the prototype file (Figure 14-33) that inittab is
a member of the inittab class and has a file type of e for editable.
Figure 14-36 shows what inittab looks like.

• Create an installation class action script.

Since class action scripts must be multiply executable (meaning you get the
same results each time they are executed), you can't just add our text to the
end of the file. The script, shown in Figure 14-34, performs the following
procedures:

- checks to see if this entry has been added before

- if it has, removes any previous versions of the entry

- edits the inittab file and adds the comment lines so you know
where the entry is from

- moves the temporary file back into /etc/inittab

- executes init q when it receives the end-of-class indicator

Note that init q can be performed by this installation script. A one-line
postinstall script is not needed by this approach.

• Create a removal class action script.

The removal script, shown in Figure 14-35, is very similar to the installa-
tion script. The information added by the installation script is removed and
init q is executed.

This case study resolves the drawbacks to Case #5a. You can support multiple package
instances since the comment at the end of the inittab entry is now based on package
instance. Also, you no longer need a one-line postinstall script. However, this case has a
drawback of its own. You must deliver two class action scripts and the inittab file to
add one line to a file. Case #5c shows a more streamlined approach to editing /etc/
inittab during installation.

PowerMAX OS Programming Guide

14-64

Sample Files 14

Figure 14-32. Case #5b pkginfo File

Figure 14-33. Case #5b prototype File

Figure 14-34. Case #5b Installation Class Action Script (i.inittab)

PKG='case5b'
NAME='Case Study #5b'
CATEGORY='applications'
ARCH='nh6800'
VERSION='Version 1d05'
CLASSES='inittab'

i pkginfo
i i.inittab
i r.inittab
e inittab /etc/inittab ? ? ?

PKGINST parameter provided by installation service

while read src dest
do
 # remove all entries from the table that are
 # associated with this PKGINST
 sed -e “/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d” $dest > /tmp/$$itab ||
 exit 2

 sed -e “s/$/#$PKGINST” $src >> /tmp/$$itab ||
 exit 2

 mv /tmp/$$itab $dest ||
 exit 2
done
if [“$1” = ENDOFCLASS]
then
 /sbin/init q ||
 exit 2
fi
exit 0

Packaging Your Software Applications

14-65

Figure 14-35. Case #5b Removal Class Action Script (r.inittab)

Figure 14-36. Case #5b inittab File

Case #5c 14

This study modifies a file which exists on the installation machine during package
installation. It uses one of three modification methods. The other two methods are shown
in Case #5a and Case #5b. The file modified is /etc/inittab .

Techniques 14

This case study shows examples of the following technique:

• using the build class

Approach 14

This approach to modifying /etc/inittab uses the build class. A build class file is
executed as a shell script and its output becomes the new version of the file for which it is
named. In other words, the file inittab that is delivered with this package will be exe-
cuted and the output of that execution will become /etc/inittab .

The build class file is executed during package installation and package removal. The
argument install is passed to the file if it is being executed at installation time. Notice

PKGINST parameter provided by installation service

while read src dest
do
 # remove all entries from the table that
 # are associated with this PKGINST
 sed -e “/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d” $dest > /tmp/$$itab ||
 exit 2

 mv /tmp/$$itab $dest ||
 exit 2
done
/sbin/init q ||
 exit 2
exit 0

rb:023456:wait:/usr/robot/bin/setup

PowerMAX OS Programming Guide

14-66

in the sample build file in that installation actions are defined by testing for this argu-
ment.

To edit /etc/inittab using the build class, you must:

• Define the build file in the prototype file.

The prototype file entry for the build class file should be of class
build and file type e. Be certain that the CLASSES parameter in the
pkginfo file includes build . Figure 14-37 shows the pkginfo file for
this example and Figure 14-38 shows the prototype file.

• Create the build file.

The build file shown in Figure 14-39 performs the following procedures:

- Edits /etc/inittab to remove any changes already existing for
this package. Notice that the fi lename /etc/inittab is
hard-coded into the sed command.

- If the package is being installed, adds the new line to the end of
/etc/inittab . A comment tag is included in this new entry to
remind us from where that entry came.

- Executes init q .

This solution addresses the drawbacks in case studies Case #5a and Case #5b. Only one
file is needed (beyond the pkginfo and prototype files), that file is short and simple,
it works with multiple instances of a package since the $PKGINST parameter is used, and
no postinstall script is required since init q can be executed from the build file.

Sample Files 14

Figure 14-37. Case #5c pkginfo File

Figure 14-38. Case #5c prototype File

PKG='case5c'
NAME='Case Study #5c'
CATEGORY='applications'
ARCH='nh6800'
VERSION='Version 1d05'
CLASSES='build'

i pkginfo
e build /etc/inittab=/home/case5c/inittab.build ? ? ?

Packaging Your Software Applications

14-67

Figure 14-39. Case #5c build Script (/home/case5c/inittab.build)

Case #6 14

This case study modifies a number of crontab files during package installation.

Techniques 14

This case study shows examples of the following techniques:

• using classes and class action scripts

• using the crontab command within a class action script

Approach 14

You could use the build class and follow the approach shown for editing /etc/init-
tab in Case #5c study except that you want to edit more than one file. If you used the
build class approach, you would need to deliver one for each cron file edited. Defining
a cron class provides a more general approach. Figure 14-40 shows the pkginfo file for
this example and Figure 14-41 shows the prototype file. To edit a crontab file with
this approach, you must:

• Define the cron files that will be edited in the prototype file.

Create an entry in the prototype file for each crontab file which will
be edited. Define their class as cron and their file type as e. Use the actual
name of the file to be edited, as shown in Figure 14-41.

• Create the crontab files that will be delivered with the package.

These files contain the information you want added to the existing

PKGINST parameter provided by installation service

remove all entries from the existing table that
are associated with this PKGINST
sed -e “/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d” /etc/inittab ||
 exit 2

if [“$1” = install]
then
 # add the following entry to the table
 echo “rb:023456:wait:/usr/robot/bin/setup #$PKGINST” ||
 exit 2
fi
/sbin/init q ||
 exit 2
exit 0

PowerMAX OS Programming Guide

14-68

crontab files of the same name. See Figure 14-44 and Figure 14-45 for
examples of what these files look like.

• Create an installation class action script for the cron class.

The i.cron script (Figure 14-42) performs the following procedures:

- Calculates the user id.This is done by setting the variable user to the
base name of the cron class file being processed. That name equates
to the user id. For example, the basename of /var/spool/cron/
crontabs/root is root (which is also the user id).

- Executes crontab using the user id and the -l option. Using the -
l options tells crontab to send the standard output the contents of
the crontab for the defined user.

- Pipes the output of the crontab command to a sed script that
removes any previous entries that have been added using this
installation technique.

- Puts the edited output into a temporary file.

- Adds the data file for the root user id (that was delivered with the
package) to the temporary file and adds a tag so that you will know
from where these entries came.

- Executes crontab with the same user id and give it the temporary
file as input.

• Create a removal class action script for the cron class.

The removal script, shown in Figure 14-43, is the same as the installation
script except that there is no procedure to add information to the crontab
file.

These procedures are performed for every file in the cron class.

Sample Files 14

Figure 14-40. Case #6 pkginfo File

PKG='case6'
NAME='Case Study #6'
CATEGORY='application'
ARCH='nh6800'
VERSION='Version 1.0'
CLASSES='cron'

Packaging Your Software Applications

14-69

Figure 14-41. Case #6 prototype File

Figure 14-42. Case #6 Installation Class Action Script (i.cron)

Figure 14-43. Case #6 Removal Class Action Script (r.cron)

i pkginfo
i i.cron
i r.cron
e cron /var/spool/cron/crontabs/root ? ? ?
e cron /var/spool/cron/crontabs/sys ? ? ?

PKGINST parameter provided by installation service

while read src dest
do
 user=`basename $dest` ||
 exit 2

 (crontab -l $user |
 sed -e “/#$PKGINST$/d” > /tmp/$$crontab) ||
 exit 2

 sed -e “s/$/#$PKGINST/“ $src >> /tmp/$$crontab ||
 exit 2

 crontab $user < /tmp/$$crontab ||
 exit 2
 rm -f /tmp/$$crontab
done
exit 0

PKGINST parameter provided by installation service

while read path
do
 user=`basename $path` ||
 exit 2

 (crontab -l $user |
 sed -e “/#$PKGINST$/d” > /tmp/$$crontab) ||
 exit 2

 crontab $user < /tmp/$$crontab ||
 exit 2
 rm -f /tmp/$$crontab
done
exit 0

PowerMAX OS Programming Guide

14-70

Figure 14-44. Case #6 Root crontab File (Delivered with Package)

Figure 14-45. Case #6 Sys crontab File (Delivered with Package)

Case #7a 14

This case study shows an example of creating a Set Installation Package (SIP) that is used
to control the installation of a set of packages.

Techniques 14

This case study shows examples of the following:

• creating a setinfo file (Figure 14-46)

• creating a request script that processes set member packages selection
and type of installation (custom and default, if applicable) (Figure 8-49)

• including the set member packages' request and default response files
in the prototype file as file type i files, if any, as part the SIP so that all
interaction with the installer is done only during SIP processing
(Figure 14-47)

• using the preinstall script to pass the selected packages back to
pkgadd (Figure 14-48)

Approach 14

• Create a request script to ask the installer how the set should be installed
(Figure 14-49).

• Should default installation be performed on this set?

41,1,21 * * * * /usr/lib/uucp/uudemon.hour > /dev/null
45 23 * * * ulimit 5000; /usr/bin/su uucp -c “/usr/lib/uucp/uudemon.cleanup” >
/dev/null 2>&1
11,31,51 * * * * /usr/lib/uucp/uudemon.poll > /dev/null

0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

Packaging Your Software Applications

14-71

When the answer is yes, if any of the set's member packages require inter-
action and if default responses for that interaction have been provided,
install the set using the default responses.

When the answer is no, for each package in the set, prompt as to whether
this package should be installed.

When the answer is yes, if it is interactive (the package has a request
script), should default installation of the package be performed?

If yes, use the default response file.

If no, execute the package's request script to obtain the responses.

• When the request script has completed, the PKGLIST variable should
contain the list of selected set member packages that will be installed on
the system. At this time

- pkgadd runs the SIP's preinstall script which places the
selected set member packages for installation ($PKGLIST) into the
setlist file referenced via the $SETLIST variable.

- pkgadd then reads the setlist file and inserts the packages listed
there into the list of packages to be installed on the system.

- As each of these packages is processed, if the package is interactive,
pkgadd will use the response file created earlier so that no prompt-
ing for user input occurs except during SIP processing.

Sample Files 14

Figure 14-46. Case #7a setinfo File

Format for the setinfo file. Field separator is: <tab>
pkg partsdefaultcategorypackage_name
abbr y/n

pkgw 1 y system Package W
pkgx 1 y system Package X
pkgy 2 n system Package Y
pkgz 1 y system Package Y

PowerMAX OS Programming Guide

14-72

Figure 14-47. Case #7a prototype File

Figure 14-48. Case #7a preinstall Script File

set packaging files
i pkginfo
i preinstall
i request
i setinfo
i copyright

i pkgw/request=pkgw.request
i pkgw/response=pkgw.response
i pkgx/request=pkgx.request
i pkgx/response=pkgx.response

for PKG in $PKGLIST
do

echo “$PKG” >>$SETLIST
done

Packaging Your Software Applications

14-73

Figure 14-49. Case #7a request Script File

If <DELETE> is pressed, make sure we exit 77 so pkgadd knows
no packages were selected for installation. In this case,
pkgadd will also not install the SIP itself.
trap 'EXITCODE=77; exit' 2
trap 'exit $EXITCODE' 0

while read pkginst parts default category package_name
do

echo $pkginst >>/tmp/order$$
if [“$default” = “y”]
then

echo $pkginst >>/tmp/req$$
else

echo $pkginst >>/tmp/opt$$
fi

done <$SETINFO

REQUIRED=`cat /tmp/req$$ 2>/dev/null`
OPTIONAL=`cat /tmp/opt$$ 2>/dev/null`
ORDER=`cat /tmp/order$$ 2>/dev/null`
rm -f /tmp/opt$$ /tmp/req$$ /tmp/order$$

HELPMSG=“Enter 'y' to run default set installation or enter
'n' to run custom set installation.”

PROMPT=“Do you want to run default set installation?“

ANS=`ckyorn -d y -p “$PROMPT” -h “$HELPMSG”`|| exit $?

if [“$ANS” = “y”]
then

Default installation
for PKG in $REQUIRED
do

PKGLIST=“$PKGLIST $PKG”
if [-f $REQDIR/$PKG/response]
then

cp $REQDIR/$PKG/response $RESPDIR/$PKG
fi

done
echo “PKGLIST=$PKGLIST” >> $1

else
Custom installation of required packages
for PKG in $REQUIRED
do

PKGLIST=“$PKGLIST $PKG”
if [-f $REQDIR/$PKG/request]
then

PROMPT=“Do you want default installation for $PKG?“
RANS=`ckyorn -d y -p “$PROMPT” -h “$HELPMSG”` || exit $?
if [“$RANS” = “y”]
then

PowerMAX OS Programming Guide

14-74

Figure 14-49. Case #7a request Script File (Cont.)

Case #7b 14

This study shows an example of how to split one set into two new sets (see the following
illustrations: Figure 14-50, Figure 14-51, Figure 14-52, Figure 14-53, Figure 14-54, and
Figure 14-55).

Techniques 14

This case study shows examples of the following:

• breaking up a setinfo file into two

• splitting the set member packages' request and default response files
in the original SIP prototype file into two

cp $REQDIR/$PKG/request $RESPDIR/$PKG
else

sh $REQDIR/$PKG/request $RESPDIR/$PKG
fi

fi
done

Select which optional packages in set are to be installed
for PKG in $OPTIONAL
do
HELPMSG=“Enter 'y' to install $PKG as part of this set
installation or 'n' to skip installation.”
PROMPT=“Do you want to install $PKG?“
PANS=`ckyorn -d y -p “$PROMPT” -h “$HELPMSG”` || exit $?

if [“$PANS” = “y” -o “$PANS” = ““]
then

PKGLIST=“$PKGLIST $PKG”
if [-f $REQDIR/$PKG/request]
then
 PROMPT=“Do you want default installation for $PKG?“
 RANS=`ckyorn -d y -p “$PROMPT” -h “$HELPMSG”` || exit $?
 if [“$RANS” = “y”]
 then

 cp $REQDIR/$PKG/request $RESPDIR/$PKG
 else

 sh $REQDIR/$PKG/request $RESPDIR/$PKG
 fi
fi

fi
done
echo “PKGLIST=$PKGLIST” >> $1

fi

if [“$PKGLIST” = ““]
then

EXITCODE=77
fi
export SETPKGS

Packaging Your Software Applications

14-75

Approach 14

From the SIP's setinfo file

• create two separate setinfo files for the two new sets being created

• create two separate prototype files for the two new sets being created

Sample Files 14

Figure 14-50. Case #7b Original setinfo File

Figure 14-51. Case #7b SIP One New setinfo File

Figure 14-52. Case #7b SIP Two New setinfo Files

Format for the setinfo file. Field separator is: <tab>
pkg partsdefaultcategorypackage_name
abbr y/n

pkgw 1 y system Package W
pkgx 1 y system Package X
pkgy 2 n system Package Y
pkgz 1 y system Package Y

Format for the setinfo file. Field separator is: <tab>
pkg partsdefaultcategorypackage_name
abbr y/n

pkgw 1 y system Package W
pkgz 1 y system Package Y

Format for the setinfo file. Field separator is: <tab>
pkg partsdefaultcategorypackage_name
abbr y/n

pkgx 1 y system Package W
pkgz 1 n system Package Y

PowerMAX OS Programming Guide

14-76

Figure 14-53. Case #7b Original prototype File

Figure 14-54. Case #7b SIP One New prototype File

Figure 14-55. Case #7b SIP Two New prototype Files

set packaging files
i pkginfo
i preinstall
i request
i setinfo
i copyright

i pkgw/request=pkgw.request
i pkgx/response=pkgx.response
i pkgy/request=pkgy.request
i pkgz/response=pkgz.response

set packaging files
i pkginfo
i preinstall
i request
i setinfo
i copyright

i pkgw/request=pkgw.request
i pkgz/response=pkgz.response

set packaging files
i pkginfo
i preinstall
i request
i setinfo
i copyright

i pkgx/request=pkgx.request
i pkgy/response=pkgy.response

A-1

A
Appendix AGuidelines for Writing Trusted Software

1
1
1

Writing Trusted Software 1

As a programmer you need to be aware of the special care you need to exercise when
designing and writing software for any system. You want to ensure that the software you
write and install for local applications is trusted.

The concept of trusting software is applicable to any system, regardless of the level of
security implemented; the process of trusting software will lead to a more secure installa-
tion.

CAUTION

PowerMAX OS is a secure system, evaluated and rated by the
National Computer Security Center.

Programmers will likely have to write software for individual
installations. When this software is added to the rated system,
however, the system in effect loses its rating.

Despite this, it is possible to maintain the security of the system if
the locally written software is itself secure and trusted. This chap-
ter provides an overview that explains how to write trusted soft-
ware.

If a locally written piece of trusted software that has privileges
was added to the system and is found to not deserve that trust, the
system must be brought down and rebooted, with all files reloaded
from copies saved prior to running that software.

Trust is the belief that a system element upholds the security policy of an operating sys-
tem. If this belief is founded on blind faith, disasters are likely to happen, so it makes
sense to assign trust only when a system element has been shown to deserve that trust.

The Enhanced Security Utilities available with the OS is designed to be compliant with a
B1 and B2 level of security as defined by the Department of Defense and the National
Computer Security Center. The software that constitutes the rated system strictly follows
the security policy, which controls what software can do by assigning authorization and by
limiting privileges. When you add software to the released system, you need to make sure

PowerMAX OS Programming Guide

A-2

that these local customizations and contributions have only the authorization and privi-
leges they need to do their jobs.

For user-level software, this means making sure that a command or library routine works
as advertised, and prevents unauthorized users from circumventing access controls or
mechanisms that protect sensitive system operations. In this section, trust refers not to
blind faith, but to confirmed trustworthiness.

Trust is key to the Enhanced Security Utilities available with the OS and to adding soft-
ware to it.

The Enhanced Security Utilities available with the OS are designed to protect sensitive
information from unauthorized access. Software that runs on a system that contains sensi-
tive information must be trusted to maintain this protection. The rest of this chapter dis-
cusses trust and how to include it in software added to the rated system.

The OS without the Enhanced Security Utilities installed is secure, but it is not compliant
with the B2 level of security.

Scope of Trust 1

The first step in assigning trust to a command or library routine is to determine whether it
has enough access to the system to require trust. Some commands do not require privilege
or access to sensitive information. Such commands need not be trusted, since they pose no
threat.

Other commands either occasionally or routinely obtain access to sensitive operations, or
create that access for themselves through mechanisms like the setuid-on-exec fea-
ture. These commands must be trusted, since they operate in a sensitive environment.

The rules dictating which commands need trust and which commands do not are straight-
forward, but matching a command to a rule may not be. The following command classes
must always be trusted:

• commands used by administrative personnel

• commands invoked by other trusted commands

• commands that use privilege (see the System Administration, Volume 1 for
an explanation of privilege)

• commands that set their user or group identity to an administrative one on
execution (set-id)

Deciding whether a command is “used by administrative personnel” or “uses privilege”
can be difficult, since this distinction often varies from site to site and administrator to
administrator. The Enhanced Security Utilities defines a Mandatory Access Control
(MAC) isolation policy that alleviates this confusion, but the decision must nonetheless be
made.

Library routines have similar rules, but these routines are so pervasive the most reasonable
rule is: each library routine must be trusted unless it can be shown not to be used by
trusted code. This principle means that every element of a trusted command must itself be

Guidelines for Writing Trusted Software

A-3

trusted. This principle includes the private routines within the command as well as all
library routines used by the command.

How Trust Is Achieved 1

The rules for trust are different for commands and library routines. These rules are
described in detail in the remaining sections of this chapter.

Trust is achieved by following all rules that pertain to writing a given piece of software
and by documenting the methods used to follow those rules. This documentation must be
supplied with every piece of trusted software. It describes the circumstances under which
it is trusted, the methods used to make it trusted, and warnings about any practices that
might jeopardize the trust placed in the software.

As with all code that is to be incorporated in a running system, trusted software needs to
be reviewed and tested before it is installed. You can have reviewers and testers read this
chapter so that they can familiarize themselves with the special requirements for trusted
software.

How to Use This Chapter 1

This chapter is divided into sections describing the procedures needed to produce and
install trusted software. You may want to read the System Administration, Volume 1 for
background information.

It is a good idea to become familiar with the background material first, then proceed with
reading the sections of this chapter that explain how to ensure trust in the kind of software
you are writing. Reading the entire chapter is useful, but not essential. Many rules for
ensuring trust are also good general programming practices, so they may also benefit any
programming you do.

Finally, be aware that this chapter does not contain the definitive explanation of trust.
Writing software is as much an art as it is a science, and the rules presented here are only
guidelines to gain an understanding of the issues involved. It is by no means a guarantee
that you will produce trusted software if you blindly obey the rules and dutifully mark the
checklists. However, reading the advice here is a good beginning to learning how to write
trusted software.

Trust and Security 1

Any discussion of software trust must be based on fundamental understanding of the secu-
rity-related system elements. In the system security provided by the Standard Package
with the OS, these elements are:

• Privileges

• Trusted Facility Management (TFM)

PowerMAX OS Programming Guide

A-4

• Discretionary Access Controls (DAC)

• DAC Isolation Mechanism

In the Enhanced Security Utilities package, these elements are:

• Mandatory Access Controls (MAC)

• MAC Isolation Mechanism

The next subsections give a general explanation of these elements of security and trust.
There are other descriptions in the System Administration, Volume 1 to which you may
want to refer for other perspectives and information.

Privilege 1

Privilege means “the ability to override system restrictions.” This ability is vested in three
ways:

• in any user whose effective identity is root

• by way of the Trusted Facility Management (TFM) feature

• through fixed privileges assigned to executable files

There is a problem with the first approach to overriding system restrictions. A user (or
command) allowed a reasonably mundane privileged action (for example, reading a pro-
tected file without explicit permission) also has permission to perform every other privi-
leged action on the system, including the permission to overwrite all files on the system,
add users, kill processes, start and stop network services, mount and unmount file systems,
and many other sensitive operations. There is no restriction because there is no way to give
a “little bit of root ” to a user or command. Any process with an effective user-ID of “0”
(root) is considered omnipotent.

The second and third approaches provide methods of giving a “little bit of root ” to a user
or command, and thus address the problem with the first approach. These approaches can
be thought of as “Least Privilege” since they introduce the idea of discrete privileges that
are associated with executable files and processes.

The basic security mechanism divides the ability to override system restrictions into dis-
crete privileges, each overriding a specific action or class of actions. With the least privi-
lege mechanism, a command can get the privileges it needs without getting the privileges
it does not need. That is, the command gets the least amount of privilege required for its
task.

The second and third approaches dissolve the bond between user identity and privilege,
making privilege a process and executable file attribute instead of a user attribute. This
approach makes sense because command behavior is much easier to describe and regulate
than user behavior. Specifically, a process has privilege only when it is executing a privi-
leged command.

Process privileges are contained in two sets, “working” and “maximum.” The working set
contains the privileges in effect at any particular instant. This set controls the restrictions

Guidelines for Writing Trusted Software

A-5

that the process can override at the moment. The procpriv(2) system call allows a
command to set or clear privileges in the calling process’s working set.

The maximum set represents the upper limit of privileges that a process can have in its
working set. These privileges have no effect unless they are also in the working set, but
they are held in reserve for the command to assert at any time. Using the procpriv sys-
tem call, a command can clear a privilege in the maximum set but cannot set one.

The privilege set associated with a command's executable file determine what is put in the
working and maximum privilege sets when a process executes the command. The two pos-
sible file privilege sets are fixed and inheritable. Fixed privileges are useful for commands
that do privileged things for ordinary users because they are granted unconditionally upon
execution. The unconditional nature of fixed privileges, however, means that any program
that uses them must strictly enforce all system policies it can override.

A privilege in the inheritable privilege set of a command is granted only if the invoking
process had that privilege in its maximum set before the exec system call [see
exec(2)]. If a privilege is not in either the inheritable or fixed privilege sets of a com-
mand, the command cannot get that privilege even if the process had the privilege before
the exec system call. The inheritable privilege set for executable files is not supported
when the SUM policy module is used. The SUM module considers all of the calling pro-
cess’s maximum privilege set to be inheritable.

This privilege propagation mechanism provides strong protection against Trojan Horse
attacks by preventing commands from obtaining privileges they do not need or do not use
correctly.

Trusted Facility Management 1

The privilege inheritance mechanism described in the “Privilege” section ensures that only
commands that need privilege and that use it correctly ever get it.

One type of command that can never be shown to use privilege correctly is an interactive
shell, because an interactive shell depends on the user to define its behavior. This causes a
problem because most privileged commands have inheritable privileges, and inheritable
privileges need a process from which they can be inherited. The solution to this problem is
the Trusted Facility Management (TFM) mechanism. TFM provides an interface between
users (not privileged) and commands (privileged). The primary elements of TFM are the
tfadmin(1M) command and the TFM database.

The tfadmin command is invoked with the desired command line as its arguments as in
the following example:

tfadmin mount /dev/mydsk /my_mnt_point

The fixed privilege set of the tfadmin command file contains all privileges, so the exec
system call turns on all privileges in the resulting process.

But the tfadmin command cannot be executed successfully by every user. To open it to
such free access would be a violation of trust. When tfadmin is invoked, the first thing it
does is to find out the real identity (real UID) of the invoking user. It then uses that identity
to find the user's entry in the TFM Database.

PowerMAX OS Programming Guide

A-6

The TFM database contains three types of information:

• the list of privileged commands assigned to each user

• the list of roles to which each user is assigned

• the list of privileged commands that define specific roles

A trusted system may define administrative roles for selected system administrators. Each
role is likely to be filled by a different administrator in order that all sensitive administra-
tive functions not be handled by a single person. This division of administrative duties into
separate roles reduces the chances for misuse of administrative power. All trusted adminis-
trators will be associated with at least one role and/or set of privileged commands; a very
few administrators may be associated with more than one role, especially at small sites.
But most users are not associated with any role.

When tfadmin finds the user's entry, it looks for the requested command in the list of
specific commands, and if it does not find it, in the list of roles. Once the command is
found and the user's entry verifies that the user is assigned to a role that has the authoriza-
tion to use that command, tfadmin turns on the correct privileges (found in the database
entry for the command) in its maximum set and executes the command. If the executable
file has any fixed privileges associated with it (via the filepriv(1M) command) they
will be added to the privileges obtained from the TFM database by the exec(2) system
call. All privileges obtained from the TFM database and the executable file’s fixed privi-
leges are propagated across the chain of execution of any child processes.

In order for a shell script to propagate privileges whether they are acquired by way of
tfadmin or filepriv , the script file must begin with a line of the form:

#! pathname [arg]

where pathname is the path of the interpreter (usually a shell), and arg is an optional argu-
ment.

By providing a single point of privileged access to administrative commands and by bas-
ing that access on the real identity of the requesting user, tfadmin eliminates the need
for privileged ID's and enhances administrative accountability.

Mandatory Access Control 1

The Mandatory Access Control (MAC) mechanism associates a “level” with each process
and data object (file, pipe, device, IPC, and so on.) under the Enhanced Security Utilities.
A MAC level defines the sensitivity and topic of a piece of data, and prevents it from being
disclosed or altered by an unauthorized user.

Unlike the traditional access control attributes (the user, group, other mode bits), the MAC
level is set automatically by the system and cannot be changed by anyone except an
administrator responsible for maintaining MAC.

As noted above, the MAC level represents both the sensitivity and the topic of a data
object. The sensitivity is represented by a classification value. The higher this value, the
more sensitive the information is. The topic is represented by a set of categories. If, for
example, a file contains proprietary information about future development projects for a
hypothetical company and its product, the file might have the level:

Guidelines for Writing Trusted Software

A-7

PROPRIETARY:firefly,freedonia,sylvania

The classification (degree of sensitivity) of the file is PROPRIETARY, and the categories
(topics) are firefly (contains development information on the firefly project),
freedonia (contains information about marketing firefly in the country of Freedonia)
and sylvania (contains information about marketing firefly in Sylvania.)

The MAC level of a process is both the level put on any data object created by the process
and the level used to determine whether the process has access to any particular object.

Access is based on level dominance. A level (A) dominates another level (B) if the classi-
fication of level A is equal to or greater than that of level B and all categories in level B are
contained in level A. Two levels are equal if their categories and classification are exactly
the same.

A process is allowed to read a data object only if the level of the process dominates the
level of the object. An object is allowed to write a data object only if the level of the pro-
cess equals the level of the object.

MAC Isolation Policy 1

Most commands base some decisions on data from outside sources. Commands that
enforce security policies based on external data need correct data to make sane decisions.
Take, for example, the login procedure. This procedure obtains user attributes and pass-
word information from a set of data files. If one of these data files were replaced or
masked somehow by an attacker, login could not make rational decisions about attempts
to log into the system. In its confusion, it might allow an attacker to enter the system under
false pretenses and steal information or damage data.

Commands also fall prey to this attack. A classic infiltration method is to replace a com-
mand with a new command that does something extra, like create a set-uid shell. When an
unsuspecting user invokes the command, that user gets the normal command and the
unfriendly act.

The first line of defense against an attack on sensitive system data and commands is to pre-
vent untrusted individuals from changing them. This is good, but not good enough, since
there are often ways to mask or replace a data object without actually changing it.

An example of this kind of attack is the well known trick of planting a command named
ls in a directory and waiting for someone with the current directory first in $PATH to list
that directory. The ls command has not changed at all, but it has been effectively replaced
by a different command. The only defense against this attack is to restrict a sensitive com-
mand's or a user's ability to use potentially bogus information.

Finally, there are always data objects that contain information that must not be disclosed to
the general public since they might give clues to attackers about ways to infiltrate the sys-
tem. An example of this kind of information is the system password list. Even if the names
and passwords in this list are encrypted, disclosing this information exposes the system to
password guessing.

In general, any information used solely to administer a system should be hidden from non-
administrators, since they have no need to use the information, and attackers are clever and
persistent. Information used both by administrators and users should be seen by both

PowerMAX OS Programming Guide

A-8

groups but should be changed only by administrators. Information used only by users
should not be visible to administrators (to prevent administrators from using bad data or
commands).

The access lattice defined by the set of MAC levels can be subdivided into three sections
representing the three classes of information described above. Purely administrative infor-
mation falls under the SYSTEM:PRIVATE section and has a level prohibiting reads or
writes by non-administrators. Information shared by administrators and users falls under
the SYSTEM:PUBLIC section and has a level prohibiting writes by non-administrators,
but allowing reads by anyone. Pure user information falls under the USER section, and has
a level prohibiting reads or writes by administrators.

Discretionary Access Control 1

Discretionary Access Control (DAC) on a file defines the permissible access to it by its
owner, the owner's group, and all others. It is discretionary because the protection on this
data object is set at the discretion of the owner of the object.

When the Enhanced Security Utilities are installed, DAC also includes Access Control
Lists (ACLs).

Discretionary Access Isolation 1

Even though the access to sensitive system information is well regulated by the MAC
access isolation mechanism, discretionary controls provide flexibility and more granular
protection within that framework. Furthermore, since MAC exists only when the
Enhanced Security Utilities are installed, and sensitive files are not limited to those sys-
tems, “a” DAC isolation mechanism is needed to protect files on base systems.

A review of the limitations and pitfalls of discretionary protection is in order. First, the dis-
cretion to change permissions on data resides with the owner. If ownership of a piece of
data is obtained by a malicious or incompetent user, nothing can prevent that user from
destroying all discretionary protections. Second, discretionary access controls cannot be
used to prevent sensitive software or users from reading bad data, because the owner of a
file can always make its data readable by the world, and the world includes sensitive peo-
ple. Finally, discretionary access is based on effective user and group identity. Effective
identities change whenever a set-id-on-exec command runs, and they remain changed until
the command sets them back to the real identities or exits. Thus, sensitive discretionary
access (and ownership) can be passed from a trusted command to an untrusted one by
accident, exposing the system to attack.

The OS protects sensitive data files by setting the ownership of all such files to root and
supplying setuid-on-exec commands to give users controlled access to these files.
This method provides protection because it makes protected files accessible only to the
most restricted user.

This protection is adequate for most systems, but it is inadequate for protecting sensitive
information on secure systems, because in practice, this has led to a proliferation of set-
uid-on-exec to root commands, some of which might be less careful than they
should about propagating the root user identity to other commands. As a result, not only

Guidelines for Writing Trusted Software

A-9

did the file protection begin to fail, but what had been the most restricted user identity sud-
denly became much easier to obtain.

The next attempt was to set up “ghost” user identities other than root to own sensitive
files. Ghost user identities are user ID's in the system that are inaccessible as a valid user
account (i.e. no one can login with this ID). Programmers using this technique managed to
protect root somewhat better, but still left open the risk of Trojan Horse attacks on the
files they were trying to protect. Finally, it became clear that giving away ownership to
files made attacks too easy. Giving away group access was preferable. True, it was still
possible to gain unauthorized access through imperfect system commands, but at least that
access was limited to reading and writing.

The currently recommended DAC isolation method calls for the existence of a “ghost”
owner: sys . This owner has a locked password entry, to make logging in as that user
impossible. In addition, no commands can set their user identity to sys upon execution.
This makes it impossible for a non-privileged process to obtain this user identity. Groups
are defined to provide protection isolated according to the kinds of commands and users
needing access to protected files. Administrators are assigned multiple group lists that
allow direct access to protected files while normal users may gain access only through set-
gid commands. All files protected by this mechanism are owned by sys and have the
appropriate system group identity.

Writing Trusted Commands 1

The following sections describe how to write trusted commands.

User Documentation 1

The first line of defense against system damage is accurate and complete documentation.
Before a command can be trusted, its use, behavior, options, and influence over the system
must be fully described. In addition to a full description of the command, any potentially
harmful behavior should be noted, to allow users to avoid such hazards.

Parameter and Process Attribute Checking 1

The parameters given to a command at execution are the primary external influences over
the behavior of the command. All parameters passed into a command at execution, there-
fore, must be checked and shown to be consistent by the command before processing
starts. This means that a command that has, for example, two mutually exclusive modes of
operation based on command line options must ensure that only one of these modes is
requested at a time. This is particularly important when one operation might negate the
other or cause an inconsistency in the system, or when the interfaces for two operations
are similar enough to interact in a way that might be misinterpreted by the command.

Process attributes are also important, but, with rare exception, should not be checked
explicitly by a command. The reason for this is that most process attributes are intended to

PowerMAX OS Programming Guide

A-10

be checked by the operating system itself and will cause identifiable errors if they are not
right. It is unwise to make assumptions about the way a particular operating system deci-
sion will come out based on potentially flawed knowledge of how the decision is made.
Some exceptions to this rule are the process umask, which should be set as needed by all
trusted commands, and the process ulimit , which, if too small, may lead a trusted com-
mand to an error from which it cannot gracefully recover.

Privilege and Special Access 1

There are two forms of special access in PowerMAX OS. The first is the access granted by
the set-id feature, and the second is privilege. In the past these have been bound together
through the root effective user identity, and they continue to be bound in superuser-based
versions of PowerMAX OS.

 In least privilege-based versions, however, a distinction has been drawn. Regulating the
use of these special permissions is central to trust, so some rules are needed to show how
that regulation should be done.

Set-id Commands 1

Commands that use the set-id feature to obtain access to files not otherwise available to an
invoking user must carefully control not only their own use of these access permissions,
but how these permissions are granted to other commands. There is always the possibility
of a Trojan Horse when a command executes another command so care must be taken (see
“Executing Other Commands”). In this section, the issue is incorrect use of special access
rights. In general, the best protection against either incorrect use or a Trojan Horse is to
reset the effective user and group identity immediately on entry to a command and only
use the special identities where they are explicitly needed. The code excerpt in Figure A-1
illustrates the procedure.

Privileged Commands 1

Adding least privilege with the Enhanced Security Utilities installed changes the handling
of privileged system calls. Since privilege is no longer guaranteed to depend on the effec-
tive user identity, a mechanism is now provided to regulate the specific use of privilege.
The mechanism is available in both least privilege and superuser based systems and is
reached through the procpriv(2) system call or the procprivl(3C) library rou-
tine. The rules for controlling process privilege are similar to those for controlling effec-
tive user and group identity. The first thing a trusted command must do is turn off all work-
ing privileges, to ensure that the command can not use or pass on a privilege
unintentionally. When the command needs to use a privilege, it turns on that privilege
alone, using procpriv or procprivl , and makes the sensitive system call or library
routine. After the call, the command turns off all privileges. Notice that the period in
which privileges are asserted is as short as possible. Given the choice between turning on
privilege in the main routine before calling a routine that uses privilege, or turning on and
off the same privilege within the lower level routine, the latter choice should be taken.
There are exceptions, but exceptions should be made for solid technical reasons, not con-
venience. The code excerpt in Figure A-2 illustrates proper privilege use:

Guidelines for Writing Trusted Software

A-11

Figure A-1. Correct Regulation of Access in C Programs

Privilege and Special Access in Shared Private Routines 1

A group of related commands occasionally share routines from a common object module.
Such routines may provide database access, device setup and release, data conversion, etc.
The desire to centralize these utility functions leads to creation of private “libraries.”
Although these are not usually libraries in the archive sense, they are collections of useful
routines stored in a place that makes them accessible to a controlled group of commands.
Since these routines are private, they are treated as subsections of the commands that use
them. These routines are designed to cooperate closely with their calling programs, so
they are expected to regulate privilege internally.

static uid_teff_uid, real_uid;
static uid_teff_gid, real_gid;
 .
 .
 .
main(argc, argv)
int argc;
char *argv[];
{
 /*Variable declarations*/
 eff_uid = geteuid();
 eff_gid = getegid();
 real_uid = getuid();
 real_gid = getgid();
 if(seteuid(real_uid) < 0){ /*Set the effective UID to the real*/
 error(“Cannot reset UID.”); /*Report error and exit*/
 }
 if(setegid(real_gid) < 0){ /*Set the effective GID to the real*/
 error(“Cannot reset GID.”); /*Report error and exit*/
 }
 .
 .
 .
 if(setegid(eff_gid) < 0){ /*Assert the effective GID*/
 error(“Cannot assert GID.”);/*Report error and exit*/
 }
 fd = open(“/etc/security_file”, O_RDWR);
 if(setegid(real_gid) < 0){ /*Set the effective GID to the real*/
 cleanup(); /*Restore consistency*/
 error(“Cannot reset GID.”); /*Report error and exit*/
 }
 if(fd < 0){
 error(“Cannot open file.”); /*Report error and exit*/
 }
 /*Process data*/
 .
 .
 .
 close(fd);
}

PowerMAX OS Programming Guide

A-12

Figure A-2. Correct Use of Privilege in a C Program

Exceptions to this rule occur when different commands have different views of the same
routine or when the designer of a routine believes the routine may be added to a public
library. A private database library may contain a routine to open and position the database.
A command that only needs to query the database might want to assert only read access
override privileges while a command that changes the database might want to assert both
read and write access override privileges. Such a routine should make no assumptions
about what privileges the calling routine wants to use, but should simply assume that the
correct privileges are in place.

A library routine might also have broad enough usefulness to be a candidate for public
use. The reasons why such a routine might not be placed in a public library range from a
desire to keep the published interface as small as possible to name conflicts or even lack of
staff to make the change. If a programmer believes that a routine is useful enough to merit
consideration for a public library, the programmer should follow the rules for writing pub-
lic library routines, even if the routine is initially private.

These guidelines apply equally well to special access permissions obtained through the
set-id mechanism as they do to privilege. Wherever these access permissions are used
instead of privilege, they should be turned on and off as though they were individual privi-
leges, using the seteuid and setegid system calls as shown in Figure A-1.

#include <priv.h>
section of , argv)
int argc;
char *argv[];
{
 /*Variable declarations*/
 if(procprivl(CLRPRV,pm_work(P_ALLPRIVS),0) < 0){
 error(“Cannot clear privileges.”); /*Report error and exit*/
 }
 .
 .
 .
 if(procprivl(SETPRV,pm_work(P_DACREAD),pm_work(P_DACWRITE),0) < 0){
 error(“Cannot set privileges.”); /*Report error and exit*/
 }
 fd = open(“/etc/security_file”, O_RDWR);
 if(procprivl(CLRPRV,pm_work(P_ALLPRIVS),0)){
 cleanup(); /*Restore consistency*/
 error(“Cannot clear privileges.”); /*Report error and exit*/
 }
 if(fd < 0){

error(“Cannot open file.”); /*Report error and exit*/
 }
 /*Process data*/
 .
 .
 .
 close(fd);
}

Guidelines for Writing Trusted Software

A-13

Error Checking 1

Almost every system call or library routine can, somehow, encounter an error during its
operation. While many of these occur only because of programmer error, each such prob-
lem indicates a failure of either the system, the calling program or a transient parameter
like access permission or available memory. If a programmer chooses to ignore a reported
error, the result is a command that, should some basic assumption of the system fail, could
corrupt its environment. For trusted commands, therefore, every possible error return must
be checked and reported. This rule is not always followed to the letter, since in some cases
it is more efficient to detect the error case downstream from the actual failure. Ignoring
errors is risky and should not be done without strong justification.

Signal Handling 1

Signals pose a problem in trusted software because they are not predictable. There are two
main areas of concern when it comes to handling signals:

1. maintaining system integrity when a trusted command receives a signal

2. use of privilege and special permission inside signal handling functions

If a signal is received by a trusted command, that command must not simply exit and leave
the system in an inconsistent or insecure state. If a command contains critical sections that
cannot be interrupted, every effort must be made to prevent signals from interrupting those
sections.

On the other hand, a signal usually means either that a system problem has occurred (like
memory exhaustion, an addressing error, or invalid operation) or that the user has decided
to abort the operation. Regardless, it is not correct for a command to continue processing
as though nothing had happened.

A system-generated signal usually signifies a flaw in the command and almost certainly
means that further processing will be based on corrupt data. A user-generated signal signi-
fies a change of heart by the requesting user and should be honored where possible by
restoring the system to the state it was in before the command was invoked. If a command
receives a signal after it is committed to a change, the command should finish any steps
necessary to ensure consistency and exit.

Attempts to write signal-safe commands must take into account the possibility of unfore-
seen signals and signals that cannot be caught. On any given system, the set of possible
signals is constant, but in general, systems are allowed to have their own implementation-
specific signals.

It is better to keep the critical sections of a command as small as possible than to try to
protect large critical sections against interruption. This principle means, for example, a
command that changes a system database should make all changes on a copy of any sensi-
tive part of the database (for example an index file) before replacing the original. This lim-
its opportunity for an unknown signal to interrupt the sensitive part of the command.

When a trusted command is using privilege or some other extraordinary access and
receives a signal, the command may enter a signal handler. Because signals are unpredict-
able, it is not a good idea for a command to change the privileges or other access attributes

PowerMAX OS Programming Guide

A-14

of its process inside a signal handler. When the handler returns to the main stream of pro-
cessing, these attributes must be the same as they were before the signal occurred, or
unpredictable processing will result.

Since signal handlers are not allowed to change process attributes, they should never do
anything that might take advantage of privileges or special access. In general, a signal han-
dler should set a flag and return or long jump away. Once the flag is set, the command can
recognize the signal and respond to it in an orderly fashion.

Handling Sensitive Data 1

While it is important that trusted commands always protect the integrity of the data they
manipulate, they must also prevent information disclosure that might damage system secu-
rity. If commands are used exclusively by administrators or never gain access to sensitive
information, then they are mostly exempt from this concern, but some commands are reg-
ularly used by non-administrators and use privilege or special access to read secret infor-
mation.

An example is the passwd command. The passwd command retrieves information from
the system password list (not normally readable by users) and reports (and sometimes
changes) that information. In the process of obtaining the information, passwd must scan
through records that are not intended for the eyes of the invoking user. If a signal were to
cause passwd to write a core image with one or more records buffered, it would be possi-
ble for an enterprising programmer to extract secret information from the core image.

It is best to eliminate this possibility by designing databases and commands to handle only
the sensitive information they are authorized to disclose. When it is impossible to elimi-
nate the risk, programmers should limit the vulnerability of the command by clearing the
contents of any sensitive buffers as soon as they cease to be needed.

Executing Other Commands 1

Whenever a command executes another command, it must first set its effective user and
group identities to its real user and group identities unless the executed command needs
the special access to do its job. If the executed command needs the special access, the exe-
cuting command must take every possible step to ensure that it executes the correct com-
mand with proper parameters and cannot be misled into executing a Trojan Horse.

A Trojan Horse is a command that imposes itself on a process by looking like the needed
command. It inherits permissions and other attributes (like file descriptors, environment,
and so on), from the executing command, and can use these capabilities to disrupt the sys-
tem. Measures to prevent Trojan Horse intrusion include the following:

• using full pathnames for execution

• avoiding the system and popen library routines, which use the shell to
interpret command lines

• carefully making sure the $PATH, $IFS , and other environment variables
are set to safe values whenever the shell must be used

Guidelines for Writing Trusted Software

A-15

• never allowing special-access rights or file descriptors to survive across an
execution of a user-supplied command name

Using Library Routines 1

A trusted command must never use an untrusted library routine. This restriction means
that a trusted command must never use a library routine that has an untrusted call any-
where in its calling sequence, nor a library routine that causes an untrusted command to be
executed. The information derived from the untrusted command might influence the
behavior of the trusted command, or the command might give away extraordinary access
to the untrusted command; neither action is acceptable.

Trusting Shell Scripts 1

With the introduction of support for multiple file formats in the OS, it is possible to have
set-id and privileged shell scripts. In addition, there have always been shell scripts that are
used by administrators. If a shell script can get administrative access to the system it must
be trusted, so rules for trusting shell scripts are needed as well.

The primary rule of trusted shell scripts is: any shell script that uses privilege or special
access rights is subject to spoofing and must not be available to non-administrators.

 This rule means that shell scripts that use privilege must be SYSTEM:PRIVATE under
the Enhanced Security Utilities and must be executable only by an administrative group or
user in the base system.

User Documentation 1

The documentation needed for a trusted shell script is the same as that for any other
trusted command. See the “User Documentation” part of the “Writing Trusted Com-
mands” section.

Privilege and Special Access 1

The shell offers no way to control special access rights granted by the set-id feature. With-
out this control, such a shell script must be extremely simple before it can be trusted. In
general, it is not a good idea to use the set-id mechanisms for shell scripts. Only trusted
commands should be used in shell scripts.

The “trusted” shell provided with the Enhanced Security Utilities has the ability to regu-
late privilege through the new built-in priv command.

PowerMAX OS Programming Guide

A-16

Figure A-3. Correct Use of Privilege in a Shell Script

Executing Commands 1

Shell scripts consist mainly of commands, which makes them especially vulnerable to
spoofing attacks. Only trusted commands should be used in shell scripts. Also, all com-
mands that are not known to be built into the shell itself must be executed either by their
full pathname or through the /sbin/tfadmin command provided by the TFM feature.

Sometimes, a script will need to use a command with privilege regardless of TFM data.
When this situation occurs, privileges are assigned to the script by way of TFM. Fixed
privileges are assigned by way of the filepriv command. In this case, the script should
turn on only the needed privileges and execute the command using a full pathname (see
Figure A-3).

Another way of executing a privileged command is through the /sbin/tfadmin com-
mand, since this allows the TFM mechanisms to decide whether the user of the script
should have the privilege. In this instance, all commands to be executed in the script must
exist in the TFM database, and all users who execute the script must have access to them.
This case is illustrated in Figure A-4.

#! /sbin/sh -p
priv -allprivs max #Turn off all working privileges
if [$? -ne 0]
then #The priv command will report the error
 exit $?
fi
 .
 .
 .
priv +mount max
if [$? -ne 0]
then #The mount command will report the error

exit $?
fi
/sbin/mount /dev/mydsk /mnt
priv -allprivs max
if [$? -ne 0]
then #The priv command will report the error
 exit $?
fi
 .
 .
 .

Guidelines for Writing Trusted Software

A-17

Figure A-4. Shell Script Using Commands From TFM Database

In order for a script to propagate privileges whether they are acquired by way of tfadmin
or filepriv , the #! line must be the first line of the script.

Error Checking 1

Most commands report the errors they encounter and exit with a non-zero return code on
failure. Shell scripts, therefore, usually do not need to bother reporting errors. Nonethe-
less, shell scripts should check for errors. A command that fails and reports an error indi-
cates a problem in the shell script. If that error might cause the system to be left in an
inconsistent state by the script, the error must be caught and handled. Whether the error is
specially reported depends on the particular circumstances.

For example, if the failing command redirects its standard error output to a file or to
/dev/null , the shell script must report an error to avoid failing silently.

If, on the other hand, the command does nothing to redirect messages, then the command's
error message should be enough to tell the user what happened.

Trusting Public Library Routines 1

While commands obtain their privilege and special access through kernel mechanisms,
library routines obtain their access rights and privileges from the commands that call
them. Additionally, library routines usually serve a single purpose instead of offering a
spectrum of options. These differences dictate the rules for library routines described
below.

#! /sbin/sh
if [$? -ne 0]
then #The command will report the error
 exit $?
fi
 .
 .
 .
if [$? -ne 0]
then #The command will report the error

exit $?
fi
tfadmin mount /dev/mydsk /mnt
if [$? -ne 0]
then #The command will report the error
 exit $?
fi
 .
 .
 .

PowerMAX OS Programming Guide

A-18

Documentation 1

The most important aspect of trusting a library routine is the documentation used by a pro-
grammer to decide how and when that routine should be used. This description should
include basic elements such as the interface to the routine, what the routine does, and what
error conditions might be encountered by the routine. Additionally, any privileged routine
should have a description of the privileges it can use and the reason it might use each priv-
ilege. Also, any interesting side effects of the routine should be detailed. These include
opening, closing, deleting or creating files, executing commands, setting global variables,
allocating heap storage, changing process attributes, sending signals, or any other behavior
that is not immediately obvious to the reader.

Finally, the description should include a section describing any non-trusted uses of the
routine. If, for example, a user can cause the routine to fill past the end of a buffer by feed-
ing it too much data, this possibility should be stated in the description. By supplying as
much information as possible to the programmer who will use the routine, the documenter
allows the programmer to choose routines wisely and use them correctly.

Privilege and Special Access 1

Public libraries provide many useful functions, such as file IO buffering, memory alloca-
tion, and mathematical processing. These routines are intended for use by a wide variety
of applications, with a wide variety of needs and goals.

A library routine, therefore, should not try to guess the intent of the calling program. It
should simply do its job and return. The rule for public library routines and privilege or
special access is: no public routine should change the privilege or access environment of a
process unless that is its primary purpose. There should be no exceptions to this rule, since
a trusted command must always be in full control of its privileges and special access
rights.

Reporting Errors 1

The only way a command can detect and recover from an error is to use the information
reported by the system calls and library routines that encountered the error. A library rou-
tine, therefore, must report every possible error case as informatively as possible to the
calling program. Where several different failure modes are possible, each should be
reported uniquely so that the calling program can take any necessary corrective action or
can restore system integrity before exiting. It is not correct for a library routine to cause a
process to exit as the result of an error, since the calling program may need to clean up
before exiting. The rule is: library routines must report all errors as accurately as possible.

Handling Sensitive Data 1

Library routines sometimes need to retrieve sensitive data for a trusted command. The
designer of such routines must be aware of the risk that this data might be accidentally dis-

Guidelines for Writing Trusted Software

A-19

closed in a core file or some other unprotected data object. For a more detailed discussion
of this problem and its solutions, see the “Handling Sensitive Data” section of “Writing
Trusted Commands.”

Executing Commands 1

Whenever a library routine executes a shell level command it must take great care to
ensure that the command is executed correctly and with the right parameters. For library
routines that handle requests to execute a command this requirement is limited to making
sure the request is followed exactly as issued. Library routines (like system or popen)
that execute commands independently of the specific request must use full pathnames, and
be certain that the commands they execute are themselves trusted.

Installing Trusted Commands and Data 1

The access isolation and privilege mechanisms described in the System Administration,
Volume 1 depend on the software installation procedures. Defining special levels and
group identities serves no purpose if those levels and groups are not used correctly. Defin-
ing a set of privileges and kernel level mechanisms to enforce and control them serves no
purpose if every command gets all fixed privileges. As much care must be put into defin-
ing the installation parameters of a command and its data objects as goes into writing the
command and designing its data. This section establishes principles upon which installa-
tion decisions can be made.

Assigning Access Controls 1

All trusted data must be protected from unauthorized changes. Working in the enhanced
security environment, this protection is achieved using the MAC Isolation policy. Any
trusted data object containing information that must be visible to the entire system (for
example, /etc/passwd) gets the SYSTEM:PUBLIC level alias. Any other trusted data
object gets the SYSTEM:PRIVATE level alias, since only administrators ever need to read
this data. This decision is based on the question “does any non-administrator need to use
this information?” not “is this information too sensitive for non-administrators to see?”

MAC isolation for trusted commands is the same as MAC isolation for data. Trusted com-
mands used both by administrators and non-administrators (for example, cat, cup, me,
an) are kept at SYSTEM:PUBLIC while commands with only administrative usefulness
(for examp le, uadmin, useradd, usermod, userdel) a re kept a t
SYSTEM:PRIVATE. By keeping administrative commands out of reach of non-adminis-
trators, this policy prevents users from accidentally or intentionally executing privileged
system services incorrectly or in manner that violates the security policy. (See the section
on “Privilege” in the “Trusted Facility Management” chapter of this guide.)

Discret ionary access controls are used wi th in the SYSTEM:PUBLIC and
SYSTEM:PRIVATE levels to provide a finer access granularity. These permissions should
be assigned based on logical groupings of data according to the needs of a set of com-

PowerMAX OS Programming Guide

A-20

mands and administrators. Since the discretionary controls are the only protections avail-
able to the base system, they should be assigned as though they were protecting a system
on which all files are public and writable unless restricted by DAC.

The actual permissions placed on a given file depend entirely on the needs of the com-
mands that use the file. The group bits, however, should be used instead of the owner bits
to grant controlled access to files. This methodology allows the designer to use set-uid
root for non-access related privilege and still take advantage of DAC controls on a least
privilege system.

Assigning Privileges and Special Permissions 1

Privileges are assigned to executable files (commands) based on the needs of the com-
mand and the knowledge that the command will not misuse the privileges. These two fac-
tors are equally important: Even though a programmer knows that a command will not
abuse a particular privilege, the command must need that privilege or it does not get it.
Furthermore, even though a command needs a privilege, it must be shown to use the privi-
lege properly or it does not get it.

After determining what privileges a command can have, the next step is to determine
whether the command needs privileges that are propagated through tfadmin , or fixed
privileges. Inheritable privileges are assigned to commands that are either intended to be
run only by administrators or other trusted commands or need privilege only when used in
these ways. Fixed privileges are assigned to commands that need privilege when used by
any user and cannot obtain the needed access any other way.

Using fixed privileges calls for extremely careful programming. A command with fixed
privilege must never use untrusted data for security-relevant decision making. This means
that a shell script can never have fixed privilege, since the environment a shell script inher-
its is untrusted and influences the shell's behavior (a command that uses the system or
popen library routines can never have fixed privilege for the same reason). Other possible
disqualifications are the following:

• commands that are controlled by user-supplied script files

• commands that are controlled by data from standard input

Privileges acquired through tfadmin are more carefully controlled, so they do not
require the extensive limitations placed on fixed privilege. Any privileged command, how-
ever, must uphold system policies when it uses privilege and must obey both the spirit and
the letter of the rules of trust described in these guidelines.

Special access rights should be used in favor of privileges wherever possible. A program
that needs discretionary access to a well-defined set of files should be setgid to the
group to which those files belong. The files should be as accessible as necessary to their
group. If, for example, a command needs to read a file foo and read and write a file bar
and the group of the files foo and bar is sys , the command should be setgid to sys .
The file foo should be readable by group while the file bar should be both readable and
writable by group. The P_DACREAD and P_DACWRITE privileges should not be used for
this purpose, since they give too much access to the command.

Guidelines for Writing Trusted Software

A-21

Summary 1

Trusting a command or library routine requires a solid understanding of the risks encoun-
tered by the command or library, the policies of the system, and the principles of trust.
These guidelines offer a brief look at the policies of the Enhanced Security Utilities avail-
able with the OS, and a discussion of the principles of trust. The risks encountered by a
particular command or library must be determined by the programmer attempting to make
it trusted.

While some of the rules presented here may seem overly exacting, or even clumsy, the
strenuousness of the rules is the price paid for a secure system. Every rule and principle
described in these guidelines originates from some aspect of an observed attack on a com-
puter system. The programmer who ignores these rules does so, not at his or her own risk,
since the programmer is unlikely to be affected by the attack, but at the risk of everyone
who uses that programmer's software. The responsibility of writing trusted software,
therefore, must not be taken lightly.

PowerMAX OS Programming Guide

A-22

Glossary-1

Glossary

2
2
3
2

The following terms are used throughout the programming series. This glossary includes
terms found in:

• PowerMAX OS Programming Guide

• Compilation Systems Volume 1 (Tools)

• Compilation Systems Volume 2 (Concepts)

• Character User Interface Programming

• Concurrent C Reference Manual

a.out

a.out , historically for “assembler output,” is the default file name for an executable pro-
gram produced by the C compilation system.

abortive release

An abrupt termination of a transport connection, which may result in the loss of data.

access permissions

Access checking is performed whenever a subject (a process) tries to access an object
(such as a file or directory). Permission to access an object is granted or denied on the
basis of “mode bits and Access Control Lists (ACLs); ACLs mode bits, Access Control
Lists (ACLs), and Mandatory Access Control (MAC) levels; ACLs and MAC levels are
supported only if the Enhanced Security Utilities are installed and running, and only if the
file system on which the object to be accessed resides is of type sfs .

ADJUST

The mouse button or keyboard equivalent used to adjust a selection (cf. SELECT); usu-
ally the middle button on a right hand mouse.

alias file

A script which contains alias definitions, each on a separate line. An alias file is optional,
but if one is written, it must be named as an argument when fmli is invoked.

alias

A short name that can be used in FMLI scripts in place of a long pathname or a list of
paths to search. An FMLI developer defines aliases in an alias file. Alias definitions have
the format alias=pathname.

PowerMAX OS Programming Guide

Glossary-2

alternate keystrokes

A sequence of keystrokes, usually beginning with a CTRL key and consisting entirely of
keys that are standard on all keyboards, which cause the same action to occur that occurs
when a named key is pressed. Alternate keystrokes are necessary because many keyboards
do not have a complete set of the named keys used by FMLI applications. For example,
when the named key ¦is not available on a keyboard, users can type the alternate keystrokes
CTRL-u.

anchor

Either end of a Scrollbar widget or a Slider widget. The part of the widget that
remains fixed while the elevator or drag box moves along.

ANSI

ANSI is an acronym for the American National Standards Institute. ANSI establishes stan-
dards in the computing industry from the definition of ASCII (see below) to the measure-
ment of overall datacom system performance. ANSI standards have been established for
the Ada, FORTRAN, and C programming languages.

API

Application programmer interface.

application

An executable program, usually unique to one type of users' work, such as an accounting
application. Applications are frequently interactive environments in which the user can
perform various related tasks. See FMLI application .

archive

An archive, or statically linked library, is a collection of object files each of which contains
the code for a function or a group of related functions in the library. When you call a
library function in your program, and specify a static linking option on the cc command
line, a copy of the object file that contains the function is incorporated in your executable
at link time. For further information, see the Concurrent C Reference Manual.

argument

A character string or number that follows a command and controls its execution in some
way. There are two types of arguments: options and operands. Options change the execu-
tion or output of the command. Operands provide data that will be operated on by the
command. Arguments to the open command are saved in built-in variables readable
(only) by the frame opened. Options are also called flags. Operands specify files or direc-
tories to be operated on by the program. For example, in the command line:

$ cc -o hello hello.c

all the elements after the cc command are arguments. For further information of how
command line arguments are passed to C programs, see the Concurrent C Reference Man-
ual.

Glossary

Glossary-3

In the C language, function arguments are enclosed in a pair of parentheses immediately
following the function name. You can find formal definitions of the functions supplied
with the C compilation system in cc(1) .

ASCII

An acronym for American Standard Code for Information Interchange. ASCII code uses
one byte of computer memory to represent each character. Each alphanumeric and special
character has an ASCII equivalent. When files and directories are printed according to the
ASCII code equivalent of the first letter of their names, the order is called ASCII collating
sequence. The order is special characters first, numbers second, then upper case and lower
case letters.

assembler

Assembly language is a programming language that uses symbolic names to represent the
machine instructions of a given computer. An assembler is a program that accepts instruc-
tions written in the assembly language of the computer and translates them into a binary
representation of the corresponding machine instructions. Because each assembly lan-
guage instruction usually has a one-to-one correspondence with a machine instruction,
programs written in assembly language are not portable to different machines.

asynchronous execution

The mode of execution in which Transport Interface routines will never block while wait-
ing for specific asynchronous events to occur, but instead will return immediately if the
event is not pending.

automatic data

Data that is persistent only during the invocation of a procedure. It describes data belong-
ing to a process. Automatic data occupies the stack segment. See static data .

background process group

Any process group that is not the foreground process group of a session that has estab-
lished a connection with a controlling terminal.

backquoted expression

A command line enclosed in backquotes, whose output is returned as a value. The output
of the command replaces the backquotes and the command line within the backquotes. In
FMLI, this output can be used as an argument for another command, assigned to a vari-
able, or assigned to a descriptor.

banner line

The top line of the screen in FMLI applications, used to display the application's title and
a Working message that indicates when the application is busy.

PowerMAX OS Programming Guide

Glossary-4

bottom level

Lowest of the four lower RPC levels; programs written to this level can control many
transport-specific details.

buffer

A buffer is a space in computer memory where data is stored temporarily in convenient
units for system operations. Buffers are often used by programs such as editors that access
and alter text or data frequently. When you edit a file, for instance, a copy of its contents
are read into a buffer; the copy is what you change. For your changes to become part of the
permanent file, you must write the buffer's contents back into the permanent file. This
replaces the contents of the file with the contents of the buffer. When you quit the editor,
the contents of the buffer are flushed.

button

Generic term for any of several widgets, specifically RectButton widgets and
OblongButton widgets. The RectButtons are implicitly defined in flattened widgets, as
well. A button, when pressed usually initiates certain actions, like popping up a menu or
executing an application routine.

cable

In a Scrollbar widget, the cable is the “line” on which the elevator moves. One end of
the cable is connected to the anchor and the other is connected to the elevator.

callback

A callback routine is a routine written by an application programmer and associated with a
specific widget resource. The callback routine is invoked as a result of a specific activity
associated with that widget (that is, the widget calls back the program via that routine).
For example, the XtNselect resource contains the name of the callback routine that is
en tered when a button i s pushed o r when a CheckBox i s se lected; the
XtNverification resource contains the name of the callback routine to invoke when a
TextField widget is exited. The act of associating the name of a callback routine with a
widget resource is called registration.

cast

An expression which describes the nature or use of that which follows it to the interpreter.
In FMLI, casts are used: (1) to describe whether a file is a menu definition file, a form def-
inition file, or a text frame definition file; (2) to indicate how often to evaluate a descriptor.

character class table

A character class table is used for character classification and conversion. The table is built
by the commands chrtbl(1M) and wchrtbl(1M) , and located in the file
usr/lib/locale/LC_CTYPE .

child process

See fork .

Glossary

Glossary-5

choices menu

A menu that can be provided to show a list of possible entries to a form field. An FMLI
application developer defines choices where appropriate through the use of the rmenu
descriptor.

click

The act of pressing and releasing a mouse button without moving the mouse pointer more
than a few pixels.

click-move-click

A method of user interaction with a set of objects where the user clicks MENU to display
the objects, moves the pointer over the one of interest, then clicks MENU or SELECT to
select or activate the object.

client

The transport user in connection-mode that requests a transport connection.

CLTS

Connectionless Transport Service

command line

The next-to-the-last line on the screen in FMLI applications, where users can enter an
application's commands without using the menus provided in the application.

command menu

A menu provided automatically in FMLI applications that lists a sub-set of the FMLI
built-in commands and any application-specific commands that have been defined in a
commands file. Users can execute a command in the Command Menu by selecting it, as in
any menu. The Command Menu can be made current by pressing the CMD-MENU func-
tion key.

command

one of a set of executables built into FMLI, such as open and close , to which descrip-
tors of type command must evaluate. A command line consists of the command followed
by its arguments. For example:

$ cc file1.c file2.c

instructs the operating system to execute the C compiler program, which is stored in the
file cc , and to use the source files file1.c and file2.c as input. A command line can
extend over multiple terminal lines.

commands file

A script in which an FMLI developer can redefine or disable FMLI built-in commands,
and define new, application-specific commands. The contents of a commands file are

PowerMAX OS Programming Guide

Glossary-6

reflected in the Command Menu. Users can execute a command by selecting it from the
Command Menu, or by typing it on the FMLI command line. A commands file is optional,
but if one is written, it must be named as an argument when fmli is invoked.

compiler

A compiler is a program that translates a source program written in a higher-level lan-
guage into the assembly language of the computer the program is to run on. An assembler
translates the assembly language code into the machine instructions of the computer. In
the C compilation system, these instructions are stored in object files that correspond to
each of your source files. Each object file contains a binary representation of the C lan-
guage code in the corresponding source file. The link editor links these object files with
each other, and with any library functions you have used in your source code, to produce
an executable program called a.out by default. For further information, see the Concur-
rent C Reference Manual.

composite widget

See widget . A widget that is a parent of other widgets, that physically contains other wid-
gets.

connection establishment

The phase in connection-mode that enables two transport users to create a transport con-
nection between them.

connection-mode

A circuit-oriented mode of transfer in which data is passed from one user to another over
an established connection in a reliable, sequenced manner.

connection-oriented transport

Connection-oriented transports are reliable and support byte-stream deliveries of unlim-
ited data size.

connectionless transport

Connectionless transports have less overhead than connection-oriented transports but are
less reliable and maximum data transmissions are limited by buffer sizes.

container

A widget that defines a region that holds zero or more sub-objects of a given type.

control area

The area located directly under the header of a window. It is used to display “command
buttons,” if the application in the window provides them.

controlling process

A session leader that established a connection to a controlling terminal.

Glossary

Glossary-7

controlling terminal

A terminal that is associated with a session. Each session may have, at most, one control-
ling terminal associated with it and a controlling terminal may be associated with only one
session. Certain input sequences from the controlling terminal cause signals to be sent to
process groups in the session associated with the controlling terminal; see termio(7) .

conversation

The negotiation and the data transfer between Source and Destination. Both tasks are
accomplished through selection mechanism.

core image

A core image is a copy of the memory image of a process. A file named core is created in
your current directory when the UNIX operating system aborts an executing program. The
file contains the core image of the process at the time of the failure. For further informa-
tion, see the Concurrent C Reference Manual.

current

The frame, menu item, form field, or activity in which the cursor is positioned. An element
of the FMLI screen which is current is usually distinguished in some way from other
screen elements being displayed—the current frame, for example, may be shown in bright
video, while non-current frames may be shown in half-bright video. User input is pro-
cessed by, or applies to, the current frame, item, and so on.

daemon

A background process that performs a system-wide public function. The UNIX system
process init may spawn daemon processes that exist throughout the lifetime of the sys-
tem. Daemons (often) continue to run after their parents terminate. An example of a dae-
mon process is calendar(1).

data symbol

A data symbol names a variable that may or may not be initialized. Normally, these vari-
ables reside in read/write memory during execution. Compare “text symbol .”

data transfer

The phase in connection-mode or connectionless-mode that supports the transfer of data
between two transport users.

datagram transport

See connectionless transport.

datagram

A unit of data transferred between two users of the connectionless-mode service.

PowerMAX OS Programming Guide

Glossary-8

debugging

Debugging is the process of locating and correcting errors in executable programs.

default

A default is the way a program will perform a task in the absence of other instructions, that
is, in default of your specifying something else.

descriptor

An element of the Form and Menu Language that defines some aspect of the look (appear-
ance or location of an element of your application), or feel (an action to take in response to
user input). A descriptor is coded in the format dname=value, where dname is one of the
set of Form and Menu Language descriptors and value is, or generates, an expression of a
type appropriate for the particular descriptor. Each Form and Menu Language descriptor is
only meaningful in a particular context (that is, a menu frame, a form frame, and so on).

deserializing

Converting data from XDR format to a machine-specific representation.

destination

The ending point of the drag-and-drop operation. It is also referred as the requester.

dimmed

A visual effect on an object. A control, such as a button, is dimmed if its visible manifesta-
tion represents the state of just one of several objects that are in inconsistent states. When
such a control is manipulated (for example, by clicking SELECT over the button), it is no
longer dimmed because the manipulation sets the state for all the objects.

directory

A directory is a type of file used to group and organize other files or directories. A subdi-
rectory is a directory that is pointed to by a directory one level above it in the file system.
A directory name is a string of characters that identifies the directory. It can be a simple
directory name, a relative path name, or a full path name. For further information, see the
User's Guide.

display width

Display width is the width in screen columns required to display the characters of a partic-
ular code set. Display width is defined in the character class table.

dominate

Domination is a relationship between Mandatory Access Control (MAC) levels. Level S1
is said to dominate security level S2 if the hierarchical classification number of S1 is
greater than or equal to that of S2, and if the nonhierarchical categories of S1 are a super-
set of the categories included in S2. Conversely, level S2 can be said to be dominated by

Glossary

Glossary-9

S1. The lvlname command lists the levels, classifications, and categories currently
defined on the system (see lvlname(1M)).

double click

To press and release a mouse button twice in succession.

downstream

In a stream, the direction from stream head to driver.

drag area

In a Scrollbar widget, the drag area is the center portion of the elevator that is moved
by the mouse.

drag box

In a Slider widget, the drag box is the portion of the slider that is moved by the mouse.

drag-and-drop

A single atomic action to achieve a Conversation between Source and Destination.

dragging

The act of moving the pointer while a mouse button or keyboard equivalent is pressed.

driver

In a stream, the driver provides the interface between peripheral hardware and the stream.
A driver can also be a pseudo-driver, such as a multiplexor or log driver (see log(7)),
which is not associated with a hardware device.

DTM

Desktop manager.

dynamic frame

A frame whose contents are determined at run-time.

dynamic linking

Dynamic linking refers to the process in which external references in a program are linked
with their definitions when the program is executed. For further information, see the Con-
current C Reference Manual.

effective group ID
effective user ID

An active process has an effective user ID and an effective group ID that are used to deter-
mine file access permissions. The effective user ID and effective group ID are equal to the

PowerMAX OS Programming Guide

Glossary-10

process's real user ID and real group ID respectively, unless the process or one of its
ancestors evolved from a file that had the set-user-ID bit or set-group ID bit set (see
exec(2)).

elevator

The center portion of a Scrollbar widget; that part which moves along the cable.

ELF

ELF is an acronym for the executable and linking format of the object files produced by
the C compilation system. For further information, see the Concurrent C Reference Man-
ual.

environment

A set of UNIX system shell variables created and assigned values by the system when a
user logs in. The system executes programs that set these variables based on information it
gets from /etc/profile, the shell, login(1), and the user's .profile file. In
FMLI, variables can be added to the environment with the set(1F) built-in utility, and
removed from the environment with the unset(1F) utility. FMLI also defines a local
environment that contains variables known only to the FMLI application.

ETSDU

Expedited Transport Service Data Unit.

EUC

Extended UNIX system code. See Programming with UNIX System Calls.

executable program

On the UNIX operating system, an executable program is a compiled and linked program
or a shell program. The command to execute either is the name of the file containing the
program. A compiled and linked program is called an executable object file. Compare
“object file .”

executable

A program that can be processed or executed by the computer without any further transla-
tion; a file that has execute permission, such as an a.out file, or a shell script.

exit

The exit function causes a process to terminate. exit closes any open files and cleans
up most other information and memory used by the process. An exit status, or return code,
is an integer value that your program returns to the operating system to say whether it
completed successfully or not. For further information, see the Concurrent C Reference
Manual.

Glossary

Glossary-11

expedited data

Data that is considered urgent. The specific semantics of expedited data is defined by the
transport protocol that provides the transport service.

expedited transport service data

The amount of expedited user data the identity of which is preserved from one end of a
transport connection to the other.

expert level

Second-lowest of the four lower RPC levels. Programs written to this level can control cli-
ent and server characteristics, interface with rpcbind and manipulate service dispatch.

expression

An expression is a mathematical or logical symbol or meaningful combination of symbols.

FALSE

A value to which a Boolean descriptor can evaluate. FALSE must be the word “false,” irre-
spective of case, or a non-zero return code.

File Class Database

Contains file class definitions where each definition consists of a file class name and a list
of properties. The properties define the visual and metaphor behavior of files belonging to
the file class.

file descriptor

A file descriptor is an integer value assigned by the operating system to a file when the file
is opened by a process.

file system type

Each different file system implementation that is incorporated into the VFS architecture is
referred to as a file system type. A file system type may support different file types. The
traditional System V file system type, a secure file system type, a high performance file
system type, and an MS-DOS file system type are examples of potential file system types.

file system

A UNIX file system is a hierarchical collection of directories and other files that are orga-
nized in a tree structure. The base of the structure is the root (/) directory; other directories,
all subordinate to root, are branches. The collection of files can be mounted on a block
special file. Each file of a file system appears exactly once in the inode list of the file sys-
tem and is accessible via a single, unique path from the root directory of the file system.
For further information, see the User's Guide.

PowerMAX OS Programming Guide

Glossary-12

file type

The general expected characteristics of a file are determined by its file type. File types
include regular file, character special file, block special file, FIFO, directory, and symbolic
link. Each file type is supported within some file system type

file

A file is a potential source of input or a potential destination for output; at some point,
then, an identifiable collection of information. A file is known to the UNIX operating sys-
tem as an inode plus the information the inode contains that tells whether the file is a plain
file, a special file, or a directory. A plain file contains text, data, programs, or other infor-
mation that forms a coherent unit. A special file is a hardware device or portion thereof,
such as a disk partition. A directory is a type of file that contains the names and inode
addresses of other plain, special, or directory files. For further information, see the User's
Guide.

filter

A filter is a program that reads information from the standard input, acts on it in some way,
and sends its result to the standard output. It is called a filter because it can be used in a
pipeline (see pipe) to transform the output of another program. Filters are different from
editors in that they do not change the contents of a file. Examples of UNIX operating sys-
tem filters are sort , which sorts the input, and wc, which counts the number of words,
characters, and lines in the input. See sort(1) and wc(1) for more information.

flag

See argument .

flat widget

See widget . A single widget that maintains a collection of similar user-interface compo-
nents that together give the appearance and behavior of many widgets.

flattened widget

Same as flat widget .

FMLI application

An application developed using the Form and Menu Language Interpreter (FMLI) to pro-
vide and maintain a user interface relying only on standard characters. An FMLI applica-
tion can provide access to other applications.

focus

To specify a particular area of the screen. (See input focus and keyboard focus).

folder

A folder represents a directory in a file system. A folder can contain other folders and files.

Glossary

Glossary-13

foreground process group

Each session that has established a connection with a controlling terminal will distinguish
one process group of the session as the foreground process group of the controlling termi-
nal. This group has certain privileges when accessing its controlling terminal that are
denied to background process groups.

fork

fork is a system call that splits one process into two, the parent process and the child pro-
cess, with separate, but initially identical, text, data, and stack segments. See fork(2)
for more information.

form field

An area of a form consisting of a field label and a field input area into which a user can
enter input.

form

A visual element of an FMLI application displayed in a frame. A form is made up of fields
that allow a user to provide input to the application.

frame definition file

A file in which the contents, appearance, functionality, and placement of a menu, form, or
text frame are defined using the Form and Menu Language.

frame ID number

A number assigned by FMLI to a frame when it is opened. A frame ID number appears at
the left in the title bar of a frame. The frame ID number allows users to navigate among
frames by number.

frame

An independently-scrollable, bordered region of the screen, used to display FMLI forms,
menus, and text. A frame includes a title bar, frame border, contents, and—for frames con-
taining more than three lines—a scroll box.

fundamental block size

The minimal file allocation unit. In the case of disk-based file systems this is a disk sector
or a multiple of disk sectors, smaller than or equal to the preferred block size (see below).

gadget

A windowless object; an object that could be defined as a widget but, instead, is defined as
having its parent's window resources.

PowerMAX OS Programming Guide

Glossary-14

grab

To position the mouse pointer on a resize corner and take hold of it for the purpose of
resizing the window.

hard key

A physical key on a computer's keyboard. For example, the “Return” or “Enter” key is
illustrated as Return.

header file

A header file is a file that usually contains shared data declarations that are to be copied
into source files by the compiler. Header file names conventionally end with the characters
.h . Header files are also called include files, for the C language #include directive by
which they are made available to source files. For further information, see the Concurrent
C Reference Manual.

I/O

I/O stands for input/output, the process by which information enters (input) and leaves
(output) a computer system. For further information, see the Concurrent C Reference
Manual.

icon

A graphical representation of an object. The visual consists of a glyph and a label centered
below the glyph. In FMLI, it is a symbol used to indicate an available function. For exam-
ple, the caret (̂) is an icon displayed in a frame's border to indicate the contents can be
scrolled upwards.

ideogram

An ideogram is a language symbol usually based on a pictorial representation of an object
or concept. An ideogram may or may not have a phonetic value.

include file

See header file .

initial frame

The frame, or frames, named as arguments when the fmli command is invoked. Initial
frames are displayed automatically when an FMLI application is started, and remain on
display in the work area until the FMLI session is terminated.

initialization file

A script in which an FMLI developer can define global attributes of an application using
the Form and Menu Language. Such things as a transient introductory frame, a customized
banner line, colors for various display elements, and restrictions on user access to the
UNIX system can be defined. An initialization file is optional, but if one is written it must
be named as an argument when fmli is invoked.

Glossary

Glossary-15

input focus

To have the cursor on a particular field, designating that field as “next.”.

instance

A specific realization of a widget; one particular widget as opposed to a class of widgets.

intermediate level

Second-highest of the four lower RPC levels; programs written to this level specify the
transport they require.

interpreter

A program that allows you to communicate with the operating system. It reads the com-
mands you enter and interprets them as requests to execute other programs, access files, or
provide output.

interrupt

A signal to stop the execution of a process. From the keyboard, interrupts are usually initi-
ated by pressing the DELETE or BREAK key. stty(1) will report the interrupt key
for your session as intr. In FMLI, the ability of users to interrupt a process defined in an
action or done descriptor can be enabled or disabled through the use of the
interrupt descriptor.

interrupt

A signal to stop the execution of a process. From the keyboard, interrupts are usually initi-
ated by pressing the DELETE or BREAK key. stty(1) will report the interrupt key
for your session as intr. In FMLI, the ability of users to interrupt a process defined in an
action or done descriptor can be enabled or disabled through the use of the
interrupt descriptor.

ISO

ISO is an acronym for the International Standards Organization. ISO establishes standards
in the computing industry for international markets.

kernel

The kernel is the basic resident software of the UNIX operating system. The kernel is
responsible for most system operations: scheduling and managing the work done by the
computer, maintaining the file system, and so forth. The kernel has its own text, data, and
stack areas.

keyboard focus

The area of the screen that will accept the next input from the keyboard.

PowerMAX OS Programming Guide

Glossary-16

lexical analysis

Lexical analysis is the process by which a stream of characters (often comprising a source
program) is broken up into its elementary words and symbols, called tokens. The tokens
can include the reserved words of a programming language, its identifiers and constants,
and special symbols such as =, := , and ; . Lexical analysis enables you to recognize, for
instance, that the stream of characters printf(“hello, world\n”); is a series of
tokens beginning with printf and not with, say, printf(“h . In compilers, a lexical
analyzer is often called by a syntactic analyzer, or parser, that analyzes the grammatical
form of tokens passed to it by the lexical analyzer. For further information, see UNIX Soft-
ware Development Tools

library

A library is a file that contains object code for a group of commonly used functions.
Rather than write the functions yourself, you arrange for the functions to be linked with
your program when an executable is created (see “archive ”), or when it is run (see
shared object).

line discipline

The line discipline is a STREAMS module that processes line data in the I/O stream to
control the format and flow of data into and out of the system—erase and kill character
handling, for example. See also stream .

link editing

Link editing refers to the process in which a symbol referenced in one module of a pro-
gram is connected with its definition in another. With the C compilation system, programs
are linked statically, when an executable is created, or dynamically, when it is run. For fur-
ther information, see the Concurrent C Reference Manual.

local management

The phase in either connection-mode or connectionless-mode in which a transport user
establishes a transport endpoint and binds a transport address to the endpoint. Functions in
this phase perform local operations, and require no transport layer traffic over the network.

makefile

A makefile is a file that is used with the program make to keep track of the dependen-
cies between modules of a program, so that when one module is changed, dependent ones
are brought up to date. For further information, see UNIX Software Development Tools.

menu frame

A screen display showing a number or choices from which a user can make a selection(s),
and which invokes some action when a selection is made.

MENU

The mouse button or keyboard equivalent used to display (pop up) a menu.

Glossary

Glossary-17

menu

When unqualified, any of the three states of a GUI menu: popup menu, stay-up menu, or
pinned menu.

message line

The third line from the bottom of the screen in FMLI applications, used to display one-line
messages and instructions to the user.

message queue identifier

A message queue identifier (msqid) is a unique positive integer created by a msgget
system call. Each msqid has a message queue and a data structure associated with it.

message queue

In a stream, a linked list of messages awaiting processing by a module or driver.

message

In a stream, one or more blocks of data or information, with associated STREAMS control
structures. Messages can be of several defined types, which identify the message contents.
Messages are the only means of transferring data and communicating within a stream.

metacharacters

Metacharacters are ASCII characters with special meanings during pattern processing.

module

A module is a program component that typically contains a function or a group of related
functions. Source files and libraries are modules.

multi-select menu

A menu which allows the user to mark one or more items and then select all marked items.

multiplexor

A multiplexor is a driver that allows streams associated with several user processes to be
connected to a single driver, or several drivers to be connected to a single user process.
STREAMS provides facilities for constructing multiplexors and for connecting multi-
plexed configurations of streams.

named key

A keyboard key which has a name indicating the function it performs. For example, TAB,
DELETE, or ENTER.

network client

A process that makes remote procedure calls to services.

PowerMAX OS Programming Guide

Glossary-18

network service

A collection of one or more remote programs.

non-current

A frame, or other element on display which is not the element in which the cursor is cur-
rently positioned.

null pointer

In the C language, a null pointer is a C pointer with a value of 0.

object file

An object file contains a binary representation of programming language code. A relocat-
able object file contains references to symbols that have not yet been linked with their def-
initions. An executable object file is a linked program. Compare source file .

optimizer

An optimizer improves the efficiency of the assembly language code generated by a com-
piler. That, in turn, will speed the execution time of your object code. For further informa-
tion, see the Concurrent C Reference Manual.

option

See argument.

orderly release

A procedure for gracefully terminating a transport connection with no loss of data.

orphaned process group

A process group in which the parent of every member in the group is either itself a mem-
ber of the group, or is not a member of the process group's session.

pane

The rectangular area within a window where an application displays text or graphics.

parent process ID

A new process is created by a currently active process (see fork(2)). The parent process
ID of a process is the process ID of its creator.

parent process

See fork .

Glossary

Glossary-19

parser

A parser, or syntactic analyzer, analyzes the grammatical form of tokens passed to it by a
lexical analyzer (see lexical analysis). For further information, see UNIX Software
Development Tools.

path name

A path name designates the location of a file in the file system. It is made up of a series of
directory names that proceed down the hierarchical path of the file system. The directory
names are separated by a slash character (/). The last name in the path is the file. If the
path name begins with a slash, it is called an absolute, or full, path name; the initial slash
means that the path begins at the root directory. A path name that does not begin with a
slash is known as a relative path name, meaning relative to your current directory. For fur-
ther information, see the User's Guide.

peer user

The user with whom a given user is communicating above the Transport Interface.

permissions

Permissions define a right to access a file in the file system. Permissions are granted sepa-
rately to you, your group, and all others. There are three basic permissions: read, write,
and execute. For further information, see the User's Guide.

ping

A call to procedure 0 of an RPC program. Pinging is used to verify the existence and
accessibility of a remote program. Pinging can also be used to time network communica-
tions.

pipe

A pipe causes the output of one program to be used as the input to another program, so
that the programs run in sequence. You create a pipeline by preceding each command after
the first command with the pipe symbol (|) which indicates that the output from the pro-
cess on the left should be routed to the process on the right.

$ who | wc -l

causes the output of the who command, which lists the users who are logged in to the sys-
tem, to be used as the input of the wc, or word count, command with the -l option. The
result is the number of users logged in to the system. See who(1) and wc(1) for more
information.

pixel

An addressable point on the screen.

pixmap

A bitmap of an area of the screen stored within the program. A “pixmap” is also a defined
data type in the Xt Internists.

PowerMAX OS Programming Guide

Glossary-20

pointer

The screen representation of the location of the mouse or equivalent.

portability

Portability refers to the degree of ease with which a program can be moved, or ported, to a
different operating system or machine.

post

The FMLI activity of reading and interpreting a frame definition file, displaying the frame
described therein, and making that frame current.

preference

Synonymous with property settings or options. This document uses the term preference to
avoid confusion with properties that mean name-value pairs.

preferred block size

The unit of transfer for block devices in read/write operations (also known as “logical
block size”).

preprocessor

A preprocessor is a program that prepares an input file for another program. The prepro-
cessor component of the C compiler performs macro expansion, conditional compilation,
and file inclusion.

press

The act of pressing a mouse button or keyboard key. This is distinct from the act of releas-
ing the button or key, so that both can be discussed separately. Thus “press” SELECT
means to press, but not release, the SELECT mouse button or keyboard equivalent key.

press-drag-release

A method of user interaction with a set of objects where the user presses MENU to display
the objects, drags the pointer over the objects until it is over the one of interest, then
releases MENU to select or activate the object.

primitive widget

See widget. A widget that does not have any child widgets; one that either performs a spe-
cific action, allows input or allows output.

privilege

Having appropriate privilege means having the capability to perform sensitive system
operations (see procpriv(2)).

Glossary

Glossary-21

process group ID

Each active process is a member of a process group and is identified by a positive integer
called the process group ID. This ID is the process ID of the group leader. This grouping
permits the signaling of related processes (see kill(2)).

process group leader

A process group leader is a process whose process ID is the same as its process group ID.

process group lifetime

A process group lifetime begins when the process group is created by its process group
leader, and ends when the lifetime of the last process in the group ends or when the last
process in the group leaves the group.

process group

Each process in the system is a member of a process group that is identified by a process
group ID. Any process that is not a process group leader may create a new process group
and become its leader. Any process that is not a process group leader may join an existing
process group that shares the same session as the process. A newly created process joins
the process group of its parent.

process lifetime

A process lifetime begins when the process is forked and ends after it exits, when its ter-
mination has been acknowledged by its parent process. See wait(2) .

process

An instance of a program being executed. A number that identifies an active process. In
the UNIX System, it incorporates the concept of an execution environment, including con-
tents of memory, register values, name of the current directory, status of files, and various
other information. See ps(1) for more information on how to determine the process ID
of any process currently active on your system.

program

A set of instructions and data kept in an ordinary file.

push a button

The act of moving the pointer to a button widget and then selecting the button.

pushpin

A screen object that is part of a popup menu. It can be pointed to and selected. When it is
first selected, it is “pushed in” and causes the menu to stay up after the user moves out of
it. When it is again selected, it is pulled out and the menu pops down.

PowerMAX OS Programming Guide

Glossary-22

quota

A mechanism for restricting the amount of file system resources that a user can obtain.
The quota mechanism sets limits on both the number of files and the number of disk
blocks that a user may allocate. Implemented by UFS.

read queue

In a stream, the message queue in a module or driver containing messages moving
upstream.

real group ID
real user ID

Each user allowed on the system is identified by a positive integer (0 to UID_MAX) called
a real user ID. Each user is also a member of a group. The group is identified by a positive
integer called the real group ID. An active process has a real user ID and real group ID that
are set to the real user ID and real group ID, respectively, of the user responsible for the
creation of the process.

realized

In the context of the X Toolkit Intrinsics, the point at which all the data structures of a
widget have been allocated. Windows and other information are not created when the wid-
get is created with the XtCreateWidget routine, but are created in a later call to
XtRealizeWidget on the widget itself or on an ancestor widget.

register, registration

To make a routine name known to the API. When the application programmer develops a
callback routine, that routine needs to be registered when the widget is created so that it
can be properly invoked.

regular expression

A regular expression is a string of alphanumeric characters and special characters that
describes, in a shorthand way, a pattern to be searched for in a file. For further informa-
tion, see UNIX Software Development Tools.

release

The act of releasing a pressed button or keyboard key, as in “release MENU.”

remote program

Software that implements one or more remote procedures.

resize corners

Hollow, L-shaped symbols located on all four corners of a window which, when grabbed,
are used to change the size of the window.

Glossary

Glossary-23

resource translation

The mechanism by which resource values are made accessible to widgets. The list of
resources is contained in the app-defaults files. Each entry in these files consists of a
resource name/value pair of the form: app_name.resource_name: value. Using an asterisk
in place of the app_name makes the entry available to any application that recognizes the
resource_name. Any hardcoded value takes precedence over what is set in the resource
file.

resource

An attribute of a widget or a widget class. A resource is a named data value in the defining
structure of a widget.

root directory/current directory

Each process has associated with it a concept of a root directory and a current directory for
the purpose of resolving pathname searches. The root directory of a process need not be
the root directory of the root file system.

routine

A routine is another name for a function.

RPC language

A C-like programming language recognized by the rpcgen compiler.

RPC Package

The collection of software and documentation used to implement and support remote pro-
cedure calls in System V. The RPC Package implements and is a superset of the function-
ality of the RPC Protocol.

RPC Protocol

The message-passing protocol that is the basis of the RPC package.

RPC/XDR

See RPC language.

saved group ID
saved user ID

The saved user ID and saved group ID are the values of the effective user ID and effective
group ID prior to an exec of a file (see exec(2)).

screen

The surface on your computer monitor where information is displayed.

PowerMAX OS Programming Guide

Glossary-24

screen-labeled keys

The eight function keys, F1 through F8, found on many keyboards, to which the labels
displayed on the last line of the screen in FMLI applications correspond. The screen-labels
indicate the operations assigned to the function keys.

script

A file which contains the definition of a frame (a frame definition file), the definition of
global attributes of an FMLI application (an initialization file), the definitions of applica-
tion specific commands (a commands file), a list of aliases for pathnames (an alias file), or
UNIX system shell commands.

scroll indicators

Symbols contained in the scroll box of FMLI frames, to indicate that additional material is
available above or below the current frame borders. The up symbol is a caret (^) or up-
arrow character, and the down indicator is a v or down-arrow character.

scrolling

An attribute of FMLI frames which allows a fixed-size frame to accommodate a larger
amount of information than can be displayed in it at one time. The first frameful of infor-
mation is displayed when the frame is opened, and users can press named keys or their
alternate keystrokes to move forward to a new frameful of information, or to move back to
a previous frameful.

SELECT

The mouse button or keyboard equivalent used to select and move an object, manipulate a
control, or set the input focus.

select

To move the pointer to an object and press the SELECT mouse button. The result is to
initiate either an application action or a change in the window content or structure.

Selection Mechanism

The primary mechanism that X11 defines for clients that want to exchange information.
Refer to both Xlib and Inter-Client Communication Manual (ICCCM, [5]) documents for
more details.

semaphore identifier

A semaphore identifier (semid) is a unique positive integer created by a semget system
call. Each semid has a set of semaphores and a data structure associated with it.

serializing

Converting data from a machine-specific representation to XDR format.

Glossary

Glossary-25

server

The transport user in connection-mode that offers services to other users (clients) and
enables these clients to establish a transport connection to it.

service indication

The notification of a pending event generated by the provider to a user of a particular ser-
vice.

service primitive

The unit of information passed across a service interface that contains either a service
request or service indication.

service request

A request for some action generated by a user to the provider of a particular service.

session ID

Each session in the system is uniquely identified during its lifetime by a positive integer
called a session ID, the process ID of its session leader.

session Leader

A session leader is a process whose session ID is the same as its process and process group
ID.

session lifetime

A session lifetime begins when the session is created by its session leader, and ends when
the lifetime of the last process that is a member of the session ends, or when the last pro-
cess that is a member in the session leaves the session.

session

A session is a group of processes identified by a common ID called a session ID, capable
of establishing a connection with a controlling terminal. Any process that is not a process
group leader may create a new session and process group, becoming the session leader of
the session and process group leader of the process group. A newly created process joins
the session of its creator.

shared memory identifier

A shared memory identifier (shmid) is a unique positive integer created by a shmget
system call. Each shmid has a segment of memory (referred to as a shared memory seg-
ment) and a data structure associated with it. (Note that these shared memory segments
must be explicitly removed by the user after the last reference to them is removed.)

PowerMAX OS Programming Guide

Glossary-26

shared object

A shared object, or dynamically linked library, is a single object file that contains the code
for every function in the library. When you call a library function in your program, and
specify a dynamic linking option on the cc command line, the entire contents of the
shared object are mapped into the virtual address space of your process at run time. As its
name implies, a shared object contains code that can be used simultaneously by different
programs at run time. For further information, see the Concurrent C Reference Manual.

shell

The shell is the UNIX system program that handles communication between you and the
system. The shell is known as a command interpreter because it translates your commands
into a language understandable by the system. A shell normally is started for you when
you log in to the system. A shell program calls the shell to read and execute commands
contained in an executable file. For further information, see the User's Guide, and the
sh(1) page.

signal

A signal is a message you send to a process or that processes send to one another. You
might use a signal, for example, to initiate an interrupt (see above). A signal sent by a run-
ning process is usually a sign of an exceptional occurrence that has caused the process to
terminate or divert from the normal flow of control.

simplified interface

The simplest level of the RPC package.

single-select menu

A menu from which a user can select only one item at a time.

SLK

See screen-labeled keys.

source file

Source files contain the programming language version of a program. Before a computer
can execute the program, the source code must be translated by a compiler and assembler
into the machine language of the computer. Compare “object file .”

source

The starting point of the drag-and-drop operation. It is also referred as the holder.

special processes

The process with ID 0 and the process with ID 1 are special processes referred to as
proc0 and proc1 ; see kill(2) . proc0 is the process scheduler. proc1 is the initial-
ization process (init); proc1 is the ancestor of every other process in the system and is
used to control the process structure.

Glossary

Glossary-27

standard error

Standard error is an output stream from a program that normally is used to convey error
messages. On the UNIX operating system, the default case is to associate standard error
with the user's terminal.

standard input

Standard input is an input stream to a program. On the UNIX operating system, the default
case is to associate standard input with the user's terminal.

standard output

Standard output is an output stream from a program. On the UNIX operating system, the
default case is to associate standard output with the user's terminal.

static data

Static represents a condition persistent throughout a process. Static data occupies the data
segment and the bss segment.

static linking

Static linking refers to the process in which external references in a program are linked
with their definitions when an executable is created. See the Concurrent C Reference Man-
ual.

stream head

In a stream, the stream head is the end of the stream that provides the interface between
the stream and a user process. The principal functions of the stream head are processing
STREAMS-related system calls, and passing data and information between a user process
and the stream.

stream

A stream is a full-duplex data path within the kernel between a user process and driver
routines. The primary components are a stream head, a driver and zero or more modules
between the stream head and driver. A stream is analogous to a shell pipeline except that
data flow and processing are bidirectional.

STREAMS

A set of kernel mechanisms that support the development of network services and data
communication drivers. It defines interface standards for character input/output within the
kernel and between the kernel and user level processes. The STREAMS mechanism is
composed of utility routines, kernel facilities and a set of data structures.

string

A string is a contiguous sequence of characters treated as a unit. In the C language, a char-
acter string is an array of characters terminated by the null character, \0 .

PowerMAX OS Programming Guide

Glossary-28

sub-object

A sub-object is the equivalent of a primitive widget contained in a flattened widget. In a Flat
Exclusives or F NonExclusives widget, the sub-objects are the equivalents of RectBut-
tons . In a Flat CheckBox, the sub-objects are the equivalents of CheckBox widgets.

SVID

System V Interface Definition, which defines the standard interface for SVR4 and is the
basis of other UNIX operating system standards.

syntax

Command syntax is the order in which commands and their arguments must be put
together. The command always comes first. The order of arguments varies from command
to command. Language syntax is the set of rules that describes how the elements of a pro-
gramming language may legally be used.

system call

A system call is a request from a program for an action to be performed by the UNIX
operating system kernel. For further information, see the Programming in Standard man-
ual.

templates

Files that are used to be the initial structure and/or content of newly created files. Template
files are specified for each file class by the TEMPLATES class property. (OEMs and ISVs
can add new templates).

terminal attributes

Characteristics of the video screen which can be manipulated by an FMLI application
developer to provide visual cues to the application's functionality. They include underlin-
ing, half-bright, bright, and blinking display of characters, an alternate character set for
line drawing, and others.

text frame

a visual element of an FMLI application displayed in a frame. A text frame displays lines
of text; for example, help on how to fill in a form field.

text symbol

A text symbol names a program instruction. Instructions reside in read-only memory dur-
ing execution. Compare “data symbol .”

toggle

This is an action performed on an object with two states; it is the switching from one state
to the other.

Glossary

Glossary-29

top level

Highest of the four lower RPC levels; programs written to this level specify the type of
transport they require

translation

See resource translation .

transport address

The identifier used to differentiate and locate specific transport endpoints in a network.

transport connection

The communication circuit that is established between two transport users in connection-
mode.

transport endpoint

The local communication channel between a transport user and a transport provider.

transport interface

The library routines and state transition rules that support the services of a transport proto-
col.

transport provider

The transport protocol that provides the services of the Transport Interface.

transport service
data unit

The amount of user data whose identity is preserved from one end of a transport connec-
tion to the other.

transport user

The user-level application or protocol that accesses the services of the Transport Interface.

TRUE

A value to which a Boolean descriptor can evaluate. Any value other than those defined
for FALSE is interpreted as TRUE.

TSDU

Transport Service Data Unit.

PowerMAX OS Programming Guide

Glossary-30

UFS

The Unified File System, a derivative of the 4.2BSD file system. It offers file hardening,
supports large and fragmented block allocations for files, and distributed inode and free
block management. Additionally, it supports quotas (see above).

universal address

A machine-independent representation of a network address.

upstream

In a stream, the direction from driver to stream head.

user ID

A user ID is an integer value, usually associated with a login name, that the system uses to
identify owners of files and directories. The user ID of a process becomes the owner of
files created by the process and by descendent processes (see fork).

utility

A software tool of general programming usefulness built-in to FMLI, such as fmlgrep or
message, which can be used inside backquoted expressions, and which is executed
when the backquoted expression is evaluated. A built-in utility has a performance advan-
tage over a UNIX shell utility in that it does not fork a new process.

variable

In a program, a variable is an object whose value may change during the execution of the
program or from one execution to the next. A variable in the shell is a name representing a
string of characters.

virtual circuit transport

See connection-oriented transport.

virtual circuit

A transport connection established in connection-mode.

Vnode

The operating system's internal representation of a file (previously known as a file-system-
independent inode).

white space

One or more space, tab, and/or newline characters. White space is normally used to sepa-
rate strings of characters, and is required to separate a command from its arguments when
it is invoked. For this toolkit, these characters are space, tab, newline, and Return.

Glossary

Glossary-31

widget class

A collection of code and data structures that provides a generic implementation of a part
of a look-and-feel.

widget

A specific example or realization of a widget class.

window

A work area on the screen that you use to run and display an application.

word wrapping

An attribute of text frames which prevents words from being split across two lines when
the text frame is displayed. Word wrapping can be turned on or off by the developer in the
text frame definition file.

work area

In FMLI applications, the area of the screen running from the second line from the top to
the fourth line from the bottom. The work area is used to display menus, forms, and text
frames.

wrapping

An attribute of frames which allows a user to navigate through a list of menu items or form
fields as if it were a circular list. Forward or backward navigation keys always cause
movement to the next logical item or field. The next logical item or field may differ
according to the navigation key being used.

write queue

In a stream, the message queue in a module or driver containing messages moving down-
stream.

X/Open

X/Open is short for the X/Open Company Limited, a consortium of computer firms dedi-
cated to achieving open UNIX systems.

XDR language

A protocol specification language for data representation. RPC language builds on and is a
superset of XDR.

XDR

eXternal Data Representation. Provides an architecture independent representation of
data.

PowerMAX OS Programming Guide

Glossary-32

zombie

A process that has executed the exit system call and no longer exists, but which leaves a
record containing an exit code and some timing statistics for its parent to collect. The zom-
bie state is the final state of a process.

Index-1

Symbols

#define 2-2
#include 2-1
. (see current directory) 9-9
. . (see parent directory) 9-9
/etc

directories 9-25-9-27
files 9-27-9-32

/usr
directories 9-32-9-33
files 9-34-9-35

/usr/lib/locale 8-3, 8-18
/var

directories 9-35-9-37
files 9-37-9-39

<ctype.h> 8-4
<nl_types.h> 8-21
<stdio.h> 2-14
<stdio.h> header file 2-1
<stdlib.h> 8-9
<time.h> 8-13
<widec.h> 8-9
_barrier_spin 11-72
_handle_misaligned_accesses global variable 6-39
_misalign_init() routine 6-39
_sigbus_handler() routine 6-39
_spin_lock 11-61

A

ABI-conformance 8-10
absolute pathname (see pathname) 9-6
access

attributes 9-49
permissions A-8-A-9
rules 9-49

Access Control List (ACL) A-8
access permission 9-41
aclipc(2) 12-8
actual concurrency level 11-32
Address space of a process 6-13, 6-37

advisory locking 3-9
alp(7) 8-23
alpq(1) 8-23
ANSI C 8-3, 8-7, 8-9, 8-10, 8-11, 8-13, 8-14, 8-15
application programming 1-4-1-6

enhanced security 9-47-9-59, A-1-A-21
package installation (see package) 14-1

archive 8-9
archive commands 9-21
argc and argv 2-16-2-18
ascftime(3C) 8-13
asynchronous input/output

in polling 13-5
asynchronously-generated signal 11-21
atof(3C) 8-15
atoi(3C) 8-15
atol(3C) 8-15
autogrow stacks 11-7
awk(1) 1-7

B

background 7-12
background job

in job control 10-30
barrier 11-71-11-72
barrier_init 11-71
barrier_wait 11-71

example 11-82-11-83
bc(1) 1-8
binding processes to processors 4-8
books

related 1-1
Bound Region Options 12-86, 12-87
bound thread 11-34
brk(2) 6-38
Buffer size 7-13
BUS_ADRALN 6-40
Byte Alignment Requirements 6-38

Index

PowerMAX OS Programming Guide

Index-2

C

C language 1-6-1-8
C library

partial contents 2-6-2-9
standard I/O 2-14-2-18

C locale 8-3
calculator programs 1-8
Cancellation Cleanup Handlers 11-25
Cancellation Point Function Considerations 11-25
Canonical mode 7-13, 7-14
case5cpkginfofile 14-66
case5cprototypefile 14-66
catd 8-21-8-22
catgets(3C) 8-21-8-22
catopen(3C) 8-20-8-22
Changing a process’s priority 5-9-5-12, 5-37
character classification routines 2-7-2-8
character conversion routines 2-8
character representation 8-5-8-13

classification and conversion 8-7-8-8, 8-11-??
eight-bit clean 8-6-8-7
EUC 8-5, 8-8-8-13
multibyte characters 8-5, 8-8-8-12
sign extension 8-8
system-defined words 8-12-8-13
wide characters 8-5, 8-8-8-12

child directory 9-4
child process 4-5
chmod((1) 3-19
class action script 14-20-14-24
classes

assigning objects to 14-29-14-30, 14-37
installation of 14-21
removal of 14-22
system 14-23
the awk class 14-24
the build class 14-24
the sed class 14-23

code sets 8-5-8-13
collation 8-15-8-16
commands 9-2
compiler construction (see yacc(1)) 1-8
compiling threads program 11-77
compver(4) 14-12
concurrency

logical 11-2
true 11-2

concurrency level
actual 11-32
bound threads 11-34
changing 11-33
LWP aging 11-33

requested 11-32
retrieving 11-34

concurrent 11-2
concurrent programming 11-2
cond_broadcast 11-67
cond_signal 11-67

protocol 11-67
cond_timedwait 11-69
cond_wait 11-68

protocol 11-68
condition variable 11-67-11-69

example 11-85
protocol 11-67, 11-68

connld(7) 10-47
and Mandatory Access Control 10-48

controlling terminal 10-36
controlling-terminal 7-11
copy

symbolic links 9-17
copyright messages

write 14-33
copyright(4) 14-12
CPU assignment 4-8-4-10
CPU bias 4-8-4-9
cpu_bias(2) 4-9-4-10
critical-sections 10-23
crt0.o 6-39
ctime(3C) 8-13
current directory 9-9
curses(3X) 1-8

wide-character support 8-11

D

-D_REENTRANT 11-77, 11-78
daemon thread 11-14
date representation 8-13-8-14
dc(1) 1-8
deadlock 11-46, 11-74
deadlock (file and record locking) 3-18, 3-20
decimal-point character 8-15
Defining a signal-handling routine 10-28-10-29
depend(4) 14-13
desk calculator programs 1-8
destroying synchronization mechanisms 11-76-11-77
destructor

thread-specific data 11-13
devalloc(3X) 9-60, 9-62-9-63
devattr(1M) 9-60
devdealloc(3X) 9-62-9-63
devices

security attributes 9-59-9-63

Index

Index-3

devstat(2) 2-21, 9-62
dining philosophers

example 11-83-11-85
directory 9-4

/etc 9-25-9-27
/usr 9-32-9-33
/var 9-35-9-37
list contents of 9-39-9-40
naming rules 9-5
root 9-23-9-25
tree structure 9-4

Discretionary Access Control (DAC) 9-48, A-8-A-9
access isolation A-8
in IPC 12-7-12-9
limitations A-8

dispadmin(1M) 5-2
disposition 10-5

signal 11-19
dmavec structure 6-30
documentation

related 1-1
dot 9-9
dot dot 9-9
downstream

definition 1-14
dynamic linking 8-9

E

eight-bit clean 8-6-8-7
Enhanced Security Utilities 10-40, 10-41, 10-45, 10-48
environment variables 8-3-8-4
envp 2-16
EOF 8-9
errno 11-9

use in Threads Library 11-77
error handling 2-26
error returns

Threads Library 11-77
ETI 1-9-1-10
EUC 8-5, 8-8-8-13

and system-defined words 8-12-8-13
EUC handling in ldterm(7) 7-21
exec(2) 4-2-4-4, 9-56
exit

in multithreaded process 11-14
exit(2) 2-15
exstr(1) 8-19-8-20
extended UNIX code (see EUC) 8-5
extern storage in multithreaded programs 11-17

F

fattach(3C) 10-44
fclose(3S) 2-15
fcntl 12-5
fcntl((2) 3-11, 3-13, 3-17, 3-18
fdetach(3C) 10-45
FIFO (STREAMS) 10-39

and Mandatory Access Control 10-40, 10-41
basic operations 10-40
flush 10-44

file and device input/output 1-11-1-15, 3-1-3-8
file and record locking 1-14, 3-8-3-20
file descriptor passing 10-46
file mode (see permissions, file) 9-13
FILE structure 2-14, 2-15
file system

structure 9-3-9-5, 9-21-9-23
files

/etc 9-27-9-32
/usr 9-34-9-35
/var 9-37-9-39
lock 1-14
locking (see locking) 3-8
memory-mapped (see mapped files) 6-12
naming rules 9-5
ownership 9-13, 9-19
permissions 9-41
privilege 9-53-9-56
privileges 9-53
protection 9-40-9-46
regular 9-3
retrieving privileges 9-56
security 9-40-9-46
special 9-3

fixed class
scheduler parameter table 5-4

fixed priority
scheduler class 5-4
scheduler parameter table 5-4

floating values
formatting 8-15

Flow control 7-13, 7-15
definition 3-22

flush handling
in pipes and FIFOs 10-44

FMLI 1-8-1-9
fopen(3S) 2-14, 2-15
foreground 7-12
foreground job

in job control 10-30
fork 11-12

compared to thr_create 11-12

PowerMAX OS Programming Guide

Index-4

fork(2) 4-4, 9-56
fstat 12-3
fsync(2) 6-14
ftok 12-89
ftruncate 12-3, 12-4, 12-5
full pathname 9-6
full pathname (see pathname) 9-6
function prototypes 2-3

G

gcrt0.o 6-39
gencat(1) 8-21-8-22
getc(3S) 2-15
getdev(1M) 9-60
getmsg(2) 3-28
getopt(3C) 2-17
gettxt(3C) 8-14, 8-18-8-20
getwc(3W) 8-10
getws(3W) 8-10-8-11
grantpt(3C) 7-32

with pseudo-tty driver 7-29

H

hard link 9-11, 9-16
hardware emulation module 7-24
header files 2-1-??
housekeeping thread 11-33

I

init(1M)
scheduler properties 5-40

initial thread 11-7, 11-13, 11-37, 11-39, 11-78, 11-80,
11-82, 11-83

semantics 11-14
initialization of synchronization mechanisms 11-74-

11-76
static 11-75

Initializing PTHREAD_PRIO_PROTECT Mutexes
11-50

inode 9-11
input/output 2-9, 2-14-2-18

multibyte/wide characters 8-10-8-11
input/output polling 13-1
installation

assigning privileges A-20

MAC isolation policy A-19
of trusted software A-19-A-20
parameters 14-16-14-17
tools 14-6-14-7

installation scripts (package) 14-15-14-25
class action script 14-20-14-24
exit codes 14-18
multilevel directories 14-32
parameters 14-16
procedure script 14-25
processing 14-15-14-16
request script 14-18-14-19

installf(1M) 14-25
ioctl((2)

I_POP 3-29
I_PUSH 3-29
I_STR 3-32

ioctl(2)
handled by ptem(7) 7-27
hardware emulation module 7-24
I_LINK 13-16
I_PLINK 13-21
I_PUNLINK 13-21
I_RECVFD 10-46
I_SENDFD 10-46
I_SETSIG events 13-5
I_UNLINK 13-19
supported by ldterm(7) 7-20
supported by master driver 7-31

IPC (interprocess communication) 1-16-1-18, 12-1-
12-90

ipc_perm 12-11
isalpha(3C) 8-7
isastream(3C) 10-46
isdigit(3C) 8-7
ISO (International Standards Organization) 8-3
isprint(3C) 8-7
Issuing a Cancellation Request 11-26
isxdigit(3C) 8-7

J

job control 10-30
terminology 10-31

joining a thread 11-15-11-16

K

kbd(7) 8-23-8-24
kbdcomp(1M) 8-23-8-24

Index

Index-5

kbdload(1M) 8-23
kbdpipe(1) 8-23
kbdset(1) 8-23
Keeping memory and cache coherent 6-29
key value

thread-specific data 11-13, 11-18
kill 10-16, 10-28
kill(2) 10-16

L

languages (see also C language) 1-6-1-8
languages programming 1-6
LC_ALL 8-4
LC_COLLATE 8-3, 8-15
LC_CTIME 8-13
LC_CTYPE 8-3-8-4, 8-7
LC_MESSAGES 8-3, 8-18
LC_MONETARY 8-3, 8-14
LC_NUMERIC 8-3, 8-14-8-15
LC_TIME 8-3
ldterm(7) 7-18
Least Privilege Mechanism (LPM) A-4
lex(1) 1-7
libc 8-9-??
libcurses 8-11
libraries 2-1-2-18

libc 2-6-2-9, 2-14-2-18
libgen 2-12
libm 2-10
wide-character 8-9-8-11

LIFO
module add/remove 3-32

lightweight process 4-1, 5-1, 11-4, 11-31
characteristics 11-31-11-32
pool for threads 11-32

line discipline module
close 7-19
description 7-18
in job control 10-35
in pseudo-tty subsystem 7-25
ioctl(2) 7-20
open 7-19

link 9-1
link count 9-11, 9-12
linking 9-1
links 9-2

create 14-34
Local memory 6-1-6-12
localeconv(3C) 8-14-8-15
locales 8-2-8-4
lock

acquire 11-47
hold 11-47
mutual exclusion 11-47-11-48
reader-writer 11-63-11-64
recursive mutex 11-62
release 11-47
spin 11-61
unlock 11-47

lockf((3C) 3-11, 3-12, 3-13, 3-14, 3-16, 3-17, 3-18
locking 3-8, 3-11

advisory 3-20
file and record 3-8-3-20
mandatory 3-18, 3-19
permissions 3-10
read 3-9, 3-10, 3-14
record 3-11, 3-13, 3-14
write 3-9, 3-10, 3-14

Locking users I/O buffer in physical memory 6-29
logs

cron 9-38
login 9-38
spelling 9-37
su 9-38
system logins 9-38

lower multiplexor 13-9
lower Stream 13-7
ls((1) 3-19
lseek((2) 3-13
lvldom(2) 2-21
lvlequal(2) 2-21
lvlfile(2) 2-21, 10-40
lvlproc(2) 2-21
lvlvfs(2) 2-21
LWP 4-1, 5-1

characteristics 11-31-11-32
pool for threads 11-32

LWP aging 11-33
LWP priority 5-2, 5-6-5-7, 5-16, 5-32

fixed priority 5-6
setting and retrieving 5-30-5-32
time-sharing 5-6, 5-7

M

M_CTL
with line discipline module 7-18

M_FLUSH
packet mode 7-29

M_SETOPTS
with ldterm(7) 7-19

M_SIG
in signaling 13-6

PowerMAX OS Programming Guide

Index-6

m4(1) 1-8
mail((1) 3-10
main function 2-16
Managing Misaligned Data 6-38
Mandatory Access Control (MAC) 2-21, A-6-A-8

in IPC 12-9
isolation policy A-7

mandatory locking 3-9, 3-18
Mapped files 6-14-6-21
Mapping physical memory 12-68
master driver

in pseudo-tty subsystem 7-25
open 7-29

math library
partial contents 2-10

mblen 8-10
mbstowcs 8-10
mbtowc 8-10
mcrt0.o 6-39
memcntl(2) 6-27
memdefaults(2) 6-8
memory

shared (see shared memory) 12-90
Memory management 6-12-6-40

address spaces 6-13
address-space layout 6-37
byte alignment requirements 6-38
concepts 6-12
heterogeneity 6-13
integrity 6-13
mapping 6-13
memcntl(2) 6-27
memdefaults(2) 6-8
mincore(2) 6-35-6-36
misaligned data 6-38
mlock(3C) 6-27
mlockall(3C) 6-33-6-34
mmap(2) 6-14-6-21
mprotect(2) 6-36
msync(3C) 6-34-6-35
munlockall(3C) 6-33-6-34
munmap(2) 6-26
networking 6-13
pagesize 6-36
system calls 6-14
virtual memory 6-13

memory management 1-15-1-16
Memory objects 6-16, 6-17, 6-25
Memory pools 6-3-6-4
Memory-mapped files (see mapped files) 6-12
message (IPC) 12-9-12-31

blocking 12-10
control (msgctl) 12-18-12-19
get (msgget) 12-14-12-16

identifier (msqid) 12-10-12-13
msgctl example program 12-19-12-23
msgget example program 12-16-12-18
msgop example program 12-25-12-31
multilevel operation 12-31
operations (msgop) 12-24-12-25
permission codes 12-15-12-16
queue data structure 12-10-12-13
receive 12-25
send 12-24-12-25
usage 12-10-12-13

message (STREAMS)
definition 1-13
handled by pckt(7) 7-29
handled by ptem(7) 7-27
ldterm(7) read-side 7-19
ldterm(7) write-side 7-20

message block (STREAMS) 1-14
message handling 8-17-8-23

System V 8-17-8-20
X/Open 8-20-8-22

mincore(2) 6-35-6-36
misalign.o object 6-39
misaligned data exceptions 6-39
mkmld(2) 2-21
mkmsgs(1) 8-18-8-20
mldmode(2) 2-21
mlock(3C) 6-27-6-29
mlockall(3C) 6-33-6-34
mmap 6-16, 6-17, 6-25, 12-5
mmap(2) 6-14-6-21
mode (file) (see also permissions) 9-41
monetary representation 8-14-8-15
mpadvise(3C) 4-9-4-10
mprotect(2) 6-36
msgctl(2) 12-18-12-23

example program 12-19-12-23
usage 12-18-12-19

msgget(2) 12-14
example program 12-16
usage 12-14-12-16

msgop(2) 12-24
usage 12-24-12-25

msgrcv(2) 12-25
msgsnd(2) 12-24-12-25
msync(3C) 6-34-6-35
multibyte characters 8-5, 8-8-8-12

classification and conversion 8-11-??
conversion to/from wide characters 8-9-8-12
curses(3X) support 8-11
input/output 8-10-8-11

multilevel directories
installation 14-32

multiplexed thread 11-32

Index

Index-7

multiplexing
STREAMS 13-7

multiplexor
building 13-12, 13-19
controlling Stream 13-17
data routing 13-20
dismantling 13-19
lower 13-12
persistent links 13-21, 13-25
upper 13-12

multiplexor ID
in multiplexor building 13-16
in multiplexor dismantling 13-20

multithreaded process
exit 11-14
return 11-14

multithreaded process exit 11-14
multithreaded process termination 11-14
multithreaded programs

signal management 11-19-11-23
munlock(3C) 6-27-6-29
munlockall 6-33, 6-34
munlockall(3C) 6-33-6-34
munmap 6-25
munmap(2) 6-26
mutex lock 11-47-11-48
mutex_lock 11-47
mutex_unlock 11-47
mutual exclusion lock 11-47-11-48

N

named Stream 10-44
description 10-44
fdetach(3C) 10-45
file descriptor passing 10-46
isastream(3C) 10-46

nice(1) 5-40
nice(2) 5-40
nl_catd 8-21
NLSPATH 8-20
non-daemon thread 11-14
NSTRPUSH parameter 3-29
NUMA policies 6-4-6-7
numeric representation 8-14-8-15

O

O_NDELAY
close a Stream 3-29

O_NONBLOCK
close a Stream 3-29

ontrolling-process 7-12
Options

physconfig 12-71

P

package
access in scripts 14-29
assign abbreviation 14-27
basic steps to 14-26-14-27
contents 14-2-14-4
copyright message 14-33
create 14-38, 14-39, 14-40
create datastream formats 14-40
define dependencies 14-32
distribute over multiple volumes 14-38
identifier 14-28
information files 14-7-14-14
installation 14-6
installation scripts 14-15-14-25
instance 14-28
life cycle 14-4
location 14-30
objects 14-3
quick reference 14-44-14-46
relocatable objects 14-30-14-31
space requirements 14-32
tools 14-4-14-6

packet mode
description 7-28
messages 7-29

parent directory 9-4, 9-9
parent process 4-5
parsing 1-8
path

physical 9-13
virtual 9-13

pathname 9-5
full 9-6-9-8
mapping installation 14-35
relative 9-7-9-11
rename with pkgproto 14-36

path-prefix 9-6
pbind(1M) 4-10
pcinfo data structure 5-18
pckt(7) 7-28
pcparms data structure 5-22
performance

scheduler effect on 5-41
permissions 9-41

PowerMAX OS Programming Guide

Index-8

change existing 9-44-9-46
display 9-42-9-44
file 9-13, 9-16, 9-19
files 9-41-9-46
impact on directories 9-46
IPC messages 12-15-12-16
octal 9-46
read 9-43, 9-45-9-46
semaphores 12-37-12-38
shared memory 12-58-12-59
write 9-43, 9-45-9-46

persistent link 13-21, 13-25
physconfig 12-71
Physical Memory 12-68
physmemcntl

examples 12-70
PIPE_BUF 10-43
pipemod STREAMS module 10-44
pkgadd(1M) 14-21
pkginfo(1) 14-17
pkginfo(4) 14-7-14-8, 14-17

creating 14-33
pkgmap(4) 14-14
pkgmk(1) 14-5, 14-38-14-40

locating package contents 14-39
pkgparam(1) 14-17
pkgproto(1) 14-5, 14-6, 14-36-14-38

assign objects to classes 14-37
create links 14-37
rename pathnames 14-37

pkgrm(1M) 14-22
pkgtrans(1) 14-4, 14-6, 14-40-14-41
poll(2) 3-28, 13-1
pollfd structure 13-3
polling

error events 13-4
events 13-2
example 13-3

POSIX facilities
Memory locking 6-29
Real-time signals 10-29
Shared memory 6-16, 6-17, 6-25, 12-2-12-6

POSIX Priority Ceiling Protocol Mutexes 11-48
POSIX routines

mlock 6-28, 6-29
mlockall 6-33, 6-34
mmap 6-16, 6-17, 6-25, 12-5
munlock 6-28, 6-29
munlockall 6-33, 6-34
munmap 6-25
sched_get_priority_max 5-14, 5-15
sched_get_priority_min 5-14
sched_getparam 5-13
sched_getscheduler 5-10

sched_rr_get_interval 5-15
sched_setparam 5-11, 5-12
sched_setscheduler 5-9
sched_yield 5-13
shm_open 12-3, 12-4, 12-5
shm_unlink 12-3, 12-5
sigqueue 10-2, 10-27

sigqueue 10-28
sigtimedwait 10-2, 10-25, 10-26
sigwaitinfo 10-2, 10-25, 10-26

POSIX Thread Cancellations 11-24
Preparing users I/O buffer for DMA transfers 6-29
preprocessor

m4 1-8
primary code set 8-5, 8-8-8-9, 8-12-8-13
printf(3S)(3W) 8-11, 8-14, 8-15, 8-22-8-23
priocntl(1) 5-2, 5-32-5-36
priocntl(2) 5-17-5-28
priocntllist(2) 5-29
priocntlset(2) 5-29-5-30
priority 5-2, 10-2
Priority Ceiling Mutex Restrictions 11-49
priority inversion 11-74
priority level of threads 11-36, 11-38
priv(5) 9-54
privilege 9-50-9-59, A-4-A-5

file 9-53
fixed 9-53-9-56, A-5
function of 9-50-9-59
in shared private routines A-11
inherited 9-53-9-56, A-5
process 9-56-9-57, A-4
propagation of A-5
setting on a file 9-55

privilege(5) 9-54
procedure scripts 14-25

postinstall 14-25
postremove 14-25
preinstall 14-25
preremove 14-25

process
management 1-16
manipulating privileges 9-57-9-59
privileges A-4
scheduling 1-16

Process address space 6-13, 6-37
process model 11-2
process priority 5-2-5-3, 5-6-5-7, 5-16, 5-32

fixed priority 5-6
global 5-2
setting and retrieving 5-30-5-32
system 5-6
time-sharing 5-6, 5-7

process resources

Index

Index-9

shared by threads 11-4
process scheduler (see scheduler) 5-2
process state transition 5-41
processor_bind(3C) 4-10
procpriv(2) 9-57-9-59, A-5, A-10
procprivl(3C) A-10
procset data structure 5-29
producer/consumer

example 11-85-11-86
programming

application 1-4-1-6
writing trusted software A-1-A-21

prototype (see function prototypes) 2-3
prototype(4) 14-8-14-11, 14-34-14-38

command lines 14-10, 14-35
creating manually 14-34-14-36
creating with pkgproto 14-36-14-38
description lines 14-9

pseudo-tty emulation module 7-26
pseudo-tty subsystem 7-25

description 7-25
drivers 7-29
ldterm(7) 7-25
messages 7-27
packet mode 7-28
remote mode 7-28

ptem(7) 7-26
ptsname(3C) 7-32

with pseudo-tty driver 7-29
putdev(1M) 9-60
putmsg(2) 3-28
putwc(3W) 8-10
putws(3W) 8-10-8-11

Q

qsort(3C) 8-16

R

Raw mode 7-13, 7-14
read lock 3-9, 3-10, 3-14, 3-17
reader-writer lock 11-63-11-64
read-side

definition 1-14
ldterm(7) messages 7-19
ldterm(7) processing 7-19

records
locking (see locking) 3-8

recursive mutex lock 11-62

regular file 9-3
regular link 9-11
related books 1-1
related documentation 1-1
relative pathname (see pathname) 9-7
removef(1M) 14-25
requested concurrency level 11-32
rerun 6-11
rerun command 5-38
rerun(1) 4-9-4-10
Reserving Physical Memory 12-68, 12-71
return

in multithreaded process 11-14
return value

Threads Library functions 11-9
root

directories 9-23-9-25
root-directory 9-2
run command 5-38
run(1) 4-9-4-10
rw_rdlock 11-64
rw_wrlock 11-64

S

samplecopyrightfile 14-12
sbrk (see brk(2)) 6-38
scanf(3S)(3W) 8-10-8-11, 8-14, 8-15, 8-22-8-23
SCHED_FIFO thread scheduling policy 11-38
sched_get_priority_max 5-14, 5-15
sched_get_priority_min 5-14
sched_getparam 5-13
sched_getscheduler 5-10
SCHED_OTHER thread scheduling policy 11-38
SCHED_RR thread scheduling policy 11-38
sched_rr_get_interval 5-15
sched_setparam 5-11, 5-12
sched_setscheduler 5-9
SCHED_TS thread scheduling policy 11-38
sched_yield 5-13
scheduler 1-16, 5-1

effect on performance 5-41
fixed priority policy 5-4
system policy 5-4
time-sharing class 5-4
time-sharing policy 5-4

scheduler class 5-2-5-4
fixed priority 5-4
system 5-4
time-sharing 5-4

scheduler data structures
pcinfo 5-18

PowerMAX OS Programming Guide

Index-10

pcparms 5-22
procset 5-29

Scheduling 5-9-5-15, 5-37, 5-38
scheduling

bound threads 11-37-11-39
changing policy for threads 11-38, 11-39
changing thread priority level 11-36, 11-38, 11-39
multiplexed threads 11-35-11-37
policy for threads 11-38
SCHED_FIFO policy for threads 11-38
SCHED_RR policy for threads 11-38
SCHED_TS policy for threads 11-38
thread priority level 11-36, 11-38
threads 11-35-11-39

scripts (package)
class action 14-20-14-24
procedure 14-25
processing 14-15-14-16
request 14-15, 14-18-14-19

secadvise(2) 2-21
security

devices 9-59-9-63
files 9-40-9-46
in IPC 12-7-12-9
level dominance defined A-7
levels 2-21, A-6
policy 9-49, A-1
privilege mechanism 9-50-9-59

Selecting NUMA Policies 6-8
SEM_UNDO 11-71
sema_post 11-70
sema_wait 11-70
semaphore 11-70-11-71, 12-31-12-53

control (semctl) 12-41-12-42
get (semget) 12-36-12-38
identifier (semid) 12-33-12-36
multilevel operation 12-53
operations (semop) 12-49-12-50
permission codes 12-37-12-38
semctl example program 12-42-12-49
semget example program 12-38-12-40
semop example program 12-50-12-53
set data structure 12-33-12-36
usage 12-33-12-36

semaphores
example 11-83

semctl(2) 12-41-12-49
example program 12-42-12-49
summary 12-35
usage 12-41-12-42

semget(2) 12-36-12-40
example program 12-38-12-40
usage 12-36-12-38

semid_ds 12-34

semop(2) 12-49-12-53
example program 12-50-12-53
usage 12-49-12-50

sequential programming 11-2
session management 10-30
session-id 7-12
session-leader 7-12
set information display 14-42
set installation 14-41-14-42
Set Installation Package 14-41
set removal 14-42
setinfo 14-41
setlocale(3C) 8-3-8-4
setprocset macro 5-30
setrun(1)

process scheduling 5-38
setsize 14-43
setsizecvt 14-43
Shared memory 6-16, 6-17, 6-25
shared memory 12-2-12-5, 12-53-12-90

control (shmctl) 12-62-12-64
data structure 12-54-12-57
get (shmget) 12-57
identifier (shmid) 12-54-12-57
multilevel operation 12-90
operations (shmop) 12-74
permissions 12-58-12-59
shmctl example program 12-64
shmget example program 12-60
shmop example program 12-75
usage 12-54-12-57

Shared memory objects 12-2-12-5
shared objects 8-9
shift bytes 8-5, 8-8-8-9
shm_open 12-3-12-5
shm_unlink 12-3, 12-5
shmat(2) 12-73-12-74
shmbind(2) 12-73
shmconfig 12-84
shmconfig Options for a Bound Region 12-86, 12-87
shmconfig Options for a Virtual Region 12-71, 12-85
shmctl(2) 12-62-12-67, 12-78

example program 12-64-12-67
usage 12-62-12-64

shmdefine 12-78, 12-79
shmdefine attributes 12-79
shmdt(2) 12-73-12-74
shmget(2) 12-57-??, 12-59, ??-12-62, 12-73, 12-89

example program 12-60-12-62
usage 12-57

shmop(2) 12-74-12-78
example program 12-75-12-78
usage 12-74

sibling LWP 11-32

Index

Index-11

sibling thread 11-12
sigaction 11-16
sigaction structure 10-9, 10-10
sigaction system call 10-2, 10-7, 10-9, 10-13-10-15,

10-17-10-18, 10-28
sigaction(2) 6-39
sigaltstack 11-22
sigaltstack function 10-29
sigaltstack structure 10-28
sigaltstack(2) 10-28
SIGBUS signal 6-39
sigevent structure 10-11, 10-13
siginfo_t structure 10-2, 10-7, 10-13, 10-14, 10-15
SIGLWP 11-20
sign extension 8-8
signal 10-1

asynchronously generated 11-21
synchronously generated 11-21

signal actions 10-5
signal disposition 11-19
signal management in multithreaded programs 11-19-

11-23
signal mask

thread 11-20, 11-37
signal programming example 10-18-10-20

system 10-21
Signal structures 10-2-10-29
signal(2) 13-1
Signal-handling routine 10-28, 10-29
signals 2-23, 10-1-10-29

actions 10-5
catching 10-5
extended 13-7
in job control management 10-32
in STREAMS 13-6
sending 10-16-10-28
stacks 10-29
types 10-2-10-5

sigpending system call 10-24
sigprocmask 11-21
sigprocmask system call 10-18, 10-23
sigprocmask(2) 10-23
sigqueue system call 10-2, 10-27, 10-28
sigsend 10-28
sigsend(2) 10-16, 10-28
sigset_t structure 10-2
sigsetops library routines 10-17
sigsuspend system call 10-24
sigtimedwait system call 10-2, 10-25, 10-26
sigval union 10-11, 10-13
sigwait 11-21, 11-22
sigwaitinfo macro 10-2, 10-25, 10-26
SIGWAITING 11-20, 11-33
SIP (see Set Installation Package) 14-41

slave driver
in pseudo-tty subsystem 7-25
open 7-29

software applications packaging (see package) 14-1
Software flow control 7-15
space(4) 14-14
special file 9-3
spin lock 11-61
srchtxt(1) 8-20
stack

thread 11-7
State 11-24
state transitions

process 5-41
static storage in multithreaded programs 11-17
sticky bit 9-44
strcmp function 2-3-2-5
strcoll(3C) 8-15-8-16
Stream

controlling terminal 10-35
definition 1-12
hung-up 10-36

Stream construction
add/remove modules 3-29
close a Stream 3-29
example 3-30
open a Stream 3-28

Stream head
definition 1-12

STREAMS 3-27
basic operations 3-20
benefits 3-22
definition 1-11
multiplexing 13-7
system calls 3-20, 3-27

STREAMS driver
definition 1-12
pseudo-tty 7-29
pseudo-tty subsystem master 7-25
pseudo-tty subsystem slave 7-25

STREAMS input/output 1-11-1-14
STREAMS module

connld(7) 10-47
control information 1-13
definition 1-13
kbd 8-23-8-24
line discipline 7-18
ptem(7) 7-26
status information 1-13

STREAMS queue
definition 1-13

STREAMS system calls 3-27, 3-28
STREAMS-based pipe 1-12

and Mandatory Access Control 10-41

PowerMAX OS Programming Guide

Index-12

atomic write 10-43
basic operations 10-40
creation 3-28
creation errors 10-41
definition 10-40
PIPE_BUF 10-43

STREAMS-based sxt driver 7-18
strftime(3C) 8-13-8-14
string collation (see collation) 8-15
strings

routines 2-3-2-5, 2-6-2-7
strioctl structure 3-32
strtod(3C) 8-15
strtol(3C) 8-15
strtoul(3C) 8-15
strtows(3W) 8-10-8-11
strxfrm(3C) 8-15-8-16
subdirectory 9-4
supplementary code sets 8-5, 8-8-8-9, 8-12-8-13
suspended thread 11-39
symbolic links 1-18, 9-3, 9-11

access 9-16
content of 9-11
copy 9-17
create 9-13, 9-15
definition of 9-11
examples of creating 9-16
link 9-17-9-18
looping with 9-15
move 9-18
properties of 9-12-9-14
referenced file 9-13
remove 9-13, 9-16
uses of 9-12
with NFS 9-19

symlink(2) 9-14
synchronization 6-14
synchronization mechanism 11-3

awakening waiting threads 11-73
barrier 11-71-11-72
condition variable 11-67-11-69
conditional variant 11-74
initialization 11-74-11-76
invalidation 11-76-11-77
lock types 11-47
mutex lock 11-47-11-48
reader-writer lock 11-63-11-64
recursive mutex lock 11-62
semaphore 11-70-11-71
spin lock 11-61
static initialization 11-75
USYNC_PROCESS 11-74
USYNC_THREAD 11-74

synchronization mechanisms for threads 11-45-11-77

synchronous input/output
in polling 13-2

synchronously-generated signal 11-21
system calls 2-18-2-26

directory and file system 2-20
error handling 2-26
error values 2-26
file and device IO 2-19
IPC 12-1-12-90
list IPC 2-23
list memory management 2-25
list miscellaneous 2-25
mandatory access control 2-21
signals 2-23
terminal IO 2-19
user processes 2-22

System calls and libraries 1-11
system-defined words 8-12-8-13

T

Terminals 7-13
termio(7) 10-35

default flag values 7-18
termiox(7)

support 7-23
Testing for Cancellation Requests 11-26
tfadmin(1M) A-5
thousands separator 8-15
THR_BOUND

thread creation flag 11-8, 11-34
thr_continue 11-39
thr_create 11-6, 11-14, 11-33, 11-34, 11-39

compared to fork 11-12
example 11-80, 11-82, 11-83, 11-85

THR_DAEMON
thread creation flag 11-8, 11-14

THR_DETACHED
thread creation flag 11-8

thr_exit 11-6, 11-13, 11-14, 11-15
example 11-80

thr_getconcurrency 11-34
THR_INCR_CONC

thread creation flag 11-8, 11-33
thr_join 11-6, 11-13, 11-16

example 11-82
thr_keycreate 11-18
thr_keydelete 11-19
thr_kill 11-23
thr_minstack 11-7
thr_self 11-8
thr_setconcurrency 11-33

Index

Index-13

thr_setprio 11-36, 11-39
thr_setscheduler 11-38, 11-39
thr_setspecific 11-18
thr_sigsetmask 11-20
THR_SUSPENDED

thread creation flag 11-8, 11-39
thr_yield 11-36
thread

bound 11-34
changing priority level 11-36
changing scheduling policy 11-38, 11-39
changing scheduling priority level 11-38, 11-39
daemon 11-14
definition 11-3
development environment 11-77
initial 11-7, 11-13, 11-14, 11-37, 11-78, 11-80,

11-82, 11-83
multiplexed 11-32
relationship with LWP 11-32
SCHED_FIFO scheduling policy 11-38
SCHED_RR scheduling policy 11-38
SCHED_TS scheduling policy 11-38
scheduling 11-35-11-39
scheduling bound threads 11-37-11-39
scheduling multiplexed threads 11-35-11-37
scheduling policy 11-38
scheduling priority level 11-36, 11-38
sibling 11-12
signal disposition 11-19
signal mask 11-20, 11-37
suspended 11-39
synchronization mechanisms 11-45-11-77

thread creation 11-7-11-12
thread creation flag

THR_BOUND 11-34
THR_DAEMON 11-14
THR_INCR_CONC 11-33
THR_SUSPENDED 11-39

thread exit 11-13
thread ID 11-8
thread management

example 11-81-11-82
thread of control 11-3
thread resources

shared 11-4
thread stack 11-7
thread termination 11-13

waiting for 11-15-11-16
threads examples 11-80-11-86

barriers 11-82
basic threads management 11-81-11-82
condition variables 11-85
dining philosophers 11-83
hello world 11-80

semaphores 11-83
sometask 11-81
thr_create 11-80, 11-82, 11-83, 11-85
thr_exit 11-80
thr_join 11-82

Threads Library
development environment 11-77
examples 11-80-11-86

thread-safe libraries 11-78
thread-specific data 11-17-11-19

destructor 11-13
key value 11-13, 11-18

time representation 8-13-8-14
time slice

fixed priority LWP 5-23
fixed priority process 5-23

timers in Threads Library 11-79
time-sharing

scheduler class 5-4
scheduler parameter table 5-4

tolower(3C) 8-7
toupper(3C) 8-7
trojan horse A-9, A-14
true concurrency 11-2
trusted commands

writing A-9-A-15
Trusted Computing Base (TCB) 9-48-9-50
Trusted Facility Management (TFM) A-5-A-6

administrative roles A-6
Trusted Facility Management (TFM), database A-5
trusted library routines

writing A-17-A-19
trusted shell scripts

writing A-15-A-17
trusted software A-1-A-21

command execution A-14
definition A-1
error checking A-13
handling sensitive data A-14
installation A-19-A-20
overview A-1-A-3
scope A-2
signal handling A-13

ts_dptbl(4) 5-4
TTY 7-14, 7-15
TTY performance 7-13
tty subsystem

benefits 7-16
description 7-16
hardware emulation module 7-24
ldterm(7) 7-18

Type 11-24

PowerMAX OS Programming Guide

Index-14

U

ucontext_t structure 10-15, 10-29
umask(1) 9-42
unique connection (STREAMS) 10-47
UNIX system files 9-11
unlockpt(3C) 7-32

with pseudo-tty driver 7-29
unsigned char 8-7, 8-8
upper multiplexor 13-9
upper Stream 13-7
upstream 1-14
user priority 5-6, 5-7
userdma system call 6-29-6-32
Using fork(2) 11-40
Using PTHREAD_PRIO_PROTECT Mutexes 11-51
Using shmbind 12-73
Using shmconfig 12-84
Using shmdefine 12-78
Using shmget 12-73
Using the userdma System Call 6-29
USYNC_PROCESS 11-74
USYNC_THREAD 11-74

V

VFS
architecture 9-12

virtual memory 1-15-1-16
Virtual memory (see also memory management) 6-12-

6-14
Virtual Region Options 12-71, 12-85
Virtual to physical address translation 6-32
VM (virtual memory) (see memory management) 6-13

W

wait(2) 4-4, 4-6, 4-7
waiting for a thread 11-15-11-16
wchar_t 8-5, 8-9-8-12
wcstombs 8-10
wctomb 8-10
wide character constants 8-11-8-12
wide characters 8-5, 8-8-8-12

classification and conversion 8-8, 8-11-??
conversion to/from multibyte characters 8-9-8-12
curses(3X) support 8-11
input/output 8-10-8-11

wide string literals 8-11-8-12

widget 1-11
wrappers 11-79
write lock 3-9, 3-10, 3-14
write-side

definition 1-14
ldterm(7) 7-20

wstostr(3W) 8-11

X

X/Open
message handling 8-20-8-22

XWIN 1-10-1-11

Y

yacc(1) 1-8

Spine for 2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
 O

S

Programming Guide

0890423

Programmer

	PowerMAX OS Programming Guide
	Preface
	Contents
	Introduction
	Introduction
	Audience and Prerequisite Knowledge
	Related Books and Documentation
	Programming Books
	Reference Set

	The C Connection
	Hardware/Software Dependencies
	Information in the Examples
	Notation Conventions
	Manual Page References

	Application Programming in the UNIX System Environment
	UNIX System Tools and Languages
	Facilities Covered and Not Covered in This Guide

	Programming Tools and Languages in the UNIX System Environment
	The C Language
	Shell
	awk
	lex
	yacc
	m4
	bc and dc

	Character User Interfaces
	curses
	FMLI
	ETI

	Graphical User Interfaces
	XWIN Graphical Windowing System

	System Calls and Libraries
	File and Device Input/Output
	STREAMS Input/Output
	File and Record Locking
	Where to Find More Information

	Memory Management
	The Memory Mapping Interface
	Where to Find More Information

	Process Management and Scheduling
	Where to Find More Information

	Interprocess Communications
	Where to Find More Information

	Symbolic Links
	Where to Find More Information

	System Calls and Libraries
	Introduction
	Libraries and Header Files
	Header Files
	How to Use Library Functions
	C Library (libc)
	Subsection 3C Routines
	Subsection 3S Routines

	Math Library (libm)
	General Purpose Library (libgen)
	Standard I/O Library
	Three Files You Always Have
	Named Files

	How C Programs Communicate with the Shell
	Passing Command Line Arguments

	System Calls
	Input/Output and File System Calls
	File and Device I/O
	Terminal Device Control
	Directory and File System Control
	Access Control System Calls

	Process and Memory System Calls
	Processes
	Signals
	Basic Interprocess Communication
	Advanced Interprocess Communication
	Memory Management

	Miscellaneous System Calls
	System Call Error Handling

	File and Device Input/Output
	Introduction
	Input/Output System Calls
	File Descriptors
	Reading and Writing Files
	Opening, Creating and Closing Files
	Random Access — lseek

	File and Record Locking
	Terminology
	File Protection
	Opening a File for Record Locking
	Setting a File Lock
	Setting and Removing Record Locks
	Getting Lock Information
	Deadlock Handling

	Selecting Advisory or Mandatory Locking
	Caveat Emptor—Mandatory Locking

	Record Locking and Future Releases of the UNIX System

	Basic STREAMS Operations
	Benefits of STREAMS
	Standardized Service Interfaces
	Manipulating Modules
	Protocol Portability
	Protocol Substitution
	Protocol Migration
	Module Reusability

	STREAMS Mechanism
	STREAMS System Calls
	getmsg and putmsg
	poll

	Opening a STREAMS Device File
	Creating a STREAMS-based Pipe
	Adding and Removing Modules
	Closing the Stream
	Stream Construction Example
	Inserting Modules
	Module and Driver Control

	Process Management
	Introduction
	Program Execution and Process Creation
	Program Execution—exec
	Process Creation—fork
	Control of Processes—fork and wait
	Process Termination
	Managing Processors and Processes
	Processor Administration Information
	Binding Processes to Processors
	Local Memory Considerations

	Process Scheduling and Management
	Process Scheduling
	How the Process Scheduler Works
	System V Scheduler Classes
	Time-Sharing Class and Fixed Class
	System Class
	Fixed-Priority Class
	ADA Priority Class

	POSIX Scheduling Policies
	Scheduler Priorities

	POSIX Scheduling Routines
	The sched_setscheduler Routine
	The sched_getscheduler Routine
	The sched_setparam Routine
	The sched_getparam Routine
	The sched_yield Routine
	The sched_get_priority_min Routine
	The sched_get_priority_max Routine
	The sched_rr_get_interval Routine

	System V Scheduling System Calls and Commands
	The priocntl System Call
	The PC_GETCID and PC_GETCLINFO Commands
	The PC_GETPARMS and PC_SETPARMS Commands
	The PC_GETTQ and PC_SETTQ Commands

	The priocntllist System Call
	The priocntlset System Call

	Scheduler Commands
	The priocntl Command
	The run and rerun Commands

	The setrun(1) command
	Scheduling classes
	Display options
	Examples

	Scheduler Interaction with Other Functions
	Kernel Processes
	fork, exec
	nice
	init

	Scheduler Performance
	LWP State Transition

	Memory Management
	Overview of Primary Memory
	Hardware Features
	Software Features
	Memory Pools
	NUMA Policies
	Guidelines for Determining the Appropriate Default NUMA Policy
	Memory Pools and Process Memory Locking

	Using the memdefaults System Call
	Using the run and rerun Commands

	Memory Management Facilities
	Virtual Memory, Address Spaces, and Mapping
	Networking, Heterogeneity and Integrity
	Memory Management Interfaces
	Creating and Using Mappings
	Establishing a Mapping to a Target Process’s Address Space
	Establishing a Mapping to /dev/zero

	Removing Mappings
	Cache Control
	Memory Cache Control
	Memory Page Locking
	Using the mlock and munlock Library Routines
	Using the userdma System Call

	Address Space Locking
	Memory Cache Synchronization
	Memory Page Residency

	Other Mapping Functions

	Address Space Layout
	Managing Misaligned Data
	Alignment
	Exceptions
	Implementation

	Terminal Device Control
	Introduction
	Terminal Device Control Functions
	General Terminal Interface
	Baud Rates
	Input Modes
	Output Modes
	Control Modes
	Local Modes and Line Disciplines
	Special Control Characters

	Opening a Terminal Device File
	Input Processing and Reading Data
	Canonical Mode Input Processing
	Non-Canonical Mode Input Processing

	Writing Data and Output Processing
	Closing a Terminal Device File
	Special Characters
	The Controlling-Terminal and Process-Groups
	Session Management and Job Control
	Improving Terminal I/O Performance
	TTY in Canonical Mode
	TTY in Raw Mode
	TTY Flow Control

	STREAMS-Based Terminal Subsystem
	Line Discipline Module
	Default Settings
	Open and Close Routines
	Read-Side Processing
	Write-Side Processing
	EUC Handling in ldterm

	Support of termiox
	Hardware Emulation Module

	STREAMS-based Pseudo-Terminal Subsystem
	Line Discipline Module
	Pseudo-tty Emulation Module — ptem
	Remote Mode
	Packet Mode
	Pseudo-tty Drivers — ptm and pts
	grantpt
	unlockpt
	ptsname

	Internationalization
	Introduction
	Discussion
	Organization

	Locales
	Character Representation
	“8-bit Clean”
	Character Classification and Conversion
	Sign Extension
	Characters Used as Indices

	Wide Characters
	Multibyte and Wide-character Conversion
	Input/Output
	Character Classification and Conversion
	curses Support
	C Language Features

	System-defined Words

	Cultural and Language Conventions
	Date and Time
	Numeric and Monetary Information
	String Collation

	Message Handling
	mkmsgs and gettxt (System V-specific)
	exstr and srchtxt (System V-specific)
	catopen and catclose (X/Open)
	gencat and catgets (X/Open)
	%n$ Conversion Specifications

	kbd
	Building kbd Tables

	Internationalization Facilities
	Interface Standards
	Enhanced Commands

	Directory and File Management
	Introduction
	Structure of the File System
	Types of Files
	Regular Files
	Directory Files
	Special Files

	Organization of Files
	File Naming
	Path Names
	Full Pathnames
	Relative Pathnames

	Symbolic Links
	Properties of Symbolic Links
	Using Symbolic Links
	Creating Symbolic Links
	Examples

	Removing Symbolic Links
	Accessing Symbolic Links
	Copying Symbolic Links
	Linking Symbolic Links
	Moving Symbolic Links
	File Ownership and Permissions

	Using Symbolic Links with NFS
	Archiving Commands

	Summary of UNIX System Files & Directories
	UNIX System Directories
	Directories and Files
	Directories in root
	Directories in /etc
	Files in /etc
	Directories in /usr
	Files in /usr
	Directories in /var
	Files in /var

	File Access Controls
	File Protection
	File Permissions
	Setting Default Permissions
	How to Determine Existing Permissions
	How to Change Existing Permissions
	A Note on Permissions and Directories
	An Alternative Method

	Security Considerations
	What Security Means to Programmers
	What Is Security?
	How Basic Security Works
	How Enhanced Security Works

	Privileges
	Privileges Associated with a File
	Manipulating File Privileges
	Privileges Associated with a Process
	Manipulating Process Privileges

	Device Security
	Device Database
	Kernel Device Allocation
	Device Driver Flags
	Device Allocation Routines
	The devalloc Routine
	The devdealloc Routine

	Signals, Job Control, and Pipes
	Introduction
	Signals
	Signal Types
	Signal Actions
	Real-Time Signal Behavior
	Signal Structures
	The sigset_t Structure
	The sigaction Structure
	The sigval and sigevent Structures
	The siginfo_t Structure
	The ucontext_t Structure

	POSIX Signal System Calls
	The kill System Call
	The sigsetops Library Routines
	The sigaction System Call
	The sigprocmask System Call
	The sigpending System Call
	The sigsuspend System Call
	The sigtimedwait System Call
	The sigwaitinfo System Call
	The sigqueue System Call

	System V Signal System Calls
	The Signal–Handling Routine

	Job Control and Session Management
	Overview of Job Control
	Job Control Terminology
	Job Control Signals
	The Controlling Terminal and Process-Groups
	Terminal Access Control
	Modem Disconnect

	STREAMS-based Job Control
	Allocation and Deallocation
	Hung-up Streams
	Hangup Signals
	Accessing the Controlling Terminal

	Basic Interprocess Communication Pipes
	STREAMS-Based Pipes and FIFOs
	Creating and Opening Pipes and FIFOs
	Accessing Pipes and FIFOs
	Reading from a Pipe or FIFO
	Writing to a Pipe or FIFO
	Zero Length Writes
	Atomic Writes

	Closing a Pipe or FIFO

	Flushing Pipes and FIFOs
	Named Streams
	fattach
	fdetach
	isastream
	File Descriptor Passing

	Unique Connections

	Programming with the Threads Library
	Introduction
	What Is Concurrent Programming?
	What Are Threads?
	Threads Illustrated

	Basic Threads Management
	Creating a New Thread
	Creating a PowerMAX OS Thread
	Creating a POSIX Thread
	POSIX Thread Creation Attributes
	Modifying POSIX Thread Creation Attributes

	Creating a Thread From a Thread

	Terminating a Thread
	PowerMAX OS Thread Termination
	POSIX Thread Terminations
	Termination of the Process
	PowerMAX OS Process Termination
	POSIX Process Termination

	Waiting for Thread Termination
	PowerMAX OS Thread Joining
	POSIX Thread Joining
	Detached Threads

	Thread-Specific Data
	PowerMAX OS Thread-Specific Data Functions
	POSIX Thread-Specific Data Functions

	Threads and Signals
	PowerMAX OS Thread Signal Masks
	POSIX Thread Signal Masks
	Asynchronously-Generated Signals
	Asynchronously-Generated Signals — Paradigm

	Synchronously-Generated Signals
	Thread-to-Thread Signaling
	PowerMAX OS Thread Signaling
	POSIX Thread Signaling

	POSIX Thread Cancellations
	Cancellation Point Function Considerations
	Cancellation Cleanup Handlers
	Issuing a Cancellation Request
	Testing for Cancellation Requests
	Cancellation Cleanup Handler Example
	Disabled Cancellation Example

	Threads Concurrency Level
	Lightweight Processes
	Multiplexed Threads
	Managing Threads Concurrency
	Bound Threads
	The Initial (Primordial) Thread

	Thread Scheduling
	Multiplexed Thread Scheduling
	Priority for PowerMAX OS Threads
	Priority for POSIX Threads

	Bound Thread Scheduling
	Managing Thread Scheduling
	PowerMAX OS Thread Scheduling
	POSIX Thread Scheduling

	Using fork(2)
	A pthread_atfork() Example

	Synchronizing Threads
	Locks
	Mutual Exclusion Locks
	PowerMAX OS Mutex Lock Interface
	POSIX Mutex Lock Interface
	POSIX Priority Ceiling Protocol Mutexes
	Priority Ceiling Mutex Restrictions
	Initializing PTHREAD_PRIO_PROTECT Mutexes
	Using PTHREAD_PRIO_PROTECT Mutexes
	Priority Protect Mutex Example

	Spin Locks
	POSIX Spin Locks

	Recursive Mutual Exclusion
	POSIX Thread Recursive Mutexes

	Reader-Writer Locks
	POSIX Thread Reader-Writer Locks

	Condition Variables
	POSIX Thread Condition Variables

	Semaphores
	POSIX Thread Semaphores

	Barriers
	POSIX Thread Barriers

	Awakening Threads for Synchronization Mechanisms
	Further Considerations for Synchronization Mechanisms
	Initialization of Synchronization Mechanisms
	PowerMAX OS Synchronization Mechanisms
	POSIX Initialization Mechanisms
	Alternative Initialization
	POSIX Static Initializations

	Invalidation of Synchronization Mechanisms

	Development Environment
	Compilation Environment
	Error Returns
	Thread-Safe Libraries
	System Call Wrappers
	Timers
	POSIX Timers
	User-Level Interrupts

	Examples
	Hello, world
	Basic Threads Management
	Dining Philosophers
	Producer/Consumer

	Interprocess Communication
	Introduction
	Shared Memory Alternatives
	POSIX Shared Memory
	Using the shm_open Routine
	Using the shm_unlink Routine

	System V IPC Package
	Security Enhancements for IPC Objects
	Discretionary Access Control
	Mandatory Access Control

	System V Messages
	Using Messages
	Getting Message Queues
	Using msgget
	Example Program

	Controlling Message Queues
	Using msgctl
	Example Program

	Operations for Messages
	Using Message Operations: msgsnd and msgrcv
	Sending a Message
	Receiving Messages

	Example Program
	msgsnd
	msgrcv

	Multilevel Operation On Messages

	System V Semaphores
	Using Semaphores
	Getting Semaphores
	Using semget
	Example Program

	Controlling Semaphores
	Using semctl
	Example Program

	Operations On Semaphores
	Using semop
	Example Program

	Multilevel Operation On Semaphores

	System V Shared Memory
	Using Shared Memory
	Getting Shared Memory Segments
	Using shmget
	Example Program

	Controlling Shared Memory
	Using shmctl
	Example Program

	Binding a Shared Memory Segment to Physical Memory
	Reserving Physical Memory
	Initializing the res_sects Array
	Using physmalloc
	Using physconfig

	Using shmget and shmbind

	Operations for Shared Memory
	Using Shared Memory Operations: shmat and shmdt
	Attaching a Shared Memory Segment
	Detaching Shared Memory Segments

	Example Program
	shmat
	shmdt

	Using Shared Memory Utilities
	Using shmdefine
	Using shmconfig

	Multilevel Operation On Shared Memory Segments

	STREAMS Polling and Multiplexing
	Introduction
	STREAMS Input/Output Polling
	Synchronous Input/Output
	Asynchronous Input/Output
	Signals
	Extended Signals

	STREAMS Input/Output Multiplexing
	STREAMS Multiplexors
	Building a Multiplexor
	Dismantling a Multiplexor
	Routing Data through a Multiplexor

	Persistent Links

	Packaging Your Software Applications
	An Overview of Software Packaging
	Packaging Tools and the Enhanced Security Utilities
	Contents of a Package
	Required Components
	Optional Package Information Files
	Optional Installation Scripts

	The Structural Life Cycle of a Package

	The Package Creation Tools
	The pkgmk Command
	The pkgtrans Command
	The pkgproto Command

	The Installation Tools
	The Package Information Files
	The pkginfo File
	The prototype File
	The Description Lines
	The Command Lines

	The compver File
	The copyright File
	The depend File
	The space File
	The pkgmap File

	The Installation Scripts
	Script Processing
	Installation Parameters
	Getting Package Information for a Script
	Exit Codes for Scripts
	The Request Script
	Request Script Naming Conventions
	Request Script Usage Rules
	Soliciting User Input in Request Scripts

	The Class Action Script
	Class Action Script Naming Conventions
	Class Action Script Usage Rules
	Installation of Classes
	Removal of Classes

	The Special System Classes
	The sed Class Script
	The awk Class Script
	The build Class Script

	The Procedure Script
	Naming Conventions for Procedure Scripts
	Procedure Script Usage Rules

	Basic Steps of Packaging
	Step 1. Assigning a Package Abbreviation
	Step 2. Defining a Package Instance
	Identifying a Package Instance
	Accessing the Instance Identifier in Your Scripts

	Step 3. Placing Objects into Classes
	Step 4. Making Package Objects Relocatable
	Defining Collectively Relocatable Objects
	Defining Individually Relocatable Objects

	Step 5. Writing Your Installation Scripts
	Reserving Additional Space on the Installation Machine

	Step 6. Defining Package Dependencies
	Step 7. Writing a Copyright Message
	Step 8. Creating the pkginfo File
	Step 9. Creating the prototype File
	Creating the File Manually
	Creating Links
	Mapping Development Pathnames to Installation Pathnames
	Defining Objects for pkgadd to Create
	Using the Command Lines

	Creating the File Using pkgproto
	Creating a Basic prototype
	Assigning Objects to a Class
	Renaming Pathnames with pkgproto
	pkgproto and Links

	Step 11. Distributing Packages Over Multiple Volumes
	Step 12. Creating a Package with pkgmk
	Package File Compression
	Creating a Package Instance
	Helping pkgmk Locate Package Contents

	Step 13. Creating a Package with pkgtrans
	Creating a Datastream Package
	Translating a Package Instance

	Set Packaging
	Set Installation
	Set Removal
	Set Information Display
	The setsize File
	The setsizecvt Command

	Quick Reference to Packaging Procedures
	Package Installation Case Studies
	Case #1
	Techniques
	Approach
	Sample Files

	Case #2
	Techniques
	Approach
	Sample Files

	Case #3
	Techniques
	Approach
	Sample Files

	Case #4
	Techniques
	Approach
	Sample Files

	Case #5a
	Techniques
	Approach
	Sample Files

	Case #5b
	Techniques
	Approach
	Sample Files

	Case #5c
	Techniques
	Approach
	Sample Files

	Case #6
	Techniques
	Approach
	Sample Files

	Case #7a
	Techniques
	Approach
	Sample Files

	Case #7b
	Techniques
	Approach
	Sample Files

	Guidelines for Writing Trusted Software
	Writing Trusted Software
	Scope of Trust
	How Trust Is Achieved
	How to Use This Chapter

	Trust and Security
	Privilege
	Trusted Facility Management
	Mandatory Access Control
	MAC Isolation Policy
	Discretionary Access Control
	Discretionary Access Isolation

	Writing Trusted Commands
	User Documentation
	Parameter and Process Attribute Checking
	Privilege and Special Access
	Set-id Commands
	Privileged Commands

	Privilege and Special Access in Shared Private Routines
	Error Checking
	Signal Handling
	Handling Sensitive Data
	Executing Other Commands
	Using Library Routines

	Trusting Shell Scripts
	User Documentation
	Privilege and Special Access
	Executing Commands
	Error Checking

	Trusting Public Library Routines
	Documentation
	Privilege and Special Access
	Reporting Errors
	Handling Sensitive Data
	Executing Commands

	Installing Trusted Commands and Data
	Assigning Access Controls
	Assigning Privileges and Special Permissions

	Summary

	Glossary
	Index

